
C
o
p
y
r
i
g
h
t

2
0
1
9
.

I
O
S

P
r
e
s
s
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 12:36 PM via
AN: 2253908 ; Pretschner, Alexander, Muller, Peter, Stockle, Patrick.; Engineering Secure and Dependable Software Systems
Account: ns335141

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

ENGINEERING SECURE AND DEPENDABLE

SOFTWARE SYSTEMS

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

NATO Science for Peace and Security Series

This Series presents the results of scientific meetings supported under the NATO Programme:

Science for Peace and Security (SPS).

The NATO SPS Programme supports meetings in the following Key Priority areas: (1) Defence

Against Terrorism; (2) Countering other Threats to Security and (3) NATO, Partner and

Mediterranean Dialogue Country Priorities. The types of meeting supported are generally

“Advanced Study Institutes” and “Advanced Research Workshops”. The NATO SPS Series

collects together the results of these meetings. The meetings are co-organized by scientists from

NATO countries and scientists from NATO’s “Partner” or “Mediterranean Dialogue” countries.

The observations and recommendations made at the meetings, as well as the contents of the

volumes in the Series, reflect those of participants and contributors only; they should not

necessarily be regarded as reflecting NATO views or policy.

Advanced Study Institutes (ASI) are high-level tutorial courses to convey the latest

developments in a subject to an advanced-level audience.

Advanced Research Workshops (ARW) are expert meetings where an intense but informal

exchange of views at the frontiers of a subject aims at identifying directions for future action.

Following a transformation of the programme in 2006 the Series has been re-named and re-

organised. Recent volumes on topics not related to security, which result from meetings

supported under the programme earlier, may be found in the NATO Science Series.

The Series is published by IOS Press, Amsterdam, and Springer Science and Business Media,

Dordrecht, in cooperation with NATO Emerging Security Challenges Division.

Sub-Series

A. Chemistry and Biology Springer Science and Business Media

B. Physics and Biophysics Springer Science and Business Media

C. Environmental Security Springer Science and Business Media

D. Information and Communication Security IOS Press

E. Human and Societal Dynamics IOS Press

http://www.nato.int/science

http://www.springer.com

http://www.iospress.nl

Sub-Series D: Information and Communication Security – Vol. 53

ISSN 1874-6268 (print)

ISSN 1879-8292 (online)

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Engineering Secure and Dependable

Software Systems

Edited by

Alexander Pretschner

Technische Universität München, Germany

Peter Müller

ETH Zürich, Switzerland

and

Patrick Stöckle

Technische Universität München, Germany

Amsterdam • Berlin • Washington, DC

Published in cooperation with NATO Emerging Security Challenges Division

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Proceedings of the NATO Advanced Study Institute on Engineering Secure and Dependable

Software Systems

Marktoberdorf, Germany

31 July – 11 August, 2018

© 2019 The authors and IOS Press.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means, without prior written permission from the publisher.

ISBN 978-1-61499-976-8 (print)

ISBN 978-1-61499-977-5 (online)

Publisher

IOS Press BV

Nieuwe Hemweg 6B

1013 BG Amsterdam

Netherlands

fax: +31 20 687 0019

e-mail: order@iospress.nl

For book sales in the USA and Canada:

IOS Press, Inc.

6751 Tepper Drive

Clifton, VA 20124

USA

Tel.: +1 703 830 6300

Fax: +1 703 830 2300

sales@iospress.com

LEGAL NOTICE

The author(s) of this publication is/are solely responsible for its content. This

publication does not reflect the opinion of the publisher. The publisher cannot be held

liable for any loss or damage that may occur because of this publication.

PRINTED IN THE NETHERLANDS

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Almost all technical systems are nowadays in large part software systems
themselves or interface with software systems. The ubiquity of software systems
requires them not to harm their environment (safety); and at the same time makes
them vulnerable to security attacks with potentially considerable economic, po-
litical, and physical damage. Better understanding security and safety; improving
the general quality of complex software systems (cyber defense and new technolo-
gies to support the construction of information technology infrastructure) and the
respective development processes and technologies is a crucial challenge for the
functioning of society.

Security and safety, or reliability, both are essential facets of the trustworthi-
ness of modern cyber-physical systems. Cyber-physical systems more and more
tightly combine and coordinate subsystems consisting of both computational
and physical elements. Such systems become indispensable in the domains of
aerospace, automotive, industry automation, and consumer appliances. Protect-
ing data within these systems from attacks by external attackers (security), and
protecting the environment from the misbehavior of these systems (safety) are
two subjects traditionally considered separate. However, a closer look reveals that
the techniques for construction and analysis of software-based systems used in
both security and safety are not necessarily fundamentally different.

Along these lines, the 2018 Marktoberdorf summer school on software engi-
neering, the 39th of its kind, was concerned with engineering dependable software
systems.

JOHN BARAS lectured on Formal Methods and Toolsuites for CPS Security,
Safety and Verification.

In these five lectures he presented a general rigorous methodology for model-
based systems engineering for cyber-physical systems (CPS), which uses in several
key steps traditional and novel formal methods, and more specialized applications
and deeper results in several areas.

He first presented a rigorous MBSE methodology, framework and tool-suites
for CPS. Advances in Information Technology have enabled the design of complex
engineered systems, with large number of heterogeneous components and capable
of multiple complex functions, leading to the ubiquitous CPS. He then went on
to present several methods addressing the key problem of motion planning and
controls with safety and temporal constraints. He described the strengths and
weaknesses of each method and provide explicit application examples, and em-
phasized the key challenge of developing an integrated framework for handling
finite temporal and finite space tolerances (requirements, constraints). Finally, he
presented several detailed vignettes in: Security and Trust in Networked Systems,
Automotive CPS, Stable Path Routing in MANET, Composable and Assured
Autonomy. Professor Baras introduced novel formal methods employing various

v

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

partial ordered semirings, which he used for modeling and evaluating trust and
for analyzing multi-metric problems on networks and graphs (multigraphs). He
showed an example linking the MBSE methodology to hardware design for auto-
motive controllers. He discussed the challenge and need for composable security
and described some initial steps towards achieving this goal.

PATRICK COUSOT lectured on Abstract Interpretation.
He defined the structural rule-based and then fixpoint prefix trace semantics

of a simple subset of C. He defined properties, in particular program properties
and collecting semantics. Professor Cousot then formalized the abstraction and
approximation of program properties and how a structural rule-based/fixpoint
abstract semantics can be derived from the collecting semantics by calcula-
tional design. He showed that verification methods and program logics are (non-
computable) abstractions of the program collecting semantics. Then, he intro-
duced a few classical effectively computable abstractions of numerical properties
of programs and discussed industrial static analysis applications. Finally, he intro-
duced a few abstractions of symbolic properties of programs and discuss opened
problems. He concluded by a list of formal methods that can be formalized as
abstract interpretations.

VIJAY GANESH lectured on SAT and SMT Solvers: A Foundational Per-
spective.

Over the last two decades, software engineering (broadly construed to include
verification, testing, analysis, synthesis, security) has witnessed a silent revolution
in the form of SAT and SMT solvers. These tools are now integral to many
analysis, synthesis, verification, and testing approaches. In his lectures, Professor
Ganesh traced the important technical developments that underpin SAT and SMT
solver technology, provided a detailed explanation of how they work, provided a
proof complexity-theoretic view of solvers as proof systems, and described how
users can get the most out of these powerful tools.

SUMIT GULWANI lectured on Programming by Examples.
Programming by Examples (PBE) involves synthesizing intended programs in

an underlying domain-specific language (DSL) from example-based specifications.
PBE is set to revolutionize the programming experience for both developers and
end users. It can provide a 10-100x productivity increase for developers in some
task domains, and can enable computer users, 99% of whom are non-programmers,
to create small scripts to automate repetitive tasks. Two killer applications for
this technology include data wrangling (an activity where data scientists today
spend 80% time) and code refactoring (an activity where developers spend up to
40% time in a typical application migration scenario).

Dr. Gulwani discussed some principles behind designing useful DSLs for pro-
gram synthesis. A key technical challenge in PBE is to search for programs in the
underlying DSL that are consistent with the examples provided by the user. He
discussed a divide-and-conquer based search paradigm that inductively reduces
the problem of synthesizing a program with a certain top-level operator to sim-
pler synthesis problems over its sub-programs by leveraging the operator’s inverse

vi

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

semantics. Another challenge in PBE is to resolve the ambiguity in the example-
based specification. He discussed two complementary approaches: (a) ranking
techniques that can pick an intended program from among those that satisfy the
specification, and (b) active-learning based user interaction models. The various
concepts were illustrated using Flash Fill, FlashExtract, and FlashRelate—PBE
technologies for data manipulation domains. The Microsoft PROSE SDK allows
easy construction of such technologies. He did a hands-on exercise that involved
building a synthesizer for a small part of the Flash Fill DSL using the PROSE
framework.

ARIE GURFINKEL lectured on Algorithmic Logic-based Verification.
Developing an automated program verifier is an extremely difficult task. By

its very nature, a verifier shares many of the complexities of an optimizing com-
piler and of an efficient automated theorem prover. From the compiler perspective,
the issues include idiomatic syntax, parsing, intermediate representation, static
analysis, and equivalence preserving program transformations. From the theorem
proving perspective, the issues include verification logic, verification condition
generation, synthesizes of sufficient inductive invariants, deciding satisfiability, in-
terpolation, and consequence generation. Luckily, the cores of both compilers and
theorem provers are well understood, well-defined, and readily available. In these
lectures, Professor Gurfinkel examined how to build a state-of-the-art program
verifier by re-using much of existing compilers and SMT-solvers. The lectures were
based on the SeaHorn verification framework developed in collaboration between
University of Waterloo and SRI International.

JOSEPH HALPERN lectured on “An Epistemic Foundation for Authentica-
tion Logics”, “A knowledge-based analysis of the blockchain protocol,” and finally
“Knowledge and common knowledge in a distributed environment.”

RUPAK MAJUMDAR lectured on Formal Methods for Software Controlling
the Physical World.

A cyber-physical system (CPS) integrates computation and communication
with the control of physical processes. CPSs are ubiquitous: for example, automo-
tive control systems, medical devices, energy grids, etc. are all examples of CPSs.
An important question is to come up with a cost effective yet high confidence
design and verification methodology for these systems. This is a very broad prob-
lem. In this sequence of lectures, Professor Majumdar focused on one particular
aspect: design of reactive controllers for CPSs from declarative specifications. In
particular, he described the basis of a control design technique called abstraction-
based control design (ABCD). In ABCD, one abstracts a continuous-state, time-
sampled dynamical system into a finite 2-person game and uses reactive synthesis
algorithms from finite-state games. A strategy extracted from the finite game can
be refined to a controller for the original system. He described the basics of reac-
tive synthesis, starting with basic algorithms for safety and reachability games,
and going on to describing general algorithms using the mu-calculus, showing how
abstraction works, and how ABCD can be optimized using multi-level abstrac-

vii

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

tions. Along the way, he showed connections to foundational questions in logic
and automata theory.

PETER MÜLLER lectured on Building Deductive Program Verifiers.
Deductive program verifiers attempt to construct a proof that a given pro-

gram satisfies a given specification. Their implementations reflect the semantics of
the programming language and the specification language, and often include elab-
orate proof search strategies to automate verification. Each of these components
is intricate, which makes building a verifier from scratch complex and costly.

In this lecture series, Professor Müller presented an approach to build pro-
gram verifiers as a sequence of translations from the source language and spec-
ification via intermediate languages down to a logic for which automatic solvers
exist. This architecture reduces the overall complexity by dividing the verifica-
tion process into simpler, well-defined tasks, and enables the reuse of essential
elements of a program verifier such as parts of the proof search, specification in-
ference, and counterexample generation. He introduced intermediate verification
languages and demonstrate how they can encode interesting verification problems.

CATHERINE MEADOWS lectured on Maude-NPA and Formal Analysis of
Cryptographic Protocols With Equational Theories.

Formal analysis of cryptographic protocols has been one of the most successful
applications of formal methods to security. It has played a prominent part in the
development and validation of security standards, shown most recently by use
of formal methods in the analysis of TLS 1.3 at the invitation of the TLS 1.3
developers.

One long-standing problem in the analysis of cryptographic protocols is rea-
soning about cryptosystems that satisfy equational properties, such as Diffie-
Hellman and exclusive-or. In these cases the equational properties are necessary
both to understand potential vulnerabilities, and to correctly represent the ac-
tions of the protocol. However, such equational properties can be difficult to in-
corporate so that the analysis is both tractable and sound. This is especially the
case when the properties include associative-commutative rules. The Maude-NRL
Protocol Analyzer (Maude-NPA) is a tool that takes a systematic approach to
reasoning about protocols that rely on such properties, and it has had a major
influence on work in the field.

This course consisted of two parts: an introduction to formal cryptographic
protocol analysis, with emphasis on reasoning about equational properties, and
an in-depth presentation on the Maude-NPA cryptographic protocol analysis tool,
showing the theoretical and heuristic approaches it applies to reasoning about
equational properties.

ANNABELLE MCIVER lectured on Qualitative and quantitative informa-
tion flow with applications to security.

In this series, she described how to use abstraction and refinement to rea-
son about confidentiality properties in sequential programs. First, a simple model

viii

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

based on Kripke structures was used to give a qualitative semantics to determine
whether secret information is leaked inadvertently; those ideas were then gener-
alised to enable the quantitative analysis of how much any leaked information can
be used by an adversary.

Throughout the lectures the emphasis was on reasoning rules and the com-
parison of programs (and specifications) using a refinement order which maintains
both functional consistency as well as information flow properties. The approach
was illustrated by a number of well-known case studies drawn from the security
literature.

MARC POUZET lectured on Synchronous Programming of Cyber-physical
Systems.

Synchronous programming has enjoyed great success in the design and im-
plementation of the most critical control software, e.g., aircraft (fly-by-wire, en-
gine control, braking), railways (on board control, interlocking), nuclear plants
(control software). Many of these applications are developed with the language
SCADE, founded on pioneering work in Lustre, with key additions from Esterel
and Lucid Synchrone.

Lustre is a domain specific language for programming the block diagrams
that abound in engineering disciplines. It formalizes components as synchronous
functions over streams (infinite sequences) expressed by recursively defined sets
of dataflow equations. Models can be simulated and formally verified before being
automatically compiled into code guaranteed to execute in bounded time and
memory. This idea of ’model based design’, radical for the time, is today at the
heart of widely used industrial tools like Simulink.

This lecture presented the foundations of synchronous programming. Profes-
sor Pouzet came back to the origin of Lustre, its links with other stream language
and the interest of a synchronous interpretation. He presented its semantics and
modular compilation to software and show how it can be specified and verified
formally in an interactive theorem prover (Coq). The lecture explained how the
subtle mix of stream equations and hierarchical automata was designed and its
integration into SCADE. He showed how type theory can be applied to express
several safety properties and ensure a compilation into statically scheduled code
for execution in finite memory, and also how those type systems can be extended
for applications with multiple execution rates. Finally, he described the design, se-
mantics and implementation of Zélus, where discrete controllers can be composed
with continuous-time models of a physical environment.

ALEXANDER PRETSCHNER lectured on Accountability.
Accountability is the property of a system to help answer questions regard-

ing why specific events have happened. With accountability infrastructures in
place, identified reasons can be used to improve systems and to assign blame. Ac-
countability rests on two pillars, monitoring and causality analyses. In this series
of lectures, he focused on causality analyses and respective underlying models
and showed their wide applicability in computer science. He considered causality
analyses including spectrum-based fault localization, Granger causality analysis,
model-based diagnosis, and focused on SAT-based and ILP-based approaches to

ix

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

counterfactual reasoning on the grounds of Halpern and Pearls notion of actual
causality inference. Professor Pretschner also discussed the provenance of causal
models as fault trees, attack trees, and explicit acyclic equations.

We thank all the lecturers, the staff, and hosts in Marktoberdorf. Specifi-
cally, Traudl Fichtl was once again instrumental in organizing and running the
school. She helped make the 2018 Marktoberdorf summer school a most rewarding
experience, both academically and personally.

The Editors

x

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

xi

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Contents

Preface v

Group Photo xi

Formal Methods and Tool-Suites for CPS Security, Safety and Verification 1

John S. Baras

A Formal Introduction to Abstract Interpretation 9

Patrick Cousot

SAT and SMT Solvers: A Foundational Perspective 29

Vijay Ganesh

Programming by Examples: PL Meets ML 61

Sumit Gulwani and Prateek Jain

Automatic Program Verification with SEAHORN 83

Arie Gurfinkel and Jorge A. Navas

Using Epistemic Logic to Analyze Protocols 113

Joseph Y. Halpern

Abstraction-Based Control Design. Lecture Notes 117

Rupak Majumdar, Kaushik Mallik and Anne-Kathrin Schmuck

The Thousand-and-One Cryptographers 137

Annabelle McIver and Carroll Morgan

Maude-NPA and Formal Analysis of Protocols with Equational Theories 163

Catherine Meadows, Santiago Escobar and José Meseguer

Building Deductive Program Verifiers. Lecture Notes 189

Peter Müller

Clocks in Kahn Process Networks 207

Marc Pouzet

Efficient Checking of Actual Causality with SAT Solving 241

Amjad Ibrahim, Simon Rehwald and Alexander Pretschner

Subject Index 257

Author Index 259

xiii

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Formal Methods and Tool- uites for CPS

Security, Safety and Verification

JOHN S. BARAS

Institute for Systems Research and
Department of Electrical and Computer Engineering,

University of Maryland College Park, USA,
ACCESS Centre, Royal Institute of Technology (KTH), Stockholm, Sweden,

Institute for Advanced Study, Technical University of Munich (TUM), Germany

Abstract. We summarize the material presented in our five lectures at the 2018

Marktoberdorf International Summer Schools on Engineering Secure and Depend-

able Software Systems. In these five lectures we presented a general rigorous

methodology for model-based systems engineering for cyber-physical systems,

which uses in several key steps traditional and novel formal methods and more

specialized applications and deeper results in several areas.

Keywords. CPS, MBSE, validation, verification, reachability, semirings, composable

1. Introduction

Advances in Information Technology [1] have enabled the design of complex engineered

systems, with large number of heterogeneous components and capable of multiple com-

plex functions, leading to the ubiquitous cyber-physical systems (CPS). These advances

have, at the same time, increased the capabilities of such systems and have increased

their complexity to such an extent that systematic design towards predictable perfor-

mance is extremely challenging, if not infeasible with current methodologies and tools.

These rapidly expanding advances create tremendous opportunities for novel software

systems use as both system components as well as design-manufacturing-operation tools,

and consequently the need for developing novel formal methods for testing-validation-

verification. The need to address both the cyber and the physical components leads to a

critical need for new formal models beyond the current ones.

We summarize the material presented in our five lectures at the 2018 Marktoberdorf

International Summer Schools on Engineering Secure and Dependable Software Sys-

tems. In these five lectures we presented a general rigorous methodology for model-based

systems engineering for cyber-physical systems, which uses in several key steps tradi-

tional and novel formal methods and more specialized applications and deeper results in

several areas.

The presentations of our five lectures are available from: https://drive.google.

com/drive/folders/1J6tWP5C7s7JTob_FS2S_IO-KFV2A_51U. We refer to the ref-

erences provided with this summary, for the detailed technical description of the meth-

S

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-1

1

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://drive.google.com/drive/folders/1J6tWP5C7s7JTob_FS2S_IO-KFV2A_51U
https://drive.google.com/drive/folders/1J6tWP5C7s7JTob_FS2S_IO-KFV2A_51U

ods and results presented. The papers and presentations cited are available from http:

//dev-baras.pantheonsite.io (or from the publishers sites).

2. Model-Based Systems Engineering for Cyber-Physical Systems

In Lectures 1 and 2 we presented a rigorous Model-Based Systems Engineering (MBSE)

methodology, framework and tool-suites for Cyber-Physical Systems (CPS) [2–4]. The

methodology and framework we presented [2–4] is aimed at catalyzing the development

and use of interoperable methods and tools. The fundamental components in this MBSE

methodology and framework and the associated challenges are: Architectures, Integrated

Modeling Hubs, Development of System Structure and Behavior Formal Models, Allo-

cation of Behavior to Structure, Tradeoff Analysis and Design Space Exploration, Re-

quirements Management, Testing-Validation- Verification [3]. We emphasized the im-

portance of linking multiple physics and cyber models through metamodeling, the run-

time interaction between design space exploration and system models, and the current

lack of integrated modeling and testing of requirements via formal models of various

kinds [2–4].

We first discussed the “two faces” of Information Technology (IT) impact on En-

gineering, following [1]. This presentation was used to frame the two boundaries of the

problem of synthesizing complex systems in an integrated and systematic method. The

first, which we call the “existence proof”, is the way biological systems are synthesized

following their genetic programming. The second is the current engineering achievement

of synthesizing VLSI chips by first designing them using an integrated software tool-

suite and then sending the program, that describes the design and manufacturing of the

chip, to a foundry, where specialized machines read and understand the instructions of

the program and produce the chip. The gap between these two boundaries is the subject

of intense research in various technological fields and a major engineering challenge.

We then described progress made since the appearance of [1] including the design and

manufacturing of aircraft (e.g. Boeing 777 to Boeing 787), the emergence of CPS, the

ubiquitous social networks over the Web, renewable energy and smart grids, fast and in-

expensive human genome generation, autonomous and connected cars, cloud computing,

Internet of Things, Industrial internet, Industrie 4.0, crowd sourcing and manufacturing,

smart homes, smart cities, wireless and networked embedded systems, the emergence of

a network immersed world.

Our research identified the following fundamental challenges for the modeling, de-

sign, synthesis and manufacturing of CPS:

• Framework for developing cross-domain integrated modeling hubs for CPS;

• Framework for linking these integrated modeling hubs with tradeoff analysis

methods and tools for design space exploration;

• Framework of linking these integrated synthesis environments with databases of
modular component and process (manufacturing) models, backwards compatible

with legacy systems;

• Framework for translating textual requirements to mathematical representations

as constraints, rules, metrics involving both logical and numerical variables, allo-
cation of specifications to components, to enable automatic traceability and veri-
fication.

J.S. Baras / Formal Methods and Tool-Suites for CPS Security, Safety and Verification2

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://dev-baras.pantheonsite.io
http://dev-baras.pantheonsite.io

It is the last challenge that clearly identifies the need for development of various for-

mal models for representation of requirements and for their validation and verification.

It represents a rich new area for expanding the theme for foundamental and applied con-

tributions of the Marktoberdorf International Summer Schools on Engineering Secure
and Dependable Software Systems. Our MBSE methodology proposes such an integra-

tion via the use of various formal models for requirements ranging from timed automata

to timed Petri-Nets and several others, and the integration of model checking, contract

based design and automatic theorem proving [2–4].

Our MBSE methodology integrates SysML (as a system architectural language used

to describe the system structure and behavior [11–13, 19]), with Modelica (for multi-

physics modeling [14, 15]), with MATLAB (for control and signal processing compo-

nent modeling), and with various meta-modeling tools, most importantly the Functional

Mock-up Interface (FMI) standard [14, 15, 20]. Composability can be addressed either

via formal methods such as contract-based design [2–4] or via the inherently compos-

able models of port-Hamiltonian Systems [23]. Our methodology integrates the resulting

modeling hubs with design exploration tools that employ multi-criteria optimization and

constrained based reasoning in an integrated way [2–4,16]. We described applications of

our MBSE methodology to several important technological problems: power grids [5],

autonomous cars [22], aerospace [35–37], energy efficient buildings [10,21], sensor net-

works [9,18], communication networks [24–26], smart manufacturing [17], robotics [8],

unmanned air vehicles, health care [32–34], cyber-security [43,44,46,47,51], social net-

works [27], disease modeling and analysis [32–34].

We described the new fundamental challenges faced when we consider networked

CPS [28–31] and when incorporating humans as elements of such complex systems, a

subject of rapidly increasing importance in view of the “networked society”, the IoT,

and the “interconnected coevolving sociotechnical networks” paradigms. This descrip-

tion included the three layer interacting co-evolving multigraph model that we have de-

veloped [28], which consist of the collaboration network, the information network and

the communication network, represented by multi-graphs with nodes and links annotated

with weights that can be multivariable numeric, Boolean and even rule- based. The im-

portant problems of understanding the impact of the various topologies on performance

of distributed algorithms for inference and decision-making were discussed, including

our results on small world graphs and expanded graphs [28–31].

We described a novel formal method to control the complexity of design space ex-

ploration by grouping questions about related design variables that leads to provably

faster response to design queries by several orders of time scale [6, 7].

We closed Lectures 1 and 2 with a description of what is lacking, research challenges

and future promising research directions.

3. Motion Planning and Controls with Safety and Temporal Constraints

In Lectures 3 and 4, we presented several methods addressing the key problem of mo-

tion planning and controls with safety and temporal constraints. This is another technical

area that provides a rich set of challenges and opportunities for foundamental and ap-

plied contributions of the Marktoberdorf International Summer Schools on Engineering
Secure and Dependable Software Systems Lectures 3 and 4 were organized in the four

parts described below.

J.S. Baras / Formal Methods and Tool-Suites for CPS Security, Safety and Verification 3

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Part I: Reachable set based safety verification and control synthesis

I.1 Reachable set based verification [35–37]

I.2 Control synthesis using optimization [35–38]

Part II: Motion planning for temporal logics with finite time constraints

II.1 Mixed integer optimization based method [38, 39]

II.2 Timed automata based method [40]

Part III: Event Triggered Controller Synthesis for Dynamical Systems with Tem-

poral Logic Constraints [41]

Part IV: Event Triggered Feedback Control for Signal Temporal Logic Tasks [42]

We described the strengths and weaknesses of each method and provided explicit appli-

cation examples. We emphasized the key challenge of developing an integrated frame-

work for handling finite temporal and finite space tolerances (requirements, constraints).

4. Security and Trust in Networked Systems, Automotive CPS, Stable Path
Routing in MANET, Composable and Assured Autonomy

In Lecture 5 we present several detailed vignettes in: Security and Trust in Networked

Systems, Automotive CPS, Stable Path Routing in MANET, Composable and Assured

Autonomy. The lecture was organized in the four parts described below.

Part I: Security and Trust in Networks and Networked Systems [43–47, 50, 51]

Part II: Hardware Software Co-design for Automotive CPS using Architecture

Analysis and Design Language [52]

Part III: Distributed Topology Control for Stable Path Routing in Multi-Hop Wire-

less Networks [26, 48, 49]

Part IV: Composable and Assured Autonomy

We introduced novel formal methods employing various partial ordered semirings,

which we use for modeling and evaluating trust and for analyzing multi-metric prob-

lems on networks and graphs (multigraphs). We showed an example linking the MBSE

methodology to hardware design for automotive controllers. We discussed the challenge

and need for composable security and described some initial steps towards achieving this

goal.

References

[1] J. S. Baras, keynote lecture, inaugural White Symposium, Univ. of Maryland, 2003. http://www.isr.

umd.edu/files/JSB_White_Symposium_2003.

[2] J. S. Baras, inaugural lecture of Tage Erlander Guest Professorship at KTH,

Stockholm, 2014. https://www.youtube.com/watch?v=1Ubiue-nrCU, http://

www.kth.se/en/ees/omskolan/organisation/centra/access/newsandevents/

tageerlander-guest-professorship-2014-1.478484.

[3] J. S. Baras and M. A. Austin,“Development of a Framework for CPS Open Standards and Platforms”

ISR Techn. Report 2014-02, Univ. of Maryland 2014. http://www.google.com/url?sa=t&rct=

j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjzpd3IxJbNAhXoA8AKHTggDacQFggdMAA&url=

http%3A%2F%2Fdrum.lib.umd.edu%2Fbitstream%2F1903%2F15084%2F3%2FTR_2014-02.

pdf&usg=AFQjCNHHAlgJwcuhd_gi26tX7Q5P_1E5qg&sig2=w3WwdwPVlxzgU2HZvnrEkw.

J.S. Baras / Formal Methods and Tool-Suites for CPS Security, Safety and Verification4

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.isr.umd.edu/files/JSB_White_Symposium_2003
http://www.isr.umd.edu/files/JSB_White_Symposium_2003
https://www.youtube.com/watch?v=1Ubiue-nrCU
http://www.kth.se/en/ees/omskolan/organisation/centra/access/newsandevents/tageerlander-guest-professorship-2014-1.478484
http://www.kth.se/en/ees/omskolan/organisation/centra/access/newsandevents/tageerlander-guest-professorship-2014-1.478484
http://www.kth.se/en/ees/omskolan/organisation/centra/access/newsandevents/tageerlander-guest-professorship-2014-1.478484
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjzpd3IxJbNAhXoA8AKHTggDacQFggdMAA&url=http%3A%2F%2Fdrum.lib.umd.edu%2Fbitstream%2F1903%2F15084%2F3%2FTR_2014-02.pdf&usg=AFQjCNHHAlgJwcuhd_gi26tX7Q5P_1E5qg&sig2=w3WwdwPVlxzgU2HZvnrEkw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjzpd3IxJbNAhXoA8AKHTggDacQFggdMAA&url=http%3A%2F%2Fdrum.lib.umd.edu%2Fbitstream%2F1903%2F15084%2F3%2FTR_2014-02.pdf&usg=AFQjCNHHAlgJwcuhd_gi26tX7Q5P_1E5qg&sig2=w3WwdwPVlxzgU2HZvnrEkw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjzpd3IxJbNAhXoA8AKHTggDacQFggdMAA&url=http%3A%2F%2Fdrum.lib.umd.edu%2Fbitstream%2F1903%2F15084%2F3%2FTR_2014-02.pdf&usg=AFQjCNHHAlgJwcuhd_gi26tX7Q5P_1E5qg&sig2=w3WwdwPVlxzgU2HZvnrEkw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjzpd3IxJbNAhXoA8AKHTggDacQFggdMAA&url=http%3A%2F%2Fdrum.lib.umd.edu%2Fbitstream%2F1903%2F15084%2F3%2FTR_2014-02.pdf&usg=AFQjCNHHAlgJwcuhd_gi26tX7Q5P_1E5qg&sig2=w3WwdwPVlxzgU2HZvnrEkw

[4] Joint workshop, hosted by the LCCC Linnaeus Center of Lund University and the ACCESS Linnaeus

Center of KTH, on MBSE, May 4-6, 2015, Lund University, Lund Sweden. https://www.lccc.lth.

se/index.php?page=LCCC-ACCESS-2015-05, https://www.lccc.lth.se/index.php?page=

LCCC-ACCESS-2015-05-Program.

[5] D. Spyropoulos and J. S. Baras, “Extending Design Capabilities of SysML with Trade-off Analysis:

Electrical Microgid Case Study”, Proc. Conf. on Systems Engineering Research (CSER13), pp. 108-117,

2013.

[6] Y. Zhou, S. Yang, and J. S. Baras, “Compositional Analysis of Dynamic Bayesian Networks and Ap-

plications to Complex Dynamic System Decomposition”, Proceedings of the Conference on Systems

Engineering Research (CSER13), pp. 167-176, Atlanta, GA, March 19-22, 2013.

[7] S. Yang, B. Wang, and J. S. Baras, “Interactive Tree Decomposition Tool for Reducing System Analysis

Complexity”, Proc. Conf. on Systems Engineering Research (CSER13), pp. 138 147, March 19-22,

2013.

[8] Y. Zhou and J. S. Baras, “CPS Modeling Integration Hub and Design Space Exploration with Applica-

tions to Microrobotics”, Chapter in the Volume Control of Cyber-Physical Systems, D. C. Tarraf (ed.),

Lecture Notes in Control and Information Sciences 449, pp. 23-42, Springer 2013.

[9] B. Wang and J. S. Baras, “HybridSim: A Modeling and Co-simulation Toolchain for Cyber-Physical

Systems”, Proc. 17th IEEE/ACM International Symposium on Distributed Simulation and Real Time

Applications, pp. 33-40, Delft, Netherlands, Oct. 30 Nov. 1, 2013.

[10] D. R. Daily, “Trade-off Based Design and Implementation of Energy Efficiency Retrofits In Residential

Homes”, MS Thesis, MSSE Program, University of Maryland, College Park, MD, 2014.

[11] S. Balestrini-Robinson, D. F. Freeman and D. C. Browne, “An Object-oriented and Executable SysML

Framework for Rapid Model Development”, Procedia Computer Science, vol. 44, p. 424, 2015.

[12] No Magic Inc., “Cameo Systems Modeler”, No Magic, [Online]. Available: https://www.nomagic.

com/products/cameo-systems-modeler#intro.

[13] No Magic Inc., “Modeling SysML Diagrams”, No Magic, [Online]. Available: https://docs.

nomagic.com/display/SYSMLP182/Modeling+SysML+Diagrams.

[14] Modelica Association Project, “Functional Mock-up Interface for Model Exchange and Co-

Simulation”, 25 July 2014. [Online]. Available: https://svn.modelica.org/fmi/branches/

public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf.

[15] C. Paredis and A. Reichwein, “SysML-Modelica Integration”, Model-Based Systems Engineering Cen-

ter, Georgia Tech, [Online]. Available: http://www.mbsec.gatech.edu/research/projects/

active/sysml-modelica-integration.

[16] J. Hooker, Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfac-

tion: Combining Optimization and Constraint Satisfaction, Wiley-Interscience, 2000.

[17] D. Nau, M. Ball, J. Baras, A. Chowdhury, E. Lin, J. Meyer, R. Rajamani, J. Splain and V. Trichur,

“Generating and Evaluating Designs and Plans for Microwave Modules”, AI for Engineering Design,

Analysis and Manufacturing (AI-EDAM), Vol. 14, No. 4, pp. 289-304, September 2000.

[18] B. Wang and J. S. Baras, “Integrated Modeling and Simulation Framework for Wireless Sensor Net-

works”, Proc. 21st IEEE Intern. Conf. on Collaboration Technologies and Infrastructures (WETICE

2012- CoMetS track), pp. 268-273, Toulouse, France, June, 2012.

[19] No Magic Inc., “Simulation of SysML models”, No Magic Inc., [Online]. Available: https://docs.

nomagic.com/display/CST190/Simulation+of+SysML+models

[20] Dassault Systemes, “6.10.5 FMU Export from Simulink/ FMU Import into Simulink: The FMI Kit for

Simulink”, in Dymola Dynamic Modeling Laboratory User Manual - Volume 2, 2016, pp. 339-343.

[21] K. A. Cawasji and J. S. Baras, “SysML Executable Model of an Energy-Efficient House and Trade-Off

Analysis”, Proceedings 2018 IEEE Intern. Symp. on Systems Engineering, Rome, Italy, Oct. 1-3, 2018.

[22] S. Bansal, F. Alimardani, and J. S. Baras, “Model-Based Systems Engineering Applied to the Trajectory

Planning for Autonomous Vehicles”, Proceedings 2018 IEEE Intern. Symp. on Systems Engineering,

Rome, Italy, Oct. 1-3, 2018.

[23] A. Van Der Schaft and D. Jeltsema, Port-Hamiltonian Systems Theory: An Introductory Overview, Now

Publishers, 2014.

[24] J. S. Baras, V. Tabatabaee, P. Purkayastha and K. Somasundaram, “Component Based Performance

Modeling of Wireless Routing Protocols”, Proceedings IEEE ICC 2009 Ad Hoc and Sensor Networking

Symposium, pp.1-6, Dresden, Germany, June 14-18, 2009.

[25] E. Paraskevas and J. S. Baras, “Component Based Modeling of Routing Protocols for Mobile Ad Hoc

J.S. Baras / Formal Methods and Tool-Suites for CPS Security, Safety and Verification 5

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.lccc.lth.se/index.php?page=LCCC-ACCESS-2015-05
https://www.lccc.lth.se/index.php?page=LCCC-ACCESS-2015-05
https://www.lccc.lth.se/index.php?page=LCCC-ACCESS-2015-05-Program
https://www.lccc.lth.se/index.php?page=LCCC-ACCESS-2015-05-Program
https://www.nomagic.com/products/cameo-systems-modeler#intro
https://www.nomagic.com/products/cameo-systems-modeler#intro
https://docs.nomagic.com/display/SYSMLP182/Modeling+SysML+Diagrams
https://docs.nomagic.com/display/SYSMLP182/Modeling+SysML+Diagrams
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
http://www.mbsec.gatech.edu/research/projects/active/sysml-modelica-integration
http://www.mbsec.gatech.edu/research/projects/active/sysml-modelica-integration
https://docs.nomagic.com/display/CST190/Simulation+of+SysML+models
https://docs.nomagic.com/display/CST190/Simulation+of+SysML+models

Networks”, Proc. Conf. on Information Sciences and Systems, pp. 1-6, Baltimore, MD, March 18-20,

2015.

[26] K. Somasundaram, J. S. Baras, K. Jain and V. Tabatabaee , “Distributed Topology Control for Stable

Path Routing in Multi-hop Wireless Networks”, Proceedings 49th IEEE Conference on Decision and

Control (CDC 2010), pp. 2342-2347, Atlanta, Georgia, December 15-17, 2010.

[27] P. Gao, H. Miao, J.S. Baras and J. Golbeck, “STAR: Semiring Trust Inference for Trust - Aware Social

recommenders”, Proc. 10th ACM Conf. on Recommender Systems, Boston, MA, USA, September15-

19, 2016.

[28] J. S. Baras, “A Fresh Look at Network Science: Interdependent Multigraphs Models Inspired from Sta-

tistical Physics”, Proc. 6th Intern. Symposium on Communication, Control and Signal Processing, In-

vited Session, pp. 497-500, Athens, Greece, May 21-23, 2014.

[29] J. S. Baras and P. Hovareshti, “Effects of Topology in Networked Systems: Stochastic Methods and

Small Worlds”, Proc. 47th IEEE Conference on Decision and Control, pp. 2973-2978, Dec. 2008.

[30] A. Menon and J. S. Baras, “Expander Families as Information Patterns for Distributed Control of Ve-

hicle Platoons”, Proceedings 3rd IFAC Workshop on Distributed Estimation and Control in Networked

Systems (NecSys 2012), pp. 288-293, Santa Barbara, California, September 14-15, 2012.

[31] A. Menon, J. Baras, “A Distributed Learning Algorithm with Bit-valued Communications for Multi-

agent Welfare Optimization”, Proc. 52nd IEEE Conference on Decision and Control, pp. 2406-2411,

Dec. 2013.

[32] C. R. Kyrtsos and J. S. Baras, “Studying the role of APOE in Alzheimer’s Disease Pathogenesis using a

Systems Biology Model”, Journal of Bioinformatics and Computational Biology, Vol. 11, No. 5 (2013),

pp. 1342003-1 to 1342003-20, 2013.

[33] C. Kyrtsos and J. S. Baras, “Modeling the Role of the Glymphatic Pathway and Cerebral Blood Ves-

sel Properties in Alzheimer’s Disease Pathogenesis”, PLOS One Journal, pp. 1-20, October 8, 2015;

10(10):e0139574. doi: 10.1371/journal.pone.0139574. eCollection 2015.

[34] I. M. Katsipis and J. S. Baras, “A Model-Based System Engineering Framework for Healthcare Man-

agement with Application to Diabetes Mellitus”, Proc. 26th Intern. Conference on Software & Systems

Engineering and their Applications, Telecom ParsTech, Paris, May 2015.

[35] Y. Zhou and J. S. Baras, “Reachable Set Approach to Collision Avoidance for UAVs”, Proceedings of

54th IEEE Conference on Decision and Control, Osaka, Japan, December 15-18, 2015.

[36] Y. Zhou, A. Raghavan and J. S. Baras, “Time Varying Control Set Design for UAV Collision Avoidance

Using Reachable Tubes”, Proceedings of 55th IEEE Conference on Decision and Control, Las Vegas,

USA, 2016.

[37] Y. Zhou, J. Moschler, and J. S. Baras, “A System Engineering Approach to Collaborative Coordination

of UASs in the NAS with Safety Guarantees”, Proceedings of the 2013 Integrated Communications

Navigation and Surveillance Conference (ICNS), pp. 1-12, Herndon, VA, April 8-10, 2014.

[38] D. Maity and J. S. Baras “Motion Planning in Dynamic Environment with Bounded Time Temporal

Logic Specifications”, Proceeding of the 23rd Mediterranean Conference on Control and Automoation

(MED 2015), pp. 973-979, Torremolinos, Spain, June 16-19, 2015.

[39] Y. Zhou, D. Maity and J. S. Baras, “Optimal Mission Planner with Timed Temporal Logic Constraints”,

Proceedings of 2015 European Control Conference, Linz, Austria, July 15-17,2015.

[40] Y. Zhou, D. Maity, and J. S Baras. “Timed Automata Approach for Motion Planning Using Metric

Interval Temporal Logic”, Proceedings of 2016 European Control Conference, Aalborg Denmark, June

29 - July 1, 2016.

[41] D. Maity and J.S. Baras, “Event-Triggered Controller Synthesis for Dynamical Systems with Temporal

Logic Constraints”, Proceedings 2018 American Control Conference, Milwaukee, USA, June 2729,

2018.

[42] L. Lindemann, D. Maity, J. Baras, and D. Dimarogonas, “ Event-Triggered Feedback Control for Signal

Temporal Logic Tasks,” Proceedings 58th IEEE Conference on Decision and Control, Dec. 2018

[43] J.S. Baras and G. Theodorakopoulos, Path Problems in Networks, Synthesis Lectures on Communication

Networks, Morgan & Claypool Publishers, February 2010.

[44] G. Theodorakopoulos and J. S. Baras, “On Trust Models and Trust Evaluation Metrics for Ad-Hoc

Networks”, Journal of Selected Areas in Communications, Security in Wireless Ad-Hoc Networks, Vol.

24, Number 2, pp. 318-328, February 2006. [2007, IEEE Communications Society Leonard G. Abraham

Prize]

[45] G. Theodorakopoulos and J. S. Baras, “Linear Iterations on Ordered Semirings for Trust Metric Com-

J.S. Baras / Formal Methods and Tool-Suites for CPS Security, Safety and Verification6

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

putation and Attack Resiliency Evaluation”, Proc. 17th International Symposium on Mathematical Net-

works and Systems, pp. 509-514, Kyoto, Japan, July 24-28, 2006.

[46] K.K. Somasundaram and J.S. Baras, “Performance Improvements in Distributed Estimation and Fusion

Induced by a Trusted Core”, Proceedings of the 12th International Conference on Information Fusion-

Fusion 2009, pp.1942-1949, Seattle, Washington, USA, July 6-9, 2009.

[47] I. Matei, T. Jiang and J. S. Baras, “A Trust Based Distributed Kalman Filtering Approach for Mode

Estimation in Power Systems”, Proceeding of the First Workshop on Secure Control Systems (SCS) as

part of CPSWeek 2010, pp. 1-6, Stockholm, Sweden, April 12, 2010.

[48] K. Somasundaram and J. S. Baras, “Solving Multi-metric Network Problems: An Interplay Between

Idempotent Semiring Rules”, J. of Linear Algebra and Applications Special Issue on the occasion of 1st

Montreal Workshop on Idempotent and Tropical Mathematics, Volume 435, Issue 7, pp. 14941512, 1

October 2011.

[49] K. K. Somasundaram and J. S. Baras, “Semiring Pruning for Information Dissemination in Mobile Ad

Hoc Networks”, Proceedings of The First International Conference on Networks & Communications

(NetCoM -2009), pp. 319 325, Chennai, India, December 27-29, 2009.

[50] K. Somasundaram and J. S. Baras, “Path Optimization and Trusted Routing in MANET: An Interplay

Between Ordered Semirings,” Proceedings of The Second International Conference on Networks &

Communications (NetCoM - 2010), pp. 88-98, Chennai, India, December 27-29, 2010.

[51] E. Paraskevas, T. Jiang, P. Purkayastha and J. S. Baras, “Trust-Aware Network Utility Optimization in

Multihop Wireless Networks with Delay Constraints”, Proceedings of the 24th Mediterranean Confer-

ence on Control and Automation, pp. 593-598, Athens, Greece, June 21-24, 2016.

[52] Y. Zhou, J. S. Baras, S. Wang, “Hardware Software Co-design for Automotive CPS using Architecture

Analysis and Design Language”, Proceedings of the 5th Analytic Virtual Integration of Cyber-Physical

Systems Workshop (AVICPS 2014), Rome, Italy, December 2, 2014.

J.S. Baras / Formal Methods and Tool-Suites for CPS Security, Safety and Verification 7

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

A Formal Introduction to
Abstract Interpretation

Patrick COUSOT

Courant Institute of mathematical Sciences, New York University

Abstract. We introduce basic concepts of abstract interpretation using

the example of arithmetic and boolean expression semantics, properties,

verification, static analysis, and their formal calculational design.

Keywords. Semantics, Property, Verification, Proof method, Static
analysis, Calculational design.

1. Introduction

Abstract interpretation [1,2,3] aims at formalizing reasonings on the semantics
of programs and automating the inference of properties of such semantics. The
very basic concepts of abstract interpretation are illustrated using arithmetic and
boolean expressions. We define their syntax, semantics, properties, and formally
design static analyses of expressions by calculus.

2. The rule of signs

The Indian mathematician and astronomer Brahmagupta (born c. 598, died after
665) was the first to give rules to compute with zero and invented the rule of signs
[4, page 151]. Verses 18.30–35 of his Brāhma-sphu.t-a-siddhānta state

[The sum] of two positives is positive, of two negatives negative; of a positive
and a negative [the sum] is their difference; if they are equal it is zero. The
sum of a negative and zero is negative, [that] of a positive and zero positive,
[and that] of two zeros zero.

. . .

A negative minus zero is negative, a positive [minus zero] positive; zero [minus
zero] is zero. When a positive is to be subtracted from a negative or a negative
from a positive, then it is to be added.

The product of a negative and a positive is negative, of two negatives positive,
and of positives positive; the product of zero and a negative, of zero and a
positive, or of two zeros is zero.

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-9

9

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Brahmagupta

A positive divided by a positive or a negative divided by a negative is positive;
a zero divided by a zero is zero1; a positive divided by a negative is negative;
a negative divided by a positive is [also] negative.

A negative or a positive divided by zero has that [zero] as its divisor, or zero
divided by a negative or a positive [has that negative or positive as its divisor].
The square of a negative or of a positive is positive; [the square] of zero is
zero.

Following the pseudo-evaluation idea of Peter Naur in compilation [5,6],
Michel Sintzoff [7] postulates the sign analysis in the following way:

“a × a + b × b yields always the object “pos” when a and b are the objects
“pos” or “neg”, and when the valuation is defined as follows :

pos+pos = pos pos × pos = pos

pos+neg = pos,neg pos × neg = neg

neg+pos = pos,neg neq × pos = neg

neg+neg = neg neg × neg = pos

V(p+q) = V(p)+V(q) V(p × q) = V(p) × V(q)

V(0) = V(1) = . . . = pos

V(-1) = V(-2) = . . . = neg

The valuation of a× a+ b× b yields “pos” by the following computation :

V(a) = pos,neg V(b) = pos,neg

V(a× a) = pos × pos, neg × neg V(b× b) = pos × pos, neg × neg

= pos,pos = pos = pos,pos = pos

V(a× a+ b× b) = V(a× a)+V(b× b) = pos+pos = pos”

Observe that V(0×-1) = V(0)×V(-1) = pos×neg = neg while V(0×-1) = V(0)
= pos. The error follows from an unsound handling of the abstraction V(0) of 0
into pos. The correct rule should be neq × pos = neg,pos which is less precise
than Brahmagupta’s rule of signs which singles 0 out.

Our objective is to show that such abstract interpretations of the seman-
tics of expressions can be designed formally, without error, by machine-checkable
calculational design.

3. Sign analysis of iterative programs

The rule of signs generalizes to programs. For example the sign of x in
x = 0; while (...) { x = x+1 }

(where the iteration condition (...) is ignored) can be determined as follows:

1This was Brahmagupta’s only error, 0
0
is undefined.

P. Cousot / A Formal Introduction to Abstract Interpretation10

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

• After zero iteration, when entering the loop, if ever, x = 0;
• After one iteration, the sign of x is zero, 1 is positive, so the sum x+1 of
zero and positive is positive;

• For the basis, we have shown that after zero or one iteration, the sign of x
is zero (at iteration 0) or positive (at iteration 1) that is positive after at
most 1 iteration;

• For the induction step, if after at most n � 0 iterations, the sign of x is
positive, then 1 is positive, so the sum x+1 of positive and positive is positive
after the next iteration;

• After at most n+1 iterations, x is positive (at the previous n � 0 iterations)
or positive (at the n+ 1-th iteration) then x is positive after at most n+ 1
iterations;

• By recurrence on the number of iterations in the loop, x is positive in the
loop.

4. Sign abstraction, informally

The abstraction is that you do not (always) need to know the absolute value of
the arguments to know the sign of the result of an operation. This is sometimes
precise (for example for the multiplication) but can be imprecise (for example
the sign of the sum of a positive and a negative is unknown when ignoring the
absolute value of the arguments). This is nevertheless useful in practice if you
know what to do when you dont know the sign. For example, a compiler will
not suppress the lower bound check when accessing an array with an index not
known to be positive. Moreover, it is always possible to refine the abstraction to
get more precise results. For example Brahmagupta states [4, page 151]

[If] a smaller [positive] is to be subtracted from a larger positive, [the result] is
positive; [if] a smaller negative from a larger negative, [the result] is negative;
[if] a larger [negative or positive is to be subtracted] from a smaller [positive or
negative, the algebraic sign of] their difference is reversednegative [becomes]
positive and positive negative. . . .

Knowing an interval of the possible values is more precise than just knowing the
sign. Static interval analysis was introduced in [8,1].

Out objective is to formalize abstract interpretations of arithmetic expressions
(like the rule of signs) and to show how the abstraction can be formally calculated
out of the semantics of arithmetic expressions.

5. Syntax of expressions

Let us consider the language of expressions.

x, y, . . . ∈ V variables (V not empty)

A ∈ A ::= 1 | x | A1 - A2 arithmetic expressions

B ∈ B ::= A1 < A2 | B1 nand B2 boolean expressions

E ∈ E ::= A | B expressions

P. Cousot / A Formal Introduction to Abstract Interpretation 11

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Brahmagupta

This context-free grammar [9] specifies sets of program syntactic entities, the set

V of variables, A of arithmetic expressions, B of boolean expressions, and E of

either arithmetic or boolean expressions. The mathematical variables x, y, A, B,

and E denote arbitrary elements of these sets.

There syntax is defined by grammar rules such as A ::= 1 | x | A1 - A2
specifying that an arithmetic expression A is either the constant 1, a variable

x ∈ V, or the difference A1 - A2 of two arithmetic expressions A1 and A2. The set

V of variables is left unspecified (usually it is an identifier starting with a letter

followed by 0 or more letters or digits or special symbols like “ ”).

This grammar is ambiguous since 1 - 1 - 1 can either be understood as (1 -

1) - 1 or 1 - (1 - 1). We choose the first alternative so the binary operator is

left-associative. In boolean expressions, nand is left-associative and the arithmetic

operators have priority over boolean operators (so 1-1<1-1-1 is ((1-1)<((1-1)-1))

i.e. false ff).

6. Structural definitions

Structural definitions are generalizations of recursive definitions on naturals. As-

sume that we want to define a total function f ∈ E → S from the domain E to

the codomain S, where S is a set. A structural definition is a recursive definition

of the form

• f(1) and f(x) are defined to be constants (so f(1) � c1 and f(x) � cx where

c1, cx ∈ S)2;

• f(A1 - A2) and f(A1 < A2) are functions of f(A1) and f(A2) (so f(A1 - A2) �
F-(f(A1), f(A2))), f(A1 < A2) � F<(f(A1), f(A2));

• f(B1 nand B2) � Fnand(f(B1), f(B2)) where F-, F<, Fnand ∈ S × S → S.

For example vars ∈ E → ℘(V), the (possibly empty) set of variables vars�E� ∈
℘(V) occurring in expression E ∈ E, is well-defined as

vars�1� � ∅
vars�x� � {x}

vars�A1 - A2� � vars�A1� ∪ vars�A2�
vars�A1 < A2� � vars�A1� ∪ vars�A2�

vars�B1 nand B2� � vars�B1� ∪ vars�B2�

Structural definitions are the basis of denotational semantics introduced by Dana

Scott and Christopher Strachey [10] (and called compositional in this context).

2� is “is defined as”.

P. Cousot / A Formal Introduction to Abstract Interpretation12

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

7. Environments

In order to formally define the value of any expression e.g . 1 - 1 - 1 = −1, we
need to know the value of variables occurring in expressions e.g . x - 1 is 2 when
x = 3, x - 1 is 42 when x = 43, etc. We cannot enumerate the infinitely many
cases . . . , x = −1, x = 0, x = 1, So we use an environment ρ ∈ Ev where
Ev � V → Z that is a function ρ mapping a variable x to its value ρ(x) in the
set Z of all mathematical integers. By reasoning on the function ρ we can handle
infinitely many cases at once. For example, in environment ρ, the value of x - 1 is
ρ(x) − 1 where ρ(x) is the value of variable x, 1 is the mathematical integer one
and − is the mathematical difference.

8. Structural semantics of expressions

Given an environment ρ ∈ Ev � V → Z mapping variables x ∈ V to their value
ρ(x) ∈ Z, the value A�A�ρ ∈ Z of an arithmetic expression A ∈ A and B�B�ρ ∈ B
of a boolean expression B ∈ B is structurally defined as follows.

A�1�ρ � 1 (1)

A�x�ρ � ρ(x)

A�A1 - A2�ρ � A�A1�ρ−A�A2�ρ
B�A1 < A2�ρ � A�A1�ρ < A�A2�ρ

B�B1 nand B2�ρ � B�B1�ρ ↑ B�B2�ρ
S�E� � A�E� when E ∈ A

S�E� � B�E� when E ∈ B

1, x, -, <, nand, A, and B are syntactic objects e.g . strings of characters. 1, ρ,
−, <, and ↑ are mathematical objects. The recursive definition is structural i.e.
by induction on the syntax of expressions E (either arithmetic A or boolean B).
The semantics of complex expressions A�A� or B�B� is defined in function of
the semantics of simpler expressions until reaching basic cases A�1�ρ � 1 and
A�x�ρ � ρ(x) for which the value is constant. The “not and” or “nand” boolean
operator ↑ is defined by the following truth table

a tt tt ff ff

b tt ff tt ff

a ↑ b ff tt tt tt

All other logical operators (negation , implication ⇒, conjunction ∨, disjunction
∧) can be defined in terms of ↑.

The functions A and B are total functions meaning that they are well-defined
for all their arguments i.e. ∀B ∈ B . B�B� ∈ (V → Z) → B and similarly for
arithmetic expressions. The well-definedness property is therefore P = {B ∈ B |
B�B� ∈ (V → Z) → B}). It’s proof is by structural induction.

P. Cousot / A Formal Introduction to Abstract Interpretation 13

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

9. Proofs by structural induction

Proofs by structural induction are well suited for proving properties of structural
definitions.

Proofs by structural induction generalize proofs by recurrence. To prove that
a property P holds for all expressions E ∈ E, we prove that the property holds for
the basic cases 1 and x. Then assuming that the property holds for A1 and A2, we
prove that it holds for A1 - A2 and A1 < A2. Moreover, assuming the property holds
for boolean expressions B1 and B2, we prove that it also holds for B1 nand B2. We
conclude that E ⊆ P .

10. Properties

10.1. Properties are sets

Properties (e.g . “to be an even integer”, “to be an odd natural”) can be
understood as the set of mathematical objects that have this property (e.g .
2Z � {x ∈ Z | ∃k ∈ Z . x = 2k} and 2N + 1 = {x ∈ N | ∃k ∈ N . x = 2k + 1}).
So if P is a property then x ∈ P means x has property P while x ∈ P means x
does not have property P . For example 42 ∈ 2Z but 43 ∈ 2Z while the factorial !
is well-defined for naturals but not integers so that ! ∈ N → N and ! ∈ Z → Z.

10.2. Implication, weaker and stronger properties

When considering properties as sets, logical implication is subset inclusion ⊆. For
example “to be greater that 42 implies to be positive” is {x ∈ Z | x > 42} ⊆
{x ∈ Z | x � 0}. If P ⊆ Q then P is said to be stronger/more precise than Q
and Q is said to be weaker/less precise that P . Stronger/more precise properties
are satisfied by less elements while weaker/less precise properties are satisfied by
more elements. False ff i.e. ∅ is the strongest property while true tt i.e. Z is the
weakest property of integers.

11. Semantic properties of expressions

By expression property we might mean a property of the syntax of the expression
(such has A has 42 signs - more precisely A belongs to the set of expressions with
42 signs -). This is software metrics and metrology [11], of little interest to us.

Instead an expression property will be understood as a semantic property
that is a property of the semantics of expressions.

The semantics A�A� of an expression A maps environments ρ ∈ V → Z to a
values in Z, A�A� ∈ (V → Z) → Z. Following Section 10, a semantic property of
an expression is a set of possible semantics hence belongs to ℘((V → Z) → Z). If
P ∈ ℘((V → Z) → Z) is a semantic property, then A�A� ∈ P means that “A has
property P”.

P. Cousot / A Formal Introduction to Abstract Interpretation14

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Example 1 P = {b | ∀ρ ∈ V → Z . b(ρ) = tt} ∪ {b | ∀ρ ∈ V → Z . b(ρ) = ff} is the
semantic property of a boolean expression “to always evaluate to tt” or “to always
evaluate to ff”. For example x ∗ x+1 > 0 and x ∗ x < 0 have this property but not
x ∗ x > 0 since x ∗ x > 0 is sometimes true (when |ρ(x)| > 0) and sometimes false
(when |ρ(x)| = 0). So B�x ∗ x+ 1 > 0� ∈ P while B�x ∗ x > 0� ∈ P . �

Notice that semantic properties P of expressions are just a particular case of
property of expressions i.e. the property {E ∈ E | S�E� ∈ P}.

12. Collecting semantics of expressions

The collecting semantics of expressions is the strongest property of an expression.

C�A� � {A�A�} ∈ ℘((V → Z) → Z) (2)

Arithmetic expression A is said to have semantic property P ∈ ℘((V → Z) → Z)
if and only if A�A� ∈ P or equivalently C�A� ⊆ P so that C�A� is the strongest
property of A. The idea of collecting semantics was introduced in [1] (under the
qualifier “static semantics”) as a basis for proving the soundness of static analyzes.

The fact that (A�A� ∈ P) ⇔ (C�A� ⊆ P) may suggest that the concept
of collecting semantics is of poor interest. However, x ∈ S ⇔ {x} ⊆ S is the
basic idea for abstracting set theory into order/lattice theory [12] (which has the
equivalent of ⊆ but not of ∈).

Similarly, the collecting semantics of boolean expressions is

C�B� � {B�B�} ∈ ℘((V → Z) → B)

Again the collecting semantics C�E� of expressions E is just a particular case
of property of expressions i.e. the property {E′ ∈ E | S�E′� ∈ C�E�} i.e. all
expressions E′ that have the same semantics as E.

13. Proving semantic properties of expressions by structural induction

Semantic properties can be proved by structural induction on expressions. For
basic cases the proof is C�1� ⊆ P and C�x� ⊆ P . Assuming C�A1� ⊆ P and
C�A2� ⊆ P , we prove C�A1 - A2� ⊆ P and C�A1 < A2� ⊆ P . Assuming C�B1� ⊆ P
and C�B2� ⊆ P , we prove that for C�B1 nand B2� ⊆ P . By structural induction, we
conclude that E ⊆ {E ∈ E | C�E� ⊆ P} i.e. ∀E ∈ E . C�E� ⊆ P .

By structural induction on expressions, we have (we use Church’s lambda
notation λ x · e for the anonymous function mapping x to the value of expression
e for x [13] and λ x∈S · e to mean that the parameter x must belong to the set
S)

C�1� = {λ ρ∈ (V → Z) · 1}
C�x� = {λ ρ∈ (V → Z) · ρ(x)}

P. Cousot / A Formal Introduction to Abstract Interpretation 15

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

C�A1 - A2� = {λ ρ∈ (V → Z) · f1(ρ)− f2(ρ) | f1 ∈ C�A1� ∧ f2 ∈ C�A2�}
C�A1 < A2� = {λ ρ∈ (V → Z) · f1(ρ) < f2(ρ) | f1 ∈ C�A1� ∧ f2 ∈ C�A2�}

C�B1 nand B2� = {λ ρ∈ (V → Z) · f1(ρ) ↑ f2(ρ) | f1 ∈ C�B1� ∧ f2 ∈ C�B2�} �

For example C�x - x� = {λ ρ∈ (V → Z) · 0}.

14. Abstract sign properties

We let P± � {⊥±, <0,=0, >0,�0, =0,�0,�±} be the set of signs where <0 is
“strictly negative”, �0 is “positive or zero”, etc., =0 is “equal to zero”, =0 is
“different from zero” (i.e. “strictly negative or strictly positive”). �± (top) is
“unknown sign” (i.e. tt that is “negative, zero, or positive”), ⊥± (bottom) is
“no sign” (i.e. ff that is “neither negative, zero, nor positive”) be the abstract
properties of the sign abstract domain P±. For example, the sign of x at point �

of the conditional if (0==1) �x=1; is ⊥± since that point is unreachable.
The sign minus operation -± ∈ P± × P± → P± defines the sign s1 -± s2 of

x - y when x has sign s1 and y has sign s2.

s1 -± s2

s2
⊥± <0 =0 >0 �0 =0 �0 �±

s1 ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥±

<0 ⊥± �± <0 <0 �± �± <0 �±

=0 ⊥± >0 =0 <0 �0 =0 �0 �±

>0 ⊥± >0 >0 �± >0 �± �± �±

�0 ⊥± �± �0 <0 �± �± �0 �±

=0 ⊥± �± =0 �± �± �± �± �±

�0 ⊥± >0 �0 �± �0 �± �± �±

�± ⊥± �± �± �± �± �± �± �±

The sign operator -± is imprecise for difference (−). In contrast, the sign oper-
ator for multiplication of mathematical integers (×) is exact i.e. the sign of the
result is exactly known from the sign of the parameters. The above sign minus
operation -± is incorrect with machine integers because of overflows as found e.g .
in the int abs(int x) { return (x<0) ? -x : x; } method in JavaTM returning
a wrong value for Integer.Min VALUE.

15. Structural sign semantics of expressions

The sign of an expression depends upon the sign of its free variables. We represent
the sign of variables by a sign environment

±
ρ ∈ V → P± such that

±
ρ(x) is the

sign of variable x.

P. Cousot / A Formal Introduction to Abstract Interpretation16

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The sign semantics S±�A�±
ρ of an arithmetic expression A is the sign of the

expression value when evaluated with variables which sign is given by the sign
environment

±
ρ. For example, if

±
ρ(x) = >0 and

±
ρ(y) = �0 then S±�x - y�±

ρ = >0.
The structural sign semantics S±�A� ∈ (V → P±) → P± may be defined as

follows.

S±�1�±
ρ = >0

S±�x�±
ρ =

±
ρ(x)

S±�A1 - A2�±
ρ = (S±�A1�±

ρ) -± (S±�A2�±
ρ)

To be more precise, if any of the variables has sign ⊥±, meaning “the expression
is never evaluated” then the result is ⊥±, meaning “no result is ever returned”.
We say that signs are ⊥±-strict and define ↓± to enforce it3.

↓±[±ρ]s � (∃y ∈ V .
±
ρ(y) = ⊥± ? ⊥± : s)

S±�1�±
ρ = ↓±[±ρ](>0) (3)

S±�x�±
ρ = ↓±[±ρ](±

ρ(x))

S±�A1 - A2�±
ρ = (S±�A1�±

ρ) -± (S±�A2�±
ρ)

By structural induction on A, if ∃x ∈ V .
±
ρ(x) = ⊥± then S±�A�±

ρ = ⊥±.

16. Soundness

We would like to prove that the sign semantics S±�A� of an arithmetic expression
A is a weaker property than the collecting semantics C�A�. But S±�A� ∈ (V →
P±) → P± while C�A� ∈ ℘((V → Z) → Z) and the concrete semantic properties
in ℘((V → Z) → Z) are hardly comparable to the abstract sign properties in
(V → P±) → P±.

The solution if to express abstract properties in (V → P±) → P± as a concrete
property in ℘((V → Z) → Z). For that purpose we will define a concretization
function γ̈± ∈ ((V → P±) → P±) → (℘((V → Z) → Z)) mapping an abstract
property to an “equivalent” concrete property.

Then the concrete semantics implies the abstract semantics up to concretiza-
tion in that for all arithmetic expressions A,

C�A� ⊆ γ̈±(S±�A�).

17. Sign concretization

We define the sign concretization function γ̈± in several steps.

3The conditional expression is (tt ? a : b) = a and (ff ? a : b) = b.

P. Cousot / A Formal Introduction to Abstract Interpretation 17

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1. First we consider signs (in P±) as properties of integers (in ℘(Z)).

γ±(⊥±) � ∅ γ±(�0) � {z ∈ Z | z � 0} (4)

γ±(<0) � {z ∈ Z | z < 0} γ±(=0) � {z ∈ Z | z = 0}
γ±(=0) � {0} γ±(�0) � {z ∈ Z | z � 0}
γ±(>0) � {z ∈ Z | z > 0} γ±(�±) � Z

2. Then we consider sign environments
±
ρ ∈ V → P± as properties of environments

(in ℘(V → Z)). ±
ρ is the abstract property of all concrete environments ρ such

that for all variables x, the sign of ρ(x) is
±
ρ(x).

γ̇±(
±
ρ) � {ρ ∈ V → Z | ∀x ∈ V . ρ(x) ∈ γ±(

±
ρ(x))} (5)

Observe that if
±
ρ(x) = ⊥± for some x ∈ V then γ±(

±
ρ(x)) = ∅ so ∀x ∈ V .

ρ(x) ∈ γ±(
±
ρ(x)) is false proving that γ̇±(

±
ρ) = ∅. So the abstraction of false

(∅ ∈ ℘(V → Z)) is any abstract environment
±
ρ with at least one variable x

such that
±
ρ(x) = ⊥±.

3. Finally the concretization of abstract properties P ∈ (V → P±) → P± is the
concrete property γ̈±(P) ∈ ℘((V → Z) → Z) defined as

γ̈±(P) � {S ∈ (V → Z) → Z | ∀±
ρ ∈ V → P± . ∀ρ ∈ γ̇±(

±
ρ) . S(ρ) ∈ γ±(P (

±
ρ))} (6)

i.e. A has abstract property P , that is A�A� ∈ γ̈±(P), if and only if for all

environments ρ with signs
±
ρ, the value A�A�ρ of arithmetic expression A has

sign P (
±
ρ).

This is sound in that for all A ∈ A, C�A� ⊆ γ̈±(S±�A�).
Observe that in Section 2, the concretization of signs is defined as γ(pos) =

{z ∈ Z | z � 0} and γ(neg) = {z ∈ Z | z < 0}. A sound definition of the rule of
signs for multiplication × with this interpretation of the rule of sign would have
been pos× neg = pos, neg i.e. �±.

18. Sign lattice

Sign properties P± � {γ±(s) | s ∈ P±} of integers can be partially ordered by
⊆ (i.e. implication) as represented by the Hasse diagram below where the nodes
are the elements of P± and there is a bottom-up arrow from P ∈ P± to P ′ ∈ P±

when P � P ′ and no Q ∈ P± such that P � Q � P ′. So P ⊆ Q if and only if
there is a path from P to Q in the Hasse diagram.

The abstract signs P± are an isomorphic representation of P± as shown on
the right, where the isomorphism is γ± ∈ P± → P±.

P. Cousot / A Formal Introduction to Abstract Interpretation18

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

∅

{z | z < 0} {0} {z | z > 0}

{z | z � 0} {z | z �= 0} {z | z � 0}

Z

P± =

⊥±

<0 =0 >0

�0 �=0 �0

�±

P± =

Therefore, the abstract sign properties are partially ordered by �± defined by
s �± s′ if and only if γ±(s) ⊆ γ±(s′). An algorithm for the inclusion �± on P±

easily follows from this formal definition by case analysis.

Remark 1 Observe that -± is increasing in each of its parameters i.e. if s1 �± s′1
then s1 -± s2 �± s′1 -± s2 and s2 �± s′2 then s1 -± s2 �± s1 -± s′2 so that if s1 �± s′1
and s2 �± s′2 then s1 -± s2 �± s′1 -± s′2. �

19. Sign abstraction, formally

An integer property like 2N + 1 (odd naturals) can be over-approximated in P±

by sign properties {z ∈ Z | z > 0}, {z ∈ Z | z � 0}, and Z. The best over-
approximation of 2N + 1 in P± is {z ∈ Z | z > 0} since it is sound (in that
2N + 1 ⊆ {z ∈ Z | z > 0}) and the most precise/strongest (in that {z ∈ Z | z >
0} ⊆ {z ∈ Z | z � 0} ⊆ Z).

More generally, the best over-approximation of any integer property P ∈ ℘(Z)
in P± is given by the abstraction function

α±(P) � (P ⊆ ∅ ? ⊥± (7)

| P ⊆ {z | z < 0} ? <0

| P ⊆ {0} ? =0

| P ⊆ {z | z > 0} ? >0

| P ⊆ {z | z � 0} ? �0

| P ⊆ {z | z = 0} ? =0

| P ⊆ {z | z � 0} ? �0

: �±)

α±(P) is the best over-approximation of P ∈ ℘(Z) in P± since

• P ⊆ γ±(α±(P)) i.e. α±(P) is an over-approximation/sound abstraction of P ;

• if P ∈ P± and P ⊆ γ±(P) then α±(P) �± P i.e. α±(P) is more precise than
any other over-approximation/sound abstraction of P .

We have

P. Cousot / A Formal Introduction to Abstract Interpretation 19

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

s1 -± s2 = α±({x− y | x ∈ γ±(s1) ∧ y ∈ γ±(s2)}). (8)

We can use the soundness requirement (8) as a definition of s1 -± s2 � α±({x−y |
x ∈ γ±(s1)∧y ∈ γ±(s2)}) to design -± by calculus. We have to consider all possible
cases for s1 and s2. We show three cases �± -± ⊥± = ⊥±, <0 -± �0 = <0, and
�0 -± �0 = �±.

α±({x− y | x ∈ γ±(�±) ∧ y ∈ γ±(⊥±)})
= α±({x− y | x ∈ Z ∧ y ∈ ∅}) �def. γ±�
= α±(∅) = ⊥± �def. α±�

α±({x− y | x ∈ γ±(<0) ∧ y ∈ γ±(�0)})
= α±({x− y | x < 0 ∧ y � 0}) �def. γ±�
= α±({x | x < 0}) = <0 �def. α±�

α±({x− y | x ∈ γ±(�0) ∧ y ∈ γ±(�0)})
= α±({x− y | x � 0 ∧ y � 0}) �def. γ±�
= α±(Z) = �± �def. α±�
The calculations can be formally certified by a proof verifier [14,15].

One can also consider all cases s ∈ P± for s1 -± s2 for given s1, s2 when
needed, using a theorem prover to make the proof that {x− y | x ∈ γ±(s1) ∧ y ∈
γ±(s2)} ⊆ γ±(s), and returning �± when the proof fails (e.g . times out). Among
all possible answers s for which the theorem prover could make the proof, the
�±-minimal one is chosen, if any. Otherwise, an arbitrary �±-minimal one has to
be selected. This is called predicate abstraction [16].

The finite join �± on P± is defined such that �±{si | i ∈ Δ} � α±(
⋃{γ±(si) |

i ∈ Δ}). It follows that s�± s′ = {a | a ∈ {<0,=0, >0} ∧ (a �± s ∨ a �± s′)}
which directly yields an algorithm for computing �± on P±.

19.1. Abstraction of environment properties

The best abstraction of an environment property P ∈ ℘(V → Z) is

α̇±(P) � λ x∈V · α±({ρ(x) | ρ ∈ P}) (9)

i.e. for each variable x it is the sign of the set of values ρ(x) in all environments
ρ satisfying P .

Observe that α̇±(P) � ⊥̇± �λ x∈V · ⊥± while if
±
ρ(x) = ⊥± then γ̇±(

±
ρ) = ∅

so ∅ ∈ ℘(V → Z) has several possible abstractions in P± but ⊥̇± is the pointwise
�̇±-smallest of them.

19.2. Abstraction of semantic properties

The best abstraction of a semantic property P ∈ ℘((V → Z) → Z) is

α̈±(P) � λ
±
ρ ∈V → P± · α±({S(ρ) | S ∈ P ∧ ρ ∈ γ̇±(

±
ρ)}) (10)

P. Cousot / A Formal Introduction to Abstract Interpretation20

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

i.e. given a sign environment
±
ρ, α̈±(P)

±
ρ is the sign of the possible results S(ρ) of

the semantics S ∈ P with property P for all environments ρ with sign
±
ρ.

20. Characteristic property of abstraction/concretization

The abstraction/concretization functions 〈α±, γ±〉 are closely related in that for
all P ∈ ℘(Z) and P ∈ P±, they satisfy

α±(P) �± P ⇔ P ⊆ γ±(P)

Proof 1 By definition (4) of γ± and (7) of α±, we observe that

• γ± is increasing i.e. if s �± s′ then γ±(s) ⊆ γ±(s′);

• α± is increasing i.e. if P ⊆ P ′ then α±(P) �± α±(P ′); (11)

• if α±(P) = s then P ⊆ γ±(s) so γ± ◦ α± is extensive i.e. P ⊆ γ± ◦
α±(P);

(12)

• by case analysis, if P = γ±(s) then α±(P) = s so α± ◦ γ± is the identity
hence reductive i.e. α± ◦ γ±(s) �± s since �± is reflexive.

(13)

It follows that

α±(P) �± P

⇒ γ± ◦ α±(P) ⊆ γ±(P) �γ± is increasing and def. function composition ◦�
⇒ P ⊆ γ±(P) �γ± ◦ α± is extensive and ⊆ transitive�
⇒ α±(P) �± α± ◦ γ±(P) �α± is increasing and def. function composition ◦�
⇒ α±(P) �± P �α± ◦ γ± is reductive and def. function composition ◦� �

�

Similar results hold for 〈α̇±, γ̇±〉, and 〈α̈±, γ̈±〉, see (14).

21. Galois connection

The abstraction/concretization functions 〈α±, γ±〉 satisfy ∀P ∈ ℘(Z) . ∀P ∈ P± .
α±(P) �± P ⇔ P ⊆ γ±(P), which is the definition of a Galois connection, which

we write 〈℘(Z), ⊆〉 −−−−→←−−−−
α±

γ± 〈P±, �±〉.
More generally,

Definition 1 (Galois connection) a Galois connection 〈P, �〉 −−−→←−−−
α

γ 〈P, �〉 is such

that the concrete domain 〈P,�〉 and the abstract domain 〈P,�〉 are partial orders,
α ∈ P → P is the abstraction function, γ ∈ P → P is the concretization function,

and ∀P ∈ P . ∀P ∈ P . α(P) � P ⇔ P � γ(P). �

P. Cousot / A Formal Introduction to Abstract Interpretation 21

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

For example

〈℘(V → Z), ⊆〉 −−−−→←−−−−
α̇±

γ̇± 〈V → P±, �̇±〉 (14)

〈℘((V → Z) → Z), ⊆〉 −−−−→←−−−−
α̈±

γ̈± 〈(V → P±) → P±, �̇±〉.

Proof 2 For all P ∈ ℘(V → Z) and ±
ρ ∈ V → P±, we have

α̇±(P) �̇±
±
ρ

⇔ ∀x ∈ V . α̇±(P)x �±
±
ρ(x) �pointwise def. of �̇±�

⇔ ∀x ∈ V . α±({ρ(x) | ρ ∈ P}) �±
±
ρ(x) �def. (9) of α̇±�

⇔ ∀x ∈ V . {ρ(x) | ρ ∈ P} ⊆ γ±(
±
ρ(x)) �〈℘(Z), ⊆〉 −−−−→←−−−−

α±

γ± 〈P±, �±〉�
⇔ ∀x ∈ V . ∀ρ ∈ P . ρ(x) ∈ γ±(

±
ρ(x)) �def. ∈�

⇔ ∀ρ ∈ P . ∀x ∈ V . ρ(x) ∈ γ±(
±
ρ(x)) �def. ∀�

⇔ P ⊆ {ρ ∈ V → Z | ∀x ∈ V . ρ(x) ∈ γ±(
±
ρ(x))} �def. ⊆�

⇔ P ⊆ γ̇±(
±
ρ) �def. (5) of γ̇±, proving 〈℘(V → Z), ⊆〉 −−−−→←−−−−

α̇±

γ̇± 〈V → P±, �̇±〉�

For all P ∈ ℘((V → Z) → Z) and P ∈ (V → P±) → P±, we have

α̈±(P) �̇± P

⇔ ∀±
ρ ∈ V → P± . α̈±(P)

±
ρ �± P (

±
ρ) �pointwise def. of �̇±�

⇔ ∀±
ρ ∈ V → P± . α±({S(ρ) | S ∈ P ∧ ρ ∈ γ̇±(

±
ρ)}) �± P (

±
ρ) �def. (10) of α̈±�

⇔ ∀±
ρ ∈ V → P± . {S(ρ) | S ∈ P ∧ ρ ∈ γ̇±(

±
ρ)} ⊆ γ±(P (

±
ρ))

�〈℘(Z), ⊆〉 −−−−→←−−−−
α±

γ± 〈P±, �±〉�
⇔ ∀±

ρ ∈ V → P± . ∀S ∈ P . ∀ρ ∈ γ̇±(
±
ρ) . S(ρ) ∈ γ±(P (

±
ρ)) �def. ⊆�

⇔ ∀S ∈ P . ∀±
ρ ∈ V → P± . ∀ρ ∈ γ̇±(

±
ρ) . S(ρ) ∈ γ±(P (

±
ρ)) �def. ∀�

⇔ ∀S ∈ P . S ∈ γ̈±(P) �def. ∈ and (6) of γ̈±�
⇔ P ⊆ γ̈±(P)

�def. ⊆, proving 〈℘((V → Z) → Z), ⊆〉 −−−−→←−−−−
α̈±

γ̈± 〈(V → P±) → P±, �̇±〉.� �

22. Calculational design of the sign semantics of expressions

The soundness requirement in Section 17 is that ∀A ∈ A . C�A� ⊆ γ̈±(S±�A�). By
the Galois connection of (14), this is equivalent to α̈±(C�A�) �̇± S±�A�. There-
fore the sign semantics is a sign abstraction of the collecting semantics. It fol-
lows that we can design S±�A� by calculus, calculating α̈±(C�A�) using �̇±-over-
approximation to avoid all computations made in the concrete domain.

• We first consider the case when ∃x ∈ V .
±
ρ(x) = ⊥± so that γ̇±(

±
ρ) = ∅.

P. Cousot / A Formal Introduction to Abstract Interpretation22

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

α̈±(C�A�)±
ρ

= α±({S(ρ) | S ∈ C�A� ∧ ρ ∈ γ̇±(
±
ρ)}) �def. (10) of α̈±�

= α±({A�A�(ρ) | ρ ∈ γ̇±(
±
ρ)}) �def. (2) of C�A��

= α±(∅) �∃x ∈ V .
±
ρ(x) = ⊥± so that γ̇±(

±
ρ) = ∅�

= ⊥± �def. (7) of α±�
� S±�A�±

ρ

�in accordance with (3) such that, ∃x ∈ V .
±
ρ(x) = ⊥± implies

S±�A�±
ρ = ⊥±.�

• Then we consider the case when ∀x ∈ V .
±
ρ(x) = ⊥± so that γ̇±(

±
ρ) = ∅.

We proceed by structural induction on A.

For the basic case of a constant 1, we just apply the definitions.

α̈±(C�1�)±
ρ

= α±({S(ρ) | S ∈ C�1� ∧ ρ ∈ γ̇±(
±
ρ)}) �def. (10) of α̈±�

= α±({A�1�(ρ) | ρ ∈ γ̇±(
±
ρ)}) �def. (2) of C�1��

= α±({1}) �γ̇±(
±
ρ) is not empty and def. (1) of A�1��

= >0 �def. (7) of α±�
� S±�1�±

ρ �in accordance with (3) when ∀y ∈ V .
±
ρ(y) = ⊥±�

For the basic case of a variable x, we apply the definitions and then
simplify.

α̈±(C�x�)±
ρ

= α±({S(ρ) | S ∈ C�x� ∧ ρ ∈ γ̇±(
±
ρ)}) �def. (10) of α̈±�

= α±({A�x�(ρ) | ρ ∈ γ̇±(
±
ρ)}) �def. (2) of C�x��

= α±({ρ(x) | ρ ∈ γ̇±(
±
ρ)}) �def. (1) of A�x��

= α±({ρ(x) | ∀y ∈ V . ρ(y) ∈ γ±(
±
ρ(y))}) �def. (5) of γ̇±�

= α±({ρ(x) | ρ(x) ∈ γ±(
±
ρ(x))})

�since γ±(
±
ρ(y)) is not empty so for y = x, ρ(y) can be chosen

arbitrarily to satisfy ρ(y) ∈ γ±(
±
ρ(y))�

= α±({x | x ∈ γ±(
±
ρ(x))}) �letting x = ρ(x)�

= α±(γ±(
±
ρ(x))) �since S = {x | z ∈ S} for any set S�

=
±
ρ(x) �by (13), α± ◦ γ± is the identity�

� S±�x�±
ρ �in accordance with (3) when ∀y ∈ V .

±
ρ(y) = ⊥±�

For the inductive case of A1 - A2, we assume, by structural induction
hypothesis, that α̈±(C�A1�) �̇± S±�A1� and α̈±(C�A2�) �̇± S±�A2�
α̈±(C�A1 - A2�)±

ρ

P. Cousot / A Formal Introduction to Abstract Interpretation 23

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

= α±({S(ρ) | S ∈ C�A1 - A2� ∧ ρ ∈ γ̇±(
±
ρ)}) �def. (10) of α̈±�

= α±({A�A1 - A2�(ρ) | ρ ∈ γ̇±(
±
ρ)}) �def. (2) of C�A1 - A2��

= α±({A�A1�(ρ)−A�A2�(ρ) | ρ ∈ γ̇±(
±
ρ)}) �def. (1) of A�

�±α±({x − y | x ∈ {A�A1�(ρ′) | ρ′ ∈ γ̇±(
±
ρ)} ∧ y ∈ {A�A2�(ρ′′) | ρ′′ ∈

γ̇±(
±
ρ)}}
�{f(ρ)−g(ρ) | ρ ∈ R} ⊆ {x−y | x ∈ {f(ρ′) | ρ′ ∈ R}∧y ∈ {g(ρ′′) |
ρ′′ ∈ R}} and α± is increasing by (11).

This over-approximation allows for A1 and A2 to be evaluated
in the concrete with different environments ρ′ and ρ′′ with the
same sign of variables but possibly different values of variables.
This accounts for the fact that the rule of signs does not take re-
lationships between values of variables into account. For example
the sign of x - x is not =0 in general.�

�±α±({x−y | x ∈ γ±(α±({A�A1�(ρ) | ρ ∈ γ̇±(
±
ρ)})∧y ∈ γ±(α±({A�A2�(ρ) |

ρ ∈ γ̇±(
±
ρ)})})

�{x−y | x ∈ P∧y ∈ Q} ⊆ {x−y | x ∈ γ±(α±(P))∧y ∈ γ±(α±(Q))}
since γ± ◦ α± is extensive by (12) and α± is increasing by (11).

This over-approximation allows for the evaluation of the sign
to be performed in the abstract with -± instead of the concrete.�

= α±({A�A1�(ρ) | ρ ∈ γ̇±(
±
ρ)}) -± α±({A�A2�(ρ) | ρ ∈ γ̇±(

±
ρ)})

�s1 -± s2 = α±({x− y | x ∈ γ±(s1) ∧ y ∈ γ±(s2)}) by (8)�
= α±({S(ρ) | S ∈ C�A1� ∧ ρ ∈ γ̇±(

±
ρ)}) -± α±({S(ρ) | S ∈ C�A2� ∧ ρ ∈

γ̇±(
±
ρ)}) �def. (2) of C���

= α̈±(C�A1�)±
ρ -± α̈±(C�A2�)±

ρ �def. (10) of α̈±�
= α̈±(C�A1�)±

ρ -± α̈±(C�A2�)±
ρ �def. (10) of α̈±�

�± (S±�A1�±
ρ) -± (S±�A2�±

ρ)

�induction hypothesis and -± is increasing in both parameters by
Remark 1�

� S±�A1 - A2�±
ρ �in accordance with (3) when ∀y ∈ V .

±
ρ(y) = ⊥±� �

23. Calculational design of abstract interpretations

This concludes our formal design of the rule of signs for arithmetic expressions.

• We first define the semantics A�A� of arithmetic expressions A in (1);
• The strongest property of the semantics of arithmetic expressions A is their
collecting semantics C�A� in (2);

• Among the semantic properties ℘((V → Z) → Z) of arithmetic expressions,
we select a subset of properties of interest i.e. the sign properties and choose
a computer representation, as defined by the abstraction function α̈± in
(10), which is the lower adjoint of the Galois connection (14);

• The rule of sign S±�A� is then formally derived by calculational design
in Section 22 by over-approximating the best abstraction α̈±(C�A�) of the
collecting semantics C�A�.

P. Cousot / A Formal Introduction to Abstract Interpretation24

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

It follows that S±�A� is sound by construction.

24. Classical finitary abstractions

Other elementary examples are the parity analysis (which is correct with machine
integers), [17] constancy analysis based on the lattice

⊥

· · · −2 −1 0 1 2 · · ·

�

such that γ(⊥) = ∅, γ(i) = {i}, i ∈ Z, and γ(�) = Z.

25. Classical infinitary abstractions

As noticed by Brahmagupta, the sign analysis is not expressive enough to exactly
determine the sign of expressions knowing the sign of its free variables. As shown
by [18], interval analysis [8,1] will provide the desired answer. Interval analysis is
based in the following lattice.

⊥i = ∅

· · · [−3,−3] [−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2] [3, 3] · · ·

· · · · · · [−3,−2] [−2,−1] [−1, 0] [0, 1] [1, 2] [2, 3] · · · · · ·

[−∞,−3] · · · [−3,−1] [−2, 0] [−1, 1] [0, 2] [1, 3] · · · [3,∞]

[−∞,−2] · · · [−3, 0] [−2, 1] [−1, 2] [0, 3] · · · [2,∞]

[−∞,−1] · · · [−3, 1] [−2, 2] [−1, 3] · · · [1,∞]

[−∞, 0] · · · [−3, 2] [−2, 3] · · · [0,∞]

[−∞, 1] · · · [−3, 3] · · · [−1,∞]

· · · · · · · · · · · ·

[−∞,∞]

Because the lattice has infinite strictly increasing chains, the induction illustrated
in Section 3 must be mechanized. This is the objective of widening and narrowing
operators [8,1,19], see [20,21] for an introduction.

P. Cousot / A Formal Introduction to Abstract Interpretation 25

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Brahmagupta

26. Conclusion

We have ilustrated the basics of abstract interpretation by defining the semantics
of expressions, their properties, a proof method, and a sign analysis.

Instead of designing the rule of sign empirically and then proving its sound-
ness, we used the soundness requirement as a guideline for designing the abstract
sign semantics by calculus.

This sign analysis discovers an abstract property of an arithmetic expression
by computing in the abstract only. This may involve some loss of precision, which
was the case for the sign analysis.

The sign semantics is finite so it is an easily implementable static analysis.
For infinite abstract domains, widening and narrowing operators are necessary.

References

[1] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

[2] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In POPL, pages 269–282. ACM Press, 1979.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log. Comput.,
2(4):511–547, 1992.

[4] Kim Plofker. Mathematics in India. Princeton University Press, 2007.
[5] Peter Naur. The design of the GIER ALGOL compiler. BIT Numerical Mathematics,

3:124–140 and 145–166, June 1963.
[6] Peter Naur. Checking of operand types in ALGOL compilers. BIT Numerical Mathemat-

ics, 5:151–163, September 1965.
[7] Michel Sintzoff. Calculating properties of programs by valuations on specific models. In

Proceedings of ACM Conference on Proving Assertions About Programs, pages 203–207.
ACM, 1972.

[8] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of pro-
grams. In Proceedings of the Second International Symposium on Programming, pages
106–130. Dunod, Paris, France, 1976.

[9] Noam Chomsky. Three models for the description of language. IRE Transactions on

Information Theory, 2(3):113–124, 1956.
[10] Dana S. Scott and Christopher Strachey. Towards a mathematical semantics for computer

languages. Technical report PRG-6, Oxford University Computer Laboratory, August
1971.

[11] International Organization for Standardization. Iso/iec 19761: Software engineering –
cosmic: a functional size measurement method. March 2011.

[12] Garrett Birkhoff. Lattice Theory. American Mathematical Society, Colloquium publica-

tions, Volume XXV, third edition edition, 1973.
[13] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics.

Series 2., 33(2):346–366, 1932.
[14] David Cachera and David Pichardie. Programmation d’un interprteur abstrait certifi en

logique constructive. Technique et Science Informatiques, 30(4):381–408, 2011.
[15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David

Pichardie. A formally-verified C static analyzer. In POPL, pages 247–259. ACM, 2015.
[16] Susanne Graf and Hassen Sadi. Verifying invariants using theorem proving. In CAV,

volume 1102 of Lecture Notes in Computer Science, pages 196–207. Springer, 1996.
[17] Gary A. Kildall. A unified approach to global program optimization. In POPL, pages

194–206. ACM Press, 1973.

P. Cousot / A Formal Introduction to Abstract Interpretation26

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[18] Roberto Giacobazzi and Francesco Ranzato. Completeness in abstract interpretation: A
domain perspective. In AMAST, volume 1349 of Lecture Notes in Computer Science,
pages 231–245. Springer, 1997.

[19] Patrick Cousot. Abstracting induction by extrapolation and interpolation. In VMCAI,
volume 8931 of Lecture Notes in Computer Science, pages 19–42. Springer, 2015.

[20] P. Cousot and R. Cousot. A gentle introduction to formal verification of computer systems

by abstract interpretation, pages 1–29. NATO Science Series III: Computer and Systems
Sciences. IOS Press, 2010.

[21] Patrick Cousot. The calculational design of a generic abstract interpreter. In M. Broy and
R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F. IOS Press,
Amsterdam, 1999.

P. Cousot / A Formal Introduction to Abstract Interpretation 27

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

SAT and SMT Solvers:

A Foundational Perspective

Vijay Ganesh

University of Waterloo, Ontario, Canada

Abstract. Over the last two decades, we have witnessed a silent revolution in soft-

ware engineering thanks in part to Boolean SAT and SMT solvers. These tools have

made it significantly easier to design, build, and maintain myriad kinds of program

analysis, testing, synthesis and verification systems. Further, they have enabled new

software engineering methods that were otherwise deemed infeasible. In these lec-

ture notes, we provide an introductory overview of SAT and SMT solvers, from

both practical as well as theoretical points of view. Specifically, we describe in de-

tail the architecture of the DPLL, CDCL, and SMT algorithms. Further, we provide

theoretical understanding of these solvers through the lens of proof complexity.

Finally, we showcase the power of machine learning techniques to fundamentally

transform solver design.

Keywords. Boolean SAT solvers, first-order theories and SMT solvers, conflict-

driven clause learning, proof complexity, machine learning for solvers

1. Introduction

Since the late 1990’s, we have witnessed a dramatic transformation in software engineer-

ing research, wherein, many approaches to program analysis[8], synthesis[1], testing[8],

security[36], model-based software engineering[19], and verification[7,9] are increas-

ingly based on Boolean SATisfiability (SAT) and Satisfiability Modulo Theories (SMT)

solvers[4,15,36,14,16,12]. The reason for this can primarily be attributed to the signif-

icant improvement in the efficiency and expressive power of these solvers. These enor-

mous gains have brought renewed attention to an old idea that programs can and should

be modeled mathematically, via appropriate fragments of logic, and that these models

can be analyzed using solvers for the purpose of test generation or construction of proofs

of correctness with respect to appropriate specifications. As software engineering/secu-

rity methods and SAT/SMT solvers co-evolve, the demand for evermore powerful solvers

continues unabated. In these introductory graduate-level notes, we provide an overview

of the architecture of these solvers, the algorithms that power them, a theoretical under-

standing of these systems via proof complexity, as well as how machine learning can fur-

ther enhance them, all with the aim of enabling users to more effectively leverage these

versatile tools for their research needs.

What is a Solver: The typical definition of a solver is that it is a semi-decision pro-

cedure aimed at solving the satisfiability problem for a given fragment of mathematics.

That is, solvers take as input well-formed formulas in said fragments, and decide whether

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-29

29

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

they have solutions. Additionally, solvers may be required to generate solutions, if the

input is satisfiable, and proofs of unsatisfiability, if the input is unsatisfiable. We say that

a solver S is sound, if whenever S returns UNSAT, the input formula is indeed unsatisfi-

able. We say a solver S is complete, if for any unsatisfiable formula that is an input to S,

it returns UNSAT. We say a solver is terminating if it halts in finite time for all inputs.

A more modern view of a solver is that it is a sound proof system for a given frag-

ment of mathematics[3,34]. (A solver may also be complete and terminating, depending

on the fragment.) In these notes, we take the solver is a proof system view, since it is

more amenable to a comprehensive complexity-theoretic analysis via proof complexity,

as well as machine learning methods for optimal sequencing/selection of proof rules 1.

In addition to generating proofs or solutions, solvers are often required to support tac-

tic languages and extensibility features (e.g., a programmatic interface), that make these

tools versatile and easy to use. Finally, depending on the kind of mathematical fragment

under consideration, the satisfiability problem can be in the complexity class P (e.g.,

solving a system of linear equations over the reals), or NP−complete[10] (e.g., Boolean

satisfiability), or undecidable (e.g., solving systems of Diophantine equations). All these

requirements, applications, and complexity make solver design a very interesting and

challenging field of study.

DPLL SAT Solvers: We start by describing the so-called DPLL SAT solving algorithm

for Boolean logic, introduced in a series of papers from 1958 to 1962 by Davis, Put-

nam, Loveland, and Logemann[11]. The DPLL algorithm forms the basis for the CDCL

SAT solving algorithm[27,29], and which in turn forms the foundation for most SMT

solvers[12,14,31]. The DPLL SAT algorithm is a recursive backtracking search method

that takes as input a Boolean formula φ(n) (in conjunctive normal form), and outputs

SAT if the input has a solution and UNSAT otherwise.

Informally, the DPLL algorithm works as follows: the algorithm initially performs

Boolean constraint propagation (BCP), i.e., simplifies the input with respect to clauses

that have exactly one unassigned literal under the current partial assignment. If BCP

alone is able to decide whether the input is SAT or UNSAT, the algorithm terminates

and outputs the appropriate answer. Otherwise, the solver selects a variable and assigns

it either true or false, and recursively calls itself. If the recursive call returns SAT, the

algorithm terminates. Else, the recursive call returns UNSAT (referred to as a confict),

meaning that the current partial assignment is not satisfying for the input formula. This

causes the algorithm to backtrack, and assign the opposite value to the current decision

variable and then recursively call itself again. This process continues until the algorithm

either finds a satisfying assignment or determines that the input is unsatisfiable after it

has searched through all possible assignments. We provide a more formal description of

the DPLL SAT solving algorithm in Section 3.

CDCL SAT Solvers: Built on top of the DPLL method, the CDCL algorithm differs

from it in many important ways such as clause learning[27], variable selection[29,24,23],

1While the solvers as proof systems view is very useful, one weakness of this approach is that proof systems

typically don’t deal with satisfiable instances. By contrast, solvers are semi-decision procedures and hence

are required to handle satisfiable inputs as well. We don’t consider this as problematic for two reasons: This

view complements the solvers as a search engine for solutions view. They are both useful in deepening our

understanding of solvers. Second, solvers do construct proofs of unsatisfiability for parts of the solution space

that are empty, as they search for solutions for satisfiable instances.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective30

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

value selection, restarts heuristics, clause deletion policies, and lazy data structures[4,

33]. Perhaps the most important idea that underlies the CDCL algorithm is clause learn-

ing. During its execution, when a CDCL solver determines that the current partial assign-

ment to an input formula is unsatisfying (a conflicting assignment), a conflict analysis

subroutine is invoked to examine why this is so. This kind of root cause analysis returns

a clause, referred to as the learned or conflict clause, that is stored alongside the input

formula (often in a database separate from the input formula). These learned clauses have

two interesting properties: first, they are implied by the input formula, and perhaps more

importantly, they prevent the solver from subsequently exploring not only the conflict-

ing assignment, but also potentially exponentially many similar assignments thus cutting

down the search space dramatically.

From a proof theoretic point of view, it can be shown that the DPLL method is poly-

nomially equivalent to tree resolution proof system, while the CDCL method is poly-

nomially equivalent to the far more powerful general resolution proof system[34]. This

and other similar theoretical results enable us to establish the relative power of solver

heuristics in a powerful way not possible otherwise.

SMT Solvers: Satisfiability Modulo Theories (SMT) solvers[31,12,14,16] are power-

ful algorithms designed to solve the satisfiability problem for first-order theories that are

relevant in the context of program analysis, testing, security, and verification. They sup-

port a much richer input language than SAT solvers, e.g., first-order theories such as non-

linear arithmetic over the reals and integers, theories over strings and regular expressions,

bit-vectors, arrays, uninterpreted functions, datatypes, and floating-point arithmetic.

Broadly speaking there are two categories of SMT solvers, eager and lazy. Eager

solvers are based on the idea of equisatisfiable reductions of input formulas in one theory

into another (e.g., Bit-vectors to Boolean logic), and then invoking the appropriate solver

on the resultant formula. The appeal of such an approach is that it leverages advances in

solvers for one theory (e.g., SAT solvers) to efficiently solve formulas in another (e.g.,

bit-vectors). While this approach scales well for certain theories such as bit-vectors, for

many other theories such as quantifier-free linear integer arithmetic this approach doesn’t

work well since reduction to Boolean logic may cause a considerable blowup in the size

of the resultant formulas in terms of the formula from the input theory. Hence, researcher

often use lazy SMT solvers for solving formulas from such theories.

By contrast to eager solvers, lazy SMT solvers are based on two key ideas, namely,

abstraction-refinement and specialized decision procedures for first-order theories such

as uninterpreted functions, arithmetic, strings, bit-vectors etc. At its core, a lazy SMT

solver is a SAT solver extended with decision procedures for these first-order theories

that enhance the SAT solver’s propagation and conflict analysis subroutines. Informally,

given a formula φ over first-order theories, the SMT solver first constructs a Boolean

abstraction (an over-approximation) φb of φ . If the abstraction is UNSAT, the solver

returns UNSAT. Else, there is some satisfying assignment Ab for φb. The SMT solver

then essentially verifies this assignment by constructing a conjunction of theory literals

corresponding to literals in Ab, and calling the appropriate theory decision procedure on

it. This process repeats until the solver correctly determines the satisfiability of the input

formula.

Perspective on Solvers via Proof Complexity and Machine Learning: Instead of

merely surveying existing literature on SAT and SMT solvers [4], we present in these

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 31

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

notes the most important ideas that underpin solving algorithms via a solvers as proof
systems perspective[34,3]. This perspective can be described briefly as follows: all

solvers can be viewed as algorithms that implement proof systems aimed at proof search.

Every proof rule in such systems may correspond to a set of subroutines in a solver (e.g.,

in the case of CDCL SAT solvers, the clause learning subroutine implements the general

resolution rule, and the BCP implements the unit resolution rule). Additionally, solvers

have sequencing and selection heuristics that attempt at optimal sequencing and selec-

tion of proof rules for a given class of instances (e.g., variable selection heuristics). The

value of viewing solvers as proof systems is that it makes both the analysis and design

of solver algorithms much more systematic than the ad-hoc application-driven approach

followed today. More precisely, it brings two key benefits:

1. Proof Complexity-theoretic Bounds on Solvers: First, it enables us to leverage

the vast literature on proof complexity to prove lower and upper bounds on solvers,

that are otherwise hard to establish. Proof complexity also enables us to establish

the power of certain heuristics, e.g., under appropriate assumptions CDCL solvers

are polynomially equivalent to general resolution vs. DPLL solvers (which do not

have clause learning) are only as powerful as tree-like resolution, a much weaker

proof system.

2. Machine Learning for Solver Design: Second, a solver can be viewed as an im-

plementation of a proof search algorithm for a proof system. That is, solver imple-

mentations consist of proof rules and methods for optimal sequencing and selec-

tion of these rules for a given input. This suggests that the problem of designing

solver algorithms can be recast as coming up with appropriate proof rules and op-

timization procedures to adaptively sequence/select them for classes of instances.

Given that current solvers produce copious amounts of data as they search for

proofs and/or solutions, it further suggests that such optimization procedures may

best be designed by leveraging machine learning algorithms[22]. An additional

advantage of machine learning methods is that they can be adaptive, unlike ad-hoc

heuristics 2.

In the rest of these notes, we not only discuss various solver algorithms, but also

show how we can deepen our understanding of them by leveraging tools from proof com-

plexity and machine learning, and thus enable the design of more efficient and adaptive

solving algorithms going forward.

Structure: These notes are organized as follows. In Section 2 we introduce some rele-

vant definitions and concepts from logic and complexity theory. In Section 3, we discuss

DPLL SAT solvers laying the foundation for the subsequent sections. In Section 4, we

discuss CDCL SAT solvers, with a sharp focus on clause learning, (machine-learning

based) variable selection and restarts, and polynomial equivalence between CDCL SAT

solvers and the general resolution proof system. In Section 5, we discuss SMT solvers

with a sharp focus on their proof complexity. We conclude with reflection on key ideas

underpinning SAT and SMT solver, their impact, and future directions.

2We stress here that the machine learning perspective of some of the sequencing and selection heuristics

does not necessarily lend itself to any provable optimality results. Instead, the correspondence enables solver

designers to move away from ad-hoc designs, and exploit the large amounts of data generated by solvers via

appropriate machine learning methods that have already been developed

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective32

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

2. Preliminaries

Below we introduce definitions and concepts that are essential in the context of solvers.

We assume the reader is familiar with basic ideas from mathematical logic and complex-

ity theory. Terms that are specific to a certain class of solvers (e.g., branching heuristics

in DPLL and CDCL solvers), will be introduced in the appropriate section.

2.1. Propositional Logic

The constants in propositional logic (aka Boolean logic) are true and false respectively

(also represented as 1 and 0 respectively). The notation and semantics of the Boolean

operators ¬ (negation or complement), ∨ (disjunction), and ∧ (conjunction) are stan-

dard. All formulas are constructed out of a finite set of Boolean variables, denoted as,

{x1,x2, . . . ,xn}. A Boolean variable or its negation is referred to as a literal. A clause is a

disjunction of literals, written as (x1∨x2∨ . . .∨xn). A formula is defined to be a conjunc-

tion of clauses, referred to as conjunctive normal form (CNF). We may sometimes refer

to Boolean formulas as CNF formulas. It is easy to show that any Boolean function, can

be translated into CNF via the Tseitin transformation, wherein, the CNF representation is

only polynomially larger than the corresponding circuit in the number of variables[37].

The term value refers to elements of the set {true, f alse,u}3, where u represents un-
known. An assignment μ is a map from variables of a formula to values {true, f alse,u}
(We may sometimes refer to an assignment to a variable as "setting a value to a vari-

able"). We say an assignment A is complete for a formula φ if A is map such that all the

variables of φ are assigned a value in true, false. Otherwise, we say that the assignment

A is partial for φ . An assignment A is empty for a formula φ , if it is an empty map.

A variable evaluates to true (resp. false) under the assignment of the value 1 (resp.

0). The set of all assignments to the variables of a formula may sometimes be referred

to as the search space of that formula. The search space of a formula can be represented

as a binary tree, called the search or assignment tree, in the standard way. We say that

clause is unsatisfied (or evaluates to false) under an assignment μ , if all its literals are

false under μ . A clause is said to be satisfied, if at least one of its literals is true under

μ . A clause is unit if it has exactly one unassigned literal, under a partial assignment.

The unassigned literal in a unit clause may sometimes be referred to as the unit literal

of the said clause. We say a non-unit clause is unresolved under an assignment, if it is

neither satisfied nor unsatisfied (i.e., evaluates to unknown and is not unit). The notion

of evaluation of a formula to a value under an assignment is standard.

The SAT Problem and SAT Solvers: The satisfiability problem for Boolean logic can

be stated as "Given a CNF formula, decide whether or not it is satisfiable". We say that

formula is satisfiable if it has a solution, i.e., there exists an assignment to its variables

such that the formula evaluates to true under this assignment. Otherwise, we say that the

formula is unsatisfiable. It is well-known that this problem is NP-complete[10]. A SAT

solver is a computer program designed to solve the Boolean satisfiability (or simply SAT)

problem. All SAT solvers described here are sound, complete, and terminating decision

procedures for propositional logic.

3We may choose to use 1 for true and 0 for false, for brevity.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 33

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

2.2. First-order Logic and Theories

We recall some standard definitions for first-order theories. Let L be a first-order signa-

ture (a list of constant, function, and predicate symbols). Given a set of L -sentences A
and an L -sentence B we write A � B if every model of A is also a model of B. A first
order theory (or simply a theory) is a set of L -sentences that is consistent (that is, it has

a model) and is closed under �. The decision problem for a theory T is the following:

given a set S of literals over L , decide if there is a model M of T such that M |= S.

The SMT Problem: The Satisfiability Modulo Theories (SMT) problem is essentially

the SAT problem for first-order theories. The satisfiability problem for T , also denoted

T -SAT, is the following: given a quantifier-free formula F in T in conjunctive normal

form (CNF) (a T -formula), decide if there is a model M of T such that M |= F .

A simple example of a theory is E, the theory of equality. The signature of E contains

a single predicate symbol = and an infinite list of constant symbols. It is axiomatized

by the standard axioms of equality (reflexivity, symmetry, and transitivity), and a sample

sentence in E would be the formula a = b∨b = c∨a= c, which encodes the transitivity of

equality between the constant symbols a,b, and c. Following the SMT literature, we will

call terms from the theory (such as a and b) theory variables, and the atoms derived from

these terms (such as a = b or a = c) will be called theory literals or just literals. We note

that the decision problem for conjunctive fragment of E can be decided very efficiently

[13]; in contrast, the satisfiability problem for E is easily seen to be NP-complete.

Definition 2.1 (Unit Resolution). Let F be a collection of clauses over an arbitrary

theory T . A clause C is derivable from F by unit resolution if there exists a resolution

proof from F of C such that in each application of the resolution rule, one of the clauses

is a unit clause. If C is derivable from F by unit resolution then we write F �1 C. If

F �1 /0 then we say F is unit refutable, otherwise it is unit consistent. We note that these

definitions also apply to the Boolean case, where T is simply Boolean logic.

2.2.1. Res(T): Resolution Modulo Theories

Here we describe a new generalization of the general resolution proof system which cap-

tures reasoning modulo a first-order theory for constant symbols. We discuss two vari-

ants: the first, denoted Res(T), allows resolution to deduce in a single step any quantifier-

free clause C of literals occurring in the input formula such that T |=C. This is intended

to model “standard” lazy SMT solvers [30] in which the solver is only allowed to reason

about literals that already occurred in the input formula.

The second, more powerful variant (which we denote by Res∗(T)) allows resolution

to deduce any quantifier-free clause of literals C such that T |=C, even if the new clause

contains literals which do not occur in the input formula. This model is introduced to

explore what would happen if a lazy SMT solver is allowed to introduce new literals from

the theory. It is known that this can bring the complexity of a proof from exponential to

polynomial, for example for diamond equalities a0 = an∧∧n−1
i=0 (ai = bi∧bi = ai+1∨ai =

ci ∧ ci = ai+1) [5].

Definition 2.2 (Res(T),Res∗(T)). Let T be a theory and let F be an quantifier-free

CNF formula over T . The lines of a Res(T) (Res∗(T)) proof are quantifier-free clauses

of literals deduced from F and T by the following derivation rules.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective34

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Resolution. C∨ �,D∨ � �C∨D.

Theory Derivation (Res(T)). �C for any clause C satisfying T |=C and for which every

variable in C occurs in the input formula.

Strong Theory Derivation (Res∗(T)). �C for any clause C satisfying T |=C.

A refutation of an unsatisfiable F is a proof in which the final line is the empty clause.

For the rest of these notes, any clause that is derived from a theory will be assumed

to be quantifier-free. It is easy to see that both Res(T) and Res∗(T) are sound since the

resolution rule and the Theory Derivation rule (for a non-trivial theory) are sound; com-

pleteness follows from a straightforward modification of the usual proof of resolution

completeness (see, e.g. Jukna[20]).

Note that the clauses introduced by the theory derivations are arbitrary theorems

of T ; this means there is no direct information exchange between the resolution proof

and the theory. It is enough to derive clauses in the theory derivation rules rather than

arbitrary formulas since every axiom can be written in CNF form, and introduced as a

sequence of clauses. The strong theory derivation rule can introduce new atoms (and

thus new propositional variables to the Boolean abstraction of the initial formula) which

might not have been present in the initial formula, and furthermore it seems that this

ability to introduce new literals gives Res∗(T) extra power over general resolution.

2.3. Comparing Proof Systems via Simulation

To compare proof systems over different languages we use the notion of an efficient

simulation.

Definition 2.3 (Polynomial Simulation). A proof system A simulates a system B if there

is a polynomial-time algorithm R converting instances from the language of A to the

language of B, and for every unsatisfiable formula F , the shortest refutation proof of

F in A is at most polynomially longer than the shortest refutation proof of R(F) in B.

We say two systems A and B are polynomially equivalent (or simply equivalent), if A

simulates B and B simulates A.

2.4. A Very Brief History of SAT and SMT Solvers

There are many surveys on the history of SAT and SMT solver. Perhaps the best is by

John Franco in the Handbook of Satisfiability [4]. We briefly survey some of the key his-

torical developments in solver research. As mentioned elsewhere, the DPLL algorithm

was first developed by Davis, Putnam, Loveland, and Loeggemann[11]. The key concept

of clause learning was developed by Marques-Silva and Sakallah [27] and the VSIDS

heuristics was developed by Sharad Malik and his team [29]. The early work on SMT

was focused primarily on decision procedures for individual theories and combination

of decision procedure by pioneers Nelson and Oppen[32]. The most influential work

on the modern architecture of SMT is by Nieuwenhuis, Oliveras, and Tinelli[31]. Per-

haps the most influential SMT solver implementation is the Z3 solver by Bjorner and

DeMoura[12].

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 35

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm 1 The DPLL SAT Solving Algorithm

1: function DPLL(φ , μ)

2: Input: A CNF formula φ , and an initially empty assignment μ
3: Output: true (SAT) or false (UNSAT)

4:

5: bcp_ret = Boolean_Constraint_Propagation(φ ,μ);

6: if (bcp_ret == CONFLICT) then � If top-level conflict, return UNSAT

7: dpll_ret = false;

8: else
9: if (all variables have been assigned) then � If solution found, return SAT

10: dpll_ret = true;

11: else (Select decision variable x) � Heuristically select variable x
12: dpll_ret = (DPLL(φ , μ : x) || DPLL(φ , μ : ¬x)); � Recurse DPLL

13: return dpll_ret;

3. The DPLL SAT Solving Algorithm

The pseudo code of the DPLL SAT solving algorithm[11], in an imperative-style lan-

guage, is presented in Algorithm 1. The crucial steps in DPLL include the Boolean Con-

straint Propagation (BCP) subroutine on line 5, the variable selection heuristic on line

11, and the recursive calls on line 12.

3.1. Boolean Constraint Propagation (BCP)

The BCP subroutine consists of repeated applications of the unit resolution rule until

saturation, i.e., the subroutine has detected that the current assignment is satisfying or

unsatisfying or there are no unit resolutions under the current partial assignment. The

unit resolution rule is a special case of the general resolution rule, where at least one of

the clauses input to the rule is unit. For example, consider the clauses (x) and (¬x∨α),
which when resolved result in derived clause (α) written as below 4:

(x) (¬x∨α) � (α)

Repeated applications of the unit rule to an input formula amount to maintaining a

queue of unit clauses, simplifying the formula with respect to the "current" unit clause

(i.e., all occurrences of the current unit literal in the formula are assigned true, the com-

plement of this unit literal are assigned false, and the clauses are appropriately simpli-

fied), adding any implied units to the unit clause queue, and repeating this process until

this queue is empty. A variable x that is assigned a value (alternatively, a variable whose

value is set) as a result of applying BCP (one or more application of the unit resolution

rule) is said to be implied.

BCP may return CONFLICT (i.e., the current partial assignment is unsatisfying for

the input formula) or SAT (i.e., all variables have been assigned values true or false) or

4We choose to use the symbol � to denote a derivation step, with antecedents on the left side and consequent

on the right.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective36

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

unknown. If BCP returns CONFLICT at the top-level of the recursion (lines 6 and 7),

then this means that the input formula is unsatisfiable (UNSAT). If, on the other hand, all

the variables of the input formula have been assigned (line 9), then this means that the

solver has found a satisfying assignment and it returns SAT (line 10). Else, it means that

the BCP subroutine returns unknown, i.e., it cannot decide by itself whether the formula

is SAT or UNSAT. This causes a variable selection heuristic to be invoked, that select
an unassigned variable (line 11) (sometimes also referred to as a branching or decision

variable) and recursively search for a satisfying assignment to the input formula (line

12).

3.2. Backtracking Search and DPLL

Abstractly speaking, the DPLL algorithm implicitly constructs a binary search tree of

assignments to the input formula φ , and searches for a satisfying assignment in it. The

nodes in this binary tree correspond to variables in φ , and edges from each node denote

assignment to the corresponding variable (typically, the left edge of a node is marked

false and the right edge marked true). Leaf nodes of the tree are marked true (resp. false)

depending on whether the path leading to a leaf corresponds to a satisfying assignment

(resp. unsatisfying assignment) to φ . As the DPLL algorithm performs BCP, selects an

unassigned variable (line 11), and assigns a value to the branched variable (line 12), it

correspondingly does a depth-first walk down the appropriate path in the binary search

tree of assignments. At some level of the recursion, if the path terminates with a leaf

marked false, the DPLL function correspondingly returns CONFLICT. This causes the

solver to backtrack, and attempt the opposing value to the last branched variable (the sec-

ond function call on line 12). It goes without saying that the recursion stack in runtime

systems naturally supports backtracking over the search tree of assignments. This recur-

sive search continues until either the solver determines that the input formula is SAT or

UNSAT.

The notation μ : x (resp. μ : ¬x) on line 12 of Algorithm 1 simply refer to adding

the appropriate literal to the stack corresponding to the assignment μ . The symbol ||
corresponds to logical OR over two function calls. More precisely, it denotes an order

over function calls, wherein, the left side recursive call is executed first, followed by the

invocation of the right side only if the left side returns false.

3.3. Variable Selection Heuristics in Solvers

Variable selection heuristics5 are subroutines that take as input some fragment of the state

of the solver (e.g., learned clauses), compute a total order over the variables of the input

formula (line 11 in Algorithm 1), and output the highest ranked variable in this order. The

selected variable is assigned a value and added to the current partial assignment, prior

to the recursive calls to the DPLL solver on line 12. Solver researchers have understood

for a long time that variable selection heuristics play a crucial role in the performance of

solvers and a considerable amount of research has gone into their design and analysis.

We will discuss modern variable selection heuristics in detail in Section 4.

5Variable selection heuristics are sometimes also referred to as branching, with the variable output by them

referred to as branching variables. The term decision heuristic typically refers to the combination of variable

and value selection heuristics. The literal returned by a decision heuristic is referred to simply as a decision or

decision literal. The term decision variable refers to the variable that corresponds to a decision.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 37

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm 2 The CDCL SAT Solving Algorithm

1: function CDCL(φ , μ)

2: Input: A CNF formula φ , and an initially empty assignment trail μ
3: Output: SAT or UNSAT

4:

5: if (CONFLICT == Boolean_Constraint_Propagation(φ ,μ)) then
6: return UNSAT;

7: dl = 0; � : Initially, decision level dl is 0

8: while all variables have NOT been assigned do � The search loop

9: x = DecisionHeuristic(φ ,μ); � Variable and value selection heuristic

combined

10: dl = dl + 1; � : Increment dl for each

11: μ = μ
⋃

x; � Add literal x to the assignment trail μ
12: if (Boolean_Constraint_Propagation(φ ,μ) == CONFLICT) then
13: β = ConflictAnalysis(φ ,μ); � Analyze conflict and learn a clause

14: if β < 0 then � β is the backjump level

15: return UNSAT; � Top-level conflict

16: else
17: backtrack(φ ,μ,β); � Backjump to start search again

18: dl = β ;

19: return SAT;

4. Conflict-driven Clause Learning SAT Solvers

In this Section we describe the conflict-driven clause-learning (CDCL) SAT solving

algorithm[27,29,28] as given in Algorithm 2. Additionally, a diagrammatic presentation

of the CDCL SAT solver algorithm is given in Figure 1 for improved readability. There

are some minor differences between the presentations in Algorithm 2 and Figure 1, and

hence we request the reader to go through both carefully. The Figure 1 also presents a

search tree of assignments to an input formula. The white nodes in the tree represent

decision variables, the dashed nodes are variables implied or propagated by BCP, and the

dark leaf nodes represent conflict (unsatisfying assignments). The learned clauses cap-

ture the amount of search space pruned by the solver’s learning scheme. For example, a

learned clause with exactly one literal cuts down the search space by half, and with two

literals cuts down the search space by 1/4 etc.

4.1. Overview of CDCL Algorithm

We first describe the algorithm at a high level, followed by detailed descriptions of the

key subroutines such as BCP, ConflictAnalysis, and variable and value selection (Deci-

sionHeuristic) in the subsections that follow. Aside from a few minor differences, the

version of the CDCL algorithm presented here is very similar to the one in the chapter on

SAT solvers in the Handbook of Satisfiability. For ease of analysis, the CDCL algorithm

presented here is in an iterative style as opposed to a recursive one.

The CDCL algorithm builds on top of the DPLL method, and differs from it pri-

marily in its use of the following techniques: conflict analysis and clause learning, effec-

tive variable selection and value selection heuristics, restarts, clause deletion, and lazy

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective38

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

x
F T

y

Learnt clause = (x) Learnt clause = (y)
SAT

UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP)

Not a
Conflict?

All Vars
Assigned?

Decide()

If-branch Else-branch

Figure 1. Left: The control-flow graph of a typical CDCL SAT Solver (presented in Algorithm 2). Right: A

search tree of a unsatisfiable formula explored by a CDCL solver, where the nodes represent variables and edges

correspond to value assignments (F for false, and T for true). The white nodes in the tree represent decision

variables, the dashed nodes are variables implied or propagated by BCP, and the dark leaf nodes represent

conflict (unsatisfying assignments). The missing sub-trees in the figure correspond to the space pruned by the

learned clauses presented at the bottom of the tree.

data-structures. The CDCL algorithm takes as input a Boolean formula φ in CNF and

an initially empty assignment μ (aka assignment trail), and outputs SAT if the input φ
has a solution and UNSAT otherwise. Just like DPLL, the CDCL algorithm first calls the

BCP subroutine on input formulas without having branched on any variables in it (line

5 in Algorithm 2). If a conflict is detected at this level (i.e., a top-level conflict) without

having made any decisions, then CDCL returns UNSAT.

Decision Levels and Assignment Trail: On line 7 of Algorithm 2, the algorithm ini-

tializes the variable dl (abbrev. for current decision level) to 0. The variable dl keeps

track of the number of decisions the solver makes as it traverses paths in the search tree

of an input formula. Whenever a variable in the input formula is branched upon (a de-

cision variable), dl in the CDCL algorithm is incremented by 1 (line 10). If the solver

backjumps after ConflictAnalysis, the current decision level is also appropriately modi-

fied to the level that the solver backjumps to (line 18). The assignment trail (aka decision

stack or partial assignment) μ is a stack data structure, where every entry corresponds to

a variable, its value assignment, and its decision level. Whenever a variable x is branched

or decided upon, an entry corresponding to x is pushed into the assignment trail. When-

ever the solver backjumps from level d to some level d−β , all entries with decision level

higher than d−β are popped from the assignment trail. The decision level of a variable is

computed as follows: for unassigned variables it is initialized to -1. Unit variables in the

input formula are assigned decision level 0. Whenever a variable is decided or branched

upon, its decision level is set to dl + 1. Further, the decision level of an implied literal xi is

the highest decision level of the implied literals in the unit clause ω that is the antecedent

of xi.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 39

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Value Assignments and Antecedents: In addition to the decision level, the solver

maintains two other dynamic properties for every variable x, namely, the value v ∈ {0,1}
assigned to x and its antecedent. All variables are initially assigned the value u. As the

solver backjumps or restarts, the values these properties take may change. If a variable

is a decision, then its value assignment is determined by the value selection heuristic in

the DecisionHeuristic function. If, on the other hand the variable x is implied, its value is

determine by the unit clause (under the current partial assignment) that implies x. Such

clauses are called antecedents. More precisely, the antecedent or the reason clause of a

variable x is the unit clause c used by BCP to imply x. For variables that are decisions or

unassigned, the antecedent is NIL.

The Search Loop in CDCL: If there is no conflict at the top level, i.e., dl=0 (lines 5

to 7), then the algorithm checks whether all the variables of the input formula have been

assigned a value (line 8). If so, the solver simply returns SAT. Else, it enters the body of

the while loop on line 8, decides on a variable of the input formula using sophisticated

variable and value selection heuristics (the DecisionHeuristic subroutine on line 9)6, in-

crements the decision level (line 10), pushes the decision to the partial assignment or the

assignment trail μ , along with its decision level (line 11), and performs BCP (line 12).

If BCP returns CONFLICT (i.e., the current assignment μ is unsatisfying for the input

formula), then conflict analysis is triggered. The ConflictAnalysis subroutine determines

a reason or root cause for the conflict, learns a corresponding conflict or learned clause,

and computes the backjump level (lines 13 to 18). The CDCL solver may jump back

several decision levels in the search tree, unlike in the DPLL case where the solver back-

tracks only one level. If the backjump level is below 0, then the solver returns UNSAT

since this corresponds to deriving false. For more on conflict analysis, see subsection 4.3.

4.2. Implication Graph and BCP

Conceptually, the BCP procedure in CDCL is very similar to the one in the DPLL solver.

We provide some additional details here regarding data structures such as the implication

graph (see Figure 2 for an example) that are also relevant in the conflict analysis step of a

CDCL solver. An implication graph I is a directed acyclic graph maintained by the solver,

whose nodes are variables of the input formula along with values and decision levels that

they have been assigned by BCP under the current partial assignment. The leaves of this

graph are decision variables and/or unit clauses in the input formula. The internal nodes

are the implied variables. The edges are defined as follows: there is an edge from node xi
to node y if xi implies y. More precisely, given a node y and its antecedent clause w, there

is an edge from every variable xi in w, other than y, to y. The graph is updated by the

solver as it makes decisions and derives unit clauses under the current partial assignment.

We use the notation xi = v@d to denote that the value of xi is v at decision level d.

The implication graph also has a special node ⊥ that is used to represent the unsatis-

fied clause in the event of a conflict. The antecedent of this node ⊥ is the falsified clause

itself, and the edges to ⊥ are constructed in the usual manner. It is easy to see that if

literal l has an incoming edge labeled by clause c, then l must appear in c. Similarly, if

literal l has an outgoing edge marked c, we can conclude ¬l must appear in c.

6We assume that the function DecisionHeuristic performs both variable and value selection operations.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective40

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Figure 2. Left: A partial input clause database. Right: An implication graph for the clauses on the left. The

nodes are denoted by the notation xi = v@d, which denotes that the value of variable xi is v at decision level d.

The edges are marked by antecedent or reason clauses. Top: Assignment trail and the current decision.

4.3. Conflict Analysis in CDCL SAT solvers

The conflict analysis subroutine is unquestionably the most critical component of CDCL

SAT solvers. It performs two key operations, namely, clause learning and determining the

level to which the solver needs to backjump to after a conflict has been analyzed. During

its execution, when a CDCL solver determines that the current partial assignment to an

input formula is unsatisfying (i.e., is a conflicting or no-good assignment that falsifies

at least one clause in the input formula), the ConflictAnalysis subroutine is invoked to

examine why this is so. The root cause analysis performed by ConflictAnalysis returns

one or more clauses, referred to as learned clauses, that are stored alongside the input

formula 7. These learned clauses (aka conflict clauses) have the property that they prevent

the solver from subsequently exploring not only the conflicting assignment, but also

potentially exponentially many similar assignments, thus cutting down the search space

dramatically. This is sometimes referred to as search space pruning. Further, the learned

clauses also have the property that they are implied by the input formula. In addition to

computing the learned clause, the conflict analysis procedure also computes the decision

level to which the solver backjumps to, thus undoing the decisions that led to the conflict.

4.3.1. Clause Learning

Perhaps one of the simplest clause learning method developed to-date is the Decision

Learning Scheme (DLS). In this method, the learned clause is defined as the disjunc-

tion of the negated decisions that led to a conflict. Consider a formula φ over variables

x1,x2, . . . ,xn, and assume that the solver has made the following decisions x1,¬x2,¬x3.

7For ease of management, most modern solvers store learned clauses in a database separate from the clauses

of the input formula. Having said that, conceptually we can assume that all clauses are stored together.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 41

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Further, assume that only the decisions x1 and ¬x2 led to the conflict. The decision ¬x3

didn’t participate in the conflict, i.e., does not appear in the implication graph. Mathemat-

ically, we can write this as φ ∧ x1 ∧¬x2 � ⊥, or put differently, φ � (¬x1 ∨ x2). The DLS

then outputs the clause (¬x1 ∨ x2) as the learned clause. While DLS is very simple to

understand and implement, the clauses thus produced have been empirically observed to

be of poor quality, i.e., they don’t prune the search space as effectively as other learning

schemes like 1UIP that we discuss below. To better understand the more sophisticated

clause learning methods, we present two distinct but complimentary ways of describing

them, namely, as cuts in the implication graph and as a resolution proof system.

Clause Learning as Cuts in Implication Graphs: Clause learning procedures can

very naturally be viewed as methods that construct learned clauses by computing cuts on

the implication graph such that all decision variables are on one side of the cut (the reason

side) and the conflict node is on the other (the conflict side), and the learned clause is

constructed by taking the disjunction of the negation of literals immediately to the left of

the cut. In this view, these methods yield conflict clauses of differing quality depending

on where the implication graph is cut.

1UIP Clause Learning Scheme via Cuts in Implication Graphs: Perhaps the most

effective and important clause learning method is the First Unique Implicant Point

(1UIP) scheme[29]. The term 1UIP refers to a node N in the implication graph where all

paths from the current decision node (the node corresponding to the decision variable at

the highest decision level at the time of the conflict) to the conflict node must go through

N and it is the closest such node to the conflict node. N is a dominator node for all paths

from the current decision node to the conflict node. In the 1UIP clause learning scheme,

the implication graph is cut immediately to the right of the 1UIP node, such that this

node and all the decision variables are on the left side of the cut and the conflict node is

to the right side. The 1UIP clause is constructed by taking the disjunction of the negation

of literals immediately to the left of the cut.

1UIP Clause Learning via the Resolution Proof System: While the above view is

a useful way of understanding clause learning schemes through the lens of implication

graph and cuts, the method by which the ConflictAnalysis subroutines actually produce

learned clauses is best understood in terms of the general resolution proof system. The

only rule in the general resolution proof system (or simply, resolution) is the following:

(β ∨ x) (¬x∨α) � (β ∨α)

where β and α are disjunctions of literals and may not have any occurrence of x.

Although this view of clause learning as a sequence of proof steps applies to any

method, we will specifically describe the 1UIP clause learning scheme in this way. The

sequence of resolution proof steps, that start at the conflict node of the implication graph

and terminate with the computation of the 1UIP conflict clause.

The 1UIP clause-learning procedure starts by setting the conflicting clause (i.e., the

falsified clause that labels the incoming edges to the conflict node) as the "current" con-

flict clause. It then performs resolution over all variables assigned at the current decision

level (the one at which the conflict occurred), thus deriving intermediate conflict clauses

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective42

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

after each resolution step, until the 1UIP node is the only one from the current decision

level. Each resolution step is performed as follows: for any "current" clause B, the pro-

cedure first computes the last assigned literal8 l in B and chooses some incoming edge to

l labeled with B′. It then resolves B and B′, and the resolvent thus obtained is marked as

the current clause. This procedure is repeated for all "l" assigned at the highest decision

level at which the conflict occurred, until the current clause contains exactly one literal

from the current decision level, namely, the negation of the 1UIP node.

In the context of our example in Figure 2, the 1UIP clause learning procedure starts

by setting the "current" conflict clause to be W6. It then chooses the last assigned literal,

say, x5 at decision level 6, and resolves its antecedent W4 and W6. The resultant clause

¬x4 ∨¬x6 ∨ x10 is now set as the current conflict clause. The procedure then moves to

the next to last literal set at the current decision level, x6. It resolves the current conflict

clause ¬x4∨¬x6∨x10 and W5 to obtain ¬x4∨x10∨x11. Having resolved over all variables

at the current decision level in the current conflict clause except the 1UIP node, and

having the 1UIP node in the current clause, causes the procedure to terminate and output

the current conflict clause. Besides 1UIP, researchers have explored other kinds of clause

learning schemes such as learning all UIP clauses (e.g., the GRASP SAT solver[27]).

However, 1UIP clause learning has proven to be the most effective for many classes of

industrial applications.

Clause Learning and Backjumping: In Section 3 on DPLL SAT solvers we described

the simplest form of backtracking, wherein, upon reaching a conflict, these solvers undo

the last decision that led to the conflict, which may lead the solver to backtrack to the

previous decision level and continue its search. In the context of CDCL solvers many

backtracking methods have been explored. Perhaps the most well-known is called non-

chronological backtracking (or simply, backjumping), wherein, the solver backjumps to

the second highest decision level over all the literals in the 1UIP learned clause. This has

the added benefit that the 1UIP is now unit clause under the "current" partial assignment

post backjump. Such learning schemes are also called asserting.

4.4. Machine Learning and Variable Selection Heuristics in SAT solvers

Along with clause learning schemes, variable and value selection heuristics are perhaps

the most important components of efficient SAT solvers[21]. While there has been con-

siderable research on variable selection heuristics over the years, the VSIDS (Variable

State Independent Decaying Sum) method[29] is one of the dominant ones. Over the

last decade, it has become almost customary to start any description of variable selection

heuristics by describing the VSIDS method. This is not surprising since for nearly 20

years the VSIDS method has been the dominant variable selection heuristic and is one of

the key reasons behind the success of SAT solvers. However, we shall deviate from this

practice in order to illustrate a much deeper lesson as it pertains not only to the design

of variable selection heuristics, but also the design of solvers in general. Specifically,

we shall first discuss the machine learning-based LRB variable selection heuristic intro-

duced by Liang and G.[24], that has had profound impact on both the design of variable

selection heuristics, as well as many other heuristics such restarts and clause deletion

policies.

8Recall that BCP enforces a total order on assigned literals

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 43

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

4.4.1. The Setting: Understanding CDCL Solvers via Machine Learning

The question of why SAT solvers are efficient for a wide variety of applications has been

one of the most important questions in solver research. After all, given that the SAT prob-

lem is NP-complete, we don’t expect any algorithm to scale to even hundreds of vari-

ables, let alone millions of variables and clauses for formulas obtained from real-world

applications. How is this possible? As we hinted earlier in the Introduction, answering

this question would require us to look at solvers through the lens of both proof systems

and machine learning.

While we don’t have a complete picture of why SAT solvers are so efficient, we

have enough clues to suggest that the "solver as a proof system" is a powerful view that

affords us deep insights into the working of solvers and enables us to better navigate

the design space of solver algorithms. More precisely, we get two advantages from this

view. First, we can use proof complexity to prove strong lower and upper bounds on

solvers. We will expand on this further in Subsection 4.6. Second, we can view a solver

as an implementation of a proof search algorithm for a proof system. Put differently,

an implementation of a solver would consist of proof rules and methods for optimal

sequencing and selection of these rules for various classes of inputs. Given that current

solvers produce copious amounts of data as they search for proofs and/or solutions, it

further suggests that such optimization procedures may best be designed by leveraging

machine learning algorithms.

When viewed from this perspective, the CDCL SAT solver can be seen as having the

following structure: the clause learning subroutine corresponds to the implementation of

the general resolution proof rule (a teacher), and the BCP and the variable and value se-

lection heuristics can be seen as an actor (a student) that interacts with the clause learning

component in a corrective feedback loop with the aim of optimizing some reward (e.g.,

minimize solver runtime). This student-teacher model with corrective feedback loop is

very reminiscent of how reinforcement learning (RL) methods work, where there is an

actor, who continually interacts with her environment, attempting to optimize a reward.

In fact, what we show below is that reinforcement learning methods are a powerful way

to design many solver heuristics, and in particular this view of branching methods as

actors in a RL setting led to the development of the Learning Rate Based (LRB) variable

selection heuristic.

4.4.2. The LRB Variable Selection Heuristic

Any variable selection heuristic can be viewed as solving the optimization problem of

ranking variables of the input formula such that the overall solver runtime is minimized.

Additionally, most modern variable selection heuristics are dynamic, that is, they are

called at regular intervals throughout the run of the solver, and may provide distinct rank-

ings at different invocations. The solver typically picks the top-ranked variable in this

ranking, and branches on it. An additional requirement placed on the design of variable

selection heuristics is that they must be cheap to compute.

Unfortunately, the task of designing variable selection heuristics that, given any in-

put, minimize solver runtime by picking just the right variables and have very little com-

putational overhead is simply too hard to solve. Instead, solver designers often use met-

rics that are proxies for minimizing solver runtime, i.e., ones that empirically correlate

well with minimizing solver runtime and are cheap to compute. Put differently, the prob-

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective44

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

lem of designing a solver heuristic reduces to identifying the appropriate optimization

problem, along with the corresponding proxy metric, and coming up with methods to

solve said problem.

In the case of the Learning Rate Branching (LRB) heuristic[24,22], the authors iden-

tified the optimization problem as maximizing the Global Learning Rate (GLR) measure

(a proxy for minimizing solver runtime), and the method to solve this optimization prob-

lem as Exponential Recency Weighted Average (ERWA) method from the RL literature
9.

Global Learning Rate (GLR): The GLR metric is simply a ratio of the number of

conflict clauses learned and the number of decisions made by the solver, at any point

during the run of the solver. The GLR is a good metric for the variable selection opti-

mization problem since it is very cheap to compute and has been empirically shown to

correlate strongly with minimizing solver runtime. The intuition behind the choice of

GLR is that solvers want to maximize the number of learned clauses (which corresponds

to learning about the search space of the input formula) while simultaneously minimiz-

ing the number of decisions (or assumptions used to derive these clauses). Ideally, one

would also like to maximize some kind of quality metric with regard to learned clauses,

in addition to GLR. Fortunately, existing 1UIP clause learning scheme already seems to

produce "high quality" clauses, at least based on empirical observations.

The Multi-Arm Bandit Problem: The Multi-Arm bandit (MAB) is a classic RL prob-

lem, which is best described in terms of a gambler playing n slot-machines (the multi-

arm bandits) in a casino. The objective of the gambler or actor is to maximize her re-

ward or monetary earnings, with minimal expenditure of resources. Each slot machine

has a reward probability distribution which associates a probability with every possible

value of reward. Obviously, the actor is not privy to this distribution. In a more complex

version of this problem, more relevant in our setting, this probability distribution may

change with time. Such distributions are called non-stationary.

At any point in time the actor has n actions to choose from, corresponding to playing

one of the n slot machines. The actor picks an action, plays the corresponding machine

and receives a monetary reward. The objective for the actor is to find the sequence of ac-

tions that maximize her global reward and minimize cost due to resource usage. The ac-

tor may randomly play few slot machines to see which one maximizes her reward (explo-

ration), and then focus on the one that has the largest payout, at least, for as long it lasts

(exploitation). If the slot machine’s payout starts decreasing, the actor may move to other

slot machines. This game of exploration vs. exploitation continues until some kind of

timeout or other termination condition is reached. In RL literature, this approach to solv-

ing the non-stationary MAB problem is codified as the Exponential Recency Weighted

Average (ERWA) method, which we discuss below in detail. Interestingly, a very similar

approach also works well for variable selection in CDCL solvers.

9It goes without saying that these approximations of ideal branching heuristics are bound to perform well on

some class of instances and poorly on others. There are no guarantees of optimality here. The point simply is

that RL methods seem to work really well in practice when applied in the SAT solver setting, especially given

the fact that solvers produce so much data about the search space they explore. Further, this correspondence

between solver heuristics and machine learning methods offers solver designers a new way of navigating the

design space of solver algorithms by leveraging the rich literature on machine learning.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 45

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

MAB and LRB Branching Heuristic: As alluded to above, the correspondence be-

tween CDCL and RL (specifically, non-stationary MABs) is very strong indeed: variable

selection heuristics correspond to actors, the act of variable selection or branching cor-

responds to actions in RL parlance, the variables of the input formulas correspond to the

slot machines, clause learning corresponds to the environment which provides correc-

tive feedback and the learned clauses correspond to local rewards, and the optimization

metric GLR corresponds to reward. The actor (LRB) chooses variables that maximize

its reward (GLR). While maximizing the GLR remains the global objective of the actor

(branching heuristic), every action also has an associated local reward, referred to sim-

ply as learning rate, which measures the contribution to GLR by every individual action

(branching on a variable). Below we describe the concept of learning rate that the SAT

solver keeps track of for every variable in the input formula.

Learning Rate: In order to better understand the learning rate we first recall how

clause learning works: conflict clauses are computed during conflict analysis via a series

of resolution steps performed on the clauses that mark edges of the implication graph

under analysis. We say that a variable v participates in generating a learned clause l if

either v appears in l or v appears on the conflict side of the implication graph under

analysis. In other words, v plays an essential role in learning the clause l from the the

encountered conflict. We define a variable I as the interval of time between the point v is

assigned to the point it may become unassigned due to backjumping. Let the predicate

P(v, I) be the number of learned clauses in which v participates during the interval I and

let L(I) be the number of learned clauses generated in the interval I (which may or may

not contain v). The Learning Rate (LR) of variable v during the interval I is defined as
P(v,I)
L(I) , i.e., it computes the ratio how many learned clauses v participated in during the

interval I and how many total clauses were produced during the same interval. In other

words, the learning rate of a variable measures how frequently the variable has triggered

conflict when assigned during a solver run. It is clear that branching on variables with

high learning rate result in higher GLR than otherwise.

Learning Rate Branching: We are now ready to explain the LRB heuristic, through

the lens of ERWA heuristic for MAB problems.

Recall that the branching heuristic (the actor) chooses one variable to branch on

from a set of n variables (the action). In order to maximize the GLR, the actor maintains

the history of rewards (learning rate) it received from each variable. This is maintained as

a time series. For every time step (suitably defined), for every variable, its learning rate

is recorded for that time step. The actor then computes an Exponential Moving Average

(EMA) over this time series for all variables, and chooses the variable with the highest

EMA over the learning rate time series.

The idea of an EMA is simple yet very powerful, and is used in many fields to

discover "recent" trends in time series data (e.g., in finance for stock picking), and in

RL (e.g., to solve the MAB problem). Consider a scenario where you have n different

time series (e.g., n variables with their learning rates over time, one time series per vari-

able. Similarly, payouts from n slot machines over time). The problem for the branching

heuristic (gambler in MAB) in this scenario is which variable to pick next (which slot

machine to play next) to maximize its reward (money payouts). Further, in this setting

the learning rates are non-stationary, i.e., the reward probability distribution changes over

time.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective46

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

One approach to solve this problem could be to focus on the variable that has had the

highest learning rate since the beginning of the solver’s run (similarly, always pick the

slot machine at time t with the largest total payout up until t). Such an approach requires

the branching heuristic (actor) to maintain an average since the beginning of the time se-

ries for each variable (slot machine). The trouble with this approach in a non-stationary

setting is that it doesn’t account for potential fall in learning rate (resp. payouts) in "re-

cent" time intervals. A better approach would be to focus on those variables whose learn-

ing rate is trending up in "recent" time intervals, as opposed to ones whose total average

is highest since the beginning of the time series. This kind of average, that gives more

weight to recent data points in a time series than older ones, is called Exponential Mov-

ing Average (EMA). It is called an exponential moving average since the window of time

over which the average is computed changes in a manner where older data points in the

time series are exponentially decayed away as a function of time, with those data points

that further away from the "current" time getting decayed away more aggressively.

As mentioned above, the solver maintains a time series of learning rate for every

variable throughout its entire run. It then computes an EMA on these time series data over

all variables, decaying older data points exponentially relative to more recent data points.

The variables are then ranked based on the EMA of their learning rates, and the highest

unassigned variable in this ranking is branched upon when the LRB heuristic is invoked.

As the time series data continues to accumulate the ranking may change dynamically.

VSIDS and LRB: Another view of LRB (that also applies to VSIDS) is that both LRB

and VSIDS maintain a value called activity for every variable of an input formula. The

activity of all variables is initially set to 0. In VSIDS, the activity of all variables that

appear on the conflict side of the implication graph is bumped by some constant (which

corresponds to reward in RL), and these activities are decayed by a constant between 0

and 1 at regular intervals. It is this decaying by a constant that essentially corresponds to

an EMA[25].

By contrast, in LRB, whenever a variable transitions from assigned to unassigned

the LR is calculated (this corresponds to reward) and is appended to the time series.

When the solver requests the next branching variable, LRB computes the EMA over the

time series of all variables and picks the one with the highest value (the activity). LRB

has undergone extensive testing over application, hard-combinatorial, and cryptographic

instances from many years of SAT competition benchmarks. It has proven itself to be

more effective than VSIDS for many classes of instances and displaced VSIDS as the

best known branching heuristic in nearly 20 years.

4.5. Restarts in CDCL Solvers

The idea of solver restarts[18] is quite straightforward: at regular intervals during its run,

a solver may discard the search tree it is exploring. This might seem counter-intuitive

at first glance, but restarts have proven to be very effective in helping improve solver

performance in practice. When the solver restarts, it doesn’t throw away all its state.

Solvers typically preserve all the clauses they have learned up until the restart is triggered

(assuming no separate clause deletion policy is in place), as well as the activity of all

variables. The only part of the solver state that is deleted is the assignment trail, causing

the solver to throw away the search tree it has built since the previous restart.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 47

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Many explanations have been proposed to explain why restarts are so useful. We still

don’t have a clear picture. However, recent empirical work has shown that some of the

existing hypotheses are clearly false. For example, the "heavy-tailed explanation" was

proposed as a possible reason why restarts are so effective[18]. The idea has its root in

Las Vegas algorithms, whose running times are typically characterized by a probability

distribution. It is possible that depending on the random seed used such algorithms may

terminate quickly on some instances. The idea is that these algorithm, upon a restart,

"randomly jump" to an easy part of the search space.

However, this explanation of restarts doesn’t quite apply to CDCL SAT solvers.

For one, solvers are deterministic algorithms unlike Las Vegas algorithms. Further, the

definition of restarts in the context of Las Vegas algorithms differs significantly from that

of restarts. In the case of Las Vegas algorithms, restarts erase the state of the algorithm

(suitably defined) and start the search from scratch. This is not how restarts work in the

context of CDCL SAT solvers, since significant aspects of the state are preserved across

restart boundaries.

A better explanation, which has empirical support in the work on Liang et al.[26],

is that restarts "compact" the assignment trail resulting in higher-quality conflict clauses.

The crucial intuition is that when a solver restarts frequently, it has to rebuild the search

tree often and this leads to conflict clauses appearing at lower depths in the assignment

trail. Such clauses that are learned at "compacted" assignment trails tend to be shorter,

and perhaps more importantly, have smaller LBD (Literal Block Distance). The LBD is

a metric that measures the number of decision level a conflict clause spans at the time

during the run of the solver that it is learned. That is, the variables in the clause are

bucketized by their decision levels and the number of such buckets is the LBD. It has

been empirically observed that clauses with lower LBD tend to be of "higher quality",

i.e., result in lower solver runtime. Liang et al. go further, and propose a machine learning

based restart policy that uses LBD as the optimization metric. The result is one of the

most competitive restarts policy to-date, and a deeper understanding of why restarts are

effective.

Clause Deletion, Phase Saving, and Other Hueristics: So far we have discussed in

clause learning, variable selection, and restart heuristics in great detail. Solvers employ a

myriad of other heuristics such as clause deletion, phase saving, inprocessing etc. While

these techniques are empirically important, they are not as universally critical as clause

learning, variable selection, and restarts. Further, they are conceptually quite easy to

understand. Hence, we refer the reader to the Handbook of Satisfiability as an appropriate

reference for more details on these other heuristics.

4.6. Proof Complexity of SAT Solvers

In this subsection we show that CDCL and general resolution simulate each other, pro-

vided that the CDCL solver is given a (non-deterministic) sequence of variable choices

in advance and it has a (i.e. asserting) clause learning scheme. The ideas presented here

are from the seminal paper by Pipatsrisawat and Darwiche [34]. We use an extended

proof to show that CDCL(T) simulates the Res(T) proof system. In fact, in this section

we provide a high level intuition of the proof, and follow up with the more detail when

we describe the extended proofs in CDCL(T) context in Section 5.2.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective48

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Recall that an assignment trail is a sequence of pairs σ = {(�1,d1), (�2,d2), . . .,
(�t ,dt)} where each literal �i is a literal from the theory and each di ∈ {d,p}, indicating

that the literal was set by the solver by a decision or a unit propagation respectively. The

decision level of a literal �i in the branching sequence is the number of decision literals

occurring in σ up to and including �i. The state of a CDCL solver can be defined as

(F ,Γ,σ), where F is the input CNF formula, Γ is a set of learned clauses, and σ is an

assignment trail. Given an assignment trail σ and a clause C we say that C is asserting
if it contains exactly one literal occurring in σ of decision level |C|. A clause learning

scheme is asserting if all conflict clauses produced by the scheme are asserting with

respect to the assignment trail at the time of conflict.

A extended branching sequence is an ordered sequence B = {β1,β2, . . . ,βt} where

each βi is either (1) a branching literal, or (2) a symbol x ∈ {R,NR}, to denote a restart

or no-restart, respectively. If A is a CDCL solver, we use an extended branching sequence

to dictate the operation of the solver A on F : whenever the solver calls the Branching

Scheme, we consume the next βi from the sequence. If it is a literal, then we branch

on that literal appropriately, otherwise restart as dictated by the extended branching se-

quence. If the branching sequence is empty, then simply proceed using the heuristics

defined by the algorithm.

We now introduce a central notion that was originally defined by Pipatsrisawat and

Darwiche [34] and separately Atserias, Fichte and Thurley [2].

Definition 4.1 (Empowering Clauses). Let F be a set of clauses and let A be a CDCL
solver. Let C = (α ⇒ �) be any clause. We say that C is empowering with respect to F at
� if the following holds: (1) F |=C, (2) F ∧α is unit consistent, and (3) any execution

of A on F that falsifies all literals in α does not unit propagate �. The literal � is said to

be empowering. If item (1), (2) are satisfied but (3) is false then we say that the solver A
and F absorbs C at �; if A and F absorbs C at at every literal then the clause is simply

absorbed. (The concepts of empowering and absorbed are duals of each other.)

One should think of the absorbed clauses as being “learned implicitly” — absorbed

clauses may not necessarily appear in F . However, if we assign all but one of the literals

in the clause to false then unit propagation in CDCL(T) will set the final literal to true.

That is, even if the absorbed clause C is not in F , the unit propagation sub-routine

behaves “as though” the absorbed clause is actually in F .

Symmetrically, in order for a clause C to be learned by a DPLL solver, it must be

empowering at some literal � at the time it is learned. To see this, consider a trace of a

DPLL solver wherein we have just learned a clause C. Since we have learned C it easy

to see that it must be the case that F |=T C. Let σ be the branching sequence leading

to the conflict in which we learned C, and let � be the last decision literal assigned in σ
before the solver hit a conflict (if DPLL uses an asserting clause learning scheme, such

a literal must exist). We can write C ≡ (α ⇒¬�), and clearly α ⊆ σ . Thus, at the point

in the branching sequence σ before we assign � it must be that F ∧α is unit consistent,

since we have assigned another literal after assigning each of the literals in α . Finally,

F ∧α �T
1 � since ¬� was chosen as a decision literal after we set the literals in α .

Definition 4.2 (1-provable Clauses). Given a CNF F , clause C is 1-provable with re-

spect to F ⇐⇒ F ∧¬C �1 f alse.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 49

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Put differently, a clause C is 1-provable with respect to a CNF F , if C is derivable

from F only using BCP.

Theorem 4.1. CDCL polynomially simulates general resolution.

The high level idea of the simulation is as follows: We need to show that for any gen-

eral resolution proof for an unsatisfiable formula, the CDCL solver can "simulate" that

proof with only polynomial overhead in the proof size (in terms of number of clauses).

The crucial insight here is that for formulas F for which BCP alone cannot establish

unsatisfiability, there exist empowering clauses implied by F which when added to F
cause BCP to correctly determine that this formula is UNSAT. Further, given a general

resolution proof P of F , it contains at least one empowering and 1-provable clause in

it. It further turns out that there exists an non-deterministic extended branching sequence

for CDCL solvers with asserting learning schemes such that they can absorb such a

clause. This process is repeated until there are no more clauses that need to be absorbed,

and we have shown that CDCL simulates general resolution10. (The reverse direction is

immediate.)

5. Lazy SMT Solvers via CDCL(T)

In this Section, we provide an overview of the architecture of SMT solvers, followed by

proof complexity theoretic analysis of their power as proof systems. We will describe

SMT solvers along our now familiar line of "solvers as proof systems". We deliberately

deviate from traditional surveys of SMT solvers, where a high-level overview of SMT

solver algorithm is followed by details about individual theories. Our description provide

a complementary description to existing surveys.

SMT solvers are powerful algorithms designed to solve the satisfiability problem for

first-order theories that are relevant in the context of program analysis, testing, security,

and verification. They support a much richer input language than SAT solvers, e.g., first-

order theories such as non-linear arithmetic over the reals and integers, theories over

strings and regular expressions, bit-vectors, arrays, uninterpreted functions, datatypes,

and floating-point arithmetic. The impact of SMT solvers on many areas of software

engineering and security has been dramatic and well-documented.

Generally speaking, there are two categories of SMT solvers, eager and lazy. Ea-

ger solvers are based on the idea of equisatisfiable reductions of input formulas in one

theory into another (e.g., Bit-vectors to Boolean logic), and then invoking the appropri-

ate solver on the resultant formula. The appeal of such an approach is that it leverages

advances in solvers for one theory (e.g., SAT solvers) to efficiently solve formulas in

another (e.g., bit-vectors). However, such an approach may introduce costs in terms of

blowup in formula size during translation from one theory to another.

By contrast to eager solvers, lazy SMT solvers are based on two key ideas, namely,

abstraction-refinement and specialized decision procedures for first-order theories such

as uninterpreted functions, arithmetic, strings, bit-vectors etc. At its core, a lazy SMT

solver is a SAT solver extended with decision procedures for these first-order theories

10In the Subsection 5.2 we give a formal and more general version of this proof for CDCL(T), that also

applies to the CDCL SAT solver case.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective50

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm 3 The CDCL(T) Architecture of SMT Solvers

1: input: CNF formula F over T -literals

2: SAT or UNSAT
3: Let σ = /0 be an initially empty partial assignment of T -literals

4: Γ be an initially empty collection of learned clauses

5: while true do
6: Perform BCP on Boolean abstraction, until saturation, and update σ
7: Apply the T -propagate scheme, and update σ accordingly
8: if (Boolean abstraction of F and Γ and σ together result in a conflict) then
9: if (σ = /0) then

10: return UNSAT

11: Apply the clause learning scheme to learn a conflict clause C, add it to Γ
12: Backjump σ to the second highest decision level in C
13: else if (σ �T /0) then
14: Apply the T -conflict scheme to learn a conflict clause C, add it to Γ
15: Backjump σ to the second highest decision level in C
16: else
17: if σ satisfies F then
18: return SAT

19: Apply the restart scheme to decide whether or not to restart

20: if restart then
21: Set σ = /0

22: Restart loop

23: Apply the branching scheme to choose a decision literal �, σ = σ ∪{�}
that enhance the SAT solver’s propagation and conflict analysis subroutines (they are

also sometimes referred to as CDCL(T) solvers, as described below). Informally, given a

formula φ over first-order theories, the SMT solver first constructs a Boolean abstraction

(an over-approximation) φb of φ . If the abstraction is UNSAT, the solver returns UNSAT.

Else, there is some satisfying assignment Ab for φb. The SMT solver then essentially ver-

ifies this assignment by constructing a conjunction of theory literals corresponding to lit-

erals in Ab, and calling the appropriate theory decision procedure on it. This abstraction-

refinement process repeats until the solver correctly determines the satisfiability of the

input formula. (We describe this in greater detail below.)

5.1. Understanding the Architecture of CDCL(T)

A one line description of SMT solvers is that they are "CDCL SAT solvers extended with

theory solvers" as shown in Algorithm 3, and hence they are often referred to as DPLL(T)

solvers. The idea of DPLL(T) was first introduced in a landmark paper by Ganzinger, Ha-

gen, Nieuwenhuis, Oliveras, and Tinelli[17], and then refined further in a subsequent pa-

per by Nieuwenhuis, Oliveras, and Tinelli[31]. The DPLL(T) architecture is sometimes

also referred to as CDCL(T). We believe that the term CDCL(T) is a better fit. The reason

is that prior to mid-2000’s, the term DPLL was used to describe two very different kinds

of SAT solvers, namely, one that was invented by Davis, Putnam, Loveland, and Loegge-

mann in 1960’s (and hence the name DPLL), as well as the one invented in the late 90’s

which enhanced DPLL with clause-learning (what we now call as CDCL). However,

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 51

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

from a proof complexity point of view, the difference between DPLL and CDCL is vast.

DPLL is polynomially equivalent to tree-like resolution, while CDCL is polynomially

equivalent to the much stronger general resolution. By the same token, we believe the

term CDCL(T) better captures modern SMT solvers than the term DPLL(T). Perhaps the

most effective way to understand CDCL(T) is that this architecture11 extends the CDCL

algorithm with a solver T for combination of various first-order theories, wherein, this

theory solver T is used to enhance the conflict analysis and propagation of the CDCL

algorithm.

CDCL(T) solvers take as input CNF formula F over theory literals (written as T -

literals), and returns SAT or UNSAT. The CDCL(T) initially performs reasoning over

a Boolean abstraction of the formula F , i.e., every theory literal is abstracted appro-

priately by a Boolean literal and the resultant Boolean formula is analyzed by the SAT

solver inside the CDCL(T) solver (lines 6 to 8). If this formula is UNSAT and the partial

assignment σ is empty, clearly there is no reason to further analyze F (lines 9 and 10),

and the SMT solver returns UNSAT. On the other hand, if σ is non-empty the solver

learns a conflict clause over the variables in the Boolean abstraction (lines 11 to 12).

Else, the Boolean abstraction is SAT. This does not imply that the input formula is

satisfiable, for it is possible that the abstraction has a satisfying assignment but this is not

satisfying when the theory is taken into account. Hence, the solver checks whether this

partial assignment is consistent with the theory solver. On lines 13 to 15, the solver calls

the appropriate theory solver to check whether the partial assignment σ is consistent with

the theory. If not, it invokes the theory conflict analysis subroutine T -conflict to identify

theory conflicts and add it to γ .

On lines 17 to 18, the solver checks if the partial assignment is T -satisfying. If so,

return SAT. Elsif, depending on the restart scheme, the solver may choose to restart (lines

20 to 22). If the control has reached line 23, it means the solver has found no conflicts

(either Boolean or theory-level), has not yet found a complete satisfying assignment, and

BCP and T -propagate have saturated. This causes the solver to call the variable and value

selection heuristics, and branch on a literal.

5.2. CDCL(T) and Res(T)

In this Section we show that lazy SMT solvers and resolution modulo theories are

polynomially-equivalent as proof systems, provided that the SMT solvers are given a set

of branching and restart decisions a priori based on the work of Robere et al.[35]. We

model SMT solvers by the algorithm schema12 CDCL(T), given in Algorithm 3. Using

this schema we prove two results: first, if the theory solver in CDCL(T) can only reason

about literals occurring in its input formula, then CDCL(T) is polynomially equivalent to

the proof system Res(T). Second, if the theory solver is strengthened so that it is allowed

to introduce new literals then the resulting solver can polynomially simulate Res∗(T).
The proofs of these results use techniques developed for establishing polynomial equiv-

11We use the term architecture to highlight the fact that CDCL(T) is a set of algorithms, depending on the

theory T.
12In the literature, SMT solvers are typically defined as abstract state-transition systems (see, for instance,

[17,6]); we have chosen to define it instead as an algorithm schema (cf. Algorithm 3) inspired by the abstract

definition of a CDCL solver by Pipatsrisawat and Darwiche [34].

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective52

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

alence between Boolean CDCL solvers and resolution by Pipatsrisawat and Darwiche

[34].

If T is a theory and A,B are formulas over T then we write A �T B as a shorthand for

T ∪{A} � B (i.e., every model of the theory T that satisfies A also satisfies B). We also

define unit resolution for theories, which describes the action of the unit propagator.

As alluded to above, the CDCL(T) system is in fact a collection of algorithm, each

defined by specifying algorithms for each of the bolded “schemes” in Algorithm 3. The

definitions of clause learning scheme, restart, and branching schemes are standard from

CDCL SAT literature (See Section 4 above). For T -propagate and T -conflict, we provide

brief definitions below:

T -Propagate Scheme: During search, the CDCL(T) solver can hand the theory solver

the current partial assignment σ and ask whether or not it should unit-propagate a literal;

if a unit propagation is possible the theory solver will return a clause C from the theory

witnessing this unit propagation.

T -Conflict Scheme: When the theory solver detects that the current partial assignment

σ contradicts the theory, the T -Conflict Scheme is applied to learn a new clause of

literals C, ¬C ⊆ σ , which is added to the clause database.

We pay particular interest to the specification of the T -propagate scheme. The next

definition describes two types of propagation schemes: a weak propagation scheme is

only allowed to return clauses which propagate literals in the formula, while the more

powerful strong propagation scheme returns a clause of literals from the theory that may

contain new literals.

Definition 5.1. A weak T -propagate scheme is an algorithm which takes as input a

conjunction of theory literals σ over T and returns (if possible) a clause C = ¬σ ∨ �
where T |=C and the literal � occurs in the input formula of the CDCL(T) algorithm.

A strong T -propagate scheme is an algorithm which takes as input a conjunction of

literals σ over T , and if possible returns a clause C of literals from T such that T |= C
and ¬σ ⊆C. An algorithm equipped with a strong T -propagate scheme will be called a

CDCL∗(T) solver.

A CDCL(T) algorithm equipped with a weak T -propagation scheme is equivalent

to the basic theory propagation rules found in SMT solvers (see, for example, [6,30]).

For technical convenience we assume that the weak T -propagate scheme adds a clause to

the database certifying the unit propagation, while in actual implementations the clause

would likely not be added and the literal would simply be propagated. Recent SMT

solvers[14,12] have strengthened the interaction between the SAT solver and the theory

solver, allowing the theory solver to return constraints over new variables; this is mod-

elled very generally by strong T -propagate schemes.

5.3. Polynomial Equivalence of CDCL(T) and Res(T)

In the remainder of the section we show that CDCL(T) and Res(T) polynomially simu-

late each other, provided that CDCL(T) is provided with a (non-deterministic) sequence

of variable choices in advance and it has a (i.e. asserting) clause learning scheme. The

proof presented here is a modification of the seminal result of Pipatsrisawat and Dar-

wiche [34]; the definitions below are modified appropriately for the CDCL(T) setting.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 53

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

In the CDCL(T) context, the definitions of assignment trail, extended branching

sequence, empowering (dually, absorbed) clauses are very similar to the CDCL SAT

solver case. We reproduce these definitions here with appropriate modifications.

Just as in the case of CDCL solvers, in the CDCL(T) setting an assignment trail is

a sequence of pairs σ = {(�1,d1),(�2,d2), . . . ,(�t ,dt)} where each literal �i is a literal

from the theory and each di ∈ {d,p}, indicating that the literal was set by the solver

by a decision or a unit propagation respectively. The decision level of a literal �i in the

branching sequence is the number of decision literals occurring in σ up to and including

�i. The state of a CDCL(T) solver can be defined as (F ,Γ,σ), where F is the input CNF

formula, Γ is a set of learned clauses, and σ is an assignment trail. Given an assignment

trail σ and a clause C we say that C is asserting if it contains exactly one literal occuring

in σ of decision level |C|. A clause learning scheme is asserting if all conflict clauses

produced by the scheme are asserting with respect to the assignment trail at the time of

conflict.

A extended branching sequence is an ordered sequence B = {β1,β2, . . . ,βt} where

each βi is either (1) a literal from the theory, (2) a symbol x ∈ {R,NR}, to denote a

restart or no-restart, respectively, or (3) a clause C such that T |= C. If A is a CDCL(T)
solver with a T -propagate scheme, we use an extended branching sequence to dictate the

operation of the solver A on F : whenever the solver calls the Branching Scheme, we

consume the next βi from the sequence. If it is a literal from the theory, then we set that

literal; otherwise we halt the execution in error.

Similarly, when the CDCL(T) solver calls the Restart Scheme we can use the

branching sequence to dictate whether or not to restart, and when the solver calls the

weak T -propagate scheme we use the sequence to dictate which clause to learn. If the

symbol does not correctly match the current scheme being called then we halt in error. If

the branching sequence is empty, then simply proceed using the heuristics defined by the

algorithm. We now introduce a central notion that was originally defined by Pipatsrisawat

and Darwiche [34] and separately Atserias, Fichte and Thurley [2].

Definition 5.2 (Empowering Clauses). Let F be a collection of clauses over an arbitrary

theory T and let A be a CDCL(T) solver. Let C = (α ⇒ �) be any clause. We say that C
is empowering with respect to F at � if the following holds: (1) F |= C, (2) F ∧α is

unit consistent, and (3) any execution of A on F that falsifies all literals in α does not

unit propagate �. The literal � is said to be empowering. If item (1), (2) are satisfied but

(3) is false then we say that the solver A and F absorbs C at �; if A and F absorbs C
at at every literal then the clause is simply absorbed. (The concepts of empowering and

absorbed are duals of each other.)

One should think of the absorbed clauses as being "learned implicitly" — absorbed

clauses may not necessarily appear in F . However, if we assign all but one of the literals

in the clause to false then unit propagation in CDCL(T) will set the final literal to true.

That is, even if the absorbed clause C is not in F , the unit propagation sub-routine

behaves “as though” the absorbed clause is actually in F .

Symmetrically, in order for a clause C to be learned by a DPLL solver, it must be

empowering at some literal � at the time it is learned. To see this, consider a trace of a

DPLL solver wherein we have just learned a clause C. Since we have learned C it easy

to see that it must be the case that F |=T C. Let σ be the branching sequence leading

to the conflict in which we learned C, and let � be the last decision literal assigned in σ

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective54

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

before the solver hit a conflict (if DPLL uses an asserting clause learning scheme, such

a literal must exist). We can write C ≡ (α ⇒¬�), and clearly α ⊆ σ . Thus, at the point

in the branching sequence σ before we assign � it must be that F ∧α is unit consistent,

since we have assigned another literal after assigning each of the literals in α . Finally,

F ∧α �T
1 � since ¬� was chosen as a decision literal after we set the literals in α .

We first introduce a simple lemma that shows we can construct an extended branch-

ing sequence which allows us to learn any theory clause that we like.

Lemma 5.1. Let F be an unsatisfiable CNF over a theory T and let Π be any Res(T)
proof from F . Let ΠT ⊆ Π be the set of clauses in Π derived using the theory rule. For
any CDCL(T) algorithm A there is an extended branching sequence B such that after
applying B to the solver A every clause in ΠT will be absorbed.

Proof. Order ΠT arbitrarily as C1,C2, . . . ,Cm and remove any clause that is absorbed or

already in F , as these are clearly already absorbed. We construct B directly: query the

negations of literals in C1 and when we have queried all but one literal in C1, add the

clause C1 to the extended branching sequence. By definition the weak T -propagator will

be called and will return C1, adding it to the clause database. Restart and continue to the

next theory clause in order.

Our proof of mutual simulations between Res(T) and CDCL(T) crucially relies on

the following lemma (which is a modified version of a lemma from [34]). We say a clause

C is unit refutable from F if F ∧¬C is not unit consistent, i.e. F ∧¬C �1 /0. (This is

similar to the 1-provable clause definition in the CDCL SAT solver setting.)

Lemma 5.2. Let F be an unsatisfiable, unit-consistent CNF over literals from a theory
T and let Π be any Res(T) proof from F . Let ΠT be the set of clauses in Π derived using
the theory rule. Then there exists an extended branching sequence B and a clause C in Π
that is both empowering and unit-refutable with respect to F ∪ΠT .

Proof. Let Π denote a Res(T)-proof of F , whose clauses we order as C1,C2, . . . ,Cm. It

follows from the assumptions that there exists a Ci which is the first clause in Π by this

ordering such that it is not unit-refutable. Since Π is a Res(T)-proof, Ci is one of three

types: either it is a clause in F , it is a clause derived from the theory rule, or Ci was

derived by applying the resolution rule to two clauses Cj,Ck. If Ci ∈ F then it is clearly

unit-refutable, which is a contradiction.

If Ci was derived from the theory rule, then observe that all such clauses are absorbed

with respect to F ∪ΠT .

Finally, suppose that Ci was derived by applying the resolution rule to clauses Cj
and Ck, and we write Cj = (α ⇒ �), Ck = (β ⇒ �) where � is the resolved literal,

where j,k < i in the ordering of clauses in Π. Since Cj and Ck are both unit-refutable, we

assume (by way of contradiction) that neither Cj nor Ck are empowering. It follows by

definition that both clauses are absorbed at every literal. Thus, if we consider F ∧α ∧β ,

it follows by the absorption property that F ∧α ∧ β �1 �,F ∧α ∧ β �1 ¬� which of

course implies that F ∧α ∧β �T
1 /0. However, Ci = α ∧β , and so Ci is unit-refutable,

which is a contradiction! Thus at least one of Cj or Ck is both empowering and unit-

refutable.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 55

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The gist of the lemma 5.2 is simple: if clauses C ∨ � and D∨ � are both absorbed

by a collection of clauses C , then asserting C∧D in the DPLL solver will hit a conflict

since it will unit-imply both � and �. Now we are ready to prove the main theorem of this

section, which is the difficult direction of showing Res(T)≡p CDCL(T). The main step

of the theorem is a claim which shows that empowering and unit-refutable clauses will

be absorbed by the solver after sufficiently many restarts.

Theorem 5.3. The CDCL(T) system with an asserting clause learning scheme, non-
deterministic branching and T -propagation polynomially simulates Res(T). Equiva-
lently: for any unsatisfiable CNF F over a theory T , and any Res(T) refutation Π of F
there exists an extended branching sequence B such that running a CDCL(T) algorithm
on input F using the sequence B will refute F in time polynomial in the length of |Π|.
Proof. Let F be an unsatisfiable CNF over the theory T , and let Π be a Res(T) refutation

of F . Let ΠT ⊆ Π be the set of clauses in Π derived using the theory rule, and write

Π=C1,C2, . . . ,Cm. As a first step, apply Lemma 5.1 and construct an extended branching

sequence B′ which leads to the absorbtion of all clauses in ΠT . We prove the following

claim, from which the theorem easily follows.

Claim. Let C be any unit-refutable and empowering clause with respect to F . Then

there exists an extended branching sequence B of polynomial size such that after applying

B the clause C will be absorbed.

Let � be any empowering literal of C, and write C = (α ⇒ �). Let B be any extended

branching sequence in which all literals in α are assigned. Since C is empowering, it

follows that F ∧α is unit-consistent. Extending B with the decision literal ¬� will there-

fore cause a conflict since C is unit-refutable. Let C′ be the asserting clause obtained by

applying the clause learning scheme to B∪{¬�}. If F ∧C′ absorbs C at �, then we are

done and we continue to the next empowering literal. Otherwise, we resolve whatever

conflicts the solver needs to resolve (possibly adding more learned clauses along the

way) until the branching sequence is unit-consistent.

Observe that after this process we must have that F ∧C′ �1 �
′ where �′ is some literal

at the same decision level as �, since the clause learning scheme is asserting. Thus the

number of literals at the maximum decision level has reduced by one. At this point, we

restart and do exactly the same sequence of branchings — each time, as argued above,

we reduce the number of literals at the maximum decision level by 1. Since � is a literal at

the maximum decision level, it implies that after at most O(n) restarts (and O(n) learned

clauses) we will have absorbed the clause C at �. Repeating this process at most n times

for each empowering literal in C we can absorb C, and it is clear that the number of

learned clauses is polynomial from the analysis. We are now ready to finish the proof.

Apply the claim repeatedly to the first empowering and unit-refutable clause in Π to

absorb that clause — by Lemma 5.2, such a clause will exist as long as the CNF F is not

unit-refutable; a CDCL(T) solver can obtain an arbitrary theory clause by setting relevant

literals in the branching sequence and using theory propagation. Since the length of the

proof Π is finite (length m), it follows that this process must terminate after at most m
iterations. At this point, there can not be such an empowering and unit-refutable clause,

and so by Lemma 5.2 it follows that F (with its learned clauses) is now unit-refutable,

at which point the CDCL(T) algorithm halts and outputs UNSAT.

The reverse direction of the theorem is straightforward, and thus we have the fol-

lowing corollary:

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective56

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Corollary 5.3.1. The CDCL(T) system with an asserting clause learning scheme, non-
deterministic branching and T -propagation is polynomially equivalent to Res(T).

A key point of the above simulation is that it does not depend on whether or not

the T -propagation scheme is weak or strong — since the clauses learned by the scheme

are specified in advance by the extended branching sequence the same proof will apply

directly if we began with a Res∗(T) proof instead. Of course, if we begin with a Res∗(T)
proof instead of a Res(T) proof we may use the full power of the theory derivation

rule, requiring that we use a DPLL∗(T) algorithm with a strong T -propagation scheme

instead. We record this observation as a second theorem.

Theorem 5.4. The DPLL∗(T) system with an asserting clause learning scheme, non-
deterministic branching and T -propagation is polynomially equivalent to Res∗(T).

In conclusion, we establish here that the CDCL(T) architecture is best understood

through the lens of Res(T) and Res∗(T) proof system. This kind of proof complexity

theoretic analysis enables to appropriately characterize the power of these systems.

5.4. First-order Decision Procedures and their Combinations

A considerable amount of research on solvers for individual first-order theories and their

combinations has been conducted and many practically efficient algorithms for these the-

ories have been developed (See the chapter on SMT solvers in the Handbook of Satisfia-

bility [4]). As we discussed earlier, in these notes we deliberately focus on the CDCL(T)
architecture and its proof complexity-theoretic analysis, complementing other surveys

that discuss algorithms for deciding the satisfiability problem for individual first-order

theories and the idea of combinations of decision procedures in detail.

6. Lessons Learnt and Conclusions

In these notes, we have provided a detailed description of the inner workings of SAT

and SMT solvers, and we have done so through the lens of "solvers as proof systems"

perspective. We described two sets of result to bolster this viewpoint. First, we described

the breakthrough result by Pipatsrisawat and Darwiche [34], which for the first time es-

tablished the link between CDCL and general resolution via polynomial simulation of

proof systems. The value of this result is that it explains how clause learning is the key

heuristic that gives CDCL solvers their power relative to DPLL, which are polynomi-

ally equivalent to the much weaker tree-like resolution. We also showcased the result of

Robere et al. [35], that generalizes the "CDCL is polynomially equivalent resolution"

proof to the SMT case (CDCL(T) is equivalent to Res(T), and when new variables are

allowed, it is equivalent to Res∗(T)). Once again, this enables us to really identify where

the power of these solvers come from.

The second advantage of the solvers as proof systems model is that it enables us to

view solver implementations as proof search algorithms which consist of subroutines

that correspond to proof rules and methods for optimal sequencing and selection of

these rules. This suggests that the problem of designing solver algorithms can be re-

cast as coming up with appropriate proof rules and optimization procedures to adap-

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 57

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

tively sequence/select them for classes of instances. Given that current solvers produce

copious amounts of data as they search for proofs and/or solutions, it further suggests

that such optimization procedures may best be designed by leveraging machine learning

algorithms[22]. We showcased the work on machine learning based variable selection

heuristics, a la, Learning Rate-based Branching (LRB)[22] and machine learning-based

restarts[26]. Many researchers are now following up on this idea. Particularly notworthy

is the work of Mate Soos and Kuldeep Meel in developing a machine learing based SAT

framework that would enable researchers to develop their own machine learning-based

SAT heuristics.

These are powerful ideas, and a whole host of researchers are pursuing deeper un-

derstanding of solvers via proof complexity and machine learning. These ideas are now

being applied to mixed integer solvers, MaxSAT solvers, QBF solvers, parallel versions

of SAT and SMT solvers, and entire classes of automated reasoning algorithms that is

beyond the scope of these notes. The foundational perspective presented here reinforces

the point that solver research is not merely a jumble of heuristics developed in response

to applications, but rather a deep set of ideas with far-reaching impact.

References

[1] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth Polgreen. Counterex-

ample guided inductive synthesis modulo theories. In Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I, pages 270–288, 2018.

[2] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with many

restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.

[3] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing the poten-

tial of clause learning. J. Artif. Intell. Res., 22:319–351, 2004.

[4] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,

volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[5] Nikolaj Bjørner, Bruno Dutertre, and Leonardo de Moura. Accelerating lemma learning using joins -

DPLL(Join). In 15th International Conference on Logic for Programming Artificial Intelligence and
Reasoning, LPAR’08, 2008.

[6] Nikolaj Bjørner and Leonardo De Moura. Tractability and modern SMT Solvers. In L. Bordeaux,

Y. Hamadi, and P. Kohli, editors, Tractability: Practical Approaches to Hard Problems, pages 350–377.

Cambridge University Press, 2014.

[7] Aaron R. Bradley. SAT-based Model Checking Without Unrolling. In Proceedings of the 12th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI’11, pages

70–87, Berlin, Heidelberg, 2011. Springer-Verlag.

[8] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. EXE: Auto-

matically Generating Inputs of Death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS ’06, pages 322–335, New York, NY, USA, 2006. ACM.

[9] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded Model Checking Using

Satisfiability Solving. Formal Methods in System Design, 19(1):7–34, 2001.

[10] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual
ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY, USA, 1971.

ACM.

[11] Martin Davis, George Logemann, and Donald Loveland. A Machine Program for Theorem-proving.

Commun. ACM, 5(7):394–397, July 1962.

[12] Leonardo De Moura and Nikolaj Bjørner. The Z3 Theorem Prover. https://github.com/
Z3Prover, 2008.

[13] Peter J Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpression problem.

Journal of the ACM (JACM), 27(4):758–771, 1980.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective58

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/Z3Prover
https://github.com/Z3Prover

[14] Bruno Dutertre and Leonardo De Moura. The Yices SMT Solver. http://yices.csl.sri.com/,

2006.

[15] Niklas Eén and Niklas Sörensson. Theory and Applications of Satisfiability Testing: 6th International
Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Selected Revised Papers, chapter

An Extensible SAT-solver, pages 502–518. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[16] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Werner Damm

and Holger Hermanns, editors, Computer Aided Verification, 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science,

pages 519–531. Springer, 2007.

[17] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Dpll (t):

Fast decision procedures. In International Conference on Computer Aided Verification, pages 175–188.

Springer, 2004.

[18] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-Tailed Phenomena in Satisfiability

and Constraint Satisfaction Problems. Journal of Automated Reasoning, 24(1-2):67–100, February 2000.

[19] Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transactions on Software
Engineering and Methodology, 11(2):256–290, April 2002.

[20] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Publishing Company,

Incorporated, 2012.

[21] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Empirical Study of the Anatomy of Mod-

ern Sat Solvers. In Proceedings of the 14th International Conference on Theory and Application of
Satisfiability Testing, SAT’11, pages 343–356, Berlin, Heidelberg, 2011. Springer-Verlag.

[22] Jia Hui Liang. Machine Learning for SAT Solvers. PhD thesis, University of Waterloo, Canada, 2018.

[23] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential Recency Weighted

Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, pages 3434–3440. AAAI Press, 2016.

[24] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning Rate Based Branching

Heuristic for SAT Solvers. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of
Satisfiability Testing – SAT 2016, pages 123–140, Cham, 2016. Springer International Publishing.

[25] Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czarnecki. Understanding

VSIDS Branching Heuristics inÂăConflict-Driven Clause-Learning SAT Solvers. In Nir Piterman, ed-

itor, Hardware and Software: Verification and Testing, pages 225–241, Cham, 2015. Springer Interna-

tional Publishing.

[26] Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh. Machine

learning-based restart policy for CDCL SAT solvers. In Theory and Applications of Satisfiability Testing
- SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, pages 94–110, 2018.

[27] João P Marques-Silva and Karem A. Sakallah. GRASP-A New Search Algorithm for Satisfiability. In

Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, ICCAD ’96,

pages 220–227, Washington, DC, USA, 1996. IEEE Computer Society.

[28] Matthew W. Moskewicz, Conor F. Madigan, and Sharad Malik. Method and system for efficient imple-

mentation of boolean satisfiability, August 26 2008. US Patent 7,418,369.

[29] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: En-

gineering an Efficient SAT Solver. In Proceedings of the 38th Annual Design Automation Conference,

DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM.

[30] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories.

Journal of the ACM, 53(6):937–977, nov 2006.

[31] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. solving SAT and SAT modulo theories: From

an abstract davis–putnam–logemann–loveland procedure to dpll(t). Journal of the ACM, 53(6):937–977,

2006.

[32] Albert Oliveras and Enric RodrÄśguez-Carbonell. Combining Decision Procedures : The Nelson-Oppen

approach. Techniques, 2009.

[33] Knot Pipatsrisawat and Adnan Darwiche. A Lightweight Component Caching Scheme for Satisfiability

Solvers. In Proceedings of the 10th International Conference on Theory and Applications of Satisfiability
Testing, SAT’07, pages 294–299, Berlin, Heidelberg, 2007. Springer-Verlag.

[34] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as resolution

engines. Artif. Intell., 175(2):512–525, 2011.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective 59

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://yices.csl.sri.com/

[35] Robert Robere, Antonina Kolokolova, and Vijay Ganesh. The proof complexity of SMT solvers. In

Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, pages 275–293,

2018.

[36] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to Cryptographic Problems.

In Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT
2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, pages 244–257, 2009.

[37] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–483. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1983.

V. Ganesh / SAT and SMT Solvers: A Foundational Perspective60

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Programming by Examples: PL eets ML

Sumit Gulwani a, Prateek Jain b

a Microsoft Corporation, Redmond, USA
b Microsoft Research, Bangalore, India

Abstract. Programming by Examples (PBE) involves synthesizing intended pro-

grams in an underlying domain-specific programming language (DSL) from

example-based specifications. This new frontier in AI enables computer users, 99%

of whom are non-programmers, to create scripts to automate repetitive tasks. PBE

can provide 10-100x productivity increase for data scientists, business users, and

developers for various task domains like string/number/date transformations, struc-

tured table extraction from log files/web pages/PDF/semi-structured spreadsheets,

transforming JSON from one format to another, repetitive text editing, repetitive

code refactoring and formatting. PBE capabilities can be surfaced using GUI-based

tools, code editors, or notebooks, and the code can be synthesized in various target

languages like Java or even PySpark to facilitate efficient execution on big data.

There are three key components in a PBE system. (i) A search algorithm that

can efficiently search for programs that are consistent with the examples provided

by the user. We leverage a divide-and-conquer based deductive search paradigm

that inductively reduces the problem of synthesizing a program expression of a

certain kind that satisfies a given specification into sub-problems that refer to sub-

expressions or sub-specifications. (ii) Program ranking techniques to pick an in-

tended program from among the many that satisfy the examples provided by the

user. (iii) User interaction models to facilitate usability and debuggability.

Each of these PBE components leverage both symbolic reasoning and heuristics.

We make the case for synthesizing these heuristics from training data using appro-

priate machine learning methods. In particular, we use neural-guided heuristics to

resolve any resulting non-determinism in the search process. Similarly, our ML-

based ranking techniques, which leverage features of program structure and pro-

gram outputs, are often able to select an intended program from among the many

that satisfy the examples. Finally, Our active-learning-based user interaction mod-

els, which leverage clustering of input data and semantic differences between mul-

tiple synthesized programs, facilitate a bot-like conversation with the user to aid us-

ability and debuggability. That is our algorithms that deeply integrate neural tech-

niques with symbolic computation can not only lead to better heuristics, but can

also enable easier development, maintenance, and even personalization of a PBE

system.

Keywords. Program synthesis, Programming by Examples, Search algorithm,

Program ranking, Active learning, Data wrangling

0This is an extended version of the article with the same title that appeared in the proceedings for APLAS

2017 as an invited-talk contribution and was published by Springer [13]. This revision includes more than 5

pages of new content, which includes new figures and references along with expansion and better phrasing of

some earlier content.

M

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-61

61

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1. Introduction

Program Synthesis is the task of synthesizing a program that satisfies a given specifi-

cation [15]. The traditional view of program synthesis has been to synthesize programs

from logical specifications that relate the inputs and outputs of the program. A typical

academic exercise in program synthesis is to synthesize complicated algorithms such as

sorting algorithms [43], graph algorithms [18], and bitvector algorithms [19]. For in-

stance, the logical specification for a sorting algorithm would state that the sorting al-

gorithm takes as input an array A[1 :: n] and outputs another array B[1 :: n] s.t. B is a

permutation of A, and B is sorted, i.e.,

∀1 ≤ i < n : B[i]≤ B[i+1] ∧
∃σ , a permutation of 1 . . .n such that ∀1 ≤ i < n : B[i] = A[σ(i)]

Programming by Examples (PBE) is a sub-field of program synthesis, where the

specification consists of input-output examples, or more generally, output properties over

given input states [11]. PBE has emerged as a favorable paradigm for two key reasons: (i)

the example-based specification in PBE makes PBE more tractable than general program

synthesis because it involves reasoning over concrete program states (Section 4 discusses

the underlying search techniques). As a result, we can synthesize more complicated and

larger programs than what was possible earlier, and we can do that very efficiently and

often in real-time to facilitate usability. (ii) Example-based specifications are much eas-

ier for the users to provide in many scenarios. This not only increases the usability of

synthesis technologies for developers, but also broadens the applicability to end users.

This is highly significant since 99% of computer users do not know programming and

would find it extremely difficult to write down logical specifications.

The advantages of PBE also present some unique challenges. First, examples are

highly ambiguous form of user’s intent. There are too many programs that match a small

number of examples. Requiring the user to provide a large number of examples to narrow

down the ambiguity affects the usability of such systems. We discuss (in Section 5) how

program ranking techniques can be designed to guess an intended program from among

the many that satisfy a few representative user-provided examples. Secondly, we need

technologies that can help the user identify representative inputs on which to provide

examples. We discuss this in Section 6.

This article is organized as follows. Section 2 discusses some key applications of

PBE. In Section 3, we provide our perspectives on how PBE differs from Machine Learn-

ing (ML), both of which aim to learn from examples. We make the case that instead of

thinking about ML and PBE as alternatives, ML can actually be used to create better PBE

systems. The next few sections discuss opportunities for such an integration for each of

the three key components of PBE: search algorithm (Section 4), ranking (Section 5), and

interactivity (Section 6). Section 7 presents some directions for future work.

2. Applications

The two killer applications for programming by examples today are in the space of data

transformations/wrangling and code transformations.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML62

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Figure 1. Consider the task of extracting a structured table (shown on the right side) from the custom text file

(shown on the left side). This would typically require writing a complicated parsing script involving regular

expressions. In contrast, the FlashExtract PBE technology [22] allows automation of such tasks from few

examples. This figure illustrates a user experience around this PBE technology. Once the user highlights few

examples (often one or two) of a field (using a color unique to that field), FlashExtract synthesizes a program

and executes it to extract the other instances and arranges them in a new column in the output table.

2.1. Data wrangling

Data Wrangling refers to the process of transforming the data from its raw format to

a more structured format that is amenable to analysis and visualization. It is estimated

that data scientists spend 80% of their time wrangling data. Data is locked up into doc-

uments of various types such as text/log files, semi-structured spreadsheets, webpages,

JSON/XML, and PDF documents. These documents offer their creators great flexibility

in storing and organizing hierarchical data by combining presentation/formatting with

the underlying data. However, this makes it extremely hard to extract the underlying data

for several tasks such as processing, querying, altering the presentation view, or trans-

forming data to another storage format. PBE can make data wrangling easier and faster.

Extraction: A first step in a data wrangling pipeline is often that of ingesting or ex-

tracting tabular data from semi-structured formats such as text/log files, web pages, and

XML/JSON documents. These documents offer their creators great flexibility in storing

and organizing hierarchical data by combining presentation/formatting with the underly-

ing data. However, this makes it extremely hard to extract the relevant data. The FlashEx-

tract PBE technology allows extracting structured (tabular or hierarchical) data out of

semi-structured documents from examples [22]. For each field in the output data schema,

the user provides positive/negative instances of that field and FlashExtract generates a

program to extract all instances of that field. The FlashExtract technology ships as the

ConvertFrom-String cmdlet in Powershell in Windows 10, wherein the user provides ex-

amples of the strings to be extracted by inserting tags around them in test. The FlashEx-

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 63

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Figure 2. Consider the collection of email addresses in the first column. Suppose the user wants to ex-

tract last name and first name and format them as illustrated in the second column. The Flash Fill fea-

ture [10] in Excel 2013 (and onwards) allows automation of such repetitive string transformations from

few examples. In this case, once the user performs one instance of the desired transformation (row 2, col-

umn 2) and proceeds to transforming another instance (row 3, column 2), Flash Fill learns a program con-
cat(ToLower(substr(v,WordToken,12), conststr(“, ”), ToLower(substr(v,WordToken,1))) that extracts

the first two words in input string v (first column), converts them to lowercase, and concatenates them separated

by a comma and space.

(a) Input: Semi-structured spreadsheet

(b) Output: Relational table

Figure 3. Consider the task of extracting a relational table (b) from the semi-structured spreadsheet (a). The

FlashRelate technology [4] allows automation of such tasks from few examples. In this scenario, once the user

provides a couple of examples of tuples in the output table (for instance, the highlighted ones), FlashRelate

synthesizes a script and executes that script to extract other similar tuples from the input spreadsheet.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML64

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

k term(k) n term(n)

<name> term(<name>)

def product(n, term):
if(n == 1):
return 1

- return product(n-1, term)*n
+ return product(n-1, term)*term(n)

def product(n, term):
total, k = 1, 1
while k<=n:

- total = total * k
+ total = total * term(k)

k = k + 1
return total

Figure 4. This figure shows two incorrect student attempts to a programming problem with a similar kind

of fault, wherein the student missed applying the term function. The incorrect statement in each attempt is

colored red while the teacher’s correction is shown in blue. The Refazer tool [33] can generalize such similar

teacher corrections to a more general rule that can be applied to automatically fix other students’ attempts with

a similar fault.

tract technology also ships in Azure OMS (Operations Management Suite), where it en-

ables extraction of custom fields from log files. Figure 1 illustrates use of this technology

to extract structured tabular data from a text file with custom format.

Transformation: The Flash Fill feature, released in Excel 2013 and beyond, is a PBE

technology for automating syntactic string transformations, such as converting “First-

Name LastName” into “LastName, FirstName” [10]. Figure 2 provides an illustration of

the Flash Fill feature. PBE can also facilitate more sophisticated string transformations

that require lookup into other tables [36]. PBE is also a very natural fit for automating

transformations of other data types such as numbers [37] and dates [39].

Formatting: Another useful application of PBE is in the space of formatting data tables.

This can be useful to convert semi-structured tables found commonly in spreadsheets

into proper relational tables [4], or for re-pivoting the underlying hierarchical data that

has been locked into a two-dimensional tabular format [16]. Figure 3 provides illustrates

use of a PBE technology for performing example-based formatting. PBE can also be

useful in automating repetitive formatting in a PowerPoint slide deck such as converting

all red colored text into green, or switching the direction of all horizontal arrows [31].

2.2. Code Transformations

There are several situations where repetitive code transformations need to be performed

and examples can be used to automate this tedious task.

A standard scenario is that of general code refactoring. As software evolves, devel-

opers edit program source code to add features, fix bugs, or refactor it for readability,

modularity, or performance improvements. For instance, to apply an API update, a de-

veloper needs to locate all references to the old API and consistently replace them with

the new API. Examples can be used to infer such edits from a few examples [33].

Another important scenario is that of application migration—whether it is about

moving from on-prem to the cloud, or from one framework to another, or simply moving

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 65

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Figure 5. This figure shows two incorrect student attempts to the problem of reversing an array. The Auto-

Grader tool [40] can find small edits to an incorrect attempt (shown in red) that transforms the program into a

version that satisfies a given reference set of test cases.

from an old version of a framework to a newer version to keep up with the march of

technology. A significant effort is spent in performing repetitive edits to the underlying

application code. In particular, for database migration, it is estimated that up to 40% of

the developer effort can be spent in performing repetitive code changes in the application

code.

Yet another interesting scenario is in the space of feedback generation for program-

ming assignments in programming courses. For large classes such as massive open online

courses (MOOCs), manually providing feedback to different students is an unfeasible

burden on the teaching staff. We observe that student submissions that exhibit the same

fault often need similar fixes. The PBE technology can be used to learn the common

fixes from corrections made by teachers on few assignments, and then infer application

of these fixes to the remaining assignments, forming basis for automatic feedback [33].

Figure 4 illustrates such a use case. Another possibility is to search for a set of small

edits to the student’s incorrect attempt to make it pass a reference set of test cases, as

illustrated in Figure 5.

3. PL meets ML

It is interesting to compare PBE with Machine learning (ML) since both involve

example-based training and prediction on new unseen data. PBE learns from very few

examples, while ML typically requires large amount of training data. The models gen-

erated by PBE are human-readable (in fact, editable programs) unlike many black-box

models produced by ML. PBE generates small scripts that are supposed to work with

perfect precision on any new valid input, while ML can generate sophisticated models

that can achieve high, but not necessarily perfect, precision on new varied inputs. Hence,

given their complementary strengths, we believe that PBE is better suited for relatively

simple well-defined tasks, while ML is better suited for sophisticated and fuzzy tasks.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML66

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Intelligent
software

Logical
strategies

Creative
heuristics Model

Features/Insights

Learned and maintained by
ML-backed runtime

Written by developer

Figure 6. A proposal for development of intelligent software that facilitates increased developer productivity

and increased software intelligence.

Recently, neural program induction has been proposed as a fully ML-based alterna-

tive to PBE. These techniques develop new neural architectures that learn how to gen-

erate outputs for new inputs by using a latent program representation induced by learn-

ing some form of neural controller. Various forms of neural controllers have been pro-

posed such as ones that have the ability to read/write to external memory tape [9], stack

augmented neural controller [20], or even neural networks augmented with basic arith-

metic and logic operations [27]. These approaches typically involve developing a contin-

uous representation of the atomic operations of the network, and then using end-to-end

training of a neural controller or reinforcement learning to learn the program behavior.

While this is impressive, these techniques aren’t a good fit for the PBE task domains of

relatively simple well-defined tasks. This is because these techniques don’t generate an

interpretable model of the learned program, and typically require large computational

resources and several thousands of input-output examples per synthesis task. We believe

that a big opportunity awaits in carefully combining ML-based data-driven techniques

with Programming Languages (PL)-based logical reasoning approaches to improve a

standard PBE system as opposed to replacing it.

3.1. A perspective on PL meets ML

AI software often contains two intermingled parts: logical strategies + creative heuris-

tics. Heuristics are difficult to author, debug, and maintain. Heuristics can be decom-

posed into two parts: insights/features + model/scoring function over those features. We

propose that an AI developer refactors their intelligent code into logical strategies and

declarative features while ML techniques are used to evolve an ideal model or scoring

function over those insights with continued feedback from usage of the intelligent soft-

ware. This has two advantages: (i) Increase in developers productivity, (ii) Increase in

systems intelligence because of better heuristics and those that can adapt differently to

different workloads or unpredictable environments (a statically fixed heuristic cannot

achieve this).

Figure 6 illustrates this proposed modular construction of intelligent software. De-

veloping an ML model in this framework (where the developer authors logical strate-

gies and declarative insights) poses several interesting open questions as traditional ML

techniques are not well-equipped to handle such declarative and symbolic frameworks.

Moreover, even the boundary between declarative insights and ML-based models may be

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 67

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Example
based
Intent

Ranked
Program set

DSL D
Test inputs

Intended
Program in D

Intended Program in
R/Python/C#/C++/…

Translator

Ranking
function

Search
Algorithm Debugger

Refined Intent

Figure 7. Programming-by-Examples Architecture. The search algorithm, parameterized by a domain-specific

language (DSL) and a ranking function, synthesizes a ranked set of programs from the underlying DSL that

are consistent with the examples provided by the user. The debugging component, which leverages additional

test inputs, interacts with the user to refine the specification and the synthesis process is repeated. Once an

intended program has been synthesized, it can be translated to a target language using standard syntax-directed

translation.

fluid. Depending on the exact problem setting as well as the domain, the developer might

want to decide which part of the system should follow deterministic logical reasoning

and which part should be based on data-driven techniques.

3.2. Using ML to improve PBE

There are three key components in a PBE engine: search algorithm, ranking strategy, and

user interaction models. Each of these components leverage various forms of heuristics.

ML can be used to learn these heuristics, thereby improving the effectiveness and main-

tainability of the various PBE components. In particular, ML can be used to speed up the

search process by predicting the success likelihood of various paths in the huge search

space [21]. It can be used to learn a better ranking function [26]. It can be used to cluster

test data and associate confidence measure over the outputs generated by the synthesized

program to drive an effective active learning session with the user for debuggability [28].

4. Search Algorithm

Figure 7 shows the architecture of a PBE system. The most involved technical component

is the search algorithm, which we discuss in this section. Section 4.1 and 4.2 describe

the two key ingredients that form the foundation for designing this search algorithm.

These ingredients are based on deterministic logical reasoning. Section 4.3 then discusses

and speculates how machine learning can further help exploit the traditional PL-driven

logical reasoning to obtain an even more efficient, real-time search algorithm for PBE.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML68

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

String Expression E:=concat(E1, E2) | substr(E, P1, P2) | conststr(String)
Position P:= Integer | pos(x, R1, R2, k)

Figure 8. An example Domain Specific Language (DSL).substr, concat are operators to manipulate the string

and conststr represents a constant string. pos operator identifies position of a particular pattern in the input x.

String is any constant string and Integer is an arbitrary integer that can be negative as well.

4.1. Domain-specific Language

A key idea in program synthesis is to restrict the search space to an underlying domain-

specific language (DSL) [1,12]. The DSL should be expressive enough to represent a

wide variety of tasks in the underlying task domain, but also restricted enough to allow

efficient search. We have designed many functional domain-specific languages for this

purpose, each of which is characterized by a set of operators and a syntactic restriction

on how those operators can be composed with each other (as opposed to allowing all

possible type-safe composition of those operators) [11]. A DSL is typically specified

as a context-free grammar that consists of one or more production rules for each non-

terminal. The right hand side of a production rule can be either another non-terminal or an

explicit set of program expressions or a program operator applied to some non-terminals.

For illustration, we present an extremely simple string manipulation grammar in

Figure 8; this DSL is a heavily stripped down version of Flash Fill DSL [10]. The lan-

guage has two key operators for string manipulations: a) substr operator which takes as

input a string x, and two position expressions P1 and P2 that evaluate to positions/indices

within the string x, and returns the substring between those positions, b) concat which

concatenates the given expressions. The choice for position expression P includes the

pos(x,R1,R2,k) operator, which returns the kth position within the string x such that (some

suffix of) the left side of that position matches with regular expression R1 and (some

prefix of) the right side of that position matches with regular expression R2.

For example, program given by,

concat(substr(Input, ε , “ ”, 1), substr(Input, “ ”, ε , -1), conststr(“@cs.colorado.edu”))

maps input “evan chang” into “evanchang@cs.colorado.edu”. Note that we overloaded

concat operator to allow for more than 2 operands.

4.2. Deductive Search Methodology

A simple search strategy is to enumerate all programs in order of increasing size [1] by

doing a bottom-up enumeration of the grammar. This can be done by maintaining a graph

of reachable values starting from the input state in the user-provided example. This sim-

ply requires access to the executable semantics of the operators in the DSL. Bottom-up

enumeration is very effective for small grammar fragments since executing operators for-

ward is very fast. Some techniques have been proposed to increase the scalability of enu-

merative search: (i) divide and conquer that decomposes the problem of finding programs

that satisfy all examples to that of finding programs, each of which satisfies some sub-

set, and then combining those programs using conditional predicates [2]. (ii) operator-

specific lifting functions that can compute the output set from input sets more efficiently

than point-wise computation. Lifting functions are essentially the forward transformer

for an operator [30].

Unfortunately, bottom-up enumeration does not scale to large grammars because

there are often too many constants to start out with. Our search methodology combines

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 69

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

bottom-up enumeration with a novel top-down enumeration of the grammar. The top-

down enumeration is goal-directed and requires pushing the specification across an oper-

ator using its inverse semantics. This is performed using witness functions that translate

the specification for a program expression of the kind F(e1,e2) to specifications for what

the sub-expressions e1 and e2 should be. The bottom-up search first enumerates smaller

sub-expressions before enumerating larger expressions. In contrast, the top-down search

first fixes the top-part of an expression and then searches for its sub-expressions.

The overall top-down strategy is essentially a divide-and-conquer methodology that

recursively reduces the problem of synthesizing a program expression e of a certain kind

and that satisfies a certain specification ψ to simpler sub-problems (where the search is

either over sub-expressions of e or over sub-specifications of ψ), followed by appropri-

ately combining those results. The reduction logic for reducing a synthesis problem to

simpler synthesis problems depends on the nature of the involved expression e and the

inductive specification ψ . If e is a non-terminal in the grammar, then the sub-problems

correspond to exploring the various production rules corresponding to e. If e is an oper-

ator application F(e1,e2), then the sub-problems correspond to exploring multiple sub-

goals for each parameter of that operator. As is usually the case with search algorithms,

most of these explorations fail. PBE systems achieve real-time efficiency in practice by

leveraging heuristics to predict which explorations are more likely to succeed and then

either only explore those or explore them preferentially over others.

Machine learning techniques can be used to learn such heuristics in an effective

manner. Below, we provide more details on one such method for a guided search in the

deductive strategy [21].

4.3. ML-based Search Algorithm

A key ingredient of the top-down search methodology mentioned above is grammar enu-

meration where while searching for a program expression e of the non-terminal kind, we

enumerate all the production rules corresponding to e to obtain a new set of search prob-

lems and recursively solve each one of them. The goal of this work [21] was to determine

the best production rules that we should explore while ignoring certain production rules

that are unlikely to provide a desired program. Now, it might seem a bit outlandish to

claim that we can determine the correct production rule to explore before even exploring

it!

However, many times the provided input-output specification itself provides clues

to make such a decision accurately. For example, in the context of the DSL mentioned

in Figure 8, lets consider an example where the input is “evan” and the desired output

is “evan@cs.colorado.edu”. In this case, even before exploring the productions rules,

it is fairly clear that we should apply the concat operator instead of substr operator; a

correct program is concat(Input, conststr(“@cs.colorado.edu”)). Similarly, if our input

is “xinyu feng” and the desired output is “xinyu” then it is clear that we should apply the

substr operator; a correct program is substr(Input, 1, pos(Input, Alphanumeric, “ ”, 1)).

But, exploiting the structure in input-output examples along with production rules

is quite challenging as these are non-homogeneous structures without a natural vector

space representation. Building upon recent advances in natural language processing, our

ML based approach uses a version of neural networks to exploit the structure in input-

output examples to estimate the set of best possible production rules to explore. For-

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML70

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Figure 9. LSTM based model for computing score for the candidate set of production rules P1, . . . , Pk during

the grammar expansion process. The top figure shows details of the ML model used to compute score for a

candidate production rule when placed in the context of the given input-output examples.

mally, given the input-output examples represented by ψ , and a set of candidate produc-

tion rules P1,P2, . . . ,Pk whose LHS is our current non-terminal e we compute a score

si = score(ψ,Pi) for each candidate rule Pi. This score reflects the probability of syn-

thesis of a desired program if we select rule Pi for the given input-output examples ψ .

Note that input-output example specification ψ changes during the search process as we

decompose the problem into smaller sub-problems; hence for recursive grammars, we

need to compute the scores every time we wish to explore a production rule.

For learning the scoring model, similar to [6], our method embeds input-output ex-

amples in a vector space using a popular neural network technique called LSTM (Long

Short-Term Memory) [17]. The embedding of a given input-output specification essen-

tially captures its critical features, e.g., if input is a substring of output or if output is

a substring of input etc. We then match this embedding against an embedding of the

production rule Pi to generate a joint embedding of (ψ,Pi) pair. We then learn a neu-

ral network based function to map this joint embedding to the final score. Now for pre-

diction, given scores s1,s2, . . . ,sk, we select branches with top most scores with large

enough margin, i.e., we select rules Pi1 , . . . ,Pi� for exploration where si1 ≥ si2 · · · ≥ si�
and si� − si�+1

≥ τ; τ > 0 is a threshold parameter that we discuss later.

See Figure 9 for an overview of our LSTM based model and the entire pipeline.

To test our technique, we applied it to a much more expressive version of the Flash

Fill DSL [10] that includes operators over richer data types such as numbers and dates.

For training and testing our technique, we collected 375 benchmarks from real-world

customer scenarios. Each benchmark consists of a set of input strings and their corre-

sponding outputs. We selected 300 benchmarks for training and remaining 75 for testing.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 71

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Metric PROSE DC RF NGDS

Accuracy (% of 73) 67.12 32.88 16.44 68.49
Speed-up (× PROSE) 1.00 1.51 0.26 1.67

Table 1. (Table 1 of [21]) Accuracy and average speed-up of NGDS vs. baseline methods. Accuracies are

computed on a test set of 73 tasks. Speed-up of a method is the geometric mean of it’s per-task speed-up (ratio

of synthesis time of PROSE and of the method) when restricted to a subset of tasks with PROSE’s synthesis

time is ≥ 0.5 sec.

For each training benchmark, we generated top 1000 programs using existing top-

down enumerative approach and logged relevant information for our grammar enumer-

ation. For example, when we want to expand certain grammar symbol (say expr in Fig-

ure 8) with the goal of mapping given inputs to required outputs, we log all the relevant

production rules Pi, ∀i (i.e., rules in Line 1 of Figure 8). We also log the score si of the top

program that is generated by applying production rule Pi. That is, each training instance

is (ψ,Pi,si) for a given node with input-output examples ψ . We use standard DNN tools

to train the model for grammar enumeration. That is, whenever we need to decide on

which production rule to select for expansion, we compute score for each possible rule

Pi and select the rules whose scores are higher than the remaining rules by a margin of τ .

Threshold τ is an interesting knob that helps decide between exploration vs exploita-

tion. That is, smaller τ implies that we trust our ML model completely and select the

best choice presented by the model. On the other hand, larger τ forces system to be more

conservative and use ML model sparingly when it is highly confident. For example, on

the 75 test benchmarks, setting τ = 0 i.e. selecting ML model’s predicted production

rule for every grammar expansion decision, we select the best production rule 92% of

the instances. Unfortunately, selecting wrong production rule 8% of the times might lead

to synthesis of a relatively poor program or in worst case, no program. However, by in-

creasing τ = 0.1 we can increase our chances of selection of the best production rule

to 99%. Although in this case, for nearly 50% instances the ML model does not differ-

entiate between production rules, i.e., the predicted scores are all within τ = 0.1 length

interval. Hence, we enumerate all the rules in about 50% of the grammar expansion in-

stances and are able to prune production rules in only 50% cases. Nonetheless, this itself

leads to impressive computation time improvement of up to 12x over naı̈ve exploration

for many challenging test benchmarks. Table 1 presents average speed-up obtained by

our method (NGDS) over the naı̈ve exploration technique used by the PROSE system

as well as two of the existing deep learning based techniques: RobustFill [6] and Deep-

Coder [3]. RobustFill (RF) does not leverage the deductive search structure and instead

tries to synthesize programs end-to-end using deep learning. As seen by the table, the

accuracy of such a system is not very good and in fact, even the overall computation cost

is also significantly worse than NGDS. DeepCoder (DC) is a technique that imposes a

static priority over operators to be explored during deductive search. So unlike NGDS,

DeepCoder does not change the priority list over operators with each step’s input-output

pair.

5. Ranking

Examples are a severe under-specification of the user’s intent in many useful task do-

mains. As a result, several programs in an underlying DSL are consistent with a given

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML72

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

set of training examples, but are unintended, i.e., they would produce an undesired out-

put on some test inputs. Usability concerns further necessitate that we learn an intended

program from as few examples as possible.

PBE systems address this challenge by leveraging a ranking scheme to select be-

tween different programs consistent with the examples provided by the user. Ideally, we

want to bias the ranking of programs so that natural programs are ranked higher. While

the notion of naturalness of programs is highly subjective, still in practice, one can see

certain succinct patterns associated with natural programs that one can try to capture via

real-world training datasets.

The ranking can either be performed in a phase subsequent to the one that identifies

the many programs that are consistent with the examples [38], or it can be in-built as part

of the search process [25,3]. Furthermore, the ranking can be a function of the program

structure or additional test inputs.

5.1. Ranking based on Program Structure

A basic ranking scheme can be specified by defining a preference order over program

expressions based on their features. Two general principles that are useful across vari-

ous domains are: prefer small expressions (inspired by the classic notion of Kolmogorov

complexity) and prefer expressions with fewer constants (to force generalization). For

specific DSLs, more specific preferences or features can be defined based on the opera-

tors that occur in the DSL.

5.2. Ranking based on test inputs

The likelihood of a program being the intended one not only depends on the structure

of that program, but also on features of the input data on which that program will be

executed and the output data produced by executing that program. In some PBE settings,

the synthesizer often has access to some additional test inputs on which the intended

program is supposed to be executed. Singh showed how to leverage these additional test

inputs to guess a reduction in the search space with the goal to speed up synthesis and

rank programs better [35]. Ellis and Gulwani observed that the additional test inputs can

be used to re-rank programs based on how similar are the outputs produced by those

programs on the test inputs to the outputs in the training/example inputs provided by the

user [7].

For instance, consider the task of extracting years from input strings of the kind

shown in the table below.

Input Output

Missing page numbers, 1993 1993

64-67, 1995 1995

The program P1: “Extract the last number” can perform the intended task. However, if

the user provides only the first example, another reasonable program that can be synthe-

sized is P2: “Extract the first number”. There is no clear way to rank P1 higher than P2

from just examining their structure. The above However, the output produced by P1 (on

the various test inputs), namely {1993,1995, . . . ,} is a more meaningful set (of 4 digit

numbers that are likely years) than the one produced by P2, namely (which manifests

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 73

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

greater variability). The meaningfulness or similarity of the generated output can be cap-

tured via various features such as IsYear, numeric deviation, IsPersonName, and number

of characters.

5.3. ML-based Ranking Function

Typically, natural or intended programs tend to have subtle properties that cannot be cap-

tured by just one feature or by an arbitrary combination of the multiple features identified

above; empirical results presented in Table 2 confirms this hypothesis where the accu-

racy of the shortest program based ranker or a random ranker is poor. Hence, we need

to learn a ranking function that appropriately combines the features in order to produce

the intended natural programs. In fact, learning rankers over programs/sub-expressions

represents an exciting domain where insights from ML and PL can have an interesting

and impactful interplay.

Below, we present one such case study where we learn a ranking function that ranks

sub-expressions and programs during the search process itself [26]. We learn the ranking

function using training data that is extracted from diverse real-world customer scenar-

ios. However learning such a ranking function that can be used to rank sub-expressions

during the search process itself poses certain unique challenges. For example, we need

to rank various non-homogeneous sub-expressions during each step of the search pro-

cess but the feedback about our ranking decisions is provided only after synthesis of

the final program. Moreover, the ranking function captures the intended program only if

the final program is correct, hence, a series of “correct” ranking decisions over various

sub-expressions might be nullified by one incorrect ranking decision.

To solve the above set of problems, we implement a simple program embedding

based approach. Consider a program P whose AST is given by A (P). Then the em-

bedding of P is computed recursively where φ(A (P)) = ∑i wiφ(A (Pi)), Pi are the chil-

dren of P in A (P). Now leaf nodes of A (P) are embedded in d-dimensions using a

few operator-specific features. We now pose the ranking problem as: find θ ∈ Rd s.t.

∑ j θ jφ(Pa) j ≥ ∑ j θ jφ(Pb) j where Pa is a “correct” program, i.e., it produces desired out-

put on training datasets and Pb is an “incorrect” program. θ j and φ(P) j represents the jth

coordinate of θ and φ(P) respectively.

Now recall that our goal is to ensure that all the ranking decisions in benchmark are

correct, so we need to use a different metric than the standard classification metric (see

[26] for more details).

For learning θ as well as weights wi, we use training benchmarks where each bench-

mark consists of a set of inputs and their corresponding outputs. For each benchmark,

we synthesize 1000 programs using the first input-output pair in that benchmark, treat-

ing it as an example input-output pair. We categorize a synthesized program as “correct”

if it generates correct output on all the other benchmark inputs, and “incorrect” other-

wise. We then embed each sub-expression and the program in d-dimensional space using

hand-crafted features. Our features reflect certain key properties of the programs, e.g.,

length of the program etc. We then use straightforward block-coordinate descent based

methods to learn θ , wi’s in an iterative fashion.

Empirical Results: similar to search experiments, we learn our ranking function us-

ing a collection of important benchmarks from real-world customer scenarios. We se-

lect about 100 benchmarks for training and test our system on the remaining 640 bench-

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML74

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

RANKING METHOD ACC@1 ACC@10

m = 1 m = 2 m = 1 m = 2

RANDOM 0.22 0.60 0.38 0.67

(A) SHORTEST PROGRAM 0.37 0.69 0.49 0.80

(B) FEWER CONSTANTS 0.38 0.60 0.59 0.80

(A) and (B) 0.44 0.72 0.60 0.87

ML-based Ranker 0.65 0.81 0.79 0.92

Table 2. Ranking: table compares precision@1 and precision@10 accuracy for various methods when sup-

plied different number of input-output example pairs (m = 1,2). Our ML-ranker provides significantly higher

accuracy and estimates correct program for 65% test benchmarks using just one input-output example.

marks. We evaluate performance of our ranker using precision k metric. That is, preci-

sion k is the fraction of test benchmarks in which at least one “correct” program lies in

the top-k programs (as ranked by our ranker). We also compute precision k for different

specification sizes, i.e., for different number of input-output examples being supplied.

Table 2 compares accuracy (measured in precision@k) of our method with four

baselines: a) random ranker that at each node selects a random sub-expression, b) short-

est program which selects programs with the smallest number of operators. c) program

that selects the smallest number of constants. d) a linear combination of the shortest and

smallest constants heuristics. Note that with 1 input-output example, our method is al-

most 50% more accurate than baselines. Naturally with 2 examples, baselines’ perfor-

mance also improves as there fewer programs that satisfy 2 examples.

Additionally, we can learn individual θ for each user/organization thus leading to

personalized ranker. For example, our method can learn processing an input string as

”European” style date-time instead of ”American” style date-time.

6. Interactivity

While use of ranking in the synthesis methodology attempts to avoid selecting an unin-

tended program, it cannot always succeed. Hence, it is important to design appropriate

user interaction models for the PBE paradigm that can provide the equivalent of debug-

ging experience in standard programming environments. There are two important goals

for a user interaction model that is associated with a PBE technology [24]. First, it should

provide transparency to the user about the synthesized program(s). Second, it should

guide the user in resolving ambiguities in the provided specification.

In order to facilitate transparency, the synthesized program can be displayed to the

user. In that context, it would be useful to have readability as an additional criterion

during synthesis. The program can also be paraphrased in natural language, especially to

facilitate understanding by non-programmers.

In order to resolve ambiguities, we can present multiple synthesized programs to the

user and ask the user to pick between those. More interestingly, we can also leverage

availability of other test input data on which the synthesized program is expected to be

executed. This can be done in few different ways. A set of representative test inputs can

be obtained by clustering the test inputs and picking a representative element from each

cluster [28]. The user can then check the results of the synthesized program on those

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 75

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

representative inputs. Alternatively, clustering can also be performed on the outputs pro-

duced by the synthesized program. Yet, another approach can be to leverage distinguish-
ing inputs [19]. The idea here is to synthesize multiple programs that are consistent with

the examples provided by the user but differ on some test inputs. The PBE system can

then ask the user to provide the intended output on one or more of these distinguishing

inputs. The choice for the distinguishing input to be presented to the user can be based

on its expected potential to distinguish between most of those synthesized programs.

There are many heuristic decisions in the above-mentioned interaction models that

can ideally be learned using ML techniques such as what makes a program more read-

able, or which set of programs to present to the user, or how to cluster the input or output

column. Below, we discuss one such investigation related to clustering of strings.

6.1. Clustering of Strings

We propose an agglomerative hierarchical clustering based method for clustering the

strings. Intuitively, we want to cluster strings together which can be represented by a spe-

cific but natural regular expression. For example, given strings {1990,1995,210BC,450BC},

we want to find the two clusters represented by regular expressions Digit4 and

Digit3 ·BC.

We find the tightest and natural regular expression representing a given set of strings

using program synthesis over a regular expression specific language. [28]. Our algorithm

randomly samples a few strings and then finds the most likely regular expressions by

synthesizing them using pairs of strings. The most highly rates regular expressions can

be thought of as cluster representatives. We then define a distance function that computes

distance of a string to a regular expression. Using this distance function, we then apply

standard agglomerative hierarchical clustering algorithm to obtain representative regular

expressions.

For example, given strings from a dataset containing postal codes such as: {99518,

61021-9150, 2645, K0K 2C0, 61604-5004...}, our system finds clusters such as:

• Digit5

• Digit4

• UpperCase ·Digit ·UpperCase Digit ·UpperCase ·Digit

• 61Digit3 −Digit4

• S7K7K9

Note that the regular expressions are able to capture the key clusters such as Digit5 etc,

but it also captures certain anomalies such as S7K7K9. We also evaluate our system

over real-world datasets using Normalized Mutual Information (NMI) metric which is a

standard clustering metric. We observe that if given enough computation time, our system

is able to obtain nearly optimal NMI of ≈ 1.0. Moreover, by appropriately sampling

and synthesizing regular expressions, we can speed up the computation by a factor of 2

despite recovering clusters with NMI of 0.95. We refer the interested readers to [28] for

more details.

7. Future Directions

Applications Robotic Process Automation (RPA) can be another killer application for

program synthesis. The goal in RPA is to automate high-volume rules-driven business

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML76

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

processes that often connect different applications. These typically require logging into

IT systems and copying and pasting data across systems. For instance, consider the task

of opening an invoice in a PDF format that is received as an attachment in an email, ex-

tracting various fields from the invoice, and entering them inside multiple systems. Pro-

gram synthesis technologies can help synthesize such scripts from few demonstrations

by the business user.

Another interesting application of program synthesis can be in the space of pro-

gramming real-world robots. General-purpose programmable robots may be a common

household entity in a few decades from now. Each household will have its own unique

geography for the robot to navigate and a unique set of chores for the robot to perform.

Example-based training could be an effective means for programming robots for person-

alized tasks and personalized household environments.

Performant Synthesis The synthesized scripts might need to be executed on big data.

In such a scenario, it is desirable to synthesize not just a correct program that meets the

intent, but one that is also efficient and hence does not waste computational resources.

Often there are many different programs to accomplish a particular task. These pro-

grams may not be semantically equivalent but they have the same behavior on the kinds

of inputs they are expected to be executed on. The ranking schemes in program synthe-

sis are generally tuned to pick any of these correct programs. However, some of these

programs may be much more efficient than the other, and it may be desirable to pick

one such efficient program. For instance, suppose the goal is to extract LastName from

inputs of kind “FirstName LastName”. One correct program to accomplish such a task

can operate by extracting the second word, while another correct program to accomplish

the same task can operate by extracting all characters after the last space. It turns out that

the latter program is much more efficient than the former since it avoids use of regular

expressions.

Readable Synthesis The synthesized scripts might need to be readable and modifiable.

In some scenarios, it is not important to inspect the code of the synthesized program,

especially when the goal is to execute the script for a one-off task and wherein the cor-

rectness of the underlying transformation can be verified by visual inspection over small

input data. Applying Flash Fill [10] on small-sized input columns is an example of such

a scenario, wherein an end user may simply inspect the derived column to verify that the

string transformation has been performed correctly. However, if the input on which the

synthesized script is to be executed is large, or if the synthesized script needs to be exe-

cuted multiple times in the future, then the user may want to inspect, and possibly even

edit the code of the underlying synthesized program. In such scenarios, it is important to

synthesize code that is readable. Furthermore, such a code may need to be synthesized

in a specific target language desired by the user. This leads to many interesting research

challenges such as leveraging idiomatic patterns and libraries that the user is familiar

with, choice of variable names, and formatting of code. Another interesting concern re-

lates to maintainability of such synthesized code. For instance, if the user provides ad-

ditional examples in the future to adapt the behavior of the code on new additional in-

puts, then what happens to any changes that the user may have made in the old synthe-

sized code? One interesting possibility is to ensure that the newly synthesized code is as

similar to the old synthesized code as possible, which can be regarded as automation of

test-driven development [29].

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 77

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Synthesizing readable code in specific target languages shall allow PBE technolo-

gies to be integrated inside main-stream coding workflows such as IDEs or notebooks.

Multi-model intent specification While this article has focused on leveraging examples

as specification of intent, certain class of tasks are best described using natural language

such as spreadsheet queries [14] and smartphone scripts [23]. The next generation of

programming experience shall be built around multi-modal specifications that are natural

and easy for the user to provide. The new paradigm shall allow expressing intent using

combination of various means [32] such as examples, demonstrations, natural language,

keywords, and sketches [42].

Predictive Synthesis For some task domains, it is often possible to predict the user’s

intent without any input-output examples, i.e., from input-only examples. For instance,

extracting tables from web pages, PDF documents, or log files, or splitting a column

into multiple columns [30]. While providing examples is already much more convenient

than authoring one-off scripts, there are scenarios where providing examples can be quite

tedious overall. For instance, consider the task of extracting fields from a log file. If the

number of fields is large, then providing examples for each field would be quite tedious.

Having the system guess the user’s intent without any examples can also power novel

user experiences such as enabling question-answering on semi-structured data, wherein

the system can automatically infer the underlying relational tabular structure without

requiring the user to provide any examples.

Adaptive Synthesis Another interesting future direction is to build systems that learn

user preferences based on past user interactions across different programming sessions.

For instance, the underlying ranking can be dynamically updated. This can pave the

way for personalization of PBE technologies to specific users, as well as enable learning

across users in a given organization or cloud. Tasks that required more examples earlier

can now be accomplished with fewer examples. In fact, this can also facilitate predictive

synthesis. For instance, consider the task of parsing a custom log file or extracting a table

from a web page. Initially, a user may have to provide some examples. In the future,

when the same user or even a different user, is faced with the same task but on a different

input of the same format, the underlying adaptive synthesis system should be able to

handle the task predictively, i.e., without any examples.

PL meets ML While PL has democratized access to machine implementations of pre-

cise ideas, ML has democratized access to discovering heuristics to deal with fuzzy and

noisy situations. The new AI revolution requires frameworks that can facilitate creation

of AI-infused software and applications. Synergies between PL and ML can help lay the

foundation for construction of such frameworks [34,5,8,41].

For instance, language features can be developed that allow the developer to express

non-determinism with some default resolution strategies that can then automatically get

smarter with usage. As opposed to traditional AI based domains such as vision, text,

bioinformation, such self-improving systems present entirely different data formats and

pose unique challenges that foreshadow an interesting full-fledged research area with op-

portunity to impact how we program and think about interacting with computer systems

in general.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML78

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

8. Conclusion

PBE is a new frontier in AI and is set to revolutionize the programming experience. The

technology has already matured to the extent that it can provide 10-100x productivity

increase in many task domains for both data scientists and developers. The two killer ap-

plications for PBE today are: data wrangling and code refactoring. Data scientists spend

80% time wrangling data while developers spend up to 40% time refactoring code in a

typical application migration scenario. Another significant aspect of PBE is its potential

to enable programming for the masses, given that 99% people who use computers do not

know programming.

We have leveraged inspiration from both logical reasoning and machine learning to

build usable and practical PBE systems. The Microsoft PROSE SDK 1 exposes generic

search and ranking algorithms, allowing advanced developers to construct PBE capabil-

ities for new task domains. This SDK has been used to build product-quality implemen-

tations of many PBE capabilities that have shipped through multiple Microsoft products

across Office, Windows, SQL, and Azure.

A key challenge in PBE is to search for programs that are consistent with the ex-

amples provided by the user. On the symbolic reasoning side, our search methodology

in PBE leverages two key ideas: restrict the search to a domain-specific programming

language (PL) specified as a grammar, and perform a goal-directed top-down search that

leverages inverse semantics of operators to decompose a goal into a choice of multi-

ple sub-goals. However, this search can be made even more tractable by learning tactics

(using ML) to prefer certain choices over others during both grammar exploration and

sub-goal selection.

Another key challenge in PBE is to understand the user’s intent in the face of ambi-

guity that is inherent in example-based specifications, and furthermore, to understand it

from as few examples as possible. For this, we leverage use of a ranking function with

the goal of the search now being to pick the highest ranked program that is consistent

with the examples provided by the user. The ranking is a function of various symbolic

features of a program such as size, number of constants, use of a certain combination of

operators. The ranking is also a function of the outputs generated by the program (non-

null or not, same type as the example outputs or not) and more generally the execution

traces of the program on new test inputs. While various PL concepts go into defining the

features of a ranking function, ML-based techniques can be used to build models over

these different classes of features.

A third challenge relates to debuggability: provide transparency to the user about the

synthesized program and help the user to refine the specification in an interactive loop.

We have investigated user interaction models that leverage concepts from both PL and

ML including active learning based on synthesis of multiple top-ranked programs (each

of which is consistent with the user’s specification) and leveraging their differences, clus-

tering of inputs to identify various input classes and hence representative inputs, clus-

tering of outputs to identify any potential discrepancies, and navigation through a large

program set represented succinctly as a grammar.

The above-mentioned directions highlight opportunities to design novel techniques

that combine logical reasoning based symbolic methods developed in the PL community

1https://microsoft.github.io/prose/

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 79

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

with ML methods to solve various challenges that arise in construction of efficient, ro-

bust, and usable PBE systems. We believe that the ongoing AI revolution shall further

drive novel synergies between PL and ML to facilitate creation of intelligent software

in general. PBE systems, and more generally program synthesis systems, that relate to

real-time intent understanding are a great case study for investigating ideas in this space.

Programming has evolved from use of punched cards and low-level assembly lan-

guage programming to programming with high-level languages in beautiful code editors.

The next evolution will leverage advances in program synthesis techniques to take pro-

gramming closer to natural human communication, wherein it will become multi-modal

and will involve use of various forms of intent expression including examples and natural

language. Today, examples are already present in programming in the form of test cases,

and comments are nothing but natural-language-based specifications. However, these ar-

tifacts, namely test cases and comments, are today constructed after code has been writ-

ten in order to test code or to document code. The next frontier will lift these artifacts to

first-class citizens for the process of authoring code itself.

References

[1] R. Alur, R. Bodı́k, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P. Madhusudan, M. M. K.

Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.

Syntax-guided synthesis. In Dependable Software Systems Engineering, pages 1–25. 2015.

[2] R. Alur, A. Radhakrishna, and A. Udupa. Scaling enumerative program synthesis via divide and conquer.

In TACAS, pages 319–336, 2017.

[3] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to write

programs. In ICLR, 2017.

[4] D. W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn. FlashRelate: extracting relational data from semi-

structured spreadsheets using examples. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 218–

228, 2015.

[5] P. Bielik, V. Raychev, and M. T. Vechev. Programming with ”big code”: Lessons, techniques and appli-

cations. In 1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar,
California, USA, pages 41–50, 2015.

[6] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P. Kohli. Robustfill: Neural program

learning under noisy I/O. In ICML, 2017.

[7] K. Ellis and S. Gulwani. Learning to learn programs from examples: Going beyond program structure.

In IJCAI, pages 1638–1645, 2017.

[8] J. K. Feser, M. Brockschmidt, A. L. Gaunt, and D. Tarlow. Neural functional programming. CoRR,

abs/1611.01988, 2016.

[9] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska, S. G. Colmenarejo,

E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain,

H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis. Hybrid computing using a

neural network with dynamic external memory. Nature, 538(7626):471–476, 2016.

[10] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In POPL, pages

317–330, 2011.

[11] S. Gulwani. Programming by examples - and its applications in data wrangling. In Dependable Software
Systems Engineering, pages 137–158. 2016.

[12] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using examples. Commun.
ACM, 55(8):97–105, 2012.

[13] S. Gulwani and P. Jain. Programming by examples: PL meets ML. In Programming Languages and
Systems - 15th Asian Symposium APLAS, Suzhou, China, volume 10695 of Lecture Notes in Computer
Science, pages 3–20. Springer, 2017.

[14] S. Gulwani and M. Marron. Nlyze: interactive programming by natural language for spreadsheet data

analysis and manipulation. In SIGMOD, pages 803–814, 2014.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML80

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[15] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations and Trends in Programming
Languages, 4(1-2):1–119, 2017.

[16] W. R. Harris and S. Gulwani. Spreadsheet table transformations from examples. In PLDI, pages 317–

328, 2011.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, Nov.

1997.

[18] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple inductive synthesis methodology and its

applications. In OOPSLA, pages 36–46, 2010.

[19] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program synthesis. In

ICSE, pages 215–224, 2010.

[20] A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In NIPS,

pages 190–198, 2015.

[21] A. Kalyan, A. Mohta, O. Polozov, D. Batra, P. Jain, and S. Gulwani. Neural-guided deductive search for

real-time program synthesis from examples. In International Conference on Learning Representations,

2018.

[22] V. Le and S. Gulwani. FlashExtract: a framework for data extraction by examples. In PLDI, pages

542–553, 2014.

[23] V. Le, S. Gulwani, and Z. Su. Smartsynth: synthesizing smartphone automation scripts from natural

language. In The 11th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 193–206, 2013.

[24] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh, B. G. Zorn, and S. Gulwani.

User interaction models for disambiguation in programming by example. In UIST, pages 291–301,

2015.

[25] A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai. A machine learning framework for

programming by example. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 187–195, 2013.

[26] N. Natarajan, N. Datha, D. Simmons, S. Gulwani, and P. Jain. Learning natural programs from a few

examples in real-time. In AIStats, 2019.

[27] A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with gradient

descent. CoRR, abs/1511.04834, 2015.

[28] S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. D. Millstein. Flashprofile: a framework

for synthesizing data profiles. PACMPL, 2(OOPSLA):150:1–150:28, 2018.

[29] D. Perelman, S. Gulwani, D. Grossman, and P. Provost. Test-driven synthesis. In PLDI, pages 408–418,

2014.

[30] M. Raza and S. Gulwani. Automated data extraction using predictive program synthesis. In AAAI, pages

882–890, 2017.

[31] M. Raza, S. Gulwani, and N. Milic-Frayling. Programming by example using least general generaliza-

tions. In AAAI, pages 283–290, 2014.

[32] M. Raza, S. Gulwani, and N. Milic-Frayling. Compositional program synthesis from natural language

and examples. In IJCAI, pages 792–800, 2015.

[33] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann.

Learning syntactic program transformations from examples. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages

404–415, 2017.

[34] C. Simpkins. Integrating reinforcement learning into a programming language. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-
15, 2010, 2010.

[35] R. Singh. Blinkfill: Semi-supervised programming by example for syntactic string transformations.

PVLDB, 9(10):816–827, 2016.

[36] R. Singh and S. Gulwani. Learning semantic string transformations from examples. PVLDB, 5(8):740–

751, 2012.

[37] R. Singh and S. Gulwani. Synthesizing number transformations from input-output examples. In CAV,

pages 634–651, 2012.

[38] R. Singh and S. Gulwani. Predicting a correct program in programming by example. In Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, pages 398–414, 2015.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML 81

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[39] R. Singh and S. Gulwani. Transforming spreadsheet data types using examples. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 343–356, 2016.

[40] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for introductory program-

ming assignments. In PLDI, pages 15–26, 2013.

[41] R. Singh and P. Kohli. AP: artificial programming. In 2nd Summit on Advances in Programming
Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA, pages 16:1–16:12, 2017.

[42] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, University of California, Berkeley, 2008.

[43] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program synthesis. In POPL,

pages 313–326, 2010.

S. Gulwani and P. Jain / Programming by Examples: PL Meets ML82

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Automatic Program Verification with

SEAHORN

Arie GURFINKEL a,1 and Jorge A. NAVAS b

a Department of Electrical and Computer Engineering, University of Waterloo
b SRI International

Abstract. In this paper, we present SEAHORN, a software verification framework.

The key distinguishing feature of SEAHORN is its modular design that separates

the concerns of the syntax of the programming language, its operational semantics,

and the verification semantics. SEAHORN encompasses several novelties: it (a) en-

codes verification conditions using an efficient yet precise inter-procedural tech-

nique, (b) provides flexibility in the verification semantics to allow different levels

of abstraction, (c) uses Horn-clauses as an intermediate language to represent verifi-

cation conditions which simplifies interfacing with multiple verification tools based

on Horn-clauses, and (d) leverages the state-of-the-art in software model checking

and abstract interpretation for verification. SEAHORN provides users with a power-

ful verification tool and researchers with an extensible and customizable framework

for experimenting with new software verification techniques.

Keywords. software Model Checking, program verification, Constrained Horn

Clauses, Abstract Interpretation

1. Introduction

In this paper, we describe the SEAHORN verification framework. SEAHORN extends

the LLVM [78] compiler infrastructure with verification techniques based on Software

Model Checking and Abstract Interpretation. The framework provides many components

that can be combined together for a variety of analysis needs. Many useful analyzers

(e.g., memory safety, overflow checker, null pointer checker, etc.) are provided out of the

box. The paper presents an overview of the framework and detailed description of the two

verification engines: SPACER for Model Checking and CRAB for Abstract Interpretation.

In the rest of this section, we summarize the key unique features of the framework.

First, SEAHORN decouples a programming language syntax and semantics from the un-

derlying verification technique. Different programming languages include a diverse as-

sortments of features, many of which are purely syntactic. Handling them fully is a ma-

jor effort for new tool developers. We tackle this problem in SEAHORN by separating

the language syntax, its operational semantics, and the underlying verification semantics

– the semantics used by the verification engine. Specifically, we use the LLVM front-

end(s) to deal with the idiosyncrasies of the syntax. We use LLVM intermediate repre-

1Corresponding Author: Arie Gurfinkel, Department of Electrical and Computer Engineering, University of

Waterloo, Canada, E-mail: arie.gurfinkel@uwaterloo.ca.

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-83

83

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

sentation (IR), called the bitcode, to deal with the operational semantics, and apply a

variety of transformations to simplify it further. In principle, since the bitcode has been

formalized [102], this provides us with a well-defined formal semantics. Finally, we use

Constrained Horn Clauses (CHC) to logically represent the verification conditions (VC).

Second, SEAHORN provides an efficient and precise analysis of programs with pro-

cedures using inter-procedural (i.e., modular) verification techniques. SEAHORN sum-

marizes the input-output behavior of procedures efficiently without inlining. The expres-

siveness of the summaries is not limited to linear arithmetic, but extends to richer log-

ics, including, for instance, arrays. Furthermore, SEAHORN includes a program trans-

formation that lifts deep assertions closer to the main procedure. This increases context-

sensitivity of intra-procedural analyses (used both in verification and compiler optimiza-

tion), and has a significant impact on our inter-procedural verification algorithms.

Third, SEAHORN allows developers to customize the verification semantics and of-

fers users with verification semantics of various degrees of abstraction. SEAHORN is

fully parametric in the (small-step operational) semantics used for the generation of

VCs. The level of abstraction in the built-in semantics varies from considering only

LLVM numeric registers to considering the whole heap (modeled as a collection of non-

overlapping arrays). In addition to generating VCs based on small-step semantics [90],

SEAHORN can also automatically lift small-step semantics to large-step [6, 57] (a.k.a.

Large Block Encoding, or LBE).

Fourth, SEAHORN uses Constrained Horn Clauses (CHC) as its intermediate verifi-

cation language. CHC provide a convenient and elegant way to formally represent many

encoding styles of verification conditions. The recent popularity of CHC as an interme-

diate language for verification engines makes it possible to interface SEAHORN with a

variety of new and emerging tools.

Fifth, SEAHORN builds on the state-of-the-art in Software Model Checking (SMC)

and Abstract Interpretation (AI). SMC and AI have independently led over the years to

the production of analysis tools that have a substantial impact on the development of real

world software. Interestingly, the two exhibit complementary strengths and weaknesses

(see e.g., [1, 9, 46, 56]). While SMC so far has been proved stronger on software that

is mostly control driven, AI is quite effective on data-dependent programs. SEAHORN

combines SMT-based model checking techniques with program invariants supplied by

an Abstract Interpreter.

Finally, SEAHORN is open-sourced and is implemented on top of the open-source

LLVM compiler infrastructure. LLVM is a well-maintained, well-documented, and con-

tinuously improving framework. This allows SEAHORN users to easily integrate program

analyses, transformations, and other tools that targets LLVM. Moreover, since SEAHORN

analyses LLVM IR, this allows to exploit a rapidly-growing frontier of LLVM front-ends,

encompassing a diverse set of languages. SEAHORN itself is released as open-source as

well (source code can be downloaded from http://seahorn.github.io).

The design of SEAHORN provides users, developers, and researchers with an exten-

sible and customizable environment for experimenting with and implementing new soft-

ware verification techniques. SEAHORN is implemented in C++ in the LLVM compiler

infrastructure [78]. The overall approach is illustrated in Figure 1. SEAHORN has been

developed in a modular fashion; its architecture is layered in three parts:

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN84

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Problem Encoding:
-sequential safety
-information flow
-inconsistencies
-equivalence
-multi-thread safety
Abstraction level:
- integers, FP
- pointers
- memory contents
- procedures
Proof scope:
- small vs large step

LLVM Opt:
- SSA
- DCE
- Peephole
- CFG Simplification

Devirtualization
and

Exception Lowering

Property Checkers:
-Buffer overflow
-Null dereferences
- etc

Mixed-Semantics /
Slicing Assertions

C/C++

LLVM bitcode CHCs

Model checking

Memory Abstraction
(sea-dsa)

Abstract
Interpretation

BMC

ML-based Learning
Synthesis

ClangClang

McSema

x86

Solidity

CLP Boogie MCMT

Figure 1. Overview of SEAHORN architecture.

Front-End: Takes an LLVM based program (e.g., C) input program and generates

LLVM IR bitcode. Specifically, it performs the pre-processing and optimization of

the bitcode for verification purposes. More details are reported in Section 2.

Middle-End: Takes as input the optimized LLVM bitcode and emits verification condi-

tion as Constrained Horn Clauses (CHC). The middle-end is in charge of selecting

the encoding of the VCs and the degree of abstraction. VCs can be exported to dif-

ferent formats such as Constraint Logic Programming (CLP), Boogie or MCMT

(Model Checking Modulo Theories). More details are reported in Section 3.

Back-End: Takes CHC as input and outputs the result of the analysis. In principle,

any verification engine that digests CHC clauses could be used to discharge

the VCs. Currently, SEAHORN employs an SMT-based model checking engine

SPACER [74]. Complementary, SEAHORN uses the abstract interpretation-based

analyzer CRAB for providing numerical invariants. More details are reported in

Section 4.

Related Work. Automated analysis of software is an active area of research. There is a

large number of tools with different capabilities and trade-offs [5,7,8,18,20–22,32,82].

Our approach on separating the program semantics from the verification engine has been

previously proposed in numerous tools. From those, the tool SMACK [91] is the clos-

est to SEAHORN. Like SEAHORN, SMACK targets programs at the LLVM-IR level.

However, SMACK targets Boogie intermediate verification language [35] and Boogie-

based verifiers to construct and discharge the proof obligations. SEAHORN differs from

SMACK in several ways: (i) SEAHORN uses CHC as its intermediate verification lan-

guage, which allows to target different solvers and verification techniques (ii) it tightly

integrates and combines both state-of-the-art software model checking techniques and

abstract interpretation and (iii) it provides an automatic inter-procedural analysis to rea-

son modularly about programs with procedures.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 85

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Inter-procedural and modular analysis is critical for scaling verification tools and

has been addressed by many researchers (e.g., [2, 67, 74, 77, 80, 96]). Our approach of

using mixed-semantics [63] as a source-to-source transformation has been also explored

in [77]. While in [77], the mixed-semantics is done at the verification semantics (Boogie

in this case), in SEAHORN it is done in the front-end level allowing mixed-semantics to

interact with compiler optimizations.

Constrained Horn clauses have been proposed [12] as an intermediate (or exchange)

format for representing verification conditions. However, they have long been used in

the context of static analysis of imperative and object-oriented languages (e.g., [81, 90])

and more recently adopted by an increasing number of solvers (e.g., [13, 42, 67, 74, 80])

as well as other verifiers such as UFO [3], HSF [53], VeriMAP [33], Eldarica [93], and

TRACER [68].

A previous version of this paper has appeared in [58].

2. Pre-processing for Verification

In our experience, performance of even the most advanced verification algorithms is sig-

nificantly impacted by the front-end transformations. In SEAHORN, the front-end plays

a very significant role in the overall architecture.

In principle, SEAHORN can take any input program that can be translated into

LLVM bitcode. However, SEAHORN has been highly customized to analyze C pro-

grams as translated by clang, and thus, analysis of C code is the most prominent SEA-

HORN’s strength. More recently, SEAHORN has increasingly supported analysis of C++
programs, and we plan to continue doing that.

Our goal is to make SEAHORN not to be limited to C or C++ programs, but applica-

ble (with various degrees of success) to a broader set of languages based on LLVM (e.g.,

Objective C, Rust, and Swift). For instance, we have recently added support for two very

different languages: x86 binary programs using the McSema [98] tool, and Solidity smart

contracts using a just-in-time compiler for Ethereum EVM code [37]. Although the ver-

ification results have been relatively modest compared with verification of C programs,

they demonstrate the broad applicability of SEAHORN.

Once we have obtained LLVM bitcode, the front-end is split into two main sub-

components. The first one is a pre-processor that performs optimizations and transfor-

mations. This pre-processing is largely optional. Its main goal is to transform the LLVM

bitcode to make the verification task easier. The second part is focused on a reduced set

of transformations mostly required to produce correct results even if the pre-processor

is disabled. It also performs SSA transformation and internalizes functions, but in addi-

tion, lowers switch instructions into if-then-elses, ensures only one exit block per

function, inlines global initializers into the main procedure, and identifies assert-like

functions.

The front-end can optionally inline functions. This is often useful to simplify verifi-

cation tasks, and is also necessary for precise Bounded Model Checking (and, currently,

is required for counterexample generation).

One typical problem in proving safety of large programs is that assertions can be

nested very deep inside the call graph. As a result, counterexamples are longer and it is

harder to decide for the verification engine what is relevant for the property of interest.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN86

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

main ()

p1 (); p1 ();

assert (c1);

p1 ()

p2 ();

assert (c2);

p2 ()

assert (c3);

mainnew ()

if (*) goto p1entry;

else p1new ();

if (*) goto p1entry;

else p1new ();

if (¬c1) goto error;

assume (false);

p1entry :

if (*) goto p2entry;

else p2new ();

if (¬c2) goto error;

p2entry :

if (¬c3) goto error;

assume (false);

error : assert (false);

p1new ()

p2new ();

assume (c2);

p2new ()

assume (c3);

Figure 2. A program before (left) and after (right) mixed-semantics transformation.

To mitigate this problem, the front-end provides a transformation based on the concept of

mixed-semantics2 [63,77]. It relies on the simple observation that any call to a procedure

P either fails inside the call and therefore P does not return, or returns successfully from

the call. Based on this, any call to P can be instrumented as follows:

• if P may fail, then make a copy of P’s body (in main) and jump to the copy.

• if P may succeed, then make the call to P as usual. Since P is known not to fail

each assertion in P can be safely replaced with an assume.

Upon completion, only the main function has assertions and each procedure is inlined

at most once. The explanation for the latter is that a function call is inlined only if it

fails and hence, its call stack can be ignored. Mixed-semantics transformation preserves

reachability and non-termination properties [63]. Since this transformation is not very

common in other verifiers, we illustrate it on an example.

Example 1 (Mixed-semantics transformation) On the left in Figure 2 we show a small
program consisting of a main procedure calling two other procedures p1 and p2 with
three assertions c1, c2, and c3. On the right, we show the new program after the
mixed-semantics transformation. First, when main calls p1 it is transformed into a non-
deterministic choice between (a) jumping into the entry block of p1 or (b) calling p1.
The case (a) represents the situation when p1 fails and it is done by inlining the body of
p1 (labeled by p1entry) into main and adding a goto statement to p1entry. The case (b)
considers the case when p1 succeeds and hence it simply duplicates the function p1 but
replacing all the assertions with assumptions since no failure is possible. Note that while
p1 is called twice, it is inlined only once. Furthermore, each inlined function ends up
with an “assume (false)” indicating that execution dies. Hence, any complete execution
of a transformed program corresponds to a bad execution of the original one. Finally, an
interesting side-effect of mixed-semantics is that it can provide some context-sensitivity
to context-insensitive intra-procedural analyses.

3. Verification Conditions

SEAHORN provides out-of-the-box verification semantics with different degrees of ab-

straction. Furthermore, to accommodate a variety of applications, SEAHORN is designed

to be easily extended with a custom semantics as well. In this section, we illustrate the

various dimensions of semantic flexibility present in SEAHORN.

2The semantics is called mixed because it combines small- and big-step operational semantics.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 87

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

int x = 1;

int y = 0;

while (∗) {
x = x+ y;

y = y+1;

}
assert(x ≥ y);

l0 :

x = 1

y = 0

l1 : b1 = nondet()

l2 :

x = x+ y
y = y+1

l3 :

b2 = x ≥ y

l4 : lerr :

T

F

T F

〈1〉 p0.

〈2〉 p1(x,y)←
p0,x = 1,y = 0.

〈3〉 p2(x,y)← p1(x,y) .

〈4〉 p3(x,y)← p1(x,y) .

〈5〉 p1(x′,y′)←
p2(x,y),
x′ = x+ y,
y′ = y+1.

〈6〉 p4 ← (x ≥ y),p3(x,y).
〈7〉 perr ← (x < y),p3(x,y).
〈8〉 p4 ← p4.

(a) (b) (c)

Figure 3. (a) Program, (b) Control-Flow Graph, and (c) Verification Conditions.

Encoding Verification Conditions. SEAHORN is parametric in the semantics used for

VC encoding. It provides two different semantics encodings: (a) a small-step encoding

(exemplified in Figure 3) and (b) a large-step encoding. Large-step encoding is similar

to the Large Block Encoding (LBE) of [6]. A user can choose the encoding depending

on the particular application. In practice, large-step is often more efficient but small-step

might be more useful if a fine-grained proof or counterexample is needed. For example,

SEAHORN used the large-step encoding in SV-COMP [59].

Regardless of the encoding, SEAHORN uses Constrained Horn Clauses (CHC) to

encode the VCs. Given the sets F of function symbols, P of predicate symbols, and V
of variables, a Constrained Horn Clause (CHC) is a formula in First Order Logic of the

following form:

∀V · (φ ∧ p1[X1]∧·· ·∧ pk[Xk]→ h[X]), for k ≥ 0

where φ is a constraint over F and V with respect to some background theory T ;

Xi,X ⊆ V are (possibly empty) vectors of variables; pi[Xi] is an application p(t1, . . . , tn)
of an n-ary predicate symbol p ∈ P for first-order terms ti constructed from F and Xi;

and h[X] is either defined analogously to pi or is P-free (i.e., no P symbols occur in

h). Here, h is called the head of the clause and φ ∧ p1[X1]∧ . . .∧ pk[Xk] is called the

body. A clause is called a query if its head is P-free, and otherwise, it is called a rule.

A rule with body true is called a fact. We say a clause is linear if its body contains at

most one predicate symbol, otherwise, it is called non-linear. In this paper, we follow

the Constraint Logic Programming (CLP) convention of representing Horn clauses as

h[X]← φ , p1[X1], . . . , pk[Xk], by omitting explicit universal quantification, replacing im-

plication by an arrow and conjunction by a comma, and writing clauses as rules with the

head on the left.

A set of CHCs is satisfiable if there exists a First Order Logic interpretation I of

the predicate symbols P such that each constraint φ is true under I . Without loss of

generality, deciding whether a program A satisfies a safety property αsafe is reducible

to establishing the (un)satifiability of CHCs encoding the VCs of A . We illustrate the

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN88

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

process on the following example. Additional examples of the encoding are available

in [10].

Example 2 (Small-step encoding of VCs using CHCs) Figure 3(a) shows a program
that increments two variables x and y in a non-deterministic loop. After the loop is exe-
cuted we would like to prove that x cannot be less than y. Ignoring overflow , it is easy
to see that the program is safe since x and y are initially non-negative numbers and x is
greater than y. Since the loop increases x by a greater amount than y, at its exit x cannot
be smaller than y. Figure 3(b) depicts, its corresponding Control Flow Graph (CFG) and
Figure 3(c) shows its VCs encoded as a set of CHCs.

The set of CHCs in Figure 3(c) essentially represents the small-step operational
semantics of the CFG. Each basic block is encoded as a CHC. A basic block label li in the
CFG is translated into a predicate pi(X1, . . . ,Xn) such that pi ∈P and {X1, . . . ,Xn} ⊆ V
is the set of live variables at the entry of block li. A CHC can model both the control flow
and data of each block in a succinct way. For instance, the fact 〈1〉 represents that the
entry block l0 is reachable. Clause 〈2〉 describes that if l0 is reachable then l1 should be
reachable too. Moreover, its body contains the constraints x = 1∧y = 0 representing the
initial state of the program. Clause 〈5〉 models the loop body by stating that the control
flow moves to l2 from l1 after transforming the state of the program variables through
the constraints x′ = x+ y and y′ = y+1, where the primed versions represent the values
of the variables after the execution of the arithmetic operations. Based on this encoding,
the program in Figure 3(a) is safe if and only if the set of recursive clauses in Figure 3(c)
augmented with the query perr is unsatisfiable. Note that since we are only concerned
about proving safety (and not termination) any safe final state can be represented by an
infinite loop (e.g., clause 〈8〉)).

SEAHORN middle-end offers a very simple interface for developers to implement an en-

coding of the verification semantics that fits their needs. At the core of the SEAHORN

middle-end lies the concept of a symbolic store. A symbolic store simply maps program

variables to symbolic values. The other fundamental concept is how different parts of a

program are symbolically executed. The small-step verification semantics is provided by

implementing a symbolic execution interface that symbolically executes LLVM instruc-

tions relative to the symbolic store. This interface is automatically lifted to large-step

semantics as necessary.

Modeling statements with different degrees of abstraction. The SEAHORN middle-end

includes verification semantics with different levels of abstraction. Those are, from the

coarsest to the finest:

Registers only: only models LLVM numeric registers. In this case, the constraints part

of CHC is over the theory of Linear Integer Arithmetic (LIA).

Registers + Pointers (without memory content): models

numeric and pointer registers. This is sufficient to capture pointer arithmetic and

determine whether a pointer is NULL. Memory addresses are also encoded as inte-

gers. Hence, the constraints remain over LIA.

Registers + Pointers + Memory: models numeric and pointer registers and the heap.

The heap is modeled by a collection of non-overlapping arrays. The constraints

are over the combined theories of arrays and LIA.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 89

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Memory encoding. For concrete semantics, SEAHORN assumes object-based memory

model. Each allocation site (heap, stack, and globals) returns a memory object represent-

ing a sequence of bytes. The objects are disjoint. Each pointer points to some object and

pointer arithmetic is restricted to stay within an object.

For verification condition, an abstract memory model is used that restricts the num-

ber of memory objects to be finite. As usual, an abstract memory object represents all

concrete objects allocated at a given syntactic allocation site. The memory is further

partitioned into regions, where a region is one or more memory objects, such that each

memory instruction uses or modifies exactly one memory region. The abstract memory

model is context-sensitive – each procedure has its own memory regions.

Memory regions are computed statically using a specialized context-sensitive alias

analysis call SEADSA [60]. As the name suggests, SEADSA is a variant of Data Struc-
ture Analysis (DSA) [79]. DSA itself is an extension of Steensgaard’s (a.k.a. unification-

based) pointer analysis [97].

In SEADSA, the memory is partitioned into a heap, a stack, and global objects. The

analysis builds for each function a DS graph where each node represents an abstract

memory region. Distinct nodes express disjoint sets of memory objects. Edges in the

graph represent points-to relationships between nodes. Each node is typed and deter-

mines the number of fields and outgoing edges in a node. A node can have one outgoing

edge per field, but each field can have at most one outgoing edge. This restriction is key

to scalability and it is preserved by unifying nodes whenever it is violated.

Given a DS graph, each node is mapped to an array in the VC. Then, each memory

read (load) and write (store) in LLVM bitcode is associated with a unique node (i.e.,

the array). For memory writes, SEAHORN creates a new array variable representing the

new state of the array after the write operation.

Inter-procedural proofs. For most real programs verifying a function separately from

each possible caller (i.e., context-sensitivity) is necessary for scalability. The version of

SEAHORN for SV-COMP 2015 [59] achieved full context-sensitivity by inlining all pro-

gram functions. Although inlining is often an effective solution for small and medium-

size programs it is well known that suffers from an exponential blow up in the size of

the original program. Even more importantly, inlining cannot produce inter-procedural

proofs nor counterexamples which are often highly desired.

We tackled this problem in [58], by providing an encoding that allows inter-

procedural proofs. We illustrate this procedure via an example in Figure 4. The upper

box shows a program with three procedures: main, foo, and bar. The program swaps two

numbers x and y. The procedure foo adds two numbers and bar subtracts them. At the

exit of main we want to prove that the program indeed swaps the two inputs. To show

all relevant aspects of the inter-procedural encoding we add a trivial assertion in bar that

checks that whenever x and y are non-negative the input x is greater or equal than the

return value.

The lower box of Figure 4 illustrates the corresponding verification conditions en-

coded as CHCs. The new encoding follows a small-step style as the intra-procedural en-

coding shown in Figure 3 but with two major distinctions. First, notice that the CHCs

are not linear anymore (e.g., the rule denoted by massrt). Each function call has been re-

placed with a summary rule (f and b) representing the effect of calling to the functions

f oo and bar, respectively. The second difference is how assertions are encoded. In the

intra-procedural case, a program is unsafe if the query perr is satisfiable, where perr is

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN90

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

main()
x = nondet();
y = nondet();
xold = x;

yold = y;

x = foo(x,y);
y = bar(x,y);
x = bar(x,y);
assert (x = yold ∧ y = xold);

foo(x,y)
res = x+ y;

return res;

bar(x,y)
res = x− y;

assert (¬ (x ≥ 0∧ y ≥ 0∧ x < res));
return res;

mentry.

massrt(xold ,yold ,x,y,eout)←
mentry,
xold = x,yold = y,
f(x,y,x1),
b(x1,y,y1, false,e),
b(x1,y1,x2,e,eout).

merr(eout)←
massrt(xold ,yold ,x,y,e),¬ e,
eout = ¬ (x = yold ,y = xold).

merr(eout)←
massrt(xold ,yold ,x,y,eout),eout .

fentry(x,y).
fexit(x,y,res)←

fentry(x,y),
res = x+ y.

f(x,y,res)← fexit(x,y,res).
bentry(x,y).
bexit(x,y,res,eout)←

bentry(x,y),
res = x− y,
eout = (x ≥ 0∧ y ≥ 0∧ x < res).

b(x,y,z,true, true).
b(x,y,z, false,eout)← bexit(x,y,z,eout)

Figure 4. A program with procedures (upper) and its verification condition (lower).

the head of a CHC associated with a special basic block to which all can-fail blocks are

redirected. However, with the presence of procedures assertions can be located deeply in

the call graph of the program, and therefore, we need to modify the CHCs to propagate

error to the main procedure.

In our example, since a call to bar can fail we add two arguments ein and eout to the

predicate b where ein indicates if there is an error before the function is called and eout
indicates whether the execution of bar produces an error. By doing this, we are able to

propagate the error in clause massrt across the two calls to bar. We indicate that no error

is possible at main before any function is called by unifying false with ein in the first

occurrence of b. Within a can-fail procedure we skip the body and set eout to true as soon

as an assertion can be violated. Furthermore, if a function is called and ein is already true

we can skip its body (e.g., first clause of b). Functions that cannot fail (e.g., f oo) are

unchanged. The above program is safe if and only if the query merr(true) is unsatisfiable.

Finally, it is worth mentioning that this propagation of error is not required if the

mixed-semantics transformation described in Section 2 is applied.

4. Verification Engines

In principle, SEAHORN can be used with any Horn clause or LLVM-based verifica-

tion tool. In the following, we describe two such tools developed by ourselves. Notably,

the tools discussed below are based on the contrasting techniques of SMT-based model

checking and Abstract Interpretation, showcasing the wide applicability of SEAHORN.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 91

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

4.1. SMT-Based Model Checking with SPACER

SPACER is an efficient SMT-based Model Checker for deciding satisfiability of Con-

strained Horn Clauses (CHC) [73–75]. Of course, since CHC satisfiability is undecid-

able, we use the term decision procedure informally. SPACER is a sound procedure, but

it is not complete (i.e., not formally a decision procedure, and does not terminate on all

inputs). In contrast to other SMT-based Model Checking algorithms (for example, those

based on based on interpolation [2,53,66,80]), the reasoning in SPACER is compositional

(or modular). That is, the transition relation is not unrolled. SPACER reasons about a

body of individual procedure (or predicate) at a time, and communicates information be-

tween procedures (or predicates) using summaries. This is crucial for scaling SMT-based

Model Checking to programs. Unlike hardware circuits, an unrolling of a program (i.e.,

unrolling loops and inlining procedures) increases the size of an SMT formula represent-

ing a verification condition (VC) exponentially. The approach taken by SPACER avoids

the exponential explosion by limiting the information that can be exchanged between

procedures to well-defined summaries. The summaries also provide a form of caching to

prevent exploring the same procedure in the same calling context multiple times.

SPACER is integrated into SMT-solver Z3 [34] and is currently the default CHC

engine in Z3. It supports CHC with constraints in the (combined) theories of Linear

Real Arithmetic [9], Linear Integer Arithmetic [75], Arrays [73], with basic support for

theories of Bit Vectors and Abstract Data Types. Both quantifier free and universally

quantified solutions for the theory of arrays are supported [61].

In this section, we give a high-level overview of SPACER algorithm. Many imple-

mentation details and optimizations are omitted since they often change between differ-

ent versions of the implementation. SPACER builds on three main concepts: Craig Inter-

polation, Model Based Projection, and an IC3/PDR-style Model Checking algorithm. In

the rest of this section, we describe each component in turn, starting with interpolation.

4.1.1. Craig Interpolation

Let A and B be two formulas in First Order Logic such that A∧B is unsatisfiable. A Craig
interpolant (or simply an interpolant) is a formula I such that

A =⇒ I I =⇒ ¬B

and the only uninterpreted constants and functions in I are those that are shared between

A and B. For example, consider the following two formulas A and B in Linear Integer

Arithmetic:

A = (a < x∧ x < b) B = (a = 1∧b = 1)

The conjunction A∧B is unsatisfiable: if a = b = 1 then there cannot be an integer x
strictly between a and b. The shared uninterpreted constants are a and b. There is an

interpolant, but it is not unique. Several possible interpolants are:

I1 = (a < b) I2 = ¬(a = 1∧b = 1) I3 = (a = b)

All of the above formulas Ii (for 1 ≤ i ≤ 3) is an interpolant. We write ITP(A,B) for some

interpolant between A and B if it exists.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN92

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

It is well known that interpolants can be computed directly from a resolution refu-

tation of satisfiability of A and B. In case of SMT, interpolation is a combination of in-

terpolation over propositional resolution [62] and special procedures for theory lemmas

and their derivation [19,54]. We refer the reader to the references above for more details.

In the case of SPACER, the interpolation problem is more restricted and simplified.

We are only interested in computing an interpolant ITP(A,B) in the case where B is a

conjunction of literals and every uninterpreted symbol of B is shared with A. In this case,

the simplest choice for an ITP(A,B) is ¬B. Since A∧B is unsatisfiable, it follows that

A =⇒ ¬B, and obviously ¬B implies itself. Note that in the example above, I2 is simply

¬B. On one hand, using ¬B as an interpolant defeats the purpose of interpolation. On

the other, it provides a default case, that is often avoided, but is possible when a different

interpolant is hard to compute. This is especially convenient for a system like Z3 that

does not consistently produce easy-to-interpolate proofs.

Under the restrictions above, another alternative for an interpolant a negation of a

Minimal Unsatisfiable Subset (MUS) of B. The reasoning is the same as for using ¬B.

Such an interpolant does not do much generalization, but might filter irrelevant facts.

In practice, interpolant computation used by SPACER is a mix of proof-based and

MUS-based procedure. A proof, and, in particular, theory lemmas of the proof, are exam-

ined to extract the interaction of B literals with the refutation. If the interaction is fairly

clear, an interpolating unsat core is extracted by using interpolation-style reasoning. If

the interaction is not clear, an MUS for B is computed. This style of reasoning enables

SPACER to construct an interpolants such as I1, I2, and I3 in the example above. However,

the exact interpolant constructed depends on the proof produced by Z3.

4.1.2. Model-Based Projection

Let ϕ be a satisfiable formula with uninterpreted constants (or variables) Vars(ϕ). Let

U be a subset of variables in Vars(ϕ), and M |= ϕ be a model of ϕ . A formula ψ is a

Model Based Projection (MBP) of U relative to M iff (a) M |= ψ , (b) ψ =⇒ ∃U ·ϕ ,

(c) Vars(ψ) ⊆ Vars(ϕ)\U , and (d) ψ is a monomial (i.e., a conjunction of literals). In-

tuitively, MBP under-approximates projection (or quantifier elimination). Alternatively,

MBP ψ can be seen as a generalization of the model M: ψ contains the model, yet, it is

a formula (i.e., has a finite representation) and is contained in the projection ∃U ·ϕ .

We write MBP(∃U ·ϕ,M) for an MBP procedure that given an existentially quan-

tified formula and a model, returns a corresponding model-based projection. An MBP

procedure is finite if it is finite in the model argument. That is, the function λx ·MBP(∃U ·
ϕ,x) has a finite range. It is not difficult to see that a theory that admits quantifier elim-

ination has a finite MBP. Consider a formula ∃U ·ϕ . Assume that there is an equivalent

quantifier free formula ψ:

ψ ⇐⇒ ∃U ·ϕ

Let ψ1∨·· ·∨ψn be a DNF decomposition of ψ . Then, define MBP(∃U ·ϕ,M) = ψi such

that i = min{1 ≤ j ≤ n | M |= ψ j}.

Conversely, a finite MBP provides a procedure for quantifier elimination. Let M1

be a model for ϕ , and ψ1 = MBP(∃U · ϕ,M1). Let M2 be a model for ϕ ∧¬ψ1, and

ψ2 = MBP(∃U ·ϕ,M2), etc. Since by assumption MBP is finite, the number of such ψi

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 93

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

is finite as well. Hence the formula ψ1 ∨ ·· · ∨ψn is well defined, quantifier free, and is

equivalent to ∃U ·ϕ .

A finite MBP for Linear Real Arithmetic has been introduced in [74]. Unlike quanti-

fier elimination for LRA, it can be computed in linear time (assuming the model is given

and evaluating literals in the model is constant time). A finite MBP for Linear Integer

Arithmetic and Abstract Data Types has been presented in [11]. MBP for the theory of

Arrays has been developed in [73]. Obviously, MBP for arrays is not finite.

We illustrate an MBP procedure for the combined theories of arrays and arithmetic

using an example below. Let ϕ denote the formula

(b = a[i1 ← v1])∨ (a[i2 ← v2][i3]> 5∧a[i4]> 0)

where a and b are array variables whose index and value sorts are both Int, the sort of

integers, and all other variables have sort Int. Here, for an array a, we use a[i ← v] to

denote a store of v into a at index i and use a[i] to denote the value of a at index i. Suppose

that we want to existentially quantify the array variable a. Let M |= ϕ . We will consider

two possibilities for M:

1. Let M |= b = a[i1 ← v1], i.e., M satisfies the array equality containing a. In this

case, our MBP procedure substitutes the term b[i1 ← x] for a in ϕ , where x is a

fresh variable of sort Int. That is, the result of MBP is ∃x ·ϕ[b[i1 ← x]/a].
2. Let M |= b = a[i1 ← v1]. We use the second disjunct of ϕ for MBP. Furthermore,

let M |= i2 = i3. We then reduce the term a[i2 ← v2][i3] to a[i3] to obtain a[i3] >
5∧ a[i4] > 0, using the relevant disjunct of the select-after-store axiom of ARR.

We then introduce fresh variables x3 and x4 to denote the two select terms on a,

obtaining x3 > 5∧ x4 > 0. Finally, we add i3 = i4 ∧ x3 = x4 if M |= i3 = i4 and

add i3 = i4 otherwise, choosing the relevant case of Ackermann reduction, and

existentially quantify x3 and x4.

Model-Based Projection is crucial for SPACER. It is used both in computing prede-

cessors and summaries. However, since its inception, it has found many other applica-

tions as well. For example, in [11] it is used in a procedure for deciding satisfiability of

quantified formulas. In [40] to discover a simulation relation between different version

of a program. In [72] it is extended with Skolemization and is used to synthesize im-

plementation from assume-guarantee contracts. The Skolemization procedure is further

improved in [39].

4.1.3. SPACER Algorithm

Without loss of generality, we assume that set of CHCs encoding safety of procedural

programs is transformed into an equisatisfiable set of just three clauses with a single
predicate symbol of the following form:

Inv(x)← Init(x) ¬Bad(x)← Inv(x)

Inv(x′)← Inv(x), Inv(xo),Tr(x,xo,x′)
(1)

The notation x† stands for a vector of variables obtained from x by adding † to every

variable, where † ∈ {′,o }. For example, (x1,x2,x3)
′ is (x′1,x

′
2,x

′
3). Intuitively, Inv is the

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN94

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

program invariant, x denotes the pre-state of a program transition, x′ denotes the post-

state, and xo denotes the summary of a procedure call (if one is made). Any verification

condition for sequential programs can be transformed into the form of (1) by adding extra

state variables that denote active program location and active procedure being executed.

In the special case of verification conditions of procedure-free sequential programs,

xo variables do not appear in Tr and the conjunct Inv(xo) can be dropped. The resulting

three clauses simplify to the following:

Inv(x)← Init(x) ¬Bad(x)← Inv(x)

Inv(x′)← Inv(x),Tr(x,x′)
(2)

In the case of (2), Inv denotes a regular inductive invariant of a transition system.

To simplify the notation, we introduce a special function FTr, called a forward trans-
former, that replaces Inv in the rule by a pair of formulas φA(x) and φB(x). Formally, it is

defined as follows:

FTr(ϕA,ϕB) ≡ Init(x′)∨ (
ϕA(x)∧ϕB(xo)∧Tr(x,xo,x′)

)
Abusing notation, we write FTr(ϕA) for FTr(ϕA,ϕA), and F (ϕA,ϕB) when Tr is clear

from the context or is irrelevant. Using function F , the CHC in (1) are equivalently

expressed as two First Order Logic formulas:

∀x,x′,xo ·F (Inv, Inv) =⇒ Inv(x′) ∀x · Inv(x) =⇒ ¬Bad(x)

SPACER is a parameterized algorithm (or a set of rules) that is instantiated for a

given logical theory T given three ingredients: (a) a model-producing satisfiability solver

for T (i.e., an SMT solver that supports theory T), (b) an MBP procedure MBP for T ,

and (c) an interpolation procedure ITP for T . Here, we present a version that is limited

to quantifier free solutions. Extension of SPACER for quantified solutions is described

in [61].

The main data-structures operated by SPACER are a sequence of may summaries

[F0,F1, . . .] called a trace, a must summary called R, and a queue of proof obligations Q.

Each element Fi of a trace is called a frame, and each element � ∈ Fi is called a lemma

(or a may summary). Intuitively, Fi over-approximates all the states reachable by Tr in up

to i steps (derivations). The set R, also called the reachable states, under-approximates

all the reachable states. Finally, elements of Q, called proof-obligations, represent states

the algorithm is trying to proof reachable or unreachable.

The rules defining SPACER are shown in Alg. 1. The rules are applied non-

deterministically although, only some order of application guarantees progress. Each rule

is presented as a guarded command “[grd] cmd”, where cmd can be executed only if

grd holds. If multiple guards are true, any one of the corresponding commands can be

executed.

As described above, SPACER maintains a set of reachability queries Q, a sequence of

may summaries {Fi}i∈N, and a must summary R. Intuitively, a query 〈ϕ, i〉 corresponds

to checking if ϕ is reachable for recursion depth i, Fi over-approximates the reachable

states for recursion depth i, and R under-approximates the reachable states. N denotes the

current bound on recursion depth. The sequence of may summaries and N correspond

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 95

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Input: Formulas Init(x),Tr(x,xo,x′),Bad(x)

Output: An inductive invariant or UNSAFE

if (Init∧Bad) satisfiable then return UNSAFE

// initialize data structures

Q := /0 // set of pairs 〈ϕ, i〉, i ∈ N

N := 0 // max level, or recursion depth

F0 = Init,Fi =�, ∀i > 0 // may summary sequence

R = Init // must summary

forever non-deterministically do
(Candidate) [(FN ∧Bad) satisfiable]

Q := Q∪〈ϕ,N〉, for some ϕ =⇒ FN ∧Bad

(MustPredecessor) [〈ϕ, i+1〉 ∈ Q, M |= F (Fi,R)∧ϕ ′]
Q := Q∪〈MBP(∃xo,x′ ·F (Fi,R)∧ϕ ′,M), i〉

(MayPredecessor) [(ϕ, i+1) ∈ Q, M |= F (Fi)∧ϕ ′]
Q := Q∪〈MBP(∃x,x′ ·F (Fi)∧ϕ ′,M)[x/xo], i〉

(Leaf) [(ϕ, i) ∈ Q, F (Fi−1) =⇒ ¬ϕ ′, i < N]
Q := Q∪〈ϕ, i+1〉

(Successor) [〈ϕ, i+1〉 ∈ Q, M |= F (R)∧ϕ ′]
R := R∨MBP(∃x,xo ·F (R)∧ϕ ′,M)[x/x′]

(NewLemma) [〈ϕ, i+1〉 ∈ Q, F (Fi) =⇒ ¬ϕ ′]
Fj := Fj ∧ ITP(F (Fi),ϕ ′)[x/x′], ∀ j ≤ i+1

(Induction) [(ϕ ∨ψ) ∈ Fi, F (ϕ ∧Fi) =⇒ ϕ ′]
Fj := Fj ∧ϕ , ∀ j ≤ i+1

(Unfold) [FN =⇒ ¬Bad] N := N +1

(Safe) [Fi+1 =⇒ Fi] return Fi

(Unsafe) [(R∧Bad) satisfiable] return UNSAFE

Algorithm 1: Rule-based description of SPACER.

to the trace of approximations and the maximum level in IC3/PDR, respectively. For

convenience, let F−1 be ⊥. MBP(ϕ,M), for a formula ϕ = ∃v ·ϕqf and model M |= ϕqf ,

denotes the result of some MBP function associated with ϕ for the model M.

Alg. 1 initializes N to 0 and, F0 and R to Init. Candidate initiates a backward search

for a counterexample beginning with a set of states in Bad. The potential counterex-

ample is expanded using either MustPredecessor or MayPredecessor. MustPredeces-
sor jumps over the call Inv(xo), in the last CHC of (1), utilizing the must summary R.

MayPredecessor, on the other hand, creates a query for the call using the may summary

of its calling context. Leaf moves an unreachable query to a higher recursion depth. Suc-
cessor updates R when a query is known to be reachable. NewLemma updates may sum-

maries when a query is known to be unreachable. Induction strengthens may summaries

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN96

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

using induction relative to Fi. Unfold increments the bound on the recursion depth. Safe
returns Fi as invariant when the sequence of may summaries converges. Unsafe applies

when the must summary intersects with Bad.

SPACER is sound and if MBP utilizes finite MBP functions, SPACER also terminates

for a fixed N. Soundness follows from the fact that the following invariants are main-

tained by the main loop:

Init =⇒ F0 ∀0 < i ≤ N ·F (Fi−1) =⇒ Fi

R =⇒ F N(Init) ∀0 < i ≤ N ·Fi−1 =⇒ Fi

∀0 < i ≤ N ·F i(Init) =⇒ Fi

Thus, {Fi}i∈N and R, respectively, over- and under-approximate reachable states.

The rules in Alg. 1 leave out many important implementation details. For efficiency,

queries are restricted to cubes (i.e., conjunction of literals). For Linear Arithmetic, the

implementation relies on the fact that MBP is linear in time and space. Q is maintained

as a priority queue, processing queries of smaller recursion depths first. Additional con-

straints are imposed on the rules and their ordering to ensure termination for a fixed N.

For the rule Unsafe, the implementation also produces a counterexample in addition to

returning UNSAFE.

4.2. Abstract Interpretation with CRAB

In this section, we first introduce CRAB [31] (CoRnucopia of ABstractions), a language-

agnostic static analyzer based on the theory of Abstract Interpretation [25]. CRAB does

not analyze directly LLVM bitcode but instead it analyzes a goto-based Control-Flow

Graph language. This allows decoupling the analyzer from the input language so that it

can be reused for analyzing other languages beyond LLVM bitcode (e.g., in [48]). Then,

we describe CLAM (CRAB for Llvm Abstraction Manager), the static analyzer of LLVM

bitcode based on CRAB, which is integrated in SEAHORN as one of its back-end solvers.

Note that we have decided to implement CRAB on top of a imperative language and

not directly on Constrained Horn Clauses. This is motivated by the necessity to orient

the analysis in Abstract Interpretation. That is, the interpreter needs to know the order

in which to execute the instructions. While it is possible to map logical definitions into

instructions, in practice, we chose to avoid this complication by going directly from

LLVM to the intermediate representation used by CRAB.

4.2.1. CRAB Target Language

CRAB programs are written in the goto-based language described in Figure 5. A program

P consists of a non-empty sequence of basic blocks, each one denoted by a unique iden-

tifier bb, containing zero or more instructions I in three-address form. Operands can only

be one of these three basic types: integers, booleans, and pointers, or arrays of a basic

type. All instructions are strongly typed. The language does not support floating point

operations.

Integer, boolean, pointer, and array variables are denoted with symbols vi, vb, vp,

vA, respectively. Variables of any type are denoted by v. Scalar (non-array) variables are

denoted by vs. Integer variables are sized (i.e., of different bit-width). The set of integer,

boolean, pointer, and array variables are disjoint.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 97

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

P ::= B+

B ::= bb : I∗ goto bb1, . . .bbn | bb : I∗ [return v1, . . . ,vn]

I ::= Ia | Ib | Ip | IA | v′1, . . . ,v
′
m := f un(v1, . . . ,vn)

v := havoc () | assume (vb) | assume (b) | assert (vb) | assert (b)

Ia ::= vi := a
vi := sign_extension (vi) | vi := zero_extension (vi) | vi := truncate (vi)

vi := booltoint (vb)

Ib ::= vb := b | vb := inttobool (vi)

Ip ::= vp := p | vp := alloc (sz) | vs := load (vp) | store (vs, vp) | vp := &fun

IA ::= vA := array_init (vi,v′i,vs,sz,endian) | vs := array_select (vA,vi,sz,endian)

array_write (vA,vi,vs,sz,endian) | v′A := vA
a ::= n | vi | a1 opa an
b ::= true | false | ¬ b | b1 opb b2 | a1 opr a2 | p1 opp p2

p ::= null | vp +a

Figure 5. CRAB goto-based language to represent Control Flow Graphs.

Arithmetic and boolean instructions. Arithmetic and boolean expressions are described

by a and b. CRAB supports standard operations opa and opb for these expressions. For

arithmetic expressions, CRAB supports addition, subtraction, multiplication, signed/un-

signed division, signed/unsigned remainder, and standard bitwise operations: and, or,

xor, left shift, logical and arithmetic right shift. For boolean expressions, CRAB supports

the operations and, or, and xor.

Control flow and assertions. Control flow is modeled by goto and assume instructions.

The instruction v := havoc() assigns non-deterministically any value allowed by v’s type

to v. Properties can only be defined by adding assert instructions.

Pointer instructions. The instruction vp := alloc(sz) allocates a fresh memory object

of size sz and returns a pointer to it. The instructions vs := load(vp) and store(vs,vp)

read and write memory. Pointer arithmetic can be expressed by vp := v′p +a. CRAB also

supports function pointers vp := &fun. For pointer comparisons opp, CRAB supports

pointer equality and disequality.

Array instructions. CRAB language supports unidimensional arrays. The importance of

arrays is inherited from the importance of arrays in imperative languages and even more

important, because the program memory can be modeled as an array. Arrays are inter-

preted as sequences of consecutive bytes which are disjoint from each other. We describe

informally the semantics of the array operations. We define first BS(vA,vi,sz,endian) as

the byte sequence:{
vA[vi] · vA[vi +1] · · ·vA[vi + sz−1] if endian = big

vA[vi + sz−1] · vA[vi + sz−2] · · ·vA[vi] if endian = little

Similarly, we define BS(vs,endian) as the byte sequence:{
vs(0) · · ·vs(n−1) if endian = big

vs(n−1) · · ·vs(0) if endian = little

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN98

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The instruction vA := array_init (vi,v′i,vs,sz,endian) creates a fresh array vA such

that for all vi ≤ j < v′i∧(j mod sz = 0), each byte sequence BS(vA, j,sz,endian) is equal

to BS(vs,endian). Array reads vs := array_select (vA,vi,sz,endian) assigns the byte se-

quence BS(vA,vi,sz,endian) to BS(vs,endian). array_write (vA,vi,vs,sz,endian) writes

the byte sequence BS(vs,endian) into BS(vA,vi,sz,endian). Finally, v′A := vA assigns all

contents of vA to v′A.

Endianess can be optionally provided. However, if it is not available then array ab-

stract domains are limited when reasoning about byte aliasing because they cannot make

any assumption about endianess.

Function calls. CRAB assumes call-by-value parameter passing. Functions can return

multiple values. This is specially useful for purifying functions. Function purification
converts functions into new equivalent functions that have no side effects.

Conversion between types. Conversion between operand types is allowed but it must

be done through explicit casts. CRAB supports sign and zero extension, truncation, and

conversions between boolean and integers. Conversion between integers and pointers is

not currently supported.

CRAB language design choices. The design of the CRAB language has been care-

fully chosen based on our experience in building abstract interpreters and front-ends.

For instance, the language distinguishes between boolean and integer variables although

boolean can be also modeled as integers if desired. The distinction between boolean and

integers can make easier the translation to the CRAB language if the front-end already

makes that separation. Moreover, it can simplify the code of an abstract interpreter be-

cause boolean and arithmetic instructions can be analyzed by different abstract domains:

boolean instructions with a finite domain and numerical instructions with a numerical

abstract domain. The distinction between pointer and arrays instructions is another good

example. Typically, abstract domains reasoning about pointers (e.g., [85, 100]) are very

different from domains reasoning about arrays (e.g., [29, 49, 65]). The former focuses

on aliasing while the latter focuses more on the problem of weak versus strong updates.

Again, having specialized instructions for pointers and arrays can simplify the code of

the abstract interpreter. Moreover, there are situations where either the input language is

simple enough that aliasing is not an issue (e.g., [48]) or the front-end can resolve alias-

ing at translation time (see Section 4.2.7). For those cases, array domains are sufficient

to reason precisely about memory.

Compared to other intermediate representations such as LLVM IR, control flow is

expressed in a more declarative way by having goto and assume instead of conditional

branches. Unlike LLVM IR, CRAB language is not intended to be executed, and thus,

it allows expressing non-determinism through havoc instructions which is very useful

for program abstractions (e.g., model a cast from an integer to a pointer). Another key

difference with LLVM IR is that the CRAB language does not require the input program

to be written in Static Single Assignment (SSA), and, therefore, it does not have φ -nodes.

This special instruction is used to represent all the possible values of a variable can take at

a merge point in the Control Flow Graph (CFG). The analysis of φ -nodes using abstract

interpretation is specially challenging with relational numerical domains [43]. For that

reason, Crab language does not allow φ -nodes.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 99

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Fixpoint Iterator

Abstract Transformer:
forward semantics

backward semantics

inter-procedural semantics

Abstract Domains Invariants

Checkers

Figure 6. CRAB architecture.

4.2.2. Tool Architecture

The design of Crab is very similar to other abstract interpreters such as ASTRÉE [14],

CLOUSOT [38] and IKOS [16]. Crab is parametric both in the fixpoint iterators and ab-

stract domains. The main architecture of the tool is depicted in Figure 6. We omit for

now the details about how to adapt this architecture to inter-procedural analysis. This is

described in in Section 4.2.6. Crab has two operation modes: the inference mode and the

checking mode.

Inference mode. CRAB takes as input the CFG as described in previous section. Then,

it solves iteratively the semantic equations extracted directly from the CFG. Solving

these equations is performed by the Fixpoint Iterator. The fixpoint iterator is in charge

of finding good iteration strategies and in charge of applying widening and narrowing

in effective ways, while optimizing time and memory consumption. Solving semantic

equations requires to both interact with Abstract Domains (e.g., join, meet, widening,

and narrowing) and with Abstract Transformer to apply the corresponding semantics to

each CFG instruction (e.g., forward semantics, backward semantics, or inter-procedural

semantics). Figure 7 shows an example of semantic equations extracted from a sample

CFG.

Finally, after Fixpoint Iterator has found a stable solution (a.k.a. invariants), these

are stored in an invariant database. When inference mode is enabled, no warning is

displayed when some possible error is detected. This is because either the fixpoint has

not been reached yet and it might be unsound to report the program is safe, or a warning

can be ruled out after refinement using narrowing or dual narrowing operators [23, 28].

Checking mode. Upon completion of the inference phase, CRAB uses the invariants

stored in the database to check if certain properties can be violated, issuing warning

messages. This is done by Checkers. Currently, CRAB can perform some built-in checks

(division by zero, null-dereference, etc) and user-defined assertions (assert instructions).

For efficiency, invariants are only stored per CFG basic block. Thus, instructions might

be re-analyzed but only up to the end of each basic block. This saves us from storing

invariants per instruction at a very small cost.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN100

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

bb1:

i := 0

x := 1

y := 0

n := havoc();
assume (n > 0)
goto bb2

bb2: goto bb3; bb4

bb3:

assume (i < n)

x := x+ y
y := y+1

i := i+1

goto bb2

bb4:

assume (i >= n)

assert (x >= y)

X0 = �
X1 = forget(n,post({i = 0;x := 1;y := 0},

X0))�(n > 0)

X2 = X2

�
(X1�X3)

X3 = post({x := x+ y;y := y+1; i := i+1},
(X2�(i < n)))

X4 = X2�(i ≥ n)�(x < y)

Figure 7. Crab CFG and its forward semantic equations. Each Xi (1 ≤ i ≤ 4) represents the invariants that

hold at the exit of block bbi. The initial abstract state is X0 =� (top). The assertion holds if X4 =⊥ (bottom).

4.2.3. Fixpoint Iterator

CRAB computes first a weak topological ordering (WTO) of the CFG following Bour-

doncle’s algorithm [15]. The WTO produces a good order in which basic blocks should

be analyzed, and the set of basic blocks in the CFG where the fixpoint algorithm needs

to apply widening to ensure termination.

The current fixpoint iterator used in Crab is based on [4], and it interleaves widen-

ing and narrowing operations for each inner loop until reaching convergence before an-

alyzing outer loops. Thresholds are used to improve the precision of the widening (as

in [14, 38]). The thresholds are collected statically from the constants appearing in as-
sume and assert instructions.

The Fixpoint iterator is very generic since it focuses only on solving semantic equa-

tions. The particular semantics is given by the Abstract Transformer. The advantage is

that it can be replaced by any method as long as one focuses on iterative solving tech-

niques [50, 51, 64, 76, 83, 94].

4.2.4. Abstract Domains

Abstract domains are in charge of interpreting in the abstract the operators �,�, . . ., and

transfer functions appearing during the solving of semantic equations. A very simplified

view of the abstract domain interface in CRAB is shown in Figure 8.

The forward (post) and backward (pre) transfer functions are used by Abstract
Transformer, and the Fixpoint iterator calls the other operations while computing the

fixpoint of the semantic functions. The inter-procedural semantics is implemented by the

Abstract Transformer calling directly abstract domain operations (project,�, forget, . . .).
Intervals and Congruences. Intervals [24] expresses constraints of the form x = [lb,ub]
meaning that lb≤ x and x≤ ub where x is an integer variable and lb,ub∈Z∪{−∞,+∞}.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 101

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Constructors
makeTop : D
makeBottom : D
Forward and backward transfer functions
post : Instr+×D → D
pre : Instr+×D → D
forget : Var+×D → D
project : Var+×D → D
Fixpoint iterator operations
isBottom : D → B (emptiness test)

� : D×D → B (inclusion test)

� : D×D → D (join)

� : D×D → D (meet)�
: D×D → D (widening)�
: D×D → D (narrowing)

Figure 8. Simplified Abstract Domain API.

Congruences [52] expresses constraints of the form aZ+ b where a and b are in-

tegers. For instance, all even (odd) numbers are represented as 2Z+ 0 (2Z+ 1). Both

domains are combined via a reduced product as described in [52].

These non-relational domains are represented by environments from variables to

abstract values. CRAB uses functional maps [89] to implement efficiently these environ-

ments as in [14, 16, 38].

Zones (a.k.a Difference-Bounds Matrices) [84] expresses constraints of the form

x− y ≤ k, where x,y are integer variables and k ∈ Z. CRAB uses an efficient sparse im-

plementation of difference-bounds matrices that achieves sparsity by dynamically sep-

arating interval constraints from constraints that can only be expressed through differ-

ences [45]. In our experience, Zones is one of our most important domains because it can

compute non-trivial relationships between variables while still being efficient in practice

(see e.g., [48]).

Flat Boolean Domain is a finite lattice ⊥ ≤ T ≤ �, ⊥ ≤ F ≤ � that discovers which

boolean variables are definitely true T or false F. This domain is always combined with

a numerical domain so that information can flow between integer to boolean variables.

DisInt [38] is an extension of Intervals to a finite disjunction. Elements in this domain

are normalized sequences of non-overlapping, sorted intervals [ao,b0], . . . , [an,bn] such

that only a0 can be −∞ and bn can be +∞. This domain retains the scalability of the

Interval domain while being able to reason about simple disequalities. For instance, the

disequality = 0 can be expressed by the sequence of intervals [−∞,−1] and [1,+∞].

Boxes [55] expresses finite boolean combinations of Intervals. Boxes provides an effi-

cient implementation of the exact disjunction of Intervals based on Linear Decision Dia-

grams [17]. This domain is very useful for path-sensitive analyses. This domain reasons

simultaneously about both boolean and integer variables producing much more precise

results than the Flat Boolean Domain combined with, for instance, Intervals.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN102

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Numerical domain with uninterpreted functions. The Terms domain [44] can improve

the precision of a numerical domain by inferring equivalence amongst sub-expressions

based on the theory of uninterpreted functions. Terms is strictly more precise than [87],

and it can enhance numerical domains in different ways by: (a) providing some relational

information (equalities) to domains such as Intervals and Congruences, (b) improving

precision in presence of non-linear operations (e.g., x ≤ 10∧ y =
√

x+ y2 ∧ z =
√

x+
y2 → x ≤ 10∧ y = z), and (c) improving precision in presence of array operations (e.g.,

b = write(a, i,x,sz)∧ y = select(a, i,sz)→ x = y).

Intervals over machine arithmetic. Most CRAB numerical domains reason about un-

bounded integers. This forces us to check for integer overflow in order to produce sound

verification results. The exception is the Wrapped Interval Domain [88] which infers

interval constraints obeying the laws of machine arithmetic, and thus, it can produce

correct intervals in the presence of integer wraparounds.

Interface to Apron and Elina domains. CRAB provides interfaces to external abstract

domains libraries such as Apron [69] and Elina [95]. Thus, domains such as Oc-

tagons [86] (±x± y ≤ k, where x,y are integer variables and k ∈ Z) and Polyhedra [30]

(linear inequalities of the form ∑i ci · xi ≤ ki where xi are integer variables, ci,ki ∈ Z) are

also available.

Nullity domain is a finite lattice ⊥≤ N≤�, ⊥≤ NN≤� that discovers which pointer

variables are definitely null N or non-null NN.

Array content domains lift abstract domains for scalar variables to reason about arrays.

CRAB provides several array content domains that strike different balances between pre-

cision and cost. Array Smashing [14] treats the whole array as a single symbolic vari-

able. The transfer function for array_write can only weaken the previous abstract state

(weak update). Array Smashing can represent universally quantified invariants if they

hold uniformly for all array elements.

On the other extreme, Array Expansion [14] treats individually each array element

as a single scalar variable. This domain can be more precise because the transfer func-

tion for array_write can overwrite the old value (strong update) and can reason about

byte aliasing. However, it might not scale if arrays are too large, and it cannot express

universally quantified properties.

Similar to ASTRÉE, CRAB also implements the combination of both domains via a

reduced product. Arrays are initially populated using strong updates by the Array Ex-

pansion domain. If the size of the array is greater than certain threshold or arrays are

accessed using non-constant indexes then they are smashed. A smashed array can be

expanded again as in [14]. In CRAB, once an array is smashed it is not expanded again.

CRAB also provides an array content domain [41] based on Array Partition-
ing [49, 65]. The domain is useful when an invariant does not hold for all array elements

but instead on some contiguous segment. The domain selects a small set of partition

variables, maintaining disjunctive information about properties which hold over the seg-

ments delimited by the partition variables. This domain can express properties such as

array sortedness but it can suffer from scalability issues. More efficient array domains

such as [29] can be also implemented in CRAB.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 103

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Combination of domains. Most of the abstract domains described above are typically

not enough to prove non-trivial properties. However, their combination can produce very

powerful analyses [26]. The main method for combining numerical abstract domains in

CRAB is the reduced product [25]. Given two domains D1 and D2, the reduced prod-

uct is equivalent to running simultaneously both domains while communicating infor-

mation between the two domains. This communication is called reduction. CRAB pro-

vides a generic reduced product domain that redirects each abstract operation to each

sub-domain, performing a simple reduction: ⊥ if any of the sub-domains is ⊥. More

complex reductions are carefully implemented on a case-by-case basis (e.g., Intervals

and Congruences, Terms and Zones, Array Smashing and Expansion, etc).

4.2.5. Backward Analysis

When an invariant is too weak to prove an assertion, we can propagate backwards the pre-

decessors of the error states and use the abstract states at those points to prove that there

is no an execution starting from the entry of the program that can reach an error state.

This approach is good at handling some disjunctive invariants which many of CRAB ab-

stract domains cannot represent precisely. A typical scenario is when an assertion after a

join point might not be provable due to loss of precision at the join.

The CRAB backward analysis is based on computing necessary preconditions. A

necessary precondition of a set of states F is the set of initial states that guarantee that

some of its executions will stay in F . Similar to [92], CRAB computes in the abstract nec-

essary preconditions starting from the set of error states. These error states are obtained

by representing in the abstract the negation of an assertion condition. If the set of initial

states is empty then the set of error states must be unreachable, and thus, the assertion

definitely holds.

As described in [27], the precision of the backward analysis can be improved by

considering only preconditions that might be reachable from the entry of the program.

For any basic block b, CRAB intersects in the abstract (� operator) the preconditions

from the error states at b with the invariants that hold at b. Next, a new forward analysis

is run starting from the new preconditions computed by the backward analysis in an

attempt to produce more precise invariants. This interleaving process between a forward

and backward analysis gives an infinite descending chain of approximated preconditions

and invariants whose termination is ensured by narrowing.

4.2.6. Inter-Procedural Analysis

The architecture shown in Figure 6 is limited to intra-procedural analysis. However,

inter-procedural analysis is also available in CRAB. Based on our experience, different

programs are more amenable to different inter-procedural analyses. To support this view,

CRAB is also parametric on the inter-procedural analysis. For a new inter-procedural

analysis only these two main steps need to be implemented in CRAB:

• Define the inter-procedural semantics for call and return.

• Find an effective ordering to traverse the call graph while computing globally sta-

ble solutions. Depending on the program, these are the common cases that might

need to be considered:

(1) Incomplete call graph and recursive functions
(2) Incomplete call graph and non-recursive functions

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN104

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

(3) Complete call graph and recursive functions

(4) Complete call graph and non-recursive functions

Cases (1) and (2) require running simultaneously a pointer analysis together with

the abstract domain chosen to reason about the desired property in order to resolve

indirect calls. Case (3) can be solved by computing a global fixpoint for each

strongly connected component in the call graph. Weak topological ordering [15]

can be used to identify widening points. Finally, (4) is the simplest case because

the call graph is a directed acyclic graph (DAG).

CRAB implements an inter-procedural analysis based on CGS [101]. The inter-

procedural analysis makes the main assumption that the call graph is complete and thus,

all the function calls have been already resolved by the client (Section 4.2.7 described

how we can ensure that for LLVM programs). A cycle in the call graph is treated by

analyzing all the functions in the cycle in an intra-procedural manner. Therefore, the call

graph analyzed by CRAB can be considered in practical terms as a DAG. The analysis

performs a context-insensitive, summary-based inter-procedural analysis consisting of

two phases:

• Bottom-up (callees before callers): traverse the call graph in reverse topological

order while computing summaries for each function. Summaries are abstract states

relating input with output function parameters. Summaries are computed by first

inferring invariants for the function using the intra-procedural analysis and then by

producing the actual summary during the transfer function of return. While com-

puting invariants, the analysis might need to reuse other summaries from callees.

This is implemented in the transfer function of call.
• Top-down (callers before callees): traverse the call graph in topological order start-

ing from main. At each call, the inter-procedural semantics for call reuses the

summary of the callee after formal/actual parameters renaming, as done already

during the bottom-up traversal. Moreover, it stores the preconditions associated to

that call in the callee. Note that at the time a function is analyzed, all its callers

have been already analyzed, and thus, all the preconditions are available. CRAB is

context-insensitive because it joins all the preconditions.

The inter-procedural analysis is quite fast since each function is analyzed exactly

once. However, the analysis can be imprecise since it is context-insensitive. A context-

sensitive analysis can be implemented by keeping separate the preconditions of each

function call and then running different analyses starting from each precondition.

4.2.7. Clam

CLAM (CRAB for Llvm Abstraction Manager) is an abstract interpreter for LLVM based

on CRAB. The main tasks performed by CLAM are:

1. Translating each LLVM function to a CRAB goto-based Control-Flow Graph.

2. Running CRAB analyses.

3. Assertion checking and/or communicating CRAB invariants to other SeaHorn

back-end solvers.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 105

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

CLAM allows users to choose among several parameters such as the abstract domain,

fixpoint parameters (widening delay, number of thresholds, etc.), and whether backward

or inter-procedural analysis should be enabled or not. SEAHORN users can choose CLAM

as the only back-end engine to discharge proof obligations. However, even if the abstract

domain can express precisely the program semantics, due to the join and widening op-

erations, it might lose some precision during the verification. As a consequence, CLAM

alone might not be sufficient as a back-end engine. Instead, a more suitable job for CLAM

is to supply program invariants to the other engines (e.g. SPACER). For this, the integra-

tion between CLAM and SPACER has been carefully tuned. CLAM invariants can be used

by SPACER in two different ways. First, invariants can be added as permanent lemmas

(i.e., initial may summaries) to initialize each frame Fi. In this case, the exploration done

by SPACER is limited to states that satisfy the invariants discovered by CLAM. Second,

CLAM invariants can be added only to restrict the transition relation during the Induc-
tion rule. This mode does not interfere with exploration, but can improve generalization

done by the rule.

The translation of integer instructions is straightforward. Most of LLVM instructions

with integer operands have their CRAB counterparts with the exceptions of φ and branch

instructions which are replaced with CRAB assignments and assume, respectively. Sim-

ilarly, CLAM can translate directly LLVM pointer instructions to CRAB pointer instruc-

tions (alloc, load, and store). Note that this syntactic-guided translation approach is

pretty simple, but it relies entirely on CRAB to reason about both LLVM registers and

memory.

Alternatively, CLAM can perform much of the memory reasoning at translation time

by leveraging SEADSA, which is already used during the generation of Constrained Horn

Clauses. CLAM can use SEADSA to disambiguate memory, i.e., resolve pointer aliasing,

which allows us to:

1. Resolve all indirect calls, producing a complete call graph.

2. Perform function purification, eliminating all function side-effects.

3. Translate LLVM load and store instructions to CRAB array instructions ar-
ray_select and array_write, respectively.

Steps 1 and 2 greatly simplify CRAB inter-procedural analysis. Step 3 allows leverag-

ing powerful CRAB array domains to infer rich invariants about integer memory values,

without complex abstract domains that would need also to reason about pointer aliasing.

In our experience, this relatively simple approach has been quite effective at reasoning

about C programs.

5. Conclusions

We have presented SEAHORN, a software verification framework with a modular de-

sign that separates the concerns of the syntax of the language, its operational semantics,

and the verification semantics. SEAHORN builds upon two verification engines: SPACER

and CRAB. Both SPACER and CRAB represent the state-of-the-art in SMT-based Model

Checking and Abstract Interpretation, respectively.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN106

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

We believe that SEAHORN is a versatile and highly customizable framework that

can help significantly in the time-consuming process of building new tools by allowing

researchers experimenting only on their particular techniques of interest.

The flexibility and practicality of SEAHORN have been demonstrated by ourselves

and other researchers over several projects. In our seminal work [58], we use SEAHORN

to prove proper API usage of Linux device drivers and memory safety of autopilot code.

In [99], SEAHORN is extended to go beyond safety properties for proving termination

of programs. In [70], SEAHORN is used to find code inconsistencies, code fragments

without normal terminating executions. In [71], SEAHORN is used to prove safety of

smart contracts. In this case, our Clang-based front-end was replaced with an in-house

developed front-end that translates Solidity smart contracts directly to LLVM bitcode. In

our most recent work, we have used SEAHORN to prove equivalence of x86 executable

programs [36]. We use McSema [98] to translate x86 code to LLVM bitcode and then

use the SEAHORN Bounded Model Checking engine to prove equivalence of a program

and an equivalent variant that is more resilient to cyber-security attacks.

While SEAHORN is already a full featured verification engine, significant work re-

mains to improve both usability and scalability. From the usability perspective, the main

questions are around user communication with the tool. Currently, each new property re-

quires non-trivial encoding of a problem domain to a low-level language. Adding support

for a new property is non-trivial research-driven effort. On the other side, the results from

SEAHORN are difficult to interpret by an average developer. Recently, we have proposed

that in the case of counterexamples, the tool must produce an executable that a developer

can examine [47]. Note that this is quite different than producing failing inputs, since

the executable contains not just the inputs to the original program, but also an executable

model of the whole verification environment. While this is a good first step, more work

remains to make this practical and robust in the presence of complex programming fea-

tures including procedures and dynamic memory allocation. From the scalability per-

spective, dealing with dynamic memory allocation and multi-threaded code are currently

the weakest links. We hope to address both by a more modular (but possibly incomplete)

reasoning techniques further combining Model Checking and Abstract Interpretation.

6. Acknowledgments

SEAHORN would have not been possible without numerous great collaborators. First of

all, we would like to thank Temesghen Kashai for being one of the original developers of

SEAHORN and main contributor for several years. We would like also to thank (alpha-

betical order) Nikolaj Bjørner, Graeme Gange, Jeff Gennari, Anvesh Komuravelli, Jakub

Kuderski, Peter Schachte, Edward Schwartz, Harald Søndergaard, and Peter Stuckey.

References

[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig Interpretation. In SAS, pages 300–316, 2012.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-based algorithm for inter-

procedural verification. In VMCAI, pages 39–55, 2012.

[3] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for abstraction- and

interpolation-based software verification. In CAV, pages 672–678, 2012.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 107

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[4] G. Amato and F. Scozzari. Localizing widening and narrowing. In SAS, pages 25–42, 2013.

[5] S. Arlt, C. Rubio-González, P. Rümmer, M. Schäf, and N. Shankar. The gradual verifier. In NFM,

pages 313–327, 2014.

[6] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software model checking via

large-block encoding. In FMCAD, pages 25–32, 2009.

[7] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker blast. STTT,

9(5-6):505–525, 2007.

[8] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software verification. In CAV,

pages 184–190, 2011.

[9] N. Bjørner and A. Gurfinkel. Property directed polyhedral abstraction. In VMCAI, pages 263–281,

2015.

[10] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn clause solvers for program

verification. In Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion
of His 75th Birthday, pages 24–51, 2015.

[11] N. Bjørner and M. Janota. Playing with quantified satisfaction. In LPAR, pages 15–27, 2015.

[12] N. Bjørner, K. L. McMillan, and A. Rybalchenko. Program verification as satisfiability modulo theo-

ries. In SMT, pages 3–11, 2012.

[13] N. Bjørner, K. L. McMillan, and A. Rybalchenko. On solving universally quantified horn clauses. In

SAS, pages 105–125, 2013.

[14] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A

static analyzer for large safety-critical software. In PLDI, pages 196–207, 2003.

[15] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In In Proceedings of the In-
ternational Conference on Formal Methods in Programming and their Applications, pages 128–141.

Springer-Verlag, 1993.

[16] G. Brat, J. A. Navas, N. Shi, and A. Venet. IKOS: A framework for static analysis based on abstract

interpretation. In SEFM, pages 271–277, 2014.

[17] S. Chaki, A. Gurfinkel, and O. Strichman. Decision diagrams for linear arithmetic. In FMCAD, pages

53–60, 2009.

[18] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A reachability predicate for analyzing low-

level software. In TACAS, pages 19–33, 2007.

[19] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of craig interpolants in satisfiability

modulo theories. ACM Trans. Comput. Log., 12(1):7:1–7:54, 2010.

[20] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In TACAS, pages

168–176, 2004.

[21] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and

S. Tobies. Vcc: A practical system for verifying concurrent c. In TPHOL, pages 23–42, 2009.

[22] L. Cordeiro, B. Fischer, and J. Marques-Silva. Smt-based bounded model checking for embedded

ANSI-C software. IEEE Trans. Software Eng., 38(4):957–974, 2012.

[23] P. Cousot. Abstracting induction by extrapolation and interpolation. In VMCAI, pages 19–42, 2015.

[24] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In Proceedings of
the second international symposium on Programming, Paris, France, pages 106–130, 1976.

[25] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

[26] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL, pages 269–

282, 1979.

[27] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. J. Log. Program.,
13(2&3):103–179, 1992.

[28] P. Cousot and R. Cousot. Comparing the galois connection and widening/narrowing approaches to

abstract interpretation. In PLILP, pages 269–295, 1992.

[29] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic and

scalable array content analysis. In POPL, pages 105–118. ACM, 2011.

[30] P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among variables of a program.

In POPL, pages 84–97. ACM, 1978.

[31] Crab: A language-agnostic library for Abstract Interpretation. Available from https://github.com/
seahorn/crab.

[32] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c: A software

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN108

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

analysis perspective. In SEFM, pages 233–247, 2012.

[33] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP: A tool for verifying programs

through transformations. In TACAS, pages 568–574, 2014.

[34] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340, 2008.

[35] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking object-oriented

programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

[36] B. Dutertre, I. Mason, and J. A. Navas. Proving equivalence of x86 programs with McSema and Sea-

Horn, 2018. Blog available at http://seahorn.github.io/seahorn/mcsema/equivalence/
x86/binary/2018/12/12/seahorn-and-mcsema.1.html.

[37] Ethereum. The Ethereum EVM JIT. Available at https://github.com/ethereum/evmjit.

[38] M. Fähndrich and F. Logozzo. Static contract checking with abstract interpretation. In FoVeOOS,

pages 10–30, 2010.

[39] G. Fedyukovich, A. Gurfinkel, and A. Gupta. Lazy but effective functional synthesis. In VMCAI, pages

92–113, 2019.

[40] G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Property directed equivalence via abstract simulation.

In CAV, pages 433–453, 2016.

[41] G. Gange, J. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. A partial-order approach to array

content analysis. Technical report, https://arxiv.org/pdf/1408.1754.pdf, 2014.

[42] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Failure tabled constraint logic

programming by interpolation. TPLP, 13(4-5):593–607, 2013.

[43] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Horn clauses as an intermediate

representation for program analysis and transformation. TPLP, 15(4-5):526–542, 2015.

[44] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. An abstract domain of uninter-

preted functions. In B. Jobstmann and K. R. M. Leino, editors, VMCAI, pages 85–103, 2016.

[45] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Exploiting sparsity in difference-

bound matrices. In SAS, pages 189–211, 2016.

[46] P. Garoche, T. Kahsai, and C. Tinelli. Incremental invariant generation using logic-based automatic

abstract transformers. In NASA NFM, pages 139–154, 2013.

[47] J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E. J. Schwartz. Executable counterexamples in

software model checking. In VSTTE, pages 17–37, 2018.

[48] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas, N. Rinetzky, L. Ryzhyk, and M. Sagiv.

Simple and precise static analysis of untrusted linux kernel extensions. In PLDI, 2019.

[49] D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array operations. In POPL,

pages 338–350. ACM, 2005.

[50] D. Gopan and T. W. Reps. Lookahead widening. In CAV, pages 452–466, 2006.

[51] D. Gopan and T. W. Reps. Guided static analysis. In SAS, pages 349–365, 2007.

[52] P. Granger. Static analysis of arithmetical congruences. International Journal of Computer Mathemat-
ics, 30:165–190, 1989.

[53] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing software verifiers from

proof rules. In PLDI, pages 405–416, 2012.

[54] A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient interpolant generation in satisfiability modulo

linear integer arithmetic. Logical Methods in Computer Science, 8(3), 2010.

[55] A. Gurfinkel and S. Chaki. Boxes: A symbolic abstract domain of boxes. In SAS, pages 287–303,

2010.

[56] A. Gurfinkel and S. Chaki. Combining predicate and numeric abstraction for software model checking.

STTT, 12(6):409–427, 2010.

[57] A. Gurfinkel, S. Chaki, and S. Sapra. Efficient Predicate Abstraction of Program Summaries. In NFM,

pages 131–145, 2011.

[58] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn Verification Framework. In

CAV, pages 343–361, 2015.

[59] A. Gurfinkel, T. Kahsai, and J. A. Navas. SeaHorn: A framework for verifying C programs - (compe-

tition contribution). In TACAS, 2015.

[60] A. Gurfinkel and J. A. Navas. A context-sensitive memory model for verification of C/C++ programs.

In SAS, pages 148–168, 2017.

[61] A. Gurfinkel, S. Shoham, and Y. Vizel. Quantifiers on demand. In ATVA, pages 248–266, 2018.

[62] A. Gurfinkel and Y. Vizel. DRUPing for interpolates. In FMCAD, pages 99–106, 2014.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 109

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[63] A. Gurfinkel, O. Wei, and M. Chechik. Model checking recursive programs with exact predicate ab-

straction. In ATVA, pages 95–110, 2008.

[64] N. Halbwachs and J. Henry. When the decreasing sequence fails. In SAS, pages 198–213, 2012.

[65] N. Halbwachs and M. Péron. Discovering properties about arrays in simple programs. In PLDI, pages

339–348. ACM, 2008.

[66] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann, A. Nutz, C. Schilling, and

A. Podelski. Ultimate Automizer with SMTInterpol - (Competition Contribution). In TACAS, pages

641–643, 2013.

[67] K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT, pages 157–171, 2012.

[68] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. TRACER: A symbolic execution tool for verifica-

tion. In CAV, pages 758–766, 2012.

[69] B. Jeannet and A. Miné. A library of numerical abstract domains for static analysis. In A. Bouajjani

and O. Maler, editors, CAV, volume 5643 of LNCS, pages 661–667. Springer, 2009.

[70] T. Kahsai, J. A. Navas, D. Jovanovic, and M. Schäf. Finding inconsistencies in programs with loops.

In LPAR, pages 499–514, 2015.

[71] S. Kalra, S. Goel, M. Dhawan, and S. Sharma. ZEUS: analyzing safety of smart contracts. In NDSS,

2018.

[72] A. Katis, G. Fedyukovich, H. Guo, A. Gacek, J. Backes, A. Gurfinkel, and M. W. Whalen. Validity-

guided synthesis of reactive systems from assume-guarantee contracts. In TACAS, pages 176–193,

2018.

[73] A. Komuravelli, N. Bjørner, A. Gurfinkel, and K. L. McMillan. Compositional verification of proce-

dural programs using horn clauses over integers and arrays. In FMCAD, pages 89–96, 2015.

[74] A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recursive programs. In

CAV, pages 17–34, 2014.

[75] A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for recursive programs. Formal
Methods in System Design, 48(3):175–205, 2016.

[76] L. Lakhdar-Chaouch, B. Jeannet, and A. Girault. Widening with thresholds for programs with complex

control graphs. In ATVA, pages 492–502, 2011.

[77] A. Lal and S. Qadeer. A program transformation for faster goal-directed search. In FMCAD, pages

147–154, 2014.

[78] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis & transfor-

mation. In CGO, pages 75–88, 2004.

[79] C. Lattner and V. S. Adve. Automatic Pool Allocation: Improving Performance by Controlling Data

Structure Layout in the Heap. In PLDI, pages 129–142, 2005.

[80] K. McMillan and A. Rybalchenko. Solving Constrained Horn Clauses using Interpolation. Technical

report, MSR-TR-2013-6, 2013.

[81] M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (C)LP-based approach to the

analysis of object-oriented programs. In LOPSTR, pages 154–168, 2007.

[82] F. Merz, S. Falke, and C. Sinz. LLBMC: bounded model checking of C and C++ programs using a

compiler IR. In VSTTE, pages 146–161, 2012.

[83] B. Mihaila, A. Sepp, and A. Simon. Widening as abstract domain. In NASA NFM, pages 170–184,

2013.

[84] A. Miné. A few graph-based relational numerical abstract domains. In SAS, pages 117–132, 2002.

[85] A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arith-

metics. In LCTES, pages 54–63, 2006.

[86] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–100,

2006.

[87] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In VMCAI, pages

348–363, 2006.

[88] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Signedness-agnostic program analysis:

Precise integer bounds for low-level code. In R. Jhala and A. Igarashi, editors, APLAS, volume 7705

of LNCS, pages 115–130. Springer, 2012.

[89] C. Okasaki and A. Gill. Fast mergeable integer maps. In Notes of the ACM SIGPLAN Workshop on
ML, pages 77–86, September 1998.

[90] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs through analysis of

constraint logic programs. In SAS, pages 246–261, 1998.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN110

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[91] Z. Rakamaric and M. Emmi. SMACK: Decoupling source language details from verifier implementa-

tions. In CAV, pages 106–113, 2014.

[92] X. Rival. Understanding the origin of alarms in astrée. In SAS, pages 303–319, 2005.

[93] P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for horn-clause verification. In CAV,

pages 347–363, 2013.

[94] A. Simon and A. King. Widening polyhedra with landmarks. In APLAS, pages 166–182, 2006.

[95] G. Singh, M. Püschel, and M. T. Vechev. ELINA: ETH Library for Numerical Analysis, 2018. Available

at https://github.com/eth-sri/ELINA.

[96] N. Sinha, N. Singhania, S. Chandra, and M. Sridharan. Alternate and learn: Finding witnesses without

looking all over. In CAV, pages 599–615, 2012.

[97] B. Steensgaard. Points-to analysis in almost linear time. In POPL, pages 32–41, 1996.

[98] TrailOfBits. Framework for lifting x86, amd64, and aarch64 program binaries to llvm bitcode. Avail-

able at https://github.com/trailofbits/mcsema.

[99] C. Urban, A. Gurfinkel, and T. Kahsai. Synthesizing ranking functions from bits and pieces. In TACAS,

pages 54–70, 2016.

[100] A. Venet. A scalable nonuniform pointer analysis for embedded programs. In SAS, pages 149–164,

2004.

[101] A. Venet and G. P. Brat. Precise and efficient static array bound checking for large embedded C

programs. In PLDI, pages 231–242, 2004.

[102] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM intermediate

representation for verified program transformations. In POPL, pages 427–440, 2012.

A. Gurfinkel and J.A. Navas / Automatic Program Verification with SEAHORN 111

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Using Epistemic Logic to Analyze
Protocols

Joseph Y. Halpern 1

Computer Science Department, Cornell University, Ithaca, NY 14850, USA
halpern@cs.cornell.edu

Keywords. epistemic logic, coodinated attack, blockchain, authentication
logic, BAN logic, common knowledge

I gave a sequence of four lectures. The first two were largely taken from the pa-
per “Knowledge and common knowledge in a distributed environment” (Halpern
and Moses 1990). By first considering a number of puzzles and paradoxes, I ar-
gued that the right way to understand distributed protocols is by considering how
messages change the state of knowledge of a system. I presented a hierarchy of
knowledge states that a system may be in, and discussed how communication can
move the system’s state of knowledge up the hierarchy. Of special interest is the
notion of common knowledge. Common knowledge is an essential state of knowl-
edge for reaching agreements and coordinating action. I considered the coordi-
nated attack problem (Gray 1978), which showed that in practical distributed sys-
tems, common knowledge is not attainable. I then introduced various relaxations
of common knowledge that are attainable in many cases of interest. I showed
that common knowledge was necessary and sufficient for simultaneous coordina-
tion; the relaxations all correspond to relaxations of coordination. For example,
ε-common knowledge (roughly speaking, within ε everyone will know that within
ε everyone will know that within ε . . .) is necessary and sufficient for coordination
within a window of size ε and probabilistic coordination (with high probability
everyone knows that with high probability everyone knows . . .) is necessary and
sufficient for probabilistic coordination. The book Reasoning About Knowledge
(Fagin, Halpern, Moses, and Vardi 1995) goes into much more detail about the
use of epistemic logic for analyzing protocols, as well as providing logical details,
such as soundness and completeness proofs for various epistemic logics.

My third and fourth lectures considered recent applications of epistemic logic.
The third one was entitled “A knowledge-based analysis of the blockchain proto-
col”, and based on joint work with Rafael Pass (2017). As the title suggests, it
focused on the blockchain protocol, a protocol for achieving consensus on a public
ledger that records bitcoin transactions. To the extent that a blockchain protocol
is used for applications such as contract signing and making certain transactions
(such as house sales) public, we need to understand what guarantees the protocol

1Thanks to NSF, AFOSR, and ARO for funding over the years. Currently supported by NSF
grants IIS-1703846 and IIS-1718108, AFOSR grant FA9550-12-1-0040, ARO grant W911NF-17-
1-0592, and the Open Philanthropy project.

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-113

113

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

gives us in terms of agents’ knowledge. I provided a complete characterization of
agents’ knowledge when running a blockchain protocol, using a variant of common
knowledge that takes into account (1) the fact that agents can enter and leave the
system, (2) that it is not known which agents are in fact following the protocol
(some agents may want to deviate if they can gain by doing so), and (3) the fact
that the guarantees provided by blockchain protocols are probabilistic. The key
was using an appropriate variant of common knowledge that, roughly speaking,
says that within Δ time units (where Δ is an upper bound on message delivery
time in the system), from that time onward, all the honest players will know that
within Δ times units, from that time onward, all the honest players will know
Note that the set of honest players is an indexical set ; its membership changes
over time as players enter and leave the system, and can be different in differ-
ent runs (histories) of the system. Thus, making sense of this notion of common
knowledge requires considering common knowledge relative to indexical sets, a
topic first considered by Moses and Tuttle (1988). It also requires agent-relative
knowledge (so that we can say “I know”, rather than “agent i knows”), a topic
first considered by Grove and Halpern (Grove 1995; Grove and Halpern 1993).

The last lecture was entitled “An epistemic foundation for authentication
logics”, and based on joint work with Ron van der Meyden and Riccardo Pu-
cella (2017). While there have been many attempts, going back to BAN logic,
to base reasoning about security protocols on epistemic notions, they have not
been all that successful. Arguably, this has been due to the particular logics cho-
sen. I presented a simple logic based on the well-understood modal operators of
knowledge, time, and probability, and showed that it is able to handle issues that
have often been swept under the rug by other approaches, while being flexible
enough to capture all the higher-level security notions that appear in BAN logic.
Moreover, while still assuming that the knowledge operator allows for unbounded
computation, it can handle the fact that a computationally bounded agent cannot
decrypt messages in a natural way, by distinguishing strings and message terms.
These become different types, with translations between them, so that we can
say, for example, that a string s represents a particular message m. However, s
may represent s in one run and not another. This approach allows us to say, for
example, (1) that agent i knows that s represents the encryption of a particular
message m; (2) that i knows that s represents the encryption of some message,
even though i does not know which message it is the encryption of; (3) that i
knows that encryptions are unique; and (4) that i knows that s represents the
encryption of a message of length at most 20. I showed that this logic can capture
BAN logic notions by providing a translation of the BAN operators into our logic,
capturing belief by a form of probabilistic knowledge.

References

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995). Reasoning About
Knowledge. Cambridge, MA: MIT Press. A slightly revised paperback ver-
sion was published in 2003.

J.Y. Halpern / Using Epistemic Logic to Analyze Protocols114

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Gray, J. (1978). Notes on database operating systems. In R. Bayer, R. M. Gra-
ham, and G. Seegmuller (Eds.), Operating Systems: An Advanced Course,
Lecture Notes in Computer Science, Volume 66. Berlin/New York: Springer-
Verlag. Also appears as IBM Research Report RJ 2188, 1978.

Grove, A. J. (1995). Naming and identity in epistemic logic II: a first-order
logic for naming. Artificial Intelligence 74 (2), 311–350.

Grove, A. J. and J. Y. Halpern (1993). Naming and identity in epistemic logics,
Part I: the propositional case. Journal of Logic and Computation 3 (4), 345–
378.

Halpern, J. Y., R. v. d. Meyden, and R. Puccella (2017). An epistemic foun-
dation for authenticatino logics. In Theoretical Aspects of Rationality and
Knowledge: Proc. Sixteenth Conference (TARK 2017), pp. 306–323. The
proceedings are published in Electronic Proceedings in Theoretical Computer
Science 251.

Halpern, J. Y. and Y. Moses (1990). Knowledge and common knowledge in a
distributed environment. Journal of the ACM 37 (3), 549–587. A prelimi-
nary version appeared in Proc. 3rd ACM Symposium on Principles of Dis-
tributed Computing, 1984.

Halpern, J. Y. and R. Pass (2017). A knowledge-based analysis of the blockchain
protocol. In Theoretical Aspects of Rationality and Knowledge: Proc. Six-
teenth Conference (TARK 2017), pp. 324–335. The proceedings are pub-
lished in Electronic Proceedings in Theoretical Computer Science 251.

Moses, Y. and M. R. Tuttle (1988). Programming simultaneous actions using
common knowledge. Algorithmica 3, 121–169.

J.Y. Halpern / Using Epistemic Logic to Analyze Protocols 115

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abstraction- ased Control Design

(Lecture Notes)

Rupak MAJUMDAR, Kaushik MALLIK, and Anne-Kathrin SCHMUCK

Max Planck Institute for Software Systems, Germany

Abstract Abstraction-based control design (ABCD) is a methodology to algorith-

mically construct controllers for continuous time dynamical systems for temporal

specifications. The ABCD algorithm constructs a finite and discrete-time abstrac-

tion of the dynamical system, computes a discrete controller for the finite system

using reactive synthesis, and refines the discrete controller to a controller for the

original dynamical system. These lecture notes lay out the basic theory for ABCD

and describe a recent extension which performs the abstraction in a multi-layered,

adaptive way.

Keywords. Abstraction-based control design, reactive synthesis

1. Introduction

Control of dynamical systems concerns the feedback design of trajectories that satisfy a

given set of specifications. Classically, the primary specifications were stability (bound-

edness of trajectories), regulation (maintaining an nominal behavior), and set-point track-

ing (tracking a reference signal). In recent years, though, many systems design problems

come with more complex specifications about the temporal behavior of the trajectory.

Moreover, classical techniques were only well understood for simpler linear dynamical

systems, and would often rely on human judgment in the controller design process: tun-

ing a PID controller is a classic example. In contrast, the modern automatic control sys-

tems have become seemingly more complicated with large state spaces and highly non-

linear dynamics. Modern applications (like aviation) also often require strong correctness

guarantees for the control system, which hand-tuning would fail to provide.

This has led to a flurry of new, formally correct and algorithmic techniques for

control design for non-linear and hybrid systems. One particularly fruitful direction is the

interaction between the “classical control” techniques for control of continuous systems

and the automata-theoretic techniques arising out of the control of discrete systems.

The key to this interaction is abstraction: a way to discretize the continuous dynam-

ics so that one can apply automata-theoretic techniques on the discretization while main-

taining a refinement back to the original continuous system. The goal of abstraction-
based controller design (ABCD) is to automatically synthesize controllers for non-linear

dynamical systems such that the closed-loop system satisfies a temporal logic specifica-

tion. In this approach, a time-sampled version of the continuous dynamics of the open-

loop system (the concrete system) is abstracted by a symbolic finite state model (the ab-
stract system). Then, automata-theoretic algorithms from finite-state reactive synthesis

B

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-117

117

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

are used to synthesize a discrete controller on the abstract system for a given temporal

logic specification. If there is a feedback refinement relation (FRR) between the concrete

and abstract systems, the abstract controller can be refined to a controller for the concrete

system such that the resulting closed loop satisfies the specification.

Usually, the abstract system is computed by first fixing a parameter τ for the sample

time and a parameter η for the state and input spaces, and then representing the abstract

state space as a set of hypercubes, each of diameter η . The hypercubes partition the con-

tinuous concrete state space. The abstract transition relation adds a transition between

two hypercubes iff there exists some state in the first hypercube which can reach some

state of the second by following the original dynamics for time τ . This results in a tran-

sition system that over-approximates the effect of the original dynamics on the abstract

state space.

The goal of these lecture notes is to provide a basic understanding of ABCD. For

readability, we focus only on temporal reachability and safety properties; the techniques

can be extended to all ω-regular properties through usual automata-theoretic means.

Reachability means that a given target set is eventually reached. Safety means that a

given set of safe states is never left.

The basic ideas of ABCD are, by now, well understood and supported by several

robust tools—SCOTS, MASCOT, or PFACES, to name a few. The key bottleneck to these

methods is the size of the abstraction, which grows exponentially with the system dimen-

sion. Tackling this state-space explosion is one of the main open directions of research.

The success of ABCD depends on the choice of η and τ . Intuitively, increasing η
(and τ)1 results in fewer hypercubes but leads to a more imprecise abstract transition re-

lation. Thus, one may not be able to find a controller for the abstract system. On the other

hand, decreasing η (and τ) results in a more precise abstraction and a higher chance of

successful controller synthesis. However, the larger state space can make the synthesis

problem computationally intractable. This observation has led to an extension of ABCD

to a multi-layered setting, where the algorithm maintains several “layers” of abstract sys-

tems by picking hypercube partitions of different resolution. The resulting abstract con-

troller synthesis procedure tries to find a controller for the coarsest abstraction whenever

feasible, but adaptively considers finer abstractions when necessary. We also describe a

recent multi-layered ABCD algorithm for reachability and safety.

The multi-layered algorithms explained in these notes, and their lazy extension has

been implemented in a tool called MASCOT.2 On a number of examples, MASCOT demon-

strates the advantage of using multi-layered techniques in ABCD.

The rest of the notes are organized as follows. We start by defining the setting of

ABCD (Section 2) and then describe synthesis algorithms for reachability and safety

properties in the multi-layered setting (Sections 3 and 4). We conclude with some point-

ers to the research literature.

2. Preliminaries

Notation. We use the symbols N, R, R≥0, R>0, Z, and Z>0 to denote the sets of natu-

ral numbers, reals, non-negative reals, positive reals, integers, and positive integers, re-

1Usually, τ is increased along with η to reduce non-determinism due to self loops.
2http://mascot.mpi-sws.org

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes118

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

spectively. Given a,b ∈ R s.t. a ≤ b, we denote by [a,b] a closed interval and define

[a;b] = [a,b]∩Z as its discrete counterpart. Given a,b ∈ Rn, we denote by ai and bi their

i-th element and write �a,b� for the closed hyper-interval Rn ∩ ([a1,b1]× . . .× [an,bn]).
We define the relations <,≤,≥,> on a,b component-wise.

For a set W , we write W ∗, W+, and W ω for the sets of finite sequences, non-empty

finite sequences, and infinite sequences over W , respectively. We define W ∞ = W ∗ ∪
W ω . For w ∈ W ∗, we write |w| for the length of w; the length of w ∈ W ω is ∞. We

define dom(w) = {0, . . ., |w|−1} if w ∈W ∗, and dom(w) = N if w ∈W ω . We denote by

dom+(w) = dom(w)\{0} the positive domain of w. For k ∈ dom(w) we write w(k) for

the k-th symbol of w and w|[0,k] for the restriction of w to the domain [0,k]. If W = A×B,

the projection of w ∈W ∞ on A is denoted by w|A.

Given two sets A and B, f : A⇒B and f : A→B denote a set-valued and ordinary

map, respectively. The map f is called strict if f (a) = /0 for all a ∈ A. We identify set-

valued maps with their respective binary relation over A×B, i.e., (a,b) ∈ f iff b ∈ f (a).
The inverse mapping f−1 : B⇒A is defined via its respective binary relation: f−1(b) =
{a ∈ A | b ∈ f (a)}.

2.1. Abstraction-Based Controller Synthesis

We now recall the general procedure of abstraction-based controller synthesis (ABCD)

using the framework of feedback refinement relations (FRR) as introduced in [RWR17].

Systems. A system S = (X ,U,Y,F,H) consists of a state space X , an input space U , an

output space Y , and set-valued maps F : X ×U ⇒X and H : X ×U ⇒Y representing

the transition function and the output function, respectively. A system S is finite if X ,

U , and Y are finite. It is simple if X = Y and H(x,u) = x for all x ∈ X and u ∈ U , and

static if X is a singleton. If S is simple (resp. static) we use the triple S = (X ,U,F)
(resp. S = (U,Y,H) with H : U ⇒Y) for notational convenience. The behavior B(S) of

a system S = (X ,U,Y,F,H) is given by the set

{ξ∈X∞ | ∀k∈dom+(ξ) . ξ (k)∈⋃
u∈U F(ξ (k−1),u)}. (1)

Controllers and Closed Loop Systems. Given a simple system S = (X ,U,F), a con-
troller (to be precise, a state-feedback controller) C of S is a function C : X →U . Given a

system S = (X ,U,F) and a controller C, the closed loop system formed by interconnect-

ing S and C in feedback is defined by the system Scl = (X ,U,Fcl) where3

Fcl(x,u) =
{

x′
∣∣∣∣u ∈C(x)∧
x′ ∈ F(x,u)

}
. (2)

Safety and Reachability Control Problems. We consider safety and reachability prop-

erties as control objectives. Below, we use � and ♦ to denote the temporal operators “al-

ways” and “eventually”. Given a set T of states of S, we write �T for a safety objective

and define 〈[�T]〉S ⊆ B(S) as the set of behaviors in B(S) which always remain within

the set T :

3In contrast to the definition used in [RWR17], we keep the input used in Fcl explicit. This allows us to

apply feedback refinement relations to closed loop systems.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 119

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

{ξ∈X∞ | ∀k∈dom+(ξ).ξ (k) ∈ T}

We write ♦T for a reachability objective and define 〈[�T]〉S ⊆ B(S) as the set of behav-

iors in B(S) which eventually reach the set T :

{ξ∈X∞ | ∃k∈dom+(ξ).ξ (k) ∈ T}

Given a system S and a safety or reachability objective ψ , the pair 〈S,ψ〉 is called a

control problem on S for ψ . A controller C of S solves the control problem 〈S,ψ〉 if

B(Scl)|X ⊆ 〈[ψ]〉S. The set of all controllers solving 〈S,ψ〉 is denoted by C (S,ψ).

Feedback Refinement Relations. Let Si = (Xi,Ui,Fi), i ∈ {1,2} be two systems, and

suppose U2 ⊆U1. A feedback refinement relation (FRR) from S1 to S2 is a strict relation

Q⊆X1×X2 s.t. for all (x1,x2)∈Q, we have (i) US2
(x2)⊆US1

(x1), and (ii) u∈US2
(x2)⇒

Q(F1(x1,u))⊆ F2(x2,u) where USi(x) := {u ∈Ui | Fi(x,u) = /0}. We write S1 �Q S2 if Q
is an FRR from S1 to S2.

Consider two simple systems S1 and S2, with S1 �Q S2. Let C be a controller of S2.

Then C can be refined into a controller for S1 given as C ◦Q, where “◦” is the usual

function composition. As shown in [RWR17], the refinement is sound.

Proposition 1 ([RWR17], Def. VI.2, Thm. VI.3) Let S1 �Q S2 and C ∈ C (S2,ψ) for a
specification ψ . If for all ξ1 ∈ B(S1) and ξ2 ∈ B(S2) with dom(ξ1) = dom(ξ2) and
(ξ1(k),ξ2(k)) ∈ Q for all k ∈ dom(ξ1) it holds that ξ2 ∈ 〈[ψ]〉S2

⇒ ξ1 ∈ 〈[ψ]〉S1
, then

C ◦Q ∈ C (S1,ψ).

2.2. ABCD for Continuous Control Systems

We now recall how ABCD can be applied to continuous-time systems by delineating the

abstraction procedure [RWR17].

Continuous-Time Control Systems. A control system Σ = (X ,U,W, f) consists of a

state space X =Rn, a non-empty input space U ⊆Rm, a disturbance space W = �−w,w�
s.t. w ∈ Rn

≥0 and a nonlinear differential inclusion

ξ̇ ∈ f (ξ (t),u(t))+W, (3)

where f (·,u) fulfills the usual conditions for existence and uniqueness of solution of the

differential equation ξ̇ = f (ξ (t),u(t)). (For example, a sufficient condition for existence

and uniqueness is that f (·,u) is locally Lipschitz continuous for all u ∈ U .) Σ defines

a perturbed continuous-time nonlinear system, and w is a component-wise bound on

perturbations to its dynamics.m,

Given a positive parameter τ > 0 and a constant input trajectory μu : [0,τ] → U
which maps every t ∈ [0,τ] to u, a solution of the inclusion in (3) on [0,τ] is an absolutely

continuous function ξ : [0,τ]→ X that fulfills (3) for almost every t ∈ [0,τ]. We collect

all such solutions in the set Sol f (τ,u). Given an initial condition x0 ∈ X , the solution to

the unperturbed control system ξ̇ = f (ξ (t),u(t)) associated with (3) is unique, and its

value at time t ∈ [0,τ] is denoted by ζ (t,x0,μ). Given a subset of states X ′ ⊆ X , and a

subset of inputs U ′ ⊆U s.t. [0,τ]×X ′ ×U ′ ⊆ dom(ζ), the map βτ : Rn
≥0 ×U ′ → Rn

≥0 is

a growth bound on X ′ and U ′ associated with τ and (3) if

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes120

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

∀r,r′ ∈ Rn
≥0,u ∈U ′ . r ≥ r′ ⇒ βτ(r,u)≥ βτ(r′,u) and

∀ ξ ∈ Sol f (τ,u),x0 ∈ X ′ .

ξ (0) ∈ X ′ ⇒ |ξ (τ)−ζ (τ,x0,μ)| ≤ βτ(|ξ (0)− x0|,u).

Time-Sampled System. Given a time sampling parameter τ > 0, we define by 	S(Σ,τ) =
(X ,U,	F) the (simple) time-sampled system associated with Σ, where

x′ ∈ 	F(x,u)⇔∃ξ ∈ Sol f (τ,u) . ξ (0) = x∧ξ (τ) = x′. (4)

The state space of 	S(Σ,τ) is still infinite; we next define a finite system associated with

Σ.

Abstract System. A cover X̂ of the state space X is a set of non-empty, closed hyper-

intervals �a,b� with a,b ∈ (R∪{±∞})n called cells, such that every x ∈ X belongs to

some cell in X̂ . We assume that there exists a compact subset X ′ ⊆ X of the state space,

which is quantized by compact cells, whereas the (unbounded) region covered by X̂ \
X̂ ′ is not of interest to the control problem and is covered by a finite number of large

unbounded cells.

Given a grid parameter η ∈ Rn
>0 and X ′ ⊆ X with X ′ = �α,β � s.t. β −α = kη for

some k ∈ Zn, the set

ηZn = {c ∈ X ′ | ∃k ∈ Zn.(∀i ∈ [1;n].ci = αi + kiηi −0.5∗ηi)} (5)

defines the center points of cells in X̂ ′ with diameter η , i.e.

x̂ ∈ X̂ ′ ⇒ ∃c ∈ ηZn . x̂ = c+ �−η/2,η/2�. (6)

This results in congruent cells which are uniformly aligned on a grid.4 We denote by cx̂
the unique center point of x̂.

The (simple) system Ŝ(Σ,τ,η ,βτ) = (X̂,Û , F̂) is a symbolic abstract system associ-

ated with Σ, τ , η , and βτ if the following holds: (i) X̂ is a finite cover of X , there exists

a non-empty subset X̂ ′ ⊆ X̂ s.t. X̂ ′ satisfies (6), and βτ is a growth bound5 on X̂ ′ and Û ,

(ii) a finite Û ⊆ U , (iii) for all x̂ ∈ X̂ \ X̂ ′ and u ∈ Û , F̂(x̂,u) = /0, and (iv) for all x̂ ∈ X̂ ′,
x̂′ ∈ X̂, and u ∈ Û , x̂′ ∈ F̂(x̂,u) iff(

ζ (τ,cx̂,u)+ �−βτ(
η
2
,u),βτ(

η
2
,u)�

)
∩ x̂′ = /0. (7)

The computation of F̂(x̂,u) has been illustrated in Fig. 1. If the control system Σ and

parameters τ , η , and βτ are clear from the context, we omit them in 	S and Ŝ.

4In the standard distribution of SCOTS, the grid is aligned such that (an extension of) ηZn has a center point

that coincides with the origin. Shifting this grid by η/2 yields our grid alignment.
5We consider a universal growth bound for notational simplicity. There exist systems where abstract con-

troller synthesis is successful only if different growth bounds for different regions of the state space are con-

sidered (see [WRR16]).

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 121

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

•

••••••••••

η(1)

η(2)
r1

r2

cx̂

ζ (τ,cx̂,u)

Figure 1. Computation of abstract transitions based on growth bound: the gray box is the abstract state x̂, the

blue box is the region
(
ζ (τ,cx̂,u)+ �−βτ (

η
2 ,u),βτ (

η
2 ,u)�

)
, where we used the notation r1,r2 to denote the

first and the second component of 2βτ (
η
2 ,u), and the 4 cells covered with hatch-lines constitute the set F̂(x̂,u).

Induced FRR. It was shown in [RWR17], Thm. III.5 that the relation Q̂ ⊆ X × X̂ defined

by (x, x̂) ∈ Q̂ iff x ∈ x̂ is an FRR between 	S and Ŝ, i.e., 	S �Q̂ Ŝ. Hence, we can apply

ABCD as described in Sec. 2.1 by computing a controller for Ŝ which can then be refined

to a controller for 	S under the pre-conditions of Prop. 1.

2.3. Algorithms for Safety and Reachability

We use the following notational conventions from μ-calculus [BS06] and linear temporal

logic [MP92]. Let f denote a monotone operator on a finite set Q, i.e., f (P′)⊆ f (P′′)⊆Q
for all P′ ⊆ P′′ ⊆ Q. The least and greatest fixed-points exist uniquely and are denoted

μP. f (P) and νP. f (P), respectively.

Given a system S, we define a function on sets of states:

PreS(A) = {x̂ | ∃û . F̂l(x̂, û)⊆ Al}

for any A ⊆ x̂.

The reachability control problem (S,♦T) can be solved by computing the minimal

fixed-point [MPS95]:

W [♦T] = μW . PreS(W)∪T. (8)

This fixed-point is evaluated iteratively by computing

W 0 = T and W i+1 = PreS(W i)∪T (9)

until we reach some N ∈ N s.t. W N =W N+1. For a finite system, the iterations are guar-

anteed to terminate.

Similarly, safety controllers can be synthesized by evaluating the maximal fixed-

point [MPS95]

W [�T] = νV . PreS(V)∩T (10)

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes122

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 2 3 4

5 6 7

Figure 2. Application of the algorithm in Fig. 3 to the reachability problem in Pic. 1 using m = 2 and three

layers l = 1 (Pic. 4), l = 2 (Pic. 3, 5) and l = 3 (Pic. 2, 6). In Pics. 1-6, the target (T) and the obstacles are

indicated in red and black, respectively, and the winning states (W) are indicated in blue and cyan depending

on whether they were computed in the first attempt or the second attempt, respectively. Pic. 7 indicates the

domains of the resulting controllers with different granularity: l = 1 (yellow), l = 2 (green), and l = 3 (orange).

by computing

V 0 = x̂ and V i+1 = T ∩PreS(V i) (11)

iteratively until we reach a fixed point.

3. Multi-Layered ABCD

We now extend ABCD to a multi-layered setting with L layers. Our exposition follows

[HMMS18c,HMMS18b]. The abstract states in layer l ∈ [1;L] are hyper-cells with pa-

rameter ηl , and the transitions are discrete jumps with sampling time τl . A control sys-

tem Σ may be abstracted non-uniformly by using different layers for different parts of the

state space.

3.1. Informal Overview

We first provide an informal overview of multi-layered ABCD.

Consider the problem of controlling the motion of a vehicle in a given space (Pic. 1 in

Fig. 2) s.t. a specified target (red region) is reached while avoiding static obstacles (black

regions). Fix η and τ , and consider three abstractions S1, S2, and S3 of the system, with

parameters (η ,τ), (2η ,2τ), and (4η ,4τ), respectively. Thus, S1 is the finest abstraction,

and S3 is the coarsest. Each abstract state space is a set of squares (2D hypercubes)

partitioning the underlying 2D space. The abstract transition function for each Si allows

transitions only between cells that share a corner.

Given Fig. 2, we see that we can only cross the passage between the obstacles by

using S1, yet S2 and S3 suffice in the remaining parts of the state space. This suggests

an algorithm, like the one informally stated in Fig. 3, which tries to use the coarsest

abstraction S3, but switches to a finer abstraction (and back) when necessary.

When applying this algorithm to the problem in Pic. 1 of Fig. 2, we start by running

a usual fixed-point algorithm for reachability (REACH) on S3 using the red states as

the target. All states returned by REACH (marked in blue in Pic. 2) allow us to apply

a (sequence of) control input(s) to steer the system to the red region, and are therefore

usually called winning states.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 123

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

START

Execute REACH

for SL and T ,

return T = T ∪W

l = L−1

Execute REACH

for Sl and T
for m iterations,

return T = T ∪W

Fixed

point

reached?

l = L?

l ← l +1

l = 0?

l = l −1

STOP

No Yes

No

Yes

No

Yes

Figure 3. Flow chart of the proposed multi-layered reachability fixed-point. T and W denote the target and

the winning states, respectively. There are L layers and m is a parameter determining when to switch to a more

abstract layer.

At this point, we proceed to the next finer layer S2 and run REACH for S2 by using

the previously computed winning states as the new target (marked in red in Pic. 3). We

see that this fixed-point terminates after one step. Therefore, we go down to S1 (Pic. 4).

At this point, we could run the controller synthesis algorithm in S1 until conver-

gence. While correct, this does not capture the intuition that S2 and S3 suffice for con-

troller synthesis after crossing the passage. Hence, our synthesis algorithm uses a tuning

parameter m (equal to 2 in Fig. 2) to specify that, for layers that are not the coarsest, the

reachability fixed-point iterates for up to m steps and returns the current winning set. Af-

ter iterating REACH on S1 for m = 2 steps (gaining the blue states in Pic. 4), we switch

to layer 2 and see that no new states are added to the target set for S2 compared to Pic. 3.

We thus immediately return to S1 and run REACH for two more iterations (gaining the

cyan states in Pic. 4). As REACH did not converge for S1, we move to S2 and run m = 2

iterations of REACH over S2, but now for the new target (Pic. 5). Since this also does

not converge, we finally move back to S3 and run REACH until convergence (Pic. 6). At

this point, we can verify that the set of states is a fixed-point for every layer; hence, the

algorithm terminates.

As a by-product of the algorithm, we obtain a partition of the state space where

each sub-region corresponds to the domain of one locally computed controller. This is

illustrated in Pic. 7 of Fig. 2. The overall abstract controller is given by the union of all

local ones, and its soundness follows from the fact that each local controller treats the

union of all lower ranked controllers’ domains (i.e., controllers computed earlier in the

algorithm) as its target. By refining this controller to the underlying concrete system,

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes124

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

we obtain a controller with non-uniform resolution which works as follows: for each

continuous state x whose related abstract state x̂ is in the domain of one local controller

computed for layer l, the control input corresponding to x̂ is applied for duration τl to the

underlying control system.

3.2. Multi-Layered Systems

Given a grid parameter η , a time sampling parameter τ , and L ∈ Z>0, define6 ηl =

2l−1η and τl = 2l−1τ . Fix a control system Σ and a subset X ′ ⊆ X with X ′ = �α,β �, s.t.

β −α = kηL for some k ∈ Zn. For each l ∈ [1;L], we define the grid ηlZ
n and the cover

X̂ ′
l as in (5) and (6), respectively, by substituting η with ηl . This construction induces a

sequence of time-sampled systems {	Sl(Σ,τl)}l∈[1;L] and a sequence of symbolic abstract

systems {Ŝl(Σ,τl ,ηl ,βτl)}l∈[1;L]. For simplicity, we assume that all layers use the same

continuous and abstract input spaces U and Û ⊆U , respectively. If Σ, τl , ηl , and βτl are

clear from the context, we use 	Sl and Ŝl as short forms of 	Sl(Σ,τl) and Ŝl(Σ,τl ,ηl ,βτl),
respectively.

It trivially follows from our construction that, for all l ∈ [1;L], we have 	Sl �Q̂l
Ŝl ,

where Q̂l ⊆ X × X̂l is the FRR induced by X̂l . The set of relations {Q̂l}l∈[1;L] induces

transformers R̂ll′ ⊆ X̂l × X̂l′ for l, l′ ∈ [1;L] between abstract states of different layers such

that

x̂ ∈ R̂ll′(x̂
′)⇔ x̂ ∈ Q̂l(Q̂−1

l′ (x̂′)). (12)

Given the sequence {Ŝl}l∈[1;L] with Ŝl = (X̂l ,Û , F̂l), we can use R̂ll′ to define the

(simple) abstract multi-layered system Ŝ = (X̂,Û , F̂), where X̂ =
⋃

l∈[1;L] X̂l and

F̂(x̂, û) =
⋃

l∈[1;L] R̂ll′(F̂l′(x̂, û)) (13)

for all x̂ ∈ X̂l′ , l′ ∈ [1;L], and û ∈ Û . Intuitively, Ŝ is a non-deterministic system; for

every state x̂ ∈ X̂l′ and input û ∈ Û , transitions to states of all layers are possible. That is,

x̂′ ∈ F̂(x̂, û) if there exists an x̂′′ ∈ X̂l′ s.t. x̂′′ ∈ F̂l′(x̂, û) and x̂′ ∈ R̂ll′(x̂′′) for some l ∈ [1;L].
Similarly, given the sequence {	Sl}l∈[1;L] with 	Sl = (Xl ,U,	Fl), we define a (simple)

time-sampled multi-layered system	S = (X ,U,	F) s.t.

	F(x,u) =
⋃

l∈[1;L]
	Fl(x,u) (14)

for all x ∈ X and u ∈ U . Again, 	S is a non-deterministic system; in every state x ∈ X
transitions of any duration τl , l ∈ [1;L] can be chosen, which correspond to some 	Fl(x,u).

The behaviors B(Ŝ) and B(S) are defined via (1).

6Our method is applicable to grid parameters defined by η1 = η and ηl+1 = γηl for l ∈ [1;L − 1] and

γ ∈ {2k | k ∈ N}, and sampling times τl = α(l)τ where α : [1;L]→ R is a monotonically increasing function.

For notational simplicity, we restrict our attention to γ = 2 and α(l) = 2l−1.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 125

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Remark 1 Even though we have	Sl �Q̂l
Ŝl for all l ∈ [1;L], each relation is evaluated for

a different sampling time τl . Therefore, the relations R̂ll′ cannot define a FRR between Ŝl
and Ŝl′ using the definition from Sec. 2.

Given that τl = 2l−1τ , a natural extension of FRR seems to be that, for any
(x̂l+1, x̂l) ∈ R̂(l+1)l , it holds that

û ∈ Û ⇒ R̂(l+1)l(F̂l(F̂l(x̂l , û), û))⊆ F̂l+1(x̂l+1, û). (15)

That is, we would expect that states x̂l ∈ X̂l and x̂l+1 ∈ X̂l+1 related via R̂(l+1)l remain
related when the l-th layer transition function is applied to x̂l twice for τl (resulting in a
duration 2τl = τl+1) and when the l +1-th layer transition function is only applied once
to x̂l+1 (also resulting in a duration τl+1). While this seems intuitive, we can prove that
(15) does not hold in general. This is because applying the l-th layer transition function
twice introduces an additional over-approximation step which is caused by (7).

3.3. Multi-Layered Controllers

Given Ŝ as in (13) and some P ∈ N, we define a multi-layered controller C for Ŝ as

C = {Cp}p∈[1;P] s.t.

∀p ∈ [1;P] . ∃!lp ∈ [1;L] . dom(Cp)⊆ X̂lp . (16)

We do not require any connection between P and L. In particular, we allow for layers to

have multiple controllers, i.e., lp = lq for p,q ∈ [1;P], p = q, and no controller at all, i.e.

there might be l ∈ [1;L] s.t. there exists no p ∈ [1;P] s.t. lp = l.
Given a multi-layered controller C of Ŝ, we define the quantizer induced by C as the

strict map Q : X ⇒ X̂ s.t. for all x ∈ X it holds that x̂ ∈ Q(x) iff either

(i) there exists a p ∈ [1;P] s.t.

x̂ ∈ Q̂lp(x)∧ x̂ ∈ dom(Cp)

and there exists no other p′ ∈ [1;P] with lp′ > lp s.t.

R̂lp′ lp(x̂) ∈ dom(Cp′),

or (ii) x̂ ∈ Q̂1(x) and there exists no p ∈ [1;P] s.t.

R̂lp1(x̂) ∈ dom(Cp).

We define img(Q) = {x̂ ∈ X̂ | ∃x ∈ X . x̂ ∈ Q(x)}. Intuitively, Q maps states x ∈ X to the

coarsest abstract state x̂ that is both related to x and in the domain of the controller C
(condition (i)). However, if such an abstract state does not exist, Q maps x to its related

layer l = 1 states (condition (ii)). It should be noted that Q̂l is non-deterministic for states

which lie at the boundary of two cells x̂, x̂′ ∈ X̂l . If such an x happens to be located at the

boundary of controller domains computed for different layers, Q maps x to two abstract

cells within different layers.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes126

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

3.4. Multi-Layered Closed Loops

Given a multi-layered controller C of a multi-layered abstract system Ŝ, the usual con-

struction of a closed loop in (2) results in a system which selects the layer l′ of the next

state non-deterministically (due to (13)). This will result in a blocking-behavior of the

closed loop whenever the selected layer does not correspond to a layer currently admit-

ting a control input.

We therefore propose a different closed-loop definition for multi-layered systems

which restricts available transitions to those connecting states in the image of Q. For-

mally, the closed loop formed by Ŝ and C is defined as the abstract multi-layered closed-
loop system

Ŝcl = (X̂,Û , F̂cl) s.t. (17)

F̂cl(x̂, û) =
{

x̂′
∣∣∃p ∈ [1;P] . x̂ ∈ img(Q)∩ X̂lp ∧ û ∈Cp(x̂)∧ x̂′ ∈ Λp(x̂, û)

}
where x̂′ ∈ Λp(x̂, û) iff

∃x̂′′ ∈ F̂lp(x̂, û) . x̂′ ∈ Q(Q̂−1
lp
(x̂′′)).

When refining C via Q to a controller for 	S, the resulting controller should select

(i) the current input u ∈ Û ⊆ U , and (ii) the duration τl for which this input should be

applied to the underlying continuous system. As Q might map a particular state x ∈ X
to multiple abstract states within different layers, we cannot define the refined controller

as the serial composition C ◦Q in analogy to Sec. 2.1. Instead, we directly define the

time-sampled multi-layered closed loop system in analogy to Ŝcl by

	Scl = (X ,Û ,	Fcl) s.t. (18)

	Fcl(x, û) =
{

x′
∣∣∣∣∃p ∈ [1;P] . x̂ ∈ Q(x)∩ X̂lp∧

û ∈Cp(x̂)∧ x′ ∈ 	Flp(x, û)

}
.

B(Ŝcl) and B(Scl) can now be defined via (1).

3.5. Soundness

Intuitively, S1 �Q S2 ensures that, given a state x1 ∈ X1, no matter which related state

x2 ∈ Q(x1) and enabled control input u ∈US2
(x2) is used, all resulting states in F1(x1,u)

and F2(x2,u) are related. This intuition can be transferred to the closed loop systems

Ŝcl and 	Scl as follows. Intuitively, Ŝcl and 	Scl can generate all closed-loop trajectories

without resolving the non-determinism induced by the set-valued maps Q and Cp. If Q
is an FRR from	Scl to Ŝcl , any implementation resolving this non-determinism in Q and

Cp returns a sound closed loop. This leads us to the following theorem.

Theorem 1 Let C be a multi-layered controller for the abstract multi-layered system
Ŝ, Q be the quantizer induced by C, and 	Scl and Ŝcl be the time-sampled and abstract
multi-layered closed loop systems defined in (18) and (17), respectively. Then	Scl �Q Ŝcl .

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 127

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

PROOF: We prove both conditions for FRR separately.

(i) Show F̂cl(x̂, û) = /0 ⇒ 	Fcl(x, û) = /0: First observe that for any l ∈ [1;L], it follows

from the construction of 	Sl and Ŝl from Σ that, for any û ∈ Û ⊆U , x̂ ∈ X̂l , and x ∈ X , it

holds that F̂l(x̂, û) = /0 and 	Fl(x, û) = /0. With this, it follows from (17) and the fact that Q
is strict that F̂cl(x̂, û) = /0 iff x̂ ∈ img(Q)∩ X̂lp and û∈Cp(x̂), implying	Fcl(x̂, û) = /0 (from

(18)).

(ii) Pick (x, x̂) ∈ Q and û ∈UŜcl (x̂) and show Q(Fcl(x, û))⊆ F̂cl(x̂, û): first, consider the

case that x̂ ∈ Q̂1(x) and case (ii) in the definition of Q holds. Then F̂cl(x̂, û) = /0 and

hence UŜcl (x̂) = /0, i.e., the statement trivially holds. Therefore, assume that case (i) of

the definition of Q holds, implying that there exists some p ∈ [1;P] s.t. x̂ ∈ Q(x)∩ X̂lp

and x̂ ∈ dom(Cp). This implies û ∈Cp(x̂) (from part (i)) and therefore x̂′ ∈ Q(Fcl(x, û))
iff

x̂′ ∈ Q(Flp(x, û)). (19)

Now recall that 	Slp �Q̂lp
Ŝlp , hence Q̂lp(Flp(x, û)) ⊆ F̂lp(x̂, û). With this we see that (19)

implies x̂′ ∈ Q(Q̂−1
lp
(F̂lp(x̂, û))) and hence (19) implies x̂′ ∈ Λp(x̂, û). With this, it imme-

diately follows from (17) that x̂′ ∈ F̂cl(x̂, û). �
Using the properties of feedback refinement relations, Thm. 1 implies that the usual

soundness property of ABCD stated in Prop. 1 can be transferred to the multi-layered

setting. This is summarized by the following corollary.

Corollary 1 Given the preliminaries of Thm. 1, let C ∈ C (Ŝ,ψ) for a specification ψ
with associated behavior 〈[ψ]〉Ŝ ⊆ B(Ŝ) and 〈[ψ]〉	S ⊆ B(S). Suppose that for all ξ ∈
B(S) and ξ̂ ∈B(Ŝ) s.t. (i) dom(ξ) = dom(ξ̂), (ii) for all k ∈ dom(ξ1), (ξ (k), ξ̂ (k))∈Q,
and (iii) ξ̂ ∈ 〈[ψ]〉Ŝ ⇒ ξ ∈ 〈[ψ]〉	S. Then B(Scl)|X ⊆ 〈[ψ]〉	S, i.e., the time-sampled multi-
layered closed loop	Scl defined in (18) fulfills specification ψ .

Cor. 1 can be interpreted as follows. Consider the control system Σ at state x0. This

state is mapped by Q to x̂0 ∈ dom(Cp) for some p. Choosing any u0 ∈ Cp(x̂0) and ap-

plying this input for time τlp to Σ results in a continuous trajectory ξ with x0 = ξ (0)
and x1 = ξ (τlp) ∈ 	Flp(x0,u). Reapplying this procedure leads to an infinite trajectory ξ ,

with sampled version 	ξ = x0x1 . . . ∈ B(S) and abstract version ξ̂ = x̂0x̂1 . . . ∈ B(Ŝ). As

C∈C (Ŝ,ψ) condition (iii) in Cor. 1 ensures that	ξ ∈ 〈[ψ]〉	S. For reachability, this implies

that 	ξ (and ξ) eventually reaches the target. For safety, this implies that 	ξ (i.e. sampling

instances of ξ) lies inside the safe set.

4. Multi-Layered Synthesis

We now provide algorithms for synthesizing multi-layered controllers for given (abstract)

control problems which are compatible with Ŝ.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes128

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

4.1. Reachability

Given an abstract multi-layered system Ŝ = (X̂,Û , F̂), recall that a reachability control
problem is the control problem (Ŝ,♦T) where T is interpreted as a subset of X̂ ′

1 and

〈[♦T]〉Ŝ = {ξ̂ ∈ B(Ŝ) | ∃k ∈ dom(ξ̂) . ξ̂ (k) ∈ T}. (20)

We use the Pre operator to multi-layered systems in the obvious way: PreŜl
(Al) = {x̂ |

∃û . F̂l(x̂, û)⊆ Al} for any Al ⊆ X̂l and layer l.
One thing to note is that the set T might not be exactly representable by the abstract

states in X̂. In that case, in order to ensure soundness, we consider the largest underap-

proximation of the set T for the synthesis, which is defined below:

T̂ = {x̂ ∈ X̂ | x̂ ⊆ T}. (21)

Single-Layered Systems. When L = 1, the reachability control problem reduces to

(Ŝ1,♦T), and is solved by computing the minimal fixed-point [MPS95]:

W [♦T] = μW . PreŜ1
(W)∪ T̂ . (22)

This fixed-point is evaluated iteratively by computing

W 0 = T̂ and W i+1 = PreŜ1
(W i)∪ T̂ (23)

until we reach some N ∈ N s.t. W N =W N+1. This defines a controller C with dom(C) =
W N \ T̂ and

C(x) = {û ∈ Û | F̂(x, û)⊆W i∗} (24)

for all x ∈ dom(C), where i∗ = min{i | x ∈ W i \ T̂}− 1. The controller C is sound: the

closed loop system Ŝcl
1 composed from C and Ŝ1 satisfies B(Ŝcl

1) ⊆ 〈[♦T]〉Ŝ1
and the

system can be steered to the target T from any state x in the controller domain dom(C).
Using the set {W i}i∈[1;N] computed by (23) one can also define a multi-layered con-

troller C = {Ci}i∈[1;N] by interpreting each iteration in (23) as the computation of a con-

troller Ci, with domain dom(Ci) = W i \W i−1 and Ci(x) = {û ∈ Û | F̂1(x, û) ⊆ W i−1}.

This interpretation of (23), not too useful when L = 1, is convenient for the multi-layered

setting.

Multi-Layered Systems. The simplest way to extend C to the general case (L > 1) is to

pick an arbitrary granularity li in every iteration of (23). First, we introduce the operator

Γll′(Al′) =

{
R̂ll′(Al′), l ≤ l′

{x̂l ∈ X̂l | R̂l′l(x̂l)⊆ Al′ }, l > l′.
(25)

which underapproximates a set Al′ ⊆ X̂l′ by a set Al = Γll′(Al′) ⊆ X̂l . Then, for any se-

quence {li}i≥1 with li ∈ [1;L], we compute

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 129

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

W 0 = T̂ , l0 = 1 and

W i+1 = PreŜli+1
(Γli+1li(W

i))∪Γli+1l1(T̂)

iteratively until W i+1 = Γli+1li(W
i). When the fixed-point converges, we get a multi-

layered controller C as described before. It is easy to see that C is sound no matter

how {li} is chosen: each state in the winning set can be controlled using C to reach T .

Unfortunately, this simple algorithm is not complete due to two reasons: (i) the iteration

can reach a fixed-point at level l even if more states can be added at a lower level, and

(ii) lower level winning states can be lost via Γll′ , which only gives an exact map for

l < l′ (recall Pic. 2 and Pic. 3 in Fig. 2).

To fix these problems, we propose REACHITm (Alg. 1), which follows the flowchart

in Fig. 3. The overall multi-layered reachability algorithm, ML REACHm (with tuning

parameter m ∈ N), calls REACHITm(T, l, /0) with target T , level l, and an empty con-

troller, and returns its result. The subroutine REACHm called in Alg. 1 (line 2 and 12)

runs m iterations of (23). Formally, given the input Λ ⊆ X̂l and l ∈ [1;L], it returns a set

W ⊆ X̂l s.t. W =W j, where W j is computed via (23) and either j ≤ m with W j =W j−1

(then line 15 of Alg. 1 is true) or j = m otherwise. Additionally, REACHm returns the

controller C computed using (24). We extend REACHm to REACH∞ in the obvious

way, s.t. the returned W is the fixed-point of (23). The set ϒ is used in Alg. 1 to save

computed winning states to the lowest layer l = 1. To see why this is necessary, recall

Pic. 4 in Fig. 2. There, we first computed REACH for l = 1 and m = 2 (obtaining the

blue states) and moved to l = 2; observe that no winning states were added in l = 2. Had

we not saved the blue states in ϒ, they would have been lost and been re-generated after

returning to l = 1, causing an infinite loop.

Soundness and Relative Completeness.7 To see why ML REACHm is sound, consider

the following induction on the depth of recursive calls d of REACHITm. For depth 1

(base case), the single controller that we get in the set C is sound: this follows from

the fact that REACH∞ (in Alg. 1 Line. 2) is sound. Moreover, it is easy to observe that

the controller obtained in depth d + 1 can enforce a visit (in at most m steps) to the

winning region of the controller obtained in depth d (from Line 8, 19, and 23), implying

soundness by induction.

Now recall that any controller C computed via REACH has the property that any

state in B can reach the target. Therefore, the multi-layered controller C computed by

ML REACHm is complete w.r.t. the single-layered controller C computed via REACH

if

Q̂−1
1 (dom(C))⊆⋃

d∈[1;D] Q−1(dom(Cd)), (26)

where D is the maximum number of recursive calls of REACHITm, and Cd is the con-

troller synthesized in recursion depth d of REACHITm.

First, it should be noted that for any state x∈X for which Q(x)∩dom(Cd) = /0 holds,

we have: if there exists d′ ∈ [1;D] and x̂ ∈ Q(x)∩dom(Cd) s.t. R̂ld′ ld (x̂)∩dom(Cd′) = /0

then d′ ≤ d. Hence, the quantizer Q formally defined via a ranking over layers ld in

7Absolute completeness of controller synthesis cannot be guaranteed by ABCD; we therefore provide com-

pleteness relative to the finest layer.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes130

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm 1 REACHITm

Require: ϒ ⊆ X̂1, l, C
1: if l = L then
2: 〈W,C〉 ← REACH∞(ΓL,1(ϒ), l)
3: C ← C∪{C}
4: ϒ ← ϒ∪Γ1l(W) // Save W to ϒ
5: if L = 1 then // Single-layered reachability

6: return 〈ϒ,C〉
7: else
8: 〈ϒ,C〉 ← REACHITm (ϒ, l −1,C)
9: return 〈ϒ,C〉

10: end if
11: else
12: 〈W,C〉 ← REACHm(Γl,1(ϒ), l)
13: C ← C∪{C}
14: ϒ ← ϒ∪Γ1l(W) // Save W to ϒ
15: if Fixed-point is reached in line 12 then
16: if l = 1 then // Finest layer reached

17: return 〈ϒ,C〉
18: else // Go finer

19: 〈ϒ,C〉 ← REACHITm(ϒ, l −1,C)
20: return 〈ϒ,C〉
21: end if
22: else // Go coarser

23: 〈ϒ,C〉 ← REACHITm(ϒ, l +1,C)
24: return 〈ϒ,C〉
25: end if
26: end if

Sec. 3.3 is equivalent to a quantizer defined via the ranking induced by the induction

depth d.

To see why (26) holds, recall that, for any x ∈ Q̂−1
1 (dom(C)), every trajectory ξ ∈

B(Scl
1)|X with ξ (0) = x will reach (the projection of) the target T , and that Alg. 1 will

eventually reach l = 1. Now assume that Alg. 1 was run until depth d where l = 1 and

let k′ ∈ dom(ξ) be s.t. for all k > k′ with k ∈ dom(ξ), ξ (k) ∈ ⋃
d′<d Q−1(dom(Cd′))

while this is not true for ξ (k′). Given that ld = 1, we execute REACH for l = 1 implying

that ξ (k′) up to ξ (k′ −m) will be added to the domain of controller Cd and saved in

ϒ. As x ∈ Q̂−1
1 (dom(C)), Alg. 1 can only terminate if Q̂1(ξ (0)) is eventually reached.

Therefore, we can apply the above argument iteratively to prove the statement.

4.2. Safety

Note that the ABCD method already incorporates the possibility to restrict any control

problem to a designated safe region X ′ of the state space X ⊃ X ′ by constructing the

abstract system such that it blocks for every abstract state in X̂ \ X̂ ′. For the problem of

reaching a target region R ⊆ X̂ ′ while staying safely inside X̂ ′, this simplifies to removing

all abstract states X̂ \ X̂ ′ before running the algorithm for reachability. This feature was

implicitly used in the example of Sec. 1. However, safety control problems may arise as

sub-problems in other synthesis tasks, and so we now give an algorithm for multi-layered

synthesis for safety properties.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 131

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm 2 Procedure SAFEIT

Require: ϒ ⊆ X̂1, ϒ′ ⊆ X̂1, l, C
1: W ← PreŜl

(Γl1(ϒ))∩Γl1(ϒ)
2: C ← C∪{Cl ← (W,Û , /0)}
3: ϒ′ ← ϒ′ ∪Γ1l(W)
4: if l = 1 then
5: SAFEIT(ϒ,ϒ′, l −1,C) // go finer

6: else
7: if ϒ = ϒ′ then
8: SAFEIT(ϒ′, /0,L, /0) // start new iteration

9: else
10: return 〈ϒ,C〉 // terminate

11: end if
12: end if

It is common practice in ABCD to ensure safety for sampling times only. This im-

plicitly assumes that sampling times and grid sizes are chosen such that no “holes” occur

between consecutive cells visited in a trajectory. This can be formalized by additional

assumptions on the growth rate of the flow.

Single-Layered Control We consider a safety control problem 〈Ŝ,�T 〉 and recall how

it is commonly solved by ABCD for L = l = 1. In this case one iteratively computes the

sets

W 0 = T̂ and W i+1 = PreŜ1
(W i)∩ T̂ (27)

until an iteration N ∈ N with W N =W N+1 is reached, where T̂ is given by (21). Then C
with dom(C) =W N , and

û ∈C(x̂)⇒ F̂1(x̂, û)⊆ dom(C) (28)

for all x̂ ∈ dom(C), is known to be a safety controller for 〈Ŝ,�T 〉.
Thus, the above synthesis algorithm is sound. However, completeness is not guar-

anteed; there may exist a state x ∈ X s.t. Q̂1(x) ∈ dom(C), and there may exist a con-

troller C′ based on a finer abstraction, solving the safety control problem 〈Ŝ,�T 〉 s.t.

Q̂1(x) ∈ dom(C′).

Multi-Layered Systems. Given a sequence of L abstract systems Ŝ := {Ŝl}l∈[1;L] we

now present a multi-layered safety algorithm formalized by the iterative function SAFEIT

given as pseudo-code in Alg. 2.

When initialized with SAFEIT(T̂1, /0,L, /0), Alg. 2 performs the following computa-

tions: it starts in layer l = L with an outer recursion count i = 1 (not shown in Alg. 2) and

reduces l, one step at the time, until l = 1 is reached, at which point it then starts over

again from layer L with i = i+1 and a new safe set ϒ′. In every such iteration i, one step

of the safety fixed-point is performed for every layer and the resulting set is stored in the

layer 1 map ϒ′ ⊆ X̂1, whereas ϒ ⊆ X̂1 keeps the knowledge of the previous iteration. If

the finest layer is reached and we have ϒ = ϒ′, the algorithm terminates. Otherwise ϒ′
is copied to ϒ, ϒ′ and C are reset to /0 and SAFEIT starts a new iteration (see line 8).

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes132

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

After SAFEIT has terminated, it returns a multi-layered controller C = {Cl}l∈[1;L] whose

domains are given by the winning regions (see line 10), and the control actions can be

computed by choosing one input û ∈ Û for every x̂ ∈ dom(Cl) s.t.

û =Cl(x̂)⇒ F̂l(x̂, û)⊆ Γl1(ϒ). (29)

Note that states encountered for layer l in iteration i are saved to the lowest layer 1

(line 3 of Alg. 2) and “loaded” back to the respective layer l in iteration i+ 1 (line 1 of

Alg. 2). Therefore, a state x̂ ∈ X̂l with l > 1, which was not contained in W as computed

in layer l and iteration i via line 1 of Alg. 2, might still be included in Γl1(ϒ) loaded in

the next iteration i+ 1 when re-computing line 1 for l. This happens if all states x ∈ x̂
were added to ϒ′ by some layer l′ < l in iteration i. This allows the algorithm to “bridge”

regions that require a finer grid and to use layer L in all remaining regions of the state

space.

Soundness and Relative Completeness Due to the effect described above, the map W
encountered in line 1 for a particular layer l throughout different iterations i might not

be monotonically shrinking. However, the latter is true for layer 1. Indeed, one can show

[HMMS18b] that C is sound and relatively complete w.r.t. single-layer control for layer

l = 1.

5. Further Reading

A good, but perhaps already dated, introduction to abstraction-based control is Tabuada’s

book [Tab09]. Our exposition follows our own recent work [HMMS18c,HMMS18b].

The original techniques for abstraction-based control relied on ε-alternating bisim-

ulation relations [GP07,Gir12,PGT08,GPT10]. These relations, when they exist, allow

proving an “if and only if” result: a controller can be synthesized in the abstraction iff

one exists in the original system. The notion of feedback refinement relations (FRR)

was introduced in [RWR17], and strengthened the notion of alternating simualtion re-

lations [AHKV98] to the setting of continuous control. The same paper shows how to

compute growth bounds for a non-linear system—this is the basis for the SCOTS [RZ16]

and MASCOT tools. Similar ideas are implemented in CoSyMa [MGG13], ROCS [LL18],

and abstr-refinement [BNO18]. More recently, the PFACES tool [KZ19] scales up ABCD

through parallelization and GPU-based techniques.

The automata-theoretic underpinnings of ABCD use algorithms for reactive synthe-

sis for ω-regular specifications [EJ91,Tho95,MPS95].

ABCD continues to be an active research direction, with new results targeting the ex-

pressivity and scalability of the method. Over the years, the curse of dimensionality has

proven to be the main computational bottleneck for application of ABCD in real-world

problems. As the number of system variables increases, the discretization step produces

exponentially many states or inputs. There have been many heuristic approaches in the

past which have dealt with this scalability issue for ABCD. Broadly, they can be classi-

fied into two categories: the first uses the system specification to limit the computational

effort, and the second uses the system dynamic model to do the same. Our multi-layered

ABCD technique falls in the first category.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 133

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Multi-layered algorithms were proposed by Girard et al. [CGG11a,CGG11b] (re-

cently revisited in [GGM16]) in the special case of safety and reachability control of

unperturbed switched systems (our treatment, in contrast, has a disturbance controlled

by an adversary).

Subsequently, multi-layered ABCD was implemented in a lazy way, by selectively

computing the abstraction of finer layers of abstraction as needed, rather than up front

[HMMS18b,HMMS18a]. The idea there is that we start with a fully computed coarsest

layer of abstraction, and locally switch to the finer layers only when the synthesis cannot

progress anymore in the coarser layer. Similar techniques also appeared independently

in the context of multi-resolution abstractions [NO14,BNO18]. An orthogonal approach

is to lazily compute the abstraction by only partially and incrementally reavealing the

inputs while computing the transitions [HT18].

The second approach for improving scalability of ABCD is to exploit the struc-

ture of the underlying system model. One notable technique in this category uses the

decomposed structure of a given system to compute local abstractions and controllers

[TI08,MSSM17,MSSM18]. While the decomposition-based technique addresses sys-

tems with many loosely coupled components, there are recent approaches which can

even use the loose coupling between different variables of a monolithic system compo-

nent [GKA17]. Another example of such a technique is the fast but relatively imprecise

abstraction technique for monotone systems [KAS17].

Acknowledgements. We thank our collaborators on the MASCOT project: Yunjun Bai,

Kyle Hsu, Sadegh Soudjani, and Damien Zufferey.

References

[AHKV98] R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations. In

CONCUR’97, LNCS 1466, pages 163–178. Springer, 1998.

[BNO18] Oscar Lindvall Bulancea, Petter Nilsson, and Necmiye Ozay. Nonuniform abstractions, refine-

ment and controller synthesis with novel bdd encodings. IFAC-PapersOnLine, 51(16):19–24,

2018.

[BS06] J. Bradfield and C. Stirling. Modal mu-calculi. In The Handbook of Modal Logic, pages 721–

–756. Elsevier, 2006.

[CGG11a] J. Cámara, A. Girard, and G. Gössler. Safety controller synthesis for switched systems using

multi-scale symbolic models. In CDC ’11, pages 520–525, 2011.

[CGG11b] J. Cámara, A. Girard, and G. Gössler. Synthesis of switching controllers using approximately

bisimilar multiscale abstractions. In HSCC, pages 191–200, 2011.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In FOCS’91,

pages 368–377, 1991.

[GGM16] A. Girard, G. Gössler, and S. Mouelhi. Safety controller synthesis for incrementally stable

switched systems using multiscale symbolic models. TAC, 61(6):1537–1549, 2016.

[Gir12] Antoine Girard. Controller synthesis for safety and reachability via approximate bisimulation.

Automatica, 48(5):947–953, 2012.

[GKA17] Felix Gruber, Eric S Kim, and Murat Arcak. Sparsity-aware finite abstraction. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pages 2366–2371. IEEE, 2017.

[GP07] A. Girard and G. J. Pappas. Approximation metrics for discrete and continuous systems. TAC,

25(5):782–798, 2007.

[GPT10] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models for incrementally

stable switched systems. TAC, 55(1):116–126, 2010.

[HMMS18a] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Lazy abstraction-

based control for reachability. arXiv preprint arXiv:1804.02722, 2018.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes134

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[HMMS18b] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Lazy abstraction-

based control for safety specifications. In 2018 IEEE Conference on Decision and Control
(CDC), pages 4902–4907. IEEE, 2018.

[HMMS18c] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Multi-layered

abstraction-based controller synthesis for continuous-time systems. In HSCC, pages 120–129.

ACM, 2018.

[HT18] Omar Hussien and Paulo Tabuada. Lazy controller synthesis using three-valued abstractions

for safety and reachability specifications. In 2018 IEEE Conference on Decision and Control
(CDC), pages 3567–3572. IEEE, 2018.

[KAS17] Eric S Kim, Murat Arcak, and Sanjit A Seshia. Symbolic control design for monotone systems

with directed specifications. Automatica, 83:10–19, 2017.

[KZ19] Mahmoud Khaled and Majid Zamani. pFaces: an acceleration ecosystem for symbolic control.

In HSCC 2019, pages 252–257. ACM, 2019.

[LL18] Yinan Li and Jun Liu. Rocs: A robustly complete control synthesis tool for nonlinear dynamical

systems. In Proceedings of the 21st International Conference on Hybrid Systems: Computation
and Control (part of CPS Week), pages 130–135. ACM, 2018.

[MGG13] Sebti Mouelhi, Antoine Girard, and Gregor Gössler. Cosyma: a tool for controller synthesis

using multi-scale abstractions. In HSCC, pages 83–88. ACM, 2013.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, 1992.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.

In STACS’95, volume 900 of LNCS, pages 229–242. Springer, 1995.

[MSSM17] Kaushik Mallik, Sadegh Esmaeil Zadeh Soudjani, Anne-Kathrin Schmuck, and Rupak Majum-

dar. Compositional construction of finite state abstractions for stochastic control systems. In

2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 550–557. IEEE,

2017.

[MSSM18] Kaushik Mallik, Anne-Kathrin Schmuck, Sadegh Soudjani, and Rupak Majumdar. Composi-

tional synthesis of finite state abstractions. IEEE Transactions on Automatic Control, 2018.

[NO14] Petter Nilsson and Necmiye Ozay. Incremental synthesis of switching protocols via abstraction

refinement. In 53rd IEEE Conference on Decision and Control, pages 6246–6253. IEEE, 2014.

[PGT08] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic models for nonlinear

control systems. Automatica, 44(10):2508–2516, 2008.

[RWR17] G. Reissig, A. Weber, and M. Rungger. Feedback refinement relations for the synthesis of

symbolic controllers. TAC, 62(4):1781–1796, 2017.

[RZ16] M. Rungger and M. Zamani. SCOTS: A tool for the synthesis of symbolic controllers. In

HSCC’16, pages 99–104. ACM, 2016.

[Tab09] P. Tabuada. Verification and control of hybrid systems: a symbolic approach. Springer, 2009.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite games. In STACS’95 Munich,
Germany, pages 1–13. 1995.

[TI08] Yuichi Tazaki and Jun-Ichi Imura. Bisimilar finite abstractions of interconnected systems.

HSCC’08, pages 514–527, 2008.

[WRR16] A. Weber, M. Rungger, and G. Reissig. Optimized state space grids for abstractions. TAC,

2016.

R. Majumdar et al. / Abstraction-Based Control Design. Lecture Notes 135

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The Thousand-and-One Cryptographers

Annabelle MCIVER a,1, and Carroll MORGAN b

aDept. of Computing, Macquarie University, NSW 2109 Australia
b School of Comp. Sci. and Eng., Univ. NSW, NSW 2052 Australia and Data61

Abstract. Chaum’s Dining Cryptographers protocol crystallises the es-
sentials of security just as other famous diners once captured deadlock
and livelock: it is a benchmark for security models and their associated
verification methods.

Here we give a correctness proof of the Cryptographers in a new style,
one in which stepwise refinement plays a prominent role. Furthermore,
our proof applies to arbitrarily many Diners: to our knowledge we are
only the second group to have done that.

The proof is based on the Shadow Security Model which integrates
non-interference and program refinement: with it, we try to make a case
that stepwise development of security protocols is not only possible but
actually is quite a good idea. It benefits from more than three decades’
of experience of how layers of abstraction can both simplify the design
process and make its outcomes more likely to be correct.

Keywords. Security, refinement, automated proof, correctness, unbounded
dining cryptographers.

1. Introduction: refinement of security properties

Program development by stepwise refinement [34] is widely accepted as a good
idea in theory, but it is often a late arrival in practice. Indeed, with some no-
table exceptions [1,5] most current approaches and tools for correctness concen-
trate on proving 2 that a single system has certain desirable properties, whereas
a refinement-based approach would rather prove that one (real, i.e. implementa-
tion) system had all the desirable properties of another (ideal, i.e. specification)
system.

As an example, we note the frequent claims that downgrading is a challenging
issue in the non-interference model of security [12]. For example, in that model
a program is secure if observation of its “low-security” visible outputs does not
reveal anything about its “high-security” hidden inputs; thus in the context of
visible integer variables v and hidden h the program v:= 0×h is secure but v:= 1×h
is not. As an intermediate option there is the program v:=h÷2 that “downgrades”
the security, revealing in this case most bits of v but not all, yet it is not considered
to be “intermediately” secure: like v:= 1×h, it is considered (simply) insecure.

1Corresponding Author: Dept. of Computing, Macquarie University, NSW 2109 Australia;
E-mail: annabelle.mciver@mq.edu.au.

2We include model checking as a form of proving, at this informal level.

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-137

137

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Now in a real system we might find the code

v:= 0; while v+2 ≤ h do 〈send two bytes〉; v:= v+2 end , (1)

in which v counts the number of bytes sent, ensuring no more than h can be sent
overall. If the sent messages are observed and counted, then this program also
reveals –to anyone aware of the source code– all but the low-order bit of h. Like
v:=h÷ 2 above, it is considered insecure in the non-interference model.

Downgrading is inescapable in practice, and it is to reason about it effectively
–in spite of the black-or-white judgement of the original non-interference model–
that downgrading extensions to that model are introduced [7,20] in which one can
express, by annotations of the code, the information leaks that are to be consid-
ered acceptable. The proof of correctness is then relative to those annotations.

But there is an alternative to concentrating on downgrading exclusively: in-
stead we concentrate on refinement, with downgrading then a special case. With
this approach we would describe a downgrading policy for the loop of (1) as a
refinement, saying that

v:= 2(h÷2) � v:= 0; while v+2 ≤ h do 〈send〉; v:= v+2 end , (2)

i.e. that the lhs “is refined by” the rhs and meaning that the desirable properties
of the specification on the left –including its not revealing h’s low-order bit– are
shared by its implementation on the right. The downgrading aspect is that the
rhs can indeed reveal the higher-order bits of h — because the lhs does just that.
We feel that a refinement-based approach has many advantages, demonstrated
over the years by its success generally (where it has after all been adopted). In
this particular case, for example, using it would mean that we require neither
annotations nor an explicit notion of downgrading.

Integrating refinement and security is exactly what we do here: we make (2)
precise by giving an appropriately extended definition of refinement, one which
is “security aware.” It is explained below (and earlier [25,27]). In doing so we
join a small number of other researchers –from the large security community–
who have similar aims [21,2,9]; we compare our work with theirs in Sec. 9. Some
conspicuous aspects of our approach are as follows.

Refinement is complementary to abstraction, and abstraction can be viewed
in turn as demonic nondeterministic choice resolved at design-time; but it is well
known that there are conceptual benefits to conflating abstraction with run-time
demonic choice [8,4,17,23] and so it is natural to include demonic choice in our
security model in both the design- and run-time senses. Where this has been done
by others, in some cases the non-interference model has been extended so that the
“full range of nondeterminism” of the hidden variables must not be dependent on
visible variables’ observed values, but the nondeterminism cannot subsequently
be reduced as refinement would ordinarily allow [19,32]; and in other cases the re-
quirement has been imposed that –while nondeterminism is allowed in the model–
in the final implementation program there must be none of it remaining [31]. One

A. McIver and C. Morgan / The Thousand-and-One Cryptographers138

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

aspect of our work is that, in contrast, we include both features: nondeterminism
can be reduced; and some of it can remain in the implementation. This requires
careful treatment of hidden- vs. visible nondeterminism, and is how we solved the
Refinement Paradox [24,18].

A second aspect is that our notion of adversary is quite strong: we allow
perfect recall [11], that intermediate values of visible variables can be observed
even if they subsequently are overwritten; and we allow an attacker’s observation
of control flow, that conditionals’ Booleans expressions are (implicitly) leaked.
We assume also that the program code is known. Doing all this effectively, while
avoiding an infinite regress to attacks at the level of quarks, requires explicit
treatment of atomicity at some point. We define that.

The reason for the strong adversary is that refinements must be effective lo-
cally: refinement of a small fragment in a large program must refine the whole
program even if the refinement was proved only for the fragment. This is mono-
tonicity — and without it no scaled-up development is possible. Since for some
fresh local visible variable v′ it is a refinement to insert assignment v′:= v willy-
nilly at almost any place in a program, we must live with the fact that v’s value at
that point will possibly be preserved (in some local v′) in spite of v’s subsequent
overwriting: that is, although the unfortunate v′:= v might not be there “now,”
one developer must accept that a second developer in some other building might
put it there “later” without asking. After all, if it’s a refinement (and it is) then
he doesn’t need to ask.

Rather than make refinements unworkable, rather the strong-adversary as-
sumptions make them more applicable. Distributed protocols (such as the Dining
Cryptographers) can be treated as single “sequential” programs because the in-
formation hiding normally implied by non-interference’s end-to-end analysis does
not apply. Indeed, if it did, the sequential formulation would seem to be hiding the
transfer of messages and the interleaving of concurrent threads, and that would
make it unsound. For example, if Agent A executes v:=h and Agent B then
executes v:= 0 we can analyse this as the single sequential program v:=h; v:= 0
without having accidentally (and incorrectly) ignored the fact that A can observe
v (and hence learn h) before B’s thread has begun the execution that would
overwrite it.

A third aspect of our approach is that we concentrate on algebraic reasoning
for proving refinement: although we do have both an operational model (Sec. 2)
and a language of logical assertions (Sec. 3) for refinement-based security, we use
those mainly for proving schematic program-fragment -equalities and refinements
(Sec. 4). Those schemes, rather than the logic or the model, are then what is used
in the derivation of specific programs. For this we need a program-level indication
of information escape, analogous to the way in which the assert statement can
embed Hoare-Logic pre- and post-conditions within program code [16,23,35]. This
is our reveal E statement that publishes E’s value for all to read, but does not
change any program variable: its purpose is to bring an extra expressivity that
helps formulate general algebraic (in)equalities. Since functionally it acts as skip
on program variables (having no effect at all), but wrt secrecy it does not act as
skip (it releases information but skip does not), its behaviour considered alone
will capture much of the flavour of what we intend to do.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 139

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Section 2 gives our relational-style operational model; Section 3 describes a
corresponding modal logic based on the logic of knowledge; and Section 4 intro-
duces our program algebra. Sections 5–8 demonstrate the approach on examples
of increasing complexity.

Throughout we use left-associating dot for function application, so that f.x.y
means (f(x))(y) or f(x, y), and comprehensions/quantifications are written uni-
formly, as(Qx:T | R · E) for quantifier Q, bound variable(s) x of type(s) T ,
range predicate R (probably) constraining x and element-constructor E in which
x (probably) appears free. For sets the opening “(Q” is “{” and the closing “)” is
“}” so that e.g. the comprehension {x, y:N | y = x2 · z+y} is the set of all natural
numbers that exceed z by a perfect square exactly, that is {z, z+1, z+4, · · ·}.

2. The Shadow model of security

2.1. Introduction; non-interference; logic of knowledge

Our operational model is loosely based on non-interference [12] and on the Kripke
structures associated with the (modal) Logic of Knowledge [11]: it extends the
former with concepts of the latter, and is targetted specifically at development of
secure programs (in its terms) via a process of stepwise refinement. The “shadow”
of the title refers to an extra semantic component that tracks a postulated at-
tacker’s inferred knowledge, or ignorance, of hidden (high-security) variables.

The non-interference approach (in its simplest form) partitions variables into
high-security- and low-security classes: we call them hidden and visible respec-
tively. A “non-interference -secure” program then prevents an attacker’s inferring
hidden variables’ initial values from initial and/or final visible variables’ values.
Assuming for simplicity just two variables v, h of class visible, hidden resp. we
consider in this simple approach a possibly nondeterministic program r that takes
initial states (v, h) to sets of final visible states v′ and is thus of type V→H→PV,
where V,H are the value sets corresponding to the types of v, h respectively; note
that we are ignoring final hidden values at this point. Such a program r is non-
interference -secure just when for any initial visible value the set of possible final
visible values is independent of the initial hidden value [19,32,28]:(∀v:V;h0, h1:H · r.v.h0 = r.v.h1

)
.

Our first extension of the simple approach is to concentrate on final- (rather
than initial) hidden values and therefore model programs by the slightly more
elaborate type V → H → P(V × H). For two such programs r{1,2} we say that
r1 � r2, that r1 “is (securely) refined by” r2, just when the following both hold:

(i) For any initial state v, h each possible r2 outcome is also a possible r1 out-
come, that is(∀v:V;h:H · r1.v.h ⊇ r2.v.h

)
.3

A. McIver and C. Morgan / The Thousand-and-One Cryptographers140

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This is the normal “can reduce nondeterminism” form of refinement, i.e. it
is the classical form.

(ii) For any initial state v, h and final state v′ possible for r2 (i.e. for which there
exists a compatible h′

2), each h′
1 that r1 can produce with that v, v′ can also

be produced by r2 with that same v, v′, that is(∀v, v′:V;h, h′
1, h

′
2:H · (v′, h′

2) ∈ r2.v.h ∧ (v′, h′
1) ∈ r1.v.h

⇒ (v′, h′
1) ∈ r2.v.h

)
.

This second condition says that for any particular visible final v′ the at-
tacker’s “ignorance” of h′’s compatible with that v′ cannot be decreased by
the refinement from r1 to r2: whenever we must consider out of ignorance
that some h′

1 is possible for r1, we must be forced to consider that same h′
1

to be possible for r2 as well. This extended “secure” refinement is thus more
restrictive than the classical.

In fact, in this moderately extended approach, the two conditions (i), (ii) together
do not allow ignorance strictly to increase: refinement then boils down to a simple
policy of allowing decrease of nondeterminism in v but not in h. But strict increase
of hidden nondeterminism will be possible (3) in the more ambitious approach we
introduce below.

As an example of the above we restrict all our variables’ types so that V =
H = {0, 1}, and we let r1 be the maximally nondeterministic program that can
produce from any initial values (v, h) any one of the four possible (v′, h′) final
values in V ×H. Then the program r2 that produces only the two final values in
{(0, 0), (0, 1)} is a refinement of r1 that strictly reduces nondeterminism in v but
not in h, and is (therefore) still secure. But the program r′2 that produces only
the two final values in {(0, 0), (1, 1)} is not a secure refinement, because it reduces
nondeterminism in h (as well).

Thus r1 allows any behaviour, and r2 simply reduces the nondeterminism by
limiting its outputs to v′=0 only; but, even with the limited outputs, an attacker
of r2 can gain no more knowledge of h′’s value than it would have had from
attacking r1 instead. So r1 � r2. An attacker of r′2 however can deduce h′’s value
from having seen v′’s, since the program guarantees they will be equal. Since that
attack is not possible on r1, we have r1 � r′2.

2.2. The Shadow of h

In r1 above, when the final value v′ was 0 the corresponding set of associated
possible values of h′ was {0, 1}. This set {0, 1} is called “The Shadow,” and
represents explicitly an attacker’s ignorance of the hidden variables’ values. In r2
that shadow was the same (for v′ = 0); but in r′2 the shadow was smaller, and
that is why we don’t consider r′2 to be a refinement of r1 as far as security is
concerned.

3Some researchers [2] do not consider the final h here: for our purposes that would make our
program operators non-monotonic for refinement (thus a failure of compositionality). That is, if
for hidden h the assignments h:= 0 and h:= 1 are the same, then for visible v the compositions

h:= 0; v:=h and h:= 1; v:=h should not be different.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 141

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

In the shadow semantics we model this explicit ignorance-set, so that our final
program state is extended to a triple (v′, h′, H ′) with H ′ a subset of H — in each
triple the H ′ contains exactly those (other) values that h′ might have had. The
(extended) output-triples of the three example programs are then respectively

r1 — {(0, 0, {0, 1}), (0, 1, {0, 1}), (1, 0, {0, 1}), (1, 1, {0, 1})}
r2 — {(0, 0, {0, 1}), (0, 1, {0, 1})}
r′2 — {(0, 0, {0}), (1, 1, {1})} ,

and we can see r1 � r2 because r1’s set of outcomes includes all of r2’s. But e.g.
the outcome (0, 0, {0}) of r′2 does not occur among r1’s outcomes, nor is there
even an r1-outcome (0, 0, H ′) with H ′ ⊆ {0} that would satisfy (ii). That is why
we say that r1 � r′2 for security.

Now –the final enhancement– for sequential composition of shadow-enhanced
programs also initial triples (v, h,H) must be dealt with, since the final triples of
a first component become initial triples for the second. We therefore define the
full shadow semantics, in the next subsection, by showing how those triples are
related by program execution.

2.3. The Shadow semantics of atomic programs

A “non-shadow,” call it classical program r is effectively an input-output relation
between V × H -pairs. Its shadow version 〈r〉 is a relation between V × H × PH
-triples and is defined as follows:

Definition 1. Atomicity Given a standard program r:V→H→P(V×H) we define
its atomic shadow version 〈r〉:V→H→PH→P(V ×H×PH) so that 〈r〉.v.h.H &
(v′, h′, H ′) just when

(i) we have both r.v.h & (v′, h′)
(ii) and H ′ = {h′:H | (∃h:H · r.v.h & (v′, h′)

) } .

The final shadow component is generated from the initial shadow component and
any nondeterminism present in the program.

As a first example, let the syntax x:∈S denote the standard program that
chooses variable x’s value from a set S, which we assume to be non-empty. From
Def. 1 we have that

(i) A choice of visible v has no effect on h,H
because 〈v:∈S〉.v.h.H = {v′:S · (v′, h,H)} , but

(ii) A choice of hidden h introduces ignorance
because 〈h:∈S〉.v.h.H = {h′:S · (v, h′, S)} and finally

(iii) An assignment of hidden to visible “collapses” any ignorance that might be
there because 〈v:=h〉.v.h.H = {(h, h, {h}} .

From (ii) and (iii) above we can therefore see that in the sequential composition
〈h:∈S〉; 〈v:=h〉 the first statement introduces ignorance –we do not know h’s
exact value “at the semicolon”– but the second statement then removes it because

A. McIver and C. Morgan / The Thousand-and-One Cryptographers142

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

we can deduce h’s value, at the end, by observing v. The composition as a whole
is nondeterministic, because v, h’s common final value is drawn arbitrarily from
S; but the nondeterminism is observable.

In general atomicity is not preserved by composition (indeed one expects it
not to be); but in many simple cases it is preserved.

Lemma 1. atomicity and composition Given two programs r{1,2} over v, h we
have 〈r1; r2〉 = 〈r1〉; 〈r2〉 just when v’s intermediate value, i.e. “at the semicolon,”
can be deduced from its endpoint values, i.e. initial and final, possibly in combi-
nation. The semicolon denotes relational composition in both cases, of pairs on
the left and of triples on the right.

Proof: Given in [22]. �

In fact this lemma is more significant when its conditions are not met than
when they are. It means for example that we cannot conclude from Lem. 1 that
〈v:=h; v:= 0〉 = 〈v:=h〉; 〈v:= 0〉, since on the left the intermediate value of v
cannot be deduced from its endpoint values: for h is not visible at the beginning
and v itself has been “erased” at the end. And indeed from Def. 1

(i) On the left we have 〈v:=h; v:= 0〉.v.h.H = {(0, h,H)}, whereas

(ii) On the right we have (〈v:=h〉; 〈v:= 0〉).v.h.H = {(0, h, {h})} .

This phenomenon is called perfect recall [11] –that v’s temporary receipt of
h is seen by an attacker even though it is subsequently overwritten– and it is a
feature (not a bug). It is due to our refinement-oriented point of view, as we now
explain.

2.4. Refinement vs. atomicity: Gedanken experiments

Perfect recall is necessary because refinement must be monotonic, i.e. (A) that
refinement of a program portion must refine the whole program; and we insist
additionally (B) that classical refinements involving v only must remain valid.
Both principles (A,B) are required in order to be able to develop large programs
via local reasoning over small portions.

For example, without perfect recall the overwriting of v would prevent pro-
gram v:=h; v:∈{0, 1} from revealing h. Yet from (B) we have v:∈{0, 1} � v:= v;
and then from (A) we have (v:=h; v:∈{0, 1}) � (v:=h; v:= v) — and it is a con-
tradiction of secure refinement that the lhs does not reveal h but the rhs does.
Thus the premise –that recall is not perfect– is false.

There is a similar experiment for conditionals: because (A,B) imply the re-
finement

if h=0 then v:∈{0, 1} else v:∈{0, 1} fi
� if h=0 then v:= 0 else v:= 1 fi ,

we must accept that the if-test reveals its outcome, in this case whether h=0
holds. And nondeterministic choice P1 � P2 is visible to the attacker because each
of the two branches P{1,2} can be refined separately in a similar way.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 143

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Program P Semantics [[P]].v.h.H

Publish a value reveal E.v.h { (v, h, {h′:H | E.v.h′ = E.v.h}) }

Assign to visible v:=E.v.h { (E.v.h, h, {h′:H | E.v.h′ = E.v.h}) }

Assign to hidden h:=E.v.h { (v, E.v.h, {h′:H · E.v.h′}) }

Choose visible v:∈S.v.h {v′:S.v.h · (v′, h, {h′:H | v′ ∈ S.v.h′}) }

Choose hidden h:∈S.v.h {h′:S.v.h · (v, h′, {h′:H;h′′:S.v.h′ · h′′}) }

Sequential composition P1;P2 ([[P1]]; [[P2]]).v.h.H
Demonic choice P1 � P2 [[P1]].v.h.H ∪ [[P2]].v.h.H

Conditional if E.v.h then Pt else Pf fi [[Pt]].v.h.{h′:H | E.v.h′ = true}
	 E.v.h

[[Pf]].v.h.{h′:H | E.v.h′ = false}

The commands P marked
 satisfy [[P]] = 〈“classical semantics of P” 〉, and we
call them the atomic commands, meaning semantically so. Note that reveal is

therefore not security-atomic, even though it is a syntactic atom.

Figure 1. Semantics of non-looping commands

2.5. Declared atomicity

If there is a code fragment P that we know will be executed atomically at runtime,
we can write it 〈P 〉 using the notation of Def. 1. This will however have two
consequences:

(i) At runtime the atomicity must be guaranteed for P ’s execution, and

(ii) At design-time only equality reasoning can be used within P .

With respect to (ii) we mean that P �P ′ does not allow us to conclude the re-
finement 〈P 〉�〈P ′〉. We can however conclude the equality 〈P 〉=〈P ′〉 from P=P ′.

2.6. Summary of semantics

The Shadow Semantics of a small imperative language is given in Fig. 1 for
non-looping constructs. The only non-traditional command is reveal that gives
the value of some expression to the attacker directly, but changes no program
variables; note it does change the shadow.

Refinement between programs is defined as follows:

Definition 2. Refinement For programs P{1,2} we say that P1 is refined by P2

and write P1 � P2 just when for all v, h,H we have

(∀(v′, h′, H ′
2): [[P2]].v.h.H ·(∃H ′
1:PH | H ′

1 ⊆ H ′
2 · (v′, h′, H ′

1) ∈ [[P1]].v.h.H
)
) .

A. McIver and C. Morgan / The Thousand-and-One Cryptographers144

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This means that for each initial triple (v, h,H) every final triple (v′, h′, H ′
2) pro-

duced by P2 must be “justified” by a triple (v′, h′, H ′
1), with equal or smaller

ignorance, produced by P1.
4 �

For example, from Fig. 1 we have that [[h:= 0 � h:= 1]].v.h.H produces the
outome {(v, 0, {0}), (v, 1, {1})} whereas [[h:∈{0, 1}]].v.h.H produces the outcome
{(v, 0, {0, 1}), (v, 1, {0, 1})}. Thus

h:= 0 � h:= 1 � h:∈{0, 1} (3)

is an example of a strict refinement where the two commands differ only by a
strict increase of ignorance: they have equal nondeterminism functionally, but in
one case (�) it can be observed by the attacker and in the other case (:∈) it
cannot. For example the “more ignorant” triple (v, 0, {0, 1}) is strictly justified by
the “less ignorant” triple (v, 0, {0}), where we say “strictly” because {0} ⊂ {0, 1}.

3. The Logic of Ignorance

With the (v, h,H)-triple semantics of Sec. 2.6 comes an assertion logic over the
triples; it is based on the Logic of Knowledge and its interpretation over Kripke
structures [11]. We call it The Logic of Ignorance.

As in Hoare Logic for sequential programs [16] we interpret first-order pred-
icate formulae over program states by making the program variables’ values act
as constants in the logic. To that we add a possibility modality so that Pφ means
(roughly) that φ holds for some “possible” value h∈H rather than necessarily
for the actual current value of h, where φ is a classical formula. In fact we have
φ⇒Pφ because a property of our semantics is that h∈H for all triples (v, h,H)
we consider: what is true must also be possible. In general however we do not
have Pφ⇒φ, since what is possible is not necessarily true.

3.1. Interpretation of modal formulae

The assertion language contains function- (including constant-) and relation sym-
bols as needed, among which we distinguish the (program-variable) constant sym-
bols visibles in some set V and hiddens in H; as well there are the usual (logical)
variable symbols in L over which we allow ∀, ∃ quantification. The visibles, hid-
dens and variables are collectively the scalars X:=V ∪ H ∪ L with V,H, L assumed
disjoint.

A structure comprises a non-empty domain D of values, together with func-
tions and relations over it that interpret the function- and relation symbols men-
tioned above; within the structure we name the partial functions v, h that inter-
pret visibles and hiddens respectively; we write their types V →D and H →D re-
spectively (where the “crossbar” indicates the potential partiality of the function).
We don’t bother naming the interpretations of function- and relation symbols, as
they do not vary from one program state to another.

4This is the Smyth Order [33] on sets of outcomes that is induced by the order “(v, h,H1) �
(v, h,H2) iff H1 ⊆ H2” on individual outcomes.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 145

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

• (v, h,H),w |= R.t1. · · · .tK for relation symbol R and terms t{1···K} iff the tuple
([[t1]].v.h.w, · · · , [[tK]].v.h.w) is an element of the interpretation of R in DK .

• (v, h,H),w |= t1 = t2 iff [[t1]].v.h.w = [[t2]].v.h.w.
• (v, h,H),w |= ¬Φ iff (v, h,H),w |= Φ.
• (v, h,H),w |= Φ1 ∧ Φ2 iff (v, h,H),w |= Φ1 and (v, h,H),w |= Φ2.
• (v, h,H),w |= (∀x · Φ)

iff (v, h,H),w�(x →d) |= Φ for all d in D.

• (v, h,H),w |= PΦ iff (v, ĥ,H),w |= Φ for some ĥ in H.

We write just (v, h,H) |= Φ when w is empty, and |= Φ when (v, h,H) |= Φ for all
(v, h,H) with h∈H, and we take advantage of the usual “syntactic sugar” for
other operators. Thus for example we can show |= Φ⇒PΦ for all Φ, a fact

which we mentioned earlier. Similarly we can assume wlog that modalities are
not nested, since we can remove nestings via the validity

|= PΦ ≡ (∃c · Φh←c ∧ P (h=c)
)
.

As a convenience we allow 0-subscripted hidden variables (e.g. h0) within the
modality to refer to the actual rather than potential hidden value; for that we

extend the last clause above to read

• (v, h,H),w |= PΦ iff (v, ĥ,H),w�(h0 →h.h) |= Φ for some ĥ in H.

Thus for example P (h=¬h0) means that whatever value Boolean h might have,
we must consider also its negation to be possible: we do not (cannot, if that

formula holds) know it exactly.

Figure 2. Interpretation of Logic of Ignorance

A valuation is a partial function from scalars to D, thus typed X → D; one
valuation w′ can override another w so that for scalar x we have that (w�w′).x is
w′.x if w′ is defined at x and is w.x otherwise. The valuation x →d is defined only
at variable x, where it takes value d.

A state (v, h,H) comprises a visible- v, hidden- h and shadow- part H; the
last, in P(H → D), is a set of valuations over hiddens only. All the states that we
consider satisfy h∈H.

We define truth of Φ at (v, h,H) under valuation w by induction in the usual
style, writing (v, h,H),w |= Φ. For term t let [[t]].v.h.w be its value interpretation
determined inductively from the valuation v�h�w and the (implicit) interpretation
of function symbols. Then our formula interpretation is as defined as in Fig. 2
[11, pp. 79,81].

3.2. Shadow-sensitive Hoare-triples; revelations

As is normal, we say that {Φ}prog{Ψ} just when any initial state (v, h,H) |= Φ
can lead via [[prog]] only to final states (v′, h′,H′) |= Ψ; typically Φ is called the
precondition and Ψ is called the postcondition.

We illustrate Shadow-sensitive Hoare-triples with the reveal E command: we
have for any classical φ that 5

5We use upper case for modal formulae, and lower case for classical.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers146

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

{P (E=E0 ∧ φ)} reveal E {Pφ} , where E0 is E with all its hid-
den variables 0-subscripted.

(4)

It is verified as follows:

(v, h,H) |= P (E=E0 ∧ φ)
and [[reveal E]].v.h.H & (v′, h′,H′)

iff “Fig. 2, for some ̂h ∈ H and h0 = (h0 �→h.h)”

(v, ĥ,H), (w�h0) |= E=E0 ∧ φ
and [[reveal E]].v.h.H & (v′, h′,H′)

iff (v, ĥ,H), (w�h0) |= E=E0

and (v, ĥ,H), (w�h0) |= φ
and [[reveal E]].v.h.H & (v′, h′,H′)

“Fig. 2”

iff E.v.ĥ = E.v.h

and (v, ĥ,H), (w�h0) |= φ
and v′=v ∧ h′=h ∧ H′={h′:H | E.v.h′ = E.v.h}

“Fig. 2; Fig. 1”

iff ĥ ∈ H′

and (v′, ĥ,H), (w�h′0) |= φ
and v′=v ∧ h′=h ∧ H′={h′:H | E.v.h′ = E.v.h}

“third line simplifies first; equalities”

iff ĥ ∈ H′

and (v′, ĥ,H′), (w�h′0) |= φ
and v′=v ∧ h′=h ∧ H′={h′:H | E.v.h′ = E.v.h}

“classical φ has shadow-independent interpretation:
thus can replace H by H′”

implies (v′, ĥ,H′), (w�h′0) |= φ “for some ̂h ∈ H′”

iff (v′, h′,H′),w |= Pφ . “Fig. 2”

That was not a pretty calculation but, having done it once, we can use (4) forever.
In fact the precondition in (4) is the weakest such with respect to postcondi-

tion Pφ, and we thoroughly explore ignorance-based weakest preconditions else-
where [8,25,27]. Using that, we can give some examples of assertion-based rea-
soning about revelations.

In the items below, let Ψ be the assertion P ((hmod 2 = h0 mod 2) ∧ h=3),
generated by (4) applied to reveal (hmod 2) {P (h=3)} , which we can simplify
as follows:

P ((hmod 2 = h0 mod 2) ∧ h=3)
= P ((3mod 2 = h0 mod 2) ∧ h=3)
= P ((1 = h0 mod 2) ∧ h=3)
= (hmod 2)=1 ∧ P (h=3) ,

that is oddh ∧ P (h=3). With that we consider the following examples:

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 147

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

(i) Does h:∈{1, 3}; reveal (hmod 2) establish P (h=3)? Yes �
Command h:∈{1, 3} establishes both conjuncts of Ψ.

(ii) Does h:∈{1, 5}; reveal (hmod 2) establish P (h=3)? No ×
Command h:∈{1, 5} does not establish P (h=3), which is the second conjunct
of Ψ. Given the source code, it is obvious that h cannot be 3 finally.

(iii) Does h:∈{2, 3}; reveal (hmod 2) establish P (h=3)? No ×
Command h:∈{1, 5} does not establish oddh, which is the first conjunct of
Ψ. One possible outcome is that 0 is revealed, which precludes h’s being
finally 3.

(iv) Does (h:= 1 � h:= 3); reveal (hmod 2) establish P (h=3)? No ×
The left-hand command h:= 1 –a demonic possibility which we must take
into account– establishes the first conjunct of Ψ but not the second. Because
the nondeterminism is visible (unlike Case (i)), if the left branch is taken
–and it might be– then from the source code we know that h cannot be 3.

Note especially the difference between (i) and (iv). In the former, the non-
determinism occurs within an atomic command, and is therefore hidden; but, in
the latter, it occurs between atomic commands, and is therefore observable.

4. The Algebra of Ignorance

4.1. Assertions: the historical motivation

The Hoare-logic method of program correctness involves “hybrid” formulae (the
triples) that are built from two formal languages: the programming language, and
the assertion language. Thus {φ}prog{ψ} in its partial correctness interpretation
holds just when every terminating execution of prog from an initial state satisfying
φ is guaranteed to deliver a final state satisfying ψ.

The command assert φ is typically defined to act as skip in states satisfying
φ and to “abort” (or give some error message) otherwise [35,23]. Assuming that
“abort” is refined by anything, we can see that the classical program-algebraic
inequality

assert φ; prog � prog ; assert ψ

has the same meaning as {φ}prog{ψ} does. It encodes the Hoare-triple entirely
within the programming language and its in-built notion of refinement, thus
within the program algebra: if φ does not hold in the initial state, then the re-
finement goes through because the entire left side aborts; if φ does hold, then the
refinement goes though only if the right-hand side does not abort by delivering
some final state of prog for which the subsequent assert ψ aborts.

4.2. Revelations: the modern analogue of assertions for security

By analogy with Sec. 3.2 we can express ignorance-logical properties of program
fragments entirely within the programming language by using a special-purpose
command encoding the ignorance formulae. There are two main idioms.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers148

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

In the first we have

assert φ; prog � reveal E; prog , (5)

where of course refinement is now understood in the sense of Def. 2, that is non-
classically because it preserves ignorance as well as functional properties. If φ does
not hold in the initial state, then the refinement goes through; otherwise, it goes
through only if prog reveals the initial value of E “anyway” (so that the explicit
reveal E on the right “does no further damage.”) Thus (5) expresses “If φ holds
initially, then prog reveals the initial value of E.”

In the second we have

assert φ; prog � prog ; reveal E ,

expressing “If φ holds initially, then prog reveals the final value of E.”
Here are some examples, in which our variables take numeric values. We have

the refinement

assert v =0; v:= v×h � reveal h; v:= v×h

because h’s initial value can be deduced by dividing v’s final value by its initial
value, provided that initial value was not zero. The refinement does not go through
without the assertion, since in the v-initially-zero case we cannot deduce h’s value.
For final values we have

assert v=0; h:= v×h � h:= v×h; reveal h

because when v is zero we can see that h’s final value must be zero too, although
in that case h:= v×h still tells us nothing about h’s initial value. The refinement
does not go through without the assertion, since in the v-initially-nonzero case
we cannot deduce h’s final value without knowing what its initial value was.

Further idioms are possible, for example with revelations on both sides.

4.3. A calculus of revelations 6

We now set out some of the program-algebra associated with revelations; much
use of the identities will be made later.

4.3.1. Replacing one revelation by another

Provided that truth of φ implies the equality F = f(E) for some function f
depending (optionally) on other visible variables, we have

assert φ; reveal E � reveal F . (6)

These are some examples:

assert h=0; skip � reveal h Here f is the constant function 0.
reveal h � reveal h(1 . . . that is h−1max 0.

reveal h(1 � reveal h Initial values 0,1 not distinguished.
assert h>0; reveal h(1 � reveal h If h>0 then ((1) is injective.

6This is the title of the presentation on which the current paper is based [26].

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 149

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

4.3.2. Combining revelations

In all cases we have

reveal E; reveal F = reveal (E,F) . (7)

Here is an example over Booleans and exclusive-or:

reveal x⊕ y; reveal y ⊕ z “Write ⊕ for exclusive-or”

= reveal (x⊕ y, y ⊕ z) “(7)”

= reveal (x⊕ y, x⊕ z) “(6) in both directions”

= reveal x⊕ y; reveal x⊕ z . “(7) in both directions”

4.3.3. Equivalence with assignment to local visible

In all cases we have

reveal E = |[vis v · v:=E]| , (8)

highlighting the fact that scope (local vs. global) and visibility (vis vs. hid) are
orthogonal: in spite of the fact that v is temporary, ultimately “popped from
the stack and discarded,” assigning to it while it is there does reveal the value
assigned.

An example of this is given in the next section.

4.4. Example: specifications and the encryption lemma

For Booleans, or isomorphically {0, 1}-valued variables x, y we write x⊕y:=E to
abbreviate the specification statement x, y:[x⊕y = E] in the style of the Refine-
ment Calculus [23,3,1], thus a command that sets x, y nondeterministically to
make their exclusive-or equal to E. We define the command to be atomic, so that
[[x⊕y:=E]] = 〈x, y:[x⊕y = E]〉.

A common pattern for this is |[vis v; hid h′ · v⊕h′:=h]| in the context of a
declaration hid h. It is functionally equivalent to skip because it assigns only to
local variables; we show it is Shadow-equivalent to skip also, i.e. that its effect of
assigning to visible v reveals nothing about h. We have

|[vis v; hid h′ · v⊕h′:=h]|
= |[vis v; hid h′ · 〈v, h′:[v⊕h′ = h]〉]| “defined above”

= |[vis v; hid h′ · 〈v:∈{0, 1}; h′:=h⊕v〉]| “standard equality �”

= |[vis v; hid h′ · 〈v:∈{0, 1}〉; 〈h′:=h⊕v〉]| “Lem. 1”

= |[vis v; hid h′ · v:∈{0, 1}; h′:=h⊕v]| “Fig. 1”

= |[vis v · v:∈{0, 1}; |[hid h′ · h′:=h⊕v]|]| “move scopes”

= |[vis v · v:∈{0, 1}]| “assignment to local hidden is skip”

= skip . “assignment of visibles to local visible is skip”

But at
 we could have written instead

A. McIver and C. Morgan / The Thousand-and-One Cryptographers150

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

= |[vis v; hid h′ · 〈h′:∈{0, 1}; v:=h′⊕h〉]| “standard equality”

= |[hid h′ · h′:∈{0, 1}; |[vis v · v:=h′⊕h]|]| “Lem. 1; Fig. 1; move scopes †”
= |[hid h′ · h′:∈{0, 1}; reveal h′⊕h]| , “(8) ‡”

with both †, ‡ being interesting formulations often used in protocols: they too
are therefore equal to skip. Each sets a hidden local Boolean h′ randomly and
publishes its exclusive-or with some global hidden h; the reasoning above shows
rigorously (and formally) that no information about h is released by doing that.

We call that The Encryption Lemma and make much use of it below.

5. The two cryptographers 7

Two cryptographers are about to choose from the trolley, but there are only
two desserts there: a lavish cream cake, and a small biscuit. To avoid a series of
insincere “after-you” exchanges, they engage in this simple protocol: a single coin
is flipped privately between them; each secretly writes his dessert choice on his
own napkin if the coin shows heads, or the opposite choice if it shows tails; then
they hand their folded-over napkins to the waiter.

If the waiter tells them their napkin-choices differ, they can safely take the
two desserts and select their actual preferences once the waiter has gone away;
otherwise, to avoid embarrassment, they will forego dessert altogether.

The protocol ensures that neither cryptographer knows the other’s choice
before he makes his own choice; and, whatever happens, the waiter does not find
out which of them greedily chose the cream cake. 8

Here is a Shadow-analysis of the protocol. Let the two cryptographers be
A and B with Boolean variables a, b recording whether each wants the cream
cake respectively. Boolean c is the shared coin. We do not model the waiter
explicitly, because his function of ensuring “oblivious choices” is outside our terms
of reference: we do not address the issue of possible protocol violations. The
specification of the protocol is just

hid a, b:Bool ·
reveal a≡b ,

where the declarations of the hidden a, b are global: we assume them in subsequent
manipulations of this example.

The specification says clearly that whether a and b agree is to be revealed but
nothing else, and in fact it is hard to think of a clearer way of saying this. And
although revealing a≡b reveals a’s value to B by implication (and vice versa),

7While based on Chaum’s Dining Cryptographers [6], the story for this tiny example has
been especially invented to illustrate piecewise construction of a protocol that ultimately will
be quite complex. This is the smallest portion, the first step.

8The original story ends differently. Without a protocol, the two diners do engage in “after-

you” protestations, each believing that the first choice will out of politeness have to be the small

cracker; eventually however one diner just chooses the cake. Outraged, the other protests “If
I had chosen first, I’d have taken the cracker!” “Well,” replies the first, “That’s exactly what

you’ve got.”

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 151

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

this does not need any special treatment: it cannot be avoided, and so there is no
need to mention it. 9 Thus “but nothing else” above, an informal phrase, carries
the sense of “unless unavoidable.”

With the declarations as given, both a, b hidden, the observer is “the public”
who thus cannot observe either one directly. The implementation under those
same declarations, that is the protocol above, is derived algebraically as follows:

reveal a≡b

= skip;
reveal a≡b

“classical reasoning”

= |[hid c:Bool ·
c:∈Bool;
reveal a≡c

]|;
reveal a≡b

“Encryption Lemma, Sec. 4.4,
and that (reveal a≡b) = (reveal a⊕b) by (6)”

= |[hid c:Bool ·
c:∈Bool;
reveal a≡c;
reveal a≡b

]|

“adjust scopes”

= |[hid c:Bool ·
c:∈Bool;
reveal a≡c;
reveal b≡c

]| .

“Reveal Calculus, example following (7):
(a≡c, a≡b) determines (a≡c, b≡c)

and vice versa”

Note (and recall from the introduction) that our strong assumptions for the ad-
versary mean that it is sound to model this distributed protocol with a single
sequential program: adversaries’ access to the individual threads is modelled by
the assumption of perfect recall.

In [22, Appendix B] we illustrate some conventions for abbreviating the pre-
sentation of derivations like the one above.

6. The three cryptographers 10

Three cryptographers have just had lunch, and ask for the bill. The waiter says
that the bill has already been paid; and the cryptographers want to determine
whether one of them paid it or whether it was paid by the NSA. In the case that

9We formalise this observation by observing that with the altered declarations hid a; vis b,

that is B’s point of view, we have the equality (reveal a≡b) = (reveal a≡b; reveal a) from (6)
and b’s being visible.

10Three diners is Chaum’s example exactly.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers152

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

one of them paid, none of the other cryptographers nor anyone else is to be able
to determine which one it was. They proceed as follows.

They are sitting at a round table, 11 and each of the three adjacent pairs flips
a coin between them that only that pair can see; thus each cryptographer can see
two coins, because he is a member of two such pairs.

Each cryptographer then announces whether he paid; but if the two coins
he sees show different faces, he lies. If an odd number of cryptographers claim
to have paid, then indeed one did, but no-one (except him) knows who it was;
otherwise the lunch was paid for by the NSA.

6.1. Helping three cryptographers by considering one at a time

Rather than give a direct derivation in the style of Sec. 5, we build this protocol
up from smaller components. We imagine a single cryptographer X with Boolean
x who has access to two coins l, r on his left and right. The left one is already
flipped; the right one he must flip himself; and then he reveals the exclusive-or of
all three values. That amounts to the fragment

var l, r:Bool; hid x:Bool ·
r:∈Bool;
reveal l ⊕ x⊕ r ,

}
Protocol X

in which for the moment we are not giving the visibility type of l, r.
Now if we instantiate the X-fragment to A and B in turn, and introduce a

hidden “middle” coin m:Bool, with both fragments we can get

var l, r:Bool; hid a, b:Bool ·
|[hid m:Bool;
m:∈Bool;
reveal l ⊕ a⊕m;

}
First instance of X

r:∈Bool;
reveal m⊕ b⊕ r

}
Second instance of X

]| ,

(9)

and this –by similar reasoning to Sec. 5’s– can be shown 12 to implement the
specification

var l, r:Bool; hid a, b:Bool ·
r:∈Bool;
reveal l ⊕ (a⊕ b)⊕ r .

(10)

11This Arthurian concept is one of Formal Methods’ great contributions to computing.
12Think of A’s secret in Sec. 5 being l ⊕ a and B’s secret being b⊕ r, and re-instantiate the

derivation on that basis, replacing ≡ by ⊕.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 153

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Again only a⊕ b is revealed, and nothing about a or b individually. But the point

of doing it in this way is that it suggests how the protocol can be extended to

any number of participants. So far we have dealt with two out of three.

For the third cryptographer (or final, when there are more than three in

total) we must use a slightly different approach. It is no more complex, but must

be “backwards” since he cannot assume that some coin is already flipped: the

process must begin somewhere; and the two “extremal” coins must be hidden.

Thus Cryptographer C executes

|[hid l, r:Bool ·
l:∈Bool;
r:∈Bool;
reveal l ⊕ (a⊕ b)⊕ r

}
specification from (10) above
implemented by (9) above

reveal l ⊕ c⊕ r
]| ,

(11)

in which we have embedded the specification of the A,B protocol as the middle

two commands. That is, Cryptographer C flips a coin l and says to A,B “now

execute your protocol,” finally making his own revelation using the coin l he

flipped himself (now some time ago) and the “output” coin r provided by the

A,B protocol he arranged to have executed. This is the right thing to do, because

in two easy steps from the above we can reason

(11) = |[hid l, r:Bool ·
l:∈Bool;
r:∈Bool;
reveal l ⊕ (a⊕ b)⊕ r

]|;
reveal a⊕ b⊕ c

“Revelation Calculus; adjust scopes”

= reveal a⊕ b⊕ c , “Encryption Lemma for l, r together”

which is our specification for the Three Cryptographers.

To finish the three cryptographers’ protocol we now simply replace the spec-

ification of A,B’s sub-protocol by its implementation, which was given earlier.

Because the monotonicity property of refinement, actually equality in this case,

we do not need to do any further checking. The immediate result, thus obtained

“for free” from (10) � (9), is

hid a, b, c:Bool ·
reveal a⊕ b⊕ c

A. McIver and C. Morgan / The Thousand-and-One Cryptographers154

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

= |[hid l,m, r:Bool ·
l:∈Bool;
m:∈Bool;
reveal l ⊕ a⊕m;
r:∈Bool;
reveal m⊕ b⊕ r;
reveal l ⊕ c⊕ r

]| .

“replace A,B specification above
by its implementation from earlier”

In Sec. 8 we will do the same step-by-step construction within a loop, thus
dealing with arbitrarily many cryptographers.

6.2. On expressiveness and “caveats”

An informal specification of the Three Cryptographers might state that whether
the NSA paid is to be learned without at the same time learning whether any
particular cryptographer paid. Except of course that cryptographer himself, who
knows it anyway. . . Similarly, as we saw, it is unavoidable that each of the Two
Cryptographers learns what the other chose, given that he knows his own choice
and comes to know whether the other’s differs.

Thus if the first sentence above were formalised, as a logical assertion to be
met by the implemented code, it would be too strong. The caveat (A) is that
when we write (somehow) “for all i, j: 1..3 cryptographeri does not know whether
cryptographerj paid,” we must add (when we remember) “provided i = j.”

Similarly there is an implicit assumption that at most one cryptographer
paid (where “implicit” means “probably we forgot to mention that the first time
around”). If two cryptographers paid (B), then the outcome will be “NSA paid”
when in fact it did not: two of the three cryptographers did. So another caveat is
added: “Assuming that at most one cryptographer paid. . . ”

In fact neither of these two problems bother us if we use refinement. In both
cases (A,B) it is obvious from the specification reveal a⊕ b⊕ c what behaviour we
should expect in all situations, no matter how bizarre, and we do not have to add
extra “caveat” clauses to some assertion in order to accommodate them. More
importantly, we do not have to worry about whether we have added enough caveat
clauses. A similar situation occurs in the Obvlivious Transfer Protocol [29,10,30],
specified a:= bi and in which A reads into a his choice indexed i: {1, 2} of one of
two messages b1,2 that B holds, without A’s learning anything about the message
he did not choose and without B’s learning anything about the index i of the
choice A made. Except that in the case m1=m2 we must accept (C) that A does
learn about the message he did not choose, because it is equal to the one he did
choose. . .

Again, from the specification a:= bi it is obvious what happens in (C), and
we do not have to introduce caveats to accommodate it. (We gave a rigorous
derivation of the Oblivious Transfer Protocol in our earlier report [27].)

6.3. On points of view

In the derivation of Sec. 6.1 all three variables a, b, c are declared hidden, and so
our conclusions apply only to adversaries for whom they actually are all-three

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 155

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

hidden: the general public. To show that as well that no cryptographer learns the
thoughts of another, say that C does not learn about whether A or B paid (unless
of course C did pay, in which case he knows that A and B did not. . . another
caveat we can ignore), we would vary the declarations hid a, b; vis c and do the
derivation under those conditions.

In general, sometimes the same derivation steps go through for all viewpoints;
but sometimes they do not, and then we must choose different intermediate re-
finement steps depending on “who’s looking.” When that happens, it’s equivalent
to a case analysis and can fairly be considered a disadvantage: thus we try to find
derivations that go through for all viewpoints in the same way.

7. Loops and fixed-points

As an example of how loops are treated, the code of (1) in Sec. 1, slightly modified,
is shown to satisfy a simple specification: we will prove the equality

hid h:N ·
reveal h÷2;
h:=hmod 2

= while h>1 do
h:=h− 2

end .

That is, not only does the loop change the value of h (in an obvious way), but
the repeated conditional tests reveal all but the low bit of h’s original value. This
leaking occurs because it is a refinement (an equality) to unfold a loop, which
produces an if command, and we have already seen how refinement causes leakage
in the conditionals of if ’s.

Terminating loops are the unique fixed-points of their associated program
functionals, and so to prove equality between a loop and some specification it is
enough to show the specification satisfies the loop’s functional. In the example
above, that means we show

hid h:N ·
reveal h÷2;
h:=hmod 2

= if h>1 then
h:=h− 2;
reveal h÷2;
h:=hmod 2

fi ,

for which the techniques we have already will suffice.
We start with the right-hand side, since it has more structure (thus suggesting

appropriate moves), and the left-hand side is a smaller target:

A. McIver and C. Morgan / The Thousand-and-One Cryptographers156

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

if h>1 then
h:=h− 2;
reveal h÷2;
h:=hmod 2

fi

= if h>1 then
assert h>1;
h:=h−2;
reveal h÷2;
h:=hmod 2

fi

“add assertion”

= if h>1 then
assert h>1;
reveal (h−2)÷ 2;
h:=h−2;
h:=hmod 2

fi

“commute commands”

= if h>1 then
reveal h÷2;
h:=hmod 2

fi

“Revelation calculus; classical reasoning; remove assertion”

= if h>1 then
reveal h÷2;
h:=hmod 2

else
assert 0≤h≤1;
reveal h÷2;
h:=hmod 2

fi

“Add assertion; Revelation Calculus; classical reasoning”

= if h>1 then skip else skip fi;
reveal h÷2;
h:=hmod 2

“Remove assertion; classical reasoning”

= reveal h>1;
reveal h÷2;
h:=hmod 2

“Revelation calculus”

= reveal h÷2;
h:=hmod 2 ,

“Revelation calculus”

and we are done.

An abbreviated derivation is given in [22, Appendix C].

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 157

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

8. The thousand-and-one cryptographers 13

With the tools introduced in earlier sections, we can now derive a looping program
that implements the Dining Cryptographers’ specification for as many partici-
pants as we like. Let the cryptographers be numbered 0..N inclusive (thus N+1
of them) and let their did-pay states be recorded as indexed Boolean variables
a[0..N]:Bool. Our specification is then

vis N :N; hid a[0..N]:Bool ·
reveal (⊕n:N | 0≤n≤N · a[n]) ,

Having learned in Sec. 6.1 that the last cryptographer is treated specially, we
make that special treatment our first development step, reasoning

= |[hid l, r:Bool ·
reveal l ⊕ (⊕n:N | 0≤n<N · a[n])⊕ r;
reveal l ⊕ a[N]⊕ r

]| ,

“As in Sec. 6.1”

intending to implement the right-barred portion (i.e. having a “|” at right) as a
loop.

For that loop, we refer again to Sec. 6.1, which suggests using a loop body
built on the fragment

r:∈Bool;
reveal l ⊕ a[n]⊕ r;
n:=n+1 ,

and it turns out that a repeat-until works better in this instance. With that in
mind we propose as the next step for the right-barred portion, above, the code

= |[vis n:N; hid m ·
m,n:= l, 0;
repeat

r:∈Bool;
reveal m⊕ a[n]⊕ r;
m,n:= r, n+1

until n=N
]| ,

where we have had to introduce a temporary variable m to avoid over-writing
the initially flipped l that will be needed at the end by Cryptographer N . In
order to establish this equality, we use the techniques of Sec. 7 to show that the
right-barred repeat-until is equal to this straight-line fragment:

13This is in the Arabian sense: “as many as you like.”

A. McIver and C. Morgan / The Thousand-and-One Cryptographers158

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

vis N :N; hid a[0..N]:Bool ·
reveal (⊕n:N | 0≤n≤N · a[n])

= |[vis n:N; hid l,m, r:Bool ·
l:∈Bool;
m,n:= l, 0;
repeat
r:∈Bool;
reveal m⊕ a[n]⊕ r;
m,n:= r, n+1

until n=N ;
reveal l ⊕ a[N]⊕ r

]|

“Reasoning in this section”

Figure 3. Specification and implementation for the thousand-and-one cryptographers.

r:∈Bool;
reveal m⊕ (⊕i:N | n≤i<N · a[i])⊕ r
m, n:= r,N

For the loop (and its functional) as given, that means we must work towards the
program fragment immediately above from this fragment below:

r:∈Bool;
reveal m⊕ a[n]⊕ r;
m,n:= r, n+1;

if n<N then
r:∈Bool;
reveal m⊕ (⊕i:N | n≤i<N · a[i])⊕ r;
m,n:= r,N

fi .

Since this derivation is “more of the same” material that we have illustrated in
earlier sections.

As we remarked in Sec. 6.1, monotonicity of refinement (equivalently, the con-
gruence of our program operators) means that no further reasoning is necessary
when we pull the pieces of this section together. That gives the overall equality
shown in Fig. 3.

9. Advantages; disadvantages; comparisons; conclusions

Provable program refinement is the established scientific technique relating spec-
ifications to software code; it is hard to achieve, but brings with it a recognised
quality to the workmanship of the code it produces. “Provable security refine-

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 159

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

ment” –or something very like– is the technique we propose here with similar
implications to quality.

Our proposed mathematical model for secure refinement has has been in-
spired by a number of other works; our contribution has been to select and fuse
several well-known techniques to produce a reasoning tool that can be applied
at the source level, and our focus on reasoning at the level of source code is the
most obvious feature setting us apart from other researchers. Earlier work setting
out the theory [25,26] outlined in more detail how this approach relates to other
techniques. In summary it shares many similarities with the Logic of Knowledge
[15] but is less general. The semantic technique is based on a version of nonin-
terference which distinguishes “high-security” variables from “low security”, and
similar techniques have been suggested by Leino [19] and Sabelfeld [32].

However our overriding motivation is to be able to prove security properties
about program code relative to specific assumptions about the operating context.
But code –even without security implications– is hard to understand; with security
in the mix it can rise to a higher order of impenetrability, and finding security
flaws in such code is an unending task. In 1988 Goldwasser, Micali and Rivest
[13] were the first to introduce the idea of “provable security”; it was highly
innovative for its time but set the foundations to place security on a scientific
footing, and has led to many theoretical results about cryptographic protocols and
their relationship to their underlying cryptographic primitives. Although we do
not claim a technique as general or widely applicable as Goldwasser and Micali’s
work, we do claim a source level method following its fundamental principals
which is applicable to some security properties. Here our attacker –a feature of
their work– is the programmer who might (maliciously or not) attempt to use
a program in a context for which it was not designed; secure refinement means
exactly that the implemented code has the same (or better) security properties
as the specification. The crucial advantage of this is that the specification suffers
exactly the same security flaws as the implementation, whatever they might be,
and is exposed to the same attacks. Specifications by tradition only state the
designer’s ideal requirements and avoid the issues of implementation, and –as with
traditional functional properties– it is only at the abstract level that designers
have any chance of understanding their designs: this is where security issues should
be considered.

Acknowlegements

Reprinted/adapted by permission from Springer Nature: The Thousand-and-one
Cryptographers by Annabelle McIver and Carroll Morgan in Reflections on the
work of C.A.R. Hoare (C.B. Jones and A.W. Roscoe (editors)), Springer, 2010.

References

[1] J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University Press,

1996.
[2] Rajeev Alur, Pavol Černý, and Steve Zdancewic. Preserving secrecy under refinement.

In ICALP ’06: Proceedings (Part II) of the 33rd International Colloquium on Automata,

Languages and Programming, pages 107–118. Springer, 2006.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers160

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[3] R.-J.R. Back. On the correctness of refinement steps in program development. Report

A-1978-4, Dept Comp Sci, Univ Helsinki, 1978.
[4] R.-J.R. Back. A calculus of refinements for program derivations. Acta Inf, 25:593–624,

1988.
[5] Philippa J. Broadfoot and A. W. Roscoe. Tutorial on FDR and its applications. In Klaus

Havelund, John Penix, and Willem Visser, editors, SPIN, volume 1885 of Lecture Notes
in Computer Science, page 322. Springer, 2000.

[6] D. Chaum. The Dining Cryptographers problem: Unconditional sender and recipient

untraceability. J. Cryptol., 1(1):65–75, 1988.
[7] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In CCS ’04:

Proceedings of the 11th ACM Conference on Computer and Communications Security,
pages 198–209, New York, NY, USA, 2004. ACM.

[8] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[9] K. Engelhardt, Y. Moses, and R. van der Meyden. Unpublished report, Univ NSW, 2005.
[10] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing

contracts. Commun. ACM, 28(6):637–647, 1985.
[11] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT Press,

1995.
[12] J.A. Goguen and J. Meseguer. Unwinding and inference control. In Proc IEEE Symp on

Security and Privacy, pages 75–86, 1984.
[13] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive

chosen message attacks. SIAM J. on Computing, 17:281–308, 1988.
[14] Probabilistic Systems Group. Collected publications.

www.cse.unsw.edu.au/~carrollm/probs.
[15] J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in multiagent systems.

In Proc 16th IEEE Computer Security Foundations Workshop, pages 75–88, 2003.
[16] C.A.R. Hoare. An axiomatic basis for computer programming. Comm ACM, 12(10):576–

80, 583, October 1969.
[17] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.
[18] J. Jacob. Security specifications. In IEEE Symposium on Security and Privacy, pages

14–23, 1988.
[19] K.R.M. Leino and R. Joshi. A semantic approach to secure information flow. Science of

Computer Programming, 37(1–3):113–38, 2000.
[20] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. In

POPL ’05: Proc. 32nd ACM SIGPLAN-SIGACT Symp. on Princ. of Prog. Lang., pages
158–170, New York, NY, USA, 2005. ACM.

[21] Heiko Mantel. Preserving information flow properties under refinement. In Proc IEEE

Symp Security and Privacy, pages 78–91, 2001.
[22] A.K. McIver and C.C. Morgan. The thousand-and-one cryptographers. In K. Wood

A. Roscoe, C. Jones, editor, Reflections on the Work of C.A.R. Hoare, pages 255–282.
Springer, 2010.

[23] C.C. Morgan. Programming from Specifications. Prentice-Hall, second edition, 1994.
web.comlab.ox.ac.uk/oucl/publications/books/PfS/.

[24] C.C. Morgan. Of probabilistic wp and CSP. In A. Abdallah, C.B. Jones, and J.W. Sanders,
editors, Communicating Sequential Processes: The First 25 Years. Springer, 2005.

[25] C.C. Morgan. The Shadow Knows: Refinement of ignorance in sequential programs. In

T. Uustalu, editor, Math Prog Construction, volume 4014 of Springer, pages 359–78.

Springer, 2006. Treats Dining Cryptographers.
[26] C.C. Morgan. A calculus of revelations, 2008. Presented at VSTTE ’08, Toronto.

http://www.cs.stevens.edu/~naumann/vstte-theory-2008/.

[27] C.C. Morgan. The Shadow Knows: Refinement of ignorance in sequential programs. Sci-
ence of Computer Programming, 74(8), 2009. Treats Oblivious Transfer.

[28] C.C. Morgan and A.K. McIver. Unifying wp and wlp. Inf Proc Lett, 20(3):159–64, 1996.
Available at [14, key MM95].

[29] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard University, 1981. Available at eprint.iacr.org/2005/187.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers 161

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[30] R. Rivest. Unconditionally secure commitment and oblivious transfer schemes us-

ing private channels and a trusted initialiser. Technical report, M.I.T., 1999.

//theory.lcs.mit.edu/~rivest/Rivest-commitment.pdf.
[31] A.W. Roscoe, J.C.P. Woodcock, and L. Wulf. Non-interference through determinism.

Journal of Computer Security, 4(1):27–54, 1996.
[32] A. Sabelfeld and D. Sands. A PER model of secure information flow. Higher-Order and

Symbolic Computation, 14(1):59–91, 2001.
[33] M.B. Smyth. Power domains. Jnl Comp Sys Sci, 16:23–36, 1978.

[34] Niklaus Wirth. Program development by stepwise refinement. Comm ACM, 14(4):221–7,
1971.

[35] Niklaus Wirth and C. A. R. Hoare. A contribution to the development of ALGOL. Com-
munications of the ACM, 9(6):413–432, June 1966.

A. McIver and C. Morgan / The Thousand-and-One Cryptographers162

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Maude-NPA and Formal Analysis of

Protocols ith Equational Theories

Catherine MEADOWS a,1, Santiago ESCOBAR b and José MESEGUER c

a Naval Research Laboratory, Washington DC, US
b Universitat Politècnica de València, Valencia, Spain

c University of Illinois at Urbana-Champaign, Urbana, IL, US

Abstract. This paper describes the latest version (3.x) of the Maude-NRL Protocol

Analyzer (Maude-NPA), a tool for the analysis of cryptographic protocols that pro-

vides support for equational theories. A key feature is it supports reasoning about

a class of theories with disjoint compositions that have the finite variant property,

via the use of a unification algorithm called variant unification. These theories in-

clude exclusive-or, Abelian groups, and theories underlying Diffie-Hellman key ex-

change. In this paper we show how Maude-NPA works, and we explain in detail

the variant unification algorithm it uses and how the tool makes use of it. We also

describe work on another form of unification, asymmetric unification, that has the

potential to improve on the performance of variant unification in some cases.

Keywords. cryptographic protocols, formal methods, rewriting, unification

1. Introduction

Maude-NPA is a tool for analyzing cryptographic protocols in the Dolev-Yao model. In

such a model, the functions used in the protocol are expressed as terms in a term algebra,

and communication between honest principals takes place via a network controlled by

an intruder who can read, redirect, and alter traffic, create messages on its own, and

may also possess the capabilities (e.g., cryptographic function and keys) available to

legitimate users of the system. The terms in general behave like black boxes: the intruder

cannot obtain a term m unless it either receives m or it can derive it from the terms it

has already received using a set of derivation rules. For example, if the intruder obtains

k and e(k,m), where k is a key and e is an encryption function, it can obtain m via the

derivation rule {K,e(K,M)} � M where K and M are variables standing for keys and

messages, respectively.

This term algebra model appears to be crude, but it has actually been used quite

successfully in discovering subtle flaws in protocols. Nevertheless, it is often the case

that it is necessary to represent properties of the cryptosystem in a more concrete way,

as equational theories obeyed by the term algebra. For example, one could have two

binary operators, e for decryption, and d for decryption, related by the simplification

1Corresponding Author: Center for High Assurance Computer Systems, Naval Research Laboratory,

Washington, DC, 20375; E-mail: catherine.meadows@nrl.navy.mil

w

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-163

163

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

rule d(K,e(K,M)) → M. Then, whenever d(k,e(k,m)) appears in a message, it can be

replaced by m. Such a representation is more expressive than the simple derivation rule,

since it allows us to represent the application of the decryption function to a term that

may not stand for an encrypted message, e.g. d(k,m).
The need for equational theories becomes even more pressing, once associative-

commutative theories are introduced. Since many cryptographic algorithms are based

on the use of Abelian groups, this is hard to avoid. For example, in the Diffie-Hellman

key exchange protocol, Alice sends to Bob the term gNA modulo a prime P, where NA
is a random nonce and g is a generator of the multiplicative group of integers modulo

P. Likewise, Bob sends gNB to Alice. They, then, compute (gNB)NA and (gNA)NB , respec-

tively. We then have (gNB)NA = gNB∗NA and (gNA)NB = gNA∗NB , respectively, where ∗ is an

associative-commutative operator. Thus, A and B share the same term, which cannot be

learned by a passive observer, since that would require knowledge of NA or NB. However,

it will not be useful to express commutativity X ∗Y =Y ∗X as a rewrite rule: both sides of

the equation are identical, and the rewrite rule will be applied forever. It is thus necessary

to treat associative-commutative properties differently, not as rules but as axioms.

In this paper we show how such equational theories are handled in Maude-NPA,

while pointing out the relevance to other cryptographic protocol analysis tools as well.

We first give an overview in Section 2 of how Maude-NPA works, and how it uses equa-
tional unification, i.e., solving equations modulo equational theories, to express transi-

tion from one state to another. We use this to motivate the use of variant unification in

Section 3, a general unification method that can be applied to theories that can be ex-

pressed as the disjoint union of a set of rewrite rules E and some subset B of associa-

tive and/or commutative and/or identity axioms. In Section 4, we present a case study of

a cryptographic API described in Maude-NPA that involves a number of complex fea-

tures, all handled by variant unification. We then give in Section 5 an evaluation of vari-

ant unification with respect to five desiderata for unification in cryptographic protocol

analysis, pointing out its advantages and deficiencies. Finally, we describe in Section 6

research on a form of unification, called asymmetric unification, that addresses some of

the deficiencies of variant unification. We conclude in Section 7.

Much of the work presented in this paper has appeared elsewhere, but has been

scattered among different papers and technical reports, and required a background in

rewriting and equational unification to be understood. In this paper we bring discussion

of research issues together with an introduction to variant unification presented in the

Maude-NPA 3.X manual intended for the general reader. In particular, most of Section 2

and a large part of Section 3 are adapted from the Maude-NPA manual, while Section 4

summarizes the work of González-Burgueño et al. in [1], and Section 6 summarizes the

work of Erbatur et al. in [2].

2. How Maude-NPA works

In this section we give an overview of how Maude-NPA works. We do not attempt to

give all the details; in particular our description of Maude-NPA states leaves out certain

features that are irrelevant to the discussion. Our goal rather is to provide enough detail

to motivate the use of variant unification. On the other hand, we go into great detail about

how terms are constructed in Maude-NPA, since this is crucial to the understanding how

variant unification works.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories164

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

2.1. Signatures and Term Algebras

Here we give some basic definitions concerning signatures and term algebras that are

necessary to understand the next section.

In Maude-NPA, a protocol P is specified using an order-sorted signature defined

by the user, that declares the sorts and function symbols used in the protocol. An

order-sorted signature is a pair ((S,<),F), where (S,<) is a partially ordered set of

types called sorts, and < is the subsort inclusion order (for example, we may have

Nat, Int,Rat ∈ S and Nat < Int < Rat), and F is a set of typed function symbols of the

form f : s1 · · ·sn → s, where n ≥ 0, and s1, . . . ,sn,s ∈ S (for example, we may have 0 :→
Nat, + :Nat Nat→Nat, and + : Int Int→ Int in F). Consider now a family X = {Xs}s∈S
of S-sorted variables, where for each sort s ∈ S, Xs is an infinite set of variables of sort

s (for example, for sort Nat, we may have XNat = {x0:Nat,x1:Nat, . . . ,xn:Nat, . . .}, and

likewise for other sorts). Then, the term algebra TΣ(X) is defined inductively as an S-

sorted family TΣ(X) = {TΣ(X)s}s∈S together with an interpretation in TΣ(X) of the oper-

ators in F as follows: (i) if x ∈ Xs, then x ∈ TΣ(X)s, (ii) if a : → s in F , then a ∈ TΣ(X)s,
(iii) if f : s1 · · ·sn → s in F and ti ∈ TΣ(X)si , 1 ≤ i ≤ n, then f (t1, . . . , tn) ∈ TΣ(X)s, and

(iv) if t ∈ TΣ(X)s and s < s′, then t ∈ TΣ(X)s′ . The operations of F are interpreted in

TΣ(X) as expected: each f : s1 · · ·sn → s in F is interpreted as the lambda expression

λ (x1, . . . ,xn) ∈ TΣ(X)s1 ×·· ·×TΣ(X)sn . f (x1, . . . ,xn) ∈ TΣ(X)s.
For example, consider a signature with sorts Msg, Encryption, Concatenation,

Nonce, Fresh, and Name. The order-sorted information is provided as a subsort inclu-

sion order between sorts: Encryption,Concatenation,Name <Msg describing that, for

example, any term of sort Concatenation is also of sort Msg.

In this signature, we may have operations such as pk (for “public key encryption”)

with typing pk : Name Msg → Msg, sk (for “secret key encryption”) with typing sk :

Name Msg → Msg, n (for “nonce”) with typing n : Name Fresh → Nonce, and ; (for

“concatenation”) with typing ; : Msg Msg→Msg (where we use underbars to indicate

argument places, i.e., m;m′ is the concatenation of m and m′).
For example, the term t = n(a,r) ; (X ; n(b,r′)), where a, b, and c are constants of

sort Name, X is a variable of sort Msg, and r, r′, and r′′ are variables of sort Fresh, is a

term of sort Concatenation, and hence is also a term of sort Msg.

It is also possible to specify the algebraic properties of the function symbols in Σ
using a set E of equations. Then the pair (Σ,E) is called an equational theory. This is

useful for describing both the properties of the cryptographic functions in the protocol

and the properties of any other symbol. For example, the symbols pk and sk satisfy the

cancellation property, i.e., sk(A, pk(A,M)) = M where A is a variable of sort Name and

M is a variable of sort Msg.

Maude-NPA works with E-equivalence classes. For a term t, [t] denotes its equiv-

alence class modulo E (i.e., t ′ ∈ [t] ⇔ t ′ =E t), where t ′ =E t, means that t ′ may be

transformed into t by a sequence of elementary equality steps using equations in E (i.e.,

replacing equals by equals). For example, if we assume that the symbol ; is associative,

i.e., x;(y;z) = (x;y);z, the equivalence class [t], for t the example term mentioned above,

contains not only n(a,r) ; (X ; n(b,r′)) (i.e., first compute (X ; n(b,r′)) and then com-

pute n(a,r) ; (X ; n(b,r′))) but also (n(a,r) ; X) ; n(b,r′) (i.e., first compute (n(a,r) ; X)
and then compute (n(a,r) ; X) ; n(b,r′)). If we further assume that the symbol ; is

associative and commutative, i.e., we also have x;y = y;x, then the elements in the equiv-

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 165

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

alence class [t] include all the terms obtainable by permuting the subterms immediately

below the symbol occurrences of ; in n(a,r) ; (X ; n(b,r′)) and in (n(a,r) ; X) ; n(b,r′),
e.g., X ; (n(a,r) ; n(b,r′)).

For a set E of equations such as associativity or associativity-commutativity, the

number of elements in an E-equivalence class [t] is always finite. But this is not necessar-

ily the case for other equations. For example if E contains the equation sk(A, pk(A,M)) =
M, then, for the ground term u = sk(a, pk(a,n(b,r))), the number of elements in the

equivalence class [u] is infinite: sk(a, pk(a,n(b,r))) and n(b,r) but also any term of the

form sk(a1, pk(a1, . . . ,sk(an, pk(an,sk(a, pk(a,n(b,r))))) · · ·)). In this case, Maude-NPA

keeps only n(b,r), which is called the normalized (or simplified) version of u. Maude-

NPA makes a distinction between whether an algebraic property is used for simplification

or not, which is explained in detail in Section 3.1.

2.2. Equational unification

The execution states associated to a protocol are modeled as elements of an initial al-

gebra TΣ/E (i.e., the set of all the terms without variables modulo the algebraic proper-

ties E). However, Maude-NPA does not work with concrete states in the initial algebra

but with E-equivalence classes of symbolic state patterns [t(x1, . . . ,xn)] on the free alge-

bra TΣ/E(X) over a set of sorted variables X (i.e., the set of all the terms with variables

modulo the algebraic properties E).

Maude-NPA relies on equational unification to work with symbolic state patterns.

Before we define equational unification, we first need to define the concept of a substi-
tution. Given an algebra TΣ/E(X), a substitution σ on TΣ/E(X) is a sort-preserving map

from the variables X to TΣ/E(X)-terms such that σ is the identity on all but a finite set of

variables. A substitution σ : X → TΣ/E(X) extends to a unique F -homomorphism (also

denoted by σ), σ : TΣ/E(X)→ TΣ/E(X) in the obvious way. Given two terms u and v and

an equational theory (Σ,E) associated to a protocol P , a substitution σ is a E-unifier of

terms u and v (or a unifier modulo E) if σ(u) =E σ(v). A substitution σ is more general

than another substitution θ if θ is a substitution instance of σ , i.e., there is a substitu-

tion γ such that for each variable x, σ(x) =E γ(θ(x)). A complete set of most general
E-unifiers of two terms u and v satisfies the property that for any E-unifier of u and v,

there is a unifier in the set more general than it. Unifiers and sets of most general unifiers

are defined analogously for systems of equations {u1 = v1, . . . ,uk = vk}.

For example, consider that E is just the the cancellation property above, i.e.,

sk(A, pk(A,M)) = M. The complete set of most general E-unifiers of the two terms

t = sk(a,X) and s = n(b,r) (where X is a variable of sort Msg and r is a variable of sort

Fresh) is σ = {X → pk(a,n(b,r))}.

2.3. Maude-NPA states

Maude-NPA performs reachability analysis by: (i) working with symbolic state patterns

representing typically infinite sets of its ground instances; and (ii) performing equational-

unification-based symbolic execution. What (i) means is that a pattern t describing a

“symbolic state” defines a corresponding set [[t]] of actual instances. And what (ii) means

is that unification works with E-equivalence classes of the symbolic states and all the

possible E-unifiers must be explored.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories166

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

For example, the Needham-Schroeder public key (NSPK) protocol is specified using

the standard Alice-and-Bob notation as follows:

1. A → B : pk(B,A;NA)
2. B → A : pk(A,NA;NB)
3. A → B : pk(B,NB)

where A and B denote Alice and Bob principal identifiers, NA and NB denote the respec-

tive nonces, and pub(A) and pub(B) are the respective public keys.

Let us consider an informal representation of the symbolic states found by Maude-

NPA, where we include each participant as “Name:”. The intruder is represented by

“Intruder:” and contains a set of learned messages. Any other participant is labeled by

its role label, e.g. “Alice:”, and contains a list of received and sent messages; a positive

node +(m) implies sending message m, and a negative node −(m) implies receiving m.

The following is an informal representation of one of the possible symbolic states

found during the execution of the protocol, which represents a partial execution of an

instance of Alice’s role and an instance of Bob’s role:

Sessions &

Alice: +(pk(i,A;NA)),−(pk(A,NA;NB))
Bob: −(pk(B,A;NA)),+(pk(A,NA;NB))

Intruder: Knowledge

where Sessions is a variable denoting uncertain sessions (role executions), Knowledge is

a variable denoting uncertain intruder knowledge, A and B are variables of sort Name, i
is a constant identifying the intruder, and NA and NB are variables of sort Nonce.

2.4. Reachability analysis

Maude-NPA performs backwards symbolic reachability analysis, i.e., if the protocol’s

usual “forwards” transitions are specified by rules of the form l → r, then the reverse,

“backwards” transitions are specified by reversed rules of the form r → l.
One reasonable protocol goal is that, once an honest principal finishes executing an

instance of a protocol, apparently with another honest principal, then the intruder should

not learn the principal’s nonce. This goal, when specified in Maude-NPA, leads to its

discovery of the well-known man-in-the-middle attack on Needham-Schroeder. The goal

is represented in Maude-NPA by the following attack pattern, where an instance of Bob’s

role (such instances are referred to as sessions)has participated, this session has finished

its execution, and the intruder has learned the nonce, NB, generated by this Bob’s in-

stance. Logical variables A? and NA?
are labeled with a question mark, and variables for

sessions, or role Sessions1, and the uncertain intruder knowledge, Knowledge1, are writ-

ten explicitly. All these variables, A?, NA?
, Sessions1, and Knowledge1 are existentially

quantified, even if the symbol ∃ is not written explicitly in the informal attack pattern

notation.

Sessions1 &

Bob: −(pk(B,A?;NA?
)),+(pk(A?,NA?

;NB)),−(pk(B,NB))
Intruder: NB & Knowledge1

Then, the existence of an attack on the given protocol from a symbolic attack state

u like this one exactly means that there is a substitution θ such that θ(u) can reach in a

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 167

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

backwards direction a state θ(v) that it is initial (i.e., no more backwards steps can be

performed). But this is equivalent to the forwards meaning that from the initial state θ(v)
we can reach θ(u) in some protocol execution, thus causing an attack on the protocol.

The extra ingredients necessary for reachability analysis are just to: (i) incorporate the

Dolev-Yao intruder capabilities as transition rules, and (ii) adding new protocol sessions

whenever necessary.

Figure 1 shows an informal representation of the full backwards symbolic execution

from this attack pattern until an initial state is reached. The transition arrows include the

honest or dishonest action being performed and the variable instantiation.

Note that although in Figure 1 the attack proceeds from the initial state (at the bot-

tom) to the final state (at the top), the arrows go in the direction of the backwards search.

Moreover, as the search proceeds, the variables in the state expressions become further

and further instantiated; we attach such instantiations to the arrows. In order to see the at-

tack state that is actually reached, we can compose all the partial substitutions generated

through the backwards steps and apply it to the attack pattern, producing the following

fully instantiated attack state:

Sessions2 &

Alice: +(pk(i,A;NA)),−(pk(A,NA;NB)),+(pk(i,NB))
Bob: −(pk(B,A;NA)),+(pk(A,NA;NB)),−(pk(B,NB))

Intruder: NB & pk(B,NB) & pk(i,NB) & pk(A,NA;NB)
& pk(B,A;NA) & pk(i,A;NA) & Knowledge6

It is easy now to figure out the fully instantiated execution path in a forwards sense from

the initial state to this fully instantiated attack pattern (just by following Figure 1 from

bottom to top).

Let us also illustrate equational unification within this protocol example. In the step

called “Intruder extracts NB from pk(i,NB)”, backwards search invokes equational unifi-

cation between the following two terms NB and sk(i,M), i.e., between the challenge NB
and the intruder action of encrypting a message M using his private key i. The equational

theory of NSPK is cancellation of encryption and decryption, described by the follow-

ing equation sk(A, pk(A,M)) = M. We find that this unification problem NB =? sk(i,M)
has a single most general solution {M → pk(i,NB)} modulo the equational theory of

cancellation of encryption and decryption.

3. Variant Unification in Maude-NPA

Equational theories found in cryptographic protocols generally contain two types of

equations. The first are equations that can be oriented into rules for simplifying terms,

e.g. d(K,e(K,M)) = M. These rules can be given orientations t → s so that t is the more

complex term, e.g. d(K,e(K,M))→ M. These rewrite rules must satisfy certain require-

ments, which are discussed in more detail in this section. The other equations, called

axioms, are those that describe theories that are some combination of associative and/or

commutative and/or identity axioms. Such axioms have well-known and well-understood

unification algorithms. Using the distinction between oriented equations and axioms, the

user has a fair amount of freedom for specifying equational theories. In particular, so-

phisticated users may create their own rewrite rules in order to specify cryptoalgorithms

of interest.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories168

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Final state - Search starts
Sessions1 &

Bob: −(pk(B,A?;NA?
)),+(pk(A?,NA?

;NB)),−(pk(B,NB))
Intruder: NB & Knowledge1

Intruder generates pk(B,NB) from NB{Knowledge1 →pk(B,NB) & Knowledge2}

��

Sessions1 &

Bob: −(pk(B,A?;NA?
)),+(pk(A?,NA?

;NB))
Intruder: NB & Knowledge2

Intruder extracts NB from pk(i,NB){Knowledge2 →pk(i,NB) & Knowledge3}
��

Sessions1 &

Bob: −(pk(B,A?;NA?
)),+(pk(A?,NA?

;NB))
Intruder: pk(i,NB) & Knowledge3

Intruder receives pk(i,NB) from new Alice instance{Sessions1 →Alice & Sessions2}
��

Sessions2 &

Alice: +(pk(i,A;NA)),−(pk(A,NA;NB))
Bob: −(pk(B,A;NA)),+(pk(A,NA;NB))

Intruder: Knowledge3

Bob sending and Alice receiving message pk(A,NA;NB){Knowledge3 →pk(A,NA;NB) & Knowledge4}
��

Sessions2 &

Alice: +(pk(i,A;NA))
Bob: −(pk(B,A;NA))

Intruder: Knowledge4

Intruder generates pk(B,A;NA) from NA{Knowledge4 →pk(B,A;NA) & Knowledge5}
��

Sessions2 &

Alice: +(pk(i,A;NA))
Bob: nil

Intruder: NA & Knowledge5

Intruder extracts NA from pk(i,A;NA){Knowledge5 →pk(i,A;NA) & Knowledge6}
��

Sessions2 &

Alice: nil

Bob: nil

Intruder: Knowledge6

Initial state - Search ends

Figure 1. Backwards symbolic execution of man-in-the-middle attack in NSPK

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 169

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The unification algorithms used by Maude-NPA should satisfy a number of desider-

ata:

des1: They should apply to a large class of theories that occur in cryptographic

protocols.

des2: If there are any conditions applying to the use of a unification algorithm, they

should be easy to verify, preferably by push-button automated means.

des3: It should be straightforward to combine unification algorithms for different

theories. This is needed because each crypto-algorithm usually has its own the-

ory associated with it, and cryptographic protocols generally use more than one

crypto-algorithm.

des4: They should support irreducibility constraints without losing completeness.

. Maude-NPA, as well as other tools, refuses to search any further from states

that can be shown to be unreachable. One way of doing this is by looking for

a term u in the intruder knowledge that it has proved that the intruder cannot

find. These proofs usually require the assumption that u is irreducible, that is, no

rewrite rule obtained from E can be applied, even when variables of the term are

further instantiated. This assumption is enforced by an irreducibility constraint

that requires that any instance σ(u) that is reducible by the oriented equations in

the equational theory should be rejected.

des5: They should be efficient, and the size of the most general set of unifiers pro-

duced should be close to the minimum possible. This is because each unifier pro-

duces a new backwards analysis step, and thus a new symbolic state. Keeping the

number of unifiers small helps to prevent state space explosion.

It is difficult for a class of unification algorithms to satisfy all of these desiderata

completely, since several of them are in conflict. For example, there is usually a trade-

off between generality (des1) and efficiency (des4). The algorithm used in Maude-NPA,

variant unification, satisfies (des1) through (des4). It is less successful with (des5), but it

is still efficient enough to be practical in a large number of cases. We will discuss possible

methods for improving efficiency, in particular reducing the size of the most general set

of unifiers found, in Section 6.

3.1. Terms, Positions, Rewriting and Narrowing

Here we give some basic definitions involving rewriting and narrowing [3,4].

In order to define rewriting and narrowing, we will first need to find positions in a

term. Positions are strings of natural numbers used to locate subterms of a term, and are

defined recursively. If t is a term, then the position of t in t is denoted by the empty string

ε . If s is located at position p in t, and u is the i’th argument of s, then u is located at

position p.i. We use t|p to denote the subterm of t located at p, and s = t[u]p to denote the

result of replacing the subterm of t at positon p with u. We say that p is a variable position
of t if t|p is a variable. Thus, if t = f (g(x,y),z), then t|ε = f (g(x,y),z), t|1 = g(x,y),
t|2 = z, t|1.1 = x, and t|1.2 = y.

Given an equational theory (Σ,R) consisting of rewrite rules, and a term t, we say

that t rewrites to s via the rewrite rule �→ r if there is a position p of t such that there is

a matching substitution θ of t|p and � (i.e., θ(l) = t|p), and s = t[θ(r)]p. We denote this

by t
σ ,p→�→r s (or simply t →�→r s). We say that t1 rewrites to tk with a rule in R, t1 →∗

R tk,

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories170

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

if there is a sequence t1, . . . , ti, . . . , tk such that ti →�i→ri ti+1 such that �i → ri ∈ R. We say

that t is irreducible if there is no s such that t →R s.

If a term t has variables, we can also apply narrowing with the rules R to it. We say

that t narrows to s via the rewrite rule �→ r if there is a non-variable position p of t and

a unifier σ of t|p and � (i.e., σ(t|p) and σ(�) are equal), and s = θ(t[r]p). We denote this

by t
σ ,p�→r s (or simply t �→r s). We say that t1 narrows to tk via R, t1

σ∗
R tk, if there is

a sequence t1, . . . , ti, . . . , tk such that ti
σi�i→ri ti+1, �i → ri ∈ R, and σ = σ1 · · ·σk−1.

We will be particularly interested in rewriting and narrowing modulo axioms. This is

a form of rewriting and narrowing in which the equational theory is of the form (Σ,E *
B), the disjoint union of E and B, where E is a set of rewrite rules and B is a set of

axioms. We write t →E/B s if there are terms t ′ and s′ such that t =B t ′, t ′ →E s′, and

s =B s′. Suppose, for example, that a + symbol has been declared commutative with the

comm attribute, and that we have an equation in E of the form x+ 0 = x. Then we can

apply such an equation to the term 0+7 modulo commutativity, even though the constant

0 is on the left of the + symbol. That is, the term 0+7 matches the left-hand side pattern

x+0 modulo commutativity. We would express this rewrite step of simplification modulo

commutativity with the arrow notation:

0+7 →E/B 7

where E is the set of equations containing the above equation x+ 0 = x, and where B
is the set of axioms containing the commutativity of +. Likewise, we denote by →∗

E/B
the reflexive-transitive closure of the one-step rewrite relation →E/B with the equations

E modulo the axioms B. That is, →∗
E/B corresponds to taking zero, one, or more rewrite

steps with the equations E modulo B.

The rewriting relation →E/B is difficult to implement (it is in fact generally undecid-

able), and so we prefer to use a simpler form of rewriting performed on representatives of

B-equivalence classes of subterms. We say that t →E,B s if there is a position p of t such

that there is a B-matching substitution θ of t|p and � (i.e., t|p = θ(�)), and s = t[θ(r)]p.

Soundness and completeness of E,B-rewriting with respect to E/B-rewriting requires a

condition called strict coherence [8]. Consider, for example, an exclusive or operator ⊕
which has been declared AC. Now consider the equation x⊕ x = 0. This equation, if not

completed by another equation, is not coherent modulo AC. What this means is that there

will be term contexts in which the equation should be applied, but it cannot be applied.

Consider, for example, the term b⊕ (a⊕ b). Intuitively, we should be able to apply the

above equation to simplify the term above to the term a⊕ 0 in one step. However, we

cannot! The problem is that the equation cannot be applied (even if we match modulo

AC) to either the top term b⊕ (a⊕ b) or the subterm a⊕ b. We can however make our

equation coherent modulo AC by adding the extra equation x⊕ x⊕ y = 0⊕ y, which we

can slightly simplify to the equation x⊕ x⊕ y = y by using the equation x⊕0 = x. This

extended version of our original equation will now apply to the term b⊕ (a⊕b), giving

the simplification b⊕ (a⊕ b) −→E,B a. The methods for guaranteeing strict coherence

for the axioms sets B of interest to us are described in detail in Section 3.2.1.

Finally, (E,B)-narrowing is defined similarly to (E,B)-rewriting but using B-

unification of t|p and � instead of B-matching.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 171

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

3.2. Requirements for Variant Algebraic Theories

As we will show, for theories (Σ,E) which can be decomposed into a set B of axioms

and a set E of oriented equations and satisfy the requirements explained in this section,

Maude-NPA uses a technique called folding variant narrowing [6] to perform unification

of symbolic terms modulo the oriented equations E and the axioms B specified for the

algebraic properties of the protocol. In order for this folding variant narrowing strategy

to be sound and complete and to provide a finite set of unifiers, six specific requirements

must be met by any algebraic theory specifying cryptographic functions that the user pro-

vides. If these requirements are not satisfied, Maude-NPA may exhibit non-terminating

and/or incomplete behavior, and any completeness claims about the results of the anal-

ysis can no longer be guaranteed. We list below these six requirements and explain in

detail what they mean. We consider algebraic theories T in which axioms and rules are

explicitly decomposed in the form: T = (Σ,B,E), where Σ is a signature declaring sorts,

subsorts, and function symbols, and E *B is the disjoint union of a set B of equational

axioms such as our previous combinations of associativity and/or commutativity and/or

identity axioms, and a set E of oriented equations to be used from left to right as rewrite

rules.

In Maude-NPA we call an algebraic theory T = (Σ,B,E) specified by the user for

the cryptographic functions of the protocol admissible if it satisfies the following six

requirements:

1. The axioms B can declare some binary operators in Σ to have any combination of

associativity (A), commutativity (C), and identity (U) axioms.

2. The equations E are confluent modulo B.

3. The equations E are terminating modulo B.

4. The equations E are coherent modulo B (see [5]).

5. The equations E are sort-decreasing.

6. The equations E have the finite variant property (see [6,7]).

We now explain in detail what these requirements mean.

3.2.1. Guaranteeing Strict Coherence

Here, we show how to guarantee strict coherence for the three theories most commonly

used in Maude-NPA: AC, ACU , and A:

1. For any symbol f which is AC, and for any equation of the form f (u,v) = w in E,

we just add the equation f (f (u,v),x) = f (w,x), where x is a fresh new variable.

2. If f is ACU with identity symbol e, the original equation f (u,v) = w is replaced
by the extended equation f (f (u,v),x) = f (w,x) shown above, instead of being

added.

3. Likewise, if f is associative only, the following extended equations should be

added: f (x, f (u,v)) = f (x,w), f (f (u,v),y) = f (w,y), and f (x, f (f (u,v),y)) =
f (x, f (w,y)).

In an order-sorted setting, we should give to such new variables x and y the biggest sort
possible, so that they will apply in all generality.

As an additional optimization, note that some equations may already be coherent

modulo B, so that we need not add the extra equation or equations. This can be checked

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories172

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

by determining if the new equation s = t can be derived from the already existing equa-

tions. Consider for example the exclusive-or theory x⊕0 = x, x⊕x = 0 and x⊕x⊕y = y,

where ⊕ is AC. Consider the extended equation (x⊕0)⊕z= x⊕z constructed using x⊕0

and 1) from above to guarantee coherence. Since x⊕0 = x, we have (x⊕0)⊕ z = x⊕ z,

so the equation already follows from the original theory.

Also, if we assume that symbol ⊕ is ACU instead of AC, then the previous three

equations x⊕ 0 = x, x⊕ x = 0 and x⊕ x⊕ y = y for ⊕ being AC can be simplified into

one equation x⊕ x⊕ y = y for ⊕ being ACU with 0 as the identity symbol. Note that

this equation is coherent modulo ACU but it is not terminating modulo ACU since for

any term T , we have T =ACU 0⊕ 0⊕ T and 0⊕ 0⊕ T →E/ACU T using the equation

x⊕x⊕y = y. Because of this, exclusive-or must be specified in Maude-NPA with an AC

symbol and never with an ACU symbol.

3.2.2. Sort-decreasingness

An equation u = v is sort-decreasing iff for any substitution instance uθ = vθ , if vθ is

of sort s, then uθ must also be of sort s. This helps us avoid instances in which a term

containing u may obey sort restrictions, but not when u is replaced by v.

As an example of what can happen when a theory is not sort-decreasing, suppose

that for the cancellation of encryption and decryption we use a subsort Encoding of the

sort Msg and the following definitions for symbols pk and sk:

op pk : Name Msg -> Encoding [frozen] .

op sk : Name Msg -> Encoding [frozen] .

Then the following equations for cancellation are not sort-decreasing, since the left-hand

sides are defined as elements of sort Encoding but the application of the equations may

return elements of a greater sort Msg:

eq pk(A:Name,sk(A:Name,Z:Msg)) = Z:Msg [variant] .

Suppose that we have defined a function symbol f : Encoding → Msg. Now, the term

f (pk(a,sk(a,n(a,r)))) appears to obey sort restrictions, since pk(a,sk(a,n(a,r))) is of

sort Encoding. But pk(a,sk(a,n(a,r))) is equivalent to n(a,r), which is of sort Nonce,

and f (n(a,r)) is not well-typed. The problem could have been avoided if pk had been

declared of sort Msg.

3.2.3. Confluence

The equations E are called confluent modulo B if and only if for each term t in the theory

T = (Σ,B,E), if we can rewrite t with E modulo B in two different ways to terms u and

v, then we can always further rewrite u and v to a common term modulo B. That is, when

there are terms u and v such that t −→∗
E,B u and t −→∗

E,B v, we can always find terms

u′,v′ such that u −→∗
E,B u′ and v −→∗

E,B v′, and u′ =B v′. Note that u′ and v′ are thought

of as the same term, in the sense that they are equal modulo the axioms B. In our above

example we have, for instance, 0+7 =B 7+0.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 173

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

3.2.4. Termination

The equations E are called terminating modulo B if and only if all rewrite sequences

terminate; that is, if and only if we never have an infinite sequence of rewrites

t0 →E,B t1 →E,B t2 . . . tn →E,B tn+1 . . .

3.2.5. The Finite Variant Property

In this section we define variants and the finite variant property, first introduced by

Comon and Delaune in [9]. The finite variant property is essential to Maude-NPA 3.x’s

variant unification algorithm.

Recall that, given a theory (Σ,E *B), where E is a set of rewrite rules and B is a

set of axioms, we say that a term t in TΣ(X) is normalized or irreducible if no rewrite

rules from E can be applied to any members of the B-equivalence class t belongs to.

We say that such a normalized t is a normal form of s, if t can be produced from s via

a finite number of E,B rewriting steps. Furthermore, if (Σ,B,E) satisfies the first five

admissibility conditions given in Section 3.2, then every term in TΣ(X) has a unique

normal form modulo B, which can be found after a finite number of decidable rewriting

steps. We refer to this (unique by confluence) normal form of t as t↓E,B. We can then

define the set of (E,B)-variants of a term t as the set of all pairs of the form (σ ,σ(t)↓E,B)
where σ is a substitution and σ(t)↓E,B is the normal form of σ(t).

For example, given the equational theory (Σ,E *B) for exclusive-or shown in Sec-

tion 3.2.1, and the term X :Msg⊕Y :Msg, we can construct several of its variants as fol-

lows:

1. The pair ({X :Msg → a ⊕ b,Y :Msg → a ⊕ b, a ⊕ b ⊕ a ⊕ b) is normalized to

({X :Msg → a⊕b,Y :Msg → a⊕b,0);
2. The pair ({X :Msg → a⊕ b⊕U :Msg,Y :Msg → a⊕ b,a⊕ b⊕U ⊕ a⊕ b) is nor-

malized to ({X :Msg → a⊕b,Y :Msg → a⊕b,U), and;

3. The pair ({X :Msg → a⊕ b⊕U :Msg,Y :Msg → a⊕ b⊕V,a⊕ b⊕U :Msg⊕ a⊕
b⊕V :Msg) is normalized ({X :Msg → a⊕b,Y :Msg → a⊕b},U :Msg⊕V :Msh).

We say that a variant (θ1, t1) of t is more general than another variant (θ2, t2) of t if there

is a substitution ρ such that

1. ρ(t1) =B t2, and;

2. θ2 =B (θ1ρ)↓E,B.

Thus, the variant ({X → Z,Y → Z},Z ⊕Z↓E,B) is strictly more general than ({X → a⊕
b,Y → a⊕b},(a⊕b⊕a⊕b)↓E,B) even though both Z⊕Z and a⊕b⊕a⊕b normalize to

the same term 0, because {X → Z,Y → Z} is strictly more general than {X → a⊕b,Y →
a⊕b}.

A set of variants Vt of a term t with the property that for every variant (σ , tσ) of t,
there is a more general variant of t in Vt , is called a set of most general variants of t. For

example, the following is a set of most general variants of a⊕V , where a is a constant

and V is a variable:

{(id,a⊕V),({V → a⊕U},U),({V → 0},a),({V → a},0}

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories174

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Given a theory T = (Σ,E *B), we say the decomposition (Σ,B,E) has the finite
variant property if for every term t, there is a finite set Vt of most general (E,B)-variants

of t. Let us illustrate this concept with a positive and a negative example of theories

having, or failing to have, the finite variant property.

The equational theory for exclusive-or shown in Section 3.2.1 does have the finite

variant property. For example, the term X ⊕Y has a set of seven most general variants as

produced using the Maude command “get variants” command. These are shown in

Table 1.

Substitution σ Normalized Instance σ(X ⊕Y)

X →U Y →V U ⊕V

X → Z ⊕U Y → Z ⊕V U ⊕V

X →U ⊕V Y →V U

X →V Y →U ⊕V U

X →U Y →U 0

X → 0 Y →U U

X →U Y → 0 U
Table 1. Variants of X ⊕Y produced by Maude “get variants” command

The key idea for the finite variant property is that, given a term t and a (normalized)

substitution θ , any pair (θ ,θ(t)↓E,B) must be either equal (up to renaming) to or less gen-

eral than, i.e., a further instantiation of, some variant of t. For example, the substitution

X → a⊕b⊕U,Y → a⊕b⊕V maps X ⊕Y to a term that reduces to U ⊕V . This variant is

a special case of the second variant of Table 1 produced by Maude-NPA. If we then con-

sider a further instantiation {U → c ⊕ d,V → c ⊕ d} of the term a⊕b⊕U ⊕a⊕b⊕V ,

then the term a⊕b⊕c⊕d⊕a⊕b⊕c⊕d is simplified into 0, with the composed sub-

stitution X → a⊕b⊕ c⊕d,Y → a⊕b⊕ c⊕d. This is a special case of the fifth variant

of Table 1 produced by Maude-NPA.

The question of whether or not an equational theory has the finite variant property is

undecidable [17]. However, if the theory does have the finite variant property, it is quite

easy to check that it does; and if it does not, it is also quite easy to get strong empirical

evidence suggesting that it either it does not, or the number of variants is so large that

they are not practical to compute.

First of all, there is a semi-decision procedure, the folding variant narrowing strategy
of [6] for producing all the variants of a single term t. The idea, is that, if (σ , t ′) is a

variant of t, and t ′
ρR,E t ′′, then (σρ, t ′′) is also a variant of t. Moreover, any variant

of t is a special case of some (θ , t ′′) produced by iterative narrowing. In folding variant

narrowing, we produce a narrowing tree, but do not add any new leaves that are equal

to (up to change in variables) or special cases of nodes already in the tree. The resulting

tree gives a complete set of variants of t, and is finite if and only if any term t has a finite

number of variants.

A semi-decision procedure for checking the finite variant property that works well in

practice together with folding variant narrowing was introduced in [7]. The procedure is

as follows: for each function symbol f in Σ, compute the variants of f (X1, . . . ,Xn), where

n is the arity of f and the Xi are variables. A theory has the finite variant property, if and

only if a finite number of variants is returned for each such function symbol, that is, the

set of variants obtained by the get variants command for the term f (X1 : A1, . . . ,Xn :

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 175

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

An) is finite. We note that, if the theory does not have the finite variant property, Maude

will simply keep returning more and more variants. The user may then conclude that

either the theory does not have the finite variant property, or it may do so but it produces

too many variants to be practical.

3.2.6. Variant Unification

We are now ready to define variant unification for a theory decomposition (Σ,B,E) hav-

ing the finite variant property. Assume that the n connected components of the poset of

sorts (S,<) considered as a directed graph have each a top sort, say, s1, . . . ,sn. This can

be safely assumed because if no top sort exists in a connected component, it can be added,

as done automatically by Maude. Then define a new fresh sort Truth with a constant

tt : → Truth not related to any other sort and n “equality predicates” eq : si si → Truth,

1 ≤ i ≤ n. Furthermore, add n equations eq(xi,xi) = tt, with xi of sort si, 1 ≤ i ≤ n. This

extension gives us a new equational theory decomposition (Σeq,B,Eeq), where Eeq is

obtained by adding the above equality predicate equations to E. The theory (Σeq,B,Eeq)
also has the finite variant property, since it satisfies the same executability requirements

as (Σ,B,E), the variants of the function symbols in Σ remain the same, and each term

eq(xi,x′i) has two variants, namely, (id,eq(xi,x′i)) and ({xi → x′′i ,x′i → x′′i },tt). Now note

that given an equation u = v, and a substitution θ by termination and confluence of the

rewriting relation and the definition of the equality predicates, we have:

uθ =E∪B vθ ⇔ (uθ)↓E,B =B (vθ)↓E,B ⇔ eq(uθ ,vθ)↓E,B = tt

Therefore, the subset of variants of eq(u,v) of the form (θ ,tt) provides a complete set

of most general unifiers of the equation u = v.

For example, consider the problem X ⊕ a = Y ⊕ b. We can add the eq symbol and

the equation eq(x,x) = tt to the exclusive-or shown in Section 3.2.1 and generate the

variants of the term eq(X ⊕ a,Y ⊕ b) using the “get variants” command of Maude

[14], which returns 23 variants but we show only those returning tt.

Maude> get variants eq(X * a, Y * b) .

Variant #2 Variant #3 Variant #10 Variant #13

Bool: tt Bool: tt Bool: tt Bool: tt

X --> b * %1 X --> b X --> a X --> a * b * #1

Y --> a * %1 Y --> a Y --> b Y --> #1

Variant #20 Variant #21 Variant #22 Variant #23

Bool: tt Bool: tt Bool: tt Bool: tt

X --> #1 X --> a * %1 X --> a * b X --> 0

Y --> a * b * #1 Y --> b * %1 Y --> 0 Y --> a * b

This is exactly the same as the “variant unify” command in Maude [14].

Maude> variant unify X * a =? Y * b .

Unifier #1 Unifier #2 Unifier #3 Unifier #4

X --> b * %1 X --> b X --> a X --> a * b * #1

Y --> a * %1 Y --> a Y --> b Y --> #1

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories176

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Unifier #5 Unifier #6 Unifier #7 Unifier #8

X --> #1 X --> a * %1 X --> a * b X --> 0

Y --> a * b * #1 Y --> b * %1 Y --> 0 Y --> a * b

4. A Case Study: The YubiKey and YubiHSM APIs

In this section, we present a case study of a complex cryptographic API [1] described in

Maude-NPA that involves a number of different features, all handled by variant unifica-

tion.

Yubico is a leading company on open authentication standards and has developed

two core inventions: the YubiKey, a small USB designed to authenticate a user against

network- based services, and the YubiHSM, Yubico’s hardware security module (HSM).

The YubiKey allows for the secure authentication of a user against network-based ser-

vices by considering different methods: one-time password (OTP), public key encryp-

tion, public key authentication, and the Universal 2nd Factor (U2F) protocol. YubiKey

works by using a secret value (i.e., a running counter) and some random values, all en-

crypted using a 128 bit Advanced Encryption Standard (AES). An important feature of

YubiKey is that it is independent of the operating system and does not require any instal-

lation, because it works with the USB system drivers. YubiHSM is intended to operate in

conjunction with a host application. It supports several modes of operation, but the key

concept is a symmetric scheme where one device at one location can generate a secure

data element in a secure environment. Although the main application area is for securing

YubiKey’s OTP authentication/validation operations, the use of several generic crypto-

graphic primitives allows a wider range of applications. The increasing success of Yu-

biKey and YubiHSM has led to its use by governments, universities and companies like

Google, Facebook, Dropbox, CERN, Bank of America etc., including more than 30,000

customers.

Cryptographic Application Programmer Interfaces (Crypto APIs) are commonly

used to secure interaction between applications and hardware security module (HSMs),

and are used in both YubiKey and YubiHSM. However, many crypto APIs have been

subjected to intruder manipulation to disclose relevant information, as is the case for Yu-

biHSM. In [11], Künnemann and Steel show two kinds of attacks on the first released

version of the YubiHSM API.

In [1], we were able to both prove security properties of YubiKey generation 2 and

find the two attacks on version 0.9.8 of YubiHSM in a completely automated way beyond

the analysis reported in [11]. Note that there has not been any completely automated

analysis of these two attacks before, because both YubiKey and YubiHSM involve a

number of complex challenges:

(1) handling of Lamport clocks,

(2) modeling of mutable memory,

(3) handling of constraints on the ordering of events, and

(4) support for symbolic reasoning modulo exclusive or.

We performed the analysis of these APIs in a fully-unbounded session model making

no abstraction or approximation of fresh values, and with no extra assumption, or user

interaction.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 177

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The main goal of [1] was to investigate whether Maude-NPA could complement and

extend the formal modeling and analysis results about YubiKey and YubiHSM obtained

in [11,12]. This is a non-obvious question: on the one hand, Maude-NPA has provided

support for exclusive-or for years, so it is well-suited for meeting Challenge (4). But, on

the other hand, previous applications of Maude-NPA have not addressed Challenges (1)-

(3). The main upshot of the results we presented can be summarized as follows: Chal-

lenge (2) can be met by expressing mutable memory in terms of synchronization mes-

sages, a notion used in Maude-NPA to specify protocol compositions [13]; Challenge

(3) can be met by the recently added unification modulo associativity [14,15], allow-

ing an easy treatment of lists; and Challenge (1) can be met by a slight extension of

Maude-NPA’s current support for equality and disequality constraints [16], namely, by

adding also support for constraints in Presburger Arithmetic. In this way, we show how

challenges (1)-(4) can all be met by Maude-NPA, and how these results in automated

formal analyses of YubiKey and YubiHSM substantially extend previous analyses. Very

few tools are well equipped to simultaneously handle all these challenges.

It is important to remark that all four Challenges are handled by variant unification:

Challenge 1 is met by adding Presburger Arithmetic constraints described by specifying

+ as an ACU-symbol in Maude-NPA, Challenge 2 is met by providing ACU-symbols for

defining the mutable memory, Challenge 3 is met by providing A-symbols for defining

lists of events, and Challenge 4 is met by using the exclusive-or specification of Sec-

tion 3.2.1. Even more, variant unification in Maude-NPA must take care of all four at the

same time. Reasoning about such a complex theory is not possible for any other protocol

analysis tool we are aware of.

4.1. The YubiKey and YubiHSM authentication devices

The YubiKey USB device is an authentication device capable of generating One Time

Passwords (OTPs). The YubiKey connects to a USB port and identifies itself as a stan-

dard USB device such as a keyboard, which allows it to be used in most computing envi-

ronments using the system’s native drivers. In the YubiKey OTP mode, there is a button

physically located on the YubiKey and, when this button is pressed, it emits a string that

can be verified only once against a server in order to receive the permission to access a

service. Furthermore, a request for a new authentication token is triggered also by touch-

ing the YubiKey button. As a result of this request, some counters that are stored on the

device are incremented and some random values are generated in order to create a fresh

16-byte plaintext.

Each OTP sent by the YubiKey is encrypted using an AES key. Thus, the YubiKey

authentication server accepts an OTP only if both it decrypts under the appropriate AES

key and the token counter stored in the OTP is larger than the token counter stored in

the last OTP received by the server. The token counter is used as a Lamport clock, i.e.,

it is used to determine the order of events in a distributed concurrent system by using a

counter that both has a minimum value (e.g., 0) and has a minimum tick (increment of

the counter).

Yubico also distributes a USB device that works as an application-specific Hardware

Security Module (HSM) to protect the YubiKey AES keys. The YubiHSM [10] stores

a very limited number of AES keys so that the server can use them to perform crypto-

graphic operations without the key values ever appearing in the server’s memory. The

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories178

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

YubiHSM is designed to protect the YubiKey AES keys when an authentication server

is compromised by encrypting the AES keys using a master key stored inside the Yu-

biHSM.

The AES keys are only readable to the YubiHSM through the use of Authenticated
Encryption with Associated Data (AEAD). The AEAD uses a cryptographic method that

provides both confidentiality and authenticity. An AEAD consists of two parts: (i) the

encryption of a message using the counter mode cryptographic mode of operation, and

(ii) a message authentication code (MAC) taken over the encrypted message. In order to

construct, decrypt or verify an AEAD, a symmetrical cryptographic key and a piece of

associated data are required. This associated data, called a nonce in the rest of the paper,

can either be a uniquely generated handle or something that is uniquely related to the

AEAD. Unlike the more commonly used definition of nonce, a nonce is not required to

be unpredictable, so an intruder could be able to reconstruct it.

To encrypt a message using counter mode, one first divides it into blocks of equal

length, each suitable for input to the block cipher AES, e.g. data1, . . . ,datan. The se-

quence counter1, . . . ,countern is then computed, where counteri = nonce⊕ i modulo 2η

and η is the length of a block in bits. The encrypted message is then senc(counter1,k)⊕
data1; . . . ;senc(countern,k)⊕ datan, where senc is the encryption function and k the

symmetrical cryptographic key, and senc(counter1,k); . . . ;senc(countern,k) is called

the keystream. Finally, the MAC is computed over the encrypted message and ap-

pended to obtain (senc(counter1,k)⊕ data1; . . . ;senc(countern,k)⊕ datan);MAC. The

MAC is of fixed length, so it is possible to predict where it starts in an AEAD.

However, we follow the generalization of [12] and consider just AEADs of the form

senc(cmode(nonce),k)⊕data;mac(data,k).
In [11,12], Künnemann and Steel reported two kinds of attacks on version 0.9.8 beta

of YubiHSM API: (a) if the intruder has access to the server running YubiKey, where

AES keys are generated, then it is able to obtain plaintext in the clear; (b) even if the

intruder has no access to the server running YubiKey, it can use previous nonces to obtain

AES keys.

Attack (b) is the more interesting of the two, so we present it here. It involves a

YubiHSM command, AEAD-Generate, that takes as input a nonce, a handle to an AES

key, some data and outputs a AEAD. An intruder can produce an AEAD for the same

handle kh and a value nonce that was previously used to generate another AEAD. An

intruder can recover the keystream directly by using the AEAD-Generate command to

encrypt a string of zeros and discarding the MAC. The result will be the exclusive-or of

the keystream with a string of zeros, which is equal to the keystream itself.

So, the steps followed are

1. Intruder observes AEAD senc(cmode(nonce),k)⊕ data;mac(data,k) and re-

moves mac(data,k).
2. Intruder uses same nonce and handle to have YubiHSM provide an AEAD for a

string of zeros: senc(cmode(nonce),k)⊕0;mac(0,k) and removes mac(data,k).
3. Intruder computes

(senc(cmode(nonce),k)⊕data)⊕ (senc(cmode(nonce),k)⊕0) = data⊕0 = data

We note that this attack depends both on the equational properties of exclusive-or,

and on the mutable global memory that is accessed by YubiHSM when it retrieves the

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 179

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

key k corresponding to the handle. In [1], Maude-NPA was able to find both attacks

automatically. This goes beyond the analysis reported in [11], which needed auxiliary

user-defined lemmas and had limited support for exclusive-or.

No attacks were found on the Yubikey module , but many of the properties that

were verified involve a combination of global mutable memory, conditions on sequences

of events, and the use of Lamport clocks. For example, one of the properties specifies

absence of replay attacks, which is formulated as the conditions that no two logins ac-

cept the same counter value. This involves conditions on sequences of events (no two

different logins accepting the same counter value should appear in a sequence), global

mutable memory (to store the counter values) and Lamport clocks (to model the means

by which counter values are updated). In [11] three such security properties of Yubikey

were specified and proven; in [1] they were verified using Maude-NPA.

We now describe how the different challenges are handled in Maude-NPA, and we

describe the different equational theories they introduce.

4.2. Modeling global memory

Following [11], all predicates are stored together in a shared global memory. Some pred-

icates are read-only, but others are updated. Maude-NPA, unlike some other tools, does

not natively support mutable memory; but it can be modeled using a multiset of predi-

cates allocated in input and output strand synchronization messages (see [13]). That is,

the old data will appear in the input synchronization message of an API strand, and the

new information will appear in the output synchronization message of that strand, which

will then become the input synchronization message of the next API strand. The multiset

of predicates is defined using a new symbol @, which is an infix associative-commutative

symbol with an identity symbol empty. Thus, for the strand describing the YubiKey but-

ton press, the input synchronization message is as follows:

{yubikey -> yubikey ;; 1-1 ;;

Y(pid,sid) @ YubiCounter(pid,c1) @ Server(pid,sid,c2) @ SharedKey(pid,k)}

Updating the counter of the YubiKey after a button press is represented by updating the

second argument of the YubiCounter(pid,c1) predicate in the multiset. This updated

multiset becomes the output synchronization of the strand.

4.3. Modeling lists of events

The YubiKey API also keeps a rigid control of the ordering of events, where an event is a

state transition in the system, and a proper analysis of actions is mandatory. Maude-NPA,

unlike other tools, does not natively support the representation and analysis of event

sequences; but we have implemented it by storing event sequences in the synchronization

messages. This is helped by the fact that Maude-NPA, via the Maude language, has

recently been endowed with unification modulo associativity [14,15]. In particular, this

makes it possible to reason symbolically about lists built using any associative symbol

provided by the user. We have defined a new infix associative symbol ++ with an identity

symbol nil to represent an event list and also a new auxiliary infix symbol |> where the

left-hand side contains the mutable memory and the right-hand side contains the event

list. The input synchronization message for the button press strand has now the form:

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories180

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

{yubikey -> yubikey ;; 1-1 ;;

Y(pid,sid) @ YubiCounter(pid,c1) @ Server(pid,sid,c2) @ SharedKey(pid,k)

|> Plugin(pid,c3) ++ Press(pid,c4)}

Every time a new event occurs, it is inserted as a new element at the end of the event

list. The leftmost elements are the oldest ones, whereas the rightmost elements are the

newest. Thus, given an event list L, suppose that we want to verify the property that if

event e2 occurs that event e1 occurs before it. We search for cases in which e2 occurs

but e1 does not occur before it, which means we look for event lists of the form L1 ++

e2 ++ L2, but not L3 ++ e1 ++ L3 ++ e2 ++ L2, where L1, L2, L3, and L4 are variables

that can be instantiated to the empty list. If we can show that no such list can be found,

we have succeeded the property.

4.4. Modeling Lamport clocks

Lamport clocks require the testing of constraints: e.g., whether one counter is smaller

than another. This is simple to do when the counters have concrete values. However, since

Maude-NPA does not consider concrete protocol states but symbolic state patterns (terms

with logical variables), the equality and disequality constraints handled by Maude-NPA

are predicates defined over variables, whose domain, in the case of Lamport clocks, is

the natural numbers.

In Maude-NPA strands can be extended with equality and disequality constraints

[16] of the form “Term1 eq Term2” and “Term1 neq Term2”. Whenever an equality

constraint is found during the execution of a strand, the two terms in the equality con-

straint are unified modulo the equational theory of the protocol and a new state is created

for each possible unifier. Whenever a disequality constraint is found during the execution

of a strand, it is simply stored in an internal repository of disequality constraints associ-

ated to each protocol state; but every time a new state is going to be generated during the

state space exploration, all the disequality constraints in the internal repository are tested

for satisfiability (see [16] for details).

We deal with Lamport clocks symbolically by representing the relations between

clocks as constraints in Presburger Arithmetic. We follow the following encoding of

natural numbers. We consider only two constant symbols 0 and 1. Adding two natural

numbers i and j is written as i+ j where + is an infix associative-commutative symbol

with an identity symbol 0. Checking whether a natural number i is smaller than another

natural number j is represented in Maude-NPA by a constraint of the form j eq i+ k,

where k is an auxiliary variable. Disequality constraints are not needed since the API

continues the execution only when the constraints on the Lamport clocks are satisfied.

5. Effectiveness of Variant Unification

5.1. Evaluation With Respect to the Five Desiderata

We now evaluate variant unification according to the desiderata developed in Section 3.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 181

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

des1: Application to a Large Class of Theories. In general, variant unification behaves

well with respect to this criterion. The major exception is the standard decomposition of

the theory describing homomorphic encryption h over a symbol ∗, where R = {h(K,X ∗
Y) = h(K,X)∗h(K,Y)} and B can be either the empty set of axioms or the AC theory for

∗. In that case, the term h(K,X) has an infinite number of variants [9]:

{(σ0,h(K,X)),(σ1 = {X → X1 ∗Y1},h(K,X1)∗h(K,Y1)), . . . ,

(σi = {Xi−1 → Xi ∗Yi},h(K,X ∗Y)∗ . . .h(K,X1)∗h(K,X2)∗ . . .∗h(K,Xi)∗h(K,Yi)), . . .}

In [18], we considered several equational theory decompositions (Σ,B,E) for which

homomorphic encryption does not have the finite variant property. Thus, unlike the ex-

ample given in Section 3.2.5, it does not appear to be possible to produce an alternate

decomposition with the finite variant property for such theories.

However, there are a number of other theories relevant to cryptographic protocol

analysis that include homomorphic encryption equations and do have finite variant de-

compositions. Even for homomorphic encryption over an AC symbol or a group, it is

possible to achieve a sound, but not complete, algorithm by putting a bound on the num-

ber of times a homomorphic function symbol can be applied. See [18] for this and other

possible ways of handling homomorphic encryption using variant unification.

des2: Ease of Verification of Conditions. We note that some of the six requirements for

variant algebraic theories listed in Section 3.2, such as termination, and the finite variant

property, are undecidable. But even the undecidable conditions have semi-decision pro-

cedure that can be implemented and used to check the conditions. Indeed every single

one of these six requirements can be checked by either Maude 2.7.1 [14] or the Maude

Formal Environment [19], which require little more from the user than providing the the-

ory to the tool. Thus the work required by the user beyond formulating a theory in the

first place is minimal.

des3: Combining Disjoint Theories. For variant unification, the question about com-

bining disjoint finite variant decompositions (Σ1,B1,E1) and (Σ2,B2,E2) is whether or

not (Σ1 *Σ2,B1 *B2,E1 *E2) has the finite variant property. All that is required is per-

forming the same procedure described in the previous paragraph. Furthermore, some

modularity results from the theory of term rewriting can sometimes be used to discharge

some of the six requirements.

des4: Supporting Irreducibility Constraints. When performing backwards reachability

analysis based on equational unification with a theory (Σ,B,E) having the finite variant

property, terms describing symbolic states become further and further instantiated by

substitutions. But if all the E,B-variants of a term t have already been considered and

(u,σ) is one of them, then we can safely impose some irreducibility constraint on u
that any further instance uρ of u should remain E,B-irreducible. This is because if uρ
is not so, then the variant ((uρ)↓E,B,σρ) will be an instance of another variant of u
corresponding to another symbolic state already explored in the state space.

des5: Efficiency. As expected, variant unification is weakest here. In many cases, it is

still efficient enough to be practical, even for theories where B = AC. However, there

are some important cases in which the number of variants can grow unmanageably large

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories182

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Solution 1 X → Z1⊕Z2 Y → Z2⊕Z4 U → Z1⊕Z2 V → Z3⊕Z4

Solution 2 X → Z1⊕Z3 Y → Z2 U → Z1⊕Z2 V → Z3

Solution 3 X → Z1 Y → Z2⊕Z3 U → Z1⊕Z2 V → Z3

Solution 4 X → Z1⊕Z2 Y → Z3 U → Z1 V → Z2⊕Z3

Solution 5 X → Z1 Y → Z2 U → Z1 V → Z2

Solution 6 X → Z2 Y → Z1⊕Z3 U → Z1 V → Z2⊕Z3

Solution 7 X → Z2 Y → Z1 U → Z2 V → Z2

Table 2. Unifiers of X ⊕Y =AC? U ⊕V produced by Maude

very quickly, in particular for AC theories with units and inverses. This includes the ⊕
theory we have been using as an example, as well as the Abelian group theories that crop

up so often in cryptography. Consider for example the problem of unifying X ⊕ a with

Y ⊕b presented in Section 3.2.6 which produced a most general set of unifiers with five

elements. This does not seem like such a large number, until we realize that there is a

most general sets of unifiers of X ⊕ a and Y ⊕ b with cardinality 1, for example the set

{X → Y ⊕ a⊕ b}. Things become even worse when the number of variables increases.

Consider the problem X ⊕Y =? U ⊕Z. According to Table 1, X ⊕Y and U ⊕V have eight

variants apiece. Consider the variants (0,X ⊕Y) (equivalent to the first variant produced

by Maude in Fig 1), and (0,Z ⊕Y). When we give the problem X ⊕Y =?
AC U ⊕V to

Maude, using its built-in AC theory, it produces seven unifiers, as shown in Table 2.

We note that for each unifier σ , σX +σY and σU +σV remain irreducible, so all of

these are permissible unifiers. Moreover, we still have 48 other pairs of variants to check!

In spite of the tendency to produce large sets of most general unifiers for Abelian

group theories, variant unification has been popular in a number of tools for its versatility

and ease of application, being used, for example, in the Tamarin tool [20]. Both Maude-

NPA and Tamarin have successfully been used to analyze protocols using exclusive-

or, e.g. Maude-NPA in [1], and Tamarin in [21]. However, they both can run into state

explosion problems once an exclusive-or protocol reaches a certain level of complexity.

Thus a unification method that produces fewer unifiers could be useful here.

The key observation is that variant unification is a theory-generic unification al-

gorithm applying to an infinite and fairly rich class of equational theories. This gives

great flexibility; but it is unrealistic to expect that such a generic algorithm will be able

to match the performance of carefully crafted theory-specific algorithms. For example,

theory-specific algorithms for abelian groups are much more efficient that the generic

variant-based unification one. The best approach is of course to exploit the best advan-

tages of the theory-generic and theory-specific algorithms by means of theory combina-

tion results [25] that generate a joint unification algorithm for several disjoint theories

out of those given for each one. This, however, is non-trivial, because such theory combi-

nation methods can easily introduce high levels of non-determinism and may sometimes

impose some restrictions on the theories so combined: the devil is in the details. Obtain-

ing an efficient theory combination infrastructure supporting flexible combinations of

theory-generic and theory-specific unification algorithms is an important future research

goal.

In the next section we will describe efforts to find more efficient theory-generic

unification algorithms that still satisfy the desiderata for unification for cryptographic

protocol analysis.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 183

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

6. Asymmetric Unification

As we have seen, variant unification, although it has many desirable properties, can in

certain cases generate many more variants than we would like. In this section, we will

describe some research that has been directed to addressing this problem, namely the

study of asymmetric unification.

6.1. Overview of Asymmetric Unification

The main insight behind asymmetric unification is that variant unification actually over-

performs on one of the desiderata: support of irreducibility constraints. In Maude-NPA,

and in many other protocol analysis tools, irreducibility is generally required of negative
terms, i.e., terms corresponding to message reception by a principal or the intruder, in a

protocol session or an intruder derivation. This is because the unreachability verification

that requires the irreducibility constraint is generally done only for negative terms. Since

backwards search is done in Maude-NPA by unifying negative terms received by a prin-

cipal or intruder with positive terms sent by a principal or intruder, this means that only

one of the terms in a unification problem t =? s has an irreducibility constraint. Thus, the

problem we need to solve is to find a most general set of unifiers θ of t =?
E∪B s subject to

the constraint that θ t is irreducible, that is θ(t)↓E,B =B t. Unification with this constraint

is called asymmetric unification [2] because of the asymmetric nature of the constraint.

A methodology for state space exploration using asymmetric unification was presented

in [22].

At the time asymmetric unification was first defined, there were no known asymmet-

ric algorithms known other than the one obtained by computing asymmetric unifiers by

filtering variant unifiers using variant unification itself. However, in [23] Liu develops an

asymmetric algorithm for the Abelian group theory together with free function symbols

(that is symbols appearing in no equation), using a methodology for converting symmet-

ric unification algorithms to symmetric ones. A special case of the Abelian group theory,

the exclusive-or theory, is presented in [2]. The conversion methodology is given below.

Let (Σ,B,E), be a decomposition of an equational theory and let Γ = {t1 =↓E,B
t ′1, . . . , tn =↓E,B t ′n}, be an asymmetric unification problem. Then proceed as follows:

1. First compute a complete finite set S of E ∪B-unifiers using a finitary unification

algorithm for E ∪B. If S is empty, then there are no asymmetric unifiers.

2. For each such unifier σ from the previous step, check whether every t ′i σ is in

E,B-normal form. All such unifiers are retained also as asymmetric unifiers.

3. For a unifier σ such that some t ′i σ is not in E,B-normal form, compute an equiv-

alent asymmetric unifier if possible.

4. If both of the previous steps fail, this implies that σ or its equivalents cannot

be asymmetric unifiers in their full generality. However, there may be some in-

stances obtained by instantiating variables in them which are asymmetric uni-

fiers. A complete set of instances of a given unifier is generated by suitably in-

stantiating varibles. This step may be expensive, so it is employed only as a last

resort. For each such instance the above steps are repeated.

In Table 3, adapted from [2], we show the results, in terms of the number of unifiers,

for asymmetric unification problems encountered in various protocol analyses. We see

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories184

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Unif. Problem #V-U. V-T. (ms) #A-U. A-T. (ms)

M1 ⊕M2 =↓E,B M3 ⊕ pair(V1,M4) 12 71 1 71

pair(V,rc4(V1,kAB)⊕ ([NA,c(NA)])) =↓E,B pair(V1,M1) 1 65 1 70

M1 ⊕M2 =↓E,B M3 ⊕V1 12 71 1 71

M1 ⊕M2 =↓E,B M3 ⊕ ([N1,c(N2)]) 12 34 1 30

M1 ⊕M2 =↓E,B M3 ⊕ pair(V1, pair(V2,M4)) 12 36 1 30

SP4∧SP1∧SP2 4 422 3 68

SP5∧SP1∧SP2 24 408 7 131

SP6∧SP1∧SP2 100 516 15 491

SP7∧SP1∧SP2 360 454 31 3732

SP8∧SP1∧SP2∧SP3 3 151387 1 47

SP9∧SP1∧SP2∧SP3 33 153913 3 80

SP10∧SP1∧SP2∧SP3 201 154137 7 157

SP11∧SP1∧SP2∧SP3 1053 154534 15 349

SP12∧SP1∧SP2∧SP3 5073 160114 31 829

Table 3. Comparisons Between Variant and Asymmetric Unification

#V-U. = # of unifiers using variant unification

V-T. = amount of time in milliseconds using variant

unification

SP1 = M1 ⊕M2 =↓E,B M1 ⊕M2

SP2 = M1 ⊕M3 =↓E,B M1 ⊕M3

SP3 = M1 ⊕M4 =↓E,B M1 ⊕M4

SP4 = M1 ⊕M2 ⊕M3 =↓E,B a⊕b
SP5 = M1 ⊕M2 ⊕M3 =↓E,B a⊕b⊕ c
SP6 = M1 ⊕M2 ⊕M3 =↓E,B a⊕b⊕ c⊕d

#A-U. = # of unifiers using asymmetric unification

A-T. = amount of time in milliseconds using variant

unification

SP7 = M1 ⊕M2 ⊕M3 =↓E,B a⊕b⊕ c⊕d ⊕ e
SP8 = M1 ⊕M2 ⊕M3 ⊕M4 =↓E,B a
SP9 = M1 ⊕M2 ⊕M3 ⊕M4 =↓E,B a⊕b
SP10 = M1 ⊕M2 ⊕M3 ⊕M4 =↓E,B a⊕b⊕ c
SP11 = M1 ⊕M2 ⊕M3 ⊕M4 =↓E,B a⊕b⊕ c⊕d
SP12 = M1 ⊕M2 ⊕M3 ⊕M4 =↓E,B a⊕b⊕ c⊕d ⊕ e

in particular that for the problem X ⊕Y =↓E,B U ⊕ Z, variant unification produces 12

unifiers, while an asymmetric unification produces only one. Indeed, in almost all cases,

the number of unifiers produced by the asymmetric unification algorithm was smaller

than the number or unifiers produced by variant unification, and the advantage increases

roughly with the complexity of the unification problem. In addition, with a few excep-

tions, asymmetric unification times are either similar to or significantly faster than variant

unification, especially the last problems involving four equations.

6.2. Assessment of Asymmetric Unification

In this section we give an assessment of asymmetric unification with respect to the

desiderata for unification algorithms introduced in Section 3.

des1: Application to a Large Class of Theories. In one sense, this condition is trivially

satisfied, since it is satisfied by variant unification, from which asymmetric unifiers can

be easily derived by a filtering process. However, we are interested in asymmetric uni-

fication that improves on the efficiency of variant unification. In that case we know of

only one such theory as of now: the Abelian group theory together with uninterpreted

function symbols. The question of whether suitable asymmetric unification algorithms

can be found for other theories of interest is still an open problem.

des2: Ease of Verification of Conditions. In order to apply asymmetric unification, we

need the same conditions to hold as for variant unification. However, the question of

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 185

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

whether there are any additional conditions that would make it easier to apply non-variant

asymmetric unification is an open problem.

des3: Combining Disjoint Theories. It has been shown by Erbatur et al. in [24] via

adaptation of the Baader-Schulz combination method [25] that, given two disjoint equa-

tional theories with asymmetric unification algorithms, it is possible to produce a com-

bined asymmetric unification algorithm for the combined theories. Unfortunately, as is

true for Baader-Schulz, the problem of determining whether an asymmetric unification

problem has a solution in a combined theory is NP-complete. However, there have been

optimizations of Baader-Schulz for special cases, some applicable to theories of interest

to cryptographic protocol analysis. For example, Tuengerthal [26] has applied optimiza-

tions to the Baader-Schulz procedure to develop an algorithm for a combination of the

ACUN theory modeling exclusive-or, and a theory modeling pairing, symmetric encryp-

tion with cancellation of encryption/decryption, and public key encryption with cancel-

lation of encryption/decryption. It is possible that a similar approach could be applied to

combining, say, variant unification for cancellation rules with the Abelian group algo-

rithm developed in [23], to give us an asymmetric algorithm that supports a combination

of Abelian groups, uninterpreted function symbols, and cancellation rules.

des4: Supporting Irreducibility Constraints. Asymmetric unification supports irre-

ducibility constraints easily. It is possible to enforce a constraint on any term t, even if

it does not originally appear in the unification problem, by adding the equation t =↓E,B t
to the problem. This is done, for example, in several of the problems presented in Table

3, such as the problem SP4∧SP1∧SP2.

des5: Efficiency. As we have seen, it is possible to greatly reduce the number of uni-

fiers over variant unification for exclusive-or with uninterpreted function symbols. For

the problems in Table 3, the asymmetric algorithm produced fewer unifiers than the vari-

ant algorithm, sometimes significantly fewer. In terms of time required to perform the

unification, the asymmetric algorithm performed similarly to or significantly better than

the variant algorithm, except for one case in which the variant algorithm performed sig-

nificantly better.

7. Conclusion

We have presented an overview of Maude-NPA and of the way it uses unification to

perform backwards search. We have used this to motivate a study of the type of equa-

tional unification used in Maude-NPA. We have then given an in-depth presentation of

the equational unification algorithm used by Maude-NPA: variant unification. We also

presented an evaluation of variant unification from the point of view of cryptographic

protocol verification. We have used that to motivate a study of a possible enhancement of

variant unification, asymmetric unification, and of how asymmetric unification could en-

hance both variant-unification and theory-specific algorithms. We used the same desider-

ata used to evaluate variant unification to help point out where research was most needed

in asymmetric unification.

We note that, although we have restricted our discussion to unification as it is used

in Maude-NPA, this work has potential applications to other tools as well. As we pointed

out earlier, variant unification is employed by a number of cryptographic protocol anal-

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories186

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

ysis tools. We hope that this presentation will stimulate research in this area, and lead to

improved unification algorithms for cryptographic protocol analysis.

References

[1] Antonio González-Burgueño, Damián Aparicio-Sánchez, Santiago Escobar, Catherine A. Meadows, and

José Meseguer. Formal verification of the YubiKey and YubiHSM APIs in Maude-NPA. In LPAR-
22. 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Awassa, Ethiopia, 16-21 November 2018. EPiC Series in Computing 57, pages 400–417, EasyChair

2018.

[2] Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu, Christopher Lynch, Catherine A. Mead-

ows, José Meseguer, Paliath Narendran, Sonia Santiago, and Ralf Sasse. Asymmetric unification: A new

unification paradigm for cryptographic protocol analysis. In Automated Deduction - CADE-24 - 24th In-
ternational Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings,

pages 231–248, 2013.

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theoreti-
cal Computer Science, volume B: Formal Models and Semantics, pages 243–320. Elsevier, Amsterdam,

1990.

[4] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73–155, 1992.

[5] J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction of unification algorithms in

equational theories. In Proc. ICALP’83, pages 361–373. Springer LNCS 154, 1983.

[6] Santiago Escobar, Ralf Sasse, and José Meseguer. Folding variant narrowing and optimal variant termi-

nation. The Journal of Logic and Algebraic Programming, 81(7-8):898–928, 2012.

[7] Andrew Cholewa, Jose Meseguer, and Santiago Escobar. Variants of variants and the finite variant prop-

erty. Technical report, University of Illinois at Urbana-Champaign, http://hdl.handle.net/2142/47117,

2014.

[8] José Meseguer. Strict coherence of conditional rewriting modulo axioms. Theor. Comput. Sci., 672:1–

35, 2017.

[9] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How to get rid of some

algebraic properties. In Term Rewriting and Applications, 16th International Conference, RTA 2005,
Nara, Japan, April 19-21, 2005, Proceedings, pages 294–307, 2005.

[10] Yubico. YubiHSM Manual v1.5. Available on: https://www.yubico.com/wp-content/uploads/

2015/04/YubiHSM-Manual_1_5_0.pdf.

[11] Robert Künnemann and Graham Steel. YubiSecure? formal security analysis results for the Yubikey

and YubiHSM. In Revised Selected Papers of the 8th Workshop on Security and Trust Management
(STM’12), volume 7783 of Lecture Notes in Computer Science, pages 257272, Pisa, Italy, September

2012. Springer.

[12] Robert Künnemann. Foundations for analyzing security APIs in the symbolic and computational model.
Available on: https: // tel. archives-ouvertes. fr/ tel-00942459/ file/ Kunnemann2014.
pdf . Theses, École normale supérieure de Cachan - ENS Cachan, January 2014.

[13] Sonia Santiago, Santiago Escobar, Catherine A. Meadows, and José Meseguer. Effective sequential

protocol composition in Maude-NPA. CoRR, abs/1603.00087, 2016.

[14] Maude 2.7.1. Available at http://maude.cs.illinois.edu/w/index.php/The_Maude_System.

[15] Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martı́-Oliet, José Meseguer, Rubén Rubio, and

Carolyn Talcott. Programming and Symbolic Computation in Maude. Journal of Logical and Algebraic
Methods in Programming, to appear, 2019.

[16] Santiago Escobar, Catherine A. Meadows, José Meseguer, and Sonia Santiago. Symbolic protocol anal-

ysis with disequality constraints modulo equational theories. In Programming Languages with Appli-
cations to Biology and Security - Essays Dedicated to Pierpaolo Degano on the Occasion of His 65th
Birthday, volume 9465 of Lecture Notes in Computer Science, pages 238261. Springer, 2015.

[17] Christopher Bouchard, Kimberly A. Gero, Christopher Lynch, and Paliath Narendran. On forward clo-

sure and the finite variant property. In Frontiers of Combining Systems - 9th International Symposium,
FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings, pages 327–342, 2013.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories 187

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.yubico.com/wp-content/uploads/2015/04/YubiHSM-Manual_1_5_0.pdf
https://www.yubico.com/wp-content/uploads/2015/04/YubiHSM-Manual_1_5_0.pdf
https://tel.archives-ouvertes.fr/tel-00942459/file/Kunnemann2014.pdf
https://tel.archives-ouvertes.fr/tel-00942459/file/Kunnemann2014.pdf
http://maude.cs.illinois.edu/w/index.php/The_Maude_System

[18] Fan Yang, Santiago Escobar, Catherine A. Meadows, Jos Meseguer, Paliath Narendran. Theories of

Homomorphic Encryption, Unification, and the Finite Variant Property. In Proceedings of the 16th
International Symposium on Principles and Practice of Declarative Programming , pages 123-133,

2014.

[19] The Maude Formal Environment. Available at https://code.google.com/archive/p/

maude-formal-environment/.

[20] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN prover for the

symbolic analysis of security protocols. In Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pages 696–701, 2013.

[21] Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, and Ralf Sasse. Automated unbounded verification

of stateful cryptographic protocols with exclusive OR. In 31st IEEE Computer Security Foundations
Symposium, CSF 2018, pages 359–373, 2018.

[22] Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu, Christopher Lynch, Catherine A. Mead-

ows, José Meseguer, Paliath Narendran, Sonia Santiago, and Ralf Sasse. Effective symbolic protocol

analysis via equational irreducibility conditions. In Sara Foresti, Moti Yung, and Fabio Martinelli, ed-

itors, Computer Security - ESORICS 2012 - 17th European Symposium on Research in Computer Se-
curity, Pisa, Italy, September 10-12, 2012. Proceedings, volume 7459 of Lecture Notes in Computer
Science, pages 73–90. Springer, 2012.

[23] Zhiqiang Liu. Dealing Efficiently with Exclusive Or, Abelian Groups and Homomorphism in Crypto-
graphic Protocol Analysis. PhD thesis, Clarkson University, Available at http://people.clarkson.

edu/?clynch/papers/DissertationofZhiqiangLiu.pdf, 2012.

[24] Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Catherine A. Meadows, Paliath Narendran, and

Christophe Ringeissen. On asymmetric unification and the combination problem in disjoint theories. In

Proceedings of FOSSACS 2014, pages 274–288, 2014.

[25] Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equational theories: Combining

decision procedures. In Automated Deduction - CADE-11, 11th International Conference on Automated
Deduction, Saratoga Springs, NY, USA, June 15-18, 1992, Proceedings, pages 50–65, 1992.

[26] Max Tuengerthal. Implementing a unification algorithm for protocol analysis with XOR. Techni-

cal Report 0609, Institut für Informatik, CAU Kiel, Available at https://sec.uni-stuttgart.de/

_media/publications/Tuengerthal-IFI-TR-0609-2006.pdf, 2006.

C. Meadows et al. / Maude-NPA and Formal Analysis of Protocols with Equational Theories188

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://code.google.com/archive/p/maude-formal-environment/
https://code.google.com/archive/p/maude-formal-environment/
http://people.clarkson.edu/?clynch/papers/Dissertation of Zhiqiang Liu.pdf
http://people.clarkson.edu/?clynch/papers/Dissertation of Zhiqiang Liu.pdf
https://sec.uni-stuttgart.de/_media/publications/Tuengerthal-IFI-TR-0609-2006.pdf
https://sec.uni-stuttgart.de/_media/publications/Tuengerthal-IFI-TR-0609-2006.pdf

Building Deductive Program Verifiers
Lecture Notes

Peter MÜLLER a

a Department of Computer Science, ETH Zurich, Switzerland

Abstract. Deductive program verifiers attempt to construct a proof that
a given program satisfies a given specification. Their implementations
reflect the semantics of the programming language and the specification
language, and often include elaborate proof search strategies to auto-
mate verification. Each of these components is intricate, which makes
building a verifier from scratch complex and costly.

In these lecture notes, we will present an approach to build program
verifiers as a sequence of translations from the source language and spec-
ification via intermediate languages down to a logic for which automatic
solvers exist. This architecture reduces the overall complexity by divid-
ing the verification process into simpler, well-defined tasks, and enables
the reuse of essential elements of a program verifier such as parts of
the proof search, specification inference, and counterexample generation.
We will use the intermediate verification language Viper to demonstrate
how to encode interesting verification problems.
Keywords. verification condition generation, intermediate verification
language, permission logics, hyperproperties, product programs, Nagini,
Viper

1. Introduction

Ensuring the correctness and security of software systems is becoming increas-
ingly challenging. Testing has always been limited to checking just a small sub-
set of the possible program executions. In the omnipresence of concurrency (for
instance, in software that runs on multicore processors or in data centers) and
event-based systems (such as applications running on mobile devices), testing is
largely insufficient. It is, thus, useful to complement or replace testing with static
verification techniques such as static program analysis [9], model checking [7], or
deductive verification [19]. These techniques can formally prove correctness and
security properties for all executions of a program, that is, for all possible inputs,
thread schedules, event interactions, attacker behaviors, etc.

Static program analysis, model checking, and deductive verification strike dif-
ferent trade-offs between automation, expressiveness, and modularity. In these
lecture notes, we focus on deductive verification, which requires more user input
than the other techniques, but allows one to prove complex properties and enables
modular verification [28]. Modularity is important for scalability, to reduce the
re-verification effort during software maintenance, and to give guarantees for indi-

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-189

189

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

vidual program components such as libraries. Deductive program verification em-
ploys a program logic such as Hoare logic [19] or separation logic [33] to construct
a mathematical proof that a given program satisfies its specification.

Program verifiers are tools that automate (parts of) the proof search, typically
by reducing verification to a set of verification conditions, logical formulas whose
validity implies the correctness of the program and which can be checked by
automatic or interactive theorem provers. This reduction is often performed by
encoding a program, its specification, and the program logic into an intermediate
verification language. Programs in the intermediate language are typically not
(efficiently) executable. Their correctness implies the correctness of the original
program. Implementing a verifier via an intermediate verification language has two
major advantages over a monolithic architecture. First, it allows one to reuse large
parts of the tool infrastructure; all components that operate on the intermediate
language or further downstream can be reused across multiple program verifiers
just like an optimizer and a code generator for an compiler intermediate language
can be reused across multiple compilers. Second, human-readable intermediate
verification languages greatly simplify the prototyping of verification techniques
and tools, as well as debugging.

There are several mature intermediate verification languages and correspond-
ing tool infrastructures. Boogie [22] offers a simple procedural language and tool
support for verification condition generation, bounded verification [20], and de-
bugging of verification failures [21]. Why’s language [16] has a functional fla-
vor; its verifier targets a wide range of automatic provers. Viper [30] facilitates
the verification of proofs in logics similar to separation logic, targeting especially
heap-manipulating and concurrent programs. All three intermediate languages
are widely used. For instance, Boogie is at the core of verifiers such as Chal-
ice [26], Corral [20], Dafny [23], Spec# [25,2], and VCC [8]. Why powers for in-
stance Frama-C and Krakatoa [15], and Viper is used by Nagini [11], Prusti [1],
and VerCors [5].

In these lecture notes, we will use Viper. However, especially the concepts
introduced in the earlier sections apply similarly to other intermediate verifica-
tion languages. Fig. 1 shows the architecture of the Viper verification infrastruc-
ture. We will introduce the Viper intermediate language together with examples
later, but refer to an overview of its design [30] and the tutorial [13] for details.
Viper provides two backend verifiers. The symbolic execution verifier [35] reasons
about heap manipulations internally and uses the SMT solver Z3 [27] for other
aspects of verification, such as arithmetic. The verification condition generator is
itself implemented via a translation to the intermediate language Boogie, which
ultimately also targets Z3. Both tools can be tried online at viper.ethz.ch; the
entire infrastructure is available as open-source implementation.

Outline. Sec. 2 introduces the foundations of verification condition generation.
Sec. 3 shows how to verify hyperproperties (properties the relate two or more
program executions) via an encoding onto an intermediate language. In Sec. 4,
we explain how to encode the verification of heap-manipulating programs using a
flavor of separation logic. Sec. 5 extends this encoding to recursive data structures.
We briefly discuss the development of frontend verifiers in Sec. 6, and conclude
in Sec. 7.

P. Müller / Building Deductive Program Verifiers. Lecture Notes190

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

�����
�������	
��������
���

�����	
��

������

���������

�������
������	
�
�	���	��

��������
�����
���

���
�	�

��
�����
	
���

����
��������
���� ����
���� ����
����

�!!�"	���� $� ��	�	

%�
"��&��
 '	�	 (����)

Figure 1. Architecture of the Viper verification infrastructure. The blue boxes depict the main
components of the architecture: the Viper intermediate language, two verification backends
(based on symbolic execution and verification condition generation, resp.), and an abstract
interpreter to infer auxiliary specifications. Gray boxes are external components, and orange
boxes show the languages for which existing verifiers are implemented via a translation into
Viper. The verifiers in the upper row (Chalice, C11, Go, Scala) are prototypes, whereas the
others (Rust, Python, Java, OpenCL) are fairly mature tools.

2. Verification Condition Generation

Throughout these lecture notes, we will encode more and more complex programs
and properties into simpler intermediate representations. As foundation for this
chain of translations, we employ Dijkstra’s guarded-commands language [10]. In
this section, we introduce the necessary background of guarded commands, ex-
plain how to encode statements into this language, and illustrate the resulting
verification approach on an example.

2.1. Guarded Commands

We use a guarded-commands language with the following syntax:

S ::= x:=e
| havoc x
| assert P
| assume P
| S;S
| S �S

where x ranges over variables, e denotes a side-effect free expression, and P de-
notes an assertion (a first-order formula over program variables). Guarded com-
mands include assignments, assignments of non-deterministic values to variables,
assertions, assumptions, sequential composition, and non-deterministic choice.
The execution of a guarded command from an initial state fails if the condition
of an assertion evaluates to false, it is infeasible if the condition of an assumption
evaluates to false, and otherwise succeeds. We say that a guarded command is
correct if all feasible executions succeed, that is, no execution fails.

P. Müller / Building Deductive Program Verifiers. Lecture Notes 191

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Correctness of a guarded command S can be verified by proving the valid-
ity of the verification condition wp(S, true), where wp(S,Q) denotes the weakest
precondition of guarded command S w.r.t. assertion Q and is defined as follows
(Q[e/x] denotes Q with e substituted for x):

wp(x:=e,Q) = Q[e/x]
wp(havoc x,Q) = ∀x ·Q

wp(assert P,Q) = P ∧Q
wp(assume P,Q) = P ⇒ Q

wp(S1;S2,Q) = wp(S1,wp(S2,Q))
wp(S1 �S2,Q) = wp(S1,Q)∧wp(S2,Q)

Many verification problems require mathematical theories such as arithmetic
and set theory. For those theories that are not natively supported by the underly-
ing theorem prover, intermediate verification languages allow programmers to de-
fine them via sorts, uninterpreted function symbols, and axioms. The conjunction
of these axioms forms a so-called background predicate, which may be assumed
for any given verification task. So for a background predicate BP, the verification
of a guarded command S means proving the validity of:

BP ⇒ wp(S, true)

2.2. Encoding of Statements

Guarded commands offer a simple core language, for which verification condition
generation is straightforward. Other statements can be encoded conveniently into
guarded commands, as we show next.

Conditional statements. A conditional statement

if e then S1 else S2 end

is encoded as

(assume e; �S1�)� (assume ¬e; �S2�)

where �S� denotes the encoding of statement S (we omit the encoding of expres-
sions for simplicity). Intuitively, the resulting guarded command is correct if S1
is correct if e holds (otherwise the left-hand side of the non-deterministic choice
is infeasible) and if S2 is correct if e does not hold (otherwise the right-hand side
is infeasible). This is exactly the verification condition required for a conditional
statement, and formalized by the verification condition:

(e ⇒ wp(�S1�,Q))∧ (¬e ⇒ wp(�S2�,Q))

Loops. The verification of loops requires a suitable loop invariant, that is, an
assertion that holds before the loop and after each loop iteration. A loop invariant
represents the inductive argument needed to reason about an unknown number
of loop iterations. We require programmers to provide loop invariants manually

P. Müller / Building Deductive Program Verifiers. Lecture Notes192

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

through suitable annotations in the code. However, techniques for the automatic
inference of invariants, typically via fixpoint iteration, exist [9].

A loop of the form

while(e) invariant P begin S end

is encoded as

assert P ;
havoc xi; assume P ;
(assume e; �S�; assert P ; assume false)
�
assume ¬e

This encoding first asserts the loop invariant before the loop. Instead of perform-
ing an iteration (which would require a fixpoint computation in the wp com-
putation), it simulates an arbitrary loop execution. For this purpose, we assign
non-deterministic values to all variables xi that are assigned in the loop body
S (the so-called loop targets) and assume the loop invariant. This step removes
all previous knowledge about these variables, except that they satisfy the loop
invariant. The subsequent non-deterministic choice models the two possible be-
haviors of the loop. If the loop condition holds, we execute the loop body S and
prove that it preserves the invariant P . The subsequent assume false ensures
that any subsequent code verifies trivially; this is needed because we encode the
termination of the loop separately, in the second branch of the non-deterministic
choice. Here, we assume that the loop condition e does not hold.

Verifying the encoding of a loop ensures that the loop is correct if it termi-
nates. Proof obligations that enforce termination need to be encoded explicitly,
as we discuss later.

Procedures. Modular verification techniques require specifications for procedures
and verify calls using the specification of the callee instead of its implementation.
This approach is compatible with information hiding, allows one to verify calls
where the callee implementation is unknown (for instance, abstract methods,
dynamically-bound methods, or library methods), and avoids re-verification of
callers when the implementation of a callee changes.

Procedures are typically specified using pre- and postconditions. Callers need
to establish the precondition and may assume the postcondition after the call.
In turn, procedure bodies may assume that their precondition holds upon entry
and must establish the postcondition upon termination. Consider a procedure
declaration

procedure p(x) returns r
requires P
ensures Q

begin S end

where x is the (only) formal parameter, r is the result variable, P is the precondi-
tion, and Q is the postcondition. In languages without global state such as global

P. Müller / Building Deductive Program Verifiers. Lecture Notes 193

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

variables or a heap memory, correctness of this procedure can be encoded into
guarded commands as follows:

assume P
�S�
assert Q

A a call y := p(e) is encoded as (where z is a fresh variable):

z := e
assert P [z/x]
havoc y
assume Q[z/x,y/r]

The substitutions replace the parameter and result variable in the pre- and post-
condition by the actual argument and right-hand side variable, resp. The tempo-
rary variable z is needed since e may refer to y. The havoc operation reflects that
the call updates variable y and, thus, all prior information about its value is no
longer valid. Properties of the new value of y are conveyed via p’s postcondition.
We will discuss in Sec. 4 how to encode procedures and calls in the presence of a
heap memory, where we need to reflect the potential side effects of a call on heap
locations.

2.3. Example

The example in Fig. 2 illustrates the concepts used so far. This Viper pro-
cedure (called method in Viper) implements the first challenge of the Ver-
ifyThis 2011 verification competition (see www.pm.inf.ethz.ch/research/
verifythis/Archive/2011.html). Method maxSeq computes the index of the
maximum of a non-empty sequence of integers. The postcondition states that the
result x is a valid index and that the value at position x is at least as large as all
other values in the sequence. The loop invariant states that values to the left of
x and to the right of y are less than or equal to the value at position x. Conse-
quently, when the loop terminates, we have x==y and, thus, x is the index of the
maximum.

Seq is a built-in generic datatype. It is encoded via uninterpreted function
symbols and axioms, which are part of the background predicate used to verify
any Viper method.

Viper does not require termination of methods and loops. However, it is
possible to encode termination arguments explicitly via additional assertions in
the code. In this example, we use y - x as ranking function. To ensure that its
value ranges over a well-founded set, we prove in line 18 that it is non-negative.
Termination is then guaranteed by the fact that each loop iteration decreases the
value of the ranking function, which we assert in line 25.

3. Verification of Hyperproperties

With the technique introduced so far, we can prove properties for individual ex-
ecutions of a program such as functional correctness and termination. Other im-

P. Müller / Building Deductive Program Verifiers. Lecture Notes194

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 method maxSeq(s: Seq[Int]) returns (x: Int)
2 requires 0 < |s|

3 ensures 0 <= x && x < |s|

4 ensures forall i: Int :: 0 <= i && i < |s| ==> s[i] <= s[x]

5 {

6 x := 0

7 var y: Int := |s| - 1

8

9 while(x != y)

10 invariant 0 <= x

11 invariant 0 <= y && y < |s|

12 invariant x <= y

13 invariant forall i: Int ::

14 (0 <= i && i < x || y < i && i < |s|)

15 ==> (s[i] <= s[x] || s[i] <= s[y])

16 {

17 var measure: Int := y - x // termination
18 assert 0 <= measure // termination
19 if(s[x] <= s[y])

20 {

21 x := x + 1

22 } else {

23 y := y - 1

24 }

25 assert y - x < measure // termination
26 }

27 }

Figure 2. A Viper method that computes the index of the maximum of a non-empty sequence of
integers. The pre- and postcondition express the functional behavior of the method; termination
is encoded manually through local assertions.

portant properties relate multiple executions. For instance, determinism requires
that two executions starting from the same initial state terminate in the same final
state. Properties of multiple program executions are called hyperproperties and
include for instance monotonicity, non-interference [17] (which is used to prove
secure information flow [34]), or read effects [24].

Hyperproperties can be verified via relational program logics [4,39]. However,
these logics are difficult to automate and require dedicated tool support. An
alternative is to construct a so-called product program [3,12] that encodes two or
more executions of the original program into a single execution of the product.
This product program can be expressed in an intermediate verification language
and verified using the approach introduced above.

We consider modular product programs [12] here, which enable the modular
verification of hyperproperties, and focus on the encoding of two executions. A
generalization to arbitrary numbers is trivial. The basic construction is simple. To
encode the state space of two program executions, we introduce two variables x1
and x2 for each variable x of the original program. Since the control flow of the two
executions of the original program may differ, we introduce two boolean activation

P. Müller / Building Deductive Program Verifiers. Lecture Notes 195

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

variables p1 and p2 that reflect whether each of the executions is currently active.
Both variables are initially true.

An assignment x:=e in the original program is then encoded as two condi-
tional assignments, which update the variables of the product program if the
corresponding execution is active:

if(p1) { x1:=e1 }

if(p2) { x2:=e2 }

where ei is the expression e with all occurrences of a variable y replaced by yi.
A conditional statement if(e) { S1 } else { S2 } is encoded by introducing
fresh activation variables that reflect which execution enters the then- and the
else-branch, resp.:

var ptrue
1 := p1 ∧e1

var ptrue
2 := p2 ∧e2

var p
false
1 := p1 ∧¬e1

var p
false
2 := p2 ∧¬e2

�S1�(ptrue
1 ,ptrue

2)
�S2�(pfalse

1 ,p
false
2)

where �S�(p1,p2) denotes the product construction for statement S with activa-
tion variables p1 and p2.

A key feature of modular product programs is that their construction does
not duplicate loops and method calls. This feature allows us to use loop invariants
and method specifications that relate both executions of the original program
and, thereby, enables modular verification. A loop while(e) invariant P { S }
is encoded as follows:

while(p1 ∧e1 ∨p2 ∧e2)
invariant �P �(p1,p2)

{
var ptrue

1 := p1 ∧e1
var ptrue

2 := p2 ∧e2
�S�(ptrue

1 ,ptrue
2)

}
The product loop iterates as long as one of the two executions is active and its
loop condition is satisfied. However, the loop body is executed only for active
executions.

Modular product programs support both classical and relational assertions.
A classical assertion P is encoded as (p1 ⇒ P1)∧ (p2 ⇒ P2), that is, it must hold
for each active execution. Relational specifications may relate both executions of
the program. A relational assertion R is encoded as p1 ∧p2 ⇒ R, that is, it must
hold if both executions are active (the variables of an inactive execution do not
have meaningful values).

Methods are encoded by duplicating parameters and results, and adding two
extra parameters for the activation variables. A call then passes the values of the

P. Müller / Building Deductive Program Verifiers. Lecture Notes196

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 method maxDet(s1: Seq[Int], s2: Seq[Int], p1: Bool, p2: Bool)
2 returns (x1: Int, x2: Int)
3 requires p1 ==> 0 < |s1|

4 requires p2 ==> 0 < |s2|

5 ensures p1 && p2 ==> (s1 == s2 ==> x1 == x2)

6 {

7 var y1: Int
8 var y2: Int
9 if(p1) { x1 := 0 }

10 if(p2) { x2 := 0 }

11 if(p1) { y1 := |s1| - 1 }

12 if(p2) { y2 := |s2| - 1 }

13

14 while(p1 && x1 != y1 || p2 && x2 != y2)

15 invariant p1 ==> 0 <= x1 && 0 <= y1 && y1 < |s1| && x1 <= y1

16 invariant p2 ==> 0 <= x2 && 0 <= y2 && y2 < |s2| && x2 <= y2

17 invariant p1 && p2 ==> (s1 == s2 ==> x1 == x2 && y1 == y2)

18 {

19 var pw1: Bool := p1 && x1 != y1

20 var pw2: Bool := p2 && x2 != y2

21

22 var pt1: Bool := pw1 && s1[x1] <= s1[y1]

23 var pt2: Bool := pw2 && s2[x2] <= s2[y2]

24 var pf1: Bool := pw1 && !(s1[x1] <= s1[y1])

25 var pf2: Bool := pw2 && !(s2[x2] <= s2[y2])

26

27 if(pt1) { x1 := x1 + 1 }

28 if(pt2) { x2 := x2 + 1 }

29 if(pf1) { y1 := y1 - 1 }

30 if(pf2) { y2 := y2 - 1 }

31 }

32 }

Figure 3. Modular product program for the method from Fig. 2. The classical preconditions
ensure that sequence accesses are within bounds. The relational postcondition expresses deter-
minism: for equal parameter values, we will get equal results. We omit the termination checks
for simplicity.

caller’s activation variables to the callee to ensure that the body of the callee
method is executed only if the corresponding execution is active.

Fig. 3 shows the product program for the example in Fig. 2. The classical
preconditions (and the corresponding loop invariants) ensure that sequence ac-
cesses are within bounds. The relational postcondition and loop invariant express
determinism: for equal parameter values, we will get equal results in both method
executions.

Modular product programs allow one to use off-the-shelf verifiers to verify
hyperproperties. They can be used to verify even advanced non-interference prop-
erties including declassification and the absence of termination leaks [12].

P. Müller / Building Deductive Program Verifiers. Lecture Notes 197

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

4. Verification of Heap-Manipulating Programs

In this section, we present a verification technique for heap-manipulating pro-
grams and show how it can be encoded into the language introduced so far.

4.1. Access Permissions

The main verification challenge for heap-manipulating programs is framing: how
to preserve information about heap data structures across heap changes, in par-
ticular, across method calls. For this purpose, we introduce the notion of an access
permission (or permission for short), which facilitates static verification, but is
not present during program execution. We associate an access permission with
each heap location. This permission is created when the heap location is allocated.
Permissions are held by method executions; a method execution may access a
heap location only if it holds the corresponding permission. Permissions may be
transferred between method executions, but cannot be duplicated or forged. Con-
sequently, there is at most one permission available for each location. While one
method holds the permission, no other method can have it to modify the location,
which enables framing.

To distinguish read and write accesses, it is useful to support fractional per-
missions [6], where a permission can be split into several fractions, and the frac-
tions can be re-combined to obtain a full permission. Writing to a memory location
requires full permission, whereas any non-zero fraction permits reading.

Let us assume a heap that consists of objects with fields. We can encode heaps
and permissions as two mathematical maps (defined as part of the background
predicate) that map reference-field pairs to values and rational numbers in [0;1],
resp. We call the permission map amask. Using this encoding, a field read y := x.f
is encoded as:

assert x �= null
assert Mask[x,f]> 0
y := Heap[x,f]

Analogously, we can encode a field update x.f := e as:

assert x �= null
assert Mask[x,f] = 1
Heap := Heap[x,f → e]

Permissions are transferred between methods upon calls and when a call
returns. Which permissions to transfer is specified in the method specification via
accessibility predicates of the form acc(x.f, p), where p is the required fraction.
The transfer is encoded via two auxiliary operations on assertions. Exhaling an
assertion P is done in three steps: (1) It asserts that all permissions required by
P are available in the current mask and that all logical constraints in P hold; if
not, verification fails. (2) It removes the transferred permissions from the mask.
(3) It havocs all memory locations to which no permission is held, to reflect that
other methods may use the permission to update those locations and, thereby,
invalidate any knowledge about them. Conversely, inhaling an assertion P requires

P. Müller / Building Deductive Program Verifiers. Lecture Notes198

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 field val: Int
2 define read(a,i)

3 slot(a,i).val

4

5 domain IArray {

6 function slot(a: IArray, i: Int): Ref
7 function len(a: IArray): Int
8 function first(r: Ref): IArray

9 function second(r: Ref): Int
10

11 axiom all_diff {

12 forall a: IArray, i: Int :: { slot(a,i) }

13 first(slot(a,i)) == a && second(slot(a,i)) == i

14 }

15

16 axiom len_nonneg {

17 forall a: IArray :: { len(a) }

18 len(a) >= 0

19 }

20 }

Figure 4. A Viper field, macro, and background predicate to encode mutable integer arrays. The
term { slot(a,i) } is a matching pattern used by the SMT solver to instantiate the universal
quantifier.

two steps: (1) It adds the transferred permissions to the mask. (2) It assumes that
all logical constraints in P hold. Both operations are defined inductively over the
syntax of assertions; we omit a formal encoding here for simplicity.

With these auxiliary operations, we can adapt the encoding of procedure
declarations and calls presented earlier. Instead of asserting and assuming pre-
and postconditions, they are exhaled and inhaled, resp. For instance, upon a call,
the caller exhales the precondition (to transfer permissions to the callee) and then
inhales the postcondition (to transfer permissions back). The havoc that happens
in step 3 of the exhale reflects the potential side effects of the callee method.

Permissions are the basis behind modern program logics such as separation
logic [33] and implicit dynamic frames [36]. They are applicable to a wide range of
verification problems. In a concurrent setting, they ensure data race freedom [31].
If one thread holds full permission to write to a memory location, other threads
hold no permission and can, thus, neither read nor write. Nevertheless, fractional
permissions enable concurrent reading. Permissions have also been used to verify
fine-grained concurrency, even on weak memory models [38,37].

4.2. Example

To illustrate the use of permissions, we discuss a variation of the example from
Fig. 2 that operates on a mutable array instead of a mathematical sequence.

Viper does not support arrays natively, but they can be encoded easily as part
of the background predicate, as shown in Fig. 4. We model each array location as

P. Müller / Building Deductive Program Verifiers. Lecture Notes 199

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 method maxArray(a: IArray) returns (x: Int)
2 requires 0 < len(a)

3 requires forall i: Int :: 0<=i && i<len(a) ==> acc(read(a,i), 1/2)

4 ensures 0 <= x && x < len(a)

5 ensures forall i: Int :: 0<=i && i<len(a) ==> acc(read(a,i), 1/2)

6 ensures forall i: Int :: 0<=i && i<len(a)

7 ==> read(a,i) <= read(a,x)

8 {

9 x := 0

10 var y: Int := len(a) - 1

11

12 while(x != y)

13 invariant 0 <= x && x <= y && y < len(a)

14 invariant forall i: Int :: 0<=i && i<len(a)

15 ==> acc(read(a,i), 1/2)

16 invariant forall i: Int :: (0<=i && i<x || y<i && i<len(a))

17 ==> (read(a,i) <= read(a,x) || read(a,i) <= read(a,y))

18 {

19 var measure: Int := y - x // termination
20 assert 0 <= measure // termination
21 if(read(a,x) <= read(a,y))

22 {

23 x := x + 1

24 } else {

25 y := y - 1

26 }

27 assert y - x < measure // termination
28 }

29 }

Figure 5. A variation of the example from Fig. 2 that operates on a mutable array instead
of a mathematical sequence. The fractional permissions in the method specification and loop
invariant allow the method to read the array elements, but prevent modifications. They allow
callers to conclude that the array is not changed by the method.

a separate reference, which is yielded by function slot. The value of this location
can then be accessed via a predefined val field of that reference. To simplify the
notation, we define a macro read that is parametric in the array and index, and
expands into the access expression. The first axiom states that slot is injective.
It is expressed via two inverse functions, which yield better performance in the
SMT solver than a naive formulation of injectivity.

Fig. 5 shows the Viper encoding of the example. The fractional permissions
in the method specification and loop invariant allow the method to read the ar-
ray elements, but prevent modifications. Therefore, they enable framing: callers
may conclude that the array is not changed by the method. The assertions use
universal quantification over permissions, a feature called iterated separating con-
junction [33], which is supported by Viper [29].

P. Müller / Building Deductive Program Verifiers. Lecture Notes200

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 field left: Ref
2 field right: Ref
3 field val: Int
4

5 predicate tree(this: Ref) {

6 acc(this.left) && acc(this.right) && acc(this.val) &&

7 (this.left != null ==> tree(this.left)) &&

8 (this.right != null ==> tree(this.right))

9 }

10

11 function elems(this: Ref): Multiset[Int]
12 requires tree(this)

13 {

14 unfolding tree(this) in
15 Multiset(this.val) union
16 (this.left != null ? elems(this.left) : Multiset[Int]()) union
17 (this.right != null ? elems(this.right) : Multiset[Int]())
18 }

Figure 6. A recursive tree predicate and a heap-dependent function to obtain the multiset of
integers stored in a tree.

5. Verification of Recursive Data Structures

Iterated separating conjunction lets us specify permissions to a statically-unknown
number of memory locations. It is especially useful for random-access data struc-
tures such as arrays and maps. For other data structures, in particular recursive
ones, we can specify permissions using (possibly recursive) predicates [32,18].

The predicate tree in Fig. 6 provides permission to the fields of the argument
reference. If either of the two subtrees is non-null, it includes a recursive predicate
instance for this tree. Consequently, the predicate represents the permissions to
all locations in the entire tree. A predicate may also constrain the values of heap
locations whose permissions it contains, for instance, to express invariants of data
structures.

Just like permissions, predicate instances are held by method executions and
transferred through exhale and inhale operations. Predicates with one parameter
such as the tree predicate can be stored in the mask. For instance, Mask[x,P] = 1
expresses that the current state contains the predicate P (x). Predicates with more
arguments require higher-dimensional masks.

Recursive definitions are generally tricky for automatic provers because
provers need to be prevented from unfolding them indefinitely, leading to non-
termination in the proof search. To avoid this problem, many tools require pro-
grammers to unfold and fold predicates manually through annotations in the
code. For this purpose, Viper provides a statement unfold P (x), which exhales
the predicate instance P (x) and inhales the body of the predicate. Conversely,
fold P (x) exhales the body and inhales the predicate instance. an expression
unfolding P (x) in e temporarily unfolds P (x), evaluates expression e, and then
re-folds P (x).

P. Müller / Building Deductive Program Verifiers. Lecture Notes 201

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 method maxTree(t: Ref) returns (m: Int)
2 requires tree(t)

3 ensures tree(t)

4 ensures 0 < (m in elems(t))

5 ensures forall e: Int :: 0 < (e in elems(t)) ==> e <= m

6 ensures elems(t) == old(elems(t))
7 {

8 var tmp: Int
9 var measure: Int := |elems(t)| // termination

10 unfold tree(t)

11 m := t.val

12 if(t.left != null) {

13 assert |elems(t.left)| < measure // termination
14 tmp := maxTree(t.left)

15 if(m < tmp) { m := tmp }

16 }

17 if(t.right != null) {

18 tmp := maxTree(t.right)

19 if(m < tmp) { m := tmp }

20 }

21 fold tree(t)

22 }

Figure 7. A Viper method to compute the maximum in a tree of integers. Permissions to the
fields of the tree nodes are represented via the recursive predicate tree. The functional behavior
is specified in terms of the heap-dependent function elems. Both are defined in Fig. 6.

The example in Fig. 7 illustrates these features. It solves the second challenge
of the VerifyThis 2011 verification competition. Method maxTree computes the
maximum in a tree of integers. It takes an instance of the tree predicate from its
caller and returns it after the call. In order to get access to the fields of the tree
node, the method unfolds the predicate in line 10. Before terminating, it re-folds
the predicate in line 21.

The functional behavior of maxTree is specified in terms of the heap-dependent
function elems, which is defined in Fig. 6. Heap-dependent functions have a pre-
condition that requires permission to the heap locations accessed by the function.
They automatically return all permissions to their caller; a postcondition that
provides permissions is neither necessary nor allowed.

Heap-dependent functions are encoded via an uninterpreted function symbol
and two axioms. A definitional axiom relates the uninterpreted function sym-
bol to the definition of the heap-dependent function. A framing axiom expresses
that changing heap locations whose permission is not mentioned in the function
precondition cannot affect the function value.

The elems function traverses the tree recursively and yields the multiset of
values stored in the tree nodes. The postcondition of method maxTree uses this
function to say that (1) the returned value is in the multiset of values stored in
the tree, (2) it is no smaller than all other tree elements, and (3) the method
does not affect the values stored in the tree. The latter could also be achieved by

P. Müller / Building Deductive Program Verifiers. Lecture Notes202

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

taking only a fraction of the predicate instance tree(t), allowing callers to hold
on to another fraction. The size of the multiset of values is also used as ranking
function to prove termination of the recursive method.

6. Building Frontend Verifiers

In the previous sections, we have introduced various features of the Viper language
and explained how to encode them via translations into simpler intermediate
languages down to guarded commands and then to an SMT solver. Since Viper
is itself an intermediate verification language, frontend tools use it to encode
complex verification problems. In this section, we will discuss a Python version
of the tree example form the previous section and its verification in Nagini [11].
The code and specification are shown in Fig. 8.

Nagini requires programs to be statically typed using the mypy type system.
It encodes predicate and function definitions as Python methods with annotations
@Predicate and @Pure, resp. Pure methods must be side-effect free. Specifications
are expressed as calls to predefined Python methods, which do nothing at run
time, but are interpreted by Nagini. This design is adopted from .NET Code
Contracts [14] and allows programmers to add annotations without extending the
Python syntax.

One such annotation is the MustTerminate precondition, which expresses that
the method must terminate, and which provides a ranking function that is then
encoded via assertions on the Viper level as shown in Fig. 7. Tanslating the Python
example from Fig. 8 results in essentially the Viper program from Fig. 7. However,
the actual encoding produced by the Nagini verifier is much more complex and
includes, for instance, a comprehensive formalization of Python’s type system.

7. Conclusion

Many modern program verifiers are implemented as a sequence of translations
into simpler intermediate verification languages. In these lecture notes, we showed
how to encode a range of verification techniques into a simpler guarded-commands
language, for which verification condition generation is straightforward. In par-
ticular, we showed how to encode access permissions, which allow one to verify
heap-manipulating and concurrent programs.

A downside of building verifiers through translations is that error messages for
verification failures need to be translated back from the lowest abstraction level
to the frontend tool to provide meaningful feedback to programmers. Another
drawback is that all translations are part of the trusted codebase, that is, errors
in those translations may compromise soundness of the verification. Extracting
foundational proofs from translation-based verifiers is an interesting direction for
future work.

Acknowledgement. We thank Marco Eilers for his help with the Nagini example.

P. Müller / Building Deductive Program Verifiers. Lecture Notes 203

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

1 from nagini_contracts.contracts import *
2 from nagini_contracts.obligations import MustTerminate
3 from typing import Optional, List

4
5 class Tree:

6 def __init__(self, left: Optional[’Tree’], right: Optional[’Tree’],

7 val: int) -> None:

8 self.left = left

9 self.right = right

10 self.val = val

11
12 @Predicate
13 def tree(self: Tree) -> bool:

14 return (Acc(self.left) and Acc(self.right) and Acc(self.val) and
15 Implies(self.left is not None, tree(self.left)) and
16 Implies(self.right is not None, tree(self.right)))

17
18 @Pure

19 def elems(self: Tree) -> MSet[int]:

20 Requires(tree(self))
21 Ensures(len(Result()) > 0)

22 empty = MSet() # type: MSet[int]
23 return Unfolding(tree(self), MSet(self.val) +

24 (elems(self.left) if self.left is not None else empty) +

25 (elems(self.right) if self.right is not None else empty))

26
27 def maxTree(t: Tree) -> int:

28 Requires(tree(t))
29 Requires(MustTerminate(len(elems(t))))
30 Ensures(tree(t))
31 Ensures(0 < elems(t).num(Result()))

32 Ensures(Forall(int, lambda e: Implies(0 < elems(t).num(e),

33 e <= Result())))

34 Ensures(elems(t) == Old(elems(t)))

35 Unfold(tree(t))

36 res = t.val

37 if t.left is not None:

38 tmp = maxTree(t.left)

39 if res < tmp:

40 res = tmp

41
42 if t.right is not None:

43 tmp = maxTree(t.right)

44 if res < tmp:

45 res = tmp

46 Fold(tree(t))
47 return res

Figure 8. A Nagini version of the tree example from Figs. 6 and 7. Predicate and function defi-
nitions are encoded as Python methods with annotations @Predicate and @Pure, resp. Method
specifications and loop invariants are expressed using calls to designated Python methods.

P. Müller / Building Deductive Program Verifiers. Lecture Notes204

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

References

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust types for modular
specification and verification. Technical report, ETH Zurich, 2018. https://doi.org/10.
3929/ethz-b-000311092.

[2] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter. Specifi-
cation and verification: The Spec# experience. Communications of the ACM, 54(6):81–91,
June 2011.

[3] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product programs.
In M. J. Butler and W. Schulte, editors, Formal Methods (FM), volume 6664 of LNCS,
pages 200–214. Springer, 2011.

[4] N. Benton. Simple relational correctness proofs for static analyses and program transfor-
mations. In Principles of Programming Languages (POPL), pages 14–25. ACM, 2004.

[5] S. Blom and M. Huisman. The VerCors tool for verification of concurrent programs. In
C. B. Jones, P. Pihlajasaari, and J. Sun, editors, Formal Methods (FM), volume 8442 of
LNCS, pages 127–131. Springer, 2014.

[6] J. Boyland. Checking interference with fractional permissions. In Static Analysis Sympo-
sium (SAS), volume 2694 of LNCS, pages 55–72. Springer, 2003.

[7] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model checking. MIT
Press, 2018.

[8] E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global invariants
in concurrent programs. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided
Verification (CAV), volume 6174 of LNCS, pages 480–494. Springer, 2010.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Principles of Programming
Languages (POPL), pages 238–252. ACM, 1977.

[10] E. W. Dijkstra. Guarded commands, non-determinancy and a calculus for the derivation of
programs. In F. L. Bauer and K. Samelson, editors, Language Hierarchies and Interfaces,
volume 46 of LNCS, pages 111–124. Springer, 1975.

[11] M. Eilers and P. Müller. Nagini: A static verifier for Python. In H. Chockler and G. Weis-
senbacher, editors, Computer Aided Verification (CAV), volume 10982 of LNCS, pages
596–603. Springer, 2018.

[12] M. Eilers, P. Müller, and S. Hitz. Modular product programs. In A. Ahmed, editor,
European Symposium on Programming (ESOP), volume 10801 of LNCS, pages 502–529.
Springer, 2018.

[13] ETH Zurich. Viper Tutorial, 2018. viper.ethz.ch/tutorial/.
[14] M. Fähndrich, M. Barnett, and F. Logozzo. Code contracts. http://research.microsoft.

com/contracts, 2008.
[15] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive pro-

gram verification. In W. Damm and H. Hermanns, editors, Computer Aided Verification
(CAV), volume 4590 of LNCS, pages 173–177. Springer, 2007.

[16] J.-C. Filliâtre and A. Paskevich. Why3—where programs meet provers. In M. Felleisen
and P. Gardner, editors, European Symposium on Programming (ESOP), volume 7792 of
LNCS, pages 125–128. Springer, 2013.

[17] J. A. Goguen and J. Meseguer. Security policies and security models. In Security and
Privacy, pages 11–20. IEEE Computer Society, 1982.

[18] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification condition generation
for permission logics with abstract predicates and abstraction functions. In G. Castagna,
editor, European Conference on Object-Oriented Programming (ECOOP), volume 7920
of LNCS, pages 451–476. Springer, 2013.

[19] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
CACM, 12(10):576–580,583, 1969.

[20] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories. In P. Mad-
husudan and S. A. Seshia, editors, Computer Aided Verification (CAV), volume 7358 of
LNCS, pages 427–443. Springer, 2012.

[21] C. Le Goues, K. R. M. Leino, and M. Moskal. The Boogie verification debugger (tool
paper). In G. Barthe, A. Pardo, and G. Schneider, editors, Software Engineering and

P. Müller / Building Deductive Program Verifiers. Lecture Notes 205

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Formal Methods (SEFM), volume 7041 of LNCS, pages 407–414. Springer, 2011.
[22] K. R. M. Leino. This is Boogie 2. www.microsoft.com/en-us/research/publication/

this-is-boogie-2-2/, 2008.
[23] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In

E. M. Clarke and A. Voronkov, editors, Logic for Programming Artificial Intelligence and
Reasoning (LPAR), volume 6355 of LNCS, pages 348–370. Springer, 2010.

[24] K. R. M. Leino and P. Müller. Verification of equivalent-results methods. In
S. Drossopoulou, editor, European Symposium on Programming (ESOP), volume 4960 of
LNCS, pages 307–321. Springer, 2008.

[25] K. R. M. Leino and P. Müller. Using the Spec# language, methodology, and tools to write
bug-free programs. In P. Müller, editor, Advanced Lectures on Software Engineering—
LASER Summer School 2007/2008, volume 6029 of LNCS, pages 91–139. Springer, 2010.

[26] K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with Chalice.
In A. Aldini, G. Barthe, and R. Gorrieri, editors, Foundations of Security Analysis and
Design V, volume 5705 of LNCS, pages 195–222. Springer, 2009.

[27] L. Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and
J. Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4963 of LNCS, pages 337–340. Springer, 2008.

[28] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume
2262 of LNCS. Springer, 2002.

[29] P. Müller, M. Schwerhoff, and A. J. Summers. Automatic verification of iterated separating
conjunctions using symbolic execution. In S. Chaudhuri and A. Farzan, editors, Computer
Aided Verification (CAV), volume 9779 of LNCS, pages 405–425. Springer, 2016.

[30] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for
permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 9583 of LNCS, pages
41–62. Springer, 2016.

[31] P. W. O’Hearn. Resources, concurrency and local reasoning. In P. Gardner and N. Yoshida,
editors, Concurrency Theory (CONCUR), volume 3170 of LNCS, pages 49–67. Springer,
2004.

[32] M. Parkinson and G. Bierman. Separation logic and abstraction. In J. Palsberg and
M. Abadi, editors, Principles of Programming Languages (POPL), pages 247–258. ACM,
2005.

[33] J. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science (LICS), pages 55–74. IEEE Computer Society, 2002.

[34] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1):5–19, 2003.

[35] M. Schwerhoff. Advancing Automated, Permission-Based Program Verification Using
Symbolic Execution. PhD thesis, ETH Zurich, 2016.

[36] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In European Conference on Object-Oriented Programming
(ECOOP), volume 5653 of LNCS, pages 148–172. Springer, 2009.

[37] A. J. Summers and P. Müller. Automating deductive verification for weak-memory pro-
grams. In D. Beyer and M. Huisman, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 10805 of LNCS, pages 190–209. Springer,
2018.

[38] V. Vafeiadis and C. Narayan. Relaxed separation logic: a program logic for C11 con-
currency. In A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors, Object Oriented
Programming Systems Languages & Applications (OOPSLA), pages 867–884. ACM, 2013.

[39] H. Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):308–334, 2007.

P. Müller / Building Deductive Program Verifiers. Lecture Notes206

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Clocks in Kahn Process Networks

Marc Pouzet

ENS, Département d’informatique, 45 rue d’Ulm, 75230 Paris, France
Marc. Pouzet@ ens. fr

Abstract. The language Lustre was introduced to design and implement
real-time control software, modeling it as a continuous function over
treams of datas. A set of equations written in Lustre defines a restricted
class of Kahn process networks which can be executed synchronously:
all computations can be dated according to a global time scale so that
when a value is produced, it is immediately consumed. This restriction
is obtained by associating to every stream a clock that defines when a
value is present or not according to a global time scale. A dedicated type
system — the clock calculus — computes a clock for every expression
and checks that its actual clock equals its expected clock and thus that
intermediate buffers are not needed.

In these course notes,1 we present a static and dynamic semantics of
synchronous Kahn networks. We consider a first-order functional lan-
guage of streams reminiscent of Lustre and Lucid Synchrone to which
we give several denotational semantics. We show that without imposing
restrictions, we get two kinds of bad behavior: some networks may dead-
lock and some cannot execute without unbounded FIFOs. We introduce
a clocked semantics and show that the clocking rules correspond to a
type system with dependent types. We then extend the language ker-
nel with an explicit buffer operator to model communication through
a FIFO. The clock calculus is extended with a subtyping rule that is
applied where the buffer is used and whose size is inferred. To reduce
the complexity of the resolution, we present an abstraction of clocks.

1. Introduction

Synchronous languages [3] were introduced about thirty years ago by the con-
current work on three academic languages: Signal [5], Esterel [7] and Lustre [20].
These domain specific languages targeted real-time control software, allowing to
write modular and mathematically precise system specifications, to simulate, test
and verify them, and to automatically translate them into embedded executable
code. The environment SCADE,2 based on a synchronous language [15], is now
used routinely to develop various critical control software: in planes (fly-by-wire,
engine control, emergency braking), trains (on-board control, interlocking), etc.

All these languages are founded on the synchronous model of time [6] where a
system is modeled ideally, with communications and computations assumed to be
instantaneous, with formal checks of important safety properties like determinism,

2http://www.esterel-technologies.com/products/scade-suite

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-207

207

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Marc.Pouzet@ens.fr
http://www.esterel-technologies.com/products/scade-suite

deadlock freedom, execution in bounded time and space, and with a posteriori
verification that a given implementation in software or hardware executes quickly
enough.

Lustre is a data-flow language: it manipulates infinite streams of data that
represent the evolution of an input, an output or a local variable, streams are
defined by writing mutually recursive equations over them, and a system is a
function from streams to streams. Time is simply the index in a stream. After
passing static checks, a stream function is compiled to sequential code (typically
C). It can also serve as a functional model of a device or software for the purposes
of formal verification ([19] summarises the different uses of Lustre).

A set of stream equations written in Lustre can be interpreted as a Kahn
Process Network [21]: stream functions are the nodes, every stream defines a
communication channel and a set of equations corresponds to a process network.
Lustre is Kahnian because a stream function cannot dynamically test whether
a signal is present or absent. The consequence is that all execution strategies
for a network are guaranteed to compute the same set of streams. Nonetheless,
as Lustre targets real-time applications, a function written in Lustre defines a
particular subset for which the compiler ensures that it does not deadlock and can
be compiled into statically scheduled code running in bounded time and space.
This is achieved by imposing a set of static constraints to ensure that the network
can be executed synchronously, that is, every computation in the network must
be dated according to a global time scale so that when a value is produced, it
can be immediately consumed. Hence, no intermediate buffers are needed. This
synchronous interpretation is obtained by associating to every stream a clock that
defines when a value is present or not according to a global time scale. Clocks
may or may not be periodic and may depend on input values. A dedicated type
system — the clock calculus — computes a clock for every expression and checks
that it matches the expected clock.

In this text, we describe a static and dynamic semantics for Lustre from the
perspective of Kahn process networks. We consider a simple first-order language
of streams reminiscent of Lustre and Lucid Synchrone to which we give several
denotational semantics. We show that the naive encoding of streams as lazy data
structures gives rise to strange non-causal behaviors, highlighting the need for the
prefix order introduced by Kahn. We then give a Kahn semantics to the language
kernel. To account for the synchronous restriction, we introduce a clocked seman-
tics and show that the clocking rules that a program must fulfill correspond to
typing constraints in a type system with dependent types. We derive a simpler
type system which reduces the equality of clocks to name equality. We then extend
the language kernel with an explicit buffer operator to model communications
via FIFOs. The clock calculus is extended with a subtyping rule that is applied
where the buffer is used and whose size is inferred. To reduce the complexity of
the resolution, we present an abstraction of clocks.

1.1. Kahn Process Networks

In the 1970s, Kahn studied the semantics of networks of deterministic parallel
processes communicating asynchronously through FIFO channels. One may think,

M. Pouzet / Clocks in Kahn Process Networks208

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

M

P
x

Q
z

y

tr

Figure 1. A Kahn Process Network with three processes

e.g., of a set of Unix processes communicating via pipes or of threads running
asynchronously and synchronising through bounded FIFO queues. Kahn showed
that in the case where elementary processes are deterministic, with blocking read
on an empty channel and non-blocking writes, the overall network is deterministic
— the result does not depend on the relative order in which nodes are activated
— and delay insensitive — computation and communication times do not change
the network semantics [21,22]. In short, the model is one of the very few that
conciliates parallelism and determinism. In a Kahn network, a basic process can
be programmed in a sequential language with two primitives: push to write a
value to a channel and pop to read a value. Figure 1 depicts a network with three
processes.3 There is a single reader and writer per channel. A process may only
read a single channel at a time and, once committed to reading, it must wait
until a value is available. It may not test the channel for emptiness or impose a
timeout; that is, it cannot test whether a value is present or absent. One cannot
write, for instance:4

if is empty a then ... or if not (is empty a) or not (is empty b)

then ...

But, it is possible to conditionally read or write according to a value that has
been read from a channel, e.g.:

let v = pop c in let w = if cond a then pop a else pop b in ...

or

let v = pop a in if cond v then push a (f v)

Figure 2 gives a few examples of elementary primitives: lift2 f x y z ap-
plies a function f pointwise to its two input channels x and y, and produces an
output on channel z; the unit delay fby x y z concatenates the first element of
its input channel x to the elements of its second input channel y and writes on
channel z; merge c x y z conditionally reads an input channel x or y according
to the value on channel c and writes on channel z; split c y z conditionally
writes on channel y or z according to the value on channel c.

Kahn networks with bounded buffers can be implemented by adding a back
pressure mechanism in order to avoid writes into a full buffer. Nonetheless, this

3Figure 15 in Appendix A gives an implementation with threads.
4The concrete syntax is that of OCaml.

M. Pouzet / Clocks in Kahn Process Networks 209

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

may introduce artificial blocking if the size of buffers are underestimated. The size
of buffers can be increased dynamically [28] but this solution cannot be used for
real-time applications where overall memory use must be guaranteed at compile
time.

Whether or not a Kahn network is deadlock free or can be executed in
bounded memory is undecidable in general [9]. Synchronous Data Flow (or
SDF) [24] and its variants (Cyclo Static Data Flow [27] among others) are re-
stricted classes of networks where every node consumes and produces a fixed
number of tokens at every step. The size of buffers can be computed at compile
time and a periodic static schedule can be generated. This make SDF suitable
for modeling and programming video intensive applications with periodic behav-
ior [32].

To prove that determinism is preserved by composition, Kahn took an ap-
proach based on denotational semantics using the following interpretation of chan-
nels and processes. A communication channel that carries values of type T is in-
terpreted as a (possibly infinite) sequence of values of type T that describe the
history of values on the channel. Because a node has its own internal memory,
it is interpreted as a function from the histories of its inputs to the histories of
its outputs, that is, a stream function. We now recall a few basic properties of
sequences, cpos and continuous functions.

1.1.1. Sequences and Continuous Functions over Sequences

Consider a set T of values. Tn denotes the set of sequences of length n made by
concatenating elements from T . The sequence v.s comprises head v and tail s. The
empty sequence is written ε. The set of finite sequences is written T � = ∪∞

n=0T
n.

The set of finite and infinite sequences of elements of T is written T∞ = T ∗∪Tω.
We write ≤ for the prefix order over sequences; s ≤ s′ means that s is a prefix
of s′. For any s, s′, ε ≤ s and if s ≤ s′, then v.s ≤ v.s′. A chain in T∞ is any
non-empty subset that is totally ordered by ≤. (T∞,≤, ε) is a complete partial
order (CPO): ε is its minimum element for the partial order ≤ and every chain
has a least upper bound. In the case of boolean sequences, where 0 stands for
false and 1 for true, ε ≤ 0 ≤ 0.1 ≤ 0.1.0 ≤ 0.1.0.0 but not 1.1 ≤ 1.0.

In the sequel, we shall sometimes write a sequence in a more traditional way.
A sequence u = (ui)i∈I , finite or not, is a set indexed by an initial segment I of
N. I ⊆ N is an initial segment when ∀n,m ∈ N. (n ∈ I) ∧ (m ≤ n) ⇒ (m ∈ I).

For any subset A of N, there exists a strictly increasing, one-to-one function
φA between an initial segment IA of N and A. An operation that builds a sub-
sequence from a sequence by picking a subset of indices or merges two sequences
to build another one corresponds to defining particular φ functions. This picking
does not have to be periodic, as in (u2i)i∈N that is made by taking one element
of u every two. It can depend on the value of streams. We shall see concrete
examples in the next section.

General properties of a CPO If D1 = (A1,≤1,⊥1) and D2 = (A2,≤2,⊥2) are
two cpos, with respective minimum elements ⊥1 and ⊥2, a function f : D1 → D2

is monotonic if and only if for any x, x′ ∈ D1, x ≤1 x′ ⇒ f(x) ≤2 f(x′). It is
continuous if and only if for any chain C in D1, f(sup(C)) = sup({f(d), d ∈ C}).

M. Pouzet / Clocks in Kahn Process Networks210

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

(* OCaml interface of a FIFO buffer *)

type 'a buff = { push: 'a -> unit; pop: unit -> 'a }

val buffer : unit -> 'a buff

(* pointwise application *)

let lift2 f x y z =

while true do

let v = x.pop () in

let w = y.pop () in

z.push (f v w)

done

z = lift2 (f)(x, y) f
z

x

y

(* unit delay *)

let fby x y z =

let memo = ref (x.pop ()) in

while true do

z.push !memo;

memo := y.pop ()

done

z = x fby y z

x

y

(* deterministic merge *)

let merge c x y z =

while true do

let v = c.pop () in

let w = if v then x.pop ()

else y.pop () in

z.push w

end

z = merge c x y

z

1

x

0

y

c

(* filter/split a stream *)

let split c x y z =

while true do

let cond = c.pop () in

let v = x.pop () in

if cond then y.push v

else z.push v

done

y, z = split x c

x

1

y

0

z

c

(* sampling *)

let when c x z =

let y = buffer () in

split c x z y

z = x when c

x

1

z

c

Figure 2. A set of data-flow primitives

Any continuous function f : D → D on a CPO D = (A,≤,⊥) has a least fix

point fix (f) = limn→∞(fn(⊥)), with f0(x) = x and fn+1(x) = f(fn(x)) (Kleene

theorem).

If A1 and A2 are CPOs, then (D1 ×D2,≤′,⊥′) is also a CPO, with D1 ×D2

M. Pouzet / Clocks in Kahn Process Networks 211

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

x x0 x1 x2 x3 x4 x5

y y0 y1 y2 y3 y4 y5
x+ y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5

x fby y x0 y0 y1 y2 y3 y4

h 1 0 1 0 1 0

x′ = x when h x0 x2 x4

z z0 z1 z2
merge h x′ z x0 z0 x2 z1 x4 z2

Figure 3. A set of primitives interpreted as stream functions

being the set of pairs (x1, x2) comprising an element x1 from D1 and an element
x2 from D2, taking ⊥′ = (⊥1,⊥2) as the minimum element and ≤′ such that
(x1, x2) ≤′ (y1, y2) ⇔ (x1 ≤1 y1) ∧ (x2 ≤2 y2). The set D = (D1 → D2,≤′,⊥′)
where D1 → D2 is the set of total continuous functions from D1 to D2, with
f ≤′ g ⇔ ∀s ∈ D1. f(s) ≤2 g(s) and ⊥′ = (λs.⊥2) is the minimum element, is
also a CPO.

1.1.2. Application to Kahn Process Networks

Following the formulation in [21], a network is represented by a set of equations
built according to the two following rules:

• If x1, ..., xk are the input channels of the network fed with the sequences
i1, ..., ik, add the equations

{x1 = i1, . . . , xn = in}

• Interpret every node f with n input channels x1, ..., xn and p output chan-
nels x′

1, ..., x
′
p as p continuous functions over sequences and add the equa-

tions {
y′1 = f1(x1, ..., xn), . . . , y

′
p = fp(x1, ..., xn)

}
The example in Figure 1 is represented by the following set of equations, if p is
the stream function associated to process P ; 〈q1, q2〉 is associated to Q; m to M :

{y = p(x, r), z = q1(y), t = q2(y), r = m(t)}

Elementary nodes in the network are interpreted as continuous functions over
sequences. Monotonicity corresponds to the intuition that as a process reads more
inputs, it can only produce more outputs: it cannot contradict what has already
been produced.

Since every node in a Kahn process network is a continuous function, a set
of equations:

M. Pouzet / Clocks in Kahn Process Networks212

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

d ::= | let node f pat = e node definition
| let clock c = ce clock definition
| d d sequence of definitions

pat ::= x | (pat,...,pat) pattern

e ::= | i constant flow
| x flow variable
| (e,...,e) tuple
| geti(e) i-th component of a tuple
| e op e imported operator
| if e then e else e mux operator
| f e node application
| e where rec eqs local definitions
| e fby e initialized delay
| e when ce | e whenot ce sampling
| merge ce e e merging
| buffer e buffering

eqs ::= pat= e | eqs and eqs mutually recursive equations

ce ::= e clock expressions

Figure 4. Language kernel.

{x1 = f1(x1, ..., xn), ..., xn = fn(x1, ..., xn)}

has a minimal solution which is x∞
1 , ..., x∞

n = limj→∞(xj
1, ..., x

j
n) where for all

1 ≤ i ≤ n, x0
i = ε and xj+1

i = fi(x
j
1, ..., x

j
n).

The primitives given in Figure 2 5 can be interpreted as stream functions
as illustrated in Figure 3. An important consequence of the interpretation of
elementary nodes as continuous functions is that any composition, where some
variable may be made local, still defines a continuous function. For the network
in Figure 1, if the channels y, r and t are considered to be local, the network can
be interpreted as a continuous function f of the input x, such that the output z
satisfies z = f(x).

2. A Language of Streams and Stream Functions

We consider a first-order synchronous dataflow language reminiscent of Lustre and
Lucid Synchrone but extended with an explicit buffering operator. The syntax is
given in Figure 4. A program (d) is a sequence of definitions of stream functions
called nodes and definitions of clock names (c). The inputs of a node are described

5The operator when can also be programmed directly by removing the else branch of a split.

This operator is itself a composition of two when.

M. Pouzet / Clocks in Kahn Process Networks 213

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

op�(v1.s1, v2.s2) = v.op�(s1, s2) where v = op(v1, v2)
fby�(v1.s1, s2) = v1.s2
when�(v1.s1, 1.w) = v1.when

�(s1, w)
when�(v1.s1, 0.w) = when�(s1, w)
whenot�(v1.s1, 0.w) = v1.whenot

�(s1, w)
whenot�(v1.s1, 1.w) = whenot�(s1, w)
merge�(1.w, v1.s1, s2) = v1.merge

�(w, s1, s2)
merge�(0.w, s1, v2.s2) = v2.merge

�(w, s1, s2)

Figure 5. Then Kahn semantics for the primitives

by a pattern (pat) and its body by an expression (e). The operators are the

basic ones of Lucid Synchrone and their intuitive semantics is detailed later.

The expression e1 op e2 denotes the pointwise application of a binary operator;

if e1 then e2 else e3 is the pointwise application of a conditional; f e is the

application of a node f to an expression e; e1 fby e2 conses the head of e1 to

e2 and thus corresponds to an initialized delay; e when ce samples a stream e

according to a boolean expression ce (whenot samples when the expression is 0).

We call this boolean expression a clock. The operator merge ce e1 e2 merges two

streams according to a clock. Finally buffer e buffers e. We write e where rec eqs

for an expression defined by a collection of mutually recursive equations (eqs).

The basic data-flow primitives of this language kernel are those of Figure 2. For

the language of clocks ce, we take any boolean expression. We shall later consider

particular cases of this language.

2.1. Denotational Semantics

We first give a denotational semantics based on possibly infinite sequences, fol-

lowing the interpretation given by Kahn. In this setting, the operator buffer

is simply the identity function. We then define a synchronous semantics which

characterises the evolution of the streams and the contents of the buffers.

Notation for the semantics. We write ρ for an environment and ρ(x) for the value

associated to the variable x in the environment ρ. The environment ρ+[x ← v] is

the environment ρ to which has been added the binding of x to v. The environment

ρ+ ρ′ is the environment that contains the associations of the environment ρ and

the associations of the environment ρ′ provided that no single variable appears in

both ρ and ρ′.
The interpretation of an expression e in an environment ρ is written [[e]]ρ.

This notation will also be used for the denotation of equations and declarations.

Finally, when presenting the interpretation of the primitives as stream func-

tions, we shall use the notation � as an exponent to distinguish syntactic con-

structs from their interpretations.

M. Pouzet / Clocks in Kahn Process Networks214

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

2.1.1. A Kahn semantics

Every node declaration let node f pat = e is interpreted as a continuous function
over sequences. The Kahn semantics for the primitives of the language is given in
Figure 5.

• op applies an imported operator pointwise on scalar values;

• fby is the unit delay; it appends the head of its first argument onto the
value of its second argument;6

• when is the sampling operator: it passes its input to its output only if the
condition is true (value 1) and otherwise does not produce any output;

• whenot is the complementary sampling operator which passes its input to
its output only if the second input is false (value 0) and otherwise does not
produce any output;

• merge merges two input streams according to a boolean condition. It passes
its first input to its output when the boolean condition is true and the
second input otherwise.

These definitions must be completed to deal with the empty sequence ε. All
operators return ε if one of their arguments is the empty sequence (ε is absorbing),
except for the operator fby which is such that fby�(v.s, ε) = v.ε. We also have
to deal with possible type errors. Several solutions can be taken: (1) complete all
the definitions by returning ε in case of a type error; (2) add a special TypeError
value to the set of streams and transmit this value; (3) define the semantics for
well-typed expressions only. For the sake of simplicity, we apply the first solution.

All the primitives are monotonic and continuous [10].
The semantics of expressions of the language is defined in Figure 6. The

definition uses the interpretations of the primitives given previously. We write
[[e]]ρ to denote the value of e in the environment ρ. We ensure that the language
is first order by using two distinct namespaces: one that maps local variables to
(stream) values or tuples of values, and a second that maps global variables to
functions. The environment ρ is thus a pair (ρs, ρn) where ρs associates a value
to every free variable of e and ρn associates a value to every function. Letting
Vars denote the set of variable names and Varn the set of node names, we have

Stream(T) = T∞ sequences
V = Stream(T1) + · · ·+ Stream(Tn) + V × · · · × V values for local variables
ρs : Vars → V local environment
ρn : Varn → (V → V) global environment

If ρ = (ρs, ρn) and ρ′ = (ρ′s, ρ
′
n) then ρ + ρ′ = (ρs + ρ′s, ρn + ρ′n). We write

ρ+ [z ← v] to add the association z ← v in the appropriate part of the pair ρ.
The interpretation of e where rec eqs uses the interpretation of the set of

equations eqs as the supplementary environment. If eqs is x1=e1 and · · · and xk=ek,
its interpretation is an environment that associates every variable xi with the
interpretation of ei:

6It corresponds to the A operator of [21]. The fby operator was introduced in Lucid [2] and

used in [10].

M. Pouzet / Clocks in Kahn Process Networks 215

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[[i]]ρ = i.[[i]]ρ

[[x]]ρ = ρs(x)

[[(e1,...,en)]]ρ = ([[e1]]ρ, ..., [[en]]ρ)

[[geti(e)]]ρ = si if [[e]]ρ = (s1, ..., sn)

[[e1 op e2]]ρ = op�([[e1]]ρ, [[e2]]ρ)

[[f e]]ρ = ρn(f) [[e]]ρ

[[e where rec eqs]]ρ = [[e]]ρ+ρ′ where ρ′ = ([[eqs]]ρ, ∅)
[[e1 fby e2]]ρ = fby�([[e1]]ρ, [[e2]]ρ)

[[e when ce]]ρ = when�([[e]]ρ, [[ce]]
ce

ρ)

[[e whenot ce]]ρ = whenot�([[e]]ρ, [[ce]]
ce

ρ)

[[merge ce e1 e2]]ρ = merge�([[ce]]
ce

ρ , [[e1]]ρ, [[e2]]ρ)

[[e]]
ce

ρ = [[e]]ρ

[[buffer e]]ρ = [[e]]ρ

Figure 6. The Kahn semantics for the language expressions

[[x1 = e1 and · · · and xk = ek]]ρ = [x1 ← x1
�, . . . , xk ← xk

�]
where x1

�, . . . , xk
� = fix

(
λs1, . . . , sk. [[e1]]ρ+[x1←s1,...,xk←sk], . . . , [[ek]]ρ+[x1←s1,...,xk←sk]

)
The interpretation of the operators when, whenot and merge uses the inter-

pretation of their clock argument ce. In this basic language, we consider that a

clock expression can be any boolean expression, hence [[ce]]ρ = [[e]]ρ. In the second

part of these notes, we introduce a dedicated sublanguage of boolean expressions.

The operation buffer copies its input into its output, possibly delaying it.

Since the Kahn semantics is unable to express timing, the interpretation here is

simply the identity function.

The semantics of a program is defined as follows:

[[let node f x = e]]ρ = ρ+ [f ← (λs. [[e]]ρ+[x←s])]

[[let clock c = ce]]ρ = ρ+ [c ← [[ce]]
ce

ρ]

[[d1 d2]]ρ = [[d2]]ρ+ρ1 where ρ1 = [[d1]]ρ

The evaluation of a program d having f as the main node in an environment

where the input stream is I is defined by:

ρn(f) I where (ρs, ρn) = [[d]](∅,∅)

M. Pouzet / Clocks in Kahn Process Networks216

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

2.1.2. Reformulating the Kahn semantics using indexed streams

The semantics can also be formulated using the notation (ui)i∈N with N ⊆ N

being an initial section of N. If A ⊆ N, there exists a one-to-one function φA

between an initial section IA and A.

lift0
�(v) = (u)n∈N with ∀n ∈ N. un = v

lift1
�(op)((un)n∈N) = (vn)n∈N with ∀n ∈ N. vn = op(un)

lift2
�(op)((un)n∈N , (vn)n∈N) = (wn)n∈N with ∀n ∈ N.wn = op(un, vn)

fby�((un)n∈N , (vn)n∈N) = (wn)n∈N with w0 = u0

and ∀n ∈ N\{0}. wn = vn−1

If (hn)n∈N is a boolean sequence, define Nh and Nh as a partition of N :

Nh = {k ∈ N | hk = 1} and Nh = {k ∈ N | hk = 0}

The filter operator when and complement merge are defined in the following way:

when�((un)n∈N , (hn)n∈N) = (vn)n∈INh
with vn = uφNh

(n)

merge�((hn)n∈N , (un)n∈INh
, (vn)n∈IN

h
) = (wn)n∈N with wn = un if n ∈ Nh

and wn = vn if n ∈ Nh

A set of equations over sequences becomes a set of mutually recursive functions,
from natural numbers to values. Figure 7 gives a possible implementation in
OCaml.

We use the functions index and cumul which are, respectively, the index and
cumulative functions, written I and O in [25]. If h is a boolean stream, O(h)(n)
is the sum of 1s up to index n; I(h)(n) is the index of the nth 1 in h.

O(h)(n) =

n∑
i=0

h(i) I(h)(n) = min ({k ∈ N | Oh(k) = n})

This implementation, however, only addresses sequences that are total over N.
Trying to compute index(x when (constant false)) for any n results in a
stack overflow. This is no surprise since the domain of when can be finite. We
shall see later how this problem can be addressed.

Moreover, even in the case where all sequences are infinite, the implementa-
tion is extremely inefficient. While it is useful for reasoning about programs, it
is not a practical implementation. Indeed, the value of a sequence x at instant
n is computed recursively, possibly back to index 0, with no reuse of previously
computed values. It is possible, though, to program the initial Kahn semantics
almost directly using infinite data structures and lazy evaluation.

M. Pouzet / Clocks in Kahn Process Networks 217

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

(* sequences as functions *)

let lift0 v n = v

let constant = lift0

let lift1 op x n = op (x(n))

let lift2 op x y n = op (x(n)) (y(n))

let lift3 op x y z n = op (x(n)) (y(n)) (z(n))

let notl x = lift1 not

let fby x y = if n = 0 then x 0 else y(n-1)

let when x h n = x(index(h)(n+1))

let merge h x y n = if h(n) then x(cumul(h)(n)) else y(cumul(notl h)(n)

(* cumulative and index functions *)

let rec cumul(h)(n) = h(n) + (if n = 0 then 0 else cumul(h)(n-1))

let rec index(h)(n) = index_aux(h)(0)(n)

and index_aux(h)(i)(n) =

if h(i) then if n = 1 then i else index_aux(h)(i+1)(n-1)

else index_aux(h)(i+1)(n)

Figure 7. An implementation of sequences as functions in OCaml

module Streams where

-- lifting constants

constant x = x : (constant x)

-- pointwise application

extend (f:fs) (x:xs) = (f x):(extend fs xs)

lift1 op xs = extend (constant op) xs

lift2 op xs ys = extend (extend (constant op) xs) ys

lift3 op xs ys zs = extend (extend (extend (constant op) xs) ys) zs

-- delays

(x:xs) `fby` y = x:y

pre x y = x : y

-- sampling

(x : xs) `when` (True : cs) = (x : (xs `when` cs))

(x : xs) `when` (False : cs) = xs `when` cs

merge (True : c) (x : xs) y = x : (merge c xs y)

merge (False : c) x (y : ys) = y : (merge c x ys)

Figure 8. A Haskell implementation with (lazy) lists

M. Pouzet / Clocks in Kahn Process Networks218

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

2.1.3. An implementation in Haskell with lazy lists

The definitions in Figure 6 can be implemented with potentially infinite data
structures and lazy evaluation. Figure 8 gives an implementation in Haskell using
lists which can then be used to write many stream functions. For example,

plusl x y = lift2 (+) x y

minusl x y = lift2 (-) x y

-- integers greaters than n

from n =

let nat = n `fby` (plusl nat (constant 1)) in nat

-- a resettable counter

reset_counter res input =

let output = ifthenelse res (constant 0) v

v = ifthenelse input

(pre 0 (plusl output (constant 1)))

(pre 0 output)

in output

-- a periodic clock

every n =

let o = reset_counter (pre 0 o = plusl n (constant 1)) (constant True)

in o

filter n top = top `when` (every n)

hour_minute_second top =

let second = filter (constant 10) top in

let minute = filter (constant 60) second in

let hour = filter (constant 60) minute in

hour, minute, second

Yet, we have essentially just written Lustre functions that pass the compila-
tion checks. The two following functions cannot be written in Lustre. The first
one computes the sequence (on)n∈IN from an input (xn)n∈N such that o2n = xn

and o2n+1 = xn.

-- the half clock

half = (constant True) `fby` notl half

-- double its input

stutter x =

o = merge half x ((pre 0 o) when notl half) in o

This is an example of an oversampling function: its internal rate is faster than
the rate of its input. This program can be implemented in bounded memory and
time. But the Lustre compiler rejects oversampling functions. Another example
of an oversampling function is one that computes the root of an input x using the
Newton method.7 It mimics an internal while loop.

7This example is due to Paul Le Guernic and was originally written in Signal.

M. Pouzet / Clocks in Kahn Process Networks 219

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

un = un−1/2 + x/2un−1 u1 = x

eps = constant 0.001

`div` = lift2 (\x y -> x div y)

`minus` = lift2 (\x y -> x - y)

`lessthan` = (lift2 (\x y -> x <= y)

root input =

let ic = merge ok input ((pre 0.0 ic) `when` (notl ok))

uc = ((pre 0.0 uc) `div` (constant 2.0)) `plusl`

(ic `div` ((constant 2.0) `times` (pre 0.0 uc)))

ok = (constant true) `->`

((uc `minus` (pre 0.0 uc)) `lessthan` eps

output = uc `when` ok

in output

Of course, there are many other valid programs that cannot be written in
Lustre, in particular those that exploit the expressiveness of Haskell and its type
system, like the possibility to write higher order functions.

Remark 2.1 (Finite values encoded as infinite ones). A classic way to represent ε
with a coinductive type that represents only infinite values, is to infinitely repeat
a distinguished value. This approach is used, for example, in [8] and [29]. Instead
of interpreting streams as lists, we can instead define streams as:

data Value a = Value a | Eps

data Stream a = Cons a (Stream a)

data StreamEps a = Stream (Value a)

eps = Cons Eps eps

one = Cons 1 eps

We shall see, however, that the encodings as lazy data-structures we have
considered model neither synchrony nor causality.

2.1.4. Where are the monsters?

Causality monsters In the above encoding, a stream is represented as a lazy data
structure. Laziness, however, allows streams to be built in a strange manner. The
following definitions are perfectly valid and produce infinite streams for one, x
and output.

hd (x:y) = x

tl (x:y) = y

incr (x:y) = (x+1) : incr y

one = 1 : one

x = (if hd(tl(tl(tl(x)))) = 5 then 3 else 4) : 1 : 2 : 3 : one

output = (hd(tl(tl(tl(x))))) : (hd(tl(tl(x)))) : (hd(x)) : x

M. Pouzet / Clocks in Kahn Process Networks220

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The values are x = 4 : 1 : 2 : 3 : 1 : · · · and output = 3 : 2 : 4 : 3 : 2 : 4 :

· · · . Streams are implemented as an inductive data structure, x and output are

computed sequentially:

• x0 = ⊥, x1 = ⊥ : 1 : 2 : 3 : one, x2 = 4 : 1 : 2 : 3 : one.

• output0 = ⊥, output1 = 3 : 2 : 4 : · · ·

Another example:8

next x = tl x

nat = zero `fby` (incr nat)

ifn n x y = if n <= 9 then hd(x) : if9 (n+1) (tl(x)) (tl(y)) else y

if9 x y = ifn 9 x y

x = if9 (incr (next x)) nat

The output stream is x = 18 : 17 : 16 : 15 : 14 : 13 : 12 : 11 : 10 : 9 : 10 : 11 :

· · · .
Are these reasonable programs? Streams are constructed in a reverse manner

from the future to the past. They do not obey the intuition that we have of

causality, that streams must be constructed from left to right. This is because the

structural order between streams allows to fill in the holes in any order, e.g.:

(⊥ : ⊥) ≤ (⊥ : ⊥ : ⊥ : ⊥) ≤ (⊥ : ⊥ : 2 : ⊥) ≤ (⊥ : 1 : 2 : ⊥) ≤ (0 : 1 : 2 : ⊥)

Note that it is possible to build streams with intermediate holes, that is, with

undefined values in the middle, from which one can build other streams without

holes:

half = 0 : ⊥ : 0 : ⊥ : · · ·

fail = fail

half = 0:fail:half

fill x = (hd(x)) : fill (tl(tl x))

ok = fill half

The definition of streams in Figure 8 follows the structural order between

data structures, which is also the order between functions: ⊥ ≤struct v and the

structure (v : w) is less defined than (v′ : w′) when v is less defined than v′ and
w is less defined than w′: (v : w) ≤struct (v′ : w′) ⇔ v ≤struct v′ ∧ w ≤struct w′.
It does not model the intuition of causality that values in the stream must be

computed from left to right. The prefix order is thus preferable, that is, ⊥ ≤ x

and v : x ≤ v : y ⇔ x ≤ y.

8This example is due to Paul Caspi [4]

M. Pouzet / Clocks in Kahn Process Networks 221

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

module SStreams where

-- only consider streams where the head is always a value (not bot)

data ST a = Cons !a (ST a) deriving Show

constant x = Cons x (constant x)

extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs)

(Cons x xs) `fby` y = Cons x y

(Cons x xs) `when` (Cons True cs) = (Cons x (xs `when` cs))

(Cons x xs) `when` (Cons False cs) = xs `when` cs

merge (Cons True c) (Cons x xs) y = Cons x (merge c xs y)

merge (Cons False c) x (Cons y ys) = Cons y (merge c x ys)

Figure 9. A Haskell implementation with (lazy) lists that enforces causality

Remark: This order can be adapted to functions from natural numbers to values,
allowing to have intermediate holes in results [4].

(x ≤′ y) ⇔ (∀n ∈ N. x(n) ≤ y(n) ⇒ ∀m ≥ n. x(m) = ⊥)

For example, the following sequence is ordered:

⊥ ≤ (1.⊥) ≤ (1.⊥.2.⊥) ≤ (1.⊥.2.⊥.3.⊥)

Under the prefix ordering, all the previous strange programs denote ⊥.

Causal function: A function from streams to streams, is said to be causal when
it is monotonic for the prefix order. This definition may seem too permissive as the
function next (or tl), given below and presented like the following is considered
to be causal.

∀n ∈ N. next(x)(n) = x(n+ 1)

Indeed, the operator next can be programmed and is perfectly valid (up to syn-
tactic details) in Lucid Synchrone (and also Lucy-n), for example.

let node next x = x when (false fby true)

We shall see in the next section how the use of such functions must nonetheless
be constrained.

Possibly non-causal streams can be proscribed by forbidding values of the
form ⊥.x. Figure 9 gives a simple modification of the previous definitions in
Haskell. The annotation !a forces the first argument of the stream constructor
Cons to be strict, that is, to evaluate to a value. Now all the previous strange,
non-causal programs have value ⊥.

M. Pouzet / Clocks in Kahn Process Networks222

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

�

� even �

&

�

�

Figure 10. A non synchronous example

Some “synchrony” monsters Another kind of strange behavior can occur. Con-
sider the input sequence x = (xi)i∈IN and the function even such that even(x) =
(x2i)i∈IN . Define the equation y = x& even(x). It should define the sequence
(xi &x2i)i∈IN . In Haskell, given the definitions of Figure 9, we have:

even (Cons x (Cons y xs)) = Cons x (even xs)

and_gate (Cons x xs) (Cons y ys) = Cons (x && y) (and xs ys)

Figure 10 depicts the corresponding Kahn network. The fork on the left implicitly
represents a simple duplication operator. Even though the even and & blocks are
finite-memory processes, the composition cannot be executed in bounded memory.
As time goes by, the size of the FIFO of the bottom line increases and must
eventually overflow.

In real-time applications, sucha compositions must be statically rejected.
Moreover, all the synchronization is hidden in communication channels. Finally,
even in the case where the overall memory can be statically bounded, our Haskell
encoding needs a complicated runtime system, with allocation and deallocation
of intermediate stream values at every step and a garbage collector. There are no
real surprises here. The Kahn semantics models neither time nor the resources
necessary to synchronise values. If bounded FIFOs are explicitly managed, their
size has to be determined, and this can lead to possible deadlocks.

2.1.5. Clocked Streams

To account for precise synchronisations between nodes, we introduce a new se-
mantics in which the use of data-flow primitives is restricted. We shall consider
that all streams progress synchronously, each producing at global steps either a
standard value or the special explicit value abs denoting that a value is absent,
that is, not yet present. The size and content of buffers is also made explicit.

AbsStreamT defines the set of clocked sequences made of values from the set
Tabs = T + {abs}.

Tabs = T + {abs}
AbsStream(T) = (Tabs)

∞

It is a sequence of present and absent values that can be represented in Haskell
as follows.

data maybe a = Present a | Absent

data AbsStream a = ST (maybe a)

M. Pouzet / Clocks in Kahn Process Networks 223

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The clock of a sequence s is a boolean sequence that indicates when a value is
present. For that, we define the function clock between clocked sequences and
boolean sequences:

bool = {0, 1}
C lock = bool∞

clock(ε) = ε

clock(abs.x) = 0.clock(x)

clock(v.x) = 1.clock(x)

We now make the link between the clock and the set of present/absent values
more precise by defining:

ClockedStream(T)(c) = {s | s ∈ (T abs)∞ ∧ clock(s) ≤ c}

For a boolean sequence c, ClockedStream(T)(c) is the set of sequences with
clock c. It is prefix closed: if s is a prefix of s′ with clock c, that is, s′ ∈
ClockedStream(T)(c), s ∈ ClockedStream(T)(c).

The synchronous semantics is defined by reinterpreting the basic primitives
over clocked sequences. We can replay the Kahn semantics in Section 2.1.1. It is

defined by [[e]]
abs

ρ which computes the value of e in an environment ρ = (ρs, ρn).
The set of values is replaced by:

V = AbsStream(T1) + · · ·+ AbsStream(Tn) + V × · · · × V values for local variables

The semantics of expressions, equations and global definitions is essentially un-
changed. What changes is the interpretation of primitives on which we concentrate
now.

In the following, we write ε for the empty sequence; v for a present value
and abs for an absent value. Hence, v.s denotes a clocked sequence whose head is
present and abs.s denotes a sequence whose head is absent.

The interpretation over clocked sequences for the primitives of the language
is summarised in Figure 11. We start with the simplest operators, the generator of
a constant sequence from a scalar value and the operator to lift a scalar function
pointwise over input sequences.

To give a clocked semantics for the constant generator, we need an extra
argument to determine whether the current value is present or not, that is:

const�(i, 1.w) = i.const�(i, w)
const�(i, 0.w) = abs.const�(i, w)

Thus, const�(i,w) defines a constant stream with clock w, that is, clock(const�(i,w))=
w.

Consider now the semantics of s+s′, for example. At least two situations can
occur. If the two inputs are absent, we propagate the absent on the output. If the
two inputs are present, we output the sum of the two.

M. Pouzet / Clocks in Kahn Process Networks224

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

const�(i, 1.w) = i.const�(i, w)
const�(i, 0.w) = abs.const�(i, w)

op�(abs.s1, abs.s2) = abs.op�(s1, s2)
op�(v1.s1, v2.s2) = v.op�(s1, s2) where v = op(v1, v2)

fby�(abs.s1, abs.s2) = abs.fby�(s1, s2)
fby�(v1.s1, v2.s2) = v1.fby1

�(v2, s1, s2)
fby1�(v, abs.s1, abs.s2) = abs.fby1�(v, s1, s2)
fby1�(v, v1.s1, v2.s2) = v.fby1�(v2, s1, s2)

when�(abs.s1, abs.w) = abs.when�(s1, w)
when�(v1.s1, 1.w) = v1.when

�(s1, w)
when�(v1.s1, 0.w) = abs.when�(s1, w)
whenot�(abs.s1, abs.w) = abs.whenot�(s1, w)
whenot�(v1.s1, 0.w) = v1.whenot

�(s1, w)
whenot�(v1.s1, 1.w) = abs.whenot�(s1, w)

merge�(abs.w, abs.s1, abs.s2) = abs.merge�(w, s1, s2)
merge�(1.w, v1.s1, abs.s2) = v1.merge

�(w, s1, s2)
merge�(0.w, abs.s1, v2.s2) = v2.merge

�(w, s1, s2)

buffer�(v.s, n, abs.s1, 1.w) = v.buffer�(s, n+ 1, s1, w)
buffer�(v.s, n, v1.s1, 1.w) = v.buffer�(s.v1, n, s1, w)
buffer�(ε, n, v1.s1, 1.w) = v1.buffer

�(ε, n, s1, w)
buffer�(s, n, abs.s1, 0.w) = abs.buffer�(s, n, s1, w)
buffer�(s, n, v1.s1, 0.w) = abs.buffer�(s.v1, n− 1, s1, w) if n > 0

Figure 11. The clocked semantics for the primitives

op�(abs.s1, abs.s2) = abs.op�(s1, s2)
op�(v1.s1, v2.s2) = v.op�(s1, s2) where v = op(v1, v2)

It is tempting to add:

op�(abs.s1, v2.s2) = abs.op�(s1, v2.s2)
op�(v1.s1, abs.s2) = abs.op�(v1.s1, s2)

to complete with the default rule for absent values as in the initial Kahn semantics.
A benefit of having added an absent value to the set of instantaneous values
is that we no longer need to deal with both finite and infinite sequences. The
empty sequence is simply represented as the infinite sequence absω and finite
sequences are simply completed to infinite ones by suffixing them with absω. The
synchronous monsters, however, have not been eradicated!

The synchronous aspect comes from the absence of certain definitions. For
example, there is no definition to evaluate op�(v1.s1, abs.s2) nor op

�(abs.s1, v2.s2),
that is, both inputs must be simulataneously present or absent. Otherwise, one
of them should be buffered.

M. Pouzet / Clocks in Kahn Process Networks 225

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

2.1.6. Dealing with partial definitions: the clock calculus

What happens when one element is present and the other is absent? One idea is
to statically reject these cases by requiring + to have the following type:

(+) : ∀cl : C lock.ClockedStream(int)(cl)×ClockedStream(int)(cl) → ClockedStream(int)(cl)

In words, (+) expects its input streams to be on the same clock cl and guarantees
to produce its output on that clock. These conditions are expressed in the form
of a type that must be verified statically. This idea is exploited in [8] by defining
clocked sequences in Coq as a coinductive dependent type: the type constraint
for (+) and other operators, and the clock constraints for expressions, equations
and functions are performed directly by the Coq type checker.

Remark 2.2 (Two type systems versus a single one). There has been long de-
bate about whether the so-called clock calculus for Lustre, Scade 6, Lucid Syn-
chrone and Signal should merge both classical type information about data and
presence/absence information. For Lustre and Signal, the clock calculus was not
expressed as a type system and was applied after (classical) static typing. Sepa-
rating the two, we have two signatures for (+), computed by two different type
systems:

(+) : int× int → int type signature
(+) : ∀cl . cl × cl → cl clock signature

For Lucid Synchrone,9 we also decided to separate the type system for data from
that for clocks; the compiler thus calculates the two types given above. One of
the reasons is that the compiler implements two other type systems, one that
ensures the absence of instantaneous loops and another that analyses uses of
the uninitialised delay pre. After much trial and error, we found it simpler to
implement the various systems separately. Moreover, typing occurs sequentially
(datatypes, clocks, causality, initialization) so that the information produced by
earlier passes is reused by later ones. In particular, the skeleton for types is used
to simplify the inference of clock types, causality types and initialization types.

Nonetheless, having several type systems adds useless redundancy in the im-
plementation. It also complicates the formulation of correctness properties. Each
of the systems precludes a particular kind of error. It also adds redundancy in
interfaces, for example, if one wants to declare a data structure or function that
requires a specific clock type. The debate is unfinished. In his thesis [17] and
paper [18], Guatto follows an alternative approach that mixes regular type infor-
mation and clock information, where the clocks express a form of modality in the
spirit of guarded types.

In the following, we only consider clock types. Let us consider the case of the
unit delay fby.

9https://www.di.ens.fr/~pouzet/lucid-synchrone/

M. Pouzet / Clocks in Kahn Process Networks226

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.di.ens.fr/~pouzet/lucid-synchrone/

fby�(abs.s1, abs.s2) = abs.fby�(s1, s2)
fby�(v1.s1, v2.s2) = v1.fby1

�(v2, s1, s2)
fby1�(v, abs.s1, abs.s2) = abs.fby1�(v, s1, s2)
fby1�(v, v1.s1, v2.s2) = v.fby1�(v2, s1, s2)

Here again, the arguments and the result of the fby operator must have the
same clock. A fby is a two-state machine: while its two arguments are initially
absent, it returns an absent value and remains in the initial state (fby�). When
both are present, it returns the value of its first argument and enters the steady
state (fby1�) which stores the previous value of its second argument, emitting it
whenever both arguments are present.

(fby) : ∀cl : C lock. cl × cl → cl clock signature

Remark 2.3 (Is fby length preserving?). It may be surprising to consider that
fby is a length preserving function. In particular, if its second argument is empty
but not the first one, it is able to return a value. But if its first argument is the
empty sequence, its output is also empty.

The clock type signature does not express that the output at instant n does
not depend on the second input at instant n. Hence, both the following two
equations are well clocked:

x = x+ 1 or x = 0 fby (x+ 1)

The causality information could be embedded in the clock type system as in [26],
in the case of a simple Lustre-like language (or systems with guarded types) but
this calls either for adding subtyping constraints or explicit conversions. This
make the clock calculus more complicated or leads to programs, in the case of a
Lustre-like language, that are inelegant and not very modular.

In Lustre, Scade 6 and Lucid Synchrone, the detection of instantaneous de-
pendences is ensured by the causality analysis, which is performed after the clock
calculus. The consequence is that some valid programs cannot be written. The
Signal language mixes clock inference and causality analysis [1].

We now consider the filtering (sampling) operator when and the combination
operator merge.

when�(abs.s1, abs.w) = abs.when�(s1, w)
when�(v1.s1, 1.w) = v1.when

�(s1, w)
when�(v1.s1, 0.w) = abs.when�(s1, w)
whenot�(abs.s1, abs.w) = abs.whenot�(s1, w)
whenot�(v1.s1, 0.w) = v1.whenot

�(s1, w)
whenot�(v1.s1, 1.w) = abs.whenot�(s1, w)

merge�(abs.w, abs.s1, abs.s2) = abs.merge�(w, s1, s2)
merge�(1.w, v1.s1, abs.s2) = v1.merge

�(w, s1, s2)
merge�(0.w, abs.s1, v2.s2) = v2.merge

�(w, s1, s2)

M. Pouzet / Clocks in Kahn Process Networks 227

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

The result of the sampling operator when is present only when its first input is
present and the sampling condition is present and true. The definition of merge
says that the first branch must be present and the second must be absent when
the condition is true; the first branch must be absent and the second present
when the condition is false. Again, some rules are lacking. What is the clock of
the result?

We need to define an operator on clocks.

cl on c = ε if cl = ε or c = ε
(1.cl) on (1.c) = 1.(cl on c)
(1.cl) on (0.c) = 0.(cl on c)
(0.cl) on (abs.c) = 0.(cl on c)

Using it, the clock type of when and merge can be expressed as:

when : ∀cl . ∀x : cl . ∀c : cl . cl on c
merge : ∀cl . ∀c : cl . ∀x : cl on c. ∀y : cl on (not c). cl

The first signature says that, for any clock cl , if the first input of when is x and
it has clock cl , the second input c has clock cl , then the result of x when c has
clock cl on c. The rule for whenot is similar. The signature for merge says that if
the first input c has clock cl, the second input x has clock cl on c and third input
y has clock cl on (not c), then the result of merge c x y has clock cl .

The last operator we consider is the buffer. As for the definition of const, the
production or not of a value by the operator buffer depends on the environment.
The definition is given in Figure 11. The first parameter (s) of the operator is the
contents of the buffer, the second (n) is the number of places remaining in the
buffer, the third is the input stream, and the fourth is the clock (w) of the output.
The semantics only gives a meaning to programs that use bounded buffers. The
operator returns a value when the output clock is 1, provided that there is at
least one stored value or an input value, and it stores input values as they arrive,
provided that the number of remaining places is greater than zero. Moreover, it
is not possible to store a value when the buffer is full, nor to pop a value when
the buffer is empty.

The rule must be completed to deal with the empty sequence ε. As for the
Kahn semantics, the operators op�, when�, whenot� and merge� return ε if one
of their argument is ε: ε is absorbing. The definitions for the operators fby and
buffer applied to at least one ε argument are:

fby�(ε, s2) = ε
fby�(v1.s1, ε) = v1.ε
fby�(abs.s1, ε) = abs.ε

fby1�(ε, s1, s2) = ε
fby1�(v, ε, s2) = v.ε
fby1�(v, s1, ε) = v.ε

buffer�(s, n, ε, w) = ε

All these functions on clocked streams are continuous. In particular, the function
buffer� is monotonic: given a memory s and a number of remaining cells n

M. Pouzet / Clocks in Kahn Process Networks228

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

(two parameters which are not inputs of the program), for any pair of inputs
(s1, w) and (s′1, w

′) such that s1 ≤ s′1 and w ≤ w′, we have buffer�(s, n, s1, w) ≤
buffer�(s, n, s′1, w

′). Continuity follows because buffer� is length preserving.
The semantics is not directly defined on the language kernel but on a slight

variation where each constant takes an extra argument specifying the clock of its
result. The buffer operator also takes extra arguments: one giving the clock of its
input — when a value must be pushed, — another giving the clock of its output
— when a value must be popped, — and another for the size of the buffer. The
following translation defines the passage from the source language:

i −→ const(i, w)
buffer (e) −→ buffer (n, e′, w) where e −→ e′

The semantics for expressions, equations and programs are defined in the
same way as for the Kahn semantics, except for constants and the buffer for which
we take:

[[const(i, w)]]
abs

ρ = const�(i, w)

[[buffer(n, e, w)]]
abs

ρ = buffer�(ε, n, [[e]]
abs

ρ , w)

These operators produce or not according to the operators that consume
their output. This is why we add an extra argument giving the expected clock
of the result. Moreover the buffer operator is initialized with an empty memory
(written ε). The maximum size n of this memory is synthesized by the clock
calculus and passed as an extra argument.

Checking Synchrony The example given in Figure 10 is now wrongly typed ac-
cording to the composition of operator typing rules. Let half be the infinite peri-
odic sequence 1.0.1.0 . . . = (1.0). To fulfil the typing rule for pointwise function
applications, the expression x&(x when half) is only correct if the clock of x, say
cl , equals the clock of x when half , that is cl on half . This is impossible and this
program must thus be rejected. The compiler for Lucid Synchrone [31] emits the
error message:

let node even x = x when half

let node non_synchronous x = x & (even x)

^^^^^^^^^^^^

This expression has clock 'a on half,

but is used with clock 'a

In the kernel language we consider, every stream s is associated to a boolean
sequence or clock with value 1 at the instants where s is present and 0 otherwise.
Two streams can be composed (e.g., added together) without any buffer when
their clocks are equal. This is essentially a typing problem [11]. As we mentionned,
it was later formulated as a shallow embedding in Coq, showing that clock type
verification could be implemented by Coq type verification.

The successive versions of Lucid Synchrone experimented with different ex-
tensions of the initial type system. We realised that having a powerful equiva-
lence between expressions when comparing clock types c on e1 and c′ on e2 was

M. Pouzet / Clocks in Kahn Process Networks 229

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

not very useful. In version 2, we experimented with a very simple clock calculus
reminiscent of the simple ML type system with polymorphism but extended with
the rule of Laufer and Odersky [23] for existential quantification [14]. This was
the basis of the clock calculus used in the Scade 6 language. Clocks are used to
generate efficient imperative code, in particular to factorise control structures by
grouping computations that are activated on the same clock.

It would certainly be possible to consider a shallow embedding of a language
of streams together with its clock constraints using the Generalized Abstract Data
Types (GADTs) of OCaml. We do not know if such an experiment has been
completed.

In essence, the rule for typing an expression e1 + e2 is:

H � e1 : ck H � e2 : ck

H � e1 + e2 : ck

This rule states that under the typing environment H, if e1 has type ck and if e2
has type ck, then e1 + e2 has type ck. Recall that a clock type for a stream is of
the form:

ck :: α | ck on e

where α is a clock variable and e is a boolean expression. In the synchronous case,
ck1 on e1 = ck2 on e2 if ck1 = ck2 and e1 = e2. Equality of types ensures equality
of clocks. Hence, the composition of two flows of the same type can be defined
without buffering.

2.2. From synchrony to n-synchrony

In Lustre and its relatives, two input streams can be composed with a point-wise
operator only when they have the same clock. This ensures that no buffer is need
for the composition. This is quite constraining for video applications that are
easy to describe as a Kahn process networks. If a buffer is needed, a synchronous
compiler is of any help: the place where to put the buffer, its size, its input and
output clock of the buffer must be determined by the programmer.

Consider for example a Picture-in-Picture as depicted in figure 12 which in-
crusts an image into another one. This kind of system is well modeled as a Kahn
process network but the manual computation of buffer sizes is mostly manual and
difficult to determine.

The PiP takes a high definition image (1920×1080 pixels), downscales it into
and small definition image (720×480 pixels); it takes an other high definition
image and merges it with the small definition one. The downscaler introduces a
delay, hence a buffer is needed for the second image. We would like that this size
be computed automatically as well as the delay (latency) for the first pixer of the
output image to come up.

Can we compose non strictly synchronous streams provided their clocks are
closed from each other? Can we allow for the communication between systems
which are “almost” synchronous, e.g., for modeling bounded jittering or bounded

M. Pouzet / Clocks in Kahn Process Networks230

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

ds

sp

mg

720

480
SD

1920

1080

HD

1920

1080

HD

1920

1080

HD

1920

1080

HD

720

480
SD

Figure 12. Picture in Picture

delays? Can we relax the clocking rule to give more freedom to the compiler so
that it can generate more efficient code, translate into regular synchronous code
if necessary?

The n-synchronous model [12] relaxes the classical constraints of a syn-
chronous language like to allow for the composition of streams whose clocks are
not equal but can be synchronized through the introduction of a bounded buffer.
It is obtained by relaxing the clock calculus with a subtyping rule. If a stream
x with type ck can be consumed later with type ck′ using a bounded buffer, we
shall say that ck is a subtype of ck′ and we write ck <:<:<: ck′. This allow to type
a synchronous language extended with a buffer construct which indicates the
points where the subtyping rule should be applied.

H � e : ck ck <:<:<: ck′

H � buffer e : ck′

In terms of sequences of values, buffer e is equivalent to e but it may delay its
input using a bounded buffer. The buffer construct gives more freedom to the
designer while preserving an execution in bounded memory.

Here, we consider a simple definition for <:<:<: allowing to compare two types if
they are of the form α on w1 and α on w2 only, with w1 <: w2. w1 and w2 are
two boolean expressions.

Definition 2.1 (Ultimately periodic clocks). We consider a particular clock lan-
guage ce that define ultimately periodic boolean sequences only:

ce ::= c | u(v)
u ::= ε | 0.u | 1.u
v ::= 0 | 1 | 0.v | 1.v

It can be a variable name (c) or a periodic word (u(v)) made of a finite prefix (u)
followed by the infinite repetition of a binary word (v). For example, (10) defines
the half sequence 101010 . . .

2.2.1. Clock Adaptability

Here is the intuition of adaptability: a clock w1 is adaptable to clock w2 if any
stream with clock w1 can be consumed with clock w2 up to the insertion of a
bounded buffer.

M. Pouzet / Clocks in Kahn Process Networks 231

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Instants

N
o
m
b
re

d
e
u
n
s

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Figure 13. Cumulative functions for w1 = (11010) and w2 = 0(00111).

To properly define this relation, we introduce the cumulative function of a
binary word: for any binary word w,Ow(i) counts the number of 1s up to the index
i. Figure 13 shows the cumulative functions of w1 = (11010) and w2 = 0(00111).

Definition 2.2 (Elements and Cumulative Function of w).
Let w = b.w′ with b ∈ {0, 1}. We write w[i] for the i-th element of w:

w[1]
def
= b

∀i > 1. w[i]
def
= w′[i− 1]

We write Ow for the cumulative function of w:

Ow(0)
def
= 0

∀i ≥ 1.Ow(i)
def
=

{Ow(i− 1) if w[i] = 0

Ow(i− 1) + 1 if w[i] = 1

Adaptability is the conjunction of two relations: precedence and synchroniz-
ability. Precedence ensures that there is no read in an empty buffer, that is at each
instant, more values have been written than read in the buffer. Synchronizability
ensures that the number of values present in the buffer during the execution is
bounded.

Definition 2.3 (Synchronizability ��, Precedence +, Adaptability <:).

w1 �� w2
def⇔ ∃b1, b2 ∈ Z, ∀i ≥ 0. b1 ≤ Ow1

(i)−Ow2
(i) ≤ b2

w1 + w2
def⇔ ∀i > 0.Ow1(i) ≥ Ow2(i)

w1 <: w2
def⇔ w1 + w2 ∧ w1 �� w2

In Figure 13, w1 �� w2 since the vertical distance between the two curves is
bounded and w1 + w2 since the curve Ow1

is always above the one of Ow2
.

M. Pouzet / Clocks in Kahn Process Networks232

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Buffer Size. Consider a buffer with an input clock w1 and output clock w2. For
every instant i, the number of elements present in the buffer is:

sizei(w1, w2) = Ow1(i)−Ow2(i)

A negative value means that there were more reads than writes and this case
should not appear. A sufficient size for the buffer is the maximal number of values
present in the buffer during the execution:

size(w1, w2) = max
i≥1

(Ow1
(i)−Ow2

(i))

Thus, if w1 is adaptable to w2, a stream with clock w1 can be safely consumed
on the clock w2 by insertion of a bounded buffer. Otherwise, the size of the buffer
may be infinite.

The purpose of the extended clock calculus is to check that bounds exist for
buffer sizes and to compute them. To this aim, subtyping constraints have to be
solved and it can be done for clock that are ultimately periodic (see 2.1) [12].

To reduce the algorithmic complexity of constraint resolutions and deal with
non periodic clocks, it is possible to reason with clock envelopes. These clock
envelopes are sets of concrete clocks which are not necessarily periodic. They can
model various features that exist in embedded systems such as bounded jittering,
logical execution time (lower and upper bounds on the numbers of atomic steps
done by a process), latencies (between when an input data is read and a output
is produced), scheduling resources (a process is activated a certain number of
time during a period) and the communication through buffers. Said differently, an
envelope is an over abstraction of the exact clocks of the system. Hence, instead
of comparing two exact clocks, we compare envelopes.

The abstraction introduced in [13] consists in reasoning on sets of clocks (or
envelopes) defined by an asymptotic rate and two shifts bounding the potential
delay with respect to this rate. It was made more precise (in the sense that it over
approximates less) in [25]. Then, subtyping constraints can be replaced by linear
constraints on those rates and shifts, and solved with a tool such as Glpk. We
only give here an intuition of this abstraction. It was implemented for a language
called Lucy-n that includes an explicit buffer construction and whose syntax and
semantics is exactly that of the language introduced in 2. On several examples
such as the Picture in Picture, the over-estimation due to the abstraction is small
with respect to the exact solution.

2.2.2. Abstraction of Binary Words

The idea behind abstraction is to reason on sets of binary words. An abstraction
bounds the cumulative function of a set of words by two linear curves with the
same slope. Thus, the abstraction of an infinite binary word w keeps only the
asymptotic proportion r of 1s in w and two values b0 and b1 which give the
minimum and maximum shift of 1s in w compared to r. This abstract information
is called an envelope and noted 〈b0, b1〉 (r).

M. Pouzet / Clocks in Kahn Process Networks 233

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Instants

N
o
m
b
re

d
e
u
n
s

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

a1 =
〈
0, 45

〉 (
3
5

)

a2 =
〈−9

5 ,−3
5

〉 (
3
5

)

Figure 14. Envelopes of w1 and w2.

Definition 2.4 (Concretization).

concr
(〈
b0, b1

〉
(r)

) def
=

{
w | ∀i ≥ 1, ∧w[i] = 1⇒Ow(i) ≤ r × i+ b1

w[i] = 0⇒Ow(i) ≥ r × i+ b0

}
with b0, b1, r ∈ Q and 0 ≤ r ≤ 1.

The words w1 = (11010) and w2 = 0(00111) seen previously are re-
spectively in envelopes a1 =

〈
0, 4

5

〉 (
3
5

)
and a2 =

〈− 9
5 ,− 3

5

〉 (
3
5

)
shown in Fig-

ure 14. In chronograms, an abstract value 〈b0, b1〉 (r) is represented by two lines
Δ1 : r × i+ b1 and Δ0 : r × i+ b0 that bound the cumulative functions of a set
of binary words. The definition states that any rising edge must be below the
line Δ1 (solid line) and any absence of a rising edge must be above the line Δ0

(dashed line).
For the set of words defined by an envelope to be non-empty, the line Δ1 must

be above the line Δ0. At each instant, there must be a discrete value between
the two lines. It is the case if the distance between them respects the following
constraint.

Proposition 2.1 (Non-empty envelope).

∀a =

〈
k0

�
,
k1

�

〉(n
�

)
.
k1

�
− k0

�
≥ 1− 1

�
⇒ concr (a) = ∅

The abstraction of a periodic binary word can be computed automatically.

Definition 2.5 (Abstraction of a Periodic Word).

Let p = u(v) a periodic binary word. We define abs (p)
def
= 〈b0, b1〉 (r) with:

r = rate(p) = |v|1
|v|

b0 =mini=1..|u|+|v| with p[i]=0 (Op(i)− r × i)

b1 =maxi=1..|u|+|v| with p[i]=1 (Op(i)− r × i)

M. Pouzet / Clocks in Kahn Process Networks234

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

where |u| is the length of u and |u|1 its number of 1s.

The asymptotic rate r corresponds to the ratio between the number of 1s
in the periodic pattern and its length. To compute b0 and b1, the word must be
traversed. The shift b0 is the minimum difference when a 0 occurs between the
number of 1s seen at instant i and the ideal value r×i. The shift b1 is the maximal
difference between these values when a 1 occurs.

The interest of the abstraction is to reduce the complexity of exact computa-
tions and decisions on binary words by transforming them into arithmetic manip-
ulations on rational numbers. For example, the computation of on on envelopes
only needs three multiplications and two additions:

Definition 2.6 (on∼ Operator). Let b01 ≤ 0 and b02 ≤ 0.10 We define:

〈 b01 , b11 〉 (r1)
on∼ 〈 b02 , b12 〉 (r2)
def
= 〈 b01 × r2 + b02 , b11 × r2 + b12 〉 (r1 × r2)

The elements of w1 on w2 are the elements of w1 filtered by the elements
of w2. The rate of 1 in w1 on w2 is thus the product of the rate of w1 and the
one of w2. When w1 is sampled by w2, its shifts are multiplied by r2. The shifts
of w2 are added to those of w1.

All the proofs on algebraic properties of binary sequences and abstractions
have been done in Coq [25] and are available publicly. Full proofs on paper are
available in the PhD. thesis of Florence Plateau [30].

3. Conclusion

In these course notes, we considered a simple first-order functional language that
manipulates streams and functions that transform streams into streams. This lan-
guage is reminiscent of the language Lustre invented by Caspi and Halbwachs,
which was the basis for the development of the industrial language and environ-
ment SCADE, now regularly used in the development of critical control software,
as well as the academic language Lucid Synchrone.

We showed that this language corresponds to a particular kind of Kahn pro-
cess network that can be executed synchronously. This is expressed by associat-
ing a clock to every stream to indicate when the current value is present or not.
Stream functions must then fullfil certain static rules to ensure that when a value
is expected to be present (or absent), it is indeed present (or absent). Clocks can
be understood as types and the associated static constraints as typing constraints
in a type system with dependent types. Finally, we relax the synchronous con-
straint to allow communications through bounded buffers by adding sub-typing
rules for when buffers are used. A relaxed clock calculus can infer the size of these
communication buffers.

10We can always lose precision on the envelopes to satisfy this condition. More details are

given in [30].

M. Pouzet / Clocks in Kahn Process Networks 235

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

These course notes are far from exhaustive. In particular, they do not detail
the actual clock calculus for the language, and notably the restrictions made in
both Lucid Synchrone and SCADE about clock equality. In these two languages,
the clock language ce is limited essentially to names so that clock equality reduces
to name equality. These notes also sweep under the carpet the important question
of causality. E.g., equations like x = x or x = x+1 are perfectly valid from a clock
calculus point-of-view but must be rejected because x depends instantaneously
on itself and no sequential code can be generated: we say that x is not causal. The
detection of instantaneous loops or dependencies can also be handled by static
typing. Finally, these notes did not address the important question of generating
sequential code. Clocks are also fundamental to code generation [16]. The clock
constraints can be interpreted as dedicated techniques to ensure the perfect fusion
of all the intermediate streams.

Acknowledgment

I warmly thank Peter Muller and Alexander Pretschner for their remarkable or-
ganisation of the 2019 Marktoberdorf summer school and the atmosphere they
created during the moments of work and relaxation; the invited speakers who
gave splendid lectures that were all different in style; the students for their very
relevant and stimulating questions. I also warmly thank Timothy Bourke for his
careful reading and the suggestions he made for improving these notes.

References

[1] T. Amagbegnon, L. Besnard, and P. Le Guernic. Implementation of the data-flow
synchronous language signal. In Programming Languages Design and Implementation
(PLDI), pages 163–173. ACM, 1995.

[2] E. A. Ashcroft and W. W. Wadge. Lucid, the data-flow programming language. A.P.I.C.
Studies in Data Processing, Academic Press, 1985.

[3] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone.
The synchronous languages 12 years later. Proceedings of the IEEE, 91(1), January 2003.

[4] A. Benveniste, P. Caspi, R. Lublinerman, and S. Tripakis. Actors without directors: a
kahnian view of heterogeneous systems. Technical report, Verimag, Centre Équation,

38610 Gières, September 2008. Extended version of HSCC’10.
[5] A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous programming with events

and relations: the SIGNAL language and its semantics. Science of Computer Program-
ming, 16:103–149, 1991.

[6] G. Berry. Real time programming: Special purpose or general purpose languages. Infor-
mation Processing, 89:11–17, 1989.

[7] G. Berry and G. Gonthier. The Esterel synchronous programming language, design, se-

mantics, implementation. Science of Computer Programming, 19(2):87–152, 1992.
[8] Sylvain Boulmé and Grégoire Hamon. Certifying Synchrony for Free. In International

Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
volume 2250, La Havana, Cuba, December 2001. Lecture Notes in Artificial Intelligence,
Springer-Verlag. Short version of A clocked denotational semantics for Lucid-Synchrone in
Coq, available as a Technical Report (LIP6), at www.di.ens.fr/∼pouzet/bib/bib.html.

[9] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the
Token Flow Model. PhD thesis, EECS Department, University of California, Berkeley,
1993.

[10] P. Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94:125–140, 1992.

M. Pouzet / Clocks in Kahn Process Networks236

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[11] Paul Caspi and Marc Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP), Philadelphia, Pensylvania, May
1996.

[12] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and
Marc Pouzet. N -Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-
Time Systems. In ACM International Conference on Principles of Programming Lan-
guages (POPL’06), Charleston, South Carolina, USA, January 2006.

[13] Albert Cohen, Louis Mandel, Florence Plateau, and Marc Pouzet. Abstraction of Clocks
in Synchronous Data-flow Systems. In The Sixth ASIAN Symposium on Programming

Languages and Systems (APLAS), Bangalore, India, December 2008.
[14] Jean-Louis Colaço and Marc Pouzet. Clocks as First Class Abstract Types. In Third Inter-

national Conference on Embedded Software (EMSOFT’03), Philadelphia, Pennsylvania,
USA, october 2003.

[15] Jean-Louis Colaco, Bruno Pagano, and Marc Pouzet. Scade 6: A Formal Language for

Embedded Critical Software Development. In Eleventh International Symposium on The-
oretical Aspect of Software Engineering (TASE), Sophia Antipolis, France, September
13-15 2017. Invited paper.

[16] Gwenael Delaval, Alain Girault, and Marc Pouzet. A Type System for the Automatic

Distribution of Higher-order Synchronous Dataflow Programs. In ACM International
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson,
Arizona, June 2008.

[17] Adrien Guatto. A Synchronous Functional Language with Integer Clocks. PhD thesis,
École normale supérieure, École normale supérieure, 45 rue d’Ulm, 75230 Paris, France, 7
janvier 2016.

[18] Adrien Guatto. A generalized modality for recursion. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, pages 482–491, 2018.

[19] N. Halbwachs. Synchronous programming of reactive systems, a tutorial and com-
mented bibliography. In Tenth International Conference on Computer-Aided Verification,
CAV’98, Vancouver (B.C.), June 1998. LNCS 1427, Springer Verlag.

[20] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-
ming language lustre. Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[21] Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP 74
Congress. North Holland, Amsterdam, 1974.

[22] Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pages 993–998, 1977.

[23] Konstantin Läufer and Martin Odersky. An extension of ML with first-class abstract types.
In ACM SIGPLAN Workshop on ML and its Applications, San Francisco, California,
pages 78–91, June 1992.

[24] E. Lee and D. Messerschmitt. Synchronous dataflow. IEEE Trans. Comput., 75(9):1235–
1245, 1987.

[25] Louis Mandel, Florence Plateau, and Marc Pouzet. Lucy-n: a n-Synchronous Extension
of Lustre. In 10th International Conference on Mathematics of Program Construction
(MPC’10), Manoir St-Castin, Québec, Canada, June 2010. Springer LNCS.

[26] Louis Mandel, Florence Plateau, and Marc Pouzet. Static Scheduling of Latency Insensi-
tive Designs with Lucy-n. In International Conference on Formal Methods in Computer-
Aided Design (FMCAD), Austin, Texas, USA, October 30 – November 2 2011.

[27] T. M. Parks, J. L. Pino, and E. A. Lee. A comparison of synchronous and cycle-static
dataflow. In ASILOMAR ’95: Proceedings of the 29th Asilomar Conference on Signals,
Systems and Computers (2-Volume Set), page 204, Washington, DC, USA, 1995. IEEE
Computer Society.

[28] Thomas Martyn Parks. Bounded scheduling of process networks. PhD thesis, EECS

Department, University of California, Berkeley, Berkeley, CA, USA, 1995.
[29] Christine Paulin-Mohring. A constructive denotational semantics for Kahn networks in

Coq. In Yves Bertot, Gérard Huet, Jean-Jacques Lévy, and Gordon Plotki, editors, From
Semantics to Computer Science, pages 383–413. Cambridge University Press, 2009.

M. Pouzet / Clocks in Kahn Process Networks 237

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

[30] Florence Plateau. Modèle n-synchrone pour la programmation de réseaux de Kahn à
mémoire bornée. PhD thesis, Université Paris-Sud 11, Orsay, France, 6 janvier 2010.

[31] Marc Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual. Université

Paris-Sud, LRI, April 2006.
[32] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for streaming

applications. In International Conference on Compiler Construction, 2002.

A. Some examples

Question A.1 (Reasonning about processes). As motivated by Kahn in [21], the
denotational interpretation of processes as stream function can be used to reason
and prove properties about stateful systems. Consider the example in Figure 15.

• Propose an interpretation for processes p, q, m and main as continuous func-
tions. Propose an alternative implementation of the network that use, for
example, the primitives given in Figure 2. How would you prove it equivalent
to the initial one?

• What does it change to remove line (* init *)?

• Prove that the program main is non blocking, i.e, if input x is an infinite
stream, z is an infinite stream. It can be done with a length argument,
taking |ε| = 0 and |v.s| = 1 + |s|.

• Propose a sequential, equivalent implementation of main, made of a single
elementary process with an input channel x and output channel z.

M. Pouzet / Clocks in Kahn Process Networks238

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

type 'a buff = { push: 'a -> unit; pop: unit -> 'a }

let buffer () =

let b = Queue.create () in

let t = Mutex.create () in

let push v = Mutex.lock t; Queue.push v b; Mutex.unlock t in

let pop () = Mutex.lock t; Queue.pop b; Mutex.unlock t in

{ push = push; pop = pop }

(* Process P *)

let process_p x r y () =

y.push 0; (* init *)

let memo = ref 0 in

while true do

let v = x.pop () in

let w = r.pop () in

memo := if v then 0 else !memo + w;

y.push !memo

done

(* Process Q *)

let process_q y t z () =

while true do

let v = y.pop () in

t.push v; z.push v

done

(* Process R *)

let process_m t r () =

while true do

let v = t.pop () in

r.push (v + 1)

done

(* Put them in parallel. *)

let main x z () =

let r = buffer () in

let y = buffer () in

let t = buffer () in

ignore (Thread.create (process_p x r y) ());

ignore (Thread.create (process_q y t z) ());

ignore (Thread.create (process_m t r) ())

Figure 15. A simple implementation of KPN with threads in OCaml

M. Pouzet / Clocks in Kahn Process Networks 239

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Checking of Actual Causality

with SAT Solving

Amjad IBRAHIM a,1, Simon REHWALD a and Alexander PRETSCHNER a

a Department of Informatics, Technical University of Munich, Germany

Abstract. Recent formal approaches towards causality have made the concept

ready for incorporation into the technical world. However, causality reasoning is

computationally hard; and no general algorithmic approach exists that efficiently

infers the causes for effects. Thus, checking causality in the context of com-

plex, multi-agent, and distributed socio-technical systems is a significant challenge.

Therefore, we conceptualize an intelligent and novel algorithmic approach towards

checking causality in acyclic causal models with binary variables, utilizing the op-

timization power in the solvers of the Boolean Satisfiability Problem (SAT). We

present two SAT encodings, and an empirical evaluation of their efficiency and

scalability. We show that causality is computed efficiently in less than 5 seconds

for models that consist of more than 4000 variables.

Keywords. accountability, actual causality, sat solving, reasoning

1. Introduction

Causality is a fundamental construct of human perception. Although our ability to link

effects to causes may seem natural, defining what precisely constitutes a cause has baf-

fled scholars for centuries. Early work on defining causality goes back to Hume in the

eighteenth century [14]. Hume’s definition hinted at the idea of counter-factual relations

to infer the causes of effects. Informally, we argue, counter to the fact, that A is a cause

of B if B does not occur if A no longer occurs. As Lewis noted with examples, this re-

lation is not sufficient to deal with interdependent, multi-factorial, and complex causes

[21]. Thus, the search for a comprehensive general definition of causality continues. Re-

cently, in computer science, there have been some successful and influential efforts, by

Halpern and Pearl, at formalizing the idea of counter-factual reasoning and addressing

the problematic examples in philosophy literature [11].

The work by Halpern and Pearl covers two notions of causality, namely actual (to-

ken) causality and type (general) causality. Type causality is a forward-looking link

that forecasts the effects of causes. It is useful for predictions in different domains like

medicine [17], and machine learning applications [26]. In this paper, we focus on actual

causality that is a rather retrospective linking of effects to causes. We are chiefly inter-

ested in the Halpern-Pearl (HP) definition of actual causality [10]. Causality is useful

1Corresponding Author: Amjad Ibrahim, Boltzmannstrae 3, 85748 Garching b. Mnchen, Germany; E-mail:

ibrahim@in.tum.de.

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-977-5-241

241

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

in law [24], security [18], software and system verification [3,20], databases [22], and

accountability [9,16].

In essence, HP provides a formal definition of when we can call one or more events

a cause of another event in a way that captures the human intuition. There have been

three versions of HP: the original (2001), updated (2005), and modified (2015) versions,

the latter of which we are using. The fundamental contribution of HP is that it opens the

door for embedding the ability to reason about causality into socio-technical systems that

are increasingly taking control of our daily lives. Among other use cases, since actual

causality can be used to answer causal queries in the postmortem of unwanted behavior,

it is a vital ingredient to enable accountability. Utilizing HP in technical systems makes

it possible to empower them with all the other social concepts that should also be em-

bedded into the technical world, such as responsibility [6], blame, intention, and moral

responsibility [12].

Causality checking, using any version of HP, is hard. For example, under the mod-
ified definition, determining causality is in general DP

1 -complete, and NP-complete for

singleton causes [10]. The computational complexity led to a domain-specific (e.g.,

database queries, counter-examples of model checking), adapted (e.g., use lineage of

queries, use Kripke structure of programs), or restricted (e.g., monotone queries, single-

ton causes, single-equation models) utilization of HP (details in Section.2). Conversely,

brute-force approaches work with small models (less than 30 variables [13]) only. There-

fore, to the best of our knowledge, there exists no comprehensive, efficient, and scalable

framework for modeling and benchmarking causality checking for binary models (i.e.,

models with binary variables only). Consequently, no existing algorithm allows applying

HP on more complex examples than the simple cases in the literature.

In this paper, we argue that an efficient approach for checking causality opens the

door for new use cases that leverage the concept in modern socio-technical systems.

We conceptualize a novel approach towards checking causality in acyclic binary models

based on the Boolean satisfiability problem (SAT). We intelligently encode the core of

HP as a SAT query that allows us to reuse the optimization power built into SAT solvers.

As a consequence of the rapid development of SAT solvers (1000X+ each decade), they

offer a promising tactic for any solution in formal methods and program analysis [25].

Leveraging this power in causality establishes a robust framework for efficiently rea-

soning about actual causality. Moreover, since the transformation of SAT to other logic

programming paradigms like answer set programming (ASP) is almost straightforward,

this paper establishes the ground to tackle more causality issues (e.g., causality infer-

ence) using combinatorial solving approaches. Therefore, this paper makes the following

contributions:

– An approach to check causality over binary models. It includes two SAT-encodings

that reflect HP, and two variants for optimization,

– A Java library 2 that includes the implementation of our approach. It is easily

extensible with new optimizations and algorithms.

– An empirical evaluation that uses different examples to show the efficiency and

scalability of our approach.

2available at: https://github.com/amjadKhalifah/HP2SAT1.0/

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving242

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/amjadKhalifah/HP2SAT1.0/

2. Related Work

To the best of our knowledge, no previous work has tackled the technical implementa-

tion of the (modified) version of HP yet. Conversely, the first two versions were used in

different applications. Although they use different versions, we still consider them re-

lated. These applications used the definition as a refinement of other technologies. For

example, in [22,23,4,27], a simplified HP (the updated version) was used to refine prove-

nance information and explain database conjunctive query results. Theses approaches,

heavily depend on the correspondence between causes and domain-specific concepts like

lineage, database repairs, and denial constraints. As a simplification, the authors used

a single-equation causal model based on the lineage of the query in [22,23], and no-

equation model in [4,27]. The approaches also eliminate HP’s treatment of preemption.

Similar simplification has been made for Boolean circuits in [7].

In the context of model verification, a concept that enhances a counterexample re-

turned by a model checker with a causal explanation based on a simplified version of

the updated HP was proposed in [3]. Their domain-specific simplification comes from

the fact that no dependencies between variables, and hence no equations, were required.

Moreover, they used the definition of singleton causes. Similarly, in [2,19], the authors

implemented different flavors of causality checking (based on the updated HP) using

Bounded Model Checking to debug models of safety-critical systems. They employed

SAT solving indirectly in the course of model checking. The authors stated that this ap-

proach is better in large models regarding performance than their previous work.

The common ground between all these approaches and our approach is the usage of

binary models. However, they were published before the modified HP version. Hence,

they used the older versions. In contrast to our approach, the previous works adapted the

definition for a domain specific purpose. This was reflected in restrictions on the equa-

tions of the binary model (single-equation, independent variables), the cause (singleton),

or dependency on other concepts (Kripke structures, lineage formula, counter-examples).

On the contrary, we propose algorithms to compute causality on binary models, without

adaptations.

Similar to our aim, [13] evaluated search-based strategies for determining causality

according to the original HP definition. Hopkins proposed ways to explore and prune

the search space, for computing 	W ,	Z that were required for that version, and considered

properties of the causal model that makes it more efficient for computation. The results

presented are of models that consist of less than 30 variables; in contrast, we show SAT-

based strategies that compute causality for models of thousands of variables.

3. Halpern-Pearl Definition

In this section, we introduce the latest HP. All versions of HP use variables to describe

the world. Structural equations define how these variables influence each other. The vari-

ables are split into exogenous and endogenous variables. The values of the former, called

a context	u, are assumed to be governed by factors that are not part of the modeled world.

Consequently, exogenous variables cannot be part of a cause. The values of the endoge-

nous variables, in contrast, are determined by the mentioned equations. Formally, we de-

scribe a causal model in Definition 1. Similar to Halpern, we limit ourselves to acyclic

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving 243

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

causal models, in which we can compute a unique solution for the equations given a

context	u.

Definition 1 Causal Model is a tuple M = (U,V,R,F), where

– U, V are sets of exogenous variables and endogenous variables respectively,
– R associates with Y ∈U ∪V a set R(Y) of values,
– F associates with X ∈V FX : (×U∈U R(U))× (×Y∈V\{X}R(Y))→ R(X)

Here, we define the necessary notations. A primitive event is a formula of the form X = x,

for X ∈ V and x ∈ R(X). A sequence of variables X1, ...,Xn is abbreviated as 	X . Analo-

gously, X1 = x1, ...,Xn = xn is abbreviated as 	X =	x. Variable Y can be set to value y by

writing Y ← y (analogously	Y ←	y for vectors). ϕ is a Boolean combination of primitive

events. (M,	u) |= X = x if the variable X has value x in the unique solution to the equa-

tions in M in context	u. Intervention on a model is expressed, either by setting the values

of 	X to 	x, written as [X1 ← x1, ..,Xk ← xk], or by fixing the values of 	X in the model,

written as M	X←	x, which effectively replaces the equations for 	X by a constant equation

Xi = xi. So, (M,	u) |= [Y ←	y]ϕ is identical to (M	Y←	y,	u) |= ϕ [10]. Lastly, we use →
to express value substitution, e.g., [

−→
V →	v′]FXj refers to the evaluation of equation FXj

given that the values of other variables are set to	v′.

Definition 2 Actual Cause [10]
	X =	x is an actual cause of ϕ in (M,	u) if the following three conditions hold:
AC1. (M,	u) |= (X =	x) and (M,	u) |= ϕ
AC2. There is a set 	W of variables in V and a setting	x′ of the variables in 	X such that if
(M,	u) |= 	W = 	w, then (M,	u) |= [X ←	x′, 	W ← 	w]¬ϕ .
AC3.

−→
X is minimal: no subset of 	X satisfies AC1 and AC2.

The HP definition is presented in Definition 2. AC1 checks that the cause and the effect

occurred in the real world, i.e., in M given context 	u. AC3 is a minimality check to

deal with irrelevant variables. AC2 is the core; it matches the counter-factual definition

of causality. It holds if there exists a setting 	x′ of the variables in 	X different from the

original setting 	x (which led to ϕ holding true) and another set of variables 	W that we

use to fix variables at their original value, such that ϕ does not occur. Inferring 	W is

one source of the complexity of the definition. The role of 	W becomes clearer when

we consider the examples in [10]. Briefly, it captures the notion of preemption which

describes the case when one possible cause rules out the other based on, e.g., temporal

factors.

Halpern [10] shows that determining causality is in general DP
1 -complete. The family

of complexity classes DP
k was introduced, in [1], to investigate the complexity of the

original and updated definitions. AC1 can be checked in polynomial time, while AC2
is NP-complete, and AC3 is co-NP-complete. To prove this complexity, Halpern [10]

showed that AC2 could be reduced to SAT, and AC3 to UNSAT. However, the concrete

encoding was not specified.

Example We consider a famous example from the literature: the rock-throwing ex-
ample [21], described as follows: Suzy and Billy both throw a rock at a bottle which shat-

ters if one of them hits it. We know that Suzy’s rock hits the bottle slightly earlier than

Billy’s and both are accurate throwers. Halpern models this story using the following

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving244

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

endogenous variables: ST, BT for “Suzy/Billy throws”, with values 0 (the person does

not throw) and 1 (s/he does), similarly, SH,BH for “Suzy/Billy hits”, and BS for “bottle

shatters”. The equations are:

- BS is 1 iff one of SH and BH is 1, i.e., BS = SH ∨BH
- SH is 1 iff ST is 1, i.e., SH = ST
- BH = 1 iff BT = 1 and SH = 0, i.e., BH = BT ∧¬SH
- ST , BT are set by exogenous variables, i.e., ST = STexo;BT = BTexo

Assuming a context 	u that sets ST = 1 and BT = 1, the original evaluation of the

model is: BS=1 SH=1 BH=0 ST =1 BT =1. Let us assume we want to find out whether ST
= 1 is a cause of BS = 1. Obviously, AC1 is fulfilled. As a candidate cause, we set ST = 0.

A first attempt with 	W = /0 shows that AC2 does not hold. However, if we arbitrary take
	W = {BH}, i.e., we replace the equation of BH with BH = 0, then AC2 holds because

BS = 0, and AC3 automatically holds since the cause is a singleton. Thus, ST = 1 is a

cause of BS = 1.

4. Approach

In this section, we propose our algorithmic approaches towards the HP definition. To

answer a causal question efficiently, we need to find an intelligent way to search for a 	W
such that AC2 is fulfilled as well as to check whether AC3 holds. Therefore, we propose

an approach that uses SAT-solving. We show how to encode AC2 into a formula whose

(un)satisfiability and thus the (un)fulfillment of AC2 is determined by a SAT-solver. Sim-

ilarly, we show how to generate a formula whose satisfying assignments obtained with a

solver indicate if AC3 holds.

4.1. Checking AC2

For AC2, such a formula F has to incorporate (1) ¬ϕ , (2) a context 	u, (3) a setting, 	x′
for candidate cause, 	X , and (4) all possible variations of 	W , while still (5) keeping the

semantics of the underlying model M. In the following, we describe the concept and,

then, the algorithm that generates such a formula F . Since we check actual causality in

hindsight, we have a situation where 	u and 	v are determined, and we have a candidate

cause 	X ⊆ 	V . Thus, the first two requirements are straightforward. First, the effect ϕ
should not hold anymore, hence, ¬ϕ holds. Second, the context 	u should be set to its

values in the original assignment (the values	u of 	U).

Since we are treating binary models only, the setting	x′ (from AC2) can be tailored

down to negating the original value of each cause variable. This is a result of Lemma 1,

which utilizes the fact that we are considering binary variables to exclude other possible

settings and define precisely the setting	x′. The proof of the Lemma is given in Appendix

A. Thus, to address the third requirement, according to Lemma 1, for ¬ϕ to hold, all the

variables of the candidate cause 	X are negated.

Lemma 1 In a binary model, if 	X =	x is a cause of ϕ , according to Definition 2, then
every	x′ in the definition of AC2 always satisfies ∀i.x′i = ¬xi.

To ensure that the semantics of the model are reflected in F (requirement 5), we use

the logical equivalence operator (↔) to express the equations. Particularly, to represent

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving 245

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm 1 Check whether AC2 holds using SAT

Input: causal model M, context 〈U1, . . . ,Un〉 = 〈u1, . . . ,un〉, effect ϕ , candidate cause

〈X1, . . . ,X�〉= 〈x1, . . . ,x�〉, evaluation 〈V1, . . . ,Vm〉= 〈v1, . . . ,vm〉
1: function FULFILLSAC2(M, 	U =	u,ϕ,	X =	x,	V =	v)

2: if (M,	u) |= [X ←¬	x]¬ϕ then return /0

3: else
4: F := ¬ϕ ∧ ∧

i=1...n
f (Ui = ui) ∧ ∧

i=1...m, ∃ j•Xj=Vi

(
Vi ↔ FVi ∨ f (Vi = vi)

)
↪→ ∧ ∧

i=1...�
f (Xi = ¬xi)

5: with f (Y = y) =

{
Y, y = 1

¬Y, y = 0

6: if 〈U1 = u1 . . .Un = un,V1 = v′1 . . .Vm = v′m〉 ∈ SAT(CNF(F)) then
7: 	W := 〈W1, . . . ,Ws〉 s.t. ∀i∀ j • (i = j ⇒ Wi =Wj)∧ (Wi =Vj ⇔ v′j = v j)

8: return 	W
9: else return not satisfiable

10: end if
11: end if
12: end function

the endogenous variable Vi and its dependency on other variables, we use this clause

Vi ↔ FVi . This way, we create a (sub-)formula that evaluates to true if both sides are

equivalent in their evaluation. If we do so for all other variables (that are not affected

by criteria 1-3), we ensure that F is only satisfiable for assignments that respect the

semantics of the model.

Finally, we need to find a possibility to account for 	W (requirement 4) without hav-

ing to iterate over the power-set of all variables. In F , we accomplish this by adding

a disjunction with the positive or negative literal of each variable Vi to the previously

described equivalence-formula, depending on whether the actual evaluation of Vi was 1

or 0, respectively. Then, we can interpret ((Vi ↔ FVi)∨ (¬)Vi) as “Vi either follows the

semantics of M or takes on its original value represented as a positive or negative literal”.

By doing so for all endogenous variables, we allow for all possible variations of 	W . It is

worth noting that we exclude those variables that are in 	X from obtaining their original

value, as we are already changed their setting to ¬	x and thus keeping a potential cause

at its original value is not reasonable. Obviously, it might not make sense to always add

the original value for all variables. We leave this as a candidate optimization for a future

work.

AC2 Algorithm We formalize the above in Algorithm 1. The evaluation, in the input,

is a list of all the variables in M and their values under	u. The rest is self-explanatory. We

slightly change the definition of ϕ from a combination of primitive events to a combina-

tion of literals. For instance, instead of writing ϕ = (X1 = 1∧X2 = 0∨X3 = 1), we would

use ϕ = (X1 ∧¬X2 ∨X3). In other words, we replace each primitive (X = x) ∈ ϕ with X
if x = 1 or ¬X if x = 0 in the original assignment, such that we use ϕ in a formula. The

same logic is achieved using the function f (Y = y) in line 5 of the algorithm.

Before we construct formula F , we check if 	X =	x given 	W = /0 (line 2) fulfills AC2.

Hence, in this case, we do not need to look for a 	W . Otherwise, we construct F (line 4)

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving246

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

that is a conjunction of ¬ϕ and the exogenous variables of M as literals depending on	u.

Note that ϕ does not necessarily consist of a single variable only; it can be any Boolean

formula. For example, if ϕ = (BS = 1∧BH = 0) in the notation as defined by [10], we

would represent it in F as (BS∧¬BH). This consideration is handled by Algorithm 1

without further modification. In addition, we represent each endogenous variable, Vi ∈ 	X
with a disjunction between its equivalence formula Vi ↔ FVi and its literal representation.

To conclude the formula construction, we add the negation of the candidate cause 	X =	x,

a consequence of Lemma 1.

If F , represented in a conjunctive normal form, is satisfiable, we obtain the satisfying

assignment (line 6) and compute 	W (line 7) as the set of those variables whose valuations

were not changed in order to ensure ¬ϕ that is finally returned. If F is unsatisfiable, not
satisfiable is returned.

Minimality of 	W In Algorithm 1, we considered 	W to consist of all the variables whose

original evaluation and satisfying assignments are equal. This is an over-approximation

of the 	W set because, possibly, there are variables that are not affected by changing the

values of the cause, and are yet not required to be fixed in 	W . Despite this consideration,

a non-minimal 	W is still valid according to HP. However, to compute the degree of re-

sponsibility [6], a minimal 	W is required. Therefore, we briefly discuss a modification

that yields a minimal 	W .

We need to modify two parts of Algorithm 1. First, we cannot just consider one
satisfying assignment for F . Rather, we need to analyze all the assignments. Determining

all the assignments is called an All-SAT problem. Second, we have to further analyze

each assignment of 	W to check if we can find a subset such that F , and thus AC2, still

holds. Specifically, we check if each element in 	W is equal to its original value because

it was explicitly set so, or because it simply evaluated according to its equation. In the

latter case, it is not a required part of 	W . Precisely, in Algorithm 1, everything stays the

same until the computation of F . After that, we check whether F is satisfiable, but now

we compute all the satisfying assignments. Subsequently, for each satisfying assignment,

we compute 	Wi as explained. Then, we return the smallest 	Wi, at the cost of iterating over

all satisfying assignments of the variables in V .

4.2. Checking AC3

Our approach for checking AC3 using SAT is very similar to the one for AC2. We con-

struct another SAT formula, G. The difference between G and F is in how the parts of

the cause are represented. In G, we allow each of them to take on its original value or its

negation (e.g., A∨¬A). Clearly, we could replace that disjunction with true or 1. How-

ever, we explicitly do not perform this simplification such that a satisfying assignment

for G still contains all variables of the causal model, M.

In general, the idea is as follows. If we find a satisfying assignment for G such that at

least one conjunct of the cause 	X =	x takes on a value that equals the one computed from

its corresponding equation, then, we know that this particular conjunct is not required

to be part of the cause and there exists a subset of 	X that fulfills AC2 as well. The

same applies if the conjunct is equal to its original value in the satisfying assignment;

this would mean that it is part of a 	W such that ¬ϕ holds. When collecting all those

conjuncts, we can construct a new cause 	X ′ =	x′ by subtracting them from the original

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving 247

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm 2 Check whether AC3 holds using ALL-SAT

Input: causal model M, context 〈U1, . . . ,Un〉 = 〈u1, . . . ,un〉, effect ϕ , candidate cause

〈X1, . . . ,X�〉= 〈x1, . . . ,x�〉, evaluation 〈V1, . . . ,Vm〉= 〈v1, . . . ,vm〉
1: function FULFILLSAC3(M, 	U =	u,ϕ,	X =	x,	V =	v)

2: if � > 1∧ (M,	u) |= ϕ then
3: G := ¬ϕ ∧∧

i=1...n f (Ui = ui) ∧∧
i=1...m,∃ j•Xj=Vi

(
Vi ↔ FVi ∨ f (Vi = vi)

)
↪→ ∧∧

i=1...� Xi ∨¬Xi
4: for all 〈	U =	u,	V =	v′〉 ∈ SAT(CNF(G)) do
5: if |

{
j ∈ {1, .., �}|∃i•Vi = Xj ∧ v′i = vi

↪→ ∧v′i = [
−→
V →	v′]FXj

}
|< � then return false

6: end if
7: end for
8: end if
9: return true

10: end function

cause and then checking whether or not it fulfills AC1. If it does, AC3 is violated because

we identified a subset 	X ′ of 	X for which both AC1 and AC2 hold.

AC3 Algorithm We formalize our approach in Algorithm 2. The input and the function

f (Vi = vi) remain the same as for Algorithm 1; the latter is omitted. In case 	X =	x is a

singleton cause or ϕ did not occur, AC3 is then fulfilled automatically (line 2). Otherwise,

line 3 shows how formula G is constructed. This construction is only different from the

construction of F in Algorithm 1 in how to treat variables ∈ 	X . They are added as a

disjunction of their positive and negative literals. Once G is constructed, we check its

satisfiability, if it is not satisfiable we return true, i.e., AC3 is fulfilled. For example, this

can be the case if the candidate cause 	X did not satisfy AC2. Otherwise, we check all its

satisfying assignments. We need to do this, as G might also be satisfiable for the original
	X =	x so that we cannot say for sure that any satisfying assignment found, proves that

there exists a subset of the cause. Instead, we need to obtain all of them. Obviously, this

is problematic and could decrease the performance if G is satisfiable for a large number

of assignments. Therefore, we plan to address this in future work.

However, for now, we compute one assignment and check the count of the conjuncts

in the cause that have different values in	v′ than their original, and that their formula does

not evaluate to this assignment (line 5). If the count is less than the size of the cause, then

AC3 is violated. Otherwise we check another assignment.

Combining AC2 and AC3 While developing Algorithm 1 and Algorithm 2, we discov-

ered that combining both is an option for optimizing our approach. In particular, we can

exploit the relationship between the satisfying assignment(s) for the formulas F and G,

i.e.,	aF ∈ AG. This holds, as we allow the variables 	X of a cause to be both 1 or 0 in G so

that we can show that the satisfying assignment, 	aF for F in Algorithm 1 is an element

of the satisfying assignments AG, for G. Then, instead of computing both F and G, we

could just compute G, then filter those satisfying assignments that F would have yielded

and use them for checking AC2 while we use all satisfying assignments of G to check

AC3.

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving248

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table 1. F , G assignments

BS SH BH ST BT

M 1 1 0 1 1

F 0 0 0 0 1

G	a1 0 0 0 0 0

G	a2 0 0 0 0 1

4.3. Example

Recall the example from Section.3. Since the context 	u sets ST = 1 and BT = 1, the

original evaluation of the model is shown in the first row of Table.1. We want to find

out whether ST = 1 is a cause of BS = 1. Algorithm.1 generates the following F , that is

satisfiable for one assignment (Table.1 second row): BS = 0, SH = 0, BH = 0, ST = 0,

BT = 1. All the variables, except BH and BT , change their evaluation. Thus, we conclude

that ST = 1 fulfills AC2 with 	W = {BH,BT}. Notice that even though this 	W is not

minimal, it is still valid. That said, we still can calculate a minimal 	W .

F =

¬ϕ︷︸︸︷
¬BS ∧

	u︷ ︸︸ ︷
STexo ∧BTexo ∧ (

equation of BS︷ ︸︸ ︷
(BS ↔ SH ∨BH)∨

orig. BS︷︸︸︷
BS) ∧ (

equation of SH

(SH ↔ ST)︸ ︷︷ ︸∨orig. SH

SH︸︷︷︸)
∧ ((BH ↔ BT ∧¬SH)︸ ︷︷ ︸

equation of BH

∨¬BH︸︷︷︸
orig. BH

) ∧ ¬ST︸︷︷︸
equation of ST

∧((BT ↔ BTexo)︸ ︷︷ ︸
equation of BT

∨ BT︸︷︷︸
orig. BT

)

To illustrate checking AC3, we ask a different question: are ST = 1 and BT = 1 a

cause of BS = 1? Note that AC2 is fulfilled with W = /0, for this cause. Obviously, if both

do not throw, the bottle does not shatter. Using Algorithm 2, we obtain the following G
formula.

G =

¬ϕ︷︸︸︷
¬BS ∧

	u︷ ︸︸ ︷
STexo ∧BTexo ∧ (

equation of BS︷ ︸︸ ︷
(BS ↔ SH ∨BH)∨

orig. BS︷︸︸︷
BS) ∧ (

equation of SH︷ ︸︸ ︷
(SH ↔ ST)∨

orig. SH︷︸︸︷
SH)

∧ ((BH ↔ BT ∧¬SH)︸ ︷︷ ︸
equation of BH

∨¬BH︸︷︷︸
orig. BH

) ∧ (ST︸︷︷︸
orig. ST

∨ ¬ST︸︷︷︸
negated orig. ST

) ∧ (BT︸︷︷︸
orig. BT

∨ ¬BT︸︷︷︸
negated orig. BT

)

As Table.1 shows, G is satisfiable with two assignments	a1 and	a2. For	a1, we can see

that both ST and BT have values different from their original evaluation, and that both

do not evaluate according to their equations. Thus, we cannot show that AC3 is violated,

yet. For 	a2, BT = 1, so it is equal to the evaluation of its equation. Consequently, BT is

not a required part of 	X , because ¬ϕ = ¬BS still holds although we did not set BT = 0.

So, AC3 is not fulfilled because AC1 and AC2 hold for a subset of the cause.

5. Evaluation

In this section, we provide details on the implementation of our algorithms, and evaluate

their efficiency.

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving 249

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table 2. Evaluated causal models

Causal Model Endogenous Vars.
Abstract Models: AM1 , AM2 8 , 3

Steal Master Key: 3 suspects (SMK3), 8 suspects (SMK8) 36, 91

Leakage in Sub-sea Production System (LSP) [5] 41

Binary Trees of different heights (BT) 15 - 4095

Abstract Model 1 Combined with Binary Tree (ABT) 4103

5.1. Technical implementation

Our implementation is a Java library. As such, it can easily be integrated into other sys-

tems. It supports both the creation of binary causal models as well as solving causality

problems. For the modeling part and the implementation of our SAT-based approach, we

take advantage of the library LogicNG 3 . It provides methods for creating and modify-

ing boolean formulas and allows to analyze those using different SAT solvers. We use

the implementation of MiniSAT solver [8] within LogicNG. For the sake of this evalua-

tion, we will compare the execution time and memory allocation for the following four
strategies: BRUTE FORCE -a standard brute-force implementation of HP, SAT -SAT-based

approach (Algorithm1, 2), SAT MINIMAL -the minimal 	W extension, and SAT COMBINED

-optimization of the SAT-based approach by combining AC2 and AC3. All our measure-

ments were performed on Ubuntu 16.04 LTS machine equipped with an Intel R© CoreTM

i7-3740QM CPU and 8 GB RAM. For each benchmark, we specified 100 warmup and

100 measurement iterations.

5.2. Methodology and Evaluated Models

In summary, we experimented with 12 different models. On the one hand, we took the

binary models from [10]. There were 5 of them in total, namely, Rock-Throwing, For-
est Fire, Prisoners, Assassin, and Railroad. Since these examples are rather small (≤ 5

variables) and easy to understand, they mainly serve for sanity checks of our approach.

On the other hand, we used examples that do not stem from the literature on causality.

One is a security example obtained from an industrial partner. It describes the causal

factors that lead to stealing a security master key by an insider. We refer to it as SMK.

We used two variants of that example, one with 3 suspects, and the other with 8 suspects.

We also used one example from the safety domain that describes a leakage in a sub-sea

production system; we refer to it as LSP. Last, we artificially generated models of binary

trees with different heights, denoted as BTdepth, and combined them with other random

models (non-tree graphs), denoted as ABT. For a thorough description of each model,

please refer to this report [15]. Table 2 shows the list of the bigger models, along with

the number of endogenous variables. In total, we analyzed 278 scenarios, however, for

space limits, we focus on a subset of the scenarios.

5.3. Discussion and Results

In this section, we discuss some representative cases from our experiments. Table 3

shows the details of these cases. The first two columns show the scenario identifier,

3https://github.com/logic-ng/LogicNG

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving250

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/logic-ng/LogicNG

Table 3. Discussed scenarios as part of the analysis

ID 	X =	x ϕ

A
C

1

A
C

2

A
C

3

∣ ∣ ∣Min
im

al
	 W
∣ ∣ ∣

B
R

U
T

E

S
A

T

S
A

T
M

IN
IM

A
L

S
A

T
C

O
M

B
IN

E
D

SM
K

3

3 FSU1
= 1∧FNU1

= 1∧ AU1
= 1

SM
K
=

1

� � � 4 N/A

N/A

0.8952ms

1.0540MB

1.0924ms

1.2223MB

0.7160ms

0.9032MB

22 FSU3
= 1 � � � – N/A

N/A

0.6159ms

0.8650MB

0.6232ms

0.8651MB

0.6098ms

0.8614MB

24 FSU3
= 1∧FNU3

= 1∧ AU3
= 1 � � � 0 N/A

N/A

0.7132ms

0.9164MB

0.7217ms

0.9165MB

0.7157ms

0.9164MB

26 FSU3
= 1∧FNU3

= 1

∧AU3
= 1∧ADU3

= 1

� � � 0 N/A

N/A

0.7725ms

0.9577MB

0.7887ms

0.9577MB

0.7754ms

0.9577MB

29 AU3
= 1∧ADU3

= 1

SD
=

1

� � � 0 0.1360ms

0.2268MB

0.7231ms

0.9198MB

0.7233ms

0.9233MB

0.7225ms

0.9198MB

L
S

P

3 X1 = 1∧X2 = 1

X 4
1
=

1

� � � 0 0.1600ms

0.2524MB

0.8600ms

1.0953MB

0.8648ms

1.0903MB

0.8598ms

1.0913MB

56 X1 = 1∧X2 = 1 � � � – N/A

N/A

0.9464ms

1.2348MB

1.0245ms

1.2308MB

0.6984ms

0.9918MB

57 X1 = 1∧X3 = 1 � � � 0 N/A

N/A

0.8032ms

1.0600MB

0.8025ms

1.0599MB

0.8092ms

1.0560MB

B
T

h
ei

g
h
t

=
1
2

34 n4093 = 1∧n4094 = 1

n r
o
o
t
=

1

� � � – N/A

N/A

6540.3ms

2080MB

6410ms

2077MB

3587.9ms

1055.0MB

35 n4091 = 1∧n4092 = 1

∧n4093 = 1∧n4094 = 1

� � � – N/A

N/A

6949ms

2090.2MB

6618ms

2090.8MB

3328.4ms

1054.9MB

A
B

T

1 n4094 = 1

I
=

1

� � � 4 N/A

N/A

3948.1ms

1055.0MB

15324ms

4019.1MB

3824.8ms

1055.5MB

4 n4093 = 1∧n4094 = 1 � � � 4 N/A

N/A

6379ms

2042.3MB

19043ms

5088.6MB

3718.5ms

1057.3MB

5 n4092 = 0∧n4093 = 1∧n4094 = 1 � � � 5 N/A

N/A

7906ms

2047.0MB

19271ms

5123.2MB

3803.3ms

1058.8MB

namely, the name of the model and the ID of the scenario that differs in the details of the

causal query, i.e., 	X and ϕ . The latter are shown in the third and fourth columns. Then,

the results of the three conditions are displayed in columns AC1-AC3. The size of the

minimal W set is displayed in the next column. Finally, for each algorithm, the execution

time and memory allocation are shown. We write N/A in cases where the computation

was not completed in 5 minutes or consumed too much memory. As a general remark, it

does not matter which algorithm is applied if AC2 holds for an empty 	W and AC3 holds

automatically, i.e., 	X is a singleton.

As expected, the Brute-Force approach (BF) works only for smaller models (<5

variables), or in situations where only a few iterations are required. Such as scenarios

LSP-3, and SMK-29. Specifically, we see these situations when AC2 holds with a small or

empty 	W , and AC3 does not hold. That is, the number of iterations BF performs is small

because the sets, 	Wi are ordered by size. Such examples did not exhibit the major problem

of BF, i.e., the generation of all possible sets, 	Wi whose number increases exponentially,

and the iterations BF might, therefore, perform to check minimality in AC3.

For larger models (>30 variables), BF did not return an answer in 5 minutes, espe-

cially when AC2 does not hold. This is seen by the several N/A entries in Table 3. For

example, in the SMK, the set of all possible 	Wi has a size of up to 235. In the worst case,

this number of iterations is required for finding out that AC2 does not hold. It is possible

that this number of iterations multiplied by the number of subsets of the cause needs to

be executed again to check AC3. This causes BF to be extremely slow and to consume a

lot of memory. The SAT by contrast, always stays below 1.5 ms and allocates less than

1.5 MB during the execution for all scenarios of the SMK. Even if larger models were

considered, SAT handles them efficiently, e.g., BT 34 - 35, where the underlying causal

model contains 4095 variables, executed in ≤ 7s. However, the latter scenarios are spe-

cial because AC2 does not hold. In ABT 1, 4 and 5, we can see that even if AC2 does
hold and 	W is not empty, SAT takes only 8s.

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving 251

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

While obtaining a minimal 	W using our approach showed a rather small impact

relative to the SAT approach in most of the scenarios, it showed a significant increase

in some scenarios. This impact was highly dependent on the nature and semantics of the

underlying causal model. That is, we can only observe a major impact if the number of

satisfying assignments or the size of a non-minimal 	W is large as this will significantly

extend the analysis. For instance, in SMK-3, the execution time increased by about 22%.

Nonetheless, there are scenarios in which we observed a significant increase, such as the

ABT-4 scenario. Here, the non-minimal 	W contains more than 4000 elements, leading to

an increase of more than 200% in the execution time required to determine a minimal 	W .

Finally, combining the algorithms for AC2 and AC3 is only beneficial if AC2 and

AC3 need to be explicitly analyzed (AC2 does not hold for an empty W, and the cause

is not a singleton). We have many such scenarios in our examples. In evaluating them,

we found out that there is a positive impact in using this optimization, but it is rather

small on the average. Larger differences can be seen, for instance, in ABT-5 where the

SAT-based approach executes for 7906ms while the current optimization takes 3803ms.

The main finding of our experiments is that actual causality can be computed effi-

ciently with our SAT-based approach. Within binary models of 4000 variables, we were

able to obtain a correct answer for any query in less than 4 seconds, using a memory of

1 GB.

6. Conclusions and Future Work

It is difficult to devise automated assistance for causality reasoning in modern socio-

technical systems. Causality checking, according to the formal definitions, is computa-

tionally hard. Therefore, efficient approaches that scale to the complexity of such sys-

tems are required. In the course of this, we proposed an intelligent way to utilize SAT

solvers to check actual causality in binary models in a large scale that we believe to be

particularly relevant for accountability purposes. We empirically showed that it can ef-

ficiently compute actual causality in large binary models. Even with only 30 variables,

determining causality in a brute force manner is incomputable, whereas our SAT-based

approach returned a result for such cases in 1 ms. In addition, causal models consist-

ing of more than 4000 endogenous variables were still handled within seconds using the

proposed approach.

For future work, we will consider other logic programming paradigms such as in-

teger linear programming and answer set programming to develop our approach from

checking to possibly inferring causality. Moreover, a thorough characterization of causal

model classes that affect the efficiency of the proposed approach is a useful follow-up

to this work. We plan to extend our benchmark with models of different patterns, and

different cardinalities of causes.

References

[1] Aleksandrowicz, G., Chockler, H., Halpern, J.Y., Ivrii, A.: The computational complexity of structure-

based causality. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,

July 27 -31, 2014, Québec City, Québec, Canada. pp. 974–980 (2014), http://www.aaai.org/ocs/

index.php/AAAI/AAAI14/paper/view/8328

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving252

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8328
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8328

[2] Beer, A., Heidinger, S., Kühne, U., Leitner-Fischer, F., Leue, S.: Symbolic causality checking using

bounded model checking. In: Model Checking Software - 22nd International Symposium, SPIN 2015,

Stellenbosch, South Africa, August 24-26, 2015, Proceedings. pp. 203–221 (2015)

[3] Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples using causality.

Formal Methods in System Design 40(1), 20–40 (2012). https://doi.org/10.1007/s10703-011-0132-2,

https://doi.org/10.1007/s10703-011-0132-2

[4] Bertossi, L.: Characterizing and computing causes for query answers in databases from database re-

pairs and repair programs. In: International Symposium on Foundations of Information and Knowledge

Systems. pp. 55–76. Springer (2018)

[5] Cheliyan, A.S., Bhattacharyya, S.K.: Fuzzy fault tree analysis of oil and gas leakage in sub-

sea production systems. Journal of Ocean Engineering and Science 3(1), 38 – 48 (2018).

https://doi.org/https://doi.org/10.1016/j.joes.2017.11.005, http://www.sciencedirect.com/

science/article/pii/S2468013317300591

[6] Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model approach. J. Artif. Intell. Res.

22, 93–115 (2004). https://doi.org/10.1613/jair.1391, https://doi.org/10.1613/jair.1391

[7] Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification? ACM

Transactions on Computational Logic (TOCL) 9(3), 20 (2008)

[8] Eén, N., Sörensson, N.: An extensible sat-solver. In: Theory and Applications of Satisfiability Testing,

6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised

Papers. pp. 502–518 (2003)

[9] Feigenbaum, J., Jaggard, A.D., Wright, R.N.: Towards a formal model of accountability. In: 2011

New Security Paradigms Workshop, NSPW ’11, Marin County, CA, USA, September 12-15,

2011. pp. 45–56 (2011). https://doi.org/10.1145/2073276.2073282, http://doi.acm.org/10.1145/

2073276.2073282

[10] Halpern, J.Y.: A modification of the halpern-pearl definition of causality. In: Proceedings of the Twenty-

Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,

July 25-31, 2015. pp. 3022–3033 (2015), http://ijcai.org/Abstract/15/427

[11] Halpern, J.Y.: Actual causality. The MIT Press, Cambridge, Massachussetts (2016)

[12] Halpern, J.Y., Kleiman-Weiner, M.: Towards formal definitions of blameworthiness, intention, and moral

responsibility. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-

18) (2018)

[13] Hopkins, M.: Strategies for determining causes of events. In: AAAI/IAAI. pp. 546–552 (2002)

[14] Hume, D.: An Enquiry Concerning Human Understanding (1748)

[15] Ibrahim, A.: Efficient checking of actual causality via sat solving - benchmarked models, https://

github.com/amjadKhalifah/HP2SAT1.0/blob/master/doc/models.pdf

[16] Kacianka, S., Kelbert, F., Pretschner, A.: Towards a unified model of accountability infrastructures.

In: Proceedings First Workshop on Causal Reasoning for Embedded and safety-critical Systems Tech-

nologies, CREST@ETAPS 2016, Eindhoven, The Netherlands, 8th April 2016. pp. 40–54 (2016).

https://doi.org/10.4204/EPTCS.224.5, https://doi.org/10.4204/EPTCS.224.5

[17] Kleinberg, S., Hripcsak, G.: A review of causal inference for biomedical informatics. Journal of

Biomedical Informatics 44(6), 1102–1112 (2011). https://doi.org/10.1016/j.jbi.2011.07.001, https:

//doi.org/10.1016/j.jbi.2011.07.001

[18] Künnemann, R., Esiyok, I., Backes, M.: Automated verification of accountability in security protocols.

CoRR abs/1805.10891 (2018), http://arxiv.org/abs/1805.10891

[19] Leitner-Fischer, F.: Causality Checking of Safety-Critical Software and Systems. Ph.D. thesis, Univer-

sity of Konstanz, Germany (2015), http://kops.uni-konstanz.de/handle/123456789/30778

[20] Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In: Verification, Model

Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, Jan-

uary 20-22, 2013. Proceedings (2013)

[21] Lewis, D.: Causation. Journal of Philosophy 70(17), 556–567 (1973). https://doi.org/10.2307/2025310

[22] Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases.

IEEE Data Eng. Bull. 33(3), 59–67 (2010), http://sites.computer.org/debull/A10sept/

suciu.pdf

[23] Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The complexity of causality and responsibility for

query answers and non-answers. PVLDB 4(1), 34–45 (2010), http://www.vldb.org/pvldb/vol4/

p34-meliou.pdf

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving 253

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1007/s10703-011-0132-2
http://www.sciencedirect.com/science/article/pii/S2468013317300591
http://www.sciencedirect.com/science/article/pii/S2468013317300591
https://doi.org/10.1613/jair.1391
http://doi.acm.org/10.1145/2073276.2073282
http://doi.acm.org/10.1145/2073276.2073282
http://ijcai.org/Abstract/15/427
https://github.com/amjadKhalifah/HP2SAT1.0/blob/master/doc/models.pdf
https://github.com/amjadKhalifah/HP2SAT1.0/blob/master/doc/models.pdf
https://doi.org/10.4204/EPTCS.224.5
https://doi.org/10.1016/j.jbi.2011.07.001
https://doi.org/10.1016/j.jbi.2011.07.001
http://arxiv.org/abs/1805.10891
http://kops.uni-konstanz.de/handle/123456789/30778
http://sites.computer.org/debull/A10sept/suciu.pdf
http://sites.computer.org/debull/A10sept/suciu.pdf
http://www.vldb.org/pvldb/vol4/p34-meliou.pdf
http://www.vldb.org/pvldb/vol4/p34-meliou.pdf

[24] Moore, M.S.: Causation and responsibility : an essay in law, morals, and metaphysics. Oxford

Univ. Press, Oxford (2009), http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=

BVB01&doc_number=016740811&line_number=0002&func_code=DB_RECORDS&service_

type=MEDIA;http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_

number=016740811&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA

[25] Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of community structure

on sat solver performance. In: International Conference on Theory and Applications of Satisfiability

Testing. pp. 252–268. Springer (2014)

[26] Pearl, J.: Theoretical impediments to machine learning with seven sparks from the causal revolution.

arXiv preprint arXiv:1801.04016 (2018)

[27] Salimi, B., Bertossi, L.: From causes for database queries to repairs and model-based diagnosis and

back. arXiv preprint arXiv:1412.4311 (2014)

A. Appendix: Lemma Proof

Lemma 2 In a binary model, if 	X =	x is a cause of ϕ , according to HP [10] definition,
then every	x′ in the definition of AC2 always satisfies ∀i• x′i = ¬xi.

Proof 1 We use the following notation:
−→
X (n) stands for a vector of length n, X1, . . . ,Xn;

and
−→
X (n) =

−→x (n) stands for X1 = x1, . . . ,Xn = xn. Let
−→
X (n) =

−→x (n) be a cause for ϕ in
some model M.

1. AC1 yields

(M,−→u) |= (
−→
X (n) =

−→x (n))∧ (M,−→u) |= ϕ. (1)

2. Assume that the lemma does not hold. Then there is some index k such that x′k = xk
and AC2 holds. Because we are free to choose the ordering of the variables, let us
set k = n wlog. We may then rewrite AC2 as follows:

∃−→W ,−→w ,−→x ′
(n) • (M,−→u) |= (

−→
W =−→w) =⇒ (M,−→u) |=[−→

X (n−1) ←−→x ′
(n−1),Xn ← xn,

−→
W ←−→w

]
¬ϕ. (2)

3. We will show that equations 1 and 2 give rise to a smaller cause, namely
−→
X (n−1) =−→x (n−1), contradicting the minimality requirement AC3. We need to show that the

smaller cause
−→
X (n−1) =

−→x (n−1) satisfy AC1 and AC2, as stated by equations 3

and 4 below. This violates the minimality requirement of AC3 for
−→
X (n) =

−→x (n).

(M,−→u) |= (
−→
X (n−1) =

−→x (n−1))∧ (M,−→u) |= ϕ (3)

states AC1 for a candidate “smaller” cause
−→
X (n−1). Similarly,

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving254

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA ; http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA ; http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA ; http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA ; http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016740811&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA

∃−→W ∗,−→w ∗,−→x ′∗
(n−1) • (M,−→u) |= (

−→
W ∗ =−→w ∗)

=⇒ (M,−→u) |=
[−→

X (n−1) ←−→x ′∗
(n−1),

−→
W ∗ ← −→w ∗

]
¬ϕ (4)

formulates AC2 for this candidate smaller cause
−→
X (n−1).

4. Let Ψ denote the structural equations that define M. Let Ψ′ be Ψ without the
equations that define the variables

−→
X (n) and

−→
W ; and let Ψ′′ be Ψ without the

equations that define the variables
−→
X (n−1) and

−→
W . Clearly, Ψ′′ =⇒ Ψ′.

We can turn equation 1 into a propositional formula, namely

E1 :=
(

Ψ∧−→
X (n−1) =

−→x (n−1)∧Xn = xn

)
∧ϕ. (5)

Similarly, equation 3 is reformulated as

E2 :=
(

Ψ∧−→
X (n−1) =

−→x (n−1)

)
∧ϕ. (6)

Because equation 2 holds, we fix some
−→
W ,−→w ,−→x ′

(n) that make it true and rewrite
this equation as

E3 :=
(

Ψ′ ∧−→
X (n−1) =

−→x ′
(n−1)∧Xn = xn ∧−→

W =−→w
)

=⇒ ¬ϕ. (7)

Finally, in equation 4, we use exactly these values to also fix
−→
W ∗ =

−→
W , −→w ∗ = −→w ,

and −→x ′∗
(n−1) =

−→x ′
(n−1), and reformulate this equation as

E4 :=
(

Ψ′′ ∧−→
X (n−1) =

−→x ′
(n−1)∧

−→
W =−→w

)
=⇒ ¬ϕ. (8)

It is then a matter of equivalence transformations to show that

(Ψ′′ =⇒ Ψ′) =⇒
(
(E1 ∧E2) =⇒ (E3 ∧E4)

)
(9)

is a tautology, which proves the lemma.

A. Ibrahim et al. / Efficient Checking of Actual Causality with SAT Solving 255

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Subject Index

abstract interpretation 83

abstraction-based control design 117

accountability 241

active learning 61

actual causality 241

authentication logic 113

automated proof 137

BAN logic 113

blockchain 113

boolean SAT solvers 29

calculational design 9

common knowledge 113

composable 1

conflict-driven clause learning 29

constrained horn clauses 83

coodinated attack 113

correctness 137

CPS 1

cryptographic protocols 163

data wrangling 61

epistemic logic 113

first-order theories and SMT

solvers 29

formal methods 163

hyperproperties 189

intermediate verification language 189

machine learning for solvers 29

MBSE 1

Nagini 189

permission logics 189

product programs 189

program ranking 61

program synthesis 61

program verification 83

programming by examples 61

proof complexity 29

proof method 9

property 9

reachability 1

reactive synthesis 117

reasoning 241

refinement 137

rewriting 163

sat solving 241

search algorithm 61

security 137

semantics 9

semirings 1

software Model Checking 83

static analysis 9

unbounded dining cryptographers 137

unification 163

validation 1

verification 1, 9

verification condition generation 189

Viper 189

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.

257

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

Author Index

Baras, J.S. 1

Cousot, P. 9

Escobar, S. 163

Ganesh, V. 29

Gulwani, S. 61

Gurfinkel, A. 83

Halpern, J.Y. 113

Ibrahim, A. 241

Jain, P. 61

Majumdar, R. 117

Mallik, K. 117

McIver, A. 137

Meadows, C. 163

Meseguer, J. 163

Morgan, C. 137

Müller, P. 189

Navas, J.A. 83

Pouzet, M. 207

Pretschner, A. 241

Rehwald, S. 241

Schmuck, A.-K. 117

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press, 2019
© 2019 The authors and IOS Press. All rights reserved.

259

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/9/2023 12:36 PM via . All use subject to https://www.ebsco.com/terms-of-use

	Title Page
	Preface
	Group Photo
	Contents
	Formal Methods and Tool-Suites for CPS Security, Safety and Verification
	A Formal Introduction to Abstract Interpretation
	SAT and SMT Solvers: A Foundational Perspective
	Programming by Examples: PL Meets ML
	Automatic Program Verification with SEAHORN
	Using Epistemic Logic to Analyze Protocols
	Abstraction-Based Control Design. Lecture Notes
	The Thousand-and-One Cryptographers
	Maude-NPA and Formal Analysis of Protocols with Equational Theories
	Building Deductive Program Verifiers. Lecture Notes
	Clocks in Kahn Process Networks
	Efficient Checking of Actual Causality with SAT Solving
	Subject Index
	Author Index

