
C
o
p
y
r
i
g
h
t
 
 
2
0
1
9
.
 
I
O
S
 
P
r
e
s
s
.
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 
e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/13/2023 8:57 PM via 
AN: 2217263 ; Gramegna, F., Duppen, P. Van, Vitturi, Andrea, Pirrone, S..; Nuclear Physics with Stable and Radioactive Ion Beams
Account: ns335141
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Preface

The 201st International School of Physics “Enrico Fermi” addressed the fundamental
features associated with the study of nuclear systems far from the valley of stability.
Studies performed with stable beams and with radioactive ion beams produced at first
generation facilities hint to a number of new insight in the way nuclei are built from their
constituents. By studying the properties of the so-called exotic nuclei that possess an
unbalanced number of protons to number of neutrons ratio, hidden aspects of the strong
and weak force acting in the nuclear medium can be uncovered.

The field of radioactive ion beam research has evolved over the last three decades
and several medium and large size facilities are currently undergoing a major upgrade
or are under construction. In Europe, these include ISOLDE - CERN (Switzerland),
SPIRAL2 - GANIL (France), FAIR - GSI (Germany) and SPES (Italy) while RIBF -
RIKEN (Japan), TRIUMF (Canada) and FRIB - MSU (USA) are the major undertak-
ings elsewhere. These facilities will create unprecedented opportunities to extend our
knowledge in so far unexplored regions of the nuclear chart and to address key questions
in nuclear physics, fundamental interactions and astrophysics, but also link to other fields
of science including life science.

The lectures and seminars of the school focused on the structural and dynamical
aspects from both a theoretical and experimental point of view. Recent advances in
theoretical and experimental approaches were discussed. The former included advanced
shell-model, density functional applications, and symmetry-based methods as well as
cluster and reaction models. The latter dealt with state-of-the-art experimental themes
covering reaction, decay and laser spectroscopy studies and Coulomb excitation experi-
ments. On the occasion of the 90th birthday of Professor R.A. Ricci, a dedicated session
was organized including a number of topical seminars. During this session, the pio-
neer work of Prof. Ricci in nuclear structure was recalled, together with his important
contribution in the evolution of nuclear physics in Italy. He was especially one of the
founders of heavy-ion-induced reaction studies in Italy devoted to deepen the knowledge
on nuclear structure and dynamics coordinating the efforts at the Legnaro National Lab-
oratory for the advent of the Tandem XTU in the 80’s and suggesting the development
and installation of the LINAC ALPI in the 90’s.

The organization of the school with participants from ten different countries was a
success thanks to the excellent lecturers and seminar speakers and to the highly appre-
ciated work of the school’s administrative staff. The directors would like to express on
behalf of all participants their sincere gratitude.

F. Gramegna, P. Van Duppen, A. Vitturi and S. Pirrone
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Summary. — An introduction and recent developments in the nuclear shell model
are presented. The basic concepts are explained starting from the work of Mayer
and Jensen. The conventional and Monte Carlo Shell Model are illustrated in a ped-
agogical way. Some important points of the Monte Carlo Shell Model are explained
to some details. The monopole interaction and the shell evolution are discussed.
The shape evolutions are also discussed with Type-II shell evolution. Finally the
quantum self-organization is presented.

1. – Introduction

The atomic nucleus is composed of Z protons and N neutrons in a compact volume
isolated in the vacuum. It determines its own quantum many-body structure by itself. In
this sense, the atomic nucleus is a rather unique quantal object. I present, in this lecture,

c© Società Italiana di Fisica 1
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2 T. Otsuka

Fig. 1. – Three pillars for nuclear structure studies.

recent developments and expected further developments of the nuclear shell model, which
is one of the general frameworks to describe such quantal structure.

2. – Basic points of the shell model

The lecture is formed by three pillars as shown in fig. 1. Let me start with a brief
introduction of these pillars. The first pillar is computational. For the current shell
model achievement, this primarily means the Monte Carlo Shell Model (MCSM). The
MCSM can be characterized by almost unlimited dimensionality, and its applicability is
enhanced enormously by the advances in massive parallel computers. Thus, we are in
the right moment for a rapid growth of the shell model calculations. I shall explain these
points.

The second pillar is the Hamiltonian. The shell model Hamiltonian has been set up for
challenging regions on the nuclear chart: the A3DA (or A3DA-m) interaction has been
successfully applied to the model space comprised of the full pf shell + the g9/2 orbit +
the d5/2 orbit. This model space is too big for the conventional shell model calculation. I
shall touch on some properties of Ni isotopes. The MCSM has been advanced to heavier
nuclei. The second example is the MCSM calculations on Zr isotopes, and the third one
is on Sm isotopes. In parallel to such developments, the nuclear forces have been treated
in recent years in a more ab initio way. I discussed, in my lecture, some topics on the
island of inversion, based on the EKK method for deriving the effective nucleon-nucleon
(NN) interaction on nuclei but will skip this discussion in this lecture note.
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Recent developments in shell model studies of atomic nuclei 3

Fig. 2. – Schematic illustration of the mean potential for (left) light, A1 small, and (right) heavy,
A2 large, nuclei.

The third pillar refers to recent conceptual advances such as Type-I and -II shell
evolutions, quantum phase transition, some new aspects in shape coexistence and quan-
tum self-organization. We shall see how these concepts and aspects appear in the shell
model, and how they are related to various nuclear properties. We thus try to include
most recent developments from the shell model viewpoint, highlighting some intriguing
points.

We start with the picture that nucleons forming the atomic nucleus are moving in a
mean potential, which is generated by those nucleons themselves. This picture has to be
reasonable, because the nucleus exists as an isolated quantum many-body system, and
the combination of the density saturation and the short-range strong attraction leads us
to a potential like those shown in fig. 2. In other words, the depth of the potential should
be almost constant in the inner part of the nucleus, because the density is nearly constant
there and hence the number of nucleons within the range of the nuclear forces is also
almost constant. This constancy does not hold near the surface as the density becomes
lower. The potential becomes shallower around the nuclear surface, and vanishes quickly
outside the nucleus due to the short-range character of the nuclear forces.

Because the nucleon density inside the nucleus is constant (as is referred to as the
density saturation), the potential depth inside the nucleus is basically independent of
the nucleus. On the other hand, as a function of the mass number, A (= Z + N), the
nuclear radius increases in proportion to A−1/3 consistent with the density saturation.
This increase of the radius results in another increase of the radius of the potential as
shown in fig. 2, and the potential with a larger radius can hold more nucleons within the
same energy range, as shown in fig. 2. In fact, the mean potentials with the same depth
can hold A nucleons because of the varying potential radius.

The mean potential depends on the radius, r, from the center of the nucleus (see
fig. 2). This r dependence is similar to that of the Harmonic Oscillator potential, inside
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4 T. Otsuka

the nuclear surface. It is then expected that various properties, including single-particle
wave functions, in fig. 2 can be replaced, in a rather good approximation, by those of the
Harmonic Oscillator potential. The 3-dimensional Harmonic Oscillator potential gives
the well-known pattern of its energy eigenvalues characterized by (N +3/2)h̄ω, where N

denotes the Harmonic Oscillator quanta. This N has the same character as the one for the
neutron number, but it is usually assumed that no confusion occurs because of completely
different meanings. Such properties of single-particle states can be represented as “shell
structure”, where shell structure means the grouping of the eigenenergies of the single-
particle states. The 3-dimensional Harmonic Oscillator potential produces degenerate
single-particle states and the constant gap of h̄ω between neighboring groups. This
explains the shell structure of some light nuclei, but there are other properties which
cannot be accounted for.

Mayer [1] and Jensen [2] introduced the spin-orbit splitting in addition to the Har-
monic Oscillator potential, and have succeeded in describing the observed shell structure,
leading to the shell model (SM) as an independent-particle model (IPM) [3]. Due to the
spin-orbit splitting and another minor correction, the final shell structure is modified
from that of the Harmonic Oscillator potential. The single-particle orbits are grouped
into shells. The standard shell structure has thus been established in 1949, as described
also in many textbooks, for instance, [4-6].

Although the Mayer-Jensen’s independent-particle model explains many properties
including magic numbers, the nuclear structure cannot be described, in general, only by
the single-particle motion in the mean potential. We shall consider cases with Z and
N differing from their magic numbers. Figure 3 represents such cases. In fig. 3, single-
particle orbits in proton and neutron mean potentials are shown by horizontal bars, and
protons and neutrons shown by circles can occupy those orbits. Each single-particle orbit
has total angular momentum �j with magnitude j, where �j = �� + �s, with �� (�s ) being the
orbital (spin) angular momentum. Each j orbit has magnetic substates depicted by the
z-component of �j, denoted by jz = −j,−j + 1, . . . , j − 1, j. Such (magnetic sub-) states
are referred to as single-particle states hereafter. Because of the rotational invariance of
the Hamiltonian, the single-particle states belonging to the orbit j have the same single-
particle energy (SPE), εj , and the j orbit has the degeneracy of (2j + 1). In fig. 3, some
circles are on the same bar, reflecting this property. Single-particle orbits are grouped,
forming shells. The energy gap between neighboring shells is called shell gap or magic
gap.

In fig. 3, several lowest single-particle orbits are shaded. These single-particle orbits
are completely occupied. Lowest shells which are completely occupied are called collec-
tively closed shells (or sometimes inert core). The shaded parts in fig. 3 are indeed closed
shells for protons and neutrons. The total number of protons (neutrons) in a closed shell
is called magic number. The scheme introduced by Mayer and Jensen thus provides the
shell structure and resulting magic numbers. The actual values of such magic numbers
are 2, 8, 20, 28, 50, 82, 126, . . ., the first three of which are the same as the magic numbers
given by the pure Harmonic Oscillator potential. The nucleus with Z or N equal to one
of the magic numbers is called a (single-)closed or (semi-)magic nucleus. If both Z and
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Fig. 3. – Schematic illustration of the shell structure of proton-neutron open shell nucleus.

N are magic numbers, the nucleus is called doubly magic. The spin/parity of the closed
shell is JP = 0+. This is because no nucleon can change its magnetic substate, meaning
that the z-component of its angular momentum cannot be raised or lowered, i.e., being
zero. The completely occupied orbit should have an even number of nucleons, making
its parity even. Thus, any closed shell has JP = 0+, which is the same as a vacuum,
and the degrees of freedom of the closed shell are completely frozen in the shell model
calculation unless otherwise stated.

The nucleus shown in fig. 3 is not a magic nucleus. In fact, neither Z nor N is equal to
one of the magic numbers. Such nuclei are called open-shell nuclei in contrast to closed-
shell nuclei mentioned just above. Single-particle orbits on top of the shaded part, which
is a closed shell, are only partly occupied. Such single-particle orbits are called valence
orbits, and the shell containing a valence orbit is referred to as valence shell. Nucleons
in the valence shell are called valence protons or valence neutrons.

There is a distinct difference between the nucleon in the closed shell and the nucleon
in the valence shell. The former cannot move within the closed shell because the shell
is fully packed, whereas the latter can move from a state (one of the magnetic substates
of an orbit) to another because there are vacancies. At present, we do not consider the
cases where nucleons in the closed shell are excited to valence shells.

Suppose that two valence nucleons are in the states m1 and m2, which belong to the
orbits j1 and j2, respectively. The valence nucleons can move to other states, if they are
vacant. This occurs by the nuclear forces acting on these nucleons. In other words, these
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Fig. 4. – Schematic illustration of occupancies of valence protons (or neutrons).

two nucleons interact with each other through the nuclear forces in general. This process
can be viewed as a collision of these two nucleons. After this interaction (or collision),
the two nucleons can be in some states different from those before the collision. Figure 4
shows that valence nucleons can change their states, for instance, the top two nucleons
in panel (a) can be moved to other states shown in panel (b). The panel (x) displays an
occupation pattern which completes all the possibilities. The wave function of the nucleus
is expressed by a superposition of such states. The pattern of the occupation is called
configuration. Various configurations can be mixed in an eigenstate producing additional
binding energy. This is very important as we shall see. Such additional energy is often
called correlation energy. The word correlation is often used in the SM discussions,
meaning some effects or phenomena beyond simple independent-particle picture.

The nuclear forces causing this superposition are called (effective) nucleon-nucleon
interactions as seen in fig. 3. The word “effective” is placed occasionally in front of
“nucleon-nucleon interaction”, so as to emphasize that this interaction not only contains
effects of nuclear forces for the scattering of free nucleons, but also includes various
modifications for the description of the motion of nucleons in a nucleus, for instance,
some medium corrections. Sometimes, these forces or interactions are called “residual”
interaction or force, in the sense that they are residual in comparison to the mean
potential; the mean potential implies the major thing and the residual force serves as
a kind of minor additional factor. However, this does not represent the full physics
contents, and this nomenclature may cause an inadequate impression. It will not be used
in this lecture, whereas one may encounter it in the literatures or talks. Anyway, it may
be stated that “the residual interaction, though may not be minor at all, causes various
correlations beyond simple structures, and the shell model treats it as it is.”

We now come to concrete processes of the shell model. As mentioned above, we
concentrate on the valence shells and handle only valence nucleons. Their Hamiltonian
is written in general as

(1) H =
∑

i

εi ni +
1
4

∑
i,j,k,l

vi,j,k,la
†
i a†

j al ak,
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Fig. 5. – Step 1 of the shell model calculation. Slater determinants φ1, φ2, φ3, . . . are constructed
from single-particle states α, β, γ, . . ., α′, β′, γ′, . . ., which are magnetic substates of valence
orbits. Matrix elements of the Hamiltonian, H, are calculated with respect to those Slater
determinants.

where the subscripts i, j, k, l denote magnetic substates of single-particle valence orbits,
the summation runs over all possible states, ni is the number operator of the state i, vi,j,k,l

means antisymmetrized two-body matrix element of the nuclear forces being considered,
and a† and a are nucleon creation and annihilation operators, respectively.

The valence nucleons occupy some single-particle states in the valence shells. Their
number is fixed. In step 1 of the shell model calculation, we prepare all Slater de-
terminants of the valence nucleons. One can do this for protons and neutrons sepa-
rately, and take all their possible direct products. This process is displayed in fig. 5,
where φ1, φ2, φ3, . . . stand for such Slater determinants. There, the subscript α, β, γ, . . .,
α′, β′, γ′, . . ., denote single-particle states (i.e., magnetic substates of valence orbits).
As shown in the figure, |0〉 means the relevant closed shell. Once Slater determi-
nants are prepared, as shown in fig. 5, we calculate matrix elements of the Hamilto-
nian H in eq. (1) with respect to these Slater determinants: 〈φ1|H|φ1〉, 〈φ1|H|φ2〉, . . .,
〈φ2|H|φ2〉, 〈φ2|H|φ3〉, . . .. Note that, because of the hermiticity of the Hamiltonian, we
can utilize the relation 〈φi|H|φj〉 = 〈φj |H|φi〉∗, where the symbol ∗ refers to the com-
plex conjugate. Once all calculations of this step 1 are carried out, the matrix of the
Hamiltonian, H, is completed, as illustrated as step 2 in fig. 6.

The Schrödinger equation of the many-body system is

(2) HΨ = EΨ,

where Ψ is the eigenstate and E stands for the energy eigenvalue. In the SM, the wave
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Fig. 6. – Step 2 of the shell model calculation. The Hamiltonian matrix is completed.

function of the eigenstate Ψ is represented in the form of a superposition of the Slater
determinants, φ1, φ2, φ3, . . .,

(3) Ψ = c1 φ1 + c2 φ2 + c3 φ3 + . . . ,

with c1, c2, c3, . . . being probability amplitudes. The eigenvalue and the eigenvector are
determined by the diagonalization of the Hamiltonian matrix as shown in fig. 7. The
complete set of the many-body basis vectors must be taken, and this can be achieved by
taking all possible Slater determinants for the given valence shell and valence nucleons.

After the Hamiltonian matrix in eq. (6) is diagonalized as step 3, we have the energy
eigenvalue, E, and its eigenvectors (c1, c2, c3, . . .), with ci being nothing but the prob-
ability amplitude of the i-th Slater determinant. For the diagonalization, the Lanczos
method is used in most cases, as it is suitable for large matrices [7]. By using this repre-
sentation of the eigenstate Ψ, one can calculate many physical observables and analyze
various properties of the eigenstate Ψ, for instance the occupation numbers of the indi-
vidual orbit j. As an example, see the review article [7]. We note that the SM calculation
is quite similar to the configuration interaction (CI) calculation in other fields of science.

The processes presented so far are indeed carried out in conventional shell model
calculations. Its summary is shown in fig. 8. The dimension of the eigenvector, i.e., that
of the Hilbert space, is called the SM dimension. The valence shell taken for such SM
calculation is often called model space. The SM dimension is nothing but the dimension
of the model space. This model space dimension is the major factor to determine the
difficulty of the SM calculation from the computational point of view. By combining
the progress in the algorithm and coding of the SM calculation with the development
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Fig. 7. – Step 3 of the shell model calculation. The Hamiltonian matrix is diagonalized with its
eigenvalue E and eigenvector Ψ.

of the computers, the maximum tractable dimension has been enormously enlarged. As
of today, this is a few times 1010, i.e., a few tens of billions. By utilizing the most
advanced computer codes such as NuShell (OXBASH) [8], ANTOINE/NATHAN [9],
KSHELL/MSHELL64 [10], MFDn [11], BIGSTICK [12], etc., SM calculations with huge
SM dimensions are being carried out for a variety of subjects of nuclear physics.

Fig. 8. – Conventional shell model calculation. The eigenvalues are obtained form the Hamilto-
nian matrix.
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There is a number of interesting and/or important physics problems beyond the upper
limit of the SM dimension, however. This is particularly crucial for heavy nuclei with
many valence orbits and valence nucleons. The SM dimension becomes larger also if one
studies exotic nuclei, because the conventional shell structure discussed so far is broken
and some orbits in the conventional closed shell become valence orbits, as we shall see
later. Thus, another methodology of the SM calculation is needed. The Monte Carlo
shell model calculation has been introduced as a key method in this direction, and we
shall move on to it now.

3. – Computational aspect—Monte Carlo Shell Model

After having a quick overview of the basic features of the SM studies, I would like
to come to one of the three pillars in fig. 1, a computational frontline by the Monte
Carlo Shell Model (MCSM) [13, 14]. The MCSM is a recent method to obtain eigenso-
lutions of the SM calculation. In conventional shell model calculations, the matrix of
the Hamiltonian with respect to many Slater determinants is diagonalized. As stated in
the previous section, the SM dimension, i.e., the number of the Slater determinants, can
be enormous, making the calculation unfeasible. On the other hand, many interesting
and important problems lie beyond this limit. The MCSM provides a breakthrough in
this regard. The MCSM is very different from the conventional shell model calculation.
A set of Slater determinants, called MCSM basis vectors, is introduced, and the diag-
onalization is performed in the Hilbert subspace spanned by the MCSM basis vectors.
Practically speaking, the number of the MCSM basis vectors is a few hundreds at most.

I shall describe the MCSM procedure in some detail now. By the SM calculation,
as stated above, we obtain the eigensolution of the many-body Schrödinger equation.
In the MCSM, its solution, which is supposed to be a good approximation to the exact
eigenstate, is expressed as

(4) |Ψ(D)〉 =
NB∑
n=1

cn P Jπ |φ(n)〉,

where P Jπ

is the projection operator onto the spin-parity Jπ of the eigenstate being
considered, |φ(n)〉 denotes the n-th MCSM basis vector (a deformed Slater determinant
as described below) with NB and cn implying, respectively, the number of such basis
vectors and the probability amplitude. The state in eq. (4) will be referred to as MCSM
eigenstate hereafter. Here, D stands for a set of matrices D(n) (n = 1, 2, . . .), the matrix
elements of which appear in the Slater determinant expressed as the direct product,

(5) |φ(n)〉 =
Np∏

α=1

(
Ns∑
i=1

a†
i D

(n)
iα

)
|0〉,

where Np (Ns) is the number of valence particles (the number of single-particle states),
a†

i means the creation operator of the i-th original valence single-particle state, and |0〉
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Fig. 9. – Energy eigenvalue as a function of the number of MCSM basis vectors. Two calculations
are carried out: one with stochastic process only and the other stochastic + variational processes.

denotes the closed shell. In other words, D
(n)
iα are the amplitudes to expand the α-th

deformed single-particle state (forming the Slater determinant) by the original single-
particle states with index i, with respect to the n-th MCSM basis vector. The set of
the matrices D are determined by combining stochastic, variational and diagonalization
procedures [13, 14]. To be more precise, suppose that we have obtained already the
first (n − 1) MCSM basis vectors, and that we are looking for the n-th MCSM basis
vector, |φ(n)〉. We can generate many candidates by trying various D(n) by stochastic (or
quantum Monte Carlo) ways. Once a good candidate is chosen from them, we can polish
it by a variational way. In these processes, we always monitor the energy eigenvalue of
the requested Jπ obtained by the basis vectors |φ(1)〉, |φ(2)〉, . . . |φ(n−1)〉 and the working
candidate |φ(n)〉. Once we find the solution for the n-th candidate, we can move onto the
(n+1)-th basis vector. As more basis vectors are determined, the energy eigenvalue goes
down. Figure 9 depicts how this occurs with two types of MCSM calculations: one with
the stochastic sampling and optimization only, and the other including the additional
variational improvements. We see that the energy eigenvalue is lowered as more MCSM
basis vectors are included. The MCSM concept is summarized in fig. 10. Even when the
dimensions are in the order of 1023 [15] or more for the conventional shell model, the
problem can be solved, to a good approximation, with up to approximately 100 MCSM
basis vectors. I would like to point out that the procedures presented so far can be
applied not only to the ground state but also to excited states in the same way.

On top of the procedure shown so far, we further perform the extrapolation of the
energy eigenvalue by means of the energy variance [16], but we do not discuss it here as
it is beyond the current scope.
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Fig. 10. – Monte Carlo shell model calculation. The eigenvalues are obtained from a much
smaller Hamiltonian matrix than the one shown in fig. 8.

It may be useful to compare the conventional SM calculation and the MCSM calcu-
lation in their computational methods. The eigenstate is expanded in terms of the naive
Slater determinants, composed from single-particle states given by the single-particle po-
tential (for instance the Harmonic Oscillator), as shown in fig. 5. The diagonalization pro-
cedure gives us eigenstates with good JP values by means of proper superposition of those
Slater determinants. The number of these Slater determinants can become prohibitively
large. The Slater determinant of the MCSM is very different. Each single-particle state
is a superposition over all original single-particle states as shown in eq. (5). The am-
plitudes of this superposition are expressed by D

(n)
iα (see eq. (5)), and their values are

Fig. 11. – T-plot on the potential energy surface obtained from the same shell model Hamiltonian.
The ground state of 68Ni is taken.
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Fig. 12. – T-plot on the potential energy surface obtained from the same shell model Hamiltonian.
Four low-lying states of 68Ni are taken.

optimized so that we can describe the eigenstate with much smaller number of Slater
determinants.

I introduce one of the useful outcomes of the MCSM calculations, the T-plot [17,18].
The MCSM eigenstate is expressed by the MCSM basis vectors as shown in eq. (4). As
each MCSM basis vector is a deformed Slater determinant, one can calculate its intrinsic
quadrupole moments by diagonalizing its quadrupole matrix. Such quadrupole property
is expressed in terms of Q0 and Q2. In parallel, we can calculate the potential energy
surface (PES) from the SM Hamiltonian used for the SM calculation. Figure 11 displays
an example of T-plot for the ground state of 68Ni, where the circles indicate pairs of Q0

and Q2 for individual MCSM basis vector, and the size (or area) presents their overlap
probabilities with the eigenstate as an indicator of their importance. In this particular
example, big circles are concentrated near the spherical limit, suggesting the spherical
shape of the ground state of 68Ni.

Figure 12 depicts the T-plot for the three lowest 0+ states and the second 2+ state.
One can see very clearly that the 0+

1,2,3 states show spherical, oblate and prolate shapes,
respectively. The 0+

3 state and the 2+
2 state are obtained independently, but exhibit a

very similar T-plot. This suggests that these two states are in the same band. The
T-plot produces many circles around the same shape. This is because the T-plot shows
the shape of the MCSM basis vector, which is nothing but a Slater determinant. The
pairing interaction mixes different Slater determinants, while it cannot change the shape
too much. Thus, the concentration of the T-plot circles is quite natural. We are utilizing
the T-plot to a great extent in the MCSM calculations.
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4. – Hamiltonians

The second pillar in fig. 1 is Hamiltonians. The shell model Hamiltonian has been
set up for challenging regions on the nuclear chart: the A3DA (or A3DA-m) interaction
has been successfully applied to the model space comprised of the full pf shell + the
g9/2 orbit + the d5/2 orbit [17]. This model space is too big for the conventional
shell model calculation. Many MCSM calculations have been performed for Ni, Cu and
other neighboring isotopes [19-25].

The MCSM has been advanced to heavier nuclei. The second example is the MCSM
calculations on Zr and Sr isotopes [15,26-28], and the third one is on Sm isotopes.

In parallel to such developments, the nuclear forces have been treated in recent years
in a more ab initio way. I discussed, in my lecture, some topics on the island of inversion,
based on the EKK method for deriving the effective nucleon-nucleon (NN) interaction
on nuclei [29, 30].

I shall present some discussions on this subject in the next sections in relation to the
emerging concept.

5. – Emerging concepts on many-body dynamics

The third pillar in fig. 1 is about many-body dynamics, including some new con-
cepts and ideas. Obviously, the underlying mechanisms of the many-body structure of
atomic nuclei have been studied over decades as one of the major objectives of nuclear
physics. It has then been understood that there are two basic types of the motion of
nucleons in the atomic nucleus: one is the single-particle motion and the other is collec-
tive motion. Regarding the single-particle states representing the single-particle motion,
we have discussed them in sect. 2, starting from Mayer and Jensen [1-3], with a gen-
eral description of the shell structure and associated magic numbers. The nuclear shell
model has been developed starting from the independent particle model (IPM) and has
become a framework of solving the many-body problem of atomic nuclei (see sect. 2). It
has been shown to be extremely successful in the description of the structure of many
nuclei. The interested reader can refer to textbooks, for example, [5] and/or [6], and
review articles [7,31]. Thus, the shell model presently stands for an approach to various
correlations among valence nucleons rather than the single-particle motion. On the other
hand, the single-particle states are the building blocks of shell model states as well as the
effective NN interaction. There has been a significant progress in the properties of the
single-particle states in exotic nuclei, particularly as a function of the neutron number
(N) within the same isotopic chain. We shall discuss this point first.

6. – Shell evolution and monopole interaction

The magic numbers (corresponding to major closed shells) proposed with the inde-
pendent particle model by Mayer and Jensen [1,2] have been considered to be constants
for all nuclei, taking the values 2, 8, 20, 28, 50, 82, 126, . . .. This paradigm of the magic-
number constancy has been working very well for stable nuclei and their neighborhood,
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but is being challenged for exotic nuclei. Here, exotic nuclei mean atomic nuclei with an
unbalanced ratio N/Z with N (Z) being the neutron (proton) number, and have short
half-lives due to this feature. In contrast, stable nuclei have a well-balanced ratio N/Z

(from 1 for 4He up to 1.5 for 208Pb) and have infinite (or almost infinite) life times.
Although this shell structure is certainly a valid starting point in stable nuclei, as more

neutrons are added within a given isotope chain, nuclei move to the right on the Segrè
chart and enter the region of exotic nuclei. The shell structure may change, or evolve,
as we shall show. This change is called shell evolution [32]. I shall start discussing the
mechanism of this shell evolution.

The canonical (or standard) shell structure/magic numbers can be obtained basically
using a harmonic oscillator potential and the spin-orbit splitting. This model already
includes a good fraction of the nuclear forces, but may not incorporate other sizable
effects.

6.1. Monopole interaction. – We start with a single-particle valence orbit j with its
single-particle energy, εj . In the case of one nucleon + core system, if this nucleon is
on the orbit j, εj consists of the kinetic energy and the effects of nuclear forces from all
nucleons in the core. In the case of a one nucleon outside a stable closed-shell nucleus,
the εj are well described by the standard independent-particle picture. As the nucleus
moves away from such a case with more neutrons (i.e., neutron-rich exotic nuclei), εj will
change in general. A smooth A (= Z + N) dependence arises, but the change is gradual
and minor. The kinetic-energy part changes very gradually as a function of A, and is
assumed, in this article, to remain unchanged within the region of interest on the Segrè
chart [4]. The εj can change, however, due to nuclear forces, as N (or Z) changes.

We show how to evaluate or understand this change. To this purpose, we first intro-
duce the monopole component of a general two-body interaction v̂ [7,31,18,33-35]. The
monopole matrix element is defined as [31]

(6) vm(j, j′) =

∑
μ,μ′〈j, μ, j′, μ′|v̂|j, μ, j′, μ′〉∑

μ,μ′ 1
,

with j and j′ shorthand notation for (n, l, j) of the orbit, μ and μ′ being their magnetic
substates, respectively, and 〈. . . |v̂| . . .〉 standing for the two-body matrix element. This
expression is a general one, and v̂ implies a general two-body interaction. The monopole
matrix element is obtained, for a given pair of orbits j and j′, as the average over all
possible orientations of the two-particle states, μ⊗μ′. The denominator in eq. (6) is the
number of such two-particle states. This average property then becomes

(7) vm(j, j′) =
∑

J(2J + 1)〈j, j′;J |v̂|j, j′;J〉∑
J(2J + 1)

,

where J denotes the angular momentum resulting from the angular momenta of the two
orbits, as �J = �j + �j′. The factor (2J + 1) is the degeneracy of the two-particle states
having the same value of J . In the latter equation, some J values can be forbidden by
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the antisymmetrization, but this is not the case if only the proton-neutron monopole in-
teraction is considered. From the monopole matrix element, one can derive the monopole
component, v̂m, of the interaction v̂, which can be called the monopole interaction.

The monopole interaction we discuss in the present contribution is limited, almost
exclusively, to the one between a proton and a neutron, for the sake of clarity. We then
obtain

(8) v̂m =
∑
j,j′

vm(j, j′) n̂j n̂j′ ,

where the orbit j refers to a proton and j′ to a neutron, or vice versa. The (total)
monopole interaction, consisting of not only this proton-neutron interaction but also
the proton-proton and the neutron-neutron interactions, is an important part of the
original interaction v̂. The remaining part is called the multipole interaction, in order to
distinguish it from the monopole interaction. The multipole interaction is often expressed
as v̂M , and it includes in particular the quadrupole interaction.

6.2. Effect of monopole interaction. – The most important effect of the monopole
interaction is the change of the single-particle energy of the orbit j due to the occupancy of
the orbit j′. Such a shifted SPE is called, in general, effective SPE (ESPE ). By calculating
the expectation value of the operator n̂j′ with respect to a many-body reference state,
the induced change of ESPE is given by

(9) Δεj = vm(j, j′)nj′ ,

where nj′ stands for the expectation value nj′ = 〈n̂j′〉. This equation means that the
single-particle energy of the orbit j is changed effectively in proportion to nj′ . This
relation leads to a very amusing feature: the effects of the multipole interaction vanish if
the shell (or orbit) j′ is completely filled, whereas the effect of the monopole interaction
not only remains finite but also maximal.

An interesting issue is related to the appearance pattern of major effects of the
monopole interaction, with changing the nuclear forces. As an extreme case, if v̂ is
isotropic with infinite range, vm(j, j′) does not depends on j or j′, being a constant. If v̂

is an attractive force, vm(j, j′) takes a constant negative value. This implies that if more
neutrons occupy the orbit j′, all proton orbits j become more bound to the same extent.
In other words, the proton shell is conserved but becomes more deeply bound.

On the other hand, if v̂ is given by a δ-function with a strength parameter, vm(j, j′)
becomes sensitive to the overlap between the wave functions of the orbit j and that of
the orbit j′. This implies that if more neutrons occupy the orbit j′, proton orbits, j’s,
become more bound to different extents. In other words, the ordering of the proton
single-particle states may change to a certain extent but become more deeply bound as
a whole.

These are properties that one can expect from different central forces, while the actual
situation should be somewhere in between. We point out a common feature that if the
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nuclear force, v̂, is an attractive central force, the monopole effect depicted in eq. (9) is
always attractive for all orbits j.

7. – Shell evolution due to nuclear forces

As shown in the previous section, the monopole interaction varies in general the
shell structure through the mechanism shown in eq. (9). This variation is represented
quantitatively in terms of the ESPEs discussed above, which are configuration-dependent
in principle, and the multipole interaction, such as the quadrupole interaction, will act
on top of them. Even for the same multipole interaction, its effects can be different
for different ESPEs. For instance, for the same quadrupole interaction, the quadrupole
deformation will change due to the shell evolution resulting in different ESPEs. Thus,
the shell evolution can affect not only single-particle-type but also various other nuclear
properties. We note that ESPEs here mean the so-called spherical ones, as the mechanism
in eq. (9) is scalar. On the other hand, such spherical ESPEs (obtained from appropriate
reference states which can be the eigenstate being calculated, implying self-consistency)
are relevant not only to spherical states but also to all kinds of deformed states. We note
also that the monopole and multipole interactions are parts of the Hamiltonian, and their
effects are automatically included if the Hamiltonian is diagonalized in the shell model
calculation.

7.1. Type-I shell evolution. – We start considering a chain of isotopes. If more neutrons
are added beyond a closed shell, the nucleus moves to the right on the Segrè chart. We
now take, for the sake of simplicity, a filling scheme where neutrons occupy the lowest
possible single-particle orbits. We emphasize that the filling scheme is just a simplest
and easiest treatment to see the ESPEs. As more neutrons (or protons) occupy the orbit
j′ at the Fermi level, its occupation number nj′ increases (see eq. (9)). Thus, type-I shell
evolution occurs. In subsect. 6.2, this case was discussed with an extremely simple force,
infinite-range central force. We then found that the shell structure does not change, but
the whole shell becomes more bound. We now study the shell evolution due to more
realistic nuclear forces.

7.2. Shell evolution due to tensor force. – The tensor force has been known for a
long time, and its effects have been studied from many angles. Those studies include
an extraction of the tensor-force component in the empirical nucleon-nucleon interaction
by Schiffer and True [36], a derivation of microscopic effective NN interaction (i.e., so-
called “G-matrix interaction”) including second-order effects of the tensor force by Kuo
and Brown [37], a calculation of magnetic moments also including second-order tensor-
force contributions by Arima and his collaborators [38] and by Towner [39], etc.

The robust, systematic and first-order effects of the tensor force on the shell structure
have, however, been discussed since 2005 [32]. We present the basic properties of the
monopole interaction of the tensor force, by using an illustrative example. Figure 13(a)
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Fig. 13. – Illustration of the type-I and -II shell evolutions.

shows proton orbits and a neutron orbit. The proton orbits are spin-orbit partners

(10) j> = l + 1/2, j< = l − 1/2,

where l denotes the orbital angular momentum, and 1/2 represents the spin. As shown
in ref. [32] with an intuitive picture, the coupling between j> and j′< orbits is attractive
for the tensor force. On the other hand, the coupling between j> and j′> is repulsive
as well as the coupling between j< and j′<. (For more elaborate intuitive explanation,
see [40].) In fig. 13(a), a neutron j′> orbit is shown on top of the core. Figure 13(b)
illustrates how the tensor force works, if two neutrons occupy this j′> orbit. Due to the
repulsive monopole interaction (red wavy line), the ESPE of the proton j> orbit is raised.
On the other hand, owing to the attractive monopole interaction (blue wavy line), the
ESPE of the proton j< orbit is lowered. These combined changes produce the reduction
of spin-orbit splitting.

Since the monopole effect is linear, four neutrons in the j′> orbit as shown in fig. 13(c)
double the effect exhibited in fig. 13(b). Thus, the proton spin-orbit splitting becomes
smaller and smaller, as more neutrons occupy the j′> orbit.

This change of the shell structure is very different from the changes discussed in
subsect. 6.2 with central forces. In the present case, the sign of the effect changes for
different combinations of the orbits, whereas the sign is the same in the discussions on the
central forces made in subsect. 6.2. Thus, the tensor force produces very unique monopole
interaction, which may show various shell evolutions with significant changes such as the
disappearance of traditional magic numbers, the appearance of new magic numbers, the
crossing of two orbits, etc., which provide intriguing research programs [41,42].
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Fig. 14. – Shell evolution of neutrons from Z = 40 to 50. Taken from fig. 3 of ref. [55].

We note that the actual values of the monopole matrix element depend on the radial
wave functions of the orbits j and j′ in eq. (8) also in the case of the tensor force.
Large magnitudes are expected between the same orbits (j = j′) or between spin-orbit
partners, as well as for a pair of orbits both having no radial node and high orbital
angular momenta close to each other [32].

The tensor-force component has been included by now in various types of nuclear
models. They include the shell model analysis based on the spin-tensor decomposi-
tion [43, 44], showing contributions from various channels. Regarding the mean-field
models, the extention of the Gogny model was made in 2006 [45]. For the Skyrme model,
while an early concrete attempt was carried out in 1977 [46], the tensor force has not in
general been activated until recently [47]. The research activity is, however, quite high
with many publications after 2006 [48-52]. Relativistic approach is also of interest [53,54],
with more expectations towards future developments because of closer relations to meson
exchange processes.

One typical case of the application of the tensor-force-driven shell evolution is shown
in fig. 14 taken from [55]. Here, from 90Zr to 100Sn, the number of protons in the 1g9/2

orbit increases from 0 to 10, because of the simple filling approximation assumed. The
neutron orbits on top of the N = 50 core change their single-particle energies, as shown
in fig. 14. There are two sets of calculated results: one (solid lines) is obtained with
the central and tensor forces, while the other (dashed lines) is only with the central
force. Note that the tensor force used in fig. 14 was obtained from the π-meson + ρ-
meson exchange potential [56, 55], and that the central force here is of a Gaussian type,
which can reproduce basic properties of the central part of microscopic effective NN

interactions based on G-matrix calculation [57] (see ref. [55] for details). We mention
some important features: i) the 1g7/2 and 1h11/2 orbits come down together if the central
force only is taken. In contrast, these two orbits exhibit an increasing energy splitting
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Fig. 15. – Schematic illustration of shell evolution from Ni back to Ca for neutron orbits. Light
blue circles are protons. The wavy line is the interaction between the proton 1f7/2 orbit and the
neutron 1f5/2 orbit. The numbers in circles indicate (semi-) magic numbers. Taken from [18].

approaching Z = 50 if the tensor force is included. The lowering of the 1g7/2 orbit has
been known experimentally [58,59], consistently with a significant monopole effect of the
tensor force. The stronger coupling between the proton 1g9/2 orbit and the neutron 1g7/2

orbit was discussed as an effect of the central force in the 3S1 channel by Federman and
Pittel [60], consistently with the central-force contribution in fig. 14.

We mention, from a more general viewpoint, that the strong attraction between
proton-neutron spin-orbit partners was noticed in relation to the onset of deformation in
Zr isotopes [61]. The monopole interaction between proton 2p3/2,1/2 orbit and neutron
2d5/2 orbit was discussed for the description of Zr-Sr isotopes in [62] by using the empirical
interaction introduced in [36]. Such monopole effects presented in earlier works without
mentioning the tensor force, e.g., [60-64], can be understood now quite consistently as
appearances of the shell evolution involving the tensor-force monopole effect. There were
earlier shell model calculations with realistic effective NN interactions which somehow
contain tensor-force component and consequently show certain monopole contributions,
for instance [65,66].

A recent typical example of the shell evolution is the appearance of a new magic
number N = 34. Figure 15 shows the shell evolution for the neutron orbits in the pf

shell from Ni to Ca. In Ni, there are eight protons on top of the Z = 20 core, and they
are assumed to be in the 1f7/2 orbit. Due to the strong attractive interaction between
the 1f7/2 proton and 1f5/2 neutron orbits where the tensor and central forces contribute
additively, the addition of protons lowers the ESPE of the neutron 1f5/2 orbit. This is

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Recent developments in shell model studies of atomic nuclei 21

the case for Ni isotopes, where the 1f5/2 orbit is located between the 2p3/2 and 2p1/2

orbits. In the Ca isotopes, the proton 1f7/2 orbit is unoccupied in the picture of the
40Ca magic core, so the above-mentioned monopole shift for the 1f5/2 orbit is vanished.
This moves the neutron 1f5/2 orbit upwards even above the 2p1/2 orbit, leaving a gap at
N = 32 and creating another gap at N = 34. Thus, N = 34 becomes a magic number
for the Ca isotopes. In this argument, the j>-j< proton-neutron coupling within a major
shell is important, and is the mechanism for the shell evolution between Ca and Ni. This
was basically the prediction in ref. [34] in 2001, and the corresponding text is quoted as
“we can predict other magic numbers, for instance, N = 34 associated with the 0f7/2-
0f5/2 interaction”. The experimental investigation of the N = 34 magic number in the
Ca isotopes, however, had been unfeasible for a long time, casting doubt over this magic
number [67, 68]. In 2013, finally, the 2+ excitation energy was measured in RIBF [69]
consistently with a N = 34 gap. The N = 32 gap in the Ca isotopes was investigated
experimentally in ISOLDE in 1985 in terms of the 2+ excitation energy [70]. The magic
structures of Ca isotopes attracted much attention in recent years [71-87].

We here comment that the tensor force in the free space like the one obtained from
one-π-meson + one-ρ-meson exchange potential does not change much after the renor-
malization procedures for the short-range repulsion and the in-medium corrections, as
referred to as renormalization persistency [55, 88]. The tensor-force component of the
effective NN interaction can be obtained by its spin-tensor decomposition [89-94]. The
tensor forces obtained by different approaches are known to be rather similar at least at
the level of the monopole interaction for the valence shell because of the renormalization
persistency. Thus, we can discuss rather well general features of the monopole effects of
the tensor force.

8. – Nuclear shape

The shell evolution is one of the correlation effects, reflecting the monopole interaction.
There are other components in the NN interaction, which produce other correlations.
As consequences of such correlations, one can find certain modes with strong coherence
among many participating nucleons, referred to as collective modes usually. Among such
collective modes, the one causing the deformation of the nuclear shape is particularly
important, as pointed out by Rainwater [95], and Bohr and Mottelson [96, 97]. With
this collective mode, the shape of the nucleus is changed from a sphere to an ellipsoid,
and this mode is called quadrupole deformation. Besides the quadrupole deformation
of the shape, there are various collective modes such as octupole deformation, or other
correlations with weaker coherence.

8.1. Nuclear shapes and quantum phase transition. – We shall first focus on the
quadrupole deformation of the nuclear shape as a function of the neutron number N .
Figure 16 exhibits the excitation energy of the 2+

1 state, or the 2+
1 level, for Sm and Zr

isotopes as a function of N . In the Sm chain, the 2+ level comes down rather gradually,
similarly to many other isotopic chains. As shown in fig. 16, a higher 2+ level corre-
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Fig. 16. – Systematic changes of the 2+
1 level in (left) Sm and (right) Zr isotopes, as functions

of N . Data taken from [98] for Sm. The right panel is based on [15].

sponds to a spherical shape and its surface oscillation, while a lower 2+ level implies an
ellipsoidal deformed shape and the rotation of the ellipsoid. On the other hand, in the
Zr chain, the 2+ level drops down abruptly in moving from N = 58 to 60. Due to this
abrupt change, this phenomenon can be referred to as a quantum phase transition [15].
Likewise, the ground-state structure of the Zr isotopes is changed drastically between
N = 58 and 60, also from the sphere to the strongly deformed ellipsoid. The Monte
Carlo Shell Model (MCSM) describes both situations including the abrupt change with
the same Hamiltonian [15,26].

8.2. Quantum phase transition in Zr isotopes. – We shall now look into the structure
changes in Zr isotopes based on the MCSM calculation. The upper panel of fig. 17 shows
the occupation numbers of proton orbits for some states. The g9/2 orbit is almost empty
in the 0+

1 state of 98Zr, whereas it is occupied by about 3.5 protons in its 0+
2 state. Note

that this 0+
1 (0+

2 ) state is spherical (deformed). Such changes, including the numbers
of proton holes in the pf orbits, result in substantial shifts of the neutron ESPEs as
shown schematically in the upper right panel of fig. 17. The proton-neutron monopole
interaction (wavy line in the figure) generates those shifts. The lower panel depicts the
actual neutron ESPEs. One notices substantial changes in the ESPEs for different states.
One sees that the spacing between the d5/2 and g7/2 orbits is nearly 5 MeV for the 0+

1

state of 98Zr, but it is reduced to about 2 MeV in 0+
2 state. Such a reduced splitting is

found also in the 0+
1 state of 100Zr which is also strongly deformed.

We now discuss why the ESPEs are so different between spherical and deformed states.
We first point out that the nuclear deformation at low excitation energy is a Jahn-Teller
effect [99], meaning that the collective motion causing the deformation occurs as a con-
sequence of coherent contributions from some relevant orbits near the Fermi energy. For
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Fig. 17. – Top left: occupation numbers of proton orbits of Zr isotopes. Top right: schematic
illustration of the changes of neutron (effective) single-particle energies in Zr isotopes. Bottom:
Actual values of neutron (effective) single-particle energies obtained in the calculation of [15].
The top left panel and the bottom one are based on [15].

such coherent effects, larger splittings of ESPEs weaken the coherence, leading to a lower
collectivity. On the other hand, the monopole interaction with other valence nucleons can
change the ESPEs depending on the occupancy of the other nucleons. If the monopole
interaction were uniform, no configuration dependence would appear, and this change
should be absent. The tensor-force component of the nuclear force makes the monopole
interaction attractive or repulsive, depending on the combination of the orbits [32, 55].
This is certainly against the uniformity, and its effect can be crucial. The central-force
component changes its magnitude also depending on the combination of the orbits mainly
due to varying overlaps of radial wave functions of single-particle states [55]. Thus, the
monopole interaction is indeed far from being uniform, and the selection of favored con-
figurations can move the ESPEs of relevant orbits substantially. If relevant ESPEs can
be made closer to being degenerate, it helps the deformation. We shall formulate this
novel mechanism in the next section.
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8.3. Quantum self-organization. – The nuclear shapes have been one of the major
focuses of the nuclear structure physics, including spherical, vibrational and rotational
ones [100]. The relation between the single-particle states and the collective modes has
naturally become of much interest, as described by Bohr and Mottelson in [100] as “the
problem of reconciling the simultaneous occurrence of single-particle and collective de-
grees of freedom and exploring the variety of phenomena that arise from their interplay”.

The atomic nucleus is a many-body quantum system made of protons and neutrons,
which is often considered to be described in terms of Landau’s Fermi Liquid picture. In a
somewhat simplified expression of this picture, protons and neutrons of a nucleus are in
a mean potential which is like a rigid “vase”, and nucleons are like free particles moving
in this vase, interacting weakly among themselves through a “residual interaction”. The
ESPEs of such a system exhibit some shell structure, and are split in general. If the
splitting is large enough, the many-body structure is dominated by the ESPEs: nucleons
occupy the lowest single-particle states in the ground state, the next lowest configura-
tion gives us the first excited state, and so forth. In such cases, the correlations due
to the interaction between nucleons may contribute, but their effects are minor, more
or less, compared to the effects of ESPE splittings. However, if the energy gain from
such correlations overcomes the relevant ESPE splittings, a collective mode dominates
the structure of the ground and low-lying states. Although the understanding of the
relation between the single-particle states and the collective modes has been pursued in
many ways, it seems to remain an open problem. For instance, G.E. Brown had kept,
throughout his life, the question, “how can single-particle states coexist with collective
modes?” as quoted from “Fermi liquid theory: A brief survey in memory of Gerald E.
Brown” in [101]. We shall present a novel mechanism which is closely related to this
problem.

The nuclear deformation is determined by the balance between the effect of the
collective-mode driving force and the resistance power against this collective mode.
A schematic expression of this property is

(11) deformation =
quadrupole force
resistance power

.

The collective-mode driving force is the quadrupole (or quadrupole-quadrupole) interac-
tion in the case of the ellipsoidal shape. This interaction is one of the major components
of the proton-neutron realistic force. A typical example of the resistance power is the pair-
ing interaction, which tends to make the shape more spherical because all time-reversal
pairs are equally favored. Keeping the pairing interaction aside, we shall consider another
source of the resistance power. That is, the effects of the monopole interaction on the
ESPEs.

We here propose a novel mechanism called, Quantum Self-Organization. This mech-
anism implies the following property: Atomic nuclei can “organize” their single-particle
energies by taking particular configurations of protons and neutrons, optimized for each
eigenstate, thanks to orbit dependences of monopole components of nuclear forces (e.g.,
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tensor and central forces). This results in an enhancement of the Jahn-Teller effect, i.e.,
an enhancement of the collective mode. The deformation and quantum self-organization
can be linked in a non-linear way with a positive feedback: once some nucleons are
excited to particular favorable orbits, the ESPEs can be shifted in favor of a larger de-
formation. A larger deformation can promote such excitations with more nucleons. This
cycle continues until self-consistency is achieved, whereas intermediate situations are
skipped. In many cases, massive excitations are involved, and the particle-hole hierarchy
is broken, for instance, a 6p-6h deformed state comes right after a 2p-2h near-spherical
state, skipping the 4p-4h state [18].

The property shown in eq. (11) is somewhat analogous to the relation

(12) electric current =
voltage

resistance
,

where the electric current, voltage and resistance mean the usual quantities regarding
the electricity. The higher voltage produces a higher current, but the current can be
increased also by decreasing the resistance. The quantum self-organization implies that
the atomic nucleus finds particular configurations which decrease the resistance power.

The most favorable configurations and associated ESPEs vary for individual eigenstate
even within the same type of the collective mode. For instance, prolate, oblate or triaxial
shapes belong to the quadrupole deformation, but can appear with different patterns of
the ESPEs within the same nucleus. The oblate shape is less affected by the quantum
self-organization, because smaller numbers of nucleons on unique-parity orbits are the
key element of the oblate shape in most cases. In those cases, the organizations of
many orbits are rather irrelevant, and the quantum self-organization may not occur
to a sizable extent. This feature has been verified with concrete cases. On the other
hand, many orbits contribute coherently to the prolate deformation, and the quantum
self-organization can produce crucial effects. This has been confirmed by changing the
monopole interactions, for instance, closer to the uniform one.

We present a concrete example by taking the case of the prolate band in 68Ni [18].
The monopole interaction between the neutron 1g9/2 orbit and the proton 1f5/2 orbit is
more attractive than that between the neutron 1g9/2 orbit and the proton 1f7/2 orbit
mainly due to the robust property of the monopole interaction of the tensor force, and
this difference serves as the major origin of the quantum self-organization in this partic-
ular case: more neutrons in the 1g9/2 orbit reduces the 1f7/2-1f5/2 spin-orbit splitting
for protons [17,32,55]. The effect of this difference on the deformation can be seen quan-
titatively by replacing the strengths of these monopole interactions with the average of
their original values, i.e., the same value. Likewise, we reset the monopole interaction be-
tween the neutron 1f5/2 and the proton 1f7/2 orbits and that between the neutron 1f5/2

and the proton 1f5/2 orbits. These modifications correspond basically to the removal
of the tensor-force monopole contributions, and are nothing but the suppression of the
present effects of the quantum self-organization. The resulting Potential Energy Surface
is shown in fig. 18 for the axially symmetric deformation compared with that obtained
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Fig. 18. – Potential Energy Surface with the axially symmetric deformation for 68Ni. The
red solid line denotes the energy of the constrained Hartree-Fock calculation with the original
Hamiltonian. The blue dashed line implies the same calculation except that the quantum self-
organization is suppressed (see text). Figure taken from [18].

from the original Hamiltonian. Around the spherical minimum the energy curves of the
two calculations are similar, however, when going to stronger deformation values, the two
approaches differ substantially. In particular, the prolate profound local minimum, seen
in the original calculation (red solid line), is pushed up by about 4 MeV, if the quantum
self-organization is suppressed as described above (blue dashed line). Thus, the quantum
self-organization is a part of the crucial mechanisms producing the nuclear deformation.

At this point, we mention that the ESPE being discussed corresponds somehow to the
spherical terms in the Nilsson model [100] which are comprised of the �� and �s terms as
well as the harmonic-oscillator-quanta term. As their strengths are independent of the
deformation, the present effect is not included in the Nilsson model.

Type-II shell evolution [18] has been discussed, for instance, in the Co/Ni region [17,
22,25], where neutrons are excited from the pf shell to g9/2 across the N = 40 sub-magic
gap. The neutrons in g9/2 and neutron holes in f5/2 provide sizable monopole effects
similarly to the 68Ni case discussed above. A smaller 1f7/2-1f5/2 spin-orbit splitting for
protons reduces the resistance power against deformation, pulling down the prolate band
as seen in fig. 18. Type-II shell evolution was introduced as the particle-hole excitation
over a magic or sub-magic gap. Clearly, this kind of mechanism is a very simple and
visible case of the quantum self-organization. On the other hand, the quantum self-
organization can occur certainly in more complex ways. Such a complex way may be
found in the shape transition of Sm isotopes (see fig. 16), where no magic or sub-magic
gap is involved. We can see the spherical-vibrational-rotational shape evolution in MCSM
calculations, as will be reported in detail elsewhere.
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The structure of Sm isotopes has been one of the focal points of the nuclear structure
physics. This is largely because the whole picture of the gradual change form the spherical
to strongly deformed shapes has been seen experimentally from an earlier time. We have
succeeded in describing this shape evolution by the MCSM with a large model space. As
the results are preliminary, they are not shown here, but will be presented somewhere in
a near future.

Likewise, the shape coexistence in Hg/Pb isotopes has been studied. In those cases,
the quantum self-organization gives intriguing contributions on the pattern of the shape
coexistence, as reported also elsewhere.

9. – Summary and perspectives

We presented an overview on the shell model studies on atomic nuclei, covering from
the beginning to very recent results.

The shell model calculation can include various effects of the nuclear forces. Although
it faced the difficulty of the matrix dimension size, this difficulty has been removed by
the MCSM. The T-plot was explained.

In parallel to this development, the effects of the monopole component, or interaction,
have been discussed. The central and tensor monopole interactions produce crucial and
characteristic contributions to the structure of exotic nuclei. Those contributions can be
seen not only in single-particle properties but also in other properties due to strong mul-
tipole correlation effects. The mechanism of the monopole interaction has been referred
to as the Type-I and -II Shell Evolutions [18].

Some examples are shown for Ni and Zr isotopes to some detail and some perspectives
are given for Sm amd Hg/Pb nuclei. The Zr case involves the first-order quantum phase
transition.

Finally, a comprehensive and basic mechanism on the relation between single-particle
states and collective modes was presented. This is called the quantum self-organization,
and a summary on this is given below.

– The atomic nuclei are not like simple rigid vases containing almost free nucleons
interacting only weakly: the naive Fermi liquid picture.

– Nuclear forces are rich enough to change effective single-particle energies for each
eigenstate, and can lead to the quantum self-organization.

– Single-particle energies can be self-organized, being enhanced by

i) two quantum liquids (e.g., protons and neutrons)

ii) two major force components

e.g., quadrupole interaction: to drive collective mode

monopole interaction: to control resistance power.

– Type-II shell evolution is a simple visible case involving excitations across
(sub)magic gap.
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– Actual cases such as shape coexistence, quantum phase transition, octupole vibra-
tion/deformation, super deformation, etc. can be studied with this scope.

– The quantum self-organization becomes more important in heavier nuclei where the
number of active orbits and the number of active nucleons are larger. With larger
numbers of them, the effects of the organization can be more significant. This
feature may be linked to fission and superheavy elements. On the other hand, the
quantum self-organization may not be so visible in light nuclei except for particular
cases like intruder bands or cluster (or multiple particle-hole excited) states.

– Time-dependent version of quantum self-organization may be of another interest
for reactions and fission.

The nuclear structure is becoming more and more interesting and exciting with many
aspects and ideas.
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Summary. — A brief account of the algebraic cluster model (ACM) is given. Ap-
plications to cluster structures composed of k α-particles with k = 2 (Z2 symmetry),
k = 3 (D3h symmetry) and k = 4 (Td symmetry) are presented. Experimental evi-
dence for the occurrence of these symmetries in 8Be (Z2),

12C (D3h), and 16O (Td)
is shown.

1. – Introduction

Algebraic methods and their associated group theoretical methods have been used
extensively in physics since their introduction by Wigner [1] and Racah [2, 3]. Since
1974, a general formulation of algebraic methods has emerged [4]. In this formulation,
a quantum-mechanical many-body system is mapped onto an algebraic structure. The
logic of the method is
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Many-body system
↓

Choice of relevant degrees of freedom
↓

Quantization in terms of boson and/or fermion operators
↓

Algebraic structure (Lie algebra, Graded Lie algebra, . . . )
↓

Computation of observables
↓

Comparison with experiment

The main ingredient of the method is the algebraic structure. The large majority of the
applications make use of Lie algebras [5], although in recent years also graded Lie algebra
(super-algebras) have been used [6].

In the last 40 years many algebraic models of physical systems have been introduced
and developed, encompassing all fields of physics. Some of these models are:

a) Nuclear physics [7, 8]

The Interacting Boson Model, IBM-1, the Proton-Neutron Interacting Boson Model,
IBM-2, the Interacting Boson Fermion Model, IBFM-1, and the Proton-Neutron Inter-
acting Boson-Fermion Model, IBFM-2, have provided since 1974 a detailed description
of medium mass and heavy nuclei.

b) Molecular physics [9]

The Vibron Model (VM) and the Electron-Vibron Model, EVM, have provided since
1981 a detailed description of molecules.

c) Hadronic physics [10,11]

An algebraic model of hadrons was introduced in 1994 and used to describe both mesons
and baryons.

d) Polymer physics [12,13]

An algebraic model of polymer chains was introduced in 1999 and used to describe finite
polymer chains, in particular the paraffin and related structures.

e) Cluster physics [14,15]

The algebraic cluster model (ACM) was introduced in 2002 and used to describe prop-
erties of light nuclei.

f) Crystal physics [16,17]
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Fig. 1. – Cluster configurations for k = 2, 3, 4. Reproduced from [26] with permission.

The algebraic model of crystal vibrations (ACV) is the latest addition to the list as it
was introduced in 2015 to describe properties of one- and two-dimensional crystals, in
particular graphene sheets.

Reviews of the Interacting Boson Model and Interacting Boson Fermion Model have
been given at previous “Enrico Fermi” schools [18, 19]. I will provide here a review of
the Algebraic Cluster Model (ACM).

2. – Cluster structure of light nuclei

The cluster structure of light nuclei has a long history dating back to the 1930’s
with work of Wheeler [20] and Hafstad and Teller [21], followed by Dennison [22], and
Kameny [23]. In 1965, Brink [24, 25] suggested specific geometric configurations for
nuclei composed of k α-particles, here referred as kα nuclei. In particular, the suggested
configurations of the ground state were, for k = 2 (8Be) a dumbbell configuration with
Z2 symmetry, for k = 3 (12C) an equilateral triangle with D3h symmetry, and for k = 4
(16O) a tetrahedron with Td symmetry, as shown in fig. 1. In these lectures, an algebraic
description of the geometric configurations of fig. 1 in terms of the algebraic cluster model
(ACM) is given.

3. – The algebraic cluster model

The algebraic cluster model is based on the algebraic theory of molecules introduced
in 1981 [27] and reviewed in [9]. It amounts to a bosonic quantization of the Jacobi
variables according to the general quantization scheme [4] for problems with ν degrees of
freedom in terms of the Lie algebra U(ν + 1). For kα structures, the number of degrees
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Table I. – Summary of ACM cases explicitly constructed.

k Nucleus U(3k − 2) Discrete symmetry Jacobi variables

2 8Be U(4) Z2 ρ

3 12C U(7) D3h ρ, λ

4 16O U(10) Td ρ, λ, η

of freedom, removing the center-of-mass motion, is ν = 3k−3, leading to the Lie algebra
of U(3k − 2).

An explicit construction of the algebra and derivation of analytic formulas for energy
levels, electromagnetic transition rates, matter and charge densities and associated form
factors in electron scattering has been completed for cases k = 2 [27], k = 3 [14, 28] and
k = 4 [15, 29-31]. It is summarized in table I and results will be given in the following
subsections.

3.1. Classification of states. – The discrete symmetry of clusters imposes conditions
on the allowed quantum states. The mathematical method for determining the allowed
states (i.e. constructing representations of the discrete group G) is the diagonalization of
the so-called symmetry adapter operators. For cases k = 2, 3, 4 and identical constituents,
one can exploit the isomorphism of the discrete point group with the permutation group
Sn. The associated symmetry adapter operators are given in table II. For the ACM,

Table II. – Symmetry adapter operators of Sn.

Group G Symmetry adapter

Z2 ∼ S2 ∼ P Transposition (12)

D3 ∼ S3 Transposition (12), Cyclic permutation (123)

Td ∼ S4 Transposition (12), Cyclic permutation (1234)

Table III. – Labelling of representations.

Group G G label Sn label Degeneracy

Z2 ∼ S2 ∼ P A [2] Singly

D3 ∼ S3 A [3] Singly

E [21] Doubly

Td ∼ S4 A [4] Singly

F [31] Triply

E [22] Doubly
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formulated in terms of U(3k−2) the construction is even simpler, since U(3k−2) contains
the harmonic oscillator group U(3k − 3) and the breaking of U(3k − 3) onto Sn was
studied years ago by Kramers and Moshinsky [32]. One can therefore find the angular
momentum and parity, LP , content in a given representation of the discrete group, G.
Representations can be labeled either by Sn or by the isomorphic discrete group G, as in
table III. Here the representations of Sn are labelled by the Young tableau, while those
of G are labelled by the standard notation used in molecular physics [33].

3.1.1. Dumbbell configuration, k=2. Z2 symmetry. An algebraic description of this con-
figuration is given by the algebra of U(4) [27], reviewed in [9]. This algebra is constructed
with boson creation and annihilation operators, b†ρ,m, s† ≡ cα and bρ,m, s ≡ cα. Here b†ρ,m,
bρ,m (m = 0,±1) are the quantization of the Jacobi variable ρ, fig. 2 and its conjugate
momentum, and s†, s is an auxiliary boson.

The bilinear products Gαβ = c†αcβ (α, β = 1, . . . , 4) of creation and annihilation
operators generate the Lie algebra of U(4). Specifically these are

(s† × s̃)(0),(3.1) (
b†ρ × b̃ρ

)(L)

(L = 0, 1, 2),

(
b†ρ × s̃

)(1)
,

(
s† × b̃ρ

)(1)

,

where b̃ρ,m = (−)bρ,−m, s̃ = s. We consider here rotations and vibrations of the dumbbell
configuration. States can be classified by a vibrational quantum number v = 0, 1, 2, . . .

and a rotational quantum number L, |v, L,ML〉. In the case in which the two constituents
are identical (two α-particles) the dumbbell has Z2 ∼ S2 ∼ P symmetry. All vibrational
states v have symmetry A under Z2 since the two particles are identical (fig. 2). The
angular momentum content of each vibrational band is A : LP = 0+, 2+, 4+, . . ., where
the parity P has been added, although here is not an independent quantum number,
P = (−)L. The expected states |v, LP 〉 of a rotating and vibrating dumbbell are shown
in fig. 3.

Fig. 2. – Jacobi vector ρ for a dumbbell configuration and its vibrations.
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Fig. 3. – Expected states of a rotating and vibrating dumbbell configuration. Only states up to
v = 1 are shown.

3.1.2. Equilateral-triangle configuration, k = 3. D3h symmetry. An algebraic description
of this configuration is given by the algebra U(7) [14, 28]. This algebra is constructed
with boson creation operators b†ρ,m, b†λ,m, s† ≡ c†α, (m = 0,±1), (α = 1, . . . , 7) and
associated annihilation operators bρ,m, bλ,m, s.

The two vector boson operators b†ρ,m, b†λ,m, bρ,m, bλ,m are the quantization of the two
Jacobi variables

�ρ = (�r1 − �r2) /
√

2,(3.2)

�λ = (�r1 + �r2 − 2�r3) /
√

6.

The bilinear products Gαβ = c†αcβ (α, β = 1, . . . , 7) generate the Lie algebra of U(7). A
specific form is given in [14].

We consider here rotations and vibrations of an equilateral-triangle configuration.
States can be classified as

(3.3)
∣∣∣(v1, v

�2
2

)
; t,K,LP ,ML

〉
,

where t denotes the representations of D3h, K the projection of the angular momentum
on the intrinsic axis, L the angular momentum, and ML its projection.

In the case in which the three constituents are identical (three α-particles), the tri-
angular configuration of fig. 4 has D3h symmetry. This imposes some conditions on
the allowed values of K and L. In eq. (3.3), (v1, v

�2
2 ) label the vibrational states, with

v1 = 0, 1, 2, . . .; v2 = 0, 1, 2 . . .; �2 = v, v − 2, . . . , 1 or 0 (v2 = odd or even). The funda-
mental vibrations of a triangular configuration are shown in fig. 5.
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� �

�

�

�

Fig. 4. – Jacobi variables ρ, λ for an equilateral-triangle configuration.

Fig. 5. – Fundamental vibrations of a triangular configuration (point group D3h). The A vibra-
tion is singly degenerate, while E is doubly degenerate with components v2a, v2b.

For vibrational bands with �2 = 0, 1, the allowed values of the angular momentum
are for (v1, v

�2=0
2 ):

K = 3n, n = 0, 1, 2, . . . ,(3.4a)

L = 0, 2, 4, . . . , for K = 0,

L = K,K + 1,K + 2, . . . , for K �= 0,

and for (v1, v
�2=1
2 ):

K = 3n + 1, 3n + 2, n = 0, 1, 2 . . . ,(3.4b)

L = K,K + 1,K + 2, . . . .

The parity is P = (−)K . The vibrational band (1,00) has the angular momenta LP =
0+, 2+, 3−, 4±, . . ., as the ground (0, 00), while the angular-momentum content of the
doubly degenerate vibration (0, 11) is given by LP = 1−, 2∓, 3∓, . . .. The expected states
of a triangular configuration are shown in fig. 6.

3.1.3. Tetrahedral configuration, k = 4. Td symmetry. An algebraic description of this
configuration is given by the algebra of U(10) [15, 29-31]. This algebra is constructed
with boson creation operators b†ρ,m, b†λ,m, b†η,m, s† ≡ c†α (m = 0,±1) (α = 1, . . . , 10) and
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Fig. 6. – Expected states of a triangular configuration with D3h symmetry.

Fig. 7. – Jacobi coordinates in a tetrahedral configuration.

associated annihilation operators bρ,m, bλ,m, bη,m, s. The three vector boson operators
b†ρ,m, b†λ,m, b†η,m, bρ,m, bλ,m, bη,m are the quantization of the three Jacobi variables

�ρ = (�r1 − �r2)/
√

2,(3.5)

�λ = (�r1 + �r2 − 2�r3)/
√

6,

�η = (�r1 + �r2 + �r3 − 3�r4)/
√

12,

shown in fig. 7. The bilinear products Gαβ = c†αcβ (α, β = 1, . . . , 10) generate the Lie
algebra of U(10). A specific form is given in [15].

We consider here rotations and vibrations of a tetrahedral configuration. States can
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Fig. 8. – Fundamental vibrations of a tetrahedral configuration (point group Td). The A1

vibration is singly degenerate, E is doubly degenerate v2a, v2b and F2 is triply degenerate, v3a,
v3b, v3c.

Fig. 9. – Expected states of a tetrahedral configuration. The rotational bands are labelled by
(v1, v2, v3); t. All states are symmetric under S4 ∼ Td. Note the unusual angular-momentum
content of the rotational bands, with parity doubling.

be classified as

(3.6)
∣∣∣(v1, v

�2
2 , v�3

3

)
; t, LP ,ML

〉
,
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where v1, v�2
2 , v�3

3 denote vibrational quantum numbers and t labels the representations of
Td. In the case in which the constituents are identical (four α-particles), the tetrahedral
configuration of fig. 7 has Td symmetry. This imposes some conditions on the allowed
values of L, which depend on t. A derivation of the allowed values is given in [15]. For
the ground state, t = A1, and for the fundamental vibrations, fig. 8, t = A1, E, F2, it
can be summarized as follows:

t = A1, LP = 0+, 3−, 4+, 6±, . . . , singly degenerate(3.7)

t = E, LP = 2±, 4±, 5±, 6±, . . . , doubly degenerate

t = F2, LP = 1−, 2+, 3±, 4±, 5−,±, 6+,±, . . . , triply degenerate.

The expected states of a tetrahedral configuration are shown in fig. 9.

3.2. Energy formulas. – Energy levels in ACM can be obtained by diagonalizing
the Hamiltonian, H. Computer programs have been written for all three cases, U(4),
U(7), U(10) [34]. These programs can deal with all situations encountered in 2-, 3-
and 4-body problems, including both soft and rigid situations. For applications here,
we consider only rigid situations and write down analytic formulas that can be used to
analyze experimental data.

3.2.1. Dumbbell configuration. Z2 symmetry. The algebraic Hamiltonian describing
roto-vibrations of a dumbbell configuration (diatomic molecule) is given in eqs. (2.108)
and (2.112) of [9]. Written explicitly in terms of boson operators, it has the form

(3.8) Ĥ = E′
0 + A(D̂2 + L̂2) + BL̂2

with

D̂m =
(
b†ρs̃ + s†b̃ρ

)(1)

m
, (m = 0,±1),(3.9)

L̂m =
√

2
(
b†ρ × b̃ρ

)(1)

m
, (m = 0,±1).

In this case, the Hamiltonian Ĥ has a dynamic symmetry U(4) ⊃ SO(4) ⊃ SO(3) ⊃
SO(2).

The eigenvalues of H can be written in explicit analytic form as

(3.10) E(N, v, L, ML) = E′
0 − 4A(N + 1)

[
v − v2

N + 1

]
+ BL(L + 1).

Here N is the so-called vibron number, that is the boson number that characterizes the
irreducible representations of U(4). The vibrational quantum number v takes the values

(3.11) v = 0, 1, . . . ,
N − 1

2
or

N

2
,
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for N = odd or even, and the rotational quantum number L takes the integer values

(3.12) L = 0, 1, 2, . . . , (N − 2v).

For identical constituents, Z2 symmetry, L = even = 0, 2, . . . , (N−2v). In the limit N →
∞, one obtains the semiclassical formula for the energy levels of a dumbbell configuration

(3.13) E(v, L,ML) = E0 + ω

(
v +

1
2

)
+ BL(L + 1),

where ω is the vibrational energy and B the inertial parameter B = h̄
2I .

3.2.2. Equilateral-triangle configuration. D3h symmetry. The situation here is more com-
plicated than in the previous subsection, since there is no dynamic symmetry correspond-
ing to the rotation and vibration of a rigid symmetric top. The explicit form of the
Hamiltonian is

H = ξ1

(
s†s† − b†ρ · b†ρ − b†λ · b†λ

)(
s̃s̃ − b̃ρ · b̃ρ − b̃λb̃λ

)
(3.14)

+ξ2

[(
b†ρ · b†ρ − b†λ · b†λ

)(
b̃ρ · b̃ρ − b̃λ · b̃λ

)
+ 4
(
b†ρ · b†λ

)(
b̃λ · b̃ρ

)]
+2κ1

(
b†ρ × b̃ρ + b†λ × b̃λ

)(1)

·
(
b†ρ × b̃ρ + b†λ × b̃λ

)(1)

+3κ2

(
b†ρ × b̃λ − b†λ × b̃ρ

)(0)

·
(
b†λ × b̃ρ − b†ρ × b̃λ

)(0)

.

In a generic situation, this Hamiltonian needs to be diagonalized in the space of given
vibron number N . However, in the limit N → ∞, one can write down a semiclassical
formula

E
(
v1, v

�2
2 ,K, L,ML

)
= E0 + ω1

(
v1 +

1
2

)
(3.15)

+ω2(v2 + 1) + BL(L + 1) + κ2 (K ∓ 2�2)
2
,

which describes the energy levels of a symmetric top. States are classified as in eq. (3.3)
and the values of K and L for given v1 and v2 are as in eq. (3.4).

3.2.3. Tetrahedral configuration. Td symmetry. Also here the situation is rather compli-
cated since there is no dynamic symmetry corresponding to the rotation and vibration
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of a spherical top. The explicit form of the Hamiltonian describing the vibrations is

Hvib = ξ1

(
s†s† − b†ρ · b†ρ − b†λ · b†λ − b†η · b†η

)
(h.c.)(3.16)

+ξ2

[(
−2

√
2b†ρ · b†η + 2b†ρ · b†λ

)
(h.c.)

+
(
−2

√
2b†λ · b†η +

(
b†ρ · b†ρ − b†λ · b†λ

))
(h.c.)

]
+ξ3

[(
2b†ρ · b†η + 2

√
2b†ρ · b†λ

)
(h.c.)

+
(
2b†λ · b†ρ +

√
2
(
b†ρ · b†ρ − b†λ · b†λ

))
(h.c.)

+
(
b†ρ · b†ρ + b†λ · b†λ − 2b†η · b†η

)
(h.c.)

]
.

The Hamiltonian describing rotations can be written as

(3.17) Hrot = κ1
�L · �L + κ2

(
�L · �L + �I ′ · �I ′

)
,

where �L and �I ′ denote the angular momentum in coordinate space and index space,
respectively [15], the explicit form of which is

Lm =
√

2
[
b†ρ × b̃ρ + b†λ × b†λ + b†η × b†η

](1)
m

,(3.18)

I ′ρ =
√

3(−i)
[
b†λ × b̃η − b†η × b̃λ

](0)
,

I ′λ =
√

3(−i)
[
b†η × b̃ρ − b†ρ × b̃η

](0)
,

I ′η =
√

3(−i)
[
b†ρ × b̃λ − b†λ × b̃ρ

](0)
.

Again, in a generic situation, this Hamiltonian needs to be diagonalized in the space of
given vibron number N . For N → ∞, one can write down a semiclassical formula

E(v1, v2, v3; t, LP ,ML) = E + ω1

(
v1 +

1
2

)
(3.19)

+ω2 (v2 + 1) + ω3

(
v3 +

3
2

)
+ BL(L+1),

which describes the energy levels of a spherical top. States are classified as in eq. (3.6)
and the values of t and LP for the ground state band and the fundamental vibrations
are given in eq. (3.7).

3.3. Form factors and transition probabilities. – The transition form factors are the
matrix elements of

∑k
i=1 exp(i�q · �ri), where �q is the momentum transfer and �ri is the
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location of the α-particles. To do this calculation in ACM, one first converts the transition
operator to algebraic form and then calculates the form factors

(3.20) FM (i → f ; q) =
〈
γf , Lf ,M |T̂ (q)|γi, Li,M

〉
.

The transition probabilities B(EL) can be extracted from the form factors in the long-
wavelength limit

(3.21) B(EL; i → f) = (Ze)2
[(2L + 1)!!]2

4π(2Li + 1)
lim
q→0

∑
M

|FM (i → f ; q)|2
q2L

,

where Ze is the total electric charge of the cluster.

3.3.1. Dumbbell configuration. Z2 symmetry. Choosing the z-axis along the direction
of the momentum transfer and using the fact that the two particles are identical, it is
sufficient to consider the matrix elements of eiqr2z . After converting to Jacobi coordinates
one has e−iqρz . The matrix elements of this operator can be obtained algebraically by
the replacement

(3.22) ρz → βD̂z/XD,

where β represents the scale of the coordinate and XD is given by the reduced matrix
elements of the dipole operator, eq. (3.9).

Explicit evaluation in the large-N limit gives

F (0+ → LP ; q) = cLjL(qβ),(3.23)

c2
L =

2L + 1
4

[2 + 2PL(−1)],

c2
0 = 1, c2

2 = 5, c2
4 = 9,

where jL is the spherical Bessel function, and PL the Legendre polynomial. From these,
one can obtain the B(EL) values

(3.24) B(EL; 0 → L) =
(

ZeβL

2

)2(2L + 1
4π

)
[2 + 2PL(−1)].

3.3.2. Equilateral-triangle configuration. D3h symmetry. Choosing again the z-axis along
the direction of the momentum transfer and using the fact that the three particles are

identical, it is sufficient here to consider the matrix elements of exp(−iq
√

2
3λz). By

making the replacement

(3.25)

√
2
3
λz → βD̂λ,z/XD,
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one can obtain the form factors, given explicitly, for N → ∞, by

F (0+ → LP ; q) = cLjL(qβ),(3.26)

c2
L =

2L + 1
9

[
3 + 6PL

(
−1

2

)]
,

c2
0 = 1, c2

2 =
5
4

, c2
3 =

35
8

, c2
4 =

81
64

.

The corresponding B(EL) values are

(3.27) B(EL; 0 → L) =
(

ZeβL

3

)2 2L + 1
4π

[
3 + 6PL

(
−1

2

)]
.

3.3.3. Tetrahedral configuration. Td symmetry. The operator here is exp(−iq
√

3
4ηz) and

the replacement is

(3.28)

√
3
4
ηz → βD̂η,z/XD.

One obtains

F (0+ → LP ; q) = cLjL(qβ),(3.29)

c2
L =

2L + 1
16

[
4 + 12PL

(
−1

3

)]
,

c2
0 = 1, c2

3 =
35
9

, c2
4 =

7
3

, c2
6 =

416
8

and

(3.30) B(EL; 0 → L) =
(

ZeβL

4

)2 2L + 1
4π

[
4 + 12PL

(
−1

3

)]
.

3.4. Cluster densities. – All results in sect. 3.3 are for point-like constituents, with
density

(3.31) ρ(�r ) =
k∑

i=1

δ(�r − �ri).

This situation is not realistic, since the constituent α-particles are not point-like. As-
suming a Gaussian form of the density of the α-particle, one has the realistic cluster
density

(3.32) ρ(�r ) =
(α

π

)3/2 k∑
i=1

exp
[
−α(�r − �ri)2

]
.
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Here α = 0.56 fm−2 describes the form factor of the α-particle [35]. With the density
eq. (3.32), the form factors become

(3.33) F (0+ → LP ; q) = cLjL(qβ)e−
q2

4α ,

which represents the convolution of the form factor of the cluster with that of the α-
particle. B(EL) values, however, remain the same as in sect. 3.3 since in the limit
q → 0, e−q2/4α → 1.

The density of eq. (3.32) can be visualized by making an expansion into multipoles.
By placing the particles at a distance β from the center of mass with spherical coordinates
(β, θi, φi) we then have [26]

ρ(�r ) =
(α

π

)3/2 k∑
i=1

exp
[
−α(�r − �ri)2

]
(3.34)

=
(α

π

)3/2

e−α(r2+β2)4π
∑
λμ

iλ(2αβr)Yλμ(θ, φ)
k∑

i=1

Y ∗
λμ(θi, φi),

where iλ(x) = jλ(ix)/iλ is the modified spherical Bessel function. The matter density
and charge density for each configuration can be obtained from eq. (3.34) by multiplying
it by A/k and Z/k, respectively. One should note that all results in sect. 3.3 can also
be obtained from eq. (3.34) without making use of the algebraic approach, by taking the
Fourier transform of the density.

3.4.1. Dumbbell configuration. Z2 symmetry. For Z2 symmetry, the angles of the par-
ticles in eq. (3.34) are given by (θ1, φ1) = (0,−) and (θ2, φ2) = (π,−), and

2∑
i=1

Y ∗
λμ(θi, φi) =

√
2λ + 1

4π

[
δμ,0 +

√
(λ + μ)!
(λ − μ)!

P−μ
λ (−1)

]
(3.35)

= δμ,0

√
2λ + 1

4π
[1 + Pλ(−1)].

This configuration has axial symmetry. In the multipole expansion, eq. (3.34), only μ = 0
and λ = even = 0, 2, 4, . . . remain. The charge and matter densities of the dumbbell
configuration are shown in fig. 10 as a function of β, in the range β = 0–4 fm. Figure 10
shows that the density, eq. (3.34) describes the entire range from united-constituent-
particles (β = 0) to separated constituent particles (β → ∞). Note that the density,
eq. (3.34) describes also break-up into two fragments, as shown in the panel on the
right-hand side of fig. 10.

3.4.2. Equilateral-triangle configuration. D3h symmetry. For the symmetry D3h (equilat-
eral triangle), the angles of the particles are given by (θ1, φ1) = (0,−), (θ2, φ2) = (2π/3, 0)
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Fig. 10. – Densities of a k = 2 α-cluster as given in eq. (3.34). The value of α = 0.56 fm−2. The
color scale is in fm−3. Reproduced from [26] with permission.

and (θ3, φ3) = (2π/3, π), and

3∑
i=1

Y ∗
λμ(θi, φi) =

√
2λ + 1

4π

[
δμ,0 +

√
(λ + μ)!
(λ − μ)!

P−μ
λ

(
−1

2

)
(1 + (−1)μ)

]
(3.36)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2λ + 1

4π

[
1 + 2Pλ

(
−1

2

)]
; μ = 0

√
2λ + 1

4π

√
(λ + μ)!
(λ − μ)!

2P−μ
λ

(
−1

2

)
; μ = 2κ �= 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where κ = 1, 2, . . ., and μ ≤ λ.
For this configuration, the remaining multipoles are λ = 0, 2, 3, 4, . . ., corresponding to

the fact that the density is invariant under D3 transformations and thus belongs to the A

representation of D3 [14]. The charge (and matter) densities of a triangular configuration
are shown in fig. 11 as a function of β.

3.4.3. Tetrahedral configuration. Td symmetry. For the symmetry Td (tetrahedron), the
angles of the particles are given by (θ1, φ1) = (0,−), (θ2, φ2) = (γ, 0), (θ3, φ3) = (γ, 2π/3)
and (θ4, φ4) = (γ, 4π/3) with cos γ = −1/3, and

4∑
i=1

Y ∗
λμ(θi, φi) =

√
2λ + 1

4π

[
δμ,0 +

√
(λ + μ)!
(λ − μ)!

P−μ
λ

(
−1

3

)(
1 + 2 cos

2μπ

3

)]
(3.37)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2λ + 1

4π

[
1 + 3Pλ

(
−1

3

)]
; μ = 0

√
2λ + 1

4π

√
(λ + μ)!
(λ − μ)!

3P−μ
λ

(
−1

3

)
; μ = 3κ �= 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where κ = 1, 2, 3, . . ., and μ ≤ λ.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Algebraic models of quantum many-body systems: The algebraic cluster model 47

Fig. 11. – Densities of a k = 3 α-cluster as given in eq. (3.34). The value of α = 0.56 fm−2. The
color scale is in fm−3. Reproduced from [26] with permission.

Fig. 12. – Densities of a k = 4 α-cluster as given in eq. (3.37). The value of α = 0.56 fm−2. The
color scale is in fm−3. Reproduced from [26] with permission.

For this configuration, the remaining multipoles are λ = 0, 3, 4, 6, . . ., corresponding
to the A representation of the tetrahedral group, Td [15]. The charge and matter densities
of a tetrahedral configuration are shown in fig. 12.

3.5. Moments of inertia and radii . – From the density eq. (3.34) one can calculate the
moments of inertia and radii. The three components of the moment of inertia are given by

Ix =
∫

(y2 + z2)ρ(�r )d3�r,(3.38)

Iy =
∫

(x2 + z2)ρ(�r )d3�r,

Iz =
∫

(x2 + y2)ρ(�r )d3�r,

and radii by

(3.39) 〈r2〉 =
∫

r2ρ(�r )d3�r.
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3.5.1. Dumbbell configuration. Z2 symmetry. Introducing the appropriate normaliza-
tion, one has

(3.40) Ix = Iy = Amβ2 +
Am

α
, Iz =

Am

α
,

where A = 4k = 8, corresponding to a prolate top, and

(3.41) 〈r2〉1/2 =

√
3
2α

+ β2.

3.5.2. Equilateral-triangle configuration, k = 3. D3h symmetry. In this case [14]

(3.42) Ix = Iz =
1
2
Amβ2 +

Am

α
, Iy = Amβ2 +

Am

α
,

where A = 4k = 12, corresponding to an oblate top, and

(3.43) 〈r2〉1/2 =

√
3
2α

+ β2.

3.5.3. Tetrahedral configuration, k = 4. Td symmetry. Here

(3.44) Ix = Iy = Iz =
2
3
Amβ2 +

Am

α
,

where A = 4k = 16, corresponding to a spherical top, and

(3.45) 〈r2〉1/2 =

√
3
2α

+ β2.

4. – Evidence for cluster structures

The ACM provides a simple way to analyze experimental data, thus determining
whether or not the symmetries Z2, D3h, and Td appear in the spectra of 8Be, 12C and
16O.

4.1. Energies.

4.1.1. Dumbbell configuration. Z2 symmetry. Energy levels for this configuration can
be analyzed with eq. (3.13). A comparison with data in 8Be [36] is shown in fig. 13. The
occurrence of a rotational band in the experimental spectrum is clearly seen in fig. 14,
where the energy of the states is shown as a function of L(L + 1). No evidence for the
vibrational bands is reported in [36].

From the value of B = h̄
2I extracted from the experimental energy difference E2+

1
−

E0+
1
, one can determine the moment of inertia I ≡ Ix = Iy and from eq. (3.40) the value

of β = 1.82 fm [37].
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Fig. 13. – Comparison between the cluster spectrum and the experimental spectrum [36] of 8Be.
In panel (Th), D = 6MeV, B = 0.507 MeV. Figure adapted from [37].

Fig. 14. – Observed cluster rotational band in 8Be, v = 0. The theoretical line is given by
eq. (3.13) with B = 0.507 MeV. The experimental bar is the width Γ. Figure adapted from [37].
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Fig. 15. – Comparison between the cluster spectrum and the experimental spectrum of 12C [39-
41]. Figure reproduced from [41] with permission.

4.1.2. Equilateral-triangle configuration. D3h symmetry. Recent experiments [38-41] have
confirmed the occurrence of D3h symmetry in 12C. Energy levels have been analyzed
with a variation of eq. (3.15) which includes anharmonic terms. The results are shown
in figs. 15 and 16. One can see here the occurrence of not only rotational bands with
angular-momentum content expected from D3h symmetry, but also the occurrence of the
fundamental vibrations of the triangle of fig. 5 (1, 00) and (0, 11) with symmetry A and
E, respectively.
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Fig. 16. – Rotational bands in 12C. Figure reproduced from [41] with permission.
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Fig. 17. – Comparison between the cluster spectrum and the experimental spectrum of 16O.
Figure reproduced from [15] with permission.

Fig. 18. – Rotational bands in 16O. Figure reproduced from [15] with permission.

4.1.3. Tetrahedral configuration. Td symmetry. The occurrence of Td symmetry in 16O
was emphasized by Robson [42, 43] in the 1970’s and more recently revisited in [15].
Energy levels have been analyzed with eq. (3.19). A comparison with data is shown in
figs. 17 and 18.
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Table IV. – Comparison between calculated and experimental B(EL) values in 8Be. Units
e2fm2L.

B(EL; LP → 0+) Th Exp E(LP ) Th Exp

B(E2; 2+ → 0+) 14.0 21.0(23) E(2+) 3060 3030

B(E4; 4+ → 0+) 153.3 E(4+) 10200 11350

Table V. – Comparison between calculated and experimental B(EL) values in 12C. Units e2fm2L.
The value β = 1.9 fm is estimated from the elastic form factor measured in electron scattering.

B(EL; LP → 0+) Th Exp E(LP ) Th Exp

B(E2; 2+ → 0+) 9.3 7.6(4) E(2+) 4400 4439

B(E3; 3− → 0+) 84 103(17) E(3−) 9640 9641

B(E4; 4+ → 0+) E(4+) 14670 14080

4.2. Electromagnetic transition rates.

4.2.1. Dumbbell configuration. Z2 symmetry. Electromagnetic transition rates and
B(EL) values can be analyzed by making use of eq. (3.24). A comparison with data
is shown in table IV. In this table, the experimental value is estimated from ref. [44]
using the Green’s function Monte Carlo method (GFMC). The value of β = 1.82 fm is
obtained from the moment of inertia.

4.2.2. Equilateral-triangle configuration. D3h symmetry. B(EL) values along the ground
state band can be analyzed using eq. (3.27). A comparison with data is shown in table V.

4.2.3. Tetrahedral configuration. Td symmetry. B(EL) values for this configuration can
be analyzed using eq. (3.29). A comparison with data is shown in table VI.

4.3. Form factors. – Form factors in electron scattering can be simply derived by
making use of the formulas given in sect. 3.3 in the rigid case, or, in the more general

Table VI. – Comparison between calculated and experimental B(EL) values in 16O. Units
e2fm2L. The value β = 2.0 fm is estimated form the elastic form factor.

B(EL; LP → 0+) Th Exp E(LP ) Th Exp

B(E3; 3− → 0+) 181 205(10) E(3−) 6132 6130

B(E4; 4+ → 0+) 338 378(133) E(4+) 10220 10356

B(E6; 6+ → 0+) 8245 E(6+) 21462 21052
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Fig. 19. – Comparison between the experimental form factors |F (0+
1 → LP

i ; q)|2 of 12C for the
final states (a) LP

i = 0+
1 (elastic), (b) LP

i = 2+
1 , (c) LP

i = 3−
1 , (d) LP

i = 4+
1 , (e) LP

i = 0+
2 , and

(f) LP
i = 1−

1 and those obtained for the oblate top. Reproduced from [14] with permission.

situation, by evaluating the matrix elements of the operator T̂ (q) of eq. (3.20) in the
wave functions obtained by diagonalizing the Hamiltonian of sect. 3.2.

4.3.1. Dumbbell configuration. Z2 symmetry. The nucleus 8Be is unstable and therefore
form factors in electron scattering cannot be measured.
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Fig. 20. – Comparison between the experimental form factors |F (0+
1 → LP

i )|2 of 16O for the
final states LP

i = 0+
1 , 3−

1 , 4+
1 , 6+

1 and those obtained for the spherical top. Reproduced from [15]
with permission.

4.3.2. Equilateral-triangle configuration. D3h symmetry. Form factors in 12C have been
extensively investigated. In the rigid case, only states in the ground-state band are
excited with form factors given by eq. (3.26) and no excitation of the vibrational bands
occurs. Since experimentally excitation of these bands occurs, although with a small
strength, one needs in this case to do a calculation with the general algebraic Hamiltonian,
eq. (3.14) [14]. The resulting form factors are shown in fig. 19, where they are compared
with experimental data.
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Fig. 21. – Comparison between the experimental form factors |F (0+
1 → LP

i )|2 of 16O for the
final states LP

i = 0+
2 , 2+

1 , 1−
1 and those obtained for the spherical top. Reproduced from [15]

with permission.

4.3.3. Tetrahedral configuration. Td symmetry. Form factors in 16O have also been
extensively investigated. In the rigid case, the form factors are given by eq. (3.29). Since
also here excitation of the vibrational bands occurs, one needs to do a full calculation [15].
The resulting form factors are shown in figs. 20 and 21, where they are compared with
experimental data.
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5. – Breaking of the cluster structure. Non-cluster states

The cluster model assumes that kα nuclei are composed of α-particles. However, these
in turn are composed of two protons and two neutrons. At some excitation energy in
the nucleus, the α-particle structure may break. Non-cluster states can be in some cases
clearly identified, since some states are forbidden by the discrete symmetry. Specifically,
for Z2 symmetry (8Be), 1+ states cannot be formed, for D3h symmetry (12C), 1+ states
cannot be formed, and for Td symmetry (16O), 0− states cannot be formed. These are
signatures of non-cluster states. In addition, since α-particles have isospin T = 0, states
with T = 1 cannot be formed. This is another signature of non-cluster states. The energy
at which non-cluster states occur is shown in figs. 13, 15 and 17. It is ∼ 15 MeV in 8Be,
∼ 13 MeV in 12C and ∼ 10 MeV in 16O. Above these energies, cluster states co-exist
with non-cluster states.

6. – Softness and higher-order corrections

Equations (3.13), (3.15) and (3.19) describe rigid situations. As mentioned in previous
sections, soft (non-rigid) situations can be described by diagonalizing the full algebraic
Hamiltonian. However, one can also write, for comparison with experimental data, sim-
pler analytic expressions for non-rigid situations.

6.1. Dumbbell configuration. Z symmetry . – An analytic formula including anhar-
monic corrections and vibration-rotation interaction is

E = E0 + ω

(
v +

1
2

)(
1 − v + 1/2

N

)
+ BL(L + 1)(6.1)

+B′[L(L + 1)]2 + λ

(
v +

1
2

)
L(L + 1),

where 1/N is called anharmonicity parameter.

6.2. Equilateral-triangle configuration. D3h symmetry . – In this case an analytic ex-
pression is

E = E0 + ω1

(
v1 +

1
2

)(
1 − v1 + 1/2

N

)
+ ω2(v2 + 1)

(
1 − v2 + 1

N + 1/2

)
(6.2)

+BL(L + 1) + (A − B)(K ∓ 2�2)2 + B′[L(L + 1)]2

+
[
λ1

(
v1 +

1
2

)
+ λ2(v2 + 1)

]
L(L + 1).
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Fig. 22. – Possible cluster configurations of three particles.

Fig. 23. – Possible cluster configurations of four particles.

6.3. Tetrahedral configuration. Td symmetry . – The effect of anharmonicities here can
be written as

E = E0 +
3∑

i=1

ωivi +
3∑

i,j=1

xijvivj + BL(L + 1)(6.3)

+

(
3∑

i=1

λivi

)
L(L + 1) + B′[L(L + 1)]2.

7. – Other geometric configurations

Within the ACM it is possible to provide analytic formulas for energies and electro-
magnetic transition rates for all possible geometric configurations and, most importantly,
by diagonalizing the full algebraic Hamiltonian, it is possible to study non-rigid situation
intermediate between two or more geometric situations and thus study the transitions
between these, called ground-state phase transitions [45]. The possible geometric config-
urations for three and four α-particles are shown in figs. 22 and 23.
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Another situation that can be studied with ACM is that in which the ground state has
a different geometric configuration than the excited states. In the interpretation of the
previous sect. 4, the excited states are (large amplitude) vibrations of the ground state
configuration. An alternative interpretation was given by Brink [24, 25], in which the
excited states have a different geometric configuration of the ground state. Specifically,
in 12C, the ground state was suggested to be an equilateral triangle (D3h symmetry)
while the excited state was suggested to be linear (C∞v symmetry). Similarly in 16O,
the ground state was suggested to be a tetrahedron (Td symmetry) while the excited state
was suggested to be a square (D4h symmetry). This situation, in which the symmetry of
the state changes as a function of excitation energy is called an excited state quantum
phase transitions (ESQPT) [46].

8. – Conclusions

The algebraic cluster model (ACM) provides a framework in which experimental data
in kα nuclei can be analyzed. The data show evidence of cluster structure in 8Be, (Z2

symmetry), in 12C (D3h symmetry) and 16O (Td symmetry). The evidence is clear for
the ground-state rotational bands, but less so for the vibrational bands.

A remaining questions is the extent to which clustering appears in other kα nuclei,
specifically, 20Ne, 24Mg and 28Si which were assigned by Brink [24, 25] to D3h, D2h and
D3v symmetry, respectively.

∗ ∗ ∗

This work was performed in part under DOE Grant DE-FG02-91ER40608. I wish to
thank V. Della Rocca for preparing some of the figures (figs. 2–5, 13, 22) shown in these
lecture notes and M. Gai for giving permission and providing files of figs. 15 and 16.

REFERENCES

[1] Wigner E., Phys. Rev., 51 (1937) 106.

[2] Racah G., Phys. Rev., 76 (1949) 1352.

[3] Racah G., Group Theory and Spectroscopy, Mimeographed Lecture Notes, Princeton, New
Jersey (1951). Reprinted in Springer Tracts Mod. Phys., 37 (1965) 28.

[4] Iachello F., in Lie Algebras, Cohomologies and Applications of Quantum Mechanics,
edited by Kamran N. and Olver P., Contemporary Mathematics, 160 (American
Mathematical Society, Providence, RI, USA) 1994, p. 151.

[5] Iachello F., Lie Algebras and Applications, 2nd edition, Lect. Notes Phys., Vol. 891
(Springer, Berlin) 2015.

[6] Iachello F., in Latin-American School of Physics XXXV ELAF, AIP Conf. Proc., 744
(2015) 85.

[7] Iachello F. and Arima A., The Interacting Boson Model (Cambridge University Press,
Cambridge) 1987.

[8] Iachello F. and Van Isacker P., The Interacting Boson-Fermion Model (Cambridge
University Press, Cambridge) 1991.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Algebraic models of quantum many-body systems: The algebraic cluster model 59

[9] Iachello F. and Levine R. D., Algebraic Theory of Molecules (Oxford University Press,
Oxford) 1995.

[10] Bijker R., Iachello F. and Leviatan A., Ann. Phys. (N.Y.), 236 (1994) 69.
[11] Bijker R., Iachello F. and Leviatan A., Ann. Phys. (N.Y.), 284 (2000) 89.
[12] Iachello F. and Truini P., Ann. Phys. (N.Y.), 276 (1999) 120.
[13] Iachello F. and Oss S., Eur. Phys. J. D, 19 (2002) 307.
[14] Bijker R. and Iachello F., Ann. Phys. (N.Y.), 298 (2002) 334.
[15] Bijker R. and Iachello F., Nucl. Phys. A, 957 (2017) 154.
[16] Iachello F., Dietz B., Miski-Oglu M. and Richter A., Phys. Rev. B, 91 (2015)

214307.
[17] Dietz B., Iachello F. and Macek M., Crystals, 7 (2017) 246.
[18] Iachello F., Proceedings of the International School “Enrico Fermi”, Course CLIII,

edited by Molinari A., Riccati L., Alberico W. M. and Morando M. (SIF, Bologna
and IOS Press, Amsterdam) 2003, p. 1.

[19] Van Isacker P., Proceedings of the International School “Enrico Fermi”, Course CLXIX,
edited by Covello A., Iachello F., Ricci R. A. and Maino G. (SIF, Bologna and IOS
Press, Amsterdam) 2008, p. 347.

[20] Wheeler J. A., Phys. Rev., 52 (1937) 1083.
[21] Hafstad L. R. and Teller E., Phys. Rev., 54 (1938) 681.
[22] Dennison D. M., Phys. Rev., 96 (1954) 378.
[23] Kameny S. L., Phys. Rev., 103 (1956) 358.
[24] Brink D. M., in Proceedings of the International School “Enrico Fermi”, Course XXXVI,

(Academic Press, New York) 1966, pp. 247–277.
[25] Brink D. M., Friedrich H., Weiguny A. and Wong C. W., Phys. Lett. B, 33 (1970)

143.
[26] Della Rocca V., Bijker R. and Iachello F., Nucl. Phys. A, 966 (2017) 158.
[27] Iachello F., Chem. Phys. Lett., 78 (1981) 581.
[28] Bijker R. and Iachello F., Phys. Rev. C, 61 (2000) 067305.
[29] Bijker R., AIP Conf. Proc., 1323 (2010) 28.
[30] Bijker R., J. Phys. Conf. Ser., 380 (2012) 012003.
[31] Bijker R. and Iachello F., Phys. Rev. Lett., 112 (2014) 152501.
[32] Kramer P. and Moshinsky M., Nucl. Phys., 82 (1966) 241.
[33] Bright Wilson JR E., Decius J. C. and Cross P. C., Molecular Vibrations (McGraw-

Hill, New York) 1955.
[34] Bijker R., Computer Program ACM, unpublished.
[35] Sick I. and Mccarthy J. S., Nucl. Phys. A, 150 (1970) 631.
[36] Tilley D. R. et al., Nucl. Phys. A, 745 (2004) 155.
[37] Della Rocca V. and Iachello F., Nucl. Phys. A, 973 (2018) 1.
[38] Freer M. and Fynbo H. O. U., Prog. Part. Nucl. Phys., 78 (2014) 1.
[39] Freer M. et al., Phys. Rev. C, 76 (2007) 034320.
[40] Kirsebom O. S. et al., Phys. Rev. C, 81 (2010) 064313.
[41] Marin-Lambarri D. J., Bijker R., Freer M., Gai M., Kokalova Tz., Parker D. J.

and Wheldon C., Phys. Rev. Lett., 113 (2014) 012502.
[42] Robson D., Nucl. Phys. A, 308 (1978) 381.
[43] Robson D., Prog. Part. Nucl. Phys., 8 (1982) 257.
[44] Daker D. M. et al., Phys. Rev. Lett., 111 (2013) 062502.
[45] Iachello F., Rivista del Nuovo Cimento, 34 (2011) 617.
[46] Caprio M. A., Cejnar P. and Iachello F., Ann. Phys. (N.Y.), 323 (2008) 1106.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



This page intentionally left blank

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Proceedings of the International School of Physics “Enrico Fermi”
Course 201 “Nuclear Physics with Stable and Radioactive Ion Beams”, edited by F. Gramegna,
P. Van Duppen, A. Vitturi and S. Pirrone
(IOS, Amsterdam; SIF, Bologna) 2019
DOI 10.3254/978-1-61499-957-7-61

Clustering in light neutron-rich nuclei

Y. Kanada-En’yo

Department of Physics, Kyoto University - Kyoto, Japan

Summary. — Nuclear clustering is one of the essential features of nuclear systems.
Various rich cluster phenomena have been discovered in a wide region of nuclear
chart as functions of proton and neutron numbers and excitation energy. Exam-
ples are cluster formation/breaking at nuclear surface in low-lying states, cluster
excitation and resonances in highly excited states, molecular orbital structures in
neutron-rich Be and Ne, cluster gas and linear chain structures in multi-cluster sys-
tems. To make systematic study of such cluster phenomena, we apply a method
of antisymmetrized molecular dynamics (AMD) and its extended versions. The
method is a useful approach applicable to the ground and excited states of general
nuclei. One of the advantages of the method is that it is able to describe various
cluster phenomena including cluster formation and breaking as well as shell-model
like structures. In this paper, we discuss some topics of cluster phenomena in light
nuclei based on AMD calculations.

1. – Introduction

A nucleus is a finite quantum many-body system consisting of protons and neutrons.
It has analogies with and differences from an atomic system. An important difference
is that a nucleus is a self-bound system, in which nucleons are attracted by the nuclear
forces. It is a clear difference from an electron system, in which electrons are bound
in an external Coulomb potential from a nucleus located at the center of the atom.

c© Società Italiana di Fisica 61
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Fig. 1. – Schematic figures for cluster formation and development caused by many-body corre-
lations.

Nevertheless, it is widely known that, at the leading order, nucleons in a nucleus behave
as independent particles in a mean field resulting in shell structures. However, because
of attractive nuclear forces, correlations between nucleons are not negligible but rather
strong. A typical example of spatial correlations is “cluster”, which is a subunit formed by
spatially correlated nucleons. In other words, nuclear systems have two different natures,
the independent-particle feature in a mean field and the cluster feature. Because of the
coexistence of these two natures, rich phenomena appears in nuclear systems depending
on proton and neutron numbers, energy, and density.

If there is no correlation between nucleons, all nucleons should behave as ideal inde-
pendent particles in a mean field and there could exist a clear Fermi surface, i.e., the shell
structure. However, when residual interactions are switched on, the correlation between
nucleons occurs to form cluster cores at the nuclear surface as a kind of ground-state
correlation because of the attractive nuclear forces (see fig. 1). This is nothing but clus-
ter formation, which is often seen in low-lying states of light nuclei. At the stage of the
cluster formation in low-lying states, clusters are still largely overlapping with each other
and the system has a compact structure with the normal density. However, once clusters
are formed in the system, inter-cluster motion can be easily activated with small amount
of energy. As a result, spatially developed cluster structures appear in excited states
because of excitation of inter-cluster motion, and the system goes to a low-density state.

12C is a typical example of cluster and mean-field coexisting systems (see fig. 2).
The ground state of 12C is a mean-field (shell-model–like) state dominated by the p3/2-
subshell closed configuration with significant mixing of 3α-cluster component. It means
that α clusters are partially formed even in the ground state. At approximately 100 MeV,
all twelve nucleons in 12C can dissociate, and the system goes to a free nucleon gas state
in a low density limit. At approximately 10 MeV, much lower energy than the free
nucleon gas, 3α clusters develop spatially in excited states of 12C. This energy for 3α-
cluster excitation is much smaller than that of the nuclear gas state, meaning that the
mean-field and cluster states coexist in low-energy levels of 12C. Furthermore, as the
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Fig. 2. – Schematic figures for structure changes as a function excitation energy (density).

excitation energy increases from the ground to the excited states, density of the system
changes from normal density to low density. In the density changing, remarkable cluster
features emerge at a relatively low density region, typically (1/3)ρ0 ∼ (1/5)ρ0. The
cluster enhancement at low density is a unique character of nuclear systems and describes
the enhanced clustering at nuclear surface, in light-mass nuclei, and excited states.

In order to understand energy systematics of developed cluster states, Ikeda proposed
the threshold rule called Ikeda diagram [1]. As shown in fig. 3, the Ikeda diagram
describes his prediction that developed cluster structures appear in the energy region
near the corresponding cluster-decay threshold energies. For example, appearance of
the 2α-cluster, 3α-cluster, and 12C + α-cluster structures in 8Be, 12C∗, and 16O∗ can be
understood by Ikeda’s threshold rule. According to the Ikeda diagram, remarkable cluster
structures in various cluster channels are expected (see fig. 3). It also predicts nα-cluster
states near the α break-up energy in spin-isospin saturated systems with Z = N = 2n.
The lowest state of a nα-cluster system is a α-cluster gas state, in which all α particles
are moving in a dilute density as bosonic particles. Such dilute α-cluster gas states have
been extensively discussed and attracting a recent interest [2,3]. Moreover, in the Ikeda
diagram, one may consider the α-cluster line just above (several ∼ 10 MeV higher than)
the ground-state line. Similarly, one can expect the 2α-cluster line at twice higher energy
than the α-cluster line, and also the 12C-cluster line in a similar energy region.

Let us turn to cluster aspects in unstable nuclei. In the progress of physics in unstable
nuclei in the past decades, a variety of cluster states have been discovered also in unstable
nuclei. Experimental and theoretical studies of unstable nuclei have been intensively
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Fig. 3. – Schematic figure for concepts of Ikeda diagram.

performed to discover cluster states, in particular, in neutron-rich nuclei and revealed
that excess neutrons play an important role in the cluster states. So, it is natural to
expect a new version of the Ikeda diagram extended to cluster structures in unstable
nuclei (see ref. [4] and references therein). When valence neutrons are added to known
cluster structures in stable nuclei, what happens? A similar threshold rule for developed
cluster structures with surrounding valence neutrons is expected to be fulfilled. For
instance, developed cluster structures with 2α, 3α, and 16O + α clusters surrounded by
valence neutrons are expected in excited states of neutron-rich Be, C, and O isotopes as
discussed by von Oertzen et al. [4-6].

Fascinating aspects related to cluster feature are seen even in the ground states of
unstable nuclei. The 8Be ground state has the developed 2α-cluster structure. Also in
12C, the ground state contains the 3α-cluster component as the ground-state correlation
as mentioned above. A question is what happens when valence neutrons are appended
to the cluster structures in the ground states. Excess neutrons sometimes weaken the
cluster structures, and enhance them in some cases. Figure 4 shows how the ground-state
structure changes as the neutron number N increases in light neutron-rich nuclei. In Be
isotopes, the cluster structure in the ground states rapidly changes along the isotope
chain. The ground state in 8Be is a quasi bound state of 2α particles. The remarkable
2α clustering weakens in 10Be, and it again develops in 12Be because of excess neutrons
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Fig. 4. – Sketches of structure changes as functions of proton and neutron numbers.

around the 2α clustering. As a result of the cluster development, the neutron magic
number N = 8 disappears in 12Be. That is to say, the 12Be ground state is a largely
deformed state with the dominant intruder configuration even though it is a N = 8
nucleus. By contrast, the ground states in neutron-rich C isotopes do not show cluster
development, but generally have compact proton distribution with an oblate deformation.
It means that 3α cluster structure formed in 12C is quenched by excess neutrons around
the 3α cluster. This is a brief description of ground-state structures in light neutron-rich
nuclei.

Let us now turn to the excited states. In excited states of neutron-rich nuclei, further
remarkable cluster structures are found as predicted by the extended Ikeda diagram.
In neutron-rich Be isotopes, two kinds of cluster structures exist in excited states. In
Be isotopes, 2α cluster cores are formed even in the ground states. The excited state,
10Be(0+

2 ), is considered to have a molecular orbital structure, where valence neutrons
occupy the longitudinal molecular orbital (MO) called σ-orbital around the 2α and bond
two α clusters keeping a certain α-α distance. We call this structure the MO σ-bond
structure. Moreover, in highly excited states above the 10Be(0+

2 ) state, dinuclear cluster
resonances composed of 6He and α clusters have been suggested recently. An important
difference between the MO σ-bond structure and the dinuclear cluster resonances is
valence neutron motion. In the MO σ-bond structure, valence neutrons are moving
around both α clusters bonding two αs, but in the cluster resonances, they are localized
around one of α clusters to form a 6He cluster (another cluster is moving around the 6He
cluster). Similarly, two types of cluster states, the MO σ-bond structures and dinuclear
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resonances, have been predicted also in neutron-rich sd-shell nuclei such as Ne, F, O
isotopes. For instance, in excited states of 22Ne, von Oertzen et al. and Kimura et al.
predicted MO σ-bond structures with σ-orbital neutrons around the 16O+α core [4,7,8].
In addition, dinuclear resonances of 18O+α clustering were predicted in the higher-energy
region than the MO σ-bond structure.

A message is that different kinds of cluster structures, the MO σ-bond structures
and dinuclear cluster resonance, coexist in excited states of neutron-rich Be and Ne
isotopes. Valence neutrons around the cluster cores play important roles in emergence
of these cluster structures in excited states. However, the MO σ-bond structures might
be non-general phenomena but special phenomena that can emerge only in the specific
case in which molecular orbitals for valence neutrons are formed around cluster cores.
On the other hand, cluster resonances may be more general phenomena seen in various
nuclei over a wide region of the nuclear chart including stable, unstable, light-mass, and
heavy-mass regions, because, as predicted in the (extended) Ikeda diagram, such cluster
resonances should generally appear in excited states near the threshold energy. Indeed,
recent experiments discovered such cluster resonances in various nuclei. Further studies
to search for cluster resonances are in progress.

Another fascinating topic of cluster phenomena in neutron-rich systems is multi-
cluster structure such as nα clustering with valence neutrons. Key roles of valence
neutrons in nα clustering have been discussed, for instance, stabilization mechanism of
linear-chain 3α-cluster structure in excited states of neutron-rich C [9].

A key message is that the clustering is one of the essential features in a wide region of
nuclear systems. Systematic investigation of cluster phenomena have revealed that rich
cluster phenomena appear as functions of proton and neutron numbers and excitation en-
ergy: cluster formation/breaking at the nuclear surface in low-lying states, cluster excita-
tion and resonances in highly excited states, molecular orbital bond structure in neutron-
rich Be and Ne, multi-cluster structures such as the cluster gas and the linear chain.

In order to make systematic study of various cluster phenomena for comprehensive
understanding of nuclear systems, we need a theoretical framework that can describe var-
ious cluster; phenomena including cluster formation/breaking in the ground and excited
states in general nuclei. We apply a method of antisymmetrized molecular dynamics
called AMD and extended versions [10-12]. In this paper, we discuss some topics of
cluster phenomena in light nuclei based on the AMD calculations.

This paper is organized as follows. In the next section, we explain the basic framework
of the AMD method. We discuss clustering in neutron-rich Be isotopes in sect. 3 and
then describe clustering in 12C and neighboring nuclei in sect. 4. In sect. 5, we introduce
our recent studies of monopole and dipole excitation in light nuclei focusing on cluster
features. Finally, a conclusion is given in sect. 6.

2. – Antisymmetrized molecular dynamics

The AMD method was originally used for nuclear reaction study [13-15]. Up to now,
various versions of the AMD method have been developed for both nuclear reaction and
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structure studies. One of the advantages of the AMD is that it can describe cluster and
mean-field aspects of nuclear systems. Here we briefly explain the AMD framework for
the structure study. For details of the AMD method, the reader is referred to ref. [12]
and references therein.

2.1. AMD wave function. – The AMD is a model based on the variational method
using effective nuclear forces. A basis wave function of the AMD model is given by a
Slater determinant of single-particle Gaussian wave functions as

ΦAMD(Z) =
1√
A!

A{ϕ1, ϕ2, . . . , ϕA},(1)

where the i-th single-particle wave function ϕi is written by a product of spatial, spin,
and isospin wave functions as

ϕi = φZi
χiτi,(2)

φZi
(r) =

(
2ν

π

)4/3

exp

{
−ν

(
r − Zi√

ν

)2
}

,(3)

χi =
(

1
2

+ ξi

)
χ↑ +

(
1
2
− ξi

)
χ↓.(4)

Here φZi
and χi are the spatial and spin functions, respectively, and τi is the isospin

function fixed to be proton or neutron. The width parameter ν is usually chosen to be
an optimized value for each nucleus. Accordingly, an AMD wave function is expressed
by a set of variational parameters, Z ≡ {Z1, . . . ,ZA, ξ1, . . . , ξA}. The Gaussian center
position Zi and the spin orientation χi of all nucleons are independently treated as
variational parameters.

The model wave function can describe a variety of cluster structure with the spatial
configuration of Gaussian center positions because the AMD model space contains the
Brink-Bloch cluster wave functions [16]. For example, the Brink-Bloch 2α wave function
can be represented with the AMD wave function by choosing Gaussian center parameters
Z1,2,3,4/

√
ν = D/2 and Z5,6,7,8/

√
ν = −D/2. D is the distance parameter between two

α’s in the Brink-Bloch wave function. The AMD wave function can also describe mean
field states because, if the centers of Gaussian wave packets are located at short distances,
the wave function is equivalent to a harmonic oscillator shell-model wave function. More-
over, it can continuously express transition between remarkable cluster and mean-field
structures through cluster dissolution/formation. This is a great advantage superior to
cluster models and mean-field approaches. Because of the flexibility of the model wave
function, the AMD is a powerful approach useful to study cluster and mean-field features
in the ground and excited states of general nuclei including exotic nuclei.

An extension of the AMD wave function using triaxially deformed Gaussian wave
packets, called the deformed base AMD, was proposed by Kimura et al. [17]. The de-
formed base AMD is efficient in describing coexistence of deformed mean-field and cluster
states in sd- and pf -shell nuclei [12, 18].
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It should be commented that, a similar wave function is used for nuclear reaction and
structure studies in the fermionic molecular dynamics (FMD) developed by Feldmeier and
his collaborators [19-22]. The FMD wave function is also given by a Slater determinant
of Gaussian wave packets, but the width parameter ν can be chosen independently for
each nucleon as νi and treated as variational parameters in the FMD. The flexible νi

parameters are efficient for loosely bound valence neutron behavior in neutron halo nuclei.
In the AMD framework for structure study, angular-momentum and parity projections

and energy variation are performed. For the energy variation, the frictional cooling
method is usually applied. For simplicity, we here describe the frictional cooling method
for a fixed intrinsic-spin case, but the method can be easily extended to the variational
intrinsic-spin case by using the label Zi for Ziσ (σ = 1, 2, 3) and Zi4 = ξi. We start from
the equation of motion for Zi derived from the time-dependent variational principle as

ih̄
∑
jρ

Ciσ,jρ
dZjρ

dt
=

∂H
∂Z∗

iσ

,(5)

where σ, ρ = x, y, z and the expectation value of the Hamiltonian H is expressed as

H(Z,Z∗) =
〈ΦAMD(Z)|H|ΦAMD(Z)〉
〈ΦAMD(Z)|ΦAMD(Z)〉 .(6)

Ciσ,jρ ≡ is a positive definite Hermitian matrix

Ciσ,jρ ≡ ∂2

∂Z∗
iσ∂Zjρ

ln〈ΦAMD(Z)|ΦAMD(Z)〉.(7)

To get the optimum parameter set Z which gives minimum energy state in the AMD
model space, the time evolution of the parameters are calculated by the following fric-
tional cooling equation,

ih̄
∑
jρ

Ciσ,jρ
dZjρ

dt
= (λ + iμ)

∂H
∂Z∗

iσ

.(8)

The parameter λ is an arbitrary real number and μ is an arbitrary negative real number.
It is easily proved that the energy decreases as time develops because of the frictional
term iμ. In the energy variation, the matrix Ciσ,jρ can be replaced with δijδσρ. In the
λ = 0 case, the frictional cooling method is equivalent to the normal gradient method.
After enough cooling time (iteration steps), the optimum set of parameters Z is obtained.

The parity-projected AMD wave function is given as

|Φ±
AMD(Z)〉 ≡ P±|ΦAMD(Z)〉 =

1 ± Pr

2
|ΦAMD(Z)〉,(9)
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where P± = (1 ± Pr)/2 is the parity projection operator. The angular-momentum
projection is done as

|ΦJ
MK〉(Z) = P J

MK |ΦAMD(Z)〉 =
∫

dΩDJ∗
MK(Ω)R̂(Ω)|ΦAMD(Z)〉.(10)

Here DJ
MK(Ω) is the Wigner’s D function and R̂(Ω) is a rotation operator with respect

to Euler angle Ω.
In a simplest calculation of the AMD for structure study, the energy variation is

usually done with respect to the parity projected AMD wave function by minimizing the
energy expectation value

H(Z,Z∗) =
〈Φ±

AMD(Z)|H|Φ±
AMD(Z)〉

〈Φ±
AMD(Z)|Φ±

AMD(Z)〉 ,(11)

and the angular momentum projection is performed after the energy variation. In an
extended calculation, the energy variation is carried out for the parity and angular mo-
mentum projected AMD wave function,

H(Z,Z∗) =
〈P J

MKΦ±
AMD(Z)|H|P J

MKΦ±
AMD(Z)〉

〈P J
MKΦ±

AMD(Z)|P J
MKΦ±

AMD(Z)〉 .(12)

The single AMD wave function obtained by the energy variation is an approximate
solution for the ground-state wave function. To improve the wave function, different
AMD wave functions are superposed. The superposition is a kind of configuration mixing
and it is essential to describe excited states which is orthogonal to the ground state. Let
us consider basis wave functions ΦAMD(Z(k)) (k = 1, . . . , kmax) to be superposed (kmax

is the number of considered basis AMD wave functions). The wave function for a J±

state is given by linear combination of basis wave functions as

|ΦJ±
n 〉 =

∑
kK

cJπ
n ,K,k|P J±

MKΦAMD(Z(k))〉,(13)

where P J±
MK ≡ P J

MKP±. Here the coefficients cJπ
n ,K,k are determined by the diagonaliza-

tion of Hamiltonian and norm matrices.
To efficiently choose basis AMD wave functions for the superposition, the combina-

tion of the AMD with the generator coordinate method (AMD+GCM) is useful. In the
AMD+GCM method, wave functions for J± states are given by linear combination of
the AMD wave functions obtained by the energy variation with constraints, which are
regarded as generator coordinates. In the β- and βγ-constraint AMD [17,23], the energy
variation is done under constraints on deformation parameters β and (β, γ), respectively.
In the d-constraint AMD [24], a constraint is imposed for the distance between two
(or three) centers of subgroups. After the energy variation with the constraints, the
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Fig. 5. – Schematic figures for spatially correlated nucleons in cluster structures. Top: α-cluster
correlation. Bottom: Dineutron correlation.

obtained AMD wave functions are superposed with the GCM treatment. Namely, co-
efficients of wave functions are determined by solving the Hill-Wheeler equation, which
is equivalent to diagonalizing the norm and Hamiltonian matrices. In the AMD+GCM,
large amplitude dynamics along the generator coordinates are taken into account fully
microscopically.

2.2. Cluster correlation. – In most cases, spatially developed cluster states are highly
correlated states beyond mean-field approximations. Let us consider an α cluster located
far from a core nucleus (see fig. 5). The α cluster is a strongly correlated object composed
of four nucleons. If one finds a nucleon in the α cluster at a certain position, one should
find other three nucleons in the vicinity of the first nucleon. In the harmonic-oscillator
basis expansion for such a highly correlated subsystem, a huge number of basis wave
functions with extremely high angular momenta are contained in the wave function. The
mixing of high-angular-momentum components for the spatially correlated nucleons in
the α cluster far from the core can be easily understood by the Heisenberg uncertainty.
For simplicity, let us consider two particles with a relative distance r with the mass center
at a distance R from the core nucleus. We consider a case of a large R and a small r

corresponding to strongly correlating two nucleons with a short distance at far from the
core. Because of the Heisenberg uncertainty, the angular momentum l that is needed
in the single-particle basis expansion can be roughly estimated to be l ∼ D/r. It turns
out that the strongly correlated two-nucleon system with the larger D and the smaller
r inevitably involves mixing of higher angular momentum components, i.e., high shell
components in terms of the harmonic-oscillator basis expansion. In fig. 6, we demonstrate
how high shell components are mixed in the 0+

1 and 0+
2 states of 16O obtained by the

12C(AMD + VAP) + αGCM calculation of ref. [25]. Even in the ground state, higher
shell components are significantly contained because of the ground-state correlation of
cluster components. The higher shell component mixing is more remarkable in the 0+

2
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Fig. 6. – Occupation probability of harmonic oscillator shells in 16O(0+
1 ) and 16O(0+

2 ) calculated
by the 12C(AMD + VAP) + αGCM. The figure is reproduced from ref. [25].

state, in which the occupation probability of N -shell component is distributed broadly
because of the developed 12C + α cluster structure. Tiny percents continue toward
extremely high shell components, and therefore, it is difficult to describe the 12C + α

cluster structure in the 0+
2 state within a truncated model space of mean-field approaches.

For such developed cluster states, the one-center basis expansion is not suitable but
multi-center-type wave functions like the Brink-Bloch cluster model and the AMD ones
are efficient.

3. – Clustering in neutron-rich Be

Cluster structures of neutron-rich Be isotopes have been intensively investigated from
both the theoretical and experimental sides (see, for example, refs. [4,12] and references
therein). In 10Be, positive-parity states are classified into the ground, side (Kπ = 2+),
and excited (Kπ = 0+

2 ) bands. The AMD+VAP calculation successfully describes exper-
imental spectra of 10Be and shows 2α + 2n cluster structures in the ground and excited
states [26] (see fig. 7). The remarkable 2α + 2n cluster structure produces the Kπ = 0+

2

band starting from the 0+
2 state. Experimental observed 2+ state at 7.54 MeV and a 4+

state at 10.2 MeV are candidates of the Kπ = 0+
2 band members [27,28]. This assignment

is consistent with the level spacing (the energy slope against J(J + 1)) of the calculated
Kπ = 0+

2 band and supports a large deformation due to the cluster structure.
Cluster models and also extended models assuming a 2α core describe well low-lying

states of neutron-rich Be [5, 29-37]. The validity of the 2α assumption in neutron-rich
Be has been checked by the AMD and FMD calculations [10, 12, 38], in which the 2α
clustering is actually formed by the cluster correlation in many-nucleon dynamics without
model assumptions. The 2α formation has been also found in an ab initio calculation
using realistic nuclear forces [39]. In order to understand the cluster structures of low-
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Fig. 7. – Energy spectra of positive-parity states of 10Be obtained by the AMD+VAP using
the MV1 force are shown together with experimental data. Matter density and valence neutron
density in 10Be(0+

1,2) are shown by contour and color mapping, respectively. The figure is taken
from ref. [26].

lying states of neutron-rich Be isotopes, the molecular orbit (MO) structure is a useful
picture. The MO structure has been proposed for 9Be [40] and extended to further
neutron-rich Be isotopes [4,5,29,32]. In the MO picture, valence neutrons in a 2α + Xn

system occupy molecular orbits constructed around the 2α, which are described by linear
combination of p-orbits around α clusters (see fig. 8 for schematic figures of molecular
orbits). The negative-parity orbits called “π3/2-orbit” and “π1/2-orbit” are the lowest
nodal ls-favored and ls-unfavored orbits, which correspond to the p3/2 and p1/2 orbits
in the spherical shell model limit, respectively. The positive-parity orbit denoted by
“σ1/2-orbit” is the longitudinal orbit having two nodes along the α-α direction. A key
character of the σ1/2-orbit is that it has nodes in the stretching direction and therefore
it gains the kinetic energy when the 2α cluster develops. As a result, valence neutrons
occupying the σ1/2-orbit enhance the cluster structure. However, those in the π3/2,1/2-
orbits suppress the cluster structure of neutron-rich Be to gain the potential energy.
In fig. 9, intrinsic density distributions of band head states having dominantly πnσm

configurations are shown in an n × m matrix. The density distributions clearly show
the enhancement(suppression) of the cluster structure with increase of the number of
σ(π)-orbit neutrons.

It is also interesting that, in the developed cluster structure, the N = 8 shell gap
vanishes because of the lowering mechanism of the σ1/2-orbit in the well-clusterized 2α
system. As a result, intruder 1h̄ω and 2h̄ω configurations come down to the low-energy
region and almost degenerate with the normal 0h̄ω configurations in the low-energy
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Figures are taken from ref. [41].

spectra of neutron-rich Be (see fig. 8(e)). In 11Be and 12Be, the level inversion between
the normal π1/2-orbit and the intruder σ1/2-orbit occurs. It means that, the ground states
are large deformed states having dominantly the intruder configurations, even though
those Be are nuclei near N = 8. This feature is known to be breaking of the N = 8
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Fig. 9. – Matter density distributions in the band-head states of Be isotopes obtained by the
AMD+VAP [26,41-44]. Figures are aligned in the n × m matrix according to the classification
of molecular orbit configurations πnσm, where n and m are the numbers of π- and σ-orbit
neutrons, respectively, around the 2α core.

magicity in neutron-rich Be and has been revealed by various experimental observations
such as Gamov-Teller and E2 transitions as well as low-lying energy spectra [48-55].

Also for 13Be, the breaking of the neutron magicity has been discussed. If the level
inversion occurs, a negative-parity 1/2− state with an intruder configuration should be

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Clustering in light neutron-rich nuclei 75

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 2  4  6  8  10  12
 0

 0.2

 0.4

 0.6

 0.8

 1

r
p
 (

fm
)

de
fo

rm
at

io
n 
� p

neutron number N

Be

exp
rcc;G
AMD
FMD

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 4  6  8  10  12  14
 0

 0.2

 0.4

 0.6

 0.8

 1

r
p
 (

fm
)

de
fo

rm
at

io
n 
� p

neutron number N

B

exp
rcc;G
rcc;S

AMD

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 4  6  8  10  12  14
 0

 0.2

 0.4

 0.6

 0.8

 1

r
p
 (

fm
)

de
fo

rm
at

io
n 
� p

neutron number N

C

exp
rcc;G
rcc;S

AMD

Fig. 10. – Radius and deformation parameter of proton distribution in Be, B, and C isotopes.
The theoretical values calculated by the AMD+VAP using the MV1 force [45] are shown. For
Be isotopes, compared with the experimental data [46,47] and the FMD results [47]. The proton
radii evaluated by charge-changing reactions for B and C isotopes are shown. The figure is taken
from ref. [45].

the lowest, but positive-parity states with normal configurations may be higher than the
1/2− state. The AMD calculation predicts the low-lying 1/2− state of 13Be because of
the lowering mechanism of the σ-orbit in a developed cluster structure, and suggests the
breaking of neutron magicity. Many experiments have been performed to pin down this
problem. For 13Be, which is an unbound nucleus, a couple of resonance states have been
observed by 1n knock-out reaction [56,57]. The latest experiment at RIKEN reported the
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existence of a low-lying 1/2− state [57], but 13Be spectra are still controversial between
different experiments.

Instead of the broken N = 8 shell gap, a possible new magic number at N = 6
between the π3/2- and π1/2σ1/2-shells is indicated in the single-particle spectra of the
molecular orbit structure in neutron-rich Be. Reflecting the π3/2-shell closure feature,
the clustering of the ground state is weakest at N = 6 for 10Be among neutron-rich Be
isotopes as shown in fig. 9. The N dependence of point-proton radii in fig. 10 shows this
trend of the N = 6 magic number. Namely, the point-proton radius is smallest not at
N = 8 but at N = 6. The AMD and FMD calculations qualitatively describe the N

dependence of the point-proton radii in Be isotopes and show kink at N = 6 consistently
with the experimental data [45,47].

As discussed previously, the clustering of ground states rapidly changes in Be and B
isotopes as a function of the neutron number (see fig. 4). The N dependence of point-
proton radii in each isotope chain of Be and B reflects the structure change of clustering.
However, for C isotopes, the AMD calculation predicts almost constant point-proton
radii independently from the neutron number. The reason is that the proton structure in
neutron-rich C isotopes is rather stable against increase of the neutron number and keeps
a compact oblate shape. Because of the stable nature of the proton structure, neutron-
rich C isotopes have no cluster development resulting in almost no N -dependence of
point-proton radii. It is indicated that systematics of point-proton radii provides useful
information for cluster structure change of the ground states along an isotope chain.
Nowadays, systematic data of proton radii are available for neutron-rich nuclei thanks
to precise measurements with the isotope shift technique. Moreover, systematic data of
proton radii for B and C isotopes are coming from charge changing cross sections based
on Glauber analysis.

4. – Clustering in 12C and neighboring nuclei

4.1. Cluster structures of 12C. – In cluster physics, the cluster structure of 12C has been
attracting a great interest for a long time. Various 3α cluster structures have been discov-
ered in excited states of 12C by theoretical and experimental works [58,59]. In the early
stage of cluster studies of 12C, possibility of a linear 3α chain structure was proposed for
12C(0+

2 ) by Morinaga et al. [60,61], but this idea has been excluded by the large reduced
α-decay width [62]. Later, (semi)microscopic and non-microscopic 3α-cluster models
have been applied to figure out cluster structures of excited states of 12C [2, 63-74]. In
those studies, 12C(0+

2 ) has been found to be a weakly bound 3α state, in which α clusters
behave as bosonic particles moving freely like a gas in a dilute density. Moreover, the low-
est negative-parity state 12C(3−1 ) is understood as the band-head state of the Kπ = 3−

band produced from an intrinsic structure with a regular triangle 3α configuration.
Despite the success of 3α-cluster models for many excited states 12C, microscopic 3α-

cluster models fail to describe the large level spacing between the 0+
1 and 2+

1 states and
existence of 1+ states, because α-cluster breaking is not taken into account in the models.
The problem of the missing α-cluster breaking has been overcome by the AMD and
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Fig. 11. – Energy levels of 12C. The calculated energies by the AMD+VAP using the MV1
force [75] and experimental data [76-80] are shown. The calculated matter density distribution
in the single AMD wave function of the dominant component in each state is shown together
with percentages of the dominant component in the final GCM wave function. The upper figure
is from ref. [81].

FMD models. The AMD and FMD calculations indicate the 3α-cluster formation in the
twelve-nucleon system, 12C, without assuming the existence of α clusters [75,82-84]. The
3α-cluster formation in 12C has been also found in recent ab initio calculations [85-87].
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The energy levels of 12C obtained by the AMD+VAP [75,82] are shown in fig. 11. The
figure also shows intrinsic density distribution of the dominant component in each state.
The calculation well reproduces the experimental spectra of the Kπ = 0+

1 , Kπ = 0+
2 ,

Kπ = 3−1 , and Kπ = 1−1 bands as well as Jπ = 1+ states. The intrinsic state of
the Kπ = 0+

1 band shows dominantly a compact 3α cluster structure. Note that the
band head 12C(0+

1 ) is not a simple 3α state but it contains significant cluster-breaking
component of the p3/2-closed configuration. Because of the mixing of the cluster-breaking
component, the 12C(0+

1 ) gains extra energy of the spin-orbit interaction, which is essential
for the large 0+-2+ level spacing. 12C(0+

2 ) is described by superposition of various 3α
configurations. This is consistent with the cluster gas nature of this state discussed by
Funaki et al. [67,88]. The experimentally observed 2+

2 and 4+
1 states are assigned to the

Kπ = 0+
2 band starting from 12C(0+

2 ). However, the strong E2 transitions from 2+
2 to the

0+
2 and 0+

3 states are obtained in the AMD+VAP calculation and they indicate rather
strong state mixing (or structure change) in the Hoyle band. Detailed discussions will
be given later. The Kπ = 3−1 band composed of the 3−1 , 4−1 , and 5−2 states is produced
by a developed 3α cluster structure. The Kπ = 1−1 band has an intrinsic structure of an
open triangle 3α configuration.

4.2. Cluster gas states 12C and 11B and their rotation. – In analogy to 3α cluster
states in 12C, 2α + t cluster states in 11B have been investigated [89-94]. The experi-
mentally measured monopole transition for 11B(g.s.) → 11B(3/2−3 ) is as strong as that
for 12C(g.s.) → 12C(0+

2 ) suggests a 2α + t cluster structure in 11B(3/2−3 ) similar to
12C(0+

2 ) as discussed by Kawabata et al. [91]. In the AMD+VAP and βγ-constraint
AMD calculations, 2α + t cluster gas features of 11B(3/2−3 ) have been investigated in
detail [92, 94]. Figure 12 shows α and t cluster probabilities around a fixed 2α core
in 12C(0+

1,2,3) and 11B(3/2−1,3), respectively, obtained by the AMD+VAP. In both 12C
and 11B, the ground states have large cluster probability at (X,Y ) = (0, 3) fm, indicat-
ing compact triangle configurations of three clusters. 12C(0+

2 ) shows a peak amplitude
around (0, 4) fm, but in the outer region (D ≡

√
X2 + Y 2 ∼ 6 fm) far from the 2α

core, the α-probability is broadly distributed in the angular mode showing the S-wave
feature around the 2α core. It means that 12C(0+

2 ) has the cluster gas nature in the
outer region, whereas it shows dominantly a triangle configuration in the inner region.
The triangle configuration in the inner region of 12C(0+

2 ) originates in the Pauli repul-
sion between α-clusters, and is consistent with an alternative interpretation of the Hoyle
state as a vibration mode of the triangle ground band discussed in algebraic cluster
models [95].

The t-cluster probability in 11B(3/2−3 ) shows a similar feature to the α probability
in 12C(0+

2 ). It shows a peak amplitude around (0, 3 − 4) fm and a broad distribution in
the angular mode in the D ∼ 5 fm region, meaning that 11B(3/2−3 ) also has a cluster
gas nature in the outer region and triangle configuration in the inner region. However,
quantitatively, the t-cluster distribution is not as broad as the α-cluster distribution in
12C(0+

2 ), because the t cluster is moving in the P -wave having a node (zero amplitude) at
the X axis around the 2α core instead of the S-wave without nodal structure. It means
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X axis). The figure is taken from ref. [96].

that the gas-like nature of 11B(3/2−3 ) is relatively weaker than that of 12C(0+
2 ). 12C(0+

3 )
shows a peak around (7, 0) fm with significant angular fluctuation and is regarded as a
bent chain-like 3α structure.

Let us turn to band structures starting from the cluster gas states, 12C(0+
2 ) and

11B(3/2−3 ). The question is whether a rotational band is produced by the cluster gas,
and if so, what is the physical meaning of rotation of the cluster gas. Rather strong E2
transitions are obtained by the AMD+VAP calculation for transitions between 12C(0+

2 ),
12C(2+

2 ), and 12C(4+
2 ). Therefore, these states can be interpreted as band members

of the Kπ = 0+
2 band. However, the calculation shows the stronger E2 transition for

2+
2 → 0+

3 than that for 2+
2 → 0+

2 , and may provide an alternative assignment: 12C(0+
3 ),

12C(2+
2 ), and 12C(4+

2 ) form a Kπ = 0+ band. In fig. 13, the calculated energy spec-
tra for these bands and corresponding experimental data are plotted as functions of
J(J + 1).

Let us discuss intrinsic structures of these states. As mentioned previously, 12C(0+
2 )

is described by superposition of various 3α configurations showing the cluster gas nature,
whereas 12C(2+

2 ) has 70% overlap with an open triangle configuration similar to 12C(0+
3 )

(see fig. 11). It indicates that the structure change occurs as J goes up from 12C(0+
2 )

to 12C(2+
2 ). As a consequence of the structure change from the cluster gas in 12C(0+

2 )
to the elongated configuration in 12C(2+

2 ), the system can rotate and increase its spin
towards J = 4 with a larger momentum of inertia. Alternatively, considering the similar
intrinsic structure of 12C(0+

3 ), 12C(2+
2 ), and 12C(4+

2 ), these states can be interpreted as
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band members of the open triangle shape, and the band can be described by the rotation
of the elongated intrinsic state.

For 11B, the rotational band from the 11B(3/2−3 ) has been discussed by Suhara and
Kanada-En’yo based on the βγ-constraint AMD calculation combined with the GCM [94].
In fig. 13, the calculated energy spectra of band members are shown together with the
experimental spectra of the candidate states [97]. The calculation reproduces the level
spacing in the rotational band, though it somewhat overestimates the band-head energy.
Similar to the structure change in 12C(0+

2 ) → 12C(2+
2 ), the calculation shows the intrinsic

structure change from the cluster gas to an elongated structure of 2α+ t in 11B(3/2−3 ) →
11B(5/2−3 ). The elongated 2α+t structure produces the rotational band up to 9/2− with
large moment of inertia.

Strictly speaking, the rigid rotor is not a correct picture for these excited states in 12C
and 11B because of large quantum fluctuations of cluster positions as well as strong state
mixing, i.e., structure change. Consequently, the energy spectra and transition strengths
do not show ideal rotational band behavior.

4.3. Linear chain structure of 14C. – A linear-chain nα structure has been a long
standing problem. In microscopic 3α-cluster model calculations, the linear α-chain struc-
ture in 12C is found to be unstable against the bending motion [65, 98]. Indeed, in the
AMD+VAP calculation of 12C, the linear α-chain structure is not obtained, but only
the bent chain-like structure is obtained in the 0+

3 state. However, in neutron-rich C,
the linear α-chain structure is expected to be stabilized by excess neutrons surrounding
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3α [4, 9, 98-107]. The βγ-constraint AMD with GCM calculation predicted the linear
α-chain structure in excited states of 14C [9]. Two valence neutrons play an important
role in stabilization of the linear-chain structure. The linear-chain structure produces
a Kπ = 0+ rotational band above the 10Be + α threshold energy (fig. 14). The proton
and neutron density distributions shows 10Be + α cluster structure with an α-cluster on
the head of the deformed 10Be cluster. Recently, candidate states, 0+, 2+, and 4+, for
members of the linear-chain band have been reported by 10Be scattering experiments on
α [106, 107]. Also in other neutron-rich C isotopes, linear chain structures are expected
to appear in excited states.

5. – Monopole and dipole excitations in light nuclei

5.1. Low-energy monopole and dipole excitations. – In monopole and dipole excita-
tions, significant strengths are known to exist in low-energy regions below higher-energy
giant resonances (GR). For example, low-energy isoscalar (IS) monopole excitations for
cluster states appear separating from the IS giant monopole resonances (GMR) of the
so-called breathing mode. In isovector (IV) dipole (E1) excitations, low-energy modes
below the IV giant dipole resonances (GDR) are expected to be valence neutron oscil-
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lation mode against a core nucleus. The appearance of low-energy strengths separat-
ing from the GRs is an evidence of new excitation modes that decouple from the GR
modes.

In nuclear excitations, the GRs have been observed as broad bump structure in the
high-energy region of strength functions. The GR strength usually exhausts a dominant
part of the sum rule value, and it is regarded as an energy eigen mode of collective
oscillation of the system. For instance, the IS GMR corresponds to the compressive
monopole oscillation called the breathing mode, whereas the IV GDR is the proton-
neutron opposite oscillation. The IS GDR is another compressive mode because the
ISD operator contains the leading r3 term. The GRs are small amplitude collective
oscillations described by coherent 1p-1h excitations, in which many nucleons participate.
The GR energies are related to nuclear matter properties. For example, the ISGMR
and IVGDR energies give information of the incompressibility and symmetry energy of
a nuclear matter, respectively. The GRs appear in the high-energy region (typical IV
GDR energy in a medium-mass region is 20–30 MeV) because nuclear system favors to
keep the density and isospin symmetry and feels strong restoring forces in monopole and
dipole excitations.

Below the GR strengths, low-energy strengths have been known in IS and IV dipole
excitations as well as IS monopole excitations (see refs. [108-111] and references therein).
Particularly, low-energy dipole strengths have been intensively and extensively studied
by hadronic probes in the past two decades. The history of the measurement of the low-
energy E1 strengths started in 1960’s. The low-energy E1 strengths have been measured
in 208Pb and named “Pigmy resonance” because they are tiny strengths below the GR.
To understand the LE dipole strengths, the idea of neutron skin oscillation against a
core has been proposed at the beginning of 1970’s with hydro fluid models. The word,
Pigmy dipole, is sometimes used for this specific mode of neutron skin oscillation, but
one should keep in mind that the low-energy dipole strengths come from not only the
neutron-skin oscillation but arises from various origins. In 1980-1990’s, in the remarkable
progress of physics of unstable nuclei, the soft E1 strengths (or soft E1 resonances) have
attracted a great interest. The soft E1 is the E1 strength at extremely low energy
(≤ 1 MeV) predicted in neutron-halo nuclei, in which weakly bound valence neutrons
broadly distributed outward contribute to the strong low-energy E1 strengths. The soft
E1 mode is an phenomenon peculiar to neutron-halo nuclei. In this decade, investigations
of the low-energy dipole resonances in general nuclei are revived in experimental and
theoretical sides. Major interests of low-energy IVD were its impact to astrophysical r

process in photodisintegration and neutron capture rate. It is also discussed to extract
information of neutron matter properties.

For the IS channel, the low-energy ISD strengths have been observed by α and 6Li
inelastic scattering. In 1980’s, it was reported that the low-energy ISD exhausts several
percentages of the energy weighted sum rule (EWSR) [112-114]. The question to be
answered is why the significant strengths appear in such low-energy region separated
from the GR strength. In 1990’s and 2000’s, more detailed strength functions of the ISD
excitation have been measured for various stable nuclei. For the theoretical interpretation
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of the low-energy ISD, a torus mode has been proposed by hydro-dynamical models [115,
116]. The torus mode carries nuclear vorticity and also called vortical and toroidal
modes. Recently, microscopic calculations based on mean-field approaches have been
achieved and the toroidal (vortical) nature of the low-energy dipole resonances have
been discussed [108, 117-122]. Thus, in dipole excitations, different modes are expected
in low-energy regions, the neutron skin oscillation and toroidal modes.

In light nuclei, cluster modes also contribute to the low-energy excitations, in partic-
ular, to isoscalar-type excitations because the isoscalar monopole and dipole operators
excite not only the compressive GRs but also the inter-cluster motion. In experimental
and theoretical studies of nuclear clustering, isoscalar monopole (ISM) and dipole (ISD)
transitions have been investigated to probe cluster modes in various nuclei [91,123-126].
Yamada et al. pointed out two different types of ISM excitations in 16O [124]; the
low-energy ISM strengths for excitations into cluster states and the high-energy ISM
strengths for the isoscalar giant monopole resonance (ISGMR) corresponding to the col-
lective breathing mode.

Questions to be answered are as follows. Do low-energy strengths appear separating
from GR strengths? If so, what are the origins of the low-energy modes? Which operators
are sensitive to probe them? What are the roles of cluster structures and excess neutrons
in the low-energy modes of light neutron-rich nuclei?

To answer these questions, we need a theoretical framework that can describe both
coherent 1p-1h excitations and low-energy cluster modes. For this aim, we constructed a
new method, the shifted basis AMD (sAMD) and combined it with the cluster GCM [127-
129]. The method sAMD is designed to describe coherent 1p-1h excitations on the ground
state, which are essential for giant resonances [127]. On the other hand, the cluster GCM
can efficiently describe large amplitude cluster modes which contribute to the low-energy
strengths. For details of the sAMD+GCM, the reader is referred to refs. [127-129].

5.2. Dipole transition operators. – The toroidal dipole (TD) operator is useful to
measure the nuclear vorticity and its character is much different from the standard com-
pressive dipole (CD) one, which mainly excites the ISGDR corresponding to the normal
compressive mode. The TD dominant nature of the low-energy dipole resonances has
been demonstrated by toroidal flow in transition current densities [108,117,118,120-122].
To investigate the toroidal nature of dipole excitations, we here use the toroidal dipole
operator adopted in ref. [120].

The toroidal and compressive dipole operators are defined as

MTD(μ) =
−i

2
√

3c

∫
drj(r) ×

[√
2

5
r2Y12μ(r̂) + r2Y10μ(r̂)

]
,(14)

MCD(μ) =
−i

2
√

3c

∫
drj(r)

[
2
√

2
5

r2Y12μ(r̂) − r2Y10μ(r̂)

]
,(15)

where j(r) is the current density operator and YλLμ is the vector spherical harmonics.
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The E1 operator is written with the IV density operator ρIV(r) as

ME1(μ) ≡
∫

drρIV(r)rY1μ(r̂).(16)

The transition strength for a dipole operator MD is given as

B(D; 0 → f) =
1

2J0 + 1
|〈f |MD|0〉|2,(17)

where J0 is the angular momentum of the initial state.
By using the continuity equation, the matrix element of the CD operator is easily
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transformed into the ordinary IS dipole (IS1) matrix element as

〈f |MCD(μ)|i〉 = − 1
10

E

h̄c
〈f |MIS1(μ)|i〉,(18)

MIS1(μ) ≡
∫

drρ(r)r3Y1μ(r̂),(19)

where E is the excitation energy E ≡ Ef −E0 given with the initial energy (E0) and final
energy (Ef ). For convenience, we define scaled strengths of the TD and CD transitions

B̃(TD,CD) =
(

10h̄c

E

)2

B(TD,CD),(20)

so that B̃(CD) corresponds to the standard ISD strength B(IS1).

5.3. Monopole transitions in 12C. – For 12C, the low-energy ISM and ISD strengths
have been experimentally observed below the high-energy GR strengths [130, 134]. In
order to clarify the origins of the low-energy strengths, a hybrid model of the shifted basis
AMD (sAMD) and 3α-GCM was applied to 12C [125]. The sAMD has been constructed
to describe coherent 1p-1h excitations on top of the ground state and proved to be able to
describe GR strengths in the high-energy region [127]. On the other hand, the 3α-GCM
is essential to describe large amplitude cluster modes which contribute to the low-energy
strengths.

In fig. 15, the calculated ISM and ISD strengths in 12C obtained by the sAMD +
3αGCM are shown together with the experimental data [130]. The experimental
ISM strengths show that the low-energy strengths appear separately from the high-
energy strengths. They exhaust significant percentages of the energy-weighted sum rule
(EWSR).

In the sAMD+3αGCM calculation, significant ISM strengths are obtained for cluster
states, which contribute to the low-energy ISM strengths. The separation between the
low-energy ISM strengths and high-energy ISGMR is described well by the calculation.
Also for the ISD strengths, the calculation predicts significant low-energy strengths for
1− states corresponding to cluster states. The experimentally observed ISD strengths in
the Ex = 10–15 MeV region are likely to correspond to the predicted low-energy cluster
modes.

5.4. Dipole excitations in Be. – As mentioned previously, the ground state of 8Be
has the developed 2α cluster structure. In 9Be and 10Be, two α clusters are formed and
surrounded by valence neutrons. In the study of dipole excitations in 9Be and 10Be with
the sAMD+GCM [128, 131], it was found that the 2α clustering and valence neutrons
play important roles in low-lying dipole modes.

Figure 16 shows the calculated E1 strengths in 8Be, 9Be, and 10Be. The E1 strengths
in 8Be show the GDR strengths with a two peak structure. The lower and higher peaks
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Fig. 16. – Energy-weighted E1 strengths in (a)8Be, (b)9Be, and (c)10Be obtained by the sAMD
(σ = 1, . . . , 8) and the sAMD-z (longitudinal mode: σ = z) calculations. (d) The calculated E1
and experimental photonuclear cross sections in 9Be [135-137]. The calculated E1 strengths are
smeared with the width γ = 2MeV. The figure is taken from ref. [128].

of the GDR originate in the proton-neutron opposite oscillation in the longitudinal and
transverse directions in the prolately deformed 2α-cluster structure. The E1 strengths
in 9Be and 10Be also show the GDR strengths with two-peak structures in the energy
region higher than 20 MeV. These GDR strengths come from the proton-neutron oppo-
site oscillation of nucleons inside the 2α core part. The lower peak of the GDR for the
longitudinal mode in 9Be and 10Be has almost the same shape as that in 8Be, because
valence neutrons sitting in the transverse direction around the 2α core do not disturb
the longitudinal vibration of the core. However, the higher peak for the transverse oscil-
lation becomes broader and broader in 9Be and 10Be with increase of valence neutrons,
because the transverse mode of the 2α core is strongly affected by the existence of va-
lence neutrons. In the low-energy region of the E1 strengths in 9Be and 10Be, we obtain
significant E1 strengths, which are separated well from the GDRs. The valence neutron
motion against the 2-α core contributes to the low-energy E1 strengths. In particular,
remarkably strong low-energy E1 strengths are obtained in 10Be because of coherent two
neutron oscillation. It is also interesting that this mode can be regarded as inter-cluster
excitation of 6He + α clustering. The experimental photonuclear cross sections in 9Be
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clearly show the separation between the low-energy E1 strengths and the high-energy
GDR [136, 137]. The observed low-energy E1 strengths exhaust 10% of the sum rule
value. The calculated E1 strengths are qualitatively consistent with the experimental
data.

Let us discuss the E1 and toroidal natures of the dipole excitations in 10Be. Figure 17
shows the calculated CD and TD strengths together with the E1 strengths. In the low-
energy region, we obtained two kinds of dipole excitations. The E1 strength is remarkable
for the 1−2 around 15 MeV. Below the 1−2 , we obtain very weak E1 strength for the 1−1
around 8 MeV. In contrast to the weak E1 strength, the 1−1 state is excited by the
isoscalar compressive dipole operator (CD mode). Moreover, the 1−1 state is remarkably
excited by the toroidal dipole operator indicating that it is regarded as the toroidal mode.
Namely, two different modes exist in low-energy dipole excitations in 10Be, the toroidal
dominant 1−1 and the E1 dominant 1−2 .

To investigate properties of these two low-energy dipole modes in 10Be, we calculated
transition current densities. The calculated transition current densities are shown in
fig. 18. The toroidal nature is clearly seen in 0+

1 → 1−1 . The neutron toroidal current
gives significant contribution to the TD strength but it gives no contribution to the E1
strength because it does not contain the translational current. On the other hand, the
transition current densities for 0+

1 → 1−2 show a feature of translational oscillation of
valence neutron motion against the 2α core. In this transition, the 2α motion gives no
contribution of the IV component, but the surface neutron current simply contributes to
the enhancement of the E1 strength.

Interestingly, the toroidal and E1 natures of these two modes can be understood also
in a cluster picture as shown by schematic figures in fig. 18. The 0+

1 , 1−1 , and 1−2 states
have cluster structures with the 2α core and two valence neutrons, which can be regarded
as the 6He + α clustering. The 0+

1 → 1−1 excitation is interpreted as a rotational mode
of the deformed 6He cluster. The toroidal neutron flow is caused by the surface neutron
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Fig. 18. – Vector plots of the transition current densities for the toroidal mode (0+
1 → 1−

1 ) and
the E1 mode (0+

1 → 1−
2 ) in 10Be obtained with the sAMD+αGCM. The isoscalar and isovector

contributions of the current densities are plotted on the X-Z plane at Y = 0 (scaled by a factor
of 103). Schematic figures for interpretation of the dipole modes in a cluster picture are also
shown. The figure is taken from ref. [131].

current around an α cluster induced by the 6He-cluster rotation. On the other hand,
in the 0+

1 → 1−2 excitation, the translational neutron current is caused by the surface
neutron oscillation along the longitudinal directions along the 2α core. In the 6He + α

cluster picture, this mode can be interpreted as the L = 1 excitation of the relative
motion between 6He and α clusters. It should be stressed again that because of the
coherent 2n motion, it has strong E1 strengths.
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6. – Conclusion

Nuclear clustering is one of the essential features of nuclear systems. The coexistence
of cluster and mean-field natures brings rich phenomena to nuclear systems depending on
proton and neutron numbers and excitation energy. Remarkable clustering appears, in
particular, in low-density situations. Examples are cluster formation at nuclear surface
and cluster excitation in excited states near the cluster-decay threshold energies. In
order to comprehend essential features of nuclear systems, systematic study of cluster
and mean-field phenomena in various nuclei is requested. In theoretical study, it is key
to describe both the cluster and mean-field aspects of the ground and excited states in
a unified manner. We have applied the AMD model and investigated structures of light
nuclei. The method is a useful approach to investigate structures of low-lying states
and cluster excitations near and above threshold energies. To describe various nuclear
excitations in a wide energy region covering low-energy modes and high-energy GRs, the
sAMD combined with the cluster GCM has been proved to be a powerful tool, which is
suitable to describe coherent 1p-1h excitations and also large amplitude cluster modes.
We have discussed cluster phenomena in Be and C isotopes, and also monopole and dipole
excitations in neutron-rich Be and 12C. It was found that the 2α and 3α clusterings play
an important role in the low-energy monopole and dipole excitations.
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(2003) 051306.
[68] Fedotov S. I., Kartavtsev O. I., Kochkin V. I. and Malykh A. V., Phys. Rev. C,

70 (2004) 014006.
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and Tohsaki A., Phys. Rev. C, 85 (2012) 034315.
[125] Kanada-En’yo Y., Phys. Rev. C, 93 (2016) 054307.
[126] Chiba Y. and Kimura M., Phys. Rev. C, 91 (2015) 061302.
[127] Kanada-En’yo Y., Phys. Rev. C, 89 (2014) 024302.
[128] Kanada-En’yo Y., Phys. Rev. C, 93 (2016) 024322.
[129] Kanada-En’yo Y., Phys. Rev. C, 93 (2016) 054307.
[130] John B., Tokimoto Y., Lui Y. W., Clark H. L., Chen X. and Youngblood D. H.,

Phys. Rev. C, 68 (2003) 014305.
[131] Kanada-En’yo Y. and Shikata Y., Phys. Rev. C, 95 (2017) 064319.
[132] Eyrich W., Hofmann A., Lehmann A., Muhldorfer B., Schlosser H., Wirth H.,

Gils H. J., Rebel H. and Zagromski S., Phys. Rev. C, 36 (1987) 416.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Clustering in light neutron-rich nuclei 93

[133] Chernykh M., Feldmeier H., Neff T., von Neumann-Cosel P. and Richter A.,
Phys. Rev. Lett., 105 (2010) 022501.

[134] Youngblood D. H., Lui Y. W. and Clark H. L., Phys. Rev. C, 57 (1998) 2748.
[135] Ahrens J. et al., Nucl. Phys. A, 251 (1975) 479.
[136] Goryachev A., Zalesnyy G., Pozdnev I. and Rossiiskoi I., Akad. Nauk, Ser.Fiz.,

56 (1992) 159.
[137] Utsunomiya H., Katayama S., Gheorghe I., Imai S., Yamaguchi H., Kahl D.,

Sakaguchi Y., Shima T., Takahisa K. and Miyamoto S., Phys. Rev. C, 92 (2015)
064323.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



This page intentionally left blank

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Proceedings of the International School of Physics “Enrico Fermi”
Course 201 “Nuclear Physics with Stable and Radioactive Ion Beams”, edited by F. Gramegna,
P. Van Duppen, A. Vitturi and S. Pirrone
(IOS, Amsterdam; SIF, Bologna) 2019
DOI 10.3254/978-1-61499-957-7-95

Density Functional Theory (DFT) for atomic nuclei:
A simple introduction

G. Colò
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Summary. — The present contribution does not aim at replacing the huge and
often excellent literature on DFT for atomic nuclei, but tries to provide an updated
introduction to this topic. The goal would be, ideally, to help a fresh M.Sc. or Ph.D.
student (or a researcher from other fields) to become acquainted with some basic
concepts, and then move to the specialized textbooks or papers with some ability
for orienteering. We first introduce the basics of DFT, and show the difference
with the “näıve” mean-field theory, that is doomed to fail as a model even in the
simple case of uniform nuclear matter. We introduce the Energy Density Functionals
(EDFs) that are used in nuclear structure, with few examples of their applications.
The concepts of symmetry breaking and restoration are briefly discussed. We also
include an introduction to the time-dependent extension of DFT that, so far, has
been implemented essentially only in the adiabatic approximation and has been
applied mainly to the study of nuclear vibrations. With this material, we hope that
any reader is able to deal with the texts that go deeper into each of the topics,
having understood that DFT is probably the best compromise in nuclear structure
theory between simplicity, accuracy, and broad range of applicability.
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Fig. 1. – Overall view of the nuclear chart. In the right part, a schematic picture of a neutron
star (taken from D. Page) is displayed.

1. – Introduction

Atomic nuclei are strongly correlated, self-bound quantum systems that are still cap-
turing the interest of so many scientists, more than a century after their discovery, for a
variety of reasons.

The nuclear chart, that is a two-dimensional arrangement of nuclei on a plane where
the number of neutrons, N , and the number of protons, Z, are the x- and y-axis, re-
spectively, has still broad territories to be explored. A schematic view from the web
(https://www.nndc.bnl.gov/chart/) is displayed in fig. 1. Every year, a large number
of new nuclei, that amount to ≈ 20–30 in the last decade, are being discovered (cf. [1]
and references therein). The limit of existence for neutron-rich or neutron-deficient nu-
clei (so-called drip lines, beyond which nuclei are unbound with respect to neutron and
proton emission, respectively), and the search for superheavy elements, are the highlights
of this exploration.

At the same time, the nuclear physics and nuclear astrophysics communities are striv-
ing to grasp some understanding of compact objects like neutron stars, that are extreme
forms of nuclear matter. While ordinary nuclei display densities around the so-called sat-
uration density ρ0 = 0.16 fm−3 (see below) and are at, or lie close to, zero temperature,
different conditions may be realised in stars. The inner core of neutron stars contains
matter in unknown conditions that may also correspond to a quark-deconfined phase,
while the crust is made up with nucleons whose density encompasses a broad range from
around 1/3 to 10−3 times the saturation density [2]. Neutron stars are believed to contain
≈ 1055–56 neutrons, and as such are displayed in the lower-right corner of fig. 1.
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The new input from nuclei with large neutron-proton asymmetry, or superheavy iso-
topes, or exotic forms of neutron matter in stars, has changed and is still changing our
basic understanding of nuclear structure. Consequently, there is certainly a strong need
of up-to-date introductions to several topics.

The present lecture has mainly a theoretical content. Nuclear theory is moving ahead
quite rapidly in recent years. Many groups are pursuing the idea that the goal should be
deriving nuclear properties from (the low-energy limit of) Quantum Chromo Dynamics
(QCD). Genuine lattice calculations with explicit quark degrees of freedom have still
serious troubles to reproduce basic properties like the binding energy of the few-nucleon
systems (two- and three-body systems turn out to be unbound while 4He is severely un-
derbound [3]). A different strategy consists in using an effective realization of the QCD
Lagrangian, based on chiral symmetry as originally proposed by S. Weinberg [4]. Chi-
ral Effective Field Theory (EFT) gives rise to a family of model Lagrangians, all based
on correct symmetries and separation of energy scales, that can be used in connection
with many-body methods like lattice simulations, coupled cluster, renormalization group
approaches, or Green’s function methods. These so-called ab initio methods are contin-
uously extending their range of applicability; nonetheless applying them to heavy nuclei,
or highly excited states, is still too demanding [5]. More importantly, the quality of the
results still depends on the specific Lagrangian [6, 7].

As a summary, deriving nuclear properties directly from QCD is still a long-term
project. Ab initio is a wording that may be used in connection with many-body methods
that are in principle exact, not only in connection with chiral Lagrangians but also
when a phenomenological nucleon-nucleon (NN) interaction is employed. In general, the
applicability of these approaches has serious limitations in mass number and excitation
energy.

In keeping also with the rich variety of the nuclear phenomena, one can easily under-
stand the absence of a nuclear “standard model”. In the current volume, the reader can
browse through different lectures and judge directly about the pros and cons of models
like the nuclear Shell Model, the Cluster Model, and the algebraic approaches; all these
models necessarily include a fair amount of phenomenological input. DFT lies somehow
in between the purely phenomenological models and those that aim at starting from
QCD. It can be said in its own way to be an ab initio theory, because it is rooted in
the Hohenberg-Kohn theorem (cf. below). There is not, so far, a systematic connection
with an underlying theory but many attempts are promising. As we shall argue in this
lecture, a reasonable account of experimental data can be achieved in a quite transparent
and economic way. Analogies with electronic systems can be traced, having in mind the
development of unified methods for many-fermion systems.

The outline of the present contribution is the following. We discuss the basics of
DFT, mainly with reference to the electronic systems, in sect. 2. In the nuclear case,
we remind first the reader about the evidences for independent particle motion that may
lead to the assumption of the validity of simple HF (sect. 3), and we then introduce
uniform nuclear matter (sect. 4) and use it as a playground to show the failure of näıve
HF (sect. 5). We advocate the need for density-dependent interactions that are merely
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generators of energy functionals, and we discuss the functionals which are currently
used in sect. 6. Few examples of DFT calculations for the ground-state properties are
mentioned in sect. 7. We then move to the concepts of intrinsic density and symmetry
breaking in sect. 8 and sect. 9, respectively. Section 10 is devoted to the extension of
DFT to the time-dependent case, with one illustrative example in sect. 11. Finally, we
mention the limitations of DFT in sect. 12, and we draw some conclusions in sect. 13.

Many suggestions for further reading are given along the text. Nevertheless, we
outline some of them here, for the reader’s convenience. There are standard textbooks
that constitute a useful starting point for the study of nuclear structure along the line
of this paper [8]. If the reader needs a recent, more introductory text, ref. [9] is an
option. The literature on DFT in condensed matter is huge, and yet we can single out
refs. [10-12]. Recent, and relatively short, papers on the perspectives for electronic DFT
can be found [13, 14]. DFT in nuclear physics has been first reviewed in [15], but the
reader can also profit from refs. [16, 17]. There are many lectures available on the web,
and an ambitious and interesting attempt to introduce the subject of DFT in nuclear
physics can be found on the archive [18].

Last but not least, we limit ourselves here to a nonrelativistic treatment. Excel-
lent papers that introduce and explain the relativistic (or covariant) nuclear DFT are
available [19,20].

2. – Basics on DFT for electronic systems

We assume we are concerned with a quantum many-fermion system governed by the
Hamiltonian

H =
N∑

i=1

− h̄2

2m
∇2

i +
1
2

N∑
i	=j=1

V (i, j) +
N∑

i=1

vext(i),(1)

where the first term is the kinetic energy of the N fermions having mass m, the second
term is a two-body interaction in which i is a shorthand notation for the space coordinate,
�ri, spin coordinate and any further degree of freedom (e.g. isospin), and the last term
is a possible external potential. In the case of N electrons interacting with the external
field of M ions (labelled by α, and having charge Zα and associated coordinate �Rα), this
Hamiltonian becomes

H =
N∑

i=1

− h̄2

2m
∇2

i +
1
2

N∑
i	=j=1

e2

|�ri − �rj |
+

N∑
i=1

M∑
α=1

Zαe2

|�ri − �Rα|
,(2)

where the interactions between the ions are not written for the sake of simplicity. The
many-body problem associated with this Hamiltonian cannot be solved exactly, even if
the Coulomb force is well known, and even if one can invoke the Born-Oppenheimer
approximation and reduce the whole problem to the electronic problem, for fixed ion
positions.
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Many strategies have been proposed to solve the many-electron problem. Among
them, to the opinion of many, DFT stands out for its conceptual elegance and simplicity
(that, most likely, should be a feature of physics as a whole). Its foundation lies in the
theorem that bears the name of Hohenberg and Kohn (HK) and that was introduced in
their seminal paper [21]. In short, the theorem states that the total energy of the system
described by (1), for any external potential vext, can be written as a functional of the
fermion density ρ(�r ):

Evext [ρ] = 〈Ψ|T̂ + V̂ + v̂ext|Ψ〉 = F [ρ] +
∫

d3r vext(�r )ρ(�r ).(3)

The first equality is just the definition of total energy, while the second equality defines
the functional: the contribution of the external potential is singled out and the univer-
sal functional F is introduced. The functional E, eq. (3), has a minimum at the exact
ground-state density where it becomes equal to the exact energy. It is hard to under-
estimate the value of eq. (3), because it tells us that the whole information about the
ground state of the system is contained in the one-body density ρ that is a real function
of three coordinates, and we do not need the whole wave function Ψ, that instead is a
complex function of 3N coordinates!

The proof of the theorem can be found in the original paper [21]. We advise the reader
to go through it; it is quite instructive, although limited to the specific case in which
the ground-state is not degenerate. Extensions of the theorem to the case of degenerate
ground states, spin-polarized systems, finite temperature etc.(1), can be found in the
literature (see, e.g., [11]).

The real drawback of the HK theorem is that its proof is merely a proof of existence of
the universal functional F . It is not a constructive proof, so that the appropriate strategy
to build this functional remains an open problem. A step forward in this direction is
represented by the Kohn-Sham (KS) scheme [22], in which it is assumed that the density ρ

can be represented in terms of so-called auxiliary single-particle wave functions (orbitals)
φj(�r ), that is

ρ(�r ) =
∑

j

|φj(�r )|2.(4)

The index j labels the orbitals. The meaning of the word “auxiliary” should be clarified
here. The orbitals may be looked at as a formal artifact. This does not exclude that,
in specific cases, the orbitals turn out to be a fairly good approximation of the actual
single-particle wave functions. Within such framework, the total kinetic energy is written
in the usual way,

T = 〈Ψ|T̂ |Ψ〉 =
∑

j

〈j|−h̄2

2m
∇2|j〉 =

∑
j

∫
d3r φ∗

j (�r )
(
− h̄2

2m
∇2

)
φj(�r ),(5)

(1) The list is not exhaustive.
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and the direct Coulomb energy (classical, or Hartree, energy) can be also singled out:

EHartree =
e2

2

∫
d3r d3r′

ρ(�r )ρ(�r ′)
|�r − �r ′| .(6)

In this way, the functional (3) is re-written as

EKS = T + EHartree + Exc +
∫

d3r vext(�r )ρ(�r ),(7)

where now the part to be built is the so-called “exchange-correlation” part or Exc. The
minimization of this latter functional with respect to the density should be carried out
with the constraint that the orbitals are orthonormal. Therefore, the equations for the
orbitals are obtained from

δ

δρ(�r )

(
EKS − ε

∫
d3r′ φ∗

j (�r
′)φj(�r ′)

)
= 0,(8)

where the usual symbol δ is introduced for the functional derivative. Elementary intro-
ductions to functional derivatives can be found in several textbooks (see, e.g., sect. 3.2
of [23]). Equation (8), together with eqs. (7), (5) and (6), leads to the famous Kohn-Sham
equations

(
− h̄2

2m
∇2 +

e2

2

∫
d3r′

ρ(�r ′)
|�r − �r ′| +

δExc

δρ(�r )
+ vext(�r )

)
φj(�r ) =(9) (

− h̄2

2m
∇2 + vKS

)
φj(�r ) = εφj(�r ),

where we have labelled the total effective Kohn-Sham potential by vKS, and where the
quantities ε are seen to be the energies associated with the auxiliary orbitals. The reader
should note that the total energy is not the sum of these auxiliary energies (this is left
as an exercise). We also wish to stress that the variation with respect to ρ in eq. (8) has
in fact been turned into a variation with respect to the orbitals φ∗

j .
As for the choice for Exc, the simplest possible option is to calculate it in a uniform

system where translational invariance makes the exact calculation of the total energy
feasible. In fact, such a calculation in the limit of high electron densities is analytic and
can be found in textbooks (see, e.g., sects. 3 and 12 of [24] or sect. 12.3 of [25]). The
total energy per particle E

N reads

E

N
=

e2

2a0

(
2.21
r2
s

− 0.916
rs

+ 0.0622 ln rs − 0.094 + . . .

)
= t + ex + ec.(10)

One usually defines a0 = h̄2

me2 as the Bohr radius, r0 by 1
ρ = 4

3πr3
0 so that it is essentially

the interparticle spacing, and rs = r0
a0

. In the latter equation, the dots represent terms of
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Fig. 2. – Energy per particle of the uniform electron gas as a function of the density, within the
LDA as discussed in the main text. The curves correspond to the result of eq. (10) and to the
three contributions that appear therein.

the order O(rs ln rs), and other subleading terms that become negligible at high density,
that is, small rs. The first term in brackets in eq. (10) is the kinetic energy per particle t,
that goes like ρ2/3. In this specific case, the Hartree and external potential contributions
cancel exactly(2). The second term in (10) is the exchange energy ex while the following
terms correspond to the correlation energy ec. For a two-body potential that goes like
1/r, it is quite intuitive that interaction terms scale at most like the interparticle spacing,
or like ρ1/3. The different terms of E

N in eq. (10) are displayed in fig. 2, where E
N is written

as e. The total energy has a minimum that mainly results from the balance between the
kinetic term that goes like ρ2/3 and the exchange term that goes like ρ1/3, although the
correlation energy plays some role. The minimum corresponds to rs around 3.8, surpris-
ingly close to the values for real metals that are in the range 3–5. More accurate expres-
sions for the total energy of the uniform electron gas, that are also valid at lower densities,
have been derived and are available [26]. Below, we shall compare with the nuclear case.

The so-called Local Density Approximation (LDA) amounts to assuming that, in the
vicinity of a given point �r, the exchange-correlation energy of any electron system can
be approximated with that of the uniform gas with the same density. In practice, one
writes

Exc =
∫

d3r ehom
xc [ρ(�r )]ρ(�r ),(11)

(2) Cf. the discussion in sect. 3 of ref. [24].
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where we have stressed that the exchange-correlation energy has been taken from the
homogeneous gas by means of the superscript. LDA usually produces an overbinding
of atoms and molecules, that can be corrected by introducing a dependence of Exc on
the gradient of the density, ∇ρ (Generalized Gradient Approximation, or GGA). At
present, increasingly sophisticated functionals that depend also on higher derivatives of
the density are discussed and/or start to be built. These various degrees of sophistication
are pictorially referred to as a “Jacob’s ladder” [27]. As a last rung of the ladder, a
possible dependence on the unoccupied quantum states of the system is postulated. We
shall come back to these points when discussing the nuclear case.

3. – The nuclear case: the mean-field picture and Hartree-Fock theory

There are analogies but also important differences between the many-electron problem
and the many-nucleon problem. In the latter case there is no external potential, that is,
nuclei are self-bound objects. In addition, while in eq. (1) we have written only a two-
body interaction V (i, j), three-body interactions V (i, j, k) are relevant for nuclei and
four-body interactions cannot be completely ruled out. As compared with the Coulomb
force, the nuclear interaction is short-ranged (the range is of the order of 1 fm), strongly
spin-dependent, and characterised by many terms (central, spin, spin-orbit, tensor) of
similar importance.

Electron scattering experiments suggest that ordinary nuclei (except the lightest ones)
are characterised in their inner part by an approximately constant density, whose value
is ρ0 ≈ 0.16 fm−3 (saturation density) as it has been mentioned in the introduction. The
nuclear surface, although very important for nuclear properties, has a thickness of only
≈ 0.6 fm. As a consequence, the interparticle distance 2r0 is ≈ 2.4 fm and is larger than
the range of the nuclear force. In this respect, the nucleus is not a very dense system.
Together with the role played by the Pauli exclusion principle, this explains why nucleons
do not experience the mutual interaction so often; in fact, it is known experimentally that
the nucleon mean free path in nuclei is or the order of, or larger than, the nuclear radius.

Historically, these evidences have led to assuming the validity of mean-field theory,
namely of the picture that nucleons move in a one-body potential that results from
the average of the interactions with all other nucleons. It has been deemed to be too
hard or somehow not so relevant, for many years, trying to deduce the mean field from
a complicated NN Hamiltonian. Empirical potentials like the well-known Woods-Saxon
have been often taken for granted. Elegant and sophisticated models have been developed
by the Copenhagen school [28,29], or by Landau and Migdal [30], or by Solovev and co-
workers [31], based on single-particle and collective excitations on top of the mean field,
without daring to ask the question whether this mean field can be derived from an
underlying theory, or whether binding energies can be calculated therefrom. This lecture
deals instead with a unified picture in which the effective mean field can be derived
within the DFT framework.

In the 1970s and 1980s, different authors have started to propose effective Hamilto-
nians with the aim of using them within a microscopic mean-field theory, that is, within
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Hartree-Fock (HF). One starts from an Hamiltonian analogous to (1),

H =
N∑

i=1

− h̄2

2m
∇2

i +
1
2

N∑
i	=j=1

V (i, j),(12)

where the difference between the neutron and proton mass has been neglected for the
sake of simplicity, and defines an energy functional as

EHF[ρ] = 〈Φ|H|Φ〉,(13)

where |Φ〉 is the most general Slater determinant made up with single-particle wave
functions φj . The minimization of this functional, with the same constraint as in eq. (8),
namely

δ

δρ(�r )

(
EHF − ε

∫
d3r′ φ∗

j (�r
′)φj(�r ′)

)
= 0,(14)

can be carried out in practice replacing the variation with respect to ρ by the variations
with respect to φ∗

j , and this leads to the well-known HF equations:

− h̄2

2m
∇2φj(�r ) +

N∑
l=1

∫
d3r′ φ∗

l (�r
′)V (�r, �r ′) (φl(�r ′)φj(�r ) − φl(�r )φl(�r ′)) = εjφj(�r ),(15)

〈j|−h̄2

2m
∇2|j〉 +

N∑
l=1

〈jl|V (1 − P12) |jl〉 = εj ,

where P12 exchanges the particles 1 and 2. The total energy reads

EHF = T +
1
2

∑
jl

∫
d3r d3r′ φ∗

j (�r )φ∗
l (�r

′)V (�r, �r ′) (φj(�r )φl(�r ′) − φl(�r ′)φj(�r )) ,(16)

where T has the same form as in eq. (5). We are going now to illustrate that a näıve
picture of the nuclear mean field is doomed to fail, even in the simple case of uniform
nuclear matter that is the analogous system with respect to the electron gas that has
been previously discussed. In particular, all attempts to account for the empirical evi-
dence(s) using a density-independent effective interaction V , at the HF level, have not
been successful.

4. – Uniform nuclear matter

As we have mentioned in the previous section, the inner part of nuclei displays an
approximately constant density, ρ0. In nuclei with N ≈ Z, proton and neutron densities
do not differ too much whereas in nuclei with neutron excess there is a spill-out of the
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neutron density but not a large difference in the inside part. Thus, we can picture the
inside as similar to an extended system having equal number of protons and neutrons and
equilibrium density equal to ρ0, that is, similar to a piece of symmetric nuclear matter
(SNM). The Bethe-Weiszäcker formula for the energy per particle e ≡ E

A , namely

e(A,Z) = aV − aSA−1/3 − aA

(
A − 2Z

A

)2

− aC
Z2

A4/3
,(17)

has an associated volume term aV of about −16 MeV. If we consider uniform SNM all
terms of the mass formula vanish except the volume term. Therefore, it is customary to
assume that the energy per particle of this system, at the equilibrium density ρ0, takes
the value e0 = −16 MeV. As we have stressed already, this is called the saturation point
for SNM.

Around this point, which is a minimum in the energy per particle e, one expand this
function as

e = e0 +
1
2
K∞

(
ρ − ρ0

3ρ0

)2

+ . . . ,(18)

where K∞ is called nuclear incompressibility, it is proportional to the second derivative
d2e
dρ2 and, as such, it is related to the stiffness of nuclear matter under compression.
Although this quantity can be only indirectly related to observables, like the properties
of the compressional-type vibrations of finite nuclei, some bounds on its values have been
established in the last decades (see [32] and references therein).

One can also consider the case of asymmetric matter, in which we expect that the
energy per particle must depend both on neutron and proton densities ρn and ρp. With
a simple change of variables, we can use the total density ρ and the local neutron-proton
asymmetry, β ≡ ρn−ρp

ρ . By making a Taylor expansion in β and retaining only the
quadratic term (odd powers of β are obviously forbidden due to isospin symmetry), we
can write

e(ρ, β) = e(ρ, β = 0) + S(ρ)β2,(19)

where the first term on the r.h.s. is the energy per particle of SNM that we have so far
discussed, while the second term defines the so-called symmetry energy S(ρ). From the
latter equation, the symmetry energy can be easily understood as the energy per particle
that is needed to change symmetric matter into neutron matter.

The symmetry energy can, in turn, be expanded as a function of ρ and, as the satu-
ration point of SNM is a useful reference, one usually writes

S(ρ) = J + L

(
ρ − ρ0

3ρ0

)
+

1
2
Ksym

(
ρ − ρ0

3ρ0

)2

+ . . . ,(20)
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where J is the value of the symmetry energy at saturation density and the other pa-
rameters are related to the first and second derivatives at the same point. In particular,
L is often referred to as the “slope parameter”. Constraints on the values of J and L

have been established by the study of phenomena in which a neutron-proton imbalance
is created at different densities, like oscillations where protons and neutrons vibrate out
of phase or heavy-ion collisions where projectile and target have different composition;
masses as a function of the neutron excess, or observations of neutron stars, can also help
in constraining the values of J and L (cf. refs. [33-37]).

5. – Failure of mean field with simple forces and the need for DFT

In SNM the Fermi momentum is given by(3)

kF =
(

3π2ρ

2

)1/3

,(21)

and, at saturation density, it takes the value ≈ 1.33 fm−1. The wave functions in a
uniform system are plane waves due to translational invariance. This simplifies the
calculation of the total energy (16), in keeping with the well-known replacements

φj(�r ) → 1√
Ω

ei
k·
r,(22)

∑
j

→ gΩ
(2π)3

∫
d3k,

where g = 4 is the degeneracy and Ω is the quantisation volume. The kinetic part T

of the total energy can be calculated straighforwardly and re-expressed in terms of the
density thanks to eq. (21). The kinetic energy per particle, t, is

t =
T

A
=

2
π2

h̄2

2m

k5
F

5
Ω
A

=
3
5

(
3π2

2

)2/3
h̄2

2m
ρ2/3.(23)

Now, the question arises under which conditions, within simple HF, an effective force
V allows nuclear saturation. In terms of radial dependence, Yukawa functions may
constitute a choice as they resemble what is deduced from the Fourier transform of a
massive boson propagator. Gaussian functions have also been, and still are, used because
they allow an easy calculation of the matrix elements on a harmonic-oscillator basis [38].
From the viewpoint of EFT, if one is interested in nuclear properties at the scale of tens
of MeV or less, the details of the radial shape of the force on a scale around 1 fm should

(3) The presence of two neutrons and two protons for each value of the momentum 	k, namely
the degeneracy g = 4, makes the factor in the next equation different from that of the electronic
case.
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be unimportant(4). Intuitively, nuclear saturation should emerge from a balance between
some attractive and repulsive mechanisms and we will discuss briefly the minimal number
of terms that have to be introduced to this aim, sticking to a nonrelativistic picture as
already mentioned(5).

For a single Gaussian interaction having a range μ,

V (�r1, �r2) = Se
− |�r1−�r2|2

μ2 ,(24)

the direct and exchange terms of the total energy per particle, vH and vx, calculated
from eq. (16), read(6)

vH =
S

2
μ3π3/2ρ,(25)

vx = −S

2
1√
π

g(μkF ),

where g(x) = 2
x3 − 3

x − ( 2
x3 − 1

x )e−x2
+

√
π erf(x) [40, 41]. One can immediately notice

that the direct term goes like ρ, as it must be for a short-range two-body interaction, and
in contrast with the case of the electron gas. The exchange term has opposite sign, and
a more subtle density dependence that can nevertheless be easily inferred. The force is
attractive (S < 0), and it turns out by inspection that the repulsion from the exchange
term plus the kinetic energy is far too weak to allow saturation. A possible way out, as
already suggested long ago by Brink and Boeker [42], is to introduce exchange terms in
the interaction. For instance, eq. (24) can be generalised to

V (�r1, �r2) = S(1 − m + mPM )e−
|�r1−�r2|2

μ2 ,(26)

where PM is the operator that exchanges the particles 1 and 2. Then, the potential
energies per particle of eq. (25) become

vH =
S

8
(4 − 5m) μ3π3/2ρ,(27)

vx =
S

2
(5m − 1)

1√
π

g(μkF ).

(4) The reader should remember that h̄c = 197.3 MeV fm, and this allows making the equiv-
alence between 1 fm and about 200MeV. Natural units embed such concepts but will not be
used throughout this lecture.
(5) The mechanism for saturation in a covariant theory (balance between scalar and vector
potentials) is discussed in the original paper by Serot and Walecka [39], as well as in the afore-
mentioned refs. [16,19].
(6) The calculation is straightforward, although some integrals are not elementary as discussed
in the Coulomb case in ref. [24].
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Fig. 3. – Energy per particle in symmetric nuclear matter, calculated either with a force of
the type (26) and parameters S = −429.83 MeV, m = 1.3218, μ = 0.8343 fm (blue curve), or
with a simplified Skyrme functional of the type (34) and parameters t0 = −2552.84 MeV·fm3,
t3 = 16694.7 MeV·fm3(α+1), α = 0.20309.

In this way, the weight of the different terms is changed, and saturation becomes possible
for values of μ that lie approximately in the range 0.5 fm < μ < 1.5 fm [42]. An example
of calculation of the HF energy per particle, performed with a force of this type [41], is
shown in fig. 3 and compared with the result of a Skyrme functional that is discussed
in the next section. Similar arguments apply in the case of a Yukawa interaction: only
exchange terms allow saturation, as it was remarked in sect. 2.3.1 of [43] where one can
also find the formulas that are analogous to eq. (27) (cf. also [44]).

The simple forces that we have described earlier in this section do not possess neces-
sarily enough flexibility to reproduce the empirical values of K∞, J and L. Certainly, one
could complicate them and introduce more Gaussian (or Yukawa) terms with different
ranges, different exchange operators etc. What seems, so far, impossible to obtain in such
näıve mean-field scheme is the empirical value of the effective mass, m∗/m.

In a uniform system, the most general way to write the single-particle dispersion
relation, namely the relation between energy and momentum (which is the only available
quantum number), reads

ε =
h̄2k2

2m
+ Σ(k, ε) ≡ h̄2k2

2m∗ ,(28)

where Σ is the single-particle self-energy. The second equality is the definition of the
effective mass, and by further elementary steps [45] one can arrive at

m∗

m
=
(

1 +
m

h̄2k

∂Σ
∂k

)(
1 − ∂Σ

∂ε

)−1

.(29)
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The HF equations of the second line in eq. (15), in the case in which the wave function is
a plane wave as in (22), can be easily cast in the form (28). In a simple way, one obtains

Σστ (k, ε) =
∑
σ′τ ′

Ω
(2π)3

∫
d3k′ 〈�k, σ, τ ;�k′, σ′, τ ′|V (1 − P12) |�k, σ, τ ;�k′, σ′, τ ′〉,(30)

where we have explicitly introduced the sum over the spin and isospin degrees of freedom
(τ labels either neutrons or protons). We expect that Σ depends on σ (τ) only in the case
of polarized (neutron-proton asymmetric) matter. Once V is given, Σ can be calculated
and the effective mass can be extracted therefrom. One can explicitly see that, within HF,
Σ does not depend on ε. The non-trivial value of m∗/m is brought by the k-dependence
of Σ that comes from exchange terms.

From its definition (28), the effective mass is clearly related to the level density: the
larger its value, the smaller the level spacing. In a non-uniform system the picture is
less simple, but nevertheless the whole nuclear phenomenology is consistent with a value
of the effective mass m∗/m lying in the range ≈ 0.7–1. This has been established for
quite a long time (cf. the very comprehensive review paper [45], where also the density
and energy dependence of the effective mass is addressed). The simple HF that we have
described so far, leads to much smaller values (between 0.2 and 0.4). This problem is
discussed in detail in refs. [46-48] (cf. also [41,44,49]).

So far, it has not been possible to design an effective V that provides a successful
description both of the bulk nuclear properties (nuclear saturation and properties of
uniform matter around ρ0, as well as masses and radii of finite nuclei as we discuss
below) and of nuclear spectroscopic properties (effective mass, viz. level density), without
introducing a density dependence in the Hamiltonian.

A density-dependent V [ρ] or H[ρ] has, generally speaking, conceptual problems unless
one considers it merely as a way to generate an energy functional through eq. (13), that is

E[ρ] = 〈Φ|H[ρ]|Φ〉.(31)

In this respect, we can conclude that DFT, and not HF, is a viable theory for nuclei in
our current understanding. A similar argument can be found under different forms in
the literature [47].

6. – Examples of nuclear EDFs

The finite-range Gogny force [50, 51] is the generalisation of the Brink-Boeker force
that we have introduced in the previous Section. It reads

VGogny(�r1, �r2) =
2∑

j=1

e
|�r1−�r2|2

μ2
j (Wj + BjPσ − HjPτ − MjPσPτ )(32)

+t3 (1 + x0Pσ) δ(�r1 − �r2)ρα

(
�r1 + �r2

2

)
+iWls (�σ1 + �σ2) · �k† × δ(�r1 − �r2)�k,
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where Pσ = 1
2 (1+�σ1 ·�σ2) is the spin-exchange operator, Pτ = 1

2 (1+�τ1 ·�τ2) is the isospin-
exchange operator, �k = − i

2 (�∇1 − �∇2) is the relative momentum operator acting at right
and �k† is the adjoint operator acting at left. The interaction is the sum of two Gaussians
with exchange operators, a density-dependent term and a spin-orbit term. The density
dependent term has been deemed to be essential to obtain a reasonable single-particle
level density (cf. our discussion of the effective mass in the last section). This term must
be zero-range to avoid ambiguities on the point where the density must be evaluated. The
spin-orbit term is also zero-range, for simplicity. This interaction has 14 free parameters
to be adjusted.

Another class of successful effective interactions is based on the zero-range,
momentum-dependent Skyrme ansatz [52-54]:

VSkyrme(�r1, �r2) = t0 (1 + x0Pσ) δ(�r1 − �r2)(33)

+
1
2
t1 (1 + x1Pσ)

(
�k†2δ(�r1 − �r2) + δ(�r1 − �r2)�k2

)
+t2 (1 + x2Pσ)�k † · δ(�r1 − �r2)�k

+
1
6
t3 (1 + x3Pσ) δ(�r1 − �r2)ρα

(
�r1 + �r2

2

)
+iW0 (�σ1 + �σ2) · �k † × δ(�r1 − �r2)�k,

where now there are 10 free parameters to be adjusted. As we have just mentioned, a
density-dependent force is just a way to generate an energy functional through eq. (31).
It is a good exercise for the reader to show that a simplified Skyrme force without
momentum and spin dependence,

V (�r1, �r2) = t0δ(�r1 − �r2) +
1
6
t3 (1 + x3Pσ) δ(�r1 − �r2)ρα

(
�r1 + �r2

2

)
,(34)

generates for even-even systems the functional

E[ρn, ρp] =
∫

d3r E [ρn, ρp],(35)

E [ρn, ρp] =
h̄2

2m
τ +

1
2
t0

[
ρ2 − 1

2
(
ρ2

n + ρ2
p

)]
+

1
12

t3

[
ρα+2 − 1

2
ρα
(
ρ2

n + ρ2
p

)]
.

In these latter equations, the total energy E is written in terms of the energy density E .
Thus, one speaks (in this and all cases to be discussed below) of E as of an energy density
functional (EDF), namely an energy density that depends on functions like ρn and ρp.
Zero-range forces generate local functionals (at variance with the Coulomb case that
has been previously discussed). Fractional power dependences like ρα cannot come from
density-independent two-body, three-body, or many-body forces. In other terms, they
mimic many-body effects in a more subtle way. It has been known for many years now
that only functionals in which such fractional powers appear, reproduce the empirical

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



110 G. Colò

values of K∞ [43, 32]. The kinetic part of the Hamiltonian introduces the first term
appearing in the r.h.s. of eq. (35), that depends on the so-called kinetic energy density,

τ =
∑

j

|�∇φj |2.(36)

The whole Skyrme force (33) includes momentum-dependent terms that bring a depen-
dence on τ into the potential energy density as well, together with a dependence on �∇ρ.
The complete EDF associated with a Skyrme force can be found, for even-even systems,
in refs. [53, 54]. More densities appear like the spin-orbit densities �J(�r ). Interestingly,
terms that depend on the same kinds of densities that have been introduced for elec-
tron systems in [27], characterise the Skyrme EDFs. A finite-range force like the Gogny
interaction produces a non-local EDF.

In fact, the very idea that a Hamiltonian including a density-dependent force is the
tool to generate an EDF has been abandoned by most groups. A functional can be
directly parameterized in terms of local densities, without any reference to an underlying
interaction. A pioneering step in this direction was taken by Reinhard and Flocard [55]
more than twenty years ago, as they wrote the spin-orbit part of their EDFs without
reference to a specific form of the force. Later, this has become the customary procedure,
e.g., for functionals of the UNEDF family [56].

All possible local densities that can appear in an EDF, have been classified in refs. [57-
59, 15] (see also [60]). The nuclear EDF must be invariant with respect to parity, time-
reversal, rotational, translational and isospin transformations (details can be found in the
quoted works). Time-reversal plays a special role here. Densities can be either time-even
or time-odd but the latter vanish in even-even systems. Thus, the EDF can be made up
with terms that are bilinear in either types of densities, but the terms that are bilinear
in time-odd densities do not vanish only in systems with an odd number of particles.
A current open questions for practitioners and not only, is to which extent higher and
higher gradients of the density are needed for an EDF in order to satisfactorily account
for nuclear properties [61-63].

This discussion is of course not exhaustive. Other forces have been considered as
generators of EDFs, for examples semi-realistic forces of Yukawa type with density-
dependent terms [64]. Other kinds of functionals have been proposed by Fayans and
collaborators [65, 66]. We do not discuss all the attempts to derive functionals from
underlying theories like Brückner-Hartree-Fock [67] or chiral forces.

7. – Examples of calculations of ground-state properties

The main observable that one aims at calculating with an EDF, is the total energy
which is actually the binding energy of a nucleus and can be compared with very accurate
experimental data. The typical errors are of the order of ≈ 1–2 MeV. While this accuracy
may be thought to be small, at least in comparison with total binding energies that span
values like 102–103 MeV, one should keep in mind that nuclear processes like reactions
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Fig. 4. – Comparison between theoretical and experimental binding energies. Calculations are
performed with different EDFs, SLy4 from ref. [54] and UNEDF0 from ref. [70]. Figure taken
and adapted from ref. [70].

and decays depend on differences of binding energies, that may be small. This is the
motivation for reducing these errors with respect to experiment. Models that include
macroscopic ingredients in alternative, or in addition, to the pure implementation of
DFT may reach accuracies of the order of hundreds of keV (cf. the review paper [68] or,
for more recent advances, [69] and references therein).

In fig. 4 we show examples of comparison between experimental binding energies and
the result of DFT calculations. The Skyrme functional SLy4 [54] has been fitted by using
masses and charge radii of basically only magic nuclei. This is probably the reason of the
archlike behaviour, which is common to many EDFs. Reproducing with similar accuracy
closed-shell and open-shell nuclei still represents a challenge. More modern functionals
like UNEDF0 [70] seem to behave much better than SLy4, although the trend of the
error as a function of the neutron number is not really flat. The reader should be also
aware of the significant recent progress in DFT calculations using covariant functionals,
not discussed in this contribution: a careful analysis of the mass residuals, and their
link(s) with other features of the EDFs, is carried out in ref. [71]. To which extent some
correlations that are relevant for nuclear masses cannot be captured by DFT calculations,
is still an open question.

EDFs have been applied to predict the limits of nuclear stability, namely the position
of the drip lines that we have mentioned in the introduction [72, 73]. Other relevant
ground-state observables are radii and density distributions. Charge radii are available
for comparison with experiment: EDFs may display errors of the order of 0.02–0.03 fm,
typically. As far as isotopic trends of radii are concerned, while in many instances EDFs
perform well, there are still specific unresolved issues (cf. fig. 11 of [15]: the isotopic
dependence of the charge radii along the Ca chain is a typical case where EDFs fail).
Last but not least, there is strong current interest in measuring neutron radii or density
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distributions; EDFs provide predictions than span a relatively broad interval for neutron
radii, and fixing this observable would be of paramount importance for our understanding
of the nuclear symmetry energy (see the discussion in sect. 4, and the references therein).

8. – Intrinsic density

The biggest difference between DFT in finite electronic systems and nuclei consists in
the fact that in the former case, in most instances, the fixed ion positions constrain the
shape of the system in the laboratory frame. In nuclei, that are self-bound systems, this
is not the case. The usual HK theorem, as has been argued by several authors [74], is ir-
relevant to the nuclear case because it concerns the laboratory density, while experiments
probe the intrinsic density (relative to the nuclear center of mass).

Nonetheless, it has been proven that, at least in principle, given an arbitrary Hermi-
tian operator Q̂, one can build an energy functional depending on Q(�r ) ≡ 〈Q̂(�r )〉 that is
universal in the HK sense and has its minimum at the correct value of Q with the correct
energy. In this respect, one can replace the laboratory density with the intrinsic density
in the HK theorem [74-76].

A very interesting point is that the intrinisic density appears to break, in many cases,
the symmetries associated with the Hamiltonian as we discuss in the next section.

9. – Symmetry breaking and restoration

In general, if the Hamiltonian of a system commutes with a given symmetry operator
S,

[H,S] = 0,(37)

one expects to be able to find eigenstates of the system which are also eigenstates of
S. The problem with this statement of principle comes when one is forced to treat
strongly correlated systems and to resort to approximations. In that case, a symmetry-
conserving solution may be much less realistic, within the approximated framework, than
a symmetry-breaking one.

The first example is that of translational symmetry. A very simple example borrowed
from [77, 78] will highlight the above statements. Let us consider two particles in 1D,
confined in the interval −L/2 < x < L/2, interacting through a harmonic potential,

H =
p2
1

2m
+

p2
2

2m
+

C

L2
(x1 − x2)

2
.(38)

By using the center-of-mass and relative coordinates R = x1+x2
2 and r = x1−x2, together

with the associated momenta P and p, respectively, this Hamiltonian can be separated
into center-of-mass and intrinsic Hamiltonians,

H =
P 2

4m
+

p2

m
+

C

L2
r2 = HCOM + Hintr.(39)
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This Hamiltonian clearly commutes with the total momentum P , that is, it manifests
the translational invariance. The exact wave function is known, namely it is a product
of a free particle times a harmonic-oscillator wave function, it is an eigenstate of P , and
the associated energy is

Eexact =
P 2

4m
+

√
h̄2C

mL2
.(40)

Let us now imagine that we restrict ourselves to products of independent wave functions.
If the two particles are bosons, or spin 1/2 fermions in a spin-antisymmetric state(7), the
total wave function is

Φ = φ1(x1)φ2(x2).(41)

Imposing translational invariance here, would amount to taking the φ as plane waves
which means φi(xi) = exp(ipixi/h̄)√

L
. The expectation value,

E = 〈Φ|H|Φ〉,(42)

can be easily calculated by using the Hamiltonian in the form (38), and one can verify that
its value is significantly different from the exact one of (40). If we use the independent
particle ansatz (41) and we give up the requirement of translational invariance, the
minimization of (42) produces instead an intrinisic energy given by

Esymm. breaking = 2

√
h̄2C

2mL2
,(43)

with an associated wave function that is the product of two localized harmonic oscillators.
This energy is relatively close to the intrinsic part of the exact one, that is, the second
term at the r.h.s. of eq. (40).

The above example should make clear why the choice of using the variational ansatz
with symmetry-breaking wave functions might be preferable to other options. Trans-
lational symmetry and its breaking characterises all systems, and it is not of special
relevance for the atomic nucleus. On the other hand, rotation and gauge symmetries,
that we shall now discuss, are instead associated with the quadrupole and pairing corre-
lations that have been identified as the most important correlations in finite nuclei since
several decades.

To make the introduction to rotational symmetry and its breaking as simple as pos-
sible, let us pick up another very simple example, by considering several particles in

(7) We would like to avoid the antisymmetrization of the spatial wave function (41) in order to
simplify the pedagogical argument we are developing.
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Table I. – Values of f(m, m′) defined in the main text.

m/m′ −2 −1 0 1 2

−2 0.227 0.227 0.227 0.455

−1 0.227 0.227 0.455 0.227

0 0.227 0.227 0.227 0.227

1 0.227 0.455 0.227 0.227

2 0.455 0.227 0.227 0.227

a 3D harmonic one-body potential plus a zero-range two-body residual interaction. The
corresponding Hamiltonian reads

H =
∑

i

�p2
i

2m
+
∑

i

1
2
mω2r2

i +
1
2

∑
ij

εδ(�ri − �rj),(44)

where ε is small so that the residual interaction term will be treated as a perturbation of
the 3D harmonic oscillator. The particles in this potential have eigenstates |nlm〉, with
associated energies Enl = h̄ω(2n + l − 1

2 ) and wave functions φnlm(�r ) = unl(r)
r Ylm(θ, φ),

where the radial part can be explicitly written in terms of Laguerre polynomials. If these
particles are fermions, they occupy the states 1s, 1p etc.

If we have a set of orbitals that are filled and we add one particle, this will occupy the
lowest unoccupied orbital. The perturbing zero-range interaction (last term in eq. (44))
has been assumed to be weak and, consequently, unable to alter the structure of the
orbitals and shells. Nevertheless, if we add a second particle this will produce at lowest
order an energy shift ΔE given by

ΔE = ε〈nlm, nlm′|δ(�r1 − �r2)|nlm, nlm′〉,(45)

where m, m′ are the quantum numbers of the two particles in the degenerate levels. This
shift can be calculated(8) and the result reads

ΔE = ε

∫
dr

u4
nl(r)
r2

∑
λ

2λ + 1
4π

〈lmλ0|lm〉〈lm′λ0|lm′〉〈l0λ0|l0〉2,(46)

where the sum is limited by the angular momentum selection rules, that are implicit in
the Clebsch-Gordan coefficients.

The values of f(m,m′) = ΔE
ε

R
dru4

nl(r)r−2 are displayed in table I for the case of l = 2
(d-orbitals). The diagonal values are excluded from the Table because the two particles

(8) The multipole expansion of the delta function, and the matrix elements of the spherical
harmonics, are needed.
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Fig. 5. – Schematic view (in two dimensions) of the deformed nucleus in the intrinsic frame
that rotates in the laboratory frame. See the main text for a discussion. Figure adapted from
ref. [47].

cannot occupy the same quantum states. The largest values are those with m′ = −m.
This can be intuitively understood in a qualitative way, since the two orbitals with the
same absolute value of m have the largest spatial overlap so that a short-range interaction
has the largest effect. If such short-range interaction is attractive, two particles will let
the system gain energy if the orbitals with |m| = 2 are occupied, that is, the system
has a non-spherical shape. This deformation is enhanced by polarization effects, namely
by the interaction between the particles in the last orbitals and the others. The details
of polarization effects go beyond the scope of this lecture. Nevertheless, these effects
contribute to make the nucleus deformed as a whole.

Quadrupole deformations are, by far, those dominant along the nuclear chart. Nuclei
with quadrupole deformation have been identified by their rotational bands, that is,
in keeping with the fact that their spectra correspond to those of a rotor [29]. Also,
octupole correlations and octupole deformations have been subject of recent interest and
have been now unambiguously proven [79,80].

If the quadrupole deformed configuration of the system corresponds to a deep min-
imum of the total energy, that is, the total energy has a stiff behaviour around this
minimum, DFT describes well, as a rule, the rotational spectra or at least the lowest
sector of the rotational bands [15]. Phenomena that take place when the rotation is fast
as the angular momentum is large, or hyperdeformation, are discussed in the literature
and also dealt with in the nuclear DFT context (see, e.g., ref. [58]).

As is clear from the previous discussion, deformation occurs in the center-of-mass
frame. Thus, we have spontaneous symmetry breaking in the intrinsic system. The way
in which the symmetry is restored is by means of rotation in the laboratory system, that
is, by superimposing different shapes that are produced through a rotation by a set of
Euler angles Ω. This is depicted schematically, in 2D, in fig. 5. Since the result of the
rotation of a spherical harmonic Ylm by Ω is given by

∑
m′ Dl

m′m(Ω)Ylm′ , where D is a
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Wigner function, the wave function associated with the superposition of states l,m′ that
are rotated reads

|nlm〉 = N
∫

dΩDl
m′m(Ω)|nlm′〉,(47)

where N is a normalization factor. This can be also interpreted as a projection on good
angular momentum in the laboratory frame. Superimposing different shapes, and restor-
ing the rotational symmetry by means of this angular-momentum projection, is called
multi-reference DFT (MR-DFT) in the context of nuclear EDFs. There is rapid devel-
opment in recent years concerning MR-DFT, using the Skyrme and Gogny functionals
that have been discussed in sect. 6 as well as using the covariant functionals.

A similar, yet more abstract, reasoning holds in the case of the pairing correla-
tions [81]. Open-shell nuclei are characterised by the fact that a fraction of nucleons
around the Fermi energy display a superfluid character. Their phenomenology is, as a
rule, well described by the BCS (Bardeen-Cooper-Schrieffer) theory. Within this frame-
work, nucleons in time-reversal states form so-called Cooper pairs, and the superfluidity
is associated with the coherent behaviour of these fermion pairs that are quasi-bosons.
A very economic way to introduce pairs that are made up with fermions in time-reversal
states is the BCS ansatz for the many-body wave function, that reads

|Φ〉 = Πj

(
uj + vja

†
ja

†
j̃

)
|−〉,(48)

where j labels a set of single-particle orbitals like the φj that have been previously
discussed, aj and a†

j are, respectively, the annihilation and creation operators that destroy
or add a particle in these orbitals, and the symbol j̃ indicates the time-reversal operation
on j.

This wave function is clearly a superposition of components with different number
of particles. Within the BCS theory, one determines the orbitals φj , the parameters
uj and vj that appear in (48), and other relevant quantities, by minimisation of the
total energy (see chapt. 6 of ref. [8]). The most relevant quantity is the pairing gap Δ,
that corresponds to the minimal excitation energy of the system and can be interpreted
as the binding energy of the Cooper pairs. The results of BCS can be compared with
the experimental findings, and the success of the comparison is, in the present context,
a further example of a symmetry-breaking wave function that describes nuclei more
efficiently than a symmetry-conserving one. The symmetry restoration can be realised
in a similar way as in eq. (47), through a rotation in an abstract space by the so-called
gauge angle. The reader is advised to consult refs. [8, 81]. The generalisation of BCS,
namely the Hartree-Fock-Bogoliubov (HFB) theory, is also described in [8]. Nowadays,
the evolution of pairing when going towards the drip lines, or in other dilute systems
like the crust of neutron stars, is under discussion. Another subject which is of great
interest, but goes beyond the scope of this lecture, is whether pairing between protons
and neutron is strong enough to give rise to a condensate [82].
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In summary, space deformation and pairing are both characterised by non-vanishing
expectation values of operators that correspond to the broken symmetries in the intrinsic
system. In the case of quadrupole deformation, the expectation value of the quadrupole
moment Q̂ shows up. One can of course generalise to other deformations like octupole. In
the case of pairing, where the wave function (48) mixes states that differ by two particles,
the non-vanishing expectation value is that of

∑
j ajaj̃ (or its complex conjugate).

From the DFT viewpoint, the breaking of the rotational symmetry implies that the
density ρ(�r ) can assume an intrinsic non-spherical shape, and the breaking of number
symmetry implies that EDFs can also depend on a generalised density that is called
abnormal density (or pairing tensor) and reads κ(�r ) = 〈a(�r )a(�r )〉 (where a(�r ) is the
annihilation operator of a particle at point �r and a†(�r ) is the corresponding creation
operator). We remind the reader that the usual density that we have been dealing with
so far reads ρ(�r ) = 〈a†(�r )a(�r )〉 in second quantisation.

A full-fledged formulation of DFT with symmetry breaking goes beyond our scope
here. The present section can be considered an elementary introduction to specialised
lectures on this topic, like ref. [17].

10. – Extension to the time-dependent case

The extension of the HK theorem to the time-dependent case has been proposed
by Runge and Gross in ref. [83]. The Runge-Gross theorem guarantees that an exact
functional exists, in principle, also for the time-dependent case. More precisely, given a
system whose behaviour is governed by an Hamiltonian

H ′ = H + vpert(t),(49)

where the second term on the r.h.s. is a perturbing time-dependent potential (whose
dependence on all degrees of freedom of the system is implicit), the theorem establishes
a one-to-one correspondence between vpert(t) and the time-dependent density ρ(t), that is

vpert(�r, t) ⇔ ρ(�r, t).(50)

The proof of the Runge-Gross theorem is more subtle and involved than the proof of the
static HK theorem that we have discussed in sect. 2. This theorem constitutes the basis
of time-dependent DFT (TDDFT). For a pedagogical introduction to the subject, the
reader can consult chapt. 4 of ref. [84].

TDDFT can also be approached within the Kohn-Sham scheme. In fact, the time-
dependent density can be expressed in terms of time-dependent Kohn-Sham orbitals,

ρ(�r, t) =
∑

j

|φj(�r, t)|2,(51)
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and these orbitals must satisfy time-dependent Schrödinger equations of the type

ih̄
∂

∂t
φj(�r, t) =

[
− h̄2

2m
∇2 + vKS(�r, t) + vpert(�r, t)

]
φj(�r, t).(52)

vKS(�r, t) is the sum of three terms. The external potential vext(�r, t) and the Hartree
potential vHartree(�r, t) are the straightforward generalisation of the first two terms at the
l.h.s. of eq. (9), where now the density is taken to be time-dependent. It is much less
obvious how to extend the exchange-correlation potential defined in eq. (9) to the time-
dependent case, that is, how to determine what must be inserted in eq. (52). Causality
arguments play a role when one wishes to design a sensible strategy to build this potential:
as pointed out in ref. [85], the potential must not feel at time t the changes that the
densities may undergo at later times, that is, at t′ > t. In fact, the rigorous proof of
the Runge-Gross theorem implies a further key point that one should grasp, namely that
the mapping (50) holds for a given initial condition at time t0. In other terms, an exact
exchange-correlation functional evaluated at time t should have memory of the whole
previous history of the system for t′ < t.

In electronic systems, the construction of exchange-correlation functionals with mem-
ory is still in its infancy. Most calculations adopt the simple adiabatic approximation,
in which also the exchange-correlation functional has the same form as the static one,
eq. (7), but is evaluated making use of the time-dependent density, viz.

v(ALDA)
xc (�r, t) = vxc[ρ(�r, t)],(53)

where the label ALDA stays for adiabatic LDA. ALDA is basically the only option that
has been so far explored in the nuclear case. Such approximation is expected to work
better if the time scale of the perturbation is slow.

Given some assumption for vKS, one can solve directly the time-dependent Kohn-
Sham equations. A practical way is the following. If h(t) is the sum of vKS plus the
kinetic energy, the time evolution of the density can be written as

ih̄
d
dt

ρ(t) = [h(t), ρ(t)] .(54)

Given an initial condition in which ρ(t = t0) is different from the stationary ground-
state density, this latter equation can be solved by defining a time-evolution operator
Û ≡ e−i Δt

h̄ ·h, and by applying it to the density: starting from the density at time t0, one
can in fact write ρ(t0 + Δt) = Ûρ(t = t0), where Δt is an appropriate time step. This
version of time-dependent DFT has been widely used. A useful introduction can be found
in refs. [86, 47], but many applications to nuclear vibrations [87], fusion processes [88],
and heavy-ion reactions [89], among others, can be found in the recent literature.

The time-dependent equation (54) can be considered in the case of small external
perturbations, namely it can be linearized. This linearization should be appropriate in
the case of nuclear vibrations like the so-called giant resonances, and it is called linear
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response theory in general, and Random Phase Approximation (RPA) in the nuclear
physics context. In this specific case, the adiabatic approximation should make sense as
already pointed out in [83]; whether this approximation describes well specific physics
cases, is a different and open question.

The derivation of RPA from eq. (54) can be found in standard textbooks (see, e.g.,
chapt. 8 of [8]). We will not repeat it in detail here, but rather discuss the key ideas. If
the perturbation vpert is small, it makes sense to assume it is harmonic,

vpert(�r, t) = vpert(�r )eiωt + h.c.,(55)

and then the density will display changes δρ(�r, t) that behave similarly as a function of
time, that is

ρ(�r, t) = ρ(�r ) + δρ(�r, t),(56)

δρ(�r, t) = δρ(�r )eiωt + h.c.,

where ρ(�r ) is here the stationary ground-state density. RPA equations can be obtained
by inserting (55) and (56) in (54), and retaining only terms that are linear in δρ or in
δh ≡ δh

δρ δρ. If we go to limit of vanishing external perturbation, and if the final result is
expressed on the basis of the Kohn-Sham orbitals, it reads(

A B

−B −A

)(
X

Y

)
= h̄ω

(
X

Y

)
.(57)

This is an eigenvalue equation, and h̄ω are the energies of the small-amplitude vibrations.
For each of these modes, we have defined an eigenvector which is made up with the so-
called forward-going and backward-going amplitudes Xmi and Ymi, respectively(9). Xmi

(Ymi) represents the probability amplitude that a transition from the orbital i to m (m to
i(10)) contributes to the vibrational mode. The matrix elements that appear in eq. (57)
are defined by

Ami,nj = δijδmn(εm − εi) +
∫

d3r d3r′ φ∗
m(�r )φ∗

j (�r
′)

δh(�r )
δρ(�r ′)

φi(�r )φn(�r ′),(58)

Bmi,nj =
∫

d3r d3r′ φ∗
m(�r )φ∗

n(�r ′)
δh(�r )
δρ(�r ′)

φi(�r )φj(�r ′),

where ε denotes the energies of the Kohn-Sham orbitals that have been introduced in
eq. (9). The physical interpretation of δh(
r )

δρ(
r ′) is pretty intuitive: the changes of the

(9) Here, i, j are used to label occupied orbitals and m, n are used to label unoccupied orbitals.
(10) Note that introducing the backward-going amplitudes is consistent with the linearity of
the response, but implies relaxing the assumption that the ground state is made up with the
auxiliary orbitals filled up to the Fermi energy, and empty above this energy.
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density affect the single-particle effective operator h (kinetic energy plus vKS) and this,
in turn, produces a rearrangement of the system. In other words, the system will perform
harmonic oscillations around the ground state that are governed by the residual force

Vres(�r, �r ′) ≡ δh(�r )
δρ(�r ′)

.(59)

RPA equations can be also written in real space instead than on a basis. This imple-
mentation allows a proper treatment of the continuum, but may become quite demanding
if one deals with EDFs with many different terms. In fact, we have only mentioned the
total density ρ so far, but, according to the discussion of sect. 6, realistic EDFs will bring
in dependence on τ , �∇ρ, �J etc. Then, the variation of these densities will add new terms
to the residual interaction (59), like δh(
r )

δτ(
r ′) and so on.
A multitude of variants and applications of RPA exist in the literature. Part of it is

reviewed, e.g., in ref. [15]. We should add, in this context, that recently a new way of
implementing RPA has been proposed [90], which is not yet discussed in standard text-
books and review papers. This method, called Finite Amplitude Method (FAM) realizes
the above ideas of linear response in a quite straighforward way and has the advantage
that the numerical implementation is far easier than those of standard methods.

11. – Examples of RPA calculations

The best example of nuclear collective motion are the giant resonances, as we have
already briefly mentioned. They are coherent modes, that dominate the response of
nuclei in the energy region around ≈ 10–30 MeV. Their properties are consistent with
the assumption of an elastic behaviour [91] and, in this respect, their integral properties
are well described by RPA. Giant resonances carry different spatial angular momentum
L, spin S, and isospin T . The states in which nucleons with opposite spin vibrate in
phase (out of phase) are called electric (magnetic) resonances; if nucleons with opposite
isospin, i.e. neutrons and protons, vibrate in phase (out of phase) one speaks of isoscalar
(isovector) resonances.

We will mention only one of the multipoles in what follows. An external electro-
magnetic field excites the isovector dipole in a practically exclusive way. The response
is dominated by the so-called isovector giant dipole resonance (IVGDR) at an energy
around 80 A−1/3: at that energy, the photon wavelength is much larger than the nuclear
size and the associated electric field, that acts on the protons, is constant in space and
thus consistent with a potential that is linear in the proton coordinates �rp. It is very
easy to check that if we take a potential of the type e

∑
p �rp, and we transform it to the

center-of-mass system, it becomes

ÔIV dipole = e
N

A

∑
p

�rp − e
Z

A

∑
n

�rn.(60)
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Fig. 6. – Strength functions (61) corresponding to the isovector (a) and isoscalar (b) dipole
response of 68Ni (left panels) and 208Pb (right panels) as a function of the excitation energy.
The insets display on a larger scale the low-energy, or pygmy, region. The predictions obtained
with different Skyrme functionals are depicted (cf. the main text). The results from eq. (61) are
averaged with Lorentzian functions having 1 MeV width. Black arrows indicate the experimental
results from refs. [92-95]. Figure taken from ref. [96].

In the center-of-mass system, protons and neutrons are displaced in opposite directions
and the strong neutron-proton interaction acts as a restoring force.

In fig. 6 we show strength functions resulting from RPA calculations with different
Skyrme functionals (SGII from ref. [97], SkI3 from ref. [55] and SLy5 from ref. [54]).
Strength functions are defined by

S(E) =
∑

n

|〈n|Ô|0〉|2δ(E − h̄ωn),(61)

where n labels the solutions of eq. (57), namely h̄ωn is an eigenvalue and |n〉 is the cor-
responding eigenvector, |0〉 is the ground-state, and Ô is a generic operator. Panels (a)
correspond to the choice of the isovector operator (60), and the main IVGDR peak is
compared with the photoabsorbtion result of ref. [92], while the low-lying peak which is
sometimes referred to as “pygmy” dipole resonance (PDR) is compared with the exper-
imental findings of refs. [93, 94]. Panels (b) show instead the response to the isoscalar
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dipole operator,

ÔIS dipole =
∑

i

(
r3
i − 3

5
〈r2〉ri

)
Y1M (r̂i).(62)

Details for this choice can be found in ref. [96]. The result for the main resonance
excited by this operator can be compared with the result of experiments like inelastic
(α, α′) scattering, as we have done by taking the finding of [95]. The results in the figure
seem to indicate that the low-lying dipole response has more isoscalar than isovector
character.

Several textbooks have been devoted to the whole subject of nuclear giant resonances
and reader can consult refs. [98, 99]. The evolution of collective modes in neutron-rich
nuclei is trated in ref. [100].

12. – Limitations of EDFs

There is still debate on which are the intrinsic limitations of DFT in nuclear physics,
and which are the practical limitations (due to the specific choices for the form of the
EDF, and for the protocol to fit the parameters). Disentangling the two aspects is not
easy.

The typical example of such debate is the issue with single-particle states. As we
mentioned at the end of sect. 5, the level density in nuclei is consistent with a value of
the effective mass m∗/m that lies around 0.7, but becomes close to 1 in the vicinity of the
Fermi surface. Transfer experiments, although subject to a large amount of ambiguities,
can provide access to the single-particle strength distributions in nuclei. Qualitatively,
these experiments have shown that, close to the Fermi surface, these distributions display
dominant peaks, that is, are consistent with the existence of particle-like or hole-like
levels; however, far from the Fermi surface, the single-particle strength is very fragmented.
These patterns have been known for quite some time, and explained with the coupling
between HF single-particle states and nuclear vibrations (particle-vibration coupling or
PVC), as discussed at length in ref. [45]. However, there are claims that, although PVC
may be needed to explain single-particle fragmentation, the centroids of single-particle
states must be obtained through improvements of current EDFs [101].

Even for observables that are the typical focus of nuclear DFT, like masses, we have
mentioned in sect. 7 that existing EDFs have errors that are typically around 1–2 MeV.
Mass models that are more successful, and reduce this error below 1 MeV, include some
terms that go outside the actual DFT philosophy. These terms correspond to vibrational
or rotational correlations (cf. [69] and references therein).

There are other open questions that are related to the limits of current DFT imple-
mentations. MR-EDF has been shown to be a theory that is mathematically sound, and
it has been successful in describing many low-lying nuclear spectra; still, pathologies in
the results have shown up, as discussed in [102] and references therein. These pathologies
have been associated with density-dependence in the Skyrme EDF, which on the other

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Density Functional Theory (DFT) for atomic nuclei: A simple introduction 123

hand seems unavoidable if one wants to reconcile bulk properties and the effective mass.
This is still a serious concern for practitioners. Another open question exists, regarding
the pairing sector of the EDFs. In which way an EDF must depend on the abnormal
density κ(�r ), and possibly on its derivatives etc., is not clear yet. Links with an under-
lying theory of pairing in nuclei [103, 104] are still not enough. Proton-neutron pairing,
as mentioned at the end of sect. 9, is still not fully understood.

Last but not least, as briefly alluded to in sect. 11, time-dependent DFT in the RPA
implementation is known to be unable to reproduce the width of giant resonances, that
is typically from few to several MeV. RPA can reproduce the so-called escape width,
associated with particles decaying to the continuum, but not the remaining width, so-
called spreading width. This latter is known to be accounted for in calculations that
include PVC [105-107]. Whether functionals with memory effect may or not improve on
this is a further open question.

Several of these examples hint that vibrational correlations, pairing correlations, or
other kinds of dynamical correlations, although in principle should be included in “exact”
DFT, in practice are not included in existing EDFs. These limitations also call for a more
serious confrontation between DFT and underlying theories, on the one hand, but also
between DFT and many-body theories: this is not systematically carried on as it should,
in the nuclear structure domain.

13. – Conclusions

We have tried to give the reader a brief survey about DFT, namely about its foun-
dations and about the main specific features of nuclear DFT. Due to the scope of this
volume, we have tried to give priority to pedagogical arguments, while we have sim-
ply provided references for all those detailed topics that are already well covered in the
literature. As has been stressed at the beginning, this contribution is meant to be an ad-
vanced, up-to-date introduction that serves mainly as an orientation for those interested
in deepening their understanding of the large variety of DFT-related approaches.

The hope is to have been able to convince the reader that DFT has a number of
advantages. Its basic principle is very transparent and intuitive: one writes the total
energy as a function of the density, and chooses a way to minimise the energy! The
HK theorem guarantees, then, that all bulk observables can be obtained: the density
determines the shape of the system, the expectation values of relevant one-body operators
(like electric quadrupole, or magnetic dipole, or higher multipole operators) as well as
the total energy. The main advantage is that the applicability of DFT is very broad. All
nuclei are amenable to a DFT description, except perhaps the very light ones. Moreover,
there is a natural link with infinite nuclear matter and, thus, with the physics of compact
objects like neutron stars.

After discussing DFT in electronic systems, we have, in fact, started our discussion
by introducing nuclear DFT in uniform, symmetric nuclear matter. A sensible theory
of such prototype system must display a mechanism for saturation; a good reproduction
of the saturation point (ρ0 = 0.16 fm−3, e0 = −16 MeV) is a necessary condition to
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describe also finite nuclei in a reasonable way. We have, then, provided arguments why a
näıve mean field cannot be, in this respect, a sensible theory while DFT can. Of course,
realistic EDFs should not simply provide a mechanism of nuclear saturation but should
be flexible enough to account for surface properties, spin and isospin properties, and
so on. Accordingly, we have discussed the appearance of different kinds of densities in
existing EDFs.

A specific feature of finite nuclei is the appearance of spontaneous symmetry breaking
and restoration. Although specialised lectures exist on those topics, we have tried to give
here an introduction through simple examples and arguments. In the case of deformed
nuclei, the rotational symmetry is broken in the intrinsic reference frame, and rotations
in the laboratory frame restore the symmetry. Within DFT, that has necessarily to be
formulated in the intrinsic frame, as we have argued in sect. 8, this implies the appearance
of densities that are not rotationally invariant (that is, quadrupole or octupole moments
as we have just stressed). A more intriguing example is that of pairing correlations that
imply, instead, the appearance of the abnormal density or pairing tensor in the EDFs,
breaking the particle number symmetry.

Last but not least, we have discussed the time-dependent case. The time-dependent
DFT is still amenable to many improvements. Essentially all groups are using, so far,
the adiabatic approximation. While this approximation, that corresponds to RPA in the
nuclear structure theory language, has been successful in reproducing the main properties
of the nuclear collective motion like the giant resonances, certainly examples of large-
amplitude, slow motions exist in the nuclear case and call for more advanced approaches.

There are topics that we have not dealt with in this lecture and/or topics that have
not been tackled yet by practitioners. One main issue is that, while in several papers the
quest for a universal energy functional is advocated, still many different implementations
of EDFs and even more variants based on different parameter sets are available on the
market. The situation in the case of electronic systems is, anyway, not much better [13].
Not only this fact makes DFT a domain that is believed to be for experts only but, more
importantly, it raises the question if EDFs are systematically improvable or not. EFT
has been proposed as a way out to this dilemma. However, a full derivation of DFT from
EFT is not available yet.

Another aspect is the confrontation between DFT and many-body theory. The map-
ping of some many-body approximation into an EDF shoud be pursued more systemat-
ically, and is expected also to shed light on the present limitations of nuclear DFT. We
have briefly mentioned the fact that DFT cannot describe the fragmentation of single-
particle or collective states. This has been traditionally explained, in the nuclear context,
by the coupling of single-particle and collective degrees of freedom (vibrations or rota-
tions). Merging this description with up-to-date DFT, still represents a challenging task.

In summary, we may like to quote a saying by W. Kohn, and state that “DFT is an
exactification of HF”; however, even though this statement may be true in principle, in
practice many steps are still required to make the DFT description of the rich nuclear
phenomenology more and more accurate.
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[20] Nikšić T., Vretenar D. and Ring P., Progr. Part. Nucl. Phys., 66 (2011) 519.
[21] Hohenberg P. and Kohn W., Phys. Rev., 136 (1964) B864.
[22] Kohn W. and Sham L. J., Phys. Rev., 140 (1965) A1133.
[23] Broglia R. A., Colò G., Onida G. and Roman H. E., Solid State Physics of Finite

Systems (Springer) 2004.
[24] Fetter A. L. and Walecka J. D., Quantum Theory of Many-Particle Systems

(McGraw-Hill) 1971.
[25] Mattuck R. D., A Guide to Feynman Diagrams in the Many-Body Problem (Dover)

1976.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



126 G. Colò
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Summary. — In this contribution, I present a short overview of the theory of direct
nuclear reactions, with special emphasis on the case of reactions induced by weakly
bound nuclei. After introducing some general results of quantum scattering theory,
I present specific applications to elastic, inelastic, transfer and breakup reactions.
For each of them, I first introduce the most standard framework, followed by some
alternative models or extensions suitable for the case of weakly bound nuclei. A
short discussion on semiclassical theory of Coulomb excitation and its application
to breakup of halo nuclei is also provided.

1. – Introduction

Our present knowledge on the properties of atomic nuclei is largely based on the anal-
ysis of nuclear reactions. The very existence of the nucleus was inferred by Rutherford
in 1905 from his famous α elastic scattering experiment and many features and phenom-
ena, such as the shell structure, the magic numbers, the collective and single-particle
degrees of freedom, among others, are investigated using nuclear reactions. Since the
1980s, thanks to the development of radioactive beams, these studies could be extended
to regions of the nuclear chart beyond the stability valley.
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In the proximity of the proton and neutron driplines, new exotic structures and phe-
nomena were discovered. Prominent examples are the popular halo and Borromean
nuclei. It was soon realized that formalisms originally designed to describe the structure
and reactions of ordinary nuclei were not well adapted to describe these new phenom-
ena. In particular, in the proximity of the driplines, atomic nuclei are weakly bound.
When these fragile systems collide with a stable nucleus they break up easily due to the
Coulomb and nuclear forces exerted by a target nucleus. Consequently, reaction theories
designed to describe these reactions must incorporate the effect of the strong coupling to
the breakup channels.

We enumerate some fingerprints of the weak binding on reaction observables:

– Large interaction cross sections in nuclear collisions at high energies. Historically,
the first evidence of the unusual properties of halo nuclei came from the pioneering
experiments performed by Tanihata and co-workers at Berkeley using very energetic
(800 MeV/nucleon) secondary beams of radioactive species [1, 2]. At these high
energies, interaction cross sections are approximately proportional to the size of
the colliding nuclei. It was found that some exotic isotopes of light isotopes (6He,
11Li, 14Be) presented much higher interaction cross sections than their neighbour
isotopes, which was interpreted as an abnormally large radius.

– Narrow momentum distributions of residues following fast nucleon removal. Mo-
mentum distributions of the residual nucleus following the removal of one or more
nucleons of a energetic projectile colliding with a target nucleus are closely related
to the momentum distribution of the removed nucleon(s) in the original projectile.
Kobayashi et al. [3] found that the momentum distributions of 9Li following the
fragmentation process 11Li+12C → 9Li+X were abnormally narrow which, accord-
ing to the Heisenberg’s uncertainty principle, suggested a long tail in the density
distribution of the 11Li nucleus. This result was later found in other weakly bound
nuclei.

– Abnormal elastic scattering cross sections. Elastic scattering is affected by the
coupling to non-elastic processes. In particular, when coupling to breakup channels
is important, elastic scattering cross sections are depleted with respect to the case
of tightly bound nuclei. Some other key signatures are the departure of the elastic
cross section from the Rutherford cross section at sub-Coulomb energies and the
disappearance of the Fresnel peak at near-barrier energies in reactions induced by
halo nuclei on heavy targets [4-7].

– Enhanced near-threshold breakup cross section in Coulomb dissociation experiments
of neutron-halo nuclei. When a neutron-halo nucleus, composed of a charged core
and one or two weakly bound neutrons (11Be, 6He, 11Li, . . . ) collides with a high-Z
target nucleus, the projectile structure is heavily distorted due to the tidal force
originated from the uneven action of the Coulomb interaction on the charged core
and the neutrons. This produces a stretching which may eventually break up the
loosely bound projectile. This gives rise to a large population of the continuum
states close to the breakup threshold.
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Fig. 1. – Direct and compound nucleus reaction channels taking place in a d + 10Be reaction.

A proper, quantitative understanding of these and other phenomena requires the
use of an appropriate reaction theory. But, before we address the features of reactions
induced by weakly bound nuclei, we will review some general concepts and results of
quantum scattering theory.

A remark on the terminology is in order here. In many cases, the word “exotic” is used
as akin to “unstable”. Strictly, not all “unstable nuclei” show exotic properties (such as
weak binding, haloes, etc.). Conversely, there are also stable nuclei which exhibit some
“exotic” (abnormal) features, such as weak binding. This is the case, for instance, of
the deuteron system which, albeit not exotic, behaves similarly to halo nuclei due to its
relatively small binding energy.

2. – Some general scattering theory

A nuclear collision represents a extremely complicated many-body quantum-
mechanical scattering problem, whose rigorous solution is not possible in most cases.
Therefore, approximate models, usually tailored to specific types of reactions, are used.
These models tend to emphasize specific degrees of freedom, those which are most likely
activated during the reaction under study. For example, when low-lying collective states
are present in either the projectile or target nucleus, the possibility of exciting and pop-
ulating these states must be somehow (explicitly or effectively) taken into account. For
weakly bound nuclei, such as halo nuclei, the dissociation (“breakup”) of the valence
nucleon(s) must be considered.

As an example, in fig. 1 we illustrate schematically some of the channels taking place
in a d + 10Be reaction. These channels can be divided into two categories, according to
the characteristic collision time and degrees of freedom involved. On one side, the direct
reaction channels, which are relatively fast (t ∼ 10−21 s) and peripheral processes, usually
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Fig. 2. – Left: schematic representation of a scattering experiment, showing the incident and
scattered waves. Right: incident and final momenta, and momentum transfer.

involving a few degrees of freedom and small momentum transfer. This is the case of elas-
tic, inelastic scattering and rearrangement (transfer) processes. Angular distributions of
the projectile-like fragment usually peak at forward angles. On the other side, the com-
pound nucleus reactions, which take place over a longer time scale (t ∼ 10−18–10−16 s),
lead to a significant redistribution of the initial kinetic energy among the nucleons of
the collision partners and, hence, a larger number of degrees of freedom involved. The
compound nucleus is usually left in a high excited state, which tends to de-excite by
particle or gamma-ray emission, whose angular distributions tend to be isotropic in the
center-of-mass (CM) frame.

The very different nature of direct and compound nucleus reactions results also in
very different formal treatments. The latter are treated using statistical models, first
proposed by Bohr [8]. In the remainder of this contribution, only direct reactions will be
discussed.

2.1. The concept of cross section. – A typical nuclear reaction experiment (see fig. 2)
measures the number of particles, integrated over a given amount of time, of one or more
species resulting from a collision between two nuclei, as a function of its scattering angle
and/or its energy. This number of particles will depend on the experimental conditions,
such as the beam intensity and the target thickness. To compare with the theoretical
predictions, it is convenient to introduce the so-called differential cross section which is
denoted dσ/dΩ and is defined as the flux of scattered particles through the area dA = r2dΩ
in the direction θ, per unit incident flux, i.e.

(1)
dσ

dΩ
=

flux of scattered particles through dA = r2dΩ
incident flux

,

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Models for nuclear reactions with weakly bound systems 133

and can be extracted experimentally from the number of recorded events as

(2) ΔI = I0 nt
dσ

dΩ
ΔΩ,

where I0 is the number of incident particles per unit time, ΔΩ is the solid angle subtended
by the detector, ΔI is the number of detected particles per unit time in ΔΩ, and nt the
number of target nuclei per unit surface.

Inspection of eq. (2) shows that the differential cross section has units of area. The
differential cross section is independent of the experimental conditions, such as the beam
intensity, the elapsed time of the measurement and the target thickness. Instead, it
depends on the interaction between the projectile and target systems, which is the im-
portant quantity that a scattering experiment aims to isolate and probe.

The final goal of the scattering theory is to develop appropriate models to which com-
pare the measured observables, with the aim of extracting information on the structure
of the colliding nuclei as well as understanding the dynamics governing these processes.
The measured quantities are typically total or partial cross sections with respect to angle
and/or energy of the outgoing nuclei. Therefore, the challenge of reaction theory is to
obtain these cross sections by solving the dynamical equations of the system (at non-
relativistic energies, the Schrödinger equation) with a realistic but manageable structure
model of the colliding nuclei.

2.2. Model Hamiltonian and scattering wave function. – The mathematical treatment
of a scattering problem requires the solution of the time-dependent or time-independent
Schrödinger equation for the system(1). In the second case, this equation reads

(3) [H − E]Ψ = 0.

This wave function will be a function of the degrees of freedom (e.g. internal coordi-
nates) of the projectile and target, denoted generically as ξp and ξt, as well as on the
relative coordinate between them (�R). Thus, we will express the total wave function as
Ψ(�R, ξp, ξt). The Hamiltonian of the system is written in the form

(4) H = T̂
R + Hp(ξp) + Ht(ξt) + V (�R, ξp, ξt),

where T̂
R is the kinetic energy operator (T̂ = − �
2

2μ∇2), Hp(ξp) (Ht(ξt)) denote the pro-

jectile (target) internal Hamiltonian and V (�R, ξp, ξt) is the projectile-target interaction.
After the collision, the projectile and target may exchange some nucleons, or even break
up, so the Hamiltonian (4) corresponds actually to the entrance channel. To distinguish

(1) For an enlightening discussion on the relation between the time-dependent and time-
independent approaches, see chapt. 1 of ref. [9].
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between different mass partitions that may arise in a reaction, we will use Greek letters,
with α denoting the initial partition. So, the previous Hamiltonian is rewritten as

(5) H = T̂α + Hα(ξα) + Vα(�Rα, ξα),

where ξα denotes the projectile and target internal coordinates in partition α and
Hα(ξα) ≡ Hp(ξp) + Ht(ξt). The total energy of the system is given by the sum of
the kinetic energy (Eα) and the internal energy (εα) of the projectile and target

(6) E = Eα + εα =
�

2Kα
2

2μα
+ εα,

where � �Kα is the linear momentum and εα is the sum of the projectile and target internal
energies.

Equation (3) is a second-order differential equation that must be solved subject to
appropriate boundary conditions. The latter must reflect the nature of a scattering
process. In our time-independent picture, the incident beam will be represented by a
plane wave(2)(3). After the collision with the target, a set of outgoing spherical waves
will be formed. The situation is schematically depicted in fig. 2. So, asymptotically,

(7) Ψ(+)

Kα

(�R, ξ) → Φα(ξ)ei 
Kα·
Rα + outgoing spherical waves,

with Φα(ξ) ≡ φ
(p)
0 (ξp)φ

(t)
0 (ξt) and where the superscript “+” indicates that this cor-

responds to the solution with outgoing boundary conditions (mathematically, one may
construct also the solution with incoming boundary conditions).

During the collision, the incident wave will be highly distorted due to the interaction
with the target nucleus but, after the collision, at sufficiently large distances (that is, when
V becomes negligible), the projectile and target will emerge in any of their (kinematically

(2) This is only true for the case of short-range potentials; in the presence of the Coulomb
potential, the incident wavefunction is represented by a Coulomb wave.
(3) A more realistic description would be in terms of wave packets but the formal treatment is
much more complicated. To link both pictures, one can bear in mind that a wave packet can
be constructed as a superposition of plane waves.
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allowed) states of the projectile and target nuclei. So, asymptotically, we may write(4)

Ψ(+)

Kα

Rα�−−−→ Φα(ξα)ei 
Kα·
Rα + Φα(ξα)fα,α(θ)
eiKαRα

Rα
(8)

+
∑

α′ 	=α

Φα′(ξα)fα′,α(θ)
eiKα′Rα

Rα
,

Ψ(+)

Kα

Rβ�−−−→
∑
β 	=α

Φβ(ξβ)fβ,α(θ)
eiKβRβ

Rβ
.(9)

The first line corresponds to the elastic and inelastic channels (hence the coordinate
Rα), whereas the second line is for rearrangement (i.e. transfer) channels. The function
eiKαRα/Rα represents a spherical outgoing wave. The function multiplying this outgoing
wave, fα,α(θ), is the scattering amplitude for elastic scattering. Its argument, θ, is
the CM scattering angle, and corresponds to the angle between the incident and final
momenta (see fig. 2). Likewise, the coefficients fα′,α and fβ,α correspond to the scattering
amplitudes for inelastic and transfer channels, respectively. From the definition of flux
given above, it turns out that (see e.g. chapt. 3, sect. G of [10])

(10)
(

dσ

dΩ

)
α→β

=
vβ

vα
|fβ,α(θ)|2 ,

where vα and vβ are initial and final asymptotic velocities.
It is customary to define the transition matrix (T -matrix):

(11) Tβα(θ) = −2π�
2

μβ
fβα(θ),

in terms of which

(12)
(

dσ

dΩ

)
α→β

=
μαμβ

(2π�2)2
Kβ

Kα
|Tβα(θ)|2 .

2.3. An integral equation for fβ,α(θ). – Consider that we are interested in a particular
channel β. The scattering amplitude corresponding to this particular channel can be
obtained from the asymptotic form of the total wavefunction, eq. (8), multiplying on the
left by the “internal” wavefunction Φ∗

β(ξβ) corresponding the channel of interest, and
integrating over the coordinates ξβ , i.e.,

(13)
(
Φβ |Ψ(+)


Kα

〉
R�−−→ δβ,αei 
Kα·
Rα + fβ,α(θ)

eiKβRβ

Rβ
,

(4) Note that we distinguish between 	Rα and 	Rβ since, for a rearrangement process, the coor-
dinates will be different. We will return to this issue later on.
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where (. . .〉 denotes integration over internal coordinates only. Thus, (Φβ |Ψ(+)

Kα

〉 remains

a function of �Rβ , so we may define Xβ(�Rβ) ≡ (Φβ |Ψ(+)

Kα

〉. If we know Ψ(+)

Kα

or an
approximation to it, we can extract the scattering amplitude from the asymptotics of
Xβ(�Rβ). Using this result, it is possible to obtain a formal expression for fβ,α(θ). We
start by writing the Schrödinger equation, using the form of the Hamiltonian appropriate
for the channel β, that is,

(14) H = T̂β + Hβ(ξβ) + Vβ(�Rβ , ξβ).

Using this form of the Hamiltonian in the Schrödinger equation, eq. (3), multiplying on
the left by Φ∗

β(ξβ) and integrating over the coordinates ξβ we get the projected equation

(15)
[
T̂β + εβ − E

]
Xβ(�Rβ) = −

(
Φβ |Vβ |Ψ(+)


Kα

〉
,

where we have used εβ = 〈Φβ(ξβ)|Hβ |Φβ(ξβ)〉 and the fact that the kinetic energy opera-
tor does not depend on the internal coordinates ξβ . This is a second-order inhomogeneous
differential equation for the function Xβ . The most general solution is the sum of the
solution of the corresponding homogeneous equation, plus a particular solution of the
inhomogeneous equation. The homogeneous equation is trivially solved, since it con-
tains only the kinetic energy operator; its solution is just a plane wave with momentum
�Kβ , with modulus Kβ =

√
2μβ(E − εβ)/�. The particular solution of the inhomoge-

neous equation can be formally obtained using Green’s functions techniques (see, for
example, [11,10]) leading to

(16) Xβ(�Rβ) = ei 
Kα·
Rαδα,β − μβ

2π�2

∫
Gβ

(
�Rβ , �R′

β

)(
Φβ |VβΨ(+)

α

〉
d�R′

β ,

where Gβ is the Green’s function in channel β. Explicitly

(17) Gβ

(
�Rβ , �R′

β

)
=

eiKβ |
Rβ−
R′
β |

|�Rβ − �R′
β |

.

To extract the scattering amplitude, we must take the asymptotic limit, Rβ � R′
β . In

this limit, the Green’s function reduces to(5)

(18) Gβ

(
�Rβ , �R′

β

)
→ eiKβRβ

Rβ
e−i 
Kβ ·
R′

β ,

and the function Xβ(�Rβ) tends to

(19) Xβ(�Rβ)
Rβ�−−−→ ei 
Kα·
Rαδα,β − μβ

2π�2

eiKβRβ

Rβ

∫
e−i 
Kβ ·
R′

β

(
Φβ |VβΨ(+)


Kα

〉
d�R′

β .

(5) For Rβ � R′
β , |	Rβ − 	R′

β | ≈ Rβ − R̂β · 	R′
β = Rβ − K̂β · 	R′

β .
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Comparing with the asymptotic form (8), and recalling the definition of the scattering
amplitude, we have

fβ,α(θ) = − μβ

2π�2

〈
ei 
Kβ


Rβ Φβ |VβΨ(+)

Kα

〉
(20)

= − μβ

2π�2

∫∫
e−i 
Kβ


Rβ Φ∗
β(ξβ)Vβ

(
�Rβ , ξβ

)
Ψ(+)


Kα

(
�Rα, ξα

)
dξβ d�Rβ .

Or, in terms of the T -matrix,

(21) Tβ,α =
∫∫

e−i 
Kβ

Rβ Φ∗

β(ξβ)Vβ

(
�Rβ , ξβ

)
Ψ(+)


Kα

(
�Rα, ξα

)
dξβ d�Rβ .

2.4. Gell-Mann–Goldberger transformation (aka two-potential formula). – A more
general expression for eq. (21) can be obtained introducing an auxiliary (and by now
arbitrary) potential Uβ(�Rβ) on both sides of eq. (15),

(22)
[
T̂β + Uβ + εβ − E

]
Xβ(�Rβ) = −

(
Φβ |Vβ − Uβ |Ψ(+)


Kα

〉
.

The solution of (22) is given by a general solution of the homogeneous equation, plus
a particular solution of the full equation. The homogeneous equation is given by

(23)
[
T̂β + Uβ + εβ − E

]
χ

(+)
β (�Rβ) = 0.

This equation represents the scattering of the particles in channel β under the potential
Uβ . The solution is of the form

(24) χ
(+)
β (�Rβ) = ei 
Kβ ·
Rβ + outgoing spherical waves.

In the next section, we shall discuss in more detail how this equation is solved in practical
situations, making use of the partial wave expansion.

Finally, the full equation (22) is solved adding a particular solution of the inhomoge-
neous equation. This is done using again Green’s functions techniques. Details are given
in [9]. The full solution (which generalizes eq. (19)) is given by

Xβ(�Rβ) ≡
(
Φβ |Ψ(+)


Kα

〉
= χ

(+)
β (�Rβ)δαβ +

∫
G

(+)
β

(
�Rβ , �R′

β

)(
Φβ |Vβ − Uβ |Ψ(+)


Kα

〉
d�R′

β .(25)

The scattering amplitude (or the T -matrix) is extracted from the asymptotics of the
outgoing waves. But note that we have now outgoing waves in both terms of the RHS of
the previous equation giving rise also to two contributions to the scattering amplitude,

(26) Tβ,α = T (0)
β,αδαβ +

∫∫
χ

(−)∗
β

(
�Kβ , �Rβ

)
Φ∗

β(ξβ)[Vβ − Uβ ]Ψ(+)

Kα

dξβd�Rβ .
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The first term is the scattering amplitude due to the potential Uβ and is present only
for β = α (i.e. elastic scattering). The function χ

(−)
β is the time-reversed of χ(+) and

corresponds to the solution of a homogeneous equation consisting on a plane wave with
momentum �Kβ and ingoing spherical waves. It can be readily obtained from χ(+) using
the relationship χ(−)∗( �K, �R ) = χ(+)(− �K, �R ).

The result (26) is known as the Gell-Mann–Goldberger transformation or two-potential
formula. This expression is exact but it cannot be solved as such, since it contains the
exact wave function of the system. However, it provides a very useful starting point to
derive approximate expressions, as we will see later on.

3. – Defining the modelspace

We have seen that the dynamics of the system in a scattering process is encoded in
the full wave function, Ψ(+). Formally, it can be obtained by solving the Schrödinger
equation of the system. In our time-independent approach, this wavefunction consists
asymptotically on an incident plane, and outgoing spherical waves in all possible chan-
nels. Practical calculations require as a first step reducing the full space to a tractable
modelspace. This is motivated by two facts: i) the channels of interest to analyze a
particular experiment and ii) the numerical/computational complexity of the problem.
For example, if we are interested in analyzing some inelastic scattering experiment, our
model space might consist in the ground state of the projectile and target, plus the
excited states more strongly populated in the experiment.

A formal procedure to reduce the problem from the full space to a selected modelspace
was developed by Feshbach [12,13]. The idea is to separate the full space into two parts,
denoted respectively as P and Q. The P space comprises the channels of interest and will
therefore be taken into account explicitly in the model wave function Ψ(+). The Q space
is composed of the remaining channels. So, following Feshbach (see also [9] and [10],
chapt. 8G), we may write Ψ(+) = ΨP +ΨQ. The components ΨP and ΨQ obey a system
coupled equations, with the deceptively simple form

(E − HPP )ΨP = HPQΨQ,(27)

(E − HQQ)ΨQ = HQP ΨP ,(28)

where HPP = PHP , HPQ = PHQ, and so on. The projected Hamiltonian HPP contains
the coupling among the states of the P space, and likewise for HQQ. The terms HPQ

and HQP describe couplings between the states of P and those of Q. Since we are
interested only in ΨP , we eliminate ΨQ from the RHS of the first equation, using the
second equation(6)

(29)
[
E − HPP − HPQ

1
E − HQQ + iε

HQP

]
ΨP = 0.

(6) The iε guarantees the outgoing boundary condition. The limit ε → 0 is understood in these
expressions.
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This equation can be also written as

(30) [E − Hα − Tα − V] ΨP = 0,
with

(31) V = VPP + VPQ
1

E − HQQ + iε
VQP .

The first term of the RHS (VPP ) is the potential operator acting only among the
states of the P space, and the second term describes the coupling with the omitted (Q)
states. This term is found to be complex, energy-dependent and non-local. Because of
the presence of the Q operator, it involves the coupling to all the possible channels and
so it cannot be exactly evaluated in practice. Yet, this formal solution provides a useful
guidance on how to replace such a complicated object by a more manageable one. Direct
reaction theories replace (30) by an approximated one of the form

(32) (E − Heff)Ψmodel = 0.

where Heff is an effective Hamiltonian which contains an approximation of the compli-
cated object V, usually involving some phenomenological forms.

4. – Single-channel scattering: the optical model

The simplest approximation to the P space is to reduce the physical space to just the
ground states of the projectile and target. This gives rise to the optical model formalism.
In this case, the effective Hamiltonian acquires the form

(33) Heff = Hα + Uα(�R ),

where Uα(�R ) is meant to represent the effective potential (31) when P is reduced to
the projectile and target ground states. Note that this potential does not contain any
explicit dependence on the internal degrees of freedom ξ. Thanks to that, the total wave
function of the system can be written in the factorized form(7)

(34) Ψ(+)
model(ξ, �R ) = Φ0(ξ)χ

(+)
0 (�R ).

Using the fact that, by construction, HαΦ0(ξ) = ε0Φ0(ξ), replacement of the previous
equation on the Schrödinger (32) gives

(35)
[
Tα + Uα(�R ) − E0

]
χ

(+)
0 (�R ) = 0,

where E0 = E − ε0, i.e., the kinetic energy associated with the relative motion between
the projectile and target.

(7) The subscript α is omitted here when implicitly understood.
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If the effective Hamiltonian, Heff , is to represent the complicated Feshbach operator,
describing not only the interaction in the P space, but also the couplings between the P

and Q spaces (all non-elastic channels in this case), then the effective interaction Uα(�R )
will be complex, non-local and energy-dependent. The imaginary part accounts for the
flux leaving the elastic channel (P space) to the channels not explicitly included (the
Q space). The energy dependence is usually taken into account phenomenologically, by
parametrizing U with some suitable form and adjusting the parameters to the experi-
mental data over some energy region. Finally, non-locality is rarely taken into account,
or it is simply taken into account approximately, by including its effect in the effective
local potential [14]. Recently, however, this topic has received renewed attention [15-17].
The effective interaction Uα is referred to as optical potential.

4.1. Partial wave expansion. – As an additional simplification, we consider the case in
which the spins of the colliding particles are ignored and the optical potential is assumed
to be a function only of the projectile-target separation, R = |�R|. In this case, the wave
function can be expanded in Legendre polynomials as

(36) χ
(+)
0 ( �K, �R ) =

1
KR

∑
�

i�(2� + 1)χ�(K,R)P�(cos θ),

where the constant factors are introduced for convenience. The radial functions χ�(K,R)
are a solution of

(37)
[
− �

2

2μ

d2

dR2
+

�
2

2μ

�(� + 1)
R2

+ U(R) − E0

]
χ�(K,R) = 0.

In the case of Uα = 0, the solution χ
(+)
0 ( �K, �R ) must reduce to a plane wave, whose

partial wave expansion is known

(38) ei 
K·
R =
4π

KR

∑
�,m

i�F�(KR)Y�m(R̂)Y ∗
�m(K̂) =

1
KR

∑
�

i�(2� + 1)F�(KR)P�(cos θ),

where F�(KR) = (KR)j�(K,R) with j�(K,R) a spherical Bessel function. Comparing
this expression with (36), we see that, in the Uα = 0 case, χ�(K,R) → F�(KR).

For non-zero potential, we can still say that χ
(+)
0 ( �K, �R ) must verify the following

equation at large distances,

(39)
[
− �

2

2μ

d2

dR2
+

�
2

2μ

�(� + 1)
R2

− E0

]
χ�(K,R) = 0 (for large R),

whose most general solution is a combination of two independent solutions for this equa-
tion. One of them can be taken as the regular solution F�(KR). The other can be the
irregular solution,

(40) G�(KR) = −(KR)n�(KR)
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or any combination of G and F , that is

(41) χ�(K,R) R�−−→ AF�(KR) + BG�(KR).

The combination appropriate for our purposes is suggested by the known asymptotic
behavior of our physical scattering wavefunction, i.e.

(42) χ
(+)
0 ( �K, �R ) R�−−→ ei 
K·
R + f(θ)

eiKR

R
.

The exponential part of the outgoing wave, eiKR, turns out to be just a definite combi-
nation of the F and G functions, because

(43) G�(ρ) + iF�(ρ) ≡ H
(+)
� (ρ) → ei(ρ−�π/2).

So, returning to the partial wave expansion, the appropriate boundary condition
consistent with the behavior (42) is given by

(44) χ�(K,R) → F�(KR) + T�H
(+)
� (KR),

where the coefficients T� are to be determined by numerical integration of the differential
equation. It is usual to write T� in terms of the so-called phase shifts

(45) T� = eiδ� sin(δ�)

or, in terms of the reflection coefficient, S�, or S-matrix (8)

(46) S� = 1 + 2iT� = e2iδ� .

The condition (44) can be also written as

(47) χ�(K,R) → i

2

[
H

(−)
� (KR) − S�H

(+)
� (KR)

]
,

where

(48) H
(−)
� (ρ) = G�(ρ) − iF�(ρ) → e−i(ρ−�π/2).

The S-matrix S� is therefore the coefficient of the outgoing wave (H(+)
� ) for the

partial wave �. It reflects the effect of the potential on this particular wave in the

(8) When these expressions are generalized to the multiple-channel case, the quantity S� be-
comes a matrix and is referred to as scattering or collision matrix (the name is also used in
single-channel case, but the terminology is less obvious).
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sense that,

– If no potential is present, there is no outgoing wave. Then, T� = 0 or, equivalently,
S� = 1 and δ� = 0.

– As a consequence of the previous result, for large values of � the centrifugal barrier
keeps the projectile well apart from the target, and thus the effect of the (short-
ranged) potential Uα will be negligible. Consequently, for � → ∞ ⇒ S� → 1.

– If the scattering potential is real, the overall outgoing flux for a given partial wave
must be conserved, and hence |S�| = 1.

– On the other hand, for a complex potential (with negative imaginary part), we have
|S�| < 1, which reflects the fact that part of the incident flux has left the elastic
channel in favor of other channels.

In the accompanying box, we give some basic guidelines on how the wave functions
and phase shifts are actually computed (single-channel case).

Numerical calculation of the scattering wave function and phase shifts

For a single-channel case, the wave functions and phase shifts can be computed
as follows:

1) Integrate the radial differential equation from the origin outwards, with the
initial value χ�(K, 0) = 0 and some finite (arbitrary) slope.

2) At a sufficiently large distance, Rmax, beyond which the nuclear potentials
have become negligible, the numerically obtained solution is matched to the
asymptotic form

Nχ�(K,Rmax) → F�(η,KRmax) + T�H
(+)
� (η,KRmax).

3) This equation contains two unknowns, T� and the normalization N . Thus, it
is supplemented with the condition of continuity of the derivative

Nχ′
�(K,Rmax) → F ′

�(η,KRmax) + T�(H
(+)
� (η,KRmax))′.

From these two conditions, one obtains the T -matrix (or, equivalently, the
S-matrix) and the phase shifts.

4) The procedure is repeated for each �, from � = 0 to �max, such that S�max ≈ 1.
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4.2. Scattering amplitude. – To get the scattering amplitude, we substitute the asymp-
totic radial function χ�(K,R) from (47) into the full expansion (36):

χ
(+)
0 ( �K, �R ) → 1

KR

∑
�

i�(2� + 1)
{

F�(KR) + T�H
(+)
� (KR)

}
P�(cos θ) =(49)

1
KR

∑
�

i�(2� + 1)F�(KR)P�(cos θ)

+
1
K

∑
�

i�(2� + 1)T�
ei(KR−�π/2)

R
P�(cos θ) =

ei 
K·
R +
1
K

∑
�

(2� + 1)eiδ� sin δ�P�(cos θ)
eiKR

R
.

The elastic scattering amplitude is the coefficient of eiKR/R in the last line, i.e.,

(50) f(θ) =
1
K

∑
�

(2� + 1)eiδ� sin δ�P�(cos θ) =
1

2iK

∑
�

(2� + 1)(S� − 1)P�(cos θ).

The differential elastic cross section will be given by

(51)
dσ

dΩ
= |f(θ)|2.

In principle, the sum in (50) runs from � = 0 to infinity. However, remember that, for
large values of �, the S-matrix tends to 1 so, in practice, the sum can be safely truncated
at a maximum value �max, determined by some convergence criterion of the cross section.

4.3. Coulomb case. – The Coulomb case deserves a special consideration because the
expressions derived in the previous section are strictly applicable to the case of short-
range potentials, for which the asymptotic form (42) is appropriate. For a pure Coulomb
case, we can perform a partial wave expansion of the scattering wavefunction χC( �K, �R )
of the form

(52) χC( �K, �R ) =
1

KR

∑
�

(2� + 1)i�χC
� (KR)P�(cos(θ)),

with the radial functions χC
� (KR) obeying the equation

(53)
[

d2

dR2
+ K2 − 2ηK

R
+

�(� + 1)
R2

]
χC

� (KR) = 0,

where

(54) η =
ZpZte

2

�v
=

ZpZte
2μ

�2K

is the so-called Coulomb or Sommerfeld parameter.
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The solution of (53) must be regular at the origin. Asymptotically, it behaves as

(55) χC
� (KR) R�−−→ eiσ�F�(η,KR),

where F�(η,KR) is the regular Coulomb function and σ� is the Coulomb phase shift for
a partial wave �,

(56) σ� = arg Γ(� + 1 + iη).

The Coulomb function behaves asymptotically as [18]

(57) F�(η, ρ) → sin(ρ − η ln(2ρ) − �π/2 + σ�),

which in the case η = 0 (σ� = 0) reduces to the regular function F�(KR) introduced in
the case of short-range potentials

(58) F�(η = 0, ρ) = F�(ρ) = ρj�(ρ).

Analogously, an irregular solution of (53) can be found, which reduces to G�(ρ) in the
no Coulomb case

(59) G�(η, ρ) → cos(ρ − η ln(2ρ) − �π/2 + σ�)
η=0−−→ G�(ρ) = −ρn�(ρ),

as well as the ingoing and outgoing functions,

H
(+)
� (η, ρ) = G�(η, ρ) + iF�(η, ρ),(60)

H
(−)
� (η, ρ) = G�(η, ρ) − iF�(η, ρ).(61)

For the pure Coulomb case, the scattering amplitude will be given by

(62) fC(θ) =
1

2K

∑
�

(2� + 1)(e2iσ� − 1)P�(cos θ).

This integral is not convergent (cannot be truncated at a finite �) but the full result is
known analytically and is given by

(63) fC(θ) = − η

2K sin2( 1
2θ)

e−iη ln(sin2( 1
2 θ)+2iσ0).

The differential cross section yields the well-known Rutherford formula

(64)
dσR

dΩ
= |fC(θ)|2 =

η2

4K2 sin4( 1
2θ)

=
(

ZpZte
2

4E

)2 1
sin4( 1

2θ)
.
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4.4. Coulomb plus nuclear case. – If both Coulomb and nuclear potentials are present,
the scattering function χ

(+)
0 ( �K, �R ) will never reach the asymptotic form of a plane wave

plus outgoing waves, due to the presence of the 1/R term in the Schrödinger equation.
Nevertheless, it can be written as

(65) χ
(+)
0 ( �K, �R ) → χ

(+)
C ( �K, �R ) + outgoing spherical waves,

where the outgoing waves are now proportional to the functions H
(+)
� (η,KR). Of course,

when only the Coulomb potential is present, this term vanishes, and the scattering wave
function reduces to χ

(+)
C ( �K, �R ).

If we write, as usual, the χ
(+)
0 ( �K, �R ) function as a partial wave expansion, the corre-

sponding radial coefficients χ�(K,R) verify the asymptotic condition

χ�(K,R) → eiσ�

[
F�(η,KR) + T�H

(+)
� (η,KR)

]
=(66)

eiσ�
i

2

[
H

(−)
� (η,KR) − S�H

(+)
� (η,KR)

]
,

which is very similar to (44) and (47), except for the additional Coulomb phase eiσ� and
the replacement of the functions F (KR), H(+), etc. by their Coulomb generalizations.

The scattering amplitude results

(67) f(θ) = fC(θ) +
1

2iK

∑
�

(2� + 1)e2iσ�(S� − 1)P�(cos θ),

where the first term corresponds to the pure-Coulomb amplitude, which arises from the
outgoing waves in the first term of (65) and the second term is the so-called Coulomb
modified nuclear amplitude.

4.5. Parametrization of the phenomenological optical potential . – The effective optical
optical potential is usually taken as the sum of Coulomb and nuclear central potentials
U(R) = UC(R) + UN (R), with the Coulomb part taken as the potential corresponding
to a uniform distribution of charge of radius Rc

(68) UC(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ZpZte
2

2Rc

(
3 − R2

R2
c

)
, if R ≤ Rc,

ZpZte
2

R
, if R ≥ Rc.

As for the nuclear part, it contains in general real and imaginary parts. The most
popular parametrization is the so-called Woods-Saxon form

(69) UN (R) = V (R) + iW (R) = − V0

1 + exp(R−R0
a0

)
− i

W0

1 + exp(R−Ri

ai
)

.
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Fig. 3. – Relevant coordinates for nucleus-nucleus folding model calculations.

The parameters V0, R0 and a0 are the depth, radius and diffuseness (likewise for the
imaginary part). They are usually determined from the analysis of elastic scattering data
so, strictly, this potential might account also for λ > 0 Coulomb multipoles. The radius
Rx is sometimes parametrized using the projectile (Ap) and target (At) mass numbers
introducing the so-called reduced radius, Rx = rx(A1/3

p + A
1/3
t ). For ordinary nuclei

rx ≈ 1.1–1.3 fm.
If the spin of the projectile (or target) is considered, the potential will contain also

spin-dependent terms. The most common one is the spin-orbit term, which is usually
parametrized as

(70) Uso(R) = (Vso + iWso)
(

�

mπc

)2 1
R

df(R,Rso, aso)
dR

(2� · s),

where the radial function f(R,Rso, aso) is again a Woods-Saxon form, and (�/mπc)2 =
2 fm2, is just introduced in order Uso has dimensions of energy.

4.6. Microscopic optical potentials. – The optical potential or, at least, part of it, can
be also calculated microscopically, starting from some effective nucleon-nucleon (NN)
interaction. For example, the bare potential can be computed microscopically, by means
of a folding procedure in which an effective nucleon-nucleon interaction (JLM, M3Y, etc.)
is convoluted with the projectile and target densities (see fig. 3).

(71) Vfold(�R ) =
∫

ρp(sp)ρt(st)vNN

(∣∣∣�R + �sp − �st

∣∣∣) d�spd�st,

where ρp(sp) and ρt(st) are the projectile and target densities, respectively. Since the
latter are g.s. densities, Vfold(�R ) accounts only for the bare potential VPP (P -space
part) and ignores the effect of non-elastic channels. The remaining part of the effective
potential (second term in eq. (31)) must be supplied, using some phenomenological or
microscopic prescription.
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Fig. 4. – Effective potential for a 4He+ 58Ni system. The labels Rb and Vb indicate the distance
and top of the Coulomb barrier.

5. – Elastic scattering phenomenology

5.1. Elastic scattering in the presence of strong absorption. – When the projectile
and target nuclei are composite systems, the scattering is largely dominated by the
absorptive part of the nucleus-nucleus potential. This means that the effects of the
coupling to nonelastic channels is dominant. Absorption introduces quantal effects, such
as diffraction, which are analogous to those observed in optical phenomena. Heavy-
ion collisions are also characterized by large angular momenta and small de Broglie
wavelengths associated to the relative motion, in comparison with the dimensions of
the nuclei. In this situation, the projectile-target motion can be interpreted in terms of
classical trajectories, which is a useful concept to assist our intuition.

Resorting to this idea of classical trajectories, an important concept in strong-
absorption scattering is that of grazing collision, which refers to those trajectories for
which the colliding nuclei begin to experience the strong nuclear interaction. Associated
to this, one may introduce also the concepts of grazing angle, θgr (the scattering angle
for a grazing collision) and grazing angular momentum �gr. Trajectories with angular
momentum � < �gr will be strongly absorbed and the corresponding elastic scattering
cross section will be largely suppressed.

The specific features of a given reaction in the presence of strong absorption are
largely determined by the grazing angular momentum �gr and the Sommerfeld param-
eter (η). In particular, for large values of �gr, where many partial waves are involved,
one observes characteristic diffraction patterns analogous to the Fresnel and Fraunhofer
patterns encountered in optics.

Recalling the definition of the Sommerfeld parameter, it can be regarded as a mea-
surement of the energy of the system relative to the Coulomb barrier. The latter is
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Fig. 5. – Three characteristic regimes encountered in reactions dominated by strong absorption,
illustrated for the reaction 4He + 58Ni at E = 5MeV (top panels), 10.7 MeV (middle) and
25MeV (bottom). On the left panels, a pictorial representation in terms of classical trajectories.
Dashed trajectories get inside the nuclear range and are likely to be absorbed (i.e. leave the
elastic channel).

defined as the top of the real (nuclear+Coulomb) potential. This is exemplified in fig. 4
for the 4He + 58Ni system, whose Coulomb barrier is about 10 MeV.

Depending on the values of η and �gr, we may distinguish three distinct regimes:

– Rutherford scattering: When the CM energy is well below the Coulomb barrier, the
colliding partners feel only the Coulomb interaction. In absence of strong λ > 0
Coulomb couplings, the projectile-target motion is dictated by the monopole term
ZpZte

2/R, and the differential cross sections follow the Rutherford formula. These
situations are characterized by large Sommerfeld parameters (η ≫ 1). In terms
of classical trajectories (see LHS of the first row of fig. 5), the repulsive Coulomb
interaction acts as a diverging lens, preventing the trajectories from entering into
the inner region (dominated by the nuclear interaction).
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– Fraunhofer scattering: A very different scenario occurs when the incident energy
is much higher than the Coulomb barrier. The nuclear potential gains importance
with respect to the Coulomb potential (η � 1) which affects in two ways. First, due
to its attractive character, far-side orbits (orbits scattered on the opposite side with
respect the incoming projectile) are deflected inward and are allowed to interfere
with near-side trajectories scattered at the same angle (see bottom panels of fig. 5).
This produces a characteristic oscillatory pattern in the angular distribution, with
maxima and minima corresponding to the constructive and destructive interference.
Second, due to absorption, some of the trajectories entering into the range of the
nuclear potential will be absorbed (i.e. will be removed from the elastic channel due
to non-elastic processes). This produces an overall reduction of the elastic cross
section with respect to the Rutherford formula.

– Fresnel scattering: Fresnel scattering takes place at incident energies slightly above
the top of the Coulomb barrier and so it can be considered an intermediate situ-
ation between Rutherford and Fraunhofer scattering. Distant trajectories (as the
one labeled as 1 in the middle panel of fig. 5) are scattered by the Coulomb po-
tential and hence undergo pure Rutherford scattering. However, closer trajectories
experience grazing collisions with the target. Some of them, like the one labeled
as 2, can be scattered at the same scattering angle as some more distant Coulomb
trajectories. These accumulation of trajectories entering within a narrow range of
impact parameters and exiting at about the same scattering angle are responsible
for the prominent peak observed in the middle panel, and characteristic of Fresnel
scattering. These grazing trajectories divide the angular range into two regions,
usually called “illuminated” and “shadow” regions. The former, corresponding to
trajectories more distant than the grazing ones, do not feel the nuclear potential
and hence do not experience absorption. Conversely, trajectories entering with im-
pact parameters smaller than the grazing ones will experience strong absorption.
These are the trajectories with larger deflections and, hence, for scattering angles
larger than the grazing ones, a drastic reduction of the elastic cross section is found,
as seen in the middle panel in the second row of fig. 5.

The three scenarios described in this section (Rutherford, Fresnel and Fraunhofer)
are typical of ordinary, tighly bound nuclei. In the following sections, we will see
how these features are modified in the case of weakly bound nuclei.

5.2. Elastic scattering of weakly bound nuclei . – We have stressed that the elastic scat-
tering is affected by the coupling with non-elastic channels (inelastic, transfer, breakup,
fusion, . . . ). The relative importance of these channels will depend on the participant
nuclei as well as on the energy regime. In the case of weakly bound projectiles, which
is the core topic of this contribution, we have to pay particular attention to the role of
the breakup channels since the weak binding usually translates into a large dissociation
probability. What modifications should we expect in the optical potential, as compared
to normal nuclei?
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Fig. 6. – Elastic scattering of 4,6He + 208Pb at Elab = 22MeV. The 4He and 6He data are,
respectively, from refs. [19] and [4,20].

Let us consider as examples the 4,6He+ 208Pb reactions at Elab = 22 MeV (see fig. 6).
In the 4He case, the measured differential cross section shows a typical Fresnel pattern,
with a maximum around the grazing angle and a rapid decrease at larger angles. The
6He case is markedly different. The cross section is largely suppressed with respect to
the Rutherford formula and the Fresnel peak is completely absent. The reduction with
respect to the Rutherford cross section starts at relatively small angles which, classically,
correspond to large impact parameters (i.e. distant trajectories). This suggests the exis-
tence of a long-range non-elastic mechanism, which removes a significant part of the flux
from the elastic channel. Since 6He is bound by only ∼ 1 MeV, a natural candidate is
of course the breakup of the projectile but, other mechanisms, such as neutron transfer,
can contribute as well. These features can be also seen in the optical model potentials
describing these data. The curves shown in fig. 6 are optical model calculations using
phenomenological WS forms (eq. (69)). In the case of the 4He projectile, the radius
and diffuseness parameters of the real and imaginary parts follow closely the densities of
normal, well-bound nuclei (a ∼ 0.56 fm). If this potential is used for the 6He+208Pb case
(scaling the radii according to the mass number of A or, equivalently, using the same re-
duced radii), we get the green line of the right panel in which, as can be seen, the Fresnel
behaviour persists, in clear disagreement with the data. If the potential parameters are
varied to reproduce the data (keeping the radii r0 = ri = 1.33 fm to reduce the number
of free parameters) one obtains the values listed in the figure, and the corresponding
differential cross section (black solid line). Its more salient feature is the large value of
the real and imaginary diffuseness parameters (ai > 1 fm). This is a clear indication of
the influence of the non-elastic channels (possibly transfer and breakup) which, in the
Feshbach formalism, would be embedded in the polarization potential (cf. eq. (31)).

Understanding and disentangling the nature of these non-elastic channels requires
going beyond the optical model. This can be done, for example, using approximate
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forms of the polarization potential or within the coupled-channels method, described
below.

5.3. Coulomb dipole polarization potentials. – The effect of Coulomb dipole polar-
izability (CDP) on the elastic scattering can be included by means of a polarization
potential. From physical arguments, we may expect this potential to be complex, and
its real and imaginary parts can be understood as follows:

1) The strong Coulomb field will produce a polarization (“stretching”) of the projec-
tile, giving rise to a dipole contribution on the real potential.

2) The weakly bound nucleus can eventually break up, leading to a loss of flux of
the elastic channel, which corresponds to the imaginary part of the polarization
potential.

The CDP acquires a particularly simple form in the so-called adiabatic limit, in which
one assumes that the excitation energies are high enough so the characteristic time for a
transition to a state n (τex ≈ �/(εn − ε0)) is small compared to the characteristic time
for the collision (τcoll ≈ a0/v, where a0 is the distance of closest approach in a head-on
collision and v is the projectile velocity). Applying second-order perturbation theory,
one gets the following expression for this adiabatic dipole polarization potential [21]:

(72) Vad(R) = −
∑
n=1

|〈n|Vdip|0〉|2
εn − ε0

= −α
(Zte)2

R4
,

where α is the dipole polarizability parameter, defined as

α =
8π

9
B(E1; gs → n)

εn − ε0
,

with B(E1; gs → n) the dipole strength for the coupling to the dipole excited state |n〉.
We see that the adiabatic polarization potential is purely real and does not depend on

the collision energy. When the average excitation energies are small, as it is the case of
weakly bound nuclei (such as halo nuclei), the adiabatic approximation is questionable.
A expression for a non-adiabatic CDP will be presented in sect. 8 in the context of the
semiclassical theory of Alder and Winther.

6. – Inelastic scattering: the coupled-channels method

Nuclei are not inert or frozen objects; they do have an internal structure of protons
and neutrons that can be modified (excited), for example, in collisions with other nuclei.
In fact, an important and common process that may occur in a collision between two
nuclei is the excitation of one (or both) of the nuclei. Inelastic scattering is an example of
direct reaction and, as such, the colliding nuclei preserve their identity after the collision.

The energy required to excite a nucleus is taken from the kinetic energy of the
projectile-target relative motion. This means that, if one of the colliding nuclei is excited,
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Fig. 7. – Energy spectrum of detected outgoing protons of 185 MeV scattered from a 7Li target.
The vertical arrows indicate the position of the 7Li bound states and two lowest resonances.
Experimental data are from ref. [22].

the final kinetic energy of the system is reduced by an amount equal to the excitation
energy of the excited state populated in the reaction. So, by measuring the kinetic en-
ergy of the outgoing fragments, one can infer the excitation energy of the projectile and
target. This has been indeed a common technique to measure and identify such excited
states.

As an example, let us consider the scattering of a proton beam off a 7Li target.
Figure 7 shows the experimental excitation energy spectrum inferred from the energy of
the outgoing protons detected at an scattering angle of 25◦, for a proton incident energy
of 185 MeV [22]. We have superimposed the position of the low-lying levels of 7Li to
highlight the correspondence between the observed peaks and these states. The peak
at Ex = 0 (corresponding to Q = 0) corresponds to the 7Li ground state. Thus, it is
just elastic scattering. At Ex = 0.48 MeV, we should see a second peak corresponding
to the first excited state of 7Li. However, due to the energy resolution, this peak is not
resolved in these data from the elastic peak. At Ex = 4.6 MeV there is a prominent peak
corresponding to a 7/2− state in 7Li. This state is above the 4He + 3H threshold placed
at 2.47 MeV and does actually correspond to a continuum resonance. This threshold
corresponds to the energy necessary to dissociate the 7Li nucleus into α + t. Therefore,
for excitation energies above this value, we have a continuum of accessible energies, rather
than a discrete spectrum, and any value of Ex is possible. This explains the background
observed at these excitation energies.

Note that the information provided by these data is not enough to determine other
properties of the energy spectrum, such as as the spin/parity assignment or their
collective/single-particle character. Further information can be obtained from the shape
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and magnitude of the angular distribution of the emitted ejectile. To do that, one needs
to compare the data with a suitable reaction calculation, as we will see in the next section.

6.1. Formal treatment of inelastic reactions.

6.1.1. The coupled-channels (CC) method. Remember from sect. 3 that any practical
solution of the scattering problem starts with a reduction of the full physical space into
P and Q subspaces, the former corresponding to the channels that are to be explicitly
included. In an inelastic process, this P space will comprise the elastic channel, plus
some excited states of the projectile and/or target, those more strongly coupled in the
process or, at least, those that will be compared with the experimental data.

Let us consider the scattering of a projectile a by a target A, and let us assume for
simplicity that only the projectile is excited during the process, the target remaining in
its ground state. We denote this mass partition by the index α, i.e., α ≡ a + A. Our
model Hamiltonian will describe a set of states of the projectile and possible couplings
between them during the collision. This model Hamiltonian will be expressed as (cf.
eq. (5)):

(73) H = − �
2

2μ
∇2


R
+ Ha(ξ) + Vα(ξ, �R ),

where Ha(ξ) is the projectile internal Hamiltonian and ξ its internal coordinates.
Let us denote by {φn(ξ)} the internal states of the projectile. These will be the

eigenstates of the Hamiltonian Ha(ξ): Haφn = εnφn. The idea of the CC method is to
expand the total wave function of the system in the set of internal states {φn(ξ)},

(74) Ψ(+)(�R, ξ) = φ0(ξ)χ0(�R ) +
N∑

n>0

φn(ξ)χn(�R ),

with φ0(ξ) representing the ground-state wave function and N the number of excited
states included.

The unknown coefficients χn(�R ) describe the relative motion between the projectile
and target in the corresponding internal states. They tell us the relative “probability”,
as a function of �R, for the projectile being in state n. The different possibilities for n

are frequently referred to as “channels”. The total wave function Ψ(�R, ξ) verifies the
Schrödinger equation: [E − H]Ψ(+)(�R, ξ) = 0. We now proceed as follows: i) insert the
expansion (74) and the Hamiltonian (73) in this equation; ii) multiply on the left by each
of the basis functions φ∗

n(ξ), and iii) integrate over the internal coordinates ξ. For each
n, we get a differential equation of the form

(75)
[
E − εn − T̂
R − Vn,n(�R )

]
χn(�R ) =

∑
n′ 	=n

Vn,n′(�R )χn′(�R ),
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where Vn,n′ are the so called coupling potentials, defined as

(76) Vn,n′(R) =
∫

dξφ∗
n(ξ)V (ξ, �R )φn′(ξ).

So, for example, V0,m is the potential responsible for the excitation from the ground
state (n = 0) to a given final state m. We have not yet defined the form of the effective
potential V (ξ, �R ) and the internal states φn, that is, the model Hamiltonian. These
potentials are constructed within a certain model, as we will see later.

Note that the equation associated with a given value of n contains not only the
unknown χn(�R ), but also χn′(�R ) with n′ �= n. Consequently, eq. (75) represents a set
of coupled differential equations for the set of functions {χn(�R )}.

6.1.2. Boundary conditions. Similarly to the OM case, the CC equations must be
solved with appropriate boundary conditions. These boundary conditions correspond to
the physical situation in which the projectile is initially in the ground state (φ0) and
impinges with momentum �K0. The projectile-target relative motion is represented by a
plane wave with momentum �K0. As a result of the collision with the target, a series of
outgoing spherical waves is created (fig. 2). Recalling the general asymptotic behaviour
of the total wave function, eq. (8), for the case of inelastic scattering we will have

(77) Ψ(+)

K0

(�R, ξ) R�−−→
{

ei 
K0·
R + f0,0(θ)
eiK0R

R

}
φ0(ξ) +

N∑
n>0

fn,0(θ)
eiKnR

R
φn(ξ).

Comparing with (74) we see that the functions χn(�R ) must verify the following bound-
ary conditions:

χ
(+)
0 ( �K0, �R ) → ei 
K0·
R + f0,0(θ)

eiK0R

R
, n = 0 (elastic),(78)

χ(+)
n ( �Kn, �R ) → fn,0(θ)

eiKnR

R
, n �= 0 (non-elastic),(79)

from which the elastic and inelastic differential cross sections are to be obtained from
the coefficient of the corresponding outgoing wave

(80)
(

dσ(θ)
dΩ

)
0→n

=
Kn

K0
|fn,0(θ)|2.

Note that:

– Plane waves are present only in the χ0 component (that is, the elastic component)
but outgoing waves appear in all components.
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– The scattering angle in the CM frame, θ, is determined by the direction of the
momenta �K0 and �Kn. Defining the momentum transfer as �q = �Kn − �K0, we have
(see fig. 2)

(81) q2 = K2
0 + K2

n − 2K0Kn cos(θ).

– The modulus of �Kn is obtained from energy conservation(9)

(82) E = ε0 +
�

2K2
0

2μ
= εn +

�
2K2

n

2μ
.

6.1.3. The DWBA method for inelastic scattering. If the number of states is large, the
solution of the coupled equations can be a difficult task. In many situations, however,
some of the excited states are very weakly coupled to the ground state and can be treated
perturbatively. In this case, the set of equations (75) can be solved iteratively, starting
from the elastic channel equation, and setting to zero the source term (the RHS of the
equation). This allows the calculation of the distorted wave χ0( �K0, �R ). This solution
is then inserted into the equation corresponding to an excited state n, thus providing a
first order approximation for χn( �K0, �R ). If the process is stopped here, then the method
is referred to as distorted wave Born approximation (DWBA).

We provide here an alternative derivation of the DWBA method, which leads to a more
direct connection with the scattering amplitude. We make use of the exact scattering
amplitude (26) derived in subsect. 2.4 using the Gell-Mann–Goldberger transformation.
To particularize this general result to our case, we consider a transition between an initial
state i (typically, the g.s.) and a final state f . Since these states belong to the same
partition (α) we do not need to specify explicitly the subscripts α and β. Then, the
general amplitude (26) reduces to

(83) Tf,i =
∫∫

χ
(−)∗
f ( �Kf , �R )φ∗

f (ξ)[Vf − Uf ]Ψ(+)

Ki

dξ d�R,

where, within the CC method, Ψ(+)

Ki

is given by the expansion (74). Recall that, in this

expression, χ
(−)
f ( �Kf , �R ) is the time reversal of χ

(+)
f ( �Kf , �R ), which is a solution of

(84)
[
T̂
R + Uf (�R ) + εf − E

]
χ

(+)
f ( �Kf , �R ) = 0,

for some auxiliary potential Uf (�R ). Typically, Uf (�R ) is chosen as a phenomenological
potential that describes the elastic scattering of the a + A system at the energy of the
exit channel (Ef = E − εf ).

(9) For εn > E, the kinetic energy is negative and the corresponding momentum Kn becomes
imaginary. Consequently, the asymptotic solutions χn of eq. (78) vanish exponentially and then
these channels do not contribute to the outgoing flux.
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The DWBA formula is obtained by approximating the total wave function Ψ(+)

Ki

by
the factorized form

(85) Ψ(+)(�R, ξ) � χ
(+)
i ( �Ki, �R )φi(ξ),

where χ
(+)
i ( �K, �R ) is the distorted wave describing the projectile-target motion in the

entrance channel,

(86)
[
T̂
R + Ui(�R ) + εi − E

]
χ

(+)
i ( �Ki, �R ) = 0,

where Ui(�R ) is the average potential in the initial channel, and is usually taken as the
potential that describes the elastic scattering in this channel. With this choice, one hopes
to include effectively some of the effects of the neglected channels.

In DWBA, the scattering amplitude corresponding to the inelastic excitation of the
projectile from the initial state φi(ξ) and momentum �Ki to a final state φf (ξ) and
momentum �Kf is given by

(87) fDWBA
f,i (θ) = − μ

2π�2

∫
d�R χ

(−)∗
f ( �Kf , �R )Wif (�R )χ(+)

i ( �Ki, �R ),

where Wif (�R ) is the coupling potential

(88) Wif (�R ) ≡ 〈φf |Vf − Uf |φi〉 =
∫

dξ φ∗
f (ξ)(Vf − Uf )φi(ξ).

In actual calculations, the internal states have definite angular momentum (spin) so,
we may introduce this dependence explicitly using the following notation:

φi(ξ) = |IiMi〉 and φf (ξ) = |IfMf 〉.

To exploit this property, one usually expands the projectile-target interaction in multi-
poles

(89) V (�R, ξ) =
√

4π
∑
λ,μ

Vλμ(R, ξ)Yλμ(R̂).

DWBA calculations require the matrix elements

(90) 〈IfMf |V (�R, ξ)|IiMi〉 =
√

4π
∑
λ,μ

〈IfMf |Vλμ(R, ξ)|IiMi〉Yλμ(R̂).
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The dependence on the spin projection can be singled out using the Wigner-Eckart
theorem(10)

(91) 〈IfMf |Vλμ(R, ξ)|IiMi〉 = (2If + 1)−1/2〈IfMf |IiMiλμ〉〈If‖Vλ(R, ξ)‖Ii〉,

where the quantities 〈If‖Vλ(R, ξ)‖Ii〉 are called reduced matrix elements. These are
independent of the spin projections, as the notation implies.

Actual applications of the DWBA amplitude (87) require the specification of the
structure model (that will determine the functions φi(ξ)) as well as the projectile-target
interaction Vf . We give some examples in the following section.

6.2. Specific models for inelastic scattering .

6.2.1. Macroscopic (collective) models. Ignoring spin-dependent forces, the nuclear in-
teraction between spherical, static nuclei is a function of the distance between the nuclear
surfaces of the colliding nuclei (VN = VN (R−R0), with R0 � Rp + Rt). However, if one
(or both) of the colliding nuclei is deformed (rotor) the nucleus-nucleus interaction will
depend on the orientation of the deformed nucleus in space (because, depending on this
orientation, the distance between the surfaces will vary accordingly). This introduces a
dependence on the angles of the relative coordinate, and the nucleus-nucleus potential
will not be central any more. A similar situation occurs when one of the nuclei undergoes
surface vibrations.

If the deviation from the spherical shape is small, one may use a Taylor expansion of
the potential around this spherical shape

(92) VN (�R, ξ) = VN (R − R0) −
∑
λ,μ

δ̂λμ
dV (R − R0)

dR
Yλμ(θ, φ) + . . . ,

where δ̂λ,μ are the so-called deformation length operators. For a nucleus with a permanent
deformation (rotor) they are related to the intrinsic shape of the nucleus. For a spherical
vibrational nucleus, a formally analogous expression can be obtained, but in this case
the operators δ̂λ,μ are to be understood as dynamical quantities, which produce surface
vibrational excitations under the action of the potential exerted by the other nucleus.

Similarly, for the Coulomb interaction, we make use of the multipole expansion of
the electrostatic interaction between the charge distribution of the projectile nucleus
and that for the target (assumed here to be represented by a point-charge Zte for
simplicity)

(93) VC(�R, ξ) =
ZtZpe

2

R
+
∑

λ>0,μ

4π

2λ + 1
Zte

Rλ+1
M(Eλ, μ)Yλμ(R̂),

(10) We assume thoroughout this contribution the Bohr and Mottelson convention of reduced
matrix elements [23].
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where M(Eλ, μ) ≡ e
∑Zp

i rλ
i Y ∗

λμ(r̂i) is the electric multipole operator.
We include in the auxiliary potentials Ui and Uf the monopole parts of the nuclear

and Coulomb interactions (those which cannot excite the nuclei), i.e.

Ui = Uf = VN (R − R0) +
ZtZpe

2

R
,

and incorporate the λ > 0 terms in the residual interaction W = Vf −Uf . The transition
potentials for the nuclear and Coulomb parts of this residual interaction are, respectively,

(94) WN
if (�R ) = −dVN (R − R0)

dR

∑
λ>0,μ

〈f ; IfMf |δ̂λμ|i; IiMi〉Yλμ(R̂),

and

(95) WC
if (�R ) =

∑
λ>0,μ

4π

2λ + 1
Zte

Rλ+1
〈f ; IfMf |M(Eλ, μ)|i; IiMi〉Yλμ(R̂).

The dependence on the spin projections of the structure matrix elements can be
singled out using the Wigner-Eckart theorem. For example, for the Coulomb matrix
element

(96) 〈f ; IfMf |M(Eλ, μ)|i; IiMi〉 = (2If +1)−1/2〈IiMiλμ|IfMf 〉〈f ; If‖M(Eλ)‖i; Ii〉,

and the reduced matrix element is related to the electric reduced probabilities

(97) B(Eλ; Ii → If ) = (2Ii + 1)−1 |〈f ; If‖M(Eλ, μ)‖i; Ii〉|2 (Ii �= If ).

Likewise, for the nuclear matrix elements

(98) 〈f ; IfMf |δλμ|i; IiMi〉 = (2If + 1)−1/2〈IiMiλμ|IfMf 〉〈f ; If‖δλ‖i; Ii〉,

which are proportional to the reduced matrix elements of the deformation length opera-
tor. For a Ii = 0 → If transition in a even-even nucleus characterized by a deformation
parameter βλ, this reduced matrix element is simply given by 〈f ; If‖δλ‖i; Ii〉 = βλR0,
where R0 is the average radius.

For a purely nuclear excitation process, with multipolarity λ, the DWBA amplitude is

(99) fN
f,i(θ) =

μ

2π�2
〈f ; IfMf |δ̂λμ|i; IiMi〉

∫
d�R χ

(−)∗
f ( �Kf , �R )

dVN

dR
Yλμ

(
R̂
)

χ
(+)
i ( �Ki, �R ),

whereas for a purely Coulomb excitation, also of multipolarity λ,

fC
f,i(θ) = − μ

2π�2

4πZte

2λ + 1
〈f ; IfMf |M(Eλ, μ)|i; IiMi〉(100)

×
∫

d�R χ
(−)∗
f ( �Kf , �R )

1
Rλ+1

Yλμ

(
R̂
)

χ
(+)
i ( �Ki, �R ).
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Fig. 8. – Differential inelastic cross section for the excitation of the first excited state of 64Zn
(Ex = 0.992 MeV, I = 2+) in the reaction 16O+64Zn at E = 44 MeV. The data from ref. [24] are
compared with DWBA calculations based on a collective model of the target nucleus including
nuclear, Coulomb and nuclear+Coulomb couplings. The structure parameters and potentials
are those from [24].

In general, both the nuclear and Coulomb potentials may contribute to the excita-
tion mechanism and so the total scattering amplitude will be the coherent sum of both
amplitudes and the differential cross section will be(11)

(101)
(

dσ(θ)
dΩ

)
i→f

=
Kf

Ki

∣∣fN
f,i + fC

f,i

∣∣2 .

This means that interference effects will arise at those angles for which the nuclear and
Coulomb amplitudes are of the same order. These interference effects are illustrated in
fig. 8 for the 64Zn(16O,16 O)64Zn∗ reaction at E = 44 MeV, where a clear destructive
interference between the Coulomb and nuclear couplings is observed around 90◦.

6.2.2. Few-body model. Some nuclei exhibit a marked cluster structure. This is trivially
the case of the deuteron (d = p+n) but also of other nuclei, particularly in the light region
of the nuclear chart. Some examples are 6Li = α + d, 7Li = α + t and 9Be = α + α + n,
among many others.

If the separation energy between the clusters is small compared to the cluster exci-
tation energies, it is plausible to treat these clusters as inert objects and consider only

(11) Note that this expression corresponds to definite initial and final spin projections. For
unpolarized projectile and target, the actual cross section would correspond to a sum over the
spin projections of the final nuclei, and an average over the initial ones [10].
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Fig. 9. – Left: relevant coordinates for a 7Li + A reaction, using a two-body cluster model of
7Li(α+t). Right: application of the CC formalism to the 7Li+208Pb reaction at Elab = 68 MeV,
the two-body cluster model for 7Li. The left and right cross sections are for the elastic and
inelastic (excitation of 1/2− excited state of 7Li) differential cross sections. Experimental data
are from ref. [25].

possible excitations between them. Using the Feshbach terminology, we include in the P

space only the inter-cluster excitations. In this way, we convert the many-body structure
(and reaction) problem into a few-body problem. In this Feshbach reduction, cluster-
target interactions are described by effective potentials (complex in general) evaluated
at the corresponding energy per nucleon. Additionally, the inter-cluster interaction is
described with an effective potential tuned to describe the known properties of the pro-
jectile, such as the separation energy, spin-parity, rms radius, etc.

Considering as an example the case of a two-body projectile, the projectile-target
interaction will be described by the effective potential

(102) V (�R, ξ) ≡ V (�R,�r ) = U1(�r1) + U2(�r2),

where �r is the inter-cluster coordinate and �ri the cluster-target coordinates. Note that,
in this model, the internal variables ξ are represented by the relative coordinate �r.

To apply the CC or DWBA methods we need to evaluate the coupling potentials

(103) Vn,n′(�R ) =
∫

d�r φ∗
n(�r ) [U1(�r1) + U2(�r2)]φn′(�r ).

As an example, consider the scattering of 7Li, treated as α + t, by a target A (see
fig. 9). In this model, the 7Li ground-state (3/2−) can be interpreted assuming that the
α (0+) and t (1/2+) clusters are in a � = 1 state of relative motion. Analogously, the
first excited state (1/2−) can be interpreted also assuming a � = 1 configuration and so
it would correspond to a spin-orbit partner of the ground-state level. The wave functions
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for these states would be obtained from a single-channel Schrödinger equation

(104)
[
T̂
r + Vα−t(�r ) − εn

]
φn(�r ) = 0,

where, for the ground-state (n = 0), ε0 = −2.47 MeV.
A successful application of such a model to elastic and inelastic scattering of 7Li +

208Pb at 68 MeV is shown in fig. 9, where the calculations are compared with the data
from ref. [25]. In this case, the model space was restricted to the two bound states of
7Li. In fact, the application of the CC method to unbound states (resonant or non-
resonant) requires appropriate extensions of the method, as explained in the following
section.

7. – Breakup reactions I: quantum-mechanical approach

7.1. The CDCC method . – If one of the colliding partners is weakly bound and is ex-
cited above its breakup threshold, the system will become unbound and will eventually
dissociate into two or more fragments (recall the 7Li(p, p′) example of fig. 7). This will
be the case of halo nuclei, an example of which is the 6He nucleus already discussed.
If we are interested in the description of these breakup channels, our modelspace must
be augmented to include, at least, part of them. A way of doing that is by means
of the coupled-channels (CC) method. However, direct application of this method, as
introduced in the previous section, is not possible because i) the breakup states are
continuous in energy, thereby leading to an infinite number of states and ii) the positive-
energy wave functions, unlike those for bound states, do not vanish at large distances,
presenting an oscillatory asymptotic behaviour. Consequently, they can not be normal-
ized. Coupling potentials calculated with this kind of functions will also oscillate at large
distances, posing severe problems to the standard methods of solution of the coupled
equations.

These difficulties motivated the development of the continuum-discretized coupled-
channels (CDCC) method. This method was originally introduced by G. Rawitscher [26]
and later refined by the Pittsburgh-Kyushu collaboration [27, 28] to describe the effect
of the breakup channels on the elastic scattering of deuterons. Denoting the reaction by
a + A, with a = b + x (referred hereafter as the core and valence particles, respectively),
the method assumes the effective three-body Hamiltonian

(105) H = Hproj + T̂
R + UbA(�rbA) + UxA(�rxA),

with Hproj = T
r + Vbx the projectile internal Hamiltonian, T̂
r and T̂
R are kinetic en-
ergy operators, Vbx the inter-cluster interaction and UbA and UxA are the core-target
and valence-target optical potentials (complex in general) describing the elastic scatter-
ing of the corresponding b + A and x + A sub-systems, at the same energy per nucleon
of the incident projectile. In the CDCC method the three-body wave function of the
system is expanded in terms of the eigenstates of the Hamiltonian Hproj including both
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unbound state wave function. Right: comparison of a scattering state with a bin wave packet
centered around the same nominal energy and with a width of 1 MeV.

bound and unbound states. Since the latter form a continuum, a procedure of discretiza-
tion is applied, consisting in representing this continuum by a finite and discrete set of
square-integrable functions. In actual calculations, this continuum must be truncated in
excitation energy and limited to a finite number of partial waves � associated to the rel-
ative co-ordinate �r. Normalizable states representing the continuum should be obtained
for each �, j values. Two main methods are used for this purpose:

– The pseudo-state method, in which the b+x Hamiltonian is diagonalized in a basis
of square-integrable functions, such as Gaussians [29] or transformed harmonic
oscillator functions [30]. Negative eigenvalues correspond to the bound states of
the systems, whereas positive eigenvalues are regarded as a finite representation of
the continuum.

– The binning method, in which normalizable states are obtained by constructing a
wave packet (bin) by linear superposition of the actual continuum states over a
certain energy interval [28].

We describe this latter method in some more detail. Assuming for simplicity a spinless
core, these discretized functions are denoted as

(106) φi(�r ) =
ui(r)

r
[Y�i

(r̂) ⊗ χs]jimi
,

where i ≡ {[ki, ki+1]�isjimi} specifies the i-th bin, with [ki, ki+1] the wave number
interval of the bin, � the valence-core orbital angular momentum, s the valence spin,
and �j = �� + �s the total angular momentum. The symbol ⊗ denotes angular momentum
coupling. The radial part of the bin is obtained as a linear combination (i.e. a wave
packet) of scattering states as

(107) ui(r) =
√

2
πNi

∫ ki+1

ki

wi(k)uk,�isji
(r)dk,
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where wi(k) is a weight function (for non-resonant continuum w(k) is usually taken as
eiδ�i where δ�i

are the phase shifts of the scattering states within the bin) and Ni is a
normalization constant. The effect of this averaging is to damp the oscillations at large
distances, making the bin wave function normalizable (see fig. 10).

Assuming a single bound state for simplicity, the CDCC wave function reads

(108) ΨCDCC(�R,�r ) = χ
(+)
0 (�R )φ0(�r ) +

N∑
i=1

χ
(+)
i (�R )φi(�r ),

where the index i = 0 denotes the ground state of the b + x system.
This model wave function must verify the Schrödinger equation: [H −

E]ΨCDCC(�R,�r ) = 0. This gives rise to a set of coupled differential equations similar
to that of eq. (75) with the coupling potentials given by

(109) Uij(�R ) =
∫

d�r φ∗
i (�r ) [UbA + UxA] φj(�r ).

An example of the application of the CDCC method to deuteron elastic scattering is
depicted in fig. 11.

The standard CDCC method is based on a strict three-body model of the reaction
(b + x + A), and has proven rather successful to describe elastic and breakup cross
sections of deuterons and other weakly bound two-body nuclei, such as 6,7Li and 11Be
(see fig. 12). However, it has limitations. The assumption of inert bodies is not always
justified, since excitations of the projectile constituents (b and x) and of the target (A)
may take place along with the projectile dissociation. Furthermore, the two-body picture
may be inadequate for some nuclei as, for example, in the case of the Borromean systems
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Fig. 12. – Application of the CDCC method to 6Li + 40Ca elastic scattering at 156 MeV. Ex-
perimental data are from ref. [31].

(e.g. 6He, 11Li). Some extensions of the CDCC method to deal with the these situations
are outlined below.

7.1.1. Inclusion of core and target excitations. Excitations of the projectile constituents
(b and x in our case) may take place concomitantly with the projectile breakup. This
mechanism is not included explicitly in the standard formulation of the CDCC method.
For example, for the scattering of halo nuclei, collective excitations of the core b may be
important. These core excitations will affect both the structure of the projectile as well as
the reaction dynamics. In the inert core picture, the projectile states will correspond to
pure single-particle or cluster states but, if the core is allowed to excite, these states will
contain in general admixtures of core-excited components. Additionally, the interaction
of the core with the target will produce excitations and deexcitations of the former during
the collision, and this will modify the reaction observables to some extent. These two
effects (structural and dynamical) have been recently investigated within extended ver-
sions of the DWBA and CDCC methods [32-35]. For example, considering only possible
excitations of b, the effective three-body Hamiltonian is generalized as follows:

(110) H = Hproj(�r, ξb) + T̂
R + UbA(�rbA, ξb) + UxA(�rxA).

The potential UbA(�rbA, ξb) is meant to describe both elastic and inelastic scattering of the
b + A system (for example, it could be represented by a deformed potential as discussed
in the context of inelastic scattering with collective models). Note that the core degrees
of freedom (ξb) appear in the projectile Hamiltonian (structure effect) as well as in the
core-target interaction (dynamic effect).

In the weak-coupling limit, the projectile Hamiltonian can be written more explicitly
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as

(111) Hproj = T̂
r + Vbx(�r, ξb) + hcore(ξb),

where hcore(ξb) is the internal Hamiltonian of the core. The eigenstates of this Hamilto-
nian are of the form

(112) φi(ξ) ≡
∑
α

[ϕα(�r ) ⊗ ΦI(ξb)]jpmp
,

where i is an index labeling the states with angular momentum jpmp, ξ ≡ {ξb, �r },
α ≡ {�, s, j, I}, with I the core intrinsic spin, �j = �� + �s and �jp = �j + �I. The functions
ΦI(ξb) and ϕα(�r ) describe, respectively, the core states and the valence-core relative
motion. For continuum states, a procedure of continuum discretization is used.

Once the projectile states (112) have been calculated, the three-body wave function is
expanded in a basis of such states, as in the standard CDCC method. Early calculations
using this extended CDCC method (XCDCC) were first performed by Summers et al. [34,
36] for 11Be and 17C on 9Be and 11Be + p, finding a very little core excitation effect
in all these cases. However, later calculations for the 11Be + p reaction based on a
alternative implementation of the XCDCC method using a pseudo-state representation
of the projectile states [35] suggested much larger effects. The discrepancy was found to
be due to an inconsistency in the numerical implementation of the XCDCC formalism
presented in ref. [34], as clarified in [37]. For heavier targets, such as 64Zn or 208Pb,
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the calculations of [35] suggest that the core excitation mechanism plays a minor role,
although its effect on the structure of the projectile is still important.

As an example of these XCDCC calculations we show in the left panel of fig. 13 the
differential breakup cross section, as a function of the n-10Be relative energy, for the
reaction 11Be + p at 63.7 MeV/nucleon. Details of the structure model and potentials
as given in ref. [35]. Continuum states with angular momentum/parity jp = 1/2±,
3/2± and 5/2+ were included using a pseudostate representation in terms of transformed
harmonic oscillator (THO) functions [38]. To get a smooth function of the energy, the
calculated differential cross sections were then convoluted with the actual scattering
states of Hproj. The two peaks at ε = 1.2 and 3.2 MeV correspond to 5/2+ and 3/2+

resonances, respectively. The solid line is the full XCDCC calculation, including the 10Be
deformation in the structure of the projectile as well as in the projectile-target dynamics.
The dashed line is the XCDCC calculation omitting the effect of the core-target excitation
mechanism. It is clearly seen that the inclusion of this mechanism increases significantly
the breakup cross sections, particularly in the region of the 3/2+ resonance, owing to the
dominant 10Be(2+) ⊗ 2s1/2 configuration of this resonance [32, 33, 38]. The right graph
shows two angular distributions, corresponding to the relative-energy intervals indicated
in the labels, compared with the XCDCC calculations with (solid) and without (dashed)
core excitations.

The importance of the deformation on the structure of the projectile is clearly evi-
denced in the elastic and inelastic scattering of 11Be on 197Au at energies around and
below the Coulomb barrier [7], shown in fig. 14. XCDCC calculations based on the
particle-plus-rotor model (solid lines) are able to reproduce simultaneously the elastic,
inelastic and breakup angular distributions. By contrast, standard CDCC calculations
using single-particle wave functions fail to describe the elastic and inelastic data, even
describing well the breakup. This is due to the overestimation of the B(E1) connecting
the ground state with the bound excited state, as shown in fig. 21.
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A simpler DWBA, no-recoil version of the formalism (XDWBA) has been also pro-
posed in refs. [32, 33]. An application of this formalism to the 11Be + 12C reaction
at 69 MeV/u showed that the core excitation mechanism may interfere with the single-
particle excitation mechanism, producing a conspicuous effect on the interference pattern
of the resonant breakup angular distributions [39].

In addition to the excitations of the projectile constituents, excitations of the target
nucleus may also take place and compete with the projectile breakup mechanism. Note
that, within CDCC, the projectile breakup is treated as an inelastic excitation of the
projectile to its continuum states and, thus, inclusion of target excitation amounts to
including, simultaneously, projectile plus target excitations so their relative importance,
and mutual influence, can be assessed. These target excitations can be treated with
the collective models mentioned in sect. 6.2. It is worth noting that, within this three-
body reaction model, target excitation arises from the non-central part of the valence-
target and core-target interactions. To incorporate this effect, the effective Hamiltonian,
eq. (105), must be now generalized as

(113) H = T̂
r + T̂
R + Vbx + UbA(�rbA, ξt) + UxA(�rxA, ξt),

in which the b−A and x−A interactions depend now, in addition to the corresponding
relative coordinate, on the target degrees of freedom (denoted as ξt). Ideally, these UxA

and UbA potentials should reproduce simultaneously the elastic and inelastic scattering
for the x + A and b + A reactions, respectively.
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The explicit inclusion of target excitation was first done by the Kyushu group in the
1980s [27], which considered the case of deuteron scattering. The motivation was to
compare the roles of target-excitation and deuteron breakup in the elastic and inelastic
scattering of deuterons. They applied the formalism to the d + 58Ni reaction at Ed = 22
and 80 MeV, including the ground state and the first excited state of 58Ni (2+) and
finding that, in this case, the deuteron breakup process is more important than the
target-excitation.

Recently, the problem has been also addressed by some authors [40, 41], also in the
context of deuteron elastic and inelastic scattering. A recent application of the formalism
is shown in fig. 15, which corresponds to the reaction 24Mg(d, d)24Mg∗ at Ed = 70 MeV,
including the ground and first excited states of 24Mg, in addition to the deuteron breakup.
The data are from ref. [42]. The target excitation was treated within the collective model,
using a quadrupole deformation parameter of β2 = 0.5. Also included are Faddeev
calculations performed by A. Deltuva [43]. Both calculations reproduce equally well
the elastic differential cross section. The calculated inelastic angular distributions are
slightly out of phase with the data, but they agree well with each other, pointing to some
inadequacy of the structure or potential inputs. Although these inelastic cross sections
can be also well reproduced with standard DWBA calculations based on a deformed
deuteron-target potential, it was shown in [43] that the extracted deformation parameter
obtained with the three-body approach is more consistent with that derived from nucleon-
nucleus inelastic scattering.

7.1.2. Extension to three-body projectiles. To study the scattering of three-body pro-
jectiles, such as Borromean nuclei, the Hamiltonian (105) must be generalized in order
to take into account the three-body structure of the projectile. For example, for a two-
neutron Borromean system with a structure of the form a = b + n + n, one may use the
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Hamiltonian

(114) H = Hproj(�x, �y ) + T̂
R + UnA(�r1) + UnA(�r2) + UbA(�r3),

where Hproj(�x, �y ) is the projectile (three-body) Hamiltonian, depending now on two rela-
tive coordinates (for example, the Jacobi coordinates shown in the cartoon of fig. 16), and
UnA(�ri) the valence-target effective interactions. Clearly, the calculation of the projectile
states will be much more involved than in the two-body case. In general, a given projectile
state with angular momentum jp, mp will consist in a superposition of many configura-
tions involving the internal orbital angular momenta and spins of the constituents,

(115) φi(ξ) =
∑
α

[ϕα(�x, �y )]jpmp
,

where ξ ≡ {�x, �y } are the internal coordinates of the three-body system. The label α

denotes the set of quantum numbers {�1, �2, s1, s2, . . .}, required to characterize the
three-body state, which may vary depending on the three-body approach used. Note
that φi(ξ) is an (approximate) eigenstate of the projectile three-body Hamiltonian, with
a given energy and angular momentum.

Once the internal states are obtained, coupling potentials are computed using a gen-
eralized form of eq. (109)

(116) Vi;i′(�R ) =
∫

d�r φ∗
i (�x, �y ) [UnA(�r1) + UnA(�r2) + UαA(�r3)]φi′(�x, �y ).

The formulation and first applications of this four-body CDCC method can be found in
refs. [45] and [46]. As an illustrative example, we show in fig. 16 the elastic scattering
of 6He on 208Pb at 22 MeV [47]. The solid line represents the four-body CDCC calcu-
lation, whereas the dashed line is the calculation omitting the breakup channels. The
full calculation shows a very good agreement with the data from refs. [4, 20]. We finally
see that the disappearance of the Fresnel peak, already discussed in the context of the
phenomenological OM, can be understood as a consequence of the strong coupling to the
breakup channels.

From a coupled-channel calculation, one may infer an effective polarization potential,
also called trivial equivalent local polarization potential (TELP). This is done rewriting
the elastic channel equation as

(117)
[
E − ε0 − T̂
R − V0,0(�R )

]
χ0(�R ) =

∑
i	=0

Vi,0(�R )χi(�R ) ≡ UTELP(R)χ0(�R ).

In an angular momentum representation, in which actual calculations are standardly
performed, one has an independent set of equations of each total angular momentum
of the system (J). Each of these sets defines an angular-momentum-dependent TELP,
UJ

TELP(R). An approximate TELP can be obtained by averaging the UJ
TELP(R) potentials
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Fig. 17. – Coulomb (left) and nuclear (right) polarization potentials extracted from the 6He +
208Pb CDCC calculations of fig. 16. The bare potential corresponds to the ground-state diagonal
potential. Adapted from ref. [49].

using as weights the cross sections for each J [48]. The result of such angular-momentum-
averaged TELP extracted from the aforementioned CDCC calculation for 6He+ 208Pb at
22 MeV is displayed in fig. 17. To isolate the Coulomb and nuclear effects two different
calculations were performed, one including only Coulomb breakup couplings and the
other including only nuclear breakup. The corresponding TELPs are shown in the left and
right panels of this figure, respectively. The bare potential (dashed line) is represented
in this case by the ground-state diagonal potential V0,0. The most noticeable feature of
the Coulomb polarization potential is its long range, with respect to the bare potential.
This is consistent with the behaviour of the phenomenological optical potential discussed
in sect. 5.2. Note also the different character of the Coulomb and nuclear real parts: the
former is attractive (i.e., negative; recall the adiabatic limit, eq. (72)), whereas the latter
is strongly repulsive. The nuclear polarization potential is also found to be of long range.

7.1.3. Connection with the Faddeev formalism. The CDCC method was originally de-
vised as a physically sound and numerically appealing ansatz for the three-body wave
function, rather than as a formally rigorous solution of the three-body problem. This
rigorous solution was provided by Faddeev in the ’60s [50], who showed that this solu-
tion can be obtained from a system of coupled-differential equations, named the Faddeev
equations after him. The numerical solution of these equations is very involved but,
recently, it has been possible to solve them for a number of situations [51, 52], thus pro-
viding a valuable benchmark for more approximate models. These comparative studies

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Models for nuclear reactions with weakly bound systems 171

-60 -40 -20 0 20 40 60
�p (deg)

10
0

10
1

10
2

10
3

d4 /d
�

nd�
p (

m
b/

sr
2 )

Matsuoka (1982)
Faddeev
CDCC

12
C(d,pn)

12
C @ Ed=56 MeV

�n=15
o

�n

�p

C12

���p

����pd

p

n

Fig. 18. – Breakup differential cross section for 12C(p, pn)12C at Ed = 56 MeV, as a function of
the proton scattering angle and for a fixed neutron detection angle of 15◦. The Faddeev and
CDCC calculations are given by the solid and dashed lines, respectively. The circles are the
data from ref. [53]. From ref. [51].

have shown that the elastic and breakup observables calculated with the CDCC method
agree in general very well with the Faddeev solution (see fig. 18). However, there are
also kinematical situations and observables [52] for which differences appear. This result
calls for additional studies and, possibly, for extensions and improvements of the CDCC
formalism.

7.1.4. Microscopic CDCC. The standard CDCC method assumes a cluster (two-body
or three-body) description of the projectile nucleus. This simplification has of course
limitations and drawbacks. For example: i) it requires cluster-target optical potentials,
which are not always well determined; ii) the extension to more than three bodies is
very challenging and currently not available; iii) excitations of the fragments are ignored
altogether or, at most, approximately included with some collective model. To overcome
these problems, a microscopic version of the CDCC method (MCDCC) has been proposed
by Descouvemont and co-workers [54, 55]. The method uses a many-body description
of the projectile states, based on a cluster approximation, known as resonating group
method (RGM). In the RGM, an eigenstate of the projectile Hamiltonian is written as
an antisymmetric product of cluster wave functions. For example, for a 7Li projectile,
described as α + t, the RGM wave function is expressed as

(118) φi(ξp) = A
[
[φα ⊗ φt]1/2 ⊗ Y�(Ωρ)

]jm

g�j
i (ρ),

where φα and φα are shell model wave functions of the α and t clusters, � their rel-
ative orbital angular momentum and j the total spin. In eq. (118), �ρ is the relative
coordinate (see fig. 19), and A is the 7-body antisymmetrization operator which takes
into account the Pauli principle among the 7 nucleons of the projectile. The function
g�j

i (ρ) is determined from a Schrödinger equation associated with the projectile Hamil-
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Fig. 19. – Left: schematic picture of the projectile-target system, with a microscopic cluster
structure of the projectile. Right: 7Li + 208Pb elastic cross section [56], relative to Rutherford,
compared with microscopic CDCC calculations. Dotted lines represent the calculations without
breakup channels and the solid lines are the full calculations with increasing α + t maximum
angular momentum jp. Taken from [54].

tonian. Continuum states are included using a pseudo-state basis. The projectile-target
interaction is given by the sum of nucleon-nucleus interactions (instead of cluster-target
interactions), for which reliable parametrizations are available.

Figure 19 shows an application of the method to the reaction 7Li + 208Pb at near-
barrier energies. Experimental data are compared with a one-channel calculation (only
7Li g.s.), two-channels calculations (ground plus first excited state) and several CDCC
calculations including continuum states up to a certain projectile angular momentum. It
is seen that a good description of the data is achieved when a sufficiently large number
of continuum states is included.

7.2. Exploring the continuum with breakup reactions.

7.2.1. Coulomb breakup. Breakup observables, which provide valuable information
about the dissociated nucleus, can be computed within the CDCC formalism. An
example is shown in fig. 20 for the reaction 11Be + 208Pb → n + 10Be + 208Pb at Elab =
69 MeV/u, measured at RIKEN [57]. The left panel is the angular distribution, with
respect to the center of mass of the outgoing system n + 10Be. The different lines are
the contributions coming from different continuum states of 11Be (jπ

p = 1/2±, 3/2± and
5/2±), obtained from a XCDCC calculation [35]. The thick dashed line is the total con-
tribution which, after convoluting with the experimental angular resolution, yields the
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Fig. 20. – Left: experimental [57] and calculated (XCDCC) breakup angular distributions for
the 11Be + 208Pb reaction at 69 MeV/u. The separate contributions of the differrent continuum
angular momenta are shown, as indicated by the labels. Right: measured and calculated angle-
integrated relative-energy distribution for the outgoing n-10Be system.

thick solid line. This is found to reproduce very well the data. Moreover, it is seen that
the main contributions come from the 3/2− and, to a lesser extent, the 1/2− waves. Since
the g.s. has jp = 1/2+ these correspond to dipole (λ = 1) transitions. At these very small
scattering angles, the nuclear contribution is very small so the breakup is mostly due to
the Coulomb interaction. The right panel shows the breakup cross section as a function
of the relative energy of the n and 10Be fragments, and integrated up to θc.m. = 1.3◦

and θc.m. = 6◦. The most notable feature is the enhanced breakup cross section near the
breakup threshold which, in turn, is a consequence of the large B(E1) strength at these
energies. The dipole strength distribution is given by

(119)
dB

dε
=

3
4π

(Zeffe2)〈�010|�′0〉2
∣∣∣∣
∫

dr r3 u∗
k,�′,s,j′(r)u�(r)

∣∣∣∣2 ,

where Zeff is the effective charge (Zeff = −Z/A for a neutron halo nucleus), and u�(r) and
uk,�′,s,j′(r) are the radial parts of the ground and scattering states with orbital angular
momenta � and �′, respectively. For weakly bound nuclei, the integral is dominated by
the asymptotic region, which allows to replace the bound state by its asymptotic form
and the scattering state by a plane wave. For a s to p transition, as it is the case of 11Be,
this yields [58]

(120)
dB

dε
(s → p) =

3�
2

π2μ
(Zeffe)2

√
εbε

3/2

(ε + εb)4
,

where εb is the separation energy. This distribution has a maximum at ε = 3/5εb. Hence,
the smaller the binding energy, the closer this peak to the breakup threshold.

Figure 21 shows some dB/dEx distributions for the 11Be nucleus extracted from
Coulomb dissociation experiments [57,59], compared with two theoretical predictions, one
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Fig. 21. – Experimental and calculated B(E1) strength distributions for 11Be as a function
of the excitation energy Ex = εb + ε. The experimental distributions are from the Coulomb
dissociation experiments of Palit et al. [59] and Fukuda et al. [57]. The filled diamond and the
vertical bars represent the experimental and calculated B(E1; 1/2+ → 1/2−) value (in units of
e2fm2) between the bound states of 11Be [60, 61]. The theoretical distributions correspond to
the single-particle model of ref. [62] and the particle-plus-rotor model of ref. [63].

Fig. 22. – Left: experimental breakup cross section for 11Be + 12C at 69 MeV/u from ref. [57]
(top) and 11Be low-lying spectrum (bottom). Right: comparison of the angular distribution of
the resonant peaks with DWBA calculations based on a collective model of 11Be. Adapted from
ref. [57].
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Fig. 23. – Left panel: potential well and density probabilities (square of wave functions). Cour-
tesy of C.H. Dasso. Right panel: wave functions for a bound state, a non-resonant state and a
resonant state.

based on a single-particle (SP) model of 11Be and the other on a particle-plus-deformed-
core (PRM). The large concentration of strength near threshold can be attributed to the
low separation energy (εb = 0.5 MeV), according to the simple model just presented.

7.2.2. Resonant nuclear breakup. The scattering of a weakly bound nucleus with a
heavy target emphasizes the electric response of this nucleus, which can be quantified in
terms of the electric reduced probability dB/dE. Conversely, when the nucleus scatters
by a light target, such as 9Be or 12C, Coulomb breakup will be less important and nuclear
breakup will gain importance. This kind of measurements are helpful to probe low-lying
resonances which would be otherwise hindered by the dipole strength. An example of
this is depicted in fig. 22, corresponding to the data for the 11Be + 12C breakup reaction
at 69 MeV/u. The upper panel shows the experimental data from ref. [57]. Superimposed
on a smooth structure, one can see two peaks which, according to the energies shown
in the spectrum of the bottom panel, correspond to low-lying resonances of 11Be with
spin-parity assignment 5/2+ and 3/2+.

Before addressing the problem of the theoretical analysis of these reactions, let us
briefly recall the origin and meaning of continuum resonances. The simplest case is that
of a potential resonance, illustrated in fig. 23. The left panel shows a potential well
consisting on an attractive potential and a repulsive one (the latter can be due to the
Coulomb interaction, the centrifugal barrier, �

2�(�+1)/2μr2, or the combination of both).
In general, the potential will contain a finite number of bound states at negative energies
and a infinite, and continuous, number of unbound states at positive energies. A particle
moving in this well would remain confined in the case of bound states, but it would scape
for the case of unbound states. However, due to the presence of the potential barrier,
the system exhibits also quasi-bound structures (or resonances) at positive energies. For
an infinitely high barrier, these states would be also permanently confined but, for a
finite barrier, they will eventually decay by means of barrier penetration. If the resonant
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Fig. 24. – Elastic phase shifts for the 5/2+ and 3/2+ waves in n + 10Be elastic scattering using
a deformed potential, which includes the coupling to the 10Be(2+) excited state. The vertical
arrows indicate the nominal position of the resonances, defined as the energies for which the
phase shift jumps over π/2.

region extends over an energy range Γ, the system will “survive” in this state over a
period τ ≈ �/Γ (the lifetime of the resonance). In terms of their wave functions, these
quasi-bound regions, or resonances, have therefore a higher presence probability. This
is depicted in fig. 23 using a gray scale, with the darker regions corresponding to larger
probabilities (given by the modulus squared of the wave function). One can observe
a bound state and a resonant continuum region, with the node structure of the wave
functions. The right panel of this figure shows three wave functions: a bound state wave
function, a non-resonant continuum wave function, and a resonant wave function. It is
seen that the resonant wave function presents a much larger probability inside the range
of the potential as compared to the non-resonant one.

The resonant character is also apparent in the S-matrix and phase shifts (recall
sect. 4). For a potential resonance, the phase shift displays a rapid increase as a function
of the continuum energy, when crossing the nominal energy of the resonance. This is
shown in fig. 24 for the n + 10Be phase shifts, where the jumps at the position of the
5/2+ and 3/2+ resonances are clearly seen.

Whereas the energy differential cross section gives information on the position of reso-
nances, the angular momentum assignment can be inferred from the shape of the angular
distribution. These calculations have been performed using different formalisms: DWBA
with collective form factors [57], semiclassical models [62], CDCC [64] and, more recently,
also the generalized CDCC method with inclusion of 10Be excitations, XCDCC [33]. In
the right panel of fig. 22 we show the experimental angular distributions of the reso-
nances (after subtracting the non-resonant background) compared with DWBA calcula-
tions based on a collective model of the 11Be nucleus. From this analysis, the authors of
ref. [57] concluded that these resonances were populated by λ = 2 transitions, which led
the authors to propose the spin-parity assignments 5/2+ and 3/2+, respectively.
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Fig. 25. – Pictorial representation of elastic and non-elastic breakup channels for a d+A reaction.

7.3. The problem of inclusive breakup. – In previous sections, we have considered only
exclusive breakup processes in which the three fragments (b, x and A) survive after the
collision and are observed in a definite internal state. In particular, when all fragments
end up in their ground state, the process is called elastic breakup (EBU). In many exper-
iments, however, the final state of one or more fragments is not determined in the final
state. This is the case, for example, of reactions of the form A(a, b)X, in which only one
of the projectile constituents (b in this case) is observed. The angular and energy distri-
butions of the b fragments will contain contributions from all possible final states of the
x + A system. This includes the EBU channel, in which x and A remain in their ground
state, but also x transfer, breakup accompanied by excitations of A, and x + A fusion
(named incomplete fusion (ICF)). These processes are schematically depicted in fig. 25
for a deuteron-induced reaction. These non-elastic breakup components (NEB) must be
added to the EBU component to give the total inclusive breakup. Whereas the EBU con-
tribution can be accurately calculated within the CDCC method and other approaches,
the evaluation of NEB is more involved due to the large number of accessible states.

7.3.1. The IAV model for inclusive breakup. The problem of inclusive breakup was
addressed in the 1980s by several groups, which developed formal techniques to reduce
the sum over final states to a closed form. We cite here the theory developed by Ichimura,
Austern and Vincent (IAV) [28, 65, 66], in which the double differential cross section for
NEB with respect to the angle and energy of the b fragments is given by

(121)
d2σ

dEbdΩb

∣∣∣∣
NEB

= − 2
�va

ρb(Eb)〈ϕx(�kb)| Im[UxA]|ϕx(�kb)〉,
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Fig. 26. – Energy distribution of α particles produced in the reaction 118Sn(6Li, α)X at the
incident energies indicated by the labels. The dashed and dotted lines are the EBU and NEB
contributions, and the solid line is their incoherent sum (TBU).

where ρb(Eb) = kbμb/[(2π)3�
2], UxA is the optical potential describing x + A elastic

scattering, and ϕx(�kb, �rxA) is the wave function describing the evolution of the x particle
after dissociating from the projectile, when the core is scattered with momentum �kb

and the target remains in its ground state. This function is obtained by solving the
inhomogeneous equation

(122)
(
E+

x − T̂x − UxA

)
ϕx(�kb, �rxA) =

(
χ

(−)
b (�kb)|Vpost|Ψ3b

〉
,

where Ex = E − Eb, χ
(−)
b (�kb, �rbB) is the distorted wave describing the scattering of the

outgoing b fragment with respect to the B ≡ x + A system, obtained with some optical
potential UbB , and Vpost ≡ Vxb + UbA − UbB is the post-form transition operator. This
equation is to be solved with outgoing boundary conditions.

Although IAV suggested approximating the three-body wave function appearing in
the source term of eq. (122), Ψ3b, by the CDCC one, a simpler choice is to use the
DWBA approximation ψ3b ≈ χ

(+)
a (�R )φa(�r ), where χ

(+)
a is a distorted wave describing

a + A elastic scattering, obtained with some optical potential, and φa is the projectile
ground state wave function.

This DWBA version of the IAV model has been recently revisited by some groups,
and applied to several deuteron [67-69] and 6Li-induced reactions [69, 70], showing in
most cases a very promising agreement with the existing data. Further applications and
developments are in progress.
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As an example, in fig. 26 we show the experimental and calculated energy distribution
of α particles emitted in the reaction induced by 6Li on 118Sn at the incident energies
indicated by the labels (adapted from ref. [70]). The EBU contribution (dashed line)
was evaluated with the CDCC method whereas the NEB part (dotted line) was obtained
with the IAV method, in its DWBA form. Interestingly, one can see that the inclusive
α-yield is largely dominated by the NEB mechanism. The EBU is only important at
small scattering angles (distant collissions, in a classical picture).

7.3.2. Eikonal approximation to inclusive breakup. At sufficiently high energies, inclusive
breakup is usually assumed to proceed via a one-step mechanism in which a portion of
the projectile (a nucleon, for instance) is suddenly removed, without disturbing the rest
of the system. So, for a reaction of the form a+A → b+X, one assumes that the observed
states of b are already contained in the ground state of the a system. The probability for
the production of a given b state is therefore proportional to the parentage with the initial
projectile. This parentage, that will be addressed also in sect. 9, is directly linked to the
normalization of the overlap function between the projectile wave function (a) and that
of the core (b). For that, one can use the so-called fractional parentage decomposition (see
e.g., chapt. 7 of [10]), which is a technique to expand a given antisymmetrized many-body
wave function in terms of antisymmetrized wave functions of two of its constituents. For
the present purposes, it refers to the expansion of the a wave function in terms of wave
functions of the b subsystem (the core). This expansion will contain, in general, one term
(or more than one) involving exactly the state φb(ξ) observed in the experiment, plus
additional terms containing other b states. Assuming for simplicity a single contribution
we may write

(123)
√

a φ∗
a(ξ, �r ) = φb(ξ)ϕbx(�r ) + {other b states},

where the factor
√

a accounts for the fact that there are “a” identical nucleons that can
be “isolated” from the rest “a − 1” nucleons. Note that, for simplicity, we have omitted
Clebsch-Gordan coefficients (needed to ensure conservation of angular momentum). This
expansion defines the overlap function ϕbx(�r ). From the previous equation

(124)
√

a

∫
dξ φ∗

a(ξ, �r )φb(ξ) ≡ ϕbx(�r ).

The normalization of this overlap is known as spectroscopic factor (denoted hereafter
as S),

(125) Sa
bx =

∫
d�r |ϕbx(�r )|2.

The evaluation of the overlap integrals (124) represents a difficult problem, because they
require the knowledge of the many-body wave functions of a and b. For that reason, in
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many practical applications, it is customary to approximate ϕbx(�r ) by a single-particle
wave function of x relative to the core b

(126) ϕbx(�r ) → Ca
bxϕ̃n�jI

bx (�r ),

where I is the spin of the core b, � the orbital angular momentum and �j = �� + �s, with
�s the intrinsic spin of x. The single-particle wave function is obtained as a solution of a
one-body equation of the form

(127)
[
T̂bx + Vbx − ε�jI

]
ϕ̃n�jI

bx (�r ) = 0,

where ε�jI is the effective separation energy of the particle x in the system a, when the
core is left in the state I, and Vbx some mean-field potential, for example, of Woods-Saxon
type. By definition, the solution ϕ̃n�jI

bx (�r ) is normalized to unity.
The coefficient Ca

bx is called spectroscopic amplitude and, according to (125), |Ca
bx|2 =

Sa
bx. The spectroscopic factor can be understood as the occupation number of the orbital

�sj with the core in a given state I (of course, other quantum numbers may be required,
but we use a loose notation here assuming that the core states are fully characterized
by I). Clearly, the solution of eq. (127) will depend on the choice of the mean-field
potential Vbx. Consequently, the spectroscopic amplitudes (and the corresponding spec-
troscopic factors), defined according to eq. (126), will depend on this choice. This model
dependence leads to some ambiguity in the determination of spectroscopic factors(12).

Returning to the evaluation of the inclusive breakup cross section, the nucleon removal
inclusive cross section is then expressed as [72]:

(128) σb =
∑
n�j

Sa
bx(I;n�j)σsp(I;n�j),

where σsp(I;n�j) is the single-particle cross section for the removal of a nucleon from
the n�j configuration, leaving the core in the state I. The sum extends over all al-
lowed configurations n�j. Owing to the inclusive character of this reaction, σsp(I;n�j)
contains contributions from elastic and non-elastic breakup mechanisms which, in the
context of this intermediate-energy reactions, are referred to as diffraction and stripping
contributions, respectively. Thus, we may write σsp = σstr

sp + σdiff
sp .

(12) Strictly speaking, the occupation probability of a single-particle orbital and its associated
energies are not physical observables. This is because these single-particle states are solutions of
a given mean-field potential, but the latter is model-dependent since there is an infinite number
of ways of splitting the full many-body Hamiltonian into mean-field plus residual Hamiltonians.
Still, for some standard mean-field potential (e.g. Hartree-Fock, Woods-Saxon with some “stan-
dard” parameters) they provide useful quantities for the interpretation of experimental data.
A more formal discussion about the non-observability of spectroscopic factors can be found in
ref. [71].
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Hussein and McVoy [73] showed that a simple expression for the stripping contribution
can be obtained using the so-called eikonal limit, in which one assumes that the projec-
tile constituents move along straight-line trajectories, characterized by their asymptotic
velocity and impact parameter (�b). In this limit, known as Glauber optical limit approx-
imation, the distorted waves describing the scattering by an optical potential U(�R ) can
be expressed as

(129) χ( �K, �R) = ei 
K·
R exp
[
− i

2�v

∫ z

−∞
dz′U(b, z′)

]
,

where z is the component of the vector �R along the z-axis. The quantity

(130) S(b) = exp
[
− i

�v

∫ ∞

−∞
dz′U(b, z′)

]

is the so-called profile function, which is nothing but the elastic S-matrix as a function
of the continuous parameter b.

In terms of these S-matrices, the stripping single-particle cross section can be written
as

(131) σstr
sp = 2π

∫
bdb

∫
d�r |ϕbx(�r )|2(1 − |SxA(bx)|)2|SbA(bb)|2,

where bx and bb are the impact parameters of the valence and core, respectively. This
equation has an appealing and intuitive form: the integrand contains the product of the
probabilities for the core being elastically scattered by the target, |SbA(bb)|2, times the
probability of the valence particle being absorbed, (1 − |SxA(bx)|)2. These probabilities
are weighted by the projectile wave function squared, and integrated over all possible
impact parameters.

Likewise, for the diffraction contribution, one obtains

(132) σdiff
sp = 2π

∫
bdb

[
〈ϕbx| |SbSx|2|ϕbx〉 − |〈ϕbx|SbSx|ϕbx〉|2

]
.

Comparison of knockout absolute cross sections with the eikonal model permits in
principle the extraction of information about the spectroscopic factors. A recent compi-
lation of these results can be found in ref. [74]. Usually, these analyses start from some
theoretical spectroscopic factors, such as those obtained from truncated-space shell-model
calculations, and compute the ratio Rs = σexp

b /σtheo
b . Typically, one obtains Rs < 1,

which has been interpreted as an effect of additional correlations not present in small-
scale shell-model calculations, and which lead to a larger fragmentation of single-particle
strengths (and the subsequent reduction of spectroscopic factors). Moreover, these stud-
ies have found a systematic dependence of this ratio on the separation energy of the
removed nucleon, with Rs becoming smaller and smaller as the separation energy be-
comes larger (see right panel of fig. 27). Some authors have interpreted this result as an
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Fig. 27. – Left panel: longitudinal momentum distribution of the 10Be fragments, in the rest
frame of the projectile, from the knockout reaction 9Be(11Be,10 Be) at 60 MeV/u. The curves are
eikonal calculations assuming a nucleon knockout from s, p, and d states. Quoted from ref. [75].
Right: compilation of the computed ratios Rs of the experimental and theoretical inclusive one-
nucleon-removal cross sections for each of the projectile nuclei indicated, as a function of the
parameter ΔS = ±(Sp − Sn), used as a measure of the asymmetry of the neutron and proton
Fermi surfaces. The red points are for neutron removal cases and the blue points those for
proton removal. Taken from ref. [74].

indication of additional correlations (coming from tensor and short-range portion of the
nucleon-nucleon interaction) [74]. However, this interpretation has been recently ques-
tioned by other authors, because this trend is apparently not observed in other reactions,
such as transfer and (p, pN) reactions, to be discussed below. These results are still under
debate.

Knockout reactions provide also valuable information about the angular momentum
content of the struck nucleon. Assuming a sudden removal of a nucleon, momentum
conservation in the projectile rest frame gives

(133) �kx =
A − 1

A
�ka − �kb,

where �kx is the momentum of the struck particle. This expression shows that the latter
can be directly inferred from the momentum of the observed residue b. Normally, either
the component of the momentum along the beam direction (longitudinal momentum) or
that perpendicular to it (transverse momentum) is used for this purpose. An example
is shown in the left panel of fig. 27, corresponding to the longitudinal momentum of the
10Be(g.s.) fragments produced in the 9Be(11Be,10 Be) reaction at 60 MeV/u, taken from
ref. [75]. The calculations, based on the eikonal model, clearly support a dominance of
the � = 0 component, as confirmed indeed by other experiments.

7.4. Quasi-free (p, pN) reactions . – Breakup experiments of the form A(p, pn)C and
A(p, 2p)C were used extensively in the 1970s as a tool to extract spectroscopic information
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on proton-hole and neutron-hole states in nuclei, such as separation energies, spin-parity
assignments, and occupation probabilities. In these reactions, an energetic proton beam
(E > 100 MeV) collides with a stable target nucleus, removing one or more nucleons,
and leaving a residual nucleus (C), either in its ground state, or in an excited state.

Theoretical analyses of (p, pN) reactions with stable nuclei have traditionally relied on
the distorted-wave impulse approximation (DWIA) [76,77], which assumes that the bind-
ing potential of the removed particle can be neglected in comparison with the projectile-
target kinetic energy. At sufficiently high energies (several hundreds of MeV per nucleon)
this approximation is expected to be well justified.

In the DWIA formalism, the transition amplitude for a A(p, pN)C reaction (with
A = C + N and N = {n, p}) is given by

(134) Tif =
〈
χ(−)

p (�rp)χ
(−)
N (�rN )|tpN |ϕaχ

(+)
pA

〉
,

where ϕa is the wave function of the removed nucleon relative to the “core” nucleus C

and

(135) tpN (E) = VpN + VpN
1

E+ − K̂r − K̂R − UpC − UNC − VpN

VpN ,

which is the T -matrix describing the scattering of the incident proton with the struck
nucleon in the presence of the interactions with the core. This is to be compared with
the free p-N transition amplitude, i.e.,

(136) tfpN (EpN ) = VpN + VpN
1

E+
pN − K̂r − VpN

VpN .

They are formally related by

(137) tpN (E) = tfpN (E − KR − UpC − UNC).

At sufficiently high incident energies, one may neglect UpC and UNC in the propagator
of eq. (135), thus resulting

(138) Tif =
〈
χ(−)

p (�rp)χ
(−)
N (�rN )|tfpN (E − K̂R)|ϕaχ

(+)
pA

〉
.

This corresponds to the distorted-wave impulse approximation (DWIA). The ampli-
tude tfpN is difficult to evaluate because it contains the operator K̂R. A simple ap-
proach to overcome this difficulty is by making the approximation K̂R ≈ 1

2E, so that
tpN (E) ≈ tfpN ( 1

2E). This approximation has been used, for example, in the context of
proton inelastic scattering [78]. Another common approximation in (p, pN) analyses is
the assumption that the T -matrix entering (138) varies sufficiently slowly with momenta,
so that its arguments may be replaced by their asymptotic values. In this case, the ma-
trix elements of this T -matrix between these asymptotic momenta can be singled out
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from the integral, giving rise to a factorized expression for the scattering amplitude, and
to cross sections which are proportional to the free NN cross section. Furthermore, if
one describes the motion of the initial and outgoing nuclei by plane waves, one gets the
plane wave impulse approximation (PWIA)

(139) T PWIA
if = tpN

(
�k ′

pN ,�kpN ;E
)

F ( �Q)

with the structure form factor F ( �Q) =
∫

d�re−i 
Q
rϕa(�r ), where �Q = �k ′
p − �kN − A

A−1
�kp

is the so-called missing momentum. Expression (139) shows very clearly the connection
between the (p, pN) cross section and the transferred momentum. Although formally
appealing, the PWIA approximation is not expected to describe correctly the magnitude
of the experimental cross sections because the distortion and absorption effects, arising
from the interaction of the core with the incoming proton and with the outgoing nucleons,
can be rarely neglected. In DWIA, these distortion effects are taken into account by the
(complex) optical potentials used to generate the distorted waves.

In recent years, (p, pN) reactions have experienced a renewed interest because of
the possibility of performing these measurements with unstable nuclei, using inverse
kinematics, i.e., bombarding a hydrogen target with an energetic radioactive beam. This
technique is analogous to the knockout experiments with composite targets discussed in
sect. 7.3.2, but it is expected to be sensitive to deeper regions of the nuclear density
because of the larger penetrability of the proton probe. In addition to the DWIA method
(e.g. [79]), some other approaches are being developed and applied to these reactions,
such as the so-called transfer to the continuum method, which is based on the CDCC
method [80], and the Faddeev formalism [81,82].

While normal kinematics experiments A(p, pN)C provide typically exclusive observ-
ables corresponding to specific outgoing angles of the emitted nucleons, in inverse kine-
matics experiments the measured observables usually correspond to parallel or longitu-
dinal momentum distributions of the residual nucleus C. As we have seen in the case of
knockout reactions between composite nuclei, the shape of these momentum distributions
carries information on the orbital angular momentum of the struck nucleon. Moreover,
their magnitude is proportional to the occupation probability of the orbital from which
this nucleon has been removed (spectroscopic factor). Therefore, the comparison of the
measured distributions with a suitable reaction framework provides useful spectroscopic
information.

8. – Breakup reactions II: semiclassical methods

When the de Broglie wavelength of the projectile is small compared to some charac-
teristic distance of the collision process one may describe its motion in terms of classical
trajectories. This provides a more intuitive and, normally, mathematically simpler de-
scription of the reaction. This approximation cannot be done to the internal motion of
the nucleons inside the nucleus because their typical wavelength is of the same order
as the size of the nucleus and hence quantum effects are important (for example, for a
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typical energy of 30 MeV, v ∼ c/5 and so λ = �/p ≈ 1 fm). The methods in which the in-
ternal excitations are treated quantum-mechanically, while the projectile-target relative
motion is treated classically, are called semiclassical methods. There exists in the liter-
ature a large variety of such models [62, 83-87]. As an example, we discuss here the one
developed by Alder and Winther and its application to Coulomb excitation experiments.

8.1. The semiclassical formalism of Alder and Winther . – In its simplest form, the
theory of Alder and Winther [21] assumes that the projectile moves along a classical
trajectory, which is not much affected by the internal excitations of the colliding nuclei.
This means that

Δ�

�
� 1 and

Δεn

E
� 1.

The projectile-target interaction is assumed to consist of two terms: V (�R, ξ) = V0(�R ) +
Vcoup(�R, ξ), where V0(�R ) is independent of the internal coordinates and determines the
classical trajectory �R(t). The time evolution of the total wave function of the system
verifies the Schrödinger equation

(140) i�
dΨ(ξ, θ, t)

dt
=
[
V (�R(θ, t), ξ) + Hp(ξ)

]
Ψ(ξ, θ, t),

subject to the initial condition |Ψ(−∞)〉 = |0〉.
In the spirit of the coupled-channels method, the total wave function is expanded in

the internal states of the projectile Hamiltonian [Hp(ξ) − εn]φn(ξ) = 0

(141) Ψ(ξ, θ, t) =
∑
n=0

cn(θ, t)e−iεnt/�φn(ξ),

which, when inserted in (140), gives rise to the following set of coupled equations for the
expansion coefficients:

(142) i�
dcn(θ, t)

dt
=
∑
m

e−i(εm−εn)t/�Vnm(θ, t)cm(θ, t),

with the initial condition cn(θ,−∞) = δn0. The time-dependent coupling potentials
Vnm(θ, t) are given by

(143) Vnm(θ, t) =
∫

dξφ∗
n(ξ)V (�R(θ, t), ξ)φm(ξ).

Once the coefficients are obtained, the excitation probability for a 0 → n transition
is given by

Pn(θ) = |cn(θ,∞)|2,
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and the differential cross section(
dσ

dΩ

)
0→n

=
(

dσ

dΩ

)
clas

Pn(θ),

where (dσ/dΩ)clas is the classical differential elastic cross section which, for a pure
Coulomb case, coincides with the Rutherford cross section.

Due to the conservation of the total probability (flux), one has

∑
n

Pn(t) =
∑

n

|cn(t)|2 = 1.

When the couplings are weak, one may solve (142) perturbatively, assuming that
c0 ≈ 1 and cn � 1 for n > 0. This gives the first-order solution

(144) cn(θ) ≡ cn(θ,∞) � 1
i�

∫ ∞

−∞
e−i(ε0−εn)t/�Vn0(θ, t)dt.

In the important case of pure Coulomb scattering, which was the case studied in
detail by Alder and Winther [21], one finds analytical expressions for the excitation
probabilities. In particular, the first-order excitation probability for a 0 → n transition,
due to the electric Coulomb operator Eλ, results

(145)
(

dσ

dΩ

)
0→n

=
(

Zte
2

�v

)2
B(Eλ, 0 → n)

e2a2λ−2
0

fλ(θ, ξ), (θ < θgr),

which is valid only for angles smaller than the grazing one (θgr) and where a0 is half of the
distance of closest approach in a head-on collision, ξ0→n = (εn−ε0)

�

a0
v is the adiabaticity

parameter and fλ(θ, ξ) is an analytic function, depending on the kinematical conditions,
but independent of the structure of the projectile.

For weakly bound nuclei, the excitation occurs to unbound (continuum) states. The
previous formula can be generalized to

(146)
dσ(Eλ)
dΩdε

=
(

Zte
2

�v

)2 1
e2a2λ−2

0

dB(Eλ)
dε

dfλ(θ, ξ)
dΩ

, (θ < θgr),

where dfλ(θ, ξ)/dΩ is also a well-defined analytic function and dB(Eλ)/dε is the electric
reduced probability to the continuum states.

An appealing feature of these formulas is that they provide a neat separation between
the structure of the projectile (through B(Eλ)) and the reaction dynamics. This sep-
aration allows in principle to extract the dB(Eλ)/dε distribution from the analysis of
small-angle Coulomb dissociation data. For that, one can integrate the double differential
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Fig. 28. – Left: angular distribution of the c.m. of the outgoing n + 10Be system, following
the breakup of 11Be on 208Pb at 69 MeV/u. Right: relative energy distribution between the
n + 10Be fragments, integrated up to two different maximum angles, as indicated by the labels.
The curves are semiclassical calculations based on the theory of Alder and Winther and smeared
with the experimental resolution.

cross section (146) up to a maximum angle (θmax) such that for θ < θmax the breakup
can be assumed to be purely Coulomb and hence (146) is valid (θmax < θgr). This gives

(147)
dσ

dε
(θ < θmax) =

∫ θmax

0

dσ(Eλ)
dΩdε

dΩ ∝ dB(Eλ)
dε

.

An application of this method to the 11Be + 208Pb reaction discussed above is shown
in fig. 28. The curves are the result of semiclassical calculations, convoluted with the
experimental energy and angular resolutions. In the left panel, it is apparent that the
semiclassical calculation reproduces well the data up to θc.m. ∼ 3◦. For larger angles,
the assumption of pure Coulomb scattering is no longer accurate (the grazing angle
is estimated to be θgr = 3.8◦). In the right panel, the corresponding relative-energy
distributions are compared with the data, for two angular cuts. It is seen that, for the
wider angular range (θc.m. < 6◦), there is some underestimation of the data, which may
be attributed to the omission of nuclear effects and higher Coulomb multipoles.

The assumption of pure Coulomb trajectories can be relaxed, at the expense of losing
some of the simplicity of the method. A compelling application is shown in fig. 29 (taken
from [88]) where semiclassical coupled-channels calculations, using trajectories modified
by the nuclear interaction, are compared with CDCC calculations for the breakup angular
distribution of the 8B + 58Ni reaction at the near-barrier energy of 26 MeV.

8.2. Dynamic Coulomb polarization potential from the AW theory . – We have seen in
sect. 5.3 that the effect of the coupling to the breakup channels due to the dipole Coulomb
interaction is given in the adiabatic limit by a simple analytical form. The resultant
expression (eq. (72)) is purely real, and depends on the structure of the dissociated
nucleus through the so-called polarizability parameter.
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�

�
�

Fig. 29. – Breakup of 8B → 7Be + p on a 58Ni target at 26MeV. Coupled-channel semiclassical
calculations, using Coulomb+nuclear trajectories, are compared with CDCC calculations, which
include also nuclear and Coulomb couplings. Quoted from [88].

This adiabatic expression assumes that the excitation energies are large and, therefore,
is not applicable to the Coulomb breakup of very weakly bound nuclei, for which the
average excitation energies are typically small (of the order of 1 MeV or less).

A non-adiabatic (also called dynamic) polarization potential can be derived from
the Alder and Winther theory [89,90]. For that, we consider the second-order process in
which the projectile is excited to a continuum state due to the dipole Coulomb interaction
(V1(t)) and then de-excites, returning to the ground state. The situation is schematically

0V (t) 

z

1V (t) 1V (t) 

1V (t) 1V (t) 

0V (t) 

z

|0> 

0

|0> 

00

z

0

z

Fig. 30. – Second-order process describing the excitation and de-excitation of a nucleus moving
along a classical trajectory determined by the potential V0(t), due to the action of the potential
V1(t).
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depicted in fig. 30. The amplitude probability for this process is given by

c(2)
n =

∑
z

(−i

�

)2 ∫ +∞

−∞
dt〈n|V1(t)|z〉 exp

{
i

�
(εn − εz)t

}
(148)

×
∫ t

−∞
dt′〈z|V1(t′)|0〉 exp

{
i

�
(εz − ε0)t′

}
,

where |z〉 denotes the intermediate states populated during the reaction. Then, one
requires that this second-order amplitude coincides with the first-order amplitude associ-
ated with the polarization potential for all classical trajectories corresponding to a given
scattering energy. This gives rise to

Upol(R) = −4π

9
Z2

t e2

�v

1
(R − ao)2R

(149)

×
∫ ∞

0

dε
dB(E1, ε)

dε

[
g

(
R

ao
− 1, ξ

)
+ if

(
R

ao
− 1, ξ

)]
,

where g and f are analytic functions defined as

f(z, ξ) = 4ξ2z2 exp(−πξ)K ′′
2iξ (2ξz) ,(150)

g(z, ξ) =
P

π

∫ ∞

−∞

f(z, ξ′)
ξ − ξ′

dξ′,(151)

and ξ is the Coulomb adiabaticity parameter corresponding to the excitation to the
continuum energy ε of the nucleus. An important feature of this potential is that when
the breakup energy εb is large enough, the purely real adiabatic dipole potential is re-
obtained. In the opposite limit, for small breakup energies, f( R

ao
− 1, ξ) → 1 and g( R

ao
−

1, ξ) → 0, and the polarization potential becomes purely imaginary, depending on R as
1/[(R − ao)2R].

As an example, we show in the left part of fig. 31 the elastic scattering data for
6He + 208Pb at 22 MeV compared with the optical model calculations obtained with a
bare potential alone (dashed) and with the bare plus the Coulomb dipole polarization
(CDP) potential (solid line). For the bare interaction we have used an optical potential
for the nearby projectile 6Li, which has a similar structure to that of 6He but which does
not exhibit the strong dipole excitation mechanism. The elastic cross section predicted
by the bare potential presents a Fresnel-like diffraction pattern, not observed in the data.
The inclusion of the CDP reduces significantly the elastic cross section and suppresses the
Fresnel peak. On the right, the real and imaginary parts of the bare and CDP potentials
are shown. Their most remarkable feature is their long range, which was anticipated from
the optical model analysis of fig. 6, and is associated with the long range of the dipole
Coulomb couplings, as we have already discussed in the context of the CDCC method.
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Fig. 31. – Left: elastic scattering differential cross section for 6He + 208Pb at Elab = 22 MeV.
The dashed line is a single-channel calculation performed with a bare potential, given by a
6Li + 208Pb optical potential. The solid line is the optical model calculation obtained with the
bare plus dynamic Coulomb polarization potential of eq. (149). Right: real and imaginary parts
of the bare and CDP potentials.

9. – Transfer reactions

Another example of direct reaction is that of transfer reactions. In this kind of
processes, the projectile and target exchange one or more nucleons. Compared to inelastic
scattering, the modeling of transfer reactions has the added difficulty that the initial and
final nuclei are different so one has to deal with two different mass partitions (see fig. 32).
The analysis of transfer reactions has been traditionally performed using the DWBA
method. In the next section, we derive the DWBA formula from the exact transition
amplitude.

9.1. An exact expression for the transfer amplitude. – Following the notation intro-
duced in the introductory section, the initial and final partitions will be denoted as α and
β, respectively. Accordingly, the full Hamiltonian can be written in two different forms,
depending on whether we choose the coordinates of the initial (left part of fig. 32) or the
final (right part) configuration. For example, if we choose the final (post) representation,
it reads

(152) H = T̂
R′ + Hβ(ξβ) + Vβ(�R′, �r ′) = T̂
R′ + HB(ξ′, �r ′) + Hb(ξ)︸ ︷︷ ︸
Hβ(ξβ)

+Vbx + UbA︸ ︷︷ ︸
Vβ(
R′,
r ′)

,
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Fig. 32. – Schematic representation of a transfer reaction, showing the relevant coordinates for
the initial and final states.

where we have used the notation ξβ = {ξ, ξ′, �r ′} to denote the set of internal coordinates.
The total wave function, which must contain at least the incident (elastic) and the

transfer channel of interest, must behave asymptotically according to eq. (8). To obtain
the transfer scattering amplitude (fβ,α(θ) in that equation), we could proceed as in the
coupled-channels method, by writing an ansatz for Ψ(+)


K
(�R, ξα) which includes the de-

sired transfer channels β. This procedure gives rise to a set of coupled integro-differential
equations involving non-local couplings. This is the so-called Coupled Reaction Channels
(CRC) method [91, 92]. This is in fact the procedure followed by some computer codes,
such as the popular code FRESCO [93]. From the formal point of view, a more straightfor-
ward derivation of the scattering amplitude can be obtained making use of the general
expression (26) for the transition amplitude, which we rewrite as

(153) T post
β,α =

∫∫
χ

(−)∗
β ( �K ′, �R′)Φ∗

β(ξβ)(Vβ − Uβ)Ψ(+)

K

(�R, ξα)dξβd�R′,

where Ψ(+)

K

(�R, ξα) is the exact wave function and Φβ(ξβ) represents the internal state of
the final nuclei, which are eigensolutions of the internal Hamiltonian Hβ

HβΦβ(ξβ) = εβΦβ(ξβ), with Φβ(ξβ) = φb(ξ)φB(ξ′, �r ′),

where εβ represents the sum of the internal energies of the outgoing nuclei. Finally,
χ

(−)
β is the time-reversal of χ

(+)
β , which is the distorted wave generated by the auxiliary

potential Uβ

(154)
[
E − εβ − T̂
R′ − Uβ(�R′)

]
χ

(+)
β ( �K ′, �R′) = 0.

9.2. The DWBA approximation. – The transition amplitude (153) can not be directly
evaluated because it contains the exact scattering of the many-body problem (Ψ(+)


K
). A

solvable formula can be obtained making the approximation

(155) Ψ(+)

K

(�R, ξα) ≈ χ(+)
α ( �K, �R )Φα(ξα),

where Φα(ξα) = φa(ξ, �r )φA(ξ′) and where the distorted wave χ
(+)
α , which describes the

projectile-target relative motion in the entrance channel, is generated with some potential
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Uα, that is

(156)
[
E − εα − T̂
R − Uα(�R )

]
χ(+)

α ( �K, �R ) = 0.

Typically, Uα is chosen so as to reproduce the elastic scattering differential cross section.
This approximation gives rise to the DWBA scattering amplitude

(157) T DWBA
β,α =

∫∫
χ

(−)∗
β ( �K ′, �R′)Φ∗

β(ξβ)(Vβ − Uβ)χ(+)
α ( �K, �R )Φα(ξα)dξβ d�R′.

Let us consider for simplicity the important (d, p) case. The post-form interaction Vβ

is given by Vβ = Vpn + UpA. Moreover, the internal states and internal coordinates are
given in this case by

Φα(ξα) = ϕd(�r )φA(ξ′), ξα = {ξ′, �r },(158)

Φβ(ξβ) = ΦB(ξ′, �r ′), ξβ = {ξ′, �r ′},(159)

where �r is the proton-neutron relative coordinate and �r ′ that of the transferred neutron
relative to the target nucleus (cf. fig. 32). Moreover, for not very light targets, we can
further approximate: UpA ≈ UpB ⇒ Vpn + UpA − UpB ≈ Vpn(�r ). The amplitude is
then dominated by the Vpn interaction and hence by small p-n separations. Then, (157)
becomes in the (d, p) case

(160) T DWBA
d,p =

∫∫
χ(−),∗

p ( �Kp, �R′)Φ∗
B(ξ′, �r ′)Vpn(�r )χ(+)

d ( �Kd, �R )ϕd(�r )φA(ξ′)dξβd�R′.

The integral in the target coordinates ξ involves the overlap function between the
target A and the residual nucleus B wave functions. Resorting to eqs. (124), (125)
and (126) we end up with the transition amplitude

(161) T DWBA
d,p = CB

An

∫∫
χ(−)∗

p ( �Kp, �R′)ϕ̃�jI
An(�r ′)∗ Vpn(�r )χ

(+)
d ( �Kd, �R )ϕd(�r )d�r ′d�R′,

and the corresponding differential cross section(
dσ

dΩ

)
β,α

=
μαμβ

(2π�2)2
SB

An(162)

×
∣∣∣∣
∫∫

χ(−)∗
p ( �Kp, �R′ ) ϕ̃�jI

An(�r ′)∗ Vpn(�r )χ
(+)
d ( �Kd, �R )ϕd(�r )d�r ′d �R′

∣∣∣∣2 .

The presence of the overlap function SB
Anϕ̃�jI

An(�r ′) tells us that the transfer cross section
contains information about the single-particle content of a given state of the residual
nucleus. States with a strong single-particle character (large spectroscopic factor) will
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Fig. 33. – Left: single-particle orbitals for 208Pb. Right: experimental energy spectrum of pro-
tons for the 208Pb(d, p) reaction at Ed = 22MeV at 50◦. Quoted from ref. [94] with permission
from Elsevier.

be strongly populated. An extreme case is that of a single nucleon outside a closed-shell
core, such as in the 208Pb(d, p)209Pb reaction. This is shown in fig. 33. Low-lying states
above the Fermi level in 209Pb are populated and this allows for a natural spin assignment
according to a simple shell-model picture.

In a more general case, the determination of the angular momentum of the populated
states is done with the assistance of the angular distribution of these states. This stems
from the fact that the angular dependence of eq. (162) is strongly dependent on the
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Fig. 34. – Left: DWBA calculations for 56Fe(d, p)57Fe reaction at Ed = 15 MeV assuming several
values of the orbital angular momentum of the transferred neutron in the final nucleus. Right:
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orbital angular momentum � so, upon comparison with experiment, the value of � can be
determined. An example is shown in fig. 34, corresponding to the 56Fe(d, p)57Fe reaction
at Ed = 15 MeV. The left panel shows DWBA model calculations for a hypothetical
final state in 57Fe with different values of �. It is seen that, the larger the value of �,
the larger the value of the angle corresponding to the first peak. In particular, for � = 0
the distribution peaks at θ = 0. The right panel shows the comparison of experimental
data for this reaction with DWBA calculations [95], where the sensitivity of the angular
distributions on � is clearly seen.

Finally, under the assumption of the validity of the DWBA approximation, the ab-
solute magnitude of the spectroscopic factor for the decomposition B → A + n can
be determined by comparing the magnitude of the experimental and calculated cross
sections.

9.3. Influence of breakup channels on transfer: the ADWA method . – In the DWBA
method, the three-body wave function appearing in the transition amplitude (153) is ap-
proximated by the elastic component (Ψ(+) ≈ χ

(+)
d ( �Kd, �R )ϕd(�r )). This approximation is

motivated by the assumption that the elastic channel dominates the reaction. However,
this choice, albeit intuitively plausible, deserves some caution. First, the phenomeno-
logical DWBA approach relies on the use of optical potentials, usually taken as local,
angular-momentum-independent potentials, chosen to reproduce elastic scattering. This
only means that the optical potentials will reasonably reproduce the phase shifts, for
all partial waves, in the elastic channel. In other words, the standard DWBA approach
reproduces the elastic wave function asymptotically, at large projectile-target distances.
It is not obvious that this elastic wave function reproduces correctly the elastic compo-
nent of the wave function in the radial range relevant for the transfer T -matrix elements.
Second, the preponderance of the elastic cross section means that the elastic channel
dominates the full wave function asymptotically, but this does not necessarily imply that
the elastic channel is also dominant at shorter distances, where the transfer process takes
place. Inspection of eq. (160) shows that the transfer cross section is dominated by small
p-n separations (for which Vpn is non-negligible). Consequently, an accurate evaluation
of (160) requires a good approximation of Ψ(+)(�r, �R ) within the range of Vpn. This
includes not only elastic channel component (i.e. with p-n forming a deuteron) but also
excited components, in which the p-n system is unbound. Stated otherwise, this requires
an approximation of Ψ(+) including the deuteron breakup channels.

The problem has been addressed at length by R.C. Johnson and co-workers, who have
provided some practical solutions within the so-called adiabatic approximation. The sim-
pler of these solutions, proposed by Johnson and Soper [96], was originally formulated
for (d, p), or (d, n) reactions, although it can be applied to other weakly bound composite
systems. It is based on the fact that the composite projectile has a relatively low binding
energy (2.22 MeV in the case of the deuteron), and so, if the collision energy is rela-
tively high, we can expect that, during the collision process, the relative proton-neutron
coordinate does not change significantly; it is “frozen”.
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Fig. 35. – Schematic representation of DWBA, ADWA and CDCC-BA approaches for a (d, p)
transfer reaction.

Note that, even if the p-n wave function ϕd(�r ) has a relatively long range (which is
also the case of halo nuclei), Vpn(r) has a much shorter range. Therefore, for the purpose
of evaluating the transfer matrix element, one can calculate the adiabatic wave function
using the potential evaluated at �r = 0. This leads to the Johnson-Soper approxima-
tion [96], in which

(163) Ψ(+)(�R,�r ) � χ
(+)
JS (�R )ϕd(�r ),

where χ
(+)
JS (�R ) is the solution of a two-body scattering problem, on the coordinate �R, in

which the interaction is given by

(164) UJS(R) = UpA(R) + UnA(R).

We see that, in this limit, the adiabatic theory of the transfer amplitude adopts a
form akin to that found in the DWBA theory, but this analogy is misleading because the
function χ

(+)
JS (�R ) includes contributions from breakup and the potential UJS(R) may

have little to do with the optical potential describing the deuteron elastic scattering.
Due to the adiabatic approximation, the JT theory is not expected to be accurate at low
incident energies.

The adiabatic approximation is equivalent to neglecting the excitation energy of the
states of the projectile [96]. The adiabatic wave function takes into account the excita-
tion to breakup channels, assuming that these states are degenerate in energy with the
projectile ground state, as illustrated in fig. 35(b). Therefore, the ADWA approach takes
into account, approximately, the effect of deuteron breakup on the transfer cross section,
within the adiabatic approximation. So, it should be well suited to describe deuteron
scattering at high energies, around 100 MeV per nucleon. Systematic studies [97-99] have
shown that ADWA is superior to standard DWBA for (d, p) scattering at these relatively
high energies.

Although the zero-range adiabatic model of Johnson and Soper provides a systematic
improvement over the conventional DWBA, there are situations in which the former fails
to reproduce the experimental data [100, 101]. Models which go beyond the zero-range
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and adiabatic approximations are therefore needed. One of such models is the Weinberg
expansion method of Johnson and Tandy [102]. The idea is to expand Ψ(+) in terms of
a set of functions which are complete within the range of Vpn. A convenient choice is the
set of Weinberg states (also called Sturmians),

(165) Ψ(+)(�R,�r ) =
N∑

i=0

φW
i (�r )χW

i (�R ),

where φW
i (ξ) are the Weinberg states, which are solutions of the eigenvalue equation

(166) [T̂
r + αiVpn]φW
i (�r ) = −εdφ

W
i (�r ),

where εd = 2.225 MeV is the deuteron binding energy and where αi are the eigenvalues,
to be determined along with the eigenfunctions. Beyond the range of the potential all
the Weinberg states decay exponentially, like the deuteron ground-state wave function.
For i = 0, α0 = 1 and so φW

0 (�r ) is just proportional to the deuteron ground state. As i

and αi increase, they oscillate more and more rapidly at short distances. The Weinberg
states form a complete set of functions of �r inside the range of the potential Vpn. They
are well suited to expand Ψ(+) in this region, as it is required by the amplitude (160).
They do not satisfy the usual orthonormality relation but the less conventional one

(167)
〈
φW

i |Vpn|φW
j

〉
= −δij .

If we retain in (165) only the leading term, Ψ(+)(�R,�r ) ≈ φW
0 χW

0 (�R ), one finds [102] that
χW

0 verifies the single-channel equation

(168)
[
T̂
R + UJT (�R ) − Ed

]
χW

0 (�R ) = 0,

with Ed = E − εd and where the potential UJT is given by

(169) UJT (R) =
〈ϕpn(�r )|Vpn(UnA + UpA)|ϕpn(�r )〉

〈φpn(�r )|Vpn|φpn(�r )〉 .

The bra and ket in this equation mean integration over �r, with fixed �R. Interestingly, in
the zero-range limit, UJT (R) reduces to the JS potential, eq. (164). Therefore, the zero-
order result given by eq. (169) can be regarded as a finite-range version of the adiabatic
(JS) potential. These two models are globally referred to as Adiabatic Distorted Wave
Approximation (ADWA). However, it is worth noting that the full Weinberg expansion
makes no reference to the incident energy and, as such, does not involve the adiabatic
approximation. This suggests that a stripping theory based on this Weinberg expansion
can be used at low energies, where the adiabatic condition is not well satisfied. The
inclusion of higher-order terms (i > 0) in the Weinberg expansion has been investigated
in refs. [103,104].
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Fig. 36. – Application of the ADWA method to the 11Be(p, d)10Be reaction. The left panels
show a shell-model picture of the 11Be nucleus. The middle panels show the data from Fortier
et al. [106], displaying the excitation energy function of 10Be events, where one can distinguish
the peaks corresponding to the ground state and the first excited state (2+, Ex = 3.367 MeV).
The rightmost panels show the angular distributions corresponding to these two peaks compared
with ADWA calculations, assuming that they correspond to the neutron removal from the 2s1/2

and 1d5/2 single-particle configurations in 11Be, respectively.

An appealing feature of the ADWA is that its ingredients are completely determined
by experiments. These ingredients are the proton-target and neutron-target optical po-
tentials, evaluated at half of the deuteron incident energy, as well as the well-known
proton-neutron interaction. On the negative side, the ADWA approach does not con-
sistently describe elastic scattering and nucleon transfer. Although, physically, elastic
scattering, transfer and breakup should be closely related, so that the increase of flux
in one channel should reduce the flux in the others, this connection is not present in
ADWA. Furthermore, the arguments leading to ADWA are strongly associated with the
assumption that the transfer is governed by a short-range operator. So, it is not obvious
that the approximations remain valid for other weakly bound systems, like 11Be. Even
in the case of (d, p) scattering, the transfer matrix element is determined not only by
the n-p interaction, but also by the proton-target and neutron-target interactions, that
define the remnant term. The role of these terms, that would have contributions of
three-body configurations in which proton and neutron are not so close together, is not
clear a priori. An alternative method, that avoids the presence of these remnant terms,
has been proposed by Timofeyuk and Johnson [105].

As an example of the application of the ADWA model, we consider the reaction
1H(11Be,10 Be)2H measured at GANIL [106, 107]. Considering the nucleus 11Be as a
neutron outside a 10Be core, we may write for the 11Be ground state

(170) |11Be〉g.s. = α|10Be(0+) ⊗ ν2s1/2〉 + β|10Be(2+) ⊗ ν1d5/2〉 + . . . ,
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where only the two dominant configurations (2s1/2 and 1d5/2) are indicated explicitly. By
comparing with (123), the α and β coefficients are the spectroscopic amplitudes for these
two configurations, respectively. The left cartoons in fig. 36 illustrate these two configura-
tions of 11Be, using a simple independent-particle-model picture. The 2s1/2 configuration
is associated with the 10Be(g.s.). Thus, removing a neutron from the 2s1/2 orbital will
produce 10Be in its ground state. Conversely, if the neutron is removed from the 1d5/2

orbital, the 10Be nucleus will be produced in the first excited state (Ex = 3.4 MeV). Note
that these arguments assume that the reaction occurs in one-step, which is a reasonable
approximation at this energy. The middle panel in fig. 36 shows the experimental yields of
these 10Be states. In addition to the two peaks corresponding to the 10Be g.s. and first ex-
cited state, an even more prominent peak is observed for excitation energies of ≈ 6 MeV,
which is due to the stripping of neutrons from the 1p3/2 shell. The rightmost panels in
fig. 36 show the comparison of the angular distributions of the two first states of 10Be with
ADWA calculations. This comparison allowed for a confirmation of the � assignment, as
well as a determination of the corresponding spectroscopic factors α2 and β2 [106,107].

9.4. Continuum Discretized Coupled Channels Born Approximation CDCC-BA. –
An alternative choice for the three-body wave function Ψ(+) to be used in the transfer
amplitude (153) is the CDCC expansion, eq. (108). When inserted into the transition
amplitude we get, for the (d, p) case,

T CDCC-BA
d,p = CB

An

〈
χ(−)

p ( �Kp, �R′)ϕ̃�jI
An(�r ′)Vpn(�r )χ

(+)
0 ( �Kd, �R )ϕd(�r )

〉
(171)

+CB
An

N∑
i=1

〈
χ(−)

p ( �Kp, �R′)ϕ̃�jI
An(�r ′)Vpn(�r )χ

(+)
i ( �Kd, �R )ϕi

pn(�r )
〉

.

The first term in this expression corresponds to the direct transfer, in which the neutron
is transferred directly from the deuteron ground state, whereas the second term accounts
for the multi-step transfer occurring via the breakup states of the p-n system. These
two types of processes correspond, respectively, to the solid and dashed lines in fig. 35(c)
for the 10Be(d, p)11Be case. Clearly, the multi-step processes going through the breakup
channels are omitted in the DWBA calculation. At most, the DWBA considers the ef-
fect of these channels on the elastic scattering if a suitable choice of the entrance optical
potential is made. The adiabatic approximation includes in principle both mechanisms,
but under the assumption that the excited (breakup) channels of the projectile are de-
generate with the ground state (fig. 35(b)). The advantage of the CDCC-BA approach is
that all relevant bound and continuum states in the b + x system are explicitly included
in the calculation.

Some early comparisons between these three methods can be found in refs. [29, 108-
110] and the main results are also summarized in refs. [28, 111]. Due to numerical lim-
itations, these first studies where done using a zero-range approximation of the Vbx

potential. Overall, it was found that the ADWA model describes well the direct trans-
fer contribution. However, the multi-step contributions, which are completely absent in
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DWBA, are described very inaccurately by the adiabatic approximation. At low energies
(Ed < 20 MeV) the discrepancy between the zero-range ADWA and CDCC-BA calcula-
tions can be understood because at these energies the adiabatic approximation itself is
questionable. However, even at medium energies (Ed ≈ 80 MeV) there are situations in
which transfer through breakup channels is found to be very significant, and therefore
the ADWA method does not work well either. In these situations, the CDCC-BA or
the Weinberg expansion should be better used instead. The disadvantage of the CDCC-
BA calculations is that, in principle, a large basis of internal states has to be included,
making this approach much more demanding numerically.

Finite-range effects have been studied within the adiabatic approximation in refs. [103,
112] and were found to be small (< 10%) at energies below 20–30 MeV/u but become
more and more important as the incident energy increases. This limitation should be
also taken into account in the analysis of experimental data.

Along with deuteron breakup, target excitations may affect the (d, p) and (p, d) trans-
fer cross sections. The problem has been recently tackled in several ways. Deltuva et
al. [113] used a formulation of the momentum space Faddeev equations including core
excitations, and studied the effect of 10Be excitations in the 10Be(d, p)11Be reaction. It is
found that the cross sections are no longer proportional to the spectroscopic factor and the
departure from this proportionality increases with increasing incident energies, reaching
a maximum at a deuteron energy of Ed ≈ 60 MeV. Similar results and conclusions were
achieved in [114] using two alternative methods. One uses an extended ADWA model,
with a deformed adiabatic potential. The other uses the extended version of the CDCC
method including target excitations discussed in sect. 7.1.1, which is then used in the
transfer transition amplitude (26). These works conclude that the main deviation from
the pure three-body calculation with inert bodies originates from the destructive interfer-
ence of the direct one-step transfer and the two-step transfer following target excitation.

9.5. Transfer reactions populating unbound states. – So far, we have considered trans-
fer reactions as a tool to investigate bound states of a given nucleus. However, in a
rearrangement process, the transferred particle can populate also unbound states of the
final nucleus. This opens the possibility of studying and characterizing structures in the
continuum, such as resonances or virtual states.

As in the case of transfer to bound states, the simplest formalism to analyze these pro-
cesses is the DWBA method. In this case, the bound wave function ϕ�jI

An(�r ′) appearing in
the final state in eq. (162) should be replaced by a positive-energy wave function describ-
ing the state of the transferred particle n with respect to the core A. In principle, for this
purpose one could use a scattering state of the n + A system at the appropriate relative
energy. However, this procedure tends to give numerical difficulties in the evaluation of
the transfer amplitude due to the oscillatory behaviour of both the final distorted wave
and the wave function ϕ�jI

An(�r ′). To overcome this problem, several alternative methods
have been attempted. We enumerate here some of them:

i) The bound state approximation [115]. In the case of transfer to a resonant state,
this method replaces the scattering state ϕ�jI

An(�r ′) by a weakly bound wave function
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with the same quantum numbers � and j. In practice, this can be achieved by
starting with the potential that generates a resonance at the desired energy and
increasing progressively the depth of the central potential until the state becomes
bound.

ii) Huby and Mines [116] use a scattering state for ϕ�jI
An(�r ′), but it is multiplied by a

convergence factor e−αr′
(with α a positive real number), which artificially elim-

inates its contribution to the integral coming from large r′ values, and then ex-
trapolate numerically to the limit α → 0. The convergence factor can be phys-
ically justified taking into account that the incident and outgoing fragments are
not characterized by well-defined linear momenta, but correspond instead to wave
packets. Thus, physical results depend on energy averages of stationary-state scat-
tering amplitudes which, in the case of three-body breakup, destroy the asymptotic
oscillations of the integrand in the same manner as the convergence factor [9].

iii) Vincent and Fortune [117] questioned the bound state approximation arguing that,
in general, the bound state and resonant form factors can be very different and,
even in those cases in which the fictitious form factor gives the correct shape, they
can lead to very different absolute cross sections. They suggest using the actual
scattering state, but choosing an integration contour along the complex plane in
such a way that the oscillatory integrand is transformed into an exponential decay,
thus improving the convergence and numerical stability of the calculation.

iv) In a real transfer experiment leading to positive-energy states, one does not have
access to a definite final energy, but to a certain region of the continuum. That
is to say, the extracted observables, such as energy differential cross sections, are
integrated over some energy range which, at least, is of the order of the energy
resolution of the experiment. This suggests a method of dealing with the unbound
states consisting in discretizing the continuum states in energy bins, as in the CDCC
approximation.

An advantage of the method iv) is that it can be equally applied to both resonant and
non-resonant continuum final states. An example is shown in fig. 37, which corresponds
to the differential cross section, as a function of the n-9Li relative energy, for the reaction
2H(9Li, p)10Li∗ at 2.36 MeV/u measured at REX-ISOLDE [118]. The lines are the results
of CDCC-BA calculations, including the transfer to 10Li∗ continuum states, showing the
separate contribution of the s-wave (� = 0) continuum and p-wave (� = 1) continuum.
The strength of the measured cross section close to zero energy is due to the presence
of a virtual state in the 10Li∗ system, whereas the peak around 0.4 MeV is due to a
p1/2 resonance. This is an example of how the use of transfer reactions can provide
information on the continuum structure of weakly bound or even unbound systems.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Models for nuclear reactions with weakly bound systems 201

0 0.5 1 1.5

Ex (MeV) (above 
9
Li+n threshold)

0

10

20

30

dN
/d

E
x (

co
un

ts
 p

er
 1

00
 k

eV
) Experiment

s1/2 virtual state
p1/2 resonance
s1/2 + p1/2

(�c.m.=98-134
o
)

Fig. 37. – Experimental yield for the population of 10Li states for the reaction 2H(9Li, p)10Li∗ as
a function of the n+9Li relative energy. The calculations consider the transfer of a neutron from
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Adapted from ref. [118].

10. – Final remarks

We have reviewed the current status of the theoretical description of nuclear reactions,
with emphasis on the case of reactions involving by weakly bound nuclei. Although formal
quantum-mechanical scattering theory provides exact solutions to compute the scattering
amplitudes and their associated cross sections for a general scattering problem, we have
seen that important approximations must be applied in practice. These approximations
try to reduce the extremely complicated many-body scattering problem into a simplified,
numerically tractable one. These approximations are usually tailored to specific types
of reactions, giving rise to a large variety of models. Although we have reexamined the
most common ones, the models presented here do not exhaust the variety of approaches
available in the literature. Some of the omitted topics are the following (again, the list
is not exhaustive):

– Two-particle transfer reactions. In the case of transfer reactions, we have restricted
ourselves to the case of one-particle transfers, and have omitted altogether the
important case of two-particle transfer. These are perfect tools to study the so-
called pairing rotations and vibrations, collective modes associated with a field
(the pairing field) which changes the number of particles by two. The formal
description of two-particle transfer reactions dates back to the seminal works of
Glendenning [119] and Baynman [120] and has received renewed attention in recent
years [121,122].

– Charge-exchange reactions. The nucleon-nucleon interaction contains spin- and
isospin-dependent terms which are able to induce spin and isospin changing transi-
tions such as those triggered by the weak interaction in β-decay. For example, the
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presence of στ terms in the strong interaction gives rises to spin-flip, isospin-flip pro-
cesses analogous to the Gamow-Teller (GT) transitions. In fact, charge-exchange
(CE) reactions, such as the (p, n) or (3He, t) reactions at intermediate beam energies
can selectively excite GT states up to high excitation energies in the final nucleus.
It has been found empirically that there is a close proportionality between the cross-
sections at 0◦ and the transition strengths B(GT ) in these CE reactions. Therefore,
CE reactions are useful tools to study the relative values of B(GT ) strengths up
to high excitation energies (see [123] for a comprehensive review). Most recently,
double charge-exchange reactions have been put forward as a promising tool to
constrain the nuclear matrix elements involved in neutrino-less double-beta decay
with potential access on the nature of the neutrino (Majorana versus Dirac) [124].

– Ab initio methods. Our discussion has been mostly confined to macroscopic and few-
body models. Much work is being done in recent years in the field of the so-called ab
initio approaches, whose final goal is to describe both the structure and dynamics
of nuclei starting from the nucleon-nucleon interaction. One of the most promising
tools is the no-core shell model which enables to study bound and scattering states
of many-body systems (see [125] for a recent review). Due to the complexity of
these calculations, applications have been restricted to light systems. Promising
results have been obtained for a number of reactions, such as 4He(n, n)4He [125],
3H(d, n)4He, 3He(d, p)4He [126], 7Be(p, γ)8B, 10C(p, p)10C, among others.

The curious reader is encouraged to go through the recommended references to dis-
cover by him/herself these and other recent developments and advances in the field of
nuclear reaction modeling.
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Summary. — These notes summarise the lectures given at the International School
of Physics “Enrico Fermi”, in July 2017 at Varenna (Italy), about the use of transfer
reactions to extract spectroscopic information on nuclei far from the valley of sta-
bility. Transfer reactions as a probe of nuclear structure have re-gained importance
in the last 20 years with the development of good-quality beams of unstable nuclei,
and thus the possibility of carrying out reaction studies in inverse kinematics. After
a short introduction about the general properties of nuclear reactions and transfer
reactions in particular, the notes discuss the experimental challenges related to the
use of radioactive ion beams. The main part is then dedicated to the presentation
of a number of selected experimental studies. The focus lies on the impact of those
studies on our understanding of the nuclear structure and the features of the under-
lying nucleon-nucleon interaction. The topics touched upon are: shell evolution in
light nuclei at N = 8, the disappearance of the N = 20 shell closure and the emer-
gence of another shell gap at N = 16; the spin-orbit term of the nucleon-nucleon
interaction and the changes in its strength in exotic nuclei; the microscopic origin
of shape coexistence in low-lying 0+ states, in the neutron rich Mg and Ni regions.
We conclude with a brief reflection on the present developments and challenges for
experiments and theory in this field.
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1. – Introduction

The topic of nuclear reactions is a broad and complex one. In these lecture notes, we
will limit ourselves to a well-defined subject: the use of reactions, in particular nucleon-
transfer reactions, for the study of nuclei far from stability. This implies the use of
radioactive ion beams (RIBs), which brings along a number of issues, both experimental
and theoretical.

The notes are organised as follows: after a short introduction of the characteristics of
nuclear reactions in general (sect. 2.1), we will motivate the use of direct reactions as a
powerful probe of nuclear structure (sects. 2.2 to 2.5). Then (sects. 3.1 and 3.2) we will
briefly review the challenges of performing studies with RIBs. Finally, we will present
some cases from literature (sect. 4), lead by the main questions that are presently driving
the research on nuclear structure. A brief outlook (sect. 5) concludes the notes.

As general references for the matter presented here we recommend the book of Satch-
ler [1] for a general introduction on nuclear reactions; the text of Thompson and Nunes [2]
for a formal treatment; and the articles of the Nobel Symposium 152 [3] for a review of
the physics with radioactive ion beams.

2. – Characteristics of nuclear reactions

In a very general way, a nuclear reaction can be defined as a collision between a
nucleus X and a probe a (which can be a particle, or a γ-ray), in which the reactants
may exchange energy, momentum and possibly mass. The result is a product nucleus
Y and some outgoing radiation b (again, a particle or electromagnetic radiation). The
following notations are used:

a + X → b + Y,(1)

or the shorthand form

X(a, b)Y.(2)

The second notation puts the accent on the process (a, b), which has specific characteris-
tics that do not depend much on the nucleus X. It is used to refer to a class of reactions
that share similar features: for example, the nucleon-transfer reaction (d, p).

The mechanism of nuclear reactions is a vast and interesting topic on its own. Here,
however, we consider reactions as a mere tool to access information on nuclear structure.
In this cases, usually X is the complex nucleus to be studied; the probe a, on the
other hand, is mostly chosen with a simple and well-known structure, to constrain the
complexity of the problem.

2.1. Classification. – Reactions can be classified according to different criteria. Two
important definitions used in this context are those of (mass) partition: the combina-
tion of particles at the beginning or at the end of a reaction process, and of reaction
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channel : the combination of particles with their specific excitation states and radiation
emitted. For example, based on the reaction channel, we have:

– elastic scattering X(a, a)X when the exit channel is the same as the entrance
one: same particles in the same states (usually the ground state). For example:
12C(p, p)12C; 208Pb(n, n)208Pb. An important remark is that elastic scattering is
always present in a nuclear collision, while all the other channels may or not be
present (“open”) according to conservation and selection rules;

– inelastic scattering X(a, a′)X∗ when one of the particles (or both) are left in an
excited state. For example: 12C(α, α′)12C∗;

– rearrangement reactions when the mass partition changes. Among these are trans-
fer reactions, when one or more nucleons c are transferred from the probe to the
nucleus X or vice-versa. The first case is that of stripping : X((b + c), b)(X + c),
for example 12C(d, p)13C; the second is pick-up: (Y + c)(a, (a + c))Y , for example
13C(p, d)12C.

Another class is that of knockout reactions X(a, ac)Y ; the probe survives and
literally knocks out one or more nucleons from the nucleus X. For example
12C(p, 2p)11B.

– photo-disintegration X(γ, a)Y occurs when a nucleus is excited and splits following
the absorption of a γ-ray. For example 16O(γ, α)12C. The inverse is a capture reac-
tion X(a, γ)Y , for example 14N(α, γ)18F. These reactions are especially important
in nuclear astrophysics.

Reactions can also be classified according to their mechanism, i.e. the model which
is used to describe the reaction process that leads to a given outcome. Some of the
parameters involved in the description are reaction timescales, proximity of the react-
ing particles, energy and spatial distribution of the products. This classification is not
rigorous; the differences are sometimes blurred.

– In compound-nucleus reactions, all the nucleons from the initial nuclei fuse, forming
a highly-excited compound. In the process there is time for the excess energy to
be distributed among all the nucleons (tipically t ≈ 10−22 s, which is the time that
a nucleon takes to traverse a nucleus). The system is in a superposition of many
states with a given energy and different spins. Statistically, if the energy balance
allows, one or more nucleons may acquire enough energy to escape the nucleus. The
compound nucleus thus de-excite through nucleon evaporation and γ-ray emission,
leaving behind a residue. This latter process is purely statistical and only depends
upon the energy of the compound system; in other words, there is no memory of
the entrance channel. The probability of such a process to occur increases if the
collision is central (head-on).

– In direct reactions, at the opposite, only few nucleons participate in the process.
The collision is fast (t � 10−22 s) and peripheral: the nuclei do not deviate much
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from the original trajectories, such that the products are observed preferentially
at forward centre-of-mass angles. Clearly, the products have a large overlap with
the particles in the entrance channel. Nucleon-transfer reactions are modelled as
direct processes.

– Resonance reactions are similar to compound-nucleus reactions, but the product is
formed in a well-defined excited state with given energy and spin, that can decay
only through few channels with probabilities that depend on the spectroscopic
structure of the state.

– Deep-inelastic reactions (also called multi-nucleon transfers) are in between direct
and compound-nucleus reactions, and share characteristics of both. They are also
mostly binary (two particles in the outgoing channel) with products that differ
only by a few nucleons from the initial nuclei. However, a large fraction of the
kinetic energy is converted into excitation energy of the products (from which
the alternative name of damped collisions). Deep inelastic processes are typical
of heavy-ion reactions (the initial nuclei are both heavier than an α-particle) at
energies slightly above that of the Coulomb barrier between the nuclei.

It is important to realise that, when measuring a reaction (thus a given entrance chan-
nel at a given centre-of-mass energy), we may observe products corresponding to all the
different processes listed above. Even for a selected outgoing channel (through the identi-
fication of the products), different processes can contribute: for example, proton emitted
in a collision with deuterons may be produced in a direct (d, p) reaction or through the
statistical evaporation from the compound nucleus.

2.2. Importance of transfer reactions. – As mentioned above, transfer reactions only
involve a few nucleons, the most peripheral ones. For a particular nucleon transfer to
occur, matching conditions have to be fulfilled concerning the relative linear and angular
momenta of the nucleon in the initial and final nucleus, so that, for example, the nucleon
would conserve its momentum in the direction of the collision [4]. Furthermore, we expect
that a state in the final nucleus will be populated if it has some probability of having
a structure similar to the initial nucleus plus one nucleon (or hole) with given quantum
numbers, dictated by the (shell-model) binding potential. This is called a single-particle
configuration, and can be more or less pronounced in a state (remember that a state
can contain different configurations as long as they have the same spin). This way, the
validity of the predictions of a model can be directly tested.

Experimentally, specific pieces of information are related to observables: a) the energy
balance, measured as the difference in kinetic energy between initial and final nuclei,
allows to determine the excitation energy of the populated state; b) the conservation of
angular momentum imposes a relation between the initial and final spins of the nuclei and
the transferred angular momentum, where the latter can be measured; c) the probability
of a reaction to occur (its cross section), and thus the number of observed events, is
proportional to the weight of the single-particle configuration corresponding to the initial

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Nucleon-transfer reactions with radioactive ion beams 213

nucleus plus one nucleon (or hole) with quantum numbers determined by the selected
channel. We will look now at each of these features in detail.

2.3. Conservation of energy . – We can write the conservation of energy in the following
way:

Ek,i + Mic
2 = Ek,f + Mfc

2,(3)

where Ek,i, Ek,f are the (initial and final) kinetic energies and Mi,f is the sum of the
masses of the particles in the entrance and exit channels; in this notation the masses also
include the excitation energies.

The relation obviously holds both in the centre-of-mass and laboratory reference
frames. In the former (where we denote quantities with a prime, i.e. E′) we have

E′
k,i + (Mic

2 − Mfc
2) = E′

k,f .(4)

Since E′
k,f must be positive, relation (4) represents a condition (threshold) on the min-

imum initial kinetic energy, necessary for the channel (i, f) to be open. By defining the
Q-value of the reaction as

Q = Mic
2 − Mfc

2,(5)

the condition becomes

E′
k,i > −Q.(6)

The Q-value is usually calculated through the mass excess Δ = (M − A)c2, which is
tabulated in the mass tables. The centre-of-mass kinetic energy is related to the labo-
ratory (beam) energy by E′

k,i = Ek,i
At

At+Ap
, where At and Ap are, respectively, the mass

numbers of target and projectile.
As an example, consider the reaction 41Ca(p, d)40Ca. The mass excesses are Δ41Ca =

−35138 keV, Δ40Ca = −34846 keV, Δp = 7289 keV, Δd = 13136 keV. The Q-value is
Q = −6139 keV; the energy threshold for the (proton) beam to populate the ground
state of 40Ca is thus Ek,i > 6.289 MeV; for excited states, the excitation energy should
be added to Mfc

2, i.e. subtracted from the Q-value.
If we write the conservation of energy in the laboratory system, we see that

Q = Ek,f − Ek,i.(7)

By measuring the kinetic energy of the outgoing particles we can thus calculate the Q-
value of the event and determine the corresponding reaction channel (excitation energy
of the product nucleus).
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Fig. 1. – Schematic representation of a stripping reaction. Orbital angular momenta l and
angular momenta j compose to total spins J as indicated.

2.4. Conservation of angular momentum. – We consider the reaction a + A → b + B;
we indicate with J the total spin of each particle, and with �� the angular momentum
between the two particles in the entrance (α) and exit (β) channels. The conservation
of angular momentum is then written as

Ja + JA + ��α = Jb + JB + ��β .(8)

We defined the transferred angular momentum as the additional spin that we find in the
outgoing particles:

l = (Jb + JB) − (Ja + JA) = ��α − ��β .(9)

We refer now to fig. 1 and consider, for simplicity, a stripping reaction in which the par-
ticle x is transferred from the projectile a = b+x to the target A. From the composition
of angular momenta to the total spins we can easily derive

l = (Jb + JB) − (Ja + JA) = jAx − jbx = lAx − lbx.(10)

In other words, the transferred angular momentum is constrained by the binding orbital
angular momenta of the particle x in the initial a = b+x and final B = A+x systems(1).
For nucleon transfers, these are simply the angular momenta (s, p, d, g, f . . . ) given
by the shell-model orbitals occupied by x in the two systems. We already see from this
picture that only few values of l can contribute to the transfer.

We now show how this transferred angular momentum can be measured experimen-
tally. This argument is based on a semi-classical picture, illustrated in fig. 2. We assume
that the reaction takes place on the surface of the target nucleus at a distance R from
its centre. The transferred angular momentum is then l = q × R, where q = kα − kβ

(1) The interactions at work in nuclear reactions also conserve parity, thus it must be:
πaπAπbπB = (−1)l = (−1)lAx+lbx . This means that either only even or only odd values of
l are allowed.
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Fig. 2. – Left: illustration, in a classical picture, of the rings of radius l/q from which particles
observed at an angle θ may originate. Right: relation between the linear momenta k in the
entrance and exit channels, the transferred momentum q and the angle θ.

is the transferred linear momentum. We consider a transfer reaction leading to a state
of a given energy: the transferred linear momentum q is then fixed in magnitude. For
an observation angle θ, additionally, kβ is fixed in direction. This implies that the angle
β between q and R is also fixed, and thus also the ratio l/q. The latter is the radius
of two similar circles, located on the opposite sides of the surface of the target nucleus,
where the reaction may take place. Finally, if we assume that the incoming and outgoing
linear momenta do not differ much in direction and magnitude (which is reasonable for
a peripheral transfer of one nucleon), we have q ≈ k̄θ, see fig. 2 right, where can define
an average momentum k = (kα + kβ)/2 or, alternatively, k =

√
kαkβ .

We now impose that the circles remain on the surface: l/q ≤ R. With the expression
for q as a function of the scattering angle, the condition can be rewritten as θ ≥ l/(k̄R):
classically, we expect to observe products from the transfer reaction only at angles θ larger
than l/(k̄R). Also, we may expect interference between the waves emitted from the two
circles at opposite sides. We will have constructive interference for a difference in path
(if the circles are small) δx ≈ 2Rθ equal to an integer number of wavelengths λ = 2π/k̄,
which leads to θ = nπ/(k̄R). Quantistically, maxima and minima will be smoothed out,
also because of the uncertainty in the location of the nuclear surface. In conclusion, if we
measure the number of events (cross section) as a function of the centre-of-mass emission
angle with respect to the beam direction (angular distributions) we observe a pattern
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Fig. 3. – Angular distributions observed in the reaction 56Fe(d, p)57Fe. Each curve corresponds
to the transfer to a specific state in 57Fe, with the given Q-values. The first maximum of the
distribution is in θ = 0 for l = 0, and moves to the right for increasing values of l. The maxima
on each curve are separated by Δθ = π/(k̄R). Figure modified from ref. [5].

as those shown in fig. 3. From the location of the first maximum, knowing the average
momentum k̄ and the interaction radius R (usually taken ≈ 3 fm larger than the sum
of the nuclear radii), we can extract the transferred angular momentum l. The spin of
the populated state is then obtained by a (vector) sum with the spin of the transferred
particle, see for example eq. (9). For the simple, but recurring, case of the transfer of one
nucleon onto an even-even target (in its 0+ ground state), the final spin is constrained
to the two values JB = l ± 1/2 (except for l = 0, for which JB = +1/2).

The same conclusions can be derived from an analysis of the quantistic expression
of the cross section as calculated in the framework of a model for transfer reactions
(for example the Born Approximation BA, or the Distorted-Wave Born Approximation
DWBA). For the extraction of l from experimental data, usually the cross section is cal-
culated in one of these models and fitted to the data, with l and an overall normalisation
(see further) as free parameters. We refer to ref. [1] for a full illustration.

2.5. Spectroscopic factors. – Expressions for the cross section of a transfer reaction
(probability of the process to occur) can be derived in various ways. For our purposes,
we can refer to fundamental concepts such as Fermi’s golden rule for the transition rate
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between two states. The key quantity in the expression, as in all other expressions for a
cross section, is the transition matrix element, which in our case can be written as

U(r) =
∫

φ∗
aφ∗

AV (r)φbφB dτ,(11)

where φ are the wave functions for the internal states of the respective particles, V (r) is
some interaction potential and the integral extends to all internal degrees of freedom of
the nuclei a A, b, B involved in the process. With a smart choice of the probe a, this
usually reduces to a factor times the overlap between the wave functions of the complex
nuclei φA and φB, which is expressed by the spectroscopic factor.

Various definitions of the spectroscopic factor exist, either incorporating or not
statistical factors for the spin and isospin. Very generally, we may understand its
meaning by considering a stripping reaction and writing the wave function of B as
φB = (φAφx)(lAxjAx)JB

, i.e. the combination of A and the transferred particle x in a
given orbital angular momentum and total spin. The cross section will then be propor-
tional to the square of φx in that state and statistical factors, which together form the
spectroscopic factor S(lAxjAx)JB

.
In practice, one usually assumes |φx|2 = 1, i.e. a pure single particle configuration, in

the calculation of the expected cross section. This calculated value is then compared(2)
to the experimental one to extract the experimental spectroscopic factor :

Sexp =
(

dσ

dΩ

)
exp

/(
dσ

dΩ

)
cal

,(12)

which is essentially a measure of how much the populated state contains that specific
single-particle configuration(3). As an example see fig. 4, where the measured fractions
of 90Zr + n single-particle configuration in the low-lying states of 91Zr, populated in the
90Zr(d, p)91Zr reactions, are shown.

Spectroscopic factors (SFs) should be used with caution. The absolute values of the
theoretical SFs depend upon several factors, like the model (approximation) used for
the description of the reaction mechanism, and the potentials describing the interaction
between nuclei (optical potentials) and the binding of the particles. The possible choices
are countless, leading to SF values that may differ significantly. For this reason, very often
relative SFs, calculated with respect to the SF of a state which is argued to have a rather
pure single-particle configuration, are used to derive conclusions about the structure of
the different populated states in a nucleus.

Transfer reactions are potentially very useful in the determination of the energy gap
between orbitals. Simplifying, if a nucleon transfer populates two pure single-particle

(2) A fit of the experimental angular distribution with the calculated model provides the trans-
ferred angular momentum l and the normalisation factor.
(3) This assumes that the initial nucleus A is in a well-defined configuration (negligible mixing
with excited configurations). Otherwise, all combinations have to be taken into account.
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Fig. 4. – Level scheme (with spins and l-values) and fractions of single-particle wave functions
deduced from the measurement of the 90Zr(d, p)91Zr stripping reaction. Figure adapted from
ref. [6].

states, their difference in energy corresponds to the gap between the orbitals occupied
by the nucleon in the two configurations. If the states are not pure and the strength of a
configuration is spread over different states, an energy centroid can be found, by weighing
the energy of each state by its SF. This procedure, however, relies on the detection of the
full strength of a configuration; this is not obvious, because a significant fraction may lie in
states at high excitation energies, outside the limit of detection (remember the condition
for the threshold energy of the incoming beam). An example is the 40Ca(d, p)41Ca
reaction, for which two l = 1 excited states at E∗ = 1.95 MeV and E∗ = 2.47 MeV are
observed: a hurried interpretation would be that of the transfer of a neutron to the p3/2

and p1/2 orbitals, respectively. The expected ratio of SFs for pure single-particle states
(thus 2J +1 statistical factors only) would give a ratio of 4/2 in the cross section; a factor
of three is observed, possibly leading to the erroneous conclusion of rather pure states and
thus a very small spin-orbit splitting of ≈ 500 keV. However, a measurement extended
to higher excitation energies would reveal several other l = 1 states with significant
SFs: we now know that both the states mentioned above contain components of the
p3/2 configuration, while the p1/2 strength is found mainly in a state at E∗ = 4 MeV
and is fragmented in many states above, with a centroid at about 4.5 MeV. The derived
spin-orbit splitting is about 2 MeV.
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3. – Transfer reactions with nuclei far from stability

We have shown how transfer reactions can be a powerful spectroscopic tool for the
study of the nuclear structure. These studies have become very relevant in recent years on
nuclei far from the valley of stability, since the discovery of changes in the shell structure
in such systems. The reason lies in the excess number of neutron or protons, which leads
to an enhancement of particular parts of the underlying nucleon-nucleon interaction [7,8]:
spin-orbit force, tensor part of the interaction, three-nucleon forces, are some examples.
It is thus not a surprise that the whole international community of nuclear-structure
physicists is strongly investing in the research on nuclei far from stability, with the
realisation of new facilities where more detailed studies will be possible.

The use of nuclear reactions to study unstable nuclei, however, carries severe experi-
mental challenges.

3.1. Inverse kinematics. – A conventional arrangement for nuclear reaction studies
would consist in a beam of light ions (p, d, α particles) impinging on a thin target (a foil)
of the nuclei of interest, with charged-particle detectors placed at defined angles to record
the scattered particles. Unstable nuclei, however, have short half lives that do not allow
making them into targets: such species are only available as beams of radioactive ions
(RIBs) at dedicated facilities. Experiments have to be conducted in inverse kinematics,
with a heavier beam impinging on a light target.

The inverse-kinematic arrangement has various implications, that can be understood
by looking at the kinematical relationships of the collision; we have presented them in
the appendix. We consider eq. (A.2), which shows that the characteristics of inverse-
kinematic binary reactions are essentially determined by the ratio of the masses of the
light target and light ejectile (see discussion in the appendix). We then expect similar
kinematics regardless of the target and the beam energy (as long as the Q-value is small
with respect to the centre-of-mass energy). This is shown in fig. 5, where the energy
of the light particle is plotted against the emission angle in the laboratory frame for a
number of reactions induced by a 16C (top) and a 74Kr beam (bottom). We see that the
kinematic lines are similar for (p, d), (p, t), (d, t), (p, 3He) on one side (at forward angles),
and (d, p) on the other (at backward angles).

3.2. Detection setup. – Figure 6 shows a schematic, generic setup that is used in
reaction studies in inverse kinematics. Key characteristics are a good efficiency, to counter
the weak intensities of the RIBs; good position resolution and energy resolution.

The target, usually a foil of material containing a light nucleus or a thin gas target,
is surrounded in close geometry (within the reaction chamber) by an array of charged-
particle detectors. This array catches the light products of the reactions; it has to be
finely segmented to provide position information — the scattering angles of the outgoing
particles — together with energy and particle identification. A good resolution is crucial
(see further), but it is in conflict with the requirement of a close geometry.

Outside the reaction chamber, an array of γ-ray detectors may be present, to measure
the prompt radiation emitted by the reaction products. Mostly, γ-rays are emitted by
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Fig. 5. – Laboratory energies and angles of the light particle emitted in reactions in inverse
kinematics, induced by 16C at 560 MeV (top) and 74Kr at 900MeV (bottom). Figure adapted
from ref. [9].

the heavy beam-like nucleus, travelling forward at about the beam velocity, a measurable
fraction of the speed of light (for example, 5 MeV/nucleon corresponds to 10% of c).
The emitted γ-ray will then be Doppler-shifted, and knowledge of the emission angle is

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Nucleon-transfer reactions with radioactive ion beams 221

Fig. 6. – Schematic view of a generic setup for the study of reactions in inverse kinematics.

necessary for a correction. For this reason, the γ-ray array also needs to be segmented.
In the forward direction, the unreacted beam particles and the reaction products travel

with very little spatial separation. A magnetic spectrometer may be used to separate
the species, identify the reaction products and measure their momentum. This is a
challenging task, and with present devices it can be achieved with good efficiency only
if the mass of the incoming beam does not exceed A ≈ 50. With larger masses the
kinematics is very forward focused and a spectrometer will have to employ slits, inevitably
reducing its acceptance and thus the overall efficiency of the detection setup. For this
reason, in many cases a spectrometer is not used.

By studying fig. 5 in detail we can derive some important properties of the charged-
particle detection setup surrounding the target.

– A universal setup

We notice that the energies of all particles emitted for small centre-of-mass angles
(where the cross sections are largest and most structured) are rather low, around
5 MeV, and do not exceed 30 MeV in the full angular range of interest. This feature
suggests that the array of charged-particle detectors surrounding the target may
be built in a rather “universal” way, and used in a wide range of reaction studies.

– Kinematical compression

We turn now our attention to the energy difference between the light particles
when reactions produce nuclei either in their ground state or in an excited state.
Such differences are only a fraction of the excitation energies of the product, see for
example the backward protons in 16C(d, p) or the forward tritons in 16C(d, t), in
the regions were the kinematic lines are “horizontal” (small centre-of-mass angles).
This is the so-called kinematical compression of the energies of the detected ions.
As a consequence, the resolution in the Q-value of the detected event, and thus
in the excitation energy of the populated state, is only a fraction of the energy
resolution that is achieved in the detector itself. This is clearly a problem when
the density of states in the populated nucleus is high.
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– Angular resolution

Finally, consider the regions where the kinematic lines become more “vertical”,
beyond 30 degrees in the centre of mass for (d, p) reactions and beyond 20 degrees
for the others. There, a small uncertainty in the detected scattering angle translates
in a very large uncertainties in the Q-value and the centre-of-mass angle of the
detected event. In these regions, the construction of the angular distributions of
the cross sections for each excited state becomes very difficult.

The problems discussed above are aggravated by the weak intensities of RIBs. To
attain the luminosity required to perform the measurement in a reasonable time (typically
a week), one could increase the target thickness. This way, however, the incoming heavy
ions would lose a sizeable amount of energy in the target. Since the reaction may take
place at any point in the target, there is an uncertainty on the energy available at the
reaction vertex. As a result, the energy of the light particle, outgoing at a given angle,
is broadened, with a direct effect on the determination of the Q-value of the reaction,
worsened by the kinematical compression. In practice, it is difficult to achieve resolutions
in excitation energy better than about 150 keV; resolutions of the order of 500 keV or
worse are often encountered.

The coincident detection of γ-rays from the decay of the heavy excited product can
potentially provide a much better resolution, of the order of a few keV, on the energy
of the excited states (only if, of course, γ rays are emitted in the process: for reactions
populating the ground state this is not the case). However, the efficiency of γ-ray arrays
is low, of the order of 10%. It is then necessary to use much thicker targets to achieve
sufficient yields, with consequences on the resolution of the light charged particles. In
recent measurements this has been the trend, see for example refs. [10, 11]. “Clean”
angular distributions of the light particles for a populated state can be constructed by
requiring a coincidence with a γ-ray from the de-excitation of the state.

Detection of the full momentum (angle and energy) of one of the reaction products is in
principle sufficient to reconstruct the full kinematics of the binary reaction. Nevertheless,
the use of a spectrometer for the detection of the heavy beam-like product (see fig. 6)
may help alleviating the problems illustrated for the detection of the light particles and
improve the resolution, but only in certain cases. To measure the momentum of the
nuclei, magnetic and electric fields are used to bend their trajectories. Gaseous detectors
are then used to measure the ion position (bending angle) at different locations on the
track, complemented by arrays of solid-state detectors to measure the energy. Different
configurations of fields are used, according to the aim of the setup, that could be oriented
towards high resolution or towards a high acceptance.

In ref. [12], the authors considered some examples of neutron-transfer reactions in
inverse kinematics, and calculated the effect of various contributions to the final reso-
lution of the measurement. Their results show that a spectrometer is useful when the
incoming beam nuclei are not too heavy, for example in the 12Be(p, d)11Be reaction in
inverse kinematics. In such case, the uncertainty in the resolution of the Q-value when
calculated from the momentum of the light particle is dominated by the uncertainties on
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the energy loss of the beam ion (and light ejectile) in the target. The resolution on the
Q-value improves (by a factor 3 or 4) if the momentum of the heavy ion is measured in
a spectrometer. However, when the incoming beam particle is heavier (the authors of
ref. [12] considered 76,77Kr on deuterons and protons), the differences in angle between
the forward-focused heavy products become too small, and the uncertainty on their de-
termination in the spectrometer are large. In that case, the detection of the light ejectile,
even with the associated large uncertainties, is preferable.

4. – Case studies

We now turn to a short selection of recent measurements of nucleon-transfer reac-
tions with radioactive ion beams. We will only briefly touch on the experimental as-
pects, focusing rather on the motivations and the conclusions derived from the results,
which concern aspects of the nucleon-nucleon interaction and their effect on the shell
evolution.

4.1. Light nuclei . – The unexpected results on the structure of light exotic nuclei —
diffuse matter distributions (halos), strong clustering, states with structures reminiscent
of those found in molecules — were among the main triggers for the development of the
field of radioactive ion beam research.

Here we focus on the magic number N = 8. At stability, the sequence of the neutron
orbitals predicted by the shell model is 1p1/2 below N = 8, 1d5/2 and 2s1/2 above.
The shell closure is indeed well established in oxygen isotopes: 17O has the expected
Jπ = 5/2+ ground state and a 1/2+ excited state at 871 keV. Both states exhaust most
of the strength of the single-particle configurations, so that the energy difference is a
good indication of the distance between the ν1d5/2 and ν2s1/2 orbitals. The N = 8 gap
can be estimated from the position of the ν1p1/2 hole strength, which is mostly found in
the 1/2− second excited state at 3.055 MeV.

Already in 15C, however, two protons below, we find a 1/2+ ground state and a 5/2+

excited state at 740 keV, indication of an inversion of the two orbitals. Part of the νp1/2

hole strength is in a state at 3.103 MeV, but experimental information is scarce. The
N = 7 13C isotope has the predicted 1/2− ground state and a 1/2+ state at 3.089 MeV;
the d5/2 strength is in states at higher excitation energy.

The collapse of the N = 8 shell appears suddenly in 11Be: instead of the expected
1/2−, the spin-parity of the ground state is 1/2+. This is an indication of the lowering
of the ν2s1/2 orbital below the ν1p1/2, see fig. 7. The 1/2− state is observed at 320 keV,
close to the neutron separation energy at 502 keV.

A 1/2+ state could also be formed by the coupling of a neutron in d5/2 with a 2+

excited 10Be core (a 2+ state in 10Be is located at 3.37 MeV). In order to probe the
structure of the 10Be core in the 11Be ground state, a measurement was performed at the
GANIL facility in Caen (France) [13, 14]. The reaction employed for this study was the
neutron removal 11Be(p, d)10Be, with the aim of measuring the final state of 10Be and
correlate it to the probability of existing as such in the original 11Be nucleus. The 11Be

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



224 R. Raabe

Fig. 7. – Level scheme and sequence of the neutron orbitals in 11Be. The lowering of the
positive-parity 2s1/2 into the negative-parity 1p shell is indicated.

beam was obtained by fragmentation of a primary 15N beam at 65 MeV/nucleon. The
final 11Be beam had an energy of 35.3 MeV/nucleon and an average intensity of 3 × 104

particles per second (pps). The outgoing deuterons were identified in the CHARISSA
silicon detectors, fig. 8(a), while the momentum of the residual 10Be nuclei was measured
in the SPEG magnetic spectrometer.

The spectrum of events as function of the focal plane position, which corresponds to
the energy of the 10Be nuclei, is shown in fig. 8(b). The resolution is about 700 keV. A
group corresponding to the 0+ ground state is observed, coming from the [0+ ⊗ 2s]1/2+

component in the ground state of 11Be. As well, the events where the 10Be is left in
its 2+ state are a measure of the [2+ ⊗ 1d]1/2+ component. The fit of the angular
distributions shown in fig. 8(c) was made assuming a DWBA model for the transfer;
from the normalisation, the spectroscopic factors were extracted. Different optical-model
potentials (corresponding to the different curves) provided rather dissimilar absolute SFs;
however, the ratio of the SF for the 2+ state to the total SF(0+) + SF(2+) was shown to
be rather constant, with a minimum value set at 30% [13].

Besides the uncertainties in the interaction potential, as we mentioned in sect. 2.5,
attention should be given to the way one builds the composite configurations [0+⊗2s]1/2+

and [2+ ⊗ 1d]1/2+ . In [14], a new analysis was performed by taking into account the
large deformation in the 2+ state of 10Be and recalculating the corresponding 11Be wave
functions and spectroscopic factors. The new results pointed to a dominant (84%) [0+ ⊗
2s]1/2+ component in the ground state of 11Be, with only about 16% of the [2+⊗1d]1/2+

core-excitation admixture.
Another transfer reaction measurement in this region used the 11Be(d, p)12Be neutron

stripping to investigate the structure of the 0+ states in 12Be [15]. Because of the small
difference in energy between the s1/2 and p1/2 orbitals, it is expected that the two
configurations, with a pair of neutrons in one or the other orbital, may generate two
0+ states with mixed contents. Indeed, besides the ground state, a 0+ excited state is
observed at 2.24 MeV, see fig. 9(a). The neutron transfer to the ground state of 11Be
(which already has a neutron in s1/2) would populate only the ν(s1/2)2 configuration —
two neutrons in the s1/2 orbital — in each 0+ state.

The experiment was performed at TRIUMF (Vancouver, Canada) with a 11Be beam
(produced using the Isotope-Separation On-Line method) at 5 MeV/nucleon. Segmented
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Fig. 8. – The 11Be(p, d)10Be measurement [14]. (a) Schematic view of the CHARISSA detector
array. (b) Focal-plane spectrum of 10Be events, in coincidence with deuterons identified in
CHARISSA. (c) Angular distributions (number of events as function of the detection angle)
for the three observed peaks, with fits based on a DWBA model (the curves are calculated for
different optical model potentials). Figure adapted from ref. [14].

charged-particle detectors were employed to measure the protons, emitted in the back-
ward hemisphere, in coincidence with the 12Be nuclei identified in the forward hemi-
sphere. All bound states in 12Be were populated in the reaction: the 0+ states with a
neutron transfer to the 2s1/2 orbital, the 2+ state through a transfer to the 1d5/2 orbital
and the 1− state with a neutron transfer to the 1p1/2 orbital (negative parity). The
excited 0+ state could not be separated from the closely-lying 2+ state, fig. 9(b), and
the corresponding angular distribution had to be fitted with a sum of the predicted cross
sections for the two states (fig. 9(c), middle panel). The extracted spectroscopic factors
for the ν(s1/2)2 configuration were 0.28+0.03

−0.07 for the ground state and 0.73+0.27
−0.40 for the

0+ excited state.
While this result may lead to think that the natural order 1p1/2-2s1/2 is restored

in 12Be, a recent measurement of the same reaction [16] has shown that the dominant
configuration in the ground-state of 12Be is in fact the intruder ν(d5/2)2. While an
evolution of the sequence of neutron orbitals is observed when going from 11Be to 12Be,
the collapse of the N = 8 shell closure persists.

4.2. The emergence of N = 16. – Figure 10 shows the portion of the chart of nuclei
that we will discuss in this section. The collapse of the N = 20 neutron shell closure,
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Fig. 9. – The 11Be(d, p)12Be measurement [15]. (a) Low-lying (bound) energy levels in 12Be.
(b) Proton spectra, detected in coincidence with 12Be nuclei, plotted as function of the reaction
Q-value. (c) Top: angular distribution for the transfer to the ground state, peak (1) in panel (b):
the black circles are the experimental data, other markers and the line are DWBA calculations
using different potentials; middle, angular distribution and best fit for the 2+-0+ doublet, peak
(2) in panel (b); bottom, angular distribution and best fit for the 1− state, peak (3) in panel
(b). Figure partly adapted from ref. [15].

when descending from stability (38Ar and 36S) towards 32Mg was the first identification
of shell evolution far from stability in the mid-1970s. This was eventually explained in
terms of the underlying nucleon-nucleon interaction, which in this region is dominated
by the force between the protons in πd5/2 (full in Si at Z = 14) and the neutrons in
the νd3/2 orbital (full at N = 20). When the πd5/2 empties, the νd3/2 becomes rapidly
less bound, thus closing the gap at N = 20, see fig. 11. Two-particle two-holes (2p-2h)
excitations across the gap become possible, as the necessary energy is compensated by
the gain in quadrupole correlation that drive the 32Mg nucleus to deformation.

At the same time, fig. 11 shows that, below the νd3/2 orbital, a new gap at N = 16
develops. This gap becomes very large (about 4 MeV) in oxygen at Z = 8, where the
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Fig. 10. – Portion of the chart of nuclei showing the disappearing shell closure at N = 20 and the
emerging one at N = 16. Arrows indicate the nuclei involved in the (d, p) reactions discussed in
this section.

Fig. 11. – Effective single-particle energies for N = 20 isotones as a function of the proton
number. The figure shows the narrowing of the gap at N = 20 and the appearance of a gap at
N = 16 when the proton number decreases from 14 to 8. Figure adapted from ref. [17].
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Fig. 12. – Orbitals above N = 14 that can be populated in the neutron-transfer reactions
24Ne(d, p)25Ne, 26Ne(d, p)27Ne and 25Na(d, p)26Na.

νd3/2 is unbound by about 1.5 MeV. The attractive neutron-neutron interaction that
appears when adding neutrons to this orbital in 26O is not any more sufficient to bind
the nucleus: the neutron drip line suddenly appears, 6 neutrons earlier than in the
flourine isotopic chain. Recent works by Otsuka et al. [18] also highlight the essential
role of three-nucleon forces in the evolution of the νd3/2 orbital.

We discuss now three nucleon-transfer measurements, performed to investigate the
N = 16 gap in the Na and Ne isotopic chains (see fig. 10): 24Ne(d, p)25Ne, 26Ne(d, p)27Ne
and 25Na(d, p)26Na [11, 19, 20]. The measurements were performed at GANIL (on the
Ne isotopes) and TRIUMF (with the 25Na beam) using very similar setups: a very
efficient array of charged-particle detectors surrounding the target in closed geometry
(TIARA at GANIL, SHARC at TRIUMF), an array of high-resolution germanium γ-ray
detectors (EXOGAM in France, TIGRESS in Canada) and a zero-degree device for the
detection of the beam-like particles: the VAMOS magnetic spectrometer in GANIL, the
TRIFOIL scintillation detector in TRIUMF. While the plastic scintillator was only used
to separate the products of direction-reaction events from residues of fusion-evaporation
reactions through their different time-of-flight from the target to the detector, the VA-
MOS spectrometer provided an identification of the particles and a measurement of their
momentum. The detection of de-excitation γ rays allowed to resolve the excited states
populated in the transfer, otherwise overlapping in the poorly-resolved particle spectra.
By selecting events with charged-particles energies in a narrow region around that of a
coincident γ-ray, charged-particle angular distributions of transfers to the different states
were obtained.

The orbitals that can be populated by the transferred neutron in the reactions men-
tioned above are shown in fig. 12.

Figure 13 summarises the results for the 24Ne(d, p)25Ne reaction [19]. Panel (a) shows
example of proton spectra measured at different angles, as a function of the excitation
energy in 25Ne. States, which are not resolved in the spectra, are identified through
the coincidence with γ-rays, which are shown in panel (b). The deduced level scheme
and observed γ-rays are reported in panel (c), while the angular distributions (as a
function of the laboratory angle) are shown in panel (d), labeled by the excitation energy
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Fig. 13. – Results for the 24Ne(d, p)25Ne reaction [19]. (a) Proton yields at various laboratory
angles, fitted with states as deduced from the γ-ray analysis. (b) Doppler-corrected γ-ray
spectrum in coincidence with all protons. (c) Deduced level scheme and γ-decay pattern of
25Ne. (d) Angular distributions for the different populated states compared to normalised
ADWA calculations. Adapted from ref. [19].

and compared with (normalised) ADWA calculations. The extraction of the transferred
angular momenta l, together with considerations on the γ-decay pattern, led to the spin
assignment of panel (c). The l = 2 state at 1.68 MeV is assigned spin 5/2+ on the basis
of the decay pattern and because it is much less populated than the other l = 2 state at
2.03 MeV; this is because the 5/2+ is a hole state that can only be populated through
admixtures of excited configurations in the ground state of 24Ne. The state at 2.03 MeV
is the 3/2+ (neutron in 1d3/2), which is raised about 1 MeV with respect to the 5/2+

when compared to 27Mg. On the other hand, the distance between the 1/2+ ground state
and the 5/2+ excited state remains about the same in the two nuclei: this points to an
increase of the N = 16 gap between ν2s1/2 and ν1d3/2. The simultaneous observation of
the intruder negative-parity 3/2− and 7/2− states (at about the same energy as in 27Mg)
confirms the erosion of the N = 20 gap. Notice that a discussion on the actual energy of
the orbitals (single-particle energies) should be nuanced depending on the single-particle
character of the states, as determined by the measured spectroscopic factors; however,
if we assume that the character of the states is similar for the nuclei that are directly
compared, here 25Ne and 27Mg, the conclusions remain essentially valid.
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Fig. 14. – States populated in the 25Na(d, p)26Na, with spin assignments and strength of the neu-
tron configurations as deduced from the spectroscopic factors extracted from the measurement,
compared to shell-model predictions. Adapted from ref. [11].

The 25Na(d, p)26Na reaction [11] populates states in the odd-odd nucleus 26Na. Typ-
ically, the density of states is higher and their structure is difficult to interpret as they
result from the coupling of the odd proton (normally in the π1d5/2) with the odd neu-
tron. Figure 14 shows the states populated in the measurement, where possible with
the spin assignment and the strengths of the various configurations as determined by
the spectroscopic factors. They are compared to shell-model calculations performed in
a complete sp-sdfp basis and incorporating an ad hoc reduction of the N = 20 shell gap
by 0.7 MeV. The overall agreement is good; the remarkable feature is the presence of
rather low-lying negative-parity states, due to the neutron sitting in the 1f7/2 and 2p3/2

orbitals. The trend observed in the neighbouring nuclei (narrowing of the N = 20 gap) is
confirmed in 26Na, with an important role played by the 2p3/2 orbital that comes down
in energy with respect to the 28Al isotone.

In the 26Ne(d, p)27Ne reaction [20] we start from a N = 16 nucleus, thus we expect
to transfer the neutron to the orbitals above the 2s1/2 (fig. 12). This measurement was
the most challenging to perform, with a beam intensity of only ≈ 2500 pps. The weak
intensity forced the use of a rather thick target (1.2 mg/cm2), resulting in a very poor
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Fig. 15. – Results for the 26Ne(d, p)27Ne reaction [20]. Left, the Doppler-corrected γ-ray spec-
trum in coincidence with 27Ne identified in VAMOS, with, in the insert, the decay pattern in
27Ne. The presence of a state at 885 keV is known from previous measurements. Right, an-
gular distribution for the state at 765 keV (charged-particle – γ-ray coincidences) compared to
calculations for different values of l. A value l = 1 is preferred. Adapted from ref. [20].

Q-value resolution from the charged-particle spectra (630 keV FWHM). Once again, the
coincidence with γ-rays was crucial to identify the populated states, for which the energy
was already known from a previous measurement [21]. The result are shown in fig. 15.
On the left, the γ-ray spectrum in coincidence with 27Ne ions identified in VAMOS (thus
for transfers to bound states in 27Ne) clearly shows only one of the two known states
at 765 keV and 885 keV. The higher in energy is very poorly populated (confirming
the previous measurement), which is expected if the spin-parity is 1/2+: this states
results from a hole in the ν2s1/2 orbital, a configuration which is only weakly present
in the ground state of 26Ne. The angular distribution of the 765 keV state, shown on
the right(4), is best fitted by a calculation for l = 1 leading to an assignment of 3/2−

with a spectroscopic factor SF(3/2−) = 0.64(33). For the ground state (not shown in the
figure) the authors obtained SF(3/2−) = 0.42(22). The uncertainties are large; however,
the lowering of the 3/2− state to less than 1 MeV from the 5/2+ is a clear sign of the
collapse of the N = 20 shell gap (see fig. 12).

What about the f7/2 strength? Clearly, there is an inversion, already observed in
25Ne, with the p1/2 orbital as compared to the sequence at stability. Its measurement in

(4) Since the angular distributions are built from proton-γ coincidence events, one needs to
consider the combined detection efficiency for a given spin. Except for l = 0, there is an angular
correlation between the directions of the charged particle and γ ray. The correlation changes
with the value of l, thus a correction for the coincident detection efficiency must be introduced
each time. The four angular distributions on the right of fig. 15 are from the same state, but
they differ slightly.
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Fig. 16. – Left, reconstructed excitation energy for the coincident detection of a proton and
a 26Ne nucleus from the 26Ne(d, p)27Ne∗ → 26Ne + n process. The two panels correspond to
different detection angles for the protons. Right, angular distribution of the observed peak at
1.74 MeV, best fit by a calculation for an l = 3 transfer. Adapted from ref. [20].

27Ne, however, is complicated by the low neutron separation energy: the f7/2 strength
lies in the continuum. When such a state (resonance) is populated, it mainly decays via
neutron emission instead of γ. Experimentally, these events were selected by requiring a
coincidence of a proton at backward angles (from the (d, p) reaction) with a 26Ne nucleus
(from the breakup of 27Ne) in the VAMOS spectrometer. Possible background events
come mostly from the direct breakup of the deuteron into a proton and a neutron. The
spectrum is shown in fig. 16 (left) for two different angular domains. The background
from the deuteron breakup has known energy distribution and shape (obtained from
simulations). It is fitted to the spectrum in order to maximise its contribution and
derive a minimum number of events for the population of the f7/2 states. As expected,
the background is only pronounced at forward angles, where, on the other hand, the
cross section for transfer should be small. The spectra show two peaks, one at 1.74 MeV
and one higher; the latter could be the result of detection cutoff in the spectrum at
backward angles (where the energy of the protons is low), but it appears to be an actual
resonance in the forward-angle spectrum. The width of the 1.74 MeV resonance, once
the experimental resolution is unfolded, is consistent with Γ = 0 and has a 2σ limit
Γ < 0.46 MeV. The angular distribution, shown on the right in fig. 16, agrees with
an l = 3 transfer and thus a 7/2− assignment. Notice that the calculation of the cross
section of a nucleon-transfer reaction to a state in the continuum is a non-trivial problem,
essentially because the scattering wave function is not integrable; different clever tricks
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can be used, but at present there is no consensus on the best way to model the process.
Coming back to the measurement, the same shell-model calculation used for 26Na,

with the a lowering of 0.7 MeV for the fp shell above N = 20, reproduces the state
sequence and energies in 27Ne remarkably well. Once more, this is a confirmation of the
strong decrease of the N = 20 gap also in this region, accompanied by a lowering of the
2p1/2 strength.

4.3. The spin-orbit term. – The (central) spin-orbit (SO) term in the nucleon-nucleon
interaction is often parametrised by the expression

Vls(r) =
1
r

dρ

dr
l · s(13)

which contains the derivative of the matter distribution as a coefficient. The strength
of the interaction is thus maximum at the surface. This has an intuitive explanation,
as a nucleon moving in the interior of a nucleus through uniform nuclear matter would
not experience a SO force, because there would be no preferred reference point for the
definition of l.

For nuclei far from stability, for example with a large excess of neutrons, it is expected
that the matter distribution would become more diffuse, with less sharp edges. This
reduction of the density gradient would cause a decrease of the SO force. Conversely, if
a nucleus has a depletion of the density in its interior, the SO force could also decrease
there (the derivative has the opposite sign with respect to the one at the surface). These
ideas are illustrated in fig. 17.

The 46Ar(d, p)47Ar transfer measurement was performed at GANIL with the aim of
measuring the SO splitting between the ν2p3/2 and ν2p1/2 orbitals above the N = 28
shell closure [22]. The experimental setup consisted in the MUST array of charged-
particle telescope detectors around the target and the SPEG magnetic spectrometer,
which was only used to identify the 47Ar nuclei in coincidence with protons to reduce the
background (from the deuteron breakup and the C nuclei in the plastic target). The beam
was delivered by the SPIRAL facility (ISOL production method) at 11 MeV/nucleon and
a mean intensity of 2 × 104 pps.

Figure 18 shows the neutron orbitals that can be populated with a transfer on 46Ar
(Z = 18, N = 28). The results of the measurements are summarised in fig. 19. We notice
how, without an array of γ-ray detectors, one has to cope with the poor resolution of the
particle spectrum alone, panel (a). The angular distributions, panel (b), are nevertheless
rather well characterised, providing the l values reported in panel (c). As usual, the
fit to DWBA calculations also provides the spectroscopic factors. The identification of
the peaks and the spin assignment relies partially on the prediction of the shell model.
The ground state and the one at 1.13 MeV, both populated with l = 1 transfers, are
assigned the spins 3/2− and 1/2−, respectively. They both contain a good fraction of
the respective single-particle strength (especially the excited state). A state at 1.74 MeV
(hardly resolved in the figure, but with a different angular distribution than the peak at
1.13 MeV) is identified as an l = 3, 7/2− state predicted by the shell model. This hole
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Fig. 17. – Top, density distributions for normal nuclei (blue continuous line), nuclei with a diffuse
surface (red dashed line) and with a central density depletion (black dotted line). Bottom,
corresponding strengths of the SO interaction. Adapted from ref. [7].

state is not much populated; its presence, however, points to a partial occupancy of the
νp3/2 orbital already in 46Ar, providing a partial explanation for the missing strength in
the ground state of 47Ar. Finally, the group of non-fully resolved states from ≈ 2.6 MeV
up to ≈ 4 MeV is assigned to the f5/2 strength.

Conclusions are drawn from the comparison with the neighbouring isotone 49Ca. With
respect to the latter, in 47Ar the N = 28 gap is reduced by about 330 keV; the f7/2-
f5/2 SO (f SO) splitting is reduced by 875 keV, while the p3/2-p1/2 SO (p SO) splitting
decreases by 890 keV (45% of its value in 49Ca). This latter reduction was then revised
and brought to a smaller value of 270 keV in a subsequent work by the same authors, to
account for correlation energies and missing strengths in the configurations.

What is the reason for these reductions? The authors point out that no difference
is expected in the matter diffuseness at the surface of 49Ca and 47Ar. Instead, the
difference should be looked for in the removal of two protons from the π1d3/2 orbital

Fig. 18. – Orbitals above N = 28 that can be populated in the neutron-transfer reactions
46Ar(d, p)46Ar.
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Fig. 19. – Results of the 46Ar(d, p)47Ar measurement [22]. Counterclockwise from top left:
(a) proton spectrum as function the reconstructed excitation energy in 47Ar. (b) Angular
distributions for the populated states along with DWBA calculations assuming transfers with
l = 1, 3, 4. The colours correspond to the peaks identified in the proton spectrum. (c) Derived
spectrum of 47Ar with excitation energies and spectroscopic factors for the populated states.
Adapted from ref. [22].

(and partially from the π2s1/2 orbital, which is quasi-degenerate with the π1d3/2 in
48Ca). The proton-neutron tensor force [23] has opposite signs between protons in πd3/2

and neutrons in νf7/2 (attractive), and the same protons with the neutrons in νf5/2

(repulsive); its calculated value explains well the change in the f SO splitting. This
force, however, is balanced by other components when we consider the global effect of
the πd3/2 protons on the νp3/2 and νp1/2 orbitals. The change in the p SO splitting is to
be found, according to the authors, entirely in the removal of the πs1/2 proton strength,
which causes a depletion of the density in the inner part of the nucleus.
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The conclusion from the work above implies that an even stronger p SO reduction
should be observed when all the protons are removed from the πs1/2 orbital, i.e. for the
Si isotopes at Z = 14. This is best probed at a neutron shell closure, where single-particle
strengths are concentrated in a few states: at N = 28 around 42Si or at N = 20 around
34Si. The measurement of the 34Si(d, p)35Si reaction [24] was aimed precisely at this goal.

The experiment was performed at the LISE in-flight separation facility of GANIL,
with a 20 MeV/nucleon 34Si beam at an average intensity of 105 pps. The array of
charged-particle detectors around the target was MUST2, composed of 10×10 cm2 finely-
segmented telescopes with different detection stages for particle identification. A rather
thick CD2 target (2.6 mg/cm2) was used, but the populated states could be resolved
thanks to the γ-rays detected in the EXOGAM array. Downstream from the target, the
beam-like particles were identified by means of their energy loss in an ionisation chamber;
an additional plastic detector allowed the separation of direct-reaction events from fusion
residues through their time-of-flight from the target.

The orbitals that can be populated in the neutron transfer onto 34Si are those above
N = 20: the same as in fig. 18, with the addition of the empty 1f7/2 orbital. The results
are summarised in fig. 20. Some states were already observed in previous measurements,
in particular a bound state at 910 keV (negative parity, tentative assignment 3/2) and
a 6 ns isomer at 973 keV (tentative assignment 3/2+) seen in the β-decay of 35Al. The
breakup threshold is at Sn = 2.47 MeV. Knowledge of those states guided the selection
of the peaks in the proton spectrum, fig. 20(a), fitted with “rectangular” functions that
took into account the energy loss of the beam in the target. From the number of γ-rays
from the de-excitation of the 910 keV state, panel (b), the number of protons in the
structure at ≈ 950 keV is consistent with a pure population of the 910 keV state, with
no yield from the 973 keV state. The structure at ≈ 2 MeV is confirmed as a state by
the observation of the 1134 keV γ-ray of the de-excitation to the 910 keV state. Angular
distributions, panel (c), provided the l assignment and the spectroscopic factors. These
are compared to those of the neighbouring heavier isotones in panel (d).

The main conclusion from this work is a sizeable reduction of the splitting between
the 3/2− and 1/2− states, that carry most of the strength of the p SO partners orbitals
(while the difference between the f SO partners remains about constant). After unfolding
the contribution of correlations (with the help of shell-model calculations), the actual
reduction of the p SO splitting was calculated to be ≈ 380 keV. This value was argued to
be due entirely to the monopole SO interaction between the protons removed from the
π2s1/2 orbital and the neutrons in the p orbitals. Since the π2s1/2 occupancy goes from
1.7 in 37S (measured value) to 0.19 in 35Si (calculated value), the proton-neutron s-p SO
interaction is calculated to be ≈ 260 keV. This would be thus a first clean experimental
determination of the two-body SO interaction in nuclei.

The results from [24] rely on shell-model calculations for the π2s1/2 occupancy in
35Si. A recent measurement, however, has tried to check this number experimentally.
The probability of proton removal from 34Si was measured in a knock-out reaction at
the NSCL facility (MSU, Michigan, USA) [25]. A fast (beyond a hundred MeV/nucleon)
beam of 34Si was sent on a 9Be target; after the removal of a proton, the residue 33Al ions
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Fig. 20. – Results of the 34Si(d, p)35Si measurement [24]. Counterclockwise from top left: (a) pro-
ton spectrum as function of the reconstructed excitation energy in 35S. (b) Doppler-corrected
γ-ray energy spectrum. The inset shows the decay pattern in 35S. (c) Angular distributions for
the selected peaks and ADWA calculations for l = 1, 3. (d) Single-particle strengths in 41Ca,
37S and 35Si. Adapted from ref. [24].
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Fig. 21. – Results of the 34Si proton-knockout measurement [25]. Left, distribution of the lon-
gitudinal momenta of the 33Al fragments for the populated states in 33Al, selected by requiring
a coincidence with the corresponding γ ray. The curves are fit for l = 0 (in red) and l = 2
(blue), based only on the non-shaded high-momentum part of the distributions. Right, level
scheme deduced from the γ-rays detected in coincidence with an identified 33Al fragment. Each
level reports the (normalised) spectroscopic factor S, the branching ratio bKO, the (tentative)
assigned spin and the excitation energy. Only states with bKO ≥ 0.5% are shown. Modified
from ref. [25].

were identified and their longitudinal momenta were measured in the S800 spectrograph.
The γ-ray array GRETINA was used to identify the states populated in 33Al. There
were no charged-particle detectors for the measurement of the removed proton; as this is
not a binary reaction, some of the features differ from those of nucleon-transfer reactions.
The angular-momentum conservation principles, however, still hold: the spin of the final
nucleus can be deduced from the transferred angular momentum. The latter is obtained
from the distribution of the longitudinal momenta of the 33Al residues, rather than from
the angular distributions of the removed protons.

The fit of the distributions, for the states most strongly populated in the knockout,
are shown on the left of fig. 21. The fit is only based on the high-momentum part
of the distributions because significant background from dissipative reactions may be
present in the lower-momentum part. The fit provides, as usual, the values of l and the
spectroscopic factors S. Protons can be removed in 34Si mainly from the π1d5/2 orbital,
which should be fully occupied by 6 protons. The populated states in 33Al, shown in the
level scheme deduced from the γ-ray spectra on the right of fig. 21, are indeed mainly
l = 2, with a total normalised spectroscopic factor S(d5/2) = 5.7(10). The spectroscopic
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factor for the l = 0 transfers, corresponding to the π2s1/2 occupancy in 34Si, is only
S(s1/2) = 0.17(3): the orbitals are almost completely empty. We recall that a 1.7(4)
occupancy (thus almost full) was measured in a similar experiment on 36S, two proton
more than 34Si.

The wave functions of the s orbitals, because of their l = 0 angular momentum, extend
through the nuclear interior up to the centre, while higher-l orbitals are excluded from
the central region. The empty 2s orbital in 34Si implies a depletion of the nuclear density
in the central region of the nucleus, a sort of a “bubble” structure that, as we have seen,
may have important effects on the SO part of the nuclear interaction. The depletion,
predicted by some models but refused by others, is here for the first time supported by
an experimental observation.

4.4. The structure of 0+ states . – Among the very interesting features of atomic
nuclei is the possibility of gaining energy by deformations. It is quite unique that the
scale of these gains is the same as the energy gaps that are present between single-particle
orbitals. The situation is completely different, for example, in molecules, where the two
degrees of freedom (geometrical arrangements and bonds between the constituents) are
entirely decoupled. In nuclear physics, on the other hand, a special effort has to be made
to reconcile the (macroscopic) collective and (microscopic) single-particle pictures, that
are both used to explain the presence of excited states with very different properties in
the low-lying spectra of nuclei.

When spherical and deformed states appear with similar energies at low excitation
energy and low spin we speak of shape coexistence. The phenomenon was initially thought
of as an exception, occurring in “islands” of the chart of nuclei, but has slowly evolved to
a very diffuse phenomenon observed over the whole chart. Reference reviews are found
in refs. [26, 27].

An interesting case is that of 0+ states with different shapes found in single- and
doubly-closed shell nuclei. They are understood as originating from multiple particle-
hole (p-h) excitations across shells, which are possible because of the large gain in binding
energy (mainly from proton-neutron correlations and pairing). These configurations give
rise to collective excitations and deformed bands, that appear together with states in
which the nucleus still mainly behaves as a closed-shell system. At times, it is possible
to observe an inversion in energy of the configuration with multiple p-h excitations with
respect to the 0p-0h closed-shell configuration. Such islands of inversion are present, for
example, in neutron-rich nuclei at N = 20 and 28.

The situation at N = 20 was already briefly touched upon in sect. 4.2: the neutron
shell gap collapses because of the rise in energy of the νd3/2 orbital, with respect to the
fp shell lying above, when protons are removed from the πd5/2 orbital (fig. 11). The
evolution of the monopole and correlation energies can also be followed in Mg isotopes,
see panels (a) and (b) in fig. 22: while the monopole gap has a minimum in N = 20, the
difference in correlation energy between the 0p-0h and the 2p-2h configurations has there
a maximum. The promotion of neutrons to the fp shell becomes energetically favourable,
and the ground state of 32Mg is deformed.
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Fig. 22. – (a) Calculated monopole gaps in Mg isotopes (Z = 12) as a function of the neu-
tron number. (b) Calculated correlation energies for the 0p-0h and 2p-2h configurations.
(c) Schematic view of the 2p-2h neutron excitations into the fp shell 32Mg. Panels (a) and
(b) adapted from ref. [28], panel (c) adapted from ref. [26].

Above the ground state, the spherical 0+ state should be present in the spectrum at
low excitation energy. In fact, the two configurations (and possibly others, like 4p-4h)
may mix and be present with different weights in the two (and probably more) low-lying
0+ states. How can we experimentally access those 0+ states and probe their single-
particle configurations? One possibility is to use transfer reactions. The one-neutron
addition to the ground state of 31Mg is at present just out of experimental reach; also,
the population of one or other of the 0+ states would depend on the unknown weights
of the configurations in the ground state of 31Mg. A viable alternative is the transfer
of two neutrons in a (t, p) reaction to the ground state of 30Mg, which is known to
have a spherical ground state with only a small mixing from the intruder configuration
(mostly present in an excited 0+ state at 1.8 MeV). Naively, if the two neutrons are
transferred as a cluster in a relative l = 0 state, the observed angular distributions
should just provide the spin of the populated state; however, the possibility of more
complicated mechanisms, like a sequential transfer, has to be assessed carefully in order
to derive reliable information from the measurement. Instead of spectroscopic factors,
two-neutron amplitudes are used in the calculation of the cross sections. They can be
derived from the wave functions of the configurations, thus probing their weight in a
given populated state.

The experiment was performed at the post-accelerated ion beam facility of ISOLDE-
CERN (Switzerland) [29]. The 1.8 MeV/nucleon 30Mg beam (average intensity ≈
5 × 104 pps) was sent onto a tritium-loaded Ti foil, surrounded by the T-REX array
of charged-particle detectors and the Miniball array of γ-ray detectors. Results are
shown in fig. 23: the protons, as function of the excitation energy in 32Mg, form two
distinct groups corresponding to the population of the ground state and an excited state
at E∗ ≈ 1.8 MeV. The angular distributions, fig. 23(b), are both well fitted assuming
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Fig. 23. – Results of the 30Mg(t, p)32Mg experiment [29]. Clockwise from top left: (a) proton
spectra as a function of the reconstructed excitation energy in 32Mg. (b) Angular distributions
of the two proton groups, fitted with DWBA calculations for different values of the transferred
angular momentum. (c) γ-ray spectrum detected in coincidence with the proton group of the
excited state. In the insert, decay scheme in 32Mg. Figures adapted from ref. [29].

an l = 0 transfer. The possibility that the second proton group could contain events
due to the transfer to the known excited 2+ state at 886 keV is ruled out by the small
number of observed γ rays from that state, fig. 23(c). All the 886 keV events, together
with the observed 172 keV events, can be attributed to the sequential decay from the
populated 0+ excited state through the 2+ state and eventually to the ground state. The
γ-ray spectrum also allows a better determination of the energy of the excited 0+ state
at 1058 keV. The small number of events in the γ-ray spectrum indicates that the half
life of the excited state should exceed 10 ns.

The analysis of the cross-section data assumed a one-step process. Wave functions for
the two 0+ states were built with various weights for the 0p-0h and 2p-2h configurations.
The interesting result was that any combination of the “natural” ν(d3/2)2 and intruder
ν(f3/2)2 configurations does not succeed in reproducing the large observed yields; in both
cases it is necessary to add a strong component of the ν(p3/2)2 configuration. For the
ground state the best result is obtained for ≈ 50% ν(p3/2)2 and ν(f7/2)2; in the excited
state, a ≈ 30% mixing of the ν(p3/2)2 has to be included next to the ν(d3/2)2. These
results point to a rather complex picture where several orbitals play a role. Experimental
indications of the presence of the ν(p3/2)2 component have been actually found in one-
neutron knock-out reactions from the ground state of both 32Mg and 30Mg.
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We now move to the region of neutron-rich semi-magic (proton shell closure at Z = 28)
Ni nuclei. The 68Ni nucleus has 40 neutrons, corresponding to the harmonic-oscillator
shell closure. After initial experimental hints towards a doubly-magic nature (large
energy of the first 2+ state, small B(E2) transition probability), it was shown that in fact
the shell gap above N = 40 is not large and excitation are only hindered by the change
in parity of the orbitals above. Additionally, the ΔL = 2 sequence of positive-parity
orbitals νg9/2 d5/2 s1/2 above N = 40 are known to induce strong quadrupole collectivity
in the Fe and Cr isotopes below the nickel region, a feature that could extend to 68Ni.

Three 0+ states (and two 2+ states) are known experimentally in 68Ni below 2.8 MeV,
see fig. 24(a). Both Large-Scale shell model and Monte Carlo shell model calculations
predict similar structures for the states: a mixed character for the ground state (0+

1 )and
first excited 0+ (0+

2 ), with a prevalence of the 0p-0h component in the ground state and
the neutron 2p-2h component in the 0+

2 ; the 0+ state at 2511 keV (0+
3 ) should have a

complex proton 2p-2h neutron 4p-4h configuration. The proton and neutron occupation
numbers for the three 0+ states predicted by the Monte Carlo shell model are also shown
in panel (b) of fig. 24. In the Monte Carlo shell model, under certain assumptions, a
deformation can be connected to each basis wave function; by studying the weights of
those functions in a state, a dominant deformation can be inferred for the state. In this
picture, the shape of the 0+

1 ground state should be spherical, the 0+
2 state should be

oblate and the 2.5 MeV 0+
3 state should be prolate [31].

As for 32Mg, the 66Ni(t, p) two-neutron transfer reactions was employed to study the
states in 68Ni. The available orbitals are shown in fig. 24(c). The measurement was
performed at ISOLDE [32] with the same setup described above for 32Mg. The results
are shown in fig. 25. Below 3 MeV, panel (a), the transfer populates the ground state,
the 0+

2 and the first-excited 2+ state, while an upper limit can be set for the transfer to
the 0+

3 , the second 2+ and the 5− in the region 2.5–2.8 MeV. Coincidence with γ-rays
are absent for the 0+

2 state as the decay can only proceed via an E0 transition; also,
because of its long half life, most decays take place far beyond the target position. The
angular distributions for the transfer to the first two 0+ states are fitted in panel (b)
with DWBA calculations using transfer amplitudes from a shell-model calculation in the
neutron f5/2p3/2p1/2g9/2 model space. The DWBA calculations include both direct and
sequential transfer of the two neutrons.

It is shown in ref. [32] that a combination of the full fpg space is necessary to reproduce
the measured cross sections. The dominant amplitude for the transfer is, as expected, the
(p1/2)2; however, this component alone cannot reproduce the large cross section to the
ground state, and an admixture with the (f5/2)2 and (p3/2)2 is necessary, with a small
contribution even from the (g9/2)2 beyond N = 40. This is reflected in panel (c), which
shows the differences in neutron occupation numbers between the 0+ states in 68Ni and
the ground state of 66Ni: for the 0+

1 state about 1.6 neutrons are transferred to the fp

shell. The cross section for the 0+
2 state is much lower, as it contains very little p strength;

the dominant strength is the (g9/2)2, which is much weaker than the p amplitudes but
it is especially present at small centre-of-mass angles where the data are recorded. From
panel (c) we see that, for the 0+

2 state, neutrons are mainly transferred to the g9/2 orbital
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Fig. 24. – (a) Level scheme and γ-ray transitions in 68Ni. Calculated leading configurations in
the 0+ states are shown. (b) Proton and neutron occupation numbers in the three 0+ states
in 68Ni as predicted by the Monte Carlo shell model. (c) Neutron orbitals above N = 38 that
can be populated in the two-neutron transfer reactions 66Ni(t, p)68Ni. Panel (a) adapted from
ref. [30], panel (b) adapted from ref. [31].

(≈ 1.4 neutrons) beyond N = 40. The 0+
3 state is not observed: this is in line with the

prediction of the shell model, which describes it as due to proton 2p-2h excitations above
Z = 28 (and neutron 4p-4h), that cannot be realised in a two-neutron transfer.

These results give an experimental confirmation of the recent shell-model calculations
in this region, thus supporting the microscopic picture of the origin of shape coexis-
tence in 68Ni. An important ingredient in these calculation is the role of the tensor
force when the orbital occupancy changes within a nucleus [31]. For example, when the
proton 2p-2h excitation in the 0+

3 state in 68Ni partially empties the πf7/2 orbital: the
(repulsive) tensor interaction with the neutrons in νg9/2 becomes weaker, the orbital
comes down in energy and feeds additional neutron excitations. This “type-II” shell
evolution forms a solid base to interpret the phenomena of shape coexistence observed
in neighbouring nuclei, and can be possibly extended to other regions. Very interesting,
but still very challenging both experimentally and theoretically, is the region of neutron-
deficient Pb isotopes, where shape coexistence was first identified and where we find the
showcase of three 0+ states with different shapes as the lowest states in the energy spec-

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 R. Raabe

Fig. 25. – Results of the 68Ni(t, p)68Ni measurement. (a) Spectrum of protons emitted at back-
ward angles (beyond 150 degrees in the laboratory frame) as function of the reconstructed
excitation energy in 68Ni. The numbers indicate feeding to (1) the 0+

1 ground state, (2) the 0+
2

state and (3) the first excited 2+ state. The non-shaded area of the figure shows all detected
protons, the light grey area shows the protons that were detected in prompt coincidence with
a γ ray. The known states are indicated above the spectrum. (b) Angular distributions of the
transfer events to the ground and the first excited 0+ states, fitted with DWBA calculations
(including direct and sequential transfer) using two-neutron amplitudes provided by shell-model
calculations. (c) Differences in occupation numbers of indicated neutron orbitals between 0+

states in 68Ni and the 66Ni ground state.

trum of 186Pb [33]. An analog orbital arrangement as in the Ni case, with the πh11/2

below the Z = 82 shell closure and the νi13/2 orbital above the N = 102 harmonic
shell, could trigger the same mechanism observed in the neutron-rich Ni nuclei. The
recently-commissioned HIE-ISOLDE post-accelerator, that increases the energy of RIBs
at ISOLDE to 10 MeV/nucleon, together with the latest developments of the Monte Carlo
shell model, may soon bring this region in the range for transfer reaction and microscopic
single-particle spectroscopic studies.

5. – Present and future developments

We discussed in sect. 3.2 the issues arising from performing measurements in inverse
kinematics with RIBs. Some methods have been devised to solve or mitigate those
problems.

The solenoidal spectrometer approach uses a large magnet of the MRI type to create
a strong, uniform magnetic field, up to 3 tesla, around the target (see fig. 26). The
charged particles emitted from the target are confined within the magnet by the Lorentz
force, designing helicoidal trajectories and eventually coming back to the beam axis at
a distance z from the target. The distance z is related to the scattering angle. The
interesting feature of the configuration is that, for a given Q-value, the energy of the
detected particle has a linear dependence upon z; and a change in Q-value produces a
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Fig. 26. – Schematic view of the working principle of a solenoidal spectrometer (adapted from
ref. [34]).

shift of the same value in the particle energy. In other words, the detector resolution is
preserved when the Q-value is calculated from the particle energy, avoiding the problem
of the kinematical compression due to the inverse kinematics. Solenoidal spectrometers
are in use at the Argonne National Laboratory (USA) and at ISOLDE-CERN.

The solenoidal spectrometer does not solve the worsening of the resolution due to the
energy loss of the beam and products in a thick target. To lift this problem, it would be
necessary to determine the interaction point within the target: this is the idea motivating
the construction of active target detectors. Active targets, fig. 27, are time-projection
chamber detectors, where the nuclei of the detection gas also play the role of targets for

Fig. 27. – Arrangement and working principle of an active target detector.
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the reactions of interest. By reconstructing the tracks of all particles in the gas volume,
the reaction vertex is found and the energy of the beam particle at that position can be
calculated from energy loss relations. With pressures of hydrogen or helium gases of the
order of 1 bar, a resolution of 1 mm on the position translate in an energy uncertainty
ten times smaller than by using a solid foil of 100μg cm−2; at the same time, the total
target thickness for a length of the active volume of 20 cm is 20 times larger, with a large
gain in luminosity. The use of an active target has to deal with the problems of gaseous
detectors, in particular the dynamic range of the signals, and the very large amount of
data when a plane of several thousands pads is used. A new generation of these novel
detectors has recently come into operation, with very promising results.

In parallel, theoretical efforts should be made to cope with the problems of mea-
suring reactions with nuclei far from stability. While nuclear structure calculations are
progressing in an almost spectacular way in the last years, nuclear reaction models are
struggling to incorporate the new features. The following challenges should be addressed:

– When dealing with weakly-bound nuclei, what is the effect of extended matter
distributions on the reaction probability? What are the effects of the continuum
on the reaction mechanism? How do we parametrise the continuum and take into
account the couplings?

– In reactions where a transfer to states in the continuum is measured, how do we
define the spectroscopic factors?

– Multi-step, sequential processes: how can we include them in the reaction model
in a consistent way?

It is clear that these issues will become more pressing as the experimental progress
brings us to more exotic systems, if we want to continue to use nuclear reactions to
derive spectroscopic information about the structure of nuclei.

Appendix

Two-body kinematics

We consider a reaction of the type 1 + 2 → 3 + 4, with a Q-value Q. Particle 1 is
the beam ion, 2 is the target, 3 is typically the light ejectile. The masses of the particles
are mi, i = 1 to 4, with m1 + m2 = m3 + m4. We assume m3 < m4. Quantities in the
laboratory system are the kinetic energy (before the reaction) Ek, the velocities v1 . . .,
the momenta p1 = m1v1 . . ., and so on. Quantities in the centre-of-mass system are
denoted with a prime: E′

k, v′
1, p′1 = m1v

′
1, and so on.

The velocity and momentum of the centre-of mass in the laboratory system are

vCM = v1m1/(m1 + m2) (because v2 = 0), and
pCM = p1.
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Fig. 28. – Kinematic diagram of a binary nuclear reaction. Here m3/m4 = 2/3.

The conservation of energy in the centre-of-mass system can be written as

1
2
m1v

′2
1 +

1
2
m2v

′2
2 + Q =

1
2
m3v

′2
3 +

1
2
m4v

′2
4 ,

1
2
m1(v1 − vCM)2 +

1
2
m2v

2
CM + Q =

1
2
m3v

′2
3 +

1
2
m4v

′2
4 .

By using the expression for vCM and the conservation of momentum in the centre of
mass: p′3 = p′4, with some algebra one finds

m2

2m1(m1 + m2)
p2
1 + Q =

m3 + m4

2m3m4
p′23

or

p′23 = 2
m3m4

m3 + m4
×
[

p2
1

2m1︸︷︷︸
Ek

m2

m1 + m2

︸ ︷︷ ︸
E′

k

+Q

]
,(A.1)

which is just the momentum available in the centre of mass: p′23 = 2μEtot (μ is the
reduced mass).

We can build a kinematic diagram (see fig. 28) by starting with a segment representing
the initial momentum in the laboratory p1 =

√
2m1Ek = pCM. We divide it in m1 + m2
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Fig. 29. – Kinematics of binary reactions: velocity vectors of outgoing particles in the centre-of-
mass system (in red, denoted with a prime) and in the laboratory system. (a) Direct kinematics.
(b) Inverse kinematics, with the mass of the recoil light ion m3 lighter than the mass of the light
target m2. (c) Inverse kinematics, with m3 > m2. For all cases we chose m3 < m4. The centre-
of-mass scattering angle is measured from the beam-like particle, thus, in inverse kinematics,
from the vector v′

4.

parts and we take the segment proportional to m3. This segment represents

m3

m1 + m2
pCM = m3vCM.

The other vectors can now be thought of as representing velocities, all scaled to m3.
From the end of the m3vCM vector we draw a vector m3v

′
3 = p′3 at a freely chosen angle

θCM. The length of this vector with respect to the m3vCM vector can be calculated from
the reaction parameters using eq. (A.1):

p′3
m3vCM

=

[
2 m3m4

m3+m4
×
(

p2
1

2m1

m2
m1+m2

+ Q
)]1/2

m3
m1+m2

√
2m1Ek

−−−−−→
QEtot

≈
√

m2m4

m1m3
.(A.2)

The velocity of particle 3 in the laboratory system is now just v3 = v′
3 + vCM (all scaled

to m3). For particle 4 we draw a vector p′4 = −p′3; the velocity is found by scaling:
m3v

′
4 = p′4 m3/m4. We recognise the scattering angles in the laboratory frame θ3 and θ4.

Figure 28 shows the diagram for a ratio m3/m4 = 2/3. By varying the centre-of-mass
angle θCM one can find out how the velocity vectors for particles 3 and 4 are directed,
thus where particles are emitted in the laboratory frame.

As shown in eq. (A.2), when the Q-value is small with respect to the total centre-
of-mass energy the kinematics is essentially determined by the ratio of the masses. In
direct kinematics, fig. 29(a), it is m1 < m2, m3 < m4; the vector v′

3 is longer than vCM

and the light ejectiles (particle 3) are always emitted in all directions in the laboratory
frame (and θ3 ≈ θCM). In inverse kinematics it is m1 ≈ m4, thus the determining
factor is

√
m2/m3: for example, in a (p, d) reaction, fig. 29(c), v′

3 is shorter than vCM,
θ3 has a limiting maximum value and deuterons are only emitted in a forward cone.
In a (d, p) reaction, fig. 29(b), conversely, protons are emitted at all angles. Notice
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that, in inverse kinematics, the centre-of-mass angle should refer to the beam-like heavy
particle 4. Figure 28 should thus be modified with the substitution θCM → π − θCM.
We see how, in a (d, p) reaction, for small centre-of mass angles protons are emitted at
backward angles.
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β decay studies of the most exotic nuclei

G. Benzoni

INFN, Sezione di Milano - Milano, Italy

Summary. — Radioactive decay occurs in unstable nuclei, being β decay the
dominant process. The exotic nuclei encountered when going further away from
the valley of stability are useful test benches for nuclear models at the limits of the
existence of the nucleus. The properties of these exotic systems are of fundamental
importance when describing the formation of the elements in the universe through
stellar nucleosynthesis processes. The most recent techniques to study β decays in
exotic systems and an overview of their specific properties are discussed in these
lecture notes.

1. – Introduction

In nature we can find 288 nuclei, which are either stable or have a lifetime comparable
to or longer than the Earth age. Other nuclear systems can be produced artificially in
laboratory, which, even if not stable, can be accessed experimentally. Recent estimates
by theoretical models predict the existence of 7000(500) bound nuclei.

The collection of the nuclei as a function of their neutron and proton content is given
in the Segrè chart, where stable nuclei (usually marked with black boxes) follow the so-
called valley of stability. This line, also named β stability line, is located at the N = Z

locus for the lightest species, bending, above Fe, towards a richer content of neutrons.
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Nuclei lying above the valley of stability are characterised by Z > N , and are therefore
defined as proton-rich (p-rich) or neutron deficient. They extend few units away from
the valley of the stability in an isotopic chain, until reaching the proton drip line, where
the proton separation energy becomes null and the nuclei are no more bound. Nuclei
characterised by N > Z lie, instead, below the valley of stability and are named neutron-
rich (n-rich). The neutron drip line is situated further away from the valley of stability,
allowing for accommodation of tens of additional neutrons. Its exact location is still
under debate, in particular for heavy systems.

Unstable nuclei can be accessed by various reactions, which occur in a limited time-
frame, after which the resulting residual nuclei are let decay. Properties of the unstable
nuclei can be accessed via specifically studied experiments, which can reveal both macro-
scopic, in terms of shape and collectivity, and microscopic, in terms of single-particle
orbitals, features of the nucleus under analysis.

Exotic nuclei can be produced with different type of reactions where the final produc-
tion rate depends on the cross section, beam intensity and the target thickness. If direct
reactions allow the population of nuclei close to the beam and or target species, fusion-
evaporation or deep-inelastic reactions populate nuclei which are formed by the sum of
the single constituents of both the projectile and target nuclei. These reactions, however,
do not help reaching very far away from the valley of stability, owing mainly to the charge-
equilibration mechanism. Exotic species can also be produced in either spontaneous or
neutron-induced fission of trans-uranium elements. The cross section for producing exotic
species is quickly dropping going towards the tails of the fission fragments distribution.

In order to access exotic systems, both p- and n-rich, more energetic reactions are
exploited. The reactions can be induced by light particles (protons or deuterons) acceler-
ated up to few GeV/nucleon on targets of heavy systems up to U, or by energetic beams
of heavy elements impinged onto light targets, such as Be. In both cases, these very
energetic reactions strip and evaporate a large number of nucleons, populating regions in
the Segré chart far away from the initial partners. In the first type of reactions thick tar-
gets, several layers of materials, are used to increase the final number of nuclei produced,
and the resulting species are extracted from the bulk material via physical and chem-
ical processes defined by the properties of the materials and temperatures used. This
type of production mechanism is at the basis of the Isotope Separation On-Line method
(ISOL). In the second process the targets are smaller, few g/cm2, and the resulting nuclei
keep a forward momentum, and can be transported into magnetic separators. This is
at the basis of the in-flight methods. Both techniques allow for the use of thick targets,
thus compensating for the small production cross-sections. Additional details on the two
techniques for the production of radioactive ion beams are found in ref. [1].

The non-stable nuclei decay via emission of α-particles, dominated by the interplay of
the strong and electromagnetic force, via β-decay, which is mediated by the weak force,
or by spontaneous fission. Moving further away from the stability valley new exotic decay
modes are encountered, such as proton or neutron emission, and β-delayed emission of
particles or fission. Most of the α emitters are artificial isotopes heavier than Pb, while
the most popular decay mode is the β-decay.
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The study of its β-decay is usually the first mean to access a newly produced nucleus,
since it does not require post-acceleration or reactions.

The study of exotic nuclei has a great impact on defining the evolution of nuclear
structure properties away from the valley of stability and in assessing the robustness of
theoretical models describing the nuclear medium. In addition, the knowledge of β-decay
rates and properties is important for our understanding of the creation of the heavier
elements in explosive stellar processes.

A number of everyday applications of β-decaying sources can be found, for instance, in
nuclear medicine, such as the use of unstable isotopes for Positron Emission Tomography
imaging, and in nuclear safety related to decay heat evaluation in nuclear power plants.

Experimental campaigns aiming at accessing the most exotic species are pursued
worldwide, and new facilities to produce very intense radioactive beams are being built
in key laboratories in Europe, USA, Asia and South Africa.

In this contribution basic properties of β-decay will be revised in order to be used,
then, to detail the properties of the most exotic nuclei, in particular on the neutron-rich
side, in relation to nuclear structure and nuclear astrophysics studies.

The paper is organised as follows: in sect. 2 the basic properties of β decay are
recalled, while in sect. 3 basic techniques and experimental set-ups to measure the β

decay of exotic nuclei are described. Section 4 discusses the link between gross properties
of the β-decay and stellar nucleosynthesis, while sect. 5 highlights the peculiarities of the
decay of very neutron-rich nuclei, together with examples from recent studies.

2. – Properties of β-decay

When talking about radioactive decay we describe a phenomenon in which an initial
nuclear species, A

ZXN , disappears, transforming itself into a new nucleus, whose A′ =
Z ′ + N ′ is defined by the decay process. The initial nucleus is usually referred to as
parent, mother or precursor, while the final nucleus is the daughter or successor. The
decay process has a statistical behaviour and is described by the law of the radioactive
decay :

N(t) = N0e
−λt,(1)

being N0 the initial number of parent nuclei present in the sample, and λ the decay
constant. It is often useful to write eq. (1) as a function of the meanlife (τ) or the
half-life (T1/2), which is the time required for half of the initial nuclei to decay. These
quantities are related to the decay constant by

T1/2 =
ln 2
λ

≈ 0.693τ.(2)

The energy available for a decay is given by the Q-value, difference in neutral atomic
mass between the initial and final decay products:

Q = Minitial − Mfinal.(3)
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The decay of a nucleus can occur via many competing processes, and one can define
a branching ratio as the probability of each decay path.

α and β decays usually occur from the mother nucleus’s ground state, but excited
states can also de-excite via the emission of particles. In addition, the decay does not
always populate directly the ground state of the final nucleus, and can feed excited states
which then de-excite via internal γ decay.

If the daughter nucleus is itself radioactive, it also decays with a specific half-life. To
describe this chain of decays, we have to use a set of equations, the so-called Bateman
equations, describing abundances and activities in a decay chain as a function of time.
If at a time t, there are Ni(t) atoms of the i-th isotope which decay into the (i + 1)-th
nucleus with a decay rate λi, the amounts of isotopes in the k-th step of the decay chain
evolves as

dN1(t)
dt

= −λ1N1(t),

dNi(t)
dt

= −λiNi(t) + λi−1Ni−1(t),(4)

dNk(t)
dt

= λk−1Nk−1(t).

A detailed description of the Bateman equations can be found in ref. [2].
If one of the species has a much shorter half-life than its precursor nucleus there is a

time at which all activities are equal, that is to say that the rates of accumulation and
decay compensate. This condition is defined as secular equilibrium.

In general when studying a radioactive decay, one can get access to properties of both
the mother and daughter nuclei: by the identification of the emitted particles, we define
the decay modes and decay rates of the mother nucleus, while studying the populated
levels and internal de-excitations we can describe the structure of the daughter nucleus.

The largest number of non-stable nuclei decay via β-decay. β-decay refers to three
different processes:

– β−-decay:

n → p + e− + ν̄e,

which describes the decay of a neutron into a proton with the production of an elec-
tron and an electric antineutrino. The β−-decay process in the nucleus corresponds
to

(Z,N) → (Z + 1, N − 1) + e− + ν̄e.

The Q-value for β−-decay equals, in terms of nuclear masses,

Qβ− = m(A
ZX)c2 − m(A

Z+1X
′)c2 − mec

2.(5)
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In terms of atomic masses, neglecting the differences in electron binding energy,
eq. (5) translates into

Qβ− = M(A
ZX)c2 − M(A

Z+1X
′)c2.(6)

This decay is allowed by the mass difference between the neutron and the proton,
assuming the antineutrino and neutrino have a very small rest mass, close to zero.

– β+-decay:

p → n + e+ + νe,

which describes the decay of a proton into a neutron with the emission of a positron
and an electric neutrino. The corresponding nuclear decay is

(Z,N) → (Z − 1, N + 1) + e+ + νe

and its Q-value equals

Qβ+ = m(A
ZX)c2 − m(A

Z−1X
′)c2 − mec

2,(7)

which translates, in terms of atomic masses, into

Qβ+ = M(A
ZX)c2 − M(A

Z−1X
′)c2 − 2mec

2.(8)

For a β+-decay to occur the atomic mass difference needs to be larger than 2me =
1.022 MeV.

– Electron capture (EC):

p + e− → n + νe,

where a proton captures an electron and converts it into a neutron and an elec-
tric neutrino. The electron is captured by one atomic orbital, usually an s-wave
electron, having a larger orbital overlap in the region of the nucleus.

The corresponding nuclear decay:

(Z,N) + e− → (Z − 1, N + 1) + νe

has a Q-value of

QEC = m(A
ZX)c2 + mec

2 − m(A
Z−1X

′)c2.(9)
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In the case of EC, when writing eq. (9) using atomic masses, one has to include
the binding energy of the n-th shell captured electron, Bn, resulting in

QEC = M(A
ZX)c2 − M(A

Z−1X
′)c2 − Bn.(10)

These three decay processes occur within isobars, nuclei with the same mass number:
in the first case the atomic number Z is increased by one unit, while in the second and
third cases it is instead decreased by one unit. Usually neutron-rich nuclei decay through
a β−-decay, while proton-rich ones can undergo β+ or EC. There are, however, examples
of nuclei which undergo all the three processes.

For the lightest nuclei the Q-values are, for a given mass number, slightly higher on
the proton-rich side than on the neutron-rich side of beta-stability line and, consequently,
half-lives are systematically shorter on the proton-rich side. The asymmetry is enhanced
by the contribution from the IAS (isobaric analogue state) transition in nuclei with
N < Z. For masses above 100 the situation is reversed: experimentally the half-lives
for nuclei more than 3–4 nucleons away from the beta-stability line are systematically
shorter on the neutron-rich side than on the proton-rich side.

Because of the parabolic mass surface term in the mass formula, the Q-value increases
as one moves away from the beta-stability line, which, by itself, enhances β-decay rates.
Empirically, the β-decay half-lives fall off approximately exponentially away from stabil-
ity [3].

Being a 3-body process, the energy spectrum of the electrons (positrons) can assume
all values ranging from 0 to the decay Q-value. There is a wide range of variations of
this quantity, being it equal to 2.6 keV for the decay of 187Re [4] and up to 20 MeV for
exotic neutron-rich nuclei. Also the half-lives for β-decay show a large variation, ranging
within 10−2 s to 1017 years. Only three nuclei are known to exhibit very long half-lives:
115In (1014 y), 113Cd (1015 y) and 50V (1017 y).

β-decay is not only governed by energy considerations, while it obeys to selection
rules based on the Pauli principle and angular-momentum conservation. This is at the
basis of the classification of β-decays into allowed and forbidden transitions.

In order to describe the β-decay process we will make the following assumptions, which
are at the basis of the Fermi theory of β-decay : electron (positron) and antineutrino
(neutrino) do not exist in the nucleus at the moment of the decay, they are created when
the neutron converts into a proton (or viceversa the proton into a neutron). In the case
of β−-decay, the neutron is depicted as an excited state of the nucleon which decays
to the ground state, the proton, with the emission of an electron-antineutrino couple.
The Coulomb interaction between the electron and the nucleus is here neglected. This
approximation holds in particular for light nuclei with Z < 10.

The mass of the electron being me � Mnucleus, and under the assumption that the
neutrino is massless, the recoil of the nucleus is considered null. The last assumption
made in this description is that the electron and the neutrino share the available energy
in all possible ways.
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β decay is the result of the interaction of the nucleons with the field produced by
the electron-antineutrino couple. At variance from α-decay, peculiarity of the β-decays
is that the electron and neutrino do not exist before the decay process, and one needs
to account for their formation. The Fermi theory is based on the hypothesis that the
transition probability caused by the interaction is weak compared to the interaction that
forms the quasi-stationary states. The interaction which causes the weak decay is treated
as a perturbation, and follows the Fermi’s Golden Rule:

λ =
2π

h̄
|Vfi|ρ(Ef ),(11)

where the matrix element, Vfi connects the quasi-stationary initial and final states of the
system, and the factor ρ(Ef ) accounts for the density of the final states. The final state
has to include the wave function of the nucleus and those of the electron and neutrino.
The density of the states determines, to the lowest order, the shape of the β-energy
spectrum, which, after a proper derivation, can be represented by a bell-shaped function
obeying the relation

N(p) =
C

c2
p2(Q − Te)2,(12)

where Q is the Q-value of the reaction and Te is the kinetic energy of the electron. The
spectrum vanishes at zero momenta, p = 0, and has an endpoint for Te = Q.

Equation (12) well describes the high-energy part of the spectrum. At low energies
the electron feels the Coulomb field of the daughter nucleus, and the spectrum shape is
influenced by the number of final states. This can be accounted for including a statistical
factor and a Fermi function F (Z ′, p) which describes the influence of the Coulomb field
of the daughter nucleus.

If we stand in the allowed approximation, where the nuclear matrix element Mfi is
considered to be independent of the specific nucleus, we can write the quantity

(Q − Te) ∝
√

N(p)
p2F (Z ′, p)

,(13)

and plotting this quantity against Te we obtain a straight line, known as Kurie plot. This
plot resembles experimental data very well, with small deviations at low energies, owing
to scattering of low-energy electrons.

From the Fermi golden rule one can extract the total decay rate λ:

λ =
g2|Mfi|2
2π3h̄7c3

∫ pmax

0

F (Z ′, p)p2(Q − Te)2dp.(14)

The constants and the dependence on the electron energy can be grouped into a
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factor, known as Fermi integral, f(Z ′, E0):

f(Z ′, E0) =
1

(mec)3(mec2)2

∫ pmax

0

F (Z ′, p)p2(E0 − Ee)2dp(15)

which depends on Z ′ and on the maximum electron total energy E0. Converting the
decay rate into the half-life t1/2 via eq. (2), one finds the relation

ft1/2 = 0.693
2π3h̄7

g2m5
ec

4|Mfi|2
,(16)

which is known as comparative half-life (ft): the differences in ft are related to differences
in the matrix elements, and thus to the nuclear wave functions.

Owing to the large variations found in β decays, with ft values ranging between 103

to 1020 s, the quantity log10(ft), also known as log ft, is usually calculated, and can be
used to classify the decays.

In summary, the electron (positron) and the antineutrino (neutrino) in the final state
influence the β-decay transition rate in three ways, namely:

i) For a given energy released in the decay there is a density of possible final states
for both the electron and antineutrino.

ii) The β-particle will feel the Coulomb field created by the protons in the nucleus. In
other words the wave functions of the electron (positron) are enhanced (suppressed)
close to the nucleus.

iii) The possible angular momentum and parity in the final state. The product of
the electron and neutrino wave functions has parity (−1)L, where L is the orbital
angular momentum carried away by the electron.

The first two effects can be calculated and the combination of the two is the Fermi
Integral of eq. (15).

By definition, in an allowed β±-decay the final-state leptons, electron (positron) and
neutrino (antineutrino), are emitted in an s state (l = 0) relative to the nucleus. Similarly
in the allowed electron capture the initial electron is removed from an s shell and the
final neutrino is in an s-state relative to the nucleus.

In addition to any orbital angular momentum, each of the leptons has spin s = 1/2.
Thus in β± decays the final-state leptons can couple to total spin S = 0 or S = 1. In
electron capture, the initial proton and electron can couple to j±1/2 and the final neutron
and neutrino can couple to j ± 1/2 or j ∓ 1/2, with coherent sign. Therefore in allowed
β transitions the leptons can change the total angular momentum J by 0 or 1 unit.

Selection rules for the allowed decays and their classification in Fermi transitions, if
electron and neutrino are coupled to spin S = 0, or Gamow-Teller, if they are coupled
to S = 1, are shown in table I.
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Table I. – Classification of β-decays as a function of exchanged angular momentum. Selection
rules for allowed and forbidden β-decay transitions are reported. Here Ji and Jf are the angular
momentum in the initial and final nuclear states. πi and πf the corresponding parities.

Type of transition ΔJ = |Jf − Ji| πiπf

allowed 0, 1 +1

Fermi 0

Gamow-Teller 1 (Ji = 0 or Jf = 0)

Gamow-Teller 0, 1 (Ji > 0, Jf > 0)

first-forbidden 1, 2 −1

second-forbidden 2, 3 +1

third-forbidden 3, 4 −1

. . . . . . . . .

Table II. – Classification of β-decay transitions according to their log ft values.

Type of transition log ft

superallowed 2.9–3.7

unfavoured allowed 3.8–6.0

l-forbidden allowed ≥ 5.0

first-forbidden unique 8–10

first-forbidden non-unique 6–9

second-forbidden 11–13

third-forbidden 17–19

fourth-forbidden > 22

Additionally, there is another selection rule pertaining the change in the number of
radial nodes in the wave function (the principal quantum number n), which implies that
Δn = 0, since the radial overlap integral vanishes [5]. This selection rule commands only
a limited number of decays, for instance in the region of n-rich Tl isotopes: 209Tl ground
state is identified as a 3 s1/2 proton hole and can only decay towards the 1/2− state at
2.15 MeV in 209Pb, even if there exists a lower-lying 1/2+ state at 2.03 MeV. This decay
is, in fact, hindered since it involves a transformation of the 3 s1/2 proton hole into a
4 s1/2 neutron state at 2.03 MeV. This branching has been measured to be lower than
10% [6,7].

Forbidden decays involve higher values of lepton angular momenta. They are not
actually forbidden while retarded (hindered) compared to the allowed transitions. This
can be easily accounted for if we consider that the wave functions superposition is minimal
for these transitions. The classification of forbidden transitions is also given in table I.

β-decay rates vary largely, as mentioned earlier in this section. This is only partially
accounted for by a mismatch in the nuclear wave functions of the initial and final states.
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Fig. 1. – Log ft values for allowed (upper panel) and forbidden (lower panel) decays. (Reprinted
with permission from B. Singh et al., Nuclear Data Sheet, 84 (1998) 487, c© 1998 Elsevier,
DOI:10.1006/ndsh.1998.0015.)

The large variation is to be attributed to the great difficulty for a β-particle–neutrino
couple to be formed in a l > 0 state.

We can relate the degree of forbiddenness to the experimental log ft values, and we
see that decays of the same kind group around similar values. This is visible in table II
and in fig. 1.

Superallowed transitions occur in nuclei where the proton and neutron Fermi surfaces
are roughly at the same position, allowing for maximal overlap between initial and final
nuclear wave functions. Usually these transitions are of a single-particle type and yield
the maximum values for Fermi and Gamow-Teller matrix elements.
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Fig. 2. – Similar to the upper panel of fig. 1, distribution of log ft values for allowed transitions.
The arrow indicates the value measured for the superallowed Gamow-Teller decay of 100Sn.
(Reprinted by permission from C. B. Hinke et al., Nature, 486 (2012) 341 c© 2012, Springer
Nature, DOI:10.1038/nature11116.)

Transitions named l-forbidden allowed occur in cases where the simple single-particle
transition, in the mean-field shell model picture, is forbidden by the Δl = 0 selection rule,
while rules on nuclear angular momentum and parity are satisfied. The wave function
can be described introducing a residual interaction mixing the single-particle states. The
decay is however hindered and log ft values are usually not lower than 5.

Unfavoured allowed transitions do not belong to either of the two cases described
above: they are allowed transitions since there is no l-forbiddenness, but the single-
particle transitions are not pure but diluted in the final and initial many-nucleon wave
functions.

Forbidden unique transitions involve the maximum possible angular momentum dif-
ference between initial and final states. They relate to leptons emitted with high angular
momentum, which is reflected in the degree of forbiddenness. The maximum change in
angular momentum for a K-th–order forbidden transition is given by ΔL = K + 1.

Parity conservation alternates with successive degrees of forbiddenness, being satisfied
in the even cases.

One particular case is that of 100Sn, whose Gamow-Teller transitions has been recently
measured to have the lowest log ft ever extracted: in this very challenging experiment
it was possible to extract, with high precision, the half-life for the decay and to define
the end-point energy spectrum of the β decay. The extracted log ft value is the lowest
measured so far and classifies this decay as a superallowed Gamow-Teller transition.
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Fig. 3. – In the left panel the decay scheme of 138La is shown, while in the right panel the
electron capture shell refilling is sketched. (Reprinted with permission from A. Giaz et al., EPL,
110 (2015) 42002, c© 2015 EPLA, DOI:10.1209/0295-5075/110/42002.)

Figure 2 shows the measured log ft compared to known transitions. Additional details
on the experiment and analysis can be found in [8].

An example of a highly forbidden decay is that of 138La decay: 138La decays by
electron capture into an excited state of 138Ba with 66.4% probability and the remaining
33.6% by β−-decay into an excited state of 138Ce. In both cases, 138La decays into an
excited state of the daughter nucleus with the consequent emission of one γ-ray, as shown
in fig. 3. In particular, in the electron capture decay, one γ-ray of 1436 keV is emitted
while in the β−-decay process, one γ-ray of 789 keV is registered. Both the 138La β−-
decay and electron capture are 2-nd–order unique forbidden transitions, since, in both
cases the decay connects a 5+ state to a 2+ state. The limited energy windows available
for the decays, QEC = 1742(3) keV, and Qβ− = 1052(4) keV, does not allow for the
population of other states in the final nuclei, therefore this decay is highly-forbidden,
occurring with a half-life of 1.05× 1011 years. The β− decay towards the 788.7 keV level
in 138Ce has a log ft value of 18.05(4), while the one corresponding to the decay towards
the 1435.8 keV level in 138Ba is 17.24(3).

Additional details can be found in [9, 7, 10].
The decay rate for allowed β+ or β− decays can be transformed to give a known

expression for the ft value:

ft =
K

g2
V BF + g2

ABGT
,(17)

where t is the partial half-life of the transition, K/g2
V equals to 6144.2(1.6) s, and gA/gV =

−1.2694(28) [11]. BF and BGT are the reduced matrix elements squared for the Fermi
and Gamow-Teller parts. Nuclear electron capture will also contribute, but it is sizeable
only for low decay energies in heavy elements.

The reduced transition probabilities, BF and BGT , can be related to the nuclear
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matrix element as

BF =
g2

V

2Ji + 1
|MF |(18)

and

BGT =
g2

A

2Ji + 1
|MGT |(19)

where Ji is the angular momentum of the initial state and M the matrix elements already
defined previously. The quantity gV is the vector coupling constant of the weak inter-
action, which is determined to be equal to 1 in the Conserved Vector Coupling (CVC)
hypothesis of the standard model; gA is the axial-vector coupling constant of the weak
interaction and it is instead calculated to be equal to 1.25 under the partially conserved
axial-vector current hypothesis. These values correspond to the free-nucleon approxima-
tion, while, for a number of applications in nuclei, they can be affected by many-nucleon
correlations.

The phase-space factor can be approximated roughly by f = (1 + Q/mec
2)5/30, as

function of the decay Q-value.
There are only few β decays where most of the β strength is energetically accessible in

the decay energy window: the Fermi strength is concentrated around the isobaric analog
state (IAS) and the summed strength fulfils the following sum rule:

ΣB+
F − ΣB−

F = Z − N.(20)

The Gamow-Teller decay strength obeys the Ikeda sum rule:

ΣB−
GT − ΣB+

GT = 3(N − Z).(21)

Most part of the Gamow-Teller strength is collected in the so-called Gamow-Teller
Giant Resonance (GTGR) state, while β decays only probe the weak low-energy tail of
this distribution.

A complementary approach to study the GT strength function is that of using nuclear
reactions, in particular charge exchange reaction (CE). CE reactions can be classified as
β−-type such as (p,n), (3He, t), (6Li, 6He) and (12C, 12B) and β+-type, such as (n,p),
(d, 2He), (t, 3He), (7Li, 7Be), (12C, 12N). These reactions allow the measurement of the
high-energy part of the GTGR extending to excitation energies Ex ∼ 20–30 MeV.

Charge-exchange reactions performed at intermediate beam energies (E > 100 MeV/
A) measured at 0◦ are shown to exhibit a proportionality between the measured differen-
tial cross section and the B(GT ), via a unity factor, which can be derived if the B(GT )
for a mass A is known from β-decay studies.

It is not, however, possible to make a direct comparison between the two measure-
ments, since the reaction mechanisms differ in several aspects. First of all, CE reactions
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are sensitive mainly to the surface part of the radial wave function, while β-decays are
insensitive to the radial part of the wave function and can occur at any point in the nu-
cleus. Being CE reactions mediated by the strong interaction, the amount of transferred
momentum is always finite, even if measured at 0◦, and the p ↔ n conversion can occur
in two-steps, or higher-order, processes. This is at variance from β-decays which are
mediated by the weak interaction only, and for which the p ↔ n conversion is a one-step
process involving the conversion of a u ↔ d quark.

Further discussion on the extraction of the B(GT ) can be found in literature, in the
review paper [12] and in the Euroschool lecture notes [13].

3. – Measuring β-decays properties, half-lives and log ft

Depending on the half-life, a β-decay can be studied in different ways: the common
idea is to identify the emitted β-particles and to correlate them with additional informa-
tion. Here we classify the decays in two groups depending on their half-lives: long-lived
species, with half-lives longer than tens of seconds, and short-lived species, characterised
by shorter half-lives.

Long-lived species can be studied off-line, by producing the radioactive sample, mov-
ing it to a measuring station and then letting it decay. A standard experimental equip-
ment for these studies is a moving tape station: the samples are collected over a definite
amount of time, calculated on the basis of the expected decay rate and aiming at reach-
ing a secular equilibrium, and then moved away to the measuring point. The measuring
point is usually equipped with a plastic scintillator to detect the β-particles and ancillary
detectors to measure the delayed emission of particles, either γ rays, neutrons or protons.

The time correlation between the sample collection and the measurement of the β-
particles defines the decay curve from which one extracts the decay half-life, using eq. (1).
The presence of an array to detect γ rays helps disentangling between decay products,
in case competition with other decay modes is open, and the decay of successors.

If the half-life of the nucleus of interest is expected to be in the ms to s range, this
technique cannot be applied: the implantation and detection points need to coincide.
In case of exotic nuclei produced in an ISOL facility, where the outgoing exotic beams
are accelerated to 40–60 keV, the species of interest are implanted onto a moving tape,
surrounded by the same equipment described before. After letting the nucleus decay,
the tape is moved away from the implantation point, in order to minimise background
contributions originating from decay successors, or coming from long-lived species present
as contaminants of the beam, and a fresh piece of tape is presented to a new implantation.

In this type of measurements, one can follow the growth and decay of the activity.
The decay spectrum of 83Ga (T1/2 = 0.31(1) s), measured at the BEDO decay station
in ALTO (Orsay, Paris) [14], is shown in fig. 4 as a typical example. The experimental
set-up is shown in the upper panels, where we see the moving tape coming from the
top of the picture and the direction of the radioactive beam sketched by the red arrow.
Mass-selected 83Ga nuclei are implanted on the mylar tape for a period of ∼ 3 s, until
a saturation is reached. When this is achieved the implantation is stopped and the
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Fig. 4. – Top panels: Schematic representation of the BEDO array at ALTO, Orsay (Fr). In
the left panel the moving tape comes from the top of the figure, while the radioactive beam is
represented by the red arrow coming from the left-hand side. In the right panel the location
of β and γ detectors is instead depicted. The decay curve collected over 5 s for the decay
83Ga → 83Ge is shown in the bottom panel. The three components, accumulation (grow-in),
equilibration and decay, are clearly seen. A constant background is included in the fit. (Adapted
from Master Thesis in ref. [15].)

accumulated nuclei are let to decay. The total decay curve, showing the three different
steps of the process, accumulation of the nuclei, saturation and decay are visibile in the
decay spectrum shown in the bottom panel of fig. 4. The shown decay curve is collected
when a constant production rate during implantation is achieved. The fit to the decay
curve has to comprise all these elements, and is represented by a red continuous line
in the plot. A constant background owing to uncorrelated decays is also assumed and
shown by the grey straight line.

In case the short-lived nuclei of interest are produced following fragmentation or fission
of relativistic beams a different technique is employed. The cocktail beam of nuclides
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Fig. 5. – Top row: CAD drawings of the EURICA set-up at Riken(J). The 12 seven-fold HPGe
cluster detectors, shown in light blue, surround the implantation chamber. To maximise the
efficiency of the set-up the BGO anti-Compton shields were removed. Bottom row: detail of the
WAS3ABI array consisting of several layers of DSSSD, located in the center of the EURICA
HPGe detectors. (Adapted from [16].)

produced in the primary target, after selection and transport in a spectrometer, has an
energy of tens to hundreds of MeV/A and is slowed down and finally stopped at the
measuring point. The decay station for these measurements is equipped with an active
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Fig. 6. – Decay curve of 68Mn → 68Fe measured from the time of detection of the β signal in
the DSSSD WAS3ABI array of EURICA. The data points, shown in black symbols are fitted
to the Bateman equations including contributions from the main decay (red line), decay of the
daughter nucleus, 68Fe → 68Co (blue line), of the granddaughter, 68Co → 68Ni (green line), of
the great granddaughter, 68Ni → 68Cu (pink line) and of the β-n channel, 68Mn → 67Fe (dotted
black line). A linear background owing to random decays is also included in the fit (dashed
line). The overall fitting function is represented by the black continuous line.

stopper, usually consisting of layers of Double-Sided Silicon Stripped Detectors (DSSSD),
which register both the implanted nucleus and its subsequent β- or α-decay. A cocktail
beam is composed of many decaying species, therefore correlations in space and time
are requested to assign each recorded decay to the correct parent implanted nucleus.
Low implantation rates, of the order of 100 Hz, avoid double implantation events in the
same pixel. Also in this case, the implantation area is surrounded by γ-ray detectors. In
fig. 5 the realization of such a set-up, the EURICA array, is shown: in the central part
of the figure the detailed view of the DSSSD array is shown, while the drawing of the
HPGe array surrounding the decay chamber is presented in the top panels. A variable
number of silicon layers, ranging from 3 to 7, have been used during the experimental
campaign [16,17].

In an in-flight facility, it is possible to produce the most exotic species, which are
characterised by very short half-lives. In order to correctly account for the measured
decay curve one needs to include also subsequent decays, comprising daughter, grand-
daughter and —even— great granddaughter decays. An example of such studies is given
in fig. 6, where the decay curve for 68Mn → 68Fe, occurring in 40(3) ms, is shown. The
contributions coming from the decay of the daughter, 68Fe → 68Co (T1/2 = 188(4) ms),
of the granddaughter, 68Co → 68Ni (T1/2 = 1.6(3) s), and of the great granddaughter,
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68Ni → 68Cu (T1/2 = 29(2) s) are also considered in order to correctly fit the decay spec-
trum. These contributions are evaluated on the basis the Batemann equations described
in sect. 2, and are depicted in the figure. Also the β-delayed neutron-emission channel,
accounting for a sizeable fraction of the decay (Pn = 18(10)%) has been included in the
evaluation. The definition of the probability for delayed emission of neutrons, indicated
by the Pn value is discussed in details in sect. 5. A constant background accounts for
random contributions. Further details on this analysis can be found in ref. [18].

As mentioned above, typical set-ups for measuring β-decays comprise HPGe detec-
tors, to measure the internal de-excitation in the daughter nucleus. Such arrays are
characterised by high resolution and granularity, which help in the reconstruction of de-
cay schemes and in describing the decay towards the daughter’s states. By evaluating
the intensity of γ transitions feeding and depopulating each level, one can evaluate how
the primary β decay feeds each individual state, the so-called β feeding, Iβ . The deter-
mination of β feeding to the states, once the relative half-life is taken into account, can
be used to extract the log ft value and, therefore, to classify the decay. If the spin and
parity of the initial state are known, assumptions on the Jπ of populated states can then
be proposed.

The measurement of the feeding fraction of the decay directly populating the ground
state has to follow a different approach, since all transitions in the decay scheme finally
feed this level, and, in parallel, no direct information on its de-excitation is given. If
we can measure the number of implanted ions and the number of registered β decays,
we can extract this value from the missing feeding once the contribution measured by γ

transitions has been subtracted. In case these numbers cannot be accessed, such as in
studies performed at ISOL facilities, a typical approach is to follow the decay down to
granddaughters or great granddaughters, which, lying closer to the stability, are usually
studied in previous experiments. The relative population of granddaughter ground state
returns information on the decays coming directly from the daughter ground state.

Measurements performed at ISOL facilities often have problems in accessing very short
half-lives and in determining absolute activities, owing to delay losses in the extraction
of the species from the target ion source, whereas experiments at in-flight facilities have
to define special procedures to correct from the decay of non-relevant species. If the
advantage of the ISOL technique is that of having an almost mono-isotopical beam, in
the case of experiments performed at in-flight facilities it is possible to measure very
short half-lives of nuclei populated with little statistics.

Examples of tape-moving decay stations are found in almost all ISOL facilities,
such as ISOLDE at CERN (Switzerland) [19], ALTO at Orsay (France) [14], TRIUMF
(Canada) [20], and projects to build new ones are being proposed for the future facilities,
such as SPIRAL2 (France) [21] and SPES (Italy) [22]. Dedicated campaigns to study
β-decay of exotic nuclei are instead carried on at in-flight facilities such as GSI-FAIR
(Germany) [23], RIKEN (Japan) [16] and MSU (USA) [24].

The increasing Qβ window of n-rich nuclei allows access to a large fraction of the GT
strength. This however implies also a stronger impact of the so-called Pandemonium
effect [25].
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The Pandemonium effect is a consequence of the use of HPGe detectors in the study
of β-decay: HPGe detectors are typically characterised by optimum energy resolutions
(≈ 2 keV for 1.3 MeV γ rays), associated to low efficiency for energetic γ rays. The
large Qβ window characteristic of the decay of exotic nuclei, opens the possibility of the
emission of energetic γ rays, which might escape detection in a HPGe detector. As a
consequence, the β feeding to each state is not correctly accounted for. This adds up to
the decrease of the decay strength, which varies as (Qβ−Eex)5, diminishing at increasing
excitation energy (Eex).

To overcome this problem, a different technique is used, based on Total Absorption
Spectrometers (TAS), arrays composed of high-efficiency scintillator detectors aiming
at covering —ideally— the full solid angle. A TAS can be made out of single bulky
crystals (such as the case of the Lucrecia TAS operating at CERN [26] or the SuN array
in MSU [27]), or of modular segments combined in honeycomb structures around the
implantation point, such as the MTAS array used at HRIBF in Oak Ridge [28].

As a consequence of the poor energy resolution of the scintillator materials employed,
either BaF2 or NaI, a TAS cannot resolve the single transitions, while it acts as a calorime-
ter and sums the released γ rays. In this respect this is a complementary technique to
that of high-resolution β-decay studies, since the detailed measured de-excitation scheme
is used as input to extract the multiplicity of emitted γ rays and correctly reconstruct
the sum energy.

In general the analysis of data acquired with a TAS is complicated and requires to
solve the inverse problem

d = R(B)f,(22)

being d the measured data and f the feeding function. R is the response matrix of the
detector, which depends on the structural characteristic of the detector (geometry and
material composition) and varies as a function of measured γ energy and multiplicity.
This needs to be evaluated using ad hoc simulations and then validated by calibration
sources. The analysis of the results is helped by a GEANT4 simulation of the experiment.
This complex simulation takes into account the efficiency and response function of the
array, both as function of the energy and of the multiplicity of emitted γ-rays. The
experimental level scheme, comprising the measured β feeding to the states, is also fed
to the simulation.

Detailed descriptions of the analysis with a TAS spectrometer can be found in ref. [29].

4. – β-decay and astrophysics

β-decay studies are directly linked to element nucleosynthesis, in particular for n-rich
nuclei. Half of the elements beyond Fe are assumed to be produced in the rapid neutron-
capture process known as r process, which spreads out towards the heaviest radioactive
heavy actinide elements present on Earth, such as Th and U.
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The r-process starts around seed nuclei and occurs via a sequence of near-equilibrium
rapid neutron capture and photo-neutron emission reactions, populating neutron-rich
nuclei far away from the valley of stability. The equilibrium is established with an
abundance peaked around one or two isotopes [30,31].

The r-process pattern is extracted from the solar system abundances after the con-
tributions coming from the slow-neutron capture (s-process) and proton-capture process
(p-process) are subtracted [32]. The resulting pattern is characterised by three main
abundance peaks for A ∼ 80, 130, 195, that can be linked to neutron shell closures, and
a high plateaux for the rare-earth deformed nuclei. This latter peak is predicted to
generate in a different stage of the process, either during freeze-out or following fission
recycling.

A crucial parameter which defines the evolution of element formation is the neutron
flux. Three different scenarios can be identified: in environments where few neutron
captures per seed occur (n/s ∼ 50) the r-process can proceed up to nuclei with A ∼ 125.
This is the weak component of the r-process, taking place in the neutrino-driven wind
of core-collapse supernovae. In environments with increasing neutron fluxes, allowing
for enough neutron captures per seed (n/s ∼ 100), the r-process can produce the two
abundance peaks A = 130 and 195. This is the so-called main component and it can occur
in outflow of neutron-rich material via magnetic turbulence driven jets in core-collapse
supernovae. If the neutron flux is even larger, of the order of thousands n-captures per
seed nucleus, the r-process can proceed all the way up to fissile nuclei (A ∼ 300), where
β- or n-induced fission terminates the process. The two fission fragments experience the
neutron flux and enter again in the r-process cycle. After a few cycles the abundances
are dominated by the distribution of fission fragments rather than by the β-decay flow
near closed shells, therefore fission recycling produce an r-process abundance pattern
between the second and third r-process peaks that is relatively insensitive to variations
in the initial conditions. In addition, fission introduces a new flux of neutrons which can
induce neutron-capture events. For a recent description of the impact of fission recycling
see ref. [33].

The recent historical measurement of gravitational waves detected by the LIGO-
VIRGO collaboration [34] provided new insight in the astrophysical site for the r-process:
within hours from the measurement of the binary neutron star merger emission of gravi-
tational waves and associated γ-ray burst, ground- and space-based telescopes registered
an electromagnetic transient, called kilonova, which is associated to the synthesis of heavy
elements in the r-process. It is estimated that about 0.05 solar masses of r-process ele-
ments were created in this single event [35,36]. A new era of multimessenger astronomy
is starting where astronomy, cosmology, nuclear physics, astrophysics, atomic physics,
chemistry come together and join forces to solve the puzzle of the creation of elements
in the universe.

The relative abundance is determined by β-decay rates along the r-process path, and
is described by the Nuclear Statistical Equilibrium equation (NSE), expressed in terms
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of number density for the isotope AZ, n(Z,A) [37]:

n(Z,A)
n(Z,A + 1)

=
1
nn

(
2πμkT

h2

)3/2

× GAGn

GA+1
e

Qn
kT ,(23)

where μ is the reduced mass of the AZ nucleus and the neutron, h Planck’s constant,
k the Boltzmann constant and T the temperature. GA is the partition function of the
nucleus AZ, Qn the neutron separation energy for the A+1Z nucleus.

This equation results in the presence of sharp peaks in the abundances for one —or
few— isotopes within one isotopic chain. The flow of β-decays along these peaks define
the r-process path. The location of the path is given by the assumption that [30]

n(Z,A + 1)
n(Z,A)

≤ 1.(24)

The elemental abundances n(Z,A) along this path are determined by the β-decay
flow:

dn(Z,A)
dt

= λZ−1n(Z,A − 1) − λZn(Z,A),(25)

where the total β-decay rate of each element is given by the weighted sum of β-decay
rates for each isotope:

λZ =
∑
A

n(Z,A)λβ(Z,A).(26)

This description is able to reproduce, at a typical r-process temperature T9 ∼ 1, the
experimentally measured three principal abundance peaks, for A = 80, A = 130, A = 195,
corresponding to the neutron closed-shell waiting points 80Zn, 130Cd and 195Tm.

Another important parameter which determines the r-process path is the neutron
density: at the beginning neutron densities are high, shifting the r-process path towards
neutron-rich species. With time the number of available neutrons decreases, reaching
the so-called freeze out condition when they are exhausted. At this moment the process
moves towards the line of stability via successive β decays.

At this later stage the condition for nuclear statistical equilibrium is no more met,
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and the evaluation of the abundances have to take into account a full reaction network:

dn(Z,A)
dt

= n(Z,A − 1)φnσn,γ(Z,A − 1)

+n(Z,A + 1)φγσγ,n(Z,A + 1)

+n(Z − 1, A)λβ(Z − 1, A)

+(n, p), (n, α), (p, γ), (α, γ),

+(n,fission), (β, n)(β,fission), etc.

−n(Z,A)[φnσn,γ(Z,A) + λβ(Z,A)

+φγσγ,n(Z,A) + . . .],

where φn and φγ are the time-dependent neutron and γ fluxes.
The measurement of the β-decay rates and the determination of possible branches,

either to competing decay mechanisms (α-decay or fission) or leading to emission of
secondary neutrons, is the most important input for network calculations to defining the
r-process path and aiming at reproducing measured solar-system abundances.

R-process calculations rely on a network of inputs, some of which are not presently
available. Therefore the need for reliable calculations which can, on the one hand, ac-
curately reproduce experimental values and, on the other hand, extrapolate towards the
most exotic species.

Two main approaches are usually followed: the macroscopic approach of gross theory
and the microscopic approach of large scale shell models. A number of in-between global
models are also effectively used.

Gross Theory models [38] aim at describing the behaviour of the β-strength dis-
tribution in a statistical manner, where allowed and first-forbidden (ff) transitions are
built from one-particle strength functions folded using paring. Newly refined versions of
Gross-Theory models (2nd-generation Gross Theory) have been developed recently. De-
spite the simplicity of the approach, Gross Theory models show a remarkable predictive
power throughout the nuclide chart, in particular when large Qβ windows are involved,
as in the case of neutron-rich nuclei [39, 40].

Large-scale shell-model calculations may aim at successfully describing the β-decay
matrix elements or strength distribution, via the use of realistic effective interactions.
The limit of these calculations is the exploding number of Slater determinants that need
to be calculated when leaving close shells. A truncation of the model space is usually
required, thus hampering the reproduction of properties on large scale. The present
advance in computational power is quickly changing the situation, with the possibility
of performing heavy load calculations [41].

In between these two approaches, various semi-microscopic models have been devel-
oped, based on effective nucleon-nucleon interactions which allow particle-hole excita-
tions of the charge-exchange collective mode. Random-Phase Approximation (RPA) and
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microscopic-macroscopic application of the Quasi-particle Random Phase Approxima-
tion (QRPA) [42] are the basic ones. In the QRPA approach the β strength, containing
the nuclear matrix elements for the Gamow-Teller, Fermi, and first-forbidden decays, is
calculated using a folded-Yukawa single-particle potential to which pairing and Gamow-
Teller residual interactions are added.

It is remarkable to note that these calculations are used to reproduce data over the
whole nuclide chart: the QRPA-FRDM approach has been applied to predict gross prop-
erties (mass, T1/2 and Pn) over a broad range of nuclei, including more than 8000 species
above 16O [43]. Even if they may not account for the half-lives locally in specific mass
regions, they have a strong predictive power on the entire nuclide chart.

Extended description of the above-described models are given in refs. [45, 44].
There are currently many active programs to measure β-decay rates for nuclei in the

vicinity of the r-process path. If some regions are most accessible, like the two lightest
abundances peaks at N = 50 or N = 82, scarce information is still available for half-lives
around the third peak at N = 126 and for the rare-earth nuclei.

A very recent successful campaign provided the measurement of a large number of
unknown half-lives. The experiments have been performed at Riken laboratory using the
EURICA set-up, already described earlier on in these proceedings. The high intensity
of the 238U beam allowed the study of very exotic nuclei [46, 47]. Examples of the
transported and identified cocktail beams produced in two experiments are reported in
fig. 7, where we see that hundreds of nuclei could be addressed at the same time. Nuclei
lying on the right side of the red line have been studied for the first time. The red circles
highlight newly produced species.

Such a systematic study of β-delayed half-lives led to the measurement of more than
200 decay rates, concentrating on nuclei in the rare-earth peak and around the N = 82
abundance peak.

The effect of these new measurements is visible in a fully dynamic reaction-network
calculation study, that simulated a spherically symmetric out-flow from a neutron-rich
stellar environment without specific assumptions on the astrophysics site, in order to
highlight the impact of the new experimental nuclear physics data. Starting from the
same assumptions, two sets of calculations were performed, including or not the newly
measured half-lives. The comparison to measured solar abundances (data points) [32] is
shown in fig. 8: panel (a) shows, with a red continuous line the abundances calculated
excluding the latest measured decay rates, while they are included in panel (b). The
impact of these new rates is clearly visible in the rare-earth peak which is well accounted
for in panel (b) at variance from panel (a). These network calculations point also to the
fact that these nuclei are most probably populated during the freeze-out of a (n, γ) ⇀↽

(γ,n) equilibrium. Further details on this analysis can be found in ref. [46].
As mentioned earlier on, the region around the third abundance peak has been scarcely

investigated. Isotopes belonging to this region can be accessed by different reactions:
nuclei north-east of 208Pb can be accessed by fragmentation reactions induced on 238U or
heavier elements at beam energies around 1 GeV/A. Such reactions can be studied at the
FRS fragmentation facility at GSI-FAIR [23]. To populate nuclei south of 208Pb one can
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Fig. 7. – Z vs. A/Q identification plots representing the nuclei produced in a fission reaction
of 238U at 345 MeV/u on a 9Be target for two different settings of the Big-RIPS separator.
Newly measured lifetimes were measured for nuclei to the right side of the red lines, while newly
produced species are surrounded by red circles. (Reprinted figure with permission from G.
Lorusso et al., Phys. Rev. Lett., 114 (2015) 192501. c© 2015 by the American Physical Society.
Reprinted with permission from J. Wu et al., Phys. Rev. Lett., 118 (2017) 072701, c© 2017 by
the American Physical Society.)
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Fig. 8. – Comparison between the r-process Solar-System abundance pattern [32] and the abun-
dances calculated (a) without and (b) with newly measured half-lives from ref. [46]. Calculations
make use of masses calculated by the KTUY mass model [39] and reaction rates extracted from
the ReaclibV1 library [52]. The half-lives, other than the ones we measured, are from the
FRDM-QRPA model [42]. (Reprinted figure with permission from G. Lorusso et al., Phys. Rev.
Lett., 114 (2015) 192501, c© 2015 by the American Physical Society.)

perform cold-fragmentation reactions on a 208Pb beam, where the fragmentation process
removes few protons from the primary beam [48]. Recently, an alternative approach
employing Multi-Nucleon-Transfer (MNT) reactions of heavy species, such as 136Xe on
198Pt, has been employed to populate this mass region with sizeable cross sections. The
original idea dates back to the ’90s [49], and has been recently experimentally verified in
Ganil, using the VAMOS variable mode mass spectrometer [50]. This new approach is
at the basis of the KISS isotope separator set-up aiming at measuring masses and rates
in nuclei around the third abundance peak [51].

The work performed in the past decade at the GSI fragmentation facility already con-
veyed first experimental insight in nuclei at and beyond N = 126. Numerous experiments
have been performed, mainly using the RISING set-up in its stopped-beam configuration,
which is based on the same detectors used for EURICA. The results are collected in fig. 9
for various isotopic chains ranging from Re (Z = 75) to Bi (Z = 83) [53-57].
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Fig. 9. – Experimental half-life values (solid symbols) on both sides of N = 126 from previous ex-
periments [53-57] (bold circles and bold squares), and from the work of Caballero-Folch and coau-
thors [59]. Open circles show published theoretical half-lives with different models (see legend).
(Reprinted from R. Caballero-Folch et al., Phys. Rev. Lett., 117 (2016) 012501, under the terms
of the Creative Commons Attribution 3.0 License for DOI:10.1103/PhysRevLett.117.012501).

Shell model [41], FRDM-QRPA [42], DF3+cQRPA [58] calculations reproduce very
well data around the N = 82 abundance peak, while the situation around the third
abundance peak, N = 126, is more complicated, and predictions by different approaches
vary wildly, as it is seen in fig. 9, where theoretical models tend to overestimate the
results for nuclei with N < 126 while they instead underestimate the rates for those
having N > 126. This may be an effect of the less accurate single-particle energy repro-
duction in nuclei near shell closures, given by the fact that at low Qβ values the decay
is dominated by few transitions and it is, therefore, more sensitive to the share of FF
and GT transitions. Indeed, first-forbidden transitions are expected to play a major role
in this mass region suppressing the half-lives. They are included in the framework of
Gross Theory in FRDM+QRPA calculations, while they are instead treated on the same
footing by the DF3+cQRPA.

The review paper by Mumpower et al. [44] compares the measured half-lives tabu-
lated reported in the literature [7] compared to predictions obtained using QRPA calcu-
lations in the FRDM-QRPA framework and using the KTUY. The comparison of data
is performed in three different ways: as function of the neutron number, highlighting
the exoticity, for increasing T1/2 and as function of the β-decay Q value. Even if the
discrepancy between theoretical and experimental values is large, spanning 6 orders of
magnitude, a close look shows that the largest contribution to this mismatch comes from
decays characterised by long lifetimes and small Qβ values, thus corresponding to nuclei
close to the stability valley. In fact, decays with narrow Qβ windows have a small number
of available states to decay to, as is the case of the region around N ∼ 126. Deviations
for exotic nuclei are indeed small, covering only two decades.
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Fig. 10. – Sketch of the β-delayed neutron emission mechanism: the Qβ window allowed for
the decay of the precursor nucleus, is larger that the neutron separation energy, therefore the
decay can populate, together with discrete states in the daughter-emitter nucleus, also high-
lying resonances. These resonant states can decay by the emission of one neutron, therefore
populating states in a different final nucleus.

5. – β-decay in exotic neutron-rich nuclei

Neutron-rich nuclei, going away from the valley of stability, are characterised by
increasing Qβ values and decreasing values for neutron-separation energies (Sn). Given
these conditions, the delayed emission of neutrons becomes a dominant decay channel,
leading to the formation of different successor nuclei.

In fig. 10 a schematic representation of the process is given: the precursor nucleus,
on the left side of the figure, decays towards the daughter nucleus, also called emitter.
As the Qβ window gets large, part of the flux does not end in low-lying states of the
daughter nucleus, while feeds unbound states, which decay, primarily, by the emission
of neutrons. The decay, thus, populates two different nuclear species: the intermediate
emitter (Z + 1, N − 1) and the final successor nucleus (Z + 1, N − 2). In cases where the
Qβ window is large enough, we can observe the emission of more than one neutron.

This exotic decay mode is a powerful tool to access the β strength function above
the neutron separation energy, allowing access to the structure of discrete states and
resonances.

Moreover, β-delayed neutron emission alters the final abundances by shifting the
decay path toward lower masses and providing neutrons reactivating the r-process after
freeze-out. The impact of β-delayed neutron emission is, therefore, two-fold: from one
side it provides additional source of neutrons that feed the capture process, even after
neutron exhaustion, and, on the other, it is important to finalise the details of the isotopic
abundances, which are shifted towards lower mass distributions.

The probability for emission of a neutron following a β decay can be expressed in
terms of

Pxn =

∑Qβ

i,Ei=Sxn
λi∑

i λi
=

∑Qβ

Ei=Sxn
Sβ(Ei) · f(Qβ − Ei)∑Qβ

Ei=0 Sβ(Ei) · f(Qβ − Ei)
,(27)

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



280 G. Benzoni

where the assumption is that the nucleus emits as many neutrons as energetically possi-
ble, overestimating the number of emitted neutrons. The competition between neutron
emission and γ decay from these excited states, expressed in terms of decay widths Γn and
Γγ , has to be taken into account, leading to a more refined —and operative— formulation
as

Pn =
C

λβ

∫ 0

−Qβ+Sn

|M(E)|2f(Z,−E)
Γn

Γn + Γγ
dE,(28)

where C includes all coefficients outside the integral in eq. (15).
Experiments in neutron-rich nuclei focus both on the measurement of the probability

of emission of delayed neutrons, by measuring the number of emitted neutrons, and on
the decay mechanism itself, with the measurement of the neutron energy spectrum.

The determination of the probability of delayed emission of neutrons can be performed
even without the direct measurement of the emitted particles: the study of the internal
deexcitation of the successor, based on the missing flux estimated from a detailed knowl-
edge of the Iβ branching ratios to each states, including the ground state, conveys the
wanted information. Good efficiency and angular coverage are demanded.

Neutrons can be measured using detectors based on 3He tubes, which detect neu-
trons after their energy has been moderated in paraffin or polyethylene matrix, or using
scintillator detectors for Time-of-Flight measurements.

The capture of thermal neutrons by 3He results in the reaction

3He + n → 3H + 1H + γ,(29)

where the emitted γ-ray has a typical energy of 765 keV. The measurement of this specific
γ transition is therefore an indication of the detection of a neutron.

This detection technique is employed in many set-ups, such as, for example, BE-
LEN [60], in use in GSI-FAIR and Jyväskylä, by the TETRA array [61] at ALTO-Orsay,
3Hen [62] in HRIBF-Oak Ridge, and in the BRiken set-up [63] in Riken.

Time of Flight (TOF) techniques are instead pursued using long bars of scintillator
material, read to the sides by photomultiplier tubes. Different dimensions and distances
from the emitting source are used to detect neutrons of different energy and cover a
large solid angle. The TOF is calculated with respect to a start signal coming from a β

detector (either a plastic scintillator or a Si detector). The TOF techniques enables the
measurement of the energy spectrum of the emitted neutrons, which maps the B(GT )
above the neutron separation energy.

An example of such array is the VANDLE array [64], successfully used in many
campaign at HRIBF-Oak Ridge, ISOLDE-CERN and Riken.

Recent successful determination of Pn values in Hg and Tl has been achieved in
GSI [59]. The measurement of β-delayed neutron emission probability in such heavy
systems, even if not directly lying on the r-process path, are instrumental also to discern
theorectical models aiming at describing the β-decay strength function.
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The same theoretical approaches used to predict decay rates are employed for the
probability of emission of delayed neutrons. The reliability of such approaches in ex-
tracting this quantity is however very limited, suggesting that the given description of
the mechanism is too simplistic: we will see later that a Qβ value greater than the neu-
tron separation energy is not a sufficient condition for the emission of delayed neutrons,
and that the competition with energetic γ decay is stronger than expected. Moreover,
the shape and deformation of the parent nucleus is expected to influence the probability
of emission of particles.

The increasing Qβ window of n-rich nuclei allows access to a large fraction of the
GT strength. This however implies also a stronger impact of the Pandemonium effect,
described in sect. 3.

We report here the comparison of two experiments aiming at the study of the decay
70Co → 70Ni performed with two different approaches: the first one employing a standard
set-up comprising HPGe detectors (high resolution), while the second one using a total
absorption spectrometer (low resolution). The decay 70Co → 70Ni is characterised by the
presence of two β-decaying states: the high-spin ground state (6−, 7−) and a low-spin
(1+, 2+) isomeric state, decaying with similar half-lives (T1/2 = 112(7) ms and T1/2 =
508(7) ms respectively). This decay has a large Qβ window of 12.3(3) MeV, with a low
probability for delayed-neutron emission [65,66,7].

The high-resolution experiment has been performed at Riken, using the EURICA set-
up [17], composed of a combination of 15 7-crystal HPGe detectors and 5 layers of DSSSD
from the WAS3ABI array, to study the cocktail beam produced by relativistic fission of a
primary 238U beam at 345 MeV/u on a 9Be target. A picture of the experimental set-up is
given in fig. 6. The fission products were transported and identified into the Big-RIPS and
ZeroDegree spectrometers, and implanted in the DSSSD detectors to study their decay.
The high resolution and granularity of the EURICA γ array allows to reconstruct, via
the analysis of γ-γ coincidences, the complicated level scheme following the decay under
analysis. This allows to disentangle the decays coming from the two β-decaying states:
the fission reaction at relativistic energies, in fact, populates the β-decaying isomeric
state with a probability of 45%, while the remaining 70Co nuclei are produced in their
ground state.

An example of the discrimination of two closely lying transitions, at 681 and 683 keV,
is shown in fig. 11. The two transitions are not well resolved in the total βγ coincidence
spectrum (panel (a)), and they can be distinguished requiring higher-level coincidences,
as shown in panels (b) and (c). The two transition arise from the decay of the ground
state decay of 70Co, and were located as the 7− → 5− transition (681 keV) and as the
5− → 4+ transition (683 keV), as shown in the decay scheme in the middle of fig. 11.

The level schemes following the two decay paths, from the ground state and from the
isomer, are shown in the right side of fig. 11. The two decays populate states of different
spins, according to β-decay selection rules.

This experiment conveyed new experimental information, extending the known de-
cay scheme up to ∼ 6.2 MeV, very close to the neutron separation energy Sn =
7.3(1) MeV [67]. The proposed Iβ , extracted for both decay paths, extracted in this
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Fig. 11. – Panels (a-c): βγ and βγγ coincidence spectra for the decay 70Co → 70Ni showing the
presence of two closely lying transitions. The two transitions belong to different de-excitation
schemes, one occurring from the (6−, 7−) ground state and from the (1+, 2+) β-decaying isomer.
The detailed level schemes from these two decays are reported in the lower panels of the figure.

detailed study helped confirming the proposed Jπ in the daughter nucleus, which can
then be compared to state-of-the-art Shell Model calculations for a correct interpretation
of their origin: they provide first evidence of strongly prolate-deformed shapes for the low-
lying levels and the ground state of in 70Co, which preferentially decays towards similarly
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deformed structures in 70Ni. This decay path can be clearly distinguished from the one
passing through nearly spherical levels following the decay of the high-spin state of 70Co

Additional details on the experiment and the experimental set-up can be found in
refs. [18, 65].

A complementary approach to the study of the same decay is that employed in the
second experiment. This TAS experiment has been performed at NSCL, employing the
SuN (Summing NaI) detector to study the decay of the parent nucleus, populated by a
fragmentation of a 86Kr beam at 140 MeV/u on a 9Be target. The TAS SuN is composed
of eight optically isolated segments created in a single large NaI crystal. Details on this
measurement can be found in ref. [66].

In order to extract the β-decay intensity one should compare different spectra: the
event-by-event spectrum given by the sum of the energy collected in the segments (panel
(a) of fig. 12), the spectrum coming from each single segment (panel (b)) and the segment
multiplicity (panel (c)). Each of them conveys a different piece of information: the spectra
extracted from each single segment is sensitive to the individual transitions in the de-
excitation cascade, while the energy sum of all segments returns the initial excitation
energy of the decay. The segment multiplicity can be unfolded to return the number of
emitted γ rays in each event. A randomly correlated background has been subtracted to
the spectra.

The peaks seen in the single-segment spectrum correspond to the strongest transitions
at 449, 683, 970 and 1260 keV, which have been identified to follow the decay from the
high-spin ground state of 70Co (see fig. 11). The observation of these peaks rule out the
possibility of seeing the decay coming from the isomeric state, which could, in principle,
be populated in fragmentation reactions at this energy, as was observed in a previous
experiment [68].

A prominent feature of the summed spectrum is that of showing a strong population of
the level at 3592 keV, in accordance with the results from the high-resolution experiment,
which extracted a Iβ = 72(3)% for this state. This large fraction of feeding suggests
an allowed GT transition of ν0f5/2 into π0f7/2. Another interesting property of the
summed spectrum is that of presenting sizeable γ-ray emission above the 7.3 MeV neutron
separation energy (indicated by the arrow in the spectrum in panel (a)).

As explained in sect. 3, the analysis of the TAS spectra is helped by the comparison
with simulations accounting for the efficiency and response function of the array. The
experimental level scheme, comprising the measured β feeding to the states, is also fed
to the simulation. Since the level scheme is known only up to ∼ 4 MeV, levels above this
energy are artificially created by a statistical model code. The spreading of these levels
reflects the energy resolution of the array.

The simulation populates spectra similar to the experimental ones, following ran-
domly chosen de-excitation paths. Examples of such spectra are compared, via a χ2

minimisation procedure, to the experimental data in fig. 12 (black dashed lines in panels
(a), (b), (c) of fig. 12).

The experimental Iβ decay intensity was used, via the evaluation of the log ft, to
extract the Gamow-Teller cumulative strength distribution, B(GT ), which is shown in
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Fig. 12. – TAS spectra for the decay 70Co → 70Ni (solid red line) together with the best
fit of the χ2 minimization analysis procedure (dashed black line). Panel (a) shows the total
TAS spectrum, sum of the single segments, panel (b) the segment spectrum and panel (c) the
multiplicity. Panel (d) shows the cumulative β-decay intensity as function of excitation energy of
the final states in 70Ni. The solid black line and green-shaded area are the experimental results
with uncertainties. A comparison with shell-model calculation is shown with the dashed red
line, while the thick dotted blue line is a QRPA calculation under the assumption of spherical
shape (Reprinted with permission from A. Spyrou et al., Phys. Rev. Lett., 117 (2016) 142701,
c© 2016 by the American Physical Society.)

panel (d) of fig. 12. The experimental results, shown with a continuous black line are
compared to shell-model calculations (dashed line) and QRPA calculations (dotted line)
in the folded-Yukawa QRPA model [43] under the assumption of spherical shape [69].
This assumption is corroborated by the analysis of high-resolution data, which is consis-
tent with the quasi-spherical structure of the ground-state of 70Co, which, in turns, feeds
levels of similar deformation in the daughter nucleus 70Ni.

Shell-model calculation are carried out in the 0f7/2, 0f5/2, 1p3/2, 1p1/2, 0g9/2, 0g7/2,
1p1/2, 0g9/2, 0g7/2 model space, where the GPFX1A Hamiltonian [70] was used for the
0f -1p part of the space, while the part of the Hamiltonian involving the 0g orbitals was
obtained from the N3LO interaction [71] renormalized using the Vlow−k approach into
six major oscillator shells and then renormalized up to second order perturbation theory
into the model space [72].
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The experimental distribution shows that a sizeable fraction of strength at high energy
is not reproduced by the two models. The Gamow-Teller strength around 3 MeV is
dominated by the ν0f5/2 → π0f7/2 transition, while the gradual rise in strength above
5 MeV can be referred to ν0p to π0p, ν0f5/2 to π0f7/2, νg9/2 to π0g9/2 transitions.

The strength measured above 6 MeV can be related to the spreading width of the
higher state coming from 2p-2h configurations. A contribution coming from first-
forbidden transitions may also partly explain the missing strength.

The presence of a sizeable strength above the neutron separation energy has been
observed in neutron-rich nuclei in several mass regions. One recent example is the mea-
surement of an excess of strength in the decay of very exotic 83Ga → 83Ge.

In order to highlight this effect one can compare the βγ coincidence spectra measured
in a LaBr3(Ce) scintillator detector for the two decays 80Ga → 80Ge and 83Ga → 83Ge.
The first decay, 80Ga → 80Ge, has a Qβ = 10.3 MeV and a Sn = 8.1 MeV, while the
second decay, involving a more exotic isotope, is characterised by a slightly larger decay
window (Qβ = 11.7 MeV), and a sizeable neutron emission probability, between 56–87%,
being the Sn = 3.6 MeV in this case.

Given the low-lying neutron separation energy, one would expect the γ-ray spectrum
in coincidence with the decay of 83Ge to reach slightly above 4 MeV. Surprisingly the
spectrum extends to much higher energies, with no changes in slopes above the Sn. This
is shown in panel (a) of fig. 13, where we can compare the spectra from the two decays.

This unexpected high-energy γ-ray emission can only be linked to fast, possibly collec-
tive, E1 transitions, which can compete with neutron emission from levels in this energy
range. Other parity-changing electromagnetic transition, like M2 or E3, are suppressed
by at least three orders of magnitude due to their higher multipolarity.

In order to understand the possible origin of this excess of strength the data are
compared to fully microscopic QRPA calculations based on the Gogny D1M interaction.
The calculated GT (B(GT )) and E1 spectra (B(E1)) are also presented in panel (b) of
fig. 13 for the two nuclei under analysis. No quenching is included in the calculation of
any of these strengths. In the case of 83Ge both the B(GT ) and the B(E1) show an
accumulation of strength at 5–7 MeV and then again above 8 MeV, in good agreement
with the experimental γ-ray spectrum. Typical timescales of 10−17 s can be attributed
to the E1 decay, which can therefore compete with the neutron emission lifetimes of
10−16–10−19 s, Consequently, microscopic calculations support the hypothesis that the
states populated by the GT decay have strong E1 transitions to the low-lying and ground
states in the daughter nuclei. A different behaviour is instead seen in the case of 80Ge,
for which a suppressed GT and E1 strength are expected in the region of interest, being
shifted towards higher energies, in agreement with the measured spectrum.

In order to help describing the experimental spectra, fully microscopic Quasi particle
Random Phase Approximation (QRPA) calculations with no free parameters, based on
the effective nucleon-nucleon Gogny D1M interaction, were performed. The resulting
spectra are shown in panel (b) of fig. 13. In the case of 83Ge, the B(GT ) and E1
distributions show an accumulation of strength in the region between 5 and 7 MeV, and
then again beyond 8 MeV, in good agreement with the measured spectrum in panel (a).
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Fig. 13. – Panel (a): βγ coincidence spectra for the decay of 80,83Ga, blue and red line re-
spectively. The vertical line shows the location of the neutron separation energies of the
daughter nuclei 80,83Ge. The two spectra are normalized to the same number of β-decay
events. The corresponding GT β-decay E1 strength distributions calculated with a micro-
scopic Gogny-QRPA model are reported in panel (b) for comparison. Panel (c) and (d) show
the GTstrength distribution above the neutron separation energy in the decay of 83Ga (c)
and 84Ga (d). The data are shown in a solid black line and the grey shaded parts of the
histogram indicate the uncertainties of the strength distribution. The strength distributions
extracted from βγ spectroscopy are shown by blue lines, enhanced by factors of 20 and 10 for
83Ga and 84Ga. (Adapted from A. Gottardo et al., Phys. Lett. B, 772 (2017) 359, under
the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3,
for DOI: http://dx.doi.org/10.1016/j.physletb.2017.06.050, and from M. Madurga et al.,
Phys. Rev. Lett., 117 (2016) 092502, under the terms of the Creative Commons Attribution 3.0
License for DOI: 10.1103/PhysRevLett.117.092502.)

This justifies the existence of a significant γ-decay branch from neutron-unbound states.
In parallel the calculations do not show such β-delayed γ-ray strength in 80Ge with
respect to 83Ge.

Further details on the experiment and analysis can be found in ref. [73].
An independent measurement of the same decay, 83–84Ga → 83–84Ge, has been re-

ported by Madurga et al. in ref. [74]. In this paper the authors analyse the decays in
terms of the competition between the β and βn channels. The Time-Of-Flight (TOF)
neutron-detection array VANDLE was employed to study the decay above the neutron
separation energy, extracting the B(GT ) distribution shown in the panels (c-d) of fig. 13.
This distributions shows again an extra strength above 6–7 MeV, which indicates that
the decay above the neutron separation energy is dominated by allowed Gamow-Teller
transitions.

The large Qβ windows also allow for the study of low-lying components of giant
resonances, the so-called Pygmy states. In several neutron-rich nuclei an additional
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Fig. 14. – Candidates for 1− levels in 136Xe populated by (γ, γ′) reactions (panel (a)) and by the
decay 136I → 136Xe in panel (b). Levels represented by red bars are seen in both methods. Panel
(c) shows the ground-state branching ratios extracted from β decay (Reprinted with permission
from M. Scheck et al., Phys. Rev. Lett., 116 (2016) 132501, c© 2016 by the American Physical
Society.)

structure in the E1-strength distribution of atomic nuclei has been identified near the
particle-separation thresholds. It appears as a resonance-like accumulation of 1 levels on
top of the low-energy tail of the isovector giant dipole resonance (GDR) and is denoted
as the pygmy dipole resonance (PDR) [75]. While the GDR exhausts 100% or even more
of the E1 strength predicted by the Thomas-Reiche-Kuhn sum rule, the E1 strength of
the PDR is typically of the order of a few percent or even less [76]. If the character of
such states has not been well defined yet, it has a strong impact in neutron-capture rates
in astrophysical calculations [77-79].

The possibility of populating these states following β decay of exotic nuclei, has
been demonstrated by the work of Scheck and collaborators [80] studying the decay
136I → 136Xe.

Figure 14 shows the comparison of states populated in a (γ, γ′) experiment (panel (a))
compared to states populated in β decay (panel (b)). Red bars indicate levels populated
in both reactions. Even if a considerable number of states is populated exclusively by one
of the two mechanisms, this study shows a different experimental approach which can
highlight the presence of the low-lying components of the resonances. This is particularly
attractive being decay spectra comparably background free, and allowing to perform γγ-
coincidence studies.
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The possibility to access a larger fraction of the GT strength has a large impact
not only for basic research, but also for the evaluation of decay heat in nuclear power
plants. In 2007 the Nuclear Energy Agency (NEA) of the Organisation for Economic
Cooperation and Development provided an assessment in which it asked for a systematic
revision of β-decay data regarding abundant fission products present in nuclear reactors,
aiming at removing systematic errors and biases mainly related to the use of low-efficiency
detectors [81].

Approximately 8% of the total energy generated in by fission arises from energy
released by the decay of elements created during the process. Once the fission is ended,
because of a reactor shutdown or because of discharge of the fuel, the radioactive decay
is the source for the remaining heating. The decay heat varies as a function of time and
the power function can be extracted by the available nuclear data:

f(t) =
∑

i

(Eβ,i + Eγ,i + Eα,i)λiNi(t),(30)

being Ei is the mean decay energy of the i-th decay for the various components, α, β, γ.
λi is the decay constant for the nuclide i and Ni(t) is the number of nuclides i at time t.

A recent revision of the data available in literature showed a substantial discrepancy
between measured and calculated fraction of the γ-decay heat, in particular for cooling
times ranging between 300 and 3000 s. This lead to a compilation of a priority list of
contributors whose properties are known with low accuracy.

If half-lives are usually known with high accuracy, the incorrect evaluation of the β

feeding due to the Pandemonium effect, implying an under-estimation of the decay mean
energy, is the main responsible for such discrepancy.

High-precision measurements with TAS techniques are being carried out [82] and
will help gaining the requested accuracy in these calculations, which result in increased
security and reduced cost when employing fission power plants.

The relative population of nuclear levels in decays of exotic fission fragments is deter-
mined by the competition between allowed Gamow-Teller (GT) and first forbidden (ff)
transitions. This is due to the asymmetry of the neutron and proton Fermi energies and
the large β energy window (over 10 MeV), particularly in heavy nuclei. As the decay
window opens up for nuclei further away from stability, the fraction of the GT transition
strength contained within the decay energy window dominates the decay probabilities.
The ff decays, with small transition matrix elements, are nevertheless amplified by the
phase space factor, due to large decay energy and compete with the GT decays [42, 58].
The resulting distribution of β intensity is complex, with low-energy, well-separated states
populated by ff transitions and a high-level density of γ-ray emitting states near the neu-
tron separation energy (Sn). One- and two-neutron emission from the states populated
by GT transitions above the S1n and S2n adds to the complexity of decay paths.

Only a combination of detection techniques, including high-resolution γ-ray spec-
troscopy, neutron detection, and total absorption γ-ray studies can yield a true picture
of the beta decay of neutron-rich nuclei and illuminate the underlying nuclear struc-
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ture. The importance of decay studies of fission fragments goes well beyond nuclear
structure and is critical to the understanding of the astrophysical r-process and its sce-
narios [44]. The decay properties of reactor-produced fission fragments are relevant for
the understanding of the nuclear fuel cycle, in particular for safety issues related to
nuclear power [81].

6. – Conclusions and outlook

The properties of exotic systems are of fundamental importance when describing
the formation of the elements in the universe through stellar nucleosynthesis processes.
Radioactive decay of the unstable nuclei conveys inputs, such as decay rates and decay
branching ratios, instrumental for a detailed description of the properties of the nuclear
interaction with unbalanced number of protons and neutrons.

The study of exotic nuclei has a great impact on defining the evolution of nuclear
structure properties away from the valley of stability and in assessing the robustness of
theoretical models describing the nuclear medium.

The large Qβ window, characteristic of the decay of n-rich species, allows access to a
large fraction of the decay strength function, with increasing interplay between GT and
ff decay modes.

After a quick reminder of the basic properties of β-decay, key features of neutron-rich
system have been presented, together with a description of the most common techniques
to study β-decays in exotic systems, have been addressed in these proceedings. The
impact of the measurement of β-decay rates and branching in nuclear models for stellar
nucleosynthesis and on the study of nuclear structure has been also highlighted through
examples of state-of-the-art experiments.

The current experimental program, carried out worldwide, will be greatly pushed
forward by the advent of second-generation radioactive beam facilities, such as SPIRAL2,
SPES, HIE-ISOLDE, FAIR, FRIB, which will extend further out the reach of exotic
species. The use of new beam purification methods, such as MR-TOF or Penning traps, in
addition to high-resolution spectrometers, is also instrumental in increasing the precision
of these studies.
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New developments in laser spectroscopy for RIBs
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Summary. — The optical spectrum of ions and atoms exhibits a nuclear finger-
print. With sufficient resolution and the choice of appropriate atomic transitions, nu-
clear properties like the spin, nuclear magnetic dipole moments, electric quadrupole
moments and the change in the mean-square charge radius can be determined. Dur-
ing the last decade, progress in this field towards higher sensitivity and accuracy
has allowed to study new regions of the nuclear chart.

1. – Introduction

Precision spectroscopy of ions and atoms is an important source of information about
the microscopic world. The spectrum of hydrogen has been a cornerstone for the de-
velopment of quantum theory, the fine structure has provided evidence for the existence
of the electron spin and its magnetic moment and the hyperfine structure is due to the
finite size and electromagnetic properties of the nucleus. The existence of the Lamb shift
gave rise to the development of quantum electrodynamics and even the weak interaction
leaves traces in the atomic spectrum that can be observed by studying parity-forbidden
transitions. Soon after its invention, the laser was applied for spectroscopy and has been
an invaluable tool ever since. Starting in the late seventies of the last century, lasers were
applied for the investigation of short-lived isotopes. Charge radii and nuclear moments
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Fig. 1. – Detection principles for on-line laser spectroscopy: (a) Classical fluorescence spec-
troscopy. Photons that are resonantly scattered are detected (perpendicularly to the laser direc-
tion). (b) Resonance ionization: Atoms are excited in a resonant transition and subsequently
ionized by the absorption of one or more additional photons. (c) Decay after resonant excitation
can populate other states or substates (e.g. m-levels) that are not (or weaker) populated without
resonant excitation. If these states have properties different from the original starting level, this
can be used for detection. Examples are listed to the right.

are obtained from high-resolution measurements of atomic spectral lines which exhibit
hyperfine structure and isotope shift caused by the interaction of the shell electrons with
the nucleus [1]. It was particularly the technique of collinear laser spectroscopy [2],
developed for the purpose of on-line investigations, that has delivered a large amount
of nuclear data of isotopes far from the valley of β-stability. Standard collinear spec-
troscopy is based on resonant excitation and detection of the fluorescence decay from
the excited level as it is shown in fig. 1(a). However, optical fluorescence detection is
rather inefficient and suffers from background photons due to the scattered laser light.
The signal-to-noise ratio limits such experiments to isotopes produced at rates of typ-
ically more than 106 ions/s. This has been improved in recent times by accumulation
and bunching of ion beams [3]. In a few very favourable cases this now allows studies of
isotopes that are produced with rates of about 100 ions/s.

The excited state of the atom can usually also decay to a different state than the
one from which excitation occurred as is depicted in fig. 1(c). While this limits in many
cases the efficiency of fluorescence detection because excitation and spontaneous emission
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Fig. 2. – Regions of the nuclear chart in which on-line laser spectroscopy of short-lived isotopes
was performed so far. All isotopes that have been addressed are marked in red. Black are the
stable isotopes and depicted in grey are those isotopes that are known to exist. An up-to-date
version of this chart, links to all references and a table with the applied techniques and extracted
nuclear observables is available on-line [5].

cannot be repeated arbitrarily often, it can be used to provide more efficient detection
techniques to study even more exotic isotopes that are produced at lower rates. A
variety of particle- or radiation-detection techniques based on this laser optical pumping
have been applied. These schemes provide higher efficiency and less background, which
considerably enhances the sensitivity. Beams with rates down to 103 ions/s, in favourable
cases even somewhat below 100 ions/s [4], are usually sufficient for an experiment.

A second technique that became very popular for on-line studies is resonance ioniza-
tion spectroscopy (RIS). In this case, resonance excitation is followed by absorption of
another photon that removes the electron from the excited atoms, leaving a singly charge
ion behind as shown in 1(b). This ion can then be detected very efficiently since charged
particles can be collected by the use of electric and magnetic fields and guided towards
sensitive detectors. Sometimes two or even three resonant steps are used before ioniza-
tion is performed. When pulsed lasers are used, high excitation and ionization efficiency
is reached at the cost of resolution. However, especially in the high-Z region, hyperfine
splittings and isotopes shifts are huge and the resolution offered by pulsed RIS is suffi-
cient to obtain accurate nuclear information. Resolution can be increased by applying
continuous-wave (cw) lasers or cw-seeded pulsed lasers.
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These techniques provided a wealth of nuclear structure information as indicated
in the nuclear chart shown in fig. 2. Isotopes indicated in red have been investigated
by on-line laser spectroscopy (in a very few cases experiments were performed off-line
after on-line production). In this contribution recent progress in laser spectroscopy of
radioactive isotopes is discussed. In specific examples, the way of extracting nuclear
information from the optical spectrum is presented as well as the conclusions about the
nuclear structure that can be drawn from the observables. The field of laser spectroscopy
on beams of radioactive isotopes has been treated more generally in several recent review
articles [6-8].

2. – Nuclear signatures in the optical spectrum

All contributions to the energy levels of an atom beyond the description of the so-
lutions of the relativistic Dirac equation assuming a structureless point-like infinitely
heavy source of charge in the atom’s center are summarized under the term “Hyperfine
Structure”. These include the contribution of the nuclear recoil, the finite nuclear size
and the intrinsic charge distribution, effects of the magnetic field of a nucleus possess-
ing a nuclear spin, nuclear deformations and last but not least corrections by quantum
electrodynamics (Lamb shift). In the following, we will shortly summarize the effect of
these terms.

2.1. Finite nuclear size and the isotope shift . – The finite mass and size of the atomic
nucleus has a small but distinct influence on the optical spectrum of an isotope. Compar-
ing the transition frequencies νA of a specific electronic transition for different isotopes
with mass numbers A and A′, a small difference

δνAA′
= νA′ − νA(1)

is observed and called the isotope shift. An example is shown in fig. 3(a). According to
its twofold origin, it is divided into the finite nuclear-mass shift (MS) and the nuclear
volume or field shift (FS)

δνAA′
IS = δνAA′

MS + δνAA′
FS .(2)

The mass shift is related to the fact that the center-of-mass (cm) of the atom does not
coincide with the center-of-mass of the nucleus and therefore there is a center-of-mass
motion of the present nucleus that also contributes to the internal energy of the atom.
The size of this effect changes from isotope to isotope since they differ in nuclear mass.
In a nonrelativistic approach, this can be taken into account writing

δνAA′
MS =

MA′ − MA

MA MA′
(KNMS + KSMS) .(3)

The so-called “normal mass shift” (NMS) is the part of the shift that is expected for a
one-electron system, whereas the “specific mass shift” (SMS) arises from the correlation
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(a)

Fig. 3. – (a) Optical resonance signals along the chain of calcium isotopes. The isotope shift
is clearly visible by the shift of the resonances of the even isotopes. For the odd isotopes, the
centre-of-gravity of the hyperfine structure has to be taken, which is indicated by the arrow
in the respective spectrum. (b) Representation of the normal mass shift (NMS, top) in a one-
electron system and the specific mass shift (SMS) in a two-electron system. If the correlation of
the electrons is such that they are preferably close in space, the nuclear center-of-mass motion
is large, whereas it is much smaller if the electrons prefer to be far apart and on opposite sides
of the nucleus as shown on the bottom. (c) Origin of the field shift. With increasing size of
the nucleus, the electrostatic potential deviates already at larger r from the Coulomb potential
of a point-like charge (dotted line). Thus, the level energies of the bound electrons change and
this change is particularly large for s-electrons having a finite probability for being inside the
nucleus. The dotted horizontal line represents the level energy of the s-electron for a point-like
nucleus, which is lifted in the two isotopes with mass numbers A (right) and A′ (left). The field
shift is represented by the different length of the blue and the red arrow.

of electron momenta as indicated in fig. 3(b). The NMS can be easily calculated by
replacing the electron mass me with the reduced mass of the system. This leads to

KNMS = meν.(4)

The specific mass shift constant KSMS can only be approximated numerically by solving
electron-correlation integrals that are extremely difficult to evaluate. This is already a
challenge in a two-electron system and has so far been solved accurately and in full detail
only for up to five electrons.

The second part of the isotope shift is much more interesting from nuclear-physics
point of view: it is related to the finite nuclear size. For a point-like nucleus, the electrons
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experience a 1/r Coulomb potential which has a negative pole at the nuclear site. How-
ever, for an extended nucleus, the potential deviates from the 1/r-law within the nuclear
volume and acquires a finite value at the nuclear center. This is visualized in fig. 3(c).
Electrons with a finite probability density |Ψ(0)|2 �= 0 inside the nuclear volume, i.e.,
especially s electrons, will experience this reduced potential. The contribution of the
FNS effect to the transition frequency arises from the difference of the electron density
at the nucleus |Ψ(0)|2 between the initial (i) and the final (f) state of the transition

δνFNS,i→f =
Ze2

6hε0

〈
r2
c

〉 (
Δ|Ψ(0)|2

)
i→f

(5)

with

(
Δ|Ψ(0)|2

)
i→f

= |Ψf(0)|2 − |Ψi(0)|2 .(6)

The nuclear mean-square charge radius 〈r2
c 〉 is defined as

〈
r2
c

〉
=

1
Ze

∫
ρc(r) r2 dV(7)

with the nuclear charge density ρc(r). This effect contributes to the isotope shift if the
two isotopes A and A′ have different charge radii

δνAA′
FS =

Ze2

6hε0
Δ|Ψ(0)|2

(〈
r2
c

〉A′
−
〈
r2
c

〉A)
(8)

=
Ze2

6hε0
Δ|Ψ(0)|2 δ

〈
r2
〉AA′

= F δ
〈
r2
c

〉AA′
,(9)

where the index of the corresponding atomic transition i → f is dropped and the field
shift constant F is introduced.

While the mass shift is roughly proportional to 1/M2, the field shift increases approx-
imately by Z2/ 3

√
A. The dependency is represented in fig. 4(c): The mass shift by far

dominates the field shift for light elements. Figure 4(a) shows a spectrum of the stable
lithium isotopes 6,7Li in the 2s → 3s two-photon transition [9]. The huge isotope shift
of about 12 GHz is almost exclusively caused by the mass shift. Figure 4(b) shows the
resonance transition in strontium isotopes without mass separation and for 84Sr and 87Sr
with mass separation [10]. Here the isotope shift is very small, only a few 10 MHz for
neighboring isotopes. Even techniques with high resolution cannot easily resolve the iso-
topes. The odd isotope 87Sr is covered by the wings of the resonance line of 88Sr but can
be isolated using mass separation. The small isotope shifts are caused by the opposite
trends of the two contributions: The (normal) mass shift leads to an increase of binding
energy for the heavier nucleus while the increasing size weakens the binding. This leads
to a vanishing isotope shift around the crossing point in fig. 4(d). For heavier nuclei the
field shift supersedes the mass shift and the isotope shift shown for polonium isotopes [11]
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Fig. 4. – Isotope shift examples from three mass regions: (a) Lithium 6,7Li (Z = 3) in the
2s → 3s two-photon transition. Please note the logarithmic scale and that the isotope shift is
twice as large as indicated by the frequency axis since two photons are absorbed simultaneously
in this transition. Figure reprinted with permission from Bushaw B.A. et al., Phys. Rev. Lett.
91, 043004. c© 2003 by the American Physical Society [9]. (b) Strontium 84,86–88Sr (Z = 38) in
the 5s2 1S0 → 5s5p 1P1 transition [10], please note the logarithmic scale on the y-axis. Figure
reprinted with permission from Bushaw B.A. and Nörtershäuser W. from Spectrochimica Acta
Part B 55, 1679. c© 2000, by Elsevier. (c) Even isotopes of polonium 192–218Po (Z = 84) in
the 6p37s 5S2 → 6p37p 5P2 transition (here linear scale). Reprinted with permission from T.E.
Cocolios et al., Phys. Rev. Lett. 106 052503. c© 2011 by American Physical Society [11].
(d) Schematic of the contribution of field shift and mass shift in GHz (logarithmic scale) to the
overall isotopic shift, drawn as a function of the atomic number. For details see text.

shown in fig. 4(c) can be determined even with moderate resolution caused by a linewidth
of 2–3 GHz originating from the Doppler broadening in a hot atomic ensemble.

Finally it should be noted that the electron density cannot be assumed to be con-
stant across the whole nucleus for heavy elements. Therefore higher radial moments and
relativistic contributions to the wave function of the electron have to be considered (see
for example [12]).

2.2. Nuclear moments and the hyperfine splitting . – The hyperfine structure is usually
dominated by the magnetic interaction between the nucleus and the shell electrons, which
gives access to the magnetic moments of nuclei. Nuclear spins can often be directly
obtained from the hyperfine structure pattern, i.e. the number of components, their
splittings and their intensity ratio. The interaction of the nuclear quadrupole moment
with the electric field gradient produced by the electrons is in most cases smaller. With
the small quadrupole moments of light nuclei it tends to fall below the natural linewidth
limit which is of the order of 10 MHz for sufficiently strong optical transitions. However,
in heavy and strongly deformed nuclei it can have considerable influence on the spectra.
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2.2.1. Magnetic hyperfine structure. The magnetic interaction of an atomic nucleus with
spin I �= 0 and the electron shell can be approximated in first order as that of a point
magnetic dipole interacting with the magnetic field that is produced by the electrons at
the center of the nucleus Be(0). It leads to a coupling of the total angular momentum
J of the electron shell and the nuclear spin I to the atomic total angular momentum
F = J + I. According to the angular momentum coupling rules, the quantum number F

can take any value between I + J and |I − J | and the energy of the corresponding level
is proportional to the scalar product I · J, which can be written

ΔE = a I · J = a
1
2
(
F 2 − I2 − J2

)
(10)

and leads to a hyperfine splitting energy

Δνmag =
A

2
C =

A

2
[F (F + 1) − J(J + 1) − I(I + 1)](11)

with

A =
μIBe(0)

hIJ
.(12)

The magnetic interaction is dominated by the contact term, i.e., the interaction of the
electron’s intrinsic magnetic moment with the magnetic moment of the nucleus. Since
this term contributes only if there is a non-vanishing electron-spin density inside the
nucleus, it is largest for s-electrons.

The ratio of the A factors of different levels is — besides the “trivial” dependence
on the quantum numbers I and J — governed by the ratio of the magnetic field at the
nucleus. If we look at the A factors of different isotopes along a chain, it is obvious
that — at first order — the ratios should be determined by the ratios of the magnetic
moments. We obtain for the ratio of the magnetic dipole hyperfine structure constant in
two electronic levels i and f for two isotopes 1 and 2 the relation

Af
1

Ai
1

=
Af

2

Aj
2

,(13)

which is often used as a constraint in fitting spectra with low statistics. Similarly, the
unknown nuclear moment of one isotope can be connected to the known moment of a
reference isotope via

μ =
A

ARef

I

IRef
μRef .(14)

These relations neglect finite-size contributions of the nucleus, which arise from the
change of the electron wave function due to the spatial extension, the distribution of
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the nuclear charge (Breit-Rosenthal effect, BR) and the distribution of the nuclear mag-
netic moment inside the nucleus (Bohr-Weisskopf effect, BW). Such modifications from
the point-like nucleus give rise to the so-called hyperfine structure anomaly in the ratio
of the A factors between two isotopes

A1

A2
≈ gI(1)

gI(2)
(
1 + 1Δ2

)
,(15)

where gI is the nuclear gyromagnetic ratio μI = gIμNI and 1Δ2 the differential hyperfine
structure anomaly. In extreme cases, 1Δ2 can be of the order of a few percent but in
most cases it is on the 10−4 level or even smaller.

2.2.2. Electric hyperfine structure. A non-spherical nucleus with spin posseses also
higher electromagnetic multipole moments up to the order 2I. Besides the monopole
term — accounted for by the Coulomb term — the quadrupole moment is the next
possible higher order of an electric moment. It arises from the energy of the orientation
of the nuclear charge distribution in the inhomogeneous electric field of the electron shell
and is given by

Δνel = B
3
4C(C + 1) − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
,(16)

where

B =
eQs

h

∂2V

∂z2

∣∣∣∣
r=0

,(17)

with Qs being the spectroscopic quadrupole moment of the nucleus, and Vzz(0) the
electric field gradient at the nucleus. The electric hyperfine structure appears only for
nuclei and electronic states with I > 1/2 and J > 1/2, respectively. It shifts the magnetic
hyperfine levels in a characteristic way, depending on the prolate or oblate shape of the
nucleus.

The observation of the atomic hyperfine structure allows us to determine also the spin
of a nucleus if it is unknown. As long as I < J , the spin can directly and unambigu-
ously be determined from the number of observed hyperfine components. Otherwise, the
relative distances between the hyperfine components as well as the relative intensities
are signatures of the spin. The theoretical line strength SFF ′ of a hyperfine transition
between the hyperfine levels F and F ′ arising from the fine structure levels with total an-
gular momentum J and J ′ are related to the line strength in the underlying fine-structure
transition SJJ ′ by

SFF ′ = (2F + 1) (2F ′ + 1)

{
F F ′ 1

J ′ J I

}2

SJJ ′ ,(18)

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



302 W. Nörtershäuser

Fig. 5. – Principle of classical CLS. Radioactive isotopes are produced by bombardment of a
target with a high-energy primary beam. After extraction and mass separation the ion beam is
superimposed with a collimated laser beam using electrostatic deflector plates. Additional ion
optical systems match the ion beam profile for maximum overlap with the laser beam. The ions
are either neutralized in a charge exchange cell (CEC) or directly studied in the fluorescence
detection region (FDR). When the scanning voltage applied to the CEC or the FDR results in
a beam velocity that fulfills the resonance condition of an atomic transition with the Doppler-
shifted light, the laser induced fluorescence in the FDR is detected by photomultiplier tubes
(PMTs) and recorded after signal processing in the data acquisition system. Figure reprinted
with permission from Lecture Notes in Physics, Vol. 879, chapter Nuclear Charge Radii of Light
Elements and Recent Developments in Collinear Laser Spectroscopy by Nörtershäuser W. and
Geppert C. (2014), pp. 233–292 c© 2014, Springer.

where {· · · } denotes the 6-j coefficient that can be taken from standard books on an-
gular momentum theory. However, these intensities must be handled with care since
they are only correct for the excitation with unpolarized light and isotropic detection ef-
ficiency. Otherwise the detection geometry and the intensity distribution must be taken
into account. Moreover, optical pumping can significantly alter the intensity ratios and
lineshapes. In such cases, detailled studies of the lineshape have to be carried out.

3. – Techniques of on-line laser spectroscopy

3.1. Collinear laser spectroscopy . – Hyperfine splittings of the order of 10–1000 MHz
and ionic (atomic) transitions in the visible frequency range (∼ 1015 Hz) require very high
spectroscopic resolution, better than 10−7–10−8. Collinear laser spectroscopy (CLS)
was developed in order to meet these demands and to perform high-resolution laser
spectroscopy on short-lived isotopes. At ISOL (isotope separation on-line) facilities like
ISOLDE/CERN, mass-separated beams with low emittance and beam energies of typi-
cally 30–60 keV are available. In CLS, such ion beams are superimposed with a laser beam
in copropagating (collinear) or counterpropagating (anticollinear) geometry. A typical
experimental setup at an ISOL facility is depicted in fig. 5. It consists of an ion source,
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where the short-lived isotopes are produced and ionized by various processes. Surface
ionization, electron-impact ionization in plasmas as well as resonance laser ionization
(see below) are usually applied. The ion source is at a high positive potential (typically
30–60 keV), such that the ions extracted are accelerated towards ground potential. The
ions are then mass-separated in a magnetic sector field and transported to the collinear
laser spectroscopy beamline, where an electrostatic deflector is used to superimpose the
ion beam with a laser beam.

The electrostatic acceleration has two consequences for laser spectroscopy: First, it
leads to a large Doppler shift of the resonance frequency ν0 of the ion

ν = ν0

√
1 − β2

1 − β cos θ
(19)

with the ion velocity in terms of the speed of light β = υ/c and the angle between the ion
beam and the laser beam direction θ. For an exact copropagating or counterpropagating
geometry, this simplifies to

ν± = ν0

√
1 ± β

1 ∓ β
,(20)

where + refers to the collinear (θ = 0) and − to the anticollinear (θ = π) case. The
laser frequency in the laboratory must therefore be blue-shifted for collinear νcoll =
ν+ and red-shifted for anticollinear νanticoll = ν− excitation. The second effect of the
static acceleration is the longitudinal kinematic compression during the acceleration: the
potential energy eU is gained by all ions starting in the source. Hence the kinetic energy
distribution δE must stay constant. Using the derivative expression δE = mυ δυ =
const clearly shows that the velocity spread δυ must decrease with increasing velocity
υ. In practice, residual Doppler widths on the order of 50–100 MHz are usually obtained
in CLS. Consequently, high sensitivity is reached since a Doppler width matching the
natural linewidth means that optical resonance occurs simultaneously for all ions in
the beam.

Fluorescence spectroscopy can be performed on ions or on atoms. The latter offer
usually more convenient transition wavelengths in the visible spectrum while ions require
in most cases UV light. Neutralization of the ions is performed in a so-called charge-
exchange cell (CEC) [13], in which alkaline vapor is generated by heating a small amount
of solid alkaline metal. The ion beam passing through the vapor is then neutralized by
electron transfer. To perform spectroscopy on ions, the CEC is either removed or it is not
heated. Subsequently, the atoms or ions enter the fluorescence detection region (FDR).

Another elegant feature of CLS is that the laser can be fixed in frequency, while
scanning across the resonance profile is performed by the so-called “Doppler tuning”.
This requires an additional tunable acceleration voltage applied to either the fluorescence
detection region (for ions) or the CEC (for atoms). Varying this voltage will change the
ion velocity and the Doppler effect changes the laser frequency in the rest frame of the ion.
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3.2. Resonance ionization spectroscopy (RIS). – Resonance ionization spectroscopy
(RIS) combines the large cross section of resonant optical excitation with the very sen-
sitive charged-particle detection. This is achieved by stepwise excitation of a valence
electron in a neutral atom along dipole-allowed transitions until it is finally detached
from the atom and a singly charged ion is left behind. Either the electron, the ion, or
both are detected to provide evidence of the process. There is a multitude of arrange-
ments for RIS. Efficient excitation at medium to low resolution can be obtained using
pulsed lasers with bandwidths adjusted to the Doppler width of the atomic ensemble that
has to be ionized. It has been first applied for nuclear charge radii measurements of short-
lived isotopes at Gatchina [14]. Here, RIS was applied to thermal atomic beams [15]. The
concept of a hot-cavity laser ion source for on-line use was suggested by Kluge et al. [16]
as well as by Andreev et al. [17] and first realized at Gatchina [18]. In this modification
it is now widely used as an ion source for element selective ionization. At ISOLDE the
Resonant Laser Ion Source (RILIS) [19] is chosen for more than 50% of all beamtimes.

A laser ion source based on a gas cell has been proposed by Van Duppen and cowork-
ers [20] and demonstrated at the Leuven Isotope Separator on-line (LISOL) [21, 22]. A
development of an on-line gas-cell laser ion source is going on at Jyväskylä [23] and is also
foreseen at RIKEN (Rikagaku Kenkyusho, Institute of Physical and Chemical Research,
Japan) [24].

Resonance ionization spectroscopy is also being used to measure nuclear moments
and charge radii: It has been applied combined with collinear laser spectroscopy [25-27],
in a gas cell [28], after deposition and laser ablation from a beam catcher [29], or directly
inside the hot-source. The examples are listed in order of decreasing resolution. While
the last method offers the lowest resolution it is extremely sensitive and the resolution
often still sufficient for the heavy isotopes that exhibit large field shifts (see fig. 4(c)) and
large hyperfine splittings. A recent review on RIS for nuclear physics has been given by
Fedoseev, Kudryatsev and Mishin [30].

It should be noted that the technique can also provide ultrahigh isotopic selectivity
if cw lasers and a multi-step excitation scheme is used. This approach has been chosen
for the trace detection of many ultra-low abundant or radiotoxic isotopes, for example
41Ca, 89,90Sr, 135,137Cs [31,32]. Continuous-wave resonance ionization mass spectrometry
(cw-RIMS) was also used for the investigation of the charge radii of the lithium isotopes
as discussed below.

4. – Examples

In this section we present a number of recent highlights. They have been chosen to
cover different regions of the nuclear chart, to demonstrate the specific strengths of the
applied technique and to illustrate the way in which the nuclear structure information is
extracted from the spectra. They are ordered by increasing atomic number (from beryl-
lium to nobelium) and for each element one typical nuclear-structure theme is discussed.
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Fig. 6. – (a) Principle of the isotope shift measurement of Be isotopes. Resonance spectra
are recorded with lasers copropagating and counterpropagating to the ion beam. (b) Level
scheme including hyperfine structure for 11Be. (c) Spectra of 11Be in copropagating (left) and
counterpropagating (right) geometry. Production rate was approximately 106 ions/proton pulse
with a pulse repetition time of roughly 2.4 s.

4.1. Beryllium — Halos and vanishing shell closures. – Isotope shift measurements of
light isotopes with Z < 10 with collinear laser spectroscopy have not been possible until
recently because of large uncertainties induced by the limited knowledge of the exact
starting potential of the ions inside the ion source. The ion source potential, is typically
known with about 10−4 relative uncertainty. The corresponding uncertainty in the ion
velocity leads to a systematic error of about 15 MHz for the isotope shift between 9Be+

and 11Be+ in the 2s → 2p resonance lines of these ions, which has to be compared with the
expected field-shift contribution of approximately 5 MHz. In order to address this chain
of isotopes, a technique that combined collinear laser spectroscopy using counterprop-
agating and copropagating lasers with frequency-comb technology was developed [33].
As indicated in fig. 6(a), it is based on measuring the total transition frequencies in the
laboratory frame for both directions (ν±) with a precision of δν/ν < 10−10. These are
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related to the rest-frame frequency ν0 according to

ν± = ν0γ(1 ± β).(21)

The time dilation factor γ = (1 − β2)−1/2 as well as the velocity of the ions β = υ/c

depend on the acceleration voltage but if both Doppler-shifted transition frequencies
ν± are precisely measured in the laboratory frame, both variables can be completely
eliminated

ν+ · ν− = ν2
0γ2(1 + β)(1 − β) = ν2

0 .(22)

Hence, the rest-frame transition frequency ν0 =
√

ν+ · ν− can be extracted without
additional knowledge of the ion velocity or the acceleration voltage. An example of
such a pair of spectra is shown for the halo isotope 11Be in fig. 6(c). The left one is
taken in copropagating ν+ and the right one in counterpropagating ν− geometry. In
each spectrum the total angular momenta of the initial and the final hyperfine state are
indicated according to the level scheme shown in fig. 6(b).

The spectrum features only three peaks, which immediately leads to the conclusion
that 11Be has a nuclear spin of I = 1/2. Hence, there is no contribution of electric
hfs and the peak positions are determined by eq. (11). In order to extract the isotope
shift, the center of gravity (cg) has to be determined. In fig. 6(c), the frequency scale
offset is chosen such that 0 indicates the cg. Please note that spectra taken with co- and
counterpropagating laser beams look like mirror images. This is an additional asset of
this technique since small inaccuracies in the modelling of the lineshape are largely cured
because they shift the peak centre into opposite directions in the two scans. Consequently,
the respective shift is largely compensated when taking the geometric average.

The separation of the small field shift contribution from the dominant mass shift,
requires additional theoretical input. Therefore, the isotope shifts of all isotopes with
respect to 9Be δν9,A

IS,exp = νA − ν9 as obtained in the measurements were combined
with state-of-the-art ab initio atomic structure calculations [34-36] of the three-electron
system. These calculations can provide the mass shift δνA,A′

MS,theory and the field shift factor
F with very high accuracy needed to extract the change in the mean-square nuclear charge
radius

δ〈r2
c 〉9,A =

δν9,A
IS,exp − δν9,A

MS,theory

F
.(23)

Total charge radii were then obtained by combining δ〈r2
c 〉9,A with the known charge

radius of the stable isotope 9Be determined using elastic electron scattering [38]. Results
are shown in fig. 7 and depict a characteristic trend with a minimum at 10Be and a strong
increase for 11Be. This can be explained by the clustered structure of these light nuclei
(see also the contribution by Y. Kanada-Enyo in this volume). The effect is visualized in
a very simplified picture in the small panels below the graph, starting with 7Be, which can
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Fig. 7. – Nuclear charge radii along the beryllium isotopic chain. The red bullets (•) represent
the experimental results with error bars dominated by the uncertainty of the reference charge
radius of 9Be [38]. Additionally shown are results of Fermionic Molecular Dynamic (FMD)
calculations [41], which reproduce the trend along the isotopic chain very well. The bottom row
shows a simplified structure of the isotopes interpreted in a cluster picture and the very simplified
level scheme in the nuclear-shell-model picture on the right visualizes the disappearance of the
N = 8 shell gap due to the lowering of the single-particle energies of the sd shell. A more detailed
discussion of the nuclear physics aspects in the beryllium chain can be found in the contributions
by T. Otsuka, and Y. Kanada-Enyo in this volume. Figure slightly modified from [37].

be regarded as a two-body cluster α + 3He. The center-of-mass (CM) motion blurs the
proton distribution and leads to a comparably large charge radius. The stable isotope 9Be
has an α+α+n structure and is less extended than 7Be due to the compactness of the α

particles and the binding strength of the additional neutron. This effect is even enhanced
with the second neutron added in 10Be. The sudden upward trend to 11Be is attributed
to the one-neutron halo character of 11Be which can be disentangled into a 10Be core and
a loosely bound neutron. This halo character increases the matter radius and also affects
the charge radius due to the CM motion of the core. The further increase towards 12Be
is attributed to a strongly mixed (sd)2 character of the two outermost neutrons. Results
of Fermionic Molecular Dynamics (FMD) calculations are plotted for comparison. They
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reproduce the general trend along the isotopic chain quite well but are generally slightly
too small. For 12Be three results are shown: The two triangles represent charge radii
calculated under the assumption of a pure p2 or a pure (sd)2 configuration, as expected
for a strong shell closure or a diminishing shell closure at N = 8, respectively. The full
FMD calculation that fits roughly to the experimentally observed trend, predicts an (sd)2

admixture of about 70% for this nucleus, being a clear indication for the disappearance
of the classical N = 8 shell closure as indicated on the right in fig. 7. For a more detailed
discussion of the nuclear charge radii, the comparison with ab initio microscopic nuclear
structure calculations and the conclusions about the shell closure see refs. [39-41].

4.2. Magnesium — The island of inversion. – The so-called island of inversion around
the N = 20 shell closure of the isotopes of Ne, Na, Mg and Al has now been investigated
for more than 35 years after the observation of anomalous ground-state properties of
31Na: An unusual increase in binding energy was seen for N = 20, 21 (31,32Na) instead of
the normal behavior of a sudden drop after a shell has been completed [42]. It was from
the beginning interpreted as being a sign of the sudden onset of deformation, which is
unusual for a magic nucleus. For the prominent N = 20 nucleus 32Mg strong deformation
was postulated from the large B(E2; 2+ → 0+) value [43]. Laser spectroscopic studies of
the sodium isotopes supported this picture by finding a spin of I = 3/2 for 31Na instead
of the expected I = 5/2 for a d5/2 proton and isotope shift measurements also indicated
an additional volume effect by a prolate deformed nucleus [44]. This all motivated laser
spectroscopic studies along the isotopic chain of Mg. However, production rates beyond
30Mg are too small for standard CLS.

For magnesium as well as for some other light short-lived isotopes this problem of
sensitivity can be addressed by optically polarising the nuclei and detecting the asym-
metry in the angular distribution of β-decay electrons or positrons, which is asymmetric
with respect to the nuclear spin direction. A setup of this technique with the illustration
of the pumping process is shown in fig. 8. The standard CLS is extended by a puming
zone with a weak longitudinal magnetic field (guiding field) and a β-detection setup in-
side a strong magnetic field at the end of the beamline. Along the beamline circularly
polarized laser light (σ±) is used to transfer angular momentum to the atom with each
absorbed photon. The atomic scheme is indicated for a 2S1/2 → 2P3/2 transition. σ+

light induces transitions with the selection rule Δm = +1. Consecutive spontaneous
decay can happen with Δm = 0,±1 and, hence, on average 1 h̄ of angular momentum
is transferred to the atom per absorption/emission cycle. While the atoms entering the
beamline are equally distributed in all magnetic substates of the electronic ground level,
the population is gradually transferred into the state with the largest projection along
the magnetic guiding field by repeated excitation as is visualized in the center part of
the figure. In the best case, all population is finally in the maximum mF state, the
ensemble is polarized and the total angular momentum F precesses around the weak
guiding field. In the β-decay station a strong magnetic field is oriented perpendicularly
to the beamline. In the guiding field, the atomic state is affected by the Zeeman effect,
i.e. the total angular momentum F is still a good quantum number and the nuclear spin
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Fig. 8. – Setup for charge radii measurements of magnesium isotopes. Top: Collinear laser
spectroscopy adapted with magnetic guiding fields for the magnetic moment and extended with
a β-asymmetry detection setup to the right. Middle: Schematic representation of the orientation
distribution of F -vectors for the case F = 1 during the pumping process along the beamline and
the transfer from longitudinal to transversal polarization in the transition region to the strong
NMR field. The thickness of the arrow represents the population. The precession of the vector
around the magnetic field direction (red) is also indicated and must be much faster than the
change in the magnetic field direction in the ions frame. Bottom: mF level scheme for optical
pumping (left) and energies of the mF states in the weak guiding field (Zeeman region) and the
strong NMR field (Paschen-Back region).

is coupled to the electron angular momentum. This changes when entering the strong
field (typically ≈ 0.3 T). Here, the electronic angular momentum is decoupled from the
nuclear spin (Paschen-Back regime) as is shown in the diagram in the lower right part
of fig. 8. Before this can happen, an additional field is required to adiabatically rotate
the magnetic moment of the atoms from longitudinal polarization into the transversal
direction of the strong field. This is also indicated in the middle plane of fig. 8, where
the magnetic field direction (red) is slowly transferred from horizontal to the vertical
direction and the total angular momentum (blue) quickly precesses around the direction
and therefore follows the field direction. Finally the ion is implanted into a suitable
host crystal. The implanted unstable nucleus will eventually undergo β-decay and emit
positrons or electrons. The β-particles are detected with a pair of scintillators above and
below the crystal. Due to parity violation, the β-emission occurs preferentially along
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or against the nuclear spin direction. The corresponding asymmetry in the number of
events within the two scintillators can serve as a detector for optical excitation, since
polarized nuclei are only produced if the laser is in resonance with the ions. The im-
plantation of the beam into a suitable host crystal lattice offers an alternative access to
the nuclear moments, which is based on nuclear magnetic resonance (NMR) detected by
the influence of radiofrequency on the β-decay asymmetry (β-NMR). Therefore the laser
is fixed on resonance, where it produces the largest polarization, i.e., the population is
transferred into the mI = ±I substate for σ± pumping, respectively. The polarization
can then be destroyed by inducing transitions between neighboring magnetic substates
with the Larmor frequency

ωL =
gIμNI

h̄
B0(24)

which is directly connected to the nuclear g-factor provided that the magnetic field is
known. The latter is usually calibrated using a second species with a well-known nuclear
magnetic moment like, e.g., 8Li.

While the magnetic moments of nuclei interact with a static magnetic field, the
quadrupole moments interact with an electric field gradient produced at their lattice site
in a non-cubic crystal. Hence, β-NMR can also be used to measure nuclear quadrupole
moments. The latter is particularly important for light atomic systems where the quadru-
pole interaction is too small to be resolved in the hyperfine structure of spectral lines
and has been applied, e.g., for 9,11Li [46].

The Mg isotopes 21–33Mg were investigated at ISOLDE using a combination of all
techniques described so far: For the longer-lived isotopes closer to stability, information
on the radii and moments was obtained from conventional CLS measurements. Detection
of the resonances of 21,31,33Mg was only possible applying the β-asymmetry detection.
These nuclei appeared to be ideal candidates for β-NMR because of their short half-lifes
of a few 100 ms and a still abundant production of more than 105 ions/s and 2500 ions/s
for 31Mg and 33Mg, respectively.

The β-asymmetry spectrum as a function of the laser frequency is shown in fig. 9 [45]
and exhibits only three resonances. The vertical lines along the peaks guide the eye to the
respective transition in the level scheme depicted below the spectrum. The observation
of only three lines is already a clear signature for an I = 1/2 nucleus since any other half-
integer spin would result in six allowed transitions. A direct spin measurement was also
performed by an independent determination of the magnetic moment from the optical
spectrum and the g-factor from the β-NMR measurement. The ground-state splitting
obtained in the optical spectrum in a 2S1/2 state is ΔE = A(I + 1/2) with A = gIμN B0

IJ

while the Larmor frequency measured in β-NMR is ΔνL = gIμNB0. If the ratio A/gI

is known from a reference isotope, the only unknown is the spin I which can then be
unambigiously determined. In this way the spin I = 1/2 was determined for 31Mg and
similarly the ground-state spin of 33Mg was determined to be I = 3/2.

The spin I = 1/2 with a positive parity and the magnetic moment of the N = 19
nucleus 31Mg came as a great surprise [47]. It was in conflict with all expectations
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Fig. 9. – Hyperfine spectrum of 31Mg in the D2 line detected using β-asymmetry detection
recorded as a function of Doppler-tuned laser frequency [45]. The respective transitions are
indicated on the level scheme below the resonances. The inset on the top shows the β-NMR
signal as a function of the applied radiofrequency after optical pumping with σ− on the transition
with the highest β-asymmetry (F = 1 → F = 2).

from systematics and from shell-model calculations. This puzzling result initiated some
theoretical effort [48] that succeeded to reproduce the level assignments based on the
measured ground state spin and confirmed a ground state wave function being dominated
by neutron two-particle–two-hole (2p-2h) intruder configurations as inferred already from
the magnetic moment [47]. The result for 33Mg yielding I = 3/2 combined with a
magnetic moment that was consistent only with a negative parity [49,50] initiated further
controversy with conclusions from nuclear spectroscopy and shell-model theory. The

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



312 W. Nörtershäuser

33Mg ground state was shown to have a nearly pure 2p-2h intruder nature, contrary to
the earlier suggested 1p-1h configuration and in agreement with the structure of other
isotopes in the “island”.

While magnetic moments and quadrupole moments can be readily accessed from β-
asymmetry spectra, the determination of the isotope shift from such spectra has been
unsuccessful for a long time due to an insufficient description of the peak shape and the
line intensities in the β-asymmetry spectrum. It can only be obtained with a quantitative
model based on rate equations of the optical pumping process along the path of flight.
However, different magnetic fields are required along the beam path for defining the
orientation axis, rotating the atomic total angular momentum and for decoupling the
electron and nuclear spins as discussed above. This goes along with a variable Zeeman
effect and a change in the relative strengths of transitions between the Zeeman levels
of the hyperfine structure. For a beam of neutral atoms the final nuclear polarization
results from the interaction of the atoms with the laser light all along the beam. Once the
atoms are generated in the charge exchange cell, their velocity cannot be varied anymore
by applying varying potentials. But a realistic description of the resonance line shapes
is possible if optical pumping is performed in ions for which the interaction with the
light can be switched on and off by the Doppler effect and the resonance condition is
established only in a well-defined low-magnetic-field region. This approach was developed
for Mg+ ions and excellent agreement was found [51] between the experimental and the
simulated spectra.

The quantitative simulation of the resonance line shape of the 31Mg β-asymmetry
spectrum is included in fig. 9 as an example. It was the basis for the determination
of the isotope shift of 21,31Mg reported in [52]. The conventional method of optical
resonance detection was used for odd-A isotopes of magnesium close to stability and on
even-even isotopes. The weak signal of 32Mg could still be observed by counting photons
in coincidence with ions.

4.3. Calcium — Mystery beyond the N = 28 shell closure. – A variety of spectroscopy
experiments on neutron-rich isotopes with Z ≥ 20 suggested the appearance of a new
magic number at N = 32 [53-56]. Recent mass measurements up to 54Ca confirmed that
result and reported that they “unambiguously” establish a prominent shell closure at
neutron number N = 32 [57]. The trend of charge radii usually exhibits a pronounced
kink when crossing magic neutron numbers and is therefore a strong indicator for magic-
ity. Therefore, the mean square charge radii of the Ca isotopes from N = 20 up to N = 32
were investigated by resonance fluorescence CLS. These measurements were facilitated
by the ISCOOL cooler and buncher [58]. ISCOOL is a radiofrequency quadrupole (RFQ)
device filled with helium buffer gas at low pressure (typically 10−2 mbar). The principle
of such an RFQ structure is shown in fig. 10. It consists of four cylindrical rods to which a
radiofrequency (RF) of typically about 0.2–1 MHz is applied in such a way that opposing
rods have the same amplitude and sign of the AC electrical signal (a few 100 V). Due
to the quickly oscillating potential, ions inside the rods experience on average a confin-
ing harmonic potential so that they are transversely trapped. The rods are additionally
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Fig. 10. – Principle of the RFQ operation as an ion cooler and buncher. Left: Sketch of the rods
and their supply voltages along the symmetry axis. Right: Schematic side view of the segmented
rods. The DC potential along the z-axis is drawn in between the rods. The black line represents
the potential during ion accumulation. The effect of cooling is indicated by the collisions with
the buffer gas (blue) which leads to a stepwise decrease of the ion energy. The ions are reflected
between the potential walls, collide repeatedly with the ions and are finally accumulated in the
deep potential well close to the exit. After accumulation times of typically a few 10 ms, an ion
bunch is released by turning down the potential at the exit segment as indicated by the red
dotted line.

segmented in longitudinal (z) direction and different DC potentials can also be applied,
such that a trapping potential can be created along the axis. The potential at the RFQ
exit is chosen to create a potential wall of typically a few 10 V such that the ions can-
not leave the RFQ. At the entrance, the potential is slightly less so that ions delivered
from the on-line ion source — mass separator combination have just sufficient energy to
climb that potential and enter the RFQ. Once inside, they quickly loose some energy in
buffer gas collisions so that they cannot overcome the entrance potential anymore. In
subsequent collisions they loose more and more energy until they are cooled down to the
bottom of the potential well. After some sampling and cooling time, chosen according
to the experimental condidtions and the properties of the isotope of interest (lifetime,
beam intensity etc.) the potential wall at the RFQ exit is pulsed down and the ions can
leave the RFQ as a short bunch with typical bunch width of a few μs.

The advantage of such a short ion pulse is that the main background in standard
CLS can be effectively suppressed. This background originates from scattered laser light
that is produced at apertures along the beamline or at the entrance and exit windows.
After some reflections inside the beamline it may end up at the photomultiplier tube and
cannot be discriminated against fluorescence light produced by the ions. The background
is clearly visible for example in fig. 6(c), where the signal height is only a small portion
of the background. Typical background rates are on the order of a few kHz and lead to
a considerable noise that can bury weak signals.

If the ions are delivered as short bunches, the bunch-transition time in front of the
photomultipliers can be determined from the release trigger of the RFQ and signal detec-
tion is restricted to these intervalls. In the typical case of 50 ms bunching time and 5μs
bunch length, the continuous laser-scatter background is reduced by a factor of 104. The
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Fig. 11. – (a) Total charge radii of calcium isotopes from experiment and theory. (b) Change in
the mean-square charge radius along the isotopic chains of calcium and iron.

corresponding noise reduction is about two orders of magnitude. In the case of calcium
isotopes, this allowed to record a fluorescence signal of 52Ca at a production rate of the
order of only 100 ions/s. The resonance signals are depicted in fig. 3(a). Please note that
there is very little background in these spectra.

The charge radii extracted for the calcium isotopes are plotted in fig. 11. In fig. 11(a)
absolute radii of all calcium isotopes are depicted. Between 40Ca and 48Ca the radii show
the famous and well-known parabolic behaviour, which results in almost equal charge
radii of the two doubly magic isotopes 40Ca and 48Ca. Additionally the radii exhibit a
remarkably strong odd-even staggering. In red, results from coupled-cluster calculations
performed with realistic potentials based on chiral effective field theory are included.
Compared to all previous theoretical attempts, the prediction of the total nuclear charge
radius is excellent. However, the increase between 48Ca and 52Ca is much steeper in
experiment than in theory. In fig. 11(b) the change in the mean square charge radius
around N = 28 is compared for calcium and iron. The increase is similar for the magic-Z
isotopes of Ca and the open-shell nuclei of Fe and no signature of a shell effect at N = 32
is seen [59]. A flattening towards N = 32, as would be expected for a magic shell gap, is
also not observed in potassium isotopes. Additionally, also from the magnetic moments
of the odd-A Ca isotopes no signature for a shell closure at N = 32 is observed [60].
Indeed, the observed magnetic moment of 51Ca, with 31 neutrons, requires excitations
of neutrons across N = 32 in the higher pf-orbits, to reproduce the observed value.
These results illustrate that more experimental studies on the single-particle nature of
the ground-state wave functions of Ca isotopes, such as transfer reaction experiments,
are needed to further investigate this ambiguity.
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Fig. 12. – Left: Electronic level scheme of the hyperfine structure of a 11/2− isomer. Right:
Influence of the nuclear quadrupole moment on the energies of the excited 5p 2P3/2 level and
the observed resonance pattern. For details see text.

4.4. Cadmium — Simple structure in complex nuclei . – Spectroscopy of cadmium
at COLLAPS was originally motivated by nuclear astrophysics: The neutron-rich iso-
topes were expected to shed light on a shell-quenching hypothesis at N = 82 and its
consequences for the duration of the r-process along the waiting-point nuclei below 130Cd,
whereas the neutron-deficient ones should elucidate the role of the cadmium isotopes in
the rp-process for rapidly accreting neutron stars [61]. Surprisingly, the properties of the
11/2− isomers in the range of 111–129Cd turned out to behave in an extremely predictable
manner and are a textbook example of nuclear quadrupole moments. While this can be
partially understood in the conventional interpretation of the nuclear shell model, a full
description must clearly go beyond this picture. The spectra are also clear enough to
elucidate the influence of the quadrupole moment on the atomic spectra.

Laser spectroscopy studies were performed on Cd+ in the 5s 2S1/2 → 5p 2P3/2 transi-
tion. The level scheme for one of the I = 11/2 isomers is depicted in the left part of fig. 12.
The magnetic dipole moment of an ν h11/2 state is negative and therefore the F level
scheme is inverted. For all isotopes with I ≥ 3/2 (all odd Cd isotopes have half-integer
nuclear spin) we expect two triplets in the hyperfine structure, while for I = 1/2 a doublet
and a singlet appears, which are in both cases separated by the hyperfine splitting in the
5s 2S1/2 electronic ground state. This splitting is not affected by the quadrupole moment
since a state with J = 1/2 is spherical and does not exhibit an electric field gradient at
the nucleus. The distance between the two multiplets is therefore proportional to the
nuclear magnetic moment. Contrary, in the 5p 2P3/2 excited level, the splitting depends
on the nuclear magnetic moment and the nuclear quadrupole moment. The influence of
the latter on the level scheme is depicted in the middle part of fig. 12. The enlarged
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Fig. 13. – (a) Hyperfine structure pattern of the nuclear ground state (blue) and the 11/2−

isomers of Cd. (b) Magnetic moments (top) and spectroscopic quadrupole moment of various
Cd isotopes and isomers. For details see text. Figure (b) reprinted with permission from D.T.
Yordanov et al., Phys. Rev. Lett. 110, 192501 [62]. c© 2013 by the American Physical Society.

level scheme of the 2P3/2 state is shown for three cases: a spherical nucleus (Q = 0,
middle), a prolate nucleus (Q > 0, left), and a nucleus with oblate deformation (Q < 0,
right). While the pure magnetic hyperfine structure exhibits the well-known interval rule
(splitting is proportional to the upper state F value), the quadrupole interaction violates
this rule. The reason for the energy shift is schematically depicted in the figure for a
prolate nucleus. If the electron total angular momentum and the nuclear momentum are
close to be parallel to each other (for Fmax and Fmin), the overlap of the electronic wave
function with the nucleus is increased compared to a spherical nucleus and, thus, the level
energy drops. Contrary, the level energy rises if �I and �J are almost perpendicular to
each other, since the overlap of the two charge distributions is then reduced. Within the
two triplets, a prominent change in the resonance pattern is visible with varying nuclear
deformation. This is readily observed in the spectral structure of the odd-mass isotopes
119–129Cd depicted in fig. 13(a). It is immediately visible that there are too many (more
than 6) resonances for a single nuclide. Hence, the spectrum indicates that there is an
(11/2) isomer besides the (low spin) nuclear ground state admixed to the delivered ion
beam. In the figure the first one is plotted in red, while the structure of the ground
state is plotted in blue. While 119Cd has a ground state of spin I = 1/2 (only three
peaks), 121Cd has spin I = 5/2 and exhibits two triplets similar to the isomeric state.
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If we now concentrate on the regular structure of the isomer, we can immediately see
how the magnitude of the magnetic moment evolves along the chain: it increases from
119mCd to 121mCd, stays approximately constant from 121mCd to 123mCd and gradually
decreases towards 129mCd. The structure of the left and the right triplet is close to the
one expected for a spherical nucleus and turns then into an increasing (slightly) prolate
deformation. The blue and red vertical lines in the middle of each spectrum represents
the center-of-gravity of the ground-state hyperfine structure and the isomer hyperfine
structure, respectively. The frequency difference between them is called the isomer shift
and almost exclusively due to the differences in field shift since the mass difference be-
tween the two states is very small. Hence, it is a direct measure of δ〈r2〉 between the
ground state and the isomer.

Overall, the isotopes from 100Cd up to the shell-closure at 130Cd were studied and
nuclear magnetic moments and electric quadrupole moments were extracted from the
spectra using reference dipole moments and calculated electric field gradients, respec-
tively [62]. The moments are shown in fig. 13(b). The quadrupole moments of the 11/2−

isomers exhibit an extremely linear behaviour. This is exactly what was predicted for
the filling of a (proton) shell in the basis of the independent particle model. For a nu-
cleus of odd-A and a single proton in a state of angular momentum j, the single-particle
quadrupole moment is

Qsp = −
〈
r2
〉 2j − 1

2(j + 1)
.(25)

The negative sign corresponds to the fact that the charge distribution of a single pro-
ton outside a spherical closed shell with mj = j represents an oblate spheroid. With
increasing number (λ) of protons in the state j and normal coupling to J = j for an odd
number λ of protons, it can be shown that the quadrupole moments develop as

Qλ = Qsp

(
1 − 2(λ − 1)

2j − 1

)
.(26)

The quadrupole moment is negative (Qsp < 0) as long as λ < (2j + 1)/2, i.e. for a less
than half-filled level and positive for large occupation and reaches the magnitude of the
single-particle value (but opposite sign) for one remaining hole in the level λ = 2j. The
quadrupole moment vanishes for a half-filled level. In the case of Cd, where a neutron
level is filled, the neutron is attributed an effective charge. This can be understood by
the interaction of the neutrons with the protons, which leads to a polarization of the core.

While this simple structure is at first sight reflected by the quadrupole moments, a
second look reveals considerable differences from this model: The number of 10 odd-mass
isomers is 4 more than the expected number for solely filling the h11/2 shell and the zero-
crossing is not exactly at mid-shell. In [62], a degeneracy of the h11/2 and some of the
neighbouring s1/2, d3/2, and d5/2 orbitals has been suggested to explain these observa-
tions, giving rise to a kind of a “super-shell” that is shared by the I = 0 neutron pairs.
With this assumption, a single-particle quadrupole moment of Qsp = −667(31) mbarn
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and a constant core deformation with Qconst = −85(8) mbarn can be extracted. This im-
plies a rather huge effective neutron charge of qeff,n = 2.5e. Later it was shown that these
assumptions can indeed be used to explain also the isomer shift between the respective
ground state and the isomer, which were found to follow a distinct parabolic dependence
as a function of the atomic mass number [63]. Even though the nuclear shape is very
close to spherical all along the isotopic chain and never exceeds a deformation parameter
of 0.07, this unique regularity in the isomeric shift can be understood as a manifestation
of nuclear deformation.

4.5. CRIS — Collinear resonance ionization spectroscopy . – The collinear resonance
ionization spectroscopy (CRIS) experiment at ISOLDE combines collinear laser spec-
troscopy with the technique of resonance ionization spectroscopy (RIS) discussed already
in sect. 3.2. This was already demonstrated at ISOLDE in 1991 [25] but suffered at that
time from limitations due to the short temporal overlap of the continuous ion beam and
the pulsed laser used for ionization. The implementation of the RFQ cooler and buncher
offered decisive advantages for this type of experiments: The pulsed ionization lasers
are synchronized with bunches delivered from ISCOOL and, hence, all atoms delivered
from ISOLDE can interact with the pulsed laser light and the full duty cycle is available
for excitation and subsequent ionization. Pulsed beam collinear resonance ionization
was demonstrated at the IGISOL facility [64, 65]. This stimulated the development of
a new dedicated beam line with an UHV interaction region, for efficient bunched-beam
collinear resonance ionization spectroscopy (CRIS) at ISOLDE. The detection of ions is
very efficient and quasi background-free, since ultra-high vacuum (UHV) in the interac-
tion region highly reduces the background which originates from collisional ionization of
isobaric beam contaminants.

The stepwise resonance ionization scheme (using pulsed lasers) is also used for low-
resolution in-source laser spectroscopy experiments [66], where high efficiency and selec-
tivity allow experiments on beams with rates of less than 1 ion/s and in some cases even
0.01 ions/s [67].

A scheme of the CRIS technique is shown in fig. 14: Bunched ions from ISOLDE are
transported to a charge-exchange cell filled with a load of potassium and operated at
about 150 ◦C to provide a sufficiently dense potassium vapor for neutralization of the ion
beam. Remaining ions are deflected out of the beam by an electrostatic deflector plate,
positioned within a differential pumping region after the charge-exchange cell. The bunch
of neutral atoms enters a region of ultra-high vacuum (to avoid collisional excitation or
re-ionization) where it is collinearly overlapped with two or more laser beams, depending
on the resonance ionization scheme used. In the simplest configuration, a cw laser is used
for resonant excitation which is then followed by non-resonant ionization using a short
and intense pulse of a second laser. The resonantly produced ions are then deflected from
the remaining atoms into a charged-particle detector (MCP) or transported to a decay
spectroscopy station [68].

This simple scheme has the disadvantage that the appearance of the high-intensity
laser pulse leads to shifts and broadening of the atomic level energies caused by the AC
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Fig. 14. – Principle of collinear resonance ionization spectroscopy (CRIS) (taken from [69]). For
details see text.

Stark effect. Therefore, the cw laser can be chopped or pulse amplified to avoid such
systematic variations by temporarly separating the interaction with the resonant and the
ionization lasers.

Another asset of CRIS is the possibility to combine it with decay spectroscopy in
order to either study the nuclear decay of clean samples or to use the decay to separate
and identify the signals of isomeric states that are delivered from ISOLDE in the same
beam. This is indicated in the inset of fig. 14.

First on-line measurements with CRIS were performed on the francium isotope chain
and were motivated by evidence for shape coexistence in the neutron-deficient isotopes
and isomers [70]. The neutron-rich isotopes were studied to gain better knowledge around
the region of reflection asymmetry. The CRIS measurements delivered additional data for
about 5 more mass numbers in each direction towards neutron-rich and neutron-deficient
isotopes. This demonstrated the high selectivity of the CRIS technique.

4.6. In-source resonance ionization spectroscopy: Studies in the Pb region. – Atoms
enclosed in a small hot cavity can be efficiently ionized with pulsed resonance ionization
spectroscopy. A cylindrical geometry with relatively small diameter (a few mm, adapted
to the size of the laser beams) but sufficient length (typically a few 10 mm, adapted to the
flight path of an atom between two laser pulses) provides confinement of atoms during
the time interval between consecutive laser pulses. A high temperature is required to
prevent the atoms from sticking on the cavity walls. This temperature can be reached,
e.g., by direct heating with a high current applied along the tubus or by bombardement
with high-energy electrons. Stepwise resonance ionization and ionization is performed
with two to four lasers. At ISOLDE, the RILIS (resonance ionization laser ion source) is
by now required for more than 75% of all beamtimes. The advantage of RIS compared
to surface or plasma ionization is the elemental selectivity that is provided since the
ionization scheme is unique to a single element. Hence, isobaric contaminations can be
suppressed. However, one still might have to cope with isobars that are easily surface
ionized, e.g., alkaline elements. The frequency bandwidth of pulsed lasers is well adapted
to the Doppler linewidth of atomic transitions in a hot cavity since it is usually on the
order of a few GHz as long as no special measures are taken to further reduce it.
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The resonant interaction of the lasers with the atoms inside the cavity can also be
used for spectroscopy. In this case, one of the resonant lasers is scanned across the reso-
nance transition and the production rate is measured as a funtion of the laser frequency.
Similar as discussed above for CRIS, the detection can be combined with decay spec-
troscopy to avoid also non-resonant ionization background in the detection by gating to
a specific decay branch. In-source RIS is the most sensitive technique for on-line laser
spectroscopy at ISOL facilities and has been applied to isotopes with production rates
down to 0.01 atoms/s [67].

4.7. Gas-cell resonance ionization spectroscopy: Studying superheavy elements. – Res-
onance ionization spectroscopy can also be applied in a buffer gas cell. This is particularly
useful to address species that are created in flight and stopped in a gas cell. This method
was developed at KU Leuven [22] and has been regularly used at the Leuven Isotope
Separator On-Line (LISOL) facility at Louvain-La-Neuve (Belgium). More recently, it
was implemented at the IGISOL facility (Finland) [23] and in RIKEN (Japan). The
application of this technique for studies of the heaviest elements was developed at Mainz
University [71, 72] and has lead recently to the first studies of the superheavy element
nobelium (No) at the GSI Helmholtz Centre at Darmstadt [73]. Here, the isotope 254No
was produced in a fusion-evaporation reaction (48Ca + 208Pb → 254No + 3n). The fusion
products, emerging from the thin 208Pb target, were separated in-flight from the intense
48Ca primary beam by the Separator for Heavy Ion reaction Products (SHIP). In the
focal plane of SHIP a buffer-gas stopping cell was located, in which approximately 4
ions per second were stopped. After thermalization, the ions were dragged with electric
fields to a tantalum catcher filament, for neutralization and accumulation over a period
of 25 s. Afterwards, the incoming flux of 254No was turned off for 5 s to perform laser
spectroscopy. During this period the adsorbed nobelium atoms were evaporated from
the filament by briefly heating it to a temperature of about 1350 K and firing the lasers
for resonance ionization. The first laser was supposed to resonantly excite the nobelium
atoms in the 5f147s2 1S0 atomic ground state to the 5f147s7p 1P1 state. The second
laser further excited the electron into the continuum beyond the ionization potential.
Ions produced by this process are subsequently guided by electrostatic fields to a silicon
detector where the characteristic α decay of 254No was detected.

The inherent limited spectral resolution of in-gas cell laser ionization spectroscopy
because of pressure and Doppler broadening (rising up to a few GHz), can be reduced by
an order of magnitude using in-gas jet laser ionization spectroscopy [74]. In this method,
the radioactive atoms are embedded in a homogeneous, cold gas jet created by a “de
Lavale” nozzle and are ionized by overlapping the laser light with the gas jet. Photo ions
are subsequently captured in an RF ion guide and transported to a detection station.

It should be noted that laser spectroscopy on superheavy elements lacks information
on available atomic transitions since optical spectroscopy was never before applied to such
atoms. Hence, the experiments are based on level-scheme predictions from theoretical
atomic physics, applied to systems with more than 100 bound electrons. Large wave-
length regions must therefore be covered in such experiments for the search of adequate
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transitions. Once a resonance transition is located, the wavelength of the ionization laser
can be varied to determine the ionization potential of the species, another important
fundamental quantity for an element and its physical behavior. Once such a transition
is identified, it can then be used to study other isotopes of this element to extract spins,
charge radii, magnetic dipole moments and spectroscopic quadrupole moments.

5. – Summary

The determination of nuclear ground-state properties along isotopic chains from laser
spectroscopy is meanwhile indispensable in nuclear physics research with radioactive
beams. The success of this method can best be seen by the fact that almost all ra-
dioactive beam facilities in the world have now an active or planned program for laser
spectroscopy, including all future facilities. Despite the tremendous progress made in
this field over the past decades, large unexplored regions still remain in the nuclear chart
that have not yet been investigated with laser spectroscopy partly because of a lack of
accessible transitions/wavelengths or a lack of yield and there is always the quest for
higher sensitivity and efficiency in order to reach more and more exotic species which are
produced in less and less quantities.
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[48] Maréchal F. et al., Phys. Rev. C, 72 (2005) 044314.
[49] Yordanov D. T. et al., Phys. Rev. Lett., 99 (2007) 212501.
[50] Yordanov D. T. et al., Phys. Rev. Lett., 104 (2010) 129201.
[51] Kowalska M. et al., Phys. Rev. C, 77 (2008) 034307.
[52] Yordanov D. T. et al., Phys. Rev. Lett., 108 (2012) 042504.
[53] Huck A. et al., Phys. Rev. C, 31 (1985) 2226.
[54] Janssens R. et al., Phys. Lett. B, 546 (2002) 55.
[55] Fornal B. et al., Phys. Rev. C, 70 (2004) 064304.
[56] Gade A. et al., Phys. Rev. C, 74 (2006) 021302.
[57] Wienholtz F. et al., Nature, 498 (2013) 346.
[58] Fr̊anberg H. et al., Nucl. Instrum. Methods Phys. Res. B, 266 (2008) 4502.
[59] Garcia Ruiz R. F. et al., Nat. Phys., 12 (2016) 594.
[60] Garcia Ruiz R. F. et al., Phys. Rev. C, 91 (2015) 041304.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



New developments in laser spectroscopy for RIBs 323

[61] Atanasov D. et al., Phys. Rev. Lett., 115 (2015) 232501.
[62] Yordanov D. T. et al., Phys. Rev. Lett., 110 (2013) 192501.
[63] Yordanov D. T. et al., Phys. Rev. Lett., 116 (2016) 032501.
[64] Flanagan K. T., PhD Thesis, University of Manchester, UK, 2004.
[65] Campbell P. et al., Eur. Phys. J. A, 15 (2002) 45.
[66] Marsh B. et al., Nucl. Instrum. Methods Phys. Res. B, 317 (2013) 550.
[67] Seliverstov M. D. et al., Phys. Lett. B, 719 (2013) 362.
[68] Rajabali M. et al., Nucl. Instrum. Methods Phys. Res. A, 707 (2013) 35.
[69] Lynch K. M. et al., Phys. Rev. X, 4 (2014) 011055.
[70] Uusitalo J. et al., Phys. Rev. C, 71 (2005) 024306.
[71] Backe H. et al., Nucl. Instrum. Methods Phys. Res. B, 126 (1997) 406.
[72] Backe H. et al., Eur. Phys. J. D, 45 (2007) 99.
[73] Laatiaoui M. et al., Nature, 538 (2016) 495.
[74] Ferrer R. et al., Nat. Commun., 8 (2017) 14520.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



This page intentionally left blank

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Session on the occasion of the 90th birthday of
Prof. Renato Angelo Ricci

celebrating his fundamental and seminal contributions
and achievements in the field of nuclear physics

during the last 65 years.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Proceedings of the International School of Physics “Enrico Fermi”
Course 201 “Nuclear Physics with Stable and Radioactive Ion Beams”, edited by F. Gramegna,
P. Van Duppen, A. Vitturi and S. Pirrone
(IOS, Amsterdam; SIF, Bologna) 2019
DOI 10.3254/978-1-61499-957-7-327

The electric dipole excitation in nuclei: From zero
to finite temperature

Angela Bracco(∗)

Dipartimento di Fisica, Università di Milano - Milano, Italy
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Summary. — The gamma decay of the giant dipole resonance (including its low-
energy tail region) is an important tool to probe the properties of these states,
and thus to test in detail the existing predictions. This paper focuses on two main
aspects concerning the electric dipole excitation in nuclei. One is the study of the
isospin character of the low-energy tail of the Giant Dipole Resonance (GDR), the
so-called pygmy resonance, and the other is the isospin mixing of nuclear systems
at finite temperature. In the first case, the pygmy resonance was populated using
the inelastic-scattering reaction induced by 17O beams at 20 MeV/u. Comparison
is made with data obtained with (α, α′γ) and (γ, γ′) reactions. In the second case,
the gamma decay of the GDR in thermalized nuclear systems, formed in fusion-
evaporation reactions, was used to investigate the isospin mixing in 80Zr. For this
work the reactions 40Ca + 40Ca at 3.4 MeV/u and 37Cl + 44Ca at 2.6 MeV/u were
employed.
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1. – Introduction

The gamma decay of the high-lying electric dipole states up to the region of the giant
dipole resonance is an important tool to address relevant questions related to nuclear
collectivity and isospin effects.

This paper focuses on results of experiments addressing two different specific prob-
lems. The first is the isospin character of the low-lying part of the dipole response,
commonly denoted as the pygmy resonance, due to the much smaller size of its strength
in comparison with the Giant Dipole Resonance (GDR). In recent years, experimental
and theoretical investigations, on both stable and radioactive nuclei, revealed that the
presence of the pygmy resonance is a common phenomenon in a large number of atomic
nuclei (see refs. [1] and [17] for a review). The hydrodynamical model describes this
pygmy strength as associated to the vibration of the neutron skin. Details of the dipole
strength distribution of the nuclei involved in the r-process will play a role and influence
the abundance pattern [2].

The second topic concerns the investigation of isospin mixing at finite temperature
by measuring the gamma decay of the GDR excitation. The E1 decay from excited
states of N = Z nuclei is forbidden by the isospin selection rules. Because of the
small size of the isospin mixing responsible of E1 decay, the best case to study isospin
effects is the de-excitation of the GDR where most of the strength is concentrated.
Here the isospin mixing is studied at finite temperature using fusion-evaporation reac-
tions. The temperature dependence of the isospin mixing was obtained and the zero-
temperature value was then deduced. The isospin-symmetry-breaking correction used
for the Fermi superallowed transitions was extracted and found to be consistent with
β-decay data.

2. – Pygmy states populated with inelastic scattering of isoscalar probes

Although the general properties of the Giant Dipole Resonance (GDR) have been
extensively studied during the past decades there is presently great attention to the
electric dipole response in the region around the particle binding energy (< 10 MeV). In
that region an additional concentration of E1 strength exceeding the Lorentzian shape
of the GDR was identified in many nuclei, particularly the neutron rich ones. This E1
strength is denoted as Pygmy Dipole Resonance (PDR) and within the hydrodynamical
model is described as due to oscillations of neutrons forming a skin outside a core made
out of the other neutrons and protons occupying the same nuclear orbitals.

The study of the PDR is very interesting because this excitation mode affects consid-
erably the reaction rates in astrophysical scenarios, where photodisintegration reactions
are important [2]. In addition, the precise knowledge of the E1 strength is expected
to provide information on the neutron skin and thus on the symmetry energy of the
equation of state (see, e.g., refs. [3-9]).

A key question concerning pygmy states is the understanding of their nature and for
that one needs to excite them not only with the Coulomb field but also using the nuclear
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interaction of isoscaler and isovector types. While in the isovector oscillation proton
and neutrons moves out of phase, the isoscalar strength of dipole type, the Isoscalar
Giant Dipole Resonance (ISGDR) is due to a squeezing mode in the nucleus. This paper
focuses on the isospin character of pygmy states and discusses selected experimental and
theoretical results related to this aspect.

The use of inelastic scattering of light and medium heavy ions at bombarding energy
in the interval 20–35 MeV/u is a good tool to be employed to understand the nature of
nuclear collective excitations. In addition, if one measures the subsequent gamma decay
it is possible to select states of 2+ and 1− since the gamma transitions of E1 and E2
types are the dominant ones.

The existing studies for the excitation of pygmy states via the reactions (α, α′γ) at
35 MeV/u and (17O,17 O′γ) at 20 MeV/u [10-21] have provided valuable information on
the nature of the discrete 1− states. An interesting feature of the pygmy states has been
observed by comparing results of photon-scattering and 17O scattering experiments. In
particular, it has been found that one group of states is excited in both types of reactions,
while another group of states at higher energies is only excited in the (γ, γ) case.

The comparison of the measured cross sections with (γ, γ′) and (α, α′γ) and
(17O,17 O′γ) results for the 124Sn and 140Ce nuclei are shown in figs. 1 and 2. In the exper-
iments using the (17O,17 O′γ) reaction the detection of gamma rays was performed with
the AGATA (Advanced Gamma Tracking Array) Demonstrator. At the time of these
experiments the AGATA Demonstrator [25-27] consisted of three to five triple clusters
of HPGe detectors and was placed 13.5 cm from the target covering an angular range in
theta from 100◦ to 150◦ (relative to the beam direction). The segmentation of the HPGe
detectors allowed the direction of the gamma-ray emission to be determined with a preci-
sion of 1 degree. The AGATA detection efficiency was deduced from measurements with
radioactive γ-ray sources and by simulations including the geometrical configuration of
these particular experiments. A system of telescopes of Si detectors was used for the
identification and measurement of the kinetic energy of the scattered ions [24].

In the case of 124Sn data, for each 100 keV bin two cross sections are shown in fig. 1:
one corresponding to the counts in the known discrete peaks (full coloured bars) and the
other to the total measured counts denoted as unresolved strength (dashed grey bars).
From these figures one sees clearly the presence of the splitting of the PDR states in two
regions. The low-lying part of the E1 strength appears to be characterised by isoscalar
transition densities that are peaked on the surface which lead to an enhancement in
the isoscalar E1 response, while the higher-lying states can be interpreted as transitions
towards the GDR and, thus, are suppressed in the isoscalar channel [16].

The splitting of the PDR region becomes even more evident if we integrate the
strength in the discrete peaks into two regions, 5–7 and 7–9 MeV (insets of fig. 1). From
here one sees clearly that the strengths in the two regions measured in the (γ, γ′) experi-
ment are almost equal while this is not the case for (17O,17 O′γ) and (α, α′γ) experiments.
The small relative difference between (α, α′γ) and (17O,17 O′γ) in the population cross
sections of some states might be related to the nature of these states and to the different
Coulomb and nuclear contributions of the used reactions.
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Fig. 1. – Differential cross sections measured in 124Sn(17O,17 O′γ) experiment, in bins of 100 keV
(central panel). The unresolved strength, corresponding to the total binned counts in the mea-
sured spectra, is depicted in grey. For comparison, the strengths measured in α-scattering (top
panel) [16] and photon-scattering (bottom panel) [23] are reported. In each panel, the inset
gives the relative intensity corresponding to the measured cross sections in the discrete lines
integrated in two regions (5–7 and 7–9MeV). Adapted from [19].

These experimental findings are in qualitative agreement with different phonon mod-
els, which predict a low-lying isoscalar component dominated by neutron-skin oscillations
and a higher-lying group of states with a stronger isovector character associated to the
tail of the giant dipole resonance.

Predictions obtained using the form factors based on microscopic calculations of the
transition densities are shown in comparison with the data in fig. 3 (red solid lines).
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Fig. 2. – Differential cross sections measured in 140Ce(17O,17 O′γ) experiment (top panel). For
comparison, the strengths measured in α-scattering (central panel) [15] and photon-scattering
(bottom panel) [22] are reported. Adapted from [20].

The calculation of the cross section was made using the Distorted Wave Born Approx-
imation (DWBA) including the microscopic form factor. The form factor was obtained
with the double folding method using the M3Y nucleon-nucleon interaction [28, 29]. As
expected for these states, the dominant contribution to the form factor comes from the
isoscalar part of the nucleon-nucleon interaction component. The form factor calculation
uses as input the proton and neutron transition densities. The latter were obtained us-
ing the fully consistent relativistic quasiparticle random phase approximation (RQRPA)
model [30]. They are shown in the bottom panel of fig. 3. To be noted that these transi-
tion densities show the typical features of the PDR states: neutron and proton transition
densities are in phase in the interior and there is a strong surface contribution due only
to neutrons.
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Fig. 3. – Top: Inelastic scattering cross section 124Sn(17O,17 O′γ)124Sn∗ at 340 MeV for the
1− states between 5.5 and 7MeV. The error bars are the statistical errors. The lines show
DWBA calculations. The black solid curve represents the calculations with the standard phe-
nomenological form factor. The red solid line includes the nuclear contribution calculated with
the microscopic form factor derived using the transition density shown in the bottom panel.
Adapted from [19].

The calculations were fitted to the data to extract the value of the Isoscaler Energy
Weighted Sum Rule (ISEWSR) strength. In particular, it has been assumed that the
cross section is a sum of two parts, one being the Coulomb and the other the nuclear
(isoscalar) contribution. For the Coulomb contribution we fixed the value corresponding
to the known B(E1) measurements. For the nuclear contribution to fit the data the
starting value was that associated to the microscopic form factor used corresponding
to a specific fraction of the ISEWSR strength. The extracted values for 124Sn of the
fraction of the ISEWSR E1 strength is 1.5(2)%. In general the deduced values are
consistent with the results for the isoscalar giant dipole resonance and they are ranging
from 1 to 9% of the ISEWSR (see references for details [17] and [20]). In addition it is
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Ex (MeV) Jπ
n ISD EWSR (%) B(Eλ) (e2 fm 2λ )

4.07(4) 2+
2 28 .8 ± 6.6

5.36(5) 1 −
1 2.70(32) 3.57 (20 ) × 10 − 2

5.62(5) (3− 1) .19 (10 ) × 10 3

6.84(7) 1−
2 0.67(12) 3.79 (26 ) × 10 − 2

↑

Fig. 4. – Measured ISD EWSR (top) and B(E1) ↑ (bottom) strength in 20O (right panel), in
comparison with 16O (left panel). The top table gives the properties of known states in 20O.
Adapted from [33].

worth noticing that the good reproduction of the data with these calculations, shown in
fig. 3, supports the picture that these pygmy states are excitation of the neutron skin.
Also for light neutron nuclei it is interesting to investigate the isospin character of the
low-energy dipole excitations because there, with only few nucleons at work, the nature
of the excitation could be different and not so much related to colletive effects. Recently
the gamma decay from states in 20O, populated selectively via Coulomb and nuclear
exitation, was investigated [33]. The 20O nucleus has four neutrons added on the doubly
magic core of 16O which are expected to be involved in the its excitation. In addition,
this nucleus is known to have significantly strong dipole excitations at energies below
the neutron threshold [34, 35]. Measuring the isoscalar dipole strength of these states is
particularly imporant, since several theories based on collective models [36, 37] predict
that these states have strong isoscalar dipole strength [37].

The experiment to study E1 strength in 20O was performed at the Radioactive Isotope
Beam Factory (RIBF) of the Nishina Center of RIKEN [31]. A 48Ca primary beam was
accelerated at 345 MeV/A with an average intensity of 250 pnA. A secondary 20O beam

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



334 Angela Bracco

impinged on two different reaction targets, a gold target and liquid-helium target. Decay
γ-rays from the reaction products were detected by a large-volume LaBr3:Ce scintillator
array located at a laboratory angle of 30◦.

The isoscaler dipole EWSR fractions and B(E1) ↑ strengths deduced from the data of
20O are plotted in fig. 4 (right panel), along with the 16O values (left panel) in the same
energy region. The 16O ISD EWSR fraction is from ref. [38] and the B(E1) ↑ strength
is from ref. [39]. There is a significant difference in B(E1) ↑ strength between 16O, the
doubly magic nucleus in the oxygen chain, and 20O.

The B(E1) ↑ strength integral over the two states is increased from 0.492×10−2 e2fm2

in 16O to 7.36(33) × 10−2 e2fm2 in 20O. More interestingly, the integrated ISD EWSR
fraction does not show much variation: 4.2% in 16O and 3.37(34)% in 20O. In the case
of 16O, because it is N = Z, the isovector dipole strength is strongly suppressed. This
explains the almost purely isoscalar nature of the state referred to as the macroscopic
squeezing mode [38], but the present results indicate that low-energy dipole excitations
in 20O exhibit a dual character, suggesting that these states have different underlying
structures.

A new set of data for several stable nuclei from experiments recently performed at
RCNP Osaka is presently being analysed. These experiments used beams of alpha par-
ticles and protons, at bombarding energy of 130 MeV and 80 MeV, respectively. The
high-resolution spectrometer Grand Raiden (GR) was used coupled to the CAGRA ar-
ray consisting of 12 clover HpGe detectors and with four LaBr3:Ce scintillators (crystal
dimensions 3.5×8) of the HECTOR+ array [32]. With these new data, we can search for
difference in the excitation pattern for proton and alpha and we also expect to be able
to determine the small branching to excited states and thus to provide more stringent
tests to theory.

3. – Isospin mixing at finite temperature in the proton-rich 80Zr

The question of isospin impurity in nuclei has been a long-standing open problem
in nuclear physics. In particular the knowledge of the isospin impurity is interesting in
connection with the properties of the Isobaric Analog States (IAS) and for the Fermi
decay of the N ≈ Z nuclei near the proton drip line.

Moreover the isospin impurity on the beta decay has implications in the Fermi tran-
sition rates and thus on the Cabibbo-Kobayashi-Maskawa matrix. In the case of the IAS
states it is known that they have a narrow width originating from Coulomb interaction
coupling these states to the continuum. In general the breaking of isospin symmetry can
be observed by decays, which would be forbidden by the selection rules if isospin mixing
were not to occur. This is the case of the E1 decay from self-conjugate nuclei. To fully
exploit this property of the E1 decay one can explore the region of the Giant Dipole
Resonance (GDR) where the maximum strength of the E1 transitions is concentrated.
Indeed this approach was employed for the E1 decay of the GDR in nuclei at finite
temperature T , formed in fusion-evaporation reactions.
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Fig. 5. – Linearized measured and calculated γ-ray spectra for 37Cl + 44Ca (1a) and for 40Ca +
40Ca (2a) in the GDR region. In (2a) the statistical-model calculations are shown corresponding
to different values of the Coulomb spreading width: Γ↓

> = 12 keV (red line), for no mixing
Γ↓

> = 0keV (green dashed line), and for full mixing Γ↓
> = 100 keV (blue dashed line) Right

panels: χ2 values obtained by varying the GDR width for 37Cl + 44Ca (1b) and by varying the
Coulomb spreading width for 40Ca + 40Ca (2b).

Self-conjugated Compound Nuclei (CN) at high excitation energy can be formed using
fusion-evaporation reactions. The use of self-conjugate projectile and target ensures
population of CN with isospin I = 0 and thus with E1 decay from the GDR which is
hindered. In contrast, if the initial state is not pure in isospin but contains an admixture
of I = 0, 1 states, it can decay to the more numerous final states with isospin I = 0. At
finite temperature there is an additional effect, that of a partial restoration of the isospin
symmetry. This is because the degree of mixing in a compound nucleus is limited by its
finite lifetime for particle decay [42]. It is particularly interesting to investigate isospin
mixing in nuclei with N = Z in the mass region A = 80–100 because there the different
model predictions give the largest discrepancies among them.

The most recent works on the isospin mixing at finite temperature were made for
the hot compound nucleus 80Zr populated using the fusion reactions 40Ca + 40Ca at
Ebeam = 136, 200 MeV. The reaction 37Cl + 44Ca at Ebeam = 95, 153 MeV was also
measured in the same set-up to have a reference for the gamma-ray emission from the
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Fig. 6. – The isospin mixing α2
> as a function of T obtained with the procedure of [42] corre-

sponding to Γ↓ = 11±2.1 keV (red region), constant with T . For the blue band Γ↓ was assumed
to vary mildly and linearly with T (see text). The blue triangle is the theoretical value at T = 0
from [49], the green circle is the datum from [40], the black diamond is the datum from [41].

GDR for a nucleus with the same excitation condition but without isospin hinderance.
The statistical-model analysis of the measured spectra provided the value of the isospin
mixing. More details can be found in refs. [40] and [41].

To show the importance of measuring a reference reaction in the same experimental
conditions used for the measurement of the reaction in which the isospin mixing effects
are expected to show up, one should examine fig. 5 that refers to the data obtained with
the reactions 40Ca + 80Ca at Ebeam = 200 MeV and 37Cl + 44Ca at Ebeam = 153 MeV.
In this figure one can see the details of the comparison between data and calculations.
These quantities are shown in a linear scale following the linearization procedure which
is usually applied in the study of the GDR in hot nuclei. Statistical-model calculations
made without isospin mixing (Γ↓

> = 0 keV), with the value of Γ↓
> = 10 keV yielding the

best fit and with a large mixing (Γ↓
> = 100 keV) are compared.

With the result obtained for the isospin mixing at finite temperature, the value at
zero temperature was derived using the model of [42], which describes the variation of
the mixing probability with T . The isospin mixing probability for a nucleus at finite
temperature is defined as

α2
>(T ) =

1
I0 + 1

Γ↓
IAS

ΓCN (T ) + ΓIV M (IAS)
,(1)

where Γ↓
IAS is the Coulomb spreading width of the IAS, to be considered equal to Γ↓

>,
ΓIV M (IAS) is the width of the Isovector Monopole Resonance (IVM) at the excitation
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Fig. 7. – The isospin mixing correction δC as a function of the nuclear mass number A. The
dashed black line is the prediction from the Damgaard model [46], while the red line is a shell
model with Saxon-Woods radial wave function prediction [47]. Black circles are the experimental
points extracted from β decay as reported in [44], the blue triangle is obtained using a new Q
value of 74Ru β decay deduced from mass measurements [45]. The red star is the value of δC

reported in [41]. Adapted from [41].

energy of the IAS, which is expected to be constant with T . According to the systematics
for the present case one has ΓIV M (IAS) = 240 keV [40,42,48]. ΓCN (T ) is the CN decay
width increasing with temperature.

In fig. 6 the values of α2
> calculated using eq. (1) are shown as a function of T . The

red line is obtained with a value of Γ↓
> = 11 ± 2.1 keV, corresponding to the average

of the two experimental values (the lower and upper curves corresponding to 8.9 and
13.1 keV, respectively). This calculation gives at T = 0 α2

> = 4.6% ± 0.9%, in rather
good agreement with the prediction shown with the blue triangle from [49]. Following
the discussion in [42], we also considered a weak linear dependence on T of the Coulomb
spreading width given by Γ↓

>(T ) = Γ↓
>(1 + cT ). In this expression the chosen slope

parameter c = 0.1 MeV−1 is such that the value of Γ↓
> stays within the experimental

error bar. The blue band in fig. 6 displays the dependence of α2
> with T when such weak

dependence of Γ↓
> is considered (the limiting curves correspond to 8.9 and 13.1 keV). We

performed also two calculations using Γ↓
> = 11 keV and ΓIV M (IAS) = 220 and 260 keV

and found that these two curves are well within the two colored bands of fig. 6.
It is very interesting to connect the isospin mixing parameter α2

> with the isospin-
correction term δC . As reported in ref. [43] the quantity δC is defined as
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δC = 4(I + 1)
V1

41ξA2/3
α2,(2)

where V1 = 100 MeV and ξ = 3, while α2 is the isospin impurity in the ground state and
I is the isospin of the nucleus.

Using eq. (2) the value δC = 0.81(16)% was obtained for 80Zr. This value is shown
in fig. 7 with the red star. In this figure the dashed black line is the prediction from the
Damgaard model [46], while the red line is a shell model with Saxon-Woods radial wave
function prediction [47]. Black circles are the experimental points extracted form the β

decay as reported in [44], the blue triangle is the value reported using a new Q value of
74Rb β decay deduced from mass measurements [45]. It is important to note that the
quantity δC/I + 1 is plotted in fig. 7 since β-decay measurements are for I = 1 nuclei,
while that for 80Zr is I = 0. The present result is consistent (within the error bars) with
data for 74Rb and the trend of predictions is also in agreement with the present new
point. No calculations of the type of [44] are available for A = 80 and the δC data for
74Rb are the only existing ones close to N = Z = 40.

The temperature dependence of the isospin mixing was obtained for the heaviest
N = Z nucleus that could be formed so far with fusion reactions with stable nuclei.
The zero temperature value was deduced and provides a stringent test to theory. The
isospin correction term used in the β-decay analysis was also extracted for the first
time for A = 80 and found to be consistent with systematics from β-decay and mass
measurements. This result supports the validity of the method based on the GDR at
finite temperature to obtain the value of the isospin mixing in regions of Z not directly
accessible at zero temperature.

4. – Concluding remarks

Progress has been made in the study of the nature of 1− states and at around the
neutron binding energy. This information is attracting interest to test models based
on the Energy Density Functional used also for astrophysical applications such as those
for neutron stars. High-resolution experiments using both hadron and electromagnetic
probes are found to be key tools to understand the isospin character of the pygmy
states. Interesting conclusions were obtained by comparing different results. Isoscalar
strengths in general lower than 10% of the corresponding value of the ISGDR at 20–
30 MeV were deduced from the analysis of the hadron data with the distorted-wave Born
approximation approach.

More data are necessary to probe in detail the shape of the transition density and to
deduce the mixing among the isoscalar and isovector components. In particular the study
of isoscalar pygmy states in deformed nuclei, not yet performed, appears very interesting.
The overall picture obtained from the available results supports the interpretation of the
low-lying pygmy states as due to the excitation of the neutron skin.

In the future, it will be important to address open problems for stable nuclei and to
search for 1− states, with their isoscalar and isovector components, in nuclei far from
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stability. For stable nuclei the transition between the PDR and GDR regime should be
understood and information on the nuclear transition density should be obtained in order
to provide stringent tests to theory.

Concerning the isospin mixing future work concerns studies in other mass regions.
In the case of the light 28Si nucleus results from ref. [50] show that the isospin mixing
deduced from the GDR work is not in very good agreement with results deduced from
beta decay studies. This aspect also needs further investigations.
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INFN, Sezione di Padova - Padova, Italy

Summary. — The f7/2 shell constitutes an ideal benchmark to investigate different
nuclear-structure properties that can be studied in detail by means of the large-scale
shell model. In particular, the systematic study of differences in excitation energy
in isobaric nuclei has allowed to develop a theoretical method to deduce from the
data, changes in the shape of the nuclei along a rotational band, the mechanism
of the backbending, and the need to include an isospin-symmetry-breaking term in
the nuclear interaction. Recently, these studies have been extended to other mass
regions. In particular, I show here some results obtained in the sd shell where the
method deduced for the f7/2 nuclei seems to work well. A new approach based on
a charge-dependent realistic nucleon-nucleon interaction is introduced. It allows to
deduce the neutron skin at every excited state from the mirror energy differences.
Moreover, a strong correlation between the skin and the difference of occupation
numbers of neutrons and protons in the s1/2 orbit is found.

1. – Introduction

Medium-light nuclei are suitable to investigate several nuclear properties and
symmetries. In particular, nuclei in the region where valence neutrons and protons
occupy the f7/2 orbital present a richness of phenomena. Near the middle of the shell,
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around 48Cr, nuclei display rotational-like bands that can be described very accurately
by large-scale shell model calculations. This offers the possibility to compare in the
same physical system macroscopic and microscopic nuclear-structure models. As one
moves away from 48Cr, the doubly magic nuclei 40Ca and 56Ni are rapidly approached
and the collective behavior gives way to more pronounced shell-model effects. Moreover,
at high spin it becomes energetically favorable to the nuclei to align the particle spins
along the rotational axis and backbending and band-termination phenomena show up.
Nuclei in the f7/2 shell thus provide an excellent opportunity to study the interplay
between collective and single-particle degrees of freedom as functions of both angular
momentum and valence particle number.

Another interesting feature that can be studied in these nuclei as a function of spin and
mass number is the pairing interaction. While like-nucleon pairing is of T = 1 character,
proton-neutron (pn) pairs can be coupled to isospin T = 0 and T = 1. Although the
superfluid phenomenon in nuclei is a well-established feature, still a current issue in
nuclear structure is the question of the role of T = 0 pn pairing and the existence of a
T = 0 pairing condensate. The contribution of T = 0 pn pairing correlations, however,
decreases rapidly with increasing proton or neutron excess and therefore, these studies
concentrate on those nuclei that lie on the N = Z line.

Around this line, another important property of the nuclear force can be studied:
the isospin symmetry. This is based on the charge symmetry and independence of the
nuclear interaction which allows to treat the proton and the neutron as the same particle,
the nucleon, characterized by the isospin quantum number t with projection tz = +1/2
in the case of the neutron and tz = −1/2 for the proton. In a nucleus, the total isospin
projection Tz will be the sum of those of the single nucleons, being the total isospin T ≥
Tz = (N −Z)/2. One of the main consequences of isospin symmetry is that the structure
of mirror nuclei (obtained interchanging neutrons and protons) should be identical. It is
well known that the Coulomb interaction, experienced only by protons, breaks the isospin
symmetry, but this is not enough to explain the differences observed experimentally. In
mirror nuclei, for example, signatures of the isospin symmetry breaking are the differences
between the excitation energy of analogue state (Mirror Energy Difference, (MED)) and
the different strengths of the E1 transitions.

In recent years, the increase in sensitivity and resolving power of γ-ray spectrometers
has allowed the study of N ∼ Z nuclei up to high spin and to extend the investigation to
medium-heavy masses. In parallel, a remarkable improvement has also been obtained in
the development of large-scale shell model calculations, leading to interesting results, in
particular, in nuclei of the f7/2 shell where it has been shown that the MED are sensitive
to changes of nuclear-structure properties along rotational bands. They can give infor-
mation on the alignment of nucleons, variation of the nuclear radius and, in some cases,
on the configuration of the wave functions. It has also been shown that the Coulomb
field is not the only responsible for the isospin symmetry breaking [1]. Until very recently
these studies have been performed by using stable beams and targets [2]. Radioactive-
ion beams allows now to populate mirror nuclei where the proton-rich partner is quite
far from stability. In particular, knockout reactions induced by radioactive high-energy
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beams have been performed at NSCL in the upper f7/2 shell where T = 3/2 and T = 2
mirror nuclei have been studied [3].

Isospin-symmetry-breaking interactions produce states with isospin impurity. The
degree of isospin mixing increases with mass and a fingerprint of the impurity can be
studied in T = 1 isobaric triplets by measuring the reduced transition probabilities
B(E2 : 2+ → 0+). If the involved states have good isospin, the B(E2) of the three
nuclei as a function of Tz should lie on a line. A deviation from this behavior is a
signature of isospin mixing. Recently the A = 46, T = 1 triplet has been studied in
GSI using the gamma-ray tracking array AGATA using radioactive beams at relativistic
energies in Coulomb excitation reactions and plunger measurements. Preliminary results
are compatible with a linear behavior [4].

In the following section a summary of the results obtained in the f7/2 shell together
with a brief description of the theoretical method is given. Section 3 is devoted to the
extension of these studies to nuclei in the sd shell. In sect. 4 a new approach to the study
of mirror nuclei is introduced and discussed. Section 5 summarizes the main results.

2. – Isospin-symmetry studies in the f7/2 shell

The validity of the isospin symmetry for the strong interaction is a fundamental as-
sumption in nuclear physics. One of the experimental manifestation of the isospin sym-
metry is the nearly identical spectra of pairs of mirror nuclei (obtained by interchanging
protons and neutrons) and, more generally, in levels of isospin multiplets. A slight break-
down of isospin symmetry arises from the Coulomb potential, but it is well known that
also the nuclear force has an isospin dependence as shown for example in difference of
mass of protons and neutrons and in the phase shifts in pp, nn or pn scattering. Modern
effective interactions derived from realistic, charge-dependent nucleon-nucleon potentials
do not reproduce, however, the differences in excitation energy of analogue states, as
shown in ref. [5, 6].

The Coulomb interaction has a large contribution to the binding energy of nuclei
(hundreds of MeV). When comparing those of mirror nuclei, the difference in binding
energy results of the order of tens of MeV and if we just consider the excitation energy of
analogue states in mirror nuclei, the so-called Mirror Energy Differences (MED), we find
values of the order of tens of keV. Very small values indeed. It is precisely because of
this smallness that the MED are such efficient observatories: as the large contributions
have been canceled, what remains gives direct insight into nuclear structure.

MED are obtained by subtracting the excitation energies of analogue states in mirror
nuclei (same J and same T ):

MED(J) = E∗
J(T,−Tz) − E∗

J (T, Tz).(1)

In this respect, it is interesting to investigate the behavior of rotating mirror nuclei
where MED acts as a magnifying glass, being sensitive to changes of shape and nucleon
rearrangements. In particular, the 1f7/2 shell offers unique opportunities: it is the first
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region where backbending rotors have been observed [7] that can be studied with the
rigor of the shell model [8]. Detailed investigations of the high spin structure of these
rather light nuclei have become experimentally feasible in the nineties due to the advent
of high-efficiency gamma-ray spectrometers and ancillary particle detectors. It is inter-
esting to note, in this respect, that high-performance shell model codes became available
simultaneously.

From the systematic analysis of the MED in the 1f7/2 shell it was shown that they
constitute a very useful tool to get insight into the nuclear structure of the involved states
and the evolution as a function of the angular momentum and excitation energy. The
results of these studies have been recently extended to other mass regions such as the
sd and upper pf shells. However, in most of the cases the MED can be just followed up
to very limited spin because the proton-rich partners of the mirror pairs become soon
unbound.

Let us now enter into the details of the theoretical description of the MED. The
main ingredient is, of course, the Coulomb potential which acts only between protons
and breaks isospin symmetry. In the shell-model framework we calculate the Coulomb
matrix elements in the harmonic-oscillator basis within the model space. Its contribution
to the MED is sizable but not enough to reproduce the experimental data. In ref. [9]
another Coulomb contribution of monopole origin was included that takes into account
the changes in the nuclear radii when increasing angular momentum. Indeed the angular
momentum is constructed by aligning the nucleon spins. The structure of nuclei in the
1f7/2 shell are not well described within a model space containing just this orbit for
protons and neutrons. The full pf shell is needed to cope with the collective behavior
and, in particular, the role of the p3/2 orbital is crucial. Indeed, it is the quadrupole
partner of the f7/2 orbit in the quasi-SU(3) dynamical symmetry framework [10].

The radius of the nucleus depends on the orbits that are being filled. In the main shell,
the orbits with low angular momentum have larger radii than the others. In the pf shell,
p orbits have much larger radii than f orbits. At low excitation energy, the occupation
of the p3/2 orbit in deformed nuclei is sizable but to increase the nuclear spin, nucleons
prefer to fill the f7/2 shell and the occupation of the p orbits decreases, reducing the
nuclear radii. This affects the excitation energy of the states as the Coulomb repulsion
increases. Of course this happens in both mirror pairs, but the Z value is different and
therefore there is a net Coulomb effect on the MED. In the shell-model framework this
radial effect is obtained as the difference of the average of the occupation numbers of
protons plus neutrons in the p orbits with respect to the ground state, weighted with an
empirical parameter, which is kept constant for all the mirror pairs in the f7/2 shell. An
example of the Coulomb contributions for the case of the mirror pair A = 49, T = 1/2
is given in fig. 1.

In fig. 1, the two Coulomb contributions are labeled VCM , that takes into account
the Coulomb contributions within the model space, and VCr, the radial-dependent con-
tribution. By adding the two, the trend of the data as a function of the nuclear spin
is qualitatively reproduced, but not enough satisfactory from the quantitative point of
view. In ref. [1] an additional isospin-symmetry braking (ISB) term VB was introduced
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Fig. 1. – MED for the mirror nuclei 49Mn-49Cr: The experimental values (black line) are com-
pared to the theoretical predictions (red curve) that consists on the sum of the three components
VCM , VCr and VB (see text for details).

that allowed reproducing the data with high accuracy. It is a schematic isovector term,
deduced from the data of the mirror pair 42Ti-42Ca and consists in the difference of the
expectation values of a single diagonal matrix element for two nucleons in the f7/2 shell
coupled to I = 2 and with a strength of 100 keV,

ΔM 〈VB〉J = 〈V ππ
B 〉J − 〈V νν

B 〉J ,(2)

where the difference of expectation values are obtained for each state with angular mo-
mentum J . Taking into account this contribution to the MED, they can be obtained in
first-order perturbation theory as

MED(J) = ΔM 〈VCM 〉J + ΔM 〈VCm〉J + ΔM 〈VB〉J ,(3)

where ΔM indicates that the difference of the expectation values is taken by subtracting
to that of the proton-rich partner the corresponding value for the neutron-rich one. As
can be seen in fig. 1 the VB contribution is of the same order of magnitude of the Coulomb
terms. The interesting result is that this simple prescription, together with the Coulomb
terms, allow to reproduce with very good accuracy all the MED data that have been
reported during the last two decades for mirror nuclei in the f7/2 shell, even for nuclei
quite far from stability [1, 2]. It is important to note that it is not compatible with the
ISB contribution deduced from charge-dependent nucleon-nucleon realistic interactions.

As stated above, the ISB VB term has been deduced from the MED in mass A = 42,
where the value for two particles coupled to I = 2 is much larger than that of the other

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



346 Silvia M. Lenzi

I = 0, 4, 6 value. (We adopt the notation I to stress that this is the spin to which two
nucleons are coupled, while we use J for the spin of a nuclear state, that involves many
nucleons.) In a recent work by Bentley and collaborators [11], it has been shown that
the MED are not sensitive to the absolute value of these matrix elements but to the
relative values. Indeed they show, from a fit of all the so far experimentally known MED
in the f7/2 shell that taking a strength of +100 keV in the I = 2 coupling is equivalent
to consider a I = 0 coupling with a strength of −100 keV.

So far we have concentrated in mirror nuclei with Tz = ±T . The isospin symmetry
also implies that all nuclei with the same mass (isobaric multiplets) should show states
with the same spin and configuration, the so-called analogue states, provided these states
are characterized by the same value of T . The easiest cases are the isobaric triplets with
T = 1, Tz = 0,±1. If the N = Z (Tz = 0) member of the triplet is an odd-odd nucleus,
then T = 0 and T = 1 states coexist at low excitation energy. Triplet energy differences
(TED) are obtained experimentally as

TED(J) = E∗
J(T,−Tz) + E∗

J (T, Tz) − 2E∗
J(T, Tz = 0).(4)

Due to the way they are defined, TED are not sensitive to changes in the nuclear
structure as a function of the spin and monopole contributions cancel out. In ref. [1] it
has been shown that a good description of the TED can be achieved by adding to the
multipole Coulomb term an ISB schematic interaction, as in the case of the MED,

ΔT 〈VB〉J = 〈V ππ
B 〉J + 〈V νν

B 〉J − 2〈V πν
B 〉J ,(5)

with the triplet difference of the expectation values of a single diagonal matrix element
for two nucleons in the f7/2 shell coupled to I = 0 and with a strength of 100 keV [1,2].

The theoretical expression for the TED thus becomes

TED(J) = ΔT 〈VCM 〉J + ΔT 〈VB〉J .(6)

In fig. 2 some examples are shown evidencing the very good description of the TED
for isobaric triplets in the f7/2 shell. Note that the contribution arising from the ISB
term is also in this case of the same order than the Coulomb one. The effect of this term
is not compatible with that produced by effective interactions deduced from realistic
nucleon-nucleon interactions, as discussed in ref. [5] and, more recently in ref. [6].

3. – Extension to the sd-shell nuclei

The very satisfactory description of MED and TED for nuclei the f7/2 shell with
the phenomenological method described above triggers some questions. First of all, one
may wonder if the same or similar prescription applies to other mass regions where
several orbitals are active and there is not the dominance of one isolated orbital. This
is particularly important for the schematic ISB term that was deduced in the hypothesis
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Fig. 2. – TED for the isobaric triplets T = 1 in nuclei della shell f7/2. The experimental values
are compared with the theoretical predictions. In the inset the separate contributions of the
Coulomb and ISB term VB are shown.

of a pure f2
7/2 configuration in mass A = 42. The form of the ISB VB term in both the

MED and TED in complex configurations is not straightforward. Regarding the radial
term, the single parameterization found in terms of the occupation of the p3/2 orbital
may change when other orbitals are at play.

In ref. [12] we have applied the same method to nuclei in the sd shell. Here data on
MED and TED are limited to rather low spin. Two fundamental generalizations have
been done in the theoretical approach. In the case of the MED, for the radial term, we
assumed that it is the s1/2 orbit the one of larger radius in this main shell. A quantitative
estimate of this radial difference has been confirmed by a recent theoretical study [13].
The second generalization is related to the ISB term. The wave functions of nuclei in
this shell are not dominated by a single orbital, as for the f2

7/2-shell nuclei. Therefore
we have to consider for the MED a schematic isovector ISB term for each orbit with
the same strength of +100 keV for two nucleons coupled to I = 2, while a strength of
+100 keV was used for the isotensor ISB term in the case of the TED. While in the f7/2

shell single-particle corrections due to electromagnetic spin-orbit interaction (ls) [14] and
the ll term introduced in ref. [15] have almost no influence on the MED, they have to
be included in the description of sd MED. As an example, we show in fig. 3 the different
contributions to the MED of the pairs 21Na-21Ne and 29P-29Si. These nuclei present a
rotational-like structure and therefore the role of the radial term is evident, however,
still more important is the contribution from the ISB terms that allows to reproduce the
experimental data with very good accuracy.
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Fig. 3. – Upper panel: Mirror energy differences for the pairs 21Na-21Ne and 29P-29Si in com-
parison with shell model calculations, bottom panel: different components that contribute to
the theoretical MED: VCM and VCr are the Coulomb contributions together with those arising
from the electromagnetic spin-orbit (ls) and orbital (ll) single-particle corrections. The ISB
contribution VB is calculated in all sd orbits.

A systematic study of the mirror nuclei in this shell shows that the prescription
successfully used in the f7/2 seems to apply also in the sd shell for both the MED and
the TED. It is important to underline here that no best fit has been done at all and that
the same parameters used in the mass A = 40–55 region have been taken identical for
the sd nuclei. This means that the agreement with data could be improved for sure by
adapting the parameters to these nuclei, although maintaining them constant for the full
shell. But this was not the goal of the present investigation that aimed at exploring the
generalization of the method developed in the f7/2 shell.

4. – A new approach: MED and neutron skin

The satisfactory description of the MED and TED is based on the addition to the mul-
tipole Coulomb term of the radial term (VCm) and the ISB contribution. These two latter
terms, crucial to account for the experimental findings, are schematic and phenomenolog-
ical. Inspired on a recent work by Bonnard et al. [13] we have followed a new approach to
obtain the MED. This consists in adopting in the shell model framework an effective inter-
action deduced in a no-core approach from a realistic charge-dependent nucleon-nucleon
interaction recently developed by A.P. Zuker [13]. This includes naturally the ISB part of
the nuclear field and produces the single-particle energies, which therefore are not taken
from the experimental data. It also includes the electromagnetic spin-orbit correction.
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The radial term is taken into account in this new approach by considering the effect of
the isovector monopole polarizability introduced in ref. [13]: when a nucleon is added to
a nucleus it polarizes both fluids, the protons and the neutrons. This causes a change in
the respective radii that tend to equalize them, reducing the neutron skin independently
of the neutron excess. This implies to consider a different potential well for each fluid, at
difference with what is done in normal shell model calculations where the size parameter
of the harmonic oscillator potential is obtained with a standard formula.

The size parameter is inversely proportional to the radius. Charge radii are measured
for most of the stable nuclei at the ground state. They can be fitted using the Duflo-Zuker
formula:

ρπ = A1/3

(
ρ0 −

ζ

2
tz

A4/3
− v

2

(
tz
2

)2
)

eg/A + λDνπ,(7)

where ρπ is the charge radius and tz = N−Z. The coefficients ρ0, ζ, and v are associated
with the scalar, vector and tensor components of ρπ, while the eg/A factor corrects for
the larger radii observed in light nuclei. The expression of the correction term Dνπ

may be found in refs. [15, 13] where its efficiency in providing very good radii and its
physical interpretation in terms of correlations are also discussed. The 5 parameters are
determined by fitting all measured charge radii up to mass A = 60. Once these are fixed,
the neutron radii are calculated, using isospin symmetry arguments, by changing the sign
of tz in eq. (7). Still, relying on the isospin symmetry, we can assume that the proton
radius of one of the mirrors is the same as the neutron radius of its mirror partner and
viceversa. We can therefore deduce now the size parameters of the harmonic-oscillator
potential to calculate the matrix elements of our effective interaction.

With all these elements taken into account we would be able to calculate the MED and,
in particular, the mass difference between the two mirrors, which is also an experimental
datum. This has been done in ref. [13] for closed-shell nuclei plus/minus one nucleon.
There, Bonnard and collaborators have shown that a good fit of the data can be obtained
by allowing the parameter ζ in eq. (7) to vary in the range 0.4–1.2. This parameter is
related to the difference of neutron and proton radii, i.e. the neutron skin:

Δrνπ = ρν − ρπ =
ζtz
A

eg/A.(8)

Therefore, the MED are computed as a function of the parameter ζ until they match
the experimental value. Interestingly, they have a linear dependence with ζ and the first
important result of this research is that the MED provide an indirect measurement of
the neutron skin for each excited state. A remarkable result indeed.

The new procedure is quite different from the previous one in the sense that most of
the terms that have to be added to the nuclear plus Coulomb interaction in a schematic
approach are now incorporated by adopting a charge-dependent chiral realistic interaction
deduced in a no-core approach [12]. The only term that is not included here is the radial
one due to the monopole Coulomb contribution and computed by considering the sum
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Fig. 4. – Correlation between the neutron skin parameter ζ and the difference of occupation
numbers of neutrons and protons in the s1/2 orbital (Δνπ) for the mirror pairs A = 21 and
A = 29.

of proton and neutron occupation numbers in the s1/2 orbital. On the other hand, the
variation of the radii is accounted for in the new approach by adjusting the potential size
parameters of both fluids in the two nuclei. Interestingly, the neutron skin deduced from
the MED data is correlated with the difference in occupation number of neutrons and
protons in the s1/2 orbit. This correlation can be seen in fig. 4 for the two mirror pairs
of fig. 3.

5. – Summary

Nuclei where the valence nucleons are filling the f7/2 shell are an ideal ground to study
nuclear-structures properties. Indeed, the wave function configurations are dominated
by this orbital, which simplifies the interpretation of the evolution of the structure as a
function of the angular momentum. Still, the contribution of other orbitals in the fp shell,
in particular the p3/2, are essential for the development of quadrupole deformation. Due
to the relatively reduced number of valence particles, the properties of both rotational
bands and single-particle structures can be described by means of large-scale shell-model
calculations.

Along the N = Z line, the study of MED in the f7/2 has demonstrated very useful to
put in evidence certain properties of the nuclear structure such as the mechanism at the
backbending in rotational bands, changes in the nuclear radius, and the isospin symmetry
breaking of the nuclear potential. This has been possible due to both a systematic
experimental work in the region and a good shell model description. The application
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of the same method to nuclei in the sd shell seems to apply as well using the same
parameters deduced for the f7/2 shell.

The new approach inspired in ref. [13] and applied in ref. [12] has shown that the
MED can give information on the nuclear skin at every excited state. Moreover, is has
been found that the skin is correlated with the difference between the occupation of
the s1/2 orbital by neutrons and protons. This new finding may open the possibility
to predict the MED values by starting from the charge radii, provided a quantitative
relation between nuclear skin and the difference of occupation numbers of neutrons and
protons in the s1/2 orbit is found.
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Summary. — We explore the role of intrinsic and collective modes in the evap-
oration spectra of particles emitted by a compound nucleus. Collective effects are
found to determine the gross features of the spectra, dramatically distorting the exit
channel phase space of the free particle. We are also trying to determine whether
the spectra retain information on the preformation of the particle inside the com-
pound nucleus. Alpha particle evaporation spectra are analyzed and interesting
modulations at the level of 1% are observed.

1. – Introduction

Fusion reactions have demonstrated the role of a variety of degrees of freedom, both
intrinsic and collective, in determining the cross section, especially in the peribarrier
region [1]. Intrinsic degrees of freedom are usually accounted for in terms of an optical
model. The survival of a particle and its motion (neutron, proton alpha particle, etc.)
inside the nucleus before relaxation affects and modulates the entrance channel cross
section.
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Similarly, collective degrees of freedom, like shape multipole deformation can be ex-
cited, giving rise to an apparent distribution of fusion barriers and to other significant
effects [2].

In this paper we present an attempt to unveil similar effects in the exit channel, more
specifically in the evaporation spectra of particles emitted by a compound nucleus. The
amalgamation of a particle with a nucleus in fusion reactions, and the segregation of
the same particle in evaporation, pose the question of the existence of complex particles
in the nuclear medium [3]. Even for nucleons, the interaction with the nuclear medium
makes their existence as independent particles rather fleeting. In general, one wonders to
what extent the total nuclear wave function is factorizable into the product of the wave
function of the particle in question and that of the residual nucleus. This problem is
analogous to the problem of the interaction of a solute molecule with the molecules of the
solvent in solutions. The properties of a solute molecule, or even of an individual solvent
molecule, are dramatically renormalized by the interaction with the other molecules.
Geometric conformation, bond lengths, and, in general, all other spectroscopic features
are at the very least changed with respect to the corresponding quantities in vacuo. In
the most extreme cases, the existence of the molecule itself may be compromised due
to dissociation, or to other chemical reactions. In the nuclear case, one can consider
the nuclear medium as the solvent, and the various kinds of (complex) particles as the
solute. Individual neutrons and protons, at least in ground-state nuclei, behave more
or less as non-interacting particles in the shell model potential. However, single-particle
excited states couple rather quickly into the many-body degrees of freedom. The width
of the corresponding strength function gives a direct estimate of the “lifetime” of the
nucleon in the medium. Qualitatively one can expect that tightly-bound particles such
as alphas may have more than a fleeting existence in the nuclear medium, certainly much
longer than that of a weakly-bound particle such as the deuteron. Cluster models have
described complex particles within the nuclear medium. This problem has also been
addressed, in the case of nuclear reactions, by the optical model theory. The interaction
of the projectile with the nucleus is described in terms of a complex one-body potential,
where the imaginary part describes the removal of flux from the elastic channel, or the
“absorption” of the particle into the collective unconscious of the nuclear many-body
system. While the optical potential may adequately describe elastic scattering, it tells
us little about the actual behavior of the particle inside the nucleus. Although the
problem has been studied theoretically for ground-state nuclei, very little experimental
information does in fact exist. No information is at hand concerning hot nuclei. This
is true even for nucleons. We know nothing on how the shell/optical model potential
evolves with temperature. We know just as little about the existence and properties
of clusters in hot nuclei. One may wonder whether this information is at all accessible
experimentally. Should it be so, it would provide us with an important and totally novel
chapter of nuclear physics. We believe that the questions outlined above, and possibly
others, can be addressed by looking at compound nucleus evaporation of nucleons and
complex particles in a fresh way.
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Fig. 1. – Schematic drawing of the states of a particle in a potential well. The wavelengths
change with energy, as it may not be clear from the drawing.

2. – Particle evaporation from compound nuclei

As a particle is “segregated” from a compound nucleus state and prepares to exit,
it senses its environment. This environment could be a mean field, like a shell/optical
potential, or a local polarization field of some sort. This should result in states that
acquire a width through the coupling with the continuum and the remaining many-body
degrees of freedom. A strength function should arise that modulates the spectrum of the
emitted particle. This is illustrated qualitatively in fig. 1. The states inside and above
the well are the states of the particle in the nucleus, which, in the case of protons, tend
to the shell model states well below the barrier, and to the optical model resonances in
the continuum above the barrier. This modulation should be observable in very high
statistics evaporation spectra. Since the particle to be emitted is in a hot nucleus, whose
excitation energy is under experimental control, the strength function obtained from
the modulation of the spectrum refers to that specific excitation energy or temperature.
Thus the possibility exists of studying these fields not only for a variety of particles, but
also for different temperatures. Another way of looking at this problem is to consider
the standard expression for the evaporation spectrum.

The decay width differential in the particle kinetic energy is

Γ(ε) ∝ σinv(ε)ερ(E − B − ε),(1)

where B is the particle binding energy and σinv(ε) is the inverse cross-section. A first-
order expansion of the log of the level density in the kinetic energy of the particle gives
the transparent form:

Γ(ε) ∝ σinv(ε)εe−ε/T ,(2)

where T is the nuclear temperature.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



356 L. G. Moretto

Thus the spectrum is the product of a structure factor, namely the “inverse” cross
section, and of a phase-space factor. Removal of the latter should leave the former with its
potentially interesting modulations. Usually evaporation codes calculate the inverse cross
section, or the corresponding transmission coefficients, from an optical model. There are
two difficulties with this. The first is related to the fact that the residual nucleus to
which the inverse cross section refers is an excited nucleus, while the optical potential is
known for ground-state nuclei. This is not a problem here, since we intend to extract the
“inverse” cross section directly from the data, and infer the temperature dependence of
the optical potential. The second is associated with shape polarization effects in the exit
channel. These are due, for instance, to the Coulomb interaction, and are very different
from those in the entrance channel. Let us consider this interesting problem in more
detail.

3. – Shape polarization and evaporation spectra

In order to exit from a nucleus, a charged particle must overcome the Coulomb bar-
rier. If the nucleus deforms in the direction of emission, the Coulomb barrier decreases.
Therefore, it pays for the nucleus to invest some energy in deformation in order to lower
the barrier. More quantitatively, let us consider a configuration formed by the emitted
particle just in contact with the residual nucleus. Now we deform the residual nucleus
always keeping the light particle in contact, and we plot the total energy as a function of
deformation. The total energy has a minimum at some finite prolate deformation. This
is the location of the saddle point, as shown in fig. 2. The unbound mode, or reaction
coordinate, is the distance between centroids. A particle crossing over the saddle point
with zero kinetic energy acquires a kinetic energy at infinity smaller than the Coulomb
barrier associated with a spherical configuration. This is not sub-barrier emission, of
course, in the sense that it is not associated with quantum barrier penetration [4].

Thermal fluctuations along this deformation coordinate Z lead to large fluctuations
in the Coulomb interaction energy, as shown in fig. 2.

While the total potential energy VT has a minimum at some prolate deformation, the
fragment-fragment Coulomb interaction VCoul is a monotonically decreasing function of
the deformation coordinate.

Therefore, we can expand the total potential energy and the Coulomb interaction
energy about the saddle point along the deformation coordinate Z (Z = 0 at the saddle):

VT = V 0
T + KZ2, VCoul = V 0

Coul − cZ.(3)

Now, if we allow the shape to fluctuate involving an energy of the order of the temperature
T , we obtain a corresponding fluctuation of the Coulomb energy:

ΔVCoul = 2

√
Tc2

K
= 2
√

pT .(4)

This fluctuation will, of course, be reflected in the final kinetic energy of the particle.
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Fig. 2. – Top: Normal modes at the saddle point. Bottom: Total potential energy VT and
Coulomb energy VCoul as a function of the deformation coordinate Z.

Because of this, we call the parameter p the amplification parameter. More quanti-
tative considerations lead to an expression for the kinetic energy of the particle [5]

P (x) ∝ e−x/T erfc
(

p − 2x

2
√

pT

)
,(5)

where x = ε − V 0
Coul.

This formula is easily generalized to include: 1) a larger number of amplifying and
non-amplifying degrees of freedom at the saddle; 2) their quantization; 3) true quantal
barrier penetration along the reaction coordinate [6]. We see immediately that, by using
a formula like eq. (5) to fit experimental spectra, we can obtain information on the shape
polarization associated with particle emission and on its excitation energy dependence.
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Fig. 3. – Lower panels: the experimentally measured α spectra and the linear combination of
the orthogonal functions (eq. (6) (full curves)). Upper panels: the dots represent the percentage
difference between the experimental data and the fits with eq. (5). The error bars represent the
statistical errors of the experimental data. The full curves represent the percentage difference
of the combination of the orthogonal functions and the fits.

4. – Experimental particle structure functions

We are now going to explore high statistics evaporation spectra from the reaction
3He + natAg from 55 to 110 MeV bombarding energy [2, 5, 6] in order to see whether
physical modulations similar to those expected from optical potentials are present.
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The plan is to fit the spectra shown in the lower panel of each sextant in fig. 3 with
a smooth function, and to search the residuals for modulations. Standard expressions
for the evaporation spectra do not provide adequate fits since they do not incorporate
shape polarization, etc. On the other hand, expressions like eq. (5) and similar ones,
have demonstrated the necessary flexibility.

The resulting fits to the experimental spectra shown in fig. 3 are of extremely high
quality. The percentage residuals of the fits are also shown in fig. 3, in the upper panel of
each sextant. They are of the order of 1% throughout the energy range, which shows the
goodness of the fitting functions. These residuals show a statistically significant modu-
lation with amplitude of about 1.5% which is approximately repeated in both amplitude
and phase at all bombarding energies.

In order to extract information on the modulations observed at the various excitation
energies, we have devised an analytical procedure based upon orthogonal polynomials.
We write down the experimental spectrum as a linear combination of orthogonal poly-
nomials

F (ε) =
∑

anS(ε)Pn(ε),(6)

where S(ε) is a suitably chosen weight function that generates the polynomials Pn(ε).
The orthogonality condition is

∫ b

a

S2(ε)Pn(ε)Pm(ε)dε = δnm.(7)

The choice of S(ε) is dictated by the desire of concentrating the bulk of the spectral
shape into the single coefficient a0. The modulations then appear in the higher-order
coefficients, hopefully in only one or two. This goal can be achieved by choosing for
S(ε) the form given by eq. (5) with parameters obtained from the least-squares fit. This
guarantees that a0 will take up the bulk of the spectrum. The amplitudes an can be
obtained from the dot product of the experimental spectrum with the n-th polynomial

an = b

∫ b

a

F (ε)S(ε)Pn(ε)dε(8)

and the corresponding strength sn can be defined as

sn =
a2

n∫ b

a
F 2(ε)dε

.(9)

The strength coefficients, as defined above are shown in fig. 4 for the usual sequence of
energies. As expected, all the physical information is contained in a few low modes.
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Fig. 4. – The strength sn of the n-th order as defined in eq. (9) plotted against the order n.

5. – Significance of the shape polarization parameters

The exceedingly good quality of the fit to the spectra by means of eqs. (5) and (6)
suggests that it may be possible to extract information regarding shape polarization
both as a function of particle energy and of excitation energy. It is tempting to make
a connection between this physics and that of sub-barrier fusion. This connection is
best seen by considering eqs. (5) and (6). By eliminating the phase-space part of the
spectrum one is left with the inverse cross section as a function of particle energy. As
we said before, this cross section refers to a hot target. By studying this cross section
at low particle energy we are effectively exploring the “sub-barrier” region. Thus the
apparent oxymoron: “sub-barrier fusion in hot nuclei”. This aspect of the problem is
quite tantalizing. In principle one could attempt the same analysis as done in sub-barrier
fusion. The product εσinv(ε) can be extracted from the spectrum as shown by eq. (4)
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and the barrier distribution can be obtained:

B(ε) =
∂2εσinv

∂ε2
.

However, no effort has been made in this direction as yet.

6. – Possible interpretations of the observed modulations

The “wavelength” of the modulations and their small amplitude suggest that they
could be modulations associated with the optical potential felt by the α-particle inside
the nucleus. Although a fit with an optical model calculation may be premature, the
features are consistent with a ground-state–like optical potential with a moderate to
large imaginary part. Interesting is the persistence and stability of the modulation with
increasing energy. This can be seen from the weak evolution of the extracted coefficient
an with energy. These results are also consistent with the above interpretation. The tem-
perature involved in the experiment is small and changes little over the excitation energy
range investigated. In the temperature range covered by the experiment we expect that
the geometries associated with the decay are not greatly altered yet (nuclei do not expand
so easily). Similarly, there are good reasons to expect that the strength of the potential
has a weak temperature dependence. While we hope that a finer inspection might reveal
temperature effects, the gross stability of the modulation with temperature is comforting.

7. – Moment expansion of the evaporation spectra

In the same spirit as in the introduction of barrier distributions functions in fusion
reactions, we can try to introduce Gaussian distribution functions associated with the
fitting parameters. We have found a very powerful method of doing so through the
moment expansion of the spectra.

The moment expansion method can be introduced in the following way: it is always
possible to expand the spectral function in Taylor series about the zeroth moments of its
parameters, like B, T , p, etc.

Up to second order the expansion gives

P̄ (ε,B, T ) = P (ε, B̄, T̄ ) +
1
2

∂2P

∂B2

∣∣∣∣
B̄,T̄

σ2
B +

1
2

∂2P

∂T 2

∣∣∣∣
B̄,T̄

σ2
T(10)

+
∂2P

∂B∂T

∣∣∣∣
B̄,T̄

Cov(B, T ) + . . . ,

where
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Fig. 5. – Examples of fitting the data with the moment expansion method at different excitation
energies. The oscillations are completely described. The circles represent the relative residual
of the zeroth-order fit to the data, while the solid lines represent the relative difference between
the zeroth-order fit and the actual fit.

σ2
B =

∫∫
B,T

w(B, T )(B − B̄)2dB dT,(11)

σ2
T =

∫∫
B,T

w(B, T )(T − T̄ )2dB dT,

Cov(B, T ) =
∫∫

B,T

w(B, T )(B − B̄)(T − T̄ )dB dT

The first moments are of course zero since the expansion is about a minimum.

For the function itself we can take eq. (5) or a similar one, since it can reproduce
the data to better than 1%. The same equation can be used to evaluate the second
derivatives analytically.

An attempt to fit the data has been made with eq. (12) in terms of its seven unknown
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parameters.

P̄ (ε,B, T )=A exp
(
−ε − B̄

T

)
erfc
(

p − 2(ε − B̄)
2
√

pT

)[
1 +

σ2
B

2T̄ 2
(12)

+
σ2

B(ε − B̄)
2T̄ 3

(
ε − B̄

T
− 2
)

+
Cov(B, T )

T̄ 2

(
ε − B̄

T̄
− 1
)]

+
A

(pT )3/2
√

π
exp
(
−ε − B̄

T

)
exp

⎛
⎝−

(
p − 2(ε − B̄)

2
√

pT̄

)2
⎞
⎠

×
[
− σ2

B(p − 2(ε − B̄)) +
σ2

T

16T̄ 2
((p − 2(ε − B̄))2 − 6pT̄ )(p − 2(ε − B̄))

+
pT̄ − (ε − B̄)p − 2(ε − B̄)2

T
Cov(B, T )

]
.

The results of the fitting procedure can be seen in fig. 5.
We can see that the fits are as good as those obtained with the orthogonal polynomial

approach, giving a χ2 per degree of freedom of order unity.
The conclusion is that the gross and fine features of the experimental evaporation

spectra can be expressed in terms of distributions of the model parameters, very much
like in the case of sub-barrier fusion, where the cross sections can be reproduced in terms
of barrier distribution.

Although it is premature to attempt an interpretation of these results, it is already
clear that they contain potentially interesting information on the intrinsic and collective
degrees of freedom involved in the evaporation exit channel as a function of the compound
nucleus temperature.

8. – Conclusion

Two distinct, though connected, aspects can be discussed in the physics of evaporation
spectra.

1) A gross aspect relating to the polarization of the nucleus in the process of emitting
the particle. This should become more and more relevant as the atomic number of
the particle out of the compound nucleus increases.

2) A fine aspect dealing with the lifetime of the particle inside the nucleus. This should
be most important for evaporated nucleons and light particles. In particular, one
may learn about the dependence of the imaginary part of the optical potential upon
particle binding energy.

In both cases the possibility of performing the studies as a function of excitation
energy or temperature is of paramount interest.
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Summary. — This lecture is aimed at reviewing recent results on the study of
fission dynamics. It is well established that fission is a slow process dominated by
nuclear viscosity. This is demonstrated by many experimental observations, mainly
based on measurements of fission fragment Total Kinetic Energy (TKE), pre-scission
light particle, GDR γ-ray multiplicities and energy spectra. Fission time-scale as
well as the nature of energy dissipation during the process and its dependence on the
nuclear shape and the temperature are the main aspects which have been addressed.
In spite of the extensive work, there are still many open questions on the dynamics of
the process, mainly due to the lack of constraints on the models and to the different
probes used. Intermediate fissily systems are particularly suited for this study as
they present comparable cross sections in the fusion-fission and fusion-evaporation
channels, allowing to measure observables in both channels, and therefore to further
constrain the models. Furthermore, for these systems the path from equilibrium
to saddle configuration is expected to dominate with respect to saddle-to-scission
one, reducing the complexity of the physical process to be studied. As a case study,
we present the study performed on the nucleus 132Ce, which shows the limits of
the Statistical Model in accounting for the whole set of observables. We further
present the analysis of the data with a 3D Langevin dynamical approach which
proves to be capable of reproducing the values of a large set of observables. Our
analysis reinforces the fact that extended data sets are essential to achieve reliable
simulations to address the open questions on fission dynamics and strongly suggests
the use of setups of high efficiency.
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1. – Introduction

Several studies on the fission decay of composite systems with A ≈ 180–250 have
shown that the pre-scission multiplicities of neutrons and charged particles increase mono-
tonically with the bombarding energy in contrast with the calculations of the standard
statistical model (SM) of evaporation based on the detailed balance principle [1-17]. This
finding is considered as the evidence that fission is a slow process with respect to the
lifetime for the emission of light particles. With increasing excitation energy, the particle
decay lifetime decreases and becomes smaller than the time necessary for building up the
collective motion of the nuclear matter towards the saddle point. Consequently, fission
does not compete as effectively as predicted by the SM in the early stages of the decay,
and particles and γ-ray emissions can occur more favorably. The overall cause of the
establishment of these transient effects is believed to be associated with the nuclear mat-
ter viscosity which slows down the collective flow of mass from equilibrium to scission
and does not allow the fission decay lifetime to be reduced with increasing excitation
energy as in the case of light particles. This is equivalent to the assumption that fission
is delayed, namely, that the fission probability is not to its full Bohr-Wheeler value in
the initial phase of the decay as assumed by the SM. An energy domain has been further
identified above which the SM predictions begin to deviate from the data.

A strong dissipation due to nuclear viscosity can indeed trigger a variety of effects of
dynamical origin, among which the possibility that a compound nucleus (CN) commit-
ted to fission (already at the saddle-point configuration) can still become an evaporation
residue (ER) if enough particles are evaporated and the fissility reduced. This correla-
tion between the enhanced yield of pre-scission particles and the survival of evaporation
residues might be an important channel for the feeding of evaporation residues having
large deformations in the mass region of A ≈ 150–160.

Most of the estimates of fission time-scale have been obtained from the neutron
prescission multiplicities on the basis of the SM. However, several variants of the SM
have been proposed in the literature to explicitly consider transient effects, time-scales
as well as viscosity. Following the initial idea of the “neutron clock” [4], the common
trend is to split the path from the equilibrium point to the scission point configuration
into two regions, the pre- and the post-saddle [5]. The total fission time is defined as
τf = τd + τssc, where τd is the pre-saddle delay, namely, the characteristic time that
the composite system spends inside the barrier, and τssc is the time necessary to travel
the path from saddle-to-scission. The relevant observables are computed using τd and
τssc as free parameters, along with the other input parameters relative to the specific
ingredients of the model, and fit to the experimental data. However, τd and τssc are also
considered dependent on the viscosity parameter γ. Following Kramer’s work [18], the
inclusion of dissipative effects results in an effective time-dependent fission decay width
Γf (t) which is smaller than the standard Bohr-Wheeler decay width by a hindrance
factor,

Γf (t) = ΓBW

[√
1 + γ2

pre − γpre

]
[1 − exp(−t/τd)].(1)

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Fission dynamics in systems of intermediate fissility 367

Here τd is a delay parameter, ΓBW is the Bohr-Wheeler fission decay width, and γpre is
the nuclear viscosity parameter in the pre-saddle that can be written as γpre = β/2ωo.
β is the so-called reduced dissipation parameter and ωo is the potential curvature at the
saddle point.

The saddle-to-scission time τssc (post-saddle), in this very simplified way of split-
ting the time scale of a complex phenomenon, might also be dependent on the nuclear
viscosity. One widely used ansatz is the following:

τssc = τssc(γpost = 0)
[√

1 + γ2
post + γpost

]
.(2)

In general, the nuclear viscosity parameter might be different inside and outside the
saddle point. Furthermore, τd, τssc, γpre and γpost are dependent on the excitation energy
available, the temperature of the nucleus, the fission barrier, the angular momentum, but
are kept constant along the decay chain.

In spite of the extensive work, estimates of the fission time-scales are however quite
controversial, ranging from ≈ 5 to ≈ 500× 10−21 s, depending on the system and exper-
imental probe. Furthermore, such estimates are weakened by the fact that different sets
of input parameters can result in equally good fits within the same model [7, 12-14].

Dynamical models [19, 20, 22-27], based on the Euler-Lagrange, Fokker-Planck or
Langevin equations, have been proposed to estimate the reduced viscosity parameter
β and to gain insight on the nature of dissipation. In this approach, the time evolution
of properly chosen collective variables on a potential energy surface, when a dissipa-
tion term is included, describes the fission process. The dissipation term specifies the
mechanism through which excitation energy is exchanged between collective and single-
particles degrees of freedom. Once collective variables are chosen, single-particle degrees
of freedom are treated as a heat bath. Therefore, one of the main issues is whether the
nuclear dissipation mechanism proceeds by means of individual two-body collisions (two-
body friction), as in the case of ordinary fluids, or by means of nucleons colliding with a
moving potential wall (one-body friction). The analysis of the fission fragment TKE [19],
using the one-body or two-body prescriptions in the dissipation function, indicates that
this observable alone is not sufficient to clarify this point.

One of the very first application of the Langevin approach was proposed by Wada et
al. to disentagle between the one-body or two-body dissipation mechanisms [20]. Two-
dimensional Langevin equations were used to analyze simultaneously the TKE and the
pre-scission neutron multiplicity for the 200Pb nucleus. In this case, it turned out that
one-body dissipation allows reproducing both quantities, while an unusually strong two-
body viscosity allows reproducing only neutron multiplicity. In a similar study, the
values of the reduced viscosity parameter β = 15 × 1021 and 24 × 1021 s−1, extracted
from the prescission neutron multiplicities for the composite nucleus 188Pt at Ex = 99.7
and 101.4 MeV, were found consistent with one-body dissipation [21]. The observed
value of β = 6 × 1021 s−1 for the same CN but at Ex = 66.3 MeV allowed to even
infer a possible increase with temperature of nuclear viscosity. A different result was
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found however for the 220Th system by Rubchenya et al. [10], on the basis of pre-scission
neutron multiplicities. They found that the effective average value of β decreases with
increasing excitation energy, similarly to the temperature dependence expected for the
two-body viscosity. A systematic study was also carried out by Bhattacharya et al. [22].
They found that the values of viscosity coefficient used to reproduce the observed neutron
multiplicities alone increase with the mass and the excitation energy per nucleon of the
composite system and follows a kind of a global relation. In conclusion, on the basis of
a review of the current studies on the subject, the β values are found to range from ≈ 2
up to 30 × 1021 s−1. However, the estimates of β, from the fits to the particle and GDR
γ-rays multiplicities with the statistical models, provide a contradictory picture of the
values of β, which range over an order of magnitude, and rather controversial conclusions
on the nature of nuclear dissipation and its dependence on the shape and temperature.

2. – Dynamical vs. statistical approach

Besides the specialistic details, there are a few characteristic features of the descrip-
tion of the fission process that appear out of these two entirely different approaches that
are quite surprising. In the SM approach, the viscosity parameters are treated as con-
stant free parameters to be adjusted on the experimental data. From the fits to the data
it turns out that the viscosity is higher in the post-saddle path than in the pre-saddle
one, and increases with the temperature or the square of the temperature [12,13]. Light
particles and/or GDR γ-rays are emitted mostly in the post-saddle region where viscosity
is higher [12]. Added to this is the fact that the same data can be reproduced equally well
if the viscosity is considered to be temperature- or deformation-dependent [11, 12, 14].
In the dynamical approach, the CN can pass the saddle point several times before even-
tually undergoing fission and there is no free parameter in the dissipation model (one-
or two-body) except for a strength parameter [26, 27]. In the one-body model, the dis-
sipation is shape-dependent but not temperature-dependent. Contrary to what occurs
in the statistical approach, it turns out that viscosity is higher in the pre-saddle shape
configuration and, hence, light particles and/or GDR γ-rays are emitted mostly in the
pre-saddle region. This behaviour does not change if the one-dimensional (1D) version of
the dynamical approach [26,27] is used. Furthermore, in both one- or two-body dissipa-
tion models there is no explicit dependence on the temperature. The question is how it
could be possible to disentangle this apparent contradiction between the statistical and
dynamical description of the fission process. Somehow the answer could be straightfor-
ward because the statistical approach, for instance, can only mimic a dissipation model
by introducing ad hoc parameters and average shapes in the deformation space. To draw
a more consistent description of nuclear dissipation, and its connection with the shape
and temperature, it seems reasonable and crucial to start by taking into account a larger
number of observables which can be expected to be sensitive to nuclear dissipation and
try to reproduce their measured values with a unique set of input parameters.
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3. – Dissipation in systems of intermediate fissility

Composite systems of intermediate fissility (χ = 0.5–0.6) are very little studied, al-
though they offer quite a unique environment where nuclear viscosity can be effectively
studied. They are characterized by an ER cross-section comparable to or larger than the
fission cross-section, and by a shorter path in the deformation space from the saddle-to-
scission point [30]. Consequently, 1) models, as well as their input parameters, can be
further constrained by the energy spectra and multiplicities of light particles in the ER
channel; 2) the effect of the fission delay over fission and ER cross-section is much more
pronounced with respect to heavier systems because the emission of a charged particle
in the pre-saddle region strongly enhances the probability of producing an ER as a con-
sequence of both reduction of the fissility and the larger value of the angular momentum
necessary to ignite fission. The fact that the potential energy surface is characterized by
a shorter path from the saddle-to-scission point implies that the role of the pre-saddle
dynamics relative to the saddle-to-scission dynamics is enhanced and, therefore, some
of the ambiguities on the not-well identified separation and interplay between pre-and
post-saddle might be reduced in the interpretation of the data. We expect that the mea-
surements of neutron and charged particle multiplicities and energy spectra in the two
channels as well as the measurements of the cross-sections of the channels themselves will
allow more severe constraints onto the models. This should provide more reliable values
of fission delay and viscosity parameter, and contribute to a better comprehension of nu-
clear viscosity. To put this criterion into practice, the 8πLP Collaboration has started a
research program at the Laboratori Nazionali di Legnaro (LNL), Italy, aimed at studying
the fission dynamics in systems of intermediate fissility. In the following sections we will
discuss a specific case study of such systems.

4. – The 8πLP apparatus

The 8πLP apparatus [31] (fig. 1) is a 4π light charged particle detector assembly
consisting of two detector subsystems, each made of two-stage telescopes: the WALL
and the BALL. The WALL contains 116 telescopes and is placed at 60 cm from the
target. Each of the WALL telescopes consists of a 300 μm Si detector backed by a 15 mm
Csi(Tl) crystal and has an active area of 25 cm2 corresponding to an angular opening of
about 4◦. The WALL covers the angular range from 2◦ to 24◦. The BALL has a diameter
of 30 cm and consists of seven rings placed coaxially around the beam axis. Each ring
contains 18 telescopes and covers an angular opening of about 17◦. The telescopes of the
BALL are made of a 300 μm Si detector mounted in the flipped configuration (particle
entering from the Ohmic side) backed by a 5 mm CsI(Tl) crystal. The BALL has a total
of 126 telescopes and covers the angular range from 34◦ to 177◦. The rings are labelled
from A to G from backward to forward angles.

Particle identification is carried out by the ΔE-E method for the ions that do not
stop in the E stage. The particles stopping in the E stage are identified by the TOF
method in the case of WALL telescopes, and by the pulse shape discrimination (PSD)
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Fig. 1. – (a) Schematic layout of the experimental apparatus. The letters from A to G label
the seven rings of the BALL section. (b) The geometry used for the angular distribution of
LCP detected in a ring around the beam in coincidence with ER detected in a parallel-plate
avalanche counter (PPAC) horizontal plane. π indicates the reaction plane, which is defined as
the plane containing the beam and the PPAC.

technique in the case of BALL telescopes. In this configuration it is possible to measure
energies up to 64 AMeV in the WALL and 34 AMeV in the BALL with energy thresholds
of 0.5 and 2 MeV for protons and α-particles, respectively.

Heavy fragments can be detected in the telescopes of the BALL. The PSD technique
allows the separation between heavy fragments and light particles stopping in the same
detector. The selection between symmetric and asymmetric mass splittings can never-
theless be achieved on a kinematics ground [34]. In the 8πLP set-up it is also possible to
detect ER. The WALL detectors between 2.5◦ and 7.5◦ around the beam axis are in fact
replaced by four parallel-plate avalanche counter (PPAC) modules, each one subtending
a solid angle of about 0.3 msr. Each module consists of two coaxial PPACs mounted and
operating in the same gas volume at a distance of 15 cm from each other. By adjusting
the gas pressure, it is possible to stop the ER between the two PPACs, and let the fission
fragments and elastic scattered ions to impinge on the second PPAC. Consequently, ERs
are sorted out from the first PPAC signals using the signals from the second PPAC as a
VETO signal.

With this device it is possible to detect, in the same experiment, light charged particles
in coincidence with fission fragments and evaporation residues. Furthermore, given the
large angular coverage and the symmetrical location of the detectors around the beam
axis, angular distributions, along with the differential multiplicity distributions, can be
constructed, in- and out-of the reaction plane, by summing events recorded within the
many equal angular correlations.
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5. – A case study: the system 32S + 100Mo at 200 MeV

In order to highlight the benefits of studying fission dynamics with an approach
based on systems of intermediate fissility and a dynamical model we start by specifying
how such systems can guarantee a large set of observables that should all together be
reproduced within the same dynamical model. We consider here the reaction 32S+100Mo
at 200 MeV that leads to the composite system 132Ce at Ex = 122 MeV and fusion angular
momentum Lfus = 72h̄, derived from the measured fusion cross-section in the sharp cut-
off approximation. We shall show the inability of the SM to provide an estimate of the
fission time-scale when the ER channel is included as a further constraint in the procedure
used to estimate the fission delay time. Afterwards, our study with an advanced realistic
dynamical approach based on a 3D-Langevin approach will be discussed.

5.1. Experimental procedure and data analysis. – The experiment was performed at
the XTU Tandem-ALPI Superconducting LINAC accelerator complex of the LNL. A
200 MeV pulsed beam of 32S of about 1 pnA intensity was used to bombard a self-
supporting 100Mo target of 300μg/cm2 thickness. A beam burst with a frequency of
about 1.25 MHz and duration of about 2 ns was used. We used the BALL and the WALL
sections of the 8πLP apparatus to detect light charged particles (LCP). The experimental
method consists of measuring light charged particles (LCPs) in coincidence with both
fission fragments (FFs) and evaporation residues (ERs). The fission fragments were de-
tected in the telescopes of the rings F and G of the BALL. The PSD technique allows
the separation between heavy fragments and LCP stopping in the same detector. ERs
were detected through the four parallel-plate avalanche counter modules. In a separate
experiment at LNL, ERs and FFs cross-sections were measured, respectively, using an
electrostatic deflector and the double-arm time-of-flight spectrometer CORSET [32].

Figure 2 shows, for alpha-particles, the experimental differential multiplicity energy
spectra (histograms) for 12 in-plane angular correlations. The multiplicity spectra are
obtained by normalizing the area of each spectrum to the number of fission events mea-
sured by the trigger detectors. This conversion is easily done because single FFs (or
ERs) events are measured simultaneously to the coincidences in the same run. In or-
der to extract the pre-and post-scission angle integrated multiplicities, particle spectra
were analysed assuming three evaporative sources [33, 34]: the composite nucleus prior
to scission (CE) and the two fully accelerated fission fragments (F1 and F2). We have
used a well-established procedure that employs the code GANES [37] and that takes
advantage of the different kinematics of the three emission sources. In this procedure,
proton and alpha particle evaporation spectra are computed separately for each emitting
source in the experimental detection conditions within the window of angular momen-
tum associated to FF. In our case the window is 67–72 h̄ as extracted from the channel
cross-sections σER and σFF .

The full set of data is shown in table I along with the results of the SM calculations
performed with the code PACE2 N97 [35] and a 3D Langevin dynamical code [24, 26]
which implements one- and two-body dissipation models. The dynamical model was
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Fig. 2. – Experimental (histogram) in-plane multiplicity spectra of alpha-particles in coincidence
with fission fragments detected in the rings F and G of the 8πLP apparatus. In red the evapora-
tive component from the composite system prior to scission; in blue and green the evaporative
components from the two fission fragments; in thick solid line the sum of the three components
(for details see text).

Table I. – Proton and α-particle multiplicities in the ER and pre-scission channels together
with the FF and ER cross-sections for the 200 MeV 32S + 100Mo reaction. The SM calculation
refers to the case where the parameters are chosen to best reproduce the FF channel data without
time delay (see text for details).

ER channel FF Channel

Mn Mp Mα Mn Mp Mα σER (mb) σF F (mb)

Exp. – 0.90 ± 0.14 0.56 ± 0.09 – 0.055 ± 0.007 0.038 ± 0.05 828 ± 50 130 ± 13

SM 4.26 1.44 1.64 0.42 0.058 0.034 813 143

One body 5.30 1.198 0.556 0.63 0.064 0.0399 786 150
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coupled with the statistical model Lilita N97 [36] to simulate the emission of protons,
neutrons and α-particles from ERs and the composite system before scission (pre-scission
emission).

The symbols are as follows: the multiplicities of the protons and α-particles are,
respectively, Mp and Mα; σER and σFF are, respectively, the ERs and FFs cross-sections.

5.2. Statistical model analysis. – The measured quantities in table I were analysed with
the SM implemented in the code PACE2. The original code has indeed been extended
by including new options for the level density and the transmission coefficients as well
as fission delay according to the prescription given in [1]. If we limit our analysis to
the FF channel only, namely, if we try to reproduce only the multiplicities in the FF
channel as usually done [1], the data shown in table I can be reasonably well reproduced
by assuming aν = A/9, af/aν = 1.04, liquid-drop model (LDM) yrast line and optical
model (OM) transmission coefficients, without any delay. The parameter aν = A/9 is
the Fermi gas level density parameter for particle evaporation and af is the level density
parameter for fission. From this result one could conclude that no transient effect takes
place in this decay, although it has been verified that a different combination of input
parameters does not exclude the presence of a relatively small fission delay. On the other
hand, with the same input parameters, the statistical model strongly overestimates the
ERs particle multiplicities even though it reproduces the ERs cross-section. This is an
evident contradiction: if the model is not able to reproduce the LCPs multiplicities in the
ER channel, once the ER cross-section is well accounted for, the same model cannot be
assumed to be a reliable tool to estimate the fission time-scale through the pre-scission
light particle multiplicities.

To explore the possibility to reproduce the data in both channels with a unique set
of input parameters we performed an extensive analysis with different prescriptions of
the level density parameter and transmission coefficients (TC). Calculations were carried
out by adopting three different and well-known directives for the yrast line: 1) Gilbert-
Cameron, 2) LDM and 3) sharp rigid sphere with radius parameter ro = 1.2 fm. Different
prescriptions have also been used for the level density parameter aν : 1) a constant value
ranging from A/6 to A/12, 2) inclusion of shell effects with a damping term as a func-
tion of the excitation energy and 3) a temperature-dependent prescription. Transmission
coefficients derived from OM and Fusion Systematics (FS) were used. Different values
of fission delay and af/aν were adopted to modulate the particle-fission competition.
Calculations were constrained by the sum of the measured ER and fission cross-section
σfus = σER + σFF = 958 mb. In fig. 3 we show the experimental multiplicities for
protons and α-particles, in the ER and FF channels, as well as the measured channel
cross-sections, compared to the calculated values, as a function of the ratio af/aν . We
report in fig. 3 also the SM results corresponding to the prescriptions labelled as (a), (b),
(c) and (d), whose peculiarities are reported in table II. The prescriptions (a), (b), (c)
and (d) presented here were chosen among the many combinations for which calculations
were performed as they allow to explore the full range of variability of the calculated
values of the observables under examination. No fission delay was included in the calcu-
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Fig. 3. – Measured ER and pre-scission LCP multiplicities along with the FF and ER cross-
sections (horizontal solid lines indicate measured lower and upper limits due to the experimental
errors), compared to the calculations of the SM changing i) the level density parameter a, ii) the
yrast line and iii) the transmission coefficients (for details see text).

lations. From fig. 3 we infer that the SM strongly overestimates proton and α-particle
multiplicities in the ER channel for this system, irrespective of the input parameters and
prescriptions used for the level density and TCs. The same result is confirmed by the
calculations performed with the well-known code Lilita N97 [36]. Furthermore, the in-
clusion of a time delay to further suppress the fission does not change the overall pattern
of the calculated data with respect to the experimental data. At the same time, the
influence of nuclear deformation would further enhance the predictions of SM particle
multiplicities, resulting in a larger overestimation. On the other hand, the comparison
of the measured proton and α-particle energy spectra with the SM does not show any
evidence of nuclear deformation.
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Table II. – Summary of the SM parameters used in the calculations for the level density param-
eter a, yrast line (YR) and TC.

Prescriptions aν YR TC

(a) A/6 RS OM

(b) A/12 LDM OM

(c) A/6 RS FM

(d) A/6 LDM OM

It should be pointed out that the overestimate in the ER channel found for the
present compound system was also found in other systems of similar mass. We have, in
fact compared the experimental data taken from the literature with the predictions of
our code PACE2 N97. Indeed, in the literature there are only few systems for which the
ER channel LCP multiplicities were measured. From the calculations performed by us,
once again we find that the SM overestimates protons and α-particle multiplicities in the
ER channel which makes us to suspect that the SM is behaving surprisingly at variance
with what is expected.

5.3. Dynamical model analysis. – The contradictory results shown above outline the
necessity of considering dynamical models. Recently, we have coupled the Lilita N97
code with a dynamical model [24, 26] which describes the fission process by using a 3D
Langevin stochastic approach. This coupling was necessary to allow the evaporation
of light particles from the composite system during the evolution along trajectories in
the phase space. In this study, we have performed several sets of calculations for the
32S + 100Mo system at ELab = 200 MeV by assuming different prescriptions of TCs and
level densities for particle evaporation, and by modulating the values of the strength of
the one- and two-body dissipation schemes. From table I we see that the one-body model
can reproduce most of the measured quantities, including the ones in the ER channel,
by assuming full one-body dissipation. The value aν = A/6 is used in the SM decay
branch. To obtain a similar agreement with two-body dissipation, an unrealistic value
of viscosity parameter has to be used, as already found in [20].

Experimental proton and α-particle energy spectra for both ER and FF channels have
also been compared with the predictions of the dynamical model. Only emission from
spherical nuclei has been assumed in the calculation for both channels. We know that
this is an important limitation of the actual implementation of the model, and we are
working on possible solutions which must take into account the fact that the shape of
the fissioning nucleus is known step by step. However, from the comparison with the
experimental data we can already infer how important the shape of the nucleus can be in
the evaporation process, especially considering that the shape itself is connected with the
dissipation strength. The comparison of the energy spectra for the ER channel is shown
in fig. 4. The good agreement indicates that nearly spherical nuclei are involved in the
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Fig. 4. – Measured proton (a) and α-particle (b) energy spectra in the center-of-mass system
(θLAB = 137◦) for the ER channel compared with the prediction of the dynamical model ob-
tained with the basic set of input model.

ER channel. A good agreement is also obtained for α-particles in the FF channel (cf.
fig. 5), indicating, also in this case, that these particles are emitted from nearly spherical
nuclei. This result also implies that pre-scission α-particle emission occurs in the early
stage of fission, where small deformations are involved. This is in agreement with the
findings of ref. [30], where a phenomenological analysis with the statistical model has
been carried out. As far as pre-scission protons are concerned, the model is not able
to reproduce the experimental spectra as well as in the case of the α-particles. The
excess of measured low-energy protons with respect to the simulation is indicative of
strong deformations of the emitter. This deformation should also produce a lowering of
the high-energy part of the spectrum, with respect to the spherical case, because of the
increase of the moment of inertia. This effect, however, is not observed. On the contrary,
we observe an excess of high-energy protons with respect to the predictions of the model.
The rigorous account of deformation dependence of the statistical model parameters like
reduction of emission barriers for charged particles, change of level-density parameter for
the deformed shapes of fissioning nucleus, could also change the shape of the spectra.
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Fig. 5. – Same as fig. 4 but for the FF channel.

In this respect, the comparison of the data with calculations for deformed nuclei could
be particularly elucidating. Such a study will be possible with a further extension of
the model, which should include a consistent treatment of particle evaporation taking
into account the instantaneous deformation of the compound nucleus determined from
the solution of dynamical equations. Nevertheless, the possibility to compute the pre-
scission particle energy spectra, even in a simplified way, clearly shows that this additional
observable carries valuable information concerning the fission dynamics. A more detailed
picture can be achieved when also energy spectra can be reproduced along with the other
traditional observables.

5.4. Angular correlation ER-LCP . – The angular correlation between LCPs and ERs
is an observable that can be obtained using 8πLP. In fact, owing to the high granularity
and the large number of used detectors it is possible to measure the coincidences with a
large variety of geometrical configurations.

As shown in fig. 6, the angular distribution has an oscillating behavior as a conse-
quence of a combined effect of kinematics and angular momentum, as shown in ref. [34].
With reference to the geometry in fig. 1, the maxima correspond to the events where ER
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Fig. 6. – Measured ER-α (a) and ER-p (b) angular correlations, compared with the predictions
of the dynamical model. LCP have been detected by 8πLP-BALL detectors, whose number is
reported in the abscissa. Evaporation residues have been detected at θLAB = 4.5◦.

and LCP are in plane and on the opposite side of the beam; the minima occur when ER
and LCP are in plane and on the same side with respect to the beam direction. The
comparison between calculated and experimental data is shown in fig. 6. The ER-LCP
angular distribution turned out to be more sensitive to the relevant parameters of the
statistical model than the spectral shapes. The angular correlation for α-particles could
be reproduced reasonably well, including the amplitude of the oscillations. The oscillat-
ing behavior is reasonably well reproduced also for protons, but mostly the maxima are
overestimated by the model. This overestimation reflects the overevaluation of proton
multiplicity in the ER channel pER reported in table I. As the values of the model param-
eters are constrained by the full set of experimental observables, we did not vary them
to improve the agreement only for ER-proton angular correlation. A better agreement
could indeed be obtained for this observable by changing the parameters of the statistical
model which could decrease the pER value [34], but this would make worse the overall
agreement for the full set of data, in contradiction with the approach of this work.
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Fig. 7. – Experimental (a) and theoretical (b) MED of fission fragments for the 132Ce composite
system. See text for details.

5.5. Mass-energy distribution of fission fragments. – Figure 7(a) shows the Mass En-
ergy Distribution (MED) as measured and fig. 7(b) shows the MED computed with the
dynamical model and the basic set of parameters. Mass-energy distributions have been
measured at angles where the contribution from Deep Inelastic Collision (DIC) fragments
is expected to be negligible with respect to that from fission fragments, on the basis of
kinematics. One can see a qualitative agreement in the general behavior of the contours
between the experimental and theoretical two-dimensional plots. However, the calcu-
lated distribution deviates from the experimental one particularly around the symmetric
fission. In the calculations there are no events with EK > 95 MeV and EK < 75 MeV
at nearly symmetric fission. This indicates that in the dynamical calculations, at the
scission point, the parametric geometrical representation chosen for the shapes is not
suitable to sample a sufficiently large variety of shapes of the fissioning nuclei. In par-
ticular, there is not enough variability in the elongation of the scission configurations
for a given mass asymmetry. Introducing a more flexible shape parametrization at the
scission region could generate a larger variety of EK values, with the result of expanding
the calculated MED with respect to the EK axis.
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Fig. 8. – Experimental and theoretical kinetic-energy distribution of fission fragments.

5.6. Total kinetic-energy distribution of fission fragments. – The kinetic-energy distri-
bution of fission fragments is obtained by integration of two-dimensional MED over fission
fragment mass. The comparison between calculated and experimental kinetic-energy dis-
tribution of fission fragments is presented in fig. 8, where the difference between them is
clearly seen. The yield of calculated energy distribution is substantially lower than the
experimental one in the range of high EK values: 95MeV < EK < 120 MeV, the latter
being substantially wider than the calculated one. A similar result has been obtained in
three-dimensional Langevin calculations in refs. [24, 28]. The maxima of kinetic-energy
distributions show a difference of about 10 MeV.

To get a better reproduction of the experimental kinetic energy distribution, one
needs to use lower values of the viscosity strength Ks, which does not make it possible
to reproduce the pre-scission particle multiplicities [29]. Furthermore, the sensitivity of
the standard deviation of the energy distribution σEK to the strength of the viscosity is
found to be very small.

5.7. Mass distribution of fission fragments. – The mass distribution of fission frag-
ments is presented in fig. 9. One can see that the theoretical calculations with one-body
dissipation is able to reproduce reasonably well the experimental data, although the
model slightly underestimates the width of the distribution. Even in this case a lower
value of Ks would improve the experimental mass distribution, but, as previously said,
this would not reproduce the pre-scission particle multiplicities. The variance of the mass
distributions for 132Ce is not very sensitive to nuclear dissipation, it changes only about
25% when the viscosity coefficient Ks changes from 0.1 to 1. This feature of the mass
distribution is attributable to a short descent from the saddle to the scission point for
light nuclei. The fissioning system 132Ce passes the region between saddle and scission
point in approximately 3 × 10−21 s. Moreover, the stiffness of the potential energy with
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Fig. 9. – Experimental and theoretical mass distribution of fission fragments.

respect to the mass-asymmetry coordinate at saddle and scission points is approximately
the same. Therefore, during the descent from the saddle to the scission point the fluc-
tuations of mass-asymmetry collective coordinates, which determine the width of mass
distribution, have not the opportunity to become large.

5.8. Fission time scale. – In fig. 10(a) we show how the reduced friction coefficient
varies with the deformation of the nucleus en route towards fission in the one-body
dissipation model. The case that can give the best agreement with the full set of data
is represented by the red line (Ks = 1), namely, full one-body dissipation. The two-
body dissipation case is represented by the black line. It is clear that the one-body
dissipation shows a stronger dependence on deformation. Furthermore, the viscosity
grows at the beginning of the deformation until a maximum is reached; later, it decreases
monotonically for increasing deformation. This implies that the viscosity shows the
maximum strength only at the beginning of the collective motion and when the shape is
still fairly compact. No dependence on temperature is assumed so far. From the model
and the computational method it is also possible to build the time distribution of all
fission events. This is shown in fig. 10(b).

This figure reveals indeed that fission can take place in quite a broad interval of
time. In the time interval 0 < t < τd there are no fission events at all. The time
τd = 5 × 10−21 s could be considered the analog of the delay parameter often used in
fission studies [23, 38]. Furthermore, we observe a steep rise from τd = 5 × 10−21 s up
to the maximum at t = tmax

f = 30 × 10−21 s. At tf > tmax the fission time distribution
has a nearly exponential decrease with a long tail lasting up to 10−18 s. The arrow at
t = 1250 × 10−21 s indicates the mean fission time tf . This value is strongly influenced
by the tail of the fission time distribution. The parameters that characterize this fission
time distribution are reported in table III. They are obtained from the calculation that
provides the best description of the experimental data in ER and FF channels.
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Fig. 10. – Reduced dissipation parameter vs. deformation of the compound nucleus. Ks is the
strength of the one-body dissipation. Ks = 1 represents full strength. The black solid line is
the functional dependency expected in the case of two-body dissipation. (b) Time distribution
of all fission events for the 132Ce nucleus in one-body dissipation.

To illustrate how particle evaporation is distributed in time before fission occurs,
we show in fig. 11(a) the percentage yields of the first- Yn1(t), the second- Yn2(t), and
the third-chance Yn3(t) pre-scission neutron as a function of time. The yields for the
first-chance pre-scission proton and α-particle are presented in fig. 11(b). From these
figures one can see that particle evaporation starts from t = 0. The yields for the
first-chance neutron, proton, and α-particle have approximately the same behavior as a
function of time. It is an exponential decrease from the maximum at t = 0, to zero at
t = 250 × 10−21 s. Considering the multiple emission of neutrons, one can see that the
emission of every further neutron requires a correspondingly larger time. The maxima
for Y2n(t) and Y3n(t) are at nearly 100 × 10−21 s and 900 × 10−21 s, respectively. The
main reason for such a behavior is the reduction of the excitation energy Ex after each
evaporation step. From the investigation of the characteristic times of particle emissions
one can estimate the time scales of the different steps accompanying the decay of the
compound nucleus.

These results are quite informative because they show that fission can take place in

Table III. – The parameters of fission time distribution extracted from the simulation with the
dynamical model.

Compound τd τmax
f 〈τf 〉

system 10−21 s 10−21 s 10−21 s

132Ce 5 30 1250
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Fig. 11. – Distribution of the yields of pre-scission particle multiplicities vs. time of emission
from equilibrium: (a) first-(Yn1), second-(Yn2), and third-(Yn3) chance pre-scission neutrons
together with time distribution of fission events (Nf ); (b) first-chance neutron (Yn1), proton
(Yp1) and α-particle (Yα1). See text for details.

quite a large interval of time. The time delay parameter widely used in the statistical
approach does not correspond to any of the above characteristic times of the distribu-
tion and this confirms the inadequacy of the SM approach to nuclear dissipation. The
extension of time distribution may also explain why different time-scales are extracted
with the SM approach when different probes are used.
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6. – Conclusions and perspectives

The study on the system 32S + 100Mo at 200 MeV highlights the inadequacy of the
SM in describing the LCP particle multiplicities in the ER channel. The same analy-
sis performed on the data from literature in the region of mass number A ≈ 150 and
excitation energy Ex ≈ 100–150 MeV, for the ER channel, provides similar conclusions.
These findings repropose the problem of reliability of the SM in describing the CN decay
and have a relevant impact on the extraction of the fission delay time through the use of
SM. The dynamical approach to fission decay is indeed very promising in describing both
fission and ER channel within the same model. Furthermore, the dynamical model may
reveal more intimate details of the fission process. For instance, the time distribution of
the fission events provides hints to interpret the large variety of fission time-scales found
in the literature.

The model can be more and more refined. We have indeed enlarged the computa-
tional capabilities of our code to include the calculation of energy spectra and angular
distribution of the pre-scission particles. This is a novel feature that constrains the model
parameters even more. One observable which we also consider important is the isospin
degree of freedom. In [27, 30] the importance of selecting the proper probe for testing
a dissipation model according to the isospin of the CN is discussed. A component still
missing in our computational model is the evaporation from the fission fragments. This
is an important feature because post-scission light particle multiplicities are also mea-
sured. The comparison of these observables with the predictions of a model that follows
the full decay chain, from equilibrium to fragment decays, would probe the models in
more detail for the sharing of excitation energy and angular momentum between the
fission fragments, and would provide a more direct link to the features of a nucleus at
the scission point. An example for this is the temperature of the nucleus at the scission
point. Such an extension of the model should also consider the possible dependence of
nuclear viscosity on the temperature. Consequently, experiments should be designed to
explore this particular aspect. Both of these developments are currently in progress.
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Summary. — Important progresses in Heavy Ion (HI) physics at medium ener-
gies have been achieved in the field of nuclear structure and reaction mechanism
over the last three decades. The ultimate goal of such studies was to pin down
basic properties of the effective in-medium interaction. In particular, large efforts
have been devoted to understand dynamical and thermal instabilities versus isospin
asymmetries of nuclei. In this scenario, a prominent role has been played by the de-
sign of innovative devices covering a large part of the available phase space. In this
lecture, the contribution of the 4π detector CHIMERA is emphasized with respect
to the relevant case of the time scale in neck fragmentation around 40 MeV/nucleon
of beam energy.

1. – Introduction

The main object of the present lecture was the “reaction mechanism” in nucleus-
nucleus collisions in the range of 20–100 MeV/nucleon, the so-called Fermi domain. The
typical energy value of 35 MeV/nucleon corresponds to the Fermi Energy, that is a key
reference value in nuclear physics in the frame of the Fermi-gas model. In a heuristic
picture, we can say that this value is related to the average kinetic energy of the nucleon
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(n or p) in the nucleus, in its ground state; classically, it corresponds to a velocity of
about 0.25 c (c = the speed of the light). When a projectile nucleus is accelerated at a
beam velocity close to the Fermi one to bombard a target nucleus, a transition in the re-
action mechanism of the nucleus-nucleus collision is expected from the gentle low-energy
dissipation mechanism dominated by the mean-field dynamics to the nucleon-nucleon
(NN) dissipation process with the formation of exotic matter out of equilibrium [1]. At
Coulomb energy (E/A ≤ 5–10 MeV/nucleon) the reaction mechanism is dominated by
the nucleus-nucleus interaction (one-body dissipation mechanism): the energy and an-
gular momentum are dissipated into intrinsic degrees of freedom by excitations of single
particle states and/or collective modes, such as resonances and high spin states excita-
tions. Dominant reactions are: scattering processes (including inelastic excitation and
both direct and sequential break-up), transfer reactions, compound-nucleus formation
(characterized by different de-excitation modes including that one deriving by the high-
energy gamma decay from giant dipole resonances (GDR)) and fission [2]. A this low
bombarding energy the time scale of the reactions are quite well understood, although
still different aspects have to be better detailed (see for example the fission case). Direct
reactions occur very rapidly, in a time of the order of 10–20 fm/c, that is in the range of
the time scale involved by the projectile for passing through the target field [3]. In direct
reactions the incident projectile interacts primarily at the surface of the target nucleus
and the number of nucleons involved is small with respect to the atomic mass number
of the interacting nuclei, typically one or two nucleons from both projectile and target;
such reactions are also called peripheral processes and the cross sections are strongly
dependent on the de Broglie wavelength of the incident particle. In contrast, compound
nucleus formation and fission decays require a longer time scale, typically of the order
of 4–5 orders of magnitude more than the direct ones. This longer time is necessary for
distribution, rearrangement and sharing of the incident energy among all nucleons of the
composite system formed by the fusion of the projectile and target, in order to achieve
the full thermodynamic equilibrium.

With the increase of the beam energy around 10–20 MeV/nucleon and for interacting
heavy nuclei, the relative kinetic energy dissipation is dominated by the concept of deep
inelastic reactions. The essential unifying role of the semi-classic deflection function
modeled by both conservative mean fields (Nuclear + Coulomb)and dissipative nuclear
surface viscosity forces were successful introduced for the first time by Wilczyński [4].
The reactions is dominated by the decay of a short-living di-nuclear system into two main
excited fragments: a Projectile-like Nucleus (PLF) and a Target-like nucleus (TLF) of
relative kinetic energy of the final two-body channel close to the value of the Coulomb
barrier between the two nuclei. The available kinetic energy of the entrance channel is
dissipated in internal degrees of freedom and it is shared between the two main partners.
We have to add, for a more complete description of the physics connected to deep inelastic
collisions, the major role played by the concept of nucleon mass transfer in determining
the large dissipation of kinetic energy that occurs in the reaction [5].

The time scale of the deep inelastic reactions was proved to be in the range between
the one for direct reactions and the one for compound nucleus and sequential decay. In
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contrast, at relativistic energy (E/A ≥ 200 MeV/nucleon) the reaction is characterized
by the NN elementary interactions (two-body dissipation mechanism). The picture of
the participant-spectator model is useful to describe the reaction in this domain: a fast
abrasion (removal) of nucleons from projectile and target nuclei [6] produces a high com-
pressed piece of nuclear matter (fireball) located in the overlap region between the projec-
tile and the target nuclei, where transport calculations predict nuclear density well above
the normal one, i.e., 2–3 times larger than the value ρ0 ∼ 0.17 nucleon/fm3 [1]. Conse-
quently, sub-nuclear degrees of freedom, that are “frozen” at lower energies due to the
dominant role of the Pauli blocking, become effective in dictating the reaction dynamics.
Intra-nucleon cascade calculations are required to explain the phase space characteristics
of the abundant production of particles and resonances [7]. The reaction mechanism is
dominated by the formation of hot exotic matter and decay and, asymptotically, at much
higher energies, e.g., available at CERN, by Quark Gluon Phase (QGP) phase transi-
tion [8]. At the Fermi energy (20 MeV/nucleon < E/A < 200 MeV/nucleon) the coexis-
tence of the mean field dynamics and NN two-body interactions is the main characteristic
of the dominant phenomenon of this domain: the huge production of nuclear clusters,
i.e., the fast disassembling of the excited highly compressed “composite system” created
in central collisions, i.e., the so-called Multifragmentation phenomena [9]. The full ex-
planation of the multifragmentation process is not still, after many years of investigation,
well understood. The dynamical evolution in the early phase of the nucleus-nucleus col-
lision (∼ 10–50 fm/c) leads to the formation of a freeze out highly excited configuration
of low nuclear density (ρ ∼ 0.3–0.6 ρ0) in a time scale of the order of ∼ 100 fm/c. In this
exotic states, both surface and bulk instabilities induce the conditions for a clusterization
process, having similarity with a first-order liquid-vapor phase transition [10]. Depending
on the mass (charge) of the collision system, and in the range ∼ 20–50 MeV/nucleon of
incident beam energy, the occurrence of the multifragmentation process can be predicted
by transport models [11]. Under the condition of multifragmentation reaction the full
disassembling of the composite system is expected in light charged particles (LCP) and
neutrons, intermediate mass fragments (IMF) and, under the extreme case, in the vapor-
ization of the whole system in nucleons [12]. The detection of a multifragmentation event
in HI collisions at Fermi energy represents a real challenge for the experimental point of
view. Large efforts have been devoted during the last twenty years to face and solve the
experimental problem by the construction of a variety of powerful detectors in different
laboratories all around the world [13]. Careful experiments with heavy ions represent a
unique source of information to build a phenomenological model of the nucleus-nucleus
interaction as a link between the observed properties of the nucleus and the effective in
medium interaction, that should be in agreement with the theory of bare NN forces [14].

2. – The concept of detection in nuclear reactions

Since the pioneer work of Rutherford and co-workers at the beginning of the XX
century, a steady progress in nuclear physics had been possible by the development and
refinement of the detection systems, including magnetic analysis for charged particles [15]
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and gamma spectroscopy [16]. With respect to the heavy-ion reaction studies at Fermi
energy, it is important to notice that a full reconstruction of the collision event is deter-
mined by the experimental possibility to detect basic quantities, such as, masses, charges,
kinetic energies, emission angles, velocities and linear momenta. The evolution of the
detection methods during the last twenty years was impressive and allowed the concept of
4π detector measurements for both the inclusive (construction of global variables, such
as: multiplicity, transverse energy, flow,..etc) and exclusive analysis (reaction product
correlations) of almost all the particles produced in the collision event. It is important
to notice that the simultaneous detection of neutral (n, γ) and charged particles (in the
same detection cell), it remains an open experimental problem. So, mostly of the exist-
ing devices were highly specialized, and separately, for charged particles or neutrons or
gamma rays. However, the coincidence method was in some cases applied among various
detection systems in order to match with the necessity of a complete detection of the
produced particles [13]. In the frame of this lecture it is not possible to describe the
evolutionary character of the detection systems during the last twenty years, and only
the concept of the CHIMERA detector will be briefly described in connection with the
innovative role played in studying nuclear reactions at Fermi energy. A synthesis of the
work done with CHIMERA during the last ten years is found in refs. [17,18]. Typical per-
formances of the identification methods adopted in the CHIMERA detector are given in
fig. 1 and fig. 2. In this lecture an application of the detection capability of CHIMERA
to the physics case of the time scale determination in semi-peripheral collisions (neck
fragmentation) is presented in some details.

In fig. 1 a summary of the basic detection structure of CHIMERA (on the left) to-
gether with the adopted identification methods (on the right) are presented. The ap-
paratus assembles a number of 1192 Si-CsI(Tl) elementary telescopes and it covers the
laboratory angular range between 1◦ and 176◦, in an azimuthal symmetry around the
beam axis. The forward part of the detector (≤ 30◦) is made by nine rings allocating
globally 688 Si-CsI(Tl) telescopes. It is relatively easy to dismount and, consequently,
adapted for reaction studies in coupling modality with other devices that are working
in different laboratories, all around Europe. Relevant examples of this flexibility were
exploited in the third INDRA campaign [19], where the first ring of CHIMERA was
coupled with INDRA at GANIL(FR), and in the ASY-EOS measurement of symmetry
energy [20], where the four forward rings of CHIMERA were coupled with an ensemble
of detectors at GSI(D), including neutrons detection. The detector is able to efficiently
include the time-of-flight technique (TOF) for mass measurements. The typical intrinsic
resolution of the first-stage silicon detector of each telescope is ≈ 500 ps, allowing for
mass by mass identification of fragments with kinetic energy less than 10 MeV/nucleon,
that are stopped in the active 300μm silicon stickiness. In fig. 2 an illustration of typical
performances of the identification methods adopted in the CHIMERA detector is shown.
In figs. 2a) and b) two typical 2D-Plots energy loss matrices, i.e., ΔE (Y axis)-E (X
axis), are shown for the reaction 124Sn+ 64Ni investigated at the beam (124Sn) energy of
35 MeV/nucleon. The ΔE signal was obtained by the silicon detector and the E signal
by the CsI(Tl) scintillator. The two matrices have been obtained with two different gains
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Fig. 1. – Summary of basic CHIMERA detection structure and the adopted identification meth-
ods. A recent list of experimental activity and data analysis performed by the CHIMERA
collaboration in the field of heavy-ion collisions, has been reported in ref. [17].

of the main DAC (digital-to-analogic converter), i.e., the low gain (fig. 2a) and the high
gain (fig. 2b). The procedure allows for the separation of isotopes of light fragments of
intermediate mass. The charge spectrum of the produced particles at 2.5◦ from Z = 1
to Z = 50 atomic numbers is observed in fig. 2a. Figure 2c) shows a typical 2D-Plot
pulse shape discrimination (PSD) performed on the Silicon signals, i.e., kinetic energy
(Y -axis)-rise time (X-axis). In the matrix only signals corresponding to the particles that
are stopped in the silicon detector are reported. Rise time was evaluated by measuring,
by proper constant fraction discrimination techniques, the rise time of the signal starting
from 10% up to 80% of the maximum. Atomic number identifications of fragments are
seen in fig. 2c) starting from an energy threshold of about 4.5 MeV/nucleon. The unique
characteristic of CHIMERA among the existing 4π detector is reported in the 2D-plot,
energy (Y -axis)-time-of-flight (X-axis), of fig. 2d, where the time-of-flight identification
for mass measurements is shown. In doing this mass identification, evidently, the time
resolutions of both the silicon detectors (stop- see above) and pulsed beam produced
by the LNS superconductive cyclotron (start ∼ 0.7 ns) are crucial ingredients. However,
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Fig. 2. – Illustration of typical performances of the identification methods adopted in the
CHIMERA detector, including the recent upgrade of pulse shape discrimination (PSD) tech-
nique, based on the hardware determination of the rise time of signals induced by charged
particles that are stopped (E/A ≤ 10MeV/nucleon) in the silicon detector. For the descriptions
of fig. 1a) up to fig. 1e) see text.

the path of the particle from the target to the detectors, of the order of few meters (see
the left drawing in fig. 1) allows to identify light fragments (atomic number A ≤ 10)
produced by multifragmentation of interacting nuclei in central collisions and to have a
good estimation of the velocity of all the fragments. PSD method is also employed in
CHIMERA to measure the Light Charged Particles (LPC) stopped in the CsI(Tl), i.e.,
the second stage of the single telescope. This latter method is basically different from
the PSD method applied to Si detectors (fig. 2c). It is based on the charge evaluation of
the current signal, produced in the crystal by the absorption of the particle, by two dif-
ferent portions of the time pulse. Typically, a fast and slow charge components are easily
evaluated and reported in 2D-Plot identification array of fig. 2e. Isotopic identification
of atomic numbers: Z = 1, Z = 2, Z = 3 and Z = 4 are there easily seen.

3. – The time scale of nuclear reactions in neck fragmentation

At the Fermi energy (20–100 MeV/nucleon) and for semi-peripheral collisions, signa-
tures of binary deep inelastic collisions (low energy regime) and participant-spectator
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scenario (high energy regime) coexist in the same pattern [21]. The participant region
(i.e., the overlapping matter between the projectile and the target nuclei) in peripheral
collisions assumes the characteristic of a transient expanding neck-like structure connect-
ing (on a short time scale ∼ 100 fm/c) the Projectile-like (PLF) and the Target-like (TLF)
nuclei [11]. The dynamic evolution of this neck fragmentation process has been clearly
elucidated in the context of CHIMERA data [22,23]. This device [18] is the unique 4π in
the world for its ability to detect fragments in the full dynamic range from very slow TLF
to very fast PLF, allowing to study in details different correlations among various observ-
able of the emitted fragments. Indeed, the Wilczyński-2 plot (WILC2, see fig. 4) is one of
these powerful correlations, as it is briefly discussed below, for the particular application
in ternary (i.e. three bodies in the final state, in contrast to the deep inelastic reactions
where essentially two bodies are observed) reactions where the three biggest fragments
in the final state correspond to a fast PLF, having velocity very close to the projectile
one, a slow TLF, practically at rest in the laboratory system of reference, and a fragment
of intermediate mass IMF, with velocity that is reminiscent of the CM velocity of the
collision, respectively (see fig. 3). In ternary reactions, the three fragments are observed
together with few light particles, as is seen by inspecting the total charged particles mul-
tiplicity (Mc in fig. 3) that shows a value lower than seven (including the three biggest
fragments). Notice that neutrons have not been observed since no detectors for neutron
signals are included in CHIMERA. However, especially for a future use of such a device
with exotic beams, some experimental efforts are undergoing in this interesting direction
to study new methods for neutron detection together with charged particles [24]. Impor-
tant results on the production mechanism of these three fragments were obtained from
the analysis of the relative fragment-fragment velocities for selected binary sub-systems
of the three-body reaction, as it follows. The relative velocity of the IMF with respect
to PLF one and the relative velocity of the same IMF with respect to the TLF one, i.e.,
Vrel(IMF,PLF ) and Vrel(IMF,TLF ), have been measured in an event-by-event analysis. The
two relative velocities were normalized to the relative velocity corresponding to the Viola
systematics [25, 26], as given by the expression: EV iola = (0.775 Z1Z2

A1
1/3+A2

1/3 + 7.3) MeV
that gives the relative kinetic energy of the pure Coulomb repulsion between the two
sub-systems (PLF-IMF and TLF-IMF, respectively) in a sequential binary decay. In
fig. 4 the experimental correlation plot between the two previously defined normalized
relative velocities Vrel(IMF,PLF )/VV iola(IMF,PLF ) and Vrel(IMF,TLF )/VV iola(IMF,TLF ) is
shown for light IMFs selected in the 4 ≤ Z ≤ 10 atomic number range, for the reaction
124Sn + 64Ni at the bombarding energy of 35 MeV/nucleon. It can be readily checked
that the correlation between the two ratios gives information (together with simple kine-
matics analysis) on the scenario of IMF emission, and particularly on the time scale
when the neck region separates from the PLF∗ or TLF∗ (or from both in the case of
instantaneous ternary splitting). In fig. 4, as a solid line, an evaluation of the time scale
of the process is shown. It is obtained by assuming that the IMF separates in a collinear
configuration with respect to the relative PLF-TLF velocity vector, and it is performed
by assuming two step processes(see the right side of fig. 4). In the first step the projectile
and the target undergoes a binary fast neck-like inelastic process in the center-of-mass
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Fig. 3. – The three fragments: PLF, TLF and IMF as a function of the observed laboratory
respective velocities.

system, producing an excited binary system PLF∗ + TLF∗. After some delay (second
step) from the first primary re-separation, either the projectile or the target emit one
IMF (only three-body final decay channels are considered). As an example, the case
of PLF decay is described as it follows: projectile+target (interation) → PLF∗ + TLF∗

(first step separation) → TLF+PLF+IMF (second step separation). A similar process
is assumed for the TLF decay. The light IMF experiences the Coulomb repulsion from
both the TLF and PLF residues. Any distortion with respect to a binary relative veloc-
ity in the PLF+IMF (or IMF+TLF) sub-system induced by the repulsive action of the
third body (the TLF, in the case of PLF decay) may indicate a deviation from the pure
binary Coulomb interaction given by the Viola systematics valid for sequential decay. As
examples of computations, the second steps separation times of 40, 80 and 120 fm/c, re-
spectively, have been considered after the (binary) first step TLF∗-PLF∗ separation (see
more details and kinematical calculations in the appendix of ref. [23]). In fig. 4, these
evaluations based on Coulomb numerical one-dimension trajectory calculations (three
squares for PLF emission and three circles for TLF one) are associated with the numeric
symbols, 1, 2 and 3, respectively, and connected by a solid line.

In particular, events close to the diagonal of the WILC2-Plot of fig. 4 (this diagonal is
also drawn in fig. 4) correspond to prompt (ideal) ternary divisions of the PLF, IMF and
TLF in closing approach and in a co-linear configuration at the moment of the separation,
whereas the events approaching the values of Vrel(IMF,PLF )/VV iola(IMF,PLF ) = 1 or
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Fig. 4. – Summary of the data analysis (see text) of the unique time scale determination in neck
fragmentation reactions at Fermi energy obtained by CHIMERA data. The diagram represents
a new correlation plot (WILC2) obtained by relative velocity measurements between PLF-IMF
and TLF-IMF sub-systems. The diagonal arrow separates the region of the PLF emission (top)
from the one of the TLF emission (bottom). On the right side of the figure, a schematic
representation of the idealized dynamics adopted in the time computations of the IMF emission
is sketched.

Vrel(IMF,TLF )/VV iola(IMF,TLF ) = 1 correspond to the sequential splitting of the primary
projectile-like nucleus or the target-like nucleus, respectively, (also sketched in fig. 4 by
two lines: one is representing the projectile-like sequential decay (vertical-up) and the
other (horizontal-bottom) is representing the target-like sequential decay). The time
scales illustrated in fig. 4 span a time interval in the range lower than ≈ 120 fm/c.
Beyond that value, the evaluations of the ratio of the relative velocity correlations move
no further and are undistinguishable from much slower true sequential decay processes
(> 300 fm/c). On the other hand, sensitivity of the WILC2-Plot within a time scale
of less than 40 fm/c, is limited by the relative linear momentum resolving power of the
used correlator CHIMERA, largely due to the size of the detectors angular opening in the
investigated region. Notice that, according to the yield-scale reported on the right side of
fig. 4, the most probable value of the fragment yield is well accounted by the computation
(full line connecting the squares and circles in fig. 4), so clearly demonstrates that at least
in the case of light IMFs, the majority are emitted in almost prompt (dynamical) or fast
two-step processes, within times in the range ≈ 40–120 fm/c.
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Fig. 5. – Time evolution of the density profile in the reaction plane in a ternary event produced
at the impact parameter of value, b = 6 fm. Density profile is shown by time step of 40 fm/c.
Calculations : Stochastic Mean Field (SMF) transport code. Figure adapted from ref. [29].

The time scale calibration discussed above was an important step in the understanding
of the dynamical component of the reaction mechanism in peripheral collisions: the neck-
fragmentation process. This new kind of Wilczyński plot (see fig. 4) is the most persuasive
correlation to calibrate the time scale of IMF emission in semi-peripheral collisions, under
the condition that both the slow (TLF) and the fast (PLF) are measured in coincidence
in the same event. It demonstrates at the same time that the IMF emission is collinear
with the relative PLF-TLF velocity vector, established at the instant of their binary
separation. The analysis of the reaction 124Sn + 64Ni showed for the first time a well
defined chronology: light IMFs (Z ≤ 10), (as the example plotted in fig. 3 and fig. 4)
are emitted either on a short time scale (within 50 fm/c) with a prompt neck rupture
mechanism or sequentially (> 120 fm/c) after the re-separation of the primary binary
PLF∗-TLF∗ system. These results were supported by different approaches of transport
model simulations like the stochastic mean field (SMF) [11,27] and constrained molecular
dynamical model (CoMD-II) [28]. As a relevant example of theoretical predictions of a
neck-fragmentation process in ternary reaction (and for the same system and energy
of fig. 4), the time evolution of the density profile of the projectile-target interation as
simulated by transport SMF code of ref. [29] is shown in fig. 5. The density profile
is studied for an impact parameter of value b = 6 fm. The production of a light IMF
(ZIMF < 10) is observed. Notice that the simulation indicates a time slabs of about
120 fm/c, starting from the first instant of the collision, for the full rearrangement of
the density profile in order to create an intermediate region of matter (the neck) located
between the PLF and TLF interacting system. The ternary re-separation of PLF-IMF-
TLF is observed between the values of 120 fm/c and 160 fm/c (i.e., in a slab of 40 fm/c).
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Fig. 6. – WILC2 plot correlations for different IMFs of charge: ZIMF = 4, 8, 12 and 18,
separately shown (colors indicate yield-scale, as in fig. 4).

After this time the evolution of the density profile is essentially determined by an aligned
Coulomb trajectory (mutual repulsion) that is simulated up to the value of 240 fm/c. So,
the event simulation shown in fig. 5 is consistent with the physics case of the IMF emission
that is observed at the position labeled by the symbol 1 (40 fm/c) in fig. 4. In fact, the
experimental WILC2-Plot (as described above) is sensitive only to the time at which the
ternary nuclear complex is created, so starting to experience the three-body final-state
Coulomb interaction. The WILC2 Plot tells us nothing about the “production time” of
the IMF, that, at present, is estimated by the transport simulation to be about 120 fm/c.
Experimental methods useful to pin down the time scale of the first phase of the IMF
production could be obtained by femtoscopy studies (intensity interferometry methods)
of the particle-particle (including the uncharged particles) correlation function [30]. The
SMF simulation indicates a substantial difference in the mechanism between a “direct”
reaction, typical of the low-energy regime, and the neck-fragmentation process typical
of the Fermi regime. Direct reactions are relatively fast processes with respect to the
neck fragmentation one. The experimental information obtained in studying this latter
process are unique sources to pin down a more complete understanding of the cluster
production mechanism in heavy ion collision at Fermi energy that still is a topic of major
challenge.
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Fig. 7. – Identification of exotic beams 68Ni by in-flight fragmentation reactions of a primary
beam produced by the cyclotron at LNS and impinging on a thick beryllium target. The ΔE-
Time-of-flight matrix was obtained using the CHIMERA tagging system constituted by a large
surface MicroChannel plate followed by a Double Side 32 × 32 Silicon Strip Detector (DSSSD).

To complete the picture, and in contrast with light fragment emission, heavy frag-
ments (Z ≥ 10) have been proven to be emitted in a longer time scale (> 300 fm/c)
ranging from a non-equilibrated fission-like splitting to a fully equilibrated fission pro-
cess of much longer time scale [31]. In fig. 6 the observed PLFs in the same reaction are
separately shown in the WILC2-Plot for increasing values of the atomic number. The
figure illustrates the clear tendency of the IMFs to approach the value of the sequential
PLF decay as their atomic number progressively increases from the light fragment with
ZIMF = 4 up to the heavier one with ZIMF = 18, supporting the picture of the time
scale for the emission longer than 120 fm/c. These observations are important constrains
for transport simulations. Unfortunately, in contrast with the light IMF production,
transport simulations are not still available to be compared with data concerning heavy
IMF emission, as the ones shown in fig. 6. As matter of fact, the cluster production phe-
nomenon at Fermi energy is still a challenging topic in the frame of transport theories.

More recently, CHIMERA has been oriented toward a new challenge: the study of nu-
clear reactions with exotic beams produced at the National Laboratories of Sud (LNS) in
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Catania by the in-flight method [32]. Time scale and other studies will be highly improved
at the Fermi energy by the new facility. The influence of the isospin degree of freedom
on the EOS will be explored in more details in regions of the nuclear chart far from the
stability valley, thus opening fascinating perspectives. Notice that, in exotic nuclei the
detection of neutrons together with charged particles will be a necessary requirement for
new investigations. In fig. 7, the production of a 30 MeV/nucleon 68Ni beam at LNS
was investigated by the fragmentation of 70Zn19+ primary beam at 40 MeV/nucleon im-
pinging on a 250μm 9Be target. The maximum intensity obtained for the primary beam
was ≈ 300 enA with 30 watt dissipation and the production rate was ≈ 7 kHz. With the
implementation of the high intensity of the primary beam of a factor ≥ 30, expected to
be in operation in the next couple of years at LNS [32], the exotic beam production by
fragmentation will be a common facility for reaction studies with CHIMERA or different
sophisticated detection systems.

4. – Conclusion

The time scale of nuclear reaction is an important concept in heavy-ion physics in
order to describe the time evolutionary character of the reaction from the early phase
of the collision (10 fm/c) up the later stage of the sequential decay and equilibrium
emission (≥ 1000 fm/c). Measurements of the reaction time involved in different reaction
channels are unique tools to probe the in medium effective interaction and to constrain
advanced reaction simulations in order to predict heavy-ion collision dynamics. In future
investigations, we stress the importance of reaction studies induced by Exotic beams.
They represent fundamental and necessary steps towards the study of the dependence
of the equation of state of nuclear matter with respect to the baryon density and the
isospin degrees of freedom.
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65 years with Nuclear Physics

R. A. Ricci

Laboratori Nazionali di Legnaro - Padova, Italy

“It’s a long way to Tipperary”

Summary. — An excursus along the 65 years of a scientific activity mostly ded-
icated to Nuclear Physics is presented. The overwiew goes back to the first exper-
iments on radioactivity and nuclear decays employing extensively the scintillation
spectometry (Turin, Amsterdam, 1952–1957) and to the foundation of the exper-
imental Nuclear Spectrscopy in Italy starting from the systematic researches in
Naples in the ’60s of the last century. The extension to Florence and Padua and
to the just founded Legnaro Laboratory which could become in the ’70s a national
center for nuclear physics research with the institution by the INFN of the LNL
(Laboratori Nazionali di Legnaro) is outlined. The domain of the research with
particular emphasis on the spectroscopy of 1f7/2 nuclei as well as the international
collaborations with Amsterdam, Orsay, Munich groups is underlined. The evolu-
tion following the advent of heavy-ion accelerators and of the new more performant
gamma-ray detectors, together with the invented in-beam spectroscopy is accounted
for in describing the important achievements in this field of that collaboration. A
report is presented about the further developments in Italy with the installation at
the LNL of the XTU Tandem, the first national heavy-ion accelerator, opening also
in Italy a large area of investigation including the advent of other facilities (LNS
with a second Tandem accelerator; the coupling of the two Tandems with the su-
perconducting Cyclotron at LNS and LINAC at LNL, respectively The extension to
new areas of research and to new collaborations are mentioned. Finally the promo-
tion of and the participation to the enterprises concerning nuclear physics programs
at CERN in the frame of large national and international collaborations concerning
experiments with anti-nucleons at LEAR (OBELIX) and relativistic heavy ions at
the SPS and at the LHC (ALICE) are pointed out shedding some light on the most
interesting results. Conclusions about the different steps of a long journey with
physics are drawn.
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Introduction(1)
Exactly ten years ago (July 17–27, 2007), here in Varenna, a Course (the 169th

of this wonderful School entitled to Enrico Fermi) was organized on Nuclear Structure
far from stability: New Physics and New Technology and directed by A. Covello, F.
Iachello and myself. In fact there was a particular dedication to my 80th anniversary
and for that occasion I could personally contribute with a lecture on “Phenomenological
Nuclear Spectroscopy (a personal recollection)” [1]. I wish also to mention that, even
before, in 2002 (August 16–26) another nuclear physics course on From nuclei and their
constituents to stars was held under the direction of A. Molinari and L. Riccati and
dedicated to the 50 years of my career as a physicist. My contribution to that course
was a lecture on: “From 1f7/2 nuclei to the quark-gluon plasma” [2]. Moreover I have
not to forget that in 2003, still here in Varenna an International Conference on Nuclear
Reaction Mechanisms directed by E. Gadioli was held also with a dedication to my
scientific career [3]. Therefore, since in such successive events, I had the opportunity to
report on a large part of my long journey with nuclear physics, I wish to refer to such
contributions also in my lecture here.

I can summarize my impressions and acknowledgments by quoting few words of my
previous reports in 2002 and 2007. In both cases I mentioned the fact that 50 years (2002)
with nuclear physics (65 now) and 80 years (2007) of life (90 now) “are quite a lot” and
that: “. . . this quite a long journey has been gratified not only by interesting activities
and results in a pleasant, even if intriguing, field of research, but also by the communion
with a lot of nice people, excellent physicists and wonderful friends”. Moreover: “It is
perhaps exaggereted to emphasize my commitment and contributions to nuclear physics
but I assume it correct to speak about my “passion” for such a field during my scientific
and academic career”. Now, that emphasis was present in the words of the dedication of
the 2003 Conference (I quote) “He was a most successful teacher and several of the leading
Italian nuclear physicists have been his alumni. . . . He introduced in Italy the experimental
study of nuclear spectroscopy and gave numerous and important contributions to this
field. . . he was one of the leaders of the experiments made at CERN with the antiproton
beams and started here the relativistic heavy-ion physics”. Taking also into account the
kind presentation of Franco Iachello in his specific seminar for the “Ricci 90th” day, as
well as the friendly words of the directors of this course, I fill more than gratified and
allowed to avoid any further reference to my personal merits.

(1) To complete this introduction I wish to mention that 18 courses in Nuclear Physics have
been organized in Varenna starting in 1955 with the one devoted to: Questioni di struttura
nucleare e dei processi nucleari a basse energie and directed by C. Salvetti with the participation
as lecturers of A. Bohr, D.M. Brink, S. Yoshida, A. De Shalit, I. Rabi and J. Horowitz. The
subjects of the various nuclear physics courses cover a large spectrum of specific problems whose
relevance and evolution will be outlined in my lecture. Among them I wish to mention here the
one held in 1979 on Nuclear Structure and Heavy-Ion Collisions (Course LXXVII), under the
direction of R. Broglia, C. H. Dasso and myself with lecturers as A. Gobbi, L. Moretto, H. J.
Specht, J. Randrup, A. Winther, H. A. Weidenmuller, G. Bertrand, G. Bertsch, J. De Boer, J.
Vervier, A. Vitturi.
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I actually started my research activities in 1952, after taking the university degree in
Theoretical Physics in Pisa (1950) by discussing a thesis on “The pressure broadening of
spectroscopic lines” with T. Derenzini and a diploma of the Scuola Normale Superiore
(1951) with a a thesis on “The energetic component of Cosmic Rays” (with M. Conversi
as supervisor). In that period, I moved to Paris with a grant and I spent my stay there
(1951–52) at the Ecole Politechnique under the supervision of L. de Broglie (Mècanique
ondulatoire des systemes de corpuscules) and at the Collège de France under the direction
of F. Joliot-Curie (Radioactivité et Fission Nucléaire). I wish to note in passing, that
this period marked my final decision to move from theoretical approaches to experimental
phenomenology.

Back to Italy, after a short period in Pisa with a temporary position at the Istituto
di Fisica under the direction of M. Conversi, I went to Turin (Department of Physics of
the Politecnico) having obtained a permanent position as Assistant at the Physics chair
held by E. Perucca. These were the years (1950–1956) of the explosion of the nuclear
spectroscopy phenomenology. On the experimental side, the massive use of dedicated
accelerators and the advent of scintillation detectors allowed the production of new ra-
dioactive nuclear species whose decay schemes could be extensively investigated while,
on the theoretical side, more appropriate approaches were provided by the description
of peculiar properties (i.e. magic numbers, quantum orbitals, collective states) with the
shell-model (M. Goppert-Mayer, J.H. Jensen) [4] and/or with collective models (A. Bohr
and B. Mottelson) [5].

The discovery of scintillation counters (H. Kalmann 1947, R. Hofstadter 1948) [6] and
their coupling with the already invented photomultipliers [7] did allow a rapid evolution
of such a simple instrument to an extraordinary measuring device, especially for γ-ray
spectroscopy. The main reason was the simplicity and the handiness of the experimental
set-up consisting of a scintillator and a photo-cell with electron multiplier connected
to a pulse-height analyzer providing quite a good efficiency in spite of a non-excellent
resolution. As I will show in the following the advent of technical refinements and the
availability of multichannel analyzers made it possible to treat even quite complicated
spectra and extract important features of the nuclei under investigation. Of course, other
detection techniques as magnetic and crystal spectrometry were still in use (excellent
resolution but very poor efficiency); in fact in such cases one needed quite a strong
intensity of the sources under investigations (of the order of hundreds of millicuries i.e.
some 107 Becquerel)(2).

I mentioned also the theoretical approaches to describe the nuclear-structure features.

(2) Later on, and particularly in the years 2000, the impressive improvements of the gamma-
ray spectrometry with new detection techniques (gamma-arrays) displaying very high efficiency,
excellent resolution and geometry (close to 4π), and the possibility of exploring new features in
more details of the nuclear structure, has been largely amplified. The final touch has been and
is the advent of the radioactive beam acceleration and the study of exotic nuclear species. That
possibility has been open to the LNL with the SPES (Selective Production of Exotic Species)
Facility consisting of a high-performance cyclotron and an ISOL-type target.
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Those years were indeed marked by the advent of the two prominent points of view con-
cerning the description of the nuclear quantum states: the shell-model and the collective
model. Highlights of the evolution of the nuclear models together with the continuous
progresses of the experimental techniques are largely represented in the various Varenna
courses. I wish to report here a good example concerning the earlier confrontations
between the two (simplified at the time) extreme interpretations i.e. the independent-
particle shell-model (Rehovoth School) and the collective model (Copenhagen school).
I am referring to the second Nuclear Physics course held in 1960 and directed by G.
Racah [8] with the significant title Nuclear Spectroscopy, where the presence of both
I. Talmi (lecturing on “Shell-model spectra in nuclei”) and B. Mottelson (lecturing on
“Selected topics in the theory of collective phenomena in nuclei”) was of particular signif-
icance. I need only to quote Racah himself in his presentation of the course introducing
the nuclear structure problem: “. . .They (Talmi and Mottelson) are typical representa-
tives of two different approaches: the independent particle model and the collective model.
I hope that the clash (!) between these two opposite points of view will be one of the most
interesting features of the course”. No doubt about the interest of this “confrontation”
along a history of many years. We know today that, due to more than 50 years of ex-
perimental and theoretical progresses, the “opposite” views are both consistent (one can
use the apt expression of T. Otsuka [9]: “Single particle and collective modes are not
enemies but friends!”). In fact the coexistence, together with the competition (I would
better say the “interplay”) of different modes of excitations in nuclear spectra are today
an experimental fact. As I will report later, the investigations performed in the era of
the advent of the heavy-ion accelerators and of the in-beam gamma spectrometry (years
’70s–’80s) together with the better performances of the γ-detection techniques with ger-
manium counters, have been very successful in selecting nuclear states at high excitation
energies and with high angular momenta characterizing the compound system evapora-
tion into still rapidly rotating and highly excited states of the residual nuclei which will
cool down via γ-ray cascades forming yrast bands.

This period coincides with that of the first part of my career (1955–1985) as a nuclear
physicist, during the most fruitful years of my research activity (1952–1990).

This has not affected, of course, my interest and engagement, in the second part
(starting from 1990) of my scientific career, to other nuclear aspects and phenomena
such as the reaction dynamics, the mechanisms of nucleus-nucleus interactions at the
Tandem energies, the proton-antiproton reactions and relativistic heavy-ion collisions at
CERN as well as some relevant applied nuclear physics experiments (see refs. [2] and [3]).
Let me now come back to the beginning of the story.

1. – The beginning and the years of nuclear spectroscopy: The Amsterdam
group

As already mentioned the first part of my real research activity started in Turin,
after my return to Italy. Since the Physics Laboratory of the Politecnico directed by
E. Perucca, was engaged in an experimental program, initiated by F. De Michelis and

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



65 years with Nuclear Physics 405

Fig. 1. – a) Experimental set up for detecting β- and γ-rays and β-γ coincidences with scintil-
lation counters from the decay of 214Bi (RaC); S is a source of 226Ra (16 μCi) in equilibrium
with its decay products up to RaD (T1/2 = 22 years), Fβ and Fγ are naphthalene and NaI(Tl)
crystals connected with RCA and Dumont photomultipliers, respectively, and to standard elec-
tronics for pulse amplification and shaping and recording single Nβ , Nγ and coincidences Nβγ

events (Torino Politecnico 1953, ref. [10]) and b) the corresponding γ-spectrum for 214Po.

R. Malvano, dealing with the production and performances of scintillation detectors
and their use in radioactive decays, I started there some experiments concerning the
radioactivity of some heavy natural radioisotopes (namely of the radium family). In fact
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my first published paper [10] concerns the β-decay of 214Bi (RaC) and the corresponding
γ-spectrum of 214Po (see fig. 1) as measured completely with scintillation counters (for the
first time in Italy) i.e. with a homemade naphthalene crystal for β-rays and a commercial
NaI(Tl) one for γ-rays, coupled with RCA and Du Mont photomultipliers and a standard
electronics for measuring single events (Nβ and Nγ) and β-γ coincidences. We were in
the middle of the first revolution of gamma-ray spectroscopy (the scintillation era).

Other experiments were performed on this line [11] and this allowed me to enter
in contact with the Amsterdam group (namely R. Van Lieshout and A.H. Wapstra) of
the IKO (Institut voor Kernphysics Onderzoek, i.e. the Institute for Nuclear Research),
where one of the most important and active research center for nuclear spectroscopy
investigations at that time was set up. The established collaboration was further ex-
tended in the years 1955–1958 when I could stay in Amsterdam first with a grant (1956)
and then as a visiting researcher (1957–58). The fact that I had acquired some expe-
rience with the performance of scintillation counters was of a quite important help for
my complete introduction in the IKO research program on nuclear spectroscopy. Just

(a) (b)

Fig. 2. – a) Electron and conversion spectra of 137Cs, 196Au and 297Bi as obtained with a
scintillation spectrometer (anthracene crystal (2.5 × 1.3 cm) mounted on a Du Mont 6292
photomultiplier; b) gamma scintillation spectrum from the 207Bi decay measured with a
NaI(Tl) crystal (2.5 × 2.5 cm2); the two detectors were connected with single-cannel analyzers
(ref. [12]).
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to give an idea of the results one could obtain even with simple devices (primitive as
compared with the sophisticated and complex gamma arrays of today) I wish to mention
two examples of my personal experience in the field during the stay in Turin and in
Amsterdam. The first [12] refers to the performance of a beta scintillation spectrome-
ter especially used for measuring electrons and conversion spectra (cases in point 137Cs,
196Au and 207Bi). It is interesting to note that, in the latter case, the reported val-
ues of the K conversion lines (477 and 972 keV) of the two stronger γ-transitions (570
and 1064 keV, respectively), (see fig. 2) were adopted to calibrate the liquid scintillation
detector used in the famous experiment of Reines and Cowan [13] leading to the first
neutrino detection.

The second example is a “poor-man method” (ref. [14] and the appendix of ref. [2])
useful to calibrate and measure the efficiency of a NaI(Tl) gamma scintillation spec-
trometer for laboratories where only few standard sources with known γ-decay are at
disposal, as in the case of the Turin Politecnico at that time). This “home-made
technique” making use of only one well-known radioactive source (137Cs in my case)
emitting monochromatic γ-rays (662 keV) consisted in measuring, as a function of the
angle and of the primary energy, the photopeak areas of the different Compton scat-
tered radiations produced in an Al scatterer placed at the center of a circumference
described by the standard source (note that the number of photons scattered at a cer-
tain direction into the unit solid angle is obtained by applying the well-known Klein-
Nishina formula (cfr [14]). This method has been used for the experiments reported in
ref. [11].

With Wapstra, Van Lieshout and R.H. Girgis (a graduate student coming from Egypt)
we formed a group very active in studying the decay schemes of many radioisotopes
produced by the IKO syncrocyclotron. Quite a number (17) of new nuclear species
were produced and investigated in details [15]. A powerful technique for the analysis of
the gamma-ray spectra was developed [16] and became a “trade mark” of the gamma
scintillation spectrometry in those years (see fig. 3 and ref. [16]).

The case of 48Sc is reported also because it is a typical 1particle-1hole configuration in
the 1f7/2 shell region (see later); the corresponding γ-ray spectrum is taken using also the
summing technique (well crystal) in order to single out γ-γ and even γ-γ-γ coincidences
(see the cascade 6+ → 4+ → 2+ → 0+).

The Amsterdam period was therefore very successful in the field of nuclear spec-
troscopy along the gamma scintillation era (namely the first revolution in the gamma
spectroscopy). The numerous investigations we could perform gave rise to a specific pro-
gram of research concerning a systematic of the collective and shell-model states in some
even-even nuclei and of the particle core-excitations in odd nuclei. This research program
was extended later to a strong collaboration with the nuclear physics group I could form
in Naples starting from the year 1960 when I moved there from Turin. I will show few
of the most interesting results as obtained in the frame of such a program dealing with:
a) shell-model single-particle states in medium-mass nuclei, b) vibrational and rotational
states in even-even nuclei, and c) particle-core excitations coupling in odd nuclei with
even-even core.

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



408 R. A. Ricci

Fig. 3. – Cover of the Amsterdam “Summa” on the scintillation spectra analysis. On the right a
typical example of a gamma scintillation spectrum taken with a 6.2 cm high by a 6.2 cm diameter
NaI(Tl) summing crystal in different geometries showing the direct spectrum and the double
and triple coincidences due to the γ1-γ2-γ3 cascade in the summing spectrum (source insight
the crystal). The corresponding feature of the 48Sc is shown in the insert (ref. [16]).

Among the first experiments performed at IKO (Amsterdam) the one concerning
the 66Ge β+ decay (γ-spectrum of 66Ga) is a special case [17], quoted by Bohr and
Mottelson [18] as a test of the “isobaric invariance”. It is in fact a good example of
isospin-forbidden Fermi beta transition with ΔT �= 0 (0+ → 0+, ΔT = 1 in our case
with a hindrance factor of the order of 10−4–10−5 taken from the ft value). Figure 4
shows, as a typical example, the Fermi-Kurie plot of the positon spectrum and the
γ scintillation spectra measured with stilbene and NaI(Tl) crystal, respectively. The
analysis of the β+ spectrum was performed taking into account the resolution corrections
(see ref. [11]), while the γ spectra were analyzed with the “peeling method” as described
in ref. [16].

Another interesting case concerning γ-transitions between pure shell-model states
particularly with respect to magnetic dipole effects in single-particle configurations, is
that of the γ-spectrum of 207Pb. The crucial experiment [19] was the 207Bi → 207Pb
decay and the determination of the ratio of the single-particle f7/2-p3/2 transition (E2)
to the f7/2-f5/2 one (M1). This experiment was performed in 1963 at the Nuclear Physics
Institute in Naples in the frame of the collaboration with Amsterdam.
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(a) (b)

(c)

Fig. 4. – a) Fermi-Kurie diagram of the positon spectrum of 66Ge; contributions due to 68Ga
and 69Ge were subtracted; b) part of the direct gamma-ray spectrum from the decay of 66Ge
analyzed with the peeling method; the tail of 511 keV peak due to the annihilation in flight
of the positons and the backscattering coincidences is also shown (ref. [16]); c) example of γ-γ
coincidences: the γ-spectrum in coincidence with a 46 keV photopeak, showing the analyzed
lines as dashed curves (ref. [17]).
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Fig. 5. – a) Level scheme of 207Pb from the decay of 207Bi; b) sum coincidence with 2340 keV
sum energy; the insert shows the central part enlarged (ref. [19]).

Figure 5 shows in a) the level scheme of 207Pb clearly displaying the single-hole
sequence in the 126 neutron unfilled shell and in b) the coincidence γ-spectrum taken
via a summing scintillation technique revealing the decay of the f7/2 level at 2341 keV
to the p3/2 one at 894 keV (E2 transition of 1445 keV) and to the f5/2 one at 570 keV
(pure spin-flip M1 transition of 1445 keV). The measured M1/E2 ratio (0.023 ± 0.002)
showed an hindrance factor ≈ 4 for the M1 transition and is one of the best example of
this feature as reported by Bohr and Mottelson [20].

Of some interest at the time was also the question of the structure of the excited
states in even-even nuclei due to the possibility of simple description in terms of the
seniority scheme (4+ → 2+ → 0+ sequence) as a consequence of a short-range two-body
force (pairing force for instance) and the problem of a mixing with collective modes as
induced for instance by residual interactions like quadrupole forces. Such a question was
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Fig. 6. – Energy levels in the pairing plus quadrupole force coupling scheme in spherical even-
even nuclei. The level sequence is only qualitative and refers to the lowest part of the situation
expected for vibrational nuclei. Among the possible higher excited states only the I = 4+ one
has been drawn. A simplified picture is assumed, in which an even number of nucleons of the
same kind are confined to a single j shell.

considered in the frame of a more extended collaboration including the theoretical group
of Orsay (namely M. Jean and J. Touchard)(3).

In fig. 6 I show a qualitative level scheme following the effect of a pairing plus
quadrupole force coupling in even-even vibrational nuclei as reported in ref. [21]. That
possible interpretation was a consequence of a systematic investigation about some reg-
ularities in the branching ratios of excited sates of vibrational character in even-even
nuclei [22] pointing out a specific behaviour in the deexcitation of the levels above the
low well established vibrational states. The suggestion made by M. Jean, R. Van Lieshout
and myself was that the “pairing” plus long range forces coupling scheme could be the
basis of a more general interpretation of the electromagnetic properties of even-even
spherical nuclei.

(3) The Naples-Amsterdam collaboration was in fact extended to the Institut de Physique
Nucléaire of Orsay where I could stay for some time in the years 1964–65 establishing a pleasant
collaboration with M. Jean and with the experimental group directed by M. Riou, with whom
I could perform a series of experiments on inelastic and quasi-free scattering with protons at
155MeV provided by the Orsay synchro-cyclotron (see later).
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2. – The foundation of Nuclear Spectroscopy in Italy. Naples 1959–1966; the
collaboration with Amsterdam and Orsay

As mentioned before, I moved from Turin to Naples in 1959 where I was invited
by G. Cortini and by E. Caianiello (directors of the Istituto di Fisica Superiore and
of the Istituto di Fisica Teorica of the Universiy of Naples, respectively) in order to
promote there a research activity on Nuclear Physics, namely on nuclear structure studies.
Starting with the basic Amsterdam experience I could organize a Laboratory equipped
with the necessary instrumentation for advanced gamma spectrometry and form a group
of researchers active in the field. In the beginning we did perform some measurements
with radioactive sources provided by the IKO cyclotron (i.e. with a not too short half-
life); later on we could dispose of a 400 keV Van de Graaf accelerator used as 14 MeV
neutron generator via the (d, t) reaction, which has been for a certain time, an excellent
home-facility for producing a number of radioisotopes we could study in the frame of a
specific nuclear spectroscopy program.

Of course we started with measurements of the γ-decays of nuclei already under
investigation during my stay at IKO (Amsterdam). The physical case was the particle-
core excitations in odd nuclei and the validity of the center-of-gravity theorem in nuclear
spectroscopy as postulated by R.D. Lawson and J.L. Uretsky [23].

The first example is the γ-spectrum of 63Cu following the positon and electron capture
decay of 63Zn produced by Cu (d, n) reactions with the IKO synchrocyclotron and
measured with a standard scintillation techniques [24]. In this case (Z = 27) a quartet of
levels with spins 1/2−, 3/2−, 5/2−, 7/2−, is expected by the addition of the 29th proton
in a p3/2 state, outside the 62Ni core, to the first 2+ excited state of this latter. This
was indeed found for the levels at 668 keV, 1412 keV, 961 keV, 1327 keV, respectively,
confirming the results of inelastic scattering experiments (as reported in ref. [24], see
fig. 7).

Our γ-ray measurements allowed to establish for some states, the quite correct multi-
polarities and branching ratios of the different transitions. However this kind of coupling
which should be weak with respect to the excitation energy of the core-state and to the
separation energy of the various single-particle states, was not very satisfactory. For this
reason we decided to perform also in Naples a detailed investigation on the γ-spectrum
of 57Co (Z = 27; a proton-hole in the 28 proton shell of the 58Ni core) by the β+-decay of
57Ni (produced at the Betatron of the Turin Institute of Physics by (γ, n) reactions.) [25].
The results are shown in fig. 8, where the level scheme of 57Co is compared with that of
59Co (having 60Ni as a core), as known at that time.

In both nuclei a quintet of levels with spin 3/2−, 5/2−, 7/2−, 9/2− and 11/2− is
expected from the coupling of the 1f7/2 proton hole with the 2+ core state at 1452 keV
in 58Ni and at 1329 keV in 60Ni, respectively. The results, taking into account the in-
completeness of the data, showed a promising agreement as found in Cu isotopes for the
energies. However, concerning the deexcitation properties (i.e. the transition probabili-
ties which should be the same as compared with the deexcitation of the core state) the
agreement is less satisfactory.
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(a)

(b)

Fig. 7. – a) Gamma-ray scintillation spectrum following the decay of 63Zn in two different
energy region, showing the analysis made by means of the “peeling” method (cfr. ref. [16]). The
dotted and dashed lines represent the continuous pulse contributions of annihilation In flight
and bremsstrahlung, respectively (see appendix of ref. [24]). b) Level scheme of 63Cu with spin
assignement to levels considered as belonging to the center-of-gravity multiplet.
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Fig. 8. – Level scheme of 57Co as obtained from the decay of 57Ni; the spin assignement to the
higher levels is only tentative. The level structure of 59Co is also reported for comparison: levels
consistent with the center of gravity theorem in both nuclei are connected with dashed lines.

In fact, apart from the simplest case of the coupling of a j = 1/2 single-particle state
and for doubly magic core nuclei, such a weak coupling scheme holds in very peculiar
situations where the different single-particle states of the odd nuclei are quite apart and
the core excitations and well separated from each other so that the center-of-gravity level
multiplet can be treated as a small perturbation [26]. Specific cases for instance are the
coupling of the octupole (collective vibrations) 3− states, in 40Ca and in 208Pb coupled
with the 1d3/2 proton hole in the 20 magic proton shells and the h9/2 proton out of the 82
magic proton shells, respectively. Anyhow the evidence of core-excitation coupling states
in odd nuclei was quite well established by inelastic scattering of charged particles, for
instance with 155 MeV protons at Orsay, during my stay there, in the 1d-2s and 1f -2p

shell-model nuclear region. A typical case was indeed that of the core coupling states
in 39K for which we could establish the validity of the center-of-gravity theorem (see
ref. [27]).

The very successful activity of the Naples team did find an important achievement
with the full exploitement of the facilities at our disposal. This was the case of the
investigation of a key nucleus like 50Ti (Z = 22, N = 28) for the characterization of
the two-particle spectrum in a quite interesting nuclear region, that of the 1f7/2 shell.
This experiment turned out to be very convenient because the 50Ti gamma-spectrum
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Fig. 9. – The γ-ray and γ summing coincidences spectrum and level scheme of 50Ti compared
with the 42Ca one; the extra 0+ and 2+ states in this latter are assumed as core excitations
(deformed) states (1963, ref. [28]).
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follows the β-decay of 50Sc with a half-life of 1.7 min., which could be easily produced
via the (n, p) reaction by bombarding titanium metallic foils (99.9% purity) with the
14 MeV neutrons generated by the (d, t) reaction at the 400 keV electrostatic accelerator
and measuring the β and γ-ray spectra with standard scintillation detectors (antracene
and NaI(Tl) crystals, respectively) coupled to Du Mont photomultipliers and connected
with a 200 channel (LABEN) analyzer [28]. This is also a case where the complete
scintillation analysis including the observation of γ-γ and γ-γ-γ coincidences by means
of the summing technique (hollow crystal) was performed (see fig. 9).

The importance of the results we obtained is due to the fact that, on the one hand
the (j)2 and more generally (j)n could be a quite good approximation in the 1f7/2

shell, on the other, that, taking into account the comparison with the 42Ca spectrum,
it was shown, for the first time, that the effective two-body interaction both for protons
((π1f7/2)2 configuration) and neutrons ((ν1f7/2)2 configuration) in the T = 1 isospin
states (0+, 2+, 4+, 6+), is the same (charge independence of the effective nuclear force).
The problem of the presence of the other states (0+ and 2+) in 42Ca was and is still
explained with different configurations in the 42Ca core (like collective states due to core
excitations or, more generally, deformed states). So started the 1f7/2 story.

3. – The 1f7/2 story

Following the investigations on shell-model and collective states in “spherical” even-
even nuclei and on excited states of odd nuclei with a spherical core, the program I started
in Naples was then mainly devoted to a particular region, that of the so-called “1f7/2

nuclei” i.e. nuclei with nucleons filling the major 1f7/2 shell. It was realized that this is
a real rich domain of research in many aspects and it became in fact a kind of trade mark
of our collaboration with Amsterdam and Orsay and, later on and more extensively,
with Florence, Padua and Munich. I will not report this story (that I called “The 1f7/2

saga”) in details also because one can find quite a number of specific articles and general
reviews (see refs. [1] and [2] and more specifically ref. [29]). As mentioned by H. Morinaga
in his conclusion of the topical conference we did organize at the Laboratori Nationali
di Legnaro in 1971, entirely devoted to the “Structure of 1f7/2 nuclei” (see ref. [29],
4)), we started by the so-called MBZ work [30] whose preprint was send to a number
of people interested in the field with an accompanying letter addressed “Dear friends
of f7/2 shell”. This is a kind of an historical introduction together with the fact that
in 1947 when the shell-model was proposed “It was only qualitative and probably —I
am quoting Morinaga— one of the earliest effort to make quantitative calculations. . .
was done by Levinson and Ford in 1955 for the 1f7/2 shell. It is no wonder that this
is a single shell”. At that time the experimental knowledge of the key nuclei from
which one could extract the single-particle energies (41Ca) and the two-body residual
interaction (42Ca) as referred to the doubly magic 40Ca was quite poor so as for other
possible reference nuclei in the region and the presence of states of doubtful origin in
42Ca was a further complication. For this reason our results on 50Ti together with those
concerning the extra 0+ and 2+ (core excited) states in 42Ca out of the normal (0+,
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Fig. 10. – Cover of the “Bible” of 1f7/2 nuclei (1969, ref. [29], 2)). The definition is due to Gerry
Brown in the ’60s.

2+, 4+) seniority sequence, designating this nuclear region as “the 1f7/2 nuclei” could
preserve some meaning.

Thereafter the series of measurements and results so as the various theoretical ap-
proaches concerning this nuclear region in the years 1960–1976 were reviewed successively
in a number of “classical” papers presented and discussed in specific or “topical” confer-
ences and meetings. A list of them is reported in ref. [29]. The main fundamental aspects
were summarized and analyzed in the so called “Bible” of the 1f7/2 nuclei (see fig. 10
and ref. [29], 2)) and in the lecture I gave here in Varenna in 1969 on “Experimental
Nuclear Spectroscopy in the 1f7/2 nuclei” (cfr. ref. [29], 3)).
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Particularly in refs. [29] and [31] a summary can be found of the significant progress
made in investigating the properties of nuclei with Z and N ranging from 20 to 28 includ-
ing the more recent data especially with reference to the more advanced facilities with
the possibility of going from the stability walley towards exotic regions with radioactive
ion beams. A real “Revival of 1ff7/2 nuclei”. This is mostly due to the various revolu-
tions occurred in the years 1970–2000 concerning the gamma-ray spectroscopy with the
advent, first of germanium detectors (great improvement of the resolution), then of the
more complex and sophisticated gamma-arrays (optimazition of resolution and efficiency
and even of the position sensitivity). The advent of heavy-ion accelerators, allowing the
production of high-energy and high-spin nuclear states and of the in-beam spectroscopy
were essential. The final touch is the radioactive beam acceleration with the possibility
of producing exotic nuclear species. One should not forget that the extensive use of
nuclear reactions has also been of great help and I wish here to underline some peculiar
findings not particularly related to gamma spectroscopy. In our case the collaboration
with Orsay, as already mentioned, was very fruitful, particularly with the experimental
group held by M. Riou, well equipped and expert in the domain of nuclear reactions
induced by medium–high energy protons (155 MeV from the Orsay synchrocyclotron).
It was very interesting for me to join them and suggest to extend their measurements
performed in the 2s-1d region also to the 1f7/2 nuclei. Important results were found con-
cerning the observation by inelastic proton scattering of collective vibrational states (i.e.
2+ quadrupole and 3− octupole) in even-even nuclei and of excited states in odd nuclei

Fig. 11. – Nuclear states excited by inelastic 155MeV proton scattering in nuclei from A = 23
to A = 59 at Orsay (1963, ref. [27]); the strongly excited (collective) levels of even-even nuclei
are indicated in bold type while in odd nuclei the levels corresponding to core excitations are
connected to the parent states in the even-even cores by dashed lines.
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arising from a core-single particle coupling in the 1d3/2-1f7/2 region (namely from 23Na
to 59Co). They are summarized in fig. 11 as obtained by measuring energies, differential
cross-sections and angular distributions, which clearly indicate the E2 and E3 multi-
polarities. The connection of levels in odd nuclei arising by the core-particle-excitation
were also clearly identified (namely by the angular distributions and by the statistical
distribution of the excitation intensities).

Fig. 12. – a) Binding energies of 2s1/2 states in 1f7/2 nuclei from (p, 2p) reactions at 155 MeV.
Target nuclei are indicated on the top; the full line connects even-even residual nuclei; the
separation between 1d3/2 and 1f7/2 states as from the proton binding energies in target nuclei is
indicated. b) Excitation energies 2s1/2 and 1d3/2 proton-hole states in the odd nuclei reported
in a). The main difference between b) and c) is due to pairing effects (ref. [32]).
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(a)

(b)

Fig. 13. – a) Single-particle energies (centroids derived from stripping, pick-up and knock-out
reactions taking into account the spectroscopic strengths and the isospin splitting in the proton
case) relative to the 2p3/2 state of 41Ca, 47Ca, 49Ca (neutron states) and of 41Sc, 49Sc and 55Co
(proton states). The centroid of 1f and 2p states are indicated with the corresponding spin-orbit
splitting. b) Summary of the spacing between the unperturbed single-particle states referred to
the 40Ca and 48Ca cores (see ref. [29], 3)).
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(a)

(b)

Fig. 14. – a) Two-particle (proton) spectra in the 1f7/2 nuclei; the 42Ca two-neutron spectrum
is reported for comparison. b) Evolution of the 1f7/2 proton spectra of the even Ti isotopes and
of the filling of the neutron single-particle states in the f -p shells (see ref. [31]).
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A second important investigation concerns the measurement of the proton binding
energies in the (1f -2p) region by (p, 2p) knock-out reactions (quasi-free proton scattering)
performed at the 155 MeV synchrocyclotron in Orsay in 1967 (cfr refs. [27] and [32]).
Figure 12 displays the results concerning in particular the 1f7/2-1d3/2 energy separations
together with the excitation energies of s and d holes states in some 1f7/2 nuclei.

Our results could add new data to those found in the (e, e′p) important experiments
performed by the Group of the Istituto Superiore di Sanità (Rome) (see ref. [33]) and
gave also a direct demonstration of the existence of nuclear shells.

Another important piece of information was obtained by those data for evaluating
the behaviour of the single-particle (or single-hole) states in the 1f -2p region. From a
systematic analysis of the various reaction data already known at that time (stripping,
pick-up and knock-out reactions) one could construct a sort of diagram as that reported
in fig. 13a. Moreover fig. 13b shows, as a summary, the spacing between single-particle
states referred to the 40Ca and 48Ca cores; the presence of a quite consistent 1f7/2-2p3/2

energy gap is quite evident near the 48Ca core. One should already argue about the
possibility of an evolution of the nuclear states in this region pointing to an increase of
the energy separation (namely in the neutron filling of the 1f7/2 and 2p3/2 shells).

What is significant in this context is that, as pointed out recently by B. Fornal [31],
the evolution of the shell-model single-particle states f7/2, p3/2, f5/2 and p1/2 did already
show that with the filling of the p3/2 orbital, it appears a subshell closure at N = 32
(energy gap) and possibly at N = 34. That N = 32 could be associated with a new
quasi-magic number has been demonstrated by the data recently obtained for the 2+

lowest states of even-even Ti isotopes until 54Ti (N = 32) as produced and investigated
thanks to radioactive-beam γ-ray spectroscopy (see fig. 14 and ref. [31]). The evolution
of the (1f7/2)2 two-body spectra shows the strong similarity of 54Ti (N = 32) with
42Ti (N = 20) and 50Ti (N = 28), whereas 56Ti (N = 34) does not present the same
behaviour.

4. – The second and third revolution of nuclear spectroscopy: the germanium
detectors for γ-spectrometry; the heavy-ion accelerators and the in beam
spectroscopy

The coincidence of all these events in the years 1960–65 was certainly essential in the
impressive development of the systematic experimental investigation of peculiar proper-
ties concerning nuclear structure and dynamics. Just at the end of 1965 I moved from
Naples to Florence. In fact a quite efficient collaboration was already started with the
Florence group giving rise to the first investigation in Italy of a nuclear gamma spectrum
with Ge(Li) detectors.

The case in point was the measurement of the γ-spectrum of 174Yb following the
decay of 174Lu searching for two-particle states in deformed nuclei: fig. 15 shows the
relevant part of the spectrum where a specific 1265 keV summing peak arising from
a γ-γ cascade from the 1518 keV state, was resolved (this was difficult in a previous
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Fig. 15. – a) Level scheme of 174Yb From the decay of the isomeric pair of 174Lu; the 1518 keV
level with spin 7− is definitely established as a two-particle shell-model state. b) Gamma-
spectrum (high energy part) measured with a Ge(Li) detector (4 cm2 × 0.6 cm); the summing
peak at 1265 keV clearly shown in the insert exhausts completely the 992+275 keV γ-γ cascade
confirming the 7− assignement to the 1518 keV state (ref. [34]).

experiment performed in Naples with a scintillation counter) and establishing the spin
assignement 7− as expected for a two-neutron shell-model state. This is a typical case
of the coexistence of shell-model states with deformed ones in heavy nuclei [34].

Now, the coexistence and competition of pure shell-model configurations with collective
behaviour was of course an important feature to be confirmed also in our priviledged
region of 1f7/2 nuclei. Therefore the research program initiated in Naples was extended
to the collaboration with Florence and then with Padua and at the Laboratori of Legnaro
where, starting from 1965, I could organize a well founded research activity based on the
efficient collaboration of groups of Naples, Florence. Padua, and Trieste making use of
the more advanced facility at disposal in Italy for nuclear structure at that time i.e. the
5 MV Van de Graaf accelerator. A series of interesting experiments was performed and
it could be very fruitful making use of the in-beam gamma-ray spectroscopy which was
just invented in 1963 in Amsterdam by H. Morinaga and P. Gugelot [35].

The results we could obtain already at the Legnaro Van de Graff are summarized
in ([29], 4)) and [36], where specific important examples are also quoted, as inves-
tigated by (p, n), (p, p′), (α, n), (3He, n), (3He, α) reactions, via high-resolution
gamma-spectrometry, measuring also excitation functions, transition probabilities, an-
gular distributions and correlations, half-lives, linear polarization. particle-gamma and
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Fig. 16. – The low-lying levels of the od-odd 50V (Z = 23, N = 27) as an example of shell-model
states belonging to the (πf7/2)

3(νf7/2)
−1 configuration (ref. [36]).

gamma-gamma coincidences. Results of particular interest were: i) the characterization
of particle-hole states by (3He, α) reactions (neutron pick-up) in even Ca isotopes (2s-1d

core excitations) with decreasing strength from 40Ca to 48Ca (which is one of the ex-
perimental indication of 48Ca being a better inert core than 40Ca); ii) the preliminary
identification of rotational bands with positive and negative parity in odd 1f7/2 nuclei
(typical example 45Sc) that I will discuss later considering also high-spin states; iii) pure
shell-model configurations in some odd-odd nuclei (cfr 50V, see fig. 16); iv) measurements
of electromagnetic transitions and mean lives in (1f7/2)3 nuclei as 43Ca and 53Mn and
critical tests of nuclear models with a further proof that nuclei lying between 48Ca and
56Ni are better described by the spherical shell-model than by those near 40Ca.

I will come back to these systematic investigations later in resuming the more general
achievements obtained by the Legnaro-Padua-Florence-Munich (LPMF)collaboration in
the years ’70s–’80s. I wish to mention here another important topic covered by our
research program at the Legnaro Van de Graaff accelerator: the search and character-
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(a) (b)

Fig. 17. – a) Reaction diagram for the excitation and decay of the 49Ca ground-state IAR in the
48Ca+p system and b) the corresponding fine structure found in (p, p) and (p, nγ) experiments
(ref. [37] and text).

ization of Isobaric Analogue States (IAS) or Resonances (IAR) in medium-light nuclei
(namely in the 1f7/2 region). In fact, this exciting research field was open to low-energy
accelerators in connection with properly used high-resolution facilities. Among the vari-
ous interesting cases studied, I will quote at least that of the fine structure distribution
of the 49Ca (angular momentum Jπ = 3/2−, isospin T = 9/2) ground-state analogue in
49Sc, which could give information on the properties of single-particle shell-model states
beyond the 1f7/2 shell. The reaction 48Ca+p (for 48Ca Jπ = 0+ and isospin T0 = 4) is
the proper one with proton energy corresponding at least to three open decay-channels
(p, p), (p, γ) and (p, nγ) for the 49Sc compound nucleus states (see fig. 17a). Since
the last one will feed levels in the 48Sc residual nucleus (T = T0 − 1/2 = 7/2)) followed
by γ-decay, the measurement of the corresponding γ-yield as a function of the proton
energy would show the corresponding analogue state as a resonance (IAR). In fact the
IAR in question was resolved into components singled out in the isospin forbidden (p,
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Fig. 18. – a) A typical example of in-beam γ-γ coincidence spectrum in 45Sc produced by
the (30 MeV) 30Si + 18O reaction at the Munich Tandem accelerator; the insert shows the
corresponding deduced level scheme. b) Partial level scheme of 45Sc showing the two positive-
and negative-parity bands with high-spin states up to 15/2− and 23/2+, respectively (ref. [38]).

nγ) reaction, indicating for the first time a quite detailed structure due to the mixing
of the IAS (T> = T0 + 1/2 = 9/2) and the surrounding compound nucleus (49Sc) states
(corresponding to particle-hole excitations) with the same angular momentum and parity
(Jπ = 3/2−) and lower isospin (T< = T0−1/2 = 7/2) which will allow the neutron decay
of the 49Sc-IAS into the normal T< states of 48Sc (see fig. 17). Therefore the shell-model
description of IAS is related to the isospin splitting of single-particle states [37].

Let me now come back to the extended research program concerning the structure of
the “1f7/2 nuclei” as allowed by the advent of heavy-ion (HI) facilities in connection with
the beam γ-ray spectroscopy and the higher-resolution detection techniques. The LPFM
collaboration could profit of the 11MV Tandem accelerator of the Munich University
and undertake a series of important experiments based on the selective population of
high-energy and high-spin states of quite a number of 1f7/2 nuclei. I will confine myself
only to few specific cases showing significant findings concerning the identification and
the interplay of single-particle shell-model and collective states in this peculiar region.
Figure 18 shows the two bands of positive and negative parities in 45Sc with identification
of high-spin levels (up to 15/2∗ and 23/2−, respectively) as an extension of the results
found in the lower energy investigation performed at the Legnaro Van de Graaff. The
positive-parity band has clearly a rotational-like character based on the 3/2+ hole state
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and it is seen to continue up to the fairly high spins whereas for the negative-parity one
it was found that particularly for what concerns the high-spin states both collective and
shell-model can be applied with a preference to the last one since it predicts an upper
limit for the highest spin (23/2) as experimentally observed.

The great quantity of collected data in those years with systematic measurements of
γ-ray excitation functions, γ-γ coincidences and angular distributions, linear polarization
and life-time of nuclear states, was quite impressive and we could obtain quite a number
of significant informations [39]. Among them I wish to outllne the quite general feature in
this region, besides the coexistence of collective and spherical shell-model states, i.e. the
confirmation that collective effects are more confined at lower energies and that, in some
cases, at high excitation, the collectivity seems to be totally washed out. To summarize
taking also into account the results at the Legnaro VdG: i) for several odd nuclei, besides
45Sc (43Sc, 45Ti, 47V, 49V), the existence of K = 3/2+ and K = 1/2+ bands based on s-d
holes, was confirmed up to high-spin states, while in 51V and 53Mn (single-closed shell
nuclei) the (1f7/2)3 configuration was clearly observed and other states with Jπ = 15/2−

Fig. 19. – a) Levels observed in 50Cr from heavy-ion–induced reactions compared with what is
known from other type of reactions). b) Back-bending plot (J vs. Eγ) of the corresponding
yrast band (ref. [39]).
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were found and described in terms of excitation of a single neutron from the N = 28
core to higher shells; ii) in odd-odd nuclei like 48V and 44Sc, non natural (negative)
parity states with rotational character were definitely established, which are lacking in
52Mn as expected from the systematic of deformed hole-states. As a general fact, the
results concerning the selective population of yrast states is very spectacular as shown
in fig. 19 where the levels seen from heavy ion reactions are reported in comparison with
all the levels actually known in 50Cr. Also the behaviour of the angular momentum J as
a function of the excitation energy Eγ is reported showing a clear double back-bending
effect as predicted, which is in very good agreement with shell-model calculation [39].
This interesting feature i.e. the fact that the collective behaviour is well accounted for
in the frame of the shell-model is also present in the case of 48Cr (N = Z = 24) [39].

On the other hand, a particular feature of 50Cr is that, along the yrast sequence
(12+ → 11+ → 10+ → 8+ → 6+ → 4+ → 2+ → 0+), “unstretched” M1 transitions
connecting the 12-11-10 states were observed on the top of the subsequent “stretched”
(i.e. with Ji > Jf ) E2 cascade, as a clear example of a sort of “purification” of the
low-energy collective band, at high excitation, in shell-model configurations, as already
mentioned.

Of particular interest, in this context, was therefore the case of the even Ti (Z = 22)
isotopes, namely 46Ti (N = 24) and 48Ti (N = 26) for which a similar behaviour was

Fig. 20. – Decay schemes of 48Ti and 46Ti as observed in (HI) selective reactions (ref. [40]).
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Fig. 21. – High-spin (shell-model) states observed in 50Cr and in 46Ti compared with the pre-
dictions of M.B.Z. calculations (refs. [39, 40]).

found [40]. In fig. 20 the decay schemes of both nuclei are shown as observed with HI
reactions at the Munich Tandem, whereas in fig. 21, just as an example, a comparison of
the 50Cr and 46Ti observed yrast states with the pure (f7/2)n shell-model configuration
is reported.

The fact that yrast states with collective character can be described with quite a good
approximation in the frame of the shell-model, is a peculiar aspect of the 1f7/2 region.
Similar results were found in other even-even nuclei with non-closed core like 44Ti, 48Cr
and 52Fe, with calculations always performed in the pure (1f7/2)n space using different
sets of the empirical (f7/2)n matrix elements (deduced from the 42Sc, 54Co and 48Sc)
(see refs. [39] and [40]). One has to mention that 48Cr show the most collective features
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(a)

(b)

Fig. 22. – a) Height of the first 2+ state in the even-even nuclei in 1f7/2 shell; b) E2 strength
in W.u.) of the first 2+ state in the even-even nuclei of the 1f7/2 shell (ref. [39]).
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in the region.
One can understand our satisfaction for all these findings: the interplay of collective

and single-particle shell-model features in the 1f7/2 nuclei has been in fact a sound
program of research which was further developed in the subsequent years at the Tandem
accelerator in Legnaro. As a summary (see ref. [39]) of the results mentioned above I wish
to present the evolution of the height of the first 2+ state, which is usually taken as an
indication of the collectivity, for the nuclei lying inside the triangle 40Ca-48Ca-56Ni (the
double magic vertices)(4). Figure 22a displays the situation and shows how this height is
sinking towards the middle of the 1f7/2 shell (48Cr as already mentioned). The strengths
of the corresponding B(E2) 2+ → 0+ are reported in fig. 22b and rise very rapidly again
around 48Cr The corresponding value is 40 W.u. (Weisskopf units).

In this context it is worth to remind that the possibility open by he new facilities to go
beyond the drip line towards neutron-rich isotopes was of great help in establishing the
evolution of the various structure properties of 1f7/2 nuclei. As I have already mentioned
the systematics of 2+ states in the even Titanium isotopes (and in the even calcium ones)
effectively shows the presence of a quasi-magic N = 32 neutron number in agreement
with the 1f7/2-2p3/2 gap already foreseen (see refs. [29], 3), [31] and fig. 14) about fifty
years ago.

In summary one can repeat, once again that the 1f7/2 nuclei are still a real mine for
investigating and understanding a lot of peculiar properties of the nuclear structure such
as: the evolution of shell-model states and deformations, the exploration of the neutron-
rich territory and related isospin effects, the possible quenching of spin-orbit coupling,
the shape coexistence and the high excitation-energy effects.

As a matter of fact the recent revolutions in nuclear spectroscopy (i.e. radioactive
ion beams and high resolution, high efficiency gamma arrays), together with the new
important perspectives they will open in the nuclear domain, will also provide a powerful
tool for leaving the “1f7/2 problem” still alive.

5. – Nuclear physics with heavy ions. The advent of the 16 MV Tandem at
LNL. The evolution of nuclear physics in Italy (years 1980–90)

Here I have to mention briefly the story of the installation at the LNL of the 16 MV
(HVEC-XTU) Tandem Accelerator, the first Italian facility for heavy ions. It was a real

(4) The collaboration with the Munich group held by H. Morinaga has been the most intense
in the systematic research program concerning the nuclear structure of 1f7/2 nuclei in which
the LNL-Padua-Florence groups took part working on this interesting problem for at least ten
years (1970–1980). The Morinaga-Ricci personal relationship and collaboration began in the
’60s (Amsterdam) and continued via Naples-Florence-Padua-Legnaro-Munich until the ’90s.
The names of the people belonging to the various groups are reported in the references. Note
added in proofs: One can understand how deeply I have been touched by the recent
sad news that Haruhiko Morinaga passed away (May 2018). I wish to dedicate to
him this part of my lecture.
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Fig. 23. – Left: Celebration of the extraction of the first ion beams (acceptance test in November
1981 with 32S and 127I) and right: a photogroup of the inauguration of the XTU tandem (“Moby
Dick”) at the LNL (January 1982).

milestone for the development of nuclear physics in Italy and for its role in the context of
the INFN (Istituto Nazionale di Fisica Nucleare); a turning point in its strategy and evo-
lution. In fact this was an exceptional step not only for providing a very powerful tool in
nuclear structure investigations (production of high energy, high-spin states, new nuclear
species. . . ) but also for opening to Italian laboratories the possibility of performing a
larger program of investigation in the field of heavy-ion physics and in understanding the
physics of the nucleus-nucleus interaction in different aspects and at different energies.
Concerning the story of such an installation I wish only to remind that this goal was
achieved in 1982 after 10 years of hard work and confident waiting. Some of the various
steps of this event are reported in ref. [41] so as the summary of the first experiments
dealing with the research program organized around the new facility. Figure 23 shows
two pictures of the celebration of the first ion-beam extraction (november 1981) and of
an aspect of the inauguration (January 1982) of MOBY DICK (this is the name given
to the Tandem recalling the 10 years of hunting the “White Whale”).

The advent of the LNL Tandem not only gave rise to a larger area of research but
opened the way for the installation and construction of other important facilities for
the evolution of nuclear physic in Italy. It was followed by a second Tandem accelera-
tor (HVEC-MP, 14 MV) installed at the Laboratori Nazionali del Sud (LNS) in Catania
(1984) in order to increase with a better geographical distribution, the national capability
of the INFN in the field of heavy-ion physics. The nuclear physics strategy marked other
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Fig. 24. – The nuclear physics ship sailing from Berkeley (INPC 1980) to Florence (INPC 1983)
carrying the various facilities provided for the development of the Italian nuclear physics program
(see text and ref. [42]).

important points with the building in Milano, under the direction of F. Resmini, of a su-
perconducting cyclotron conceived as a booster (post-accelerator) for a national Tandem
and, following a decision of the council of INFN, installed at the LNS and coupled with
the MP Tandem. Meanwhile a superconducting Linear Accelerator ALPI (Acceleratore
Lineare Per Ioni) was built and installed at the LNL (1993) coupled to the XTU Tan-
dem increasing the capability of the Legnaro facilities in producing ions with mass and
energy spanning from hydrogen to uranium and from several tens to a few MeV/amu.
Figure 24 shows a picture that I did present in my introductory talk at the International
Nuclear Physics Conference held in Florence in 1983, showing the nuclear physics ship
coming from Berkeley, where the previous Conference was held in 1980, and in the way to
reach Florence, considered as a starting point for the launching of the new Italian facilities
(ref. [42]). It is worth noting here that the future development of the LNL concerning the
acceleration of radioactive ion beams has been ensured by the installation in the recent
years of the new SPES (Selective Population of Exotic Species) facility (see ref. [45]).
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Concerning the advent of heavy ions one has to stress the two peculiar aspects of this
extraordinary probe of investigation: one is the nucleus-nucleus collision as a physics
case in itself related to the dynamics of such a peculiar type of nuclear reaction (the
physics of heavy ions), the other is the use of this kind of reaction as a tool for better
investigating in a selective way the nuclear structure which, together with the in-beam
gamma spectroscopy and the impressive evolution of the modern gamma-arrays, gave
rise to a very powerful technique for nuclear spectroscopy (the 4th revolution). These
two aspects of course are connected and it is the interplay between them that constitutes
the “salt” of the physics we are dealing with.

Note that all these aspects are covered in many of the nuclear physics courses held
here in Varenna. Among them I wish to mention at least the one on Nuclear Structure
and Nuclear reactions (1967) directed by M. Jean and myself [43] with lectures on nu-
clear structure, given by R. Van Lieshout, G. Alaga, S.G. Nilsson, M.H. Macfarlane, M.
Baranger, M. Jean and myself, and nuclear dynamics given by H.F. Bayman, N.K. Glen-
denning, R.H. Lemmer and D.A. Bromley; that on Nuclear Spectroscopy and Nuclear
Reactions with heavy ions (1974) directed by H. Faraggi and myself [44], with lectures
devoted to the physics of heavy-ion reactions given by R. Giraud; D. Kurath, M. Lefort,
J.P. Bondorf, F. Colombani, M. Mermaz, N. Cindro, P. Armbruster and to the struc-
ture properties revealed by the heavy-ion reactions (B. Buck, M. Harvey, S.G. Nilsson,
H. Morinaga; C. Signorini), and the one on Elemenary Modes of Excitations in Nuclei,
directed by A. Bohr and R. Broglia (1976), which could be considered as an amplified
continuation of the Racah’s course in 1960 as I have already quoted in connection with
the interplay between shell and collective models taking also into account the participa-
tion of lecturers as A. Bohr, B. R. Mottelson, I. Talmi, K. Kerman, G. R. Satchler G. B.
Wildenthal, F. S. Stephens and L. Hamamoto.

The scientific program at the LNL-Tandem and, later on, with the Tandem-ALPI
facility, was of course extended to more advanced investigations in the field of nuclear
structure due to the larger variety of ion beams and to the new γ-ray spectroscopy made
possible by the new detection techniques, as already mentioned. At the LNL, advanced
γ-arrays have been installed (GASP, EUROBALL, AGATA) in the frame of a large Eu-
ropean collaboration and extensively used with excellent results concerning, for instance,
superdeformed yrast bands, characterization of shell-model states and even a shell closure
at N = 40 (68Ni), together with the new results in the 1f7/2 nuclear region that I have
already discussed. They can be found in ref. [45] where up to date reviews concerning
also heavy-ion facilities are reported.

Just after the installation of the Tandem at the LNl, having established a sound
research program in the field of nuclear structure, I turned my attention and efforts to
the parallel field of dynamic problems. Therefore, let me now touch such aspects which,
by the way, are related to the second part of my personal activity and interest. I do not
wish to enter into details; I will rather mention a few of the most interesting experiments
and results as found in the frame of different research programs.

Coming to the nuclear dynamics with heavy ions, strictly speaking the nucleus-nucleus
interacting process can be considered as part of the more general problem of the statis-
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(a) (b)

Fig. 25. – a) The Fesbach diagram: evolution, with increasing interaction time (right to left),
from direct to compound (evaporation) process through multistep intermediate stages (ref. [46]
and text). b) Classical picture of different types of nucleus-nucleus collisions as a function of
the impact distance (see text).

tical distribution of systems formed by a relatively small number of strongly interacting
particles. In this context, the complex nature of the interacting partners make the
nucleus-nucleus collisions, at relatively low and moderate energies, strongly absorbing
processes related to the existence of different stages of the evolution of the composite
system (multistep processes) between two extremes such as the simplest direct and the
compound-nucleus modes. This is shown in fig. 25a, where the famous Fesbach-diagram
is reported [46], indicating such an evolution as a function of the interaction time. Since
the absorbing interaction will depend on the overlap of the two systems, in fig. 25b also
the classical picture of classifying the heavy-ion reactions, as a function of the impact
distance of the two colliding nuclei, is shown.

Following our research program, we started with experiments dealing with dissipative
phenomena. In fact at bombarding energies not higher than 10 MeV/amu, the two main
dissipative mechanisms i.e. fusion-evaporation-fission (FF) and deep inelastic collisions
(DIC) were considered in the early description on the basis of a schematic picture of
the collision processes. Depending on the topology of the entrance channel potential
either attractive forces, leading to a mononucleus as a composite system, or repulsive
forces, leading to a dinucleus were considered to describe the reaction path. Since some
experimental evidence was reported of intermediate dissipative regimes, phenomenologi-
cal descriptions were reported as “fast-fission-” or “extra-push” statistical models, [47].
Therefore, systematic investigations were performed at the Legnaro and at the Stras-
bourg Tandem facilities [48] with the results that transitional dissipative mechanisms are
indeed present and that the fission-like fragmentation of composite systems formed at
incident energies around (4–7) MeV/amu, exhibits certain peculiar characteristics which
cannot be understood in terms of pure fusion or DIC processes nor in the framework of
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Fig. 26. – Mass-energy spectrum for the 28Si+63Cu reaction at bombarding energy Ei = 158MeV
and at a laboratory angle ϑL = 20◦.

the above-mentioned models. Rather, the interesting results found by the joint Legnaro-
Padua-Bologna-Milano-Strasbourg Collaboration [49] were, first, that, in general, the
reaction mechanism of dissipative collisions for different medium-mass systems could be
described in terms of a continuous relaxation process leading the composite system from
the entrance channel to more or less equilibrated configurations, depending on the system
lifetime, at the extremes of which DIC or fusion-fission processes are found; second, that
ternary processes can occur as prompt ternary break-up, i.e. three-body fragmentation,
as observed in 32S+ 59Co and 32S+ 63Cu, besides the sequential binary process [49]. Fig-
ure 26 shows, as an example, the presentation of the fission-like events of the 28Si+63Cu,
lying on a locus in the mass-energy plot, corresponding to the Coulomb repulsion of two
charged spheres.

Such results were part of a systematic investigation with a series of target nuclei of
mass ranging from 45 to 80 including of course the finding of clear examples of deep
inelastic and fusion-evaporation (fission) processes as well as the sequential binary decay
(see ref. [50] where also the collaboration with the Bari and Messina groups is included).

Another interesting field was the search for quasi-molecular resonances as a more
general feature in some exit channels of heavy-ion reactions. This resonant-like behaviour,
observed for the first time in 1960 by Bromley et al. at the Yale Tandem [51] as correlated
structures in 12C + 12C scattering, was confirmed and widely reported in the ’80s in
collisions, particularly of identical nuclei, leading to composite systems in the range of
ACS ≈ 50 (i.e. 24Mg + 24vMg or 28Si + 28Si). Our investigations promoted by the
collaboration with Nikola Cindro (Zagreb) and with the Trieste, Bologna and Giessen
groups, (see ref. [52]) were therefore concentrated to heavier systems (elastic ad inelastic
scattering of 58Ni+46Ti, 58Ni+58Ni, 58Ni+62Ni) finding for the first time non-statistical
structures in the excitations functions and angular distributions. Figure 27 shows the

 EBSCOhost - printed on 2/13/2023 8:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



65 years with Nuclear Physics 437

Fig. 27. – Excitation functions of the angle-summed (76◦ ≤ ϑcm ≤ 104◦) elastic scattering
(top) and inelastic (Q = 1.45 MeV, first excited state of 58Ni) scattering (bottom) differential
cross-sections of 58Ni + 58Ni. The correlation between the two distributions is evident.

excitation functions for elastic and inelastic scattering of the differential cross-sections
for the case of 58Ni + 58Ni. Such structures were generally interpreted including the
presence of intermediate dinuclear states (virtual diatomic molecules).

6. – Nuclear physics at CERN. Antinucleon probes (LEAR), the OBELIX
experiment, the relativistic heavy ions at SPS and at LHC, the Quark-
Gluon Plasma, ALICE in wonderland

Already in the ’80s INFN opened up to more extensive collaborations and activities
at CERN in the field of nuclear physics. Personally, as a Chairman, in that period,
of the INFN Nuclear Physics Committee, I sponsored this operation and I formed a
group in Legnaro to work with the OBELIX Collaboration [53]. It was a very interesting
experience for me, a physicist coming from small research groups in which everything was
almost hand-created, being part of big CERN collaborations (this was even more evident
later on in the case of ALICE). I would say that it was also educational because I realized
that one has to better consider not only the proper sharing of the job but also the way
to contribute with some cultural humility and collaborative spirit, to the common goals.
Of course what you lose in a certain amount is the familiarity with your colleagues and
young collaborators whom, in smaller groups, you know personally one by one.
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Speaking about OBELIX I wish to mention first the contribution of the Leg-
naro group (with Padua and Pavia) in building the vertex detector, i.e. the
Spiral Projection Chamber (SPC) and, as far as the physics program was concerned,
in the sectors of atomic and nuclear physics and meson spectroscopy, including search
for exotic matter like glueballs, hybrids, quark-antiquark states in antiproton-proton and
antiproton-deuterium interactions at rest [53]. Interesting results with specific contribu-
tions of our group can be found in ref. [54]. They concern namely: i) the annihilation
of antiprotons and antineutrons (produced with special techniques) on nucleon and light
nuclei; ii) the first measurement of the antineutron-proton total cross-section (50 to
400 MeV/c) finding the dominance of the isospin T = 0 channel over the T = 1 one (at
low energy); iii) the strangeness production in antiproton-deuterium Pontecorvo reactions
at rest with two-body final states consisting of baryon-meson and baryon-baryon pairs.

The other relevant jump was the promotion of a significant contribution of Padua
and LNL to the Italian participation in the important enterprise concerning the CERN
relativistic heavy-ion project, first at SPS (Na57 and WA97 experiments) then at LHC
(ALICE). I would mention the strong collaboration between CERN and LNL in the
installation of the heavy-ion beam line; LNL did provide the Radio Frequency Quadrupole
(RFQ) to accelerate Pb ions to 250 keV and the medium-energy beam transport following
the RFQ (∼ 70 μA of 208Pb27+ ions). The higher energy part was provided by the Turin
group. As a consequence the Padua-LNL group could contribute in a significant way to
the experiments with sulfur and lead ions leading to the enhanced production of strange
particles, a preliminary indicator of the presence of the Quark-Gluon Plasma (QGP) [55].

Moving to ALICE (A Large Ion Collider Experiment), let me say, about my personal
participation, that, after having contributed to its promotion and its design phase, I
played my part as consultant in the definition and analysis of some aspects of its physics
program [56]. Among the numerous findings of such an impressive enterprise, I wish to
mention at least two results, in my opinion particulalry interesting. One is the production
of light antinuclei (and antihypernuclei) providing also a test of unprecedented precision
of the CPT invariance. The latest measurement in this field concerns the production
of antialpha, the heaviest antimatter nucleus found so far [57]. The second concerns
the abundance of strange-particle production in the high-multiplicity proton-proton col-
lisions [58]; a quite intriguing result for the insight it provides into collective effects in the
interaction between protons and not only between complex nuclei. It could indicate that
the behaviour of QGP has to do, in a quite decisive way, microscopically speaking, with
the multiplicity of the particles produced. In fig. 28 I report the titles and references
concerning the first report of our group in Legnaro dealing with our participation to the
ALICE collaboration and the two related to the items just mentioned.

7. – Final considerations. Facing Nuclear Physics

What about the following question: what is really nuclear physics? What is really its
domain? Well. The traditional domain, looking at it with the eyes of 65 years ago, was
the investigation of the structure and dynamic properties of atomic nuclei in an energy
interval not too far from the binding energy of their constituents (“cold” nuclei near the
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Fig. 28. – ALICE’s Adventures in Wonderland.

ground state, low spin and low excitation energy) and the main concept of the nucleus
as a nucleon complex only was dominating. Now, already in the ’80s of the last century,
a significant change did occur, as we have seen in what I have presented here. Even more
important changes did occur at the beginning of this century, if one looks in the various
directions, i.e. angular momentum, isospin and, with particular emphasis, temperature
(“hot” nuclei and h̀ıgh interaction energies).

In fact the nucleus is a two-faceted object with a variety of, sometime contradictory,
properties and phenomena: it is too small to be considered as a microscopic piece of a real
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Fig. 29. – Standing position of the atomic nucleus and of nuclear physics and their relationships
with fundamental problems.

nuclear matter (a dwarf ) and too big to derive all its properties from the simple motion of
its fundamental constituents (a giant); we could speak of a kind of mesoscopic system and
both the holistic and reductionistic views are allowed for its (partial) description. This is
one of the main reasons why nuclear physics (the anagram “unclear physics” was properly
found) is a complex matter which one is dealing with. On the other hand, its connections
with fundamental aspects and interactions are so relevant that one cannot avoid its
properties and phenomenology in order to understand the universal laws (see fig. 29).

The new developments in understanding the links between collective and elemen-
tary properties both present in the nuclear system as well as in exploring fundamental
problems inside the nucleus bring into light common features of nuclear and subnuclear
physics as far as the intimate structure of the matter of the Universe is concerned. In fact
we did learn how the nucleus could be considered as a wonderful laboratory for studying
the behaviour of its primary constituents, for instance in nucleus-nucleus collisions in
extreme conditions. Figure 30 shows the nuclear and subnuclear roots to approach the
primordial matter of the “early” Universe. The subnuclear root provides the addition
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Fig. 30. – Fundamental problems and corresponding roots to approach them for nuclear and
subnuclear physics, respectively.

of ever more energy to regions of ever decreasing sizes: this is done via the interaction
between individual hadrons with a restricted number of quarks. The major problem here
is the “confinement” of the elementary constituents. On the other hand the nuclear root
to the primordial hadronic matter (nucleus-nucleus collisions) is related to the possible
observation of many-body quark interactions. Ever higher energy is added to volumes
containing many nucleons; this is the reason why one expects that bringing together a
large number of quarks and gluons at ever higher density (compression) they can be
released as a QGP (see ref. [59]).

Of course one should not forget that the common interface between nuclear and
elementary-particle physics is also related to the possibility of identifying sub-nuclear
effects in the nuclear behaviour due to the more elementary degrees of freedom (mesons,
quarks, gluons). We know that these effects exist and that the problem of relating the
nuclear properties with the primary strong interaction is still open. However let me
quote, for the sake of saving our oversimplified description still employed today, the
“old” statement of V. Weisskopf (1969!) (see ref. [59]): “. . . The complete understanding
of nuclear phenomena would imply a description of the nucleus as a system of nucleons
in interaction with a common meson field: nucleons that are not identified as protons or
neutrons swimming in a sea of virtual mesons. Fortunately, and somewhat surprisingly,
the nucleus can be rather accurately described as a system of well-defined neutrons and
protons with certain forces between them. The meson origin of these forces does not seem
to play an essential role in the nuclear behaviour at lower energies. Hence the theory of
the nuclear structure is not interested in the theory of the nuclear force itself; it is taken
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for granted that such a force exists and its properties are accepted as an experimental
fact”. Of course other problems arise today from the extension of the energy and of
the map of the nuclear systems, as we know. A more detailed discussion on all these
considerations can be found in refs. [59] and [60].

Closing

I have to conclude. The excursus I have made could be related to the way one
could have understood nuclear physics and managed with it either as an actor or as an
interested spectator. Since at the age of 90, even if I am still active both consciously and
intellectually and interested in what is going on, I cannot say that I could be considered
as an actor. 65 years with nuclear physics is a lot and is a substantial part of my life. But,
fortunately, they do not exhaust all the aspects of my life. Let me mention, last but not
least, my family (65 years also with my wife Claudine Abraham) the children (Marco and
Françoise) the grandchildren (Giorgio and Carlo), the many friends, the students (also
many) to whom I wish to dedicate this last paper, and the other activities and problems
outside of Science.

About this Course and Varenna I have obviously something to say: My introduction
has been added in the written version of my lecture because of two reasons.

First I wanted to better clarify the context in which the course proposed to and
accepted by the Council of the Italian Physical Society has been in some sense related
to the celebration of my 90th anniversary and therefore I have to express my special
gratitude to the SIF President Luisa Cifarelli, to the friends and colleagues of the SIF
Council, to the Directors of the course Fabiana Gramegna, Peter Van Duppen and Andrea
Vitturi together with the Scientific Secretary Sara Pirrone for their kindness in organizing
a special session, so as the SIF Secretary Staff here at Villa Monastero and in Bologna.
And of course, for their unvaluable technical support in working on the written version
of my lecture, to Angela Oleandri (SIF) and Valentino Rigato (LNL).

Second, to be here in Varenna is not so occasional. This School and this place are also
of particular significance for my scientific (and not only) life, as a SIF President for many
years and as a participant and/or director of a number of physics courses, some of which
I have mentioned in my lecture. It is gratifying to aknowledge once again the presence
of friends and of colleagues and I like to express my appreciation for the presence of
Franco Iachello and Luciano Moretto, with whom I shared the responsibility of a number
of courses of the School. Moreover It is not only a duty but also a pleasure for me to
express my appreciacion to all the directors(5) of the LNL who, in succeeding after me,
in this office, gave me always the opportunity to remain an active participant of the LNL
research programs and to describe in different ways this story along many years.

(5) I wish to report their names as a token of my affection and esteem: Paolo Blasi, Cosimo
Signorini, Piero Dalpiaz, Massimo Nigro, Graziano Fortuna, Gabriele Puglierin, Gianni Fioren-
tini, Diego Bettoni. All together we have written an interesting part of the story of Nuclear
Physics in Italy. A further appreciation is due to the Presidency and Council of INFN for the
Italian strategy concerning Nuclear Physics along the years.
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In writing this lecture, I had in mind my teachers, my mentors, my students, my
pupils, my collaborators. As you could have seen, in my references I quoted all the
names of the authors, except of course in the case of very large collaborations (OBELIX
and ALICE for instance) In fact I don’t like the extensive use of the term ”et al.” with
no identification of all the people who did the job. All those I quoted are not just names
but real persons to whom I am indebted for the friendly collaboration and the precious
help during this long trip.

At the end of which I, leave you with the last two remarks. The first is just a “poetic”
representation of a “long” career with a quite complete parabolic pathway. The second
points out two simple statements: 1) that the long way to Tipperery was really long (no
regrets however!); 2) that he best answer to the “unfailing” question you have to face in
getting old “What is your vision of . . . ?” which by the way is resumed in closing (or in
opening) many meetings by the more “scientific” one “What next?”), is that given by
the statement of Freeman Dyson.
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Università di Napoli “Federico II” e INFN
Via Cintia
Complesso Monte S. Angelo
80126 Napoli
Italy
tel: 0039 0817682426
larana@na.infn.it
giovanni.larana@unina.it

Silvia Lenzi

Dipartimento di Fisica “Galileo Galilei”
Università di Padova
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