
C
o
p
y
r
i
g
h
t

2
0
1
9
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 7:04 AM via
AN: 2272987 ; Dan MacLean.; R Bioinformatics Cookbook : Use R and Bioconductor to Perform RNAseq, Genomics, Data Visualization, and Bioinformatic Analysis
Account: ns335141

R Bioinformatics Cookbook

Use R and Bioconductor to perform RNAseq, genomics, data
visualization, and bioinformatic analysis

Dan MacLean

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

R Bioinformatics Cookbook
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Reshma Raman
Content Development Editor: Athikho Sapuni Rishana
Senior Editor: Sofi Rogers
Technical Editor: Joseph Sunil
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Tejal Soni
Production Designer: Arvindkumar Gupta

First published: October 2019

Production reference: 1101019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-069-4

www.packt.com

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Professor Dan MacLean has a Ph.D. in molecular biology from the University of
Cambridge and gained postdoctoral experience in genomics and bioinformatics at Stanford
University in California. Dan is now a Honorary Professor in the School of Computing
Sciences at the University of East Anglia. He has worked in bioinformatics and plant
pathogenomics, specializing in R and Bioconductor and developing analytical workflows in
bioinformatics, genomics, genetics, image analysis, and proteomics at The Sainsbury
Laboratory since 2006. Dan has developed and published software packages in R, Ruby,
and Python with over 100,000 downloads combined.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Cho-Yi Chen is an Olympic swimmer, a bioinformatician, and a computational
biologist. He majored in computer science, and later devoted himself to biomedical
research. He received his MS and Ph.D. degrees in bioinformatics, genomics, and systems
biology from National Taiwan University. He was a founding member of the Taiwan
Society of Evolution and Computational Biology. He is now a postdoctoral research fellow
in the Department of Biostatistics and Computational Biology at the Dana-Farber Cancer
Institute, Harvard University. He is an active scientist and software developer, striving to
advance our understanding of cancer and other human diseases.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Performing Quantitative RNAseq 7
Technical requirements 8
Estimating differential expression with edgeR 9

Getting ready 10
How to do it... 10

Using edgeR from a count table 11
Using edgeR from an ExpressionSet object 12

How it works... 13
Using edgeR from a count table 13
Using edgeR from an ExpressionSet object 14

Estimating differential expression with DESeq2 15
Getting ready 16
How to do it... 16

Using DESeq2 from a count matrix 16
Using DESeq2 from an ExpressionSet object 17

How it works... 18
Using DESeq2 from a count matrix 18
Using DESeq2 from an ExpressionSet object 19

Power analysis with powsimR 19
Getting ready 20
How to do it... 22
How it works... 24
There's more... 28

Finding unannotated transcribed regions 28
Getting ready 28
How to do it... 29
How it works... 30
There's more... 31

Finding regions showing high expression ab initio with bumphunter 32
Getting ready... 32
How to do it... 32
How it works... 33
There's more... 33

Differential peak analysis 34
Getting ready 34
How to do it... 34
How it works... 35

Estimating batch effects using SVA 35

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Getting ready 36
How to do it... 36
How it works... 36

Finding allele-specific expressions with AllelicImbalance 37
Getting ready 37
How to do it... 38
How it works... 38
There's more... 39

Plotting and presenting RNAseq data 39
Getting ready 40
How to do it... 40
How it works... 41

Chapter 2: Finding Genetic Variants with HTS Data 43
Technical requirements 44
Finding SNPs and indels from sequence data using VariantTools 45

Getting ready 45
How to do it... 46
How it works... 47
There's more... 49
See also 49

Predicting open reading frames in long reference sequences 49
Getting ready 50
How to do it... 50
How it works... 51
There's more... 53

Plotting features on genetic maps with karyoploteR 53
Getting ready 53
How to do it... 53
How it works... 54
There's more... 56
See also 57

Selecting and classifying variants with VariantAnnotation 58
Getting ready 58
How to do it... 58
How it works... 59
See also 59

Extracting information in genomic regions of interest 60
Getting ready 60
How to do it... 60
How it works... 61
There's more... 62

Finding phenotype and genotype associations with GWAS 63
Getting ready 63
How to do it... 64

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

How it works... 65
Estimating the copy number at a locus of interest 67

Getting ready 67
How to do it... 67
How it works... 69
See also 71

Chapter 3: Searching Genes and Proteins for Domains and Motifs 72
Technical requirements 72
Finding DNA motifs with universalmotif 74

Getting ready 74
How to do it... 75
How it works... 76
There's more... 78

Finding protein domains with PFAM and bio3d 78
Getting ready 78
How to do it... 79
How it works... 80
There's more... 81

Finding InterPro domains 82
Getting ready 82
How to do it... 83
How it works... 83
There's more... 84
See also... 84

Performing multiple alignments of genes or proteins 85
Getting ready 85
How to do it... 85
How it works... 86
There's more... 88

Aligning genomic length sequences with DECIPHER 89
Getting ready 90
How to do it... 90
How it works... 91

Machine learning for novel feature detection in proteins 94
Getting ready 94
How to do it... 94
How it works... 96

3D structure protein alignment with bio3d 98
Getting ready 98
How to do it... 99
How it works... 99
There's More... 101

Chapter 4: Phylogenetic Analysis and Visualization 102
Technical requirements 103

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Reading and writing varied tree formats with ape and treeio 104
Getting ready 105
How to do it... 105
How it works... 106
See also 106

Visualizing trees of many genes quickly with ggtree 106
Getting ready 107
How to do it... 107
How it works... 108
There's more... 114

Quantifying differences between trees with treespace 114
Getting ready 114
How to do it... 115
How it works... 115
There's more... 118

Extracting and working with subtrees using ape 118
Getting ready 119
How to do it... 119
How it works... 119
There's more... 121

Creating dot plots for alignment visualization 122
Getting ready 122
How to do it... 122
How it works... 123

Reconstructing trees from alignments using phangorn 127
Getting ready 127
How to do it... 127
How it works... 128

Chapter 5: Metagenomics 129
Technical requirements 129
Loading in hierarchical taxonomic data using phyloseq 131

Getting ready 131
How to do it... 131
How it works... 133
There's more... 134
See also 134

Rarefying counts and correcting for sample differences using
metacoder 134

Getting ready 134
How to do it... 135
How it works... 135
There's more... 137

Reading amplicon data from raw reads with dada2 138
Getting ready 138

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

How to do it... 138
How it works... 139
See also 141

Visualizing taxonomic abundances with heat trees in metacoder 142
Getting ready 142
How to do it... 142
How it works... 143

Computing sample diversity with vegan 144
Getting ready 144
How to do it... 144
How it works... 145
See also... 146

Splitting sequence files into OTUs 147
Getting ready 147
How to do it... 147
How it works... 148

Chapter 6: Proteomics from Spectrum to Annotation 149
Technical requirements 149
Representing raw MS data visually 151

Getting ready 151
How to do it... 151
How it works... 153

Viewing proteomics data in a genome browser 154
Getting ready 155
How to do it... 155
How it works... 156
There's more... 159

Visualizing distributions of peptide hit counts to find thresholds 159
Getting ready 159
How to do it... 159
How it works... 161

Converting MS formats to move data between tools 164
Getting ready 165
How to do it... 165
How it works... 165

Matching spectra to peptides for verification with protViz 166
Getting ready 166
How to do it... 166
How it works... 167

Applying quality control filters to spectra 168
Getting ready 168
How to do it... 168
How it works... 169
There's more... 170

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Identifying genomic loci that match peptides 171
Getting ready 171
How to do it... 171
How it works... 173

Chapter 7: Producing Publication and Web-Ready Visualizations 175
Technical requirements 176
Visualizing multiple distributions with ridgeplots 177

Getting ready 178
How to do it... 178
How it works... 179

Creating colormaps for two-variable data 182
Getting ready 182
How to do it... 182
How it works... 183
See also 186

Representing relational data as networks 186
Getting ready 187
How to do it... 187
How it works... 188
There's more... 191

Creating interactive web graphics with plotly 192
Getting ready 192
How to do it... 192
How it works... 194

Constructing three-dimensional plots with plotly 198
Getting ready 198
How to do it... 198
How it works... 199

Constructing circular genome plots of polyomic data 202
Getting ready 202
How to do it... 202
How it works... 203

Chapter 8: Working with Databases and Remote Data Sources 209
Technical requirements 210
Retrieving gene and genome annotation from BioMart 211

Getting ready 211
How to do it... 212
How it works... 213

Retrieving and working with SNPs 214
Getting ready 214
How to do it... 214
How it works... 215
There's more... 215
See also 215

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

Getting gene ontology information 216
Getting ready 216
How to do it... 216
How it works... 217

Finding experiments and reads from SRA/ENA 217
Getting ready 217
How to do it... 217
How it works... 218
There's more... 219

Performing quality control and filtering on high-throughput
sequence reads 219

Getting ready 220
How to do it... 220
How it works... 221

Completing read-to-reference alignment with external programs 222
Getting ready... 222
How to do it... 222
How it works... 223

Visualizing the quality control of read-to-reference alignments 224
Getting ready... 224
How to do it... 224
How it works... 225

Chapter 9: Useful Statistical and Machine Learning Methods 226
Technical requirements 226
Correcting p-values to account for multiple hypotheses 228

Getting ready 228
How to do it... 228
How it works... 229

Generating a simulated dataset to represent a background 230
Getting ready 230
How to do it... 230
How it works... 231

Learning groupings within data and classifying with kNN 233
Getting ready 233
How to do it... 233
How it works... 234

Predicting classes with random forests 235
Getting ready 235
How to do it... 235
How it works... 236
There's more 237

Predicting classes with SVM 237
Getting ready 237
How to do it... 237

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[viii]

How it works... 238
Learning groups in data without prior information 239

Getting ready 240
How to do it... 240
How it works... 240
There's more 243

Identifying the most important variables in data with random
forests 244

Getting ready 244
How to do it... 244
How it works... 245

Identifying the most important variables in data with PCA 246
Getting ready 246
How to do it... 246
How it works... 246

Chapter 10: Programming with Tidyverse and Bioconductor 248
Technical requirements 248
Making base R objects tidy 250

Getting ready 250
How to do it... 251
How it works... 251

Using nested dataframes 252
Getting ready 252
How it works... 253
How it works... 254
There's more... 255

Writing functions for use in dplyr::mutate() 255
Getting ready 255
How to do it... 256
How it works... 257

Working programmatically with Bioconductor classes 258
Getting ready 258
How to do it... 258
How it works... 259

Developing reusable workflows and reports 260
Getting ready 261
How to do it... 261
How it works... 262

Making use of the apply family of functions 263
Getting ready 263
How to do it... 263
How it works... 264

Chapter 11: Building Objects and Packages for Code Reuse 267
Technical requirements 268

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ix]

Creating simple S3 objects to simplify code 269
Getting ready 269
How to do it... 269
How it works... 270

Taking advantage of generic object functions with S3 classes 271
Getting ready 271
How to do it... 271
How it works... 272

Creating structured and formal objects with the S4 system 274
Getting ready 274
How to do it... 275
How it works 275
See also 276

Simple ways to package code for sharing and reuse 276
Getting ready 276
How to do it... 277
How it works... 277

Using devtools to host code from GitHub 278
Getting ready 278
How to do it... 279
How it works... 279

Building a unit test suite to ensure that functions work as you
intend 280

Getting ready 281
How to do it... 281
How it works... 281

Using continuous integration with Travis to keep code tested and
up to date 282

Getting ready 282
How to do it... 282
How it works... 283

Other Books You May Enjoy 284

Index 287

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
In R Bioinformatics Cookbook, you will encounter common and not-so-common challenges in
the bioinformatics domain using real-world examples.

This book will use a recipe-based approach to help you perform practical research and
analysis in computational biology with R. You will gain an understanding of your data
through the analysis of Bioconductor, ggplot, and the tidyverse library in
bioinformatics. You will be introduced to a number of essential tools in Bioconductor so
that you can understand and carry out protocols in RNAseq, phylogenetics, genomics, and
sequence analysis. You will also learn how machine learning techniques can be used in the
bioinformatics domain. You will develop key computational skills, such as developing
workflows in R Markdown and designing your own packages for efficient and
reproducible code reuse.

By the end of this book, you'll have a solid understanding of the most important and
widely used techniques in bioinformatic analysis, as well as the tools you'll need to work
with real biological data.

Who this book is for
This book is for data scientists, bioinformatics analysts, researchers, and R developers who
want to address intermediate-to-advanced biological and bioinformatics problems using a
recipe-based approach. Working knowledge of the R programming language and some
basic understanding of bioinformatics are mandatory.

What this book covers
Chapter 1, Performing Quantitative RNASeq, teaches you how to process raw RNA sequence
read data, perform quality checks, and estimate expression levels for differential gene
expression detection and analysis. The chapter will also describe important statistical
methods and steps for estimating experimental power—an important part of determining
whether particular effects can be detected. All the recipes in this chapter will be based on
the most popular Bioconductor tools, including Limma, edgeR, DESeq, and more.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

Chapter 2, Finding Genetic Variants with HTS Data, introduces you to a range of techniques
for performing next-generation genetic variants, including calling SNPs and Indels, using
them in analysis, and creating genetic visualizations. All the recipes in this chapter will be
based on the most popular and powerful tools of the Bioconductor package.

Chapter 3, Searching Genes and Proteins for Domains and Motifs, teaches you to analyze
sequences for features of functional interest, such as de novo DNA motifs and known
domains from widely used databases. In this section, we'll learn about some packages for
kernel-based machine learning to find protein sequence features. You will also learn some
large-scale alignment techniques for many, or very long, sequences. You will use
Bioconductor and other statistical learning packages.

Chapter 4, Phylogenetic Analysis and Visualization, shows us how to use Bioconductor and
other R phylogenetic packages such as ape to build and manipulate trees of gene and
protein sequences. You will also look at how to compare trees with tree metrics and
complete genome-scale visualizations.

Chapter 5, Metagenomics, explores importing data from popular metagenomics packages
into R for analysis and learning a variety of effective visualizations. You will use packages
such as otu, Metacoder, and DADA in Bioconductor and beyond in order to achieve an end-
to-end metagenomics workflow.

Chapter 6, Proteomics from Spectrum to Annotation, teaches us how to import mass spectra
and view this in external genome browsers along with genomic data. You will develop
diagnostic plots and quality control procedures, and learn how to convert between various
formats from different platforms.

Chapter 7, Producing Publication and Web-Ready Visualizations, teaches us how to develop
high-quality visualizations that can represent large amounts of data and variables in
compact and meaningful ways. You will study extensions to ggplot and the plotly
package for interactive visualizations for the web and develop visualizations in the Shiny
web environment.

Chapter 8, Working with Databases and Remote Data Sources, teaches us how to use web
resources remotely by pulling data from commonly used data repositories. You will also
examine the objects representing data in R. Methods in the Bioconductor package are
heavily used in this chapter. We will also see how downloaded NGS datasets can be quality
controlled for downstream use.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Chapter 9, Useful Statistical and Machine Learning Methods, demonstrates how to implement
a range of approaches underlying some advanced statistical techniques including
simulating data and performing multiple hypothesis tests. You will also learn some
supervised and unsupervised machine learning methods to group and cluster data and
samples.

Chapter 10, Programming with Tidyverse and Bioconductor, explains how to write code within
tidyverse and integrate standard R functions to create pipelines that can analyze diverse
datasets. You will use the biobroom package from Bioconductor and the broom package to
reformat objects for use in tidy pipelines. The tidyverse set of packages will be used in
functional programming and for creating reproducible, literate workflows.

Chapter 11, Building Objects and Packages for Code Reuse, demonstrates how to take
developed code and apply R's object-oriented programming systems to simplify usability.
You will also learn how to create a simple R package and how to share your code from
GitHub so that other researchers can easily find and use what you have built.

To get the most out of this book
Good knowledge of R and its various libraries is mandatory for this book.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[4]

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/R-Bioinformatics-Cookbook. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789950694_ColorImages

.pdf.

Conventions usedpacktpub.com/…/9781789950694_ColorImages.pdf

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We'll look at using the ape and treeio packages to get tree data into and out of
R. "

A block of code is set as follows:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")
BiocManager::install()

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Some of the dependencies rely on encapsulated Java code, so you'll need to install a Java
Runtime Environment (JRE) for your system."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789950694_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950694_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950694_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950694_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950694_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950694_ColorImages.pdf

Preface

[5]

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[6]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Performing Quantitative

RNAseq
The technology of RNAseq has revolutionized the study of transcript abundances, bringing
high-sensitivity detection and high-throughput analysis. Bioinformatic analysis pipelines
using RNAseq data typically start with a read quality control step followed by either
alignment to a reference or the assembly of sequence reads into longer transcripts de novo.
After that, transcript abundances are estimated with read counting and statistical models
and differential expression between samples is assessed. Naturally, there are many
technologies available for all steps of this pipeline. The quality control and read alignment
steps will usually take place outside of R, so analysis in R will begin with a file of transcript
or gene annotations (such as GFF and BED files) and a file of aligned reads (such as BAM
files).

The tools in R for performing analysis are powerful and flexible. Many of them are part of
the Bioconductor suite and, as such, integrate together very nicely. The key question
researchers wish to answer with RNAseq is usually: Which transcripts are differentially
expressed? In this chapter, we'll look at some recipes for that in standard cases where we
already know the genomic positions of genes we're interested in, and in cases where we
need to find unannotated transcripts. We'll also look at other important recipes that help
answer the questions How many replicates are enough? and Which allele is expressed more?

In this chapter, we will cover the following recipes:

Estimating differential expression with edgeR
Estimating differential expression with DESeq2
Power analysis with powsimR
Finding unannotated transcribed regions with GRanges objects
Finding regions showing high expression ab initio with bumphunter

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[8]

Differential peak analysis
Estimating batch effects using SVA
Finding allele-specific expression with AllelicImbalance
Plotting and presenting RNAseq data

Technical requirements
The sample data you'll need is available from this book's GitHub repository: https:/ /
github.com/PacktPublishing/ R- Bioinformatics_ Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is in a sub-
directory of whatever your working directory is.

Here are the R packages that you'll need. Most of these will install with
install.packages(); others are a little more complicated:

Bioconductor

AllelicImbalance

bumphunter
csaw

DESeq

edgeR

IRanges

Rsamtools

rtracklayer

sva

SummarizedExperiment

VariantAnnotation

dplyr

extRemes

forcats

magrittr

powsimR

readr

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/PacktPublishing/R-Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook

Performing Quantitative RNAseq Chapter 1

[9]

Bioconductor is huge and has its own installation manager. You can install it with the
following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")
BiocManager::install()

 Further information is available at https:/ /www. bioconductor. org/
install/ .

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use the
packageName::functionName() convention.

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see
some intermediate output or the structure of an object it's important to
understand. Whenever that happens, you'll see a code block where each
line begins with ## (double hash symbols). Consider the following
command:

letters[1:5]

This will give us output as follows:

a b c d e

Note that the output lines are prefixed with ##.

Estimating differential expression with
edgeR
edgeR is a widely used and powerful package that implements negative binomial models
suitable for sparse count data such as RNAseq data in a general linear model framework,
which are powerful for describing and understanding count relationships and exact tests
for multi-group experiments. It uses a weighted style normalization called TMM, which is
the weighted mean of log ratio between sample and control, after removal of genes with
high counts and outlying log ratios. The TMM value should be close to one, but can be used
as a correction factor to be applied to overall library sizes

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Performing Quantitative RNAseq Chapter 1

[10]

In this recipe, we'll look at some options from preparing read counts for annotated regions
in some object to identifying the differentially expressed features in a genome. Usually,
there is an upstream step requiring us to take high-throughput sequence reads, align them
to a reference and produce files describing those alignments, such as .bam files. With those
files prepared, we'd fire up R and start to analyze. So that we can concentrate on the
differential expression analysis part of the process, we'll use a prepared dataset for which
all of the data is ready. Chapter 8, Working with Databases and Remote Data Sources, shows
you how to go from raw data to this stage if you're looking for how to do that step.

As there are many different tools and methods for getting those alignments of reads, we
will look at starting the process with two common input object types. We'll use a count
table, like that we would have if we were loading from a text file and we'll use an
ExpressionSet (eset) object, which is an object type common in Bioconductor.

Our prepared dataset will be the modencodefly data from the NHGRI encyclopedia of
DNA elements project for the model organism, Drosophila melanogaster. You can read about
this project at www.modencode.org. The dataset contains 147 different samples for D.
melanogaster, a fruit fly with an approximately 110 Mbp genome, annotated with about
15,000 gene features.

Getting ready
The data is provided as both a count matrix and an ExpressionSet object and you can see
the Appendix at the end of this book for further information on these object types. The data
is in this book's code and data repository at https:/ /github. com/ PacktPublishing/ R_
Bioinformatics_

Cookbook under datasets/ch1/modencodefly_eset.RData, datasets/ch1/modencod
efly_count_table.txt, and datasets/ch1/modencodelfy_phenodata.txt . We'll
also use the edgeR (from Bioconductor), readr, and magrittr libraries.

How to do it...
We will see two ways of estimating differential expressions with edgeR.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.modencode.org/
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook

Performing Quantitative RNAseq Chapter 1

[11]

Using edgeR from a count table
For estimating differential expressions with edgeR from a count table (for example, in a text
file), we will use the following steps:

Load the count data:1.

count_dataframe <- readr::read_tsv(file.path(getwd(), "datasets",
"ch1", "modencodefly_count_table.txt"))
genes <- count_dataframe[['gene']]
count_dataframe[['gene']] <- NULL
count_matrix <- as.matrix(count_dataframe)
rownames(count_matrix) <- genes
pheno_data <- readr::read_table2(file.path(getwd(), "datasets",
"ch1", "modencodefly_phenodata.txt"))

Specify experiments of interest:2.

experiments_of_interest <- c("L1Larvae", "L2Larvae")
columns_of_interest <- which(pheno_data[['stage']] %in%
experiments_of_interest)

Form the grouping factor:3.

library(magrittr)
grouping <- pheno_data[['stage']][columns_of_interest] %>%
forcats::as_factor()

Form the subset of count data:4.

counts_of_interest <- count_matrix[,columns_of_interest]

Create the DGE object:5.

library(edgeR)
count_dge <- edgeR::DGEList(counts = counts_of_interest, group =
grouping)

Perform differential expression analysis:6.

design <- model.matrix(~ grouping)
eset_dge <- edgeR::estimateDisp(eset_dge, design)
fit <- edgeR::glmQLFit(eset_dge, design)
result <- edgeR::glmQLFTest(fit, coef=2)
topTags(result)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[12]

Using edgeR from an ExpressionSet object
Estimating using edgeR from our prepared eset object can be done using the following
steps:

Load the eset data:1.

load(file.path(getwd(), "datasets/ch1/modencodefly_eset.RData"))

Specify experiments of interest:2.

experiments_of_interest <- c("L1Larvae", "L2Larvae")
columns_of_interest <- which(
phenoData(modencodefly.eset)[['stage']] %in%
experiments_of_interest)

Form the grouping factor:3.

grouping <-
droplevels(phenoData(modencodefly.eset)[['stage']][columns_of_inter
est])

Form the subset of count data:4.

counts_of_interest <- exprs(modencodefly.eset)[,
columns_of_interest]

Create the DGE object:5.

eset_dge <- edgeR::DGEList(
 counts = counts_of_interest,
 group = grouping
)

Perform differential expression analysis:6.

design <- model.matrix(~ grouping)
eset_dge <- edgeR::estimateDisp(eset_dge, design)

fit <- edgeR::glmQLFit(eset_dge, design)
result <- edgeR::glmQLFTest(fit, coef=2)
topTags(result)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[13]

How it works...
We saw two ways of estimating differential expression with edgeR. In the first half of this
recipe, we used edgeR starting with our data in a text file.

Using edgeR from a count table
In step 1, we use the read_tsv() function in the readr package to load the tab delimited
text file of counts into a dataframe called count_dataframe. Then, from that, we extract
the 'gene' column to a new variable, genes, and erase it from count_dataframe, by
assigning NULL. This is all done so we can easily convert into the count_matrix
matrix with the base as.matrix() function and add the gene information back as
rownames. Finally, we load the phenotype data we'll need from file using the readr
read_table2() function.

Step 2 is concerned with working out which columns in count_matrix we want to use. We
define a variable, experiments_of_interest, which holds the column names we want
and then use the %in% operator and which() functions to create a binary vector that
matches the number of columns. If, say, the third column of the columns_of_interest
vector is TRUE it indicates the name was in the experiments_of interest variable.

Step 3 begins with loading the magrittr package to get the %>% operator, which will allow
piping. We then use R indexing with the binary columns_of_interest factor to select the
names of columns we want and send it to the forcats as_factor() function to get a
factor object for our grouping variable. Sample grouping information is basically a factor
that tells us which samples are replications of the same thing and it's important for the
experimental design description. We need to create a grouping vector, each index of which
refers to a column in the counts table. So, in the following example, the first three columns
in the data would be replicates of one sample, the second three columns in the counts table
would be replicates of a different replicate, and so on. We can use any symbols in the
grouping vector to represent the groups. The more complicated the grouping vector, the
more complicated the experiment design can be. In the recipe here, we'll use a simple
test/control design:

numeric_groups <- c(1,1,1,2,2,2)
letter_groups <- c("A","A","A", "B","B","B")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[14]

A simple vector like this will do, but you can also use a factor object. The factor is R's
categorical data type and is implemented as a vector of integers that have associated name
labels, called levels. When a factor is displayed, the name labels are taken instead of the
integers. The factor object has a memory of sorts, and even when a subset of levels is used,
all of the levels that could have been used are retained so that when, for example, the levels
are used as categories, empty levels can still be displayed.

In Step 4, we use indexing to extract the columns of data we want to actually analyze.

By Step 5, our preparatory work is done and we can build the DGEList object we need to
do differential analysis. To start, we load the edgeR library and use the DGEList()
function on counts_of_interest and our grouping object.

In Step 6, with DGEList, we can go through the edgeR process. First, we create the
experimental design descriptor design object with the base model.matrix() function. A
model design is required to tell the functions how to compare samples; this is a common
thing in R and so has a base function. We use the grouping variable we created. We
must estimate the dispersions of each gene with the estimateDisp() function, then we
can use that measure of variability in tests. Finally, a generalized linear model is fit and the
quasi-likelihood F-test is applied with the two uses of glmQLFTest(), first with the
dispersal estimates, eset_dge, then with the resulting fit object.

We can use the topTags() function to see the details of differentially expressed genes. We
get the following output:

 ## Coefficient: groupingL2Larvae
 ## logFC logCPM F PValue FDR
 ## FBgn0027527 6.318665 11.14876 42854.72 1.132951e-41 1.684584e-37
 ## [reached 'max' / getOption("max.print") -- omitted 9 rows]

The columns show the gene name, the logFC value of the gene, the F value, the P value and
the False Detection Rate (FDR). Usually, the column we want to make statistical
conclusions from is FDR.

Using edgeR from an ExpressionSet object
In Step 1, we are looking at using edgeR from our prepared eset object. We first load that in,
using the base R function as it is stored in a standard Rdata format file.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[15]

In Step 2, we prepare the vector of experiments of interest. This works as in step 2, except
that we don't need to look at the pheno_data object we created from a file; instead, we can
use the eset function, phenoData(), to extract the phenotype data straight from the eset
object (note that this is one of the major differences between eset and the count
matrix—see this book's Appendix for further information).

In Step 3, we create the grouping factor. Again, this can be done by using the
phenoData() extraction function, but, as it returns a factor, we need to drop the levels that
aren't selected using the droplevels() function (see the How it works... section in
the Estimating differential expression with edgeR recipe, step 3 from the previous method, for a
brief discussion of factor objects).

In step 4, we extract the data for the columns we are interested in into a standard matrix
object. Again, we have a dedicated function, exprs(), for extracting the expression values
from eset, and we can subset that using column indexing with column_names.

In Step 5, we use the DGEList() constructor function to build the data structure for edgeR
and in step 6, carry out the analysis. This step is identical to Step 6 of the first method.

Estimating differential expression with
DESeq2
The DESeq2 package is a method for differential analysis of count data, so it is ideal for
RNAseq (and other count-style data such as ChIPSeq). It uses dispersion estimates and
relative expression changes to strengthen estimates and modeling with an emphasis on
improving gene ranking in results tables. DESeq2 differs from edgeR in that it uses a
geometric style normalization in which the per lane scaling factor is computed as the
median of the ratios of the gene count over its geometric mean ratio, whereas edgeR uses
the weighted one. The two normalization strategies are not mutually exclusive and both
make different assumptions about the data. As with any RNAseq or large scale experiment,
there is never an "out-of-the-box" best answer. You'll end up testing these methods and
maybe others and closely examining results from control genes and cross-validation
experiments to see which performs best. The performance will depend greatly on the
particular dataset at hand, so the flexible approach we learn here will give you a good idea
of how to test the different solutions for yourself.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[16]

The process we'll look at in this recipe is somewhat similar to that for edgeR in the
preceding Recipe 1. We can use both ExpressionSets and count tables as input to DESeq2
and, when we've prepared them, we have a different set of functions to use to get our data
into a DESeqDataSet, not the DGEList as with edgeR.

Getting ready
As in Recipe 1, the data is provided as both a count matrix and an ExpressionSet object
and you can see the Appendix at the end of this book for further information on these object
types. The data is in this book's code and data repository at https:/ / github. com/
PacktPublishing/R_ Bioinformatics_
Cookbook under datasets/ch1/modencodefly_eset.RData , datasets/ch1/modencod
efly_count_table.txt, and datasets/ch1/modencodelfy_phenodata.txt. Again,
we'll use readr and magrittr and, from Bioconductor, SummarizedExperiement, and
DESeq2.

How to do it...
Estimating differential expressions with DESeq2 can be done in two ways, as shown in the
following section.

Using DESeq2 from a count matrix
Estimating differential expressions with DESeq2 from a count table (for example, in a text
file), we will use the following steps:

Load count data:1.

count_dataframe <- readr::read_tsv(file.path(getwd(), "datasets",
"ch1", "modencodefly_count_table.txt"))
genes <- count_dataframe[['gene']]
count_dataframe[['gene']] <- NULL
count_matrix <- as.matrix(count_dataframe)
rownames(count_matrix) <- genes
pheno_data <- readr::read_table2(file.path(getwd(), "datasets",
"ch1", "modencodefly_phenodata.txt"))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook
https://github.com/PacktPublishing/R_Bioinformatics_Cookbook

Performing Quantitative RNAseq Chapter 1

[17]

Specify experiments of interest:2.

experiments_of_interest <- c("L1Larvae", "L2Larvae")
columns_of_interest <- which(pheno_data[['stage']] %in%
experiments_of_interest)

Form the grouping factor:3.

library(magrittr)
grouping <- pheno_data[['stage']][columns_of_interest] %>%
 forcats::as_factor()

Form the subset of count data:4.

counts_of_interest <- count_matrix[,columns_of_interest]

Build the DESeq object:5.

library("DESeq2")
dds <- DESeqDataSetFromMatrix(countData = counts_of_interest,
 colData = grouping,
 design = ~ stage)

Carry out the analysis:6.

dds <- DESeq(dds)

Extract the results:7.

res <- results(dds, contrast=c("stage","L2Larvae","L1Larvae"))

Using DESeq2 from an ExpressionSet object
To estimate differential expressions with DESeq2 from an ExpressionSet object, we will use
the following steps:

Load the eset data and convert into DESeqDataSet():1.

library(SummarizedExperiment)
load(file.path(getwd(), "datasets/ch1/modencodefly_eset.RData"))
summ_exp <- makeSummarizedExperimentFromExpressionSet(modencodefly.eset)
ddsSE <- DESeqDataSet(summ_exp, design= ~ stage)

Carry out analysis and extract results:2.

ddsSE <- DESeq(ddsSE)
resSE <- results(ddsSE, contrast=c("stage","L2Larvae","L1Larvae"))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[18]

How it works...
In the first section of this recipe, we used DESeq1 starting with our data in a text file; as
you'll notice steps 1 to 4 are identical to those in the previous section.

Using DESeq2 from a count matrix
In Step 1, we use the readr package's read_tsv() function to load the tab-delimited text
file of counts into a dataframe called count_dataframe. Then, from that, we extract
the 'gene' column to a new variable, genes, and erase it from count_dataframe, by
assigning NULL. This is all done so we can easily convert into the
count_matrix matrix with the base as.matrix() function and add the gene information
back as rownames. Finally, we load the phenotype data we'll need from the file using the
readr read_table2() function.

Step 2 is concerned with working out which columns in count_matrix we want to use. We
define a variable, experiments_of_interest, that holds the column names we want and
then use the %in% operator and which() functions to create a binary vector that matches
the number of columns. If, say the third column of the columns_of_interest vector is
'TRUE', it indicates the name was in the experiments_of interest variable.

Step 3 begins with loading the magrittr package to get the %>% operator, which will allow
piping. We then use R indexing with the binary columns_of_interest factor to select the
names of columns we want and send it to the forcats as_factor() function to get a
factor object for our grouping variable. Sample grouping information is basically a factor
that tells us which samples are replications of the same thing and it's important for the
experimental design description. You can see an expanded description of these
grouping/factor objects in step 3 in Recipe 1.

In Step 4, we use indexing to extract the columns of data we want to actually analyze.

By Step 5, we are into the actual analysis section. First, we convert our matrix of counts into
a DESeqDataSet object; this can be done with the conversion
function, DESeqDataSetFromMatrix(), passing in the counts, the groups, and a design.
The design is in the form of an R formula, hence, the ~ stage annotation.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[19]

In Step 6, we perform the actual analysis using the DESeq() function on the dds
DESeqDataSet object and in Step 7, we get the results into the res variable using the
results() function. The output has the following six columns:

baseMean log2FoldChange lfcSE stat pvalue padj

This shows the mean counts, the log2 fold change between samples for a gene, the
standard error of the log2 fold change, the Wald statistic, and the raw and adjusted P
value. The padj column for adjusted P values is the one most commonly used for
concluding about significance.

Using DESeq2 from an ExpressionSet object
Steps 1 and 2 show how to do the same procedure starting from the eset object. It only
takes two short steps because DESeq2 is set up to work a lot more nicely with Bioconductor
objects than edgeR is. In step 8, we load the eset data with the load() function. Then we
use the makeSummarizedExperimentFromExpressionSet() function from the
SummarizedExperiment Bioconductor package to convert eset into
SummarizedExperiment, which can be used directly in the DESeq() function in step 9.
This step works exactly as steps 6 and 7.

Power analysis with powsimR
An important preliminary to any experiment is assessing the power of the experimental
design to optimize statistical sensitivity. In essence, a power analysis can tell us the number
of replicates required to determine an effect size of a given magnitude for a given amount
of experimental variability.

We'll use the powsimR package, which is not part of Bioconductor, to perform two types of
power analysis. Both of these will be with a small real dataset, but first, we'll do it with two
treatments—a test and control—then, we'll do it with just one. With each, we'll estimate the
number of replicates we need to spot differences in gene expression of a particular
magnitude—if they're present. powsimR takes a simulation-based approach, effectively
generating many datasets and evaluating the detection power in each to create a
distribution of detection power. The first step, then, is to estimate some parameters for
these simulations—for this, we'll need some sample or preliminary data. After that, we can
run simulations and assess power.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[20]

Getting ready
The dataset for this recipe will be a test or control RNAseq experiment from
Arabidopsis with three replicates each. These are available as a prepared count matrix in
datasets/ch1/arabidopsis.RDS in this book's data repository. In this section, we'll use
a set of counts in a simple test or control experiment from Arabidopsis thaliana. The matrix
has six columns (three mock treatments and three hrcc treatments) and 26,222 rows, each a
gene feature. We'll need the dplyr, extRemes, and powsimR packages for this code.

Our package of interest, powsimR, isn't on CRAN; it's hosted as a source on GitHub
at https://github. com/ bvieth/ powsimR. You'll need to use devtools to install it, which
can be done using the following code:

install.packages("devtools")
devtools::install_github("bvieth/powsimR")

If you do this, there is a chance that this package will still fail to install. It has a lot of
dependencies and you might need to install those manually; there is further information on
the package GitHub repository and you should check that for the latest information. At the
time of writing, you'll need to do the following two big steps. First, create the ipak function
outlined here, then run the three different package installation steps with the ipak
function:

ipak <- function(pkg, repository = c("CRAN", "Bioconductor", "github")) {
 new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
 # new.pkg <- pkg
 if (length(new.pkg)) {
 if (repository == "CRAN") {
 install.packages(new.pkg, dependencies = TRUE)
 }
 if (repository == "Bioconductor") {
 if (strsplit(version[["version.string"]], " ")[[1]][3] >
"3.5.0") {
 if (!requireNamespace("BiocManager")) {
 install.packages("BiocManager")
 }
 BiocManager::install(new.pkg, dependencies = TRUE, ask =
FALSE)
 }
 if (strsplit(version[["version.string"]], " ")[[1]][3] <
"3.5.0") {
 source("https://bioconductor.org/biocLite.R")
 biocLite(new.pkg, dependencies = TRUE, ask = FALSE)
 }
 }

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR
https://github.com/bvieth/powsimR

Performing Quantitative RNAseq Chapter 1

[21]

 if (repository == "github") {
 devtools::install_github(new.pkg, build_vignettes = FALSE,
force = FALSE,
 dependencies = TRUE)
 }
 }
}

CRAN PACKAGES
cranpackages <- c("broom", "cobs", "cowplot", "data.table", "devtools",
"doParallel",
 "dplyr", "drc", "DrImpute", "fastICA", "fitdistrplus", "foreach",
"gamlss.dist",
 "ggExtra", "ggplot2", "ggthemes", "grDevices", "glmnet", "grid",
"gtools",
 "Hmisc", "kernlab", "MASS", "MBESS", "matrixStats", "mclust",
"methods",
 "minpack.lm", "moments", "msir", "NBPSeq", "nonnest2", "parallel",
"penalized",
 "plyr", "pscl", "reshape2", "Rmagic", "rsvd", "Rtsne", "scales",
"Seurat",
 "snow", "stats", "tibble", "tidyr", "VGAM", "ZIM")

ipak(cranpackages, repository = "CRAN")

BIOCONDUCTOR
biocpackages <- c("AnnotationDbi", "bayNorm", "baySeq", "Biobase",
"BiocGenerics",
 "BiocParallel", "DEDS", "DESeq2", "EBSeq", "edgeR", "IHW", "iCOBRA",
"limma",
 "Linnorm", "MAST", "monocle", "NOISeq", "qvalue", "ROTS", "RUVSeq",
"S4Vectors",
 "scater", "scDD", "scde", "scone", "scran", "SCnorm",
"SingleCellExperiment",
 "SummarizedExperiment", "zinbwave")
ipak(biocpackages, repository = "Bioconductor")

GITHUB
githubpackages <- c("nghiavtr/BPSC", "cz-ye/DECENT", "mohuangx/SAVER",
"statOmics/zingeR")
ipak(githubpackages, repository = "github")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[22]

When this is done, you should be able to install the package we're after with this code:

devtools::install_github("bvieth/powsimR", build_vignettes = TRUE,
dependencies = FALSE)
library("powsimR")

At the moment, for this to work, you also need to manually load dplyr.

How to do it...
We will do the power analysis using the following steps:

Estimate simulation parameter values:1.

arab_data <- readRDS(file.path(getwd(), "datasets", "ch1",
"arabidopsis.RDS"))
means_mock <- rowMeans(arab_data[, c("mock1", "mock2", "mock3")])
means_hrcc <- rowMeans(arab_data[, c("hrcc1", "hrcc2", "hrcc3")])
log2fc <- log2(means_hrcc / means_mock)
prop_de <- sum(abs(log2fc) > 2) / length(log2fc)

Examine the distribution of the log2 fold change ratios:2.

finite_log2fc <-log2fc[is.finite(log2fc)]
plot(density(finite_log2fc))
extRemes::qqnorm(finite_log2fc)

Set up parameter values for the simulation run:3.

library(powsimR)
 library(dplyr)

 params <- estimateParam(
 countData = arab_data,
 Distribution = "NB",
 RNAseq = "bulk",
 normalization = "TMM" # edgeR method, can be others
)

 de_opts <- DESetup(ngenes=1000,
 nsims=25,
 p.DE = prop_de,

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[23]

 pLFC= finite_log2fc,
 sim.seed = 58673
)

 sim_opts <- SimSetup(
 desetup = de_opts,
 params = params
)

 num_replicates <- c(2, 3, 5, 8, 12,15)

Run the simulation:4.

 simDE <- simulateDE(n1 = num_replicates,
 n2 = num_replicates,
 sim.settings = sim_opts,
 DEmethod = "edgeR-LRT",
 normalization = "TMM",
 verbose = FALSE)

Run the evaluation of the simulation:5.

 evalDE <- evaluateDE(simRes = simDE,
 alpha.type = 'adjusted',
 MTC = 'BH',
 alpha.nominal = 0.1,
 stratify.by = 'mean',
 filter.by = 'none',
 strata.filtered = 1,
 target.by = 'lfc',
 delta = 0)

Plot the evaluation:6.

 plotEvalDE(evalRes = evalDE,
 rate='marginal',
 quick=FALSE, annot=TRUE)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[24]

How it works...
Power analysis in powsimR requires us to do some pre-analysis so that we have estimates
for some important parameters. To perform a simulation-based power analysis, we need to
estimate the distribution of log fold changes between treatments and the proportion of
features that are differentially expressed.

In step 1, we'll get the mean counts for each feature in the two treatments. After loading the
expression data using the readRDS() function, we use the rowMeans() function on certain
columns to get the mean expression counts of each gene in both the mock and hrcc1
treatments. We can then get the log2 ratio of those (by simply dividing the two vectors and,
in the last line, use standard arithmetical operators to work out those that have a log2 fold
change greater than 2). Inspecting the final prop_de variable gives the following output:

prop_de
[1] 0.2001754

So, a proportion of about 0.2 of the features have counts changing by log2 twofold.

Step 2 looks at the distribution of the gene expression ratios. We first remove the non-finite
ratios from the log2fc variable. We must do this because, when calculating ratios, we
generate Inf values in R; this occurs when the denominator (the mock sample) has zero
mean counts. We can remove them using indexing on the vector with the binary vector that
comes from is.finite() function. With the Inf values removed, we can plot. First, we do
a normal density plot using the density() function, which shows the distribution of
ratios. Then, we use the qqnorm() function in the extRemes package, which plots the data
against data sampled from an idealized normal distribution with the same mean. A strong,
linear correlation indicates a normal distribution in the original data. We can see the output
in the following screenshot:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[25]

They look pretty log-normally distributed, so we can assume a log-normal distribution.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[26]

The longest step here, step 3, is actually only four lines. We are basically setting up the
parameters for the simulation, which requires us to specify a lot of values. The first set,
params, which we create with the estimateParam() function needs the data source
(countData), the distribution to use (we set Distribution = "NB", which selects the
negative binomial); the type of RNAseq experiment—ours is a bulk RNAseq experiment
(RNAseq = "bulk"), and normalization strategy—we use the edgeR style TMM
(normalization = "TMM"). The second set, desetup, is created with the DESetup()
function; in this, we choose the parameters relating to the number of genes for which to
simulate differential expression. We set up 1,000 total gene simulations (ngenes) and 25
simulation runs (nsims). We set the proportion to be differentially expressed to that
estimated in step 1 in prop_de. We use the vector of fold changes, finite_log2fc, as
input for the pLFC parameter. Setting sim.seed is not necessary but will ensure
reproducibility between runs. The third line uses the SimSetup() function to combine
params and desetup into a single object, sim_opts. Finally, we create a num_replicates
vector specifying the number of biological replicates (RNA samples) to simulate.

Step 4 is relatively straightforward: we run the differential expression simulation using the
sim_opts parameters created in the previous steps, choosing "edgeR-LRT" as the
differential expression method and "TMM" as the normalization. The simulation data is
stored in the simDE variable.

In Step 5, we create an evaluation of the simulation—this analyzes and extracts various
statistics. We pass the simDE simulation data to the evaluateDE() function along with
values for things pertaining to grouping, filtering, and significance.

Finally, in Step 6, we can plot the evalDE object from Step 5 and see the results of the
simulation. We get the following plot in which we can see the different powers at different
replicate numbers. Note the x-axis indicates the number of replicate RNA samples used,
and the metrics include FDR, False Negative/Positive Rate (FNR/FPR), and TNR/TPR
(True Negative/Positive Rate):

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[27]

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[28]

There's more...
When we have only one sample (or maybe even just one replicate), we have a hard time
estimating the log2 fold change distribution and the number of differentially expressed
genes. In place of estimates, we can use a callback function to generate numbers as needed.
The body of the function just needs to return numbers from a specified distribution with
parameters you decide. Here, we'll build a function that returns numbers with a normal
distribution of mean 0 and standard deviation 2. This reflects that we think the log fold
change distribution is normal with these parameters. When we've built the function, it gets
used in the DESetup() function in place of the vector of log2 fold changes. For the
proportion of genes differentially expressed, we just have to guess or take an estimate from
something we already know about the experimental system:

log2fc_func <- function(x){ rnorm(x, 0, 2)}
prop_de = 0.1
de_opts <- DESetup(ngenes=1000,
 nsims=25,
 p.DE = prop_de,
 pLFC= log2fc_func,
 sim.seed = 58673
)

Finding unannotated transcribed regions
A common challenge is to find and count reads that have aligned outside of annotated
regions. In an RNAseq experiment, these reads can represent non-annotated genes and
novel transcripts. Essentially, we have some genes we know about and can see that they are
transcribed as they have aligned read coverage, but other transcribed regions do not fall in
any annotations and we want to know the locations of the alignments of the reads
representing them. In this recipe, we'll look at a deceptively straightforward technique for
finding such regions.

Getting ready
Our dataset will be a synthetic one that has a small 6,000 bp genome region and two gene
features with reads and a third unannotated region with aligning reads, as shown in the
following screenshot:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[29]

We'll need the Bioconductor csaw, IRanges, SummarizedExperiment, and
rtracklayer libraries and some functions from other packages that are part of base
Bioconductor. The data is in this book's data repository
under datasets/ch1/windows.bam and datasets/ch1/genes.gff

How to do it...
Power analysis with powsimR can be done in the following steps:

Set up a loading function:1.

get_annotated_regions_from_gff <- function(file_name) {
 gff <- rtracklayer::import.gff(file_name)
 as(gff, "GRanges")
}

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[30]

Get counts in windows across the whole genome:2.

whole_genome <- csaw::windowCounts(
 file.path(getwd(), "datasets", "ch1", "windows.bam"),
 bin = TRUE,
 filter = 0,
 width = 500,
 param = csaw::readParam(
 minq = 20,
 dedup = TRUE,
 pe = "both"
)
)
colnames(whole_genome) <- c("small_data")

annotated_regions <-
get_annotated_regions_from_gff(file.path(getwd(), "datasets",
"ch1", "genes.gff"))

Find overlaps between annotations and our windows, and subset the windows:3.

library(IRanges)
library(SummarizedExperiment)
windows_in_genes <-IRanges::overlapsAny(
SummarizedExperiment::rowRanges(whole_genome), annotated_regions)

Subset the windows into those in annotated and non-annotated regions:4.

annotated_window_counts <- whole_genome[windows_in_genes,]
non_annotated_window_counts <- whole_genome[! windows_in_genes,]

Get the data out to a count matrix:5.

assay(non_annotated_window_counts)

How it works...
In step 1, we create a function that will load gene region information in a GFF file (see this
book's Appendix for a description of GFF) and convert it into a Bioconductor GRanges object
using the rtracklayer package. This recipe works because GRanges objects can be subset,
just like a regular R matrix or dataframe. They're an object that is "matrix-like" in that
respect and although GRanges is much more complicated than a matrix, it behaves much
the same. This allows for some easy manipulations and extractions. We
use GRanges extensively throughout this recipe, along with the related
class, RangedSummarizedExperiment.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[31]

In step 2, we use the csaw windowCounts() function to get counts across the whole
genome in 500 bp windows. The width parameter defines the window size, and the param
parameter determines what constitutes a passing read; here, we set minimum read quality
(minq) to a PHRED score of 20, remove PCR duplicates (dedup = TRUE), and require that
both of the pairs of a read are aligned (pe="both"). The returned whole_genome object
is RangedSummarizedExperiment. We set the name of the single data column in
whole_genome to small_data. Finally, we use the custom
function, get_annotated_regions_from_gff(), to make a GRanges
object, annotated_regions, of the genes represented in our GFF file.

With Step 3, we use the IRanges overlapsAny() function to check whether the window
locations overlap at all with the gene regions. This function requires GRanges objects, so we
extract that from the whole_genome variable using the SummarizedExperiment
rowRanges() function and pass that along with the existing GRanges object's
annotated_regions to overlapsAny(). This returns a binary vector that we can use to
do subsetting.

In step 4, we simply use the binary vector, windows_in_genes, to subset the
whole_genome object, thereby extracting the annotated windows (into
annotated_window_counts) as a GRanges object. Then, we can get the non-annotated
windows with the same code but by logically inverting the binary vector using the !
operator. This gives us non_annotated_window_counts.

Finally, in step 5, we can extract the actual counts from the GRanges object using the
assay() function.

There's more...
We may need to get annotated regions from other file formats than
GFF. rtracklayer supports various formats—here's a function for working with BED
files:

get_annotated_regions_from_bed <- function(file_name){
 bed <- rtracklayer::import.bed(file_name)
 as(bed, "GRanges")
}

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[32]

Finding regions showing high expression ab
initio with bumphunter
Finding regions of read alignments that all come from the same, potentially unannotated,
genomic feature is a common task. The aim here is to group read alignments together in
such a way that we will be able to mark regions that have significant coverage and then go
on to compare samples for differences in expression levels.

Getting ready...
We'll use the same windows dataset that had one experiment with three peaks into the
function that we used in Recipe 4—so we know we're looking for three bumps. The data is
in this book's data repository under datasets/ch1/windows.bam. We'll need the
Rsamtools and bumphunter libraries.

How to do it...
Load data and get per-position coverage:1.

library(Rsamtools)
library(bumphunter)
pileup_df <- Rsamtools::pileup(file.path(getwd(), "datasets",
"ch1", "windows.bam"))

Find preliminary clusters:2.

clusters <- bumphunter::clusterMaker(pileup_df$seqnames,
pileup_df$pos, maxGap = 100)

Find the bumps with a minimum cutoff:3.

bumphunter::regionFinder(pileup_df$count, pileup_df$seqnames,
pileup_df$pos, clusters, cutoff=1)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[33]

How it works...
In step 1, we use Rsamtools pileup() function with default settings to get a per-base
coverage dataframe. Each row represents a single nucleotide in the reference and the count
column gives the depth of coverage at that point. The result is stored in the pileup_df
dataframe.

In step 2, we use the bumphunter clusterMaker() function on pileup_df, which simply
groups reads within a certain distance of each other into clusters. We give it the sequence
names, positions, and a maximum distance parameter (maxGap). The function returns a
vector of cluster numbers of equal length to the dataframe, indicating the cluster
membership of each row in the dataframe. If we tabulate with table, we can see the cluster
sizes (number of rows) in each cluster:

table(clusters)
clusters
1 2 3
1486 1552 1520

In step 3, we refine our approach; we use regionFinder(), which applies a read depth
cutoff to ensure a minimum read depth for the clusters. We pass it similar data as in step 2,
adding the cluster membership vector clusters and a minimum read cutoff—here, we set to
1 for use with this very small dataset. The result of step 3 is the regions that are clustered
together, but in a useful table:

chr start end value area cluster indexStart indexEnd L
3 Chr1 4503 5500 10.401974 15811 3 3039 4558 1520
1 Chr1 502 1500 9.985868 14839 1 1 1486 1486
2 Chr1 2501 3500 8.657216 13436 2 1487 3038 1552

In these region predictions, we can clearly see the three regions containing reads that are in
that data, give or take a nucleotide or two.

There's more...
If you have multiple experiments to analyze, try the bumphunter() function. This will
operate over multiple data columns in a matrix and perform linear modeling to assess
uncertainty about the position and existence from the replicates; it is very similar to
regionFinder() in operation.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[34]

Differential peak analysis
When you've discovered unannotated transcripts you may want to see whether they are
differentially expressed between experiments. We've already looked at how we might do
that with edgeR and DESeq, but one problem is going from an object such as a
RangedSummarizedExperiment, comprised of the data and a GRanges object that
describes the peak regions, to the internal DESeq object. In this recipe, we'll look at how we
can summarise the data in those objects and get them into the correct format.

Getting ready
For this recipe, you'll need the RangedSummarizedExperiment version of the Arabidopsis
thaliana RNAseq in datasets/ch1/arabidopsis_rse.RDS in this book's repository. We'll
use the DESeq and SummarizedExperiment Bioconductor packages we used earlier too.

How to do it...
Load data and set up a function that creates region tags:1.

library(SummarizedExperiment)
arab_rse <- readRDS(file.path(getwd(), "datasets", "ch1",
"arabidopsis_rse.RDS"))

 make_tag <- function(grange_obj){
 paste0(
 grange_obj@seqnames,
 ":",
 grange_obj@ranges@start,
 "-",
 (grange_obj@ranges@start + grange_obj@ranges@width)
)
}

Extract data and annotate rows:2.

counts <- assay(arab_rse)

if (! is.null(names(rowRanges(arab_rse)))){
 rownames(counts) <- names(rowRanges(arab_rse))
} else {
 rownames(counts) <- make_tag(rowRanges(arab_rse))
}

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[35]

How it works...
Step 1 starts by loading in our pre-prepared RangedSummarized experiment; note that
the names slot of the GRanges object in there is not populated. We next create a custom
function, make_tag(), which works by pasting together seqnames, starts and the
computed end (start + width) from a passed GRanges object. Note the @ sign syntax: this
is used because GRange is an S4 object and the slots are accessed with @ rather than the
more familiar $.

In step 2, the code pulls out the actual data from RangedSummarizedExperiment using the
assay() function. The matrix returned has no row names, which is unuseful, so we use the
if clause to check the names slot—we use that as row names if it's available; if it, isn't we
make a row name tag using the position information in the GRanges object in the
make_tag() function we have created. This will give the following output—a count matrix
that has the location tag as the row name that can be used in DESeq and edgeR as described
in Recipes 1 and 2 in this chapter:

head(counts)
mock1 mock2 mock3 hrcc1 hrcc2 hrcc3
Chr1:3631-5900 35 77 40 46 64 60
Chr1:5928-8738 43 45 32 43 39 49
Chr1:11649-13715 16 24 26 27 35 20
Chr1:23146-31228 72 43 64 66 25 90
Chr1:31170-33154 49 78 90 67 45 60
Chr1:33379-37872 0 15 2 0 21 8

Estimating batch effects using SVA
High throughput data such as RNAseq is often complicated by technical errors that are not
explicitly modeled in the experimental design and can confound the detection of
differential expression. Differences in counts from samples run on different days or
different locations or on different machines are an example of a technical error that is very
often present and which we should try to model in our experimental design. An approach
to this is to build a surrogate variable into our experimental design that explains the batch
effect and take it into account in the modeling and differential expression analysis stages.
We'll use the SVA package to do this.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[36]

Getting ready
We'll need the SVA package from Bioconductor and our Arabidopsis count data in
datasets/ch1/arabidopsis.RDS.

How to do it...
For estimating batch effects using SVA, perform the following steps:

Load the libraries and data:1.

library(sva)
arab <- readRDS(file.path(getwd(), "datasets", "ch1",
"arabidopsis.RDS"))

Filter out rows with too few counts in some experiments:2.

keep <- apply(arab, 1, function(x) { length(x[x>3])>=2 })
arab_filtered <- arab[keep,]

Create the initial design:3.

groups <- as.factor(rep(c("mock", "hrcc"), each=3))

Set up the test and null models and run SVA:4.

test_model <- model.matrix(~groups)
null_model <- test_model[,1]
svar <- svaseq(arab_filtered, test_model, null_model, n.sv=1)

Extract the surrogate variables to a new design for downstream use:5.

design <- cbind(test_model, svar$sv)

How it works...
In step 1, the script begins by loading in a count matrix of the Arabidopsis RNAseq data,
which you will recall is a simple experiment with three replicates of mock and three of
hrcc treatment.

In step 2, we create a vector of row indices that we wish to retain, which we do by testing
whether the row has at least two columns with a count of over 3—this is done by
using apply() and an anonymous function over the rows of the count matrix.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[37]

With step 3, we create a groups factor describing the experiment sample types.

Step 4 is the one that does the work; we use the groups factor in model.matrix() to create
the model design we want to use. We also need a null model, which, in this experimental
design, is equivalent to the first column, so we extract that from the test_model design
object. We can then use the key svaseq() function to estimate the surrogate variable to
add to our design. We add in test_model and null_model and select the number of
surrogate variables to use with n.sv, which should be one for a simple design like this.

The final bit, step 5, is to add the surrogate variable to the design model, which we do by
binding test_model and the sv column of svar (svsar$sv) together. The final design
object can then be used in packages such as edgeR and DESeq2 as any other and those
methods will use the surrogate variable to deal with batch effects.

Finding allele-specific expressions with
AllelicImbalance
An allele-specific expression is a situation that occurs when there is a differential
abundance of different allelic variants of a transcript. RNAseq can help to provide
quantitative estimates of allele-specific expression for genes with transcribed
polymorphisms—that is, variants in the transcript that may result in different proteins. In
this recipe, we'll take a look at a method for determining which of the variants of a
transcript may have preferential expressions in different samples. The reads will come from
different .bam files and the variants must already be known. This implies that you have
already carried out a read alignment and a variant call step and have per sample .bam and
.vcf files. We'll use the AllelicImbalance and VariantAnnotation packages for this
recipe.

Getting ready
You'll need AllelicImbalance and VariantAnnotation from Bioconductor. The
AllelicImbalance package provides a small but informative dataset of three SNPs on
Chromosome 17 of the hg19 build of the human genome. The files have been extracted into
this book's data repository in datasets/ch1/allele_expression .

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[38]

How to do it...
Load libraries and set up an import folder:1.

library(AllelicImbalance)
library(VariantAnnotation)

region_of_interest <- GRanges(seqnames = c("17"), ranges =
IRanges(79478301, 79478361))
bam_folder <- file.path(getwd(), "datasets", "ch1",
"allele_expression")

Load reads and variants in regions of interest:2.

reads <- impBamGAL(bam_folder, region_of_interest, verbose = FALSE)

vcf_file <-file.path(getwd(), "datasets", "ch1",
"allele_expression","ERP000101.vcf")
variant_positions <- granges(VariantAnnotation::readVcf(vcf_file),
"hg19")

allele_counts <- getAlleleCounts(reads, variant_positions,
verbose=FALSE)

Build the ASEset object:3.

ase.vcf <- ASEsetFromCountList(rowRanges = variant_positions,
allele_counts)

reference_sequence <- file.path(getwd(), "datasets", "ch1",
"allele_expression", "hg19.chr17.subset.fa")

ref(ase.vcf) <- refAllele(ase.vcf,fasta=reference_sequence)
alt(ase.vcf) <- inferAltAllele(ase.vcf)

Run the test on all variants:3.

binom.test(ase.vcf, n="*")

How it works...
In step 1, the script begins by creating the familar GRanges object describing our region of
interest and the folder holding the .bam files of reads.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[39]

In step 2, the impBamGAL() function loads in reads in the region of interest. The variant
information is loaded into variant_positions—another GRanges object and the reads
and variants are used to make allele counts with getAlleleCounts().

With this done, in step 3, we can build the ASESet object, ase.vcf (a class that inherits
from RangedSummarizedExperiment), using the constructor
function, ASEsetFromCountList(); we then use the setter functions, ref() and alt(), to
apply the reference and alternative base identities.

Finally, in step 4, we can apply tests. binom.test() carries out binomial per position per
sample (.bam file) tests for deviations from equality in counts in reference and alternative
alleles. The parameter n tells the test which strand to consider—in this example, we haven't
set up per-strand information, so we use "*" to ignore strandedness.

This will give the following output:

chr17_79478287 chr17_79478331 chr17_79478334
ERR009113.bam 0.500 1.000000e+00 1.000000e+00
ERR009115.bam 0.125 6.103516e-05 3.051758e-05

There's more...
The preceding analysis can be extended to carry out per strand and per phenotype tests if
required. The script would need amending to introduce strand information in the
ASESet object construction step. Doing so usually requires that the RNAseq experiment
and alignment steps were performed with strandedness in mind and the bioinformatics
pipeline up to here configured accordingly. Phenotype information can be added in the
construction step using the colData parameter and a vector of phenotype or sample types
for columns in the ASESet object.

Plotting and presenting RNAseq data
Plotting the RNAseq data en masse or for individual genes or features is an important step
in QC and understanding. In this recipe, we'll see how to make gene count plots in samples
of interest, how to create an MA plot that plots counts against fold change and allows us to
spot expression-related sample bias, and how to create a volcano plot that plots significance
against fold change and allows us to spot the most meaningful changes easily.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[40]

Getting ready
In this recipe, we'll use the DESeq2 package, the ggplot2 package, magrittr, and dplyr.
We'll use the DESeqDataSet object we created for the modencodefly data in Recipe 2—a
saved version is in the datasets/ch1/modencode_dds.RDS file in this book's data
repository.

How to do it...
Load libraries and create a dataframe of RNAseq results:1.

library(DESeq2)
library(magrittr)
library(ggplot2)

dds <- readRDS("~/Desktop/r_book/datasets/ch1/modencode_dds.RDS")

Create a boxplot of counts for a single gene, conditioned on "stage":2.

plotCounts(dds, gene="FBgn0000014", intgroup = "stage", returnData
= TRUE) %>%
 ggplot() + aes(stage, count) + geom_boxplot(aes(fill=stage)) +
scale_y_log10() + theme_bw()

Create an MA plot with coloring conditioned on significance:3.

result_df <- results(dds,
contrast=c("stage","L2Larvae","L1Larvae"), tidy= TRUE) %>%
 dplyr::mutate(is_significant=padj<0.05)

ggplot(result_df) + aes(baseMean, log2FoldChange) +
geom_point(aes(colour=is_significant)) + scale_x_log10() +
theme_bw()

Create a volcano plot with coloring conditioned on significance:4.

ggplot(result_df) + aes(log2FoldChange, -1 * log10(pvalue)) +
geom_point(aes(colour=is_significant)) + theme_bw()

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[41]

How it works...
Step 1 is brief and loads the dataset and libraries we'll need.

In Step 2, we take advantage of a couple of useful parameters in the plotCounts() and
results() functions from DESeq2. The returnData flag in plotCounts() will
optionally return a tidy dataframe of count information for a given gene in a given
condition, hence allowing us to send the data through ggplot() to make a boxplot for an
individual gene. The magrittr %>% operator allows us to send the return value of
plotCounts() straight to the first positional argument of ggplot() without saving in an
intermediate variable.

In Step 3, we use the results() function from DESeq2 to get the results dataframe,
which we pipe to dplyr mutate() in order to add a new column called is_significant
containing TRUE if the value of the padj column is lower than 0.05. We then use the
returned result_df dataframe in a ggplot() command to make a scatter plot of
baseMean (count) against log2 fold change, with points colored by the is_significant
variable, effectively colored by whether the P value is lower than 0.05 or not.

In Step 4, we use the same result_df dataframe to plot log2fold change against the
negative log10 of the 'pvalue' to give a 'volcano' plot of the relationship between P and
differential expression level:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing Quantitative RNAseq Chapter 1

[42]

The preceding three plots are the combined resultant output of these three ggplot()
commands.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Finding Genetic Variants with

HTS Data
High-Throughput Sequencing (HTS) has made it possible to discover genetic variants and
carry out genome-wide genotyping and haplotyping in many samples in a short space of
time. The deluge of data that this technology has released has created some unique
opportunities for bioinformaticians and computer scientists, and some really innovative
new data storage and data analysis pipelines have been created. The fundamental pipeline
in variant calling starts with the quality control of HTS reads and the alignment of those
reads to a reference genome. These steps invariably take place before analysis in R and
typically result in a BAM file of read alignments or a VCF file of variant positions (see the
Appendix of this book for a brief discussion of these file formats) that we'll want to process
in our R code.

As variant calling and analysis is such a fundamental technique in bioinformatics,
Bioconductor is well equipped with the tools we need to construct our software and
perform our analysis. The key questions researchers will want to ask will range from Where
are the genetic variants on my genome? to How many are there? to How can I classify them? We'll
look at some recipes to address these questions and also look at other important general
techniques that allow us to visualize variants and markers on a genome and assess
associations of variants with genotypes. We'll also look at other definitions of the term
genetic variant and see how we can assess the copy number of individual loci.

In this chapter, we will cover the following recipes:

Finding SNPs and indels in sequence data using VariantTools
Predicting open reading frames in long reference sequences
Plotting features on genetic maps with karyoploteR
Finding alternative transcript isoforms
Selecting and classifying variants with VariantAnnotation

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[44]

Extracting information in genomic regions of interest
Finding phenotype and genotype associations with GWAS
Estimating the copy number at a locus of interest

Technical requirements
Here are the R packages you'll need. Some will install with install.packages(). The
packages listed under Bioconductor need to be installed with the dedicated installer.
That's described here. If you need to do anything further, installation will be described in
the recipes in which the packages are used:

Bioconductor: Following are the packages:
Biostrings
GenomicRanges
gmapR

karyoploteR

rtracklayer

systemPipeR

SummarizedExperiment

VariantAnnotation

VariantTools

rrBLUP

Bioconductor is huge and has its own installation manager. You can install these packages
with the following code (further information is available at https:/ /www. bioconductor.
org/install/):

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")
BiocManager::install()

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Finding Genetic Variants with HTS Data Chapter 2

[45]

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see some
intermediate output or the structure of an object that's important to understand. Whenever
that happens, you'll see a code block where each line begins with double hash (##) symbols,
as shown:

letters[1:5]
a b c d e

All of the code and data for the recipes in this chapter are in this book's GitHub repository
at https://github. com/ danmaclean/ R_ Bioinformatics_ Cookbook.

Finding SNPs and indels from sequence
data using VariantTools
A key bioinformatics task is to take an alignment of high-throughput sequence reads,
typically stored in a BAM file, and compute a list of variant positions. Of course, this is ably
handled by many external command-line programs and tools and usually results in a VCF
file of variants, but there are some really powerful packages in Bioconductor that can do the
whole thing, and in a fast and efficient manner, by taking advantage of BiocParallel's
facilities for parallel evaluation—a set of tools designed to speed up work with large
datasets in Bioconductor objects. Using Bioconductor tools allows us to keep all of our
processing steps within R, and in this section, we'll go through a whole pipeline—from
reads to lists of genes carrying variants—using purely R code and a number of
Bioconductor packages.

Getting ready
In this section, we'll use a set of synthetic reads on the first 83 KB or so of the human
genome chromosome 17. The reads were generated using the wgsim tool in samtools—an
external command-line program. They have 64 SNPs introduced by wgsim, which can be
seen in the sample data in datasets/ch2/snp_positions.txt. You'll see, as the
program progresses, that by default the parameters find many more SNPs than there
are—you'll need to spot the places where you can set the parameters properly to finely tune
the SNP-finding process.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook

Finding Genetic Variants with HTS Data Chapter 2

[46]

How to do it...
Finding SNPs and indels from sequence data using VariantTools can be done using the
following steps:

Import the required libraries:1.

library(GenomicRanges)
library(gmapR)
library(rtracklayer)
library(VariantAnnotation)
library(VariantTools)

Then, load the datasets:2.

bam_folder <- file.path(getwd(), "datasets", "ch2")
bam_folder_contents <- list.files(file.path(getwd(), "datasets",
"ch2"))
bam <- file.path(bam_folder, "hg17_snps.bam")
fasta_file <- file.path(bam_folder,"chr17.83k.fa")

Set up the genome object and the parameter objects:3.

fa <- rtracklayer::FastaFile(fasta_file)

genome <- gmapR::GmapGenome(fa, create=TRUE)

qual_params <- TallyVariantsParam(
 genome = genome,
 minimum_mapq = 20)

var_params <- VariantCallingFilters(read.count = 19,
 p.lower = 0.01
)

Call the variants:4.

called_variants <- callVariants(bam, qual_params,
 calling.filters = var_params
)

head(called_variants)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[47]

Now, we move on to annotation and load in the feature position information5.
from a .gff or .bed file:

get_annotated_regions_from_gff <- function(file_name) {
 gff <- rtracklayer::import.gff(file_name)
 as(gff, "GRanges")
}

get_annotated_regions_from_bed <- function(file_name){
 bed <- rtracklayer::import.bed(file_name)
 as(bed, "GRanges")
}

genes <- get_annotated_regions_from_gff(file.path(bam_folder,
"chr17.83k.gff3"))

Now we calculate which variants overlap which genes:6.

overlaps <- GenomicRanges::findOverlaps(called_variants, genes)
overlaps

Finally, we subset the genes with the list of overlaps.7.

genes[subjectHits(overlaps)]

How it works...
This is a long and involved pipeline with a few complicated steps. After loading the
libraries, the first four lines set up the files we're going to need from the dataset directory.
Note we need a .bam file and a fasta file. Next, we create a GmapGenome object using the
gmapR::GmapGenome() function with the fasta object—this describes the genome to the
later variant-calling function. The next two functions we use, TallyVariantParams() and
VariantCallingFilters(), are vital for the correct calling and filtering of candidate
SNPs. These are the functions in which you can set the parameters that define an SNP or
indel. The options here are deliberately very poor. As you can see from the output, there
are 6 SNPs called, when we created 64.

Once the parameters are defined, we use the callVariants() function with all of the
information we set up to get a vranges object of variants.

This results in the following output:

 VRanges object with 6 ranges and 17 metadata columns:
seqnames ranges strand ref alt
<Rle> <IRanges> <Rle> <character> <characterOrRle>

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[48]

[1] NC_000017.10 64 * G T
[2] NC_000017.10 69 * G T
[3] NC_000017.10 70 * G T
[4] NC_000017.10 73 * T A
[5] NC_000017.10 77 * T A
[6] NC_000017.10 78 * G T

We can then set up the GRanges object of the GFF file of annotations (I also provided a
function for getting annotations from BED files).

This results in the following output:

Hits object with 12684 hits and 0 metadata columns:
queryHits subjectHits
<integer> <integer>
[1] 35176 1
[2] 35176 2
[3] 35176 3
[4] 35177 1

The final step is to use the powerful overlapping and subsetting capability of the
XRanges objects. We use GenomicRanges::findOverlaps() to find the actual
overlap—the returned overlaps object actually contains the indices in each input object of
the overlapped object.

This results in the following output:

GRanges object with 12684 ranges and 20 metadata columns:
seqnames ranges strand | source type
score
<Rle> <IRanges> <Rle> | <factor> <factor>
<numeric>
[1] NC_000017.10 64099-76866 - | havana ncRNA_gene
<NA>
[2] NC_000017.10 64099-76866 - | havana lnc_RNA
<NA>
[3] NC_000017.10 64099-65736 - | havana exon
<NA>

Hence, we can use subjectHits(overlaps) to directly subset the genes with SNPs inside
and get a very non-redundant list.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[49]

There's more...
When we're happy with the filters and the set of variants we called, we can save a VCF file
of the variants using the following code:

VariantAnnotation::sampleNames(called_variants) <- "sample_name"
vcf <- VariantAnnotation::asVCF(called_variants)
VariantAnnotation::writeVcf(vcf, "hg17.vcf")

See also
Although our recipe makes the steps and code clear, the actual parameters and values we
need to change can't be described in such a straightforward manner as the value will be
very dataset-dependent. The VariantTools documentation contains a good discussion of
how to work out and set parameters properly: http:/ /bioconductor. org/ packages/
release/bioc/vignettes/ VariantTools/ inst/doc/ VariantTools. pdf.

Predicting open reading frames in long
reference sequences
A draft genome assembly of a previously unsequenced genome can be a rich source of
biological knowledge, but when genomics resources such as gene annotations aren't
available, it can be tricky to proceed. Here, we'll look at a first stage pipeline for finding
potential genes and genomic loci of interest absolutely de novo and without information
beyond the sequence. We'll use a very simple set of rules to find open reading
frames—sequences that begin with a start codon and end with a stop codon. The tools for
doing this are encapsulated within a single function in the Bioconductor
package, systemPipeR. We'll end up with yet another GRanges object that we can
integrate into processes downstream that allow us to cross-reference other data, such as
RNAseq, as we saw in the Finding unannotated transcribed regions recipe of Chapter 1,
Performing Quantitative RNAseq. As a final step, we'll look at how we can use a genome
simulation to assess which of the open reading frames are actually likely to be real and not
just occurring by chance.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf
http://bioconductor.org/packages/release/bioc/vignettes/VariantTools/inst/doc/VariantTools.pdf

Finding Genetic Variants with HTS Data Chapter 2

[50]

Getting ready
In this recipe, we need just the short DNA sequence of the Arabidopsis chloroplast
genome as input; it is in datasets/ch2/arabidopsis_chloroplast.fa. We'll also need
the Bioconductor packages Biostrings and systemPipeR.

How to do it...
Predicting open reading frames in long reference sequences can be done using the
following steps:

Load the libraries and input genome:1.

library(Biostrings)
library(systemPipeR)

dna_object <- readDNAStringSet(file.path(getwd(), "datasets","ch2",
"arabidopsis_chloroplast.fa"))

Predict the ORFs (open reading frames):2.

predicted_orfs <- predORF(dna_object, n = 'all', type = 'gr',
mode='ORF', strand = 'both', longest_disjoint = TRUE)
predicted_orfs

Calculate the properties of the reference genome:3.

bases <- c("A", "C", "T", "G")
raw_seq_string <- strsplit(as.character(dna_object), "")

seq_length <- width(dna_object[1])
counts <- lapply(bases, function(x) {sum(grepl(x, raw_seq_string))}
)
probs <- unlist(lapply(counts,
function(base_count){signif(base_count / seq_length, 2) }))

Create a function that finds the longest ORF in a simulated genome:4.

get_longest_orf_in_random_genome <- function(x,
 length = 1000,
 probs = c(0.25, 0.25, 0.25, 0.25),
 bases = c("A","C","T","G")){
 random_genome <- paste0(sample(bases, size = length, replace =
TRUE, prob = probs), collapse = "")
 random_dna_object <- DNAStringSet(random_genome)
 names(random_dna_object) <- c("random_dna_string")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[51]

 orfs <- predORF(random_dna_object, n = 1, type = 'gr',
mode='ORF', strand = 'both', longest_disjoint = TRUE)
 return(max(width(orfs)))
}

Run the function on 10 simulated genomes:5.

random_lengths <- unlist(lapply(1:10,
get_longest_orf_in_random_genome, length = seq_length, probs =
probs, bases = bases))

Get the length of the longest random ORF:6.

longest_random_orf <- max(random_lengths)

Keep only predicted ORFs longer than the longest random ORF:7.

keep <- width(predicted_orfs) > longest_random_orf
orfs_to_keep <- predicted_orfs[keep]
orfs_to_keep

How it works...
The first part of this recipe is where we actually predict ORFs. Initially, we load in the DNA
sequence as a DNAStringSet object using readDNAStringSet() from Biostrings. The
predORF() function from systemPipeR uses this object as input and actually predicts
open reading frames according to the options set. Here, we're returning all ORFs on both
strands.

This will result in the following output:

GRanges object with 2501 ranges and 2 metadata columns:
seqnames ranges strand | subject_id inframe2end
<Rle> <IRanges> <Rle> | <integer> <numeric>
1 chloroplast 86762-93358 + | 1 2
1162 chloroplast 2056-2532 - | 1 3
2 chloroplast 72371-73897 + | 2 2
1163 chloroplast 77901-78362 - | 2 1
3 chloroplast 54937-56397 + | 3 3

We receive a GRanges object in return, with 2,501 open reading frames described. This is
far too many, so we need to filter out those; in particular, we can work out which are ORFs
that occurred by chance from the sequence. To do this, we need to do a little simulation and
that's what happens in the next section of code.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[52]

To estimate the length that random ORFs can reach, we're going to create a series of
random genomes of a length equal to our input sequence and with the same base
proportion and see what the longest ORF that can be predicted is. We do a few iterations of
this and we get an idea of what the longest ORF occurring by chance could be. This length
serves as a cut-off we can use to reject the predicted ORFs in the real sequence.

Achieving this needs a bit of setup and a custom function. First, we define the bases we will
use as a simple character vector. Then, we get a character vector of the original DNA
sequence by splitting the as.character version of dna_object. We use this information
to work out the proportions of each base in the input sequence by first counting the number
of each base (resulting in counts), then dividing it by the sequence length, resulting in
probs. In both these steps, we use lapply() to loop over the vector bases and the
list counts and apply an anonymous function that uses these two variables to give lists of
results. unlist() is used on our final list to reduce it to a simple vector.

Once we have the setup done, we can build our
get_longest_orf_in_random_genome() simulation function. This generates a random
genome by sampling length characters from the selection in bases with probabilities given
in probs. The vector is paste0() into a single string and then converted into a
DNAStringSet object for the predORF() function. This time, we ask for only the longest
ORF using n = 1 and return the length of that.

This will result in the following output:

GRanges object with 10 ranges and 2 metadata columns:
seqnames ranges strand | subject_id inframe2end
<Rle> <IRanges> <Rle> | <integer> <numeric>
1 chloroplast 86762-93358 + | 1 2
2 chloroplast 72371-73897 + | 2 2
3 chloroplast 54937-56397 + | 3 3
4 chloroplast 57147-58541 + | 4 1

Now, we can run the function, which we do 10 times using lapply() and the length,
probs, and bases information we calculated before. unlist() turns the result into a
simple vector and we extract the longest of the 10 runs with max(). We can use subsetting
on our original predicted_orfs GRanges object to keep the ORFs longer than the ones
generated by chance.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[53]

There's more...
Once you've got a set of ORFs you're happy with, you'll likely want to save them to a file.
You can do that by using the getSeq() function in the BSgenome package, passing it the
original sequence object—dna_object—and the ranges in orfs_to_keep, then give the
result some names using names(), and you can use the writeXStringSet() function to
save them to file:

extracted_orfs <- BSgenome::getSeq(dna_object, orfs_to_keep)
names(extracted_orfs) <- paste0("orf_", 1:length(orfs_to_keep))
writeXStringSet(extracted_orfs, "saved_orfs.fa")

Plotting features on genetic maps with
karyoploteR
One of the most rewarding and insightful things we can do is visualize data. Very often, we
want to see on a chromosome or genetic map where some features of interest lie in relation
to others. These are sometimes called chromosome plots, and sometimes ideograms, and in
this section, we'll see how to create one of these using the karyoploteR package. The
package takes as input the familiar GRanges objects and creates detailed plots from
configuration. We'll take a quick look at some different plot styles and some configuration
options for ironing out the bumps in your plots when labels spill off the page or overlap
each other.

Getting ready
For this recipe, you'll need karyoploteR installed but all of the data we'll use will be
generated within the recipe itself.

How to do it...
Plotting features on genetic maps with karyoploteR can be done using the following
steps:

First, we load the libraries:1.

library(karyoploteR)
library(GenomicRanges)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[54]

Then, set up the genome object that will be the base for our karyotype:2.

genome_df <- data.frame(
 chr = paste0("chr", 1:5),
 start = rep(1, 5),
 end = c(34964571, 22037565, 25499034, 20862711, 31270811)
)
genome_gr <- makeGRangesFromDataFrame(genome_df)

Set up the SNP positions we will draw on as markers:3.

snp_pos <- sample(1:1e7, 25)
snps <- data.frame(
 chr = paste0("chr", sample(1:5,25, replace=TRUE)),
 start = snp_pos,
 end = snp_pos
)
snps_gr <- makeGRangesFromDataFrame(snps)

Create some labels for the markers:4.

snp_labels <- paste0("snp_", 1:25)

Set the plot margins:5.

plot.params <- getDefaultPlotParams(plot.type=1)
plot.params$data1outmargin <- 600

Create the base plot and add tracks:6.

kp <- plotKaryotype(genome=genome_gr, plot.type = 1, plot.params =
plot.params)
kpPlotMarkers(kp, snps_gr, labels = snp_labels)

How it works...
The code first loads the libraries we'll need, then we construct a data.frame describing the
genome we want to draw, with names and lengths set accordingly. The data.frame is
then converted to genome_gr—a GRanges object with
the makeGRangesFromDataFrame() conversion function. Next, we create a
data.frame of 25 random SNPs using the sample() function to choose a position and
chromosome. Again, this is converted to GRanges. Now we can set up our plot. First, we
get the default plot parameter object from inside the package using
getDefaultPlotParams(). We can modify this object to make any changes to the default
settings in our plot.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[55]

Note we have selected plot.type = 1—this is a simple plot with one data track directly
above each chromosome region. We'll need to change the margin height of the data track to
stop our marker labels pouring out over the top—this is done
with plot.params$data1outmargin <- 600. Finally, we can draw our plot; we create
the base plot object, kp, by calling plotKaryotype() and passing in the genome_gr object,
plot.type, and the parameters in the modified plot.params object.

This will result in the following output:

Our markers are drawn using the kpPlotMarkers() function with the new kp plot object,
the snps_gr data, and the SNP labels.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[56]

There's more...
We can add numeric data of many different types into data tracks with karyoploteR. The
following example shows how to draw some numeric data onto a plot as a simple line. The
first step is to prepare our data. Here, we create a data.frame that has 100 random
numbers that map into 100 windows of chromosome 4 and, as before, we create a
GRanges object. This time, we'll have a data track above and below our chromosome—one
for SNP markers and the other for the new data (note that this is plot.type = 2). We then
need to set the parameters for the plo—in particular, the margins, to stop labels and data
overlapping; but after that, it's the same plot calls, this time adding a kpLines() call. The
key parameter here is y, which describes the y value of the data at each plotting point (note
that this comes as a single column from our numeric_data object). We now have a plot
with a numeric data track along chromosome 4. The following are the steps to be
performed for this example:

 Create some numeric data:1.

numeric_data <- data.frame(
 y = rnorm(100,mean = 1,sd = 0.5),
 chr = rep("chr4", 100),
 start = seq(1,20862711, 20862711/100),
 end = seq(1,20862711, 20862711/100)
)
numeric_data_gr <- makeGRangesFromDataFrame(numeric_data)

Set up plot margins:2.

plot.params <- getDefaultPlotParams(plot.type=2)
plot.params$data1outmargin <- 800
plot.params$data2outmargin <- 800
plot.params$topmargin <- 800

Create a plot and add tracks:3.

kp <- plotKaryotype(genome=genome_gr, plot.type = 2, plot.params =
plot.params)
kpPlotMarkers(kp, snps_gr, labels = snp_labels)
kpLines(kp, numeric_data_gr, y = numeric_data$y, data.panel=2)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[57]

This results in the following output:

See also
There are many more types of tracks and plot layouts available that aren't covered here. Try
the karyoploteR vignette for a definitive list: http:/ /bioconductor. org/packages/
release/bioc/vignettes/ karyoploteR/ inst/ doc/ karyoploteR. html.

A quirk of karyoploteR means that it only draws chromosomes horizontally. For vertical
maps, there is also the chromPlot package in Bioconductor.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html
http://bioconductor.org/packages/release/bioc/vignettes/karyoploteR/inst/doc/karyoploteR.html

Finding Genetic Variants with HTS Data Chapter 2

[58]

Selecting and classifying variants with
VariantAnnotation
In pipelines where we've called variants, we'll often want to do subsequent analysis steps
that need further filtering or classification based on features of the individual variants, such
as the depth of coverage in the alternative allele. This is best done from a VCF file, and a
common protocol is to save a VCF of all variants from the actual calling step and then
experiment with filtering that. In this section, we'll look at taking an input VCF and filtering
it to retain variants in which the alternative allele is the major allele in the sample.

Getting ready
We'll need a tabix index VCF file; I provide one in the datasets/ch2/sample.vcf.gz
file. We'll also need the Bioconductor package, VariantAnnotation.

How to do it...
Selecting and classifying variants with VariantAnnotation can be done using the
following steps:

Create a prefilter function:1.

is_not_microsat <- function(x){ !grepl("microsat", x, fixed =
TRUE)}

Load up the prefilter function into a FilterRules object:2.

prefilters <- FilterRules(list(microsat = is_not_microsat))

Create a filter function to keep variants where the reference allele is in less than3.
half the reads:

major_alt <- function(x){
 af <- info(x)$AF
 result <- unlist(lapply(af, function(x){x[1] < 0.5}))
 return(result)
}

Load the filter function into a FilterRules object:4.

filters <- FilterRules(list(alt_is_major = major_alt))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[59]

Load the input VCF file and apply filters:5.

vcf_file <- file.path(getwd(), "datasets", "ch2", "sample.vcf.gz")
filterVcf(vcf_file, "hg17", "filtered.vcf", prefilters =
prefilters, filters = filters)

How it works...
There is a surprisingly large amount of stuff going on in this very short script. The general
outline is that we need to define two sets of filtering rules—prefilter and filter. This is
achieved by defining functions that take the parsed VCF record and return TRUE if the
record passes. Prefilters are generally straightforward text-based filters on an unparsed
VCF record line—the raw text of the record. Our first line of code defines a
is_not_microsat() function that, when passed a character string, uses the
grepl() function to work out whether the line contains the word microsat and
returns TRUE if it doesn't. The prefilter function is bundled into a FilterRules object we
call prefilters.

The filters are more complex. These take the parsed VCF records (as VCF class objects) and
operate on those. Our major_alt() function uses the info() VCF accessor function to
extract the info data in the VCF record. It returns a dataframe in which each column is a
separate part of the info section. We extract the AF column, which returns a list with an
element for each VCF. To iterate over those elements, we use the lapply() function to
apply an anonymous function that returns TRUE if the reference allele has a proportion
lower than 0.5 (that is, the alternative alleles are the major alleles). We then unlist() the
result to provide a vector. The major_alt() function is then bundled into a FilterRules
object we call filters.

Finally, with all of this setup done, we can load the input VCF file and run the filtering with
filterVCF(). This function needs the FilterRules objects and the output filtered VCF
filename. We use filtered.vcf as the file to write to.

See also
In filter functions, we can take advantage of other accessor functions to get at different parts
of the VCF record. There are the geno() and fixed() functions, which will return data
structures describing these parts of the VCF record. You can use these to create filters in the
same way we used info().

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[60]

Extracting information in genomic regions
of interest
Very often, you'll want to look in more detail at data that falls in a particular genomic
region of interest, whether that be the SNPs and variants in a gene or the genes in a
particular locus. This extremely common task is handled very well by the extremely
powerful GRanges and SummarizedExperiment objects, which are a little fiddly to set up
but have very flexible subsetting operations that make the effort well worth it. We'll look at
a few ways to set up these objects and a few ways we can manipulate them to get
interesting information.

Getting ready
In this recipe, we need the GenomicRanges, SummarizedExperiment, and
rtracklayer Bioconductor packages. We'll also need two input data files: a GFF file of
features of the Arabidopsis chromosome 4 in the
datasets/ch2/arabidopsis_chr4.gff file and a smaller text version of gene-only
features of the same chromosome in datasets/ch2/arabidopsis_chr4.txt.

How to do it...
Extracting information in genomic regions of interest can be done using the following steps:

Load in packages and define some functions that create GRanges from common1.
files:

library(GenomicRanges)
library(rtracklayer)
library(SummarizedExperiment)

get_granges_from_gff <- function(file_name) {
 gff <- rtracklayer::import.gff(file_name)
 as(gff, "GRanges")
}

get_granges_from_bed <- function(file_name){
 bed <- rtracklayer::import.bed(file_name)
 as(bed, "GRanges")
}

get_granges_from_text <- function(file_name){

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[61]

 df <- readr::read_tsv(file_name, col_names = TRUE)
 GenomicRanges::makeGRangesFromDataFrame(df, keep.extra.columns =
TRUE)
}

Actually create some GRanges objects using those functions:2.

gr_from_gff <- get_annotated_regions_from_gff(file.path(getwd(),
"datasets", "ch2", "arabidopsis_chr4.gff"))
gr_from_txt <- get_granges_from_text(file.path(getwd(), "datasets",
"ch2", "arabidopsis_chr4.txt"))

Extract a region by filtering on attributes; in this case—the seqnames and3.
metadata columns:

genes_on_chr4 <- gr_from_gff[gr_from_gff$type == "gene" &
seqnames(gr_from_gff) %in% c("Chr4")]

Manually create a region of interest:4.

region_of_interest_gr <- GRanges(
 seqnames = c("Chr4"),
 IRanges(c(10000), width= c(1000))
)

Use the region of interest to subset the larger object:5.

overlap_hits <- findOverlaps(region_of_interest_gr, gr_from_gff)
features_in_region <- gr_from_gff[subjectHits(overlap_hits)]
features_in_region

How it works...
The first step here is to create a GRanges object that describes the features of the genome
you're interested in. The three functions we create all load in information from different file
types, namely, .gff, .bed, and a tab-delimited .txt file, and return the necessary
GRanges object. In Step 2, we make use of the GFF and text functions to create two
GRanges objects: gr_from_gff and gr_from_txt. These are then used in subsetting. First,
in Step 3, we subset on feature attributes. The code finds features of type gene on
chromosome 4. Note the difference in syntax between finding genes and features in Chr4.
The base columns in the GRanges object—namely, seqnames, width, and start—all have
accessor functions that return vectors.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[62]

Hence, we use that in the second part of the condition. All other columns—called metadata
in GRanges parlance—can be accessed with the standard $ syntax, so we use that in the
first part of the condition.

In Step 4, we create a specific region in a custom minimal GRanges object. This contains
only one region but more could be added just by putting more seqnames, start, and
width in the manually specified vectors. Finally, in Step 5, we use the
findOverlaps() function to get the indices of features in the gr_from_gff object that
overlap the manually created region_of_interest and use those indices to subset the
larger gr_from_gff object.

This will result in the following output:

GRanges object with 1 range and 10 metadata columns:
seqnames ranges strand | source type score phase
<Rle> <IRanges> <Rle> | <factor> <factor> <numeric> <integer>
[1] Chr4 2895-10455 - | TAIR10 gene <NA> <NA>
ID Name Note Parent
<character> <character> <CharacterList> <CharacterList>
[1] AT4G00020 AT4G00020 protein_coding_gene <NA>
Index Derives_from
<character> <character>
[1] <NA> <NA>

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Note that we need to extract the subject hits column using the subjectHits() accessor.

There's more...
It's also possible to extract subsets of dataframes or matrices in the same way by taking
advantage of GRanges that are part of other objects. In the following example, we create a
matrix of random data and use that to build a SummarizedExperiment object that uses a
GRanges object to describe its rows:

set.seed(4321)
experiment_counts <- matrix(runif(4308 * 6, 1, 100), 4308)
sample_names <- c(rep("ctrl",3), rep("test",3))
se <- SummarizedExperiment::SummarizedExperiment(rowRanges = gr_from_txt,
assays = list(experiment_counts), colData = sample_names)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[63]

Then, we can subset in the same way as before and get back a subset of the data as well as a
subset of the ranges. The assay() function returns the actual data matrix:

overlap_hits <- findOverlaps(region_of_interest_gr, se)
data_in_region <- se[subjectHits(overlap_hits)]
assay(data_in_region)

This will give the resultant output:

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 69.45349 90.44524 88.33501 60.87932 86.24007 45.64919

Finding phenotype and genotype
associations with GWAS
A powerful application of being able to find many thousands of genetic variants in many
samples using high-throughput sequencing is genome-wide association studies
(GWAS) of genotype and phenotypes. GWAS is a genomic analysis set of genetic variants
in different individuals or genetic lines to see whether any particular variant is associated
with a trait. There are numerous techniques for doing this, but all rely on gathering data on
variants in particular samples and working out each sample's genotype before cross-
referencing with the phenotype in some way or other. In this recipe, we'll look at the
sophisticated mixed linear model described by Yu et al in 2006 (Nature Genetics, 38:203-208).
Describing the workings of the unified mixed linear model is beyond the scope of the
recipe, but it is a suitable model for use in data with large sample and broad allelic diversity
and is usable on plant and animal data.

Getting ready
In this recipe, we'll look at constructing the data structures we need to run the analysis
from input VCF files. We'll use the GWAS() function in the rrBLUP package. Our sample
data file contains three SNPs—for didactic purposes, this will aid our programming task
but for a GWAS study, the number is laughably small. Although the code will work, the
results will not be biologically meaningful.

We'll need rrBLUP, which is not part of Bioconductor, so install it with
install.packages(), VariantAnnotation, and the
datasets/ch2/small_sample.vcf file.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[64]

How to do it...
Finding phenotype and genotype associations with GWAS can be done using the following
steps:

Load in the libraries and get the VCF file:1.

library(VariantAnnotation)
library(rrBLUP)
set.seed(1234)
vcf_file <- file.path(getwd(), "datasets", "ch2",
"small_sample.vcf")
vcf <- readVcf(vcf_file, "hg19")

Extract the genotype, sample, and marker position information:2.

gts <- geno(vcf)$GT

samples <- samples(header(vcf))
markers <- rownames(gts)
chrom <- as.character(seqnames(rowRanges(vcf)))
pos <- as.numeric(start(rowRanges(vcf)))

Create a custom function to convert VCF genotypes into the convention used by3.
the GWAS function:

convert <- function(v){
 v <- gsub("0/0", 1, v)
 v <- gsub("0/1", 0, v)
 v <- gsub("1/0", 0, v)
 v <- gsub("1/1",-1, v)
 return(v)
}

Call the function and convert the result into a numeric matrix:4.

gt_char<- apply(gts, convert, MARGIN = 2)

genotype_matrix <- matrix(as.numeric(gt_char), nrow(gt_char))
colnames(genotype_matrix)<- samples

Build a dataframe describing the variant:5.

variant_info <- data.frame(marker = markers,
 chrom = chrom,
 pos = pos)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[65]

Build a combined variant/genotype dataframe:6.

genotypes <- cbind(variant_info, as.data.frame(genotype_matrix))
genotypes

Build a phenotype dataframe:7.

phenotypes <- data.frame(
 line = samples,
 score = rnorm(length(samples))
)

phenotypes

Run GWAS:8.

GWAS(phenotypes, genotypes,plot=FALSE)

How it works...
Most of the code in this recipe is setup code. After loading libraries and fixing the random
number generator for reproducibility with set.seed(), in the first step, we get the VCF
file of useful variants loaded in, and in the second step, we extract some useful information:
we get a matrix of genotypes with the geno(vcf)$GT call, which returns a matrix in which
a row is a variant, a column is a sample, and the genotype is recorded at the intersection.
We then use some accessor functions to pull sample and marker names and the reference
sequence (chrom) and position (pos) for each variant. In Step 3, we define a translation
function (convert()) to map VCF-style heterozygous and homozygous annotations to that
used in GWAS(). Briefly, in VCF, "0/0" means AA (homozygous), which is encoded as 1 in
GWAS(), "0/1" and "1/0" is heterozygous Aa or 0 in GWAS(), and "1/1" is homozygous
aa or -1 in GWAS().

In Step 4, we apply convert() into the gts matrix. Annoyingly, the return value is a
character matrix and must be converted to numeric and re-wrapped in a matrix, which is
what the last couple of lines in Step 4 are for.

In Step 5, we build a dataframe describing the variant from the sample, marker, and
sequence information we created before, and in Step 6, we actually combine the variant
information with the genotype encodings.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[66]

This will give the following output:

marker chrom pos NA00001 NA00002 NA00003
1 rs6054257 20 14370 1 0 -1
2 20:17330_T/A 20 17330 1 0 1
3 20:1230237_T/G 20 1230237 1 1 0

Note that the order of the columns is important. The GWAS() function
expects us to have this information in the order specified here.

In Step 7, we build the phenotype information. The first column must be called line but
contain the sample names in the same order as the columns of the genotype matrix. The rest
of the columns can be phenotype scores and have fixed effects.

This will result in something like the following output (your actual numbers may vary if
you omit the set.seed() call at the top of the script because of the randomizing
procedures and small sample sizes in the example data):

line score
1 NA00001 -1.2070657
2 NA00002 0.2774292
3 NA00003 1.0844412

Finally, in Step 8, we run the GWAS() function.

This will result in the following output (again, your numbers may vary):

[1] "GWAS for trait: score"
[1] "Variance components estimated. Testing markers."

marker chrom pos score
1 rs6054257 20 14370 0.3010543
2 20:17330_T/A 20 17330 0.3010057
3 20:1230237_T/G 20 1230237 0.1655498

By default, the function tries to create a plot. There are too few points for that to work, so
we turn it off here with plot = FALSE.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[67]

Estimating the copy number at a locus of
interest
It is often of interest to know how often a sequence occurs in a sample of interest—that is,
to estimate whether, in your particular sample, a locus has been duplicated or its copy
number has increased. The locus could be anything from a gene at Kbp scale or a large
section of DNA at Mbp scale. Our approach in this recipe will be to use HTS read coverage
after alignment to estimate a background level of coverage and then inspect the coverage of
our region of interest. The ratio of the coverage in our region of interest to the background
level will give us an estimate of the copy number in the region. The recipe here is the first
step. The background model we use is very simple—we calculate only a global mean, but
we'll discuss some alternatives later. Also, this recipe does not cover ploidy—the number of
copies of the whole genome that are present in a cell. It is possible to estimate ploidy from
similar data—especially SNP major/minor allele frequency, but it is a very involved
pipeline. Take a look at the See also section for recommendations on packages to use for that
long analysis.

Getting ready
For this recipe, we need the csaw Bioconductor package and the sample hg17 human
genome .bam file of HTS read alignments in datasets/ch2/hg17_snps.bam.

How to do it...
Estimating the copy number of a locus of interest can be done using the following steps:

Load the library and get counts in windows across the genome:1.

library(csaw)
whole_genome <- csaw::windowCounts(
 file.path(getwd(), "datasets", "ch2", "hg17_snps.bam"),
 bin = TRUE,
 filter = 0,
 width = 100,
 param = csaw::readParam(minq = 20, dedup = TRUE, pe = "both")
)
colnames(whole_genome) <- c("h17")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[68]

Extract the data from SummarizedExperiment:2.

counts <- assay(whole_genome)[,1]

Work out a low count threshold and set windows with lower counts to NA:3.

min_count <- quantile(counts, 0.1)[[1]]
counts[counts < min_count] <- NA

Double the counts of a set of windows in the middle—these will act as our high4.
copy number region:

n <- length(counts)
doubled_windows <- 10

left_pad <- floor((n/2) - doubled_windows)
right_pad <- n - left_pad -doubled_windows
multiplier <- c(rep(1, left_pad), rep(2,doubled_windows), rep(1,
right_pad))
counts <- counts * multiplier

Calculate the mean coverage and the ratio in each window to that mean5.
coverage, and inspect the ratio vector with a plot:

 mean_cov <- mean(counts, na.rm=TRUE)
 ratio <- matrix(log2(counts / mean_cov), ncol = 1)
 plot(ratio)

Build SummarizedExperiment with the new data and the row data of the old6.
one:

se <- SummarizedExperiment(assays=list(ratio), rowRanges=
rowRanges(whole_genome), colData = c("CoverageRatio"))

Create a region of interest and extract coverage data from it:7.

region_of_interest <- GRanges(
 seqnames = c("NC_000017.10"),
 IRanges(c(40700), width = c(1500))
)

overlap_hits <- findOverlaps(region_of_interest, se)
data_in_region <- se[subjectHits(overlap_hits)]
assay(data_in_region)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[69]

How it works...
In Step 1, this recipe begins in familiar fashion, using the csaw package to get read counts in
100 bp windows over our small section of human chromosome 17. The read filtering
options are set in the param argument. In Step 2, we extract the first and only column of
data to give us a simple vector of the counts using the assay() function and subsetting.
Next, in Step 3, we use the quantile() function to get the min_count value in the lower
10th percentile of the counts vector. The double-bracket subsetting is needed to get a single
number from the named vector that the quantile() function returns. The min_count
value will act as a cut-off. All values in the counts vector lower than this are set to NA to
remove them from the analysis—this acts as a low coverage threshold and the percentile
used can be modified in your own adaptations of the recipe as needed.

In Step 4, we add some regions with doubled coverage—so that we can detect them. We
select a number of windows to double the counts in and then create a multiplier
vector of equal length to counts that contains 1 where we don't wish to change counts and 2
where we wish to double them. We then apply the multiplication. Step 4 will likely be left
out in your own analysis as it is a synthetic data-generation step.

In Step 5, we actually compute the background coverage level. Our function here is a simple
global mean, saved in mean_cov—but you can use many other functions. See the See
also section for a discussion on this. We also calculate the log2() of the ratio of each
window count to the global mean_cov and save it in a one-column matrix object called
ratio—as we'll need the result to be a matrix in our final SummarizedExperiment object.
We quickly use plot() to inspect ratio and can clearly see the count doubled windows in
the middle of the data.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[70]

This will result in the following output:

In Step 6, we build a new SummarizedExperiment object, se, to hold the window ranges
and the new ratio data. We take the GRanges and colData objects from window_counts
and add our new ratio matrix. We can now start to subset this and see what coverage is in
our regions of interest.

In Step 7, we construct a manual GRanges object for an arbitrary region we're interested in,
helpfully called region_of_interest, and use that to find the overlapping windows in
our se object using findOverlaps(). We then use the resulting overlap_hits vector to
subset the se object and the assay() function to view the counts in the region of interest.

This will result in the following output:

[,1]
[1,] 0.01725283
[2,] 0.03128239
[3,] -0.05748994
[4,] 0.05893873
[5,] 0.94251006
[6,] 0.88186246
[7,] 0.87927929
[8,] 0.63780103
[9,] 1.00308550

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Genetic Variants with HTS Data Chapter 2

[71]

[10,] 0.75515798
[11,] 0.80228189
[12,] 1.05207419
[13,] 0.82393626
[14,] NA
[15,] NA
[16,] -0.16269298

In the output, we can see the region has roughly a log2 ratio of 1 (twofold) coverage relative
to the background, which we can interpret as a copy number of 2.

See also
The calculation for the background level in this recipe is really simple—which is great for
learning the recipe, but might be quickly underpowered in your own real data. There are
numerous options you could take to modify the way you calculate the background level for
your own data. Check out the rollmeans() and rollmedians() functions in the
zoo package—these give the mean and median in rolling windows of arbitrary step length
and can give you a moving window background average that may be more appropriate.

A related analysis to copy number is the estimation of ploidy from SNP allele frequencies.
You can check out the vcfR package's freq_peaks() function as a starting place to
estimate ploidy from variant information in BAM files.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Searching Genes and Proteins

for Domains and Motifs
The sequences of genes, proteins, and entire genomes hold clues to their function. Repeated
subsequences or sequences with a strong similarity to each other can be clues to things such
as evolutionary conservation or functional relatedness. As such, sequence analysis for
motifs and domains are core techniques in bioinformatics. Bioconductor contains many
useful packages for analyzing genes, proteins, and genomes. In this chapter, you will learn
how to use Bioconductor to analyze sequences for features of functional interest, such as de
novo DNA motifs and known domains from widely used databases. You'll learn about
some packages for kernel-based machine learning to find protein sequence features. You
will also learn some large-scale alignment techniques for very many, or very long
sequences. You will use Bioconductor and other statistical learning packages.

The following recipes will be covered in this chapter:

Finding DNA motifs with universalmotif
Finding protein domains using PFAM and bio3d
Finding InterPro domains
Performing multiple alignments of genes or proteins
Aligning genomic length sequences with DECIPHER
Machine learning for novel feature detection in proteins
3D structure protein alignment with bio3d

Technical requirements
The sample data you'll need is available from this book's GitHub repository: https:/ /
github.com/danmaclean/ R_ Bioinformatics_ Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is in a sub-
directory of whatever your working directory is.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook

Searching Genes and Proteins for Domains and Motifs Chapter 3

[73]

The following are the R packages that you'll need. Most of these will install
with install.packages(); others are a little more complicated:

ape

 Bioconductor:
Biostrings

biomaRt

DECIPHER

EnsDb.Rnorvegicus.v79

kebabs

msa

org.At.tair.db

org.Eck12.db

org.Hs.eg.db

PFAM.db

universalmotif

bio3d

dplyr

e1071

seqinr

Bioconductor is huge and has its own installation manager. You can install it with the
following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")
BiocManager::install()

 Further information is available at https:/ /www. bioconductor. org/
install/ .

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Searching Genes and Proteins for Domains and Motifs Chapter 3

[74]

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see
some intermediate output or the structure of an object it's important to
understand. Whenever that happens, you'll see a code block where each
line begins with ## double hash symbols. Consider the command that
follows:

letters[1:5]

This will give us output as follows – note that the output lines are prefixed
with ##:

a b c d e

Some of the packages that we want to use in this chapter rely on third-
party software that must be installed separately. A great way of installing
and managing bioinformatics software on any of Windows, Linux, or
macOS is the conda package manager in conjunction with the bioconda
package channel. You can install lots of software with some simple
commands. To install both, start out by reading the current instructions
at https:/ / bioconda. github. io/ .

Finding DNA motifs with universalmotif
A very common task when working with DNA sequences is finding instances of motifs—a
short defined sequence—in a longer sequence. These could represent protein—DNA
binding sites, such as transcription factor binding sites in a gene promoter or an enhanced
region. There are two start points for this analysis: either you have a database of motifs that
you wish to use to scan target DNA sequences and extract wherever the motif occurs or you
have just the sequences of interest and you want to find out whether there are any
repeating motifs in there. We'll look at ways of doing both of these things in this recipe.
We'll use the universalmotif package in both cases.

Getting ready
For this recipe, we need the datasets/ch3/simple_motif.txt and
datasets/ch3/promoters.fa files, a simple matrix describing a simple motif in a
Position Specific Weight Matrix (PSWM) format (see Appendix for a brief description), and
a set of sequences from upstream of transcriptional start sites.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/
https://bioconda.github.io/

Searching Genes and Proteins for Domains and Motifs Chapter 3

[75]

This recipe also requires a working copy of MEME on your system. MEME is a program for
finding statistically overrepresented sequence motifs in sets of sequences. When used on
promoter or upstream gene regions, these motifs can represent transcription factor-binding
sites. The web page for MEME is at http:/ /alternate. meme- suite. org/ and if you have
conda installed, you can install it with conda install -c bioconda meme. The MEME
package isn't available for Windows systems. If you wish to run it on Windows, then you
should look at running it under Cygwin—a Linux emulation layer (https:/ / www.cygwin.
com/). You may need to install a new version of R under Cygwin as well.

How to do it...
Finding DNA motifs with universalmotif can be done using the following steps:

First, load the libraries and a motif of interest:1.

library(universalmotif)
library(Biostrings)

motif <- read_matrix(file.path(getwd(), "datasets",
"ch3","simple_motif.txt"))

Then, load in sequences to scan with the motif:2.

sequences <- readDNAStringSet(file.path(getwd(), "datasets", "ch3",
"promoters.fa"))

Perform a scan of the sequences:3.

motif_hits <- scan_sequences(motif, sequences = sequences)
motif_hits

Note that motif_hits contains information about the position of the
motif in each of the target sequences.

Calculate whether the motif is enriched in the sequences:4.

motif_info <- enrich_motifs(motif, sequences, shuffle.k = 3,
verbose = 0, progress = FALSE, RC = TRUE)
motif_info

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
http://alternate.meme-suite.org/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/
https://www.cygwin.com/

Searching Genes and Proteins for Domains and Motifs Chapter 3

[76]

Note that motif info contains information about statistical enrichment in a
set of sequences.

Run MEME to find novel motifs:5.

meme_path = "/Users/macleand/miniconda2/bin/meme"
meme_run <- run_meme(sequences, bin = meme_path, output =
"meme_out", overwrite.dir = TRUE)
motifs <- read_meme("meme_out/meme.txt")
view_motifs(motifs)

How it works...
This is really neat code! In just a few lines, we were able to complete a whole analysis. We
began by loading in a matrix description of a motif and some sequences we hope to find the
promoter in—this happened in steps 1 and 2 and we got a universalmotif object and a
DNAStringSet object to work with. The real work happens next, in steps 3 and 4. The
scan_sequences() function searches each of the sequences and reports where it finds
motifs—check out the motif_hits object to see where they are.

This will result in the following output:

motif sequence start stop score max.score score.pct
1 YTTTYTTTTTYTTTY AT4G28150 73 87 7.531 22.45824 33.53335
2 YTTTYTTTTTYTTTY AT4G28150 75 89 10.949 22.45824 48.75270

When it comes to working out whether a motif is significant, the enrich_motifs()
function in the universalmotifs package does this work for us in step 4 and will result in
the following output:

motif total.seq.hits num.seqs.hit num.seqs.total
1 YTTTYTTTTTYTTTY 916 50 50
total.bkg.hits num.bkg.hit num.bkg.total Pval.hits Qval.hits
1 265 48 50 4.75389e-85 4.75389e-85
Eval.hits
1 9.50778e-85

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[77]

It searches the sequences to find likely instances of motifs and counts them, performing
Fisher's exact test to compare the frequencies of motifs in our set of sequences with their
frequencies in an automatically generated background set. The final motif_info
output contains a report of the p value. To find novel motifs, we run the external software
MEME in step 5. The run_meme() function needs to know where the MEME package is on
your system, so we define that in the meme_path variable.

Note that the value for meme_path on your system will be different than
the value mentioned here—that's an example on my system.

We pass that information to the function, along with the DNAStringSet object containing
our sequences. The function also needs an output directory to write MEME results to, since it
doesn't return anything useful to R. The run_meme() function executes MEME in the
background and once the run is finished, we can load in the results from the meme.txt file
using the read_meme() function with a filename. It returns a universalmotif object.
Finally, here, we quickly inspect the motifs object with the view_motifs() function:

This gives us a pretty visualization of the motifs found.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[78]

There's more...
Loading in motifs from pre-existing databases such as JASPAR and TRANSFAC is very
easy with universalmotif as there are straightforward replacements for the
read_matrix() function. Look at the following functions to load in motifs from various
formats: read_cisbp(), read_homer(), read_jaspar(), read_matrix(),
read_meme(), read_motifs(), and read_uniprobe().

Finding protein domains with PFAM and
bio3d
Discovering the function of a protein sequence is a key task. We can do this in many ways,
including by conducting whole sequence similarity searches against databases of known
proteins using tools such as BLAST. If we want more informative and granular information,
we can instead look for individual functional domains within a sequence. Databases such
as Pfam and tools such as hmmer make this possible. Pfam encodes protein domains as
profile Hidden Markov Models, which hmmer uses to scan sequences and report any likely
occurrences of the domains. Often, genome annotation projects will carry out the searches
for us, meaning that finding the Pfam domains in our sequence is a question of searching a
database. Bioconductor does a great job of packaging up the data in these databases in
particular packages—usually suffixed with .db. In this recipe, we'll look at how to work
out whether a package contains Pfam domain information, how to extract it for specific
genes of interest, and an alternative method for running a Pfam search yourself if there isn't
any pre-existing information.

Getting ready
For this example, we need some Bioconductor Annotationdbi database
packages—specifically, org.Hs.eg.db, org.EcK12.eg.db, and and org.At.tair.db.

You'll also need the bio3d package, which—at the time of writing—only connects to the
Pfam server if you use the development version. You can install this version from BitBucket
with the devtools package:

install.packages("devtools")
library(devtools)
install_bitbucket("Grantlab/bio3d", subdir = "ver_devel/bio3d/")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[79]

How to do it...
Finding protein domains with PFAM.db and bio3d can be done using the following steps:

Load the database package and inspect the types of keys in the database:1.

library(org.Hs.eg.db)
keytypes(org.Hs.eg.db)

Note the ENSEMBL key in this output—we can use this to query the
database.

Get a vector of keys using the keys() function:2.

k <- head(keys(org.Hs.eg.db, keytype = "ENSEMBL"), n = 3)

Query the database:3.

result <- select(org.Hs.eg.db, keys = k, keytype="ENSEMBL", columns
= c("PFAM"))
result

Load the PFAM database to extract descriptions:4.

library(PFAM.db)
descriptions <- PFAMDE

Get all keys from the PFAM database:5.

all_ids <- mappedkeys(descriptions)

Get all descriptions for the PFAM IDs:6.

id_description_mapping <- as.data.frame(descriptions[all_ids])

Join the descriptions to PFAM:7.

dplyr::left_join(result, id_description_mapping, by = c("PFAM" =
"ac"))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[80]

How it works...
The key to this approach is finding out whether the database we're using actually carries
the PFAM domain information. That's what we do in step 1—we use the keytypes()
function to list the search keys available. PFAM can be seen in the results. Once we've
verified that we can use this database for the information we want, we can follow a fairly
standard procedure:

Get a list of keys to query with—such as gene names. Here, we pull them from1.
the database directly, but they could come from anywhere. This will result in the
following output:

[1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT"
[5] "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"
[9] "EVIDENCEALL" "GENENAME" "GO" "GOALL"
[13] "IPI" "MAP" "OMIM" "ONTOLOGY"
[17] "ONTOLOGYALL" "PATH" "PFAM" "PMID"
[21] "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"
[25] "UNIGENE" "UNIPROT"

Query the database with the select() function, which pulls data for the2.
provided keys. The columns argument tells it which data to pull. The expression
here is going to get PFAM IDs for our genes of interest.
Make a list of all PFAM IDs and descriptions. We load the PFAM.db package and3.
use the PFAMDE object it provides to get a mapping between IDs and descriptions.
This will result in the following output. Note that because we're pulling data
from an external database, changes in that database could be reflected here:

ENSEMBL PFAM
1 ENSG00000121410 PF13895
2 ENSG00000175899 PF01835
3 ENSG00000175899 PF07678
4 ENSG00000175899 PF10569
5 ENSG00000175899 PF07703
6 ENSG00000175899 PF07677
7 ENSG00000175899 PF00207
8 ENSG00000256069 <NA>

We can then get the actual descriptions in an object with the mappedkeys()4.
function.
Next, we extract and convert the descriptions of the all_ids object to a data5.
frame.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[81]

And finally, we join the descriptions of the PFAM domains to the PFAM IDs we6.
got earlier, using the columns with common data—PFAM and ac. This will result
in the following output:

ENSEMBL PFAM
de
1 ENSG00000121410 PF13895 Immunoglobulin
domain
2 ENSG00000175899 PF01835 MG2
domain
3 ENSG00000175899 PF07678 A-macroglobulin TED
domain
4 ENSG00000175899 PF10569
<NA>
5 ENSG00000175899 PF07703 Alpha-2-macroglobulin bait region
domain
6 ENSG00000175899 PF07677 A-macroglobulin receptor binding
domain
7 ENSG00000175899 PF00207 Alpha-2-macroglobulin
family
8 ENSG00000256069 <NA>
<NA>

There's more...
I mentioned that the key to the recipe—in particular, the join in step 6—was to make sure
the database contained the right keys, specifically PFAM, to proceed. Depending on the
organism and database, the PFAM annotation may not exist. Here's how to check whether
it does exist in the database you're interested in with two example
databases, org.At.tair.db and org.Eck12.eg.db, an Arabidopsis database:

library(org.At.tair.db)
columns(org.At.tair.db)

and an E.coli database:

library(org.EcK12.eg.db)
columns(org.EcK12.eg.db)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[82]

Simply use the columns() function to report the data columns in the database. If PFAM
shows up, you can follow the procedure. If it doesn't show up, then as an alternative
procedure, it is possible to run PFAM and make the annotations yourself. The following
code takes your input protein sequences and runs a PFAM search on the server at EBI using
the bio3d function, hmmer(). The returned object contains the PFAM output in a
dataframe in the hit.tbl slot:

sequence <- read.fasta(file.path(getwd(), "datasets", "ch3",
"ecoli_hsp.fa"))
run pfamseq on protein
result <- hmmer(sequence, type="hmmscan", db="pfam")
result$hit.tbl

This will result in the following output:

name acc bias dcl desc evalue flags hindex ndom nincluded
1 GrpE PF01025.19 3.3 272 GrpE 1.4e-46 3 8846 1 1
nregions nreported pvalue score taxid pdb.id bitscore
mlog.evalue
1 1 1 -115.4076 158.2 0 PF01025.19 158.2
105.5824

Finding InterPro domains
InterPro is a database of predictive models, or signatures, provided by multiple protein
databases. InterPro aggregates information from multiple sources to reduce redundancy in
annotations and aid interpretability. In this recipe, we'll extend the approach we used for
just PFAM domains and look at getting annotations of InterPro domains on sequences of
interest. We'll start with Ensembl core databases.

Getting ready
We'll need the ensembldb, Ensdb.Rnorvegicus.v79, and biomaRt Bioconductor
packages.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[83]

How to do it...
Finding InterPro protein domains can be done using the following steps:

Load the libraries and double-check whether our database package carries the1.
protein data we need:

library(ensembldb)
library(EnsDb.Rnorvegicus.v79)
hasProteinData(EnsDb.Rnorvegicus.v79)

Build a list of genes to query with—note the keytype I need here is GENEID:2.

e <- EnsDb.Rnorvegicus.v79
k <- head(keys(e, keytype = "GENEID"), n = 3)

Use the select() function to pull the relevant data:3.

select(e, keys = GeneIdFilter(k),
 columns = c("TXBIOTYPE", "UNIPROTID",
"PROTEINID","INTERPROACCESSION"))

How it works...
The code is a database lookup on, specifically, the Rattus norvegicus Ensembl Database
through the relevant package. The process is similar to that for PFAM domain searches:

We use the EnsemblDB package-specific hasProteinData() function to check1.
whether the database has the information we need. If the output is TRUE, we're
good:

[1] TRUE

We again build a list of genes of interest—here, I pull the list from the database,2.
but these IDs can come from anywhere.
Finally, we search the database with the genes of interest as a key. Note that we3.
need the GeneIdFilter() function wrapper and the columns argument to
select which data we want to return. This will result in a data frame with the
following information:

TXBIOTYPE UNIPROTID PROTEINID
INTERPROACCESSION GENEID
1 protein_coding Q32KJ7 ENSRNOP00000052495

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[84]

IPR017850 ENSRNOG00000000001
2 protein_coding Q32KJ7 ENSRNOP00000052495
IPR000917 ENSRNOG00000000001
3 protein_coding C9E895 ENSRNOP00000000008
IPR015424 ENSRNOG00000000007

There's more...
The approach we used in this recipe works well for Ensembl core databases, but there are
other non-Ensembl core databases that we might want to search; for that, there is biomaRt.
biomaRt allows us to define connections to other databases we may know of. Many of these
databases expose an API we can use to query them. To do this, load the biomaRt library
and use the useMart() function to define a connection to the appropriate host and dataset.
Then, use the getBM() function with the connection and the columns and gene IDs to
query with. You'll get the search results for InterPro back if your query is interpro. The
following example does a search for two Arabidopsis genes at plants.ensembl.org:

library(biomaRt)
biomart_athal <- useMart(biomart = "plants_mart", host =
"plants.ensembl.org", dataset = "athaliana_eg_gene")
getBM(c("tair_locus", "interpro"), filters=c("tair_locus"), values =
c("AT5G40950", "AT2G40510"), mart = biomart_athal)

This returns the following output:

tair_locus interpro
1 AT2G40510 IPR000892
2 AT2G40510 IPR038551
3 AT5G40950 IPR001684
4 AT5G40950 IPR018261

See also...
If you're having trouble working out the names of marts and columns, try the
listMarts() and listDatasets() functions from bioMart, which will provide lists of
currently available marts and the data they contain.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[85]

Performing multiple alignments of genes or
proteins
The alignment of sequences as a task prior to building phylogenetic trees or as an end in
itself to determine conserved and divergent regions is a mainstay in bioinformatics analysis
and is amply covered in R and Bioconductor with the ape and DECIPHER packages. We'll
look at the extremely straightforward procedures for going from sequence to alignment in
this recipe.

Note that there are different techniques for different sequence lengths. In
this first recipe, we'll look at how to align some Kbp-length sequences
such as those that represent genes and proteins.

Getting ready
This recipe needs the msa package. This is a pretty hefty package and includes external
software: Clustal, Clustal Omega, and Muscle. The ape and seqinR packages are also
needed. As a test dataset, we'll use some haemoglobin protein sequences stored in the
book's data and code repository at datasets/ch3/hglobin.fa. You'll need PDFLatex on
your system too. You can find installation information here: https:/ /www. latex- project.
org/get/.

How to do it...
Performing multiple alignments of genes or proteins can be done using the following steps:

Load in the libraries and sequences:1.

library(msa)
seqs <- readAAStringSet(file.path(getwd(), "datasets", "ch3",
"hglobin.fa"))
seqs

Perform the multiple sequence alignment:2.

alignment <- msa(seqs, method = "ClustalOmega")
alignment

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/

Searching Genes and Proteins for Domains and Motifs Chapter 3

[86]

This returns an alignment object as follows:

ClustalOmega 1.2.0
##
Call:
msa(seqs, method = "ClustalOmega")
##
MsaAAMultipleAlignment with 3 rows and 142 columns
aln names
[1] MVLSPADKTNVKAAWGKVGAHAG...PAVHASLDKFLASVSTVLTSKYR HBA_HUMAN
[2] MVLSGEDKSNIKAAWGKIGGHGA...PAVHASLDKFLASVSTVLTSKYR HBA_MOUSE
[3] MSLTRTERTIILSLWSKISTQAD...ADAHAAWDKFLSIVSGVLTEKYR HBAZ_CAPHI
Con MVLS??DKTNIKAAWGKIG?HA?...PAVHASLDKFLASVSTVLTSKYR Consensus

View the result using the following code:3.

msaPrettyPrint(alignment, output="pdf", showNames="left",
showLogo="none", askForOverwrite=FALSE, verbose=FALSE,
file="whole_align.pdf")

View a zoomed-in region using the following code:4.

msaPrettyPrint(alignment, c(10,30), output="pdf", showNames="left",
file = "zoomed_align.pdf", showLogo="top", askForOverwrite=FALSE,
verbose=FALSE)

How it works...
The recipe here is short and sweet—performing an MSA with msa is very straightforward.
In step 1, we loaded the packages and sequences using the common readAAStringSet()
function to give us seqs—an AAStringSet object, which we can inspect and get the
following output:

A AAStringSet instance of length 3
width seq names
[1] 142 MVLSPADKTNVKAAWGKVGAH...HASLDKFLASVSTVLTSKYR HBA_HUMAN
[2] 142 MVLSGEDKSNIKAAWGKIGGH...HASLDKFLASVSTVLTSKYR HBA_MOUSE
[3] 142 MSLTRTERTIILSLWSKISTQ...HAAWDKFLSIVSGVLTEKYR HBAZ_CAPHI

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[87]

Next, in Step 2, the msa() function is passed the seqs object and the name of an alignment
method. Here, we use ClustalOmega (you can choose ClustalOmega, ClustalW, or
Muscle). The method parameter specifies the name of the external program that is used to
run the actual alignment. The aligner runs and you get an MsaMultipleAlignment object
back—this is a container for the aligned sequences and it looks as follows:

ClustalOmega 1.2.0
##
Call:
msa(seqs, method = "ClustalOmega")
##
MsaAAMultipleAlignment with 3 rows and 142 columns
aln names
[1] MVLSPADKTNVKAAWGKVGAHAG...PAVHASLDKFLASVSTVLTSKYR HBA_HUMAN
[2] MVLSGEDKSNIKAAWGKIGGHGA...PAVHASLDKFLASVSTVLTSKYR HBA_MOUSE
[3] MSLTRTERTIILSLWSKISTQAD...ADAHAAWDKFLSIVSGVLTEKYR HBAZ_CAPHI
Con MVLS??DKTNIKAAWGKIG?HA?...PAVHASLDKFLASVSTVLTSKYR Consensus

In step 3, we write a visualization of the alignment to a PDF file using the
msaPrettyPrint() function. The function takes many arguments that describe the layout
of the alignment picture. The visualization must be written to a file; it can't be sent to an
interactive session plot window like a normal plot object. The file the picture ends up in is
specified with the file argument. The picture looks like this:

In step 4, we use the second positional argument to restrict the view to between positions
10 and 30 using the start - end c(10,30) vector. We get the following picture:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[88]

Unfortunately, because the picture-making process uses Latex in the background, we
cannot coerce the picture into a more helpful format than PDF or have it render like other
plot objects.

There's more...
A tree visualization of sequence similarity is often useful at this stage. We can generate one
of these with the ape and seqinr packages. We can convert our alignment object to a
seqinr distance object that describes the sequence distances, and from that, use ape to
create a simple neighbour-joining tree that we can plot:

library(ape)
library(seqinr)
alignment_seqinr <- msaConvert(alignment, type="seqinr::alignment")
distances <- seqinr::dist.alignment(alignment_seqinr, "identity")
tree <- ape::nj(distances)
plot(tree, main="Phylogenetic Tree of HBA Sequences")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[89]

This will give the following output:

Aligning genomic length sequences with
DECIPHER
Aligning sequences longer than genes and proteins, such as contigs from assembly projects,
chromosomes, or whole genomes is a tricky task and one for which we need different
techniques than those for short sequences. The longer sequences get, the harder they are to
align. Long alignments are especially costly in terms of the computational time taken, since
the algorithms that are effective on short sequences take up exponentially more time with
increasing sequence length. Performing longer alignments generally starts with finding
short anchor alignments and working the alignment out from there. We typically end up
with blocks of synteny—regions that match well between the different genome alignments.

In this recipe, we'll look at the DECIPHER package for genome length alignments. We'll use
some chloroplast genomes—small organelle genomes of about 150 Kbp in length that are
pretty well conserved as our sequences of interest.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[90]

Getting ready
Make sure that you have the DECIPHER package installed. We'll use the
datasets/ch3/plastid_genomes.fa file as an example.

How to do it...
Aligning genomic length sequence with DECIPHER can be done using the following steps:

Load in the libraries and genome sequences:1.

library(DECIPHER)
long_seqs <- readDNAStringSet(file.path(getwd(), "datasets", "ch3",
"plastid_genomes.fa"))
long_seqs

Prepare the sequences in a local database:2.

Seqs2DB(long_seqs, "XStringSet", "long_db", names(long_seqs))

Find the blocks of synteny:3.

synteny <- FindSynteny("long_db")
pairs(synteny)

This will create a dotplot of syntenic blocks.

Plot the syntenic blocks:4.

plot(synteny)

Now, make an actual alignment:5.

alignment <- AlignSynteny(synteny, "long_db")

And save the pairwise alignments one-by-one:6.

blocks <- unlist(alignment[[1]])
writeXStringSet(blocks, "genome_blocks_out.fa")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[91]

How it works...
The DECIPHER package is very powerful and, as such, there's a little bit of setup to do
before we can move on to the meat of the analysis. In step 1, we load the libraries and the
sequence into long_seqs, a DNAStringSet object; but in step 2, we build a further on-disk
SQLite database for the subsequent steps. This is done with the Seqs2DB() function, which
takes long_seqs, an input type (XStringSet—the parent class of DNAStringSet), a name
for the database (long_db), and a vector of sequence names, which we pull with the
names() function. Once we've got the database built, we can use it in the following
workflow:

Find syntenic blocks in a database with the FindSynteny() function. This will1.
result in the following output:

A DNAStringSet instance of length 5
width seq names
[1] 130584 GGCATAAGCTATCTTCCCAA...GATTCAAACATAAAAGTCCT
NC_018523.1 Sacch...
[2] 161592 ATGGGCGAACGACGGGAATT...AGAAAAAAAAATAGGAGTAA
NC_022431.1 Ascle...
[3] 117672 ATGAGTACAACTCGAAAGTC...GATTTCATCCACAAACGAAC
NC_022259.1 Nanno...
[4] 154731 TTATCCATTTGTAGATGGAA...TATACACTAAGACAAAAGTC
NC_022417.1 Cocos...
[5] 156618 GGGCGAACGACGGGAATTGA...TTTTGTAGCGAATCCGTTAT
NC_022459.1 Camel...

Use the syntenic blocks to seed and perform an actual alignment with the2.
AlignSynteny() function.

These things are done in steps 3 and 5. FindSynteny() needs the name of the
database; AlignSynteny() needs the synteny object and the database name.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[92]

Finally, we can output the results. The pairs() function with the synteny object will
create a dotplot of syntenic blocks:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[93]

The plot() function with the synteny object creates a helpful heatmap as a plot of the
position of syntenic blocks relative to the first genome. Regions of identical colors across the
genomes indicate regions of syntenic sequences:

The last step, step 6, is the slightly fiddly save process. The alignment object is an R list in
which each member represents an alignment—itself a list. By extracting and then using
unlist() on each of the returned elements, you have an object (blocks) that can be saved
as a typical FASTA alignment with writeXStringSet(). Remember that you'll need to do
this for every member of the blocks object separately.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[94]

Machine learning for novel feature detection
in proteins
Sometimes, we'll have a list of protein sequences that have come from some analysis or
experiment that are in some way biologically related—for example, they may all bind the
same target—and we will want to determine the parts of those proteins that are responsible
for the action. Domain and motif finding, as we've done in the preceding recipes, can be
helpful, but only if we've seen the domains before or the sequence is particularly well
conserved or statistically over-represented. A different approach is to try machine learning
in which we build a model that can classify our proteins of interest accurately and then use
the properties of the model to show us which parts of the proteins result in the
classification. We'll take that approach in this recipe; specifically, we'll train a support
vector machine (SVM).

Getting ready
For this recipe, we need the kebabs and Biostrings, e1071 and readr libraries, and two
input data files. Machine learning works best with many training examples but they take
time to run, so we have a rather small input of 170 E.coli proteins for which, according to
the STRING database (https:/ /string- db. org/), there is experimental evidence for
interacting with the pfo protein. These are the positive training examples. We also need
negative training examples—these are another 170 E.coli proteins for which there is no
evidence of interaction with pfo, which have been selected at random. All the protein
sequences are in the datasets/ch3/ecoli_proteins.fa file. Accompanying this file is a
text file of the class of each protein. datasets/ch3/ecoli_protein_classes.txt is a
single-column text file that describes the class of each protein—a "1" for positive
pfo interaction, and a "-1" for negative pfo interaction. The row index in the class file matches
the protein index in the sequence file.

How to do it...
Machine learning for novel feature detection in proteins can be done using the following
steps:

Load the libraries and input files:1.

library(kebabs)
library(Biostrings)
seqs <- readAAStringSet(file.path(getwd(), "datasets", "ch3",

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/

Searching Genes and Proteins for Domains and Motifs Chapter 3

[95]

"ecoli_proteins.fa"))
classes <- readr::read_csv(file.path(getwd(), "datasets", "ch3",
"ecoli_protein_classes.txt"), col_names = TRUE)
classes <- classes$class

Divide the data into a training and test set:2.

num_seqs <- length(seqs)
training_proportion <- 0.75
training_set_indices <- sample(1:num_seqs, training_proportion *
num_seqs)
test_set_indices <- c(1:num_seqs)[-training_set_indices]

Build the model with the training set:3.

kernel <- gappyPairKernel(k=1, m=3)
model <- kbsvm(x=seqs[training_set_indices],
y=classes[training_set_indices], kernel=kernel, pkg="e1071",
svm="C-svc", cost=15)

Use the model to predict the classes of the test set:4.

predictions <- predict(model, seqs[test_set_indices])
evaluatePrediction(predictions, classes[test_set_indices],
allLabels=c(1,-1))

This will give the following output:

1 -1
1 36 23
-1 10 19
##
Accuracy: 62.500% (55 of 88)
Balanced accuracy: 61.749% (36 of 46 and 19 of 42)
Matthews CC: 0.250
##
Sensitivity: 78.261% (36 of 46)
Specificity: 45.238% (19 of 42)
Precision: 61.017% (36 of 59)

Examine the prediction profile of a sequence:5.

seq_to_test <- seqs[[1]][1:10]
seq_to_test

This gives the following output:

10-letter "AAString" instance ## seq: MSFDIAKYPT

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[96]

Then, plot prediction_profile using the following code:6.

prediction_profile <-getPredictionProfile(seq_to_test, kernel,
featureWeights(model), modelOffset(model))
plot(prediction_profile)

How it works...
The first step here is straightforward: we load in the sequences we're interested in and the
classes they belong to. Because we're loading the ecoli_protein_classes.txt file into a
dataframe, when we need a simple vector, we use the $ subset operator to extract the
classes column from the dataframe. Doing so returns that single column in the vector
object we need. After this, the workflow is straightforward:

Decide how much of the data should be training and how much should be1.
test: Here, in step 1, we choose 75% of the data as the training set when we create
the training_proportion variable. This is used in conjunction with num_seqs
in the sample() function to randomly choose indices of the sequences to put into
the training set. Thetraining_set_indices variable contains integers that we
will use to subset data on later. Initially, we make a complementary list of
indices, test_set_indices, by using the square bracket, [], subset notation
and the negation operator, -. Basically, this construct is an idiomatic way of
creating a vector that contains every index not in training_set_indices.
Construct and train the Support Vector Machine model: In step 2, we build our2.
classifying model. First, we choose a kernel that maps the input data into a
matrix space that the Support Vector Machine can learn from. Here, it's from the
gappyPairKernel() function—note that there are lots of kernel types; this one
is pretty well suited to sequence data. We passkernel along to the kbsvm()
function along with the training_set_indices subset of sequences in seqs as
the x parameter, and the training_set_indices subset of classes as the y
parameter. Other arguments in this function determine the exact model type and
package and training parameters. There are lots of options for these and they can
have a strong effect on the efficacy of the final model. It's well worth reading up
and doing some scientific experimentation on what works best for your
particular data. The final model is saved in the model variable.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[97]

Test the model on unseen data: Now we have a model, we get to use it to predict3.
classes of unseen proteins. This stage will tell us how good the model is. In step
3, we use the predict() function with the model and the sequences we didn't
use to train (the ones in test_set_indices) and get a prediction object back.
Running the predictions through the evaluatePrediction() function along
with the real classes from the classes vector and also a vector of all possible class
labels using the allLabels argument returns a summary of the accuracy and
other metrics of the model. We have 62% accuracy in the model here, which is
only okay; it's better than random. But we have a rather small dataset and the
model isn't optimized; with more work, it could be better. Note that if you run
the code, you may get different answers. Since the selection of training set
sequences is random, the models might do slightly worse or better depending on
the exact input data.
Estimate the prediction profile of a sequence: To actually find the regions that are4.
important in classification, and presumably in the function of the protein, we use
the getPredictionProfile() function on a sequence. We do this in step 4 on a
small 10 AA fragment extracted from the first sequence using list, double-bracket
indexing to get the first sequence and single-bracket indexing to get a range; for
example, seqs[[1]][1:10]. We do this simply for the clarity of the
visualization in the last step. You can use whole sequences just as well. The
getPredictionProfile() function needs the kernel and model objects to
function. This will give the following output:

1 -1
1 36 23
-1 10 19
##
Accuracy: 62.500% (55 of 88)
Balanced accuracy: 61.749% (36 of 46 and 19 of 42)
Matthews CC: 0.250
##
Sensitivity: 78.261% (36 of 46)
Specificity: 45.238% (19 of 42)
Precision: 61.017% (36 of 59)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[98]

Finally, we can plot() the prediction profile: The profile shows the contribution5.
of each amino acid to the overall decision and adds to the interpretability of the
learning results. Here, the fourth residue, D, makes a strong contribution to the
decision made for this protein. By examining this across many sequences, the
patterns contributing to the decision can be elucidated. It's worth noting that you
may get a slightly different picture to the one that follows—because of random
processes in the algorithms—and its something you should build into your
analyses: make sure that any apparent differences aren't due to random choices
made in the running of the code. The strongest contribution should still come
from "D" in this example:

3D structure protein alignment with bio3d
Three-dimensional structural alignments between two molecular models can reveal
structural properties that are common or unique to either of the proteins. These can suggest
evolutionary or functional commonalities. In this recipe, we'll look at how to get an
alignment of two protein sequences in three dimensions and view them in 3D-rendering
software.

Getting ready
For this section, we need at least two external pieces of software—PyMOL and MUSCLE—a
3D structure-rendering program and a sequence aligner.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[99]

MUSCLE can be installed with conda as follows:

conda install -c bioconda muscle

A version of MUSCLE is installed with the msa package, and bio3d can be referred to that
installation instead. We'll use the msa version in this recipe.

PyMOL is absolutely necessary for visualization and can be installed with conda as follows:

conda install -c schrodinger pymol

To find the install path for this software, use which pymol.

Beyond these, you'll need two files containing structures of human and fruit fly
thioredoxins to work with: datasets/ch3/1xwc.pdb and datasets/ch3/3trx.pdb.

How to do it...
3D structure protein alignment with bio3d can be done using the following steps:

Load the library and the PDB structure files:1.

library(bio3d)
a <- read.pdb(file.path(getwd(), "datasets", "ch3" ,"1xwc.pdb"))
b <- read.pdb(file.path(getwd(), "datasets", "ch3", "3trx.pdb"))

Then, carry out the alignment of the structures:2.

pdbs <- pdbaln(list("1xwc"=a,"3trx"=b), fit=TRUE, exefile="msa")

Launch and render the alignment in PyMOL:3.

pymol_path = "/Users/macleand/miniconda2/bin/pymol"
pymol(pdbs, exefile = pymol_path, type = "launch", as="cartoon")

How it works...
As ever, the first steps are to load the library then the input data. Here, in step 1, we load
two separate PDB files with the read.pdb() function. In step 2, we do the alignment with
the pdbaln() function. All the PDB objects we want to align are first put into a list object
with the appropriate name. The fit argument is set to TRUE to carry out the superposition
of the structures based on all the aligned sequences (the superposition being carried out is
sequence-based).

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[100]

The exefile argument tells pdbaln() where to carry out the sequence-based alignment
portion, as done here; a value of "msa" uses the aligners in the msa package, but you can
use a path to an alternative executable, or replace exefile with your valid email address
using the web.args="your.email@something.org" form to carry out the alignment
over the web at EBI.

Once we have an alignment object in pdbs, we can visualize it in PyMOL. We set the path
to PyMOL in the pymol_path variable and pass that to the pymol() function along with
the type set to "launch", which will create an interactive PyMOL session. Alternatively,
omitting type will result in a PyMOL script being written that you can use later. PyMol
should show the picture that follows. The screengrab shows the rendering of the two
aligned proteins: the human version in red and the fly version in yellow:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Searching Genes and Proteins for Domains and Motifs Chapter 3

[101]

There's More...
The pdbaln() function works well for structures of similar length. For structures with less
equal PDBs, you can try the struct.aln() function.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Phylogenetic Analysis and

Visualization
The comparison of sequences in order to infer evolutionary relationships is a fundamental
technique of bioinformatics. It has a long history in R, too. There are many packages
outside of Bioconductor for evolutionary analysis. In the recipes in this chapter, we will
take a good look at how to work with tree formats from a variety of sources. A key focus
will be how to manipulate trees to focus on particular parts and work with visualizations
based on the new ggplot-based tree visualization packages, and the latter's usefulness in
terms of viewing and annotating large trees.

The following recipes will be covered in this chapter:

Reading and writing varied tree formats with ape and treeio
Visualizing trees of many genes quickly with ggtree
Quantifying distances between trees with treespace
Extracting and working with subtrees using ape
Creating dot plots for alignment visualization
Reconstructing trees from alignments using phangorn

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[103]

Technical requirements
The sample data you'll need is available from this book's GitHub repository at https:/ /
github.com/danmaclean/ R_ Bioinformatics_ Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is located in a
subdirectory of whatever your working directory is.

Here are the R packages that you'll need. The majority of these will install
with install.packages(); others are a little more complicated:

ape

adegraphics

 Bioconductor:
Biostrings
ggtree

treeio

msa

devtools

dotplot

ggplot2

phangorn

treespace

Bioconductor is huge and has its own installation manager. You can install it with the
following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")
BiocManager::install()

 Further information is available at https:/ /www. bioconductor. org/
install/ .

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Phylogenetic Analysis and Visualization Chapter 4

[104]

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions, but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

Sometimes, in the middle of a recipe, I'll interrupt the code so that you can
see some intermediate output or the structure of an object that's important
to understand. Whenever that happens, you'll see a code block where each
line begins with ## (double hash) symbols. Consider the following
command:

letters[1:5]

This will give us the following output:

a b c d e

Note that the output lines are prefixed with ##.

Reading and writing varied tree formats with
ape and treeio
Phylogenetic analysis is a cornerstone of biology and bioinformatics. The programs are
diverse and complex, the computations are long-running, and the datasets are often large.
Many programs are standalone and many have proprietary input and output formats. This
has created a very complex ecosystem that we must navigate when dealing with
phylogenetic data, meaning that, often, the simplest strategy is to use combinations of tools
to load, convert, and save the results of analyses in order to be able to use them in different
packages. In this recipe, we'll look at dealing with phylogenetic tree data in R. To date, R
support for the wide range of tree formats is restricted, but a few core packages have
sufficient standardized objects such that workflows can focus on a few types and
conversion to those types is streamlined. We'll look at using the ape and treeio packages
to get tree data into and out of R.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[105]

Getting ready
For this section, we'll need the tree and phylogenetic information in datasets/ch4/ from
the book's data repository, specifically the mammal_tree.nwk and
mammal_tree.nexus files, which are Newick and Nexus format trees of a mammal
phylogeny (you can see brief descriptions of these file types in this book's Appendix). We'll
need beast_mcc.tree, which is a tree file from a run of BEAST, and
RAxML_bipartitionsBranchLabels.H3, which is an RAxML output file. Both of these
files are taken from the extensive data provided with the treeio package. We'll require the
Bioconductor package, treeio, and the ape package.

How to do it...
Reading and writing tree formats with ape and treeio can be executed using the
following steps:

Load the ape library and load in trees:1.

library(ape)
newick <-ape::read.tree(file.path(getwd(), "datasets", "ch4",
"mammal_tree.nwk"))
nexus <-ape::read.nexus(file.path(getwd(), "datasets", "ch4",
"mammal_tree.nexus"))

Load the treeio library and load in BEAST/RAxML output:2.

library(treeio)
beast <- read.beast(file.path(getwd(), "datasets", "ch4",
"beast_mcc.tree"))
raxml <- read.raxml(file.path(getwd(), "datasets", "ch4",
"RAxML_bipartitionsBranchLabels.H3"))

Check the object types that the different functions return:3.

class(newick)
class(nexus)

class(beast)
class(raxml)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[106]

Convert tidytree to phylo, and vice versa:4.

beast_phylo <- treeio::as.phylo(beast)
newick_tidytree <- treeio::as.treedata(newick)

Write output files using the following code:5.

treeio::write.beast(newick_tidytree,file = "mammal_tree.beast")
ape::write.nexus(beast_phylo, file = "beast_mcc.nexus")

How it works...
In Step 1, we make use of very straightforward loading functions from ape—we use the
read.tree() and read.nexus() functions, which can read the generic format trees. In
Step 2, we repeat this using the specific format functions from treeio for BEAST and
RaXML output. Step 3 simply confirms the object types that the function returns; note that
ape gives phylo objects, while treeio gives treedata objects. The two are interconverted
using as.phylo() and as.treedata() from treeio in Step 4. By converting in this way,
we can get input in many formats into downstream analysis in R. Finally, we write the files
in Step 5.

See also
The loading functions we used in Step 2 are just a couple of those available. Refer to the
treeio package vignettes for a comprehensive list.

Visualizing trees of many genes quickly with
ggtree
Once you have computed a tree, the first thing you will want to do with it is take a look.
That's possible in many programs, but R has an extremely powerful, flexible, and fast
system in the form of the ggtree package. In this recipe, we'll learn how to get data into
ggtree and re-layout, highlight, and annotate tree images in just a few commands.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[107]

Getting ready
You'll need the ggplot2, ggtree, and ape packages. You'll also require the itol.nwk
file from the datasets/ch4 folder of this book's repository, which is a Newick tree of 191
species from the Interactive Tree of Life online tool's public dataset.

How to do it...
Visualizing trees of many genes quickly with ggtree can be executed using the following
steps:

Load the libraries and get a phylo object of the Newick tree:1.

library(ggplot2)
library(ggtree)
itol <-ape::read.tree(file.path(getwd(), "datasets", "ch4",
"itol.nwk"))

 Make a basic tree plot:2.

ggtree(itol)

Make a circular plot:3.

ggtree(itol, layout = "circular")

Rotate and invert the tree:4.

ggtree(itol) + coord_flip() + scale_x_reverse()

Add labels to the tree tips:5.

ggtree(itol) + geom_tiplab(color = "blue", size = 2)

Make a strip of color to annotate a particular clade:6.

ggtree(itol, layout = "circular") + geom_strip(13,14, color="red",
barsize = 1)

Make a blob of color to highlight a particular clade:7.

ggtree(itol, layout = "unrooted") + geom_hilight_encircle(node =
11, fill = "steelblue")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[108]

How it works...
This code achieves a lot very quickly. It can do this by virtue of its ggplot-like layer syntax.
Here's what each step does and its output:

Load in a tree from a file. The tree here has 191 tips, so it's quite large. It happens1.
to be in Newick format, so we use the ape read.tree() function. Note that we
don't need to have a treedata object for ggtree in subsequent steps; the
phylo object returned from read.tree() is perfectly acceptable to ggtree().
Create a basic tree with ggtree(). This function is a wrapper for a longer2.
ggplot-style syntax, specifically, ggplot(itol) + aes(x,y) +
geom_tree() + theme_tree(). Hence, all the usual ggplot functions can be
used as extra layers in the plot. The code in this step gives us the following plot:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[109]

Change the layout of the plot. Setting the layout argument to circular gives us a3.
round tree. There are many other tree types available through this argument:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[110]

We can change the left-right direction of the tree to a top-bottom one using the4.
standard ggplot functions, coord_flip() and scale_x_reverse(), to make
the plot look like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[111]

We can add names to the end of the tips with geom_tiplab(). The size5.
argument sets the text size. This code generates the following output:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[112]

By adding a geom_strip() layer, we can annotate clades in the tree with a block6.
of color. The first argument (13 in this instance) is the start node in the tree, while
the second argument is the end node in the tree for the strip of color. The
barsize argument sets the width of the color block. The result looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[113]

We can highlight clades in unrooted trees with blobs of color using the7.
geom_hilight_encircle() geom. We need to pick a value for the node
argument, which tells ggtree() which node to center the color over. The code
here provides the following output:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[114]

There's more...
Steps 6 and 7 here relied on us knowing which nodes in the tree to manipulate. This isn't
always obvious as the nodes are identified by number and not name. We can get at the
node number we want if we use the MRCA() (Most Recent Common Ancestor) function.
Simply pass it a vector of node names and it returns the ID of the node that represents the
MRCA:

MRCA(itol, tip=c("Photorhabdus_luminescens", "Blochmannia_floridanus"))

This will give the following output:

206

Quantifying differences between trees with
treespace
Comparing trees to differentiate or group them can help researchers to see patterns of
evolution. Multiple trees of a single gene tracked across species or strains can reveal
differences in how that gene is changing across species. At the core of these approaches are
metrics of distances between trees. In this recipe, we'll calculate one such metric to find
pairwise differences between 20 different gene trees in 15 different species—hence, 15
different tips with identical names in each tree. Such similarity in trees is usually needed to
compare and get distances, and we can't do an analysis like this unless these conditions are
met.

Getting ready
For this recipe, we'll use the treespace package to compute distances and clusters. We'll
use ape and adegraphics for accessory loading and visualization functions. The input
data here will be all 20 files in datasets/ch4/gene_trees, each of which is a Newick-
format tree for a single gene in each of 15 species.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[115]

How to do it...
Quantifying differences between trees with treespace can be executed using the following
steps:

Load the libraries:1.

library(ape)
library(adegraphics)
library(treespace)

Load all the tree files into a multiPhylo object:2.

treefiles <- list.files(file.path(getwd(), "datasets", "ch4",
"gene_trees"), full.names = TRUE)
tree_list <- lapply(treefiles, read.tree)
class(tree_list) <- "multiPhylo"

Compute the Kendall-Colijn distances:3.

comparisons <- treespace(tree_list, nf = 3)

Plot pairwise distances:4.

adegraphics::table.image(comparisons$D, nclass=25)

Plot principal component analysis (PCA) and clusters:5.

plotGroves(comparisons$pco, lab.show=TRUE, lab.cex=1.5)
groves <- findGroves(comparisons, nclust = 4)
plotGroves(groves)

How it works...
The short and sweet code here is really powerful—and gives us a lot of analysis in a few
commands.

In Step 1, initially, we load the libraries we require.

In Step 2, after loading the necessary libraries, we make a character vector, treefiles,
which holds paths to the 20 trees we wish to use. The list.files() function that we use
takes a filesystem path as its argument and returns the names of files it finds in that path.
As treefiles is a vector, we can use it as the first argument to lapply().

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[116]

In case you're not familiar with it, lapply() is an iterator function that returns an R list
(hence, lapply()). Simply put, lapply() runs the function named in the second argument
over the list of things in the first. The current thing is passed as the target function's first
argument. So, in Step 2, we run the ape read.tree() function on each file named in
treefiles and receive a list of phylo tree objects in return. The final step is to ensure that
the tree_list object has the class, multiPhylo, so that we satisfy the requirements of the
downstream functions. Helpfully, a multiPhylo object is a list-like object anyway, so we
can get away with adding the multiPhylo string to the class attribute with the class()
function.

In Step 3, the treespace() function from the package of the same name does an awful lot
of analysis. First, it runs pairwise comparisons of all trees in the input, and then it carries
out clustering using PCA. These are returned in a list object, with a member D containing
the pairwise distances for the trees, and pco containing the PCA. The default distance
metric, the Kendall-Colijn distance, is particularly suitable for rooted gene trees as we have
here, though the metric can be changed. The argument nf simply tells us how many of the
principal components to retain. As our aim is plotting, we won't need more than three.

In Step 4, we plot the distance matrix in comparisons$D using the table.image()
function in adegraphics—a convenient heatmap-style function. The nclass
argument tells us how many levels of color to use. We get a plot as follows:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[117]

In Step 5, the plotGroves() function plots a treespace object directly, so we can see the
plot of the PCA:

We can use the findGroves() function to group the trees into the number of groups given
by the nclust argument and re-plot to view that:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[118]

There's more...
If you have many trees and the plot is crowded, you can create an interactive plot that can
be zoomed and panned using the following code:

plotGrovesD3(comparisons$pco, treeNames=paste0("species_", 1:10))

Extracting and working with subtrees using
ape
In this short recipe, we'll look at how easy it can be to manipulate trees; specifically, how to
pull out a subtree as a new object and how to combine trees into other trees.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[119]

Getting ready
We'll need a single example tree; the mammal_tree.nwk file in the datasets/ch4 folder
will be fine. All the functions we require can be found in the ape package.

How to do it...
Extracting and working with subtrees using ape can be executed using the following steps:

Load the ape library and then load the tree:1.

library(ape)
newick <-read.tree(file.path(getwd(), "datasets", "ch4",
"mammal_tree.nwk"))

Get a list of all of the subtrees:2.

l <- subtrees(newick)
plot(newick)
plot(l[[4]], sub = "Node 4")

Extract a specific subtree:3.

small_tree <- extract.clade(newick, 9)

Combine two trees:4.

new_tree <- bind.tree(newick, small_tree, 3)
plot(new_tree)

How it works...
The functions in this recipe are really straightforward, but extremely useful.

Step 1 is a familiar tree-loading step. We need a phylo object tree to progress.

Step 2 uses the subtrees() function, which extracts all non-trivial (greater than one node)
subtrees and puts them in a list. The members of the list are numbered according to the
node number in the original tree, and each object in the list is a phylo object, like the
parent. We can inspect the original tree and the subtree at node 4 using the plot()
function, which generates the following diagram:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[120]

In Step 3, we get a single specific subtree using the extract.clade() function. The first
argument to this function is the tree, while the second is the node that will be extracted. In
fact, all nodes downstream of this node are taken and a new phylo object is returned.

The last example shows how to use the bind.tree() function to combine two phylo
objects. The first argument is the major tree, which will receive the tree of the second
argument. Here, we'll be stitching small_tree onto Newick. The third argument is the
node in the major tree to which the second tree will be joined. Again, a new phylo object is
returned. When we plot the new tree, we can see the repeated segment relative to our
original tree:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[121]

There's more...
A minor problem with the preceding functions is that they expect us to know the node
number we want to work with. A simple way to access this is by using the interactive
subtreeplot() command. The subtreeplot(newick) code generates an interactive plot
for the tree provided, like the one here. By clicking on particular nodes in the tree, we can
get the viewer to render the subtree and print the node ID. We can then use the node ID in
the functions:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[122]

Creating dot plots for alignment
visualization
Dot plots of pairs of aligned sequences are probably the oldest alignment visualization. In
these plots, the positions of two sequences are plotted on the x axis and y axis, and for every
coordinate in that space, a point is drawn if the letters (nucleotides or amino acids)
correspond at that (x,y) coordinate. Since the plot can show regions that match that aren't
generally in the same region of the two sequences, this is a good way to visually spot
insertions and deletions and structural rearrangements in the two sequences. In this recipe,
we'll look at a speedy method for constructing a dot plot using the dotplot package and a
bit of code for getting a grid plot of all pairwise dot plots for sequences in a file.

Getting ready
We'll need the datasets/ch4/bhlh.fa file, which contains three basic helix-loop-helix
(bHLH) transcription factor sequences from pea, soy, and lotus. We'll also need the
dotplot package, which isn't on CRAN or Bioconductor, so you'll need to install it from
GitHub using the devtools package. The following code should work:

library(devtools)
install_github("evolvedmicrobe/dotplot", build_vignettes = FALSE)

How to do it...
Creating dot plots for alignment visualization can be executed using the following steps:

Load the libraries and sequences:1.

library(Biostrings)
library(ggplot2)
library(dotplot)
seqs <- readAAStringSet(file.path(getwd(), "datasets", "ch4",
"bhlh.fa"))

Make a basic dot plot:2.

dotPlotg(as.character(seqs[[1]]), as.character(seqs[[2]]))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[123]

Change the dot plot and apply the ggplot2 themes and labels:3.

dotPlotg(as.character(seqs[[1]]), as.character(seqs[[2]]),
wsize=7, wstep=5, nmatch=4) +
theme_bw() +
labs(x=names(seqs)[1], y=names(seqs)[2])

Make a function that will create a dot plot from sequences provided and the4.
sequence index:

make_dot_plot <- function(i=1, j=1, seqs = NULL){
 seqi <- as.character(seqs[[i]])
 seqj <- as.character(seqs[[j]])
 namei <- names(seqs)[i]
 namej <- names(seqs)[j]
 return(dotPlotg(seqi, seqj) + theme_bw() + labs(x=namei,
y=namej))
}

Set up data structures to run the function:5.

combinations <- expand.grid(1:length(seqs),1:length(seqs))
plots <- vector("list", nrow(combinations))

Run the function on all the possible combinations of pairs of sequences:6.

for (r in 1:nrow(combinations)){
 i <- combinations[r,]$Var1[[1]]
 j <- combinations[r,]$Var2[[1]]
 plots[[r]] <- make_dot_plot(i,j, seqs)
}

Plot the grid of plots:7.

cowplot::plot_grid(plotlist = plots)

How it works...
The first part of this recipe is pretty familiar. We load in the libraries and use
Biostrings to load in our protein sequences. Note that our sequences in the seqs variable
are an instance of the XStringSet class.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[124]

In Step 2, we can create a basic dot plot using the dotplotg() function. The arguments are
the sequences we want to plot. Note that we can't pass the XStringSet objects directly; we
need to pass character vectors, so we coerce our sequences into that format with the
as.character() function. Running this code gives us the following dot plot:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[125]

In Step 3, we elaborate on the basic dot plot by first changing the way a match is considered.
With the wsize=7 option, we state that we are looking at seven residues at a time (instead
of the default of one), the wstep=5 option tells the plotter to jump five residues each step
(instead of one, again), and the nmatch=4 option tells the plotter to mark a window as
matching if four of the residues are identical. We then customize the plot by adding a
ggplot2 theme to it in the usual ggplot manner and add axis names with the label
function. From this, we get the following dot plot. Note how it is different to the first one:

The custom function, make_dot_plot(), defined in Step 4 takes two numbers in
variables, i and j, and an XStringSet object in the seqs argument. It then converts the i-
th and j-th sequence in the seqs object to characters and stores those in seqi and seqj
variables. It also extracts the names of those sequences to namei and namej. Finally, it
creates and returns a dot plot using the variables created

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[126]

To use the function, we need two things; the combinations of sequences to be plotted and a
list to hold the results in. In Step 4, the expand.grid() function is used to create a data
frame of all possible combinations of sequences by number, which we store in the
combinations variable. The plots variable, created with the vector() function, contains
a list object with the right number of slots to hold the resultant dot plots.

Step 6 is a loop that iterates over each row of the combination's data frame, extracting the
sequence numbers we wish to work with and storing them in the i and j variables. The
make_dot_plot() function is then called with i, j, and seqs, and its results stored in the
plots list we created.

Finally, in Step 7, we use the cowplot library function, plot_grid(), with our list of plots
to make a master plot of all possible combinations that looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[127]

Reconstructing trees from alignments using
phangorn
So far in this chapter, we've assumed that trees are already available and ready to use. Of
course, there are many ways to make a phylogenetic tree and, in this recipe, we'll take a
look at some of the different methods available.

Getting ready
For this chapter, we'll use the datasets/ch4/ file, the abc.fa file of yeast ABC
transporter sequences, the Bioconductor Biostrings package, and the msa and
phangorn packages from CRAN.

How to do it...
Constructing trees using phangorn can be executed using the following steps:

Load in the libraries and sequences, and make an alignment:1.

library(Biostrings)
library(msa)
library(phangorn)

seqs <- readAAStringSet(file.path(getwd(), "datasets", "ch4",
"abc.fa"))
aln <- msa::msa(seqs, method=c("ClustalOmega"))

Convert the alignment to the phyDat object:2.

aln <- as.phyDat(aln, type = "AA")

Make UPGMA and neighbor-joining trees from a distance matrix:3.

dist_mat <- dist.ml(aln)

upgma_tree <- upgma(dist_mat)
plot(upgma_tree, main="UPGMA")

nj_tree <- NJ(dist_mat)
plot(nj_tree,"unrooted", main="NJ")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Phylogenetic Analysis and Visualization Chapter 4

[128]

Calculate the bootstraps and plot:4.

bootstraps <- bootstrap.phyDat(aln,FUN=function(x) { NJ(dist.ml(x))
} , bs=100)
plotBS(nj_tree, bootstraps, p = 10)

How it works...
The first step carries out a loading and amino acid sequence alignment, as we've seen in an
earlier recipe with the msa package, returning an MsaAAMultipleAlignment object.

The second step uses the as.phyDat() function to convert the alignment to a
phyDat object that can be used by the phangorn functions.

In Step 3, we actually make trees. Trees are made from a distance matrix, which we can
compute with dist.ml() and our alignment (this is a maximum-likelihood distance
measure; other functions can be used here if needed). The dist_mat is passed to the
upgma() and NJ() functions to make UPGMA and neighbor-joining trees, respectively.
These return standard phylo objects that can be worked with in many other functions.
Here, we plot directly:

In the final step, we use the bootstraps.phyDat() function to compute bootstrap support
for the branches in the tree. The first argument is the phyDat object, aln, while the second
argument, FUN, requires a function to calculate trees. Here, we use an anonymous function
wrapping the NJ() method we used to generate nj_tree in the first place. The bs
argument tells the functions how many bootstraps to compute. Finally, we can plot the
resultant bootstraps onto the tree using the plotBS() function.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Metagenomics

The use of high throughput sequencing has turbocharged metagenomics from a field
focused on studying variation in single sequences such as the 16S ribosomal RNA (rRNA)
sequence to studying entire genomes of the many species that may be present in a sample.
The task of identifying species or taxa and their abundances in a sample is computationally
challenging and requires the bioinformatician to deal with the preparation of sequences,
assignment to taxa, comparisons of taxa, and quantifications. Packages for this have been
developed by a wide range of specialist laboratories that have created new tools and new
visualizations specific to working with sequences in metagenomics.

In this chapter, we'll look at recipes to carry out some complex analyses in metagenomics
with R:

Loading in hierarchical taxonomic data using phyloseq
Rarefying counts to correct for sample differences using metacoder
Reading amplicon data from raw reads with dada2
Visualizing taxonomic abundances with heat trees in metacoder
Computing sample diversity with vegan
Splitting sequence files into operational taxonomic units

Technical requirements
The sample data you'll need is available from this book's GitHub repository at https:/ /
github.com/PacktPublishing/ R- Bioinformatics- Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is in a sub-
directory of whatever your working directory is.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook

Metagenomics Chapter 5

[130]

Here are the R packages that you'll need. Most of these will install with
install.packages(); others are a little more complicated:

ape
 Bioconductor

dada2
phyloseq

corrplot

cowplot

dplyr

kmer

magrittr

metacoder

RColorBrewer

vegan

Bioconductor is huge and has its own installation manager. You can install it with the
following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")
BiocManager::install()

 Further information is available at the following link: https:/ / www.
bioconductor. org/ install/ .

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Metagenomics Chapter 5

[131]

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see
some intermediate output or the structure of an object that's important to
understand. Whenever that happens, you'll see a code block where each
line begins with ## (double hash) symbols. Consider the following
command:
letters[1:5]

This will give us the following output:
a b c d e

 Note that the output lines are prefixed with ##.

Loading in hierarchical taxonomic data
using phyloseq
Metagenomics pipelines often start with large sequencing datasets that are processed in
powerful and fully featured programs such as QIIME and mothur. In these cases, it is the
results from these tools that we wish to prepare into reports or further specific analysis
with R. In this recipe, we'll look at how we can get the output from QIIME and mothur into
R.

Getting ready
For this short recipe, we need the phyloseq package from Bioconductor and files in the
datasets/ch5 folder of this book's data repository.

How to do it...
Loading in hierarchical taxonomic data using phyloseq can be done using the following
steps:

Load the library:1.

library(phyloseq)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[132]

Import the QIIME .biom file:2.

biom_file <- file.path(getwd(), "datasets", "ch5",
"rich_sparse_otu_table.biom")
qiime <- import_biom(biom_file)

Access different parts of the phyloseq object:3.

tax_table(qiime)
Taxonomy Table: [5 taxa by 7 taxonomic ranks]:
Rank1 Rank2 Rank3
GG_OTU_1 "k__Bacteria" "p__Proteobacteria"
"c__Gammaproteobacteria"
GG_OTU_2 "k__Bacteria" "p__Cyanobacteria" "c__Nostocophycideae"

otu_table(qiime)
OTU Table: [5 taxa and 6 samples]
taxa are rows
Sample1 Sample2 Sample3 Sample4 Sample5 Sample6
GG_OTU_1 0 0 1 0 0 0
GG_OTU_2 5 1 0 2 3 1

sample_data(qiime)
BarcodeSequence LinkerPrimerSequence BODY_SITE
Description
Sample1 CGCTTATCGAGA CATGCTGCCTCCCGTAGGAGT gut human
gut

Import the mothur data files:4.

mothur <- import_mothur(
 mothur_list_file = file.path(getwd(), "datasets", "ch5",
"esophagus.fn.list"),
 mothur_group_file = file.path(getwd(), "datasets", "ch5",
"esophagus.good.groups"),
 mothur_tree_file = file.path(getwd(), "datasets", "ch5",
"esophagus.tree")
)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[133]

Access the otu object in the phyloseq object:5.

otu_table(mothur)
OTU Table: [591 taxa and 3 samples]
taxa are rows
B C D
9_6_14 2 0 0
9_6_25 1 0 0

How it works...
In this straightforward recipe, we create objects and use accessor functions.

In Step 1, we load the phyloseq library as is customary.

Then, in Step 2, we define a file and use it as the first argument to the import_biom()
function. This function can read the modern biom format output from QIIME in
uncompressed JSON and compressed HDF5 forms. The type is detected automatically. We
get back a fully populated phyloseq object.

In Step 3, we use the accessor functions to get the subsections of the object, the taxonomies
with tax_table(), the OTU with otu_table(), and the sample data with
sample_data(); these can all be used downstream easily as they are matrix-like objects.

We change track in Step 4 and work with the mothur output. We need a list file and group
file at least, which we specify as file paths in the mothur_list_file and
mothur_group_file arguments. Here, we also specify a Newick format tree with the
mothur_tree_file argument.

Again, we can use the phyloseq accessor function, otu_table(), to get the OTU. With
the minimal mothur data, we specify here that we can't get the sample data or taxonomy
table.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[134]

There's more...
If you have data generated from an older version of QIIME in the proprietary format, you
can use the import_qiime() function. There is also an accessor function for the tree object
if you attach one—phy_tree().

See also
The websites and wiki pages of the QIIME and mothur programs do a great job of showing
how to work with the data from their pipelines in R, particularly mothur. If you'd like
analysis ideas for this data, try them out.

Rarefying counts and correcting for sample
differences using metacoder
In metagenomics, a common question is to ask which species are present in a sample and
what is the difference between two or more samples. Since samples can be made up of
different amounts of observations—which, in a metagenomic sense, means the different
amounts of reads that were generated—then the taxonomic richness of the sample will
increase with the depth of sequencing. To assess the diversity of different taxa represented
in samples fairly, metagenomicists will often perform rarefaction on the counts to ensure
the samples all have constant depths. Essentially, this means reducing the sample depth
down to whatever the lowest sample depth is. We'll perform rarefaction on OTU counts
from a biom file in this recipe.

Getting ready
For this recipe, you'll need the metacoder package and
datasets/ch5/rich_high_count_otu.biom, which is an example biom file with six
samples (labeled Sample1–Sample6) and five OTUs. This is, of course, a very small file,
useful only to learn how the code works. Real metagenomic datasets are much larger.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[135]

How to do it...
Rarefying counts and correcting for sample differences using metacoder can be done using
the following steps:

Load the library and files:1.

library(metacoder)
biom_file <- file.path(getwd(), "datasets", "ch5",
"rich_high_count_otu.biom")
taxdata <- parse_qiime_biom(biom_file)

Create a histogram of counts in the samples:2.

sample_ids <- paste0("Sample", 1:6)
hist_data <- colSums(taxdata$data$otu_table[, sample_ids])
hist(hist_data, prob= TRUE, breaks=3)
lines(density(hist_data, adjust = 2), col="red")

Call the rarefaction function and filter out low OTUs that may be created:3.

taxdata$data$rarefied_otus <- rarefy_obs(taxdata, "otu_table",
other_cols = TRUE)
low_otu_index <- rowSums(taxdata$data$rarefied_otus[, sample_ids])
<=20
taxdata <- filter_obs(taxdata, "rarefied_otus", ! low_otu_index)
taxdata$data$rarefied_otus

How it works...
The overall pattern here is to get the file loaded, check the distribution of sample OTU
counts, and apply rarefaction.

The first step is to get the library loaded and the example file imported. We do this by
preparing the rich_high_count_otu.biom file, which we pass to the parse_qiime()
function. This metacoder function simply reads in biome files and returns a taxmap object
(another type of object for holding taxonomic data) that we can use in the metacoder
functions.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[136]

Next, we wish to inspect the distribution of sample OTU counts, which we do by preparing
a histogram. We make a character vector of sample names with the paste() function and
use that to extract by named index the counts containing columns from within otu_table.
This subset of columns is passed into the colSums() function, which gets the total counts
for each sample in the hist_data vector. We can now create a histogram of those counts
with hist() and add the density curve with lines() and the density() function on
hist_data. Note that the resulting plot (in the following histogram) looks sparse because
of the small number of samples in the small example file. The lowest numbers here give us
an idea of the lowest sequenced sample. If there are stand-out low samples, it may be wise
to remove those columns first:

Now, we can perform rarefaction. We use the rarefy_obs() function on taxdata; the
second argument (with the "otu_table" value) is the name of the slot in the taxdata
object that contains the OTU counts. As rarefaction reduces counts, we now need to remove
any that have fallen too far across all samples. Hence, we use the rowSums() function and
indexing by sample name on the taxdata$data$rarefied_otus object to get a logical
vector indicating which OTUs have a total count lower than 20. Finally, we use the
filter_obs() function on taxdata; the second argument (with the "rarefied_otus"
value) is the name of the slot in the taxdata object that contains the rarefied OTU counts.
The ! character is used to invert the logical vector of low OTUs because filter_obs()
keeps the rows that pass and we wish to remove them. The final output from this is a
rarefied set of OTU counts.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[137]

Note how, in the following output, OTU row 3 has been removed through low counts:

A tibble: 4 x 8
taxon_id otu_id Sample1 Sample2 Sample3 Sample4 Sample5 Sample6
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ax GG_OTU_1 24 1004 847 1979 1070 1170
2 ay GG_OTU_2 872 0 704 500 1013 689
3 ba GG_OTU_4 875 1144 1211 217 0 1180
4 ax GG_OTU_5 1270 893 276 338 953 0

There's more...
We can estimate a useful count level with rarefaction curves. With these, the counts are
randomly sampled at varying sample sizes and the number of species in the OTUs is
counted. The point at which the number of species stops increasing lets us know we have
enough reads and aren't getting any more value from dealing with extra counts. The
rarecurve() function in the vegan package will do this for us. We provide an OTU table
(note that this function needs the samples in rows so we must rotate our taxdata OTU
table with the t() function). Then, we pass the minimum sample size for the sample
argument. We use the colSums() and min() functions to get the lowest sample OTU
count for this. The output looks like the following diagram:

Here, we can clearly see that samples over 20,000 do not increase the richness of species.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[138]

Reading amplicon data from raw reads with
dada2
A long-standing technique in metagenomics, particularly for those interested in bacterial
microbiome studies, uses the sequencing of cloned copies (amplicons) of the 16S or 18S
rRNA genes to create species profiles. These approaches can take advantage of lower
throughput sequencing and the knowledge of the target sequence to classify each cloned
sequence, simplifying the tricky task of assigning taxa to reads. In this recipe, we'll make
use of the dada2 package to run an amplicon analysis from raw fastq sequence reads.
We'll perform quality control and OTU assignment steps and use an interesting machine
learning method to classify sequences.

Getting ready
For this recipe, we need the Bioconductor dada2 package and the CRAN cowplot package.
We'll use some metagenomic sequence reads from the Short Read Archive experiment
SRR9040914, in which the water from a tidal marine lake at a tourist center was examined
for species composition because people were tossing coins into it and making wishes. We
will use twenty fastq files of 2,500 files each, each compressed and available in this book's
repository at datasets/ch5/fq. This is a small subset of the full set of Illumina reads.
We'll also need the datasets/ch5/rdp_train_set_14.fa file, which is one of the sets of
16S sequences maintained as training sets by the dada team. See more training sets
at http://benjjneb. github. io/ dada2/ training. html.

How to do it...
Reading amplicon data from raw reads with dada2 can be done using the following steps:

Load the libraries and prepare a plot for each fastq file:1.

library(dada2)
library(cowplot)

fq_dir <- file.path(getwd(), "datasets", "ch5", "fq")
read_files <- list.files(fq_dir, full.names = TRUE, pattern =
"fq.gz")

quality_plots <- lapply(read_files, plotQualityProfile)
plot_grid(plotlist = quality_plots)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html
http://benjjneb.github.io/dada2/training.html

Metagenomics Chapter 5

[139]

Quality trimming and dereplicating the files:2.

for (fq in read_files){
 out_fq <- paste0(fq, ".trimmed.filtered")
 fastqFilter(fq, out_fq, trimLeft=10, truncLen=250,
 maxN=0, maxEE=2, truncQ=2,
 compress=TRUE)
}

trimmed_files <- list.files(fq_dir, full.names = TRUE, pattern =
"trimmed.filtered")
derep_reads <- derepFastq(trimmed_files)

Estimate the dada2 model from a subset of samples:3.

trimmed_files <- list.files(fq_dir, full.names = TRUE, pattern =
"trimmed.filtered")
derep_reads <- derepFastq(trimmed_files)

dd_model <- dada(derep_reads[1:5], err=NULL, selfConsist=TRUE)

Infer the sequence composition of the samples using the parameters estimated in4.
Step 3:

dada_all <- dada(derep_reads, err=dd_model[[1]]$err_out, pool=TRUE)

Assign taxonomy to the sequences:5.

sequence_tb <-makeSequenceTable(dada_all)
taxonomy_tb <- assignTaxonomy(sequence_tb, refFasta =
file.path(getwd(), "datasets", "ch5", "rdp_train_set_14.fa"))
taxonomy_tb[1, 1:6]

How it works...
We first make a vector of file paths to all of the fastq files we wish to use by passing the
fq_dir variable containing the fastq directory to the list.files() function. Then, we
use the looping function, lapply(), to iterate over each fastq file path and run the dada
function, plotQualityProfile(), with each file in turn. Each resulting plot object is
saved into the list object, quality_plots. The cowplot function, plot_grid(), will plot
all these in a grid when a list of plots is passed to the plotlist argument.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[140]

We get the plot in the following diagram. Note how the fastq quality scores are poor in
the first 10 or so nucleotides and after about 260 nucleotides in. These will be the trimming
points for the next step:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[141]

To carry out trimming, we run a loop over the fastq files in read_files. In each iteration
of the loop, we create an output fastq filename, out_fq, by pasting the text
"trimmed.filtered" onto the filename (since we will save the trimmed reads to a new
file, rather than memory), then run the fastqFilter() trimming function, passing it the
input filename, fq; the out_fq filename; and the trim parameters. At the end of this loop,
we have a folder full of trimmed read files. The names of these are loaded into a vector with
the list.files() function again—this time, matching only files with the
"trimmed.filtered" pattern. All of these files are loaded into memory and dereplicated
using the derepFaistq() function. We then calculate the parameters for the compositional
inference step using the dada() function on a proportion of the files. We pass the first five
sets of dereplicated files using indexing on the derep_reads object. By setting err to NULL
and selfConsist to TRUE, we force dada() to estimate parameters from the data, saving
the results in the dd_model variable.

We next run the dada() function on all of the data, setting the err parameter to that
estimated previously and stored in dd_model. This step calculates the final sequence
composition for the whole data.

Finally, we can make the sequence table with the results of the dada() function and use
that to find OTUs using assignTaxonomy(). This function uses a naive Bayes classifier to
assign sequences to taxa, based on the classification in the training set provided in
the rdp_train_set_14.fa file. The output of this function is the classification of each
sequence. A single row of the resulting table, taxonomy_tb, looks like this:

Kingdom Phylum
"Bacteria" "Cyanobacteria/Chloroplast"
Class Order
"Chloroplast" "Chloroplast"
Family Genus
"Bacillariophyta" NA

See also
The functions used in this recipe, fastqFilter() and derepFastQ(), also have variants
for paired reads.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[142]

Visualizing taxonomic abundances with heat
trees in metacoder
However we arrive at estimates of taxonomic abundance, it is usually helpful to create a
visualization that summarizes the broad trends in the data in a single figure. One
expressive and easy to interpret visualization is a heat tree. These are renderings of
phylogenetic trees of the taxons of interest with data mapped onto visual elements of the
render. For example, the number of times a taxon is seen may be expressed by changing the
color or thickness of a tree branch. Different datasets can be easily compared by examining
trees of each for differences. In this recipe, we'll construct a heat tree and customize it.

Getting ready
We need the input .biom file in datasets/ch5/rich_high_count_otu.biom and the
metacoder and RColorBrewer packages.

How to do it...
Visualizing taxonomic abundances with heat trees in metacoder can be done using the
following steps:

Load the libraries and input files:1.

library(metacoder)
library(RColorBrewer)
biom_file <- file.path(getwd(), "datasets", "ch5",
"rich_high_count_otu.biom")
taxdata <- parse_qiime_biom(biom_file)

Pass customization options to the tree-drawing function:2.

heat_tree(taxdata,
 node_label = taxon_names,
 node_size = n_obs,
 node_color = n_supertaxa,
 layout = "gem",
 title = "sample heat tree",
 node_color_axis_label = "Number of Supertaxa",
 node_size_axis_label = "Number of OTUs",
 node_color_range = RColorBrewer::brewer.pal(5, "Greens")
)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[143]

How it works...
Initially, we load the libraries and use the parse_qiime_biom() function to get a
metacoder taxmap object from the biom file.

We then use the heat_tree() function to render the tree. It's enough to pass just the
taxdata taxmap object—this will give a default tree—all of the other arguments specify
customizations of the tree. node_label specifies the column in the taxdata object to use
for the node labels; here, we use taxon_names, notably without enclosing quotes since the
function uses non-standard evaluation in the same way that you may be familiar with from
the tidyverse and ggplot functions. node_size controls node size based on the column
given. Here, n_obs and node_color give the parameter that affects the variation of the
color of the nodes (note that this isn't the set of colors—it's the things that should be colored
the same/differently). Next, the layout argument tells the function how to spread the
branches of the tree in the render. Of the next three argument titles, node_color_axis and
node_size_axis_label are simply labels for the plot. Finally, node_color_range gets a
vector of color identifiers that are used to draw with. Here, we use the RColorBrewer
package function, brewer.pal(), which returns such things. Its first parameter is the
number of colors to return, and the second the name of the palette to choose from. With all
of these set, we get the following plot from our small input file:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[144]

Computing sample diversity with vegan
A common task in ecological and metagenomics studies is to estimate the species (or
taxonomical) diversity within a sample or between samples to see which has more or less.
There are multiple measures for both within and between sample diversity, including the
Simpson and Bray indices. In this recipe, we'll look at functions that can go from the
common OTU table and return measures of diversity.

Getting ready
We'll need the sample .biom input file, datasets/ch5/rich_high_count_otu.biom,
and the vegan package.

How to do it...
Computing sample diversity with vegan can be done using the following steps:

Load in the libraries and prepare an OTU table from the sample file:1.

library(vegan)
biom_file <- file.path(getwd(), "datasets", "ch5",
"rich_high_count_otu.biom")
taxdata <- metacoder::parse_qiime_biom(biom_file)
otu_table <- taxdata$data$otu_table[, paste0("Sample", 1:6)]

Calculate the alpha diversity:2.

alpha_diversity <- diversity(otu_table, MARGIN=2, index="simpson")
barplot(alpha_diversity)

Calculate the beta diversity:3.

between_sample <- vegdist(t(otu_table), index = "bray")

between_sample_m <- as.matrix(between_sample, ncol = 6)
corrplot::corrplot(between_sample_m, method="circle", type =
"upper", diag = FALSE)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[145]

How it works...
The first step is very straightforward. Here, we use the metacoder parse_qiime_biom()
function to load in our biom file and then use subsetting on the resulting
taxdata$data$otu_table slot to extract a simple OTU table into otu_table.

We can now call the diversity() function from vegan. The index argument is set to
"simpson", so the function will use the Simpson index for within-sample diversity. The
MARGIN argument tells the function whether the samples are in rows or columns: 1 for rows
and 2 for columns. The diversity() function returns a named vector that is easy to
visualize with the barplot() function, giving us this:

We can now run the between-sample diversity measure using the vegdist() function;
again, the index argument sets the index to use, and here, we choose the Bray index.
vegdist() expects the sample data to be rows, so we use the t() function to rotate
otu_table. The resulting object is stored in between_sample— it's a pairwise correlation
table and we can visualize it in corrplot. To do this, we need to convert it into a matrix
with as.matrix(); the ncol argument should match the number of samples so that you
get a column for each sample. The returned matrix, between_sample_m, can be passed to
the corrplot() function to render it. By setting method to circle, type to upper, and
diag to false, we get a plot with only the upper diagonal of the matrix, without the self-
versus-self comparisons reducing redundancy in the plot.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[146]

The output looks like this:

See also...
The correlation plot in this recipe explicitly shows correlations for a few samples but can
become unwieldy on very large experiments. At this stage, you may want to consider PCA
or some other multidimensional scaling approach.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[147]

Splitting sequence files into OTUs
Perhaps the most common task with cleaned trimmed reads for a metagenomic shotgun
experiment is to divide the sequences into OTUs. This can be achieved in many ways; in
this recipe, we'll look at a method that splits sequences into subsequences of a given length
and performs a type of hierarchical clustering on them to create groups.

Getting ready
The key package here is the kmer package and we'll use one of the sample fastq sequence
files in the datasets/ch5/fq folder. We'll also make use of the dplyr and magrittr
packages for convenience.

How to do it...
Splitting sequence files into OTUs can be done using the following steps:

Load the data and compute the OTUs:1.

library(kmer)
library(magrittr)
library(ape)
seqs <- ape::read.fastq(file.path(getwd(), "datasets", "ch5","fq",
"SRR9040914ab.fq.gz")
otu_vec <- otu(seqs, k = 6, threshold = 0.99)

Count the frequency of each OTU cluster:2.

data.frame(
 seqid = names(otu_vec),
 cluster = otu_vec,
 row.names = NULL) %>%
dplyr::group_by(cluster) %>%
dplyr::summarize(count = dplyr::n())

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Metagenomics Chapter 5

[148]

How it works...
After loading the libraries, we use the read.fastq() function from ape to get a DNAbin
object representing the sequences. The key function, otu(), from the kmer package can use
the DNAbin seqs object directly to create k-mers of the length, k, and perform hierarchical
clustering on them. The threshold argument sets the OTU identity cut-off. This function
returns a named vector in which the names are the sequence IDs and the value for each is
the ID of the cluster it belongs to.

We can then use otu_vec to build an intermediate data frame with data.frame, using the
names attribute to set a seqid column and putting the cluster membership into a column
called cluster. We drop row names by setting row.names to NULL. We then use
magrittr piping with the %>% operator to group the data frame on clusters with
dplyr::group() and create a summary data frame with dplyr::summarize(). By
setting the count to the result of the dplyr::n() function, we get the number of times each
cluster appeared in the named vector—or, how many reads were assigned into each cluster.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Proteomics from Spectrum to

Annotation
Mass spectrometry (MS) data usually comprises spectra that must be bioinformatically
processed to identify candidate peptides. These peptides include assignments, and counts
can then be analyzed using a wide range of techniques and packages. The wide range of
graphical user interface-driven tools for proteomics means that there is a proliferation of
file formats that can be tough to deal with initially. These recipes will explore how to take
advantage of the excellent parsers and reformatters available in the new RforProteomics
project and associated tools for analysis and verification of spectra, and even show you how
to view your peptides in genome browsers alongside other genomic information such as
gene models.

In this chapter, we will cover the following recipes:

Representing raw MS data visually
Viewing proteomics data in a genome browser
Visualizing distributions of peptide hit counts to find thresholds
Converting MS formats to move data between tools
Matching spectra to peptides for verification with protViz
Applying quality control filters to spectra
Identifying genomic loci that match peptides

Technical requirements
The sample data you'll need is available from this book's GitHub repository at https:/ /
github.com/danmaclean/ R_ Bioinformatics_ Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is located in
your working directory's subdirectory.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook

Proteomics from Spectrum to Annotation Chapter 6

[150]

Here are the R packages that you'll need. In general, you can install these
with install.packages("package_name"). The packages listed under Bioconductor
need to be installed with the dedicated installer, as described here. If you need to do
anything else, the installation will be described in the recipes in which the packages are
used:

 Bioconductor
EnsDb.Hsapiens.v86
MSnID
MSnbase
mzR

proteoQC
rtracklayer

data.table

dplyr

ggplot2

protViz

Bioconductor is huge and has its own installation manager. You can install the manager
with the following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")

Then, you can install the packages with this code:

BiocManager::install("package_name")

 Further information is available at https:/ /www. bioconductor. org/
install/ .

Normally in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions, but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Proteomics from Spectrum to Annotation Chapter 6

[151]

Occasionally, in the middle of a recipe, I'll interrupt the code so you can
see some intermediate output or the structure of an object that's important
for you to understand. Whenever that happens, you'll see a code block,
where each line begins with ##, that is, double hash symbols. Consider the
following command:

letters[1:5]

This will give us the following output:

a b c d e

Note that the output lines are prefixed with ##.

Representing raw MS data visually
The raw data of proteomics analysis is the spectra that's generated by the mass
spectrometers. Each type of mass spectrometer has a different native file format in which
the spectra are encoded. Examining and analyzing the spectra begins with loading in the
files and coercing them into a common object type. In this recipe, we'll look at how to load
the varied file types, look at the metadata, and plot the spectra themselves.

Getting ready
For this recipe, we'll need the Bioconductor package, mzR, and some files from this book's
data repository, in the datasets/ch6 folder. We'll use three different files, selected not so
much for the data in them, but because they each represent one of the most common MS file
types, mzXML, mzdata, and mzML. The example files all come from the mzdata package.
Since they're extracted, you won't need to install this package, but if you'd like more
example files, it's a good place to look.

How to do it...
Raw MS data can be represented visually using the following steps:

Load the libraries:1.

library(mzR)
library(MSnbase)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[152]

Load the files into objects:2.

mzxml_file <- file.path(getwd(), "datasets", "ch6",
"threonine_i2_e35_pH_tree.mzXML")
ms1 <- openMSfile(mzxml_file)

mzdata_file <- file.path(getwd(), "datasets", "ch6",
"HAM004_641fE_14-11-07--Exp1.extracted.mzdata")
ms2 <- openMSfile(mzdata_file)

mzml_file <- file.path(getwd(), "datasets", "ch6", "MM8.mzML")
ms3 <- openMSfile(mzml_file)

View the metadata where available:3.

runInfo(ms3)

$scanCount
[1] 198
##
$lowMz
[1] 95.51765
##
$highMz
[1] 1005.043
##
$dStartTime
[1] 0.486
##
$dEndTime
[1] 66.7818
##
$msLevels
[1] 1
##
$startTimeStamp
[1] "2008-09-01T09:48:37.296+01:00"

sampleInfo(ms1)

[1] ""

Plot the spectra:4.

msn_exp <- MSnbase::readMSData(mzxml_file)
MSnbase::plot(msn_exp, full = TRUE)
MSnbase::plot(msn_exp[5], full = TRUE)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[153]

How it works...
In Step 1, we load the libraries we'll need. The main one is mzR.

In Step 2, we define the paths to the files we will load using the system-agnostic
file.path() function, which returns a character vector with the filename in it. Then, we
use that filename in the openMSfile() function from mzR to actually create an mzR object
representing the data in the respective files. Note that we essentially run the same code
three times, changing only the file and input file type each time. The
openMSfile() function will automatically detect the format of the file.

In Step 3, we use the mzR package accessor functions, runInfo() and sampleInfo(), to
extract some of the metadata in the input files. Note that sampleInfo() with ms1 doesn't
return anything—this is because that particular file didn't have that data in it. The metadata
that can be returned is dependent on the file and file type.

In Step 4, we use the MSnbase package to load in a file with its readMSData() function.
This uses mzR on its backend, so it can do the same, but it returns a modified object of
the MSnbase class. This means that some generic plot functions will work. We then use the
plot() function to create an image of all the spectra in the file:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[154]

And then, by using indexing, we create an image of just the fifth spectrum in the file:

Viewing proteomics data in a genome
browser
Once we have mass spectrometer data and have identified the peptides and proteins the
spectra describe using search engine software such as Xtandem, MSGF+, or Mascot, we may
want to look at those in their genomic context alongside other important data. In this
recipe, we'll look at how to extract peptides and the Uniprot IDs from a search file, find the
genes those Uniprot IDs map to, and then create a genome browser track showing those
genes. These can be sent to the UCSC human genome browser, and the interactive web
page, which will be loaded in your local browser automatically.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[155]

Getting ready
For this recipe, you'll need the Bioconductor packages MSnID, EnsDB.Hsapiens.v86, and
rtracklayer, and the HeLa_180123_m43_r2_CAM.mzid.gz file from the datasets/ch6
folder of this book's repository. For this recipe to work, you'll also need to be connected to
the internet, and have a recent web browser that can run the UCSC genome browser
located at https:// genome. ucsc. edu.

How to do it...
Proteomics data can be viewed in a genome browser using the following steps:

Load the libraries:1.

library(MSnID)
library(EnsDb.Hsapiens.v86)
library(rtracklayer)

Create and populate the search file object:2.

msnid <- MSnID()
msnid <- read_mzIDs(msnid, file.path(getwd(), "datasets", "ch6",
"HeLa_180123_m43_r2_CAM.mzid.gz"))

Extract rows containing useful hits and columns containing useful information:3.

real_hits <- msnid@psms[! msnid@psms$isDecoy,]
required_info <- real_hits[, c("spectrumID", "pepSeq", "accession",
"start", "end")]

Extract the Uniprot IDs from the accession column:4.

uniprot_ids <- unlist(lapply(strsplit(required_info$accession,
"\\|"), function(x){x[2]}))
uniprot_ids <- uniprot_ids[!is.na(uniprot_ids)]

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu

Proteomics from Spectrum to Annotation Chapter 6

[156]

Create a database connection and obtain genes matching our Uniprot IDs:5.

edb <- EnsDb.Hsapiens.v86
genes_for_prots <- genes(edb,
 filter = UniprotFilter(uniprot_ids),
 columns = c("gene_name", "gene_seq_start", "gene_seq_end",
"seq_name"))

Set up the genome browser track:6.

track <- GRangesForUCSCGenome("hg38",
 paste0("chr",seqnames(genes_for_prots)),
 ranges(genes_for_prots),
 strand(genes_for_prots),
 genes_for_prots$gene_name,
 genes_for_prots$uniprot_id)

Set up the browser session and view:7.

session <- browserSession("UCSC")
track(session, "my_peptides") <- track

first_peptide <- track[1]
view <- browserView(session, first_peptide * -5, pack =
"my_peptides")

How it works...
Step 1 is our standard library loading step.

Step 2 is the data loading step. This is a little unusual. Instead of just calling a file-reading
function, we must first create and empty the MSnID object and load the data into it. We
create msnid with the MSnID() function and then pass it to the read_mzid() function to
actually put data into it.

Step 3 is concerned with extracting the information we are concerned about from
the msnid object. We require rows that match actual hits, not decoys, so we access the
msnid@psms slot directly, which contains the useful data and subset that retains a row if its
value of isDecoy is FALSE. This gives us an object that we save in the real_hits variable.
Next, we use real_hits to select a few useful columns from the many in the original
object.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[157]

Step 4 helps us extract the Uniprot IDs embedded in the accession column field. It is
important to note that these values come from the names that are used in the search
engine's database. Naturally, this step will vary according to the precise formatting of the
database, but the general pattern applies. We have a fairly densely nested set of functions
that breaks down like this: the inner, anonymous function, function(x){x[2]}, returns
the second element of any vector it is passed. We use lapply() to apply that function to
every element in the list returned from strsplit() on the accession column. Finally, as
lapply() returns lists, we use unlist() to flatten it to the vector we require. Sometimes,
this will generate NAs as there is no Uniprot ID, so we remove them from the vector with
subsetting and is.na().

In Step 5, we connect to the Ensembl database package and use the genes() function to get
Ensembl genes that match our Uniprot IDs. The vector of Uniprot IDs is passed in the
UniprotFilter() function and, with the columns argument, we select the data we wish
to get back from the database. This gives us a GRanges object that contains all the
information we require in order to build a browser track.

In Step 6, we use the helper function, GRangesForUCSCGenome(), passing it the version of
the genome we wish to view—hg38, and then the basic chromosome name, coordinates,
and strand information a GRanges object needs. We can use the seqnames(),
ranges(), and strand() accessor functions to pull these out of the genes_for_prots
object we created previously. The seqnames in UCSC are prefixed with chr, so we use
paste to add that to our seqnames data. We also create columns for the gene name and gene
ID, preserving that information in our eventual view. We save the resulting object in the
track variable.

Finally, in Step 7, we can render the track we created. First, we create a session object that
represents a session on UCSC and add the track to it with the session() and track()
functions, respectively. We select which of the many peptides to focus on by passing the
first peptide just to the view() function, which actually spawns a new web browser
window with the data requested. The second argument to view() specifies a zoom level
and, by formulating the argument as first_peptide * -5, we get a zoom that will fit
five of the requested features.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[158]

At the time of writing, this recipe generated the following view. Note that the very top
track is our my_peptides track:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[159]

There's more...
You may have noticed that this recipe actually plots whole genes, and not the peptide hits
we started with. Plotting the genes is the simplest case, but going to the peptides requires
only a small change. In Step 5, we create an object, genes_for_prots, which gives the start
and end of the genes. The earlier msnid@psms object contains starts and ends of peptides
within those genes, indexed from the start of the hit, so by adding one to the other, it is
possible to create an object that represents the peptides and not the genes.

For those of you not working with organisms in the UCSC browser, it is still possible to
generate a GFF file of the hits to upload into another genome browser—many offer this
functionality. Simply stop the recipe at the end of Step 5 and use the
rtracklayer::export() function to create a GFF file.

Visualizing distributions of peptide hit
counts to find thresholds
Every MS experiment will need some idea of the peptide hit counts that represent noise or
unusual features, such as over-represented peptides in the proteome. In this recipe, we'll
use some neat visualization tricks using tidyverse tools such as dplyr and ggplot to
create graphics that will help you get an idea of the spread and limits of the peptide hits in
your mass spectrometry experiment.

Getting ready
For this recipe, you'll require the MSnId, data.table, dplyr, and ggplot packages. We'll
use the mzid file, HeLa_180123_m43_r2_CAM.mzid.gz, from the datasets/ch6 folder of
this book's repository.

How to do it...
Visualizing distributions of peptide hit counts to find thresholds can be done using the
following steps:

Load the libraries and data:1.

library(MSnID)
library(data.table)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[160]

library(dplyr)
library(ggplot2)
msnid <- MSnID()
msnid <- read_mzIDs(msnid, file.path(getwd(), "datasets", "ch6",
"HeLa_180123_m43_r2_CAM.mzid.gz"))
peptide_info <- as(msnid, "data.table")

Filter out decoy data rows and get a count of every time a peptide appears:2.

per_peptide_counts <- peptide_info %>%
 filter(isDecoy == FALSE) %>%
 group_by(pepSeq) %>%
 summarise(count = n()) %>%
 mutate(sample = rep("peptide_counts", length(counts)))

Create a violin and jitter plot of the hit counts:3.

per_peptide_counts %>%
 ggplot() + aes(sample, count) + geom_jitter() + geom_violin() +
scale_y_log10()

Create a plot of cumulative hit counts for peptides sorted by hit count:4.

per_peptide_counts %>%
 arrange(count) %>%
 mutate(cumulative_hits = cumsum(count), peptide = 1:length(count))
%>%
 ggplot() + aes(peptide, cumulative_hits) + geom_line()

Filter out very low and very high peptide hits and then replot them:5.

filtered_per_peptide_counts <- per_peptide_counts %>%
 filter(count >= 5, count <= 2500)

filtered_per_peptide_counts %>%
 ggplot() + aes(sample, count) + geom_jitter() + geom_violin() +
scale_y_log10()

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[161]

How it works...
In Step 1, we do some library loading and add a data loading step. As we mentioned
previously, with MSnID, this is a little unusual. Instead of just calling a file reading function,
we must first create and empty the MSnID object and load the data into it. We create msnid
with the MSnID() function and then pass it to the read_mzid() function to actually put
data into it. Next, we use the as() function to convert msnid into a data.table object—a
data frame-like object that is optimized for large datasets.

In Step 2, we prepare a plot using the tidyverse packages, dplyr and ggplot.
tidyverse packages all work really well in concert as they're centered on working with
data frames. The usual way of working is to use the piping operator, %>%, to pass data from
one function to another without having to save the interim object. By convention, the result
of the upstream function is passed as the first argument of the downstream function, so we
don't need to specify it. This results in the construction we have here. We take the
peptide_info object and pass it through the %>% operator to the dplyr
filter() function, which does its work and passes its result onto the
group_by() function and so on. Each function does its work and passes the data on. So, in
this pipeline, we use filter() to keep all the rows that are not decoys, and then use
group_by(pepSeq) to group the long data.table into subtables according to the value
of the pepSeq row – effectively getting one table per peptide sequence. The next step uses
summarise(), which generates a summary table containing a column called count that
contains the result of the n() function, which counts rows in a table, giving us a table with
one row per peptide, telling us how many times the peptide appears in the table. It's a good
idea to step through the code one function at a time if it isn't clear how these objects are
building up. Finally, we use mutate() to add a new column called sample to the table,
which simply creates a column of the same length as the current table, fills it with the word
peptide_counts, and adds it to the table. The table is saved in a variable
called per_peptide_counts.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[162]

In Step 3, we pipe the per_peptide_counts data to the ggplot() function, which sets up
a ggplot object. These are built-in layers, so we use the + operator to add an aesthetic layer
using the aes() function. This usually contains the variables to plot on the x and y axes –
here, these are sample and count. Then, we use + again to add a geom – a layer that
defines what a plot should look like. First, we add geom_jitter(), which plots the points,
adding a bit of random x and y noise to spread them out a little. We then add another
geom, geom_violin(), which gives a violin density plot. Finally, we add a scale layer,
converting the scale into a log base 10 scale. The resulting plot looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[163]

In Step 4, we create a cumulative hits plot by piping the per_peptide_counts data to the
arrange() function, which sorts a data frame in ascending order by the variable specified
(in this case, count). The result is piped to mutate to add a new column called
cumulative_hits, which gets the result of the cumsum() function on the count column.
We also add a column called peptide, which gets the row number of the table, but also
gives us a convenient variable so that we can order the peptides in the plot. We can
generate the plot by piping the sorted data directly to ggplot() and adding the aes()
function so that peptide is on the x-axis and cumulative_hits is on the y-axis. Then by
adding geom_line(), the resulting plot appears as follows:

From the two plots, we can see the spread of hits and assess which thresholds we wish to
apply.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[164]

With Step 5, we use the filter() function again to retain rows with a value of count over 5
and below 2500 and put that new data into the same plot recipe we made in Step 3. This
gives us the following plot, showing the removal of points outside the thresholds:

Converting MS formats to move data
between tools
It's an unavoidable fact of bioinformatics life that we spend a lot of time converting
between file formats. In this brief recipe, we'll look at some convenient methods in R, that
allows us to convert between MS data formats.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[165]

Getting ready
For this recipe, we require the mzR package and the threonine_i2_e35_pH_tree.mzXML
file from the datasets/ch6 folder of this book's repository. Some of the dependencies rely
on encapsulated Java code, so you'll need to install a Java Runtime Environment (JRE) for
your system; refer to https:/ /docs. oracle. com/ goldengate/ 1212/ gg- winux/ GDRAD/ java.
htm for instructions. Install the JRE before the R packages.

How to do it...
Converting MS formats to move data between tools can be done using the following steps:

Load the library and import the source data file:1.

library(mzR)
mzxml_file <- file.path(getwd(), "datasets", "ch6",
"threonine_i2_e35_pH_tree.mzXML")
mzdata <- openMSfile(mzxml_file)

Extract the header and peak data:2.

header_info <- header(mzdata)
peak_data_list <- spectra(mzdata)

Write the data into a new format file:3.

writeMSData(peak_data_list,
 file.path(getwd(), "datasets", "ch6", "out.mz"),
 header = header_info,
 outformat = "mzml",
 rtime_seconds = TRUE
)

How it works...
The first step is a straightforward data loading step that we've seen in previous recipes. We
use the openMSfile() function, which autodetects the input file type.

Step 2 is the key step; to create output, we need to make a header object and a peak list. So,
we use the header() and spectra() accessor functions to extract them from our mzdata
object. The output function will require a list, so if you only have one spectrum in the file,
use the list() function to wrap the spectra() function.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm
https://docs.oracle.com/goldengate/1212/gg-winux/GDRAD/java.htm

Proteomics from Spectrum to Annotation Chapter 6

[166]

The final step is to write the file; here, the first argument is the peak list, the second is the
name of the file to be created, and the third is the output format of your choice – you can
choose from mzml, mzxml, and mzdata. The final argument states whether the retention
times are coded in seconds; selecting FALSE sets the output to be written in minutes.

Matching spectra to peptides for verification
with protViz
Although most spectra/peptide matching is done in high throughput search engines, there
are times when you'd like to check the quality of competing ambiguous matches against
one another, or against a completely arbitrary sequence of interest. Running the whole
search engine pipeline is probably overkill, so, in this recipe, we'll look at a convenient
method to run a single spectrum against a single peptide sequence and get a plot of
congruence between theoretical ion sizes and those present in the spectrum.

Getting ready
For this recipe, all we need is the protViz package, the mzR package, and the MM8.mzml file
from the datasets/ch6 folder of this book's repository.

How to do it...
Matching spectra to peptides with protViz can be done by using the following steps:

Load in the libraries and the MS data:1.

library(mzR)
library(protViz)
mzml_file <- file.path(getwd(), "datasets", "ch6", "MM8.mzML")
ms <- openMSfile(mzml_file)

Extract the peaks and retention time from the spectrum:2.

p <- peaks(ms,2)
spec <- list(mZ = p[,1], intensity = p[,2])

Create a plot of theoretical versus observed ion masses:3.

m <- psm("PEPTIDESEQ", spec, plot=TRUE)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[167]

How it works...
In Step 1, we load the libraries and use the mzR function, openMSFile(), to create the object
representing the mass spectrometer data.

In Step 2, we use the peaks() function, which will extract the retention time and peak
intensity as a matrix object. Note that the first column contains the retention time, while the
second contains the intensity. The second argument to peaks() is the index of the
spectrum we want, so we're getting the second spectrum in this file. If this argument is
omitted, we get a list of all spectra. For the next step, we need to wrap the retention time
and intensity data in a list, which we do by using the list() function, with members
named mZ and intensity.

Finally, we can make the plot using the psm() function. This function takes a sequence as
its first argument (here, it's a nonsense one to guarantee a poor match) and the spectrum
data list we made previously as its second argument. By setting the plot argument to TRUE,
we get the following resulting plot:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[168]

In the plot, each point represents the difference between a predicted ion mass and the
nearest mass observed in the spectra. Here, we can see that the ions b8, b7, and c1 are all
around 1 Da, or more divergent in mass from any of the predicted masses, suggesting a
poor fit to the spectrum for this peptide sequence.

Applying quality control filters to spectra
Quality control of raw proteomics data is an essential step in ensuring that pipelines and
analyses give believable and useful results. A large number of metrics and plots of data are
needed to get a view of whether a particular experiment has been a success, and that means
carrying out a lot of analysis before we start to actually derive any new knowledge from the
data. In this recipe, we'll look at an integrated pipeline that carries out a wide range of
relevant and useful QC steps and presents the result as a single helpful and readable report.

Getting ready
In this recipe, we'll be examining an Escherichia coli cell membrane proteomics experiment.
This will require a large file that was too big to host in this book's repository, so we'll use
code to download it directly. Due to this, you will need to be online for this recipe to work.
We'll also need a file of the target organism peptides, that is,
the Escherichia_coli.pep.all.fa file, which can be found in the
datasets/ch6 folder of this book's repository. Our main functions will come from the
proteoQC library.

How to do it...
Quality control filters can be applied to spectra using the following steps:

Load the library and download the source data:1.

library(proteoQC)
online_file <-
"ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2017/11/PXD006247/CS_
130530_ORBI_EMCP2156_b2469_narQ_DDM_AmH_X_5.mzXML"

mzxml_file <- file.path(getwd(), "datasets", "ch6",
"PXD006247_mz.xml.gz")

download.file(online_file, mzxml_file, "internal")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[169]

Create a design file:2.

design_df <- data.frame(
 file = c(mzxml_file),
 sample = c(1),
 bioRep = c(1),
 techRep = c(1),
 fraction = c(1)
)
design_file <- file.path(getwd(), "datasets", "ch6",
"design_file.txt")
write.table(design_df, file = design_file, quote = FALSE, row.names
= FALSE)

Set up the QC pipeline and run the following command:3.

qc <- msQCpipe(
 spectralist = design_file,
 fasta = file.path(getwd(), "datasets", "ch6",
"Escherichia_coli.pep.all.fa"),
 outdir = file.path(getwd(), "qc_result"),
 enzyme = 1, varmod = 2, fixmod =1,
 tol = 10, itol = 0.6, cpu = 2,
 mode = "identification"
)

How it works...
After loading in the library in Step 1, we set up the URL to the file we want to pull over the
internet from http:/ /www. proteomexchange. org/ ; we're after just one file in accession
PXD006247, and we save the URL in the online_file variable. We also create
an mzmxl_file variable that points to a non-existent file, PXD006247_mz.xml.gzX, on our
local filesystem – this will be the saved name of the downloaded file. The
download.file() function actually does the downloading; the first argument is the online
source, while the second argument is the place to put the file on the local machine when it
downloads. The final argument, internal, is the download method to use. The setting
we've chosen should use a system-agnostic downloader that works anywhere, but you can
change this to other faster or more system-specific settings if you like. The documentation
will explain these options.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.proteomexchange.org/

Proteomics from Spectrum to Annotation Chapter 6

[170]

In Step 2, we create a design file that describes the experiment. In our small demo, we only
have one file, but you can specify many more here. In the first part, we create a
dataframe with the columns file, sample, bioRep, techRep, and fraction. We only have one
file, so the table only has one row. It looks like this:

file sample bioRep techRep fraction
PXD006247_mz.xml.gz 1 1 1 1

If you had a more complicated experiment, you'd have many more rows describing the
sample and bioRep, for example, for each file. We then save this file to disk for use in the
next step using write.table() along with the appropriate options. Note that although,
for the sake of demonstration, we've created this file programmatically, the file would be
equally valid if we'd created it by hand in a spreadsheet program or text editor.

Finally, we set up and run the QC pipeline in Step 3. The main function, msQCpipe(), is the
workhorse and needs a few option settings. The spectralist option needs the path to the
design file we created so that it knows which files to open and how to treat them. The
fasta option requires the file of the target organism protein sequences in fasta format.
This allows the QC pipeline to carry out spectral peptide identification using XTandem from
the rtandem package. The outdir argument gets the path to a new folder that will hold
the numerous report files that will be created. Here, our folder will be called qc_result,
and it will be a sub-directory of the current working directory. The arguments enzyme,
varmod, and fixmod describe the enzyme used for digest (1 = trypsin), the variable
modifications that may be present, and the fixed modifications that will be present on all
residues. The arguments tol and itol specify tolerances on peptide mass values and error
windows. The cpu argument specifies the compute cores to use on the source machine and
mode specifies the sort of run to do.

When the QC pipeline completes, we get a series of reports in the qc_result folder. The
qc_report.html file contains the browsable results of QC. The many pages describing the
results should allow you to see the extent to which the experiment was a success.

There's more...
To find the proper values for the enzyme, varmod, and fixmod variables, you can use the
showMods() and showEnzymes() functions to see a list and their key numbers.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[171]

Identifying genomic loci that match peptides
Finding the exact places on a genome that a peptide matches to can be a challenging task,
especially if the genome is one that is not represented by the original search file. In this
recipe, we'll look at mixing in a classic command-line BLAST recipe to find short, nearly
precise matches for peptides on a translated genome sequence to various R genomics
pipelines by targeting a GRanges object of the BLAST hits.

Getting ready
For this recipe, we'll use the MSnID, dplyr, withR, GenomicRanges, and
Biostrings packages and a search engine output file of Escherichia coli-derived spectra,
which can be found in the PXD006247.mzXML.mzid file in this book's
datasets/ch6 folder. You'll also need to have a locally installed version of BLAST+. You
can install this using the conda package manager with conda install -c bioconda
blast . You'll also need to know where the tblastn program from BLAST+ was installed.
You can find this on macOS and Linux systems with the Terminal command, which
tblastn, and on Windows.

How to do it...
Genomic loci that match peptides can be identified using the following steps:

Load in the libraries and the data:1.

library(MSnID)
library(dplyr)
library(Biostrings)

msnid <- MSnID() # create object
msnid <- read_mzIDs(msnid, file.path(getwd(), "datasets", "ch6",
"PXD006247.mzXML.mzid"))

peptide_info <- as(msnid, "data.table") %>%
 filter(isDecoy == FALSE) %>%
 select(spectrumID, pepSeq,) %>%
 mutate(fasta_id = paste0(spectrumID, ":", 1:length(spectrumID)))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[172]

Extract the peptide sequence and save it as a fasta file:2.

string_set <- AAStringSet(peptide_info$pepSeq)
names(string_set) <- peptide_info$fasta_id
writeXStringSet(string_set[1], file.path(getwd(), "datasets",
"ch6", "peptides.fa"))

Prepare the filenames for the BLAST run:3.

input_seqs <- file.path(getwd(), "datasets", "ch6", "peptides.fa")
genome_seqs <- file.path(getwd(), "datasets", "ch6",
"ecoli_genome.fasta")
output_blast <- file.path(getwd(), "datasets", "ch6", "out.blast")

Prepare the BLAST command:4.

command <- paste0(
 "tblastn",
 " -query ", input_seqs ,
 " -subject ", genome_seqs,
 " -out ", output_blast,
 " -word_size 2 -evalue 20000 -seg no -matrix PAM30 -
comp_based_stats F -outfmt 6 -max_hsps 1"
)

Run BLAST as a background process:5.

library(withr)
with_path("/Users/macleand/miniconda2/bin", system(command, wait =
TRUE))

Convert BLAST into GFF and GRanges:6.

results <- read.table(output_blast)

blast_to_gff <- function(blst_res){
 blst_res %>%
 mutate(
 seqid = V2,
 source = rep("tblastn", length(V1)),
 type = rep(".", length(V1)),
 start = V9,
 end = V10,
 score = V3,
 strand = rep(".", length(V1)),
 phase = rep(".", length(V1)),
 attributes = paste("Name=",V1)
) %>%

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[173]

 select(- starts_with("V"))
}

gff_df <- blast_to_gff(results)

library(GenomicRanges)
granges<-makeGRangesFromDataFrame(gff_df)

How it works...
Step 1 loads the libraries and uses the MSnID package to load the data into an object that we
then process using a dplyr pipeline, as described in Step 2 of Recipe 3 in this chapter. Look
there for an in-depth explanation of this sort of syntax if you're not familiar with it. Briefly,
even though the pipeline removes rows that are decoys, it keeps only the spectrumID and
pepSeq columns and adds a new column called fasta_id, which pastes the spectrum ID
as a unique number. The resulting data frame is saved to the peptide_info variable.

Step 2 creates a Biostrings object from the peptide_info$pepSeq column using the
peptide_info$fasta_id column for the names with the names() function. The resulting
string_set BioStrings object is then written to disk in a fasta format file with the name
peptides.fa using the writeXStringSet() function. Note the index [1] on the end of
string_set; this is a small hack to make sure only the first peptide is written. We want
this only because this is a demonstration and we want the code to complete in a short
amount of time. For a genuine analysis, you can leave the index completely and write all
the sequences to disk.

In Step 3, we just set up the filenames for the input and output files for the BLAST run. Note
that the reference genome we map to ecoli_genome.fasta will be in the
datasets/ch6 folder of this book's repository .

In Step 4, we specify the BLAST command, while the code here is a simple pasting of
variables and text to make one long character string that we save in the command. This is
worth looking at in some detail. The first lines specify the BLAST+ program to run;
here, tblastn, which uses protein inputs and a translated nucleotide database. The next
three lines specify the input peptide sequences, the reference genome against which to
BLAST, and the output file in which we save the results. The final long lines specify the
BLAST+ options that allow for short, nearly precise matches. With these particular options
set, BLAST runs can take a while, so it's a good idea to run just one sequence while you're
developing.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proteomics from Spectrum to Annotation Chapter 6

[174]

In Step 5, with the BLAST command specified, we can run the actual BLAST. Our main
function here is the base R function, system(), which will run a system command in the
background. However, to help this function be portable across systems, we are using the
withR library function with_path(), which temporarily adds a particular folder to the
system's PATH – a list of folders that contain programs. This step is necessary because
sometimes, R and RStudio don't pick up non-standard install locations like those used by
the conda package manager. Hence, the first argument here is the path to the tblastn
folder. Note that /Users/macleand/miniconda2/bin is the path on my machine; you'll
need to get the value for your machine using something like which tblastn on the
terminal or command line and substitute that. Once that path is added by with_path(), it
will run its second argument, our system() function, which, in turn, runs BLAST. The
actual running of the BLAST program will take some time.

Once the command completes, in Step 6, we start by loading the output file made by BLAST
into the results variable using the read.table() function. We then create a custom
function to convert the rows of results to a GFF-compatible table. The
blast_to_gff() function uses the dplyr mutate() function to add the relevant
columns, and then it uses the select() function with the - option to select columns
not beginning with the letter V, which all the original columns did. We can now use the
GenomicRanges function, makeGRangesFromDataFrame(), to convert our GFF style
dataframe into a GRanges object. This is the final part, and we now have an object of
genomic loci that matches peptides that can be used in all the standard genomics pipelines
in R and that are used in the genomics recipes in this book.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Producing Publication and
Web-Ready Visualizations

Designing and producing publication-quality visualizations is a key task and one of the
most rewarding things bioinformaticians gets to do with data. R is not short of excellent
packages for creating graphics, that is, beyond the powerful base graphics system and
ggplot2. In the recipes in this chapter, we'll look at how to create plots for many different
data types that aren't of the typical bar/scatter plot type. We'll also look at networks,
interactive and 3D graphics, and circular genome plots.

The following recipes will be covered in this chapter:

Visualizing multiple distributions with ridgeplots
Creating colormaps for two-variable data
Representing relational data as networks
Creating interactive web graphics with plotly
Constructing three-dimensional plots with plotly
Constructing circular genome plots of polyomic data

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[176]

Technical requirements
The sample data you'll need for this chapter is available in this book's GitHub
repository: https:/ /github. com/ danmaclean/ R_Bioinformatics_ Cookbook. If you want to
use the code examples as they are written, then you will need to make sure that the data is
in a subdirectory of your working directory.

Here are the R packages that you'll need. You can install them with
install.packages("package_name"). The packages listed under Bioconductor need
to be installed with a dedicated installer, which is also described in this section. If you need
to do anything else, the installation steps will be described in the recipes in which the
packages are used:

circlize

dplyr

ggplot2

ggridges

gplots

plotly

RColorBrewer

readr

magrittr

tidyr

viridis

Bioconductor is huge and has its own installation manager. You can install the manager
with the following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")

Then, you can install the packages with the following code:

BiocManager::install("package_name")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook

Producing Publication and Web-Ready Visualizations Chapter 7

[177]

Further information is available at https:/ /www. bioconductor. org/
install/ .

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions, but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

Sometimes, in the middle of a recipe, I'll interrupt the flow of code so that
you can see some intermediate output or the structure of an object that's
important to understand. Whenever that happens, you'll see a code block
where each line begins with ## double hash symbols. Consider the
following command:

letters[1:5]

This will give us the following output:

a b c d e

 Note that the output lines are prefixed with ##.

Visualizing multiple distributions with
ridgeplots
Visualizing distributions of some measured quantity is an extremely common task in
bioinformatics, and one that base R handles admirably with its hist() and density()
functions and the generic plot() methods, which can create plots of the objects. The
ggplot graphics system has a neat way of plotting many density graphs in a per factor
level manner, resulting in a compact and very readable graphic—a so-called ridgeplot. In
this recipe, we'll look at how to create a ridgeplot.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Producing Publication and Web-Ready Visualizations Chapter 7

[178]

Getting ready
In this recipe, we'll use the ggplot and ggridges packages. For the dataset, we'll use one
from the datasets package that usually comes preinstalled with R. We're going to use the
airquality data. You can see this if you type airquality straight into the R console.

How to do it...
Visualizing multiple distributions with ridgeplots can be done using the following steps:

Load the libraries:1.

library(ggplot2)
library(ggridges)

Build a ggplot description:2.

ggplot(airquality) + aes(Temp, Month, group = Month) +
geom_density_ridges()

Explicitly make Month a factor:3.

ggplot(airquality) + aes(Temp, as.factor(Month)) +
geom_density_ridges()

Color the ridges:4.

ggplot(airquality) + aes(Temp, Month, group = Month, fill = ..x..)
+
 geom_density_ridges_gradient() +
 scale_fill_viridis(option = "C", name = "Temp")

Reshape the dataframe and add facets:5.

library(tidyr)
airquality %>%
 gather(key = "Measurement", value = "value", Ozone, Solar.R,
Wind, Temp) %>%
 ggplot() + aes(value, Month, group = Month) +
 geom_density_ridges_gradient() +
 facet_wrap(~ Measurement, scales = "free")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[179]

How it works...
After loading the libraries we needed in Step 1, in Step 2, we created a standard ggplot
description using the geom_ridges() function from the ggridges package. If you haven't
seen a ggplot plot before, they're very straightforward. A ggplot plot has three layers, built
up using at least three functions—the ggplot() function is always the first and allows us
to specify the dataset. The next, which is added on top with the + operator, is the
aes() function or aesthetic function, which we can think of as being the things we want to
see in the plot. The first argument represents the thing on the x axis, while the second
argument represents the thing on the y axis. The group = Month argument is specific to
the ridgeplot and tells the plotting function how to group data points. It is needed here
since the Month data is numeric, not a factor. Finally, we add geom_density_ridges() to
create the right sort of plot.

In Step 3, we followed the same sort of procedure as Step 2, but this time, as an alternative,
we use as.factor(Month), which explicitly converts the Month data into a factor before
processing and rendering the group. This deems the Month step unnecessary. The plots
from these steps look as follows, with Step 2 on the left and Step 3 on the right:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[180]

In Step 4, we added color to the ridges. Essentially, the ggplot construction is the same,
except it has the addition of fill = ..x.. in the aes() function, which tells the plot that
color should be filled in the x axis direction. We then use a slightly different geom
function, geom_density_ridges_gradient(), which is capable of coloring its ridges. In
the last new layer, with scale_fill_viridis(), we chose a color scale from the viridis
color scale library (loaded at the top). The "C" option specifies the particular color scale,
while name specifies the name for the scale. The resulting plot looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[181]

Finally, in Step 5, we split the data by a further dimension and added facets containing
different aspects of the same dataset in the same style of plot. The airquality data needs
to be preprocessed a little for this to be possible. We load the tidyr package and use the
gather() function to take the values named columns (specifically Ozone, Solar.R, Wind,
and Temp) into a single column called value and add a new column called Measurement
that records the original column that the observation came from. Then, we pipe the result
into ggplot(). The construction is nearly identical to before (note that our x axis is now
value, not Temp, as this is where the temperatures are stored in the reshaped dataframe),
with the addition of the facet_wrap() function at the end, which uses formula notation to
select the subsets of the data to display in individual facets. The option scales are "free"
and allow each of the resulting facets to have their own scales. The result is as follows:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[182]

Creating colormaps for two-variable data
Colormaps, also known as heatmaps, are plots of two-dimensional matrices in which the
numeric values are converted into a color at a particular scale. There are numerous various
ways in which we can plot these in R; most graphics packages have some way of doing this.
In this recipe, we'll use the base package's heatmap() function to visualize some matrices.

Getting ready
We'll need just the ggplot packages, as well as the built-in WorldPhones dataset.

How to do it...
Creating colormaps for two-variable data can be done using the following steps:

Create a basic heatmap:1.

heatmap(WorldPhones)

Remove the dendrogram:2.

heatmap(WorldPhones, Rowv = NA, Colv = NA)

Add a color scale to the groups:3.

cc <- rainbow(ncol(WorldPhones), start = 0, end = .3)

heatmap(WorldPhones, ColSideColors = cc)

Change the palette:4.

library(RColorBrewer)
heatmap(WorldPhones, ColSideColors = cc,
 col = colorRampPalette(brewer.pal(8, "PiYG"))(25))

Rescale the data:5.

heatmap(WorldPhones, ColSideColors = cc, scale = "column")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[183]

How it works...
In Step 1, we passed the base heatmap() function a matrix, which returns a plot that looks
like this:

In Step 2, we used the Rowv and Colv arguments to remove the dendrogram. Note that, in
the resulting plot, the columns are in the same order as in the matrix. By using the
dendrograms, we can rearrange the columns and rows. The treeless plot looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[184]

In Step 3, we created a palette object using the rainbow() function, which returns the
colors for a plot. The first argument to rainbow() is the number of colors. Here, we are
using ncol(WorldPhones) to get one color per column for the dataset. The start and end
arguments specify where to start and end the color selection in the rainbow. We can then
use the CC palette object in the ColSideColors argument to get a color key for the
columns. We can use more similar columns to get more similar colors, as follows:

In Step 4, we provided a palette object to the col argument to change the overall palette of
the heatmap. We used the colorRampPalette() function to make a sequential palette
from a smaller list of specific colors. This will interpolate the colors to make a full palette.
We passed colorRampPalette() the RColorBrewer package function known as
brewer.pal(), which, with the provided options, will return eight colors from the pink-
yellow-green (PiYG) pallete. The resulting heatmap is colored like so:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[185]

Finally, in Step 5, we applied a numeric transformation to the data within the visualization
step. We use the scale option of heatmap() to normalize the data in the plot. Note that
setting the value to column does this column-wise while setting it to row does this row-
wise. The default base package scale() function is used for this. Rescaling the numbers in
the plot is what is responsible for the color change, and is not the result of a direct selection
from a palette. The plot is as follows:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[186]

See also
The heatmap() function has been followed up by other packages that follow a similar
syntax but extend its capabilities. Try heatmap.2() and heatmap.3() in the
gplots package. A heatmap.2() plot can be seen in the following histogram. It's very
similar to heatmap(), but has an added color key and histogram plot by default:

Representing relational data as networks
Networks, or graphs, are extremely powerful data representations for relationships
between entities that are central to a large number of biological studies. Network analysis
can reveal a lot about community structures in ecological studies, reveal potential drug
targets in protein-protein interactions, and help us understand the interactions involved in
complex metabolic reactions. The underlying data structures that represent networks can be
complex. Thankfully, R has got some very powerful packages, in particular, igraph and
ggraph, that we can use to access information about our networks and make plots. In this
recipe, we'll look at some ways of generating plots for a reasonably sized network.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[187]

Getting ready
In this recipe, we'll need the ggraph and igraph packages and dependencies, including
magrittr, readr, and dplyr. We'll need the bio-DM-LC.edges file from the
datasets/ch7 folder of this book repository. This is a file that contains some gene
functional associations from WormNet. The network contains ~1,100 edges and ~650 nodes.
You can read more about the data here: http:/ /networkrepository. com/bio- DM- LC.php.

How to do it...
Representing relational data as networks can be done using the following steps:

Load the packages and prepare the dataframe:1.

library(ggraph)
library(magrittr)

df <- readr::read_delim(file.path(getwd(), "datasets", "ch7", "bio-
DM-LC.edges"),
 delim = " ",
 col_names = c("nodeA", "nodeB", "weight"))
%>%
 dplyr::mutate(edge_type = c("A","B"), length(weight), replace
= TRUE))

Create an igraph object and use it in a basic plot:2.

graph <- igraph::graph_from_data_frame(df)

ggraph(graph, layout = "kk") +
 geom_edge_link() +
 geom_node_point() +
 theme_void()

Color the edges according to their value or type:3.

ggraph(graph, layout = "fr") +
 geom_edge_link(aes(colour = edge_type)) +
 geom_node_point() +
 theme_void()

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php
http://networkrepository.com/bio-DM-LC.php

Producing Publication and Web-Ready Visualizations Chapter 7

[188]

Add the node attributes and color nodes accordingly:4.

igraph::V(graph)$category <- sample(c("Nucleus", "Mitochondrion",
"Cytoplasm"), length(igraph::V(graph)), replace = TRUE)
igraph::V(graph)$degree <- igraph::degree(graph)

ggraph(graph, layout = "fr") +
 geom_edge_link(aes(colour = edge_type)) +
 geom_node_point(aes(size = degree, colour = category)) +
 theme_void()

How it works...
In Step 1, we loaded the libraries we needed and then prepared the dataframe from the file
of edges. The input file is basically an edge list. Each row describes a connection with one of
the target nodes in the first column and one in the second. The third column contains a
value representing the strength of the interaction between those two nodes, which we'll
think of as an edge weight. The fields are separated by a single space and the file has no
header with column names. As such, we set the values of the delim and col_names
arguments appropriately. We pipe the dataframe to the dplyr::mutate() function to add
an extra column called edge_type. In this column, we randomly assign either "A" or "B"
to each row using the sample() function. The resulting object is saved in the df variable.

In Step 2, we created the igraph object from df using the
igraph::graph_from_data_frame() function and saved it to the graph variable. We
passed the igraph graph object as the first object to the ggraph() function, which works
analogously to ggplot(). It takes the graph object and a layout argument. (Here, we use
"kk", but the exact one to use will be heavily dependent on the data itself.) Then, we added
layers with the + operator. First, we added the geom_edge_link() layer, which draws the
edges, then geom_node_point(), which draws the nodes, and finally, we
add theme_void(), which removes the background gray panel and white lines and leaves
a clear background for the network. The initial plot looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[189]

In Step 3, we added some data-based customizations. We started by changing the layout
algorithm to "fr", which gives a nicer and more spread out view. Then, we used the
aes() function in geom_edge_link() to set the edge color to be mapped to the
edge_type value. The remaining layers were added like they were previously. By doing
this, we get the following plot:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[190]

In Step 4, we set up some attributes for the nodes. This is simpler than it looks. The V()
function from igraph returns a simple vector of the node IDs in the graph object (nodes
are called vertices in igraph jargon), so we calculate the length of the vector and use it to
make a random vector of the Nucleus, Mitochondrion, and Cytoplasm values. We can
then assign these new values to the nodes by using the V() function with $ indexing. We
can create any attribute we like, so igraph::V(graph)$category creates a new attribute
called category. We can assign the new values straight to the attribute using the standard
<- assignment operator. The next step is similar; igraph::V(graph)$degree creates an
attribute called degree. In our case, we assign the result of the igraph::degree()
function. Degree is the graph jargon term for the number of edges that meet at a node. We
now have new attributes and can color our graph accordingly. The ggraph() construction
proceeds as it did previously, but in the geom_node_point() layer, we use aes() to map
color to our new category attribute and size to our new degree attribute. The resulting plot
looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[191]

There's more...
Hive plots are a nice way of plotting networks, especially when you have three node types
or some sort of directional structure. You can create a hive plot out of the same sort of data
we already have, like so:

ggraph(graph, 'hive', axis = 'category') +
 geom_edge_hive(aes(colour = edge_type, alpha = ..index..)) +
 geom_axis_hive(aes(colour = category)) +
 theme_void()

Here, we set up the layout type to be hive and specify the attribute on which to make the
axis category. The edge description in geom_edge_hive() is pretty much like it was
previously, with an alpha argument called ..index.. that adds a transparency element to
the edges based on how early they are plotted. The geom node is replaced with
geom_axis_hive(), in which we use aes() to map a color to the category. The resultant
plot looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[192]

Creating interactive web graphics with plotly
Exploring a dataset interactively through a graphical user interface can be a rewarding and
enlightening way to analyze and interrogate data. Dynamically adding and removing data
from a plot, zooming in and out of specific parts, or allowing the plot to change with time-
dependent on underlying data can allow us to see trends and features we could not see
with static plots. In this recipe, we'll look at using the plotly library to create interactive
graphics in R, building up from a basic plot to a more involved one.

Getting ready
In this recipe, we'll use the built-in Orange data, which describes changes in the
circumference of orange trees' trunks over time. This is part of the (usually) preinstalled
datasets package, so you should be able to access it straight away.

How to do it...
Creating interactive web graphics with plotly can be done using the following steps:

Load the library and make a basic plot:1.

library(plotly)
plot_ly(data = Orange, x = ~age, y = ~circumference)

Map the color and size of markers and hover over text to data:2.

plot_ly(data = Orange, x = ~age, y = ~ circumference,
 color = ~Tree, size = ~age,
 text = ~paste("Tree ID: ", Tree, "
Age: ", age, "Circ:
", circumference)
)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[193]

Add a second series/trace:3.

trace_1 <- rnorm(35, mean = 120, sd = 10)
new_data <- data.frame(Orange, trace_1)

plot_ly(data = new_data, x = ~age, y = ~ circumference,
 color = ~Tree, size = ~age,
 text = ~paste("Tree ID: ", Tree, "
Age: ", age, "Circ:
", circumference)
) %>% add_trace(y = ~trace_1, mode = 'lines') %>%
 add_trace(y = ~circumference, mode = 'markers')

Add a drop-down menu so that you can select the plot type:4.

plot_ly(data = Orange, x = ~age, y = ~ circumference,
 color = ~Tree, size = ~age,
 text = ~paste("Tree ID: ", Tree, "
Age: ", age, "Circ:
", circumference)

) %>%
 add_trace(y = ~circumference, mode = 'marker') %>%
 layout(
 title = "Plot with switchable trace",
 updatemenus = list(
 list(
 type = "dropdown",
 y = 0.8,
 buttons = list(
 list(method = "restyle",
 args = list("mode", "markers"),
 label = "Marker"
),
 list(method = "restyle",
 args = list("mode", "lines"),
 label = "Lines"
)
)
)
)
)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[194]

How it works...
After loading the library in Step 1, we used the core plot_ly() function to create the
simplest plot possible. We passed plot_ly() the name of the dataframe, and the columns
for the x and y axes as formulae—hence the ~ sign. At this point, we haven't explicitly
specified the trace type, what plotly calls its series or data tracks, so it guesses and makes
a scatter plot, as shown in the following graph:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[195]

Note the menu icons at the top of the plot and the hover text that appears when you mouse
over a data point. These figures can be interacted with perfectly well within an interactive R
session but are better suited to HTML-based documents such as compiled R markdown.

In Step 2, we mapped the features in the plot to aspects of the data. We set the size and color
to map to the Tree ID and age columns, again as a formula with the ~ syntax. We also set
the hover text for each point and used paste() to compile the exact format. Note that the
hover text is HTML-based and that we can use tags such as
 to format the hover as we
choose. Our plot is now improved to look like the following:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[196]

In Step 3, our major change is to explicitly specify the trace data. To highlight that traces can
carry data outside of the original dataframe, we created a new data vector called trace_1
using rnorm(), which contains 35 random numbers with a mean of 120 and a standard
deviation of 1. We created our plot in the same way as we created the plot in Step 2, but this
time we used the magrittr pipe to send the plot object to the add_trace() function.
Here, we pass the new trace_1 object as our y value and set mode to "lines" to get a line
graph. Again, we piped that to another add_trace() function (we can build up a plot
from multiple trace series in this way), but this time used the original dataframe column
circumference and set mode to "markers". The resulting plot looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[197]

In Step 4, we introduced menus into our plot. The menu we implemented will allow us to
switch between trace types—from lines to markers and back. The step started with the
same basic call to plot_ly() and then piping to just one trace this time. Next, we piped to
the layout function, which takes a plot title in the title argument and a complicated list
of options for the updatemenus argument. You must pass a list of lists to updatemenus
that has three members – type, y, and buttons. type sets the type of menu—in this
case, we want a dropdown; y sets the position of the menu on the y axis as a value between
0 and 1, and buttons requires another list of lists in which each sublist describes a menu
option. Each sublist has the members method, as well as args and labels. The setting
method is used to "restyle", which means the plot will update on menu selection. The
args member requires another list specifying the "mode" and "type" for the current menu
option. Finally, label specifies the text that will appear in the menu itself for this menu
option. The plot looks as follows when we select Marker in the dropdown, which renders
on the left:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[198]

Constructing three-dimensional plots with
plotly
Most plots we generate in bioinformatics are static and stuck in a two-dimensional plane,
but modern web technologies allow us to interact with three-dimensional objects with
dynamic rendering. The plotly library has tools for rendering different kinds of 3D plots
and in this recipe, we'll look at how to construct a 3D surface plot and a scatter plot with x,
y, and z axes.

Getting ready
In this recipe, we'll use the plotly library again and the built-in longley dataset of
economic data.

How to do it...
Constructing three-dimensional plots with plotly can be done using the following steps:

Set up the data objects:1.

library(plotly)

d <- data.frame(
 x <- seq(1,10, by = 0.5),
 y <- seq(1,10, by = 0.5)
)

z <- matrix(rnorm(length(d$x) * length(d$y)), nrow = length(d$x),
ncol = length(d$y))

Create the basic surface plot:2.

plot_ly(d, x = ~x , y = ~y, z = ~z) %>%
 add_surface()

Add a reactive contour plot layer:3.

plot_ly(d, x = ~x , y = ~y, z = ~z) %>%
 add_surface(
 contours = list(
 z = list(
 show=TRUE,

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[199]

 usecolormap=TRUE,
 highlightcolor="#ff0000",
 project=list(z=TRUE)
)
)
)

How it works...
In Step 1, we begin by building a dataset that's appropriate for the type of plot. For the
surface 3D plot, we need a dataframe of x and y coordinates, which we create directly using
data.frame() and save in a variable called d. The dataframe, d, contains a sequence of 20
values between 0 and 10 in the x and y columns (10 values each). You should think of this
dataframe as specifying the width and length of the 3D field, and not the actual data values.
The data values come in a distinct matrix object with the dimensions specified by the
dataframe. We created a matrix of appropriate dimension using the matrix() function
with random normal values from the rnorm() function. Once we have these two
structures, we can use them in plot_ly() while specifying d, x, and y, like we did for two-
dimensional plots, and with the new z axis, which gets our matrix. The result is piped to the
add_surface() function, which renders the data as a three-dimensional surface. The plot
will look something like the following:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[200]

Note that by clicking and dragging within the plot area, you can adjust the
camera view.

In Step 2, we elaborate on the plot by adding a reactive contour plot under (or over) the 3D
surface. We used the contours option in the add_surface() function. This takes a list of
options. The first z specifies what to do with the contour. It takes a further list with
members to control the appearance of the contour map, the most important being
highlightcolor, which specifies the color to draw onto the contour plot to show the
current level of the 3D plot the mouse is hovering over. The rendered image looks
something like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[201]

In Step 3, we changed tack and drew a scatter plot in three dimensions. This is more
straightforward. We passed the Longley data to the plot_ly() function, along with the
dimensions and the data columns to map to. We also added a marker option to map color
to the GNP column. Finally, we piped the basic plot object to the add_markers() function
to get the final plot, which renders like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[202]

Constructing circular genome plots of
polyomic data
A whole genome analysis of multiple data series is often presented in a circular manner
with concentric circles, each showing different kinds of data with a different representation
in each. These plots, called Circos plots, are extremely powerful and can show a lot of dense
information in a compact form. In this recipe, we'll look at constructing such plots in R from
common genomics data files.

Getting ready
To make Circos plots, we'll use the circlize package and the four files prefixed with
arabidopsis in the datasets/ch7/ folder of this book's repository.

How to do it...
Constructing circular genome plots of polyomic data can be done using the following steps:

Load the library and read the chromosome length information:1.

library(circlize)
df <- readr::read_tsv(file.path(getwd(), "datasets", "ch7",
"arabidopsis.gff"), col_names = FALSE) %>%
 dplyr::select(X1, X4, X5)

Initialize the plot and chromosome track, and then add links:2.

circos.genomicInitialize(df)
circos.link("Chr4", c(9000000, 1200000),
 "Chr5", c(12000000,15000000),
 col = "red")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[203]

Load in link information from the file and draw it:3.

circos.clear()

source_links <- read.delim(file.path(getwd(), "datasets", "ch7",
"arabidopsis_out_links.bed"), header = FALSE)
target_links <- read.delim(file.path(getwd(), "datasets", "ch7",
"arabidopsis_in_links.bed"), header = FALSE)

circos.genomicInitialize(df)
circos.genomicLink(source_links, target_links, col = "blue")

Load in the gene positions and add a density track:4.

circos.clear()

gene_positions <- read.delim(file.path(getwd(), "datasets", "ch7",
"arabidopsis_genes.bed"), header = FALSE)
circos.genomicInitialize(df)
circos.genomicDensity(gene_positions, window.size = 1e6, col =
"#0000FF80", track.height = 0.1)

Load in the heatmap data. Then, add a heatmap track:5.

circos.clear()

heatmap_data <- read.delim(file.path(getwd(), "datasets", "ch7",
"arabidopsis_quant_data.bed"), header = FALSE)

col_fun = colorRamp2(c(10, 12, 15), c("green", "black", "red"))
circos.genomicInitialize(df)
circos.genomicHeatmap(heatmap_data, col = col_fun, side = "inside",
border = "white")

Combine the tracks:6.

circos.clear()

circos.genomicInitialize(df)
circos.genomicHeatmap(heatmap_data, col = col_fun, side = "inside",
border = "white")
circos.genomicDensity(gene_positions, window.size = 1e6, col =
"#0000FF80", track.height = 0.1)
circos.genomicLink(source_links, target_links, col = "blue")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[204]

How it works...
In Step 1, we begin by reading in the arabidopsis.gff file, a file that describes the lengths
of the chromosomes we'd like to use in our plot. We only needed the name, start, and end
columns, so we piped the data to the dplyr::select() function to keep the appropriate
columns, that is, X1, X4, and X5. As a .gff file has no column headings, the read_tsv()
functions give the column names X1 ... Xn. We saved the result in the df object.

In Step 2, we started building the plot. We used the circos.genomicInitialize()
function with df to create the plot's backbone and coordinate system and then manually
added a single link. The circos.link() function allows us to create a single origin and
destination using the chromosome's name, c(start, end) format, thereby coloring the link in
the requested color. The plot currently looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[205]

At the start of Step 3, we used circos.clear() to completely reset the plot. Resetting is
only necessary for the purposes of this tutorial as we want to build things step-wise; you
can likely ignore it in your own coding. The next stage is to load in a file of genomic regions
that represent the source of some links and a separate file of genomic regions that represent
the target of some links. These two files should be in BED format and row N in the source
file must correspond to row N in the target file. Then, we reinitialized the plot with
circos.genomicInitialize() and used circos.genomicLink() to add many links in
one command, passing it the objects of the source link data and the target data before
coloring them all blue. The plot looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[206]

In Step 4, after clearing the plot, we read in another BED file of gene positions from
arabidopsis_genes.bed. We want to add this information as a density track that counts
the number of features in the windows of user-specified length and plots them as a density
curve. To do this, we use the circos.genomicDensity() function, passing it the
dataframe of gene_positions, selecting a window size of 1 million, a color (note the color
is in the eight-digit HEX format that allows us to add transparency to the color),
and track.height, which specifies the proportion of the plot to use for this track. The
track looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[207]

In Step 5, we added a more complex track—a heatmap that can represent many columns of
quantitative data. The file format here is extended BED format, with a chromosome name,
start, and end with data in any further columns. We have three extra columns of data in our
sample arabidopsis_quant_data.bed file. We load the bed file into heatmap_data
with read.delim(). Next, we created a color function and saved it as col_fun to help
draw the heatmap. The colorRamp2() function takes a vector of the minimum, middle,
and maximum values of the data as its argument, for which the colors specified in the
second argument should be used. So, with 10, 12, and 15 and green, red, and black, we
drew 10 in green, 12 in black, and 15 in red, respectively. The colors for the values in-
between those points are calculated automatically by colorRamp2(). To draw the
heatmap, we used the circos.genomicHeatmap() function, passing col_fun to the col
argument. The side argument specifies whether to draw inside or outside the circle, while
the border argument specifies the color of the lines between heatmap elements. The plot
looks like this:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Producing Publication and Web-Ready Visualizations Chapter 7

[208]

Finally, in Step 6, we put all of this together. By clearing and reinitializing the plot, we
specified the order of the tracks from outside to in by calling the relevant functions in
outside first to inside last order:

The final plot, as seen in the preceding image, gets circos.genomicHeatmap(),
then circos.genomicDensity(), and then circos.genomicLink() to give us the
circular genome plot.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Working with Databases and

Remote Data Sources
Large-scale model organism sequencing projects, such as the Human Genome Project
(HGP), or the 1,001 plant genomes sequencing projects have made a huge amount of
genomics data publicly available. Likewise, open access data sharing by individual
laboratories has made the raw sequencing data of genomes and transcriptomes widely
available, too. Working with this data programmatically can mean having to parse or bring
locally some seriously large or complicated files. As such, much effort has gone into making
these resources as accessible as possible through APIs and other queryable interfaces, such
as BioMart. In this chapter, we'll look at some recipes that will allow us to search for
annotations without having to download whole genome files and find relevant information
across databases. We'll look at how to pull raw reads from experiments from within your
code and take the opportunity to look at how to apply quality control to this downloaded
data.

The following recipes will be covered in this chapter:

Retrieving gene and genome annotations from BioMart
Retrieving and working with SNPs
Getting gene ontology information
Finding experiments and reads from SRA/ENA
Performing quality control and filtering on high-throughput sequence reads
Completing read-to-reference alignment with external programs
Visualizing quality control plots of read-to-reference alignments

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[210]

Technical requirements
The sample data you'll need is available from this book's GitHub repository at https:/ /
github.com/PacktPublishing/ R- Bioinformatics- Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is in a sub-
directory of whatever your working directory is.

Here are the R packages that you'll need. In general, you can install these
with install.packages("package_name"). The packages listed under Bioconductor
need to be installed with the dedicated installer. That's described as follows in this section.
If you need to do anything further, installation will be described in the recipes in which the
packages are used:

Bioconductor

biomaRt

ramwas

ShortRead

SRAdb

Bioconductor is huge and has its own installation manager. You can install the manager
with the following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")

Then, you can install the packages with this code:

BiocManager::install("package_name")

 Further information is available at https:/ /www. bioconductor. org/
install/ .

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Working with Databases and Remote Data Sources Chapter 8

[211]

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see
some intermediate output or the structure of an object that's important to
understand. Whenever that happens, you'll see a code block where each
line begins with ## (double hash) symbols. Consider the following
command:
letters[1:5]

This will give us the following output:

a b c d e

 Note that the output lines are prefixed with ##.

Retrieving gene and genome annotation
from BioMart
Once a draft of a genome sequence is prepared, a lot of bioinformatics work goes into
finding the genes and other functional features or important loci that are in a genome.
These annotations are numerous, difficult to perform and verify, typically take lots of
expertise and time, and are not something we would want to repeat. So, genome project
consortia will typically share their annotations in some way, often through public databases
of some sort. BioMart is a common data structure and API through which annotation data
is made available. In this recipe, we'll look at how to programmatically access such
databases so we can get annotations for genes that we are interested in.

Getting ready
For this recipe, we need the Bioconductor package called biomaRt and a working
internet connection. We'll also need to know the BioMart server to connect to—there are
about 40 worldwide, providing information about all sorts of things. The most widely
accessed are the Ensembl databases and these are the default in these packages. You can see
a list of all of the BioMarts here: http:/ / www.biomart. org/ notice. html. The code we'll
develop will apply to any of these BioMarts with a little modification of table names and
URLs, as appropriate.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html
http://www.biomart.org/notice.html

Working with Databases and Remote Data Sources Chapter 8

[212]

How to do it...
Retrieving gene and genome annotation from BioMart can be done using the following
steps:

List marts in the selected example database—gramene:1.

library(biomaRt)
listMarts(host = "ensembl.gramene.org")

Create a connection to the selected mart:2.

gramene_connection <- useMart(biomart = "ENSEMBL_MART_PLANT", host
= "ensembl.gramene.org")

List datasets in that mart:3.

data_sets <- listDatasets(gramene_connection)
head(data_sets)

data_set_connection <- useMart("atrichopoda_eg_gene", biomart =
"ENSEMBL_MART_PLANT", host = "ensembl.gramene.org")

List the datatypes we can actually retrieve:4.

attributes <- listAttributes(data_set_connection)
head(attributes)

Get a vector of all chromosome names:5.

chrom_names <- getBM(attributes = c("chromosome_name"), mart =
data_set_connection)
head(chrom_names)

Create some filters to query data:6.

filters <- listFilters(data_set_connection)
head(filters)

Get gene IDs on the first chromosome:7.

first_chr <- chrom_names$chromosome_name[1]
genes <- getBM(attributes = c("ensembl_gene_id", "description"),
filters = c("chromosome_name"), values = c(first_chr), mart =
data_set_connection)head(genes)
head(genes)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[213]

How it works...
The recipe revolves around doing a series of different lookups on the database, each time
receiving a little more information to work with.

In Step 1, we use the listMarts() function to get a list of all of the BioMarts available at
the specified host URL. Change the URL as appropriate when you want to connect to a
different server. We get a dataframe of the available marts and use that information.

In Step 2, we create a connection object called gramene_connection with the useMart()
function, passing in the server URL and the specific BioMart from Step 1.

In Step 3, we pass gramene_connection to the listDatasets() function to retrieve the
datasets in this biomart. Having selected one of the datasets (atrichopda_eg_gene), we
can run the useMart() function to create a connection to the datasets in that biomart,
naming the object data_set_connection.

In Step 4, we're nearly done working out which datasets we can use. Here, we use
data_set_connection, which we created in the listAttributes() function, to get a list
of the types of information we can retrieve from this dataset.

At Step 5, we finally get some actual information with the main function, getBM(). We set
the attributes argument to the names of the data we want to get back; here, we get all
values for chromosome_name and save them in a vector, chrom_names.

In Step 6, we set up filters—the restrictions on which values to receive. We first ask the
data_set_connection object which filters we can use with the listFilters() function.
Notice from the returned filters object that we can filter on chromosome_name, so we'll
use that.

In Step 7, we set up a full query. Here, we intend to get all genes on the first chromosome.
Note that we already have a list of chromosomes from Step 5, so we take the first element of
the chrom_names object to use in the filter, saving it in first_chr. To perform the query,
we use the getBM() function, with the ensembl_gene_id and description attributes.
We set the filter argument to the data type we wish to filter on and set the values
argument to the value of the filter we wish to keep. We also pass the
data_set_connection object as the BioMart to use. The resulting genes object contains
ensembl_gene_id and descriptions on the first chromosome, as follows:

ensembl_gene_id description
1 AMTR_s00001p00009420 hypothetical protein
2 AMTR_s00001p00015790 hypothetical protein
3 AMTR_s00001p00016330 hypothetical protein

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[214]

4 AMTR_s00001p00017690 hypothetical protein
5 AMTR_s00001p00018090 hypothetical protein
6 AMTR_s00001p00019800 hypothetical protein

Retrieving and working with SNPs
SNPs and other polymorphisms are important genomic features and we often want to
retrieve known SNPs in particular genomic regions. Here, we'll look at doing that in two
different BioMarts that hold different types of data for their SNPs. In the first part, we'll use
Gramene again to look at retrieving plant SNPs. In the second part, we'll look at how to
find information on human SNPs in the main Ensembl database.

Getting ready
As before, we'll need only the biomaRt package from Bioconductor and a working
internet connection.

How to do it...
Retrieving and working with SNPs can be done using the following steps:

Get the list of datasets, attributes, and filters from Gramene:1.

library(biomaRt)
listMarts(host = "ensembl.gramene.org")
gramene_connection <- useMart(biomart = "ENSEMBL_MART_PLANT_SNP",
host = "ensembl.gramene.org")
data_sets <- listDatasets(gramene_connection)
head(data_sets)
data_set_connection <- useMart("athaliana_eg_snp", biomart =
"ENSEMBL_MART_PLANT_SNP", host = "ensembl.gramene.org")

listAttributes(data_set_connection)
listFilters(data_set_connection)

Query for the actual SNP information:2.

snps <- getBM(attributes = c("refsnp_id", "chr_name",
"chrom_start", "chrom_end"), filters = c("chromosomal_region"),
values = c("1:200:200000:1"), mart = data_set_connection)
head(snps)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[215]

How it works...
Step 1 will be familiar from the previous recipe's steps 1 to 6, in which we make the initial
connections and get them to list the datasets, attributes, and filters we can use in this
BioMart; it's the same pattern and is repeated every time we use the BioMart (until we get
to know it by heart).

In Step 2, we use the information gathered to pull the SNPs in the region of interest. Again,
we use the getBM() function and use a chromosomal_region filter. This allows us to
specify a value describing a particular locus on the genome. The value argument gets a
Chromosome:Start:Stop:Strand formatted string; specifically, 1:200:20000:1, which
will return all SNPs on chromosome 1, between nucleotide 200 and 20,000 on the positive
strand (note that the positive DNA strand identifier is 1, and the negative DNA strand
identifier is -1).

There's more...
Finding human SNPs from Ensembl follows pretty much the same pattern. The only
difference is that, because Ensembl is the default server, we can omit the server information
from the useMart() functions. A similar query for humans would look like this:

data_set_connection <- useMart("hsapiens_snp", biomart =
"ENSEMBL_MART_SNP")
human_snps <- getBM(attributes = c("refsnp_id", "allele", "minor_allele",
"minor_allele_freq"), filters = c("chromosomal_region"), value =
c("1:200:20000:1"), mart = data_set_connection)

See also
If you have the dbSNP refsnp ID numbers, it is possible to query these directly using the
rnsps package and the ncbi_snp_query() function. Simply pass this function a vector of
valid refsnp IDs.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[216]

Getting gene ontology information
The Gene Ontology (GO) is a very useful restricted vocabulary of annotation terms for
genes and gene products that describe the biological process, molecular function, or cellular
component of an annotated entity. As such, the terms are extremely useful as data in such
things as gene-set enrichment analysis and other functional -omics approaches. In this
recipe, we'll look at how we can prepare a list of gene IDs in a genomic region and get the
GO IDs and descriptions for them all.

Getting ready
As we're still using the biomaRt package, we'll just need that and a working internet
connection.

How to do it...
Getting gene ontology information can be done using the following steps:

Make connections to the Ensembl BioMart and find the appropriate attributes1.
and filters:

library(biomaRt)

ensembl_connection <- useMart(biomart = "ENSEMBL_MART_ENSEMBL")
 listDatasets(ensembl_connection)

data_set_connection <- useMart("hsapiens_gene_ensembl", biomart =
"ENSEMBL_MART_ENSEMBL")

att <- listAttributes(data_set_connection)
fil <- listFilters(data_set_connection)

Get a list of genes and, using their IDs, get their GO annotations:2.

genes <- getBM(attributes = c("ensembl_gene_id"), filters =
c("chromosomal_region"), value = c("1:200:2000000:1"), mart =
data_set_connection)

go_ids <- getBM(attributes = c("go_id", "goslim_goa_description"),
filters = c("ensembl_gene_id"), values = genes$ensembl_gene_id,
mart = data_set_connection)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[217]

How it works...
As in the previous two recipes, Step 1 involves finding the right values for the biomart,
datasets, attributes, and filters.

In Step 2, we use the getBM() function to get ensembl_gene_id attributes in a particular
chromosome region, saving the result in the genes object. We then use that function again
using ensembl_gene_id as a filter and go_id and goslim_goa_description to get the
actual GO annotation for just the selected genes.

Finding experiments and reads from
SRA/ENA
The Short Read Archive (SRA) and the European Nucleotide Archive (ENA) are databases
of records of raw high-throughput-DNA sequence data. Each is a mirrored version of the
same sets of high-throughput sequence data, submitted by scientists in all fields of biology
from all over the world. The free availability of high-throughput sequence data through
these databases means that we can conceive of and execute new analyses on existing
datasets. By performing searches on the databases, we can identify sequence data that we
may wish to work with. In this recipe, we'll look at using the SRAdb package to query the
datasets on SRA/ENA and retrieve the data for selected sets programmatically.

Getting ready
The two essential items for this recipe are the SRAdb package from Bioconductor and a
working internet connection.

How to do it...
Finding experiments and reads from SRA/ENA can be done using the following steps:

Download the SQL database and make the connection:1.

library(SRAdb)
sqlfile <- file.path(system.file('extdata', package='SRAdb'),
'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(SQLite(),sqlfile)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[218]

Get the study information:2.

dbGetQuery(sra_con, "select study_accession, study_description from
study where study_description like '%coli%' ")

Get information on what is contained in that study:3.

sraConvert(c('ERP000350'), sra_con = sra_con)

Get a list of the files available:4.

listSRAfile(c("ERR019652","ERR019653"), sra_con, fileType = 'sra'
)

Download the sequence files:5.

getSRAfile(c("ERR019652","ERR019653"), sra_con, fileType =
'fastq', destDir = file.path(getwd(), "datasets", "ch8"))

How it works...
After loading the library, the first step sets up a local SQL file, called sqlfile. The file
contains all of the information about the studies on SRA. In our example, we are using a
small version from within the package itself (hence, we're extracting it with the
system.file() function); the real file is >50GB in size so we won't use it now but it can be
retrieved using this replacement code: sqlfile <- getSRAdbfile(). Once we have
a sqlfile object, we can create a connection to the database with the dbConnect()
function. We save the connection in the object named sra_con for reuse.

We then perform a query on the sqlfile database using the dbGetQuery() function. The
first argument to this is the database file, and the second is a full query in SQL format. The
query written is pretty self-explanatory; we're looking to return study_accession and
study_description when the description contains the term coli. Much more
complicated queries are possible—if you're prepared to write them in SQL. A tutorial on
that is far beyond the scope of this recipe but there are numerous books dedicated to the
subject; you should try SQL for Data Analytics by Upom Malik, Matt Goldwasser, and
Benjamin Johnston, Packt Publishing: https:/ /www. packtpub. com/ big- data- and-
business-intelligence/ sql- data- analysis. The query returns a dataframe object that
looks like this:

study_accession study_description
ERP000350 Transcriptome sequencing of E.coli K12 in LB media in early
exponential phase and transition to stationary phase

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/sql-data-analysis

Working with Databases and Remote Data Sources Chapter 8

[219]

Step 3 uses the accession number we extracted to get all of the related submission, sample,
and experiment and run information related to the study with the sraConvert() function.
This returns something like the following table—we can see the run IDs for this study,
showing the actual files containing the sequence:

study submission sample experiment run
1 ERP000350 ERA014184 ERS016116 ERX007970 ERR019652
2 ERP000350 ERA014184 ERS016115 ERX007969 ERR019653

In Step 4, we use the listSRAfile() function to get the actual FTP address on the server
for the specific sequences in a run. This provides the address of the SRA format file, a
compressed and convenient format should you wish to know that:

 run study sample experiment ftp
1 ERR019652 ERP000350 ERS016116 ERX007970
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/ERR/ERR019
/ERR019652/ERR019652.sra
2 ERR019653 ERP000350 ERS016115 ERX007969
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/ERR/ERR019
/ERR019653/ERR019653.sra

But in Step 5, we use the getSRAfile() function, setting the fileType argument to fastq
to get the data in the standard fastq format. The files are downloaded into the folder
specified in the destDir argument.

There's more...
Don't forget to refresh the local SQL database regularly and to use the full version with this
code: sqlfile <- getSRAdbfile().

Performing quality control and filtering on
high-throughput sequence reads
When we have a new set of sequence reads to work with, whether that be from a new
experiment or a database, we need to perform a quality control step that will remove any
sequence adapters, remove reads with a poor sequence, or trim down a poor sequence, as
appropriate. In this recipe, we'll look at doing that within R using the Bioconductor
ShortRead package.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[220]

Getting ready
You'll need the ShortRead package and you'll need to run the code for the Finding
experiments and reads from SRA/ENA recipe in this chapter. Two files are created in the last
step of that recipe and we'll use one of those. Once that code is run, the file should be in
datasets/ch8/ERRR019652.fastq.gz of this book's repository.

How to do it...
Performing quality control and filtering on high-throughput sequence reads can be done
using the following steps:

Load the library and connect to a file:1.

library(ShortRead)
fastq_file <- readFastq(file.path(getwd(), "datasets", "ch8",
"ERR019652.fastq.gz"))

Filter reads with any nucleotide with quality lower than 20:2.

qualities <- rowSums(as(quality(fastq_file), "matrix") <= 20)
fastq_file <- fastq_file[qualities == 0]

Trim the right-hand side of the read:3.

cut_off_txt <- rawToChar(as.raw(40))
trimmed <- trimTails(fastq_file, k =2, a= cut_off_txt)

Set up a custom filter to remove N and homomeric runs:4.

custom_filter_1 <- nFilter(threshold=0)
custom_filter_2 <- polynFilter(threshold = 10, nuc = c("A", "T",
"C", "G"))
custom_filter <- compose(custom_filter_1, custom_filter_2)
passing_rows <- custom_filter(trimmed)
trimmed <- trimmed[passing_rows]

Write out the retained reads:5.

writeFastq(trimmed, file = file.path(getwd(), "datasets", "ch8",
"ERR019652.trimmed.fastq.gzip"), compress = TRUE)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[221]

How it works...
The first step loads in the reads to a ShortReadQ object that represents the DNA read and
its associated quality scores; this special object allows us to work on the sequence and
qualities in one go.

The second step lets us find any reads where all quality scores are above 20. The code here
is a little idiomatic so take some time to unpack it. First, we use the quality() function on
fastq_file to extract the qualities alone, then pass that to the as() function, asking for a
matrix. On that resultant matrix, we calculate the sum of each row with rowSums() and
finally get a logical vector, qualities, from a comparison to see which of the rowSums()
values is less than 20. In the next line, we use the qualities vector to subset fastq_file
and remove the lower quality reads.

In Step 3, we trim the right-hand side of a read (to correct places where the read quality falls
below a threshold). The main function here is trimTails(), which takes two arguments:
k, the number of failing letters required to start trimming, and a, the letter to start trimming
at. This, of course, means that the Phred numeric quality score we think of (such as in Step
2, where we just used 20) needs to be converted into its ASCII equivalent as per the text
encoding of the quality score. That's what happens in the first line; the number 40 is
converted into raw bytes with as.raw() and then into a character in rawToChar(). The
resulting text can be used by storing it in the cut_off_txt variable.

Step 4 applies some custom filters. The first line, custom_filter_1, creates a filter for
sequences containing bases called N, the threshold argument allowing sequences to contain
zero Ns. The second, custom_filter_2, creates a filter for homopolymeric reads of
homopolymers of length equal or longer than the threshold. The nuc argument specifies
which nucleotides are to be considered. Once the filters are specified, we must join them
into a single filter using the compose() function, which returns a filter function we call
custom_filter() and then call on the trimmed object. It returns an SRFFilterResult
object that can be used to subset the reads.

Finally, in Step 5, we use the writeFastQ() function to write the retained reads to a file.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[222]

Completing read-to-reference alignment with
external programs
The alignment of high-throughput reads is an important prerequisite for a lot of the recipes
in this book, including RNAseq and SNP/INDEL calling. We looked at them in depth in
Chapter 1, Performing Quantitative RNAseq, and Chapter 2, Finding Genetic Variants with
HTS Data, but we didn't cover how to actually perform alignment. We wouldn't normally
do this within R; the programs needed to make these alignments are powerful and run
from the command line as independent processes. But R can control these external
processes, so we'll look at how to run an external process so you can control them from
within an R wrapper script, ultimately allowing you to develop end-to-end analysis
pipelines.

Getting ready...
We'll use base R only in this recipe, so you don't need to install any packages. You will need
the reference genome FASTA file in datasets/ch8/ecoli_genome.fa and the
datasets/ch8/ERR019653.fastq,gz file that we created in the Finding experiments and
reads from SRA/ENA recipe. This recipe also requires a working copy of BWA and
samtools on your system. The web pages for these pieces of software are at http:/ /
samtools.sourceforge. net/ and http:/ /bio-bwa. sourceforge. net/. If you have conda
installed, you can install it with conda install -c bioconda bwa and conda install
-c bioconda samtools.

How to do it...
Complete read-to-reference alignment with external programs using the following steps:

Set up the files and executable paths:1.

bwa <- "/Users/macleand/miniconda2/bin/bwa"
samtools <- "/Users/macleand/miniconda2/bin/samtools"
reference <- file.path(getwd(), "datasets", "ch8",
"ecoli_genome.fa")

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/

Working with Databases and Remote Data Sources Chapter 8

[223]

Prepare the index command and run:2.

command <- paste(bwa, "index", reference)
system(command, wait = TRUE)

Prepare the alignment command and run:3.

reads <- file.path(getwd(), "datasets", "ch8",
"ERR019653.fastq.gz")
output <- file.path(getwd(), "datasets", "ch8", "aln.bam")
command <- paste(bwa, "mem", reference, reads, "|", samtools, "view
-S -b >", output)
system(command, wait = TRUE)

How it works...
The first step is simple: we just create a few variables that hold directory paths to the
programs and files we will use. bwa and samtools hold the path to those programs on the
system. Note that the paths on your system are almost definitely different. On Linux and
macOS systems, you can find the path using the which command in the Terminal, on
Windows machines, you can try the where command or equivalent.

In Step 2, we outline the basic pattern for running a system command. First, with the
paste() function, we create the command as a string and save it in a variable called
command. Here, we're preparing a command line that creates the index we need before
performing read alignment with BWA. Then, we use the command as the first argument in
the system() function, which actually executes the command. The command is started as a
brand new process in the background and, by default, control is returned to the R script as
soon as the process begins. If you intend to work immediately within R upon output from
the background process, then you need to set the system() argument wait to TRUE, so that
the R process only continues once the background process is complete.

In Step 3, we extend the pattern, creating reads and output variables and putting together a
much longer command line, showing that any valid command line can be composed. We
then repeat the system command. This process results in a final BAM file in
datasets/ch8/aln.bam.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[224]

Visualizing the quality control of read-to-
reference alignments
Once the alignment of reads has been performed, it is usually wise to check the quality of
the alignment and ensure that there is nothing unexpected about the pattern of reads and
things such as expected insert distances. This can be especially useful in draft reference
genomes where unusual alignments of high-throughput reads can reveal misassemblies of
the reference or other structural rearrangements. In this recipe, we'll use a package called
ramwas, which has some easily accessed plots we can create to assess alignment.

Getting ready...
For this recipe, we'll need the prepared bam_list.txt and
sample_list.txt information files in the datasets/ch8 directory of this book's
repository. We'll need the small ERR019652.small.bam and ERR019653.small.bam files
from the same place.

How to do it...
Visualizing the quality control of read-to-reference alignments can be done using the
following steps:

Set up the parameters for the run:1.

library(ramwas)
param <- ramwasParameters(dirbam = ".", filebamlist =
"bam_list.txt",
 dirproject = file.path(getwd(),
"datasets", "ch8"),
 filebam2sample = "sample_list.txt")

Perform the QC:2.

ramwas1scanBams(param)
qc <- readRDS(file.path(getwd(), "datasets", "ch8", "rds_qc",
"ERR019652.small.qc.rds")$qc

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Databases and Remote Data Sources Chapter 8

[225]

View the plots:3.

plot(qc$hist.score1)
plot(qc$bf.hist.score1)
plot(qc$hist.length.matched)
plot(qc$bf.hist.length.matched)

How it works...
Step 1 sets up a parameter-containing object using the ramwasParameters() function. We
simply provide information files (bam_list.txt and sample_list.txt) saying where
the BAM files to be used are and the samples they contain, respectively. The
dirproject argument specifies the place on the system to which the results should be
written. Note the results from this are written to disk; they don't come directly back to
memory.

Step 2 uses the parameters to run the QC with the ramwas1scanBams() function. The
results are written to disk so we load the resulting RDS file back in using the base R
readRDS() function. The qc object has a lot of members that represent different quality
control aspects of alignment.

Step 3 uses the generic plot function to create graphs of some of the QC statistics in the qc
object.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Useful Statistical and Machine

Learning Methods
In bioinformatics, the statistical analysis of datasets of varied size and composition is a
frequent task. R is, of course, a hugely powerful statistical language with abundant options
for all sorts of tasks. In this chapter, we will focus a little on some of those useful but not so
often discussed methods that, while none of them make up an analysis in and of
themselves, can be powerful additions to the analyses that you likely do quite often. We'll
look at recipes for simulating datasets and machine learning methods for class prediction
and dimensionality reduction.

The following recipes will be covered in this chapter:

Correcting p-values to account for multiple hypotheses
Generating a simulated dataset to represent a background
Learning groupings within data and classifying with kNN
Predicting classes with random forests
Predicting classes with SVM
Learning groups in data without prior information
Identifying the most important variables in data with random forests
Identifying the most important variables in data with PCA

Technical requirements
The sample data you'll need is available from this book's GitHub repository at https:/ /
github.com/PacktPublishing/ R- Bioinformatics- Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is in a sub-
directory of whatever your working directory is.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook

Useful Statistical and Machine Learning Methods Chapter 9

[227]

Here are the R packages that you'll need. In general, you can install these
with install.packages("package_name"). The packages listed under Bioconductor
need to be installed with the dedicated installer. If you need to do anything further,
installation will be described in the recipes in which the packages are used:

 Bioconductor
Biobase

caret

class

dplyr

e1071

factoextra

fakeR

magrittR

randomForest

RColorBrewer

Bioconductor is huge and has its own installation manager. You can install the manager
with the following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")

Then, you can install the packages with this code:

BiocManager::install("package_name")

 Further information is available at https:/ /www. bioconductor. org/
install/ .

Normally, in R, a user will load a library and use the functions directly by name. This is
great in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Useful Statistical and Machine Learning Methods Chapter 9

[228]

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see
some intermediate output or the structure of an object that's important to
understand. Whenever that happens, you'll see a code block where each
line begins with ## (double hash) symbols. Consider the following
command:
letters[1:5]

This will give us the following output:

a b c d e

Note that the output lines are prefixed with ##.

Correcting p-values to account for multiple
hypotheses
In bioinformatics, particularly in genomics projects, we often perform statistical tests
thousands of times in an analysis. But this can be a source of significant error in our results.
Consider a gene expression experiment that has small numbers of measurements per
treatment (often only three) but has tens of thousands of genes. A user doing a statistical
test at p <= 0.05 will reject the null hypothesis incorrectly five percent of the time. Correcting
for performing multiple hypotheses allows us to reduce the error rate from such analyses.
We will look at a simple-to-apply method for making such a correction.

Getting ready
All of the functions we need are base R and we will create our own data with code.

How to do it...
Correcting p-values to account for multiple hypotheses can be done using the following
steps:

Run 10,000 t-tests:1.

set.seed(1)
random_number_t_test <- function(n){
 x <- rnorm(10)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[229]

 y <- rnorm(10)
 return(t.test(x,y)$p.value)
}

p_values <- sapply(1:10000, random_number_t_test)

Assess the number of p-values, <= 0.05:2.

sum(p_values <= 0.05)

Adjust the p-values:3.

adj_p_values <- p.adjust(p_values, method = "holm")

Re-assess the number of p-values, <= 0.05:4.

sum(adj_p_values <= 0.05)

How it works...
The first line in Step 1 simply fixes the random number generator so that we get consistent
results between computers; you won't need this other than to compare the results in this
book. The next part is to create a custom function that creates two sets (x and y) of 10
random numbers, then performs a t-test and returns the p-value. As these are just random
numbers from the same distribution, there is no real difference. The final line uses the
sapply() function to run our custom function and create a vector of 10,000 p-values.

In Step 2, we simply count the number of p-values that are lower than 0.05. We get this:

[1] 506

This indicates that we have 506 falsely called significant results.

In Step 3, we use the p.adjust() function to apply a correction method. The argument
method can be one of several available methods. In practice, it's best to try holm or BH
(Benjamini Hochberg) as these give accurate false detection rates. A widely used but not
very useful method is Bonferroni; avoid this in most cases.

In Step 4, we re-assess the number of p-values that are lower than 0.05. This time, it's as we
expect:

[1] 0

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[230]

Generating a simulated dataset to represent
a background
Constructing simulated datasets for sensible controls, making appropriate comparisons to
an expected background distribution, and having a proper background population from
which to draw samples can be important aspects of many studies. In this recipe, we'll look
at various ways of generating these either from scratch or by mixing up an existing
dataframe.

Getting ready
We'll use the fakeR package and the iris built-in dataset.

How to do it...
Generating a simulated dataset to represent a background can be done using the following
steps:

Make a random dataset with the same characteristics as a given set:1.

library(fakeR)
fake_iris <- simulate_dataset(iris)

Make a vector of normal random numbers with the mean and standard deviation2.
of a given vector:

sample_mean <- mean(iris$Sepal.Length)
sample_sd <- sd(iris$Sepal.Length)
random_sepal_lengths <- rnorm(iris$Sepal.Length, mean =
sample_mean, sd = sample_sd)
hist(random_sepal_lengths)

Make a vector of uniform random integers in a range:3.

low_num <- 1
high_num <- 6
hist(runif(1500, low_num, high_num))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[231]

Make a vector of the number of binomial successes:4.

number_of_coins <- 1
p_heads <- 0.5
hist(rbinom(1500, number_of_coins, p_heads))
number_of_coins <- 5
hist(rbinom(1500, number_of_coins, p_heads))

Make a vector of random selections from a list, with a different probability for5.
each:

random_from_list <- sample(c("Low", "Medium", "High"), 100, replace
= TRUE, prob = c(0.2, 0.6, 0.2))
table(random_from_list)

How it works...
Step 1 uses the fakeR package function called simulate_dataset() to create a new
dataset with the same number of values, identical column names, the same number of
factor levels and level names, and the same number of rows as the source dataset (iris).
The values are randomized but, otherwise, the dataframe is identical. Note how using the
str() function reports identical structures for iris and the new fake_iris object:

str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1
1 1 1 1 1 ...

str(fake_iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.26 6.69 5.63 5.21 5.28 6.45 6.8 5.71 6.01 6.44
...
$ Sepal.Width : num 2.84 2.78 2.83 2.44 2.19 3.87 3.14 2.58 2.78 3.25
...
$ Petal.Length: num 4.03 4.84 2.64 2.83 5.37 3.63 5.54 4.74 4.63 4.29
...
$ Petal.Width : num 1.63 1.33 0.7 0.61 2.03 1.17 2.05 1.6 1.57 1.32
...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 3 2 2 3 1
2 1 3 3 1 ...

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[232]

In Step 2, our objective is to make a vector of random numbers with the same mean and
standard deviation as those in the iris Sepal.Length column. To that end, we first
calculate those quantities with mean() and sd(). Then, we use them as parameter values
for the mean and sd arguments of the rnorm() function. Running hist() to plot the
resulting random_sepal_lengths vector confirms the distribution and parameters.

In Step 3, we wish to create a vector of numeric (floating point) values that can occur with
equal probability—this is analogous to repeated rolls of a dice: each option is equally likely.
Indeed, in this recipe, we set the low value of the range (low_num) to 1 and the high value
(high_num) to 6 to mimic that. We ask the runif() function for 1,500 values with those
low and high values and, by plotting the result with hist() again, we can see the
relatively level frequencies in each bin, confirming the uniformity of those values.

In Step 4, we wish to mimic a coin-toss style probability experiment—a so-called binomial
success probability distribution. We first must decide on the number of trials each time—in
a coin-toss experiment, this is the number of coins we toss. Here, we set the
number_of_coins variable to 1. We must also decide the probability of success. Again,
mimicking a coin-toss means we set the p_heads variable to 0.5. To run the simulation, we
pass these values to the rbinom() function, asking for 1,500 separate repeats of the
experiment. The hist() function shows us the frequency of 0 successes (a tails toss) and 1
success (a heads toss) over all 1,500 repeats is roughly equal. Next, we change the number
of trials to 5, by changing the value of the number_of_coins variable. This mimics an
experiment where we are using five coins at every repetition. We again use rbinom() and
plot the result with hist(), this time observing that two and three successes (heads) are
the most common outcomes from a trial with five coins.

Finally, in Step 5, we look at selecting items from a vector with the sample() function. The
first argument to sample is the vector to sample from—so, here, the integers 1 to 10. The
second argument is the number of items to select—here, we select 10. Note that, by
default, sample() will select without replacement, so that no item will appear twice,
though each item in the vector has an equal probability of being selected each time. The
second use of sample() sets the value of the replacement argument to TRUE, meaning
that items can be selected repeatedly. This use also sets the prob argument—a vector
containing the probabilities of selecting each value in the initial vector. Running this sample
and putting the result through the table() function confirms that we get selections in the
approximate probabilities expected.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[233]

Learning groupings within data and
classifying with kNN
The k-Nearest Neighbors (kNN) algorithm is a supervised learning algorithm that, given a
data point, will try to classify it based on its similarity to a set of training examples of
known classes. In this recipe, we'll look at taking a dataset, dividing it into a test and train
set, and predicting the test classes from a model built on the training set. These sorts of
approaches are widely applicable in bioinformatics and can be invaluable in clustering
when we have some known examples of our target classes.

Getting ready
For this recipe, we'll need a few new packages: caret, class, dplyr, and magrittr. As a
dataset, we will use the built-in iris dataset.

How to do it...
Learning groupings within data and classifying with kNN can be done using the following
steps:

Scale the data and remove non-numeric columns:1.

set.seed(123)
scaled_iris <- iris %>% mutate_if(is.numeric, .funs = scale)
labels <- scaled_iris$Species
scaled_iris$Species <- NULL

Extract a training and test dataset:2.

train_rows <- sample(nrow(scaled_iris), 0.8 * nrow(scaled_iris),
replace = FALSE)
train_set <- scaled_iris[train_rows,]
test_set <- scaled_iris[-train_rows,]
train_labels <- labels[train_rows]
test_set_labels <- labels[-train_rows]

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[234]

Make the model and predictions on the test set:3.

test_set_predictions <- knn(train = train_set, test = test_set, cl
= train_labels, k = 10)

Compare the prediction with the actual class:4.

caret::confusionMatrix(test_set_predictions, test_set_labels)

How it works...
In Step 1, we initially use set.seed() to ensure random number reproducibility and then
scale each column of the dataset using the dplyr mutate_if() function. The first
argument of mutate_if() is a condition to be tested; the .funs argument is the function
to be applied if the condition is true. Here, then, we're applying the scale() function to a
column of the iris dataframe and if it is numeric, returning a dataframe we call
scaled_iris. Performing scaling between columns is very important in kNN as the
magnitude of the actual values can have a strong effect, so we need them to be of similar
scale between columns. Next, we make a copy of the Species column from the data as this
contains the class labels and remove it from the dataframe by assigning NULL to the
column—for the next steps, the dataframe should contain only numeric data.

In Step 2, we decide which rows should be in our training set and our test set. We use the
sample() function to select from a vector of 1 to the number of rows in iris; we select
80% of the row numbers without a replacement so that train_rows is a vector of integers
giving the rows from scaled_iris, which we will use in our training set. In the rest of this
step, we use subsetting and negative subsetting to prepare the subsets of scaled_iris we
will need.

In Step 3, we apply the kNN algorithm with the knn() function to build the model and
classify the test set in a single operation. The train argument gets the portion of the data
we set aside for training, the test argument the portion for testing, and the cl (class)
argument gets the labels for the training set. The k argument is the number of neighbors
that should be used in classifying each unknown test point. The function returns a vector of
predicted classes for each row in the test data, which we save in test_set_predictions.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[235]

In Step 4, we assess the predictions using the caret package function,
confusionMatrix(). This takes the predicted classes and real classes and creates a set of
statistics, including the following table, which contains the Real labels in the rows and the
Predicted labels in the columns. This model predicted one versicolor row as
virginica, incorrectly, with all other predictions correct:

Reference
Prediction setosa versicolor virginica
setosa 8 0 0
versicolor 0 9 1
virginica 0 0 12

Predicting classes with random forests
Random forests is another supervised learning algorithm that uses ensembles of decision
trees to make many class predictions so that the most frequently called class becomes the
model's final prediction. Random forests is useful generally as it will work with categorical
and numerical data together and can be applied to classification and regression, and we'll
use it again for predicting the most important variables in our data in the Identifying the
most important variables in data with random forests recipe in this chapter. In this recipe, we'll
use random forests to predict classes of data.

Getting ready
For this recipe, we'll need the caret and randomForest packages and the built-in iris
dataset.

How to do it...
Predicting classes with random forests can be done using the following steps:

Prepare a training set from the iris data:1.

library(randomForest)

train_rows <- sample(nrow(iris), 0.8 * nrow(iris), replace = FALSE)
train_set <- iris[train_rows,]
test_set <- iris[-train_rows,]

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[236]

Build a model on the training data:2.

model <- randomForest(Species ~ . , data = train_set, mtry = 2)

Use the model to make predictions on the test data:3.

test_set_predictions <- predict(model, test_set, type = "class")
caret::confusionMatrix(test_set_predictions, test_set$Species)

How it works...
The whole of Step 1 is the preparation of training and test sets. We use
the sample() function to select from a vector of 1 to the number of rows in iris; we select
80% of the row numbers without a replacement so that train_rows is a vector of integers
giving the rows from iris, which we will use in our training set. In the rest of this step, we
use subsetting and negative subsetting to prepare the subsets of iris we will need.

In Step 2, we proceed directly to build a model we make predictions with. The
randomForest() function takes, at its first argument, an R formula naming the column to
be predicted (in other words, Species, the response variable), and the dataframe columns
to use as training data—here, we use all columns, which we express as a . character. The
data argument is the name of the source dataframe and the mtry argument is a tunable
parameter that tells the algorithm how many splits to use. The best value of this is usually
around the square root of the number of columns, but optimizing it can be helpful. The
resulting model is saved in a variable called model, which can be printed for inspection.

At Step 3, we use the predict() function with model, the test_set data, and the type
argument set to class to predict the classes of the test set. We then assess them with
caret::confusionMatrix() to give the following result:

Reference
Prediction setosa versicolor virginica
setosa 13 0 0
versicolor 0 8 0
virginica 0 0 9
##

The result indicates that the test set was classified perfectly.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[237]

There's more
It is possible to perform regression (the prediction of a numeric value) with a very similar
approach. Look at the similarity of the following code for building a regression and doing
an assessment. Here, we predict sepal length based on the other columns. After model
building, we run the prediction as before; note how we drop the type argument (as
regression is actually the default). Finally, we assess by calculating the Mean Squared
Error (MSE), in which we square the difference between the prediction and the actual value
for sepal length and then take the mean of both:

model <- randomForest(Sepal.Length ~ . , data = train_set, mtry = 2)
test_set_predictions <- predict(model, test_set)

mean((test_set$Sepal.Length - test_set_predictions)^2)

Predicting classes with SVM
The support vector machine (SVM) algorithm is a classifier that works by finding the
maximum distance between classes in multiple dimensions of data—effectively the largest
gap between classes—and uses the middle point of that gap as a boundary for
classification. In this recipe, we'll look at using the SVM for peforming supervised class
prediction and illustrating the boundary graphically.

Getting ready
We'll continue to use the built-in iris dataset and the e1071 package.

How to do it...
Predicting classes with SVM can be done using the following steps:

Build the training and test sets:1.

library(e1071)
train_rows <- sample(nrow(iris), 0.8 * nrow(iris), replace = FALSE)

train_set <- iris[train_rows,]
test_set <- iris[-train_rows,]

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[238]

Construct the model:2.

model <- svm(Species~., data=train_set, type="C-classification",
kernel="radial", gamma=0.25)

Plot the boundary of the model:3.

cols_to_hold <- c("Sepal.Length", "Sepal.Width")
held_constant <- lapply(cols_to_hold,
function(x){mean(train_set[[x]])})
names(held_constant) <- cols_to_hold

plot(model, train_set, Petal.Width ~ Petal.Length, slice =
held_constant)

Make predictions on the test set:4.

test_set_predictions <- predict(model, test_set, type = "class")
caret::confusionMatrix(test_set_predictions, test_set$Species)

How it works...
In Step 1, we have the probably familiar train and test set generation step we discussed in
the previous recipes. Briefly, here, we create a vector of row numbers to use as a training set
and use subsetting and negative subsetting to extract to new sub-datasets.

In Step 2, we proceed to create the model using the svm() function. The first argument is an
R formula that specifies the column to use as the classes (the response variable, Species),
and after ~, we use the . character to mean that all other columns are to be used as the data
from which to build the model. We set the data argument to the train_set dataframe
and select appropriate values for the kernel and gamma type. type may be classification-
or regression-based; kernel is one of a variety of functions that are designed for different
data and problems; and gamma is a parameter for the kernel. You may wish to check the
function documentation for details. These values can also be optimized empirically.

In Step 3, we create some objects that we can use to render the four-dimensional boundary
in two dimensions. First, we select the columns we don't want to plot (those to hold
constant), then we use the lapply() function to iterate over a character vector of those
column names and apply a function to calculate the mean of the named column. We add
column names to the resultant list in the cols_to_hold variable. We then use the generic
plot() function, passing the model, the training data to plot, the two dimensions to plot as
a formula (Petal.Width ~ Petal.Length), and a slice argument that takes our means
from the other columns in the held_constant list.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[239]

The result looks like this, showing the margins in colors for each class:

In Step 4, we repeat the predictions on the test set using predict() and generate the
confusion matrix with caret::confusionMatrix() to see the accuracy.

Learning groups in data without prior
information
It is common in bioinformatics to want to classify things into groups without first knowing
what or how many groups there may be. This process is usually known as clustering and is
a type of unsupervised machine learning. A common place for this approach is in genomics
experiments, particularly RNAseq and related expression technologies. In this recipe, we'll
start with a large gene expression dataset of around 150 samples, learn how to estimate
how many groups of samples there are, and apply a method to cluster them based on the
reduction of dimensionality with Principal Component Analysis (PCA), followed by a k-
means cluster.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[240]

Getting ready
For this recipe, we'll need the factoextra and biobase libraries (the latter from
Bioconductor) and the modencodefly_eset.RData file from the datasets/ch1 folder
of this book's repository.

How to do it...
Learning about groups in data without prior information can be done using the following
steps:

Load the data and run a PCA:1.

library(factoextra)
library(Biobase)

load(file.path(getwd(), "datasets", "ch1",
"modencodefly_eset.RData"))
expr_pca <- prcomp(exprs(modencodefly.eset), scale=TRUE,
center=TRUE) fviz_screeplot(expr_pca)

Extract the principal components and estimate the optimal clusters:2.

main_components <- expr_pca$rotation[, 1:3]
fviz_nbclust(main_components, kmeans, method = "wss")

Perform k-means clustering and visualizing:3.

kmean_clus <- kmeans(main_components, 5, nstart=25, iter.max=1000)

fviz_cluster(kmean_clus, data = main_components,
 palette = RColorBrewer::brewer.pal(5, "Set2"),
 ggtheme = theme_minimal(),
 main = "k-Means Sample Clustering"
)

How it works...
In Step 1, we use the load() function to import the modencodefly.eset object into
memory; this is a gene expression dataset. Then, we use the Biobase function,
called exprs() to extract the expression measurements as a rectangular matrix and pass
that to the prcomp() function, which performs PCA and returns a PCA object, which we
store in the expr_pca variable.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[241]

We then plot the PCA with the factoextra function, fviz_screeplot(), and see the
following diagram:

This shows how much of the variance within the data is captured by each principal
component. The first three components capture over 70% of the variance. Hence, we can
use these three instead of the whole 150-column dataset, simplifying the process and
speeding up the analysis greatly.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[242]

In Step 2, we extract the main components using subsetting on the rotation slot of the
expr_pca object, extracting the first three columns—these correspond to the first three
components. We save these in a variable called main_components and use the
fviz_nbclust() function on main_components and the kmeans function to create the
following diagram:

In this function, the data is divided into increasing amounts of clusters and the wss (Within
Sum of Squares), a measure of variability within the cluster. The diagram shows that the
Within Sum of Squares measure decreases greatly up until about 5 clusters, after which no
improvement is seen, indicating that the data contains about 5 clusters.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[243]

In Step 3, we perform a k-means cluster using the kmeans() function, providing
main_components as data for the first argument and 5 for the number of clusters as the
second argument. The values for the nstart and iter.max arguments are reasonable
options for most runs of the algorithm. Finally, we pass the kmeans_clust object to the
fviz_cluster() function and set some display options to get the following diagram:

There's more
We have performed k-means clustering for the samples or columns of this dataset. If you
wish to do the same for genes or rows, extract the main components from the unrotated
data in the x slot in Step 2:

main_components <- expr_pca$x[, 1:3]

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[244]

If you wish to get the actual cluster IDs for each sample, that is stored in the cluster slot
of the kmeans_clus object:

kmean_clus$cluster[1:5]

SRX007811 SRX008180 SRX008227 SRX008238 SRX008258
2 2 2 2 2

Identifying the most important variables in
data with random forests
We've already seen the random forests algorithm in use in this chapter, in the Predicting
classes with random forests recipe, where we used it for class prediction and regression. Here,
we're going to use it for a different purpose—to try and work out which of the variables in
a dataset contribute most to the classification or regression accuracy of the trained model.
This requires only a simple change to the code we already have and a new function or two.

Getting ready
We'll need the randomForest package and the built-in iris dataset.

How to do it...
Identifying the most important variables in data with random forests can be done using the
following steps:

Prepare the training and test data:1.

library(randomForest)

train_rows <- sample(nrow(iris), 0.8 * nrow(iris), replace = FALSE)
train_set <- iris[train_rows,]
test_set <- iris[-train_rows,]

Train the model and create the importance plot:2.

model <- randomForest(Species ~ . , data = train_set, mtry = 2,
importance = TRUE)
varImpPlot(model)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[245]

How it works...
In Step 1, we perform a similar dataset split to those in several previous recipes. Using the
sample() function, we create a list of 80% of the row numbers of the original iris data
and then, using subsetting and negative subsetting, we extract the rows.

In Step 2, we train the model using the randomForest() function. The first argument here
is a formula; we're specifying that Species is the value we wish to predict based on all
other variables, which are described by . . data is our train_set object. The key in this
recipe is to make sure we set the importance variable to TRUE, meaning the model will test
variables that, when left out of the model building, cause the biggest decrease in accuracy.
Once the model is built and tested, we can visualize the importance of each variable with
the varImpPlot() function. In doing so, we get the following diagram:

We can see that it is the Petal.Width and Petal.Length variables that, when left out,
cause the greatest decrease in model accuracy, so are, by this measure, the most important.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[246]

Identifying the most important variables in
data with PCA
We've seen PCA in use in the Learning groups in data without prior information recipe as a
dimensionality reduction technique—a method for reducing the size of our dataset whilst
retaining the important information. As you might imagine, that means that we can get an
idea of which of the original variables are contributing most to our reduced representation
and we can, therefore, work out which are the most important. We'll see how that works in
this recipe.

Getting ready
For this recipe, we'll use the factoextra package and the built-in iris dataset.

How to do it...
Identifying the most important variables in data with PCA can be done using the following
steps:

Perform PCA:1.

library(factoextra)
pca_result <- prcomp(iris[,-5], scale=TRUE, center=TRUE)

Create a variable plot:2.

fviz_pca_var(pca_result, col.var="cos2")

How it works...
This brief recipe begins in Step 1 with the simple construction of pca_result from the
prcomp() function. We pass the iris data as the first argument (without the fifth
categorical column) and scale and center the data—this stops magnitude differences from
measurements in different scales taking up inappropriate weights.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Useful Statistical and Machine Learning Methods Chapter 9

[247]

With the pca_result constructed, we can plot the variables using the fviz_pca_var()
function to get the following diagram:

In it, we can see arrows depicting each variable. The angle at which an arrow moves away
from the center indicates a characteristic of the variable; the closer the arrows are, the more
similar the variables—hence, Petal.Length and Petal.Width are highly correlated
variables. The color of the arrows indicates a complicated quantity (called cos2), which
represents the quality of the contribution of the variable. The higher the contribution of the
variable, the higher cos2. Here, we can see that Sepal.Width and Petal.Length
contribute well to the PCA. Petal.Width is too similar to be considered. This is a different
result to that of the Identifying the most important variables in data with random forests recipe,
as the two techniques are asking different questions.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Programming with Tidyverse

and Bioconductor
R is a great language to use interactively; however, that does mean many users don't get
experience of using it as a language in which to do programming—that is, for automating
analyses and saving the user's time and efforts when it comes to repeating stuff. In this
chapter, we'll take a look at some techniques for doing just that—in particular, we'll look at
how to integrate base R objects into tidyverse workflows, extend Bioconductor classes
to suit our own needs, and use literate programming and notebook-style coding to keep
expressive and readable records of our work.

The following recipes will be covered in this chapter:

Making base R objects tidy
Using nested dataframes
Writing functions for use in mutate
Working programmatically with Bioconductor classes
Developing reusable workflows and reports
Making use of the apply family of functions

Technical requirements
The sample data you'll need is available from this book's GitHub repository at https:/ /
github.com/PacktPublishing/ R- Bioinformatics- Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is in a sub-
directory of whatever your working directory is.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook

Programming with Tidyverse and Bioconductor Chapter 10

[249]

Here are the R packages that you'll need. In general, you can install these packages
with install.packages("package_name"). The packages listed under Bioconductor
need to be installed with the dedicated installer. If you need to do anything further,
installation will be described in the recipes in which the packages are used:

 Bioconductor:
Biobase

biobroom
SummarizedExperiment

broom

dplyr

ggplot2

knitr

magrittr

purrr

rmarkdown

tidyr

Bioconductor is huge and has its own installation manager. You can install the manager
with the following code:

if (!requireNamespace("BiocManager"))
 install.packages("BiocManager")

Then, you can install the packages with this code:

BiocManager::install("package_name")

 Further information is available at https:/ /www. bioconductor. org/
install/ .

Normally, in R, a user will load a library and use functions directly by name. This is great
in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/

Programming with Tidyverse and Bioconductor Chapter 10

[250]

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see
some intermediate output or the structure of an object that's important to
understand. Whenever that happens, you'll see a code block where each
line begins with ## (double hash) symbols. Consider
the following command:
letters[1:5]

This will give us the following output:

a b c d e

 Note that the output lines are prefixed with ##.

Making base R objects tidy
The tidyverse set of packages (including dplyr, tidyr, and magrittr) have had a huge
influence on data processing and analysis in R through their application of the tidy way of
working. In essence, this means that data is kept in a particular tidy format, in which each
row holds a single observation and each column keeps all observations of a single variable.
Such a structure means that analytical steps have predictable inputs and outputs and can be
built into fluid and expressive pipelines. However, most base R objects are not tidy and can
often need significant programming work to extract the bits that are needed to assemble
objects for use downstream. In this recipe, we'll look at some functions for automatically
converting some common base R objects into a tidy dataframe.

Getting ready
We'll need the tidyr, broom, and biobroom packages. We'll use the built-in mtcars data
and modencodefly_eset.RData from the datasets/ch1 folder of this book's repository.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[251]

How to do it...
Making base R objects tidy can be done using the following steps:

Tidy an lm object:1.

library(broom)
model <- lm(mpg ~ cyl + qsec, data = mtcars)
tidy(model)
augment(model)
glance(model)

Tidy a t_test object:2.

t_test_result <- t.test(x = rnorm(20), y = rnorm(20))
tidy(t_test_result)

Tidy an ANOVA object:3.

anova_result <- aov(Petal.Length ~ Species, data = iris)
tidy(anova_result)
post_hoc <- TukeyHSD(anova_result)
tidy(post_hoc)

Tidy a Bioconductor ExpressionSet object:4.

library(biobroom)
library(Biobase)
load(file.path(getwd(), "datasets", "ch1",
"modencodefly_eset.RData"))
tidy(modencodefly.eset, addPheno = TRUE)

How it works...
Step 1 shows some functions for tidying an lm object with the lm() function. The first step
is to create the object. Here, we perform a multiple regression model using the
mtcars data. We then use the tidy() function on the model to return the object summary
of components of the model, for example, the coefficient, as a tidy dataframe. The
augment() function returns extra per-observation data for an lm object should we want
that—again, it's in tidy format. The glance() function inspects the model itself and returns
summaries about it—naturally, in tidy format. glance() is useful for comparing models.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[252]

Step 2 shows the same process for the t.test object. First, we run a t-test on two vectors of
random numbers. The tidy() function gives us all of the details in a tidy dataframe.

In Step 3, we run an ANOVA on the iris data. We use the aov() function to look at the
effect of Species on Petal.Length. We can use tidy() again on the result but it gives a
summary of the components of the model. In fact, we're probably more interested in the
comparisons from a post-hoc test, which is performed using the TukeyHSD() function on
the next line; it too can be used in tidy().

In Step 4, we use the biobroom version of tidy() on the ExpressionSet object. This turns
the square matrix of expression values into a tidy dataframe along with columns for sample
and other types of data. The extra argument, addPheno, is specific to this type of object and
inserts the phenotype metadata from the ExpressionSet metadata container. Note that
the resulting dataframe is over 2 million lines long—biological datasets can be large and
can generate very large dataframes.

Using nested dataframes
The dataframe is at the core of the tidy way of working and we tend to think of it as a
spreadsheet-like rectangular data container with only a single value in each cell. In fact,
dataframes can be nested—that is, they can hold other dataframes in specific, single cells.
This is achieved internally by replacing a dataframe's vector column with a list column.
Each cell is instead a member of a list, so any sort of object can be held within the
conceptual single cell of the outer dataframe. In this recipe, we'll look at ways of making a
nested dataframe and different ways of working with it.

Getting ready
We'll need the tidyr, dplyr, purrr, and magrittr libraries. We'll also use the diamonds
data from the ggplot2 package, though we won't use any functions.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[253]

How it works...
Using nested dataframes can be done with the following steps:

Create a nested dataframe:1.

library(tidyr)
library(dplyr)
library(purrr)
library(magrittr)
library(ggplot2)

nested_mt <- nest(mtcars, -cyl)

Add a new list column holding the results of lm():2.

nested_mt_list_cols <- nested_mt %>% mutate(
 model = map(data, ~ lm(mpg ~ wt, data = .x))
)

Add a new list column holding the results of tidy():3.

nested_mt_list_cols <- nested_mt_list_cols %>% mutate(
 tidy_model = map(model, tidy)
)

Unnest the whole dataframe:4.

unnest(nested_mt_list_cols, tidy_model)

Run the pipeline in a single step:5.

models_df <- nest(mtcars, -cyl) %>%
 mutate(
 model = map(data, ~ lm(mpg ~ wt, data = .x)),
 tidy_model = map(model, tidy)
) %>%
 unnest(tidy_model)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[254]

How it works...
In Step 1, we use the nest() function to nest the mtcars dataframe. The - option tells the
function which columns to exclude from nesting effectively; making the cyl column a
factor using which the different subsets are created. Conceptually, this is similar to the
dplyr::group_by() function. Inspecting the object gives us this:

 A tibble: 3 x 2
cyl data
<dbl> <list>
1 6 <tibble [7 × 10]>
2 4 <tibble [11 × 10]>
3 8 <tibble [14 × 10]>

The nested dataframe contains a new column of dataframes called data, alongside the
reduced cyl column.

In Step 2, we create a new column on our dataframe by using mutate(). Within this, we
use the map() function from purrr, which iterates over items in a list provided as its first
argument (so our data column of dataframes) and uses them in the code provided as its
second argument. Here, we use the lm() function on the nested data, one element at a
time—note that the .x variable just means the thing we're currently working on—so, the
current item in the list. When run, the list now looks like this:

cyl data model
<dbl> <list> <list>
1 6 <tibble [7 × 10]> <lm>
2 4 <tibble [11 × 10]> <lm>
3 8 <tibble [14 × 10]> <lm>

The new model list column holds our lm objects.

Having established that the pattern to add new list columns is to use mutate() with map()
inside, we can then tidy up the lm objects in the same way. This is what happens in Step 3.
The result gives us the following nested dataframe:

cyl data model tidy_model
<dbl> <list> <list> <list>
1 6 <tibble [7 × 10]> <lm> <tibble [2 × 5]>
2 4 <tibble [11 × 10]> <lm> <tibble [2 × 5]>
3 8 <tibble [14 × 10]> <lm> <tibble [2 × 5]>

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[255]

Step 4 uses the unnest() function to return everything to a single dataframe; the second
argument, tidy_model, is the column to unpack.

Step 5 repeats the whole of Steps 1 to 4 in a single pipeline, highlighting that these are just
regular tidyverse functions and can be chained together without having to save
intermediate steps.

There's more...
The unnest() function will only work when the nested list column members are
compatible and can be sensibly aligned and recycled according to the normal rules. In
many cases, this won't be true so you will need to manually manipulate the output. The
following example shows how we can do that. The workflow is essentially the same as the
preceding example, though one change early on is that we use dplyr::group_by() to
create the groups for nest(). In mutate(), we pass a custom function to analyze the data,
but, otherwise, this step is the same. The last step is the biggest change and takes advantage
of transmute() to drop the unneeded columns and create a new column that is the result
of map_dbl() and a custom summary function. map_dbl() is like map() but returns only
double numeric vectors. Other map_** functions also exist.

Writing functions for use in dplyr::mutate()
The mutate() function from dplyr is extremely useful one for adding new columns to a
dataframe based on computations from existing columns. It is a vectorized function,
though, and is often misunderstood as working row-wise when it actually works column-
wise, that is, on whole vectors with R's built-in recycling. This behavior can often be
confusing for those looking to use mutate() on non-trivial examples or with custom
functions, so, in this recipe, we're going to examine how mutate() actually behaves in
certain situations, with the hope that this will be enlightening.

Getting ready
For this, we'll need the dplyr package and the built-in iris data.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[256]

How to do it...
Writing functions for use in dplyr::mutate() can be done using the following steps:

Use a function that returns a single value:1.

return_single_value <- function(x){
 sum(x)
}
iris %>% mutate(
 result = return_single_value(Petal.Length)
)

Use a function that returns the same number of values as given:2.

return_length_values <- function(x){
 paste0("result_", 1:length(x))
}
iris %>% mutate(
 result = return_length_values(Petal.Length)
)

Use a function that returns neither a single value nor the same number of values3.
as given:

return_three_values <- function(x){
 c("A", "b", "C")
}
iris %>% mutate(
 result = return_three_values(Petal.Length)
)

Force repetition of the function to fit the length of the vector:4.

rep_until <- function(x){
 rep(c("A", "b", "C"), length.out = length(x))
}
iris %>% mutate(
 result = rep_until(Petal.Length)
)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[257]

How it works...
In Step 1, we create a function that, given a vector, returns only a single value (a vector of
length one). We then use it in mutate() to add a column called result and get the
following:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species result
1 5.1 3.5 1.4 0.2 setosa 563.7
2 4.9 3.0 1.4 0.2 setosa 563.7
3 4.7 3.2 1.3 0.2 setosa 563.7
4 4.6 3.1 1.5 0.2 setosa 563.7

Note how the single value the function returns in the result column is repeated over and
over. With length == 1 vectors, R will recycle the result and place it in every position.

In Step 2, we go to the opposite end and create a function that, given a vector, returns a
vector of identical length (specifically, it returns a vector of the word result_ pasted onto
a number representing the position in the vector). When we run it, we get this:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species result
1 5.1 3.5 1.4 0.2 setosa result_1
2 4.9 3.0 1.4 0.2 setosa result_2
3 4.7 3.2 1.3 0.2 setosa result_3
4 4.6 3.1 1.5 0.2 setosa result_4

Because it is exactly the same length as the rest of the columns of the dataframe, R will
accept it and apply it as a new column.

In Step 3, we create a function that returns a vector of three elements. As the length is
neither one nor the length of the other columns of the dataframe, the code fails.

In Step 4, we look at how we can repeat an incompatible length vector to make it fit should
we need to. The rep_until() function with the length.out argument repeats its input
until the vector is length.out long. In this way, we get the following column, which is
what we were hoping to see with the function in Step 3:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species result
1 5.1 3.5 1.4 0.2 setosa A
2 4.9 3.0 1.4 0.2 setosa b
3 4.7 3.2 1.3 0.2 setosa C
4 4.6 3.1 1.5 0.2 setosa A
5 5.0 3.6 1.4 0.2 setosa b

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[258]

Working programmatically with
Bioconductor classes
The wide scope of Bioconductor means that there are a great number of classes and
methods for accomplishing pretty much any bioinformatics workflow that you'd want to.
Sometimes, though, it would be helpful to have an extra data slot or some other tweak to
the tools that would help to simplify our lives. In this recipe, we're going to look at how to
extend an existing class to include some extra information that is specific to our particular
data. We'll look at extending the SummarizedExperiment class to add hypothetical
barcode information—a type of metadata indicating some nucleotide tags that identify the
sample that is included in the sequence read.

Getting ready
For this recipe, we'll just need the Bioconductor SummarizedExperiment packages.

How to do it...
Working programmatically with the Bioconductor classes can be done using the
following steps:

Create a new class inheriting from SummarizedExperiment:1.

setClass("BarcodedSummarizedExperiment",
 contains = "SummarizedExperiment",
 slots = c(barcode_id = "character", barcode_sequence =
"character")
)

Create a constructor function:2.

BarcodedSummarizedExperiment <- function(assays, rowRanges,
colData, barcode_id, barcode_sequence){
 new("BarcodedSummarizedExperiment",
 SummarizedExperiment(assays=assays, rowRanges=rowRanges,
colData=colData),
 barcode_id = barcode_id,
 barcode_sequence = barcode_sequence
)
}

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[259]

Add the required methods to the class:3.

setGeneric("barcode_id", function(x) standardGeneric("barcode_id"))
setMethod("barcode_id", "BarcodedSummarizedExperiment", function(x)
x@barcode_id)

Build an instance of the new class:4.

nrows <- 200
ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
assays <- list(counts = counts)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),
 IRanges(floor(runif(200, 1e5, 1e6)),
width=100),
 strand=sample(c("+", "-"), 200, TRUE),
 feature_id=sprintf("ID%03d", 1:200)
)
colData <- DataFrame(
 Treatment=rep(c("ChIP", "Input"), 3),
 row.names=LETTERS[1:6]
)

my_new_barcoded_experiment <- BarcodedSummarizedExperiment(
 assays = assays,
 rowRanges = rowRanges,
 colData = colData,
 barcode_id = letters[1:6],
 barcode_sequence = c("AT", "GC", "TA", "CG","GA", "TC")
)

Call the new method:5.

barcode_id(my_new_barcoded_experiment)

How it works...
In Step 1, we create a new S4 class using the setClass() function. This takes the name of
the new class as the first argument. The contains argument specifies which existing class
we wish to inherit from (so that our new class will contain all of the functionality of this
class plus any new stuff we create). The slots argument specifies the new data slots we
want to add and requires that we give a type for them. Here, we're adding text data slots
for the new barcode_id and barcode_sequence slots, so use character for both.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[260]

In Step 2, we create a constructor function. The name of this function must be the same as
the class, and we specify the arguments we need to create a new object in the call to
function(). Within the body, we use the new() function, whose first argument is the
name of the class to instantiate from. The rest of the body is taken up with the mechanics of
populating the instance with data; we call the inherited SummarizedExperiment
constructor to populate that part of the new object, and then manually populate the new
barcode slots. Every time we run BarcodedSummarizedExperiment, we will get a new
object of that class.

In Step 3, we add a new function (strictly speaking, in R, it's called a method). If we choose a
function name that doesn't already exist as a Generic function in R, we must register the
name of the function with setGeneric(), which takes the name of the function as its first
argument and a boilerplate function as its second. Once the Generic function is set, we can
add actual functions with the setMethod() function. The name of the new function is the
first argument, the class it will attach to is the second, and the code itself is the third. Note
that we are just creating an accessor (getter) function that returns the data in the
barcode_id slot of the current object.

In Step 4, our preparatory work is done so we can build an instance of the class. In the first
six lines of this step, we simply create the data we need to build the object. This is the part
that goes into a normal SummarizedExperiment object; you can see more details on what
exactly is going on here in the documentation. We can then actually create
my_new_barcoded_experiment by calling the BarcodedSummarizedExperiment
function with the data we created and some new specific data for the new barcode_id and
barcode_sequence slots.

Now, with the object created, in Step 5, we can use our method, calling it like any other
function with our new object as the argument.

Developing reusable workflows and reports
A very common task in bioinformatics is writing up our results in order to communicate
them to a colleague or just to have a good record in our laboratory books (electronic or
otherwise). A key skill is to make the work as reproducible as possible so that we can rerun
it ourselves when we need to revisit it or someone else interested in what we did can
replicate the process. One increasingly popular solution to this problem is to use literate
programming techniques and executable notebooks that are a mixture of human-readable
text, analytical code, and computational output rolled into a single document. In R, the
rmarkdown package allows us to combine code and text in this way and create output
documents in a variety of formats.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[261]

In this recipe, we'll look at the large-scale structure of one such document that can be
compiled with rmarkdown. The RStudio application makes this process very
straightforward so we'll look at compilation from within that tool.

Getting ready
For this recipe, we'll need the RStudio application available at https:/ /www. rstudio. com/
 and the rmarkdown package. The sample code for this recipe is available in the
example_rmarkdown.rmd file in this book's datasets/ch10/ folder.

How to do it...
Developing reusable workflows and reports can be done using the following steps:

In an external file, add a YAML header:1.

title: "R Markdown Report"
author: "R Bioinformatics Cookbook"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
 html_document:
 df_print: paged
 bookdown::html_document2:
 fig_caption: yes
 keep_md: yes
 toc: yes

Then, add some text and code to be interpreted:2.

We can include text and create code blocks, the code gets executed
and the result passed in

```{r}
x <- iris$Sepal.Width
y <- iris$Sepal.Length
lm(y ~ x, data = iris)
```

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/

Programming with Tidyverse and Bioconductor Chapter 10

[262]

Text can be formatted using minimal markup tags:3.

We can format text using Markdown
We can create many text formats including *italics* and **bold**,
We can make lists
 1. First item
 2. Second item

Apply further options and carry over variables within a block:4.

The whole document acts as a single R session - so variables
created in earlier blocks can still be used later.
Plots are presented within the document. Options for blocks can be
set in the header

```{r, fig.width=12 }
plot(x, y)
```

How it works...
The code here is unique in that it must be run from inside an external document; it won't
run in the R console. The compilation step to run the document can be done in a couple of
ways. Within RStudio, once rmarkdown is installed and you are editing a document with a
.Rmd extension, you get a knit button. Alternatively, you can compile a document from
the console with the rmarkdown::render() function, though I recommend the RStudio
IDE for this.

In Step 1 of the actual document, we create a YAML header that describes how the document
should be rendered including output formats, dynamic date insertion, and author and
titles. These will be added to your document automatically.

In Step 2, we actually create some content—the first line is just plaintext and will pass
through into the eventual document unmodified as paragraph text. The section within the
block delineated by ``` is code to be interpreted. Options for the block go inside the curly
brackets—here, {r} means this should be an R code block (some other languages are
supported too). The code in this block is run in a new R session, its output captured; and
inserted immediately after the code block.

In Step 3, we create some plaintext with the Markdown tags. ## gives us a line with a
second-level heading, the **starred** text gives us different formatting options, and we
can also create lists. Valid Markdown is interpreted and the reformatted text is passed into
the eventual document.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[263]

In Step 4, we start with some more plaintext and follow with a new code block. The options
for the code block are set in the curly brackets again—here, we set a width for figures in the
plot. Note that the code in this block refers to variables created in an earlier block. Although
the document creates a new R session without access to variables already in the usual
console, the document itself is a single session so blocks can access earlier block's variables,
allowing the code and text to be mixed up at whatever resolution the author requires.
Finally, the resulting figure is inserted into the document just like code.

Making use of the apply family of functions
Programming in R can sometimes seem a bit tricky; the control flow and looping structures
it has, are a bit more basic than in other languages. As many R functions are vectorized, the
language actually has some features and functions; that mean we don't need to take the
same low-level approach we may have learned in Python or other places. Instead, base R
provides the apply functions to do the job of common looping tasks. These functions all
have a loop inside them, meaning we don't need to specify the loop manually. In this
recipe, we'll look at using some apply family functions with common data structures to
loop over them and get a result. The common thread in all of the apply functions is that we
have an input data structure that we're going to iterate over and some code (often wrapped
in a function definition) that we're going to apply to each item of the structure.

Getting ready
We will only need base R functions and data for this recipe, so you are good to go!

How to do it...
Making use of the apply family of functions can be done using the following steps:

Create a matrix and use apply to work on it:1.

m <- matrix(rep(1:10, 10, replace = TRUE), nrow = 10)

apply(m, 1, sum)
apply(m, 2, sum)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[264]

Use lapply over the vector:2.

numbers <- 1:3
number_of_numbers <- function(x){
 rnorm(x)
}
my_list <- lapply(numbers, number_of_numbers)

Use lapply and sapply over the list:3.

summary_function <- function(x){
 mean(x)
}
lapply(my_list, summary_function)
sapply(my_list, summary_function)

Use lapply over a dataframe:4.

list_from_data_frame <- lapply(iris, mean, trim = 0.1, na.rm = TRUE
)
unlist(list_from_data_frame)

How it works...
Step 1 begins with the creation of a 10 x 10 matrix, with rows holding the same number and
columns running from 1 to 10. Inspecting it makes it clear, as partly shown in the following
output:

> m
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 1 1 1 1
[2,] 2 2 2 2 2 2 2 2 2 2
[3,] 3 3 3 3 3 3 3 3 3 3

We then use apply(): the first argument is the object to loop over, the second is the
direction to loop in (or margin, 1 = rows, and 2 = columns), and the third is the code to
apply. Here, it's the name of a built-in function, but it could be a custom one. Note it's the
margin argument that affects the amount of data that is taken each time. Contrast the two
apply() calls:

> apply(m, 1, sum)
[1] 10 20 30 40 50 60 70 80 90 100
> apply(m, 2, sum)
[1] 55 55 55 55 55 55 55 55 55 55

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[265]

Clearly, margin = 1 is taking each row at a time, whereas margin = 2 is taking the
columns. In any case, apply() returns a vector of results, meaning the results must be of
the same type each time. It is not the same shape as the input data.

With Step 2, we move onto using lapply(), which can loop over many types of data
structures, but always returns a list with one member for each iteration. Because it's a list,
each member can be of a different type. We start by creating a simple vector containing the
integers 1 to 3 and a custom function that just creates a vector of random numbers of a
given length. Then, we use lapply() to apply that function over the vector; the first
argument to lapply() is the thing to iterate over, and the second is the code to apply. Note
that the current value of the vector we're looping over is passed automatically to the called
function as the argument. Inspecting the resulting list, we see the following:

>my_list
[[1]] [1] -0.3069078
[[2]] [1] 0.9207697 1.8198781
[[3]] [1] 0.3801964 -1.3022340 -0.8660626

We get a list of one random number, then two, then three, reflecting the change in the
original vector.

In Step 3, we see the difference between lapply() and sapply() when running over the
same object. Recall lapply() always returns a list but sapply() can return a vector (s can
be thought of as standing for simplify). We create a simple summary function to ensure we
only get a single value back and sapply() can be used. Inspecting the results, we see the
following:

>lapply(my_list, summary_function)
[[1]] [1] -0.3069078
[[2]] [1] 1.370324
[[3]] [1] -0.5960334

>sapply(my_list, summary_function)
[1] -0.3069078 1.3703239 -0.5960334

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Programming with Tidyverse and Bioconductor Chapter 10

[266]

Finally, in Step 4, we use lapply() over a dataframe, namely, the built-in iris data. By
default, it applies to columns on a dataframe, applying the mean() function to each one in
turn. Note the last two arguments (trim and na.rm) are not arguments for
lapply(), though, it does look like it. In all of these functions, the arguments after the
vector to iterate over and the code (in other words, argument positions 1 and 2) are all
passed to the code being run—here, our mean() function. The column names of the
dataframe are used as the member names for the list. You may recall that one of the
columns in iris is categorical, so mean() doesn't make much sense. Inspect the result to
see what lapply() has done in this case:

> lapply(iris, mean, trim = 0.1, na.rm = TRUE)
$Sepal.Length [1] 5.808333
$Sepal.Width [1] 3.043333
$Petal.Length [1] 3.76
$Petal.Width [1] 1.184167
$Species [1] NA

It has returned NA. Also, it has generated a warning but not failed. This can be a source of
bugs in later analyses.

With a simple list like this, we can also use unlist() to get a vector of the results:

> unlist(list_from_data_frame)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.808333 3.043333 3.760000 1.184167 NA

If names are present, the vector is named.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Building Objects and Packages

for Code Reuse
In this final chapter, we'll take a look at taking our code out of our own machines and
sharing it with the world. The person we'll share with most often will be ourselves! So, with
a view to making our own programming lives easier and more streamlined, we'll look at
how to create objects and classes to simplify our own workflows and how to bundle them
into packages for reuse in other projects. We'll look at tools for sharing code on sites such as
GitHub and how to check that everything in your code works the way it is supposed to.

The following recipes will be covered in this chapter:

Creating simple S3 objects to simplify code
Taking advantage of generic object functions with S3 classes
Creating structured and formal objects with the S4 system
Simple ways to package code for sharing and reuse
Using devtools to host code from GitHub
Building a unit test suite to ensure that functions work as you intend
Using continuous integration with Travis to keep code tested and up to date

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[268]

Technical requirements
The sample data you'll need is available from this book's GitHub repository at https:/ /
github.com/PacktPublishing/ R- Bioinformatics- Cookbook. If you want to use the code
examples as they are written, then you will need to make sure that this data is in a sub-
directory of whatever your working directory is.

Here are the R packages that you'll need. In general, you can install these
with install.packages("package_name"). The packages listed under Bioconductor
need to be installed with the dedicated installer. If you need to do anything further,
installation will be described in the recipes in which the packages are used:

devtools

usethis

For some of the later recipes, we'll also need an installation of the git version control
system. Check out the official website to get the latest version for your system: https:/ /
git-scm.com/downloads. You will also find a GitHub account on the GitHub website
useful. Check out https:/ / github. com/ if you don't already have a GitHub account.

Normally, in R, a user will load a library and use functions directly by name. This is great
in interactive sessions but it can cause confusion when many packages are loaded. To
clarify which package and function I'm using at a given moment, I will occasionally use
the packageName::functionName() convention.

Sometimes, in the middle of a recipe, I'll interrupt the code so you can see
some intermediate output or the structure of an object that's important to
understand. Whenever that happens, you'll see a code block where each
line begins with ## (double hash) symbols. Consider the following
command:

letters[1:5]

This will give us the following output:

a b c d e

Note that the output lines are prefixed with ##.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/PacktPublishing/R-Bioinformatics-Cookbook
https://github.com/danmaclean/R_Bioinformatics_Cookbook
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Building Objects and Packages for Code Reuse Chapter 11

[269]

Creating simple S3 objects to simplify code
Creating your own objects can do a great deal to simplify your code and workflows,
making them easier for you to reproduce and reuse and abstracting away a lot of the
internal logic of a program so that the cognitive load on you as a programmer is reduced
and you can concentrate more on the bioinformatic and analytical aspects of the project
you're working on. R actually has numerous ways of creating objects and classes. In this
recipe, we'll look at its simplest, most ad hoc method—S3. This is a pretty informal way of
creating objects and classes but does suffice in a lot of cases.

Getting ready
In this recipe, we'll need just base R functions, so there's no need to install anything.

How to do it...
Creating simple S3 objects to simplify code can be done using the following steps:

Create a constructor function:1.

SimpleGenome <- function(nchr=NA, lengths = NA){

 genome <- list(
 chromosome_count = nchr,
 chromosome_lengths = lengths
)
 class(genome) <- append(class(genome), "SimpleGenome")
 return(genome)
}

Call the constructor to make new objects:2.

ecoli <- SimpleGenome(nchr = 1, lengths = c(4600000))
bakers_yeast <- SimpleGenome(nchr = 1, lengths=c(12100000))

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[270]

How it works...
Step 1 is where all the work happens. This is all we need to create an S3 object. As you can
see, it is very lightweight code. We simply create a function that generates and returns a
data structure. Our class is supposed to represent a simplistic genome and we want it to
hold some basic information about a genome. The SimpleGenome() function is our
constructor of objects. The genome list created by SimpleGenome is the data structure that
makes up the body of the eventual object. The members of this list are the slots of the object,
so we create members called chromosome_count and chromosome_length to represent
some features of the genome. With that done, we carry out the important step—we append
the class name (SimpleGenome) to the class attribute of the genome list. It is this that makes
R recognize the object as being of the SimpleGenome class. We can now return the created
S3 object.

In step 2, we simply use the constructor to make instances of the class. Inspecting the
resulting objects looks like this:

> ecoli
$chromosome_count
[1] 1
$chromosome_lengths
[1] 4600000
attr(,"class")
[1] "list" "SimpleGenome"

> bakers_yeast
$chromosome_count
[1] 1
$chromosome_lengths
[1] 12100000
attr(,"class")
[1] "list" "SimpleGenome"

We can see the object slots, the differences in the objects, and the class containing the new
SimpleGenome object. This is how we create an S3 object; it's a simple but effective way of
doing things. The advantages over just creating a normal data structure such as a list are
not immediately obvious, but when we look at how to create methods in the next recipe the
reasons will be clearer.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[271]

Taking advantage of generic object
functions with S3 classes
Once we have an S3 object, we will need to create functions to work with it. These are really
what makes working with the objects easy in the long run. It is in these functions that we
can abstract away the processing of the data in the objects and reduce the work we are
doing each time we use them. R's object system is based on generic functions. These are
grouped functions with the same base name, but a class-specific name extension. Each
group is called a method and R will decide which of the particular functions belonging to a
method will be called based on the class of the object the method is called on. This means
we can call plot() on objects of class A and get a completely different sort of figure than if
we called it on an object of class B. In this recipe, we'll have a look at how that works.

Getting ready
For this recipe, we'll use base R functions, so no need to install any packages, but we will
use the built-in iris data.

How to do it...
Taking advantage of generic object functions with S3 classes can be done using the
following steps:

Create a generic function in the plot() method:1.

plot.SimpleGenome <- function(x){
 barplot(x$chromosome_lengths, main = "Chromosome Lengths")
}

Create an object and use it in plot():2.

athal <- SimpleGenome(nchr = 5, lengths = c(34964571, 22037565,
25499034, 20862711, 31270811))
plot(athal)

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[272]

Create a new method first:3.

genomeLength <- function(x){
 UseMethod("genomeLength", x)
}

genomeLength.SimpleGenome <- function(x){
 return(sum(x$chromosome_lengths))
}
genomeLength(athal)

Modify an existing object's class:4.

some_data <- iris
summary(some_data)
class(some_data) <- c("my_new_class", class(some_data))
class(some_data)

Create a generic function for the new class:5.

summary.my_new_class <- function(x){
 col_types <- sapply(x, class)
 return(paste0("object contains ", length(col_types), " columns of
classes:", paste (col_types, sep =",", collapse = ",")))
}
summary(some_data)

How it works...
In step 1, we create a generic function called plot.SimpleGenome(). The special naming
convention here marks this out as a member of the group of generic plot functions specific
to objects of the SimpleGenome class. The convention is method.class. This is all we need
for the generic plot method to work.

In step 2, we actually create a SimpleGenome object as we did in the Creating simple S3
objects to simplify code recipe in this chapter (you'll need to make sure that recipe's step 1 was
executed in the current session for this step to work), and then call plot() on it. The plot
method looks up the generic function for the SimpleGenome objects and runs that object,
giving us the barplot we expect, as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[273]

With step 3, we take things a little deeper. In this step, we want to use a method name
(genome_lengths) that doesn't already exist (you can use the methods() function to see
those that exist), so we must first create the method group. We do that by creating a
function that calls the UseMethod() function, with the name of the method we want to
create as the enclosing function name and the first argument. With that done, we can create
the generic function for our SimpleGenome class and use it on our objects by simply calling
genomeLength(). As our generic function simply adds up the chromosome_lengths
vector, we get a result like this:

> genomeLength(athal)
[1] 134634692

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[274]

Step 4 shows the mechanics of the class lookup system. We first make a copy of the iris
data and then use the summary() method on it, giving the standard result for a dataframe:

> summary(some_data)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

Next, we use the class() function, in step 4, to add a new class to the some_data object.
Note we add it as the first element of the vector. We can see that the data.frame class is
still there but is later in the order than the one we added:

> class(some_data)
[1] "my_new_class" "data.frame"

Then, in step 5, we create a generic summary() function for my_new_class so that it
returns a very different type of summary. We see that when we call it:

> summary(some_data)
[1] "object contains 5 columns of
classes:numeric,numeric,numeric,numeric,factor"

The point to note is that, although the object had more than one class, by default, the first
generic function that matches a class is chosen. Try switching the order of the class
attribute if you'd like to test this out.

Creating structured and formal objects with
the S4 system
S4 is a more formal counterpart to S3, particularly in that it has formal class definitions so it
can't be used ad hoc but it does work in quite a similar way to S3, so what we've learned
already will be generally applicable. In this recipe, we'll quickly run through how to create
a class similar to our SimpleGenome object in the first two recipes of this chapter, with the
S4 system. Knowing S4 will be advantageous if you wish to write code to extend
Bioconductor, as that is written in S4.

Getting ready
Again, we'll just use base R, so nothing to install.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[275]

How to do it...
Creating structured and formal objects with the S4 system can be done using the following
steps:

Write the class definition:1.

S4genome <- setClass("S4genome", slots = list(chromosome_count =
"numeric", chromosome_lengths = "numeric"))

Create a generic function:2.

setGeneric("chromosome_count",
 function(x){ standardGeneric("chromosome_count") }
)

Create the method:3.

setMethod("chromosome_count", "S4genome", function(x){ slot(x,
"chromosome_count")})

How it works
The outline here is very similar to the previous two recipes. In step 1, we create a class
definition using the setClass() function; the first argument is the name of the class, and
the slots argument is a proper list of slot names for the objects and the type for each one.
The S4 class needs the types to be defined. In-use objects can be instantiated in the same
way as for S3:

> ecoli <- S4genome(chromosome_count = 1, chromosome_lengths =
c(4600000))
> ecoli An object of class "S4genome"
Slot "chromosome_count": [1] 1
Slot "chromosome_lengths": [1] 4600000

In step 2, we create a generic function, chromosome_count, using the setGeneric()
function, passing the name and a function that calls the standardGeneric() function.
This is pretty much boilerplate code, so follow it now and check it out in the documentation
when you need more details.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[276]

In step 3, we create the method. We use the setMethod() function to create a
chromosome_count method. The second argument is the class this method will be called
on, and finally, we pass the code we want for the method. The anonymous function simply
calls the slot() function on the object passed to it. slot() returns the contents of the slot
named in the second argument.

See also
If you do wish to go further with S4 to extend Bioconductor classes, see the tutorials
provided by Bioconductor themselves at https:/ /www. bioconductor. org/ help/ course-
materials/2017/Zurich/ S4- classes- and- methods. html.

Simple ways to package code for sharing
and reuse
Inevitably, there will come a time when you want to be able to reuse some functions or
classes and not have to type (or—horror—copy and paste) them in every time. Having just
one reliable version of things in one place makes it easy to manage and keep on top of
mistakes and changes in code. So, in this recipe, we'll look at two simple ways of wrapping
code up to reuse it. We'll touch on the very basics of package creation, though the packages
we will make will be quite bare-bones and will need quite some fleshing out—especially
with documentation and tests—before you consider releasing them. The packages you
make in this way, though, will help you out as you develop your code.

Getting ready
For this, we'll need the devtools and usethis packages and the source code
file, my_source_file.R, in the datasets/ch11 folder of this book's repository.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html
https://www.bioconductor.org/help/course-materials/2017/Zurich/S4-classes-and-methods.html

Building Objects and Packages for Code Reuse Chapter 11

[277]

How to do it...
Wrapping code for sharing and reuse can be done using the following steps:

Load an existing source code file:1.

source(file.path(getwd(), "datasets", "ch11", "my_source_file.R"))
my_sourced_function()

Create a package skeleton:2.

usethis::create_package("newpackage")

Write code:3.

my_package_function <- function(x){
 return(c("I come from a package!"))
}

Load the package code into memory:4.

devtools::load_all()

Install the package into your current R installation:5.

devtools::install()
library(newpackage)

How it works...
The first step of this code shows a very effective but very rudimentary method of loading in
your own pre-written external code. We use the source() function to load in a file of R
code to the current namespace. The particular file here contains normal R functions and
nothing else. The source() function simply reads the code in the external file and executes
it as if it was typed directly into the current console. As the file just contains functions, then
you have to get those loaded into memory for immediate use.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[278]

Step 2 takes things a step further and creates a bare-bones package with the
usethis::create_package() function. The function creates a new folder with the name
that you provide (so, in this case, newpackage) and puts all of the essential files and folders
you need for a package in there. You can now fill the R/ subfolder in the package with R
code that will eventually be loaded when you load the package. Try it with the function in
step 3; add this function to a file called my_functions.R in the R/ folder. It doesn't matter
too much what the files in the R/ folder are called and you can have many—make sure they
end in .R though.

Step 4 will take your source package and load it into memory using the
devtools::load_all() function. This roughly emulates what happens when we call the
library() function but without actually installing the package. By using
devtools::load_all(), we can quickly load code to test it out, without having to first
install it, so if we need to change the code, we don't have a broken version installed. We
don't provide any arguments, so it loads the package in the current directory (if you
provide a path as the first argument, it will load the package it finds there).

In step 5, we actually install the code properly into R. We use the
devtools::install() function and it builds the package and copies the built version into
the normal place in R. We can now load the built version as any other package with library
(newpackage). Note that this means that we have two copies of the package—the one we
installed and the one we are working on. You'll need to repeat steps four and five as needed
as you develop more code and add it to your package.

Using devtools to host code from GitHub
Good practice in developing code means keeping it in some sort of version control system.
One popular system among many is Git and the Git-sharing website GitHub. In this recipe,
we'll look at using the usethis package to add some useful non-code files that help to
describe how another user can reuse our code and the current state of its development and
adding a mechanism to make sure the downstream user has the other packages that yours
depends on. We'll look at how to then send the package to GitHub and how it can be
installed directly from there.

Getting ready
We will need the usethis and devtools packages.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[279]

How to do it...
Using devtools to host code from GitHub can be done using the following steps:

Add some useful metadata and license files to the package:1.

usethis::use_mit_license(name = "Dan MacLean")
usethis::use_readme_rmd()
usethis::use_lifecycle_badge("Experimental")
usethis::use_version()

Add to the list of dependencies that will be automatically installed when your2.
package is installed:

usethis::use_package("ggplot2")

Automatically set up the local Git repository and get GitHub credentials:3.

usethis::use_git()
usethis::browse_github_token()
usethis::use_github()

Install the package from GitHub:4.

devtools::install_github("user/repo")

How it works...
The code in step 1 is really simple but it adds a lot to a package. The
usethis::use_mit_license() function adds a text file called LICENSE that is populated
with the text of the MIT license. Without a license file, it's difficult for others to see under
what terms they can use the software. The MIT license is a simple and permissive one that's
good for general open source software but there are alternatives; see this site for more help
on choosing the right license for you: https:/ /choosealicense. com/ . Check out the
usethis documentation regarding licenses for related functions that let you add other
license types. The argument name in all of these functions allows you to specify the
copyright holder of the software—it might be worth checking this out—if you're working
for a company or institute, legal copyright may belong to them.

The usethis::use_readme_rmd() function adds a blank .Rmd file to which you can add
code and text and which will be built into a regular markdown file and used on the front
GitHub page of your repository as a README file. Put stuff describing your packages'
objectives, basic usage, and installation instructions here as a minimum.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://choosealicense.com/
https://choosealicense.com/
https://choosealicense.com/
https://choosealicense.com/
https://choosealicense.com/
https://choosealicense.com/
https://choosealicense.com/
https://choosealicense.com/

Building Objects and Packages for Code Reuse Chapter 11

[280]

A helpful thing to add to your documentation is an indication of the stage of development.
The usethis::use_lifecycle_badge() function lets you create a nice little graphical
badge that displays where your package is up to. The terms you can use as the first
argument are defined here: https:/ /www. tidyverse. org/ lifecycle/ . Allied to this is the
usethis::use_version() function, which will help you to increment the version major,
minor, or patch version of your software.

In step 2, we manage the dependencies your package needs. These should be installed
automatically by the package manager software when a user installs your package; R
requires that they are placed in particular places in the package metadata description file.
The usethis::use_package() function does this for you.

In step 3, we use the usethis::use_git() function to create a local git repository in the
current directory; it also performs an initial commit of the current code to the repository.
The usethis::browse_github_token() function will open a web browser window and
navigate to GitHub on a page that will let you get a GitHub access token so your R session
can interact with GitHub. Once you have this, usethis::use_github() will take the local
git repository and create a repository on GitHub, make its origin remote, and push the
code. You only need to do this once. When the git and GitHub repositories exist, you'll
need to manage versioning manually using something such as RStudio's git panel or the
command-line version of git.

In step 4, we see how a remote user can install your package, simply using the
devtools::install_github() function with whatever username and repository name
are appropriate.

Building a unit test suite to ensure that
functions work as you intend
Most programmers test code obsessively and the practice of unit testing has arisen so that
we have a formal way of testing functions that can be automated and help to reduce the
time it takes to build even moderately complex code projects. A well-engineered and
maintained software package has a unit test suite for as many of its component functions as
it is possible to do. In this recipe, we'll look at how to use the usethis package to add the
component files and folders for an automated test suite that uses the testthat package.
It's beyond the scope of this book to look at the philosophy of why and how to write tests in
any detail, but you can check out the testthat package documentation here, https:/ /
testthat.r-lib.org/ , for a nice primer.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://www.tidyverse.org/lifecycle/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/

Building Objects and Packages for Code Reuse Chapter 11

[281]

Getting ready
We'll need the usethis, testthat, and devtools packages.

How to do it...
Use the following steps to build a unit test suite to ensure that functions work as you
intend:

Create the test folder structure:1.

usethis::use_testthat()

Add a new test:2.

usethis::use_test("adds")

test_that("addition works", {
 expect_equal(1 + 1, 2)
})

Run the actual tests:3.

devtools::test()

How it works...
Step 1 is a typical usethis style function that creates some common filesystem components
for your package—use_testthat() simply builds the folder structure that the underlying
testing engine testthat needs.

Step 2 puts the usethiss::use_test() function to work to create a test file—it uses the
value of the function argument as the suffix of a filename so that, in this case, with adds as
the argument, we get a file called test-adds.R in the tests/testthat folder. We can
then add tests to that file. Each test will follow the basic pattern shown in the second line
of this step. The test_that() function is called; its first argument is a bit of text that is
printed to the console at test time, so we know which test is being worked on. The second
argument is a block of assertions from the testthat package that compare the output from
a function with an expected value. If the two match, the test passes; otherwise, it fails. There
are many assertions in testthat that allow you to test many types of output and objects.
You can see these in the documentation: https:/ /testthat. r-lib. org/ . Note that the test
should be in the test file and saved, not typed into the console.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://testthat.r-lib.org/

Building Objects and Packages for Code Reuse Chapter 11

[282]

In step 3, we use the devtools::test() function in the console to run the test suite
automatically. The results of the tests are printed to the console and you can modify the
functions as needed then re-run this step.

Using continuous integration with Travis to
keep code tested and up to date
Continuous Integration (CI) is a team programming practice that was developed to help
large teams working on the same project to keep all of their code, dependencies, and tests
working together as well as possible. The tools developed to facilitate this can also help us
to manage our own software projects and keep on top of problems that arise from our own
updates, updates in the packages we have used as dependencies, and even updates to R
and the operating system in certain cases. Travis.CI is one CI service that is supported in
the devtools package. With Travis.CI integrated into your project, the Travis server will
build a new virtual computer, install an operating system on it, install R and all of the
package dependencies your package needs, then install your package and run its test suite.
Travis will then send the results to you. This process is repeated at intervals—notably,
every time you do a push to GitHub so you can keep an eye on what is breaking with your
code and get an early handle on problems. In this recipe, we'll look at how to set up Travis
for your package project.

Getting ready
For this recipe, you'll need the usethis package and a package project hosted on GitHub.
The earlier recipes in this chapter will help you with that if you don't already have that set
up.

How to do it...
To use CI with Travis to keep code tested and up to date, we create a .travis.yml file:

usethis::use_travis()

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Objects and Packages for Code Reuse Chapter 11

[283]

How it works...
The only line of code in this recipe creates a file called .travis.yml in the root of your
package directory. This file works as a hook on GitHub so that, once the repository is
updated, the Travis.CI server will carry out a new build of the virtual server and package
and run the tests, then email you the results at the address associated with your GitHub
account. Although it is only one line, this is probably one of the most impactful single lines
in this whole book! The .travis.yml file carries configuration options for the Travis build
and much can be added to customize the output. One common addition to that file is as
follows:

warnings_are_errors: false

This will tell Travis that warnings from R code are not to be counted as errors and won't
make the build fail.

A build can take time; expect even simple code to take 15 minutes. More complicated
projects will take longer.

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

R Statistics Cookbook
Francisco Juretig

ISBN: 978-1-78980-256-6

Become well versed with recipes that will help you interpret plots with R
Formulate advanced statistical models in R to understand its concepts
Perform Bayesian regression to predict models and input missing data
Use time series analysis for modelling and forecasting temporal data
Implement a range of regression techniques for efficient data modelling
Get to grips with robust statistics and hidden Markov models
Explore ANOVA (Analysis of Variance) and perform hypothesis testing

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/in/big-data-and-business-intelligence/r-statistics-cookbook

Other Books You May Enjoy

[285]

Data Analysis with R - Second Edition
Tony Fischetti

ISBN: 978-1-78839-372-0

Gain a thorough understanding of statistical reasoning and sampling theory
Employ hypothesis testing to draw inferences from your data
Learn Bayesian methods for estimating parameters
Train regression, classification, and time series models
Handle missing data gracefully using multiple imputation
Identify and manage problematic data points
Learn how to scale your analyses to larger data with Rcpp, data.table, dplyr, and
parallelization
Put best practices into effect to make your job easier and facilitate reproducibility

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/in/big-data-and-business-intelligence/data-analysis-r-second-edition

Other Books You May Enjoy

[286]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

3
3D structure protein alignment
 obtaining, with bio3d 98, 100, 101

A
alignment visualization
 dot plots, creating for 122, 123, 124, 125, 126
alignments
 trees, reconstructing with phangorn 127, 128
AllelicImbalance
 allele-specific expressions, finding 37, 38, 39
amplicon data
 reading, from raw reads with dada2 138, 139,

140, 141
ape packages 85
ape
 used, for extracting with subtrees 118, 119, 121
 used, for working with subtrees 118, 119, 121
 varied tree formats, reading 104, 105, 106
 varied tree formats, writing 104, 105, 106
apply functions
 using 263, 264
 working 264, 265, 266

B
base R objects
 creating, into tidy dataframe 250, 251, 252
basic helix-loop-helix (bHLH) 122
batch effects
 estimating, with SVA package 35, 36, 37
bio3d
 used, for finding protein domains 78, 79, 80, 82
 used, for obtaining 3D structure protein

alignment 98, 101
bioconductor classes
 working, programmatically with 258, 259, 260

Bioconductor
 reference link 276
bioMart 84
BioMart
 gene annotation, retrieving 211, 212, 213
 genome annotation, retrieving 211, 212, 213
 URL 211
bumphunter
 function, using 33
 regions showing high expression ab initio, finding

32, 33
BWA
 URL 222

C
category 190
Circos plots 202
circular genome plots
 constructing, of polyomic data 202, 203, 204,

205, 206, 207, 208
classes
 predicting, with random forests 235, 236, 237
 predicting, with support vector machine (SVM)

237, 238, 239
colormaps
 creating, for two-variable data 182, 183, 184,

185, 186
Continuous Integration (CI)
 about 282
 using, with Travis 282, 283
copy number
 estimating, at locus of interest 67, 68, 69, 70
Cygwin
 reference link 75

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

[288]

D
dada2
 used, for reading amplicon data from raw reads

138, 139, 140, 141
data, with Principal Component Analysis (PCA)
 variables, identifying 246, 247
data, with random forests
 variables, identifying 244, 245
dataframe 96
DECIPHER package
 about 85
 used, for aligning genomic length sequences 89,

91, 93
degree 190
DESeq 34
DESeq1
 used, for estimating differential expression 18
DESeq2
 about 37, 41
 used, for estimating differential expression 15,

16

 used, for estimating differential expression from
count matrix 16, 17, 18, 19

 used, for estimating differential expression from
ExpressionSet object 17, 19

devtools
 using, to host code from GitHub 278, 279, 280
differential expression
 estimating, with DESeq from ExpressionSet

object 17, 19
 estimating, with DESeq1 18
 estimating, with DESeq2 15, 16
 estimating, with DESeq2 from count matrix 16,

17, 18, 19
 estimating, with edgeR 9, 10, 13
 estimating, with edgeR from count table 11, 13,

14

 estimating, with edgeR from ExpressionSet
object 12, 14, 15

differential peak analysis 34, 35
distributions of peptide hit counts
 visualizing, to find thresholds 159, 161, 162,

163, 164
DNA motifs
 finding, with universalmotif 74, 75, 76, 77, 78

dot plots
 creating, for alignment visualization 122, 123,

124, 125, 126

E
edgeR
 about 34, 37
 used, for estimating differential expression 9, 10,

13

 used, for estimating differential expression from
count table 11, 13, 14

 used, for estimating differential expression from
ExpressionSet object 12, 14, 15

European Nucleotide Archive (ENA)
 about 217
 experiments, searching 217, 218, 219
 reads, searching 217, 218, 219
external programs
 used, for completing read-to-reference alignment

222, 223

F
False Detection Rate (FDR) 14
False Negative Rate (FNR) 26
False Positive Rate (FPR) 26
features
 plotting, on genetic maps 53, 54
formal objects
 creating, with S4 system 274, 275, 276

G
gene annotation
 retrieving, from BioMart 211, 212, 213
gene ontology (GO)
 about 216
 information, obtaining 216, 217
generic object functions
 using, with S3 classes 271, 272, 274
genes
 multiple alignments, performing 85, 87, 88
genetic maps
 features, plotting on 53, 54
genome annotation
 retrieving, from BioMart 211, 212, 213
genome browser

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

[289]

 proteomics data, viewing 154, 156, 157, 158
genomic length sequences
 aligning, with DECIPHER 89, 91, 93
genomic loci
 identifying, that match peptides 171, 172, 173,

174

genomic regions of interest
 information, extracting in 60, 61
ggtree
 trees, visualizing of genes 106, 107, 108, 109,

110, 111, 112, 113, 114
GitHub
 devtools, using to host code 278, 279, 280
groupings
 classifying, with kNN 233, 234, 235
 learning, within data 233, 234, 235
groups
 learning, in data without prior information 239,

240, 241, 242, 243, 244
GWAS
 henotype and genotype associations, finding 63,

64, 65, 66

H
heat trees
 used, for visualizing taxonomic abundances in

metacoder 142, 143
heatmaps 182
hierarchical taxonomic data
 phyloseq, used for loading in 131, 132, 133
High throughput sequencing (HTS) 43
high-throughput sequence reads
 quality control, performing 219, 220, 221
 quality filter, performing 219, 220, 221
Human Genome Project (HGP) 209
human SNPs
 finding, from Ensembl 215

I
indels
 finding, from sequence data 45, 46, 47, 48
information
 extracting, in genomic regions of interest 60, 61
input
 used, for obtaining 3D structure protein

alignment 99
interactive web graphics
 creating, with plotly 192, 193, 194, 195, 196,

197

InterPro domains
 about 82
 finding 83, 84

J
Java Runtime Environment (JRE)
 reference link 165

K
k-means clustering
 performing 243
k-Nearest Neighbors (kNN) 233
karyoploteR vignette
 reference link 57
karyoploteR
 features, plotting on genetic maps 53, 54, 55

L
local SQL database
 refreshing 219
locus of interest
 copy number, estimating at 67, 68, 69, 70
long reference sequences
 open reading frames, predicting in 49, 50, 51,

52

M
machine learning
 used, for performing novel feature detection in

proteins 94, 95, 97, 98
magrittr 41
Mean Squared Error (MSE) 237
MEME package
 about 77
 reference link 75
metacoder
 taxonomic abundances, visualizing with heat

trees 142, 143
 used, for rarefying correction for sample

differences 134, 135, 136, 137
 used, for rarefying counts for sample differences

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

[290]

134, 135, 136, 137
MIT license
 reference link 279
Most Recent Common Ancestor (MRCA) 114
MS formats
 converting, to move data between tools 164,

165

msa package 100
multiple distributions
 visualizing, with ridgeplots 177, 178, 179, 180,

181

mutate() function
 functions, writing from dplyr 255, 256, 257

N
nested dataframes
 using 252, 255
 working 253, 254, 255
networks
 relational data, representing as 186, 187, 188,

190, 191

O
open reading frames
 predicting, in long reference sequences 49, 50,

51, 52
ORFs (open reading frames) 50
OTUs
 sequence files, splitting into 147, 148

P
p-values
 correcting, to account for multiple hypotheses

228, 229
package code
 wrapping, for reuse 276, 277, 278
 wrapping, for sharing 276, 277, 278
PDFLatex
 installation link 85
PFAM
 used, for finding protein domains 78, 79, 80, 81
phangorn
 used, for reconstructing trees from alignments

127, 128
phenotype and genotype associations

 finding, with GWAS 63, 64, 65
phylogenetic analysis 104
phyloseq
 used, for loading in hierarchical taxonomic data

131, 132, 133
pink-yellow-green (PiYG) pallete 184
plotly
 used, for constructing three-dimensional plots

198, 199, 200, 201
 used, for creating interactive web graphics 192,

193, 194, 195, 196, 197
polyomic data
 circular genome, constructing of 202, 203, 204,

205, 206, 207, 208
Position Specific Weight Matrix (PSWM) format 74
power analysis
 with powsimR 19, 20, 22, 24, 26, 28
powsimR
 power analysis 19, 20, 22, 24, 26, 28
Principal Component Analysis (PCA) 239
protein domains
 finding, with bio3d 78, 80, 81
 finding, with PFAM 78, 79, 80, 82
proteins
 machine learning, used for performing novel

feature detection 94, 96, 98
 multiple alignments, performing 85, 87, 88
ProteomeXchange
 URL 169
proteomics data
 viewing, in genome browser 154, 155, 156,

157, 158
protViz
 spectra, matching to peptides for verification

166, 167

Q
quality control filters
 applying, to spectra 168, 169, 170
quality control
 performing, on high-throughput sequence reads

219

 visualizing, of read-to-reference alignments 224,
225

quality filter

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

[291]

 performing, on high-throughput sequence reads
219

R
random forests
 classes, predicting with 235, 236, 237
rarefaction curves
 using 137
raw MS data
 representing, visually 151, 152, 153, 154
read-to-reference alignments
 completing, with external programs 222, 223
 quality control, visualizing 224, 225
relational data
 representing, as networks 186, 187, 188, 190,

191

reusable reports
 developing 260, 261, 262
 working 262, 263
reusable workflows
 developing 260, 261, 262
 working 262, 263
ribosomal RNA (rRNA) 129
ridgeplots
 used, for visualizing multiple distributions 177,

178, 179, 180, 181
RNAseq data
 plotting 39, 40, 41
 presenting 39, 40, 41
RStudio application
 URL 261

S
S3 classes
 generic object functions, using 271, 272, 274
S3 objects
 creating, for simplifying code 269
 working 270
S4 system
 used, for creating formal objects 274, 275, 276
 used, for creating structured objects 274, 275,

276

sample diversity
 computing, with vegan 144, 145, 146
samtools

 URL 222
sequence files
 splitting, into OTUs 147, 148
Short Read Archive (SRA)
 about 217
 experiments, searching 217, 218, 219
 reads, searching 217, 218, 219
simulated dataset
 generating, to represent background 230, 231,

232

SNPs
 finding, from sequence data 45, 46, 47, 48
 retrieving with 214, 215
 working with 214, 215
spectra
 matching, to peptides for verification with protViz

166, 167
 quality control filters, applying to 168, 169, 170
STRING database
 reference link 94
structured objects
 creating, with S4 system 274, 275, 276
subtrees
 extracting, with ape 118, 119, 121
 working, with ape 118, 119, 121
support vector machine (SVM)
 about 94
 classes, predicting with 237, 238, 239
SVA package
 about 35
 used, for estimating batch effects 35, 36, 37

T
taxonomic abundances
 visualizing, in metacoder with heat trees 142,

143

Taxonomic reference data
 reference link 138
testthat
 reference link 281
three-dimensional plots
 constructing, with plotly 198, 199, 200, 201
Travis
 Continuous Integration (CI), using with 282, 283
treeio

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 varied tree formats, reading 104, 105, 106
 varied tree formats, writing 104, 105, 106
trees
 of genes, visualizing with ggtree 106, 107, 108,

109, 110, 111, 112, 113, 114
 reconstructing, from alignments using phangorn

127, 128
treespace
 interactive plot, creating 118
 used, for quantifying differences between trees

114, 115, 116, 117
True Negative Rate (TNR) 26
True Positive Rate (TPR) 26
two-variable data
 colormaps, creating for 182, 183, 184, 185, 186

U
UCSC genome browser
 reference link 155
unannotated transcribed regions
 searching 28, 29, 30, 31
unit test suite

 building, to ensure functions working 280, 281
universalmotif
 used, for finding DNA motifs 74, 75, 76, 77, 78
unnest() function 255

V
VariantAnnotation
 variants, classifying 58, 59
 variants, selecting 58, 59
VariantTools
 indels, finding from sequence data 45, 46, 47,

48

 reference link 49
 SNPs, finding from sequence data 45, 46, 47,

48

varied tree formats
 reading, with ape 104, 105, 106
 reading, with treeio 104, 105, 106
 writing, with ape 104, 105, 106
 writing, with treeio 104, 105
vegan
 sample diversity, computing with 144, 145, 146

 EBSCOhost - printed on 2/9/2023 7:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Performing Quantitative RNAseq
	Technical requirements
	Estimating differential expression with edgeR
	Getting ready
	How to do it...
	Using edgeR from a count table
	Using edgeR from an ExpressionSet object

	How it works...
	Using edgeR from a count table
	Using edgeR from an ExpressionSet object

	Estimating differential expression with DESeq2
	Getting ready
	How to do it...
	Using DESeq2 from a count matrix
	Using DESeq2 from an ExpressionSet object

	How it works...
	Using DESeq2 from a count matrix
	Using DESeq2 from an ExpressionSet object

	Power analysis with powsimR
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding unannotated transcribed regions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding regions showing high expression ab initio with bumphunter
	Getting ready...
	How to do it...
	How it works...
	There's more...

	Differential peak analysis
	Getting ready
	How to do it...
	How it works...

	Estimating batch effects using SVA
	Getting ready
	How to do it...
	How it works...

	Finding allele-specific expressions with AllelicImbalance
	Getting ready
	How to do it...
	How it works...
	There's more...

	Plotting and presenting RNAseq data
	Getting ready
	How to do it...
	How it works...

	Chapter 2: Finding Genetic Variants with HTS Data
	Technical requirements
	Finding SNPs and indels from sequence data using VariantTools
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Predicting open reading frames in long reference sequences
	Getting ready
	How to do it...
	How it works...
	There's more...

	Plotting features on genetic maps with karyoploteR
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting and classifying variants with VariantAnnotation
	Getting ready
	How to do it...
	How it works...
	See also

	Extracting information in genomic regions of interest
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding phenotype and genotype associations with GWAS
	Getting ready
	How to do it...
	How it works...

	Estimating the copy number at a locus of interest
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 3: Searching Genes and Proteins for Domains and Motifs
	Technical requirements
	Finding DNA motifs with universalmotif
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding protein domains with PFAM and bio3d
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding InterPro domains
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Performing multiple alignments of genes or proteins
	Getting ready
	How to do it...
	How it works...
	There's more...

	Aligning genomic length sequences with DECIPHER
	Getting ready
	How to do it...
	How it works...

	Machine learning for novel feature detection in proteins
	Getting ready
	How to do it...
	How it works...

	3D structure protein alignment with bio3d
	Getting ready
	How to do it...
	How it works...
	There's More...

	Chapter 4: Phylogenetic Analysis and Visualization
	Technical requirements
	Reading and writing varied tree formats with ape and treeio
	Getting ready
	How to do it...
	How it works...
	See also

	Visualizing trees of many genes quickly with ggtree
	Getting ready
	How to do it...
	How it works...
	There's more...

	Quantifying differences between trees with treespace
	Getting ready
	How to do it...
	How it works...
	There's more...

	Extracting and working with subtrees using ape
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating dot plots for alignment visualization
	Getting ready
	How to do it...
	How it works...

	Reconstructing trees from alignments using phangorn
	Getting ready
	How to do it...
	How it works...

	Chapter 5: Metagenomics
	Technical requirements
	Loading in hierarchical taxonomic data using phyloseq
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Rarefying counts and correcting for sample differences using metacoder
	Getting ready
	How to do it...
	How it works...
	There's more...

	Reading amplicon data from raw reads with dada2
	Getting ready
	How to do it...
	How it works...
	See also

	Visualizing taxonomic abundances with heat trees in metacoder
	Getting ready
	How to do it...
	How it works...

	Computing sample diversity with vegan
	Getting ready
	How to do it...
	How it works...
	See also...

	Splitting sequence files into OTUs
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Proteomics from Spectrum to Annotation
	Technical requirements
	Representing raw MS data visually
	Getting ready
	How to do it...
	How it works...

	Viewing proteomics data in a genome browser
	Getting ready
	How to do it...
	How it works...
	There's more...

	Visualizing distributions of peptide hit counts to find thresholds
	Getting ready
	How to do it...
	How it works...

	Converting MS formats to move data between tools
	Getting ready
	How to do it...
	How it works...

	Matching spectra to peptides for verification with protViz
	Getting ready
	How to do it...
	How it works...

	Applying quality control filters to spectra
	Getting ready
	How to do it...
	How it works...
	There's more...

	Identifying genomic loci that match peptides
	Getting ready
	How to do it...
	How it works...

	Chapter 7: Producing Publication and Web-Ready Visualizations
	Technical requirements
	Visualizing multiple distributions with ridgeplots
	Getting ready
	How to do it...
	How it works...

	Creating colormaps for two-variable data
	Getting ready
	How to do it...
	How it works...
	See also

	Representing relational data as networks
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating interactive web graphics with plotly
	Getting ready
	How to do it...
	How it works...

	Constructing three-dimensional plots with plotly
	Getting ready
	How to do it...
	How it works...

	Constructing circular genome plots of polyomic data
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Working with Databases and Remote Data Sources
	Technical requirements
	Retrieving gene and genome annotation from BioMart
	Getting ready
	How to do it...
	How it works...

	Retrieving and working with SNPs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Getting gene ontology information
	Getting ready
	How to do it...
	How it works...

	Finding experiments and reads from SRA/ENA
	Getting ready
	How to do it...
	How it works...
	There's more...

	Performing quality control and filtering on high-throughput sequence reads
	Getting ready
	How to do it...
	How it works...

	Completing read-to-reference alignment with external programs
	Getting ready...
	How to do it...
	How it works...

	Visualizing the quality control of read-to-reference alignments
	Getting ready...
	How to do it...
	How it works...

	Chapter 9: Useful Statistical and Machine Learning Methods
	Technical requirements
	Correcting p-values to account for multiple hypotheses
	Getting ready
	How to do it...
	How it works...

	Generating a simulated dataset to represent a background
	Getting ready
	How to do it...
	How it works...

	Learning groupings within data and classifying with kNN
	Getting ready
	How to do it...
	How it works...

	Predicting classes with random forests
	Getting ready
	How to do it...
	How it works...
	There's more

	Predicting classes with SVM
	Getting ready
	How to do it...
	How it works...

	Learning groups in data without prior information
	Getting ready
	How to do it...
	How it works...
	There's more

	Identifying the most important variables in data with random forests
	Getting ready
	How to do it...
	How it works...

	Identifying the most important variables in data with PCA
	Getting ready
	How to do it...
	How it works...

	Chapter 10: Programming with Tidyverse and Bioconductor
	Technical requirements
	Making base R objects tidy
	Getting ready
	How to do it...
	How it works...

	Using nested dataframes
	Getting ready
	How it works...
	How it works...
	There's more...

	Writing functions for use in dplyr::mutate()
	Getting ready
	How to do it...
	How it works...

	Working programmatically with Bioconductor classes
	Getting ready
	How to do it...
	How it works...

	Developing reusable workflows and reports
	Getting ready
	How to do it...
	How it works...

	Making use of the apply family of functions
	Getting ready
	How to do it...
	How it works...

	Chapter 11: Building Objects and Packages for Code Reuse
	Technical requirements
	Creating simple S3 objects to simplify code
	Getting ready
	How to do it...
	How it works...

	Taking advantage of generic object functions with S3 classes
	Getting ready
	How to do it...
	How it works...

	Creating structured and formal objects with the S4 system
	Getting ready
	How to do it...
	How it works
	See also

	Simple ways to package code for sharing and reuse
	Getting ready
	How to do it...
	How it works...

	Using devtools to host code from GitHub
	Getting ready
	How to do it...
	How it works...

	Building a unit test suite to ensure that functions work as you intend
	Getting ready
	How to do it...
	How it works...

	Using continuous integration with Travis to keep code tested and up to date
	Getting ready
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

