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1 Preface

Bodies with many degrees of freedom, in particular with many par-
ticles, exhibit certain patterns of their physical quantities, which can
be viewed as a motion in space and time. The breakthrough into the
nature of this motion was made by Maxwell in 1859, who showed, for
gases, that this motion is a statistical motion which implies proba-
bilities. This is a distinct type of motion, different from mechanical
motion, or from other forms of motion like the elastic, fluid, electro-
magnetic or quantum-mechanical motions. Nevertheless, there was,
and still is, a continuous attempt to derive the statistical motion from
mechanical motion, or to reduce it to mechanical motion, such that
Statistical Physics is often called Mechanical Statistics. In spite of
Maxwell, founders of Statistical Physics like Boltzmann, Gibbs or Ein-
stein persisted in connecting the statistical motion with the mechani-
cal motion. The confusion is fuelled by the presence of the mechanical
motion in statistical motion. The problem would rather be to see the
compatibility of the statistical motion with the mechanical motion.
This is the problem of Kinetics, to be developed in the present book.

This rather misleading line of thought arose from the evolution equa-
tion for the distribution function F , which, instead of being written
as

dF

dt
=

ΔF

Δt
= −γ[F − F (t =∞)] , (1.1)

is usually written as
dF

dt
= C(ΔF ) , (1.2)

where C(ΔF ) is the so-called collision integral (ΔF = F−F (t =∞)).1

Equation (1.1) is an evolution equation, from the moment t = 0, when
F = F (t = 0) to t =∞. The approximation used in the first equality

1Equation (1.1) has been used by Debye for molecular relaxation (P. Debye, Polar

Molecules, Chem. Catalog Co., Inc., NY (1929)).

1
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1 Preface

in equation (1.1) is valid for a sudden decrease of the function F .
Indeed, the time τ = 1/γ is the collision time of the particles (in the
general sense of interaction), which is much shorter than any relevant
time at our scale. It is related to the particle mean freepath Λ and
the particle (thermal) velocity v. The solution of equation (1.1) is

F = F (t = 0)e−γt + F (t =∞)(1− e−γt) , (1.3)

which shows that we may view F (t = 0) as the initial non-equilibrium
distribution and F (t =∞) as the final equilibrium distribution. There-
fore, equation (1.1) embodies the principle of statistical (thermal)
equilibrium, which is the basic principle of Statistical Physics. In fact,
since τ is very short in comparison with t (large γ), the equilibrium
is established much faster (than t→∞).

The collision integral C(ΔF ) does not include necessarily (i.e. with-
out additional ingredients) the principle of equilibrium, although it
includes collisions, vanishes at equilibrium and in spite that the colli-
sions are represented by probabilities (which remain undefined; Stoss-
zahlansatz). The usual arguments that equation (1.2) would imply
an increase of entropy (Boltzmann’s H-theorem) in the evolution to-
wards equilibrium are valid only at equilibrium, when the entropy is
stationary.

Equation (1.1) can also be written as dF/dt = −γf , where f = ΔF =
F −F (t =∞) is the deviation of the distribution from its equilibrium
value. If we keep γf �= 0 in equation (1.1) (or C(ΔF ) �= 0 in equation
(1.2)), we admit that we are not at equilibrium. Equation (1.1) shows
how the ensemble tends to equilibrium. (As long as C(ΔF ) is not
determined in a form similar with −γf , equation (1.2) does not show
the approach to equilibrium). Inasmuch as we write γ = 1/τ and
τ = Λ/v, we admit that the approach to equilibrium is governed by
collisions. But these collisions are not determined in the mechanical
sense, they are determined in a statistical sense, through Λ and τ
which are purely statistical concepts, such that the statistical motion
remains a distinct motion, not derivable from the mechanical motion.
If we attribute to the molecular collisions a mechanical sense, we have
not anymore, for instance, an ideal gas, but a gas with interaction.
We should realize that the equilibrium is achieved, locally, much faster
than our time scale. Therefore, we need to use in Kinetics (local)

2
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1 Preface

equilibrium evolution equations. This approach was recognized by
Landau in connection with the collisionless plasma, where γ = 0+

and γ → 0+; it led to the Landau damping.2 We emphasize that γ
is not small as a consequence that τ = 1/γ is large; on the contrary,
τ is short. We take the parameter γ zero because we are at local
equilibrium.

Two types of problems are usually solved in Kinetics. In one type, we
are interested in the slight perturbations produced in the equilibrium
distribution by an external force. In these problems the kinetic equa-
tion (1.1) is solved by neglecting the small term γΔF and treating γ
as γ → 0. This approach means that the ensemble is at local equilib-
rium (but not at global equilibrium). Mechanical motion produced by
external forces coexists with the statistical motion. The macroscopic
phenomena imply much longer times than the relaxation time τ , such
that, practically, they take place at equilibrium. The other type of
problems is the transport. The standard approach is to use various
ansatzen for the collision term C(ΔF ) and solve equation (1.2) for
F , as if the ensemble were not at equilibrium; then, fluxes (flows) are
computed with the solution F , which depends on the spatial deriva-
tives of the thermodynamic parameters, to get the transport laws.
However, the transport time is of the order l/v, where l is the dimen-
sion of the macroscopic sample. Therefore, the transport time is much
longer than the relaxation time, and the transport takes place at local
(but not global) equilibrium. Consequently, the appropriate approach
is to leave aside the term γΔF in equation (1.1) and to use the fact
that the transport is made at local equilibrium. The statistical equi-
librium is governed by probabilistic collisions (interactions) and the
macroscopic phenomena are governed by local statistical equilibrium.

In transport equations time and spatial partial derivatives of the dis-
tribution may appear, or derivatives of the parameters of the distribu-
tion, or derivatives of quantities connected with the distribution. In
the time partial derivatives of the type ∂F/∂t we may replace ΔF by
F and Δt by τ , since these variations are sudden variations produced
by particle collisions; likewise, in spatial derivatives we may use Λ.
Usually, the variations ΔF are small (as τ is), but even for larger

2L. Landau, "On the vibrations of the electronic plasma", ZhETF 16 574 (1946)
(J. Phys. USSR 10 25 (1946)).

3
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1 Preface

variations we may use such a procedure, as long as the contributions
of the time and spatial derivatives compensate each other (as in the
continuity equation), or are compensated by external forces, such that
the equation of local equilibrium dF/dt = 0 is preserved. The approx-
imations τ∂/∂t = 1 and Λ∂/∂x = 1 are not always useful; first-order
differential equations, or equations which imply second-order spatial
derivatives at most, are useful for the evolution of the physical quan-
tities.

This book exhibits several original points. First, it derives the Boltz-
mann equation from atomic motion, making use extensively of Lan-
dau’s concept of elementary excitations. Second, it includes external
forces, besides the statistical motion, wherever relevant. The trans-
port is treated at local equilibrium, according to the quasi-general
evidence. In Kinetics we are at the limits of the Theoretical Physics,
because we have to be content only with estimations of partially de-
fined concepts like lifetime and mean freepath of elementary excita-
tions; this makes Kinetics a particularly difficult (and intriguing) sub-
ject in the realm of Theoretical Physics, probably the most interesting
one. This book presents the kinetic theory of the classical gas and the
transport in classical gas. Special attention is devoted to the classi-
cal plasma, which raises a problem. The problem in classical plasma
is the relation between the thermal equilibrium of the electrons, on
one hand, and the ions, on the other. The Coulomb forces, and the
correlations they produce, make the classical plasma a classical gas of
interacting ions dressed with electrons, via the Debye-Huckel screen-
ing. This way, once correlated with the ions, the electrons acquire a
special dynamics. The thermodynamics of a classical plasma is that of
a gas of interacting dressed ions, which may exhibit condensed phases,
like a liquid phase or a solid phase. The phonons in solids are a partic-
ularly interesting subject. Besides describing the thermoconductivity
of a perfect lattice, this book emphasizes the role played by the anhar-
monic interactions in the phonon lifetime. Landau’s fruitful concept
of elementary excitations, quasiparticles and collective modes, is in-
troduced especially in (normal) Fermi liquid, where the interaction
is discussed in detail. The electron liquid is presented in connection
with the cohesion of metals, and the transport in the magnetic field
and in semiconductors is described. Special attention is devoted to

4
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the electron-phonon interaction, where an interesting particular case
of non-equilibrium transport appears (the drag effect).3 Except for
such particular cases, the non-equilibrium transport, besides being ir-
relevant to a large extent, requires additional, particular hypotheses
which are not related to a general, consistent method. Basic features
of the superconductivity and superfluidity are presented, emphasizing
the relation of the transport with the condensed phases. A special kind
of thermoelectricity, consisting of flying pulses of charge and heat, is
described. A consistent model of classical liquids is also presented,
together with its transport properties. Finally, the sound anomaly in
water is clarified and the role played by the kinetic modes (densitons)
is discussed.

There exist subjects which have been omitted in the treatment pre-
sented in this book, or described succintly. Among them there are the
magnetic resonance phenomena, the neutron transport, the ballistic
transport, the electrodynamics of metals, plasmas in magnetic field,
the electrolytes, chemical reactions, hydrodynamics, low-dimensional
statistical ensembles. Most of these subjects do not exhibit new trans-
port concepts or circumstances, having the general aspect of applica-
tions of the transport theory (in many cases routine applications).

3T. Holstein, "Theory of ultrasonic absorption in metals: the collisions-drag
effect", Phys. Rev. 113 479 (1959).
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2 Introduction

If Physics would be viewed as a set of provinces (disciplines), Statisti-
cal Physics would be the Queen: the Queen of Physics. It distinguishes
itself not only by its power, richness and elegance, but especially by
raising a deep problem. And Physical Kinetics, to be dealt with in
this book, should be called the Crown Jewel, because it incorporates
this very deep statistical problem. The fundamental problem raised
by Statistical Physics originates in the fact that it identifies a distinct
type of motion (statistical motion), probably the most general form
of motion; the characteristic note of this motion, as compared with
other types of motion, is the problem.

Let us consider a motion, i.e. a change in time from a physical (i.e.
measurable) state to other physical states (a state is the set of values
of measurable quantities). We may imagine that in a long duration of
time T the motion spends some time ΔT in a state; or we may imagine
that ΔN out of many identical motions N take up the same state at
any moment; or, also, we may imagine that we have many times (N)
the same motion and ΔN times this motion takes up the same state.
Obviously, ΔT/T or ΔN/N is a probability, so we have a distribution
of probability. Then, we can compute the mean values of any physical
quantity (depending on states); and the deviations from these mean
values. Thus, we are able to have some knowledge about that mo-
tion, providing, of course, we know the probability distribution. Such
a motion would be a statistical motion, its realization a statistical
ensemble and the determination of the probability distribution (sta-
tistical probability) would be the main task (problem) of Statistical
Physics. The temporal ensemble defined above was employed by Ein-
stein; the state ensembles originate with Boltzmann and, especially,
Gibbs.

At this point the fundamental problem of the Statistical Physics ap-
pears: does such a statistical probability exist? Because, we note that

7
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2 Introduction

the probability defined above is independent of time, while the motion
depends on time. It is not obvious that statistical distributions exist.
Statistical distributions, i.e. probability distributions which are inde-
pendent of time, are specific for motions at statistical (thermal) equi-
librium. The problem is cast now in the question whether statistical
(thermal) equilibrium exists. Various plausible, reasonable arguments
were brought in favour of the existence of the thermal equilibrium, for
various physical ensembles, especially for gases. None is a proof of its
existence. Thermal equilibrium is a postulate of Statistical Physics,
one of the greatest principle of Physics. We may imagine probabil-
ity distributions which depend on time, and we may devise evolution
equations which, possibly, may bring these distributions to statistical
distributions. This is a very popular misconception related to Physical
Kinetics, perpetuated not as much by laymen, as by experts. In many
instances the Physical Kinetics seems to prove the evolution towards
equilibrium; in all these cases the arguments are misleading circular
arguments, which presuppose the existence of the thermal equilib-
rium, or mistake the mechanical motion for statistical motion. The
evolution equations of the Physical Kinetics show only that various
other motions (like mechanical, quantum-mechanical, elastic, fluid,
electromagnetic motion) are compatible with statistical motion.
It is worth noting that the statistical motion is not a deterministic
motion, in the sense that the states in terms of which the statistical
distribution is defined do not change in time. In the context of a deter-
ministic motion the existence of the thermal equilibrium is sometimes
called the "ergodic hypothesis" (or "quasi-ergodic hypothesis").1

Statistical distributions should depend only on the statistical motion
and some external parameters; in the absence of other conditions,
there is no reason to differentiate between the states; we note that the
states are statistical coordinates. Consequently, we may admit that
each available state has the same probability w = 1/Γ, where Γ is the
total number of states. This is sometimes called the "hypothesis of
molecular chaos". We may imagine a partition of any two sub-sets Γ1

and Γ2 of the Γ states; this is called a partition in two "sub-systems",
1See, for instance, E. Fermi, "Beweis, dass ein mechanishes Normalsystem im

allgemeinen quasi-ergodisch ist", Z. Phys. 24 261 (1923); E. Fermi, J. Pasta
and S. Ulam, "Studies of non linear problems", Los Alamos Report No. 266,
LA-1940, Los Alamos (1955).

8
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2 Introduction

or two "sub-ensembles", or a motion partition (the sub-systems were
introduced by Gibbs). Since the motion is the same and if the relevant
external parameters are the same, the probabilities of the partition
states are w1 = 1/Γ1 and w2 = 1/Γ2 and the equality w = w1w2

is valid. This is called the statistical independence. It follows that
the function lnw is an additive function of "sub-systems". For an
infinitesimal number of states the probability is dw = ρdΓ, where ρ is
the probability density; its ln is additive. Being constant in time, ρ
may be related to other constants of motion, like, for instance, energy,
momentum or angular momentum; the latter are additive, so ln ρ may
be a linear combination of these additive integrals of motion, with co-
efficients which are to be viewed as external parameters. In particular,
we should have ln ρ = α − βE , where E is the energy of the motion
associated with the states which define the probability density and α
and β are (constant) coefficients; it follows ρ ∼ e−βE . This is Gibbs’s
statistical distribution; of course, it should be normalized, such that´
dΓρ = 1; for quantum-mechanical states dΓ is the multiplicity of

the state, and w ∼ ρ; the integration over Γ is replaced by summa-
tion over states. It is reasonable to assume β > 0, for stability. This
connection indicates that the statistical motion may coexist with the
mechanical motion. If the ensemble is a number N of identical parti-
cles, then we may set α = const+βμN , where μ is another coefficient;
and the normalization should include integration (summation) with
respect to N . The existence of the parameters α (μ) and β may show
that the motion is not isolated in fact, it is not closed. The existence
of the energy E and the number of particles N show, to some ex-
tent, that the motion is closed. This is a very interesting particularity
of the statistical motion. Motion with distribution ∼ e−βE is called
canonical motion, that with distribution ∼ eβ(μN−E) is called macro-
canonical (or grand-canonical) motion. Of course, such distributions
are for motions which possess energy and particle numbers.

If the statistical motion is associated with classical mechanical mo-
tion, i.e. if the classical mechanical motion is present, the definition
of the states includes the dynamical variables p and q, where p de-
notes momenta and q denotes the coordinates; then, ρ ∼ e−βE(p,q)

and the mean value of any physical quantity f(p, q) is given by f =´
dpdqρ(p, q)f(p, q); the dynamical variables are coordinates of the

9
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phase space (Γ includes points (p, q)) and the state ensemble is called
phase ensemble. If the quantum-mechanical motion is present, then
ρ = ρn ∼ e−βEn , where n denotes the quantum-mechanical state (in
the energy representation); and the probability is wn = ρn. The quan-
tities ρn may be viewed as the diagonal elements of a matrix ρ, which is
called the statistical matrix; what we measure in quantum-mechanical
motion is the quantum-mechanical mean value (ρf)nn, which, in the
energy representation is ρnfnn; the statistical mean value is given
by f =

∑
n(ρf)nn = tr(ρf). Summation (integration) over other

statistical variables, if present, should be included (e.g., the particle
number). Since ρ is diagonal in the energy representation we may
see that the quantum-mechanical motion is statistically independent
in this representation; we may infer that the statistical character of
the statistical motion and the statistical character of the quantum-
mechanical motion coincide in the energy representation. In other
representations this is not true. In general, the statistical character of
the quantum-mechanical motion is distinct from the statistical char-
acter of the statistical motion. The energy plays a special role in this
context.

Also, we note that the existence of the conserved energy (and other
integrals of motion) does not mean necessarily that the mechanical
motion is integrable in terms of any dynamical variables (p, q), or any
type of states n. However, ln ρ remains proportional to the energy,
because the coordinates p , q are not treated as dynamical variables,
but as statistical variables (coordinates); this amounts to say again
that the statistical motion is distinct from the mechanical motion.
We can see that by admitting the existence of the statistical equilib-
rium we are able to derive the statistical distributions. In the course of
derivation we characterized the statistical motion by molecular chaos
("molecular-disorder", Boltzmann) and statistical independence. We
note that the states, the energy, the particle number are statistical
variables.
Let us assume that the statistical motion consists of a number N of
identical statistical motions; a physical quantity f may be written
as the sum f =

∑N
i=1 fi of all these "sub-motions"; then the mean

value f is proportional to N and the root mean square deviation

δf =

√
(Δf)2 =

√∑
ij ΔfiΔfj is proportional to

√
N , because of

10
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the statistical independence; it follows δf/f ∼ 1/
√
N and, for large

N , this ratio is zero. δf is called fluctuation. Therefore, statistical
knowledge is useful for statistical motions with a large (macroscopic)
number of degrees of freedom (states), when the fluctuations are small
(vanishing); i.e., the statistical variables are sharply distributed about
their mean values. The extension of the statistical motion to one
particle in an ensemble is a limiting case (we note that ρ and Γ may
fluctuate).

Let us introduce the quantity S = − ln ρ and require, in accordance
with the molecular chaos, its maximum mean value in certain con-
ditions; for instance, for a given mean energy and a mean particle
number; i.e., let us require the maximum of

−
ˆ

dΓρ ln ρ+ α

ˆ
dΓρN − β

ˆ
dΓρE ; (2.1)

we get immediately the statistical distribution ρ = eαN−βE . The
quantity S = − ln ρ is called entropy, its mean value

S = S = −
ˆ

dΓρ ln ρ (2.2)

is also called entropy; at equilibrium S = S = lnΓ and ∂S/∂E = β.
Therefore, at equilibrium the entropy is stationary, as a reflection of
the molecular chaos. Since the molecular chaos is absolute, any devi-
ation from equilibrium would mean a regular, ordered pattern, which
would decrease the entropy; therefore, the evolution (long time in the
temporal ensemble) is towards an increase of the entropy, towards
equilibrium; out of equilibrium (in non-equilibrium) the entropy is
smaller than at equilibrium. This is the law of increase of entropy.
It is equivalent with the principle of thermal equilibrium. Statistical
Physics may equally well be constructed starting from the principle of
increase of entropy. −S is called Boltzmann’s H function.2 Processes
where the entropy is constant (equilibrium processes) are reversible
processes, those where the entropy increases are irreversible processes.

2L. Boltzmann, Lectures on Gas Theory, Dover, NY (1964) (translated from L.
Boltzmann, Vorlesungen uber Gastheorie, Barth, Leipzig, Part I (1896) and
Part II (1898)).
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Among the reversible processes those which are adiabatic are special;
an adiabatic process is characterized by a parameter λ which varies
slowly in time, i.e. its time derivative dλ/dt is small; we may ex-
pand the small derivative dS/dt of the entropy with respect to time
in powers of dλ/dt; this expansion should start with the second power
of dλ/dt, because dS/dt > 0; i.e., dS/dt = A(dλ/dt)2 (A > 0). It
follows that dS/dt is much smaller than dλ/dt, i.e. the adiabatic pro-
cesses may take place and the entropy remains practically constant.
The adiabatic processes are reversible to a good approximation. Of
course, a reversible process is not necessarily adiabatic.

Let us write the statistical distribution as

ρ = ec+βμN−βE , (2.3)

where c is a normalization constant,

e−c =

ˆ
dΓeβμN−βE = Z = 1 ; (2.4)

e−c is denoted by Z; it is called partition function. Let us differentiate
the normalization condition

´
dΓρ = 1, with ρ given by equation (2.3),

with respect to β and other external parameters λ which may enter the
expression of the energy; we note that in such variations we assume the
existence of the equilibrium, i.e. we consider equilibrium processes;
we get

d(c− βE + βμN) = −βdE + β
∂E

∂λ
dλ+ βμdN , (2.5)

where E = E and N = N are mean values; on the left in equation (2.5)
we have an exact (total) differential; let us introduce the notation

d(c− βE + βμN) = −βdQ ; (2.6)

then, equation (2.5) becomes

dE =
∂E

∂λ
dλ+ dQ + μdN ; (2.7)

here, we may view λ as volume V , −∂E/∂λ as pressure p and dQ
as heat. Statistical Physics identifies the heat as a form of energy.

12

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



2 Introduction

μ is an energy associated with the presence of a particle; it is called
chemical potential.

From S = −ln ρ we get S = −c+ βE − βμN and

−dS = d(c− βE + βμN) = −βdQ ; (2.8)

therefore, the entropy is a function of state (its differential is an exact
differential) and T = 1/β is the temperature (hence the denomination
"thermal" equilibrium). For T → 0, when there exists only one state,
ρ → 1 and S = −ln ρ → 0; this is called the "third principle of
Thermodynamics" (the energy conservation would be the first, the
law of increase of entropy the second). The entropy may increase, in
an irreversible process, independently on the heat gained, so we have
TdS ≥ dQ . As regards the time τ of measuring the temperature,
we should have Tτ � �, where � is Planck’s constant; otherwise, the
quantum effects destroy the statistical equilibrium (e.g., at very low
temperatures or in very short times).

Equations (2.7) and dQ = TdS define the thermodynamic potentials;
in addition,

cT = −T lnZ = E − TS − μN ; (2.9)

Ω = E−TS−μN is called the grand-canonical potential, F (V, T,N) =
E − TS is the free energy (E = E(V, S,N)); W (p, S,N) = E + pV is
the enthalpy. We note the useful relation ∂(βF )/∂β = E. From

d(E + pV − TS) = V dp− SdT + μdN = dΦ , (2.10)

where Φ(p, T,N) = E + pV − TS is the Gibbs free energy (F is
also called the Helmholtz free energy), it follows Φ = μN (since V
and S are proportional to N); and E + pV − TS = μN implies
Ω(V, T, μ) = E−TS−μN = −pV . We note that E+pV −TS−μN = 0
at equilibrium and, in general, since the entropy increases and is
stationary at equilibrium, E + pV − TS − μN ≥ 0; i.e., the ther-
modynamic potentials have a minimum at equilibrium. Since the
fluctuations are deviations from equilibrium mean values, we can
use this expression for deriving their distribution; in order to do
this, we should leave aside one contribution to this expression, say,
μN , and take ΔE + pΔV − TΔS > 0 as defining the distribution
ρ ∼ e−β(ΔE+pΔV−TΔS) for the fluctuations ΔE, ΔV and ΔS; note
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that the fluctuations are deviations of equilibrium type. If we take
the derivative of ˆ

dΓ(E − E)e−βE = 0 (2.11)

with respect to the temperature we get the energy fluctuation δE =
T (∂E/∂T )1/2.

It is of the greatest importance to note the following circumstance.
In canonical distribution ρ ∼ e−βE the variable E is the mechanical
energy; this may induce the idea that the statistical motion would be a
mechanical motion. In fact, ρ includes also the factor ec (ρ = ec−βE),
which leads to d(c− βE) = −βdQ = −dS and

dE = −pdV + dQ , (2.12)

i.e. to the existence of another form of energy, distinct from the me-
chanical energy, which is heat. The occurrence of this new form of
energy originates in the fact that ρ is a probability distribution, which
should be normalized; i.e., from the hypothesis of the molecular chaos
and the principle of thermal equilibrium. It is this latter characteristic
which is the distinctive feature of the statistical motion; and the ex-
istence of E in the definition of the statistical distribution shows only
that the statistical motion is compatible with the mechanical motion,
that both motions may coexist. The existence of N in the macro-
canonical distribution also indicates the non-mechanical character of
the statistical motion. The statistical character is embodied in the
amount of heat which is dQ = TdS = Td lnΓ (for a variation between
infinitesimally-separated equilibrium states); we can see that it is the
variation of the number of states which gives the heat. This is not a
mechanical motion, since in a mechanical motion a state is occupied
(gained) only by leaving behind (losing) an empty state.

The statistical distributions are derived above from the assumption
of thermal equilibrium, characterized by statistical independence and
molecular chaos. We may think that an external agent, probably
endowed with similar characteristics, generates such a special kind
of motion (statistical motion). Let us consider a motion with fixed
energy E0 and fixed particle number N0. Let us assume that it is
possible to divide this motion into two parts, one larger, with various
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energies E ′

and various particle numbers N ′

, called "bath", and an-
other, smaller, with various energies E and various particle numbers
N . The probability distribution of the "0" motion will be proportional
to δ-functions,

ρ0 ∼ δ(E0 − E ′ − E)δ(N0 −N ′ −N ) (2.13)

and the probability distribution of the smaller motion is of the form

ρ =
´
dΓ

′

dN ′

ρ0 ∼

∼ ´ dΓ′

dN ′

δ(E0 − E ′ − E)δ(N0 −N ′ −N ) =

=
´
dΓ

′

δ(E0 − E ′ − E) |N ′=N0−N .

(2.14)

In this expression we use dΓ
′

= (dΓ
′

/dE ′

)dE ′

= (dS ′

/dE ′

)eS
′

dE ′

,
where S ′

= S ′

(E ′

,N ′

); the main contribution to equation (2.14) comes

from eS
′

(E0−E,N0−N ); the series expansion of S ′

for E 	 E0, N 	
N0 gives the statistical distribution ρ ∼ eβμN−βE ; the assumption of
thermal equilibrium is implicit, in the form of molecular chaos (and
statistical independence), in the integration over the variables Γ

′

and
N ′

of the bath. The distribution given by equation (2.13) is called
micro-canonical distribution.3

We include here another remark. Let a statistical motion of N0 identi-
cal particles have Γ0 states for each particle; let us consider a partition
N0 = N ′

+N , Γ = Γ
′

+ Γ; the entropy is

S0 = ln(N0Γ0) = ln(N ′

+N ) + ln(Γ
′

+ Γ) ; (2.15)

for N 	 N ′

, Γ 	 Γ
′

a series expansion in equation (2.15) gives
S0 = S ′

+ S,
S = const · N + const · Γ ; (2.16)

for independent particles with energy E the number of states Γ is
proportional to E (the surface of the momenta sphere), so we get

S = const · N + const · E , (2.17)

3J. W. Gibbs, Elementary Principles in Statistical Mechanics (The Rational

Foundation of Thermodynamics), Ch. Scribner’s Sons, NY (1902) (Dover, NY
(1960).
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which leads to the statistical distribution. The assumption of thermal
equilibrium, through statistical independence and molecular chaos, is
implicit in this derivation.

During statistical motion, which passes from one state to another,
other motions may be present, as, for instance, mechanical motion.
In classical mechanics, the density ρ of the trajectories, which depends
on coordinates and momenta (i.e. on the states), is left unchanged by
the mechanical motion (so is the volume of the phase space defined
by the trajectories); this is Liouville’s theorem (the conservation of
probabilities). Consequently, the statistical motion is not destroyed
by the (classical) mechanical motion, and the two motions may coex-
ist (are compatible). In quantum-mechanical motion, if the density
matrix were diagonal in the energy representation, i.e. if it commutes
with the hamiltonian, it is conserved. However, in general, this is
not true. The quantum statistical distribution is unperturbed by the
quantum-mechanical motion, because the mean statistical values need
only mean quantum-mechanical values.

Arguments of the type given above are often used in the attempt to
define the statistical motion. Actually, they are invalid. Indeed, it is
claimed that, if ρ is a constant, then it obeys the equation of motion

dρ

dt
=

∂ρ

∂t
+ {H, ρ} = 0 , (2.18)

or
dρ

dt
=

∂ρ

∂t
+

i

�
[H, ρ] = 0 , (2.19)

where ∂ρ/∂t = 0, {} is the Poisson bracket, [ ] is the commutator, H
is the hamiltonian and � is Planck’s constant; from these equations
we would derive that {H, ρ} or [H, ρ] are zero, i.e. the distribution
would be conserved. These equations are invalid, since the statistical
distribution ρ does not obey the laws of the mechanical motion given
above; ρ in the above equations is the trajectory (Liouville) distribu-
tion or the density matrix. The mechanical motion of the states (i.e.
the motion of the dynamical variables p, q, or quantum-mechanical
states n) is disrupted by the statistical, chaotical motion. In the
statistical motion the states (in particular the coordinates p, q) are
viewed as statistical variables (coordinates). We note again that this
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particular circumstance does not prevent the constant ln ρ from being
proportional to the constant energy E , as shown above.

Finally, it is worth noting another feature of the statistical motion.
This motion proceeds in time. The mean values tend to equilibrium
mean values in a relaxation time. The deviations from mean values,
i.e. the fluctuations, occur in longer times in non-equilibrium and in
shorter times at equilibrium.

The main object of Statistical Physics is related to ensembles of many
particles; these particles may be of various types, like fermions, bosons,
radiation quanta, various elementary excitations; their mechanical
motion may be classical or quantum-mechanical. Their Statistical
Physics has many particularities; we limit ourselves here to give a
general frame related to the statistical motion of the many-particle
ensembles. If the particles do not interact (are free), their measurable
physical quantities do not move; consequently, the ensemble does not
have a statistical motion (except for the case where the ensemble has
not been prepared in such a state by external agents; in which case
an interaction is present). Therefore, in order to achieve a statistical
motion and the statistical equilibrium the particles must interact. If
a particle has at some instant an energy εeq, then, by interaction, it
shares this energy with many other particles; after some time, when
the statistical equilibrium is reached, the particles have a mean energy
of the order of the temperature T ; therefore, we must have the inequal-
ity εeq > T . Since the existence of the energy scale εeq is a necessary
condition for statistical equilibrium, we may call this energy equilib-
rium energy and endow it with the suffix eq from "equilibrium". At
equilibrium, there exist fluctuations, and the fluctuation energy δεf
should be lower than the temperature T , in order for the mean values
to make sense; therefore, we have the inequalities εeq > T > δεf ;
in addition, the uncertainty δεex in the energy of the elementary ex-
citations should be smaller than the fluctuation energy, in order for
these excitations to be well defined. Of course, the mean spacing
between the quantum states δεq should be very small, and finally,
the energy δεobs involved in the measurement (observation) process
should be the smallest. Therefore, we have the series of inequalities
εeq > T > δεf > δεex � δεq > δεobs. In the limit of a large number
of particles the quantum-mechanical energies (and states) are not de-
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fined, and δεq may be left aside in these inequalities. By the general
uncertainty relation δε 
 �/τ , these inequalities transform themselves
in a succession of time inequalities τeq < τth < τf < τlf 	 τq < τobs,
where τeq may be viewed as the time of destroying the equilibrium by
interaction, τth is the "thermal" time of establishing the equilibrium
(determining the equilibrium), τf is the fluctuation time, τlf is the
lifetime of the elementary excitations, τq is the time needed to estab-
lish the quantum levels and τobs is the time of observation of all these
phenomena. τeq may be viewed also as the mean time of collisions
between the particles. The mean freepath and the associated mean
freetime in gases correspond to one-particle elementary excitations.
All these estimations are made at equilibrium. We can see that the
thermal equilibrium deviates fastest from equilibrium and comes back
fastest, such that various observational processes are possible at equi-
librium. The relaxation time is related to the observation time, and
we can see that it is the longest.

Historical note. In Hydrodynamica, published between 1734-1738,4

Daniel Bernoulli claimed explicitly that gases are composed of mov-
ing atoms and molecules, whose collisions with container’s walls give
pressure and their mean kinetic energy is proportional to the tem-
perature and heat; this was the birth of the kinetic theory of gases.
The merit of this book consists in the atomistic conception; its draw-
back is the association of the statistical motion with the mechanical
motion. The atomistic conception introduces the notion of complex
assemblies composed of many (identical) particles. Leaving aside that
their mechanical motion may not be integrable (both classically and
quantum-mechanically),5 the probability distribution over the phase
space of the coordinates q and momenta p is

ρ =
∑
i

δ(q − qi(t))δ(p− pi(t)) (2.20)

in classical motion, where the summation extends over the number
of particles and qi(t), pi(t) describe the classical trajectory (trajec-

4D. Bernoulli, Hydrodynamics, Dover (1968).
5See, for instance, H. Poincare, Les Méthodes Nouvelles de la Mécanique Celeste,

Gauthier-Villars, Paris (1892, 1893, 1899); M. Apostol, "The many-body the-
ory: its logic along the years", J. Theor. Phys. 152 (2007); see also, F. Diacu,
"The solution of the n-body problem", Math. Intell. 18 66 (1996).
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tory distribution). The conservation of the particle number gives the
equation of continuity

∂ρ

∂t
+ div(ρv) = 0 , (2.21)

where v = (q̇, ṗ); if we assign the mechanical dynamics to the coordi-
nates, we get

∂ρ

∂t
+ vgradρ =

∂ρ

∂t
+ q̇

∂ρ

∂q
+ ṗ

∂ρ

∂p
=

∂ρ

∂t
+ {H, ρ} = 0 , (2.22)

where H is the hamiltonian; this equation is in fact dρ/dt = 0. This
is Liouville’s theorem; with the Poisson bracket replaced by commu-
tator, it is the equation of motion of the density matrix (which is
not equal to zero, in general). The above equations are usually em-
ployed to show that the statistical distribution is an integral of motion
(in the absence of the explicit time dependence); this would be the
conservation of the probabilities (the conservation of the volume in
the phase space is the conservation of the number of particles, or
the number of states). In fact, equation (2.20) leads immediately to
dρ/dt = 0. We should note, however, that as long as p and q are dy-
namical variables, the definition of a probability in reference to them
is meaningless, since for statistical distributions p and q are statistical
coordinates. Similarly, for a quantum-mechanical motion the micro-
canonical distribution (in the energy representation) may be taken
as an equivalent of equation (2.20), which does not lead to statisti-
cal distribution without the additional assumption of molecular chaos
(principle of statistical equilibrium). The statistical distribution is
not given by equations like equation (2.20), but by ρ = 1/Γ, where
Γ is the number of states (dΓ = 1 for quantum-mechanical motion).
This was the merit of Boltzmann, who, implicitly, identified thereby
the statistical motion as a distinct kind of motion.
The notion of probability made its way into Statistical Physics with
Maxwell, who, in 1859, derived the velocity distribution of the par-
ticles in a gas, by assuming a random motion (which amounts to a
uniform distribution ρ = 1/Γ) .6 He coined the term statistical mo-
6J. C. Maxwell, "Illustrations of the dynamical theory of gases. Part I. On the

motions and collisions of perfectly elastic spheres", Phil. Mag. 19 19 (1860)
(4-th series).
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2 Introduction

tion. Maxwell showed also that the viscosity does not depend on
density, a result which enforced the atomistic theory.7 "The path of
each molecule must be so irregular that it will defy all calculations.
However, according to the laws of probability theory, one can assume
a completely regular motion instead of this completely irregular one".8

Since 1870, starting from Maxwell, in a long series of papers, Boltz-
mann enunciated the notion of statistical ensemble in terms of states
(phase statistical ensemble) and claimed that H = − lnΓ or H =´
dΓρ ln ρ should decrease in time or be stationary (note that the

function x ln x is negative for 0 < x < 1); he related H to the entropy,
H ∼ −S.9 If we accept that the change in time of the function H
is caused by collisions, then, at equilibrium, the time reversal, or the
combined time reversal and spatial inversion, leads to the principle of
detailed balancing; more general, the unitarity of the scattering ma-
trix leads to a similar conclusion;10 making use of these results one can
prove indeed that dH/dt ≤ 0 (and dS/dt ≥ 0).11 This is the famous
Boltzmann’s "H -theorem".12 However, these arguments are valid at
equilibrium, which restricts the result to dH/dt = 0. The law of in-
crease of entropy follows from the principle of statistical equilibrium.

Indeed, serious objections have been raised to the proof of Boltz-
mann’s H-theorem. For instance, the invariance under time reversal
or, equivalently, the unitarity of the scattering matrix, used in de-

7J. C. Maxwell, "Illustrations of the dynamical theory of gases. Part II. On
the process of diffusion of two or more kinds of moving particles among one
another", Phil. Mag. 20 21 (1860) (4-th series).

8A. Kronig, "Grundzuge einer Theorie der Gase", Ann. Phys. 175 315 (1856).
9L. Boltzmann, "Weitere Studien uber das Warmegleichgewicht unter Gas-

molekulen", Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe
66 275 (1872); "Uber die Beziehung zwischen dem zweiten Hauptsatze der
mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung respektive
den Satzen uber das Warmegleichgewicht", Sitzungsber. Kais. Akad. Wiss.
Wien, Math. Naturwiss. Classe 76 373 (1877).

10E. C. G. Stueckelberg, "Théorème H et unitarité de S", Helv. Phys. Acta 25

577 (1952).
11See, for instance, L. Landau and E. Lifshitz, Course of Theoretical Physics, vol.

10, Physical Kinetics (E. Lifshitz and L. Pitaevskii), Elsevier, Oxford (1981).
12L. Boltzmann, Lectures on Gas Theory, Dover, NY (1964) (translated from L.

Boltzmann, Vorlesungen uber Gastheorie, Barth, Leipzig, Part I (1896) and
Part II (1898)).
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riving the decrease in time of the function H , are incompatible with
the decrease in time of the function H ; in other terms, the reversible
mechanical motion would be incompatible with the irreversible sta-
tistical motion. This is called Loschmidt’s paradox, or reversibility
(Umkehreinwand) paradox.13 Similarly, a finite mechanical motion
would recur through the same states (or very close to them), which
would rather make H an oscillating function, not a decreasing one;
this is Zermelo’s paradox, or recurrence (Wiederkehreinwand) para-
dox (formulated on the basis of Poincare’s recurrence theorem).14 In
fact, the proofs of the H-theorem are invalid, since in the time evolu-
tion of the statistical motion the number of states changes, while both
the principle of detailed balancing and the unitarity of the scattering
matrix used in the proofs assume a constant number of states, which
amounts, in fact, to assuming the statistical equilibrium; by such a
line of derivation we may only get dH/dt = 0 at equilibrium, which
proves that the statistical motion at equilibrium is compatible with
the mechanical motion; but they are distinct motions. The answer
to the popular question: "How may the reversible mechanical motion
lead to an irreversible statistical motion?" is provided by the fact that
the two motions are distinct.

Suppose that we have a small amount of gas which diffuses in a large
volume. The diffusion proceeds by collisions, by interactions between
the particles of the gas and by the initial conditions, to the extent to
which the latter are known; all these may be viewed, at first sight, as
ingredients of the mechanical motion. However, the result of diffusion
is not in mechanical terms of trajectories but in statistical terms of
probabilities. This means that the motion is not mechanical, at least
not in the terms of what we call mechanics, i.e. classical mechanics
or quantum-mechanical terms, as given by Newton’s law and the laws
of the Quantum Mechanics. This mechanical motion, defined in these
terms, is present, but there exists an additional motion, with proba-

13J. Loschmidt, "Uber den Zustand des Warmegleichgewichtes eines Systems von
Korpern mit Rucksicht auf die Schwerkraft. 1. Teil", Sitzungsber. Kais. Akad.
Wiss. Wien, Math. Naturwiss. Classe 73 128 (1876).

14E. Zermelo, "Uber einen Satz der Dynamik und die mechanische Warmetheo-
rie", Ann. Phys. 57 485 (1896); "Uber mechanische Erklarungen irreversibler
Vorgange. Eine Antwort auf Hrn. Boltzmann’s "Entgegnung"", Ann. Phys.
59 793 (1896).
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bilistic laws, which is statistical motion and is not mechanical motion,
so defined.

While Boltzmann limited himself to the general frame of the kinetic
theory of gases, Gibbs extended the statistical motion to its general
definition, continuing to mix up the statistical motion with the me-
chanical motion.15 Both derived the thermodynamics laws from sta-
tistical physics. About 1847 Joule recognized the heat as a form of
energy, which participates in the energy conservation together with
the mechanical energy; this became the first law of thermodynam-
ics.16 In 1865 Clausius introduced the notion of entropy (Verwand-
lungsinhalt) and formulated the law of increase of entropy from the
analysis of the empirical observations related to the heat engine of
Carnot17 ("The energy of the universe is constant. The entropy of
the universe tends to a maximum", Clausius).18 Clausius, following
Carnot, realized that the heat engine absorbs energy (heat) Q + W
at the hot temperature Th, performs the mechanical work W and re-
leases the heat Q at the cold temperature Tc. Then, he noticed, that
in these circumstances, any amount of heat Q should be proportional
to temperature T , and write Q = ST ; if the process is stationary, S
should be a constant ("the content of transformation"); then we have
(Q + W )/Th = Q/Tc; hence W and the Carnot efficiency quotient
η = W/(Q + W ) = 1 − Tc/Th. In a cyclic process the conserva-
tion of S can be written as

´
dQ/T = 0. If (Q + W )/Th > Q/Tc,

then η < 1 − Tc/Th; hence, he derived the law of increase of entropy´
dQ/T ≥ 0 or

´
dS ≥ 0.

In a series of papers published between 1902 and 1904 Einstein worked
out, apparently independently of Gibbs, the formalism of the Statisti-

15J. W. Gibbs, Elementary Principles in Statistical Mechanics (The Rational

Foundation of Thermodynamics), Ch. Scribner’s Sons, NY (1902) (Dover, NY
(1960).

16J. P. Joule, "Expériences sur l’identité entre le calorique et la force mécanique.
Determination de l’équivalent par la chaleur dégagée pendant la friction du
mercure", Compt. Rend. August 23 (1847); "On the mechanical equivalent of
heat", Phil. Trans. Roy. Soc. London 140 61 (1850).

17S. Carnot, Réflexions sur la Puissance Motrice du Feu, Bachelier, Paris (1824).
18R. Clausius, "Uber verschiedene fur die Anwendung bequeme Formen der

Hauptgleichungen der mechanischen Warmetheorie", Ann. Phys. 125 353
(1865); The Mechanical Theory of Heat - with its Applications to the Steam

Engine and to Physical Properties of Bodies, van Voorst, London (1867).
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2 Introduction

cal Physics, including the derivation of the laws of thermodynamics.19

His views on the relation of the statistical motion to the mechanical
motion are mixed. The merit of these papers is the introduction of
the temporal statistical ensembles. In 1905-1906 Einstein emphasized
fluctuations in the brownian motion;20 the same subject was studied
by Smoluchowski.21 These papers and Perrin’s experimental observa-
tions of the brownian motion22 enforced the atomistic conception.

19A. Einstein, "Kinetische Theorie der Warmegleichgewichtes und des zweiten
Hauptsatzes der Thermodynamik", Ann. Phys. 9 417 (1902); "Eine Theo-
rie der Grundlagen der Thermodynamik", Ann. Phys. 11 170 (1903); "Zur
allgemeinen molekularen Theorie der Warme", Ann. Phys. 14 354 (1904).

20A. Einstein, "Uber die von der molekularkinetischen Theorie der Warme
gefordete Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen",
Ann. Phys. 17 549 (1905); "Zur Theorie der Brownschen Bewegung", Ann.
Phys. 19 371 (1906).

21M. Smoluchowski, "Zur kinetischen Theorie der Brownschen Molekularbewe-
gung und der Suspensionen", Ann. Phys. 21 756 (1906).

22J. Perrin, Les Atomes, Alcan, Paris (1913).

23

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



3 Kinetics of Gases

3.1 Boltzmann’s kinetic equation

Let us consider an ideal classical gas at thermal (statistical) equilib-
rium, consisting of N � 1 classical identical point particles (molecules)
with mass m confined to a volume V ; the gas has the density (con-
centration) n = N/V and the temperature T ; its equation of state
is p = nT , where p is the pressure. The particles in the gas are
distributed statistically with respect to their positions r and veloci-
ties v; the distribution function is the Maxwell distribution F (v) =

n(βm/2π)3/2e−βmv2/2,
´
dvF (v) = n, where β = 1/T . The condition

for a classical gas is �
2/ma2 	 T , where � is Planck’s constant and

a = 1/n1/3 is the mean inter-particle separation; since vth =
√
3T/m

is the thermal velocity (root mean square velocity), this relation can
also be written as �/mvth 	 a (quantum-mechanical energy of lo-
calization much smaller than the temperature, quantum-mechanical
wavelength much smaller than the mean inter-particle separation).

Let us assume that an external force K acts upon the particles in the
gas; it produces a displacement u for each particle; we may think to
solve the equation of motion m(du̇/dt) = K; the solution depends
on the time t and the initial conditions r and v of the particles; this
approach is called the Lagrange approach. Unfortunately, it is not
practical, since the trajectories of the particles are disrupted by the
molecular collisions. The molecular collisions are present in the gas
at thermal equilibrium. The compatibility of the mechanical motion
(or other forms of motion) with the thermal motion is the problem of
Kinetics.

We may view the displacement u as a local displacement field u(t, r,v)
depending on time, position and velocity, and write the equation of
motion as ∂u̇/∂t+(v+u̇)∂u̇/∂r = K, where the effect of the collisions
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3 Kinetics of Gases

remains to be included. This is the Euler approach. We note the
occurrence of the transport term (v + u̇)∂u/∂r. In solids and fluids
the motion is ascribed to small, but macroscopic, regions of matter
at equilibrium, such that the velocity v is absent; moreover, in solids
the velocity u̇ is much smaller than the velocity of propagation of the
disturbance, such that the term u̇∂u̇/∂r is absent too; however, both
in solids and fluids there exists an interaction with the neighbouring
"particles", similar to the molecular collisions (friction).
In thermal motion we still consider sufficiently large regions of matter,
in order to be able to define the concentration, for instance; however,
such regions are small enough to allow for fluctuations and molecular
collisions; positions and velocities (in general phase-space variables)
are continuously and statistically distributed up to the uncertainty of
defining these regions; the thermal dynamics is defined in terms of
probabilities. It follows that we must consider small displacements
u, with small variations in space and time, as well as small effects of
the molecular collisions, in order to preserve the basic assumptions of
concentration, probability, deviations, uncertainties, fluctuations and,
ultimately, the Euler approach. This limitation is in accordance with
the external perturbations, which, usually, are small and vary slowly
in space and time, in the sense that their effects are small at our space
and time scales. In particular, it follows that we may limit ourselves
to v∂u̇/∂r for the transport term.
The displacement velocity may suffer small changes due to collisions;
therefore, an additional term mü 
 mu̇/τ must be added to the
equation of motion, where τ is a large relaxation time; being large, it
may be considered constant; therefore, the equation of motion reads

∂u̇

∂t
+ v

∂u̇

∂r
+ γu̇ =

K

m
, (3.1)

where γ = 1/τ is the collision frequency.1 We note that the collision
term gives a force which opposes the mechanical motion; this force
tends to establish the thermal equilibrium. Under the conditions pre-
sented here, equation (3.1) describes the accomodation of the mechan-
ical motion ("mechanical equilibrium") with the thermal equilibrium;
1The dissipation term γu̇ has been introduced by Rayleigh, J. W. Strutt (Lord

Rayleigh), "Some general theorems relating to vibrations", Proc. Math. Soc.
London s1-4 357 (1871).
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3 Kinetics of Gases

it describes mechanical motion compatible with thermal equilibrium.
The relaxation time τ defines a molecular freepath l = vτ and a mean
freepath Λ = vthτ . Close to equilibrium we may neglect the parame-
ter γ, as if, formally, we put τ =∞. Therefore, we must have ωτ � 1,
where ω is the frequency of variation of the displacement u. The limit
τ → ∞ (γ → 0) is called the collisionless limit. In addition, we must
have ωu	 v.

Equation (3.1) can be recast in an interesting form. Mechanical mo-
tion generates a variation f = δF of the equilibrium distribution; it
is given by

f = δF = −u̇∂F

∂v
; (3.2)

the minus sign implies a motion with velocity −u̇ ("observer’s mo-
tion"); we note that u̇ is a local velocity and equation (3.2) is at local
equilibrium. We may view F (v) as a velocity density of particles;
when v → v + u̇ this density becomes F (v + u̇) and the change in
density is δF = −[F (v + u̇) − F (v)] = −u̇∂F/∂v; the minus sign
accounts for the fact that this amount of particles is lost. In fact, the
process is F (v)→ F (v− u̇). Multiplying equation (3.1) by ∂F/∂v we
get

∂f

∂t
+ v

∂f

∂r
+

K

m

∂F

∂v
= −γf ; (3.3)

this is Boltzmann’s kinetic equation.2 It can also be written as

df

dt
+ γf = 0 , (3.4)

which shows that the total change brought by the mechanical motion
plus the change due to collisions is zero; i.e., the thermal equilibrium
is consistent with the mechanical motion, in the terms discussed here.
This is the general meaning of the Kinetics. Equation (3.4) may be
viewed as the general relaxation equation for any physical quantity.

We note that the equilibrium is local in the Boltzmann kinetic equa-
tion; leaving aside the collisions (and the force term), we get the

2L. Boltzmann, Lectures on Gas Theory, Dover, NY (1964) (translated from L.
Boltzmann, Vorlesungen uber Gastheorie, Barth, Leipzig, Part I (1896) and
Part II (1898)).
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3 Kinetics of Gases

transport equation; the compatibility of this equation with the statis-
tical distribution is assured locally by equation (3.2); but not globally.
In this context, we note also that we may use equally well equation
(3.1) for kinetic phenomena, or its transport part for transport, each
time in the context of local thermal equilibrium.

We note also that the collision term γf is relevant for the change f
of the distribution function; though present, the collisions do not ap-
pear in the equation of motion of the equilibrium function F , which
is stationary, i.e. dF/dt = 0 (this is related, formally, to Liouville’s
theorem). The dependence on the thermal velocities v and the occur-
rence of ∂F/∂v in equation (3.3) ensure the thermal equilibrium in
the presence of the mechanical motion.

In view of the small contributions in equation (3.1), we should limit
ourselves to first-order (small) variations f , as in equation (3.3). The
attempt of including higher-order variations in equation (3.3), or non-
linearities, is not warranted. The entropy is maximal at equilibrium,
such that it is affected only by higher-order variations of the distri-
bution function, not by first-order variations. Therefore, we must
consider the change f in the distribution function as an equilibrium
transformation.

In general, achieving the thermal (statistical) equilibrium may be
viewed as an open problem in Statistical Physics. The existence of the
thermal equilibrium and the increase of entropy towards equilibrium,
as well as its stationarity at equilibrium, are, in fact, the principles of
statistical motion. The existence of γ (and γ > 0) in equation (3.1)
indicates a dissipation of motion, which does not mean, necessarily,
equilibrium. The evolution of the statistical distribution towards equi-
librium implied by equation (3.4) is generated by the assumption in
equation (3.2), which means, in fact, this evolution. A more general
analysis of the collisions, made in the next section, strenghtens the hy-
pothetical nature of the thermal equilibrium. Transport phenomena,
plasmas or chemical reactions may offer instances of, at least limited,
special thermal equilibrium.
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3 Kinetics of Gases

3.2 Collision integral

The change in the number of particles with velocity v per unit time
and unit volume due to collisions is given by the collision integral3

C(F̃ ) =

ˆ
(w

′

F̃
′

F̃
′

1 − wF̃ F̃1)dv1dv
′

dv
′

1 , (3.5)

where two particles with velocities v and v1 collide and get veloc-
ities v

′

and v
′

1, respectively, the coefficient w(v
′

,v
′

1;v,v1) being a
probability coefficient; F̃ (t, r,v) is the distribution function and the
notation of the type F̃

′

means F̃
′

= F̃ (t, r,v
′

). At equilibrium, the
principle of detailed balancing is valid, as a consequence of the time
reversal, or the time reversal and space inversion; it provides the equal-
ity w(v

′

,v
′

1;v,v1) = w(v,v1;v
′

,v
′

1) = w
′

(v
′

,v
′

1;v,v1) (in general,
with the corresponding transformed velocities). The total number of
collisions is zero,

´
dvC(F̃ ) = 0. At equilibrium F

′

F
′

1 = FF1, due
to the energy conservation at rest; in motion with uniform velocity,
the energy and the momentum conservation ensure this equality (in
uniform motion with velocity V the distribution function is propor-
tional to e−

1
2
βmv2+βmVv). The differential cross-section of a particle

is dσ = (w/vr)dv
′

dv
′

1, where vr =| v − v1 | is the relative velocity of
the particle in the collision v + v1 → v

′

+ v
′

1. The collision integral
is non-linear and non-local (in velocities) with respect to the distri-
bution function F̃ ; if we attempt to linearize the collision integral by
F̃ = F + f , where F is the equilibrium distribution, we get a general
expression of the form

C(F̃ ) = A(f)−Bf , (3.6)

where A(f) is a functional of f and B is a (positive) coefficient which
may depend on v; we recognize here the collision frequency B. The
term A(f), which arises from w

′ �= w, in general (at non-equilibrium),
may take the gas out of equilibrium, while the term −Bf carries the
gas towards equilibrium.

3L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 10, Physical

Kinetics (E. Lifshitz and L. Pitaevskii), Elsevier, Oxford (1981).
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3 Kinetics of Gases

Obviously, the collision integral changes the distribution function ac-
cording to dF̃ /dt = C(F̃ ); at equilibrium C(F̃ ) = 0, and we recover
"Liouville’s theorem"

dF

dt
= v

∂F

∂r
+ v̇

∂F

dv
= 0 , (3.7)

which is an identity, since F does not depend on r and v and it does
not depend on time. The equation dF̃ /dt = C(F̃ ) and the collision
integral given by equation (3.5) are compatible with the increase of
the entropy due to collisions (the so-called Boltzmann’s H-theorem),
which means that in the form given by equation (3.6) the negative
terms in C(F̃ ), like −Bf , prevail over the positive terms; but, of
course, it does not provide a "proof" for the second law of Statistical
Physics.4 In fact, the principle of detailed balancing, or the conser-
vation of the quantum-mechanical properties are valid at equilibrium,
where F

′

F
′

1 = FF1 is valid and the collision integral is vanishing;
by such type of reasoning we can only prove the stationarity of the
entropy (and Boltzmann’s H function) at equilibrium.

In the presence of an external force K equation dF̃ /dt = C(F̃ ) reads

dF̃

dt
=

∂F̃

∂t
+ (v + u̇)

∂F̃

∂r
+

K

m

∂F̃

∂v
= C(F̃ ) , (3.8)

where F̃ (t, r,v) becomes a function F̃ (t, r,v+u̇); in addition, we have

∂u̇

∂t
+ (v + u̇)

∂u̇

∂r
+ c =

K

m
, (3.9)

where c is an undetermined collision term (corresponding to γu̇ in
equation (3.1)). The two coupled equations (3.8) and (3.9) describe

4The entropy of the classical gas of point particles is S = −
´
dτρ ln(ρ/e), where

dτ = drdv/(2π�)3 and
´
dτρ = N (L. Landau and E. Lifshitz, Course of

Theoretical Physics, vol. 5, Statistical Physics, Elsevier, Oxford (1980)); we

can see that the phase-space distribution function ρ is proportional to F̃ . The
technical points used in the H-theorem presuppose statistical equilibrium or
relate it to other types of motion; in particular the Stueckelberg property of
the collision probabilities (E. C. G. Stueckelberg, "Théorème H et unitarité de
S", Helv. Phys. Acta 25 577 (1952); L. Landau and E. Lifshitz, Course of

Theoretical Physics, vol. 10, Physical Kinetics (E. Lifshitz and L. Pitaevskii),
Elsevier, Oxford (1981)) assumes the quantum-mechanical motion.
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3 Kinetics of Gases

the evolution of a gas at non-equilibrium in the presence of an external
force. We leave aside here this very complicate (and, probably, not
very relevant) problem.

If the u̇-term in equation (3.8) is sufficiently small to be neglected,
then the K-term is also sufficiently small to be neglected (and vicev-
ersa), such that, we are left with the equation

∂F̃

∂t
+ v

∂F̃

∂r
= C(F̃ ) ; (3.10)

this equation describes the evolution of the gas at non-equilibrium; for
local equilibrium the collision term is zero and the remaining equation
∂f/∂t+ v∂f/∂r = 0 for f = F̃ − F describes transport phenomena.
We may be tempted to absorb the velocity u̇ in the velocities v in
equation (3.8); not only the K-term becomes then irrelevant, and it
should be dropped, but the function F̃ becomes the equilibrium func-
tion, the collision term is zero and we are left with a trivial identity.
Equation

∂F̃

∂t
+ v

∂F̃

∂r
+

K

m

∂F̃

∂v
= C(F̃ ) (3.11)

is inconsistent. Indeed, making use of F̃ = F + f , where F is the
equilibrium distribution, and using also equation (3.6), we may write
it as

∂f

∂t
+ v

∂f

∂r
+

K

m

∂F

∂v
+

K

m

∂f

∂v
= A(f)−Bf , (3.12)

or
K

m

∂f

∂v
= A(f)−Bf + γf ; (3.13)

since both terms Bf and γf have a common nature, we may take them
equal; but, even leaving aside this circumstance, we are left with an
equation which shows that the external force would be determined by
equilibrium, which is a non-sense.

3.3 Solution of the Boltzmann equation

Let us assume a sufficiently general force of the form

K = K0e
−iωt+ikr , (3.14)
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3 Kinetics of Gases

where ω is a frequency, k is a wavevector and K0 is a constant; we
consider the real part of this force. We give here the solution of the
Boltzmann equation (3.3)

∂f

∂t
+ v

∂f

∂r
+ γf = −K0

m

∂F

∂v
e−iωt+ikr ; (3.15)

the boundary condition for v → ∞ is f → 0 (or the usual plane
wave); the initial condition is f(t = 0, r,v) = 0. The solution is the
sum f = f1 + f2 of the solution f1 of the homogeneous equation

∂f1
∂t

+ v
∂f1
∂r

+ γf1 = 0 (3.16)

and a particular solution f2 of the inhomogeneous equation

∂f2
∂t

+ v
∂f2
∂r

+ γf2 = −K0

m

∂F

∂v
e−iωt+ikr . (3.17)

The solution f1 is
f1 = Ce−ivqt+iqr−γt , (3.18)

where C and q are undetermined constants; the solution f2 is

f2 = − i

ω − vk+ iγ
· K0

m

∂F

∂v
e−iωt+ikr ; (3.19)

the condition f(t = 0) = f1(t = 0) + f2(t = 0) = 0 gives q = k and

C =
i

ω − vk+ iγ
· K0

m

∂F

∂v
, (3.20)

such that the full solution is

f = − i

ω − vk+ iγ
· K0

m

∂F

∂v

(
e−iωt − e−ivkt−γt

)
eikr . (3.21)

We can see that the solution consists of two parts: an eigenmode
of the transport equation ∂f1/∂t + v∂f1/∂r = −γf1 (homogeneous
equation) for q = k, which is damped; and a stationary part f2. The
force takes the gas out of equilibrium at the initial moment, excites
the eigenmode, which relaxes in time, and finally the gas accomodates
the stationary motion produced by the force; this mechanical motion
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included, the gas is at equilibrium. Therefore, at long times we may
take

f = − i

ω − vk + iγ
· K0

m

∂F

∂v
e−iωt+ikr , (3.22)

or

f = − (ω − vk) sin(ωt− kr) + γ cos(ωt− kr)

(ω − vk)2 + γ2
· K0

m

∂F

∂v
, (3.23)

where we have taken the real part. We note that f can be written as
f = −u̇∂F/∂v, where

u̇ =
i

ω − vk+ iγ
· K0

m
e−iωt+ikr , (3.24)

from equation (3.1) and in accordance with equation (3.2); therefore,
the full distribution function can be written as

F̃ = F + f = F − u̇∂F/∂v 
 F (v − u̇) ; (3.25)

we can see that the equilibrium form of the distribution function is
preserved in the presence of the external field; u̇ depends on time,
position and velocity ("Liouville’s theorem" does not apply, since the
gas is not isolated anymore). It should be emphasized that we limit
ourselves to linear terms in u̇ in equation (3.25), i.e.

F̃ = F − u̇∂F/∂v ∼ e−
1
2
βmv2+βmvu̇ , (3.26)

in accordance with the general assumption given in equation (3.2).

We note that in writing v − u̇ in the argument of the distribution
function above we understand in fact mv2/2 −mvu̇, which can also
be written as m(v− u̇)2/2−mu̇2/2; if there exists a potential energy
U of the external force, we have mu̇2/2+U = const (leaving aside the
spatial dependence), and our expression becomes m(v− u̇)2/2+U , up
to an immaterial constant; with the redefinition of the velocities, this
is the sum of the kinetic and potential energy, which is the correct ex-
ponential factor in the equilibrium distribution. Strictly speaking, the
kinetic effects are limited to using f = −u̇∂F/∂v, without using ex-
ponential form and discarding higher-order terms in u̇; consequently,
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full equilibrium contributions may not arise formally in the kinetic
approach.

We note that equation (3.11) with a harmonic-like force ∼ e−iωt+ikr

can be solved recursively with a series of higher-order harmonics; the
solution includes terms both increasing and decreasing in time, ac-
cording to the structure of the collision integral, which has the form
I1(F̃ )−I2(F̃ )F̃ , where I1,2 are the corresponding integrals in equation
(3.5); leaving aside that the solution cannot satisfy a spatially-uniform
initial condition for a non-uniform force, since the equation does not
include a free term, the existence of a stationary regime cannot be
achieved.

Also, we note a more general method of solving equation (3.15) by
using Fourier transforms; to this end it is convenient to include the
initial condition in equation. The procedure consists in multiplying
the equation by the step function θ(t) (θ(t) = 1 for t > 0, θ(t) =
0 for t < 0), absorbing the factor θ into the time derivative and
limiting ourselves to t > 0; this way an additional term f(t = 0)δ(t)
appears on the right in equation (3.15) (which becomes an equation
with generalized functions (distributions)) and the solution can be
obtained by using time Fourier expansions.

There is another important point worthwhile discussing here. The mo-
tion of the particles exchanges energy with the external agent. Due
to collisions, they dissipate this energy to the ensemble of particles,
with a rate which is controlled by the collision frequency γ; in the long
run, the transferred energy changes the temperature of the ensemble.
From equation (3.25) we may be tempted to estimate the change in
temperature as δT 
 mu̇2, where the average should be taken over ve-
locities, space and time; in addition, for instance, u̇ = (1/n)

´
dvF u̇.

However, this estimation is not warranted by the kinetic approach.
The change in temperature may be estimated from mv2/2−mvu̇ in
the exponent of the distribution function; we get δT = mvu̇ = Tf/F ,
where the average means N−1

´
(f/F )Fdvdr. Making use of f given

by equation (3.22), we get δT = 0. The Fourier components of the
forces do not change the temperature.
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3.4 Thermalization

Let us assume that the gas is taken out of equilibrium by a localized
force K = K0δ(r)δ(t); equation (3.15) reads

∂f

∂t
+ v

∂f

∂r
+ γf = −f0δ(r)δ(t) , (3.27)

where f0 = (K0/m)(∂F/∂v). This is the homogeneous equation for
the distribution with the initial condition f(t = 0) = −f0δ(r). The
solution is a superposition of damped plane waves given by equation
(3.18) which leads to

f = −f0δ(r− vt)e−γt . (3.28)

We can see that the perturbation propagates as a succession of damped
spherical shells moving with distinct velocities. An estimate of the
relaxation (thermalization) time is provided by τ = 1/γ
 Δl/vth,
where Δl is the spatial extension of the original perturbation and
vth =

√
T/m is the thermal velocity.

It is worth discussing in this context the thermalization of quantum-
mechanical ensembles. Macroscopic bodies (consisting of N � 1 par-
ticles) have not (definite) energy levels, in the sense that the number
of energy levels in a finite range of energy is enormous; the energy
levels of a macroscopic body are very densely distributed. The degen-
erate energy level of two interacting particles are split by interaction;
a third particle causes another splitting, and so on, such that the num-
ber of energy levels of N particles is of the order 2N . The statistical
matrix moves according to ẇnm = i

�
(Em − En)wnm, while at equi-

librium it is wn = e−βEn/
∑

n e
−βEn . The energy En = E in these

formulae are distributed continuously. The deviation f of wn = F
from equilibrium obeys the equation

∂f

∂t
+

∂F

∂E

∂E

∂t
= −γf , (3.29)

where P = ∂E/∂t (= dE/dt) is the external power introduced in the
body or absorbed from the body. We note that the variable is the
energy, while a spatial variation pertains only to classical (or quasi-
classical) ensembles. Let us assume P = TP0δ(t), i.e. a power pulse of

35

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



3 Kinetics of Gases

a short duration T ; the solution is f = βFTP0e
−γt (∂F/∂E = −βF ).

The product TP0 is the amount of energy ΔE exchanged in time
T . The energy ΔE does not change the distribution of energy levels;
it follows that we have an estimate τ = 1/γ 
 T 
 �/ΔE for the
relaxation (thermalization) rate.

Small samples of condensed matter thermalize quickly, while the ther-
malization may become problematic in the nanoscopic range (10 −
103Å); in the mesoscopic range (103−105Å) the fluctuations are large.

3.5 A particular case: constant and

uniform force

Let us assume a constant uniform force K directed along the −z axis,
like the gravitational force at the Earth’s surface; therefore, we take
Kz = −mg, where g is the gravitational constant. Equation (3.15)
reads

∂f

∂t
+ v

∂f

∂z
+ γf = g

∂F

∂v
, (3.30)

where v = vz. We may leave aside the transient part of the solution
(damped in time) and neglect γ in the stationary (particular solution);
with the initial condition f(t = 0) = 0 we get

f = gt
∂F

∂v
; (3.31)

making use of F ∼ e−
1
2
βmv2

, the modified distribution function is

F̃ = Ce−
1
2
βmv2−βmvgt , (3.32)

where we leave aside the components∼ e−
1
2
βm(v2

x+v2
y) and the constant

C remains to be determined; we note the limitation to the linear term
in gt in the exponent. The expression in equation (3.32) can also be
written as

F̃ = Ce−
1
2
βm(v+gt)2+ 1

2
βmg2t2 ; (3.33)

now, we note that gt is the velocity −u̇ acquired by the particle and
z = −gt2/2 is the displacement of the particle along the z-axis; there-
fore, the term 1

2βmg2t2 in the exponent in equation (3.33) can be
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written as 1
2βmg2t2 = −βmgz; we recognize here the potential en-

ergy U = mgz, such that this term becomes

1

2
βmg2t2 = −βmgz = −βU ; (3.34)

the distribution function acquires the form

F̃ = Ce−
1
2
βm(v+gt)2−βmgz = Ce−

1
2
βm(v+gt)2−βU , (3.35)

which, with the redefinition v → v
′

+ gt of the velocity, acquires the
standard form of the equilibrium (Gibbs) distribution. The constant
C can be computed easily; we get the (full) distribution function

F̃ = ns(βm/2π)3/2βmg · e− 1
2
βmv2−βmgz , (3.36)

where ns is the surface density of particles (number of particles per
unit cross section in the z-direction); the number of particles per unit
volume is given by

n =

ˆ
F̃ dv = nsβmg · e−βmgz , (3.37)

which is the well known barometric formula; usually, nsβmg is re-
placed by the density n0 at the level z = 0.

We note that, strictly speaking, the derivation given above of the
barometric formula by using the kinetic approach, is not rigorous,
since it implies the quadratic term∼ g2t2 = u̇2, which is not valid in
the kinetic approach.

3.6 Other particular cases

Let us assume a uniform oscillating force K1e
−iωt directed along the

x-axis; we denote the axes by x, y, z or 1, 2, 3. Equation (3.15) reads

∂f

∂t
+ γf = −K1

m

∂F

∂v1
e−iωt ; (3.38)

the solution is

f = − i

ω + iγ

K1

m

∂F

∂v1
e−iωt ; (3.39)
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its real part is

Ref =
ω sinωt+ γ cosωt

ω2 + γ2
K1βv1F ; (3.40)

the full distribution function is

F̃ = C

(
1 +

ω sinωt+ γ cosωt

ω2 + γ2
K1βv1

)
e−

1
2
βmv2

; (3.41)

the v1-term does not contribute to the integral of F̃ , since it is an
odd function of v1; therefore, the normalization constant is C =
n(βm/2π)3/2; the distribution function is

F̃ = n(βm/2π)3/2
(
1 +

ω sinωt+ γ cosωt

ω2 + γ2
K1βv1

)
e−

1
2
βmv2

; (3.42)

for finite ω we may take γ → 0, in accordance with our general as-
sumptions. We may see that mean values of some physical quantities
are affected by the force; for instance v1 is not zero anymore; it is

v1 =
K1

mω
sinωt . (3.43)

Let us consider a longitudinal constant non-uniform force K1e
ikx;

equation (3.15) reads

v1
∂f

∂x
+ γf = −K1

m

∂F

∂v1
eikx (3.44)

with the solution (real part)

Ref =
sinkx

k
K1βF ; (3.45)

the distribution function is

F̃ = C

(
1 +

sinkx

k
K1β

)
e−

1
2
βmv2

; (3.46)

for determining the normalization constant we need to integrate over
the volume too; the sinkx-term does not contribute to this integral;
therefore, the distribution function reads

F̃ = n(βm/2π)3/2
(
1 +

sinkx

k
K1β

)
e−

1
2
βmv2

; (3.47)
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we can see that functions which depend on x may have a non-zero
contribution to their mean values arising from the force.
Let us consider a transverse constant non-uniform force K1e

ikx; equa-
tion (3.15) is

v1
∂f

∂x
+ γf = −K2

m

∂F

∂v2
eikx , (3.48)

with solution
f = − i

v1k − iγ
K2βv2Feikx ; (3.49)

the renormalization constant C is determined from

C(V
´
dve−

1
2
βmv2

+K2βIm
´
dxdv1

1
v1k−iγ e

− 1
2
βmv2

1×

× ´ dydv2 · v2e− 1
2
βmv2

2

´
dzdv3e

− 1
2
βmv2

3 ) = N ;

(3.50)

the contribution of f to C is zero, due to the integration over x (or
v2); we write the distribution function as

F̃ = n(βm/2π)3/2
(
1−Re

i

v1k − iγ
K2βv2e

ikx

)
e−

1
2
βmv2

; (3.51)

it is important to maintain the coefficient γ in the denominator, be-
cause it shows the way to avoid the singularity v1 = 0; in fact, we
may take γ → 0+, and write the distribution function as

F̃ = n(βm/2π)3/2
(
1−Re

i

v1k − i0+
K2βv2e

ikx

)
e−

1
2
βmv2

, (3.52)

where
1

v1k − i0+
=

1

k
P

1

v1
+

iπ

k
δ(v1) ; (3.53)

P in equation (3.53) denotes the (Cauchy) principal value.

3.7 General case. Landau damping

Let us consider the general case where ω and k are non-zero; making
use of equation (3.22) the distribution function can be written as

F̃ = C

(
1− Im

1

ω − vk+ iγ
· βK0ve

−iωt+ikr

)
e−

1
2
βmv2

, (3.54)
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where the constant C is determined from

C[V (2π/βm)3/2−

−Im ´ drdv e−
1
2
βmv2

ω−vk+iγ · βK0ve
−iωt+ikr] = N ;

(3.55)

the integral in equation (3.55) is zero, due to the r-integration. It
follows

F̃ = n(βm/2π)3/2·

·
(
1− Im 1

ω−vk+iγ · βK0ve
−iωt+ikr

)
e−

1
2
βmv2

.

(3.56)

The evaluation of the integral

I =

ˆ
dv

G

ω − vk+ iγ
, (3.57)

where G is a function of v, is particularly important.

When we try to get functions of time, by integrating over ω in Fourier
transforms, we must observe the causality principle, which tells us
that a perturbation occurring at t = 0 must not propagate in the past
(t < 0), but it must have effects only in the future (t > 0). We can
see that for t < 0 we should integrate over the upper ω-half-plane,
while for t > 0 we should integrate over the lower ω-half-plane (due
to the factor e−iωt); therefore, the integrand should have ω-poles only
in the lower ω-half-plane; indeed, this is the case with our function
in the integral in equation (3.57), where the pole is ω = vk − iγ,
γ > 0. The result of the integration is then ∼ e−γt, which shows that
the perturbation not only acts in the future, but it is also damped in
time; any perturbation should take us to equilibrium after a shorter
or longer time. Thus, the causality principle is in accordance with the
second law of Statistical Physics. Therefore, in these cases, we should
maintain the coefficient γ in our equations; however, according to our
general conditions γ is a small parameter, such that we may take it
to zero in the final results, which refer to equilibrium. An illustration
of this circumstance is given below, for the "dissipated" energy.

On the other hand, in many cases of computing physical quantities
we need integrals like the integral in equation (3.57) over velocity. In
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such cases we may take γ → 0+, according to our general conditions,
as for finite physical quantities; this means to use the identity

1

ω − vk + iγ
→ 1

ω − vk+ i0+
= P

1

ω − vk
− iπδ(ω − vk) , (3.58)

where P denotes the principal value. The procedure ensures a fi-
nite lifetime (a damping) for the resonance ω = vk, which otherwise
would have a zero integration measure. We can see that the principle
of causality and the principle of establishing the thermal equilibrium
give a sense to the resonant modes of individual particles (ω = vk),
which are responsible for the lifetime of the collective modes (the
modes ω = vk are collective since the resonance ω = vk implies all
the k located on a plane perpendicular to v; such sort of zero-measure
contributions (in this case a plane, i.e. a surface-like contribution) are
important in collective modes); the profound technical reason for such
a circumstance resides in the linear dependence on v of the denomina-
tor in equation (3.58). The damping brought about by the iπδ-term
in equation (3.58) is called Landau damping; the collective resonance
ω − vk = 0 is called Landau (or Vlasov) resonance.5 It is true in-
deed that a collective mode has only one frequency, in comparison
with the multitude of frequencies of the individual particles, but to
it contribute all the particles, which makes its strength comparable
with the strength of all the individual modes. The macroscopic rele-
vance of the marginal character of the collective modes follows from
their resonant behaviour. This is another illustration of the concept
of emergent dynamics.6 The collective mode has only one frequency,
but to it participate many particles, so it has macroscopic relevance:
indeed "more is different"; this is the principle of emergent dynamics.
On the other hand, the number of particles which participate to the
lifetime of the collective mode is of zero-measure, but their singular
(resonant) behaviour makes their contribution macroscopically rele-
vant; therefore, the "infinite" is different too; which may be seen also
as "more is different".
5L. Landau, "On the vibrations of the electronic plasma", ZhETF 16 574 (1946)

(J. Phys. USSR 10 25 (1946)) (in Russian); A. A. Vlasov, "On the kinetic
theory of an assembly of particles with collective interaction", J. Phys. (USSR)
9 25 (1945) (in Russian).

6P. W. Anderson, "More is different: broken symmetry and the nature of the
hierarchical structure of science", Science 177 393 (1972).
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The distribution function established above is an equilibrium distribu-
tion function; the kinetic approach accommodates mechanical motion
with thermal equilibrium. One may wonder how does a dissipation
occur, like the one of the damped collective modes, at equilibrium.
Actually, the kinetic approach indicates the (slow) evolution to equi-
librium, as expressed by the small coefficient γ (and seen also in the
damped transient solution which was discarded in the above treat-
ment); in other words, the calculations are done by taking the limit
γ → 0 in the final results. In this respect we recall that the kinetic
equation is established from the equation of mechanical motion (3.1)
with friction,

du̇

dt
+ γu̇ =

K

m
, (3.59)

which implies the energy conservation

d

dt

(
1

2
mu̇2

)
+mγu̇2 = u̇K ; (3.60)

this equation shows that the mechanical work per unit time u̇K of the
external force K is equal to the rate of change in time of the kinetic
energy d(mu̇2/2)/dt plus the rate of dissipated energy mγu̇2; since the
dissipated energy mu̇2 is quadratic in u̇ we may neglect it according
to our general assumptions; moreover, in the final results we may take
γ → 0, which again amounts to neglecting the dissipation; under these
conditions the kinetic evolution is, indeed, one of equilibrium.

3.8 Calculation of the principal value

In equation (3.57) we limit to the velocity component denoted by v
along the wavevector k; we show here how to compute the principal
value

I1 = P

ˆ
dv

G(v)

ω − vk
. (3.61)

Since the function is integrable (goes to zero at infinity) and the prin-
cipal value vanishes in the neighbourhood of the singularity, we may
restrict to | vk/ω |< 1) and use a series expansion; we get

I1 =
1

ω

ˆ
dvG(v)

(
1 +

vk

ω
+

v2k2

ω2
+ ...

)
; (3.62)
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this method gives a sufficiently accurate estimation of the principal
value for ω �= 0.

3.9 Non-equilibrium entropy

Let us assume groups of Ni particles, each with Gi states; the total
number of microscopic states of the i-th group is GNi

i /Ni!; the entropy
is

S =
∑
i

ln
(
GNi

i /Ni!
)
=
∑
i

Ni ln(eGi/Ni) ; (3.63)

or, with the mean number of particles ni = Ni/Gi,

S =
∑

Gini ln(e/ni) ; (3.64)

the weight Gi can be written as

Gi = Δp(i)Δq(i)/(2π�)s = Δτ (i) , (3.65)

where p are momenta, w are coordinates, � is Planck’s constant and
τ denotes the number of states in the phase space; we get

S = −
ˆ

dτn ln(n/e) . (3.66)

Let us maximize it, with the constraints of a fixed number of particles
and a fixed energy; we need the minimum of

−
ˆ

dτn ln(n/e) + βμ

ˆ
dτn− β

ˆ
dτεn ; (3.67)

we get
dE = TdS + μdN , (3.68)

where N is the total number of particles, E is the total energy (and
ε is the energy of a particle); also, we get

n = const · eβμe−βε , (3.69)

which is the Gibbs distribution with μ the chemical potential and
β = 1/T is the reciprocal of the temperature T ; this is the equilibrium
distribution; the constant is determined by N =

´
dτn; the volume

is constant; if an external energy (per particle) Φ is present, then
ε→ ε+Φ.
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3.10 Approach to equilibrium

Let us assume that an ideal classical gas of identical particles is at
equilibrium, with a distribution function F which depends on the
velocities v of the particles; actually, it is easy to see that F is a
function of v2; if v is changed by v −→ v+ u̇, where u̇ is an external
velocity, then the change in the square of the velocity is δ(v2) = 2u̇v
and we have the change

δF = −δ(v2) ∂F

∂(v2)
= −2u̇v ∂F

∂(v2)
= −u̇∂F

∂v
(3.70)

in the distribution, as in equation (3.2); the minus sign is chosen
for physical reasons, which will become obvious shortly. In equation
(3.70) 2u̇v may also be viewed as the change in u̇2, when the velocity
is brought from infinity to value v; i.e., we may write also

δF = −δ(u̇2)
∂F

∂(v2)
; (3.71)

in this equation δ(u̇2) is an external parameter, such that δF should
be proportional to it; moreover, while going from v = ∞ to v, the
equilibrium distribution function changes from zero to a value which
is proportional to F ; it follows that we can write

δF

δ(u̇2)
=

λδ(u̇2)F

δ(u̇2)
= λF , (3.72)

where λ is a constant. By comparing equations (3.71) and (3.72), we
get

∂F

∂(v2)
= −λF (3.73)

and the Maxwell distribution F ∼ e−λv2

. Therefore, if equilibrium ex-
ists, the equilibrium distribution function is well determined (which,
in fact, amounts to the existence of the equilibrium), and it is the
Maxwell distribution. Making use of the entropy S and the normal-
ization condition of the distribution F , we can identify the amount of
heat TdS in energy, where T = 1/β is the temperature.
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3 Kinetics of Gases

Let us assume that a static, non-uniform external field with potential
energy U(r) is applied to an ideal classical gas of identical particles
with mass m. The change produced in gas is described by the change
f in the distribution function which satisfies the Boltzmann equation
(3.3)

∂f

∂t
+ v

∂f

∂r
+ γf = −K

m

∂F

∂v
, (3.74)

where the force is given by K = −∂U/∂r. The solutions of the homo-
geneous part of this equation go to zero after a long time, while the
stationary, equilibrium solution is given by

v
∂f

∂r
= −K

m

∂F

∂v
= −βv∂U

∂r
F ; (3.75)

hence, f = −βUF and the modified distribution is given by

F̃ = F − βUF = Fe−βU ∼ e−
1
2
βmv2−βU (3.76)

(for β | U |	 1). We can see that the gas, in the presence of a static
external field, tends to equilibrium, where its statistical distribution
is the Gibbs distribution. The particle density becomes non-uniform,

n(r) =

ˆ
dvFe−βU(r) = ne−βU(r) . (3.77)

During the process of establishing the equilibrium the forces acting
upon the particles do a mechanical work, which, other parameters
being unchanged, results in an increase in temperature. This temper-
ature change can be estimated from the variation of the free energy
(for constant volume and number of particles). For β | U |	 1 we can
estimate this change by writing

mv2

2T
+

U

T
=

mv2

2T

(
1 +

U

mv2/2

)
, (3.78)

whence we get δT 
 −U , with the mean value for mv2/2 
 T . Such
an estimation is in agreement with the virial coefficients of a non-ideal
gas, where the field U is an interaction field between particles. We
can see that the temperature variation is non-uniform; in those points
where U > 0, the temperature decreases, and it increases where U < 0.
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3 Kinetics of Gases

A global estimation would require a spatial mean value U . The spatial
average eliminates the effect of the Fourier components, except for
the uniform one; we can see again that forces derived from potentials
which have Fourier transforms do not change the temperature (the
gravitational potential has not a Fourier transform).

The solution f = −βUF given above implies, according to equation
(3.2),

f = −βUF = −u̇∂F
∂v

= βmu̇vF , (3.79)

whence mu̇v = −U , or

δEkin + U = 0 , (3.80)

where Ekin is the kinetic energy of a particle; it is worth noting that we
limit ourselves to the first-order terms in u̇, such that the estimation
of the change in temperature by using mu̇2 is not warranted by the
kinetic approach in the presence of an external potential; the correct
estimation is δT 
 −U (	 T ).

It is worth discussing the effect of mu̇2 in this context. Equation
(3.80) leads to

2vu̇ cos θ + u2 + 2U/m = 0 , (3.81)

where θ is the angle made by v with u̇. For U < 0 the solution of this
equation is

u̇ =

{ −v cos θ +√v2 cos2 θ + 2 | U | /m , 0 < θ < π/2 ,

−v cos θ −√v2 cos2 θ + 2 | U | /m , π/2 < θ < π ;
(3.82)

for U > 0 we assume 2U/mv2 < 1; this inequality may not be valid
for small velocities, but, for sufficiently small U (	 T ), the range of
these velocities brings a negligible contribution to the thermal mean
values. In these conditions, the solution of equation (3.80) is

u̇ =

{ −v cos θ +√v2 cos2 θ − 2U/m , 0 < θ < θ0 ,

−v cos θ −√v2 cos2 θ − 2U/m , π − θ0 < θ < π ,
(3.83)

where cos θ0 =
√
2U/mv2. The integration of mu̇2 over the angle θ

gives (2αmv2/3)(2 | U | /mv2)3/2, where α = 1 for U > 0 and α = 2
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3 Kinetics of Gases

for U < 0 and we have retained only the leading terms in powers of
2 | U | /mv2 	 1. The integration over v gives

mu̇2 =
2α

3

√
2/π | U | (| U | /T )1/2 ; (3.84)

we can see that this result is different from −U .

The variation of the atmospheric temperature with the altitude is
given by ΔT = −ΔF/S, where F is the free energy and S is the
entropy. The potential energy mgz of the gravitational field, where
m is the mass of a gas particle, g is the gravitational acceleration and
z is the altitude, brings a correction factor (T/mgz)(1− e−mgz/T ) in
the partition function; the variation of the density with the altitude
affects the entropy only to a small extent, such that we get

ΔT 
 T ln
T (1− e−mgz/T )

mgz

 −1

2
mgz , (3.85)

which agrees with the estimation of the type −U = −mgz given
above (we note that z = z/2). Also, it is worth noting the inequality
mg/T 	 1.

3.11 Corrections to the thermodynamic

potentials

The free energy of a gas consisting of N pointlike identical particles
with mass m is given by

F = −NT ln

(
e

N

1

(2π�)3

ˆ
e−

1
2
βmv2

dpdr

)
, (3.86)

where T is the temperature (β = 1/T ), p = mv is the momentum and
� is Planck’s constant (e 
 2.73). The energy is E = 3

2NT . Making
use of the distribution function F = n(βm/2π)3/2e−βmv2/2, where
n = N/V and V is the volume, we can write the free energy as

F = −NT ln

[
e

(
ma2

2πβ�2

)3/2
1

N

ˆ
Fdvdr

]
, (3.87)
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3 Kinetics of Gases

where a = (V/N)1/3 is the mean separation distance between the
particles; for a change in F of the form F −→ F + f , we get a change
in the free energy

ΔF = −T
ˆ

fdvdr , (3.88)

or, making use of δT = (T/N)
´
fdvdr given before, ΔF = −NδT

(the rigorous change in temperature is ΔT = −ΔF/S, where S is the
entropy). In an external potential U the change in the distribution
function is f = −βUF , such that we get the change in the free energy
ΔF = n

´
Udr. Indeed, in an external field the partition function

acquires a factor (
1

V

ˆ
dre−βU

)N

, (3.89)

which gives a change

ΔF = −NT ln
(
1
V

´
dre−βU

) 


 −NT ln

(
1− β

V

´
drU

)

 n
´
drU

(3.90)

in the free energy. We can see that, in this approximation, the entropy

S = N ln

[
e5/2

(
ma2

2πβ�2

)3/2
]

(3.91)

is not changed. (In normal conditions the ln in equation (3.91) is a
numerical factor of the order 
 10; this numerical factor has been put
equal to unity in deriving equation (3.85) above). Since ΔF = n

´
Udr

does not depend on the temperature (the entropy is constant), we
may say that the temperature change ΔT is absorbed as heat in the
internal energy ΔE = −TΔS.
Making use of the change in the free energy we can get the changes
in pressure and chemical potential; in particular, leaving aside the
surface effects the change in pressure

Δp =
N

V 2

ˆ
drU (3.92)

agrees with the van der Waals contribution to non-ideal gases. The
change in the free energy is the change in all the thermodynamic
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3 Kinetics of Gases

potentials. We note that all these thermodynamic estimations are
also valid for an external potential which varies slowly in time.

For a change in the distribution function generated by a force, the
change in the free energy can be estimated by replacing formally U
by −mvu̇ (and including the average over velocities); we get

ΔF = −m
ˆ

dvdr(vu̇)F (v) , (3.93)

where, in general, u̇ is a function of r, v and t (and F (v) = n(βm/2π)3/2·
·e−βmv2/2).

3.12 Interaction. Collective excitations

Under the action of an external force a particle acquires the energy

δε(t, r,v) = mvu̇ = f/βF ; (3.94)

this energy generates a force −∂δε/∂r and a momentum p = ∂δε/∂v;
we are in the presence of one-particle elementary excitations (quasi-
particles) of the ideal classical gas. In principle, the force generated
by the quasi-particles acts upon the other particles, and we may be in
the presence of a dynamics of the quasi-particles. However, the mean
energy

δε(t, r) =
T

n

ˆ
dvf (3.95)

is zero (equation (3.55)), and we have, in fact, no effect.

Apart from the motion of the individual particles, a gas may exhibit
a correlated motion, which implies collective degrees of freedom; in
an ideal gas do not exist mechanical forces between the particles, but
the existence of the thermal equilibrium may generate forces. Indeed,
a displacement u generates a local change δn = −ndivu in density;
the expansion of the energy density in powers of δn, when integrated
over the volume, gives the first contribution in the second power of
δn, such that we can write the lagrangian of this motion as

L =

ˆ
drmn

[
1

2
u̇2 − 1

2
c2(divu)2

]
; (3.96)
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3 Kinetics of Gases

the equation of motion is

ü− c2grad(divu) = 0 , (3.97)

which is the Cauchy-Navier equation for an elastic body with c2 =
λ/ρ, λ being the compressibility modulus (one of the Lame coeffi-
cients) and ρ = mn being the mass density. For gases λ = ρ(∂p/∂ρ)S,
where p is the pressure and S is the entropy; it is ρ(cpT/cv), where cp,v
are the specific heats at constant pressure and volume, respectively.
The solutions of equation (3.97) are waves of the form uke

−iωt+ikr,
where ω2 = c2k2; from δn = −ndivu we can see that these waves are
longitudinal (uk ∼ k); they are sound (elastic) waves, which propa-
gate with the sound velocity c.
In principle, we cannot say a priori how the degrees of freedom are
shared among the individual particles and the sound waves; however,
the magnitude k of the wavevector has a natural cutoff k0, given
by the k0 
 1/a, where a is the mean separation distance between
the particles (this is called the Debye cutoff7); then, the number of
states 4πk30/3 is of the order of the number N of particles. Such a
conclusion is expected from the fact that the waves are extended in
the whole space. The sound waves are eigenmodes of oscillation of
the gas, and they are determined from the initial condition, which
in principle, determines both the extension of the wavevectors k and
the magnitude of the amplitudes uk. For instance, a localized initial
disturbance of the gas (δ-function) will generate all the k’s with equal
magnitudes uk. It is worth noting that the existence of the sound
waves in an ideal gas is conditioned, on one hand, by the thermal
equilibrium of the motion of the particles as individual entities and,
on the other hand, by an initial disturbance. Therefore, the sound
waves will appear in an ideal gas as a change f in the distribution
function of the particles, caused by an initial disturbance, i.e. in
the framework of the kinetic approach to the thermal motion of the
individual particles. They are collective elementary excitations.
Due to their delocalization the sound waves have a quantum-mechanical
nature. The quantization of their equation of motion is the quantiza-
tion of a harmonic oscillator, with the matrix elements of the displace-
ment u (along any fixed k) given by un,n−1 = un−1,n =

√
�n/2mω,

7P. Debye, "Zur Theorie der spezifischen Waermen", Ann. Phys. 39 789 (1912).
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3 Kinetics of Gases

where n (not to be mistaken for density) is any positive integer and
ω = ck. Subject to the condition uk 	 1 (from δn 	 n), the quan-
tum number n may go to infinity for long wavelengths. It defines
quantum-mechanical particles (actually, collective elementary excita-
tions) called phonons, with an energy ε = �ck and a wavevector k

(momentum p = �k); the infinitesimal number of states is V dk/(2π)3;
they are bosons, and their (thermal) occupation number n(k) is given
by the Bose statistics. An interaction may renormalize their energy
(velocity included), in the limit of long wavelengths. In the opposite
limit of short wavelengths (comparable with a) the phonons are in
the quasi-classical limit. The occupation number n(k) plays the role
of the distribution function F for individual particles, and an exter-
nal force K may bring about a change δn(t, r,k) in the occupation
number, which should satisfy Boltzmann’s kinetic equation

∂δn

∂t
+

ck

k

∂δn

∂r
+

K

�

∂n

∂k
= −γδn , (3.98)

exactly in the same way as for particles (this equation should be solved
in the limit �→ 0); noteworthy, the velocity ck/k is, in fact, the group
velocity ∂ε/∂p.

The kinetic approach has been described above for an external force
K, including the case when this force derives from a potential. The
question related to the presence of an interaction may appear. First,
we note that the existence of an interaction between the particles
cancels out their statistical independence and, consequently, makes
the change produced by this interaction in the equilibrium distribution
meaningless. Actually, the particles accommodate the interaction and
get thermal equilibrium; this amounts to say that we need first to solve
the problem of interaction and thereafter ask for statistical properties.
A gas with interaction is a non-ideal gas; the thermal behaviour of a
non-ideal classical gas is described by the van der Waals equation. In
general, the dynamics of non-ideal (interacting) ensembles of particles
is governed by the elementary excitations introduced by Landau.8

8L. Landau, "The theory of a Fermi liquid", Sov. Phys.-JETP 3 920 (1957)
(ZhETF 30 1058 (1956)); "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5

101 (1057) (ZhETF 32 59 (1957)); "On the theory of the Fermi liquid", Sov.
Phys.-JETP 8 70 (1959) (ZhETF 35 97 (1958)).
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3.13 van der Waals equation

Let us consider a classical gas of N identical pointlike particles en-
closed in a volume V with the interaction energy

E =
1

2

∑
i�=j

U(ri − rj) , (3.99)

where U(ri − rj) is the two-particle interaction and i, j = 1, 2, ...N
denote the particles. For pointlike particles U(ri − rj) is a function
only of | ri − rj |. The correction to the free energy can be written as

ΔF = −T ln

(
1

V N

ˆ
e−βEdr1...drN

)
, (3.100)

where T = 1/β is the temperature. We assume a short-range (inte-
grable) interaction U(ri − rj). From equation (3.99) we see that each
particle i is acted by the rest of the particles by a potential

Φ(ri) =

′∑
j

U(ri − rj) , (3.101)

where the prime means j �= i; the total energy can be written as

E =
1

2

∑
i

Φ(ri) . (3.102)

The integration over ri in equation (3.100) must take into account the
requirement j �= i, i.e. rj �= ri for any pairs (i, j).9 It follows that the
correction to the free energy is given by

ΔF = −T ln

(
1

V N

ˆ ′

e−βEdr1...drN

)
, (3.103)

where the prime means rj �= ri. We perform this integration over a
volume V − Nb, where b is an excluded volume for each particle. A

9M. Apostol, "On the van der Waals equation", J. Theor. Phys. 290 (2018).
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convenient approximation to the potential Φ(ri) is the mean-field ap-
proximation.10 In the mean-field approximation the potential Φ(ri)
does not depend on ri and the summation in equation (3.101) is com-
puted by

Φ =
′∑
j

U(rj) =
N

V

ˆ
2r0

drU(r) =
2Na

V
, (3.104)

where b 
 1
2 ·32πr30/3; the factor 1/2 in estimating the volume b arises

from the fact that the independent integration with respect to any pair
ri,rj counts twice the excluded volume. This excluded volume views
the particles as rigid spheres of radius r0. The change in the free
energy becomes (equation (3.103))

ΔF = −T ln
(

(V−Nb)N

V N e−
1
2
βNΦ

)
=

= NΦ−NT ln
(
1− Nb

V

)
= N2a

V −NT ln
(
1− Nb

V

)
.

(3.105)

We get the pressure

p = NT
V + N2a

V 2 +NT Nb/V 2

1−Nb/V =

= NT
V

(
1 + Nb/V

1−Nb/V

)
+ N2a

V 2 = NT
V−Nb +

N2a
V 2 ;

(3.106)

hence, it follows immediately the van der Waals equation11(
p− N2a

V 2

)
(V −Nb) = NT . (3.107)

We note that we use the same cutoff 2r0 both in the integration in
equation (3.103) and in the potential given by equation (3.104); this is

10The mean-field approximation was introduced for atoms by N. Bohr, "On the
constitution of atoms and molecules", Phil. Mag. 26 1, 476, 857 (1913) and
extended to the atomic nucleus.

11J. D. van der Waals, Over de Continuiteit van den Gas- en Vloeistoftoestand,
Doctoral Thesis, Leiden (1873) (On the Continuity of the Gas and Liquid

State); "The equation of state for gases and liquids", Nobel Lecture, 1910
(Elsevier, Amsterdam (1967)).
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due to the abrupt, repulsive hard core of the potential; in general, the
two cutoffs are distinct. Also, we note that the mean-field approx-
imation is equivalent with restricting ourselves only to one-particle
elementary excitations (quasiparticles). We have assumed that a and
b do not depend on V , and b > 0 (by its definition). Usually, the
interaction is attractive at long distances, such that a is negative.
It may happen that an external potential ϕ(r) is present and we wish
to estimate its effects in the presence of the internal interaction. Then,
the total energy is written as

E =
∑
i

ϕ(ri) +
1

2
NΦ , (3.108)

where Φ is a mean-field potential (also, the external potential may de-
rive from a mean-field approximation). The ensemble has not transla-
tional symmetry anymore, since ϕ(r) depends on position. The change
in the free energy is

ΔF = −T ln
(

1
V N

´ ′

e−β
∑

i ϕ(ri)− 1
2
NΦdr1...drN

)
=

= −T ln

[(
1
V

´ ′

e−βϕ(r)dr
)N

e−
1
2
βNΦ

]
=

= −NT ln
(

1
V

´ ′

e−βϕ(r)dr
)
+ 1

2NΦ ;

(3.109)

the integral in equation (3.109) can be written as
´ ′

e−βϕ(r)dr =
´
e−βϕ(r)dr− b

∑
i e
−βϕ(ri) =

=
´
e−βϕ(r)dr− Nb

V

´
e−βϕ(r)dr =

(
1− Nb

V

) ´
e−βϕ(r)dr ,

(3.110)

such that we get

ΔF = −NT ln
(
1− Nb

V

)−
−NT ln

(
1
V

´
e−βϕ(r)dr

)
+ 1

2NΦ ;
(3.111)

we can see that we recover the van der Waals equation and get also
the effects of the external field; for a finite ensemble, such effects may
include surface contributions.
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The general way of deriving the van der Waals equation consists in
estimating the effects of the interaction in the mean-field equation
(3.104) and taking account of the excluded volume, according to the
definition of the interaction energy.

3.14 Kinetic approach for the non-ideal gas

The equilibrium distribution function F (v) is identified by

V

ˆ
dvF (v) = N , (3.112)

or ˆ
drdvF (v) = N (3.113)

(equation (3.87)). According to the above discussion, the distribu-
tion function is modified by F −→ Fe−βΦ for a non-ideal classical
gas, where Φ does not depend on t, r, v (in the mean-field approx-
imation). Consequently, for the kinetic approach in the presence of
the interaction we may use the equilibrium function F of an ideal gas;
however, when computing the equilibrium properties generated by the
change in this equilibrium distribution we should include the factor
e−βΦ and integrate over the restrained volume.

In principle, the thermodynamics of a phase is solved after solving the
interaction problem for that phase. This would imply, at first sight,
that we need zero temperature to solve the interaction problem. How-
ever, the zero temperature is unphysical and we need to solve the in-
teraction problem at finite temperatures. The van der Waals equation
is an example of this situation for a non-ideal gas. Another example
is the superconductivity, another is provided by the elementary exci-
tations, which is an instance of interaction solved with the limitations
of a finite temperature. We can see that in each case the interaction
is solved at finite temperatures with additional assumptions, which,
basically, pertain to thermodynamics. Instances are provided by the
introduction of the excluded volume and the derivation of the virial
coefficients for the van der Waals equation, the mean-field and the
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order parameter for phase transitions,12 the lifetime and the mean
freepath for elementary excitations. Systematic techniques are de-
veloped for estimating the interaction effects at finite temperatures,
like Matsubara,13 or Zubarev14 Green functions (and the correspond-
ing diagrammatic techniques).15 Also, the idea occurred that the
approach to equilibrium is driven by interaction, although the me-
chanical framework (Liouville equation) such theoretical procedures
are embedded in is always mixed up with statistical hypotheses.16

3.15 Sound

Let us imagine a continuous body consisting of identical particles, e.g.
molecules in a gas. A molecule with mass m, placed at position r at
time t, has velocity v. Let us assume that an additional velocity u̇ is
superimposed upon this molecule. The equation of motion is

m
∂(u̇+ v)

∂t
+m(u̇+ v)

∂(u̇ + v)

∂r
= F , (3.114)

where F is the force acting upon the molecule. Let us assume now that
the molecules are in thermal equilibrium and the additonal velocity
u̇ is a small perturbation; then v does not depend on r and t and
the quadratic term u̇(∂u̇/∂r) may be neglected. Equation (3.114)

12P. Weiss, "La variation du ferromagnetisme avec la temperature", Comp. Rend.
143 1136 (1906); "L’hypothese du champ moleculaire et la propriete ferromag-
netique, J. Physique 6 661 (1907); J. E. Mayer and M. G. Mayer, Statistical

Mechanics, Wiley, NY (1940);
13T. Matsubara, "A new approach to quantum-statistical mechanics", Progr.

Theor. Phys. 14 351 (1955).
14D. N. Zubarev, "Double time Green’s functions in statistical physics", Sov.

Phys. Usp. 3 320 (1960) (Usp. Fiz. Nauk 71 71 (1960)).
15See, for instance, A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods

of Quantum Field Theory in Statistical Physics, Dover, NY (1963).
16I. Prigogine, Non-equilibrium Statistical Mechanics, Interscience Publishers,

Groningen (1962); R. Balescu, Equilibrium and Non-equilibrium Statistical

Mechanics, Wiley, NY (1975); L. V. Keldysh, "Diagram technique for Nonequi-
librium Processes", Sov. Phys.-JETP 20 1018 (1965) (ZhETF 47 1515 (1965));
D. Zubarev, V. Morozov and G. Ropke, Statistical Mechanics of Nonequilib-

rium Processes, Akademie Verlag, Berlin (1996)
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becomes the kinetic equation (3.1)

m
∂u̇

∂t
+mv

∂u̇

∂r
= F (3.115)

which leads to Boltzmann equation. A dissipation term γu̇ may be
included, which accounts for the molecular collisions. Indeed, a dis-
ruption produced by a collision implies an additional contribution
∂u̇/∂t 
 u̇/τ , where time τ = 1/γ is much longer than any charac-
teristic time of velocity variation; we note that we are at local equi-
librium, but not at global equilibrium.
Let us attribute the velocity u̇ to a small, but sufficiently large, par-
ticle, consisting of N � 1 molecules, such that each of these particles
is at thermal equilibrium. We may neglect, for the moment, the fluc-
tuations, such that the velocity v in equation (3.114) may be viewed
as a mean velocity, which is zero. Then we multiply equation (3.114)
by the density n, such that ρ = mn is the mass density. The force
acting upon such a particle is

nF =
N

V
F = − 1

V

˛
pdS = − 1

V

ˆ
dr

∂p

∂r
= −∂p

∂r
, (3.116)

where p the pressure acting (outwards) upon the surface S of the par-
ticle with the volume V . Equation (3.114) becomes Euler’s equation

ρ
∂u̇

∂t
+ ρu̇

∂u̇

∂r
= −∂p

∂r
(3.117)

of the motion of an ideal fluid.17 An external force may be included.
The equation of continuity (mass conservation) and the equation of
the entropy conservation may be added (in the absence of viscosity
and thermoconduction); if the fluid is compressible the density may
be included in the derivatives. If the viscosity is included, we get the
Navier-Stokes equations of motion of fluids.18 They read

ρ
∂u̇

∂t
+ ρu̇

∂u̇

∂r
= −∂p

∂r
+ ηΔu̇+

(
ζ +

1

3
η

)
grad divu̇ , (3.118)

17L. Euler, "Principes generaux du mouvement des fluides", Hist. de l’Acad. de
Berlin (1755).

18C. L. Navier, "Sur les lois du mouvement des fluides", Mem. Acad. R. Sci. Inst.
France 6 389 (1823); G. G. Stokes, "On the theories of the internal friction of
fluids in motion and of equilibrium and motion of elastic solids", Trans. Phil.
Soc. Cambridge 8 287 (1845).
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3 Kinetics of Gases

where η, ζ are viscosity coefficients. We note that viscosity is a fric-
tion, arising from molecular collisions at the surface of the particles.
Again we are at local equilibrium, but not at a global equilibrium.

If the fluctuating contributions (of the type of the velocity v) are
retained in equation (3.114), the quadratic term brings averages of
products of two fluctuating velocities.19 The corresponding equations
are the Reynolds equations.20 Such contributions generate (statisti-
cal) turbulence. Turbulent instabilities are generated by high values of
the Reynolds number R = ρu̇l/η, obtained by comparing the viscosity
terms with the quadratic terms, where l is a characteristic length of
velocity variation.

Apart from viscosity, thermoconduction is another mechanism of dis-
sipation in fluids, due to molecular collisions; in fluids, thermocon-
duction is not only local, it may arise by convection too. Except for
special cases, fluid motion implies more viscosity than thermoconduc-
tion, due to the large extension of fluid particles.

Let us assume now that the velocity u̇ varies slightly over long dis-
tances or in short times, i.e.u̇ 	 Δr/Δt; then, in equation (3.117)
we may neglect the term quadratic in velocity. In this case, equation
(3.117) can also be applied to solids, and the variations of the pressure
are adiabatic; we may reduce the dimension of the particles and the
transfer of heat is zero in first approximation (for instance, in a gas,
the molecules are slightly displaced, but they do not collide with one
another). We can write the variations of pressure and density as

δp =
1

(∂ρ/∂p)s
δρ , δρ = −ρdivu , (3.119)

where (∂ρ/∂p)s is related to the coefficient of compressibility− 1
V

(
∂V
∂p

)
s

at constant entropy (s). Equation (3.117) becomes

∂2u

∂t2
− 1

(∂ρ/∂p)s
grad divu = F/ρ , (3.120)

19G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge Science
Classics Series, Cambridge University Press (1953).

20O. Reynolds, "On the dynamical theory of incompressible viscous fluids and
the determination of the criterion", Phil. Trans. Roy. Soc. Lond. A186 123
(1895).
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3 Kinetics of Gases

where we introduced an external force F. Taking the div, it is easy
to see that equation (3.120) describes longitudinal waves propagating
with velocity c2 = 1/(∂ρ/∂p)s; obviously, u̇ should be much smaller
than c and u should be much smaller than the mean separation dis-
tance a between particles (n = 1/a3). The motion described by
equation (3.120) is sound. The compressibilty coefficients are related
through (

∂p

∂ρ

)
s

=
cp
cv

(
∂p

∂ρ

)
T

, (3.121)

where cp,v are the specific heats at constant pressure and constant
volume, respectively. For instance, for an ideal classical gas c2 =
cpT/mcv.
Equation (3.120) includes only longitudinal motion; it can be gener-
alized to

ρüi = ∂jσij + Fi , σij = 2μuij + λdivuδij ,

uij =
1
2 (∂iuj + ∂jui) ,

(3.122)

i.e.
ρü = μΔu+ (λ+ μ) grad divu+ F , (3.123)

where σij is the stress tensor, uij is the strain tensor and λ, μ are
the Lame elastic coefficients (Hooke law21). Equation (3.123) is the
Navier-Cauchy equation for elastic motion.22 The coefficient μ is the
shear coefficient, while λ is the compressibility coefficient. The veloc-
ity of the longitudinal wave (sound wave) is cl =

√
(λ+ 2μ)/ρ and

the velocity of the transverse wave is ct =
√
μ/ρ. Since curl curl =

−Δ+ grad div, it is easy to see, by comparing equations (3.120) and
(3.123), that λ+ 2μ = ρ/(∂ρ/∂p)s.
In solids, the moving particles are smaller than in fluids, corresponding
to smaller elastic motion; dissipation takes place first by thermocon-
duction and then by viscosity, the motion implies elastic deformations
21R. Hooke, Lectures of Spring, Roy. Soc. London, London (1678) ("ut tensio,

sic vis").
22C. L. Navier, Mem. Acad. Sci. t. 7 (1827) (read in the Paris Academy in 1821);

A. L. Cauchy, in "Sur les equations qui expriment les conditions d’equilibre ou
les lois du mouvement interieur d’un corps solide, elastique ou nonelastique",
Exercices de Mathematique (1828) (communicated to the Paris Academy in
1822).
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3 Kinetics of Gases

and elastic waves (convection is absent), the equilibrium is local, but
not global.

All these equations of motion imply a transport of energy, momentum,
velocity. For instance, if we multiply by u̇i equation (3.115) we get
the continuity equation

∂E

∂t
+ divS = u̇F , (3.124)

where E = 1
2mu̇2 is energy, S = vE is the energy flux and u̇F is the

mechanical work done by force per unit time.
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4 Transport in Gases

4.1 Molecular kinetic theory. Transport

Let us consider a gas of identical molecules with mass m at equi-
librium, limited by a surface x = 0; the number of collisions of the
molecules with velocity v with the surface per unit time and unit
area of the surface is nvx(βm/2π)3/2e−

1
2
βmv2

dv, where vx > 0 and
β = 1/T is the inverse of the temperature T ; integrating, we get the
total number of collisions n/(2πβm)1/2, where n is the concentration.
The colliding molecules exchange with the surface the energy (per unit
time and unit area) (mv2x/2)nvx(βm/2π)3/2e−

1
2
βmv2

dv, or, integrat-
ing, n/(2πmβ3)1/2. A colliding molecule exchanges the momentum
2mvx with the surface; per unit time and unit area these molecules
generate a pressure p = 1

2 (2nmv2x) =
1
3nmv2; since 1

2mv2 = 3
2T (for

a monoatomic gas), we get the law of ideal gases p = nT .

Let us consider a particle in a gas; its cross-section σ is defined as the
number of collisions sufferred by this particle per unit time dN

′

/dt
divided by the particle flow (flux) Φ incident on that particle; the
particles are in relative motion with respect to that particle, i.e. they
move with the relative velocity v

′

, with the reduced mass m
′

= m/2
and have the energy mv

′2/4; the differential number of colliding par-

ticles is therefore dN = n(βm/4π)3/2 · 4πe− 1
2
βmv

′2/4v
′2dv

′

; it follows
that the number of collisions per unit time is

dN
′

dt
= n(βm/4π)3/2 · 4π

ˆ
0

e−
1
4
βmv

′2

σv
′3dv

′

=
4nσ

(πβm)1/2
(4.1)

(Φ = v
′

); the total number of collisions per unit time is (dN
′

/dt)N/2.

Let us assume a gas in local equilibrium; the flux (flow) of a quantity A
per unit time and unit area of the surface perpendicular to a direction,
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4 Transport in Gases

say x, is given by
∂2A

∂t∂S
= Δ(nvxA) , (4.2)

where Δ denotes the local variation; it may be replaced by−Λ ∂
∂x (nvxA),

where Λ is the mean freepath;1 n denotes the concentration, vx is the
x-component of the velocity, S denotes the surface and t is the time.
The time and the spatial derivatives are much smaller than 1/Λ, the
changes in A proceed in long times and over large distances. Equa-
tion (4.2) must be averaged over the local thermal equilibrium, where
vx > 0. We may see that the gas is not in global non-equilibrium
(since the quantity A flows). Equation (4.2) is a transport equation.
Let us compute the flow of heat through a gas with a small gradient
of temperature; the heat is Q = CT , where C is the heat capacity; we
denote by q the heat flux (q = ∂Q/∂S) and get

∂q

∂t
= −nvxΛC ∂T

∂x
; (4.3)

the coefficient K = nvxΛC is the thermoconductivity. Let A = p =
mu̇ be the macroscopic momentum of a molecule with mass m along
the x-direction; its time derivative is a force; it follows that there
appears a pressure in the gas given by

∂2p

∂t∂S
= −ρvxΛ∂u̇

∂x
, (4.4)

due to the spatial variation of the macroscopic velocity; ρ = nm is the
mass density. The coefficient ρvxΛ is the viscosity η = ρvxΛ, which
is responsible of the internal friction in fluids. Let c = n1/n be the
concentration of a gas with density n1 in a mixture with density n;
we endow all the quantities pertaining to this gas component with the
suffix 1; the flow of concentration is given by

∂2c

∂t∂S
= −Λ1

∂

∂x
(v1xn1) ; (4.5)

here the density n1 may vary in space, as for diffusion, but there may
exist a variation in space of the temperature too (incorporated in v1x),

1The mean freepath was introduced by R. Clausius, "Uber die Art der Bewegung,
welche wir Warme nennen", Ann. Phys. 176 353 (1857).
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4 Transport in Gases

which is a thermodiffusion; of course, the component with density
n− n1 diffuses in the opposite direction. The change of density n1 in
time can be obtained by integrating over a closed surface; we get

∂n1

∂t
= Λ1

∂

∂x
[nΛ1

∂

∂x
(v1xn1)]ΔS , (4.6)

where ΔS 
 Λ2
1; the coefficient D in ∂n1/∂t = D(∂2n1/∂x

2) (or
∂n1/∂t = DΔn1 with the laplacian in two or three dimensions) is the
diffusion coefficient.
Let us assume that we have a gas of point charges q; ∂q/∂t is the
current and ∂2q/∂t∂S = I is the current "intensity", i.e. the charge
per unit time and unit area; it is also the current density j; it follows

j = vxΛ
∂F

∂ε
· q ∂U

∂x
· q = nβvxΛq

2FE , (4.7)

where ε = mv2/2 is the energy, F denotes the Boltzmann distribution
(βm/2π)3/2e−βε, U is the electric potential and E is the electric field;
we get the electrical conductivity

σ =
nq2Λ

(2πmT )1/2
, (4.8)

or σ = nq2τ/m, where τ is a relaxation (transport, diffusion) time (of
the order Λ/vx); it justifies the equation of motion du̇/dt 
 u̇/τ =
qE/m, which gives the current density j = nqu̇ = (nq2τ/m)E. It is
easy to see that the ratio K/σT is of the order of 1/q2; this is known as
the Wiedemann-Franz law and the ratio is called the Lorenz number.2

We note that all the above transport equations reflect laws which can
be viewed as semi-phenomenological, due to the uncertainties in the
parameters τ and Λ.

4.2 Transport equation

Let us assume that the equilibrium distribution F is slightly per-
turbed, such that the local equilibrium is still preserved, but not the
2G. Wiedemann and R. Franz, "Uber die Warme Leitungsfahigkeit der Metalle",

Ann. Phys. 89 497 (1853); L. Lorenz, "Bestimmung der Warmegrade in
absolutem Maasse", Ann. Phys. 223 429 (1872); "Uber das Leitungsvermogen
der Metalle fur Warme und Elektricitat", Ann. Phys. 249 422 (1881).
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4 Transport in Gases

global one. We can write

dF

dt
=

ΔF

Δt
= −f

τ
= −γf , (4.9)

where f is the change (ΔF ) in the distribution, τ is the relaxation
time, γ = 1/τ is the collision frequency and the minus sign accounts
for relaxation. The time τ is much shorter than the observable time
scale, such that equation (4.9) gives immediately the local equilibrium.
Therefore, we are left with

dF

dt
=

∂F

∂t
+ vgradF = 0 (4.10)

(in the absence of external forces); this equation may be viewed with
v replaced by its mean value along the direction of grad. This is
known as the transport equation.

Let us consider a change in temperature T along the x-direction.
Equation (4.10) gives

∂T

∂t
+ vx

∂T

∂x
= 0 , (4.11)

or, multiplying by the heat capacity C,

∂Q

∂t
= −Cvx

∂T

∂x
; (4.12)

here we divide by the area σ of the cross-section associated to a par-
ticle, and write σ = v/Λ, where v is the volume associated with a
particle and Λ is the mean freepath. We note that the mean freepath
is Λ = (a2/σ)a, where a is the mean separation distance between
the particles; so, v = σΛ = a3 = 1/n, where n is the concentration.
Equation (4.12) gives the law of thermoconduction

∂q

∂t
= −CnΛvx

∂T

∂x
, (4.13)

where q = Q/σ is the flux of heat and K = CnΛvx is the thermocon-
ductivity.
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Let us assume that the particles have a charge q and a voltage drop U
is applied along the x-direction, such that F ∼ e−

1
2
βmv2−βqU ; equa-

tion (4.10) gives

m
∂vx
∂t

= −q ∂U
∂x

= qE , (4.14)

where E is the electric field; this is the law of motion of a particle in
the electric field; the average requires to replace ∂vx/∂t by vx/τ ; we
get

j = nqvx =
nq2τ

m
E , (4.15)

which is Ohm’s law (Joule-Lenz law) with conductivity σ = nq2τ/m
(not to be mistaken for the cross-section).

Let us assume a macroscopic velocity V along the x-direction; we
have ∂F/∂t∼ −βmvx(∂V/∂t) and ∂F/∂x ∼ −βmvx(∂V/∂x); hence
(equation (4.10))

∂P

∂t
= −mvx

∂V

∂x
, (4.16)

where P = mvx is the momentum; we divide by σ = v/Λ = 1/nΛ and
get

∂p

∂t
= −ρΛvx ∂V

∂x
, (4.17)

where p = P/σ is the momentum flux and ρ = mn is the mass density;
this is Maxwell’s law of momentum transport with viscosity η = ρΛvx;
ν = η/ρ is the kinematic viscosity; ∂p/∂t is a pressure.

Let us assume now the diffusion of a gaseous component with concen-
tration n1 into a gas with concentration n� n1 along the x-direction.
Since F ∼ n, we have ∂F1/∂t = (∂n1/∂t)(F1/n1). On the other hand,
when n1 increases the velocity v1x decreases, such that we have

v1x
∂F1

∂x
= v1x

∂n1

∂x

F1

n1
+ βmv21x

∂v1x
∂x

n1
F1

n1

 ∂

∂x
(n1v1x)

F1

n1
, (4.18)

where we have approximated βmv21x by 1; therefore, we get

∂n1

∂t
= − ∂

∂x
(n1v1x) (4.19)
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(the velocity is viewed here as its mean value). In equation (4.19)
we take the flux of concentration n1/σ1 and use σ1 = v1/Λ1, v1 =

Λ1σ1 = a2

σ1
aσ1 = a3; therefore, we have

∂2n1

∂t∂S
= −nΛ1

∂

∂x
(n1v1x) , (4.20)

or
∂2c

∂t∂S
= −Λ1

∂

∂x
(n1v1x) (4.21)

for the concentration c = n1/n. The velocity v1x is kept under the
spatial derivative for the case of thermodiffusion, when v1x varies with
the temperature; the macroscopic change in time of the concentration
is given by equation (4.6).

4.3 Thermopower

Sometimes, it is convenient to define the distribution function as F =
Ce−

1
2
βmv2−βU , where U is the potential energy, and

1

(2π�2)3

ˆ
dpdrF = N , (4.22)

where p = mv is the momentum; for U = 0 we get

F =

(
2πβ�2

ma2

)3/2

e−
1
2
βmv2

= eβμ−
1
2
βmv2

, (4.23)

where

μ =
3

2
T ln

(
2πβ�2

ma2

)
(4.24)

is the chemical potential; for an ideal classical gas �
2/ma2 	 T and

μ has large negative values.

The stability of the distribution function at equilibrium implies the
occurrence of an electromotive force E = ΔU (a voltage drop ΔU) as
a consequence of a difference of temperature; indeed, from equation
(4.23) we have

μδβ − 1

2
mv2δβ + βδμ = 0 , (4.25)
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or

δμ =

(
−3

2
+

μ

T

)
δT (4.26)

(with 1
2mv2 = 3

2T ); the change δμ in the chemical potential is −qE ,
where q is the charge of the particle; therefore,

E =
1

q

(
3

2
− μ

T

)
δT = QδT , (4.27)

where

Q =
1

q

(
3

2
− μ

T

)
(4.28)

is called thermopower.

4.4 General transport

The distribution function (particle density)

F = eβμ−βp2/2m (4.29)

derived above (equation (4.23)), with the general normalization con-
dition

1

(2π�2)3

ˆ
dpdrF =

∑
F = N (4.30)

(equation (4.22)) depends on the parameter T and on the parameter
μ(T, p), where p is the pressure. We can introduce another parameter,
a macroscopic velocity V, through

F = eβμ−βp2/2m = eβμ−
1
2
βm(v−V)2 (4.31)

(without changing the normalization condition); of course, we may in-
clude an energy ε in this distribution. In computations we understand
(v −V)2 = v2 − 2vV. The parameters T, p and V may depend on
the time t and position r, such that we have a local equilibrium, but
not a global one. The transport equation for the density F will give
an equation which reflects the time and position variations of these
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4 Transport in Gases

parameters; these are general transport equations.3 In particular, the
statistical averaging of the transport equation leads to the equations
of the conservation of the density, momentum and energy of a fluid,
i.e. the Navier-Stokes equation.

Let us assume that the entropy S depends on some variables xα,
S(xα); its time derivative can be written as

dS

dt
=

∂S

∂xα
ẋα = −Xαẋα , (4.32)

where Xα = −∂S/∂xα may be viewed as generalized forces for the
generalized coordinates xα; since the entropy must increase in time,
we should have, in first approximation,

ẋα = −γαβXβ ; (4.33)

then, the quadratic form

dS

dt
= γαβXαXβ (4.34)

where the symmetric matrix γαβ should be positive. These are On-
sager’s reciprocity relations,4 and equations (4.33) give the general
transport laws. The coefficients γαβ are called kinetic coefficients.

If an external force is present, then we should first solve the Boltz-
mann equation for the distribution function and thereafter compute
the transport laws with this distribution; external fields affect the
kinetic coefficients. However, approximate methods can be used to
estimate directly the effect of the force upon the kinetic coefficients.

There exist two limiting regimes of flow in fluids, one characterized
by the Mach number M = V/vs � 1 and another characterized by the
Reynolds number R = V l/ν > 1, where V is the flow velocity, vs is the

3D. Enskog, Kinetische Theorie der Vorgange in massig verdunnten Gasen, PhD
Thesis, Uppsala, 1917; S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases, Cambridge University Press, Cambridge (1970).

4L. Onsager, "Reciprocal relations in irreversible processes. I.", Phys. Rev.
37 405 (1931); "Reciprocal relations in irreversible processes. II.", 38 2265
(1931); H. B. Callen, "The application of Onsager’s reciprocal relations to
thermoelectric, thermomagnetic, and galvanomagnetic effects", Phys. Rev.
73 1349 (1948).
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sound velocity, l is the dimension of the container and ν = η/ρ is the
kinematic viscosity; the first condition gives a supersonic flow, while
the second condition gives a turbulent flow. In gases vs is of the order
of the thermal velocity v and ν is of the order ρvΛ, where Λ is the mean
freepath; it follows M/R 
 Λ/l; this is called the Knudsen number K.
The transport equations assume K 	 1. Higher-order contributions
in powers of K would imply higher-order variations of the distribution
function, which are not warranted by the kinetic approach. Moreover,
higher K would imply taking into account the boundary conditions.
If K is of the order unity the spatial derivatives become meaningless,
and they may be replaced by finite differences.

4.5 Brownian motion

Small particles, with dimensions in the range from tens to of thousands
nanometers (nm, 1nm = 10−7cm), move chaotically when suspended
in a liquid, as a consequence of the atomic (molecular) collisions. This
motion is known as the Brownian motion.5 The Brownian particles
may be viewed as a statistical ensemble, which reflects the statistical
motion in liquids, with one amendment: each particle suffers many
collisions, such that the velocity imparted to each particle is the fluc-
tuation of the statistical velocity of the molecules; therefore, it may
be viewed as a single velocity v; the Brownian particles are a statis-
tical ensemble only with respect to the spatial distribution of their
concentration.6

A large ensemble of a dilute solute consisting of N atoms or molecules
confined to a volume V and dissolved into a solvent has an osmotic
(van’t Hoff’s) pressure p given by

pV = NT , (4.35)

5R. Brown, "A brief account of microscopical observations made in the months
of June, July and August 1827 on the particles contained in the pollen of
plants; and on the general existence of active molecules in organic and inorganic
bodies", Phil. Mag. 4 161 (1828).

6A. Einstein, "Uber die von der molekularkinetischen Theorie der Warme
geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen",
Ann. Phys. 17 549 (1905).
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where T denotes the temperature, according to the equation of state
of a classical ideal gas. The osmotic pressure is exerted, for instance,
on the wall of a partition separating the solute from the rest of the
solvent, the partition being impermeable for the solute but permeable
for the solvent. A similar osmotic pressure is expected if the solute
atoms or molecules are replaced by small particles suspended into the
solvent, because the theory of heat does not differentiate between par-
ticles with small dimensions. Consequently, small particles suspended
into a solvent perform a chaotic motion, which is the Brownian mo-
tion. A surface tension appears in this case too, on the partition wall.

Between two successive collisions we may consider a uniform motion of
the Brownian particles. Small particles moving uniformly in a viscous
liquid (fluid) experience a force of resistance. Indeed, the force term in
the Navier-Stokes equations for incompressible fluids is −gradp+ηΔv,
where p is the pressure, η is the (first) viscosity coefficient and v is
the fluid velocity;7 we can see that the viscosity generates a pressure,
which, for motion along one direction, say, the x-direction, can be
written approximately p = η∂v/∂x for small particles; v being the
x-component of the fluid velocity. The force exerted by the pressure
p on the particle along the direction of motion is given by

F =

˛
dSp = η

˛
dS

∂v

∂x
, (4.36)

where the integration is performed over the surface S of the body.
The integral in equation (4.36) can be approximated by 4πrv for small
velocities, where r is the "radius" of the body and v is the velocity of
the body; we use the same letter v for the velocity of the particle and
the velocity of the fluid. Therefore, we can write the force as

F = 2παrηv , (4.37)

where α is a numerical coefficient of the order of unity, which accounts
for the shape of the particle. For a sphere α = 3. This is known as
Stokes’ law. Along a distance δx this force does a mechanical work
Fδx, such that the mechanical work done per unit area perpendicular

7L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 6, Fluid Me-

chanics, Elsevier (2004).
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4 Transport in Gases

to the direction of motion isˆ
dxnFδx , (4.38)

where n is the concentration of the particles.

The free energy of an ideal classical gas of pointlike particles with
mass m is8

F = −NT ln

[
eV

N

(
mT

2π�2

)3/2
]

(4.39)

(the entropy is

S = −∂F/∂T = N ln

[
eV

N

(
mT

2π�2

)3/2
]
+

3

2
N . (4.40)

Along a distance δx the (local) free energy given by equation (4.40)
acquires a change δF = −nTδx per unit area; consequently, a force
nT ∂(δx)

∂x occurs per unit area and a mechanical work

T

ˆ
dxn

∂(δx)

∂x
= −T

ˆ
dx

∂n

∂x
δx (4.41)

(at constant temperature). At equilibrium the total energy must be
constant, so we have

ˆ
dxnFδx+ T

ˆ
dxn

∂(δx)

∂x
= 0 , (4.42)

or

nF = T
∂n

∂x
(4.43)

(in absolute value). Since the (osmotic) pressure is p = nT , we can
also write

nF =
∂p

∂x
. (4.44)

8L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical

Physics, Elsevier (1980).
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The variation of the concentration in time during the motion along
the x-direction is

∂n

∂t
= v

∂n

∂x
=

vT

F

∂2n

∂x2
=

T

2παrη

∂2n

∂x2
, (4.45)

which is the diffusion equation with the diffusion coefficient D =
T/2παrη. If we multiply this equation by v we get nv = D ∂n

∂x (in
absolute value), an equation known as Fick’s law.

It is worth noting that if a force field Φ(x) acts upon the particles,
then their concentration n(x) ∼ e−Φ(x)/T has the derivative ∂n/∂x =
− 1

T (∂Φ/∂x)n, or ∂n/∂x = (F/T )n, where F is the force; then we
get Fick’s law nv = (Tv/F )(∂n/∂x) with D = Tv/F ; v/F is called
mobility. Fick’s law can be applied to generalized coordinates; for
instance, if the coordinate is the electric charge q, then the velocity is
v = dq/dt = I (the intensity of the electric current) and the force is
F = U (since ∂(qU)/∂q = U); it follows D = TI/U = T/R, where R
is the electric resistance.

4.6 Diffusion equation

First we note that, since δS = −(NT/n)δn, the diffusion equation

∂n

∂t
= D

∂2n

∂x2
(4.46)

is also the equation of heat diffusion. Of course, in two or three
dimensions it looks like ∂n/∂t = DΔn. For an infinite space the
solution of equation (4.46) can be written as a Fourier integral

n(t, x) =
1

2π

ˆ
dkn(t, k)eikx (4.47)

with n(t, k) = n(0, k)e−Dk2t; hence,

n(t, x) =
1

2π

ˆ
dkn(0, k)e−Dk2t+ikx . (4.48)

If we assume that at the initial time the concentration n0 is distributed
over a small distance d, i.e. if n(0, x) = n0dδ(x), then n(0, k) = nod
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and

n(t, x) =
n0d

2π

ˆ
dke−Dk2t+ikx =

n0d√
4πDt

e−
x2

4Dt . (4.49)

The obvious generalization to two or three dimensions is

n(t, r) =
n0d

3

(4πDt)3/2
e−

r2

4Dt . (4.50)

We can see that the concentration is distributed according to a gaus-
sian law, with a front surface which propagates as r 
 2

√
Dt; the

deviation of the distance is δx =
√
x2 =

√
2Dt; the number of parti-

cles is conserved,
´
drn(t, r) = n0d

3.

The mean square deviation
[
δr2(t)

]1/2
=
√
2Dt implies fluctuations.

Indeed, let us assume that the displacement proceeds in steps, from 1
to N , and write

rN = rN − rN−1 + rN−1 − rN−2 + ... =
N∑
i=1

δri ; (4.51)

then,
δr2(t) = r2N =

∑
i,j

δriδrj = Nδr2 , (4.52)

where δr2 = δr2i ; each step needs a duration τ , which is a fluctuation
time, such that N = t/τ . It follows 2Dt = tδr2/τ and δr2 = 2Dτ ,
D = δr2/2τ . This is called the random walk process.

For 2r = 10−4cm (1μm) at room temperature (T = 300K) and water
with viscosity η = 1.35 × 10−2g/s · cm we get a mean displacement
δx 
 0.8 × 10−4cm per second (for spherical particles, α = 3).9 We
can see that the diffusion is much slower than the thermal motion.
Making use of the Boltzmann constant kB = R/N , where R is the
universal constant of gases and N is Avogadro’s number, we can get
N = 6 × 1023mol−1 from measurements of δx (R is known from the
law of the ideal gases). For molar volumes of the order 1cm3 we

9J. Perrin, Les Atomes, Alcan, Paris (1913).
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get the atomic dimensions of the order 10−8cm. Einstein’s theory of
brownian motion enforced the atomistic conception of matter.

The Brownian motion occurs also for the rotation of the particles,
with the mean square displacement given by r2δϕ2 = 2Dt, where ϕ is
the rotation angle and D = T/2παrη.

The electric charge in a mol of singly ionized molecules is Faraday’s
number F = 96000C/mol, given by F = qN , where −q = 1.6 ×
10−19C is the electron charge and N = 6 × 1023mol−1 is Avogadro’s
number. The force acting upon the charges in a mol in electrolysis
is qE = qU/l = qRI/l = q2RNv/l2, where E is the electric field,
U is the voltage drop, I is the intensity of the electric current, R is
the electric resistance and l is the length of the sample; hence we get
D = vT/qE = l2T/Rq2N and the mean square displacement given
by δx2 = 2Dt.

The flow of electric charges through a conductor is a diffusion. The
equation of motion mv/τ = qE for an electric charge q with mass
m in the electric field E, where τ is the collision (relaxation) time,
gives the current density j = nqv = nq2τE/m and the conductivity
σ = nq2τ/m (ω2

p = 4πnq2/m is the plasma frequency). On the other
hand, from the equilibrium concentration n ∼ e−qU/T , where U is
the voltage drop, we have ∂n/∂x = qnE/T = nmv/τT ; hence, we get
Fick’s law nv = D∂n/∂x, where D = τT/m; or, taking the derivative,
v∂n/∂x = D∂2n/∂x2, or the diffusion equation ∂n/∂t = D∂2n/∂x2.
The equation is valid also for oscillating fields, providing their fre-
quency ω is smaller than 1/τ (ωτ 	 1). The stationary equation
∂2n/∂x2 = 0 gives the stationary electric flow n = Ax+B, where the
constants A and B are determined from the boundary conditions (the
charge density at the boundary determines the voltage drop).

4.7 Thermodiffusion

In equation (4.41) the temperature is constant; the change in the free
energy at constant temperature is the same as the change in the energy
at constant entropy (this is the so-called law of small increments of the
thermodynamic potentials); therefore, we may allow the temperature
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to vary in space, and get

nF = T
∂n

∂x
+ n

∂T

∂x
(4.53)

instead of equation (4.43); Fick’s law becomes

nv = D

(
∂n

∂x
+

n

T

∂T

∂x

)
; (4.54)

the additional term ∼ ∂T/∂x is responsible for thermodiffusion.10 In
general, from nv = D(∂n/∂x) we can see that D is of the order vΛ.
This result is valid for the Brownian motion.

For the diffusion of a gas into another gas the stationarity of the
distribution F ∼ ne−

1
2
βmv2

(where v is along the direction x of the
diffusion) implies the derivatives

∂F

∂x
=

∂n

∂x

F

n
− 1

2
mv2

∂β

∂x
F (4.55)

and ∂F/∂t = (∂n/∂t)(F/n); making use of mv2/2 = T/2 and ∂n/∂t =
n/τ , and taking the correct sign, we get Fick’s law

nv = D

(
∂n

∂x
+

n

2T

∂T

∂x

)
, (4.56)

where D = vΛ. We note the difference in the numerical coefficients in
equations (4.54) and (4.56).

4.8 Particle density

The partition function of an ideal classical gas with N (pointlike)
particles is

Z =
1

N !

[
1

(2π�)3

ˆ
dpdre−βε

]N
= e−βF , (4.57)

10D. Enskog, "Bemerkungen zu einer Fundamentalgleichung in der kinetischen
Gastheorie", Phys. Z. 12 538 (1911).
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where ε is the energy of the particle and F is the free energy; this
equation can also be written as

Z =
1

N !

[∑
e−βε

]N
= e−βF , (4.58)

where the summation is extended to all the states of a particle. The
pre-factor 1/N ! is Gibbs’s pre-factor, which accounts for the identity
of the particles. Since N ! = (N/e)N , we can also write[

e · eβF/N

N

∑
e−βε

]N
= 1 ; (4.59)

obviously,

ρ =
e · eβF/N

N
e−βε (4.60)

is a probability density and

f(p, r) = e · eβF/Ne−βε (4.61)

with the normalization ∑
f(p, r) = N (4.62)

is the particle density (particle distribution; the same distribution is
derived above, with the chemical potential μ included explicitly); we
may write also f(p, r) = Ce−βε with the constant C given by the
normalization condition (4.62); and ρ = f/N .

From equation (4.61) we have

ln(f/e) = βF/N − βε , (4.63)

or
ε = F/N − T ln(f/e) ; (4.64)

it follows that

S = −
∑

f ln(f/e) = − 1

(2π�)3

ˆ
dpdrf ln(f/e) (4.65)

is the entropy.
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4.9 Fluctuations. Einstein’s kinetic

equation

In contrast with the mechanical motion, the statistical motion goes by
independent changes of states p, r. A corresponding change appears
in the particle density f introduced above. Let us assume that r

is changed by a in time τ , and leave aside for the moment the p-
dependence. The conservation of the number of particles requires

f(t+ τ, r)− f(t, r) = f(t, r− a)− f(t, r)+

f(t, r+ a)− f(t, r) ,
(4.66)

or
∂f

∂t
=

aiaj
2τ

∂i∂jf . (4.67)

The changes ai are fluctuations in position; consequently, their mean
values are zero and aiaj = a2δij ; we get

∂f

∂t
=

a2

2τ
Δf . (4.68)

Including similar changes b in momentum, we have

∂f

∂t
= (a2/2τ)Δrf + (b2/2τ)Δpf . (4.69)

This is a diffusion equation for states. It is Einstein’s kinetic equa-
tion.11 The change in time of the entropy given by equation (4.65)
is

∂S
∂t = −∑ ∂f

∂t ln f =

= −∑[
(a2/2τ)Δrf + (b2/2τ)Δpf

]
ln f ;

(4.70)

11A. Einstein, "Zur Theorie der Brownschen Bewegung", Ann. Phys. 19 371
(1906). Equation (4.69) with only the p-term is known as the Fokker-Planck
equation (A. D. Fokker, "Die mittlere Energie rotierender elektrischer Dipole
im Strahlungsfeld", Ann. Phys. 348 810 (1914); M. Planck, "Uber einen
Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie",
Sitzungsber. Preuss. Akad. Wiss. Berlin 24 324 (1917)). The Brownian
motion also suggested an equation of motion with a stochastic force, called
Langevin equation (P. Langevin, "Sur la theorie du mouvement brownien", C.
R. Acad. Sci. Paris 146 530 (1908)).
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an integration by parts here leads to

∂S

∂t
=
∑ 1

f

[
(a2/2τ)(gradrf)

2 + (b2/2τ)(gradpf)
2
] ≥ 0 ; (4.71)

this inequality shows the increase of entropy in time. At equilibrium
a = b = 0. It is worth noting that, although Einstein’s kinetic equa-
tion has the form of a diffusion equation, the coefficients a and τ have a
different meaning than in the diffusion equation; these coefficients are
fluctuations in position and time, while those in the diffusion (trans-
port) equation are governed by the mean freepath and the thermal
velocity. In Einstein’s kinetic equation a is of the order of the mean
separation between the particles.

It is worth noting the meaning of Einstein’s kinetic equation. It is
thought that the collisions may bring about these fluctuations; this
is not correct, because in (pointlike) collisions the position is not
changed, and the momentum changes according to the mechanical
laws, not by fluctuations. This is more visible in cases where the
equilibrium is not achieved by collisions, but by interactions. At equi-
librium the fluctuations a and b vanish, and the statistical motion
ceases (fluctuations become stationary). The fluctuations drive the
ensemble to equilibrium. Einstein’s fluctuations capture the nature of
the statistical motion and are equivalent with the principle of equilib-
rium and the law of increase of entropy.

The above considerations apply to the Brownian motion and to the
particle concentration n(t, r) ∼ f given by equation (4.50), inasmuch
as we view the Brownian motion as an approach to equilibrium. In-
deed, if we write

n(r, t) =
C

(πα)3/2
e−r2/α (4.72)

with C = n0d
3 and α = 4Dt in equation (4.50), then f = a3n, where

a is the mean inter-particle separation; we assume that initially N
particles are distributed in the small volume d3. Then, the entropy
given by equation (4.65) can be computed; we get

S = −N ln
a3N

e(eπα)3/2
= −N ln

a3N

e(4eπDt)3/2
; (4.73)
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we can see that the entropy in the Brownian motion increases in time.
We note that this is the global entropy of the Brownian motion, which
is different from the local entropy given by equation (4.40); in partic-
ular, it does not depend on the volume, as expected (the Brownian
particles move in the whole space). In order to deal conveniently with
the initial time, we introduce the cutoff t0 = d2/4πeD and write the
entropy as

S = −N ln

[
a3N

ed3
(t0/t)

3/2

]
; (4.74)

indeed, the entropy of the initial particle distribution (with concen-
tration n0d

3δ(x)) is S0 = −N ln(a3N/ed3). From S = −∂F/∂T
we can compute the free energy F of the Brownian particles; the
constant of integration being determined from the initial free energy
F0 = E0−TS0, where we take the initial energy E0 = 3NT/2 (which
is conserved); we get

F = NT ln

[
a3N

√
e

d3
(t0/t)

3/2

]
=

3

2
NT − TS . (4.75)

The Brownian particles absorb the heat

dQ

dt
= T

dS
dt

=
3NT

2t
(4.76)

per unit time from the background, which gets colder; the two en-
sembles (Brownian particles and the background), initially in thermal
equilibrium, suffer a thermal decoupling. We note that the Brownian
motion is at local equilibrium (the derivation of the diffusion law in
equations (4.39)-(4.41) make use of this circumstance), while it is not
at global equilibrium. This is a typical situation for the transport
phenomena.

Similar considerations can be applied to the diffusion of a gas into an-
other gas; in that case, in general, we should use the diffusion equation
given by equation (4.69), where a is the mean freepath, b is the mo-
mentum change in collisions and τ is the collision time. The two gases
should not be in mutual thermal equilibrium at the initial moment.
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4.10 Molecular fluctuations

The statistical motion still deserves a further discussion. Let us as-
sume a classical gas of identical, interacting, pointlike particles; even
if the gas is an ideal gas, there exist collisions, which imply an interac-
tion. According to the Classical Mechanics we may try to solve New-
ton’s equations of motion for each particle in the gas; and hope to get
trajectories, i.e. time-dependent coordinates q (and time-dependent
momenta p) which would depend on the initial conditions q0 and p0.
In general, for N > 2 particles this task is impossible. Indeed, first,
the equations of motion for each particle are not integrable.12 Second,
it is believed that there exist integrals of the motion, i.e. functions of
q and p constant in time, as many as the number of unknown coordi-
nates and momenta (which would correspond to the initial conditions),
which would give the solution; unfortunately, only a few may be alge-
braic (and, therefore, useful); even if such integrals existed, their use
would imply either infinite Taylor expansions or approximate numer-
ical calculations;13 approximate solutions depend chaotically on the
initial conditions.14 All these show that the classical motion of many
particles is not integrable. A similar conclusion is more than evident
for the quantum-mechanical motion.

In these conditions what is left for us to say about the classical motion?
We can only say that there exists a function S(t, q) of classical action,
with an energy E = −∂S/∂t and momenta p = ∂S/∂q, and a Hamilton
function written as

H(t, p, q) =
∑ 1

2m
p2 + U(t, q) , (4.77)

where m is the particle mass and U is the interaction, such that E =
H ; if the problem were soluble, we would have the Hamilton-Jacobi
equation

∂S

∂t
+H(t, ∂S/∂q, q) = 0 (4.78)

12M. Apostol, "The many-body theory: its logic along the years", J. Theor. Phys.
152 (2007).

13See, for instance, F. Diacu, "The solution of the n-body problem", Math. Intell.
18 66 (1996) and references therein.

14H. Poincare, Les Méthodes Nouvelles de la Mécanique Celeste, Gauthier-Villars,
Paris (1892, 1893, 1899).

80

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



4 Transport in Gases

for the function S; but the problem is not soluble, so we have not
such an equation. However, the symmetries under time translations,
spatial translations and rotations imply the conservation of the energy
E, total momentum and total angular momentum.

We may attempt to get a way out from this problem by resorting to
the quantum-mechanical motion; after all, the quantum-mechanical
motion is the basic form of mechanical motion. Indeed, the most
general form of motion is

−Edt+ pdq = dS , (4.79)

and, if there exists a quantum of action h, then ΔS = hΔn, where
Δn is an integer; and we may write E = hΔn/T , p = hΔn/λ; i.e.
there should exist a period T and a wavelength λ of a wave which
can be written as ψ = ei2πS/h. If this motion were soluble, the wave-
function would obey the Schrodinger equation i�∂ψ/∂t = Hψ, with
p = −i�∂/∂q (and � = h/2π), which becomes the Hamilton-Jacobi
equation for h → 0. But it is not, and we are left with the (quasi-
classical) quantization rules given above and the conservation of the
energy, momentum and angular momentum; and, of course, with the
uncertainty relations associated with the wavefunction.

We can see from the above discussion that we cannot describe the
many-body assemblies by their mechanical motion. But we may ad-
mit that the initial conditions are distributed chaotically, with a prob-
ability, especially that such a suggestion seems to be supported by the
experimental observations; then, at the next infinitesimal moment this
description is valid, with the same probability. It follows that a prob-
ability distribution which is uniform and constant in time for states
defined by p, q (or for the quantum-mechanical states) is a consistent
assumption, and, therefore, it may correspond to natural phenomena.
The motion that obeys a constant probability distribution of states
is the (equilibrium) statistical motion; its time-independence is the
statistical equilibrium. Making use of the conservation laws we get
immediately the Gibbs statistical distribution, temperature and heat;
this is why the statistical equilibrium is called also thermal equilib-
rium. Subjected to external perturbations the statistical distribution
may change globally in time, but locally its constant character is pre-
served (such changes include the transport phenomena). A chaotical
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distribution with conservation of energy, momentum or angular mo-
mentum implies the maximum of the entropy; any deviation from
equilibrium would mean a decrease in entropy. In given conditions
the entropy is the (mean) logarithm of the number of states.

Making use of statistical distributions we can only have access to
mean values and deviations from mean values, which are the fluc-
tuations. From the definition of the entropy S, it follows that any
deviation from equilibrum, driven by a variable x, will have a prob-
ability ∼ e

1
2
(∂2S/∂x2)x2

, where the derivative is taken at equilibrium
(x = 0; the first-order derivative of the entropy at equilibrium van-
ishes; ∂2S/∂x2 < 0). It follows x = 0 and x2 = 1/(∂2S/∂x2); we de-

note by δx the root mean square δx =
√
x2; this is the fluctuation of x.

For instance, the fluctuations of the molecular volume of an ideal clas-
sical gas is δv = v (S/N ∼ ln v) and δa = v1/3/3, where a is the mean
separation distance between the particles. Similarly, since S ∼ 3

2 lnT ,
the energy fluctuation per particle is δe = 3

2δT =
√
3/2T (3/2 is the

heat capacity per particle); since δS = nh = δ(eτ) = δeδτ , where δτ
is the fluctuating time, we get δτ =

√
2/3nh/T (we note that the sta-

tistical fluctuating time is much longer than the quantum-mechanical
fluctuating time h/T ) . We may extend the equation of diffusion to
these molecular fluctuations, with D = δa2/2δτ = a2Tnh/62/3; we
may also extend the formula D = T/2παηa to a "viscosity" produced
by interaction, such that we get η = (3

√
6/πα)(nh/a3), which indi-

cates a quantum of viscosity of the order h/a3 (or h/m).15

It is worth comparing the fluctuating time with the collision time in
a classical gas. The number of particles with velocity v and moving
along the z-direction per unit time across the unit area of the cross
section is

dν =
N

V
(m/2πT )3/2e−mv2/2T vzdv ; (4.80)

the reduced mass m → m/2 must be introduced here for the motion
with respect to one particle, and, with σ denoting the cross-section of
a collision process, one obtains the number of collisions per unit time

ν =
πN

2V
(m/πT )3/2

ˆ
e−mv2/4Tσv3dv (4.81)

15M. Apostol, "Quanta of viscosity", Roum. J. Phys. 46 339 (2001).
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for one particle, or ν = (4σ/a3)
√
T/πm. Therefore, the collision time

is τcoll = 1/ν ∼ (a2/σ)a
√
m/T ; the mean freepath is l = vthτcoll ∼

(a2/σ)a, where vth =
√
T/m. The gas is classical providing nλ3 	 1,

where λ ∼ h/
√
mT is the thermal wavelength, or a

√
mT � h, i.e. the

classical action is much larger than the quantum of action. It follows
that τcoll ∼ (a2/σ)(1/T )a

√
mT ∼ (a2/σ)δτ(a

√
mT/nh), where δτ is

the fluctuating time. The classical action a
√
mT is, however, much

larger than the fluctuating action nh, so that τcoll � τ (a2/σ � 1
also), i.e. the collision time is much longer than the fluctuating time,
as expected. This is to be completed with δτ � h/T , i.e. the sta-
tistical fluctuating time is much longer than the quantum-mechanical
fluctuating time. Similarly, the quantum-mechanical elementary ex-
citations have a much longer lifetime than δτ , and τcoll above may be
viewed as the lifetime of a classical particle.

4.11 Quantum-mechanical "diffusion"

The statistical motion of quantum-mechanical particles deserves a spe-
cial discussion. The quantum-mechanical nature is usually revealed
for individual particles moving in restricted spaces, where the statisti-
cal motion is meaningless to a large extent. There exists a quantum-
mechanical behaviour for macroscopic bodies, like superfluidity, or
superconductivity, but there exists one purely quantum-mechanical
state in such cases, such that a statistical motion is again point-
less, to a large extent. The particles in condensed matter have a
quantum-mechanical character, since they move in small spatial re-
gions, but their localization energy is usually much larger than the
temperature, such that the statistical motion affects only the quasi-
particle elementary excitations, like in fermion matter; we have then
a special thermodynamics of Fermi gases, like in He3, or electrons in
metals; usually, these quasi-particles have a quasi-classical behaviour.
An exception is provided by the black-body radiation, or the long-
wavelength phonons (sound waves), or collective elementary excita-
tions, which may form purely quantum-mechanical Bose gases; these
gases may also be viewed as gases of elementary excitations, but they
are special, because they have practically infinite mean freepaths and
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4 Transport in Gases

lifetimes. It follows that transport properties, or the approach to
equilibrium, do not imply usually a quantum-mechanical character.
However, we may consider formally the evolution of the quantum-
mechanical distribution of probability ρn (diagonal elements of the
density matrix) given by the master equation

∂ρn/∂t =
∑
m

(Tnmρm − Tmnρn) , (4.82)

where Tnm is the transition probability per unit time from state n
to state m; the quantum-mechanical counterpart of Einstein’s kinetic
equation is recognizable here. The transition probability Tnm is sym-
metric and positive. The entropy S = −∑ ρn ln ρn evolves in time
according to

∂S/∂t = (1/2)
∑

Tnm(ρm − ρn)(ln ρm − ln ρn) ≥ 0 , (4.83)

i.e. it increases with time. In the quasi-classical description the states
m in equation (4.82) are close to n, and the transition probability
may be written as Tnm ∼ 1/ncτ , where τ is the fluctuating time and
nc is the range of m-states in the neighbourhood of n; in addition,
the distribution of probability can be expanded as ρm = ρn + (m −
n)(∂ρn/∂n) + (1/2)(m− n)2(∂2ρn/∂n

2) + ..., so that equation (4.82)
becomes

∂ρ/∂t 
 1
ncτ

´
dn · (1/2)n2(∂2ρ/∂n2) 



 (n2
c/2τ)(∂

2ρ/∂n2) .
(4.84)

For the states n corresponding to position for instance, one recovers
the classical equation of diffusion ∂n/∂t = (a2/2τ)(∂2n/∂x2), since
the distribution ρ is proportional to the particle density in the classi-
cal limit (the matrix elements nm are the (n−m)-Fourier transforms,
and the states are described by position, momentum, and the rest of
classical variables). It is worth noting here that approaching equilib-
rium by fluctuations is meaningful for statistical ensembles only, as
expected, i.e. for ensembles with a large number of degrees of free-
dom (including wavevectors, as for fields), where the quasiclassical
description works.
It is also worth noting that the usual kinetics, i.e. transport, either
classical or quantum-mechanical, proceeds over long times and large
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4 Transport in Gases

distances, being limited, first, by carriers’ lifetime (and the corre-
sponding mean freepath), and, second, by fluctuations, both statisti-
cal and quantum-mechanical, in principle. In such circumstances, it
is described by the continuity equation (which is the starting point
of Einstein’s kinetic equation too), where, however, a represents the
mean freepath and τ represents the lifetime, or collision time.

4.12 A general form of diffusion equation

Let us assume an ideal classical gas which diffuses into a medium.
First, we have a driving force −Tgradn (per unit volume) which de-
rives from the change in the free energy (osmotic pressure), as in
equation (4.42); also, we may have an external force nFe per unit
volume. The equation of motion is

nm
dv

dt
= nFe − Tgradn . (4.85)

We are interested in slowly varying quantities, such that we may re-
place dt in this equation by the collision time τ and write Δv = v

instead of dv, as an average velocity change in collision. We get

nv =
τ

m
nFe − τT

m
gradn . (4.86)

We recognize here the diffusion coefficient D = τT/m and the mobil-
ity B = τ/m (v/F = v/(mv/τ)); this is a general Fick’s law. The
transport equation

∂n

∂t
+ (vgrad)n = 0 (4.87)

can be written
∂n

∂t
+ divi = 0 , (4.88)

where
i = nv = BnFe −Dgradn (4.89)

is the particle current density (flow); equation (4.88) is the continuity
equation, which ensures the conservation of the number of particles.
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4 Transport in Gases

The external-force term may be viewed as a correction to the diffusion
coefficient (the collision time τ). Equation (4.88) can be written as

∂n

∂t
= −Bdiv(nFe) +DΔn . (4.90)

We can see that the molecular nature of the gas is included in the
collision time τ , which is of the order Λ/v, where v 
 √T/m is the
mean thermal velocity.

4.13 Ionized gases

4.13.1 Plasma

Electric discharge or heating may ionize a gas, producing an electron
density n and an ion density ni; the gas remains electrically neutral,
but multiple ionizations make n different from ni. We get a plasma,
whose place is in one of the next chapters. However, if plasma is
sufficiently rarefied, e.g. if n, ni are much smaller than the density
of the atoms which remain neutral, the long range Coulomb forces
are almost mutually compensated, such that we may view the elec-
trons and the ions as ideal classical gases. The electrons get rapidly
thermalized, due to their high mobility and Coulomb forces; usually,
the ions are initially at thermal equilibrium and the ionization leaves
them in thermal equilibrium. But the exchange of energy between
ions and electrons is unbalanced, due to the great difference between
the electron mass and the ion mass, such that the plasma is non-
thermal, i.e. the electron temperature is much higher than the ion
(and neutral atoms) temperature. The motion of the much heavier
ions and neutral atoms is not of much interest, such that we may focus
on the electron gas, which, in these conditions may be viewed as an
ideal classical gas. The stability of the plasma is a problem which is
approached in one of the next chapters.

We may admit that there is a rate of ionization, either a photoioniza-
tion, or an ionization through collisions; and there is a rate of recombi-
nation, proportional to the product nni. The latter, due to radiative
recombination or collisions mediated by a neutral atom, is very small.
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4 Transport in Gases

For a slow recombination process wherein the electron energy ε is lost
gradually a diffusion equation of the type ∂n/∂t = D(∂2n/∂ε2) can
be written, where D is given by D = δε2/2τ .

4.13.2 Electrical conduction

Let us assume a collection of electrons with mass m (m = 10−27g) and
charge q (q = −4.8× 10−10esu), with a sufficiently high temperature
T (1K = 1.38×10−16erg), such that they behave as classical particles,
i.e. �

2/ma2 	 T , where � = 10−27erg ·s is Planck’s constant and a =
1/n1/3 is the mean separation distance between them, n being their
density. A background of positive ions with the same density n ensures
the electrical neutrality. The electron distribution is the Maxwell
distribution. The electrons and the ions interact with Coulomb forces;
their interaction with neutral atoms may be neglected. A measure of
the Coulomb interaction is the charge self-energy q2/a. If the ensemble
of charges is sufficiently rarefied and at a sufficiently high temperature,
such that q2/a	 T , we may leave aside the Coulomb interaction and
view the electrons as an ideal classical gas, each electron having a
"radius" of the order a0 = q2/T	 a. It follows that the electrons have
a mean freepath Λ = (a2/a20)a (Λ ∼ T 2), a collision time τ = Λ/v,
where v 
 √

T/m is the mean thermal velocity (τ ∼ T 3/2) and a
collision frequency γ = 1/τ ∼ T−3/2. A similar "radius" can be
defined for ions, which are usually at a much lower temperature, such
that their cross-section is much larger and dominate the collisions.
Let us assume that a uniform and constant electric field E acts upon
the ensemble. We can start with the Boltzmann equation for the
change in the distribution function; the collisions realize the local equi-
librium very soon, much faster than the time scale we are interested
in. We prefer to start with the equation of motion for the displace-
ment u suffered by electrons (this is the Drude-Lorentz approach16).
If the gas is very rarefied, the equation of motion reads

m
du̇

dt
= qE . (4.91)

16P. Drude, "Zur Elektronentheorie der Metalle", Ann. Phys. 306 566 (1900);
"Zur Elektronentheorie der Metalle, 2. Teile. Galvanomagnetische und ther-
momagnetische Effecte", Ann. Phys. 308 369 (1900); H. A. Lorentz, The

Theory of Electrons, Teubner, Leipzig (1916).
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4 Transport in Gases

Since we are interested in long times, we may approximate this equa-
tion by

m
u̇

τ
= qE , u̇ =

qτ

m
E . (4.92)

Obviously, this is a transport equation, if we write E = −∂U/dr,
where U is the voltage drop. From equation (4.92) we get the current
density

j = nqu̇ =
nq2τ

m
E (4.93)

and the conductivity

σ =
nq2τ

m
; (4.94)

it is called drift conductivity, because it proceeds by collisions; it is
a diffusion conductivity (σ ∼ T 3/2). We recognize here the mobility
τ/m. If we include the electron-ion collisions, then τ in equation
(4.94) is dominated by the much shorter electron-ion collision time.
If we multiply equation (4.93) by a2 we get the intensity of current
I = ja2 and

I =
nq2τa2

m
E , (4.95)

or

U =
Rq2τ

ma

∂U

∂x
, (4.96)

where R is the electric resistance and the field is directed along the x-
axis. Since R = ρ(l/a2), where ρ = 1/σ is the resistivity, this equation
reads also

U = l
∂U

∂x
, (4.97)

which is a Fick’s equation, or, more general,

∂U

∂t
= vl

∂2U

∂x2
, (4.98)

when there exists a time dependence, which is the diffusion equation
with D = vl; the length fluctuations are given by δx2 = 2τvl. Since,
from equations (4.95) and (4.96) we have δI/I = δx/a, we get the
current fluctuation δI/I =

√
2al/a0 ∼ T .
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Obviously, in equation (4.92) mγu̇, where γ = 1/τ , is a force which
opposes the motion, such that the equation of motion reads

m
du̇

dt
+mγu̇ = qE ; (4.99)

we can see that there exists a transient regime of damped motion
u̇ ∼ e−γt.

If the gas is not too rarefied, we cannot neglect any longer the in-
ternal field of polarization; indeed, the displacement u generates a
disturbance δn = −ndivu in density (for a uniform displacement,
this disturbance appears at the boundaries); consequently, we have
a polarization charge density −nqdivu (and a polarization current
density nqu̇ which satisfies the charge conservation), an internal field
Ei = −4πnqu (and a polarization P = nqu), such that the equation
of motion reads

mü+mγu̇ = qE− 4πnq2u , (4.100)

or

ü+ ω2
0u+ γu̇ =

qE

m
, (4.101)

where ω0 = (4πnq2/m)1/2 is the plasma frequency. For an oscillat-
ing field E = E0e

iωt with the frequency ω the stationary solution of
equation (4.101) is

u = − qE
m

1
ω2−ω2

0
−iγω

; (4.102)

equation (4.101) and its solution are valid for ω 	 γ. The total
electric field is

Et = E+Ei =
ω2−iγω

ω2−ω2
0
−iγω

E (4.103)

and the conductivity in j = σEt is

σ = − 1

4π

iω2
0

ω − iγ
. (4.104)

Similarly, we can get the polarization and the electric susceptibil-
ity. The rate of energy dissipation dQ/dt = mnγu̇2 per unit volume
(equation (4.101)), averaged over time, is

dQ

dt
=

E2
0

8π

γω2
0ω

2

(ω2 − ω2
0)

2 + ω2γ2
. (4.105)

89

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



4 Transport in Gases

An electron displaced by u can be viewed as a single-particle exci-
tation, with the lifetime τ and mean freepath Λ. It is worth noting
that such a disturbance is associated with the collective excitation of
the plasmons with frequency ω0.17 For a non-uniform field it is more
convenient to use the Boltzmann equation (with partial derivatives for
the distribution) and to impose the internal field (Vlasov equation18).

4.13.3 Ambipolar diffusion

Charge carriers in semiconductors (electrons and holes) behave to a
large extent as ideal classical gases, the cohesion being ensured by a
mean field (potential well). At semiconducting junctions the two types
of carriers may diffuse into one another.19 Let n1,2 be the densities of
the two types of carriers, denoted by 1 and 2, with charges −q and q.
The diffusion is governed by the law given by equation (4.90), where
the external force is ±qE, the electric field being E = −gradϕ, where
the potential ϕ satisfies the Poisson equation

Δϕ = −4π(n2 − n1)q . (4.106)

We get
∂n1

∂t = D1div
[
gradn1 − qn1

T gradϕ)
]

,

∂n2

∂t = D2div
[
gradn2 +

qn2

T gradϕ)
]

.
(4.107)

We may assume that n1,2 vary slowly, such that

∂n1

∂t = D1

[
Δn1 − κ2(n1 − n2)

]
,

∂n2

∂t = D2

[
Δn2 + κ2(n1 − n2)

]
,

(4.108)

where κ = (4πnq2/T )1/2, n being the mean density; λ = 1/κ =
a
√
aT/4πq2 is the Debye-Huckel screening length;20 we recognize here

17D. Bohm and D. Pines, "A collective description of electron interaction. III.
Coulomb interactions in a degenerate electron gas", Phys. Rev. 92 609 (1953).

18A. A. Vlasov, "On the kinetic theory of an assembly of particles with collective
interaction", J. Phys. (USSR) 9 25 (1945).

19W. Schottky, "Wandstrome und Theorie der positiven Saule", Phys. Z. 25 342
(1924); "Diffusions-Theorie der positiven Saule", Phys. Z. 25 635 (1924).

20P. Debye and E. Huckel, "Zur Theorie der Elektrolyte. I. Gefrierpunktserniedri-
gung und verwandte Erscheinungen", Phys. Z. 24 185 (1923); “Zur Theorie
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4 Transport in Gases

the length a0 = q2/T . For slowly varying densities we may neglect
the derivatives in equations (4.108), which leads to

∂

∂t
(n1 − n2) = −2Dκ2(n1 − n2) , (4.109)

where D 
 D1 
 D2. This equation shows that the two concentra-
tions equalize themselves in time, as expected.

4.13.4 Electrolytes

The ions in (dilute) electrolytes diffuse as an ideal classical gas; how-
ever, we need to include the internal electric field generated by ions.
Equation (4.90) becomes

∂n

∂t
= −Bdiv(nqE0 − nqgradϕ) +DΔn , (4.110)

where E0 is the external field, q is the ion charge and ϕ is the potential
generated by ions. We may consider a uniform and constant external
field, such that we may write

∂n

∂t
= −BqE0gradn+Bqdiv(ngradϕ) +DΔn . (4.111)

First, it is worth noting the effect of the external field; leaving aside the
internal potential and the Fourier transforming of the above equation,
we get

n(t, r) =
1

(2π)3

ˆ
dkn(k)eik(r−BqE0t)e−Dk2t , (4.112)

whence we can see that the effect of the external field is to change r

into r−BqE0t, as expected; the external field transports the charges
with velocity BqE0.

Let us assume that the diffusion proceeds in a (large) volume; we may
define the ion concentration n0; n given by equation (4.111) is the dis-
turbance caused by diffusion in this uniform concentration. Also, n0

der Elektrolyte. II. Das Grenzgesetz fur die elektrische Leitfahigkeit”, Phys.
Z. 24 305 (1923).
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may be viewed as a local mean concentration. The potential generated
by n0 is zero (we assume a uniform neutralizing background); there-
fore, the potential ϕ is generated by the charge density n, according
to the Poisson equation

Δϕ = −4πqn ; (4.113)

this equation must be solved with boundary conditions ϕ = q/r in the
vicinity of each ion. On the other hand, we have local equilibrium at
temperature T , such that

n = n0δ
(
e−qϕ/T

)
= −n0qϕ/T (4.114)

and

ϕ = q
e−κr

r
(4.115)

from equation (4.113), for each ion, where κ = (4πn0q
2/T )1/2 is the

Debye-Huckel screening parameter. Now we introduce ϕ given by
equation (4.114) in equation (4.111), which becomes

∂n

∂t
= −Bq

(
E0 +

T

qn0
gradn

)
grad n+D

(
1− n

n0

)
Δn . (4.116)

We can see that the internal field transforms the diffusion equation
into a non-linear equation (which can be solved by means of a pertur-
bation theory; the corrections to the regular diffusion are sometimes
called relaxational corrections).21 The effect of the internal field is
to reduce the mobility, as expected. This effect is diminished in the
presence of both positive and negative ions (with a vanishing mean
charge).

4.13.5 Electrophoresis

Let us consider the motion of an ion in the electrolyte; the external
force qnE0 acts upon the ion, where E0 is the (uniform and constant)
21P. Debye and E. Huckel, "Zur Theorie der Elektrolyte. I. Gefrierpunktserniedri-

gung und verwandte Erscheinungen", Phys. Z. 24 185 (1923); “Zur Theorie
der Elektrolyte. II. Das Grenzgesetz fur die elektrische Leitfahigkeit”, Phys.
Z. 24 305 (1923); L. Onsager, "Zur Theorie der Elektrolyte. I.", Phys. Z. 27

388 (1926); II., 28 277 (1927).
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external field, n is the ion diffusion density and q is the ion charge.
Let us consider the motion of the (fluid) electrolyte with velocity v.
In a stationary motion the forces are in equilibrium, i.e.

ηΔv − gradP + qnE0 = 0 , (4.117)

where η is a coefficient of viscosity and P is the pressure. The Fourier
transform of the above equation leads to

−ηk2v(k) − iPk+ qn(k)E0 = 0 ; (4.118)

we may consider the flow incompressible, i.e. divv = 0 (kv(k) = 0);
we get

P = −iqn(k)kE0

k2
(4.119)

and

v(k) =
qn(k)

η

k2E0 − k(kE0)

k4
. (4.120)

From equations (4.114) and (4.115) the density is

n(r) = −n0q
2

T

e−κr

r
(4.121)

and

n(k) = −n0q
2

T

ˆ
dr

e−κr

r
e−ikr = − κ2

k2 + κ2
. (4.122)

The velocity of the fluid at the position of the ion is

v(0) =
1

(2π)3

ˆ
dkv(k) ; (4.123)

introducing here equations (4.120) and (4.122) we get

v(0) = − qκ

6πη
E0 . (4.124)

This velocity is added to the ion velocity qBE0, which leads to a de-
crease in the mobility, which becomes B − κ/6πη. The mobility B
may depend on the particle size and shape, such that charged parti-
cles may be separated in an electric field; this is the phenomenon of
electrophoresis. Equation (4.124) is an electrophoretic correction.
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5 Kinetics of Plasma

5.1 Gaseous plasma

Let us assume a classical gas of identical atoms (molecules) in normal
conditions. Normal conditions mean a temperature T = 300K (room
temperature) and a pressure p = 106dyn/cm2 (atmospheric pressure)
(1K = 1.38 × 10−16erg). From the equation of state p = nT of an
ideal gas we can derive the density n = 1/a3 and the mean separation
distance a between the atoms; in normal conditions it is a 
 35Å
(n 
 1019cm−3); it is much larger than the atomic scale length given
by �

2/Ma2 = T , where M is the atomic mass (� = 10−27erg · s is
Planck’s constant and 1erg = 1.38 × 10−16K (Boltzmann constant);
m = 10−27g is the electron mass and e = −4.8 × 10−10esu is the
electron charge).
The ionization potential of the atoms is of the order of a few eV
(1eV = 1.6 × 10−12erg). If a potential difference U of a few V ’s is
applied across an atom, the atom may get ionized. 1V is 1/300esu;
the corresponding electric field is E = U/aH 
 106esu 
 3×1010V/m,
where aH = �

2/me2 
 0.53Å is the Bohr radius (atomic dimension);
this is a very high electric field, which produces an electric discharge
in gas. If the field is increased, the atoms may get multiply ionized,
and the released electrons may acquire a high energy (1eV = 1.16×
104K). The electrons interact with the long-range Coulomb forces and
have a great mobility; consequently, they may get rapidly thermalized.
The ions were initially in thermal equilibrium and they preserve the
equilibrium in the ionization process. The recombination processes
are rare; thereby, we get a plasma. We can see that the electrons are
at a temperature T , which is much higher than the ionic temperature
Ti. A similar result is obtained by collisions in a gas heated at high
temperature. During collisions, the ions get colder, and transfer their
energy to the released electrons; the electron temperature is again
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5 Kinetics of Plasma

much higher than the ion temperature. These plasmas are called non-
thermal.

The ionization process is a statistical one; not all the atoms are ion-
ized; some remain neutral (sometimes most of them). The cross-
section of neutral atoms with electrons and ions is small (in compar-
ison with the Coulomb forces). It follows that the electrons and the
ions may have their own, separate, statistical equilibrium, and the
neutral atoms may have their own, distinct, statistical equilibrium.
We may neglect the neutral atoms in a plasma.

The equilibrium between ions and electrons and the stability of a
plasma raise important problems.

In general, the problem of achieving the thermal equilibrium is an
open problem in Statistical Physics. Since the electrons are identical
and uniformly generated from identical atoms, there is no obvious rea-
son not to assume that the electrons are in thermal equilibrium and,
similarly, that the ions are in thermal equilibrium. However, due to
large disparity between the ion mass and the electron mass, the mu-
tual equilibrium between the electrons and the ions is not obvious; we
may view the electrons with their own temperature Te, the ions with
their own temperature Ti and the neutral fraction of atoms with their
own temperature T0. Since the electron mass is much smaller than the
atom (and ion) mass, in high-energy ionization the electrons carry the
largest fraction of energy, and their temperature is the highest. The
electrons are highly mobile, so we may view them as a fluid. Due to
the same reason, the elastic binary collisions preserve this unbalanced
energy distribution among the electrons, on one side, and ions and
atoms, on the other. However, the electrons and the ions are strongly
coupled by Coulomb forces, and we may expect a special kind of equi-
librium between electrons and ions. Moreover, the electron and ion
motions are correlated, by the Debye length to be introduced shortly
below, so it seems more reasonably to view the plasma as a collec-
tion of ions surrounded by the electron fluid. It is worth noting that
the equilibrium between electrons, or the equilibrium between ions,
is established not by collisions but rather by the long-range repulsive
Coulomb interaction. The Coulomb interaction generates a correla-
tion between electrons and ions, as we shall show below, which leads
us to view the plasma as a non-ideal gas of ions dressed with electrons,
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5 Kinetics of Plasma

at equilibrium.
Let us assume for the moment a thermal plasma, i.e. let us assume
Te = Ti = T0 = T . Let ni be the density of the ionized atoms; the
(classical) number of states available to these ions is Ni = niV eβεi/gi,
where V is the volume, εi is the energy of the ion, β = 1/T is the
reciprocal of the temperature T and gi is the multiplicity (degeneracy)
of the state. Similarly, the number of states of the electrons with (low)
density ne is Ne = neλ

3
q , where λq = (�2/mT )1/2 is the de Broglie

quantum (thermal) length, and ne = ni. The equation of equilibrium
reads NiNe = N0, where N0 = n0V eβε0/g0 is the number of states of
the neutral atoms (with density n0, energy ε0 and multiplicity g0). It
follows

nine

n0
=

n2
i

n0
=

n2
e

n0
=

gi
g0

1

λ3
q

e−βΔεi , (5.1)

where Δεi = εi− ε0 is the ionization energy. Equation (5.1) is known
as the Saha equation.1 We can see that only at very high temperatures
the degree of ionization of a gaseous plasma is high (λq 
 10Å at
T = 300K); the gas is almost fully ionized for temperatures T =
103− 104K; for lower temperatures (102− 103K) the electron density
decreases appreciably (ne 
 1010cm−3). The Saha equation gives
a quantitative estimate of the degree of ionization of a plasma at
equilibrium; noteworthy, this equation does not take into account the
Coulomb correlations. Its applicability is very limited.
Plasma is a collection of both types of electric charges, usually with
any macroscopical region electrically neutral; each type of charge may
have its own motion. Plasma is a special state of matter; due to
the long range character of the Coulomb interaction, the motion in
plasma is a collective, correlated motion. The typical plasma is the
gaseous plasma of ionized gases. We need ionizing agents to create
a gaseous plasma, like high temperature or high electric fields. In
normal conditions a gas is poorly ionized, but at high temperatures
the ionization degree increases, due to collisions; similarly, for a high
electric field.
1M. N. Saha, "Ionization in the solar chromosphere", Phil. Mag. (6) 40 472

(1920); "On a physical theory of stellar spectra", Proc. Roy. Soc. A99

135 (1921); K. Kingdon and I. Langmuir, "The removal of Thorium from the
surface of a Thoriated tungsten filament by positive ion bombardment", Phys.
Rev. 22 148 (1923).
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5 Kinetics of Plasma

For simplicity, in the following we shall consider mainly a singly-
ionized species of identical atoms, though, in principle, the consid-
erations may be extended to Na ions, a = 1, 2, ..., with charge zaq and
N =

∑
a zaNa electrons (where za is a positive integer) and −q (= e)

is the electron charge. This would be a multi-component plasma; the
former, is a two-component plasma. We leave aside the neutral part
of the gas. In the jellium model all the ions form a uniform back-
ground of neutralizing positive charges, the electrons moving in this
background (for example, electrons on the surface of liquid helium is
an experimental realization of the (two-dimensional) jellium model);
or, conversely, we may view the electrons as a uniform background,
with moving ions; also, trapped ions may be viewed as a realization
of the jellium model. We have, in this case, a one-component plasma.

We should note that in a plasma the mean inter-ionic separation a
is much larger than the atomic scale length (�2/MT )1/2, where M is
the ion mass; this is the condition for a classical ionic gas. Moreover,
a is also the mean separation distance between the electrons, and it is
much larger than the atomic dimension given by Bohr aH = �

2/me2.
Also, we note that there exist three types of relevant energies in a
plasma: the quantum localization energy �

2/ma2 of the electrons, the
mean Coulomb interaction q2/a and the temperature T of the elec-
trons. Since a� aH , we have always �2/ma2 	 q2/a (aH = �

2/mq2),
i.e. the Coulomb energy dominates over the quantum energy. The
quantum energy �

2/Ma2 of the ions is much smaller than the quantum
energy of the electrons. The temperature T may be placed everywhere
in these inequalities. If T < �

2/ma2, the quantum effects dominate,
and we have a cold, degenerate plasma, where the electrons are de-
localized, as in a Fermi gas; an example is the degenerate plasma of
electrons in solids (metals).2 If �

2/ma2 < T , we may neglect the
quantum effects, and the electrons behave as a classical gas (though
correlated); we note that this condition is λq = (�2/mT )1/2 < a,
which indeed is the condition of quasi-classical behaviour of the elec-
trons. We assume that T is always higher than the quantum energy
of the ions, i.e. the ions behave classically. It remains to compare
T with the mean Coulomb energy q2/a. At equilibrium, the classical

2We shall see below that the correlations may relax this condition of quantum-
classical border.
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5 Kinetics of Plasma

plasma is governed by Maxwell distribution. The mean thermal veloc-
ity of the electrons is of the order vth =

√
T/m; we assume that the

temperature is sufficiently low to treat the plasma non-relativistically
(T 	 mc2 
 0.5MeV , where c is the speed of light in vacuum).
It is important to know that it was argumented that a classical plasma
is unstable,3 in the sense that classical charges tend to recombine in
neutral "point atoms", which, classically, have an infinite negative
energy. Quantum-mechanical arguments have been used to make the
plasma stable. In one of the next sections we show the thermodynamic
stability of the classical plasma.
In a fluorescent tube the electron density is about 109cm−3 and the
temperature is about 104K (since the density is very low, the heat-
ing of the walls is extremely low); in fusion reactors the electron
density is 1015cm−3 and the temperature is 108K; in the planetary
space the electron density is 1cm−3 and the temperature is 100K.4

A typical fully ionized plasma at very low pressure has the density
n = 1012cm−3, the temperature T = 104K and the mean inter-
particle separation (electrons) a = 1/n1/3 = 10−4cm (= 104Å).
There exists an important feature of plasmas, arising from the Coulomb
interaction between charges. The electrons repel each other, while
they are attracted by ions; the ions repel each other as well. The
electrons being more mobile, they may be redistributed in space, as a
consequence of this interaction. Let q be the charge of an ion localized
at the origin, with density qδ(r). It produces a change δn ∼ neβqϕ−n
in the electron density n, where ϕ is the potential generated by charge
q and charge density is −qδn, −q being the electron charge; for an
interaction qϕ much smaller than the temperature T we may approxi-
mate the change δn as δn 
 nqβϕ (we set the normalization constant
equal to unity). The potential ϕ is determined by the Gauss equation

Δϕ = −4πqδ(r) + 4πnq2βϕ ; (5.2)

we can see that at small distances the potential is dominated by the
3F. J. Dyson and A. Lenard, "Stability of matter." I., J. Math. Phys. 8 423

(1967); A. Lenard and F. J. Dyson, "Stability of matter." II. J. Math. Phys.
9 698 (1968); E. Teller, "On the stability of molecules in the Thomas-Fermi
theory", Revs. Mod. Phys. 34 627 (1962); E. H. Lieb, "The stability of
matter", Revs. Mod. Phys. 48 553 (1976).

4F. F. Chen, Introduction to Plasma Physics, Plenum, NY (1974).
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5 Kinetics of Plasma

singular δ-term; therefore, the approximation made for δn may be
viewed as satisfactory for any finite distance. The solution of equation
(5.2) is the screened potential

ϕ =
q

r
e−r/λ , λ =

√
T

4πnq2
′ (5.3)

this is known as the Debye screened potential (derived originally for
electrolytes); λ is the Debye screening length.5 It is worth noting
that, while we treat the ions as pointlike particles, the electrons are
viewed as a fluid, due to their high mobility. Making use of the mean
inter-particle distance (electrons) a, given by n = 1/a3, the screening
length can be written as λ = a

√
T/4π(q2/a), which implies the ratio

of the thermal energy T to the Coulomb energy q2/a per particle.
The parameter aT/q2 defines the coupling regime in plasma. For
aT/q2 < 1 the Debye length is smaller than the mean inter-particle
distance; this is the strong-coupling regime.

In this case we might view the ions dressed by electrons as rigid par-
ticles with diameter of the order d = 2λ; it is easy to see that their
mean freepath is of the order Λ = a(a/d)2, or Λ = πq2/T (> a); it is
worth noting that this mean freepath is independent of the gas den-
sity; it generates a collision frequency γ = vth/Λ, where the thermal
velocity is vth =

√
T/M , M being the ion mass. We note that the

Maxwell distribution can be written as e−
1
2
βMv2

= e−v2/2v2
th ; conse-

quently, there exist few particles with velocity greater than vth and
with a higher collision frequency than γ; most particles have a colli-
sion frequency less than γ = vth/Λ. We shall show below that this
picture is in fact invalid, the strongly-coupled plasma being unstable.

The opposite case aT/q2 > 1 is the weak-coupling regime. In this
case the electrons interact practically by Coulomb interaction with
the ions and with the other electrons (and ions do the same). The
critical condition of strong-weak coupling is (aT )cr 
 10−18erg · cm
(for the electron charge −q = 4.8 × 10−10esu = 1.6 × 1019C). In

5P. Debye and E. Huckel, "Zur Theorie der Elektrolyte. I. Gefrierpunktserniedri-
gung und verwandte Erscheinungen", Phys. Z. 24 185 (1923); “Zur Theorie
der Elektrolyte. II. Das Grenzgesetz fur die elektrische Leitfahigkeit”, Phys.
Z. 24 305 (1923).
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5 Kinetics of Plasma

the weak-coupling regime the mean freepath of the electrons is of the
order Λ 
 a (mean inter-particle distance); a collision frequency may
be estimated in this case as γ = vth/a.

It is worth noting that we may include the ion mobility in the screened
interaction, by

Δϕ = −4πqδ(r) + 4πnq2βeϕ+ 4πnq2βiϕ , (5.4)

where βi is the inverse of the ionic temperature Ti, distinct from the
electron temperature Te = 1/βe (the change in the ion density is
δni 
 −nqβiϕ); the Debye length is controlled in this case by the lower
ionic temperature, and it is much shorter than the purely electronic
Debye length. The electrons are attracted by ions, and screen the
ionic Coulomb potential; the ions are repelled by ions, and diminish
the strength of the ionic Coulomb potential; we can see that both
charges have a screening effect; since the ions are less mobile, they
dominate the screening. However, treating the ions as a fluid, as in
equation (5.4), is not a realistic approximation.

As a consequence of the long range of the Coulomb interaction the
motion in plasma is a collective, correlated motion, i.e. it proceeds by
small displacements extended over large distances; there exists a spe-
cial, exceptional, case, discussed below. Let us assume that the mobile
electron charges move entirely, as a compact body, in a rectangular
box, by a small distance u along a certain direction perpendicular to
the surface; the surface charge −q/a2 suffers a change (q/a3)u (along
one direction) and generates an electric field 2π(q/a3)u and a force
−2π(q2/a3)u acting upon each particle; the two surfaces generate a
force −4π(q2/a3)u; the equation of motion mü = −4π(q2/a3)u leads
to an eigenfrequency ω0 =

√
4πnq2/m, which is the plasma frequency;

for n = 1012cm−3, q = 4.8 × 10−10esu and m = 10−27g (electrons)
it is of the order ω0 = 5 × 1010s−1 (ν 
 1010s−1). The plasma
frequency, generated by the internal field, is associated with any dis-
turbance occurring in plasma. It is due to the long-range character of
the Coulomb force (and the related pointlike character of the mobile
charges). It is worth noting that the surfaces bounding the plasma
may be extended to infinity, and the plasma frequency thus estimated
here is a bulk property. The displacement u (along one direction)
changes the density n = 1/a3 into 1/a2(a + u) 
 −u/a4 = −n(u/a);
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it is easy to see that the change can be viewed as δn = −ndivu; the
Gauss equation becomes divE = −4πnqdivu = −4πdivP for a charge
q, where P = nqu = −E/4π is the polarization; and E0 +E+4πP =
Et + 4πP = D = E0 is the electric displacement (induction), where
E0 is the external field, E is the internal field and Et = E0 + E

is the total field; χ in P = χEt is the electric susceptibility and
ε = 1 + 4πχ in D = εEt is the dielectric function. We may include
the motion of the positive ions; it is easy to see that the relevant
motion is the relative ion-electron motion, which leads to a plasma
frequency ω0 =

√
4πnq2/μ, where μ is the reduced mass given by

1/μ = 1/m + 1/M , M being the ion mass; since M � m, we may
leave aside the ionic motion; in this respect, the ions may be viewed
as a continuous, uniform, rigid background of positive, neutralizing
charges.

Under these conditions, the equation of motion of the displacement u
can be written as

ü+ γu̇ =
q

m
E0 +

q

m
E , (5.5)

where E = −4πnqu is the internal field, γ is the collision frequency
and u̇ = du/dt (in this case, it is convenient to use q for the elec-
tron charge). This equation will serve as the starting point for the
Boltzmann equation of plasma; it is also known as the Drude-Lorentz
equation of motion of charges in matter.6 We note that the velocity
of the electrons, of the order of vth, is small, such that we may leave
aside the magnetic effects (similarly, the magnetic moments may be
left aside); in this case, we say that plasma is unmagnetized. For
our typical plasma with temperature 104K, the thermal velocity is
vth =

√
T/m = 3.7× 107cm/s.

The physics of classical plasmas is confronted with the interaction
problem arising from the long-range Coulomb forces between ions
and electrons. As long as the interaction persists, especially when
it implies multi-particle correlations due to the long-range character
of the Coulomb forces, the statistical theory cannot be used, since
the particles are not statistically independent. In order to be able

6P. Drude, "Zur Elektronentheorie der Metalle", Ann. Phys. 306 566 (1900);
P. Drude, "Zur Elektronentheorie der Metalle, 2. Teile. Galvanomagnetische
und thermomagnetische Effecte", 308 369 (1900); H. A. Lorentz, The Theory

of Electrons, Teubner, Leipzig (1916).
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to use statistical approaches for plasmas we need first to solve, in a
convenient way, the interaction problem in plasmas.

5.2 Energy distribution in ionization

Let us consider a (classical) gas of identical molecules (atoms), each
with mass M at thermal equilibrium. As long as the thermal en-
ergy per molecule is smaller than the ionization (dissociation) energy
of a molecule, the thermal energy is taken up in translation, rota-
tion, vibration, etc, motion. The corresponding thermal energy E per
molecule for translation generates a molecular momentum P, such
that E = P 2/2M . If the thermal energy exceeds the ionization (dis-
sociation) energy the momentum and the energy conservation laws
are

P = p1 + p2 ,

E = p21/2m1 + p22/2m2 ,
(5.6)

where P is the momentum of the molecule (atom) and E is the ex-
cess energy which generates the momenta p1,2 of the two molecular
fragments (e.g., an ion and an electron) with masses m1,2. Equations
(5.6) lead to

p21 − 2
μ

m2
P cos θ · p1 −

(
2μE − μP 2/m2

)
= 0 , (5.7)

where μ = m1m2/M is the reduced mass (M = m1 + m2) and θ is
the angle made by P with p1; the solutions of equation (5.7) are .

p1 =
μ

m2
P cos θ ±

√
2μE − μ

m2
P 2

(
1− μ

m2
cos2 θ

)
. (5.8)

Let us assume m2 	 m1 and E � P 2/2m2; then, we get from equa-
tion (5.8) p1 


√
2m2E and the energies

E1 = p21/2m1 
 m2

m1
E , E2 
 E ; (5.9)

we can see that the high amount of excess energy is taken by the
lighter fragments, in the proportion of the mass ratio, as expected
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(E1/E2 
 m2/m1); the magnitudes of the momenta are close to each
other (since P is small).7 In the opposite limit, when E 	 P 2/2m2,
the ionization (dissociation) takes place in the forward direction (θ 

0) and the energy is retained, practically, by the heavier fragment.
The same energy distribution is valid for the ionization produced by
high electric fields.
In elastic binary collisions the two fragments preserve their energy
distribution and the scattering angles, only the relative momentum
changes direction; this follows from the conservation laws

p1 + p2 = p
′

1 + p
′

2 ,

p21/2m1 + p22/2m2 = p
′2
1 /2m1 + p

′2
2 /2m2 ,

(5.10)

where p
′

1,2 are momenta after collision; indeed, from the second equa-
tion (5.10) we get E2 = E

′

2 and E1 = E
′

1 and, from the first equation
(5.10), we get ϕ 
 ϕ

′

, where ϕ is the angle made by p1 with p2 and
ϕ

′

is the angle made by p
′

1 with p
′

2.
The energy P 2/2M + E is a measure of the mean energy; it leads
to (2N + N0)T , where N is the original number of atoms which are
ionized and N0 is the number of atoms which remain neutral. Since
E � P 2/2M we may write T 
 E. On the other hand, we have from
the above calculations E1 
 m2

m1
·2NT = NT1 and E2 
 2NT = NT2,

where the temperatures T1,2 are given by T1 
 2m2

m1
T and T2 
 2T .

We can see that the ratio of the two temperatures is T1/T2 
 m2/m1.
We are in the presence of two distinct gases (e.g., ions and electrons),
or three distinct gases if we include the neutral atoms, all at their own
equilibrium.
Let us consider two fragments with masses m1,2, m2 	 m1; making
use of the energy Ec of their center of mass and the energy Er of
their relative motion we can express the (kinetic) energies of the two
fragments as

E1 = m1

M Ec +
m2

M Er + 2
√ μ

MEcEr cosα 
 Ec ,

E2 = m2

M Ec +
m1

M Er − 2
√

μ
MEcEr cosα 
 Er ,

(5.11)

7M. Apostol, "Energy distribution in ionization and dissociation", J. Theor.
Phys. 287 (2018).
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where M = m1 +m2 is the total mass, μ = m1m2/M is the reduced
mass and α is the angle made by the relative momentum with the
center-of-mass momentum. Since Ec,r are conserved in elastic colli-
sions, we can see, that, in general, only the angle α (which is a free
parameter) may change in collisions; since the center-of-mass momen-
tum is conserved, this implies a rotation of the relative momentum.
This change induces an energy re-distribution between the two parti-
cles. However, for m2 	 m1, the energies of the two particles remain,
practically, unchanged, as derived above from equation (5.10); for
high-energy, the lighter fragment carries the (higher) relative energy,
while the heavier fragment carries the (lower) center-of-mass energy.
However, for electrical charges the equilibrium is reached by Coulomb
interaction, not by collisions.

Let us assume that a force acts between the two fragments, which may
lead to a bound state. The energy of the center of mass is conserved,
such that the kinetic energy of the heavier fragment is conserved,
E1 = Ec. The relative energy Er is changed, such that the kinetic
energy E2 of the lighter fragment is changed. It becomes

E
′

2 =
m2

M
Ec + Ekin =

m2

M
Ec +W −Q 
W −Q , (5.12)

where the first term arises from the motion of the lighter particle
together with the heavier fragment (common velocity), Ekin is the
kinetic energy of the lighter particle in the potential well with depth
W and −Q is the binding energy. The total energy of the lighter
particle is E ′

1 = E
′

1−W 
 −Q. The high kinetic energy of the lighter
particle is transferred, approximately, to the high kinetic energy of
the lighter particle in the bound state; the potential well ensures the
binding energy of this particle. The kinetic energy of the bound state
remains the low kinetic energy of the heavier particle.

5.3 Thermodynamic stability of the

classical plasma

There is a long-standing issue regarding the relation between the
neutral state of a classical atomic ensemble (a gas) and its ionized
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(plasma) state. This problem may be termed the thermodynamic sta-
bility (instability) of a classical plasma, in the sense of the existence
of a finite lower bound to the energy. Interesting arguments have
been advanced in the past to show that the classical plasma would
be thermodinamically unstable.8 The stability is usually ensured by
resorting to the quantum-mechanical behaviour of the electrons in
atoms. The problem is still debated at present.9 We show here, by
means of a linearized self-consistent variational approach, that the
classical plasma, which is a collection of ions dressed by electrons, has
a well-defined thermodynamics.10 In the strong-coupling regime11 the
plasma is a solid, while, on passing to the weak-coupling regime, it
becomes gradually a liquid, a non-ideal gas, and, finally, an ideal clas-
sical gas. Probably the first authors who suggested the existence of
an ionic lattice as the "ground-state" of a plasma at (very) high den-
sities were Kirzhnits12 and Abrikosov.13 Long-range ordered phases
have been reported recently in cold, strongly-coupled plasmas by com-
puter simulations.14 Coulomb crystals of jellium and one-component

8F. J. Dyson and A. Lenard, "Stability of matter." I., J. Math. Phys. 8 423
(1967); A. Lenard and F. J. Dyson, "Stability of matter." II., J. Math. Phys.
9 698 (1968); E. Teller, "On the stability of molecules in the Thomas-Fermi
theory", Revs. Mod. Phys. 34 627 (1962); E. H. Lieb, "The stability of
matter", Revs. Mod, Phys. 48 553 (1976).

9E.H. Lieb, "Thomas-Fermi theory", arXiv; 0003040v1 (math-ph) (2000); "The
stability of matter and Quantum Electrodynamics", Jahresbericht of the Ger-
man Mathematical Society, JB 106 93, Teubner, (2004) (arXiv: 0401004v1
(math-ph) (2004)); J. P. Solovej, "A new look at the Thomas-Fermi theory",
arXiv: 160100497v1 (math-ph) (2016).

10M. Apostol and L. C. Cune, "On the stability of a classical plasma", Phys. Lett.
A383 1831 (2019).

11M. S. Murillo, "Strongly-coupled plasma physics and high energy-density mat-
ter", Phys. Plasmas 11 2964 (2004) and references therein.

12D. A. Kirzhnits, "Internal structure of super-dense stars", Sov. Phys.-JETP 11

365 (1960) (ZhETF 38 503 (1960)).
13A. A. Abrikosov, "Nekotorye svoistva sil’no szhatogo veschestva. I.", ZhETF 39

1797 (1960) (in Russian; Sov. Phys.-JETP 12 1254 (1961)); "Contribution to
the theory of highly-compressed matter. II.", Sov. Phys.-JETP 14 408 (1962)
(ZhETF 41 569 (1961)).

14T. Pohl, T. Pattard and J. M. Rost, "Coulomb crystalization in expanding laser-
cooled neutral plasmas", Phys Rev. Lett. 92 155003 (2004) and references
therein; M. Bonitz, P. Ludwig, H. Baumgartner, C. Henning, A. Filinov, D.
Block, O. Arp, A. Piel, S. Kaeding, Y. Ivanov, A. Melzer, H. Fehske and V.
Filinov, "Classical and quantum Coulomb crystals", Phys. Plasmas 15 055704
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plasmas are known since long.15

We consider a classical plasma consisting of a large (macroscopic)
number N of identical ions with electric charge q and an equal number
N of electrons with charge −q, confined to a large (macroscopic) vol-
ume V and interacting by Coulomb forces. For simplicity we consider
one type of singly-ionized atoms, though the procedure described be-
low is valid for Na ions, a = 1, 2, ..., with charge zaq and N =

∑
a zaNa

electrons (where za is a positive integer). The ions are viewed as point
particles, while the electrons, due to their high mobility, are viewed
as a fluid with density n(r), where r is the position vector. We leave
aside for the moment the thermal motion of the ions and give the
ions parametric positions Ri, i = 1, 2, ...N . We may expect such an
ensemble to be unstable, as will be shown below, in the sense that the
ions get dressed with electrons. We shall show here that the dressed
ions exhibit thermodynamically stable phases.

We denote by a the mean separation between ions (electrons) and
write the concentration as n = N/V = 1/a3. We assume T �
�
2/ma2, where T is the electron temperature, which is the condi-

tion of classical thermodynamics of the electrons with mass m; also,
we assume a � aH = �

2/mq2, where aH is the Bohr radius and � is
Planck’s constant.

The potential Φ(r) generated by the electric charges in plasma satisfies
the Poisson equation

ΔΦ = −4πq
∑
i

δ(r−Ri) + 4πqn(r) . (5.13)

The solution of this equation can be written as

Φ(r) = q
∑
i

1

| r−Ri | − q

ˆ
dr

′ n(r
′

)

| r− r
′ | + f(r) , (5.14)

where the function f(r) is a solution of the Laplace equation Δf = 0.
If we identify the interaction Coulomb potential Ψ through Φ = Ψ+f ,

(2008).
15E. Wigner, "On the interaction of electrons in metals", Phys. Rev. 46 1002

(1934); D. H. E. Dubin and T. M. O’Neill, "Trapped non-neutral plasmas
liquids, and crystals (the thermal equilibrium states)", Revs. Mod. Phys. 71

87 (1999).
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the potential energy of the plasma is given by

Ep = 1
2q

2
∑

i�=j
1

|Ri−Rj | − 1
2q
´
drn(r)Ψ(r)−

− 1
2q

2
∑

i

´
dr n(r)
|r−Ri| + q

∑
i f(Ri)− q

´
drn(r)f(r) ,

(5.15)

or

Ep = 1
2q

2
∑

i�=j
1

|Ri−Rj | − q2
∑

i

´
dr n(r)
|r−Ri|+

+ 1
2q

2
´
drdr

′ n(r)n(r
′

)

|r−r
′ | + q

∑
i f(Ri)− q

´
drn(r)f(r) ,

(5.16)

where we recognize the ion-ion and electron-electron Coulomb repul-
sion and the ion-electron Coulomb attraction. The function f(r) plays
the role of an external potential, whose effect in energy disappears for
f = const, as expected. For a uniform density of ions and electrons
the potential given by equation (5.13) and the potential energy given
by equation (5.16) are vanishing. For pointlike electrons placed at rj
an infinite attraction may arise for rj = Ri (we assume that all Ri are
distinct and, separately, all rj are distinct), with an infinite negative
energy, which would mean the collapse of the plasma. This "catas-
trophic" situation is avoided by the quantum-mechanical behaviour
of the electrons inside the atoms.

At thermal equilibrium the electron density is given by Gibbs distri-
bution

n(r) = CneβqΦ(r) , (5.17)

where C is a normalization constant and β = 1/T is the reciprocal of
the temperature T . The normalization constant C is given by

Cn

ˆ
dreβqΦ(r) = N . (5.18)

For a quasi-uniform potential Φ we may use the representation

eβqΦ = 1 + βqΦ + 1
2!β

2q2Φ2 + 1
3!β

3q3Φ3 + ... 



 1 + βqΦ
(
1 + 1

2!βqΦ + 1
3!β

2q2Φ2 + ...
)

,
(5.19)
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or
eβqΦ 
 1 + λβqΦ , (5.20)

where
λ = 1 +

1

2!
βqΦ +

1

3!
β2q2Φ2 + ... (5.21)

and

Φn =
1

V

ˆ
drΦn(r) , n = 1, 2, 3... . (5.22)

Moreover, for a quasi-uniform potential Φ the correlations involved in
Φn, for any integer n in equation (5.22), can be left aside; we may
replace Φn by Φ

n
and write

λ =
eβqΦ − 1

βqΦ
. (5.23)

The mean potential Φ plays the role of the chemical potential; it is
viewed here as a variational parameter for minimizing the energy.

Making use of this variational approach, we get from equations (5.17)
and (5.18) the electron density

n(r) = Cn(1 + λβqΦ) , C =
1

1 + λβqΦ
= e−βqΦ , (5.24)

where n(r) is a linear functional of the potential Φ (hence the denom-
ination "linearized variational approach").

Inserting the density n(r) given by equation (5.24) in equation (5.13),
we get

ΔΦ = −4πq
∑
i

δ(r−Ri) + 4πCnq + 4πCλnβq2Φ . (5.25)

We note that the neutrality of the plasma implies C = 1 and Φ = 0,
λ = 1, a result which will be obtained below. Also, from equation
(5.14) we expect Φ ≥ 0, due to the contributions of the regions where
r is close to Ri. We write the potential Φ in equation (5.25) as
Φ = Ψ−1/λβq and identify the function f(r) in equation (5.14) by the

109

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



5 Kinetics of Plasma

constant f(r) = −1/λβq; being a constant, f(r) does not contribute
to the potential energy. Equation (5.25) becomes

ΔΨ = −4πq
∑
i

δ(r−Ri) + 4πCλnβq2Ψ , (5.26)

whose solution is the well-known Debye-Huckel screened potential16

Ψ(r) = q
∑
i

e−κ|r−Ri|

| r−Ri | , (5.27)

with the screening parameter κ = (4πCλnβq2)1/2. Making use of the
potential Ψ in equation (5.24), we can express the electron density as

n(r) = CλnβqΨ(r) ; (5.28)

the potential energy given by equation (5.15) becomes

Ep =
1

2
q2
∑
i�=j

1

Rij
− κ2

8π

ˆ
drΨ2(r)− κ2q

8π

∑
i

ˆ
dr

Ψ(r)

| r−Ri | , (5.29)

where Rij = Ri−Rj. The integrals in equation (5.29) can be effected
immediately (they are two-centre integrals17); we get the potential
energy

Ep = −1

4
q2κ

⎡⎣3N +
∑
i�=j

(
1− 2

κRij

)
e−κRij

⎤⎦ . (5.30)

From equations (5.27) and (5.28) we can see that each ion is sur-
rounded by an electron cloud extending, approximately, over distances
of the order κ−1. Also, from equation (5.30) we can see that these
dressed ions have a self-energy −(3q2κN/4) (the first term on the right

16P. Debye and E. Huckel, "Zur Theorie der Elektrolyte. I. Gefrierpunktserniedri-
gung und verwandte Erscheinungen", Phys. Z. 24 185 (1923); “Zur Theorie
der Elektrolyte. II. Das Grenzgesetz fur die elektrische Leitfahigkeit”, Phys.
Z. 24 305 (1923).

17J. C. Slater, Quantum Theory of Molecules and Solids, vol. 1, Electronic Struc-

ture of Molecules, Mc-Graw-Hill, NY (1963).
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in equation (5.30)) and interact by the screened effective (pseudo-) po-
tential ∼ −(1 − 2/κRij)e

−κRij , which has a zero at κRij = 2 and a
minimum for κRij =

√
3 + 1. As it is well-known, the electrons dress

the ions and screen the original Coulomb interaction. The same form
of the ion-ion interaction potential has been derived for a solid-state
(quantum) plasma.18

The equilibrium is achieved for well-defined values of the parame-
ters κRij , which ensure the minimum of the potential energy (inter-
acting part) given by equation (5.30). The global minimum of the
potential energy requires also the maximum value of the parameter
κ = (4πCλnβq2)1/2, i.e. the maximum value of the product

Cλ =
λ

1 + λβqΦ
=

1− e−βqΦ

βqΦ
(5.31)

(according to equations (5.23) and (5.24)). It is easy to see that the
maximum value of this parameter is reached for Φ = 0, C = λ = 1 (as
expected from neutrality). For C = λ = 1 the screening parameter
κ becomes κD = 1/λD = (4πnβq2)1/2, where λD = a(aT/4πq2)1/2 is
the well-known Debye length. Henceforth, we use κD for κ and λD

for λ = 1/κ (not to be mistaken for the variational parameter λ = 1)
and remove the suffix D.

The equilibrium mean value of the parameters κRij is given approx-
imately by κRij 


√
3 + 1; making use of this value, the potential

energy given by equation (5.30) can be written as

Ep 
 − 1
4q

2(4πnβq2)1/2
[
3 +

√
3−1√
3+1

e−(
√
3+1)z

]
N 



 − 3q2

4λ N ,

(5.32)

where z is the mean number of nearest-neighbours; we can see that
the interaction energy brings a small contribution in comparison with
the self-energy of the dressed ions. The equilibrium configuration of
N = 23 ions, resulting from numerical calculation (gradient method),
is shown in Fig. 5.1. In quantum-mechanical terms this solid phase

18L. C. Cune and M. Apostol, "Ground-state energy and geometric magic numbers
for homo-atomic metallic clusters", Phys. Lett A273 117 (2000).
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A

B
C DC

Figure 5.1: Equilibrium configuration (solid state) of N = 23 ions,
according to equation (5.30); configuration parameters
xij = κRij are of the order xAB = 2.04, xBC = 2.4,
xCD = 2.27, and bond angles are of the order (ABC) =
64.83 , (ACD) = (BCD) = 103.57 (degrees); the interac-
tion energy is −1.2(q2/λ).

of the "plasma" may be viewed as its "ground-state" (though it is at
a finite temperature). The frequency of oscillation ω0 of an ion in the
potential well generated by its nearest-neighbours can be estimated
from the potential given by equation (5.30); it is of the order ω0 

(zq2/Mλ3)1/2, where M is the ion mass. For a highly-compressed
plasma the existence of an ionic lattice ground-state was suggested
long ago.19

The solid phase of the "plasma" exists for Rij 
 (
√
3 + 1)λ < a,

i.e. for aT < 1.68q2 (strongly-coupled plasma).20 It is convenient to
introduce the length a0 = q2/T and the notation as = 1.68a0; the
ratio a/a0 is the coupling parameter of the plasma. We can see that
in the strong-coupling limit (a 	 a0) the "plasma" is a solid. For
a 
 as the vibration energy of an ion is comparable with the depth

19D. A. Kirzhnits, "Internal structure of super-dense stars", Sov. Phys.-JETP 11

365 (1960) (ZhETF 38 503 (1960)); A. A. Abrikosov, "Nekotorye svoistva sil’no
szhatogo veschestva. I.", ZhETF 39 1797 (1960) (in Russian; Sov. Phys.-JETP
12 1254 (1961)); "Contribution to the theory of highly-compressed matter.
II.", Sov. Phys.-JETP 14 408 (1962) (ZhETF 41 569 (1961)).

20M. Apostol and L. C. Cune, "On the stability of a classical plasma", Phys. Lett.
A383 1831 (2019).
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of the potential well and its vibration amplitude is comparable with
the mean inter-ionic distance. If we compare the electron localization
energy �

2/mλ2 with the temperature T , we find that the quantum-
mechanical solid appears for T <

√
4π(�2/ma2)(q2/a) (which is, usu-

ally, smaller than the Coulomb energy q2/a). For a = as this con-
dition becomes aH > 0.38a0. We can see that for T < 0.38(q2/aH)
the "plasma" solid is a classical solid. This classical solid-phase of a
plasma is a distinct type of a classical solid, which may be termed a
"plasmonic" solid, produced by inter-ionic (pseudo-) potentials which
depend on the density (equation (5.27)).21 On passing to the weak-
coupling regime, the "plasma" behaves gradually as a liquid, a non-
ideal gas, and, finally, in the weak-coupling limit, the plasma be-
comes an ideal gas (genuine plasma). This is the well-known con-
dition of the existence of a (genuine) plasma.22 A numerical exam-
ple of the parameter a0 is a0 
 10−7cm for T = 104K (electron
charge −q = 4.8× 10−10esu). The parameter a20 may be taken as the
electron-electron collision cross-section in the weak-coupling limit of
the plasma gas. (A similar, usually much larger, parameter exists for
ions. It is worth noting that we can compute the mean freepath, and
the lifetime, associated with electron-electron, electron-ion and ion-
ion collision processes, in the weak-coupling regime, as for a neutral
classical gas. Since the electron temperature is much higher than the
ion temperature, the electron-ion dominates the electron behaviour,
which is another indication of the electron-ion correlations).

The above estimations are valid as long as the potential Ψ is quasi-
uniform, i.e. it differs little from its mean value ψ = 1/βq (Φ = 0).
This condition is not fulfilled in small regions surrounding the ion
position, so we may estimate the error by comparing

1

v

ˆ
v

dr
qe−κr

r
(5.33)

21We can see that the quantum-classical border is relaxed, since �2/ma2 <√
(�2/ma2)(q2/a) < q2/a; this is an effect of the correlations brought about

by the Debye-Huckel dressing of the ions.
22D. G. Swanson, Plasma Kinetic Theory, Taylor Francis, NY (2008); P. A. Stur-

rock, Plasma Physics, Cambridge University Press, Cambridge (1994); R. J.
Goldston and P. H. Rutheford, Introduction to Plasma Physics, IOP Pub-
lishing, London (1985); F. E. Chen, Introduction to Plasma Physics, Plenum
Press, NY (1974).
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with Ψ = 1/βq, where v is a volume of the order λ3; we get the
relative error 
 (a/λ)3, which is very small for λ � a. In the solid
phase, when a 
 λ, we can get a more accurate estimation of the error
by computing the self-energy

Es = −1

2
q

ˆ
v

drn(r)Ψ(r) − 1

2
q2
ˆ
v

dr
n(r)

r
(5.34)

associated with the volume v per ion (equation (5.15)); we get Es =
−(q2/4λ)[3− (1+2e)/e2], which should be compared with −(3q2/4λ)
given in equation (5.32). We get a relative error 
 0.28 and we can
see that equation (5.32) provides a lower bound to the binding energy.

In conclusion, we may say that the model of classical plasma in-
vestigated here by means of a linearized self-consistent variational
approach consists of ions dressed by electrons, which interact by a
screened Coulomb potential. In the strong-coupling regime the ensem-
ble is in a solid-state phase, while, on passing to the weak-coupling
regime, the ensemble becomes a liquid, a non-ideal gas, and finally
an ideal gas. Therefore, the Coulomb interacting classical ions and
electrons have a consistent thermodynamics.

5.4 The stability of matter

It is worth taking a digression on the stability of matter. This prob-
lem appeared, probably, for the first time in connection with the non-
integrability of the three-body mechanical motion and its chaotic be-
haviour.23 Then, it occurred that the classical motion of an electron
about the nucleus would lead to the collapse of the atom. This prob-
lem led to the apparition of the Quantum Mechanics. The quantum-
mechanical motion and Pauli’s exclusion principle ensure the atomic
stability. The reason is that the kinetic energy of a quantum-mechanical
particle may exceed the Coulomb attraction. This was shown ex-
plicitly by the Thomas-Fermi model for many-electron atoms (heavy
atoms).24 Latter it was shown that the Thomas-Fermi model does not
23See, for instance, H. Poincare, Les Méthodes Nouvelles de la Mécanique Celeste,

Gauthier-Villars, Paris (1892, 1893, 1899).
24L. H. Thomas, "The calculation of atomic fields", Proc. Cambr. Phil. Soc.

23 542 (1927); E. Fermi, "Un metodo statistico per la determinazione di al-
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bind atoms in molecules.25 This is due to an overestimation of the
kinetic energy. A linearized form of the Thomas-Fermi theory leads
to the cohesion of matter.26 The stability of the mechanical motion
of the (neutral) ensemble of many Coulomb interacting charges has
been proved by assuming quantum-mechanical motion of the charges
and Pauli’s exclusion principle; in particular, by making use of the
Thomas-Fermi theory in the limit of an infinite number of charges.27

All these show that (neutral) Coulomb interacting matter, both at the
atomic level and in bulk, does not collapse, as a consequence of its
quantum-mechanical behaviour. But this does not prevent the bulk
matter to crumble into molecules and atoms, which amounts to say
that (bulk) matter would be thermodynamically unstable. It is be-
lieved, reasonably, that on lowering the temperature a classical gas
becomes condensed in a liquid and, further, a solid; the condensed
phases have a distinct thermodynamics, in comparison with the gas,
because interaction comes into play in condensed phases, and the con-
densation needs to be proved; it was proved above. Moreover, a com-
pression may leave the ensemble with sufficiently high temperature,
such that its particles still behave classically; but the interaction is im-
portant in the compressed state, and a liquid, or a solid may appear;
this may not be a quantum-mechanical condensed phase, in the sense
that the electrons may still behave classically, and we are then in the

cune proprieta dell’atomo", Rend. Accad. Naz. Lincei 6 602 (1927); "Eine
statistiche Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre
Anwendung auf die Theorie des periodischen Systems der Elemente", Z. Phys.
48 73 (1928).

25E. Teller, "On the stability of molecules in the Thomas-Fermi theory", Revs.
Mod. Phys. 34 627 (1962); see also L. Spruch, "Pedagogic notes on Thomas-
Fermi theory (and on some improvements): atoms, stars, and the stability of
bulk matter", Revs. Mod. Phys. 63 151 (1991).

26L. C. Cune and M. Apostol, "Ground-state energy and geometric magic num-
bers for homo-atomic metallic clusters", Phys. Lett. A273 117 (2000); M.
Apostol, "Giant dipole oscillations and ionization of heavy atoms by intense
electromagnetic fields", Roum. Reps. Phys. 67 837 (2015).

27F. J. Dyson, "Ground-state energy of a finite system of charged particles", J.
Math. Phys. 8 1538 (1967); F. J. Dyson and A. Lenard, "Stability of matter.
I", J. Math. Phys. 8 423 (1967); A. Lenard and F. J. Dyson, "Stability of
matter. II", J. Math. Phys. 9 698 (1968); E. H. Lieb and W. E. Thirring, "A
bound for the kinetic energy of fermions which proves the stability of matter,
Phys. Rev. Lett. 35 687 (1975) (errata 1116); E. H. Lieb, "The stability of
matter", Revs. Mod. Phys. 48 533 (1976).
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situation of not being able to make use of the quantum-mechanical
motion as an argument for stability. The stability in this case, which
has also been proved above, arises from classical statistical motion,
which leaves a sufficiently high kinetic energy to exceed the attrac-
tion.

Classically speaking, any plasma is unstable because the attraction
energy between ions and electrons is infinite when their positions co-
incide. The quantum-mechanical motion prevents these positions to
coincide, so we may expect a quantum-mechanical stability. But the
classical statistical motion does the same, so we also may expect a
statistical stability of a classical plasma. It is this statistical stability,
due to classical statistical motion of classical charges which is proved
above. In statistical motion the electrons have not definite positions
(or they have with a probability); instead, they are statistically dis-
tributed with a density.

Also, there is another sense of viewing the thermodynamic stability,
which does not refer to a collapse, but to an explosion, which would
be brought about by the long-range character of the Coulomb interac-
tion; however, the screening may prevent such a situation in a neutral
ensemble.

The stability of a plasma raises an important problem. Let us as-
sume that we have created a gaseous plasma by electric discharge,
or by heating; or it was created by other agencies as in stars, white
dwarfs, neutron stars, etc. Let us assume that the external agency
(discharge, heating) ceased. Obviously, the conditions of classical mo-
tion are satisfied for all particles. Though we may admit that the
neutral atoms, the ions and the electrons are each in separate, dis-
tinct thermal equilibrium, it is difficult to admit that the equilibrium
is mutual, because of the disparity in sharing the energy between the
light electrons and the heavy ions (atoms). Very likely, we are in the
presence of a non-thermal plasma. If we view this plasma as point-
like classical electrons and ions, we are led to admit that this plasma
is unstable, since the Coulomb attraction energy is infinite when the
positions of the ions and the electrons coincide. But the electrons (at
least) are not pointlike classical particles, they are classical statistical
particles distributed with a density; this may ensure the stability, as
was proven, in fact, above. It was also proven above that the electrons
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become correlated with the ions, their density being higher around
the ions. In the weak-coupling regime these correlations are weak,
but in the strong-coupling regime they are strong. It is difficult to see
the correlated electrons as a statistical ensemble; in fact, they are in
quasi-bound states, where the statistical motion is meaningless. Their
thermal energy is taken up now in their mechanical energy, and their
original temperature is now only a parameter for their characteristics.
We may imagine that the correlated electrons move classically around
the ions, in a collective classical motion (for higher densities their mo-
tion becomes quantum-mechanical). The correlations originate in the
Coulomb ion-electron attraction and the Coulomb electron-electron
repulsion. Do the electrons lose energy through radiation in this case?
Because we know that in the weak coupling regime an important cause
of energy loss is the radiation of electromagnetic energy. It is diffi-
cult to view the correlated electrons in plasma as a black body, as
long as their statistical motion is not present anymore. In the pres-
ence of the correlations it is unlikely that a collective classical motion
lose much energy. In an isolated atom an electron moving classically
do lose energy through radiation, but in a collective classical motion
an electron radiates and at the same time absorbs radiation emitted
by the other electrons. In quantum-mechanical motion radiation ex-
ceeds absorption due to the Einstein uneven emission and absorption
coefficients, but classically, this unevenness disappears. Along those
portions of their trajectory where the electrons are accelerated they
emit radiation, along those portions where they are slowed down, they
absorb radiation. In the strong-coupling regime plasma is a collection
of interacting ions dressed by electrons.

5.5 The effect of the Debye screening

length

The existence of the Debye screening length λ has important conse-
quences; it illustrates the fact that we have solved the problem of the
long-range Coulomb interaction. The Coulomb repulsive interaction
between the electrons has been taken into account in this solution.
What happens with the original thermal equilibrium of the electrons,
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as they were initially generated? The attractive Coulomb interaction
between the ions and the electrons has been partially included in this
solution, so what about the equilibrium between the ions and the elec-
trons? Also, the repulsive Coulomb interaction between the ions has
been included partially in solution, so how is their original equilibrium
affected? The answer to these questions resides in the fact that we
should realize that immediately after its creation the gaseous classical
plasma is unstable, and an electronic cloud appears around each ion.
Under these circumstances it becomes meaningless to talk about the
ion-electron equilibrium, because the main part of the corresponding
interaction does not exist anymore, and the remaining part acts be-
tween the dressed ions. The ion-ion equilibrium is preserved, though
it is affected by the screened ion-ion interaction. The thermal equi-
librium between the electrons is spoiled, in principle, because their
motion becomes highly correlated around the ions. What about their
temperature T and their thermal energy?
Let us write the normalization condition for the distribution function
of an ideal classical gas of N electrons:

1

N !

[
V
( m

2π�2

)3 ˆ
dve−

1
2
βmv2

]N
= e−βF , (5.35)

where F is its free energy. We can insert in this equation the distri-
bution function F = n(βm/2π)3/2e−βmv2/2 and get

1

N !

[
V

(
ma2T

2π�2

)3/2 ˆ
dvF

]N
= e−βF , (5.36)

where n = N/V = 1/a3 is the concentration; making use here of´
dvF = n we get immediately the well-known free energy of an ideal

classical gas. Let us suppose now that the electrons acquire a velocity
V, generated by the interaction with the ions. For simplicity we
assume a constant V. Equation (5.35) becomes

1

N !

[
V
( m

2π�2

)3 ˆ
dve−

1
2
βmv2+βmvV

]N
= e−βF ′

, (5.37)

or

1

N !

[
V
( m

2π�2

)3 ˆ
dve−

1
2
βmv2 · e 1

2
βmV 2

]N
= e−βF ′

; (5.38)
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we can see that the free energy becomes

F ′

= F − 1

2
NmV 2 . (5.39)

Since an interaction cannot modify the total energy, it follows that the
electrons lose from their thermal energy exactly the mechanical en-
ergy corresponding to the velocity V. A similar process is suffered by
the ions, though to a lesser extent. Of course, this loss may be viewed
as a released heat, and a reduction in the entropy; it is an irreversible
transformation, so it is allowed by the second law of thermodynamics.
If this change is small, i.e. if the Debye length is very large, we may
still view the electrons in thermal equilibrium at their temperature T .
But in the strong-coupling regime, when the Debye length is short, we
cannot speak of thermal equilibrium for the electrons; they preserve
their temperature T as a parameter in the Debye length, but their
thermal energy is taken now in their mechanical motion. If the elec-
trons are in the quantum-mechanical regime, we recover this energy in
their kinetic energy, corresponding to their Fermi levels, which is in-
deed a mechanical energy. Their motion is now a mechanical motion,
not a statistical one.
In conclusion, we may say that as a consequence of the long-range
Coulomb interaction in plasma we are left with a set of dressed ions
interacting by the screened potential. In the weak-coupling regime
(e.g., low densities), where the screening is very weak, we may still
view the plasma as a classical gas of electrons at thermal equilibrium
at temperature T and a classical gas of ions in thermal equilibrium at
temperature Ti (Ti 	 T ); the negative tails of the long-range Coulomb
potentials cancel out the positive part of the interaction, such that we
may view these gases as ideal gases. This is the regime of a genuine
plasma. On the contrary, in the strong-coupling regime, we cannot
speak anymore of a thermal equilibrium of the electrons, or thermal
equilibrium between the electrons and the ions; the electron temper-
ature is preserved as a parameter in the Debye length; the thermal
energy of the electrons is transformed into mechanical energy corre-
sponding to their motion around the ions. We are left with a collection
of dressed ions which interact with the screened potential, and may
become a liquid or a solid.
It is worth noting that the Saha equation is not valid anymore for a
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correlated, strongly-coupled plasma. The preparation of any plasma
implies, in fact, Ti 	 Te, i.e. a non-thermal plasma. However, let us
consider the ideal case of a thermal plasma. The electrons and the
ions may be originally in thermal equilibrium, at a common temper-
ature Te = Ti, and their (common) density may be given by the Saha
equation. Immediately after its creation this plasma becomes corre-
lated, more or less, and the Debye length occurs; if the correlations
are weak (in the weak-coupling regime), the Saha equation may keep
its validity, approximately. The plasma may suffer transformations; if
these transformations imply a dilatation, in the weak-coupling regime,
the Saha equation is valid and the plasma temperature decreases as a
result of the decrease in the density; if we keep the temperature con-
stant, more ionization processes appear in order to keep the density
constant (which means to give energy from the outside). If we com-
press the plasma at constant temperature, recombination processes
occur, in order to satisfy the Saha equation. Only in these conditions
we may compress the thermal plasma, preserving its temperature. We
can see that equilibrium transformations are allowed for a thermal
plasma, for a limited range of parameters. Indeed, on compression,
the correlations begin to become important, and the Saha equation
does not hold anymore; the ions get decoupled from electrons. Of
course, transformations at constant temperatures (both for ions and
electrons) are possible for a non-thermal plasma.

5.6 Plasma isotherms. Phase diagram

According to the standard theory of the non-ideal gases and the stan-
dard van der Waals equation, before reaching the solid state a non-
ideal gas may have a liquid phase. It is controlled by the condensation
phenomenon, which may occur at a transition temperature related to
the depth of the potential well of the two-particle interaction poten-
tial.28 This is valid for short-range potentials, i.e. for potentials which
have a sharp, abrupt (hard-core) repulsive part and an integrable (usu-
ally attractive) tail. The presence of the (pseudo-) potential Uij (given
by equation (5.30)) brings some specific features in plasmas.
28M. Apostol, "The condensation of matter - a model of phase transition of the

first kind", Mod. Phys. Lett. B21 893 (2007).
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Figure 5.2: Schematic representation of the screened two-body poten-
tial Uij given by equation (5.41) vs the inter-ionic distance
R; λ = 1/κ denotes the Debye length.

Let us assume a classical plasma with the electron temperature T and
the ion temperature Ti; we assume the usual situation Ti 	 T . In
order to take into account the interaction (correlations), we view the
electrons as moving around the ions, with their temperature T as a
parameter, and consider the statistical properties only for dressed ions
interacting by the screened potential. The potential energy of the ions
is given by equation (5.30); it can be written as

Ep = NΦ0 +
1

2

∑
i

Φi , (5.40)

where Φ0 = −3q2κ/4 is the ionic self-energy (equation (5.30)) and

Φi =
∑′

j Uij ,

Uij = − 1
2q

2κ
(
1− 2

κRij

)
e−κRij ;

(5.41)

the prime on the summation sign in equation (5.41) means j �= i.
The screened two-particle potential Uij given by equation (5.41) is
shown in Fig. 5.2. It is worth noting that this potential has a zero at
Rij = 2λ, where λ = 1/κ = a

√
aT/4πq2 is the Debye length (and a
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2λ

2λ

a b

Figure 5.3: Two regimes of interaction in plasma, depending on the
relation between the Debye length λ and the mean sep-
aration distance a between ions. For 2λ � a (figure a)
the positive part of the interaction inside the sphere with
radius 2λ is cancelled out by the negative part of the in-
teraction generated by the ions outside the Debye sphere.
For 2λ � a the Coulomb repulsion dominates, and we have
an excluded volume; for 2λ < a (figure b) the solid may
appear.

is the mean separation distance between ions). The change brought
about by the interaction in the free energy is given by

ΔF = −Ti ln
(

1
V N

´ ′

e−βiEpdr1...drN

)
=

= −Ti ln
(

e−βiNΦ0

V N

´ ′

e−
1
2
βi

∑
i Φidr1...drN

)
.

(5.42)

For the potential Φi we adopt a mean-field approximation

Φi =
N
V

´
r1
drU(r) =

= −2πq2κN
V

´
r1
dr · r2(1− 2/κr)e−κr = −2AN

V ,
(5.43)

where r1 is the parameter which accounts for the prime in the sum-
mation in equation (5.41); we get

A = πq2r21e
−κr1 . (5.44)
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Similarly, the prime in the integration in equation (5.42) is accounted
by an excluded-volume parameter r2, such that each integration is
performed over the volume V − NB, where B = 1

2 · 4πr32/3.29 The
change in the free energy (equation (5.42)) is

ΔF = −NTi ln

(
1− NB

V

)
+NΦ0 − N2A

V
. (5.45)

The potential Φ0 can be written as

Φ0 = −3

4
q2κ = −3

4

q2

λ
= −3

4

q2

a

√
4πq2

aT
= −3

2

q2

a

√
πa0/a , (5.46)

where we have introduced the parameter a0 = q2/T (a/a0 is the cou-
pling parameter of the plasma); as long as the ensemble is gaseous we
have the inequalities a0 	 a	 λ (weak-coupling regime; for T = 104

this parameter is a0 
 16Å). The self-energy term in equation (5.45)
becomes

NΦ0 = −3

2
q2
√
πa0N

(
N

V

)1/2

. (5.47)

For short-range potentials with a sharp, abrupt, repulsive hard core
the two parameters r1,2 coincide, but for a plasma they are distinct.
Indeed, in plasma each ion is surrounded by an electronic cloud ex-
tended over a distance of the order of the Debye length λ, such that,
usually, a0 	 a 	 λ. We can see that inside the screening sphere
of radius 2λ (Debye sphere) there are many ions (2λ � a), interact-
ing by the positive part of the potential. This positive interaction is
cancelled out by the negative part of the potential of the ions lying
outside the screening sphere; indeed,

´
drUij(r) = 0, such that, in

this situation, we may view the ions as quasi-free particles. A special
situation appears when 2λ is comparable with a. In this case the elec-
trons inside the Debye sphere are shared by a few ions, and the ionic
self-energy may increase appreciably in magnitude, such that it may
become greater than the thermal energy Ti; a negative pressure may
be expected in this situation. For 2λ � a the repulsive Coulomb inter-
action dominates; the integration in equation (5.42) should be viewed

29M. Apostol, "On the van der Waals equation", J. Math. Theor. Phys. 1 215
(2018).
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0 1 2 3 4 5 6 7 8 9 10
v

p

0.1

0

Figure 5.4: van der Waals isotherms p(v) = Ti/(v − 1) − 1/v3/2

(equation (5.48)) for reduced pressure p and volume v =
V/N ; from top to bottom the temperatures are Ti =
0.5, 0.429, 0.4, 0.385, 0.35, 0.3.

as a summation over the ion positions; the approximation of this sum-
mation by an integral should be corrected by an Euler-Maclaurin for-
mula; the most convenient way of including these corrections is to
introduce an excluded volume. It follows that this excluded volume
is given by the condition 2λ = a (a = πa0). We may have a liquid
in these regions. Further on, when 2λ < a, i.e. a < πa0, the minima
of the interaction potential Uij may lie between ions, so we may get
the solid phase. All these regions, corresponding to 2λ comparable
with a or smaller are strong-coupling regions. This picture is shown
schematically in Fig. 5.3. According to this picture, it is natural to
assume that the parameter r1 is practically zero and the parameter r2
is of the order πa0. We get A = 0 and B = 2π4a30/3. If we compare
the electron localization energy �

2/mλ2 with the temperature T for
a = πa0, we get that the liquid phase may be viewed as a classical liq-
uid for T < 2.46(q2/aH). Making use of these estimations in equation
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0

p

V

NC NB

s

sl

l

lg

Ti g

Figure 5.5: The phase diagram (pressure vs volume, equation (5.54))
of a classical plasma; in the vicinity of the asymptote NB
the plasma is a liquid, near the asymptote NC the plasma
is a solid ("plasmonic" solid); N is the number of ions (and
electrons), Ti is the ionic temperature and the excluded-
volume parameters B and C are defined in text. The
gaseous (g), liquid (l) and solid (s) phases are indicated,
as well as the liquid-gas (lg) and solid-liquid (sl) mixed
phases.

(5.45), we get the pressure

p = NTi

V + NTi

V
NB/V

1−NB/V − 3
4q

2√πa0
(
N
V

)3/2
=

= NTi

V−NB − α
(
N
V

)3/2 (5.48)

and the van der Waals equation(
p+ α

N3/2

V 3/2

)
(V −NB) = NTi , (5.49)

where we have introduced the notation α = 3
4q

2√πa0 (B = 2π4a30/3).
Equation (5.49) can be viewed as the equation of state of a classical
plasma. It differs from the equation of state of a classical plasma with
continuously-distributed ions.30

30A. A. Vedenov and A. I. Larkin, "Equation of state of a plasma", Sov. Phys.-
JETP 9 806 (1959) (ZhETF 36 1133 (1959)).
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The (N/V )3/2-term in equation (5.49) was derived by Debye and
Huckel (correlation-energy term);31 its relation to a possible phase
transition was discussed by Zeldovich and Landau.32 The van de
Waals equation for plasma (5.49) differs from the standard van de
Waals equation (for gases with short-range interaction) by the power
(N/V )3/2 in the internal (self-energy) pressure instead of (N/V )2.
Formally, this may not look as a qualitative difference. However,
a qualitative difference appears from the relation between the pa-
rameters α and TiB. While in the standard van der Waals equa-
tion this relation prevents the pressure to acquire negative values, in
plasmas such a circumstance may appear; this is due to the long-
range character of the Coulomb forces. The pressure given by equa-
tion (5.49) has an asymptote at the excluded volume V = NB,
two extrema and one inflexion point (the pressure is positive for
Ti > 2α/3

√
3B = T/(2π)3/2). The region near the asymptote cor-

responds to the dominating Coulomb repulsion, while the region with
negative pressure is caused by an excess of ionic self-energy. A fam-
ily of curves p(v = V/N) given by equation (5.49) are shown in Fig.
5.4. The inflexion point occurs at the critical values Vc = 5NB,
Tic = 24α/25

√
5B1/2 and pc = α/25

√
5B3/2. It is worth noting that

Tic =
18

25π

√
3

10π

q2

a0
=

18

25π

√
3

10π
T (5.50)

(Tic 
 7 × 10−2T ). The latent heat can be computed at Tic from
the change in energy ΔE = ΔF − Tic∂(ΔF)/∂Ti; it is of the order
NTic. The region defined by the extrema points of the curve p(V )
corresponds to liquid-gas mixed states; for V in the vicinity of NB
the "plasma" is a liquid, for V −→ ∞ the plasma is an ideal gas.
We can see that a thermal plasma (Ti = T ) does not exhibit these
features, neither a critical point.

We have seen in one of the preceding sections that the plasma becomes
a solid for Rij 
 (

√
3 + 1)λ < a, i.e. for a < 4πa0/(2.73)

2 
 0.5πa0

31P. Debye and E. Huckel, "Zur Theorie der Elektrolyte. I. Gefrierpunktserniedri-
gung und verwandte Erscheinungen", Phys. Z. 24 185 (1923); “Zur Theorie
der Elektrolyte. II. Das Grenzgesetz fur die elektrische Leitfahigkeit”, Phys.
Z. 24 305 (1923).

32Y. Zeldovich and L. Landau, "On the relation between the liquid and the gaseous
states of metals", ZhETF 14 32 (1944).
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(qc)

qs
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TT1 h̄2/ma2H = q2/aH

Figure 5.6: The phases of a plasma (gas-g, liquid-l, classical (plas-
monic) solid-cs, quantum solid-qs) in coordinates a (mean
interparticle separation distance) and T (temperature of
the electrons); the curves are (l): a = π(q2/T ), (s):
a = 1.68(q2/T ), (qc1): T = [4π(�2/ma2)(q2/a)]1/2 and
(qc): T = �

2/ma2; T1 is the ionization temperature.

(strong-coupling regime); we may take the parameter r3 = 0.5πa0 =
0.5r2 as the parameter of the excluded volume C = 1

2 · 4πr33/3 of the
solid. The two excluded volumes can be accommodated by noticing
that in pressure we have the quantity

1 +
NB/V

1−NB/V

 1 +NB/V , (5.51)

which now may be replaced by

1 +N(B + C)/2V 
 1

2

1

1−NB/V
+

1

2

1

1−NC/V
; (5.52)

thus, we get the pressure

p =
NTi/2

V −NC
+

NTi/2

V −NB
− α

(
N

V

)3/2

(5.53)

(and a generalized van der Waals equation). On approaching the ex-
cluded volume NC < NB we see that we pass over the asymptote
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V = NB; actually, this passing is a smooth one, which can be ob-
tained formally by replacing V −NB by V −N(B + iγ), where γ is
a small parameter (γ −→ 0), and taking the real part; the parameter
γ accounts for the solid-liquid mixed phase, which has a very narrow
extension in volume. We can write the pressure as

p =
NTi/2

V −NC
+

(NTi/2)(V −NB)

(V −NB)2 + γ2
− α

(
N

V

)3/2

. (5.54)

The curve p(V ) given by equation (5.54) is sketched in Fig. 5.5.
It exhibits the gaseous, liquid-vapours, liquid, liquid-solid and solid
phases of a plasma. We note that the ideal-gas free energy (equation
(5.42)) is not appropriate for condensed phases like liquids or solids
(i.e., for V too close of the excluded volumes NB or NC).
According to the above discussion, the plasma is defined for mean
inter-electron (ion) distance a > aH (where ah is the Bohr radius)
and temperature T > T1, where T1 is the ionization temperature.
The classical regime of the electrons is separated from the quantum-
mechanical regime by the curves T = �

2/ma2 or T = [4π(�2/ma2)·
·(q2/a)]1/2. The separation gas-liquid and liquid-solid appears at a =
πq2/T and a = 1.68q2/T , respectively. These phases of a plasma are
shown in Fig. 5.6.
In the following we understand by "plasma" a genuine plasma, i.e.
a plasma in the weak-coupling limit (if not specified otherwise); it is
practically in the collisionless regime.

5.7 Equation of motion

For a periodic external electric field E0e
−iωt the equation of motion

(5.5) reads

ü+ ω2
0u+ γu̇ =

q

m
E0e

−iωt , (5.55)

where ω0 = (4πnq2/m)1/2 is the plasma frequency. The homogeneous

equation (5.55) has a transient, damped solution u ∼ e±
√

ω2
0
+γ2/4te−γt/2,

which disappears in time, and a particular, stationary solution

u = −qE0

m

1

ω2 − ω2
0 + iγω

e−iωt ; (5.56)
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since the equation is linear, we can take the real part of the expression
in equation (5.56). The internal field is

E = −4πnqu =
ω2
0

ω2 − ω2
0 + iγω

E0e
−iωt , (5.57)

the polarization is

P = nqu = − 1

4π

ω2
0

ω2 − ω2
0 + iγω

E0e
−iωt , (5.58)

the total field is

Et = E0 +E =
ω2 + iγω

ω2 − ω2
0 + iγω

E0e
−iωt , (5.59)

the dielectric function in E0 = D = εEt, where D is the electric
displacement (induction), is

ε = 1− ω2
0

ω2 + iγω
(5.60)

and the electric susceptibility in P = χEt is

χ = − 1

4π

ω2
0

ω2 + iγω
(5.61)

(ε = 1 + 4πχ). The polarization current density j = nqu̇ is

j =
1

4π

iωω2
0

ω2 − ω2
0 + iγω

E0e
−iωt (5.62)

and the conductivity in j = σEt is

σ =
1

4π

iω2
0

ω + iγ
(5.63)

(ε = 1+4πiσ/ω). We can see that in the limit of constant fields ω →
0, the conductivity becomes the drift conductivity σ = nq2/mγ =
nq2τ/m, where τ = 1/γ is the relaxation time, a result which follows
from ü 
 u̇/τ in the equation of motion ü = qE0e

−iωt/m. From
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equation (5.55) we get the rate of energy dissipation dQ/dt = mnγu̇2

per unit volume; its time average is

dQ

dt
= γ

E2
0

8π

ω2
0ω

2

(ω2 − ω2
0)

2 + ω2γ2
. (5.64)

It is worth noting that for a uniform field the displacement u is uniform
and the density change δn = −ndivu is zero; it comes from the change
on the surfaces at infinity. Equally well, we can derive it from the

Maxwell-Ampere equation curlH = −(1/c) ˙
Ė+ (4π/c)j for H = 0,

i.e. iωE + 4πnqu̇ = 0, which is, in fact, the charge conservation
q∂(δn)/∂t+ divj = 0.

Equation (5.56) provides a very interesting insight into the behaviour
of a plasma; we can see from this equation that the maximum dis-
placement u0 = qE0/mγω0 occurs in plasma for ω = ω0, i.e. at
resonance. In γ = vth/Λ, Λ = (a/a0)

2a (with a0 arising from ions),
we may take Λ = a, for the sake of a simplified estimation. The
displacement u0 is much smaller than the mean inter-particle dis-
tance a for most of the plasmas, due, especially to the low inten-
sity of the common electric fields; indeed, for our typical plasma with
ω0 = 5×1010s−1, γ = vth/a, vth = 3.7×107cm/s, a = 10−4cm, we get
u0 
 2.6× 10−5E0(cm); the usual highest electric fields in laboratory
are of the order E0 = 103V/m 
 3 × 10−2esu (1esu = 3 × 104V/m);
we can see that u0 	 a. It follows that the collisions are not effective
in usual plasmas, and we may consider these plasmas as collisionless
plasmas. Usually, we are far from resonance and may take γ → 0 (in
accordance with the general rule of the causality principle); in addi-
tion, the velocity u̇ is much smaller than thermal velocity. In plasma
the thermal equilibrium is not achieved by collisions, but by the long-
range Coulomb interaction; practically, the "collision frequency" in
plasma is zero, since the range of the interaction is infinite.
The use of the displacement u and its equation of motion is equiva-
lent with assuming elementary excitations in plasma; we can see that
the individual motion of the electrons, i.e. single-particle elementary
excitations, is connected with their collective motion, i.e. the collec-
tive elementary excitations (plasmons), through the occurrence of the
internal field and the plasma frequency ω0; the displacement u may
be formally associated with single electrons, while δn = −ndivu may
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be associated with the plasmons. The lifetime of all these elemen-
tary excitations is controlled by the parameter γ. The association of
u (more precisely u̇) with the change f in the distribution function
(through f = −u̇∂F/∂v) and the corresponding Boltzmann equation
account for the existence of the thermal equilibrium in the motion
of the elementary excitations. A similar situation exists in quantum-
mechanical ensembles.33 The collective character of the elementary
excitations in plasma has been emphasized by Bohm and Pines.34

5.8 Transverse field

A uniform (oscillating) electric field can be created between the plates
of a capacitor (for wavelengths much longer than the distance between
the plates; the magnetic field is practically zero in this case); this is
called also a longitudinal field. Similarly, a uniform oscillating mag-
netic field can be generated inside a solenoid, practically without an
electric field.
Let E0(r, t) be a transverse electric field, with the magnetic field
H0(r, t) (radiation field); these fields are proportional to e−iωt+ikr,
where ω = ck is the frequency and k is the wavevector (kE0 = kH0 =
0). They satisfy the Maxwell equations divE0 = 0, divH0 = 0,
curlE0 = −(1/c)∂H0/∂t, curlH0 = (1/c)∂E0/∂t. In an infinite
plasma, the electric field generates a transverse (bulk) displacement
u, divu = 0 (the displacement determined by the magnetic field is
too small and may be neglected); consequently, the (bulk) polariza-
tion charge is zero, but there exists a polarization current j = nqu̇,
divj = 0; an internal magnetic field H and an internal electric field E

appear, obeying the Maxwell equations

divE = 0 , divH = 0 ,

curlE = − 1
c
∂H
∂t , curlH = 1

c
∂E
∂t + 4π

c nqu̇ ;
(5.65)

33L. Landau, "The theory of a Fermi liquid", Sov. Phys.-JETP 3 920 (1957)
(ZhETF 30 1058 (1956)); "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5

101 (1057) (ZhETF 32 59 (1957)); "On the theory of the Fermi liquid", Sov.
Phys.-JETP 8 70 (1959) (ZhETF 35 97 (1958)).

34D. Bohm and D. Pines, "A collective description of electron interaction. III.
Coulomb interactions in a degenerate electron gas", Phys. Rev. 92 609 (1953).
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the equation of motion is

ü+ γu̇ =
q

m
(E0 +E) . (5.66)

From these equations we get immediately

u = − qE0

m
ω2−c2k2

ω2(ω2−ω2
0
−c2k2)+iωγ(ω2−c2k2)

,

E =
ω2

0ω
2

ω2(ω2−ω2
0
−c2k2)+iωγ(ω2−c2k2)

E0 ,

Et = E0 +E = (ω2+iωγ)(ω2−c2k2)
ω2(ω2−ω2

0
−c2k2)+iωγ(ω2−c2k2)

E0 ,

(5.67)

where ω0 is the plasma frequency; we can see that u = 0, E = −E0

and Et = 0 (since ω = ck), i.e. the plasma (matter) reacts to the
electromagnetic wave such that it annihilates it; in an infinite plasma
(in infinite matter) the electromagnetic fields cannot be propagated.
This is the Ewald-Oseen theorem of extinction.35 For a finite sample
of plasma the eigenmodes of these equations can be propagated, with
frequencies given by Ω2 = ω2

0 + c2k2; these modes are the polaritonic
modes; they are responsible for the refraction of the electromagnetic
waves at surface. In this case, j = σEt, where the conductivity σ is
given by equation (5.63), and the field generates the skin effect at the
surface.

5.9 Surface plasmons

The displacement u of the electrons relative to the ion positions pro-
duces a density imbalance δn = −ndivu in a uniform plasma, such
that the internal field is given by

divE = −4πnqdivu . (5.68)

35P. P. Ewald, "Zur Begrundung der Kristalloptik, I-III", Ann. Physik 49 1, 117
(1916), 54 519 (1917); C. W. Oseen, "Uber die Wechselwirkung zwischen zwei
elektrischen Dipolen der Polarisationsebene in Kristallen und Flussigkeiten",
Ann. Physik 48 1 (1915); M. Born and E. Wolf, Principles of Optics, Pergamon
(1959).
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In order to account for the presence of a (plane) surface at x = 0, we
write u = vθ(x), where θ(x) is the step function (the plasma extends
over the region x > 0); equation (5.68) becomes

divE = −4πnqdivv · θ(x)− 4πnqvsxδ(x) , (5.69)

where vsx is vx for x = 0; for x ≥ 0 this equation has the solution
E = Eb +Es, where

divEb = −4πnqdivv , x > 0 (5.70)

and
Esx = −2πnqvsx x = 0 . (5.71)

The field Eb is the internal bulk field, while the field Es is the surface
field (x = 0); the latter is reduced to its x-component; from equation
(5.70) we get Eb = −4πnqv (for x > 0). The equation of motion leads
to

v̈ + ω2
0v =

q

m
E0 , x > 0 (5.72)

and
v̈sx +

1

2
ω2
0vsx =

q

m
E0sx , x = 0 , (5.73)

where ω0 =
√
4πnq2/m is the (bulk) plasma frequency and ω0/

√
2 is

the frequency of the surface plasmons; E0 is the external electric field.
The solutions of equations (5.72) and (5.73) are obtained immediately
as

v = − qE0

m
1

ω2−ω2
0

, x > 0 ,

vsxz = − qE0sx

m
1

ω2−ω2
0
/2

, x = 0 .

(5.74)

The eigenmodes with the frequency ω0/
√
2 are the surface plasmons.

Close to the plasmonic resonances (i.e. for ω close to ω0 or ω0/
√
2)

the displacement becomes large and the equation of motion in the
Lagrange form used here is not appropriate, because of the disruptions
caused by collisions. Euler’s form of the equation of motion is more
convenient, though non-linearities may appear.

A special feature occurs in the electromagnetic fields in finite plasmas,
related to the surface motion. The magnetic field is given by the
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Maxwell equation

curlH =
1

c

∂E

∂t
+

4π

c
j , (5.75)

where j = nqu̇ is the internal current density (we neglect intrinsic mag-
netization). For bulk charges and currents j = nqv̇ and E = −4πnqv
(as derived above), such that the internal contribution ∂E/∂t+4πj in
equation (5.75) is vanishing; the magnetic field is not affected by the
bulk internal polarization (in the preceding section we have considered
an infinite plasma, with no internal electric field). This reflects the
charge conservation inside the body. On the contrary, in the presence
of a surface jsx = nqv̇sx and Esx = −2πnqvsx and equation (5.75)
becomes

(curlH)sx =
1

c

∂Esx

∂t
+

4π

c
nqv̇sx =

4π

c

(
1

2
jsx

)
; (5.76)

this equation shows that surface currents and a related surface mag-
netic field appear, as a consequence of the fact that charges oscillating
below the surface (x < 0) are not anymore in the body; and the surface
charge is not conserved in the body. Since these currents arise from
oscillating charges at the surface they are called uni-polar currents.
They generate a radiation field.

5.10 Boltzmann equation for plasma

The equation of motion for the displacement u and the derivation
of the Boltzmann equation for a plasma are complicated by the De-
bye correlations. The density of the plasma is non-uniform and the
equilibrium distribution function depends also on the density, and,
therefore, on position. We may view the plasma as a collection of
ions dressed by electrons, which would move in a uniform mean-field
potential; unfortunately, this picture deviates from the non-ideal char-
acter of the ion motion and complicates the matters by the internal
polarization of the electrons in the presence of an external electric
field. Also, we may view static ions and an electron fluid with a non-
uniform density; the density change would then be −div(nu) and the
internal field −4πnqu. We may solve the equation of motion for u
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with non-uniform coefficients (e.g., plasma frequency) and compute
thereafter the change in the distribution function brought about by
both u and u̇; we lose in this case a Boltzmann equation for the
distribution function. We adopt here the simplifying procedure of a
weakly-coupled plasma, with a uniform distribution of electrons and
static ions, i.e. we neglect the Debye correlations.
Then, the Boltzmann equation for plasma is derived from the equation
of motion (5.5) according to the general rules described previously.
First, we introduce the velocity-dependent displacement u(t, r,v) and
write d ˙u/dt = ∂u̇/∂t+(v+u̇)gradu̇ in the Euler representation; then,
we neglect here the velocity u̇ which is too small in comparison with
velocity v. Thereafter, we note that the change f in the distribution
function F (usually the equilibrium Boltzmann distribution) is given
by f = −u̇∂F/∂v, and multiply the equation of motion (5.5) by
∂F/∂v; we get the Boltzmann equation

∂f

∂t
+ v

∂f

∂r
+

q

m
(E0 +E)

∂F

∂v
= −γf , (5.77)

where the internal electric field is given by

divE = 4πq

ˆ
dvf (5.78)

(divE0 = 0) or
∂E

∂t
= −4πq

ˆ
dv · vf ; (5.79)

equation (5.78) arises from the polarization charge, while equation
(5.79) originates in the polarization current. It is worth noting that
this latter equation may generate longitudinal electric fields which
vary in space, as expected in a medium with electric charges. The
contribution of the magnetic field to the force term is neglected here
(as for an unmagnetized plasma). The internal field E was introduced
in Boltzmann equation by Vlasov (equation (5.77) is known also as
Vlasov equation).36 Equation (5.77) is valid for small variations f
of the distribution function, small variations of the particle displace-
ment and velocity and a small collision term (practically, collisionless
regime).
36A. A. Vlasov, "On the kinetic theory of an assembly of particles with collective

interaction", J. Phys. (USSR) 9 25 (1945).
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5.11 Eigenfrequencies. Plasma oscillations

First, we assume that the external field E0 is absent in equation (5.77);
we are interested in the response of the plasma to an initial pertur-
bation fi = f(t = 0, r,v). Since the plasma is homogeneous, we may
restrict ourselves to a spatial dependence ∼ eikr (F does not depend
on r, nor t); we take the coordinate, denoted by x, along the direction
of the wavevector k; since the field is directed along the x-direction we
may integrate over the transverse velocities and use for the Maxwell
distribution F = n(βm/2π)1/2e−

1
2
βmv2

, where v is the velocity along
the x-direction and β = 1/T is the reciprocal temperature; equations
(5.77) and (5.78) become

∂f

∂t
+ ivkf +

qE

m

∂F

∂v
= 0 (5.80)

and

ikE = 4πq

ˆ
dvf ; (5.81)

the collision term, is set equal to zero. In order to account for the ini-
tial condition (t = 0) we multiply equation (5.80) by the step function
θ(t) and restrict ourselves to t > 0; equation (5.80) becomes

∂f

∂t
+ ivkf +

qE

m

∂F

∂v
= fiδ(t) ; (5.82)

now we may perform the Fourier transform with respect to the time,
and get

−i(ω − vk)f +
qE

m

∂F

∂v
= fi , (5.83)

or

f = i
fi − qE

m
∂F
∂v

ω − vk
; (5.84)

and, from equation (5.81),

E = 4πq

´
dv fi

ω−vk

k + 4πq2

m

´
dv ∂F/∂v

ω−vk

; (5.85)
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the change in the distribution function is given by

f =
i

ω − vk

(
fi − 4πq2

m

∂F

∂v

´
dv fi

ω−vk

k + 4πq2

m

´
dv ∂F/∂v

ω−vk

)
. (5.86)

This equation offers several interesting points. First, since we analyze
the perturbation in terms of waves, the motion of the individual par-
ticles acquires a wave character too; such that an individual particle
with velocity v exhibits a frequency vk. Then, we may see from equa-
tion (5.86) that there exist singularities in the distribution function for
v = ω/k and divergent integrals arising from these singularities. At
this point we should resort to the natural boundary condition which
requires causality, i.e. f = 0 for t < 0. Therefore, the integration
over ω shoud be performed in the lower half-plane, which requires the
presence of a pole in that half-plane, i.e. ω in equation (5.86) should
be replaced by ω+ iγ, γ → 0+. Had we retained the collision term in
the Boltzmann equation, the γ-contributions to ω would have arisen.
We perform first the integration over ω in such terms and thereafter
take the limit γ → 0+. In integrals with respect to velocity v we may
take the limit γ → 0+ before effecting the integrals, because these
are well-defined physical quantities which exist in the absence of col-
lisions, according to our assumption. These prescriptions of dealing
with the singularities arising in Vlasov (Boltzmann) equation are due
to Landau.37

Therefore, the above equations should be written as

E = 4πq

´
dv fi

ω−vk+i0+

k + 4πq2

m

´
dv ∂F/∂v

ω−vk+i0+

(5.87)

and

f =
i

ω − vk + iγ

(
fi − 4πq2

m

∂F

∂v

´
dv fi

ω−vk+i0+

k + 4πq2

m

´
dv ∂F/∂v

ω−vk+i0+

)
. (5.88)

Terms like 1/(ω − vk + i0+) lead to

1

ω − vk + i0+
= P

1

ω − vk
− iπδ(ω − vk) ; (5.89)

37L. Landau, "On the vibrations of the electronic plasma", ZhETF 16 574 (1946)
(J. Phys. USSR 10 25 (1946)).
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such a circumstance makes the integrals over v in f finite; for instance,
ˆ

dv
fi

ω − vk + i0+
= P

ˆ
dv

fi
ω − vk

− iπ

v
fi(v = ω/k) , (5.90)

where the principal value in this equation can be approximated satis-
factorily by

P

ˆ
dv

fi
ω − vk


 1

ω

ˆ
dvfi

(
1 +

vk

ω
+ ...

)
. (5.91)

The situation is similar for the denominator involving ∂F/∂v in equa-
tion (5.86). Its zero provides an equation which gives the eigenfre-
quency of the distribution function. Due to the replacement ω →
ω + i0+ this is a complex equation; it follows that the root ω of
this equation (the eigenfrequency) acquires a damping factor, i.e., we
should solve this equation for ω → ω − iΓ, where Γ > 0 is the damp-
ing coefficient. As we can see, we are led to admit that the causality
implies a damped response. The causality, which acts at the level
of the individual particles, leads to a damped behaviour of the col-
lective mode, i.e. of the macroscopic behaviour. This is a profound
consequence of the equations governing the condensed matter, and an
instance of an emergent dynamics.38 The damping of the collective
mode is known as the Landau damping. We emphasize that the eigen-
frequency discussed here is a collective mode since it appears from an
integral over velocities of the individual particles. It is the plasmon
mode.

According to the scheme delineated above, we write

k + 4πq2

m

´
dv ∂F/∂v

ω−vk+i0+ =

= k + 4πq2

m P
´
dv ∂F/∂v

ω−vk − i 4π
2q2

m

´
dv ∂F

∂v δ(ω − vk) ,

(5.92)

or

k+
4πq2

m

ˆ
dv

∂F/∂v

ω − vk + i0+

 k− 4πnq2

mω2
k−i4π

2q2

mk

∂F

∂v
|v=ω/k (5.93)

38P. W. Anderson, "More is different: broken symmetry and the nature of the
hierarchical structure of science", Science 177 393 (1972).
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(it is worth noting that the result of integration in equation (5.93)
holds for any distribution function). It follows that the perturbation
of the distribution function (equation (5.86)) should be written as

f = i
ω−vk+iγ ·

·
⎡⎣fi − 4πq2

m
∂F
∂v

´
dv

fi
ω−vk+i0+

k

(
1−ω2

0

ω2−i 4π
2q2

mk2
∂F
∂v |v=ω/k

)
⎤⎦ .

(5.94)

The initial condition
1

2π

ˆ
dωf = fi (5.95)

leads to ˆ
dω

E(ω)

ω − vk + iγ
= 0 , (5.96)

where E(ω) is given by equation (5.85). Making use of the poles of
the field E(ω) (equation (5.55)), we can see that the integral which
includes E(ω) in equation (5.96) is indeed zero.

If we view ω as ω − iΓ we get

k + 4πq2

m

´
dv ∂F/∂v

ω−vk+i0+ 



 k(1− ω2
0/ω

2)− i
(

2γk
ω0

+ 4π2q2

mk
∂F
∂v |v=ω0/k

)
,

(5.97)

an equation which gives the damping coefficient

Γ = −2π2q2ω0

mk2
∂F

∂v
|v=ω0/k . (5.98)

The Landau damping generated a long-standing debate regarding its
origin in a collisionless plasma (i.e., a plasma without dissipation).39

We note that the Landau damping pertains to the collective mode (not

39D. Bohm and E. P. Gross, "Theory of plasma oscillations. B. Excitation and
damping of oscillations", Phys. Rev. 75 1864 (1949); N. G. van Kampen,
"On the theory of stationary waves in plasmas", Physica 21 949 (1955); K.
M. Case, "Plasma oscillations", Ann. Phys. 7 349 (1959); J. Dawson, "On
Landau damping", Phys. Fluids 4 869 (1961); J. Ecker and J. Holling, "Limits
of collective description and their consequences for Landau damping", Phys.
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to the individual motion of the particles), it is produced by the ther-
mal motion of the individual particles; this motion tends to destroy
any organized, regular (collective) motion and takes the ensemble to-
wards an equilibrium state, characterized by a fully chaotic (thermal)
motion.

5.12 External field

Let us consider a longitudinal electric field E0e
−iωt; the field is uni-

form and the position variable does not appear in Boltzmann equation
(5.77), which reads

−iωf +
q

m
(E0 + E)

∂F

∂v
= 0. (5.99)

The Poisson equation

divE = 4πq

ˆ
dvf (5.100)

is identically zero (f is an odd function of v); however, if we take the
time derivative and use the continuity equation, we get

div
∂E

∂t
= 4πq

ˆ
dv

∂f

∂t
= −4πq

ˆ
dv · divvf , (5.101)

where qvf is the current density; therefore, we use ∂E/∂t = −4πq ´ dv·
vf , or

iωE = 4πq

ˆ
dv · vf . (5.102)

Fluids 6 70 (1963); H. Weitzner, "Plasma oscillations and Landau damping",
Phys. Fluids 6 1123 (1963); J. H. Malmberg and C. B. Wharton, "Collision-
less damping of electrostatic plasma waves", Phys. Rev. Lett. 13 184 (1964);
"Dispersion of electron plasma waves", Phys. Rev. Lett. 17 175 (1966); F.
G. R. Crownfield, Jr., "Plasma oscillations and Landau damping", Phys. Flu-
ids 20 1483 (1977); J. Weiland, "A derivation of Landau damping from the
Vlasov equation without contour integration", Eur. J. Phys. 2 171 (1981); Y.
Elskens, "Irreversible behaviours in Vlasov equation and many-body Hamilto-
nian dynamics: Landau damping, chaos and granularity in the kinetic limit",
in Topics in Kinetic Theory, eds. T. Passot, C. Sulem and P. L. Sulem, Fields

Institute Communications, vol. 46, Amer. Math. Soc., Providence (2005), p.
89.
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We get immediately the solution

f = −i qE0

m
ω

ω2−ω2
0

∂F
∂v , E = E0

ω2
0

ω2−ω2
0

,

Et = E0 + E = E0
ω2

ω2−ω2
0

.

(5.103)

These are well-known relations for a uniform, oscillating electric field
in plasma (without collisions). We can see that the total field Et is
vanishing in the static limit ω → 0, due to the reaction of the equal
and opposite internal field E. The same result can be obtained from
the equation of motion (5.55) (without dissipation), which gives the
displacement

u = −qE0

m

1

ω2 − ω2
0

; (5.104)

from divE = −4πdivP and divE = 4πqδn = −4πnqdivu (actually,
from Ṗ = j) we get the polarization

P = nqu = −nq2E0

m

1

ω2 − ω2
0

= χEt , (5.105)

where χ = −nq2/mω2 is the electric susceptibility and ε = 1+4πχ =
1− ω2

0/ω
2 is the dielectric function.

According to equation (5.103), the distribution function changes as

F → F + f = F − qE0

m

ω

ω2 − ω2
0

∂F

∂v
sinωt (5.106)

under the action of a uniform longitudinal electric field; this equation
reads

F (v)→ F (v +A) , A = −qE0

m

ω

ω2 − ω2
0

sinωt . (5.107)

The external forces are slow, such that the thermal equilibrium is
achieved over their period. The thermal equilibrium is given by the
maximum of the entropy, i.e. the maximum of

´
(F lnF − EF/T ),

where E is the energy and the integration is performed over the rel-
evant phase-space variables. The preservation of the equilibrium un-
der the action of the external forces implies a change in temperature
δT = −mvA (u̇ = A), which is zero.
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5.13 Surface field. Penetration length

It is well known that the Landau damping implies an attenuated
electric field in a semi-infinite classical plasma, besides a uniform
component, as a response to a uniform oscillating external electric
field.40 In the current calculations, including the original Landau
calculation, the attenuated field is presented as being proportional to
x2/3e−

3
4
(ωx/vth)

2/3

, where x is the distance from the wall of the plasma,
ω is the frequency of the field and vth =

√
T/m is the thermal velocity,

T being the temperature and m being the particle mass (electrons);
sometimes, an exponential attenuation ∼ e−ω0x/vth is included, where
ω0 is the plasma frequency. Such x-functional laws arise from var-
ious assumptions made upon boundary conditions and approximate
manipulations of the Landau damping for the differential Boltzmann
kinetic equation. We show here that, irrespective of the boundary
conditions, the attenuated field obeys the standard exponential atten-
uation law e−x/λe (apart from factors oscillating in space), where λe

is an extinction length (penetration depth, attenuation length) which
is computed here explicitly; up to immaterial numerical factors, it is
of the order λe 
 [| ε | /(1 − ε)]1/3vth/ω, where ε is the dielectric
function. The calculations are performed by including explicitly sur-
face terms in the Boltzmann equation. Although Landau damping
enjoyed an extensive discussion along the years, regarding especially
its origin and nature, and is still of current interest, the penetration
depth received comparatively little attention.

We consider a classical plasma at thermal equilibrium consisting of
mobile charges q with mass m and concentration n moving in a rigid
neutralizing background. We confine this plasma to a semi-infinite
space (half-space) x > 0, bounded by a plane surface x = 0. The
plasma is subject to a uniform oscillating external electric field (lon-
gitudinal electric field) E0e

−iωt, where E0 is directed along the x-
direction. The plasma is governed by the Maxwell distribution. The
mean thermal velocity is sufficiently small to consider plasma un-
magnetized. Since the field is directed along the x-direction we may
integrate over the transverse velocities and use for the Maxwell distri-

40L. Landau, "On the vibrations of the electronic plasma", ZhETF 16 574 (1946)
(J. Phys. USSR 10 25 (1946)).
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bution F = n(βm/2π)1/2e−
1
2
βmv2

, where v is the velocity along the
x-direction and β = 1/T is the reciprocal temperature. In the colli-
sionless regime the change f(x, v)e−iωt in the Maxwell distribution is
governed by the Boltzmann (Vlasov) equation

−iωf + v
∂f

∂x
+

q

m
(E0 + E + E1)

∂F

∂v
= 0 , (5.108)

where E is a uniform internal electric field and E1 is another internal
electric field, which may vary in space; these fields are generated by
internal charges and currents. The uniform reaction field E occurs in
an "infinite" space too, i.e. a space bounded by surfaces at infinity (it
is a bulk reaction field), while the non-uniform field E1 is due to the
presence of the surface (it is a "surface" field). We seek the solution
of equation (5.108) as f(x, v) = f0(v) + f1(x, v), where

−iωf0 + q

m
(E0 + E)

∂F

∂v
= 0 (5.109)

and

−iωf1 + v
∂f1
∂x

+
q

m
E1

∂F

∂v
= 0 . (5.110)

The uniform part f0 of the solution does not generate charge density
in plasma; it generates a current density; therefore, it should satisfy
the equation

iωE = 4πq

ˆ
dv · vf0 ; (5.111)

it is easy to see that this equation arises from the general equation
∂E/∂t+4πj = 0, where j is the current density; this equation ensures
the vanishing of the (internal) magnetic field, as expected. The non-
uniform part f1 of the solution generates a charge density in plasma;
it satisfies the equation

∂E1

∂x
= 4πq

ˆ
dvf1 . (5.112)

The solution of equations (5.109) and (5.111) is

f0 = − iqωE0

m(ω2 − ω2
0)

∂F

∂v
(5.113)
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and

E =
ω2
0

ω2 − ω2
0

E0 , Et = E0 + E =
ω2

ω2 − ω2
0

E0 , (5.114)

where ω0 = (4πnq2/m)1/2 is the plasma frequency; we recognize here
the response to an electric field, where ε = 1−ω2

0/ω
2 is the dielectric

function and Et is the total field in plasma (P = χEt is the polariza-
tion and χ = (ε − 1)/4π = −nq2/mω2 is the electric susceptibility).

The coupled equations (5.110) and (5.112) raise, usually, difficulties
which may affect the final result, as discussed above. The most conve-
nient way to solve these equations is to use Fourier (or Laplace) trans-
forms. In this situation, the functions f1 and E1 should be viewed as
being defined over the whole space x. On the other hand, these func-
tions should vanish for x < 0, so they are discontinuous at x = 0;
therefore, care must be exercised in treating these equations. A sim-
ilar situation occurs, of course, for the functions f0 and E, but there
the discontinuity is not problematic, because the equations for f0 and
E do not include the derivatives with respect to x; in this case we
may solve the equations in the whole space and restrict ourselves to
the domain x > 0. For f1 and E1 we must explicitly include the
discontinuity in equations, i.e. to include the boundary condition in
equations. In order to deal conveniently with the boundary condition
at the surface we multiply equation (5.110) by the step function θ(x)
(θ(x) = 1 for x > 0, θ(x) = 0 for x < 0) and restrict ourselves to the
solution for x > 0; equation (5.110) becomes

−iωf1 + v
∂f1
∂x

+
q

m
E1

∂F

∂v
= vfsδ(x) , (5.115)

where fs = f1(x = 0, v) (in fact, fs = f1(d, v), d → 0+); we can
check directly this surface term by integrating equation (5.115) along a
small distance perpendicular to the surface x = 0. Similarly, equation
(5.112) becomes

∂E1

∂x
− E1sδ(x) = 4πq

ˆ
dvf1 , . (5.116)

where E1s = E1(x = 0).
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In equations (5.115) and (5.116) we use the Fourier transform with
respect to the coordinate x (and restrict ourselves to x > 0); we get

f1(k, v) =
i

ω − vk + iγ

[
vfs(v) − q

m

∂F

∂v
E1(k)

]
(5.117)

and

E1(k) =
4πq
´
dv vfs(v)

ω−vk+i0+ − iEs1

k + 4πq2

m

´
dv ∂F/∂v

ω−vk+i0+

, (5.118)

where γ → 0+. It is worth noting that in the Fourier transform we
replace ω by ω + iγ, γ → 0+, in order to ensure the causal behaviour
(i.e., zero response for time t < 0, which requires a pole in the lower
ω-half-plane); this procedure gives a pole in the upper k-half-plane.
At the same time, in the integrals with respect to v we may take the
limit γ → 0+, which avoids the singularity ω = vk; the insertion of
the parameter γ produces the Landau damping. We denote by A the
denominator in equation (5.118); it can be estimated as

A = k + 4πq2

m

´
dv ∂F/∂v

ω−vk+i0+ =

= k + 4πq2

m P
´
dv ∂F/∂v

ω−vk − i 4π
2q2

mk
∂F
∂v |v=ω/k



 k(1− ω2
0/ω

2)− i 4π
2q2

mk
∂F
∂v |v=ω/k ;

(5.119)

we can see that the zeroes of A give the damped collective eigenmodes
ω = ±ω0 − iΓ (plasma frequency), where Γ is given by the imaginary
part in equation (5.80) (Γ 
 −2π2q2ω0/mk2)(∂F/∂v) |v=ω0/k); this
is the Landau damping.

In order to estimate the field E1(x) we need the zeroes of A with
respect to k in equation (5.118). It is convenient to introduce the
variable ξ =

√
βm/2ω/k. We can see easily that the zeroes of A

are given by ξ2 | ξ | e−ξ2 = −iα, where α =| ε | /2√π(1 − ε); we
consider the case ω < ω0 (ε < 0; the rather unrealistic case ω > ω0

can be treated similarly, by using the equation ξ2 | ξ | e−ξ2 = iα).
For small values of α we get two roots of the equation A = 0, given
by k1,2 
 ± 1

2α1/3

√
βmω(1 + i); only k1 (placed in the upper half-

plane) contributes to the k-integration for x > 0. In estimating the
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integral in the numerator of equation (5.118) we may leave aside the
contribution of the principal value. For k near k1 the field E1(k) has
the form

E1(k) 
 B
k−k1+

i
5
(k−k1)∗

,

B =
8
√
2πqα2/3v2

th

5ω|ε| (1 + i)fs
(
α1/3vth(1− i)

)
+ 2i

5|ε|E1s .

(5.120)

The reverse Fourier transformation leads to

E1(x) = E1se
(i−1)ωx/2α1/3vth (5.121)

with the relationship

E1s = −8
√
2πqα2/3v2th

(2 + 5 | ε |)ω (1 − i)fs

(
α1/3vth(1− i)

)
(5.122)

(or E1s = iB). The final result is given by E1(t, x) = Re
[
E1(x)e

−iωt
]
.

We can see that an additional, non-uniform, electric field E1(x) ap-
pears as a result of the presence of the surface. This field oscillates
in space and is attenuated with an attenuation length (penetration
depth, extinction length) λe 
 (1/π)1/6[| ε | /(1 − ε)]1/3vth/ω. It is
worth noting that the penetration depth and the wavelength of the
spatial oscillations have the same order of magnitude.

Making use of E1(k) given by equations (5.118) and (5.120) we can
calculate the change f1(x, v) in the distribution function (equation
(5.117)); if we limit ourselves to slow spatial oscillations, we get

f1(x, v) 
 − iq

mω
sgn(v)

∂F

∂v
E1(x) (5.123)

(compare with equations (5.113) and (5.114)). Within this approxima-
tion fs(v) = −(iq/mω)sgn(v)(∂F/∂v)E1s and the polarization charge
and current densities are zero (as expected for slow oscillations).

The amplitude of the field E1(x) depends on the parameter E1s,
which accounts for the boundary condition at x = 0. It is related to
fs(v) =

1
2π

´
dkf1(k, v) by equation (5.122), where f1(k, v) is given by

equation (5.117); it is easy to see that the integration of the first term
in equation (5.117) gives fs, while, making use of equations (5.120),
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5 Kinetics of Plasma

the integration with respect to k of the term which includes E1(k) is
zero.

Within the kinetic approach we may estimate the local change in tem-
perature by δT = 2Tf/F , where the overbar implies an integration
over velocities (thermal average). We can see that only f1 contributes
to this integration. Making use of equation (5.123) we get δT = 0.
However, if we keep the contribution of the fast oscillations, we get a
surface change of temperature

δT 
 2iT

nω

ˆ
dv · vfs(v) · δ(x) + ... . (5.124)

(i.e., Re
(
δT e−iωt

)
). The δ-type contribution in equation (5.124) cor-

responds to the surface sheath in plasma heating models.

Similar calculations of the penetration depth can be made for a plasma
confined between two plane-parallel walls (or other geometries); the
result depends on the boundary conditions incorporated in parameters
like fs. The boundary parameter fs is a model parameter; we may
take f0+fs = 0 (f(x = 0, v) = 0) as a natural assumption, an equation
which provides the parameter fs. For fs = −f0 the field E1 at the
surface (maximum value) is of the order E1 
 E/ | ε |, where E is the
internal uniform field given by equation (5.114). The surface change
in temperature (equation (5.124)) can be written in this case as

δT =
1

2π

(
E0

q/a2

)
T · aδ(x) (5.125)

(for ω 	 ω0), where a is the mean separation distance between the
particles (a = n−1/3); q/a2 � E0 is an electric field of the order of
the microscopic (inter-particle) field.

In conclusion, we may say that the penetration of an electric field in
a semi-infinite classical plasma obeys the standard exponential pene-
tration law e−x/λe (besides a uniform component), which may exhibit
spatial oscillations, the extinction length λe (penetration depth, at-
tenuation length) being of the order λe 
 [| ε | /(1− ε)]1/3vth/ω; (ε is
the dielectric function, ω is the frequency of the field and vth =

√
T/m

is the thermal velocity).
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6 Phonons in Solids

6.1 Phonons

The atomic constituents of solids (atoms, ions, molecules) may move
slightly about their equilibrium positions. For small displacements
they move as coupled harmonic oscillators in the potential wells formed
by the inter-atomic interaction. This is an elastic wave-like motion,
which in the long wavelength limit is a sound wave and for shorter
wavelengths is a vibration motion of independent atoms. In gases
the sound waves are governed by adiabatic variations of the pressure
(not by interactions), in liquids both types of waves may coexist, over
rather separate ranges of wavevectors. In crystalline solids the mo-
tion extends over (and is limited to) the Brillouin zone, in amorphous
solids the motion consists of sound waves for long wavelengths and
local vibrations for shorter wavelengths.
Let us consider a Bravais lattice (one atom per unit cell) of atoms
with mass M , placed at ordered positions Ri interacting through the
potential U(Ri − Rj); we may limit to the nearest-neighbours; for
displacements ui = u(Ri) we may expand the potential U(Ri + ui −
Rj − uj) in powers of the components of the difference ui − uj up
to the second-order derivatives (the first-order derivatives are zero at
equilibrium); the second-order derivatives do not depend on Ri and
we assume (for simplicity) that they do not depend on the direction
either (as for an isotropic crystal); we denote these derivatives by U .
The hamiltonian of the atomic motion reads

H =
∑
i

⎡⎣ 1

2M
p2i +

1

4
U
∑
j

(ui − uj)
2

⎤⎦ , (6.1)

where the summation over j extends to the nearest-neighbours (and
pi is the momentum associated to the coordinate ui). If the lattice is
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6 Phonons in Solids

not a Bravais lattice, i.e. if there are several atoms in the unit cell (in
general with different masses), then we must introduce labels for all
these atoms, and the coupling U will depend on these labels; but the
summation over the unit cells (label i) and the nearest-neigbouring
cells (label j) are preserved. The additional factor 1/2 (in 1/4, besides
the other factor 1/2 from the series expansion) in equation (6.1) arises
from the double summation over the nearest-neighbours. Equation
(6.1) gives the hamiltonian of the atomic motion in a perfect, infinite
solid. We use Fourier transforms of the type

ui =
∑
k

uke
ikRi , uk =

1

N

∑
i

uie
−ikRi , (6.2)

where N is the number of unit cells; the components of the wavevec-
tors k are of the form kα = (2π/Lα)nα, α = 1, 2, 3, where Lα is the
length of the crystal along the α-direction and nα are integers. The
position vectors Ri are of the form nαaα, where the unit vectors aα
are the vectors of the unit cell and nα are integers. There exist recip-
rocal vectors of the form G = gαnα, where the unit reciprocal vectors
are given by g1 = (2π/v)a2 × a3, etc, where v = a1(a2 × a3) is the
volume of the unit cell. We can see that GRi = 2π × integer, such
that we restrict the summation over k in equations (6.2) to the (first)
Brillouin zone defined by the basic reciprocal vectors gα. Making use
of these Fourier transforms, the hamiltonian becomes

H = N
∑
k

[
1

2M
pkp−k +

1

2
Mω2(k)uku−k

]
, (6.3)

where the frequency ω(k) is given by

ω2(k) = (U/M)
∑
α

(1− coskaα) . (6.4)

We can see that we have three branches of frequencies, which in our
particular case are identical; if U were dependent on direction, the
three branches would be distinct, corresponding to the three polar-
izations labelled by α. In the long wavelength limit ω(k) goes like ck,
where c (which depends on the direction of the wavevector k) is the
sound velocity (and the waves propagate with velocity c), while near
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6 Phonons in Solids

the edges of the Brillouin zone (defined at half the basic reciprocal
vectors) the frequency does not depend on k (and the waves do not
propagate).

The sound velocity in solids is of the order c = 105−106cm/s, and the
inter-atomic distances a are of the order of a few Å. It follows that
the elastic frequencies are of the order ω = c/a 
 1013s−1 (10meV ,
100K), at most. We can estimate the mechanical action Mωu2 in the
motion of one atom, where u is the displacement; we get Mωu2 

10−11Au2, for an atomic mass of the order 10−24A(g), where A is
the mass number of the atom; we can see that for u 
 10−8cm this
amount of mechanical action is of the order 10−27A(erg · s), at most.
Therefore, the atomic motion is quantum-mechanical, at least for low
frequencies.

The quantization of the hamiltonian given by equation (6.3) is achieved
as usually, by introducing the creation and destruction operators a+k , ak
for each branch of frequencies (each component uk of uk), [ak, a+k′ ] =
δk,k′ ,

uk =
√

�

2Mω(k) (a
+
k + a−k) ,

pk = i
√

�Mω(k)
2 (a+k − a−k) ;

(6.5)

the hamiltonian becomes

H = N
∑
k

�ω(k)(a+k ak + 1/2) (6.6)

and ak ∼ e−iω(k)t (a+k ∼ eiω(k)t); this time dependence is transferred
to the displacement ui. nk = a+k ak is a bosonic occupation number
(nk = 0, 1, 2...). In order to get the correct commutation relations we
should introduce a factor N−1/2 in the definition of the creation and
destruction operators (equations (6.5)), or in the Fourier transform
of ui (equations (6.2)); we prefer to discard this N -factor. We can
see that for each frequency branch and each wavevector k we have
an infinite set of particles with energy �ω(k) and momentum �k,
which appear as waves in the displacement ui ∼ e±iω(k)t+ikRi (or
ui ∼ e

i
�
[±�ω(k)t+�kRi]). The particles (waves) are called phonons. For

sound-like frequencies (3 branches) they are called acoustic phonons,
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6 Phonons in Solids

for the frequency branches which are non-zero in the limit k→ 0 they
are called optical phonons; the number of optical branches is 3s− 3,
where s is the number of atoms in the unit cell.1 Sometimes, the
frequencies lying near the edges of the Brillouin zone in the acoustic
branches are also called optical frequencies.

The thermodynamics of the phonons is the thermodynamics of an
ideal gas of bosons with an undefined number (zero chemical poten-
tial). The free energy (grand-canonical potential) is given by

F = T
∑

ln
(
1− e−�ω/T

)
, (6.7)

where T is the temperature and the summation is extended to all
frequency branches and all wavevectors (leaving aside the zero-point
energy). For simplification we limit ourselves to one branch of acoustic
phonons, with a mean velocity denoted by c; we get

F = T
∑
k

ln
(
1− e−�ck/T

)
=

V T

2π2

ˆ
dk ·k2 ln

(
1− e−�ck/T

)
, (6.8)

or

F =
V T

2π2c3

ˆ
dω · ω2 ln

(
1− e−�ω/T

)
, (6.9)

where V is the volume. (The integral in equation (6.9) can be reduced
to
´
dx · x3/(ex − 1) = π4/152). If we include the vanishing chemical

potential μ in equation (6.7) through eβμ−βε, where β = 1/T and
ε = �ω, we get the mean occupation number

nk =
1

e�ω/T − 1
(6.10)

from nk = −∂Fk/∂μ, where F =
∑

k Fk; the mean phonon energy is

εk = �ωnk =
�ω

e�ω/T − 1
(6.11)

1C. Kittel, Quantum Theory of Solids, Wiley, NY (1963); C. Kittel, Introduction

to Solid State Physics, Wiley, NY (1986); M. Born and K. Huang, Dynamical

Theory of Crystal Lattices, Clarendon Press, Oxford (1954).
2L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical

Physics, Elsevier (1980).
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6 Phonons in Solids

and the total energy is

E =
V �

2π2c3

ˆ
dω · ω3

e�ω/T − 1
. (6.12)

In all these summations we restrict ourselves to the first Brillouin
zone; it is convenient to define a cutoff frequency ωD, through

N =
∑
k

1 =
V

2π2c3

ˆ ωD

0

dω · ω2 =
V ω3

D

6π2c3
, (6.13)

such that the energy becomes

E = 3NT (T/�ωD)
3

ˆ
�ωD/T

0

dx
x3

ex − 1
. (6.14)

We can see that at low temperature E ∼ T 4 (and the specific heat
(at constant volume) goes like T 3 - this is known as the Debye law3),
while at high temperature E ∼ T (and the specific heat is constant -
this is known as the Dulong-Petit law, as for an ideal classical gas4).
The cutoff frequency ωD is known as the Debye frequency. Its order
of magnitude is 102 − 103K.

We note that the occupation number is very high for acoustic phonons,
especially in the long wavelength limit; it follows that these phonons
may be treated quasi-classically, i.e. the displacement may be viewed
as consisting of classical waves. We can use the thermodynamics of
classical harmonic oscillators with the hamiltonian given by equation
(6.3).5 Moreover, since the wavelengths of these waves are longer than
the inter-atomic distance, we may view them as classical elastic waves
propagating in a solid with two elastic constants; we get one branch
of longitudinal waves and two branches of transverse waves. Also, it
is worth noting that the wavevectors k (momenta �k) or the energies
�ω are statistical variables. We give here the hamiltonian

H =

ˆ
dr

(
1

2
ρu̇2 +

1

2
λu2

ii + μu2
ij

)
(6.15)

3P. Debye, "Zur Theorie der spezifischen Warmen", Ann. Phys. 39 789 (1912).
4A. Einstein, "Theorie der Strahlung und die Theorie der spezifischen Warmen",

Ann. Phys. 22 180 (1907).
5L. Landau and E. Lifshitz, cited above.

153

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Phonons in Solids

of the elastic waves, where � is the density of the solid, λ, μ are the
elastic constants (Lame coefficients), uij =

1
2 (∂iuj+∂jui) is the strain

tensor and u is the displacement vector; the equation of motion

ü = (c2l − c2t )grad divu+ c2tΔu (6.16)

leads to longitudinal and transverse waves propagating with velocities
cl =

√
(λ+ 2μ)/ρ and ct =

√
μ/ρ, respectively.6

Also, we note that for an anisotropic solid, the extension of the De-
bye cutoff frequency to the whole phonon spectrum requires special
procedures.7 The summation over the wavevectors k implies∑

k

=
V

(2π)3

ˆ
dS

dω

| gradω(k) | , (6.17)

where the surface S(k) is given by ω(k) = ω and the integration is
restricted to the Brillouin zone; the integral over S is the density of
states; it may exhibit singularities, known as van Hove singularities.8

6.2 Phonon gas

The acoustic phonons exhibit a series of very interesting properties.
(The optical phonons are not very relevant for the transport proper-
ties, so we leave them aside). First, we note that the wavelengths of
the acoustic phonons λ 
 1/k extend from a, the mean inter-atomic
separation distance, to∞. Actually, they are limited to the dimension
L of the solid, the mode k = 0 being a displacement of the solid as
a whole (and, therefore, discarded). Moreover, the k-states are very
rare in the long wavelength limit, and very dense for finite values of the
wavevector k, as we can see from the state density (V/2π2)k2dk. For
instance, from ωD/10 to ωD there are concentrated all the wavelengths

6L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Elasticity,
Elsevier (1986).

7L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical

Physics, Elsevier (1980).
8L. Van Hove, "The occurrence of singularities in the elastic frequency distribu-

tion of a crystal", Phys. Rev. 89 1189 (1953); H. P. Rosenstock, "Dynamics
of simple lattices", Phys. Rev. 97 290 (1955).
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6 Phonons in Solids

from 10a to a (we may use a Debye wavevector kD = ωD/c
 1/a, as
it can be seen from equation (6.13). A very large number of phonon
states are concentrated in such a finite wavelength range.

The phonons can be viewed as quantum-mechanical particles (waves),
in a certain, limited sense. From equations (6.2) and (6.5) we may view
e

i
�
[−�ω(k)t+�kr] as phonon wavefunctions (noteworthy, these wavefunc-

tions are defined for any r); however, their energy should be ±�ω(k)
and their momentum �k, with a hamiltonian ±�ω(−i∂/∂r). The neg-
ative energy and the deviation from a quadratic dependence on the
momentum show that this formal quantum-mechanical view is limited.
The limitation arises from the fact that the phonons are quasiparticles.
The number of phonons is indefinite. The phonons are different from
the quantum-mechanical motion of the atomic displacement ui (or
uk), which is governed by the harmonic-oscillator hamiltonian given
by equation (6.3); since the change in the energy of the motion of the
atomic coordinates given by equation (6.6) is governed by a change
δnk = 1 in the phonon occupation number, we may view the phonons
as elementary excitations (quasiparticles) of the solid oscillations (vi-
brations). These excitations appear for many atoms, of the order of
a macroscopic number of atoms, and reflect an emergent dynamics.9

While the phonons are purely quantum-mechanical waves (particles),
the quantum-mechanical motion of the atoms is, in fact, a quasi-
classical motion. Indeed, the thermal mean occupation number

n =
1

e�ω/T − 1
(6.18)

(where we omit the argument ω, or k), shows that the phonons with
�ω 	 T are excited in large numbers, while those with higher energies
do not bring relevant contributions.10 Large number of excitations
mean a quasi-classical description of the atomic coordinates given by
equation (6.5). Moreover, equation (6.18) tells that temperatures T
lower than very low energies �ω are meaningless. In particular, the
9P. W. Anderson, "More is different: broken symmetry and the nature of the

hierarchical structure of science", Science 177 393 (1972); R. B. Laughlin,
D.Pines, J. Schmalian, B. P. Stojkovich and P. Wolines, "The middle way",
Proc. Nat. Acad. Sci. 97 32 (2000).

10I. Pomeranchuk, "On the thermal conductivity of the dielectrics", Phys. Rev.
60 820 (1941).
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limit T → 0 should be treated with caution (which, in fact, is a general
trait of the low-temperature thermodynamics).

If we want to measure the wavevector k (momentum �k) of a phonon,
then we need to see the content of eikr in a wavefunction which in-
cludes wavevectors K; i.e., we need to estimate the integralˆ

drei(k−K)r ; (6.19)

if we integrate over the whole space we get the "momentum conser-
vation" k = K (from δ(k−K)); but it is sufficient to integrate over a
region of dimension Δr equal to a few wavelengths λ 
 1/k to get the
wavevector k 
 K with an error 1/�r; this (well known) technical
point can be seen from the integral

ˆ Δx

−Δx

dxeiqx =
2 sin qΔx

q
, (6.20)

which is a function localized mainly over the region Δq 
 1/Δx. It
follows that the wave (the phonon) with the wavevector k is delocal-
ized over a region of the order λ 
 1/k (its wavelength). As well
known as this result is, its relevance is often overlooked. It tells that
we cannot speak of a phonon (a wave) over a distance shorter than
its wavelength; the phonon "exists and doesn’t exist" over such dis-
tances. Obviously, a distance of the order λ may be viewed as the
mean freepath of the wave (phonon).

Similar considerations hold for the frequency ω; the integralˆ
dtei(ω−Ω)t (6.21)

gives the "energy conservation" ω = Ω, but, what is more important,
it shows that the period 1/ω may be taken as the order of magnitude
of the phonon lifetime. These mean that freepaths and lifetimes are
related by the phase velocity c = v/k; in transport the connection is
made by the group velocity, as we shall see shortly.

The quantum-mechanical coordinates uk given by equation (6.5) and
the atomic displacement ui given by equation (6.2) are operators, with
zero mean values; they are not determined, in the sense of measur-
able quantities; we may look for mean values over a superposition of

156

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Phonons in Solids

quantum-mechanical (phonon) states for a fixed k; then, they are de-
termined, but are still small, on the quantum-mechanical scale. How-
ever, since there exists a macroscopic occupation of these states (for
�ω 	 T ), we may replace the creation and destruction operators in
equation (6.5) by c-numbers; we may use a superposition of quantum
states labelled by the occupation number; if the phases of this super-
position are the same we have a coherent phonon state; but, usually,
the phases are randomly distributed, so we have an incoherent super-
position. In any case, the displacement ui given by equation (6.2),
with the temporal factor included, reads

ui =
∑
k

uke
i[kRi−ω(k)t] , (6.22)

where uk are now determined from the initial conditions. For instance,
if we have initially a uniform distribution of displacement on the atoms
denoted by j, ∑

k

uke
ikRi =

∑
j

ujδ(Ri −Rj) , (6.23)

we get

uk =
1

V

∑
j

uje
−ikRj , (6.24)

where uj are given vectors. This way, we can follow the time evolution
of the displacement ui. Obviously, we may extend the definition of ui

from Ri to any r, which is convenient for the phonon transport. We
can see from equation (6.22) that the spatial evolution of the wave is in
the direction of k. As long as we limit ourselves to long wavelengths,
for which ω(k) = ck, we can define the velocity v = ck/k and write

u =
∑
k

uke
i(r−vt)k , (6.25)

which is the initial displacement distribution propagating with veloc-
ity v. This is valid for long wavelength phonons, which have a low
density of k-states. For larger magnitudes of the wavevectors k the
states are very dense and the contribution of any wavevector k is in-
creased by the contributions of the neighbouring k’s. Therefore, if we
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select a wavevector k0, then we write k = k0 + q and

ω(k) = ω(k0) + vq+
1

2

∂2ω

∂kikj
|k0

qiqj + ... , (6.26)

where

v =
∂ω

∂k
|k0

(6.27)

is the group velocity. In the long wavelength limit (ω = ck) we can
see that v is ck/k defined above and coincides in magnitude with the
phase velocity c. If we omit the second-order derivatives in equation
(6.26) and higher-order terms in the expansion of uk, we get

u 
 uk0
ei(k0r−ω0t)

∑
q

ei(r−vt)q , (6.28)

which shows that the k0-phonon has an envelope, more or less local-
ized, which propagates with the group velocity v. The spatial exten-
sion of the envelope is of the order 1/Δq, where Δq is the range of
q; it is limited by k0, such that the extension is at least of the order
1/k0 
 λ. Therefore, we get again that the order of magnitude of the
wavelength is comparable to the mean freepath of the phonons. Their
lifetimes are of the order λ/v. We prefer to take the period τ0 = 1/ω
as the phonon lifetime and to define the mean freepath as Λ = vτ0.
We can see that Λ = c/ω = λ for v = c.

For a state with n phonons the lifetime, denoted τn, is defined by the
mechanical action n�ωτn as τn = 1/nω = τ0/n; it is the duration when
the action is changed by the quantum �. According to Matthiessen’s
rule11 the effective lifetime τ is given by the interpolation formula

1

τ
=

1

τ0
+

1

τn
, (6.29)

i.e.
τ =

τ0
1 + n

. (6.30)

This relation has a formal resemblance with Einstein’s emission coef-
ficient (and the factor

√
n+ 1 in the matrix element of the creation

11A. Matthiessen, Rep. Brit. Ass. 32 144 (1862).
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operator a+);12 actually, τ0 in these relations should correspond to
the zero-energy �ω/2, which would give τ = 1/[ω(1/2 + n)]; all these
are estimations, and we prefer to use the estimation given by equation
(6.30). It follows that at non-zero temperature the phonon lifetime is
given by

τ =
1

ω(1 + n)
=

1

ω

(
1− e−�ω/T

)
, (6.31)

where we have introduced the mean occupation number.13 In the
limit T → 0 the lifetime goes like τ 
 1/ω, while in the limit T � �ω
the lifetime is τ 
 �/T . The mean freepath is

Λ = vτ =
v

ω

(
1− e−�ω/T

)
. (6.32)

In the limit T 	 �ω the mean freepath is Λ 
 v/ω, while Λ 

�v/T for T � �ω, where v is the group velocity. For v = c (phase
velocity of the acoustic phonons) we get Λ 
 c/ω 
 λ (the wavelength)
and Λ 
 �c/T , respectively. Since n = T/�ω in this limit, we can
see that Λ = λ/n. The dependence Λ ∼ 1/T in the range of high
temperatures has been discovered by Debye.14 The quantity Λ =
�c/T is a characteristic length for phonons; at room temperature it is

 2.5Å (c = 106cm/s). Since only frequencies which satisfy �ω < T
are relevant, it follows that only wavelengths which satisfy λ > �c/T
are relevant, i.e. those wavelengths which satisfy λ � Λ. We note that
the lifetime τ given by equation (6.31) corresponds to an uncertainty
in energy Δε 
 �ω/

(
1− e−�ω/T

)
, which, for high temperatures, may

overcome the Debye frequency; this is an indication that the harmonic-
oscillator approximation is not valid anymore.

The phonons, originally elastic waves and lattice vibrations (waves),
are now, according to the discussion above, particles with energy, mo-
mentum, (group) velocity, lifetime and mean freepath; therefore, they

12A. Einstein, "Zur Quantentheorie der Strahlung", Phys. Z. 18 121 (1917).
13M. Apostol, "On the lattice thermoconductivity of an ideal crystal", Fizika A1

175 (1992); "Phason contribution to the lattice heat capacity and thermocon-
ductivity", Commun. Theor. Phys. 20 249 (1993); Transport Theory, apoma,
Magurele (2001).

14P. Debye, in Vortrage uber die kinetische Theorie der Materie und der Elek-

trizitat, Teubner, Berlin (1914) (contributors M. Planck, P. Debye, W. Nernst,
M. Smoluchowski, A. Sommerfeld and H. A. Lorentz).
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6 Phonons in Solids

may be viewed as a gas, the phonon gas. Their mean freepath arises
from their original wavelength and their lifetime is related to the pe-
riod of their oscillations. The mean freepath and their lifetime make
them to be viewed as quasiparticles. Wavelengths and oscillation pe-
riods are exhibited by regular quantum-mechanical particles (waves)
too. But these quantities are effective only for a large number of
such particles (waves), which is precisely what happens for quasipar-
ticles (elementary excitations). The elementary excitations have been
introduced in condensed matter by Landau.15

The summation ∑
k

nk = N (6.33)

of the phonon occupation numbers nk should give the total number of
phonons N ; at zero temperature this is an indefinite number. Since
the phonons are defined for any r, the summation in equation (6.33)
may be extended to infinity (it is not restricted to the Brillouin zone).
At non-zero temperature the mean number of phonons is

3N(T/�ωD)
3

ˆ
�ωD/T

0

dx
x2

ex − 1
= N . (6.34)

The integral
´∞
0 dx ·x2/(ex− 1) is 
 2.4.16 We can see that the mean

separation distance between the phonons is a(�ωD/T ), which, for ωD

of the order c/a, is �c/T given above. The phonon gas resembles
much an ideal classical gas, although there is no scattering cross-
section in the definition of the mean freepath; the mean freepath is
given, practically, by the mean phonon-phonon separation distance.

Equation (6.33) shows that nk may be taken as the phonon distribu-
tion (at non-zero temperatures), with the normalization condition

V

2π2

ˆ
dk · k2 1

e�ω(k)/T − 1
= N ; (6.35)

15L. Landau, "The theory of a Fermi liquid", Sov. Phys.-JETP 3 920 (1957)
(ZhETF 30 1058 (1956)); "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5

101 (1957) (ZhETF 32 59 (1957)); "On the theory of the Fermi liquid", Sov.
Phys.-JETP 8 70 (1959) (ZhETF 35 97 (1958)).

16L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical

Physics, Elsevier (1980).
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6 Phonons in Solids

or
1

2π2

ˆ
drdk · k2 1

e�ω(k)/T − 1
= N , (6.36)

if we allow for a spatial variation; this way, we may speak of a phonon
density. The mean occupation number nk (also denoted nω or, sim-
ply, n) may have a spatial variation through the temperature T , or the
parameters in ω(k) (e.g., phase or group velocity). A spatial variation
of the frequency ω should be much smaller than the relevant phonon
wavelengths, in order to preserve its analytical form; since such vari-
ations are at the macroscopic scale, this condition is fulfilled. The
spatial dependence of the frequency ω implies that the energy ε = �ω
may act as the hamiltonian for the quasiparticles (phonons), with the
equation of motion ṗ = �k̇ = −∂ε/∂r (i.e., k̇ = −∂ω/∂r, and, of
course, the group velocity v = ∂ε/∂p, i.e. v = ∂ω/∂k). Therefore,
the Boltzmann equation for phonons reads

dn

dt
=

∂n

∂t
+ v

∂n

∂r
− ∂ε

∂r

∂n

∂p
= 0 , (6.37)

or
∂n

∂t
+

∂ε

∂p

∂n

∂r
− ∂ε

∂r

∂n

∂p
= 0 , (6.38)

or
∂n

∂t
+

∂ω

∂k

∂n

∂r
− ∂ω

∂r

∂n

∂k
= 0 (6.39)

(where local equilibrium is assumed); we can see that the spatial vari-
ations of ω and n should take place on a much larger scale than the
phonon mean freepath. These equations describe the evolution of the
phonon distribution; the effect of the external forces (or interactions)
is included in the spatial dependence of the frequency ω(r). Evolution
equations for mean quantities are obtained from the above equations.
A summation over the branch label should be included for several
phonon branches.
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6 Phonons in Solids

6.3 Second sound

Let us assume that the phonon density has a spatial dependence,
through the temperature; equation (6.37) reads

∂tn+ c
ki
k
∂in = 0 (6.40)

(for acoustic phonons). On the other hand, since the energy distribu-
tion is u = �ckn and the momentum distribution is p = �ckn, we get
from equation (6.40)

∂tu+ �c2ki∂in = 0 , ∂tpi + �c2
kikj
k

∂jn = 0 . (6.41)

These equations must be multiplied by 1/V and summed up over k,
in order to get the energy density U and the momentum density P,
respectively; since n depends only on k (an isotropic distribution) the
product kikj gives 1

3k
2δij , such that we get

∂tU + c∂iPi = 0 , ∂tPi +
1

3
c∂iU = 0 , (6.42)

or
∂2
tU −

1

3
c2ΔU = 0 , ∂2

tP−
1

3
c2ΔP = 0 . (6.43)

We can see that the phonon energy and momentum are propagated
in a non-uniform phonon gas with the velocity c/

√
3; this is called the

second sound (in order to distinguish it from the usual sound which
propagates with velocity c, called the first sound).17 The geometric
factor 1/3 appears also in the phonon thermoconductivity.

6.4 Thermoconductivity

It is convenient to define the phonon distribution f(r,k) = n/V from
equations (6.35) and (6.36), where

´
dr
∑

k f = N . The quantity

ρ =
∑
k

f (6.44)

17J. C. Ward and J. Wilks, "III. Second sound and the thermo-mechanical effect
at very low temperatures", Phil. Mag. 43 48 (1952).
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6 Phonons in Solids

is the phonon density. We assume that f depends on position through
temperature. The Boltzmann equation (6.37) gives

∂f

∂t
+ (vgrad)f = 0 , (6.45)

where v is the group velocity. For slight spatial variations

f = −τ(vgrad)f (6.46)

and
vf = −vτ(vgrad)f , (6.47)

where τ is the phonon lifetime. We keep a fixed direction s of the
velocity v in vf and get

i = s
∑
k

vf = −s
∑
k

vτ(vgrad)f , (6.48)

where i is the phonon flux (flow), i.e. the number of phonons per unit
time which pass through the cross-sectional area in the s-direction;
this is a generalized Fick’s law for phonons.

The energy is given by

E =
∑
k

�ωn =

ˆ
dr
∑
k

�ωf ; (6.49)

it follows, from equation (6.46),

�ωf = −�ωτ(vgrad)f (6.50)

and
v�ωf = −v�ωτ(vgrad)f . (6.51)

Therefore, the energy flow is

∂Q

∂t
= −s

∑
k

�ωvτ(vgrad)f = −s
∑
k

�ωvτ(vgradT )
∂f

∂T
, (6.52)

where Q is the energy flux. At constant volume this is the heat flux,
and equation (6.52) is the law of phonon thermal conduction. In
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6 Phonons in Solids

general, for an anisotropic phonon spectrum the distribution f , the
phonon lifetime and the mean freepath are anisotropic, and we may
have transport along any direction. For an isotropic phonon spectrum
we can see from equation (6.52) that we have heat transport only along
the direction of gradT ; in this case we get

∂Q

∂t
= −

(∑
k

�ωv2sτ
∂f

∂T

)
∂T

∂s
, (6.53)

where s denotes the coordinate along which the temperature varies;
the quantity

K =
∑
k

�ωv2sτ
∂f

∂T
(6.54)

is the thermoconductivity coefficient in the thermal-conduction law
∂Q/∂t = −K(∂T/∂s); the integration over the angular variables gives
v2s = 1

3v
2 and

K =
1

3(2π2)

ˆ
dk · k2�ωv2τ ∂n

∂T
. (6.55)

For acoustic phonons ω = ck (v = c) we get the thermoconductivity

K =
T 2

6π2c�2

ˆ
�ωD/T

0

dx
x3

ex − 1
; (6.56)

in the low-temperature limit K = π2T 2/90c�2 (the integral extended
to infinity is π4/1518). In the high-temperature limit K = �ω3

D/18π
2cT .

In the low-temperature limit only a few long-wavelength phonon states
are excited, whose mean freepath is long and may overcome the spatial
variations of the phonon distribution; consequently, the limit T → 0
in thermoconductivity should be viewed with caution. In the region
of low temperatures there exists another mean freepath which may
compete with the thermal mean freepath, arising from the finite di-
mension of the solid (e.g., its thickness); for instance, the thickness d
of a solid may be shorter than the phonon long wavelengths, such that

18L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical

Physics, Elsevier (1980).

164

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Phonons in Solids

the mean freepath is of the order d (this is known as the boundary-
scattering limit).19 The competition between various mean freepaths
(or lifetimes) is achieved by the Matthiessen interpolation formula.
The 1/T -law of thermoconductivity in the high-temperature limit was
pointed out by Debye.20 The thermoconductivity given by equation
(6.56) has a maximum of the order 10−2(ω2

D/c) for T of the order
�ωD. This value is much higher than the experimental values. The
thermoconductivity given by equation (6.56) should be viewed within
the following limits: first, the acoustic-phonon spectrum is limited to
a cutoff frequency ω0 much smaller than ωD; second, the formula is
valid for T � �ω0, which, indeed, results in an appreciable reduction
of the thermoconductivity.

The thermoconductivity given above is the thermoconductivity of a
perfect, infinite solid. In real solids the picture changes appreciably.

6.5 Anharmonic solids

At equilibrium, the phonon distribution n =
(
e�ω/T − 1

)−1
gives van-

ishing energy and momentum flows, as expected. If a constant macro-
scopic velocity V were present, the distribution

n =
(
e�ω−�Vk/T − 1

)−1

(6.57)

would be an equilibrium distribution, but, as it is sometimes argu-
mented, a non-vanishing flow of energy and momentum would then
be present; therefore, according to such an argument, we would have a
heat flow without a temperature gradient, i.e. an infinite thermocon-
ductivity; the perfect solid would have an infinite thermoconductivity.
It would be necessary, the argument goes on, to assume the existence
of momenta which would compensate the macroscopic momentum of
the phonons. These momenta are provided by vectors of the reciprocal
lattice (in crystals), which should imply umklapp processes of phonon

19H. B. G. Casimir, "Note on the conduction of heat in crystals", Physica 5 495
(1938).

20P. Debye, in Vortrage uber die kinetische Theorie der Materie und der Elek-

trizitat, Teubner, Berlin (1914) (contributors M. Planck, P. Debye, W. Nernst,
M. Smoluchowski, A. Sommerfeld and H. A. Lorentz).
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6 Phonons in Solids

scattering, arising from anharmonic atomic interactions. Such a rea-
soning led Peierls to assume the existence of phonon umklapp scat-
tering, where the phonon wavevector changes by a reciprocal lattice
vector, resulting in an exponential factor ∼ e�ωD/T in thermoconduc-
tivity, at intermediate temperatures.21 Of course, the distribution
function with a constant macroscopic velocity means nothing but the
change of the reference frame, the phonons being indissolubly attached
to the oscillating atoms. An infinite thermoconductivity would mean
an infinite lifetime of phonons, as if the phonons would be classical
free particles.

However, small anharmonic interactions are present in solids; for in-
stance they are responsible for the thermal expansion of solids.22 In
the long wavelength limit they may change slightly the phonon spec-
trum, thus modifying the group velocity; such modifications are re-
flected in thermoconductivity. At low temperatures the lattice dis-
placements are small and the effect of the anharmonic contributions
may be neglected. At high temperatures the anharmonic contribu-
tions may be viewed as small corrections to the equilibrium thermo-
dynamic quantities (like the specific heat, for instance). But the main
effect of the anharmonic terms consists in destroying the notion of
phonons as independent modes of mechanical motion, especially at
short wavelengths. The change brought by anharmonicities in the
heat transport in solids (thermoconductivity) was emphasized by De-
bye and Born.23 The loss of the phonon states is reflected in phonon
scattering, involving three, or more, phonons, with creation or de-
struction of phonons (e.g., phonon decay). The phonon-phonon scat-
tering processes imply the momentum conservation and do not lead
to a finite lifetime since the emission and absorption processes are at
equilibrium; the vectors of the reciprocal lattice for umklapp processes

21R. Peierls, "Zur kinetischen Theorie der Warmeleitung in Kristallen", Ann.
Phys. 3 1055 (1929).

22C. Kittel, Introduction to Solid State Physics, Wiley, NY (1986); Quantum

Theory of Solids, Wiley, NY (1963); J. M. Ziman, Electrons and Phonons, The

Theory of Transport Phenomena in Solids, Clarendon Press, Oxford (1960);
Principles of the Theory of Solids, Cambridge University Press, Cambridge
(1972).

23In Vortrage uber die kinetische Theorie der Materie und Elektrizitat, Teubner,
Berlin (1914) (contributors M. Planck, P. Debye, W. Nernst, M. Smoluchowski,
A. Sommerfeld and H. A. Lorentz).
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(in crystals) are irrelevant for the phonon states.24 The atomic mo-
tion cannot be viewed anymore as a correlated, collective motion, but,
instead, we should view it as motion of independent, uncorrelated (or
weakly correlated) atoms, about equilibrium positions (possibly dis-
placed); obviously, the heat transport should diminish appreciably in
this case. The mechanism of heat transport in the presence of anhar-
monicities is very different from the mechanism of heat transport by
phonons.
According to this picture the mean freepath (of the atomic motion)
can be estimated as for a classical gas: Λ = (a/d)2a, where a is the
mean inter-atomic separation and for d2 we can use the mean square
displacement u2 which is given by Mω2u2 = T , where ω = c/a, c
being, approximately, the sound velocity. It follows u2 = (T/Mc2)a2

and Λ = (Mc2/T )a. We can see that the 1/T -dependence is pre-
served, though there is an important deviation from the phonon mean
freepath Λ = �c/T (for high temperatures). This mean freepath can
be used in estimating the thermoconductivity, which, from equation
(6.52), can be written as

K =
1

3
CvΛ , (6.58)

where C is the specific heat (per unit volume, C = 3/2a3). We get

K 
 Mvc2

2a2T
. (6.59)

The thermoconductivity is appreciably reduced by the group velocity
and the velocity c in ω = c/a. At low temperature, where only long
wavelengths phonons (with anharmonicities) are excited (and the spe-
cific heat goes like C ∼ T 3), the mean freepath is still of the order
of the phonon wavelengths, but it may be dominated by the size d
of the solid, according to Casimir’s law. In order to compare these
results with experimental data an interpolation formula between low-
and high-temperature limits is convenient.
The mean freepath Λ = (Mc2/T )a induces an energy uncertainty
Δε 
 �T/Mca; it is much smaller than the Debye energy �ωD for
T 	Mc2 (Mc2 
 103A(K), where A is the mass number).
24R. Peierls, Surprises in Theoretical Physics, Princeton University Press, Prince-

ton, NJ (1979).
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The heat conduction in solids is sometimes approached25 by the Boltz-
mann equation

∂n

∂t
+ (vgrad)n = C(n) , (6.60)

where C(n) is the collision integral; as if the transport were at non-
equilibrium. Since the transport is viewed as being stationary, the
term ∂n/∂t is neglected (though it is of the same order of magnitude
as the spatial-derivative term), and equation (6.60), multiplied by
energy �ω, leads to

Cv
∂T

∂s
=

ΔE

Δt · a3 , (6.61)

where ΔE is the energy transported along the s-direction; multiplying
this equation by Λ estimated above, we get

CvΛ
∂T

∂s
=

ΔE

Δt · u2
=

∂Q

∂t
, (6.62)

where Q is the heat flux; we get the law of thermal conduction (up to
some immaterial factors), which shows that the cross-section through
which the heat is transported is the mean square displacement u2,
which is reasonable. Although such an approach may have its range
of applicability (for non-equilibrium transport), usually the transport
is at equilibrium, because the relaxation time τ = Λ/c = Mca/T is
very short in comparison with the macroscopic time scale.

6.6 Temperature waves

If the temporal and spatial variations of the temperature T in the
distribution function of (acoustic) phonons are comparable with the
phonon lifetime and mean freepath (at low temperatures), we should
preserve the time derivative in equation (6.40), which reads

∂tT +
c

k
(kgrad)T = 0 , (6.63)

or

∂2
t T − c2

kikj
k2

∂i∂jT = 0 ; (6.64)

25L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 10, Physical

Kinetics, Elsevier, Oxford (1981).
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for an isotropic distribution, we get temperature waves propagating
with velocity c; if the propagation is along one direction, the velocity
is c/

√
3.

6.7 Sound attenuation

For slight variations of the phonon distribution function along the
s-direction, the Boltzmann equation (6.37) leads to

n− n0 + Λ
∂n

∂s
= 0 , (6.65)

whose solution is

n = n(s = 0)e−s/Λ + n(s =∞)
(
1− e−s/Λ

)
; (6.66)

this equation is valid over short distance; it only shows that the
phonons have a mean freepath.

The sound frequencies are much lower than the phonon lifetime fre-
quency, while, usually, the sound amplitude is large. This means that
the sound makes the phonon frequency to acquire a spatial depen-
dence, which amounts to keep in the Boltzmann equation (6.39) the
force term proportional to −∂ω/∂r. However, the large amplitude
of the sound makes its propagation a non-equilibrium process. The
sound attenuation is given by lattice thermoconduction and viscosity
in the non-equilibrium process of solid deformation. Technically, it is
the ratio of the dissipated heat T Ṡ, where S is the entropy per unit
volume, to the sound energy flow (it is given in units cm−1). We
may assume that the non-equilibrium processes are governed by the
phonon mean freepath; then, we may write

λ
∂n

∂t

 −v ∂n

∂T

ΔT

Λ
, (6.67)

where the factor λ is proportional to the square of the deformation
tensor (sound energy); it is reflected in the temperature difference
ΔT . Multiplying by �ω, we get the rate of the dissipated heat (per
unit volume)

λ
∂q

∂t

 −K

Λ2
ΔT , (6.68)

169

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Phonons in Solids

whence the absorption coefficient γ ∼ KT , due to the thermocon-
duction (it is also proportional to the frequency square ω2). At high
temperature γ is a constant. The same formula is valid for viscosity
at high temperatures; at lower temperatures, the short-range viscos-
ity produces an additional strain variation which compensates the
change in temperature, such that the absorption coefficient goes like
γ ∼ K ∼ 1/T . The interaction of the phonons with the electrons in
solids brings an additional mechanism of phonon absorption (sound
attenuation), connected with electron conduction and electron viscos-
ity. This mechanism is discussed in one of the next chapters.

6.8 Electron-phonon interaction

We estimate here the effect of the electron-phonon interaction in met-
als. In metals, there exists an electron liquid, with a Fermi sea, a
chemical potential (Fermi energy) μ and a Fermi wavevector kF of
the order kF 
 1/a, where a is the mean inter-atomic separation; the
chemical potential is μ = �

2k2F /2m, where m is the electron mass.
The dynamics of the electron liquid is governed by elementary exci-
tations of quasiparticle type, with low energy and momentum; they
are quasielectrons excited slightly above the Fermi surface, extending
in energy over a range of the order T , where T is the temperature.26

We limit ourselves to moderate temperatures, because at low temper-
ature the electronic structure of metals changes (e.g., they become
superconductors), while in the very high temperature range the met-
als soften and melt down. Usually, the interaction of the electrons
with the phonons is considered as the interaction of the quasielec-
trons with the phonons; it consists in creation or destruction of a
phonon and the corresponding change in the quasielectron; it implies
small wavevectors and energies and leads to an attractive interaction
between (quasi) electrons which is responsible of superconductivity

26L. Landau, "The theory of a Fermi liquid", Sov. Phys.-JETP 3 920 (1957)
(ZhETF 30 1058 (1956)); "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5

101 (1957) (ZhETF 32 59 (1957)); "On the theory of the Fermi liquid", Sov.
Phys.-JETP 8 70 (1959) (ZhETF 35 97 (1958)).
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in the low-temperature range.27 This is a small interaction and for
intermediate temperatures we may leave it aside. However, the same
type of electron-phonon interaction may affect the electrons inside the
Fermi sea; it is this type of electron-phonon interaction which gives
a lifetime to the quasielectrons. Indeed, short wavelength phonons
may change the wavevectors of the electrons inside the Fermi sea; the
energy conservation requires that for a phonon and an electron a num-
ber n of quasielectrons to be created, since the chemical potential μ is
much larger than phonon energy. It is easy to see that this number is
of the order n = μ/Mc2, where M is the atom mass and c is a mean
sound velocity. Indeed, short-wavelength phonons have an energy
scale of the order Mω2

Du
2 
 Mc2, where ωD is the Debye frequency

and u is the atomic displacement. Therefore, we get a wavefunction
∼ e−

i
�
n�ε for a quasielectron state with energy ε, which implies that

its lifetime is τ0/n, τ0 being the original lifetime; this later quantity is
of the order �/T ; we get the inverse of the electron-phonon lifetime

1

τe−ph
=

Tn

�
=

T

�F
, (6.69)

where we introduced the notation F = 1/n.28 The number n is esti-
mated as follows:

F =
1

n
=

Mc2

μ
=

Mω2
Da2

μ
=

M�
2ω2

D

μ�2k2F
=

M

m

(
�ωD

μ

)2

. (6.70)

Noteworthy, τel−ph is the lifetime of the (quasi) electrons caused by
the electron-phonon interaction. The phonons are also affected by
the electron-phonon interaction, such that a corresponding phonon
lifetime τph−e, caused by the electron-phonon interaction, exists; it
is discussed in one of the next chapters. We shall use the lifetime
τe−ph in one of the next chapters to estimate the effect of the electron-
phonon interaction on the electron thermoconductivity in metals. The
27H. Frohlich, "Theory of the superconducting state. I. The ground state at the

absolute zero of temperature", Phys. Rev. 79 845 (1950); J. Bardeen, L. N.
Cooper and J. R. Schrieffer, "Microscopic theory of superconductivity", Phys.
Rev. 106 162 (1957); "Theory of superconductivity", Phys. Rev. 108 1175
(1957).

28A. H. Wilson, The Theory of Metals, Cambridge University Press, Cambridge
(1953).
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same effect in semiconductors will be discussed separately. Also, the
electron-phonon interaction in polar (ionic) solids is a distinct subject.
In general, lattice thermoconduction is affected by impurities, defects,
disorder (like in amorphous solids), boundaries, contacts, various in-
teractions with other elementary excitations, etc.

6.9 Dimensionality effects

We note that phonons with wavelengths longer than the dimension
of the bodies are unphysical, since they imply a translation. For
instance, in a slab with thickness d, transverse phonons with wave-
lengths longer than d are unphysical. The phonon gas becomes quasi-
two-dimensional in this case. However, the elastic motion in a finite
body should include surface effects, in particular boundary conditions,
which transform the phonon motion in vibrations. For instance, in a
slab, transverse vibrations with frequencies of the order c/d occur
(limited by a Debye frequency). In computing thermodynamic quan-
tities the summation over discrete frequencies cannot be transformed
into integrals without errors; a Euler-Maclaurin formula is needed
in this case, which leads to surface effects. It is easy to see that a
crossover temperature of the order T 
 �c/d may appear, from a
three- to a two-dimensional regime. In addition, surface elastic waves
(Rayleigh waves) appear in such structures, which should be taken
into account.29

In two dimensions and one dimension another difficulty appears, re-
lated to the fluctuations of the displacement of the atomic constituents
of the bodies; this displacement acquires a divergent behaviour, due
to the long-wavelength phonons.30 Actually, two- or one-dimensional
bodies may only exist on substrates, or with contacts, or otherwise

29L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 7, Elasticity,
Elsevier (1986).

30R. Peierls, "Bemerkungen uber Umwandlungstemperaturen", Helv. Phys. Acta
7 , Suppl. 2, 81 (1934); Quelques propriétés typiques des corps solides, Ann.
d’Institut Henry Poincaré, 5 177 (1935); L. Landau, "On the theory of phase
transitions", Part II, ZhETF 7 627 (1937) (in Russian) (Phys. Zeit. Sowjetu-
nion 11 545 (1937); L. Landau and E. Lifshitz, Course of Theoretical Physics,
vol. 5, Statistical Physics, Elsevier (1980).
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6 Phonons in Solids

with position constraints, which remove such divergencies.31 Specific
elastic waves appear in layered structures (e.g., Love waves), which
complicates further the problem.

31M. Apostol, "On the low-dimensional solids and their melting", Synth. Metals
79 253 (1996).

173

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



7 Fermi Liquid

7.1 Quasiparticles

He3 liquefies at 3.2K under normal pressure, with a mean inter-particle
separation distance of a few angstroms, comparable with the range
of the (weak) interaction potential; its thermal wavelength is about
2Å, such that the liquid He3 is a quantum liquid of fermions, or a
Fermi liquid (sometimes called a normal Fermi liquid). The motion
of the He3 atoms in the (repulsive) interaction potential is affected by
inertia effects, i.e. the particles possess an effective mass; they obey
the Fermi distribution, like an ideal Fermi gas. Quasiparticles are a
class of elementary excitations in Fermi liquid; they are located near
the Fermi level (of the order 10meV ; 1eV = 1.1× 104K). The states
lying deeply in, or highly above, the Fermi sea require, on one hand,
high excitation energies, and, consequently, they do not contribute
much to the liquid properties (are not excited at low temperatures);
on the other hand, they are not well-defined excitations, because the
interaction may redistribute their energy and momentum, in many
ways, and, consequently, it may affect them appreciably. It follows
that the interaction does not affect the step-wise shape of the Fermi
distribution, and the relevant quasiparticles may be viewed as slight
distortions of the Fermi sea near its surface; this is especially true for
high values of particle concentration, where the Fermi energy is high
and the interaction effects are weak. Similarly, the temperature T
smears out the stepwise Fermi distribution over a range of the order
T , much smaller than the Fermi energy. This is Landau’s theory of
the Fermi liquid.1

1L. Landau, "The theory of a Fermi liquid", Sov. Phys.-JETP 3 920 (1957)
(ZhETF 30 1058 (1956)); "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5

101 (1957) (ZhETF 32 59 (1957)); "On the theory of the Fermi liquid", Sov.
Phys.-JETP 8 70 (1959) (ZhETF 35 97 (1958)).
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7 Fermi Liquid

He3 preserves its nature of a Fermi liquid over a certain, limited,
range of parameters; at very low temperatures, for instance, weak
attractive interactions of magnetic origin pair up the He3 atoms into
quasi-bosons, which exhibit superfluidity;2 under pressure He3 may
even solidify at very low temperatures, in a rather disordered structure
which requires additional entropy; He3 may serve as a natural tool for
reaching significantly low temperatures.

Another Fermi liquid is the electron liquid in metals. Although it
is discussed in another chapter, its main characteristics of a normal
Fermi liquid are included here.

The Fermi sea and the Fermi surface are defined by minimizing the
ground-state energy with respect to the fermion occupancy under the
constraint of a fixed number of particles N ; the chemical potential μ is
thereby obtained, as well as the Fermi momentum pF . The volume of
the Fermi sea is determined by the concentration N/V of the particles,
where V is the volume; for an isotropic liquid, N/V = gp3F/6π

2
�
3,

where g is the spin weight (g = 2, He3 and the electrons have spin
1/2) . In general, the shape of the Fermi surface may be different from
a sphere; we assume a spherical Fermi surface. The interaction does
not change the volume of the Fermi sea, since the number of particles
is conserved; an isotropic interaction preserves the shape of the Fermi
sea, and, therefore, the Fermi momentum pF is also preserved. The
quasiparticle energy is a function ε(p) of the momentum p, and it can
be written as

ε(p) = μ+ vF (p− pF ) , (7.1)

where vF = ∂ε/∂pF is the Fermi velocity, and p is close to pF . These
quasiparticles lie in a narrow regionΔp around the Fermi surface; their
uncertainty in momenta is ∼ (Δp)2/pF , arising from the uncertainty
in energy δ(p2F ) ∼ pF δp = (Δp)2. This uncertainty comes from the
nature (definition) of the quasiparticles; one can see that it is very
small as long as the quasiparticles are located near the Fermi surface,
i.e. as long as Δp	 pF . The corresponding lifetime of the quasipar-
ticles is τ0 ∼ �μ/ (ε− μ)2 (�/[(Δp)2/m], μ = p2F /2m, where m is the
particle mass). We can see that the range over which the quasipar-
ticles are well-defined near the Fermi surface increases with increas-
2T. Leggett, "Interpretation of recent results on He3 below 3mK : A new liquid

phase?", Phys. Rev. Lett. 29 1227 (1972).
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7 Fermi Liquid

ing particle concentration. Similarly, the quasiparticles are spread
across the Fermi surface over a Δp range due to the thermal effects,
such that Δp ∼ T/vF ; the corresponding uncertainty in momenta is
(Δp)

2
/pF ∼ T 2/v2F pF 	 μT/v2F pF ∼ Δp 	 μ2/v2F pF ∼ pF , which

means that the quasiparticle momenta are pretty well determined.
Similarly, their uncertainty in energy is ∼ T 2/μ, such that their life-
time is τth ∼ �μ/T 2, much longer than the characteristic time of the
Fermi level μ. The two uncertainties are competitive, and the net
lifetime τ is given by τ−1 =

(
τ−1
0 + τ−1

th

)
n, where n is the Fermi dis-

tribution, according to the probabilistic nature of the quasiparticles.3

We get
1

τ
=

(ε− μ)2 + T 2

�μ
· 1

e(ε−μ)/T + 1
. (7.2)

This lifetime can also be obtained by computing the transition prob-
ability in the second-order of the perturbation theory.4 All these are
consistent with the linear series expansion in equation (7.1) of the
quasiparticle spectrum.

The lowest energy levels of a Fermi liquid consist of particle-hole ex-
citations around the Fermi surface, given by

ε(p) = vFp , (7.3)

where p denotes the small variation in the momentum; noteworthy,
this energy depends on the relative orientation of the Fermi velocity
with respect to the momentum, and, incidentally, the "superfluidity"
criterion v < vFp/p is not satisfied. We say that the excitations
given by equation (7.3) form a particle-hole continuum; this is called
a Fermi-type spectrum. In principle, the quasiparticle energy given
by equation (7.1) may also depend on the particle spin s. This de-
pendence may only include contributions of the s2- or (sp)2-type; the
former is irrelevant, while the latter splits the 2s+1 degenerate levels
into (1/2)(2s+1) levels, each twofold degenerate; we can say that the
quasiparticles have a one-half spin. The spin weight g accounts for
the corresponding density of states in the subsequent calculations.

3P. Morel and P. Nozieres, "Lifetime effects in condensed helium-3", Phys. Rev.
126 1909 (1962).

4L. Landau, "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5 101 (1957)
(ZhETF 32 59 (1957)).
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7 Fermi Liquid

It is worth noting that the term quasiparticle is used both for particles
with energy given by equation (7.1) and excitations with energy given
by equation (7.3); the notation ε(p) in these two equations has a
different meaning; the same is true for the notation p.

The quasiparticles distort the Fermi distribution by a certain, small,
amount δn(ε), which implies a particle-hole pair; consequently, one
may define the quasiparticle energy ε(p) by the corresponding small
change in the energy

δE =
gV

(2π�)3

ˆ
dp · εδn(ε) , (7.4)

while the entropy is the Fermi entropy

S = − gV

(2π�)3

ˆ
dp [n lnn+ (1− n) ln(1− n)] ; (7.5)

it corresponds to the Fermi distribution

n =
1

exp [(ε− μ)/T ] + 1
(7.6)

at thermal equilibrium and for a given number N of particles and a
given energy. The distribution given by equation (7.6) is smeared out
over a small T -range around the chemical potential μ, and the ther-
mal effects can be computed in the same way as those for the ideal
Fermi gas (including the change in the chemical potential due to the
temperature). It remains to account for the interaction effects, espe-
cially in the density of states at the Fermi surface, i.e. the dependence
ε(p), which amounts, in principle, to determining the two parameters
μ and vF in equation (7.1). As in equation (7.4), small changes in the
distribution determine small changes in the (quasi)-particle energies,
which may be represented as

ε(p) = p2/2m+
g

(2π�)3

ˆ
dp′·f(p,p′)δn(ε′) ; (7.7)

the momenta p and p′ are close to the Fermi surface and the function
f(p,p′), which is symmetrical in its variables (and may also depend
on spin), depends on the particle interaction. It is worth noting that
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7 Fermi Liquid

ε(p) in equations (7.4)-(7.7) includes the chemical potential besides
the excitation energy given by equation (7.3) (and the interaction).
The energy ε(p) is determined in equation (7.7) with the same accu-
racy as in equation (7.1); it is the hamiltonian of the quasiparticles,
and it may depend on position for a slightly perturbed liquid, as in a
quasi-classical description. It is worth noting here the self-consistent
character of the equation above, together with the quasiparticle Fermi
distribution given by equation (7.6) (the quasiparticle energy depends
also on temperature, though in a higher-order approximation). The
f -term in equation (7.7) accounts for the quasiparticle scattering (in-
teraction); f is a scattering amplitude. This term dresses the free par-
ticles with interaction, the free particles being, therefore, bare parti-
cles. Solving for the interaction effects in terms of quasiparticles is also
called the renormalization of the interaction, the quasiparticles being
renormalized particles. The f -term in equation (7.7) represents also
the reaction of the liquid to a particle excitation, and, in this respect,
the theory of the Fermi liquid amounts to a linear response theory. It
is important to notice in this case that the interaction integrals of the
f -type in equation (7.7) include the density of the quasiparticle states
at the Fermi surface; the latter is large for high values of the particle
concentration (i.e., for a well-defined quasiparticle picture). Indeed,
the density of states DF is given by

dτ = g V
(2π�)3 dp = g V

(2π�)3
dsdε
vF

=

= g V
(2π�)3

p2
F

vF
dodε = DFdodε ,

(7.8)

where dτ is the infinitesimal number of states, ds is the surface ele-
ment, and do = sin θdθdϕ is the infinitesimal solid angle; one can see
that DF increases with increasing pF . The f -function (the interaction
effects) must be weak, according to the perturbational character of the
theory. Noteworthy, the small variations of the Fermi distribution at
zero temperature, located at the Fermi surface, are δn = −δ(ε−μ)δε.
Also, we note

δ(ε− μ) =

ˆ
ds

vF
δ (p− pF ) . (7.9)
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From equation (7.7) we may infere the form

μ = p2F /2m+
g

(2π�)3

ˆ
dp′·f(pF ,p

′)n(ε′) (7.10)

for the chemical potential μ, to the first approximation.

7.2 Interaction

Interaction may affect appreciably the many-particle ensembles; for
instance, a weak attraction between electrons binds them up in pairs,
leading to superconductivity; interacting fermions in one dimension
get bosonized;5 anisotropic fermions with "nested" Fermi surfaces
become non-homogeneous when interacting and develop charge- or
spin-density waves.6 All these are different phases, and appear as
a symmetry breaking, spontaneous or induced; they are also called
instabilities of the many-body ensembles, under interaction. Hints
towards their nature are often obtained by studying the interacting
two-particle problem, scattering included. We leave aside such cases.

By switching on the interaction we may preserve the nature of the par-
ticles, their statistics, the symmetries; such a (repulsive) interaction
may be treated by perturbation-theory methods.7 The ground-state
should be treated distinctly from the low-energy excitations. The
low energy of the latter may be comparable with the weak interac-
tion effects, which may result in new kinds of elementary excitations,
as compared with the non-interacting system. Probably, the most
common case is provided by the quantum sounds in both interact-
ing Bose and Fermi ensembles. The general perturbational scheme

5M. Apostol, "Jordan’s boson representation for the one-dimensional two-fermion
model", Phys. Lett. A91 177 (1982); "Bosonization of the one-dimensional
two-fermion model: boson representation", J. Phys. C16 5937 (1983).

6M. Apostol and I. Baldea, "On the charge density wave state in the quasi-one-
dimensional compound K2[Pt(CN)4]Br0.3 × 3.2H2O (KCP)", Rev. Roum.
Phys. 30 605 (1985).

7A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems,
Dover, NY (2003); D. Pines and P. Noziers, The Theory of Quantum Liquids,
vol.1, Normal Fermi Liquids, Benjamin, NY (1966); D. Pines and P. Noziers,
The Theory of Quantum Liquids, vol.2, Superfluid Bose Liquids, Westview
Press, NY (1999); G. D. Mahan, Many-Particle Physics, Kluwer, NY (2000).
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7 Fermi Liquid

for the ground-state is based on the observation that the wavefunc-
tion does not change, to the lowest order of the perturbation theory,
while the energy changes by the mean value of the interaction over
the unchanged (non-perturbed) ground-state,

ψ = ψ0 + ... , E = E0 + (ψ0, Uψ0) + ... . (7.11)

Therefore, the Fermi sea (as well as the one-particle plane waves), or
the boson condensed ground-state, is not changed by interaction in
this scheme, while a constant energy is acquired by each particle, as
if each of them were moving in a constant, external potential. In ad-
dition, the individual fermions behave as if they would have, approx-
imately, a different, effective mass. Indeed, the only free parameters
in the hamiltonian of a free quantum particle are the particle mass
and a constant potential (up to redefining momentum, occasionally).
This perturbational scheme may be viewed as an approximation lower
than the quasi-classical one. For the boson condensed ground-state
the calculation of the energy correction within this scheme is carried
out by means of the particle operators turned into c-numbers; a dis-
tinct particularity appears for the Fermi sea, namely the quantum
exchange effect between the fermion states, seen in what is usually
called the Hartree-Fock approximation; in both cases the particles re-
act as a whole to the interaction, a feature called the random phase
approximation; this reaction is either static or dynamic, the latter
implying virtual excited states, retardation and damping effects; all
these features have actually the aspect of an interacting mean-field;
the difference between fermions and bosons originates in their distinct
statistics.

Naturally, the question of the validity of this perturbational scheme
arises, or, as this question is sometimes termed, the convergence of the
perturbation theory for these "normal" many-body systems. Various
orders of the perturbation theory may be viewed as containing factors
of the form ∑

s

v(q)/V

ε
, (7.12)

where the summation is extended over all the s states allowed by
statistics, coupled by interaction to the ground-state; their "excita-
tion" energy is denoted by ε in equation (7.12), where V stands for
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7 Fermi Liquid

the volume of the ensemble; v(q) is the Fourier transform

v(q) =

ˆ
dr · v(r)e−iqr (7.13)

of the two-particle interaction potential (energy) v(r). The "excited"
states in equation (7.12) are connected to the ground-state through
momentum (�q) and energy conservation (according to the invariance
under the space and time translations). In addition, the states s are
real, not virtual "excited" states, i.e. their energies are related to their
momenta through the free-particle Galilean relationship (as for non-
relativistic particles). The estimation of equation (7.12) is different
for bosons and fermions, as well as for various space dimensions, but,
before proceeding, one should emphasize the general model-like as-
sumptions for many-body ensembles: particles are point-like and the
potentials are Fourier-transformable; i.e., distances shorter than the
typical atomic length (Bohr radius) are meaningless, and the highly-
repulsive hard-core atomic potentials are replaced by delta-type po-
tentials, at most. Now, the most dangerous contribution to equation
(7.12) comes from small q and ε, and for three-dimensional fermions
this means ε ∼ �

2kF q/m, while the density of states is of the form
V · q2dq; the angular factors are rendered ineffective by the Fermi
statistics, as one can see easily; kF is the Fermi wavevector, and m
denotes the fermion mass. In addition, kF ∼ 1/a, where a is the
mean inter-particle distance. The interaction may be represented as
v(q ∼ 0) = va3, where v is a characteristic average interaction en-
ergy per particle, and the integration may be extended up to kF ;
under these circumstances equation (7.12) gives v/(�2/ma2) at most;
it leads to

v/(�2/ma2)	 1 (7.14)

i.e. the average interaction energy per particle must be much smaller
than the particle localization energy over inter-particle distance. This
is the typical condition for the perturbation scheme of the "nor-
mal" many-body ensembles. The condition holds for two-dimensional
fermions too, while it diverges logarithmically for fermions in one di-
mension; as it is known, the perturbation scheme is not valid for the
latter. For bosons ε ∼ �

2q2/2m: the condition given by equation
(7.14) holds in three dimensions; the condensed ground-state of the
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bosons is stable under perturbations in three dimensions. On the
contrary, the quantity in equation (7.12) diverges for bosons in two
and one dimensions, and the corresponding condensed ground-state is
destabilized by fluctuations in these cases. As in the one-dimensional
case of fermions, the ground-state in these situations is the vacuum
of the corresponding elementary excitations; these ensembles are not
called anymore "normal" ensembles, though the term "normal" is not
currently used for bosons, not even in three dimensions, in view of
their Bose-Einstein condensation.
An ensemble of N identical particles of mass m and interacting through
a two-particle potential v is described by the hamiltonian

H =
∑
i

p2
i /2m+

1

2

∑
i�=j

v(ri − rj) , (7.15)

where i, j are labels for particles and pi denotes the particle momen-
tum. For long-range potentials the stability of the ensemble must be
ensured, as, for instance, in the case of Coulomb interacting electrons,
where a uniform, neutralizing background of positive charges must be
added (which may have its own dynamics as well; this is often called
the "jellium" model of interacting electrons). The corresponding in-
teraction

1

2
nN

ˆ
dr · v(r) = 1

2
nN · v(q = 0) (7.16)

must then be subtracted from the hamiltonian, which amounts to
removing the q = 0 Fourier component v(0) of the potential; n = N/V
is the particle concentration. In metals, the cohesion is achieved by
the interaction with the ions, such that the removal of v(q = 0) is not
necessary (the "jellium" model is not very realistic). The electrons in
metals are quantum-mechanical particles, which form a normal Fermi
liquid. The quantum-mechanical counterpart of equation (7.15) is
written by means of the field operators

ψ(r) =
1√
V

∑
k

cke
ikr , (7.17)

where the second-quantization particle operators (of creation and an-
nihilation) satisfy the commutation (anticommutation) relations[

ck, c
+
k′

]
= δkk′ ,

{
ck, c

+
k′

}
= δkk′ (7.18)
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(and ck, ck′ commute or anticommute), corresponding to Bose and
Fermi statistics, respectively; such that

[ψ(r), ψ+(r′)] = δ(r − r′) ,

{ψ(r), ψ+(r′)} = δ(r− r′) , etc .
(7.19)

The spin label should be introduced, or tacitly accepted, together with
the position r and the wavevector k. The number of particles is given
by

N =

ˆ
dr · ψ+(r)ψ(r) =

∑
k

c+k ck , (7.20)

and the particle density

n(r) =
∑
i

δ(r− ri) (7.21)

becomes
n(r) =

´
dri · ψ+(ri)δ(r − ri)ψ(ri) =

= ψ+(r)ψ(r) = 1
V

∑
q nqe

iqr ,
(7.22)

where the Fourier components

nq =
∑
k

c+k ck+q (7.23)

are called the particle-density fluctuations, for q �= 0. The hamilto-
nian given by equation (7.15) is written as

H =
´
dr · ψ+

α (r)(p
2/2m)ψα(r)+

+ 1
2

´
drdr′ · ψ+

α (r)ψ
+
β (r

′)vαβ(r − r′)ψβ(r
′)ψα(r) ,

(7.24)

where p = −i�∂/∂r and the spin labels have been written explicitly;
summations over these labels are included. The potential may, in
general, depend on the spin, with the natural symmetry properties; for
instance, for one-half spin fermions the potential can be represented
as vαβ = v + αβ · u, where α, β = ±1. It is worth noting that the
interaction can also be written as

U =
1

2

ˆ
drdr′ · vαβ(r− r′)nα(r)nβ(r

′)− 1

2
vαα(r = 0)Nα , (7.25)
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where the self-interaction is (redundantly) introduced; we agree to
ignore it, occasionally, and use equation (7.25) as a more convenient
form. Without spin labels the kinetic energy can also be written as

K =
∑
k

εkc
+
k ck , (7.26)

where εk = �
2k2/2m, while the interaction can be represented as

U = 1
2V

∑
kk′q v(q)c

+
k+qc

+
k′−qck′ck =

= 1
2V

∑
q v(q)nqn−q − 1

2v(r = 0)N ,
(7.27)

where the self-interaction has been written again. All this formalism
being set up, one can continue now with the normal fermions (in three
dimensions). Similar considerations hold also for bosons, care being
taken of their distinct statistics, and of their condensed ground-state.

Assuming that the perturbation condition given by equation (7.14) is
satisfied, i.e. the interaction is weak and short-ranged, one may take
the average of the hamiltonian given, for instance, by equations (7.26)
and (7.27) over the fermion ground-state, leading to the ground-state
energy

E =
∑

kα εknkα+

+ 1
2V

∑
kk′αβ

[
vαβ(0)− vαα(k− k′)δαβ

]
nkαnk′β ,

(7.28)

where nkα is the fermion occupancy, and the explicit summation over
the spin labels is restored. This is the Hartree-Fock approximation,
the first interacting term being the Hartree (or direct) contribution,
while the second one is the Fock contribution; obviously, the latter
is due to the exchange effects.8 The equation of motion can also be

8D. R. Hartree, "The wave mechanics of an atom with a non-Coulomb central
field. Part I. Theory and methods, Part II. Some results and discussion",
Proc. Cambr. Phil. Soc. 24 89, 111 (1928); V. Fock, "Naherungsmethode
zur Losung des quantenmechanischen Mehrkorperproblems", Z. Phys. 61 126
(1930).
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written for a one-particle state described by c+kα, and by averaging
again over the ground-state one obtains

εHF
kα c+kα = εkc

+
kα+

+ 1
V

∑
k′β

[
vαβ(0)− vαα(k− k′)δαβ

]
nk′βc

+
kα ,

(7.29)

where εHF
kα may be seen as the single-state energy. The same energy

can be obtained by taking the variation of the average of the hamilto-
nian (7.15) over the antisymmetrized wavefunction Aϕ1(r1)ϕ2(r2)...,
where the ϕ-labels denote the one-particle states (this wavefunction is
sometimes called a Slater determinant, A stands for antisymmetriza-
tion); we get

− �
2

2mΔϕkα+

+
∑

k′β [(ϕk′β , vαβϕk′β)ϕkα − δαβ (ϕk′α, vααϕkα)ϕk′α] =

= εHF
kα ϕkα ,

(7.30)

which are called the Hartree-Fock equations; obviously, they are iden-
tical with equations (7.29). The solutions of equation (7.30) are plane
waves, since we start with orthogonal one-particle wavefunctions and
the hamiltonian is translationally invariant. The single-state energies
εHF
kα and the corresponding plane waves do not describe independent

particles; each particle state depends on the whole rest of one-particle
states; for this reason we say that the Hartree-Fock equations describe
self-consistently an interacting mean-field. In particular, the ground-
state energy given by equation (7.28) is not the sum of the one-particle
energies εHF

kα , but, on the contrary, a factor one-half must be intro-
duced in the interacting contribution, in order not to count twice the
same state (this observation is sometimes referred to as Koopman’s
"theorem"). The ground-state energy must be minimal not only under
variations of one-particle wavefunctions, but also under the variations
of the fermion occupancy, with the constraint of a fixed number N of
particles. With the notation

fαβ(k,k
′) = vαβ(0)− vαα(k− k

′)δαβ , (7.31)
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this leads to the variation of

E =
∑

kα εknkα + 1
2V

∑
kk′αβ fαβ(k,k

′)nkαnk′β−

−μ (
∑

kα nkα −N) ,
(7.32)

where μ is the chemical potential, which yields

μ = εk +
1

V

∑
k′β

fαβ(k,k
′)nk′β ; (7.33)

in this equation k is on the Fermi surface, since the small variations
δnkα are localized there. The symmetry of the f -function is used in
deriving equation (7.33). Equation (7.33) is an extremely important
equation; it must be fulfilled together with the conservation of the
number of particles, ∑

kα

nkα = N . (7.34)

In fact, it defines the Fermi surface, and shows, together with equa-
tion (7.34), that both the volume and the shape of the Fermi sea are
preserved, i.e. the Fermi sea is preserved, as expected; this statement
is sometimes known as Luttinger’s "theorem", and, also, μ = ∂E/∂N
(for a change in the Fermi distribution at the Fermi surface) is known
as van Hove’s "theorem". The full variation of E with respect to the
Fermi sea (determined in this way) gives the elementary excitations;
this variation is

δE =
∑

kα εkδnkα + 1
V

∑
kk′αβ fαβ(k,k

′)nkαδnk′β+

+ 1
2V

∑
kk′αβ fαβ(k,k

′)δnkαδnk′β ,
(7.35)

where it is important to remark that the nδn-term vanishes; indeed,
the δn-variations take a particle from below the Fermi surface and
put it above this surface, close to it, the excited states being thus
"orthogonal" to the ground-state. Therefore,

δE =
∑
kα

εkδnkα +
1

2V

∑
kk′αβ

fαβ(k,k
′)δnkαδnk′β , (7.36)
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and the energy of an elementary excitation is

ε̃kα = εk +
1

V

∑
k′β

fαβ(k,k
′)δnk′β ; (7.37)

these are quasiparticles, lying in the vicinity of the Fermi surface (and
having the fermion spin). Thus, we recover Landau’s theory of the
Fermi liquid, the f -function given by equation (7.31) being the scatter-
ing amplitude of this theory (interaction), to the first approximation.
It is worth remarking here the quadratic structure of the quasipar-
ticle energy given by equation (7.36). The quasiparticle elementary
excitation is a particle-hole pair, i.e. a particle excited just above the
Fermi surface and a hole left just below the Fermi surface; however,
the Fermi sea may relax (with an insignificant change in the chemical
potential for high densities), and we are left with a particle above
the Fermi surface. As it is known, while the ordinary sound cannot
propagate as local density oscillations through the ideal gas of quasi-
particles with infinite viscosity at zero temperature, the liquid may
oscillate as a whole through its quasiparticles, which now support a
quasi-classical dynamics; in the sense that their energy, as described
by equation (7.37), depends now both on momentum and position,
the latter through the variations in the Fermi distribution. The tem-
poral changes in the δn-coordinates are described by the energies ε̃kα,
which play the role of the hamiltonian either in the Poisson brackets,
or the Boltzmann equation, or in the quantum commutators; yield-
ing in either case, besides the particle-hole excitations, the collective
oscillations of the zero sound, which is the quantum guise the ordi-
nary sound takes in Fermi liquids at zero temperature. In principle,
these modes add their contribution to energy (and to wavefunctions);
contribution that is, however, insignificant in this case.

For strong, or long-range interactions, the validity condition for the
perturbation scheme expressed by equation (7.14) may not be ful-
filled. While the former case is rather unphysical, the typical example
for the latter is provided by the Coulomb interacting electrons. The
perturbation scheme may not be valid in terms of the original co-
ordinates of the individual particles, but the many-body ensembles
possess additional type of coordinates, called collective coordinates,
which describe the variations of particle density, for instance, and the
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motion of the ensemble as a whole. These collective modes, which
correspond to the zero sound discussed above, and which in the case
of the electrons are called plasmons, screen the long-range interaction,
whose strong effects are spent on the plasmon zero-point oscillations.
The remaining screened potential is short range, and the perturbation
scheme may be valid for it. This particular effect is called the ”ran-
dom phase approximation”;9 obviously, it is not a perturbation effect,
though it can be obtained by perturbation-theory techniques, e.g.,
by summing up a sub-series of perturbations (which, however, is not,
formally, convergent). Basically, the ”random phase approximation”
means the reduction of sums like∑

i

eiqri , (7.38)

where the summation is over all the randomly distributed particles,
to ∑

i

eiqri ∼= Nδq0 ; (7.39)

the approximation is valid for high concentrations, affects the long-
range components of the motion, and has the aspect of a (self-consistent)
mean-field, since it does not depend anymore on the particle coordi-
nates. A derivation of the (static) random phase approximation for
fermions can be obtained in the following manner. Suppose that when
the interaction is switched on, the particle density changes from n0 to
n by the amount δn; the corresponding change in the kinetic energy
is

δK =

ˆ
dr · μδn , (7.40)

where μ is the chemical potential. According to the random phase
approximation, this change may be written as

μδnα = (3/2)nαδεα , (7.41)

since μ ∼ ε ∼ k2F and n ∼ k3F ; noteworthy, nα in equation (7.41) is
half the concentration, and, though not very relevant, the spin labels
9D. Bohm and D. Pines, "A collective description of electron interactions: III.

Coulomb interactions in a degenerate electron gas", Phys. Rev. 92 609 (1953);
D. Pines, "A collective description of electron interactions: IV. Electron inter-
action in metals", Phys. Rev. 92 626 (1953).
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are introduced. The change in the kinetic energy corresponds to a
variation −ϕ of the potential energy (mean-field),

δK =

ˆ
dr · μδn = −ϕ =

ˆ
dr · n0αδεα , (7.42)

where the spin summations are included. The total potential energy

ϕ+ U = ϕ+
1

2

ˆ
drdr′ · vαβ(r− r′)n0α(r)n0β(r

′) (7.43)

should be minimized (the form given by equation (7.25) is used for
interaction, ignoring the self-interaction). The variation of equation
(7.43) leads to

−δεα +

ˆ
dr′ · vαβ(r− r′)n0β(r

′) = 0 ; (7.44)

obviously, the total energy K+δK+ϕ+U = K+U is left unchanged.
Using equation (7.41) we get

− 2μ

3nα
δnα +

ˆ
dr′ · vαβ(r− r′)n0β(r

′) = 0 , (7.45)

or

− 2μ

3nα
δnα +

ˆ
dr′ · vαβ(r− r′) [nβ(r

′)− δnβ(r
′)] = 0 . (7.46)

The two equations above are easily solved for δnα by Fourier trans-
forms; though not very realistic, we assume, for the sake of some gen-
erality, vαβ = v + αβ · u, where α, β = ±1 for one-half spin fermions;
we get

δnqα =
3nα

2μ
vαβ(q)n0qβ =

3nα

2μ
ṽαβ(q)nqβ , (7.47)

where

ṽ(q) =
v(q)

1 + 3nv(q)/2μ
(7.48)

and

ũ(q) =
u(q)

1 + 3nu(q)/2μ
. (7.49)
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Using equation (7.47) the interaction given by equations (7.25) and
(7.27) can be written as

U = 1
2

´
drdr′ · vαβ(r− r′)n0α(r)n0β(r

′) ∼=


 1
2

´
drdr′ · ṽαβ(r− r′)nα(r)nβ(r

′)
(7.50)

(up to the self-interaction), and the Fermi liquid theory can now be
started as before, with the f -function given by

fαβ(k,k
′) = ṽαβ(0)− ṽαα(k− k′)δαβ (7.51)

(in the "jellium" model the direct term ṽαβ(0) is cancelled by the sta-
bilizing background). We can see that the bare potential is replaced
by the screened (or dressed) potential; remarkably, the dressing fac-
tor nv(q)/μ is, practically, the same as the parameter v/(�2/ma2) by
means of which the validity of the perturbation theory is assessed by
equation (7.14). This is why the potential dressing is irrelevant for
weak short-range interaction, while for strong, long-range interaction
the validity of the perturbation theory may remain, in principle, to
be checked for the dressed interaction; for Coulomb interacting elec-
trons it does not hold (it is worth noting that the derivation of the
random phase approximation given above is not perturbational). In
general, higher-order contributions of the perturbation theory, beyond
the Hartree-Fock approximation and random phase approximation,
which imply what is called (interaction) vertex corrections, are not
warranted, because they are associated with self-interaction.10 In ad-
dition, we should note that both the Hartree-Fock approximation and
the random phase approximation preserve the one-particle character
of the theory (they renormalize separately the particles and the in-
teraction), while the vertex corrections affect the particle interaction
and destroy the one-particle nature of the theory. In this context
we should remember that we use sums of separable products of one-
particle wavefunctions (avoiding the entanglement of the wavefunc-
tions); this procedure requires the results to be obtained in terms of
quasiparticles and collective excitations (the latter being associated
with the renormalization of the interaction). Therefore, going further

10M. Apostol, "On the vertex function method in the Tomonaga-Luttinger
model", J. Phys. C16 665 (1983).
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with the perturbation theory, beyond the Hartree-Fock and random
phase approximations, would mean corrections of the order of the
lifetime of the elementary excitations, which is meaningless.11

The Fourier transform of the Coulomb potential (interaction) is v(q) =
4πe2/q2, where e is the electron charge; we assume u = 0 (spin-
independent interaction). Then,

ṽ(q) =
4πe2

q2 + 4πe2(3n/2μ)
; (7.52)

the quantity qTF given by q2TF = 4πe2(3n/2μ) is known as the Thomas-
Fermi vector (parameter); the Fourier transform of equation (7.52)
gives a screened Coulomb potential 4πe2e−qTF r/r. The change δμ in
the chemical potential due to a slight spatial imbalance δn(r) in the
particle concentration is δμ = vF δpF = (π2

�
3vF /p

2
F )δn (the total spa-

tial variation of the Fermi distribution vanishes, such that the quasi-
particle interaction does not contribute to this change); this change
equals the potential energy −eϕ, which must satisfy the Poisson equa-
tion k2ϕ = 4πe+4πeδn = 4πe−(4e2p2F /π�

3vF )ϕ; hence, the Thomas-
Fermi (Debye) screening of the Coulomb potential. Making use of the
concentration n = k3F /3π

2 = 1/a3 and the chemical potential (Fermi
energy) μ = �

2k2F /2m, where kF is the Fermi wavevector and a is
the mean inter-particle separation distance, we get qTF 
 2/

√
aaH ,

where aH = �
2/me2 
 0.53Å is the Bohr radius (� 
 10−27erg · s,

m 
 10−27g, e = −4.8×10−10esu). The separation distance a for elec-
trons in metals is of the order aH (concentration 
 1022− 1023cm−3);
therefore, qTF is of the order kF in this case. According to equation
(7.51), the exchange effects introduce a spin-dependent interaction.
For parallel spins, except for a small region where k 
 k

′

(an effect
known as the "exchange hole"12), the function f given by equation
(7.51) is of the order f 
 4πe2/k2F , i.e. the same order of the function
f for antiparallel spins. We can see that the "dressed" spin effect
is small; on the other hand, according to equations (7.7) and (7.37),
a constant function f (independent of the point on the Fermi sur-
face), gives a vanishing contribution to the quasiparticles, since δn is
11M. Apostol, Electron Liquid, apoma, Magurele (2000).
12J. C. Slater, Quantum Theory of Molecules and Solids, vol.1, Electronic Struc-

ture of Molecules, McGraw-Hill, NY (1963); "The electronic structure of met-
als", Revs. Mod. Phys. 6 209 (1934).
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of the form δ
′

(ε− μ) (particle-hole excitations). We can say that the
screening of the long-range Coulomb potential, due to the long-range
collective effects, provides a screened, short-range potential with small
effects on the quasiparticles.

As we can see from equation (7.52), the screening is effective for q → 0:
the long-range interactions reduce the electron interactions to a short-
range potential. In the opposite limit q → ∞ the potential ṽ(q) re-
mains unscreened, i.e. the short-range interactions do not affect the
long-range potential. Apart from variations δnk = δ(c+k ck) of the
fermion occupancy in the neighbourhood of the Fermi surface, which
may be called individual (or quasiparticle) variations, because they
are independent of one another, there exist other variations, of the
form nq =

∑
k ckck+q (equation (7.23)), where the summation is car-

ried out in the neighbourhood of the Fermi surface and q is small
(q→ 0); these latter variations may be called collective, because they
involve summations over individual particle states. They correspond
to (collective) excitations with energy vFq and interactions given by
equations (7.25) and (7.27) (where nq are the variations of the occu-
pancy, i.e. they are similar with δnk). From equation (7.27) we get
the function fαβ = vαβ(q) for these excitations (where f depends on
k−k

′

= q). The collective excitations are the second type of elemen-
tary excitations in Fermi liquids (and, in general, in condensed matter
ensembles).

The zero-point contribution of the collective modes should be added
to the ground-state energy (and to the wavefunction). A competition
appears between the long-range oscillations of the collective modes
and the short-range contribution of the individual motion of the parti-
cles; this competition may be resolved, in principle, by minimizing the
ground-state energy with respect to this splitting of the total number
of the degrees of freedom between quasiparticles and collective modes.
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7.3 Effective mass

According to Galileo’s principle of relativity the momentum of the
liquid is given by

ˆ
dτ · pn = m

ˆ
dτ · ∂ε

∂p
n ; (7.53)

for a quasiparticle distortion δn we obtain
´
dτ · pδn = m

´
dτ · ∂ε

∂pδn+ m
V

´
dτdτ ′ · ∂f

∂pnδn
′ =

= m
´
dτ · ∂ε

∂pδn− m
V

´
dτdτ ′ · f ∂n′

∂p′
δn ,

(7.54)

or
p

m∗
=

p

m
− g

(2π�)3

ˆ
ds′ · v

′
F

v′F
f(p,p′F ) , (7.55)

where m∗, defined by v =∂ε/∂p = p/m∗, is the quasiparticle mass.
For a spherical Fermi surface

1

m∗
=

1

m
− g

pF
(2π�)3

ˆ
do · cos θ · f , (7.56)

where θ is the angle between pF and p′F , do = sin θdθdϕ and f de-
pends on pF and cos θ (equation (7.8) is used in deriving equation
(7.56)).

Let us calculate the effective mass of the electrons in metals. The
direct term in the function f given by equation (7.51) (ṽ(q = 0)) is a
constant, which does not contribute to the effective mass. We are left
with the exchange term

fσσ′ = − 4πe2

|k− k′|2 + q2TF

δσσ′ , (7.57)

which gives

m∗ = m

{
1 +

1

πaHkF

[
2 +

(
1 +

q2TF

2k2F

)
ln

q2TF /2k
2
F

2 + q2TF /2k
2
F

]}
, (7.58)

where aH = �
2/me2 is the Bohr radius; for the electron concentra-

tions in metals the correction brought by the Coulomb interaction to
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the electron mass is very small. If the term q2TF is neglected in the
denominator of the function fσσ′ and the integration is performed for
|k− k′| > kc, where kc is a wavevector cut-off, we get

m∗ = m

{
1 +

1

πaHkF

[
1− β2/4 + ln(β/2)

]}
, (7.59)

where β = kc/kF . For electrons at metallic concentrations β 

1 from the minimum of the ground-state energy (zero-point plas-
mon contribution included), such that the electron mass is practi-
cally left undressed (sometimes, the separation between quasiparticles
and plasmons is not complete, and an electron-plasmon coupling may
arise, which brings a very small contribution to the electron effective
mass).13

7.4 Zero sound

A displacement field u generates a volume change δV = V divu; for
sound, which is adiabatic, this implies a potential energy per unit vol-
ume −(1/2V )(∂p/∂V )(δV )2, which obviously implies the (adiabatic)
compressibility κ = −(1/V )(∂V/∂p), where p denotes the pressure;
this energy can further be written as (ρ/2)(∂p/∂ρ)(divu)2, where
ρ = mN/V is the density; the corresponding kinetic energy per unit
volume is ρu̇2/2, so that the sound velocity u is given by

u2 = ∂p/∂ρ = − V 2

mN

∂p

∂V
=

1

ρκ
. (7.60)

Since Ndμ = V dp − SdT , we get for vanishing temperatures (where
there is no need to distinguish between adiabatic and isothermal com-
pressibility)

u2 = −V

m

∂μ

∂V
=

N

m

∂μ

∂N
, (7.61)

13D. Bohm and D. Pines, "A collective description of electron interactions: III.
Coulomb interactions in a degenerate electron gas", Phys. Rev. 92 609 (1953);
D. Pines, "A collective description of electron interactions: IV. Electron inter-
action in metals", Phys. Rev. 92 626 (1953).
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where we use the fact that the chemical potential μ depends only on
the concentration N/V . This equation may serve to determine the
chemical potential. Now,

δμ =
∂ε

∂pF
δpF +

1

V

ˆ
dτ ′ · fδn′ , (7.62)

which agrees with equation (7.10), and where the effective mass m∗

should be used (because it is a local change in the density); it is also
worth remarking that the changes associated with the compressibility
amount, naturally, to changes in the distribution at the Fermi sur-
face. The first term in the right-hand side of equation (7.62) gives[
(2π�)3/4πgVm∗pF

]
δN for an isotropic Fermi sea; the second term

gives
[
(1/4πV )

´
do′ · f] δN , such that

u2 =
p2F

3mm∗
+

N

4πmV

ˆ
do′ · f(pF ,p

′
F ) , (7.63)

or

u2 =
p2F
3m2

+
gp3F

3m(2π�)3

ˆ
do′ · (1− cos θ) f(pF ,p

′
F ) . (7.64)

However, it is worth noting that the sound does not propagate in a
Fermi liquid at vanishing temperatures, as a consequence of its total
absorption by the particle-hole excitations; this is called the quasipar-
ticle damping of the sound. Indeed, the absorption coefficient of the
sound is defined as γ ∼ 1/ωτs ∼ λ/l, where ω is the sound frequency,
λ is its wavelength, τs is the sound lifetime and l is the mean freepath
of the sound; by definition l is proportional to the viscosity. For
ωτ 	 1, where τ is the quasiparticle lifetime, the frequency is so low
that only the temperature effects govern the quasiparticles lifetime;
consequently, the absorption rate is γ ∼ ω2/T 2 (since, by using its
probabilistic nature, τs ∼ (1/ω) (1/ωτ) (1/ω), where a characteristic
frequency due to the interaction processes appears in the last factor);
hence, the sound cannot be propagated at vanishing temperatures,
where the viscosity of the quasiparticles is infinite. For ωτ � 1 the
thermal effects are negligible, and the absorption rate goes, obviously,
like γ ∼ ω2.14 A minimum of γ appears evidently in-between, of the
14I. Pomeranchuk, "On the theory of liquid He3", ZhETF 20 919 (1950) (in

Russian); L. Landau, "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5 101
(1057) (ZhETF 32 59 (1957)).
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order of γ ∼ T 2, which shows that a certain sound-type disturbance
can be propagated even at vanishing temperature; obviously, this is
nothing but a local perturbation in the quasiparticles density, i.e. a
space-time perturbation of the Fermi distribution; this perturbation
is called zero sound, in order to distinguish it from the ordinary, first,
sound (and to distinguish it from the second sound which may prop-
agate in superfluids; or in the phonon gas). The zero sound (like the
superfluid sound u) is, in fact, ordinary sound propagating in the con-
text of interaction and at low temperatures, i.e. the guise which the
ordinary sound takes in quantum liquids.

The slight space-time changes in the particle distribution are described
by the kinetic (Boltzmann) equation

∂n

∂t
+

∂n

∂r

∂ε

∂p
− ∂n

∂p

∂ε

∂r
= 0 , (7.65)

where the collision rate of the quasiparticles is too low to be kept in
the right-hand side; and obviously the motion must satisfy ωτ � 1,
as being the motion of the quasiparticles. For n = n0 + δn, where n0

is the unperturbed Fermi distribution and δn is an ω, k-wave, we get

(ω − pk/m∗) δn = pk
gpF

(2π�)3

ˆ
do′ · fδn′ , (7.66)

for a spherical Fermi surface. Noteworthy, the changes in the distri-
bution are localized at the Fermi surface. This is a typical equation
describing the self-consistent effects of interacting particles (and, in a
different form, it is called the Bethe-Salpeter equation). In principle,
the f -function may depend on spin, too, in which cases spin summa-
tions are included in the g factor. First, the equation is solved for the
spin dependence of the change δn, the solution describing thus both
particle- and spin-density waves. Thereafter, it is easy to see that we
should use the scattering amplitude corresponding to the collective
excitations, because δn in equation (7.66) is a density variation; this
scattering amplitude is f = v(q), q → 0; we denote it by f(0) (spin
effects can be included). Under these circumstances equation (7.66)
amounts to

2π2
�
3

gm∗pF f(0)
=

1

2

ˆ
dθ · sin θ cos θ

s− cos θ
, (7.67)
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where s = ω/vFk; the integral is −1−(s/2) ln |(s− 1)/(s+ 1)| (which,
sometimes, is called the Lindhard function); equation (7.67) has so-
lution only for f(0) > 0, which amounts to repulsive interaction, and
for s = ω/vFk > 1; the latter condition ensures the absence of the
excitation processes for the quasiparticles, i.e. the existence of the
quasiparticles that propagate the zero sound. For small values of the
left-hand side the solution is obtained for s → ∞, where the integral
goes like 1/3s2; we get

ω =

[
2

gm∗
N

V
f(0)k2

]1/2
. (7.68)

The result given by equation (7.68) is particularly relevant for inter-
acting electrons (g = 2), where f(0) = 4πe2/k2, i.e. the Fourier
transform of the Coulomb potential; indeed, in the long wavelength
limit k → 0 this is a strong coupling, and the corresponding frequency

ω =

(
4πne2

m

)1/2

(7.69)

is that of the particle-density waves called plasmons (due to the long-
range correlations the bare mass of the electrons is practically left
unchanged).

On the contrary, in the opposite limit of high values of the left-hand
side of equation (7.67) we get the genuine zero sound frequency

ω = vF
{
1 + 2 exp

[−4π2
�
3/gm∗pF f(0)

]}
k , (7.70)

where f(0) = v(0), i.e. the long-wavelength limit of the (short-range)
original particle interaction. Despite the fact that it appears as affect-
ing only one-particle states (and in contrast with the quasiparticles),
the zero sound (as well as the sound in superfluids) is, in fact, gen-
erated by the interaction with the other particles; therefore, they are
collective modes of the liquid motion, like ordinary sound; and like the
plasmons, where the long-range character of the Coulomb interaction
affects all the particles.
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7.5 Paramagnetic susceptibility

The magnetic momentum of an electron is 2βs = βσ, where β =
e�/2mc is the Bohr magneton (2 is the gyromagnetic factor, s = 1/2
is the spin and c is the light velocity). In a magnetic field H its energy
changes by

δεσ = −βσH +
1

(2π�)3

∑
σ′

ˆ
dp′ · fσσ′ δnσ′ ; (7.71)

this change takes place at the Fermi surface, so that

δεσ = −βσH − m∗pF
4π2�3

∑
σ′

ˆ
dθ · sin θfσσ′ δεσ′ , (7.72)

whose solution is
δεσ = −1

2
gβσH , (7.73)

where

g−1 =
1

2

[
1 +

m∗pF
4π2�3

ˆ
dθ · sin θ(fσσ − fσσ)

]
, (7.74)

with σ = −σ. The magnetization is given by

χH = β
(2π�)3

∑
σ

´
dp · σδnσ =

= −βm∗pF

2π2�3

∑
σ σδεσ = β2m∗pF

2π2�3 gH ,

(7.75)

whence the spin susceptibility

χ =
β2m∗pF
2π2�3

g . (7.76)

Making use of equation (7.59) we get

χ 
 β2mpF
π2�3

[
1 +

me2

π�pF
ln(β/2)

]
(7.77)

for electrons. This is called the Pauli paramagnetism15 (the orbital
motion of the electrons gives the Landau diamagnetism, which is mi-
nus one-third of the χ above16).
15W. Pauli, "Uber Gasentartung und Paramagnetismus", Z. Phys. 41 81 (1927).
16L. Landau, "Diamagnetismus der Metalle", Z. Phys. 64 629 (1930)
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7 Fermi Liquid

7.6 Thermodynamics

The number of particles at finite temperatures is given by

N = g
V

(2π�)3

ˆ
dp · n , (7.78)

where n is the Fermi distribution. Let F be given through f by

F = g
V

(2π�)3

ˆ
dp · fn ; (7.79)

according to the properties of the Fermi distribution it may be written
as

F = g V
(2π�)3

´
dsdε
v · fn = g V

(2π�)3

´
dodε · (p2f/v)n =

= g V
(2π�)3

´
do
[´ μ

0
dε · (p2f/v)+ π2T 2

6

(
p2f/v

)′
μ
+ ...

]
=

= F0 + g V
(2π�)3

´
do[(

p2f/v
)
μ0

δμ+ π2T 2

6

(
p2f/v

)′
μ0

+ ...
]

,

(7.80)

where F0 is the quantity F at zero temperature and μ0 is the chemical
potential at zero temperature. For a spherical Fermi surface and the
conserved number of particles one obtains

δμ = −π2T 2m∗/6p2F . (7.81)

The change in energy can be written as

δE = g
V

(2π�)3

ˆ
dp · ε(n− n0) , (7.82)

where n0 denotes the Fermi distribution at zero temperature; by using
equation (7.80) for a spherical Fermi surface one obtains

δE = g
V

12�3
m∗pFT 2 =

π2T 2

2p2F
m∗N ; (7.83)
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7 Fermi Liquid

hence, the entropy

S = g
V

6�3
m∗pFT , (7.84)

the free energy

δF = −g V

12�3
m∗pFT 2 , (7.85)

the heat capacity

C = g
V

6�3
m∗pFT = S ; (7.86)

as well as the change in pressure

δp = g
1

18�3
m∗pFT 2 . (7.87)

The thermodynamic potentials Ω and Φ change by

δΩ = δΦ = δF = −g V

12�3
m∗pFT 2, (7.88)

when expressed in proper variables, i.e. μ instead of N , and p in-
stead of V in δF . Noteworthy, δΩ0 = −Nδμ, such that the total
change in Ω is −(gV/18�3)m∗pFT 2 = −2δE/3 = −δ(pV ) = −V δp.
Similarly, the change in Φ0 is V δp, which together with equation
(7.87) lead to a total change −(gV/36�3)m∗pFT 2 = δ(μN) = Nδμ
in Φ. From equation (7.87) one can see easily that Cp − Cv ∼ T 3

(as expected from S ∼ T ); therefore, there is no need to distinguish
between the two heat capacities (in particular, the zero sound con-
tributes insignificantly to the thermodynamic properties). By using
again equation (7.87) one finds the coefficient of thermal expansion
(1/V )(∂V/∂T )p = −(gT/6V �

3)∂(m∗pF )/∂p, with ∂Φ/∂p = V ; one
can see that its ratio to the heat capacity is independent of tempera-
ture (this is knwon as Gruneisen’s law).

We note here dimensionality effects in fermion thermodynamics. For
instance, the quantization along the transverse direction in a slab with
thickness d introduces a series of discrete levels, with a characteris-
tic energy �

2/md2. Consequently, a crossover temperature appears
and an Euler-Maclaurin formula is used to estimate surface effects in
thermodynamic quantities.17 Also, the thermodynamics of fermions
17M. Apostol, "Fermions in a slab", J. Theor. Phys. 18 (1996); "Specific heat of

charged fermions in magnetic field", J. Theor. Phys. 16 (1996).
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7 Fermi Liquid

in two dimensions is the same as the thermodynamics of bosons in
two dimensions.18

Liquid He3, under normal pressure, has a Fermi wavevector pF /� ∼
0.8Å−1 (from density), an effective mass m∗ ∼ 2.4m (from the heat
capacity), and a sound velocity u ∼ 190m/s (from compressibility).

The Landau theory of the Fermi liquid is described by Abrikosov and
Khalatnikov;19 the spin diffusion in He3 is discussed by Hone.20

18M. Apostol, "Dimensionality effects in the ideal Fermi and Bose gases", Phys.
Rev. E56 4854 (1997).

19A. A. Abrikosov and I. M. Khalatnikov, "The theory of a Fermi liquid (the
properties of He3 at low temperatures", Reps. Progr. Phys. 22 329 (1959).

20D. Hone, "Self-diffusion in He3", Phys. Rev. 121 669 (1961).
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8 Electron Liquid

8.1 Introduction

This chapter is devoted to metals. We have seen in the "Kinetics
of Plasma" chapter that the electrons are correlated with the ions,
such that plasma can acquire a solid phase at sufficiently low electron
temperature (but still high), sufficiently low ion temperature and suf-
ficiently high densities (see Fig. 5.4 - Fig. 5.6). The thermodynamics
of plasma is governed by ion thermodynamics. The plasma solid can
be either classical or quantum-mechanical, with respect to the motion
of the electrons. The individual ionic motion in the solid is quantum-
mechanical (or quasi-classical quantum-mechanical); it is a collective
motion which generates phonons. The classical plasmonic solid is little
investigated. The relatively high electron temperature is transformed
into mechanical motion in the quantum-mechanical solid, where the
electrons are either absorbed into the atoms or form a Fermi sea, or
both. The solid may be crystalline or amorphous, with a mean inter-
atomic distance of the order of a few angstroms, within a range of
temperatures up to a few thousands degrees.

The first question which appears for solids is their cohesion. The
electrons can be transferred, totally or partially, between neighbouring
atoms, giving rise to an ionic solid, where the electrons have a low
mobility, with distortion of the ionic lattice. The electrons can be
shared between neighbouring atoms, giving rise to covalent solids,
like semiconductors. The atoms can be tied together by polarization
forces, like in molecular solids; or they can form a solid by hydrogen
bonds; etc. A special case occurs in metals, where the electrons are
delocalized over all the atoms, giving rise to a Fermi sea; in crystalline
metals they form energy bands (in amorphous solids, like alloys for
instance, the electrons are localized, their mobility is low).
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8 Electron Liquid

8.2 Metallic cohesion

Let us assume a set of N � 1 identical atoms. They may release a
fraction z of their valence electrons, which may acquire a motion over
the whole macroscopic ensemble, thus forming a Fermi sea; on each
delocalized orbital there exists a fraction of electrons, the remaining
electrons being located on atomic orbitals. The delocalized (plane
wave) wavefunction of each state is connected to the atomic orbital
of origin. Therefore, we have a set of N positive ions, each with
charge ze, and a set of zN electrons, each with charge −e (e = 4.8×
10−10esu). The electron density is n = k3F /3π

2 and the Fermi level
is μ = �

2k2F /2m, where m is the electron mass and kF is the Fermi
wavevector (� = 10−27erg · s is Planck’s constant). We assume point
ions placed at positions Ri, i = 1, 2, ...N (label j will also be used for
ionic positions). It is convenient to describe the electrons in terms of
the second-quantization operators ψα(r), ψ∗α(r), where α is the spin
label (β will also be used for spin). The Coulomb interaction energy
is denoted by v.

The Hartree-Fock energy of the ground-state of the ensemble is given
by

E = Ekin + Ee−i + Ee−e,H + Ee−e,F + Ei−i , (8.1)

where

Ekin =
∑
α

ˆ
dr · [ψ∗α(p2/2m)ψα] (8.2)

is the kinetic energy of the electrons,

Ee−i = −ze2
∑
iα

ˆ
drv(r−Ri)[ψ

∗
α(r)ψα(r)] (8.3)

is the electron-ion Coulomb attraction,

Ee−e,H =
1

2
e2
∑
αβ

ˆ
drdr′v(r− r′)[ψ∗α(r)ψα(r)][ψ

∗
β(r

′)ψβ(r
′)] (8.4)

is the Hartree (direct) electron-electron Coulomb repulsion,

Ee−e,F = −1

2
e2
∑
α

ˆ
drdr′v(r−r′)[ψ∗α(r)ψα(r

′)][ψ∗α(r
′)ψα(r)] (8.5)
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is the Fock (exchange) electron-electron Coulomb attraction and

Ei−i =
1

2
z2e2

∑
i�=j

v(Ri −Rj) (8.6)

is the ion-ion Coulomb repulsion. The brackets in the above equations
indicate the mean values over the Fermi sea; p = −i�∂/∂r is the
electron momentum and the electron wavefunctions are plane waves.
It is easy to see that for a uniform Fermi sea the electron-ion and
the Hartree electron-electron energies are infinite. It is convenient to
introduce the Hartree potential

ϕ(r) = ze
∑

i v(r−Ri)− e
∑

α

´
dr′v(r− r′)[ψ∗α(r′)ψα(r

′)] =

= ze
∑

i v(r−Ri)− e
´
dr′v(r− r′)n(r′) ,

(8.7)
where

n(r) =
∑
α

[ψ∗α(r)ψα(r)] (8.8)

is the electron density (averaged over the Fermi sea). The potential
ϕ(r) consists of two parts; an ion (core) potential

ϕc(r) = ze
∑
i

v(r−Ri) (8.9)

and an electron potential

ϕe(r) = −e
ˆ

dr′v(r− r′)n(r′) ; (8.10)

the electron-ion and Hartree electron-electron energies can be written
as

Ee−i + Ee−e,H = − 1
2e
´
drϕe(r)n(r) − e

´
drϕc(r)n(r) =

= − 1
2e
´
dr[ϕ(r) + ϕc(r)]n(r) .

(8.11)

By definition, the potential ϕ satisfies the Poisson equation

Δϕ = −4πez
∑
i

δ(r −Ri) + 4πen(r) ; (8.12)
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8 Electron Liquid

the equilibrium of the ions-electrons ensemble requires

μ(r)− eϕ(r) = 0 . (8.13)

Equation (8.13) shows that the chemical potential μ should be non-
uniform (equation (8.13) reflects the vanishing of the total chemical
potential). Since μ depends on the electron density ( μ = �

2k2F /2m
and n = k3F /3π

2), it follows that the electron density and the Fermi
wavevector kF depend on position; moreover, equation (8.13) estab-
lishes a connection between the electron density n and the potential
ϕ, which allows a solution of the Poisson equation (8.12) and gives
the theory a self-consistent character. The connection between n and
ϕ is n = (2meϕ/�2)3/2. This way, we get the Thomas-Fermi model.1

However, if we use the 3/2-power dependence n ∼ ϕ3/2, we preserve
the free-electron character of the Fermi sea in the context where the
electron density has an abrupt variation in the vicinity of the ions
(where the potential goes like ϕ ∼ 1/r); in those regions the electron
wavefunctions cannot be viewed as having a delocalized plane-wave
shape. The 3/2-Thomas-Fermi model does not provide an ion-electron
binding, as a consequence of the fact that the electrons are excessively
accumulated on the ions. This is known as the "no-binding" theorem.2

In order to allow for the relaxation of the Fermi sea we should ad-
mit that the electron wavefunctions have a quasi-classical character,
implying slight spatial variations, which leads to using a linear ap-
proximation of the type μ = (�2kF /2m)kF , n = (k

2

F /3π
2)kF and

n =
q2

4πe
ϕ , q2 =

8me2kF
3π�2

=
8kF
3πaH

, (8.14)

1L. H. Thomas, "The calculation of atomic fields", Proc. Cambr. Phil. Soc. 23

542 (1927); E. Fermi, "Un metodo statistico per la determinazione di alcune
proprieta dell’atomo", Rend. Accad. Naz. Lincei 6 602 (1927); E. Fermi,
"Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms
und ihre Anwendung auf die Theorie des periodischen Systems der Elemente",
Z. Phys. 48 73 (1928); P. Gombas, Die Statistische Theorie des Atoms und

ihre Anwendungen, Springer, Berlin (1949).
2E. Teller, "On the stability of molecules in the Thomas-Fermi theory", Revs.

Mod. Phys. 34 627 (1962); N. Balazs, "Formation of stable atoms within the
statistical theory of atoms", Phys. Rev. 156 42 (1967); see also L. Spruch,
"Pedagogical notes on Thomas-Fermi theory (and on some improvements):
atoms, stars and the stability of bulk matter", Revs. Mod. Phys. 63 151
(1991).
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where q2 and the mean Fermi wavevector kF should be treated as
variational parameters;3 aH = �

2/me2 is the Bohr radius. Making
use of this procedure, the Poisson equation (8.12) becomes

Δϕ = −4πez
∑
i

δ(r−Ri) + q2ϕ , (8.15)

whose solution is the screened Coulomb potential

ϕ(r) = ez
∑
i

e−q|r−Ri|

|r−Ri| . (8.16)

We can see that the linearized Thomas-Fermi theory leads to a dis-
torted (and non-uniform) Fermi sea, which is the result of a random
phase approximation (compare with the "Fermi Liquid" chapter); in-
deed, the Fourier transform of equation (8.15) is

ϕ(k) =
∑
i

4πez

k2 + q2
e−ikRi ; (8.17)

the screening length 1/q = (3πaH/8kF )
1/2 is similar with the Debye-

Huckel screening length λ = a(aT/4πe2)1/2, where T is the tempera-
ture and a is the mean inter-electron separation distance (n 
 1/a3,
kF 
 1/a). We note that the delocalization of the electrons and the
existence of the Fermi sea imply that the solid is a metal.

Having known the potential ϕ(r) we can compute the energy

Ee−i + Ee−e,H = − q2

8π

ˆ
dr(ϕ+ ϕc)ϕ (8.18)

given by equation (8.11); the integrals in equation (8.18) are two-
centre integrals; they can be effected by using the elliptic coordinates

|r−Ri| = 1
2Rij(λ + μ) , |r−Rj| = 1

2Rij(λ − μ) ,

dr =
(
1
2Rij

)3
(λ2 − μ2)dλdμdϕ ,

(8.19)

3L. C. Cune and M. Apostol, "Ground-state energy and geometric magic numbers
for homo-atomic metallic clusters", Phys. Lett. A273 117 (2000).

207

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use
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where Rij = |Ri −Rj | and 1 < λ < ∞, −1 < μ < +1, 0 < ϕ < 2π.4

Adding the ion-ion energy Ei−i (equation (8.6)), we get the potential
energy

Epot = Ee−i + Ee−e,H + Ei−i =

= − qz2e2

4

[
3N +

∑
i�=j

(
1− 2

q|Ri−Rj|
)
e−q|Ri−Rj |

]
.

(8.20)

We can see that the ions acquire a self-energy (∼ N) and interact
through the potentials

Φij = −1

2
qz2e2

(
1− 2

q |Ri −Rj |
)
e−q|Ri−Rj | (8.21)

which are repulsive for short distances, attractive for long distances,
and have a minimum value for q |Ri −Rj | = 2.73; these are, in fact,
pseudo-potentials, which are valid for distances close to equilibrium.

The minimization of the configurational energy Econf = 1
2

∑
i�=j Φij

with respect to the parameters xi = qRi gives the equilibrium con-
figuration of the ion-electron ensemble. This is done (numerically)
for metallic clusters with a number of ions up to N = 800.5 The
(meta-) stable configurations exhibit many isomers, separated from
the ground-state by very small energies (of the order meV ; 1eV =
1.6×10−12erg = 1.1×104K); for some magic numbers N the ground-
state is well defined. The crystalline macroscopic configuration with
translational symmetry is an open problem in the thermodynamic
limit; at the centre of the cluster with N = 800 ions (a large clus-
ter) an incipient ordered region can be seen. The vibration spectra
(frequency ω) can also be calculated, by det(ω2Mδijδαβ −Dαβ

ij ) = 0,

where M is the ion mass and Dαβ
ij = ∂2Econf/∂Xiα∂Xjβ , α, β being

labels for the cartesian coordinates Xiα, Xjβ of the position vectors
Ri,j (the derivatives being taken at the equilibrium positions). At
equilibrium the potential energy has the form −Bq, where the co-
efficient B does not depend on q; for a uniform distribution of ions∑

j Φij = 0, such that we may take B = 3z2e2N/4.

4J. C. Slater, Quantum Theory of Molecules and Solids, vol. 1, Electronic Struc-

ture of Molecules, Mc-Graw-Hill, NY (1963).
5L. C. Cune and M, Apostol, loc. cit.
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In a similar way we compute the kinetic energy (equation (8.2)) and
the exchange energy (equation (8.5)). In the linearized Thomas-Fermi
theory the kinetic energy Ekin = V �

2k5F /10π
2m of the electrons in

volume V becomes

Ekin =
�
2k

4

F

10π2m

´
dr · kF = (3/8)3

π�2a2
Hq6

5me

´
dr · ϕ =

= 27π2

640
z�2a2

H

m Nq4 ;

(8.22)

we denote this energy Ekin = Aq4/4, where A = 27π2z�2a2HN/160m.
The exchange energy6 Ee−e,F = −V e2k4F /4π

3 becomes

Ee−e,F = − e2k
3

F

4π3

´
dr · kF =

= − 9eaHq4

128π

´
dr · ϕ = − 9

32ze
2aHNq2 ;

(8.23)

we denote Ee−e,F = −Cq2, where C = 9ze2aHN/32.
From equations (8.3) and (8.4) we can see that Ee−i and Ee−e,H are
functionals of the electron density n(r); also, for slight spatial varia-
tions the kinetic energy is a functional of density; but the exchange en-
ergy (equation (8.5)) implies a delocalized interaction. Consequently,
the variations of the parameter q, which govern the variations of the
electron density should be taken only in the energy

Ekin + Epot = Aq4/4−Bq ; (8.24)

this energy has a minimum

Ekin + Epot = − 3
4B(B/A)1/3 = − 3

4Bq =

= − 3
8 (15z/π

2)1/3(z2e2N/aH) 
 −0.43z7/3(e2N/aH)
(8.25)

for

q = (B/A)1/3 = (40z/9π2)1/3
1

aH

 0.77

z1/3

aH
(8.26)

(Ekin = − 1
4Epot); the total energy is obtained by adding the exchange

energy

Ee−e,F = −1

8
(15z/π2)2/3(ze2N/aH) 
 −0.16z5/3(e2N/aH) (8.27)

6M. Apostol, Electron Liquid, apoma, Magurele (2000).
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(computed at equilibrium value of the parameter q). Using a mean
value xij = qRij = 2.73 we get a mean ion-ion separation distance
Rij = a = (2.73/0.77z1/3)aH . We can see that the linearized Thomas-
Fermi theory provides the binding of the ion-electron ensemble.

It is worth estimating the errors involved in the computation scheme
given above. If we separate an ion placed at Ri = 0 and view the
others uniformly distributed, we can write the potential ϕ given by
equation (8.16) as

ϕ = ez
e−qr

r
+ ez

4π

a3q2
, (8.28)

where a = Rij is the mean ion-ion separation distance; we can see
that the potential has a uniform part (which can be used to estimate
the deviation of the average Fermi wavevector from the parameter kF
derived here by variational calculus). Since we have assumed slight
spatial variations of the electron density, it is this uniform part which
brings the main contribution to the electron dynamics. The abrupt
part eze−qr/r of the potential in equation (8.28) may be viewed as a
correction; an estimation of this correction is

1

a3

ˆ
r<a

ez
e−qr

r
=

4πez

a3q2
[
1− (1 + aq)e−qa

]
; (8.29)

this contribution should be compared with the uniform part 4πez/a3q2;
we get the correction (aq+1)e−qa, which, for q given by equation (8.26)
and a given above (aq = 2.73) is 
 24%. Such corrections (which
may be called quantum-mechanical corrections to the quasi-classical
description) can be included in the numerical results by solving the
Hartree-Fock equations

− �
2

2mΔψα − eϕψα−

−e2∑β

´
dr′ · 1

|r−r′|ψ
∗
β(r

′)ψβ(r) · ψα(r
′) = εαψα ;

(8.30)

it is convenient to estimate the Hartree and Fock (exchange) correc-
tions to the ground-state energy, arising from the abrupt part of the
potential ϕ and the Coulomb potential in the vicinity of an ion; these
corrections are additional contributions to the main results obtained
above; they preserve the Fermi-sea picture for the electrons, with a
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slightly modified q and an additional contribution to the exchange
energy. Since such corrections are of the order of ϕ in the neighbour-
hood of an ion (24%), once included, we may say that we have an error
(0.24)2, i.e. 6%. Since such an error arises from higher-order terms
in the perturbation theory (second-order), it is comparable with the
quasiparticle lifetime; this is the accuracy limit of the theory of the
electron liquid.

The estimation of the errors of the abrupt variation of the poten-
tial in the neighbourhood of an ion is similar with the same proce-
dure in the linearized Thomas-Fermi theory for heavy atoms.7 The
3/2-Thomas-Fermi model has been originally applied to heavy atoms,
where it overestimates the atomic binding energy (due to the excess
of electrons localized on the atomic nucleus). The linearized Thomas-
Fermi theory gives the correct atomic binding energy, the so-called
quantum-mechanical corrections (discussed above) included. More-
over, it provides a means of estimating the fraction z of the valence
electrons participating in the metallic binding. Indeed, the screened
potential in a heavy atom is ϕ = eZe−qr/r, where Z is the atomic
number and q = 0.85Z1/3/aH ; the electron density is n = q2ϕ/4πe,
such that the fraction of the released electrons is

α =
1

Z

ˆ
r<R

drn =
q2

4π

ˆ
r<R

dr
e−qr

r
= (1 + qR)e−qR , (8.31)

where R is the atomic radius R 
 aH . The number of released elec-
trons is z = αz0, where z0 is the nominal valency; for instance, we
get z = 0.57 for iron (Fe, Z = 26, z0 = 2). The fractional valency is
relevant for other electronic and magnetic properties of metals.8

8.3 Metals

According to the above discussion the energy of a metallic solid is

E = Ekin + Epot + Econf + Ee−e,F , (8.32)

7M. Apostol, "Giant dipole oscillations and ionization of heavy atoms by intense
electromagnetic fields", Roum. Reps. Phys. 67 837 (2015).

8M. Apostol, Electron Liquid, apoma, Magurele (2000).
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8 Electron Liquid

where

Ekin =
1

4
Aq4 , A =

27π2

160
z
�
2a2H
m

N (8.33)

is the kinetic energy of the electrons,

Epot = −Bq , B =
3

4
z2e2N (8.34)

is the potential energy (Ee−i + Ee−e,H + Ei−i), of the electron-ion
ensemble,

Econf = 1
2

∑
i�=j Φij = q

∑
i�=j F (qRij) ,

F (qRij) = − 1
4z

2e2
(
1− 2

q|Ri−Rj |
)
e−q|Ri−Rj|

(8.35)

is the potential energy of the ion configuration and

Ee−e,F = −Cq2 , C =
9

32
ze2aHN (8.36)

is the electron exchange energy. The configurational equilibrium is
realized for definite values of the parameters qRij , whose mean value
is c = qa (c = 2.73 for the minimum of the potentials Φij) and the
minimum of the energy Ekin + Epot is realized for q = (B/A)1/3 =
0.77z1/3/aH (a is the mean value of the inter-ionic distance Rij); the
minimum values are Ekin+Epot = 0.43z7/3(e2N/aH) (i.e.,− 3

4Bq) and
Ee−e,F = −0.16z5/3. We may limit ourselves to the nearest neigh-
bours g in the configuration energy, which becomes

Econf = −1

4
qNz2e2gf(qa) , f(x) =

(
1− 2

x

)
e−x ; (8.37)

the configuration energy at equilibrium is small in comparison with
the other energies, such that we may neglect it. Leaving aside the
configuration energy we get the total energy

E = −3

4
Bq − Cq2 . (8.38)

The ion-electron ensemble looks like a "Wigner metal", i.e. a col-
lection of "quasi-atoms", consisting of electric charges in equilibrium,
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8 Electron Liquid

with a self-energy and slightly interacting with one another; it is a
model of a "universal" metal, based upon the screened Coulomb in-
teraction.9 Equation (8.32) gives reasonable values for the binding
energy of metals; for instance, for Fe (zFe = 0.57) we get a binding
energy per atom E(Fe)/N 
 −5eV .

A displacement field u generates a volume change δV = V divu; this
implies a potential energy per unit volume −(1/2V )(∂p/∂V )(δV )2,
where the compressibility is κ = −(1/V )(∂V/∂p) and p denotes the
pressure; the compressibility κ can be obtained from equation (8.32)
by making use of c = aq. The kinetic energy is MN u̇2/2, where M is
the ion mass; the sound velocity vs is given by

vs = 1/
√
κMn =

=
[
1
A (0.43z∗7/3 ++0.68z∗5/3)

]1/2 · 1.7 · 104m/s ,

(8.39)

where n is the atom concentration and A is the atomic mass; for Fe
(A = 56) we get vs ∼ 1400m/s.

The sound waves contribute a T 4-energy (and T 3-entropy) for low
temperatures T ; the heat capacity is given by the T 3-Debye law, and
there is no need to distinguish between the heat capacity at constant
volume and the heat capacity at constant pressure; also, there is no
need to distinguish between the two compressibilities, at constant tem-
perature and at constant entropy (the sound is an adiabatic process);
in addition, Gruneisen’s law holds, i.e. the ratio of the coefficient of
thermal expansion (1/V )(∂V/∂T )p (at constant pressure) to the spe-
cific heat is independent of temperature;10 similar considerations are
valid at higher temperatures (typically ≥ 10− 100K), where the heat
capacity is constant, according to the Dulong-Petit law.

9E. Wigner and F. Seitz, "On the constitution of metallic sodium", Phys. Rev.
43 804 (1934); "On the constitution of metallic sodium. II", 46 509 (1934);
J. C. Slater, The Calculation of Molecular Orbitals, Wiley, NY (1979); E.
Wigner, "On the interaction of electrons in metals", Phys. Rev. 46 1002
(1934); "Effects of the electron interaction on the energy levels of electrons in
metals", Trans. Faraday Soc. 34 678 (1938).

10E. Gruneisen, "Theorie des festen Zustandes einatomiger Elemente", Ann.
Phys. 344 257 (1912).
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8 Electron Liquid

The general form of the energy

Ekin + Epot + Econf = Aq4/4−Bq + q
∑
i�=j

F (qRij) (8.40)

can be expanded with respect to the (local) variations δq and δRi

around the equilibrium; the δq-variations are related to the changes
in the electron density, while δRi are changes in the ionic positions.
The first-order variation of the energy vanishes at equilibrum, while
the second-order variations give an electron-electron interaction (∼
δq2), an ion-ion interaction (∼ δRα

i δR
β
j , which leads to atomic vi-

brations, α, β being cartesian labels) and an electron-phonon inter-
action (∼ δqδRα

i ). These are elementary excitations, associated with
the density motion (both electronic and atomic). The frequencies of
the atomic motion are computed according to the equations of mo-
tion det(ω2Mδij −Dαβ

ij ) = 0, where M denotes the atomic mass and

Dαβ
ij = ∂2Econf/∂R

α
i ∂R

β
j is the dynamic matrix; typical atomic fre-

quencies are ∼ 10meV. In the limit of long wavelengths these frequen-
cies give the "bare" sound velocity, with typical values of the order
103m/s; equation (8.39) gives the "dressed" sound velocity, renormal-
ized by the electron-phonon interaction (the displacement u of the
sound is related to the variations δRi). Apart from plasmons the
electron-electron contribution (∼ δq2) may bring a small quadratic
correction to the plasmon spectrum; within the linearized Thomas-
Fermi theory this correction is however uncertain, and it merely in-
dicates the range of validity of the plasmon spectrum. Apart from
"dressing" the sound, the electron-phonon interaction brings small
changes of the order of

√
m/M , where m is the electron mass and M

is the atomic mass; it contributes to transport, especially the electron
transport, and gives rise to superconducting instabilities, as well as
to other electron-ions instabilities, like charge-density waves (Peierls-
Frohlich transition) in anisotropic materials (for instance in quasi-one-
dimensional materials).

8.4 Electronic elementary excitations

The electronic elementary excitations of the electron liquid are given
by the second-order variation of the Hartree-Fock energy (equations
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(8.2)-(8.6)); the first-order variation ensures the equilibrium; the
Hartree-Fock functional of electron density preserves the Fermi-sea
picture, with slight spatial variations; higher-order contributions of
the interaction are irrelevant in the quasiparticle picture (they de-
stroy the particle concept, a circumstance included by the quasipar-
ticle picture in the concept of lifetime). The two interaction terms
which contribute to the electronic excitations are the Hartree (direct)
and the Fock (exchange) interactions given by

Ee−e,H = 1
2e

2
∑

αβ

´
drdr′v(r− r′)·

·[ψ∗α(r)ψα(r)][ψ
∗
β(r

′)ψβ(r
′)] ,

Ee−e,F = − 1
2e

2
∑

α

´
drdr′v(r− r′)·

·[ψ∗α(r)ψα(r
′)][ψ∗α(r′)ψα(r)]

(8.41)

(equations (8.4) and (8.5)). The Hartree term leads to two types of
interaction for the excitations. First, for variations of the density
nq =

∑
kα c+kαck+qα the scattering amplitude of the theory of the

normal Fermi liquid is

f(k− k
′

) = e2v(q) , k− k
′

= q , (8.42)

where k, k
′

are in the vicinity of the Fermi surface and q is small
(v(q) = 4π/q2 is the Fourier transform of the Coulomb potential 1/r);
the variations δnq are collective excitations (plasmons). Second, for
q = 0 the Hartree term gives a (direct) contribution

fd(k− k
′

) = e2v(0) , (8.43)

which corresponds to variations of the electron occupancy nk =
=
∑

α c+kαckα; these are the quasiparticles. Similarly, the Fock term
leads to the exchange contribution

fex,αβ(k− k
′

) = −e2v(k − k
′

)δαβ ; (8.44)

therefore, the scattering amplitude of the quasiparticles is

fαβ(k− k
′

) = e2
[
v(0)− v(k− k

′

)δαβ

]
. (8.45)
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8 Electron Liquid

For the Coulomb potential the random phase approximation is nec-
essary in order to get a finite scattering amplitude; it is given in the
"Fermi Liquid" chapter, where the coefficient 3n/2μ must now be
replaced by n/μ (n = k

2

FkF /3π, μ = �
2kFkF /2m); therefore, the

dressed potential

ṽ(q) =
v(q)

1 + e2nv(q)/μ
(8.46)

must be used in equations (8.43)-(8.45). Making use of equation
(8.14), we get

ṽ(q) =
v(q)

1 + v(q)q2/4
=

4π

q2 + q20
, (8.47)

where q = 0.77z1/3/aH and q0 =
√
πq = 1.36z1/3/aH ; we can see that

the Coulomb potential is screened by a wavevector of the order 1/aH ,
where aH is the order of the atomic dimension (this is the Thomas-
Fermi parameter in the linearized Thomas-Fermi theory). The quasi-
particle scattering amplitude becomes

fαβ(k− k
′

) =
4πe2

q20
− 4πe2

(k− k
′)2 + q20

δαβ . (8.48)

8.5 Effective electron mass

The effective electron mass can be computed by the same procedure
as in the "Fermi Liquid" chapter; using the scattering amplitude given
by equation (8.48) (the direct term does not contribute), we get

m∗ = m

{
1 +

1

πaHkF

[
2 +

(
1 +

q20

2k
2

F

)
ln

q20/2k
2

F

2 + q20/2k
2

F

]}
, (8.49)

where kF is replaced by kF in the linearized equations n = k
2

FkF /3π,
μ = �

2kFkF /2m (indeed, making use of equation (8.28), we can see
that the uniform contributions govern the electron dynamics; rigor-
ously speaking, the effective mass depends on position). A similar
estimation of the effective mass can be obtained by neglecting the
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term q20 (i.e., neglecting the plasmon contribution at this level) and
integrating for |k− k′| > kc, where kc is a cut-off wavevector;11 we
get

m∗ = m

{
1 +

1

πaHkF

[
1− β2/4 + ln(β/2)

]}
, (8.50)

where β = kc/kF . For electrons at metallic concentrations β ∼ 1
from the minimum of the ground-state energy (zero-point plasmon
contribution included, the plasmon contribution being re-introduced
at this level). In both cases the effective mass differs little from the
bare mass (sometimes, the separation between quasiparticles and plas-
mons is not complete, and an electron-plasmon coupling may arise,
which brings another, very small, contribution to the electron effective
mass). Since the plasmons are obtained in the long wavelength limit
(q→ 0), their contribution to the energy (zero-point energy) may be
neglected; therefore, equation (8.49) is preferable.

8.6 Electronic properties. Plasmons

The valence atomic orbitals contribute plane waves to the chemical-
bond orbitals, in the first approximation; the occupancy of the plane-
waves orbitals is given by the parameter z. The quantum-mechanical
corrections, brought about by the electron motion in the self-consistent
field ϕ (exchange energy included), modify slightly the plane-waves or-
bitals, and the corresponding single-particle energies; also, they may
split the energy levels, leading to energy bands in crystalline solids.
Each band consists of N twofold degenerate orbitals, each with a
fractional occupancy; they may give electric conductors, or insula-
tors, according to the number of orbitals in the band affected by the
(fractional) electron filling, along one or other direction in space. The
fractional occupancy of the orbitals may be viewed as a "strong renor-
malization", caused by electron-ion interaction.
The fractional occupancy is relevant for the magnetic moment and
Hund’s rule; for instance, an amount of 0.57 spin-paired electrons go
11D. Bohm and D. Pines, "A collective description of electron interactions: III.

Coulomb interactions in a degenerate electron gas", Phys. Rev. 92 609 (1953);
D. Pines, "A collective description of electron interactions: IV. Electron inter-
action in metals", Phys. Rev. 92 626 (1953).
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to the chemical-bond orbitals for Fe, such that 4 + 1.43 electrons are
left in the d6-atomic orbitals; 2× 0.43 electrons get now paired, such
that 4.57 remain unpaired; we may say that the magnetic moment of
atomic-Fe aggregates is 4.57 electron magnetic moments (Bohr mag-
netons μB), μFe = 4.57μB. The uniform part of the potential ϕ given
by equation (8.28) (4πez/a3q2) gives the Fermi level μ = eϕ (equilib-
rium equation (8.13)); the chemical-bond electrons have a vanishing
ionization potential; however, they are only a fraction α of the total
number of electrons, the fraction 1 − α being left in ions (equation
(8.31)); this fraction contributes the atomic ionization potential of
the ion-electron aggregate. On the other hand, the periodicity of the
lattice potential in crystals introduces an additional interaction which
lowers the effective chemical potential μ− eϕ = 0.
The thermodynamics of the electrons in metals is given in the "Fermi
Liquid" chapter; it implies the effective electron mass (the electronic
compressibility and the thermal expansion coefficient are not seen
experimentally, since the electrons cannot be decoupled from ions).
The electronic sound (with velocity u 
 v0F /

√
3, where v0F 
 3z∗2/3 ·

106m/s is the bare Fermi velocity) is immersed in the continuum of
electron-hole excitations, such that it does not exist at low temper-
atures (Landau’s damping). The zero-sound for electrons becomes
plasmons. The quasiparticle lifetime τ is given by

1

τ
=

1

�μ
· (ε− μ)2 + T 2

e(ε−μ)/T + 1
. (8.51)

The Pauli paramagnetic susceptibility is given in the "Fermi Liquid"
chapter; its "renormalization" by interaction is very small. The free
susceptibility is χ = (1/4)g2μ2

Bρ, where g (
 2) is the electronic
gyromagnetic factor and μB (= e�/2mc) is the Bohr magneton (the
Zeeman energy μBH 
 0.67K for a magnetic field H = 1Ts= 104Gs;
1eV
 1.1× 104K
 1.6 · 10−12erg; m 
 10−27g; � 
 10−27erg · s).
The long-wavelength variations of the electron density lead to a van-
ishing first-order variation of the Hartree-Fock energy functional (equa-
tions (8.1)-(8.6)), according to the self-consistent quasi-classical equi-
librium equation (8.13); the second-order variation gives a potential
energy

U =
1

2

ˆ
drdr′ · e2

|r− r′|δn(r)δn(r
′) ; (8.52)
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a displacement field u generates the change δn = −ndivu of the den-
sity n, and a kinetic hamiltonian

T =
1

2

ˆ
dr · nmu̇2 ; (8.53)

hence, we get the plasma frequency ω = (4πne2/m)1/2. The same
result is obtained from the zero-sound, in the "Fermi Liquid" chapter
(the mass renormalization is left aside); typical values are ω ∼ 5eV .
The quasiparticle lifetime restricts the finite-q extension of the plas-
mon spectrum.

8.7 Polarizability and diamagnetic

susceptibility

A uniform and constant external electric field E produces an addi-
tional potential energy eEr, for the electrons and a change δn in the
equilibrium electron density; since

´
δn = 0, the kinetic energy (equa-

tion (8.22)) does not change, while the potential energy (equation
(8.11)) gives

−4πe2

q2
nδn− 1

2
eϕcδn+ eErn = 0 , (8.54)

and

δn =
q2

4πe

ϕ

ϕ+ ϕc/2
Er ; (8.55)

the net change in energy is therefore

δE = − q2

4π

ˆ
dr

(
ϕ

ϕ+ ϕc/2

)2

(Er)
2

; (8.56)

hence we can get the polarizability. For a uniformly distributed ionic
charge Nze in a sphere of radius R, we may use ϕ = 4πze/q2a3

(equation (8.16)) and ϕc = 2πzeR2/a3, where a is the average inter-
ionic distance; the change in energy is δE = −[16/15(aq)2]a2RE2,
and the polarizability χe =

[
8/5π(aq)2

]
a2/R2 (per unit volume); as
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expected, it vanishes for large R. The electric polarization is a surface
contribution, which is not included in the above calculations.

The electrons in a uniform magnetic field H have a diamagnetic energy

δE = − e2

8mc2

∑
α

(H× rα)2 , (8.57)

where the summation extends to all the electrons and c is the light
velocity; hence,

δE = − e2H2

12mc2

∑
α

r2α = − e2H2

12mc2

ˆ
dr · r2n ; (8.58)

with a uniform distribution of ionic charges, we get

δE = − πze2

15ma3c2
R5H2 (8.59)

and the diamagnetic susceptibility

χd = − ze2

10ma3c2
R2 = − z

10

(
e2

�c

)2
R2aH
a3

, (8.60)

where we can see the fine structure constant (e2/�c = 1/137). The
quantum-mechanical motion of the electrons replaces the parameter
R by the mean separation distance between the electrons.

8.8 Electronic thermoconductivity

The kinetic equation
∂n

∂t
+ v

∂n

∂r
= 0 (8.61)

for electrons can also be written as

∂n

∂t
+ vgradT

∂n

∂T
= 0 , (8.62)

where n is the Fermi distribution; we note that the derivative with
respect to the temperature T accounts, in fact, for the quasiparticles,
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such that we may replace the velocity v by the Fermi velocity vF ;
since the variations in equation (8.62) are small, the interaction term
in the energy of the quasiparticles is neglected. The energy density
transported by the quasiparticles along the direction of the gradT is

2

V

∑
p

∂(εn)

∂t
= − 2

V

∑
p

vF gradT
∂(εn)

∂T
, (8.63)

where 2 is the spin factor. Since the transport is performed by quasi-
particles with a finite lifetime τe, much smaller than the transport
time, we may write this equation as

2

V

∑
p

εn = − 2

V

∑
p

τevF gradT
∂(εn)

∂T
. (8.64)

Therefore, the energy flow along an s-direction is given by

∂q
∂t = − 2

V

∑
p τevFs (vF gradT )

∂(εn)
∂T =

= − 2
(2π�)3

´
dpτevFs (vF gradT )

∂(εn)
∂T ,

(8.65)

where q is the heat transported per unit time and unit area along the
direction s; we can see that the energy flows only along the direction
opposite to the direction of the gradient of the velocity, as expected;
we denote this direction by T and write the above equation as

∂q

∂t
=

2

(2π�)3

ˆ
dpτev

2
FT

∂(εn)

∂T
gradT ; (8.66)

therefore, the electronic thermoconductivity is given by

K =
p2F vF
2π2�3

ˆ
dθ sin θ cos2 θ

ˆ
dετe

∂(εn)

∂T
. (8.67)

The quasiparticle lifetime τe is given by equation (8.51) above. At any
finite temperature the main contribution to the excitations is brought
by (ε − μ)2 	 T 2, including the vanishing temperature T −→ 0; it
follows that we may use for τe the approximation given by

1

τe
=

T 2

2�μ
; (8.68)
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we can see that the electronic lifetime and thermoconductivity are in-
finite at T −→ 0. However, various other lifetime mechanisms appear
in this limit, like, for instance, the one generated by the finite size of
the sample12 (leaving aside that at zero temperature the nature of the
electron liquid may be completely changed). This is why we introduce
a cutoff lifetime τ0 and use

τ =
2�μ

T 2 +Θ2
, Θ2 = 2�μ/τ0 (8.69)

for the electronic lifetime (where μ is the chemical potential (Fermi
level)). The thermoconductivity becomes

K = − 2p2
F vFμ

3π2�2

1
T (T 2+Θ2)

´
dε · ε(ε− μ)∂n∂ε =

=
2p2

F vFμ
3π2�2

1
T (T 2+Θ2)

´
dε · (2ε− μ)n .

(8.70)

The integral in equation (8.70) is computed according to13

ˆ
dε · fn =

ˆ μ

0

dε · f +
π2T 2

6
f

′

(μ) + ... (8.71)

(for any function f); we get

K =
2p2F vFμ

9�2
T

T 2 +Θ2
; (8.72)

we can see that the electronic thermoconductivity goes like T at van-
ishing temperatures and 1/T at high temperatures, with a maximum
K 
 p2F vFμ/9�

2Θ for T = Θ. Typically, the electronic thermocon-
ductivity is smaller than the phonon thermoconductivity (except in
the limit T −→ 0 for a perfect solid). Making use of the specific
heat C = mpFT/3�

3 of the electron liquid (leaving aside the effec-
tive mass), we can write K = 1

3CvFΛ, where Λ = 2�vFμ/(T
2 + Θ2)

(
 2�vFμ/T
2) is a mean freepath; for metals at room temperature

12H. B. G. Casimir, "Note on the conduction of heat in crystals", Physica 5 495
(1938).

13L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical

Physics, Elsevier (1980).
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Λ is of the order 10−4cm. This representation of the thermoconduc-
tivity is the same for electrons, phonons and classical gases (it was
suggested by Drude14); it shows that the heat is transported with the
velocity of the quasiparticles reduced by the factor Λ/l, where l is the
length of the sample.

In the "Phonons in Solids" chapter the electron lifetime

1

τe−ph
=

T

�F
, F =

M

m

(
�ωD

μ

)2

(8.73)

caused by the electron-phonon interaction is derived (acoustic phonons).
This lifetime should be combined with τe and τ0 (Matthiessen’s rule);
it leads to an electronic thermoconductivity

K =
2p2F vFμ

9�2
T

T 2 +Θ2 + TΘ1
, Θ1 =

2μ

F
; (8.74)

the electron-phonon interaction decreases the electronic thermocon-
ductivity, as expected. For typical metals the orders of magnitude are
μ 
 104K, �ωD 
 102K, such that F 
 10−100; if the temperature Θ
is controlled by the finite size of the sample, then it is usually smaller
than Θ1, which means that the electron-phonon interaction governs
the electronic thermoconductivity.

8.9 Thermopower

A temperature gradient along an x-direction generates an electric field

E = Q
∂T

∂x
(8.75)

in an electron liquid, where Q is the thermoelectric power. The cor-
responding voltage U is

U = −
ˆ

dx ·E = −
ˆ

dT ·Q = QΔT , (8.76)

14P. Drude, "Zur Elektronentheorie der Metalle", Ann. Phys. 306 566 (1900).
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where ΔT is the difference of temperature. This is known as the See-
beck (or thermoelectric) effect.15 The opposite effect, where an elec-
tric field generates a temperature difference, is known as the Peltier
effect.16 (Similar effects in magnetic field are the Nernst and the
Ettingshausen effects; the generation of an electric polarization by a
temperature difference is called pyroelectricity; a galvanic cell with
electrodes at different temperatures is a thermogalvanic cell).

A local change δT in the temperature gives rise to a change

δnT = − 2
(2π�)3

´
dp · (∂n/∂ε)[(ε− μ)/T ]δT =

= − 1
π2�3

´
dε · (p2/v)(ε− μ)(∂n/∂ε)(δT/T ) ,

(8.77)

in the quasiparticle density, where n denotes the Fermi distribution
(and v stands for the Fermi velocity); the integral in (8.77) can be
estimated straightforwardly (the first derivative of the density of states
(p2/v)′ on the Fermi surface brings the main contribution); we get

δnT =
π2

4
n
TδT

μ2
, (8.78)

where n denotes the electron concentration, μ = p2F /2m is the chemi-
cal potential (Fermi level), and m is the electron mass. The chemical
potential undergoes a change δμ given by

δnμ = − 2

(2π�)3

ˆ
dp · (∂n/∂ε)δμ =

3

2
n
δμ

μ
, (8.79)

in order to preserve the number of electrons. Therefore,

δnT + δnμ = 0 , (8.80)

15Th. J. Seebeck, "Magnetische Polarisation der Metalle und Erze durch
Temperatur-Differenz", Abh. Konig. Akad. Wiss. Berlin 265 (1822); see
also A. Volta, "Nuova memoria sull’elettricita animale”, Annali di Chimica e
Storia Naturale 5 132 (1794).

16J. Ch. A. Peltier, "Nouvelles experiences sur la caloricite des courants elec-
trique", Ann. Chimie & Physique 56 371 (1834); W. Thomson (Lord Kelvin),
"On a mechanical theory of thermoelectric currents", Proc. Roy. Soc. Edin-
burgh 3 91 (1851).
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and

δμ = −π2

6

T

μ
δT . (8.81)

The change δμ in the chemical potential is equivalent with a change
−δμ in the energy levels; therefore, an electric potential U appears,
given by

−eU = −δμ =
π2

6

T

μ
δT , (8.82)

where −e is the electron charge; or

U = −π2

6

T

eμ
δT . (8.83)

This is the origin of the thermoelectric effect; by comparing it with
equation (8.76), we get the thermopower

Q = −π2

6

T

eμ
. (8.84)

It is worth noting that the thermoelectric effect is a second-order
effect in comparison with the thermal conduction, which is a first-
order effect, because both the voltage drop U and the change in the
electron density δnT (therefore the electric flow) are proportional to
the temperature imbalance δT , such that the corresponding electric
energy is proportional to (δT )2; while the energy transported in the
thermal conduction is proportional to δT . The change in energy per
unit volume is

δE = CδT = (π2/2μ)nTδT (8.85)

where C = (π2/2μ)nT is the heat capacity of the electrons (per unit
volume). One can also note that the thermopower does not depend
on the quasiparticle lifetime.

According to equation (8.84), for typical values μ ∼ 1eV= 11.6 · 103K
we get at room temperature a thermopower of a few microvolts per
Kelvin degree. It is worth remarking that the opposite Peltier effect
compensates, during the time, the thermopower and the electric flow
of the Seebeck effect.
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It is worth comparing the thermopower of an electron liquid given
by equation (8.84) with the thermopower of a classical gas of electric
charges given by

Q = −1

e

(
3

2
− μ

T

)
(8.86)

("Transport in Gases" chapter), where μ = 3
2T ln(2π�2/Tma2) (where

m is the particle mass and a is the mean separation distance between
the charges).

8.10 Electrical conductivity, 1

Let an electron liquid be at thermal equilibrium in a macroscopic
sample. A voltage U is applied along the sample, such as to give rise
to a steady, continuous electric flow. Any other flow of energy, as, for
instance, a heat flow, is disregarded.
A quasiparticle with energy ε carries a charge density

−eδn = e2
∂n

∂ε
δU , (8.87)

where −e is the electron charge, n is the Fermi distribution, and δU
is the local voltage. This charge is carried along the x-direction with
the velocity vx, such that the charge flux (charge per unit area) is
given by

e2
∂n

∂ε
· vxτ · δU , (8.88)

where τ is the quasiparticle lifetime. (We recognize here the kinetic
equation). The total electric flow (or current, i.e. charge per unit
area and per unit time) is given by

j = ∂Q
∂t = 2

(2π�)3

´
dp · e2 ∂n

∂ε · v2xτ · ∂U∂x =

= − 2
(2π�)3

´
dp · e2 ∂n

∂ε · v2xτ · E ,

(8.89)

where E is the electric field (and Q is the charge per unit area); hence,
the electrical conductivity

σ = − 2e2

(2π�)3

ˆ
dp · ∂n

∂ε
v2xτ (8.90)
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(in the international system of units it is measured in (C2/m2s)(m/J)
= CA/mJ = A/mV = 1/mΩ, where the ohm-meter Ωm is the unit
for resistivity ρ = 1/σ). Making use of the lifetime given by equation
(8.69) we get the conductivity

σ =
4e2pFμ

2

3π2�2
· 1

T 2 +Θ2
. (8.91)

It is worth noting the residual electrical conductivity at vanishing
temperature

σ0 =
2e2pFμτ0
3π2�3

=
e2nτ0
m

, (8.92)

which can be obtained from the equation of motion mv/τ = −eE).
Using the thermoconductivity K given by equation (8.72) we get the
Wiedemann-Franz law

K

σT
=

π2

3e2
(8.93)

(a universal constant);17 this ratio, denoted by L, is called the Lorenz
number.18

According to equation (8.89), the electric flow through a sample of
transverse area A is given by

I = σU
l A = e2

h

(
A
a2

)
λF

l
Θ2

T 2+Θ2 · U , (8.94)

where a is the mean separation distance between the electrons and λF

is the Fermi wavelength; hence the quanta e2/h of electrical conduc-
tance.19

17R. Franz and G. Wiedemann, "Uber die Warme-Leitungsfahigkeit der Metalle",
Ann. Phys. 165 497 (1853); see also H. A. Lorentz, "The motion of electrons
in metallic bodies. I, II, III", Proc. Acad. Sci. Amst. 7 438, 585, 684
(1905) (with Boltzmann distribution); A. Sommerfeld, "Zur Elektronentheorie
der Metalle auf Grund der Fermischen Statistik", Z. Phys. 47 1 (1928) (with
Fermi statistics; the first paper which derived the specific heat of the electrons).

18L. Lorenz, "Bestimmung der Warmegrade in absoluten Maasse", Ann. Phys.
Chem. 147 429 (1872); "Uber das Leitungsvermogen der Metalle fur Warme
und Elektrizitat", 13 422 (1881); see also A. H. Wilson, The Theory of Metals,
Cambridge University Press, Cambridge (1953).

19M. Apostol, "A new approach to the quantized electrical conductance", Phys.
Lett. A372 5093 (2008).
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If we include the electron-phonon lifetime (equation (8.73)), the con-
ductivity becomes

σ =
4e2pFμ

2

3π2�2
· 1

T 2 +Θ2 + TΘ1
, (8.95)

where Θ1 is given by equation (8.74); the Wiedemann-Franz law is
not affected by the electron-phonon interaction. For T 	 Θ1 and
Θ2 	 TΘ1 we get the Bloch law σ ∼ 1/T .20

Making use of equation (8.87) the electrical conductivity given by
equation (8.90) may also be written as σ = e(δn/δU)vFΛ, where δn
is the change of the quasiparticle concentration, vF is the Fermi veloc-
ity and Λ is the quasielectron mean freepath (Λ = 2�vFμ/(T

2+Θ2+
TΘ1)); it is worth noting that e(δn/δU) is the electric capacitance
(per unit volume). On the other hand, charge dQ = −σ(∂U/∂x)dt
is carried in time dt through the unit area of the cross-section of the
sample, according to equation (8.89); since the total amount of elec-
tric charge per unit area of the cross-section is ΔQ ∼ e(δn/δU)lΔU ,
it follows that e(δn/δU)lΔU = σ(ΔU/l)Δt, where Δt is the time
necessary for this charge to flow through the sample with length l;
making use of σ = e(δn/δU)vFΛ, we get the velocity of the charge
transport l/Δt ∼ vF (Λ/l), i.e. the electric charge is carried with a
velocity much smaller than the Fermi velocity vF (as expected).

The thermopower Q is defined by U = QδT , the electrical conduc-
tivity σ is given by I = σAU/l and the thermoconductivity K is
defined through ∂δE/∂t = KAδT/l; the electric power is therefore
Pe = UI = σQ2A(δT )2/l, and we can see that the thermoelec-
tric effect is indeed a second-order effect, while the caloric power is
Pcal = ∂δE/∂t, i.e. a first-order effect; therefore, we can write the
efficiency quotient as

η =
σT

K
Q2ηC , (8.96)

where ηC = δT/T is the Carnot quotient; the ratio K/σT = L is the
Lorenz number, which is independent of temperature, according to
Wiedemann-Franz law; for ideal conditions L = π2/3e2; on the other
hand, the ideal thermopower is given by Q = −(π2/6e)(T/μ) (for

20F. Bloch, "Zum elektrischen Wiederstandsgesetz bei tiefen Temperaturen", Z.
Phys. 59 208 (1930).
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T/μ 	 1), according to (8.84), so that the efficiency quotient above
becomes η = (π2/12)(T/μ)2ηC . The main part of the heat δE is
carried by thermal conduction, and only the small, second-order part,
is transported by the the electric flow;21 ZT = Q2σT/K is called the
figure of merit of the thermoelectric generators.

8.11 Electrical conductivity, 2

The electric flow j is an electric charge passing across the unit area of
the cross-section in unit time; it is a charge flux per unit time, i.e. a
charge flow; it may be represented as a charge density multiplied by
a velocity. For a steady flow the conservation of the electric charge
requires

div j = 0 ; (8.97)

in addition, the electric field E is such that

curlE = 0 , (8.98)

according to Maxwell’s equations, such that there is an electric po-
tential ϕ, E = −gradϕ. Since both j and E are small enough they are
connected through22

j = σE , (8.99)

where σ is the electrical conductivity, or, in general,

ji = σikEk , (8.100)

where σik is the electrical conductivity tensor (a symmetric tensor);
this is Ohm’s law. Obviously, divE = 0, and Laplace equation Δϕ = 0
holds for a homogeneous conductor, as expected, since there is no
charge in a conductor. At the separation interface between two con-
ductors the normal component of the flow and the tangent component

21M. Apostol, "Generalized theory of thermoelectric figure of merit", J. Appl.
Phys. 104 053704 (2008).

22L. Landau and E. Lifshitz, Course of Theoretical Physics, vol.7, Electrodynamics

of Continuous Media, Elsevier (1995).
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of the electric field are continuous,

jn1 = σ1En1 = jn2 = σ2En2 ,

Et1 = jt1/σ1 = Et2 = jt2/σ2 ;
(8.101)

while at the separation interface between a conductor and a non-
conductor jn = 0, En = 0.
The electric flow dissipates heat

q = jE = j2/σ (8.102)

per unit volume and unit time; this is Joule-Lenz heat. Under the con-
straint div j = 0 the dissipated heat is minimal. Indeed, the variation
of ˆ

dr · (j2/σ − 2ϕdiv j) , (8.103)

where ϕ is a Lagrange’s multiplier, leads to j/σ = −gradϕ = E (and
curlE = 0). The release of entropy per unit time is therefore

∂S/∂t =

ˆ
dr · (j2/σT ) , (8.104)

where T is the temperature; hence, the conductivity is positive. In
general, at constant energy, the density of entropy s may be expanded
as

s = −
∑

Xaxa , (8.105)

where xa are parameters, or variables, of the thermodynamic state,
and Xa the corresponding generalized forces; for small variations the
approach to equilibrium requires a time evolution given by

∂xa/∂t = −
∑

γabXb , (8.106)

where γab are called kinetic coefficients. It follows that

∂S/∂t = −
ˆ

dr ·
∑

Xa(∂xa/∂t) =

ˆ
dr ·

∑
γabXaXb , (8.107)

and the kinetic coefficients are symmetric, γab = γba; this is Onsager’s
symmetry "principle".23 By comparing equations (8.104) and (8.107)
we may identify ∂x/∂t = j, X = −j/σT = −E/T , and γ = σT .
23L. Onsager, "Reciprocal relations in irreversible processes, I.", Phys. Rev. 37
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8.12 Hall effect

In the presence of a magnetic field H the kinetic coefficients, like
conductivity, acquire a H-dependence and their symmetry is not pre-
served anymore. Indeed, interchanging the electric field components
Ei and Ek in heat equation (8.102), or in entropy production (equa-
tion (8.107)) amounts to spatial reflections; but, under such reflec-
tions, the magnetic field, which is not a polar, but an axial vector,
changes sign; consequently, the kinetic coefficients must satisfy the
symmetry relations γab(H) = γba(−H), and

σik(H) = σki(−H) (8.108)

for conductivity. Since σik is a sum of a symmetric tensor plus an
antisymmetric one,

σik = sik + aik , (8.109)

the latter must obey the following symmetry conditions:

sik(H) = ski(−H) = sik(−H) ,

aik(H) = aki(−H) = −aik(−H) ,
(8.110)

i.e. the symmetric conductivity must be an even function of H, while
the antisymmetric one must be an odd function of H. Since any
antisymmetric tensor aik can be represented by a vector a, through

axy = az , ayz = ax , azx = ay , (8.111)

it follows that aikEk = (E × a)i, such that Ohm’s law in magnetic
field reads

ji = sikEk + (E× a)i . (8.112)

The Joule-Lenz heat is given by

q = jE = sikEiEk , (8.113)

405 (1931); "Reciprocal relations in irreversible processes, I.", Phys. Rev. 38

2265 (1931); H. B. Callen, "The application of Onsager’s reciprocal relations
to thermoelectric, thermomagnetic and galvanomagnetic effects", Phys. Rev.
73 1349 (1948).
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i.e. only by the symmetric part of the conductivity. To the first-order
contributions we may write

ai = αikHk (8.114)

(odd function of H), where αik is a polar tensor, and

sik = σ0
ik + βik,lmHlHm (8.115)

(even function of H), where βik,lm is symmetric both with respect to
ik and lm. The main effect in H is therefore a purely kinetic effect
arising from the antisymmetric conductivity. As one can see from
equation (8.112) this effect consists in an electric flow along a direction
perpendicular to the electric field, whose magnitude is proportional to
the magnetic field. This is the Hall effect. It is worth noting however,
that, in general, there may exist an electric flow perpendicular to the
electric field which is not a Hall flow.
Conversely, the reciprocal tensor σ−1

ik in

Ei = σ−1
ik jk (8.116)

can be decomposed into a symmetric part ρik, which is called the
resistivity tensor, and an antisymmetric part described by a vector b;
their properties are similar with those of the tensor sik and vector a,
respectively. One may write down consequently

Ei = ρikjk + (j× b)i ; (8.117)

the Hall effect described by the last term in equation (8.117) is an
electric field perpendicular to the electric flow, whose magnitude is
proportional to the magnetic field.
For a homogeneous conductor the vectors a and b are directed along
H, say, Hz; the only non-vanishing components of the resistivity ten-
sor are ρxx = ρyy = ρ⊥ and ρzz = ρ‖, i.e. the transverse and longitu-
dinal resistivity, respectively. Equation (8.116) reads then

Ex = ρ⊥jx , Ey = −bjx , Ez = ρ‖jz ; (8.118)

in this case the Hall field is perpendicular on the magnetic field too.
The coefficient b is such that

b = −RH , (8.119)
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where R is the Hall constant; it may have either positive or negative
values. As regards the quadratic terms in magnetic field entering the
resistivity, we can see that the only vectors that may be constructed
with j and H, linear in j and quadratic in H, are H(j×H) and jH2.
It follows

E = ρ0j+R(H× j) + β1jH
2 + β2H(Hj) (8.120)

for a homogeneous conductor. The dependence of the resistivity on
the magnetic field is the magnetoresistance.

It is worth computing the reciprocal tensor σ−1
ik in terms of the direct

tensor sik and direct vector a. For the principal axes σ is given by
the determinant

σ =

∣∣∣∣∣∣
sxx az −ay
−ax syy ax
ay −ax szz

∣∣∣∣∣∣ =
= sxxsyyszz + sxxa

2
x + syya

2
y + szza

2
z ;

(8.121)

in general,
σ = s+ sikaiak , (8.122)

where s = det(s). Similarly, for principal axes,

σ−1
xx = ρxx = 1

σ (syyszz + a2x) ,

σ−1
xy = ρxy + bz = 1

σ (axay + azszz) ,
(8.123)

etc, such that, in general, we get

ρik = 1
σ (s

−1
ik s+ aiak) ,

bi =
1
σ sikak .

(8.124)

8.13 Contact potential

The mechanical work needed for extracting at equilibrium a charged
particle from a condensed body is called the work function. It has
positive values, and is equal with the mechanical work released on
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adding a charged particle to a condensed body. The work function
depends on surface and on the nature of the particle. The electric
potential W corresponding to extracting a positively-charged particle
is also called work function, or extraction potential. Close to the
surface the electronic and atomic charges are delocalized over distinct
length scales, so that a double layer appears at the surface, with the
charge density ρ. Poisson’s equation reads

d2ϕ/dx2 = −4πρ , (8.125)

so that

dϕ/dx = −4π
ˆ x

−∞
ρdx ; (8.126)

for x → −∞ the derivative of the potential ϕ vanishes. Integrating
equation (8.126) by parts, we get

ϕ(x) − ϕ(−∞) = 4π

ˆ x

−∞
xρdx , (8.127)

since the charge far away of the surface and the total charge vanish
rapidly. It follows that the work function W = ϕ(∞) − ϕ(−∞) is
given by the dipole momentum of the surface double layer,

W = 4π

ˆ ∞
−∞

xρdx . (8.128)

At the interface of separation between two conductors the electrons
pass over from the one with a higher work function to the one with a
lower work function, until the potential difference equilibrates the dif-
ference in the work functions. This is the contact potential. Let AOC
be the conductor a and BOC be the conductor b, with OC denoting
the shared interface. At equilibrium the sum of the mechanical work
for a cyclic motion of a charged particle must be zero, i.e.

Wa + ϕab −Wb = 0 , (8.129)

hence the contact potential

ϕab = Wb −Wa , (8.130)
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where ϕab = ϕb − ϕa. For a series of conductors in contact the total
contact potential is equal with the contact potential between the two
end conductors. Close to the common interface between two conduc-
tors, and outside them, the potential obeys Laplace equation

1

r

∂

∂r
(r∂ϕ/∂r) +

1

r2
∂2ϕ/∂θ2 = 0 , (8.131)

where θ is the angle measured from AO. The main contribution comes
from the lowest power in r, for small r; this is ϕ = const · θ, or

ϕ =
ϕab

α
θ , (8.132)

where α is the angle between the two free surfaces AO and BO. The
corresponding electric field is

E = −1

r

∂ϕ

∂θ
= −ϕab

α

1

r
; (8.133)

the equipotential surfaces are planes of θ = const and the force lines
are circles of r = const . Ionized particles are usually attracted by the
free surfaces in the neighbourhood of the common interface, such as
to neutralize the contact potential. The contact potentials exist also
between two neighbouring free surfaces of the same crystal.

8.14 Galvanic cell

Two metals A and B in an electrolyte X produce an electromotive
force E . It arises from the dissociation of the electrolyte, and, be-
ing a non-equilibrium process, it involves the chemical potentials μ.
Cation A+ passes over into electrolyte, joining the anion X−, and the
cation B+ is released by the electrolyte X+C− into metal B, where it
acquires the electron lost by cation A+ through the external circuit.
Consequently, the associated energy is

eE = (μAX − μA) + (μB − μBX) , (8.134)

where e is the electron charge. A similar relationship holds for a
battery of galvanic cells, i.e. EAC = EAB + EBC . The heat released is
given by

Q = −T 2∂(eE/T )/∂T , (8.135)
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usually at constant pressure; the electromotive force is a free energy
(actually, Gibbs’ free energy for pressure, temperature and number of
particles). Obviously, it equilibrates all the voltage drops, both in the
external and internal circuits,

E = I
∑

R , (8.136)

where I is the electric current, i.e. the charge flux per area S and per
unit time, and R denotes the electric resistance; obviously, I = jS and
R = ρl/S, as the work EI per unit time is given by jESl = RI2, where
l is the length of the circuit. It is worth noting that the electromotive
force is also given by the total sum of the contact potentials,

E =
∑

ϕab = ϕAX + ϕXB , (8.137)

which, however, is not the contact potential ϕAB, due to the chemical
reactions in electrolyte. A battery of cells may therefore have identical
metal electrodes but distinct electrolytes.

8.15 Electrocapillarity

Let S be the separation interface between two liquid metals (elec-
trolytes) with electric potentials ϕ1,2, and the double layer with charges
e1 = e, e2 = −e. At constant pressure and temperature the surface
thermodynamic potential Φ̃ obeys

dΦ̃ = αdS − e1dϕ1 − e2dϕ2 = αdS − edϕ , (8.138)

where α is the surface tension and ϕ = ϕ1 − ϕ2. It follows

α = (∂Φ̃/∂S)ϕ (8.139)

as a function of ϕ. Consequently, Φ̃ = αS, such that e = −S(∂α/∂ϕ),
or the charge σ = e/S of the unit area is given by

σ = −(∂α/∂ϕ)p,T ; (8.140)

this is known as the Lippman-Gibbs equation. At equilibrium Φ̃ is
minimal as a function of e for a given ϕ,

∂Φ̃/∂e = 0 , ∂2Φ̃/∂e2 > 0 ; (8.141)
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introducing Φ through
Φ̃ = Φ− eϕ (8.142)

we get
∂Φ/∂e− ϕ = 0 (8.143)

and
∂2Φ/∂e2 = ∂ϕ/∂e = ∂ϕ/S∂σ > 0 , (8.144)

i.e.
∂ϕ/∂σ > 0 . (8.145)

Indeed, the double layer is a condenser of capacity ∂e/∂ϕ, and the
stability condition (8.145) is expected. From equation (8.140) we have

∂σ/∂ϕ = −(∂2α/∂ϕ2)p,T > 0 , (8.146)

i.e. α(ϕ) is maximal for ∂α/∂ϕ = −σ = 0. Therefore, the double
layer diminishes the surface tension.

8.16 Thermoelectricity

Let gradT be a small temperature gradient along a conductor, such
that the charge carriers are in local equilibrium, but they are not in
global equilibrium. The chemical potential changes locally, such that
a local electric potential, an electric field and an electric flow appear.
If an external electric field E is also present, the electric flow may,
therefore, be written as

j = σ(E−QgradT ) , (8.147)

where σ denotes the conductivity and Q is the thermopower. It shows
that a temperature gradient may produce an electric flow even in the
absence of an external electric field. This is the thermoelectric, or
Seebeck, effect. Conversely,

E =
1

σ
j+QgradT . (8.148)
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In general, Q is a tensor, like the electric conductivity. Similarly, the
heat flow q, i.e. the heat flowing across the unit area of the cross-
section per unit time, minus the electric energy ϕj is proportional to
the two gradients gradϕ = −E and gradT ,

q− ϕj = βE− γgradT ; (8.149)

obviously, γ is related to the thermoconductivity K in q = −KgradT ;
the two coefficients β and γ are determined below.

Heat density per unit time is −divq, so that the entropy production
is

∂S/∂t = −
ˆ

dr · divq
T

; (8.150)

on the other hand,

1
T divq = 1

T [div (q− ϕj) + div (ϕj)] =

= 1
T div (q − ϕj)− jE/T ;

(8.151)

we get

∂S/∂t =

ˆ
dr · (jE/T )−

ˆ
dr · [(q − ϕj)/T 2]gradT . (8.152)

It follows that j and q− ϕj correspond to the ∂xa/∂t-velocities, and
−E/T , (1/T 2)gradT correspond to the generalized forces Xa. Equa-
tions (8.147) and (8.149) can, therefore, be rewritten as

j = −σT (−E/T )− σQT 2(
1

T 2
gradT ) , (8.153)

and
q− ϕj = −βT (−E/T )− γT 2(

1

T 2
gradT ) , (8.154)

where the canonical form of the kinetic coefficients is identified. Ac-
cording to the symmetry of these kinetic coefficients βT = σQT 2,
i.e. β = σQT . It follows q − ϕj = σQTE − γgradT ; making use of
equation (8.148), or equation (8.153), we get finally

q = (ϕ+QT )j−KgradT , (8.155)
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8 Electron Liquid

where the thermoconductivity K = γ − σQ2T has been introduced.
Introducing equations (8.148) and (8.155) into equation (8.152) we
get

∂S/∂t =

ˆ
dr · [(j2/σT ) +K(gradT )2/T 2] , (8.156)

which requires the positivity of the electric and thermal conductivi-
ties. It is worth noting that the kinetic coefficients are the electric con-
ductivity σ, the thermopower Q, and the thermoconductivity K. In
addition, contributions proportional to gradp, where p is the pressure
(or similar contributions in density), arising from inhomogeneities, are
unphysical in the basic equations (8.148) and (8.155), as they would
lead to negative terms in the entropy production.

From equation (8.155) we can compute the density of heat per unit
time,

q = −divq = Ej− jgrad(QT ) + div (KgradT ) , (8.157)

or, making use of equation (8.148),

q = j2/σ − T jgradQ+ div (KgradT ) ; (8.158)

the first contribution to equation (8.158) is the Joule-Lenz heat; the
second contribution comes from thermoelectric effects, while the third
one is due to the thermal conduction. From equation (8.147) div j = 0
implies that σ, and even Q and gradT , are constant, as expected,
and so should be K; therefore, both the thermoelectric heat and the
thermoconducted heat are fully transported. Nevertheless, the spatial
variation of the thermopower is written as gradQ = (dQ/dT )gradT ,
the derivative being taken at constant pressure, as usually. Therefore,
the heat produced per unit time in the unit volume by the thermo-
electric effects is

q = −T (dQ/dT )jgradT = −τjgradT ; (8.159)

this is called Thomson’s effect,24 where

τ = T (dQ/dT ) (8.160)

24W. Thomson (Lord Kelvin), "On a mechanical theory of thermoelectric cur-
rents", Proc. Roy. Soc. Edinburgh 3 91 (1851); Lord Kelvin (Sir W. Thom-
son), Collected Papers, Cambridge (1882, 1884).
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is Thomson’s coefficient. It is worth noting that Thomson’s effect is
proportional to the electric flow j, in contrast with the Joule-Lenz
heat; Thomson’s heat may either be released or absorbed; the ther-
mopower Q itself may have both signs (for electrons Q = −π2T/6eμ,
where μ is the chemical potential; electron charge is −e). It is also
noteworthy that Thomson’s heat does not produce volume entropy,
while the thermoconducted heat may do.
In equation (8.155) ϕ, T and the normal components of q, j are con-
tinuous across a contact between two conductors; it follows that

−T jx(Q2 −Q1) = −Δ[K(∂T/∂x)] (8.161)

along the x-axis of the conductors. Therefore, a variation of tempera-
ture appears at a conducting junction, as a consequence of an electric
current flowing through it. This is the Peltier effect. The quantity
qx = −Δ[K(∂T/∂x)] is the heat released at the contact per unit area
and unit time; therefore

qx = −T jx(Q2 −Q1) = Π12jx , (8.162)

where
Π12 = −T (Q2 −Q1) (8.163)

is called the Peltier coefficient; we can see that it is additive, Π13 =
Π12+Π23. Like Thompson’s effect, the Peltier effect is proportional to
the electric flow jx normal to the junction, and may have both signs.
In addition,

τ1 − τ2 = T
d

dT
(Π12/T ) , (8.164)

as we can see by comparing equations (8.160) and (8.163).
Let a conductor serial 121 with the two junctions 12 and 21 at tem-
peratures T1,2 and the end (identical) conductors 1, 1 at temperature
T . The electromotive force is given by

E =

ˆ
Edx =

ˆ
Q(∂T/∂x)dx =

ˆ T2

T1

(Q2 −Q1)dT ; (8.165)

on the other hand,

E = −
ˆ T2

T1

(Π12/T )dT , (8.166)
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making use of equation (8.163). Equations (8.164) and (8.166) are
called Thomson’s equations.

Finally, the two basic thermoelectricity equations (8.148) and (8.155)
read

Ei = σ−1
ik jk +Qik(∂T/∂xk) ,

qi − ϕji = TQikjk −Kik(∂T/∂xk)
(8.167)

in their general form. The electric and thermal conductivity tensors
σik and Kik are symmetric; the thermoelectric tensor Qik may not be
symmetric, in general.

8.17 Thermomagnetoelectricity

The flows are j (electric flow) and q − ϕj, where q is the heat flow
and ϕ is the electric potential; the generalized forces are −E/T and
(1/T 2)gradT = −grad(1/T ), where E is the electric field and T is the
temperature. Therefore, Onsager’s equations read

ji = aik(Ek/T ) + bik∂(1/T )/∂xk ,

qi − ϕji = cik(Ek/T ) + dik∂(1/T )/∂xk ;
(8.168)

in the presence of a magnetic field H the kinetic coefficients depend
on H and obey the symmetry equations

aik(H) = aki(−H) , dik(H) = dki(−H) ,

bik(H) = cki(−H) .
(8.169)

One can also write

Ei = σ−1
ik (H)jk +Qik(H)(∂T/∂xk) ,

qi − ϕji = TQki(−H)jk −Kik(H)(∂T/∂xk) ,
(8.170)

where the electric conductivity σ and the thermoconductivity K sat-
isfy

σik(H) = σki(−H) , Kik(H) = Kki(−H) , (8.171)
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according to equation (8.169); the thermopower Q has also been iden-
tified; the latter is not necessarily symmetric under H-reversal.

Splitting up the above kinetic tensors into symmetric and antisymmet-
ric parts we get vector-like contributions from the antisymmetric parts
of σ and K, similarly with the Hall effect (therefore, first-order contri-
butions in H); for a homogeneous conductor the only H-contribution
to the thermopower comes from its antisymmetric part, such that all
these contributions to equation (8.170) are vectorial products of H by
electric flow and of H by temperature gradient, respectively. There-
fore, we get

E = j/σ +QgradT+

+R(H× j) +N(H× gradT ) ,

q− ϕj = TQj−KgradT+

+NT (H× j) + L(H× gradT ) .

(8.172)

Apart from the Hall effect expressed by R in equation (8.172), it
appears the Nernst effect, as expressed by the coefficient N , and the
Leduc-Righi effect given by the coefficient L. It is worth noting that
N comes from the expansion of the thermopower Q, while L arises
from the expansion of the thermoconductivity K (as R comes from
the expansion of the electrical resistivity σ−1). By comparing with
equation (8.165), we can see that the N -Nernst effect represents the
effect of the magnetic field on the electromotive force, while the L-
Leduc-Righi effect represents the effect of the magnetic field upon the
thermoconduction. The normal components of q and j on a junction
are continuous, such that the normal component of the vector

TQj−KgradT +NT (H× j) + L(H× gradT ) (8.173)

is also continuous at that interface; it follows that the N -contribution
given above is the effect of the magnetic field upon the Peltier effect;
it is called the Ettingshausen effect.

The heat per unit volume and unit time q = −divq can be computed
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from equation (8.172); to the first-order contributions we get

q = j2/σ − T jgradQ+ div (KgradT )+

+(1/σT ) d
dT (σNT 2)(j×H)gradT ;

(8.174)

here, curlH = 0 (i.e. the magnetic field produced by the electric flow
is neglected), curl(j/σ) ≈ curlE = 0, and, of course, div j = 0. The
last term in equation (8.174) represents the effect of the magnetic field
upon Thomson’s coefficient given by equation (8.160).

8.18 Electrodiffusion

An electrolyte consists of n1 solute particles per unit volume, of mass
m1 and electric charge z1, and n2 solvent particles per unit volume, of
mass m2 and electric charge z2. The electrolyte mass concentration
c is the ratio of the solute mass to the solution mass; for a unit mass
of solution n1m1 +n2m2 = 1 the concentration is given by c = n1m1.
The thermodynamic potential Φ per unit mass of solution gives the
(mass) chemical potential

μ = ∂Φ/∂c = (∂Φ/∂n1)(∂n1/∂c) + (∂Φ/∂n2)(∂n2/∂c) =

= μ1/m1 − μ2/m2

(8.175)

at constant pressure p and constant temperature T , where μ1,2 are the
chemical potentials of the components; in equilibrium the chemical
potentials are constant.

The electrolyte is neutral, so that the total charge z = n1z1+n2z2 = 0
vanishes. The electric potential is given by ϕ = ρ∂Φ/∂z, at constant
p, T, c and for z = 0, where ρ is the density of solution. The electric
flow is proportional, in general, to the gradients of the two (chemical
and electric) potentials

j = σ(E− βgradμ) (8.176)

at constant temperature and pressure, such that

E = j/σ + βgradμ , (8.177)
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where β is a kinetic coefficient. The gradient of the chemical poten-
tial corresponds to a concentration gradient and a pressure gradient,
through

gradμ = (∂μ/∂c)p,T gradc+ (∂μ/∂p)c,T gradp , (8.178)

at constant temperature, i.e. it corresponds to a gradient of concen-
tration and a gradient of temperature in equation (8.176) (besides the
gradient of the electric potential, i.e. the electric field), as expected;
but the gradient of pressure does not enter equation (8.176), because
it would not lead, in general, to an entropy production. The pressure
is not associated directly with a transport.

Let i denotes the solute (electrolyte) mass flow; its atomic part is
i − ρcv, where v is a macroscopic velocity; one may neglect it here.
According to equation (8.176), under similar conditions, we may write
down

i = γE− δgradμ , (8.179)

where the coefficients γ and δ are determined below. The entropy
production per unit time is given by

∂S/∂t =

ˆ
dr · (jE/T )−

ˆ
dr · (igradμ)/T ; (8.180)

hence, j and i are flows, and −E/T and (gradμ)/T are generalized
forces. Equations (8.176) and (8.179) read

j = −σT (−E/T )− βσT (gradμ)/T ,

i = −γT (−E/T )− δT (gradμ)/T ,
(8.181)

and, consequently, γ = βσ. We obtain finally equation (8.177) and

i = −(δ − β2σ)gradμ+ βj ; (8.182)

we can see that the entropy production has positive values. The coef-
ficient δ − β2σ can be easily identified. In the absence of the electric
flow, and making use of equation (8.178), equation (8.182) becomes

i = −(δ − β2σ)(∂μ/∂c)p,T gradc (8.183)
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at constant pressure (and temperature); on the other hand, accord-
ing to Fick’s law of diffusion, i = ρcv = m1n1v = −Dgradm1n1 =
−ρDgradc, where D is the diffusion coefficient; therefore,

δ − β2σ = ρD/(∂μ/∂c)p,T , (8.184)

such that, in general,

i = − ρD

(∂μ/∂c)p,T
gradμ+ βj ; (8.185)

or
i = −ρDgradc+ βj . (8.186)

We can see that β is proportional to the ratio of the electric charge
to the mass. Making use of equations (8.177), (8.185) and equation
(8.186), the entropy production given by equation (8.180) can be writ-
ten as

∂S/∂t =

ˆ
dr · j2/σT +

ˆ
dr · ρD(∂μ/∂c)p,T (gradc)

2/T ; (8.187)

we can see that it has positive values.

8.19 Electrolysis

Let E be an electric field between the two metallic plates of an elec-
trolysis cell; the metal dissolves from an electrode and passes over
to the other electrode. The metal cation mass flow is ρv = (m/e)j,
where m and e is the cation mass and charge, respectively, and j is
the electric flow. On the other hand

ρv = (m/e)j = i+ ρcv = i+ c(m/e)j =

= −ρDgradc+ βj+ c(m/e)j ;
(8.188)

hence,
ρD(dc/dx) = [β − (m/e)(1− c)]j , (8.189)

and

jl =

ˆ c2

c1

ρDdc

β − (m/e)(1− c)
, (8.190)

245

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



8 Electron Liquid

where c1,2 are the concentrations on the two electrodes and l denotes
the length between the two electrodes.

From the entropy production per unit time (equation (8.187)) we ob-
tain the heat produced per unit time and unit area of the electrodes

q = T (∂S/∂t) =

ˆ
dx · [j2/σ + ρD(∂μ/∂c)(dc/dx)2] = jE ; (8.191)

making use of equation (8.189) we get

E =
´ c2
c1

ρDdc
σ[β−(m/e)(1−c)]+

+
´ c2
c1
(∂μ/∂c)[β − (m/e)(1− c)]dc .

(8.192)

for a weak electric flow

jl =
ρD

β − (m/e)(1− c)
Δc (8.193)

and

E =
ρD

σ[β − (m/e)(1− c)]
Δc+(∂μ/∂c)[β−(m/e)(1−c)]Δc ; (8.194)

therefore, the resistivity of the solution is

E/jl = 1/σ +
1

ρD
(∂μ/∂c)[β − (m/e)(1− c)]2 ; (8.195)

the second term in equation (8.195) is an electromotive force arising
from the variation of the concentration.25

25L. Landau and E. Lifshitz, cited above.
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9 Magnetic Field

9.1 Electrons in magnetic field

The motion of a non-relativistic electron in a magnetic field H is
described by the hamiltonian

H =
1

2m
(p+

e

c
A)2 − gmμBsH , (9.1)

where m 
 10−27g is the electron mass, −e = −4.8 · 10−10esu (−1.6 ·
10−19C) is the electron charge, c = 3× 1010cm/s is the speed of light
in vacuum, gm = 2 (2.0023) is the gyromagnetic factor of the electron,
μB = e�/2mc 
 0.9 · 10−20erg/Gs (1J= 107erg, 1Ts (Tesla)= 104Gs
(Gauss, Oerstedt, Oe)= (1/4π) · 107A/m) is the Bohr magneton, � 

10−27erg · s is Planck’s constant, and s = ±1/2 are the components
of the 1/2-spin s; p denotes the electron momentum and A is the
electromagnetic vector potential, such that H = curlA; the electric
field is given by E = −(1/c)∂A/∂t, and it is assumed to be zero,
i.e. A does not depend on time (also, the scalar potential ϕ in E =
−gradϕ − (1/c)∂A/∂t is set equal to zero). The first term in the
hamiltonian given by equation (9.1) is usually called the orbital term,
while the latter is called the Zeeman contribution. Noteworthy, the
1/c-electromagnetic contributions bring only small effects to the non-
relativistic motion of the electron.
The classical equations of motion

ṙ = v =
1

m
(p+

e

c
A) (9.2)

and

ṗ = − e
mc((p + e

cA)grad)A− e
mc(p+ e

cA)× curlA =

= − e
c (vgrad)A− e

cv ×H = − e
cdA/dt− e

cv ×H ,
(9.3)
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i.e. the Lorentz force law

mv̇ = −e

c
v ×H , (9.4)

follow readily from equation (9.1); the same equation of motion fol-
lows straightforwardly for the quantum-mechanical momentum p =
−i�grad . It is worth remarking that the vector potential is defined
up to the gradient of a function f (gauge symmetry of the electro-
magnetic field equations), which requires a corresponding change in
the classical momentum p and the phase factor exp(ief/c�) in the
wavefunction.

For a uniform magnetic field H along the z-axis the vector potential
may be taken as A = (−Hy, 0, 0), such that Schrodinger’s equation
reads[

1

2m
(px − eH

c
y)2 − �

2

2m

d2

dy2
+

1

2m
p2z − gmμBsH

]
ψ = Eψ . (9.5)

The wavefunctions are

ψ =
1√
LxLz

exp

[
i

�
(pxx+ pzz)

]
χ(y) , (9.6)

where Lx,z (and Ly) are the dimensions of the spatial region where
the motion is confined to, and[

− �
2

2m

d2

dy2
+

1

2
mω2

c (y − y0)
2

]
χ = ε⊥χ ; (9.7)

this is Schrodinger’s equation for a harmonic oscillator with cyclotron
frequency

ωc =
eH

mc
, (9.8)

displaced by
y0 =

c

eH
px , (9.9)

and the energy

ε⊥ = E − p2z/2m+ gmμBsH . (9.10)
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Introducing the new variable ξ =
√
mωc/�(y − y0), the displaced

harmonic oscillator becomes

χ′′ + (2ε⊥/�ωc − ξ2)χ = 0 , (9.11)

or
ϕ′′ − 2ξϕ′ + (2ε⊥/�ωc − 1)ϕ = 0 , (9.12)

where χ = exp(−ξ2/2)ϕ. Vanishing solutions at infinity are obtained
for

ε⊥ = �ωc(n+ 1/2) , n = 0, 1, 2, ... , (9.13)

and ϕ = Hn(ξ),

Hn(ξ) = (−1)neξ2 dn

dξn e
−ξ2 = (2ξ)n − n(n−1)

1 (2ξ)n−2+

+n(n−1)(n−2)(n−3)
1·2 (2ξ)n−4 + ... ,

(9.14)

being the Hermite polynomials. One obtains the Landau levels.1

Ens(pz) = �ωc(n+1/2)+p2z/2m−gmμBsH , n = 0, 1, 2... , (9.15)

and the wavefunctions

χ =

√
2

π

1

ξc

1√
2nn!

exp
[−(y − y0)

2/ξ2c
]
Hn

[√
2
y − y0
ξc

]
, (9.16)

where the cyclotron length

ξc =
√
2�/mωc =

√
2c�/eH (9.17)

is introduced.

The cyclotron frequency is given by ωc 
 1.8 · 107H(Gs)s−1 and
the corresponding energy is �ωc 
 10−8H(Gs)eV 
 10−4H(Gs)K
(1eV = 1.16 × 104K); the same estimation holds for the Zeeman en-
ergy. For usual magnetic fields (of the order of, say, 10Ts) both the
orbital and the Zeeman quanta of energy are small (∼ 10K). Similarly,
the wavefunctions given by equation (9.16) are localized over cyclotron
lengths ξc 


√
12/H(Gs)·104Å; for usual fields these lengths are much

1L. Landau, "Diamagnetismus der Metalle", Z. Phys. 64 629 (1930).
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longer than atomic distances (and much shorter than the size of the
sample). All these indicate that the electrons in magnetic field admit
a quasi-classical description. It is also worth noting the non-analytical
character of the spectrum in the limit of vanishing field H → 0. The
electron spectrum in magnetic field acquires dimensionality effects.
Since gm = 2 the Landau levels (9.15) can also be represented as

Ens(pz) = 2μBH(n− s+ 1/2) + p2z/2m =

= 2μBH · l + p2z/2m = El(pz) , l = 0, 1, 2... ,
(9.18)

where the ground-state l = 0 is filled with spin-up electrons (n =
0, s = 1/2), while the upper levels l = 1, 2, ... are filled with both spin
orientations (n, s = 1/2 and n− 1, s = −1/2, n = 1, 2, ...).
Landau’s levels given by equation (9.15) have a spatial (or transverse)
degeneracy given by

N⊥ = Ly/Δy0 = LyeH/cΔpx = LxLy
eH

2πc�
= LxLy/πξ

2
c , (9.19)

which shows that the magnetic flux

LxLyH =
2πc�

e
N⊥ = πξ2cHN⊥ (9.20)

is quantized by
Φ0 = 2πc�/e = πξ2cH , (9.21)

i.e. LxLyH = Φ0N⊥. The flux quantum is

Φ0 = 2πc�/e = ch/e 
 4.14 · 10−7Gs · cm2 (9.22)

(flux unit 1Gs · cm2 = 1Mx (Maxwell) = 10−8Wb (Weber)). There-
fore, the density of states per unit area is

n⊥ = N⊥/LxLy = eH/2πc� = H/Φ0 = 1/πξ2c , (9.23)

which is lower than the atomic density of states.
The summation over states includes this transverse degeneracy; it
reads ∑

= N⊥
∑

snkz
=

LxLyLz

(2π�)2
eH
c

∑
sn

´
dpz =

= V
(2π�)2mωc

∑
sn

´
dpz ,

(9.24)
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where kz = pz/� = (2π/Lz) × integer is the wavevector along the
z-axis; for usual fields the dependence on n is smooth, and the sum-
mation over n may be replaced by integral; one can write∑

=
V

(2π�)2
mωc

∑
s

ˆ
dndpz . (9.25)

Making use of the transverse energy ε⊥ = �ωc(n+1/2) from equation
(9.13), we get dε⊥ = �ωcdn, such that equation (9.25) becomes∑

=
V

(2π)2�3
m
∑
s

ˆ
dε⊥dpz ; (9.26)

the transverse energy can also be represented as ε⊥ = (p2x+p2y)/2m =
p2⊥/2m, such that dε⊥ = p⊥dp⊥/m = (1/2πm)

¸
dpxdpy; the summa-

tion over states reads now∑
=

V

(2π�)3

∑
s

ˆ
dp , (9.27)

which is identical with that of the free electrons; in addition, intro-
ducing ε = ε⊥ + p2z/2m = p2/2m we obtain∑

=
V

4π2
(2m/�2)3/2

∑
s

ˆ
0

dε · ε1/2 . (9.28)

It is worth noting that the Zeeman energy does not enter ε as defined
here. Also, the effect of the orbital motion in the magnetic field does
not appear in the bulk contribution to the summation over states, as
expected.

Indeed, the magnetic field produces only a marginal effect, controlled
by the ratio of the atomic distance to the cyclotron length, or the
cyclotron frequency to the characteristic scale energy; it is obtained
by including the next-order corrections in replacing summation over
n by integrals. Expanding f(n+ξ) in series of powers of ξ for −1/2 <
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ξ < 1/2 we get

´ b+1/2

a−1/2 f(x)dx =
∑b

n=a

´ 1/2
−1/2 dξ·

·[f(n) + ξf ′(n) + (1/2)ξ2f ′′(n) + ...] =

=
∑b

n=a f(n) + (1/24)
∑b

n=a f
′′(n) + ... =

=
∑b

n=a f(n) + (1/24)f ′(x) |b+1/2
a−1/2 ... ;

(9.29)

including the next-order terms in approximating the summation by
integrals, we get∑b

n=a f(n) =
´ b+1/2

a−1/2
f(x)dx − (1/24)f ′(x) |b+1/2

a−1/2 +

+(7/24 · 240)f ′′′(x) |b+1/2
a−1/2 +... ;

(9.30)

in a more convenient form this equation reads

b−1∑
n=a

f(n+ 1/2) =

ˆ b

a

f(x)dx− (1/24)f ′(x) |ba +... . (9.31)

For a function f(Ens(pz)) of energy Ens(pz) given by equation (9.15)
the summation over states is∑

f = N⊥
∑

snkz
f = V

(2π�)2mωc

∑
sn

´
dpzf =

= V
4π2 (2m/�2)3/2

∑
s

´∞
0

dε · ε1/2f(ε− gmβsH)+

+ 1
48

V
4π2 (�ωc)

2(2m/�2)3/2
∑

s

´∞
0

dε · ε−1/2f ′(ε)

(9.32)

to the second-order in magnetic field H (with proper limits of in-
tegration and change of variables; in the last integral, for instance,
ε = p2z/2m). We can see, indeed, that the effect of the orbital motion
is included in the boundary term.

For cyclotron lengths and frequencies comparable, in some cases, to
characteristic lengths and frequencies of the electrons, the magnetic
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field gives rise to characteristic oscillatory behaviour. Indeed,

f(x) =

∞∑
s=−∞

e−2πisxgs , gs =

ˆ n+1

n

dx · f(x)e2πisx , (9.33)

and

f(n+ 1/2) =
∞∑

s=−∞
(−1)s

ˆ n+1

n

dx · f(x)e2πisx ; (9.34)

therefore∑∞
n=0 f(n+ 1/2) =

∑∞
s=−∞(−1)s ´∞

0
dx · f(x)e2πisx =

=
´∞
0

dx · f(x) + 2
∑∞

s=1(−1)s
´∞
0

dx · f(x) cos 2πsx ;
(9.35)

integrating by parts twice in the second integral we get∑∞
n=0 f(n+ 1/2) ==

´∞
0

dx · f(x)− 2f ′(0)
∑∞

s=1
(−1)s

(2πs)2−

−2∑∞
s=1

(−1)s

(2πs)2

´∞
0

dx · f ′′(x) cos 2πsx ,

(9.36)

and we can check equation (9.31), since
∑

1(−1)s/s2 = −π2/12 (and∑
1 1/s

2 = π2/6); f ′′ is typically peaked on some x, hence the oscil-
latory behaviour (in 1/H).

9.2 Electron magnetism

As a consequence of their spatial extension the electrons in solids ad-
mit a quasi-classical description, to the first approximation. They
interact both with the ionic cores and with themselves, screen off
the Coulomb repulsion between the ions, and ensure, through their
delocalization, the cohesion of the solids. They form a slightly inho-
mogeneous electron liquid in a self-consistent potential, and are de-
scribed, within this approximation, by (quasi-) plane waves, according
to Pauli’s exclusion principle and Fermi statistics. The electron one-
particle states are distributed into a (quasi-spherical, isotropic) Fermi
sea, extending up to the Fermi level, or chemical potential, which, in
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this case, is given by the average self-consistent potential; it defines
the Fermi surface. Due to the Fermi statistics, the single-electron
states (and energies) are meaningful only for quasiparticle elementary
excitations located in the neighbourhood of the Fermi surface. The
quasiparticles have a finite lifetime (and mean freepath), a Fermi ve-
locity, and all the other characteristics renormalized according to a
(normal) Fermi liquid. For a Fermi liquid the relevant quantities are
those obtained as small variations in the quasiparticle behaviour in
the neighbourhood of the Fermi surface. In the next approximation,
the electron states in crystalline solids are grouped into energy bands,
separated by energy gaps and confined to Brillouin zones; some are
fully occupied, giving rise to insulators, some others are only partially
occupied, due to their spatial intersection, giving rise to conducting
solids, like metals (or semiconductors); the Fermi sea and surface still
hold in this case, at least at low temperatures, though, usually, they
are anisotropic; the electron liquid is still described as a Fermi liq-
uid. Typically, the characteristic electron energies are of the order of
a few eV , and the characteristic electron distances are of the order of
the atomic distances. However, for typical semiconductors, where the
concentration of the charge carriers is low, the Boltzmann classical
statistics applies, and the lifetime of the classical (quasi-) particles
goes like τ ∼ (a2/σ)(1/

√
T ), where a is the average inter-particle

separation, σ is the collision cross-section, and T denotes the temper-
ature, for large values of both a2T and a2/σ (usually, the interaction
with the atoms dominates, which leads to an effective σ 
 a2 ).

For macroscopic samples and usual magnetic fields the electron quasi-
particles obey a quasi-classical description, according to Landau’s lev-
els (or magnetic bands) given by equations (9.15) and (9.18); the Fermi
sea is filled band by band, satisfying the transversal degeneracy and
gradually increasing the wavevector kz , up to the Fermi level; the
shape of the Fermi surface acquires a characteristic tubular aspect,
with small striations, controlled by the (small) magnitude of the mag-
netic field.

A tight-binding energy band may be represented, for instance, as

ε = ta(1− cosakx) + tb(1 − cos bky) + tc(1− cos ckz) , (9.37)

where ta,b,c are bandwidth parameters, a, b, c are unit cell sides, and
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the wavevector k is limited to the Brillouin zone −π < akx, bky, ckz <
π. A uniform magnetic field along the kz-axis (not necessarily par-
allel with the z-axis) may suggest to replace kx,y = px,y/� in equa-
tion (9.37) by (px,y + eAx,y/c)/�, in view of the hamiltonian role
played by ε as a function of the momentum p, and solve the resulting
Schrodinger’s equation;2 (the direct space is spanned by a,b, c and the
k-reciprocal space is spanned by 2π(b× c)/v, etc, where v = a(b× c)
is the volume of the unit cell and v∗ = (2π)3/v is the volume of the
reciprocal unit cell (Brillouin zone)). However, the energy ε given
by equation (9.37) is hamiltonian for quasiparticles only, which are
close to the Fermi surface, and are described by a free-like hamil-
tonian with the corresponding effective-mass parameters. Therefore,
the effect of the magnetic field is obtained similar to (quasi-) free elec-
trons. The quadratic term in momentum deviation from the Fermi
surface, which gives the uncertainty in the quasiparticle energy, and
corresponds to the quasiparticle lifetime, may be included in such a
treatment, since the quasiparticles on the Fermi surface live indefi-
nitely. At finite temperatures, however, the scale energy associated
with the magnetic field, i.e. the cyclotron frequency, must be larger
than the uncertainty in the quasiparticle energy, i.e. the magnetic
field must be sufficiently high. This uncertainty in the quasiparticle
energy goes like T 2/μ, where T denotes the temperature and μ is the
chemical potential, and is, in fact, very small in comparison with the
cyclotron frequency associated with the usual magnetic fields, espe-
cially at low temperatures. Obviously, this criterion means that the
quasiparticle lifetime is much longer than cyclotron time, i.e. the time
needed for describing a quasi-classical cyclotron orbit, which is also
the time required for a transition between two neighbouring cyclotron
levels. In this connection it is worth emphasizing that, typically, there
exist three characteristic scale energies and times which are relevant
to the electron dynamics in magnetic field; first, there exists the ther-
mal energy T , which must be larger than any other motion energy,
in order to ensure equilibrium; it controls the fluctuations, and is as-
sociated with the statistical motion and the fluctuating time; second,

2R. Peierls, "Zur Theorie des Diamagnetismus von Leitungselektronen", Z. Phys.
80 763 (1933); "Zur Theorie des Diamagnetismus von Leitungselektronen. II
Starke Magnetfelder", 81 186 (1933); G. H. Wannier, "Dynamics of band elec-
trons in electric and magnetic field", Revs. Mod. Phys. 34 645 (1962).
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there exists the uncertainty T 2/μ in the quasiparticle energy, which
controls the quasiparticle lifetime and the collision rate; the former
is always higher than the latter, the equilibrium being thus ensured
by quasiparticles, and the latter being meaningful; and, finally, there
exists the cyclotron frequency ωc, which is usually smaller than T ,
i.e. T � �ωc (otherwise, for instance at very low temperatures, the
equilibrium may not be attained). The situation described here corre-
sponds to �ωc � T 2/μ, but the opposite situation ωc 	 1/τcol, where
τcol is the collision time, may also be relevant, obviously. Turning
back, for an anisotropic hamiltonian with mass parameters mx,y the
cyclotron frequency is ωc = eH/c

√
mxmy and the cyclotron length is

ξc = (mx/my)
1/4
√
2�c/eH; the effective mass approximation to the

energy spectrum is also appropriate for low concentrations of charge
carriers, where the hamiltonian is a free-like one.

Making use of equation (9.32), the number of electron states can be
written as

N =
∑
s

Ns − gV

12(2π)2
mω2

c∂A/∂μ , (9.38)

where g = 2s+ 1,

Ns =
V

4π2
(2m/�2)3/2

ˆ ∞
0

dε · ε1/2 1

exp(ε− μs)β + 1
(9.39)

is the bulk contribution, with μs = μ+ αs, αs = gmμBsH , β = 1/T ,
T being the temperature, and

A =
1

2
(2m/�2)1/2

ˆ ∞
0

dε · ε−1/2 1

exp(ε− μ)β + 1
. (9.40)

The Fermi integrals are estimated according to
´∞
0

dε · f(ε) 1
exp(ε−μ)β+1 =

´ μ
0
dε · f(ε)+

+π2T 2

6 f ′(μ) + 7π4T 4

360 f ′′′(μ) + ... ,

(9.41)

valid for μβ � 1. A series expansion is performed in equation (9.39) in
powers of αsβ, and

∑
s α

2
s = gα2 is introduced, where α2 = (1/3)s(s+
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1)(gmμBH)2. The number of particles given by equation (9.38) can
now be written as

N = gV
6π2 (2mT/�2)3/2(ln z)3/2·

·[1 + 1
8 (π

2 + ρ) 1
(ln z)2 + π2

64 (7π
2/10 + ρ) 1

(ln z)4+

+ 49π4

3072 ρ
1

(ln z)6 ] ,

(9.42)

where
ρ = (fβ)2 , f2 = 3α2 − (�ωc/2)

2 , (9.43)

and the fugacity z = exp(μβ) has been introduced; it is obtained from
equation (9.42) as

ln z = (βεF )[1− 1
12 (π

2 + ρ) 1
(βεF )2 − π2

48 (3π
2/5 + ρ) 1

(βεF )4−

− π4

4608 (49 + 581π2/45 + 497ρ/15) 1
(βεF )6 ] ,

(9.44)

where the Fermi wavevector kF has been introduced through N =
gV k3F /6π

2, and the Fermi energy has been parametrized as εF =
�
2k2F /2m; it is noteworthy that the latter is the chemical potential

at zero temperature in the absence of the magnetic field; and the
chemical potential at zero temperature is changed by the magnetic
field according to

μ = εF [1− f2/12ε2F ] ; (9.45)

for s = 1/2 one obtains f2 = 2(μBH)2 (α = �ωc/2 = μBH) and
μ = εF [1 − (μBH)2/6ε2F ] (and the change with the temperature is
μ = εF (1− π2T 2/12ε2F )).

In a similar manner and within the same approximation it is found
that the energy may be represented as

E =
∑
s

Es +
gV

24(2π)2
mω2

cA−
∑
s

αsNs , (9.46)

where

Es =
V

4π2
(2m/�2)3/2

ˆ ∞
0

dε · ε3/2 1

exp(ε− μs)β + 1
. (9.47)
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The last term in equation (9.46) is∑
s αsNs =

gV
4π2β (2mT/�2)3/2(ln z)1/2·

·[1 − 1
24

1
(ln z)2 − 7π4

384
1

(ln z)4 ](αβ)
2 ,

(9.48)

and the energy is given by

βE = gV
10π2 (2mT/�2)3/2(ln z)5/2·

·[1 + 5
8 (π

2 − ρ/3) 1
(ln z)2 − π2

192 (7π
2/2− 5ρ/3) 1

(ln z)4+

+ 35π4

9216 ρ
1

(ln z)6 ] .

(9.49)

Also, from equations (9.42) and (9.49) we get

βE/N = 3
5 (ln z)[1 + (π2/2− ρ/3) 1

(ln z)2−

−π2

24 (11π
2/5 + 2ρ/3) 1

(ln z)4 ] ;

(9.50)

hence, by using equation (9.44),

E/N =
3

5
εF +

1

4
(π2 − ρ)

T 2

εF
− 3π2

80
(π2 + 5ρ/9)

T 4

ε3F
, (9.51)

or
E/N = 3

5εF + π2T 2/4εF − 3π4T 4/80ε3F−

− f2

4εF
(1 + π2T 2/12ε2F ) .

(9.52)

The T 4-contribution is not relevant, as it is comparable with the quasi-
particle uncertainty in energy; also, we can see that f2-contribution
must be larger than the T 2-contribution in order to be relevant, i.e.
the cyclotron frequency (and Zeeman energy) should be larger than
the quasiparticle uncertainty in energy.

The magnetization can be obtained from equation (9.52) as M =
−∂E/∂H , hence the magnetic susceptibility per particle

χ = (μ2
B/εF )(1 + π2T 2/12ε2F ) = μ2

B/μ ; (9.53)
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the Zeeman contribution gives the Pauli paramagnetic spin suscepti-
bility χp = 3μ2

B/2μ, while the orbital contribution is Landau’s dia-
magnetic susceptibility χd = −μ2

B/2μ; we can see that the latter is
one third of the former.

The paramagnetic spin susceptibility can also be obtained more di-
rectly from the variations of the chemical potential and the electron
density; indeed, the former can be written as δμ± = ±(�2kF /m)δkF∓
μBH for both spin orientations, hence δkF = mμBH/�2kF at equilib-
rium; on the other hand, the magnetization per unit volume is given
by M = μB(δn+ − δn−) = μB(k

2
F /π

2)δkF , and we get straightfor-
wardly χp = 3μ2

B/2μ for the paramagnetic susceptibility per parti-
cle. The corresponding energy for the Fermi liquid is obtained from
δE = (μ − μBH)δn+ + (μ + μBH)δn− = μδn −MH , as expected,
or δE = μ(kF /π

2)(δkF )
2 − μBH(k2F /π

2)δkF ; we obtain δE/N =
−3(μBH)2/4μ, which is the paramagnetic spin energy in equation
(9.52). Also, from equation (9.18) we obtain the Fermi wavevec-
tors along the z-direction as kFl = [(2m/�2)(μ − 2μBHl)]1/2, such
that the number of spin-up electrons in the bottom band l = 0 is
given by N+ = N⊥(Lz/2π) · 2kF0, and their number per particle is
N+/N = 3μBH/2μ; hence, again, the paramagnetic spin susceptibil-
ity 3μ2

B/2μ.

For localized atomic aggregates the diamagnetic contribution
(e2/2mc2)

∑
i A

2
i to the hamiltonian given by equation (9.1), where

i denotes the electrons, can be treated as a perturbation; since the
electromagnetic vector can be written as A = (1/2)(H×r), we obtain
(e2H2/8mc2)

∑
i r

2
i sin

2 θi; for a radially symmetric density of elec-
trons we get (e2H2/12mc2)Nr2, and the diamagnetic susceptibility
χd = −(e2/6mc2)r2 per particle, or χd = −(1/3)μ2

B(2mr2/�2); this
is Langevin’s diamagnetism. The linear A-contribution to the hamil-
tonian together with the spin contribution give the Zeeman atomic
effect, generally anomalous, which involves a linear H-displacement
of the energy levels; however, in the ground state this contribution
may vanish, and the second-order perturbation theory for this linear
H-term leads to a paramagnetic contribution which is higher than the
diamagnetic one; this is van Vleck’s paramagnetism; however, for high
magnetic field the linear term still brings the main contribution; this
is the Paschen-Back effect.
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The classical motion of a charged particle exhibits diamagnetism
(through Faraday-Lenz induction); indeed, the lagrangian of an elec-
tron in an external magnetic field is L = mv2/2−(e/c)Av (p = mv−
(e/c)A, and the hamiltonian is H = mv2/2 = (p + eA/c)2/2m); it
reads also L = mv2/2−(e/2c)(H×r)v, or L = (m/2)[v−(e/2mc)(H×
r)]2, up to H2-corrections, as for non-relativistic electrons, which
shows that the electron turns about with the Larmor frequency Ω =
eH/2mc (half of the cyclotron frequency). On the other hand, the
equation of motion mṙ = −(e/c)(v × H) vanishes when averaged
over a finite motion, but the torque M = −(e/c)r × (v × H) =
−(e/c)v(rH) = m ×H, where m = −(e/2c)(r × v) is the magnetic
dipole (and the lagrangian can also be written as L = mv2/2+mH),
does not; it follows that the kinetic momentum moves according to
dL/dt = m × H =

−→
Ω × L. i.e. it performs a Larmor precession

about the turning axis. The induced electric current is −eΩ/2π and
the magnetic moment (−eΩ/2π)πρ2/c = −(e2H/6mc2)r2, where ρ
is the in-plane radius, such that the diamagnetic susceptibility is
χd = −(e2/6mc2)r2, in agreement with the above results.

The paramagnetism is a quantum-mechanical effect; the Boltzmann
distribution does not lead to diamagnetism, the latter being a quantum-
mecahnical effect for ensembles of charged particles in equilibrium.
The Boltzmann distribution gives, however, the magnetization of the
magnetic moments; for s = 1/2 for instance, we obtain
M = μB tan(μBH/T ) and Curie’s law for paramagnetic susceptibility
χp = μ2

B/T ; similar results hold for any other magnetic moments,
as well as for classical magnetic moments (which correspond to large
quantum-mechanical magnetic moments); in the latter case the mag-
netization is given by the Brillouin function, and the Langevin func-
tion L(x) = cothx − 1/x, for x = μBH/T . It is worth noting the
formal substitution of the temperature T by the characteristic scale
energy μ on passing from the Fermi to Boltzmann distribution.
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9.3 Heat capacity

From equation (9.52) we obtain the heat capacity

c =
π2

2
(1− f2/12μ2)

T

μ
(9.54)

per particle (at constant volume); it can also be written as

c =
π2

2
[1− (μBH)2/12μ2]

T

μ
; (9.55)

we can see that the effect of the magnetic field is extremely small.3

The grand-canonical potential Ω = −pV = −(1/β) lnQ, where p is
the pressure and Q is the grand-partition function, is defined by

βΩ = − V

(2π�)2
mωc

∑
sn

ˆ
dpz · ln{1 + exp[Ens(pz)− μ]} , (9.56)

where the energy is given by equation (9.15). By similar transforma-
tions it can be re-expressed as

Ω = −2

3

∑
s

Es +
gV

12(2π)2
mω2

cA ; (9.57)

on the other hand, by taking the derivative in equation (9.56) with
respect to β, we get

Ω + β∂Ω/∂β = E − μN , (9.58)

hence the entropy

S = β2∂Ω/∂β = 5
3βE −N ln z−

− gV
9(2π)2mω2

cβA+ 2
3β
∑

s αsNs .
(9.59)

Making use of equations (9.48) and (9.51), and estimating A given
by equation (9.40) by means of equation (9.41), we obtain that the

3M. Apostol, "Specific heat of charged fermions in magnetic field", J. Theor.
Phys. 16 (1996); see also "Fermions in a slab", J. Theor. Phys. 18 (1996).
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entropy goes like S ∼ T for T → 0; from Mayer’s relationship cp −
cV ∼ T 2α+1 between the heat capacity cp at constant pressure and
the heat capacity at constant volume cV , where S ∼ Tα, we arrive
at the conclusion that the two heat capacities coincide up to T 3-
contributions, as expected, and as given in equation (9.54).

It is also worth noting that −MdH occurs in all the thermodynamic
potentials, such that, for Gibbs’s free energy Φ = F + pV = Nμ,
where F is the free energy, we can write

−Mp = (∂Φ/∂H)T,p,N =

= (∂F/∂H)T,p,N + p(∂V/∂H)T,p,N =

= (∂F/∂H)T,V,N + (∂F/∂V )(∂V/∂H)T,p,N+

+p(∂V/∂H)T,p,N = −MV − p(∂V/∂H)T,p,N+

+p(∂V/∂H)T,p,N = −MV ,

(9.60)

i.e. the two magnetizations are the same.

9.4 Quasi-classical description

Quasiparticles located in the neighbourhood of the Fermi surface ad-
mit a quasi-classical description over large distances and long times,
with a velocity given by

v = ṙ = ∂ε/∂p = (1/�)∂ε/∂k , (9.61)

where ε(k) is their energy and k denotes the wavevector; this descrip-
tion is limited by atomic distances and quasiparticle lifetime; it holds
also for various external perturbations, magnetic field included.

In the presence of a magnetic field H the momentum p is changed to
p+eA/c, such that the wavevector k can be written as

k =
1

�
(p+ eA/c) ; (9.62)
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the velocity is the same as that given by equation (9.61), and

ṗ = −∂ε/∂r = − e
c�((∂ε/∂k)grad)A−

− e
c� (∂ε/∂k)× curlA =

= − e
c (vgrad )A− e

cv ×H =

= − e
cdA/dt− e

cv ×H = − e
c
v ×H ,

(9.63)

i.e. the law of motion according to Lorentz force; and

k̇ = − e

c�
v ×H ; (9.64)

it is assumed that the vector potential does not depend on time.

For a uniform magnetic field the wavevector k moves on the Fermi
surface by

dk =
eH

c�
v⊥dt , (9.65)

according to equation (9.64), where

v⊥ = (1/�)∂ε/∂k⊥ (9.66)

is the velocity in the orbit plane perpendicular to the magnetic field;
for a closed orbit the wavevector rotates on the Fermi surface with the
cyclotron frequency ωc = eH/mc, according to equation (9.65), since
v⊥ = �k⊥/m; the mass parameter m is, in fact, the corresponding
quasiparticle effective mass m∗, which follows from equation (9.65) as

m∗ =
�

2π

˛
dk

v⊥
; (9.67)

it can also be written as

m∗ =
�
2

2π

˛
(∂k⊥/∂ε)dk =

�
2

2π
(∂A/∂ε) , (9.68)

where A is the area of the cross-section of the Fermi sea enclosed by
the orbit.
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From equation (9.64) we obtain also

dk = − e

c�
dr×H , (9.69)

hence the trajectory (perpendicular to the magnetic field) is the same
as the k-trajectory on the Fermi surface, only rotated by −π/2 about
H. Indeed, equation (9.64) has the solutions

kx = k0x cosωct+ k0y sinωct ,

ky = −k0x sinωct+ k0y cosωct
(9.70)

for v⊥ = (1/�)∂ε/∂k⊥ = �k⊥/m = �(kx, ky)/m; therefore, from
equation (9.61) we obtain

ẋ = (�k0x/m) cosωct+ (�k0y/m) sinωct ,

ẏ = −(�k0x/m) sinωct+ (�k0y/m) cosωct ,
(9.71)

and the trajectory

x = (�k0x/mωc) sinωct− (�k0y/mωc) cosωct+ x0 ,

y = (�k0x/mωc) cosωct+ (�k0y/mωc) sinωct+ y0 ,
(9.72)

which is circular, centered at (x0, yo), and with radius r⊥ = �k⊥/mωc =
v⊥/ωc; a centripetal force F = �ωck⊥ = mω2

cr⊥ acts upon it.
The quasi-classical quantization reads˛

pdr = h(n+ γ) , (9.73)

where γ is the phase defect (for the harmonic oscillator γ = 1/2);
making use of equation (9.62), we get

�

˛
kdr−e

c

˛
Adr = h(n+ γ) , (9.74)

or, using equation (9.69),

c�2

eH

¸
k⊥dk − e

c

´
HdS = c�2

eH

¸
dA− e

c

´
HdS

= h(n+ γ)

(9.75)
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9 Magnetic Field

for the transverse motion, where dS is the elementary area swept
by the position vector; we can see that the flux HS of the mag-
netic field through the area of the cross-section enclosed by the tra-
jectory is quantized by flux quanta Φ0 = hc/e, and, similarly, the
area A of the cross-section enclosed by the k-orbit is quantized by
the transverse degeneracy (2π)2H/Φ0 = N⊥/(S/(2π)2) (according to
equation (9.19)).4 In addition, the transverse energy is quantized by
Δε⊥ = (�2/m)k⊥Δk⊥ = (�2/2πm)ΔA = (�2/2πm)(2πeH/c�) as fol-
lows from the quantization of A, such that Δε⊥ = �(eH/c�) = �ωc,
i.e. the Landau levels; similarly, the rotation energy mω2

cr
2
⊥/2 gives

Δε⊥ = mω2
cr⊥dr⊥ = (mω2

c/2π)ΔS = (mω2
c/2π)(ch/eH) = �ωc.

This is the cyclotron resonance.5

9.5 Magnetic oscillations

The statistical distribution exp(μ− ε)β leads to the free energy F =
E − TS in canonical partition function exp(−βF ) and to the grand-
canonical potential Ω = F − μN in the grand-partition function
exp(−βΩ); the latter is given by

∏
[1+exp(μ−ε)β] for electron states,

such that
F = μN − T

∑
ln[1 + exp(μ− ε)β] ; (9.76)

in the presence of a magnetic field it reads

F = μN − T gV
(2π�)2mωc·

· ´ dpz∑∞
n=0 ln[1 + exp(μ− ε)β] ,

(9.77)

according to the transverse degeneracy given by equation (9.19) and
the energy ε = En(pz) = �ωc(n+ 1/2) + p2z/2m as given by equation
(9.15), where the paramagnetic spin contribution is omitted for sim-
plicity; the summation over spins is included in g = 2s+1. Making use
of equation (9.36) the free energy can be written as F = Fb+Fm+Fosc,

4L. Onsager, "Interpretation of the de Haas-van Alphen effect", Phil. Mag. 43

1006 (1952).
5C. Kittel, Introduction to Solid State Physics, Wiley, NY (2005); C. Kittel,

Quantum Theory of Solids, Wiley, NY (1987).
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where
Fb = μN − T gV

4π2 (2m/�2)3/2·

· ´ dε · ε1/2 ln[1 + exp(μ− ε)β] =

== μN − gV
6π2 (2m/�2)3/2

´
dε · ε3/2f(ε)

(9.78)

is the bulk contribution, with f(ε) = [exp(ε − μ)β + 1]−1 the Fermi
distribution;

Fm =
gV

24(2π)2
mω2

c (2m/�2)1/2
ˆ

dε · ε−1/2f(ε) (9.79)

is the marginal H2-contribution; and

Fosc = − 2gV

(2π)2�
mω2

c

∞∑
s=1

(−1)s
(2πs)2

ˆ
dpzdxf

′(x) cos 2πsx (9.80)

is the oscillatory part of the free energy; both Fb and Fm coincide
with the corresponding contributions to equations (9.57) and (9.40).
The derivative f ′(x) of the Fermi distribution is centered on x given
by �ωcx+p2z/2m = μ and falls rapidly to zero away from this x-value;
therefore, we can write approximately

Fosc = − 2gV
(2π)2�mω2

c · I·

·∑∞
s=1

(−1)s

(2πs)2

´
dpz cos(s · �A/mωc) ,

(9.81)

where
I =
´ +∞
−∞ dxf ′(x) cos 2πsx =

=
´∞
−∞ dz ·

(
1

ez+1

)′

cos(2πszT/�ωc)

(9.82)

and A = πp2⊥/�
2 = (2πm/�2)(μ − p2z/2m) = (2πm/�2)�ωcx is the

area of the orbit cross-section; though f ′(x) varies abruptly, the cosine
varies, however, much more rapidly, and

´
dz[ez/(ez + 1)2] cos az =

πa/ sinhπa by the double poles at z = iπ × odd integer. Therefore,
we obtain

Fosc =
2gV

(2π)2� ·mω2
c ·
∑∞

s=1
(−1)s

(2πs)2
2π2Ts/�ωc

sinh(2π2Ts/�ωc)
·

· ´ dpz cos(s · �A/mωc) ;

(9.83)
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the remaining integral is a Fresnel integral, leading finally to

Fosc =
2gV
(2π)4 (�ωc)

3/2(m/�2)3/2·

·∑∞
s=1

(−1)s

s5/2
2π2Ts/�ωc

sinh(2π2Ts/�ωc)
cos(2πμs/�ωc + π/4) .

(9.84)

From equation (9.79) the marginal correction to the free energy Fm ∼
(�ωc/μ)

2Fb is of the order of H2, while the oscillatory correction is
Fosc ∼ (�ωc/μ)

3/2Fb; however, this is so only in the limit of vanishing
temperature and high magnetic field; since T � �ωc the oscillatory
correction is exponentially small in fact, and, in any case, the 1/H-
oscillations are quite slow; the typical 1/H-oscillations, as seen in
the magnetization M = −∂F/∂H and in the corresponding diamag-
netic susceptibility, are the de Haas-van Alphen oscillations; similar
oscillations may appear in various other physical properties, involving
statistical integrals; for instance, the 1/H-oscillations in the electric
conductivity in the presence of the magnetic field are the Shubnikov-
de Haas oscillations; they always involve closed orbits on the Fermi
surface and give indications about the area of the orbit cross-section,
as well as the curvature of the Fermi surface in the neighbourhood of
its pz-stationary points.

9.6 Magnetic effects

The absorption of an electromagnetic wave can be seen, in principle,
at cyclotron frequency, in radio- and microwaves spectrum, especially
at low temperatures; this is the cyclotron resonance, seen especially
in semiconductors, though usually not quite well resolved; the mag-
netic field is perpendicular to the surface, and the electric field of the
electromagnetic wave is parallel to the surface, such as to impinge the
rotating electron state above the Fermi surface; in addition, the cir-
cular polarization of the electromagnetic wave must be the right one,
in the sense of the rotating electron state, such as to produce the res-
onance; a reversely polarized wave will not be absorbed. Apart from
being or not being absorbed the waves are delayed through dissipation,
differently for different polarizations; therefore, the two circularly po-
larized components in a linearly polarized wave will rotate distinctly
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from each other, and the polarization plane of the wave will rotate
while propagating in the magnetic field; this is the Faraday effect.

In metals however, as a consequence of the screening, the electromag-
netic wave penetrates little and its action is limited to the metallic
surface; this is the skin effect, and, for good metals, the anomalous
skin effect, where the penetration depth is particularly small; con-
sequently, the cyclotron resonance is hard to be seen. However, for
a magnetic field applied parallel to the surface, the spiralling elec-
tron states will pass periodically through the penetration depth of the
wave, and cyclotron resonance may appear, even at higher harmon-
ics; this is the Azbel-Kaner effect.6 The propagation of the electron
state along the spiral trajectory must, however, bring the rotations in
phase, in order to resonate; which happens for extremal trajectories
on the Fermi surface, where the wavevectors dispersion is vanishing.

An ultrasound wave produces a transverse electric field, which may
excite cyclotron resonances; indeed, say, for instance, that the electric
field is Ey ∼ eikx; then it will act upon the electron along its velocity
vy on the cyclotron trajectory, and the electric field must be maximal
for electron velocity parallel to the electric field, and vanishing at the
trajectory centre; absorption will appear therefore for the radius r⊥
(along the x-axis) equals λ/4 + nλ, where λ is the sound wavelength;
from equation (9.72) r⊥ = �k⊥/mωc, such that ultrasound attenua-
tion will oscillate as 1/H ∼ n+1/4; this is the magneto-acoustic effect,
reflecting the geometry of the electron trajectory in the presence of
the magnetic field.

At low temperatures and for small concentration of charge carriers, as
in semiconductors, the equilibrium is attained with difficulty in high
magnetic fields; the electrons motion is almost mechanical, and clas-
sical; an electric flow jx is deviated by Lorentz force evxH/c which

6M. Ia. Azbel and E. A. Kaner, "The theory of cyclotron resonance in metals",
Sov. Phys.-JETP 3 772 (1956) (ZhETF 30 811 (1956)); A. B. Pippard, "A
proposal for determining the Fermi surface by magneto-acoustical resonance",
Phil. Mag. 2 1147 (1957); E. A. Kaner, V. G. Peschanskii and I. A Privorotskii,
"Contribution to the theory of magnetoacoustic resonance in metals", Sov.
Phys.-JETP 13 147 (1961) (ZhETF 40 214 (1961); Yu. M. Galperin, S. V.
Gantsevich and V. L. Gurevich, "Giant oscillations of sound absorption by
metals in the case of open trajectories", Sov. Phys.-JETP 29 926 (1969)
(ZhETF 56 1728 (1969)).
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gives rise to the corresponding electric field Ey = −vxH/c; hence,
jx = −envx = (enc/H)Ey = σxyEy, and the lateral conductivity
σxy = enc/H , where n is the electron concentration; this is the Hall
effect, and for holes a minus sign appears naturally in the Hall conduc-
tivity (and the propagation of an electromagnetic wave in a Hall-like
experimental set-up acquires a particular quadratic dispersion rela-
tion, corresponding to what are called helicons). The y-flow is devi-
ated along the x-direction, giving rise to an additional flow jx ∼ jyH ,
so that σxyEy ∼ σyyEyH , hence σyy ∼ σ/H ∼ 1/H2, and similarly
σxx ∼ 1/H2; this is the magneto-conductivity, transverse to the mag-
netic field, and the corresponding inverse tensor gives the magneto-
resistance; while ρxy = (σ−1)xy is the Hall resistance; for anisotropies,
similar Hall-like conductivities appear for σzx ∼ 1/H , etc; the off-
diagonal tensor of conductivities must be antisymmetric, as required
by the symmetry under field reversal. In general, the conductivity
tensor may be written as7

σ =

⎛⎝ Axx/H
2 Axy/H −Azx/H

−Axy/H Ayy/H
2 Ayz/H

Azx/H −Ayz/H Azz

⎞⎠ , (9.85)

and one can see that the conductivity along the field is not affected
(A

′

s are constants). It is easy to check that the transverse magneto-
resistance saturates with increasing field, while the Hall resistance
ρxy ∼ H . All these hold for closed orbits, but for open orbits the re-
sults are altered. An orbit opens where the Fermi surface touches the
boundary of the Brillouin zone, and the electron state moves repeat-
edly along it by Bragg reflexions, or indefinitely along the extended
zone scheme; open orbits lie along the symmetry axes, but, large, even
aperiodic orbits may appear in the neighbourhood. For such an orbit,
say, along the y-direction, there will be no reaction along x, such that
σxx ∼ Bxx (a constant) will not depend on the field; similarly, σzx

will not depend on the field, while σyy, σxy and σyz will remain the

7J. M. Ziman, Electrons and Phonons, The Theory of Transport Phenomena in

Solids, Clarendon Press, Oxford (1960).
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same; the conductivity tensor looks like

σ =

⎛⎝ Bxx Axy/H −Bzx

−Axy/H Ayy/H
2 Ayz/H

Bzx −Ayz/H Azz

⎞⎠ , (9.86)

and one can check that ρxx saturates, but the transverse magneto-
resistance ρyy in the direction of an open orbit increases with field,
ρyy ∼ H2; this is a giant magneto-resistance. It is worth noting that
such derivations are based on the equation of motion of the form
m(d/dt+1/τ)δv = −e(E+δv×H/c), where τ is the (quasi-) particle
lifetime.
Finally, a large magnetic field may even induce inter-band transitions,
for small energy gaps Eg; the probability can be obtained by compar-
ing the perturbation E2

g/μ to the magnetic quanta �ωc; indeed, the
time �μ/E2

g must be longer than the cyclotron period 1/ωc, hence
�ωcμ/E

2
g > 1 can be taken as the criterion of magnetic breakthrough;

this is similar to Zener effect for inter-band transitions under the ac-
tion of an electric field (dielectric breakdown).
Electrical conductance S is quantized; indeed, from Ohm’s law I =
SU , where the electric flow through area S is given by I = envS =
e(1/a3)(a/τ)S, we obtain I = (e/τ)(S/a2) and S = (e2/ετ)(S/a2),
where n = 1/a3 is the electron concentration, a is the mean elec-
tron separation, τ is the electron life-time, and ε is the associated
uncertainty in energy; since ετ = h one may write S = (e2/h) · ν,
where ν is the number of electrons per area S; it follows that the
conductance S is quantized by quanta e2/h, and conductivity σ =
S(l/S) = (e2/h) · ν · (l/S).8 Such quanta of conductivity (and elec-
trical resistance) can be seen more conveniently in a magnetic field
applied perpendicular to the surface; indeed, the Hall conductivity
σxy = enc/H includes the concentration n = N/Sd = (n⊥/d) · ν,
where n⊥ = eH/ch is the transverse degeneracy, d is the thickness of
the sample, and ν is the number of fully occupied Landau’s levels; we
obtain σxy = (e2/h) · ν · (1/d); this is the quantum Hall effect,9 dis-

8See also M. Apostol, "A new approach to the quantized electrical conductance",
Phys. Lett. A372 5093 (2008).

9K. von Klitzing, G. Dorda and M. Pepper, "New method for high-accuracy de-
termination of the fine-structure constant based on quantized Hall resistance",
Phys. Rev. Lett. 45 494 (1980).
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covered on inversion layers at metal-oxide-semiconductors (MOS) in-
terfaces, in high magnetic fields (18Ts) and low temperatures (∼ 1K).
The number ν of quanta above may also be rational fractions; this
is the fractional quantum Hall effect,10 seen in high magnetic fields
on semiconductor interfaces (GaAs/AlGaAs, for instance) at low tem-
peratures. The origin of the effect consists in the interaction of the
electrons, which leads to a fractionally cyclic boundary condition on
the one-electron wavefunction encircling another electron; energy sub-
bands appear in Landau’s levels, and ν may get fractional values;
vortices of magnetic flux are attached to electrons, which alter the
statistics of these composite particles, and lead to elementary excita-
tions of fractional electron charge.

9.7 Magnetic transport

The magnetic field brings a lateral contribution to the transport co-
efficients in condensed matter, as a consequence of the Lorenz force
acting upon the electron elementary excitations which possess a ve-
locity; such contributions may be called lateral, or transverse, conduc-
tivities. The lateral conductivities are controlled by the lifetime of the
electron quasiparticles. Typically, the considerations are made upon
a homogeneous sample at thermal equilibrium, subjected to small,
continuous and constant gradients of temperature and voltage along
the x-axis, and placed into a constant magnetic field H directed along
the z-axis; the lateral conductivities appear along the y-axis, and, for
small, usual magnetic fields, they are linear in H ; in addition, second-
order contributions appear in the usual, longitudinal conductivities
along the x-axis.
The basic equations of the thermomagnetoelectricity read

E = j/σ +QgradT +R(H× j) +N(H× gradT ) , (9.87)

and

q = ϕj+ TQj−KgradT +NT (H× j) + L(H× gradT ) , (9.88)
10D. C. Tsui, H. L. Stormer and A. C. Gossard, "Two-dimensional magnetotrans-

port in the extreme quantum limit", Phys. Rev. Lett 48 1559 (1982); "Anoma-
lous quantum Hall effect: an incompressible quantum fluid with fractionally
charged excitations", R. B. Laughlin, Phys. Rev. Lett. 50 1395 (1983).
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where E is the external electric field, j is the electric flow (charge per
unit area of the cross-section per unit time), σ is the electric conduc-
tivity, Q is the thermopower, T denotes the temperature and gradT
is the temperature gradient, q is the heat flow (heat per unit area
of the cross-section per unit time), ϕ is the voltage (E = −gradϕ,
divE = div j = 0), and K represents the thermoconductivity; R is
the Hall resistance, and represents the effect of the magnetic field on
the electric resistance (or conductivity), N is the Nernst coefficient,
and represents the effect of the magnetic field on the thermopower
(or upon the Seebeck effect), and L is the Leduc-Righi coefficient,
corresponding to the effect of the magnetic field on the thermocon-
ductivity; N represents also the effect of the magnetic field upon the
Peltier heat, which is called also the Ettingshausen effect. Making
use of the reference frame given above, equations (9.87) and (9.88)
can also be written as

Ex = jx/σ +Q(∂T/∂x) , qx = ϕjx + TQjx −K(∂T/∂x) , (9.89)

and

Ey = RHjx +NH(∂T/∂x) , qy = NTHjx + LH(∂T/∂x) ; (9.90)

the transverse character of the lateral conductivities is obvious in the
above equations.

The cyclotron frequency is given by ωc = eH/mc, where −e is the
electron charge, m is the electron mass, and c denotes the light veloc-
ity; typical values for �/τc = �ωc, where τc is the cyclotron time, are
�/τc 
 1− 10K, corresponding to H = 104 − 105Gs.

It is customary to represent the electron quasiparticle lifetime τe in
the (slightly inhomogeneous) electron liquid as11

�

τe
= 2B2(ρ3/n)

(ε− μ)2 + T 2

e(ε−μ)/T + 1
, (9.91)

where B = 4πe2/k2F , ρ = mpF /π
2
�
3 is the state density at the Fermi

level, and n (= k3F /3π
2) is the electron concentration; kF is the Fermi

11P. Morel and P. Nozieres, "Lifetime effects in condensed helium-3", Phys. Rev.
126 1909 (1962).
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wavevector and pF = �kF is the Fermi momentum. Since, at finite
temperatures, we may set ε = μ, we get

�

τe
= B2(ρ3/n)T 2 ; (9.92)

we can also write �/τe = (4/3π)2ϕ2(ρ/n)3T 2 
 (ϕ/μ)2(T 2/μ), where
ϕ = e2kF is the Coulomb localization energy and μ is the chemical po-
tential (Fermi level); since ϕ 
 μ, we get �/τe = T 2/μ; typical values
are �/τe 
 10−4T 2K (for μ = 1eV ), and one can see that �/τe > �/τc
for usual fields (though the inequality is reversed at low tempera-
tures). The electron-phonon interaction brings the quasiparticle life-
time τe−ph given by �/τe−ph = T/F , where F 
 (M/m)(�ωD/μ)2,
M being the atomic mass and ωD being the Debye frequency; typi-
cally, F ∼ 10 − 100, and we can see that τe−ph may easily dominate
the electron lifetime (the lifetimes add according to Matthiessen’s rule
1/τ = 1/τe + 1/τe−ph), especially on decreasing the temperature; for
low magnetic fields the inequality �/τ > �/τc still holds, where τ is
the total quasiparticle lifetime, but again the inequality may be re-
versed at lower temperatures and higher fields. The geometric quasi-
particle lifetime given by 1/τg ∼ d/v, where v is the Fermi velocity
(and d denotes the mean transverse size of the sample), contributes
also, especially at low temperatures (Casimir geometric effect), as,
for instance, �/τg ∼ 10K for d = 1μm. Therefore, for low magnetic
fields and normal temperatures one may admit that �/τ � �/τc, or
ωcτ 	 1, where τ is the quasiparticle lifetime (or collision time). Un-
der these circumstances the quasi-classical motion of the quasiparticle
momentum

p̃x = px cosωct+ py sinωct ,

p̃y = −px sinωct+ py cosωct
(9.93)

is limited to the lifetime τ , i.e. t = τ in equation (9.93), and the
transport is performed in the limit ωcτ 	 1, such that the continuum
limit may be applied, and, consequently, the continuity equation.

On the contrary, in the opposite limit ωcτ � 1 the electrons get
localized by the magnetic field, and their motion is subjected to the
Lorentz force as for a classical particle; though they may still acquire
a local equilibrium, there will not be a thermal transport, since the
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continuity of the equilibrium is destroyed; however, a drift velocity
appears under the action of an electric field, so that there will be an
electric transport, and a corresponding electrical conductivity. This
circumstance may appear more frequently in semiconductors, where
the lifetime τ of the charge carriers is given by 1/τ = (σ/a3)

√
T/m,

where σ is the scattering cross-section and a is the mean electron
separation (the interaction with the atoms leads to an effective σ 

a2); we can see easily that the inequality ωcτ � 1 can be fulfilled for
such a dilute electron liquid, and high fields.

In addition, it is also worth noting that transport is performed under
local, continuous equilibrium and global non-equilibrium, and conse-
quently, the effect of the magnetic field upon the equilibrium thermo-
dynamic functions is not relevant for transport phenomena.12 On the
contrary, the quasi-classical motion in magnetic field does apply for
transport, either for quasiparticles or, where appropriate, for localized
classical electrons, endowed with velocity.

9.8 Lateral thermoconductivity

The quasiparticles with momentum p near the (quasi-spherical) Fermi
surface and energy ε transport the energy density

∂

∂T
(εn) ·ΔT , (9.94)

where n is the Fermi distribution of the quasiparticles and ΔT is the
local variation of temperature; this energy is carried along the y-axis
with velocity ṽy = p̃y/m; heat flux (heat per unit area of the cross-
section) along the y-axis is

∂

∂T
(εn) · ṽyτ ·ΔT , (9.95)

where τ is the quasiparticle lifetime; in local equilibrium, for small τ
and long times, this flux is transported along the x-axis with velocity

12Such an attempt was discussed by S. Titeica, "Uber die Wiederstandsanderung
von Metallen in Magnetfeld", Ann. Physik 414 129 (1935).
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vx = px/m, such that the heat flow is given by the continuity equation

qy =
2

(2π�)3

ˆ
dp · ∂

∂T
(εn) · ṽyvxτ · (∂T/∂x) ; (9.96)

hence the lateral thermoconductivity

Kyx =
2

(2π�)3

ˆ
dp · ∂

∂T
(εn) · ṽyvxτ . (9.97)

It is worth noting that the transport velocity is vx = px/m (not
affected by the magnetic field), according to the quasi-classical motion
and the local thermal equilibrium. Making use of equation (9.93) to
the first order in H one obtains by straightforward calculations

Kyx = −π2

3

ωcnτ
2

m
T , (9.98)

and, consequently, the Leduc-Righi coefficient in equation (9.90)

L = −π2

3

enτ2

m2c
T . (9.99)

It is worth noting that the thermoconductivity derived here holds in
the absence of the electric flow, and electric field; in addition, it is easy
to see that Kyx = −K(ωcτ), as expected, where K is the longitudinal
thermoconductivity. The latter has a second-order correction arising
from ṽxvx, such that Kxx = K[1− (ωcτ)

2/2].

9.9 Lateral electrical conductivity and

thermopower

Similarly, a quasiparticle with energy ε carries a charge density

−eδn = e2(∂n/∂ε) · δU , (9.100)

where δU is the local voltage; the charge flux

e2(∂n/∂ε) · ṽyτ · δU (9.101)
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along the y-axis is carried along the x-axis at the rate

jy = − 2

(2π�)3

ˆ
dp · e2(∂n/∂ε) · ṽyvxτ · Ex , (9.102)

hence the lateral conductivity

σyx = − 2

(2π�)3

ˆ
dp · e2(∂n/∂ε) · ṽyvxτ ; (9.103)

to the first order in H we obtain straightforwardly

σyx = −e2ωcnτ
2

m
; (9.104)

similarly, σ = σxx = e2nτ/m (up to H2-corrections) and σyx =
−σ(ωcτ). The Hall resistance is obtained from RH = −σyx/σ

2 =
mωc/e

2n, according to equations (9.89) and (9.90), as R = 1/enc. It
is worth remarking that the lateral conductivities are antisymmetric
tensors, because the magnetic field must be reversed. We may note
also that the transverse Lorenz number Lyx = Kyx/σyxT = π2/3e2

equals the longitudinal Lorenz number L = K/σT = π2/3e2, as ex-
pected.

From equations (9.89) and (9.90), for a vanishing electric field, the lon-
gitudinal electric flow is given by jx = −σQ(∂T/∂x), such that NH =
RHσQ = −(σyx/σ)Q = Q(ωcτ) = −(π2/6)(T/μ)(ωcτ), since the
(longitudinal) thermopower is given by Q = −(π2/6e)(T/μ); hence
the Nernst coefficient

N =
eτ

mc
Q = −π2

6

τ

mc

T

μ
. (9.105)

We can remark finally that the lateral conductivities are the longitu-
dinal ones reduced by ωcτ .
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10 Semiconductors

10.1 Lifetime

In typical semiconductors the concentration n of the charge carriers
is 4− 5 orders of magnitude lower than in metals (from 1022cm−3 in
metals to 1017 − 1018cm−2 in semiconductors); these charge carriers
are either electrons or holes, provided by doping impurities, like in
extrinsic semiconductors, or both electrons and holes, like in intrinsic
semiconductors, arising from thermal excitations across a small (nar-
row) energy gap; semimetals, with a slight superposition of energy
bands, belong to the same class. Due to their low concentration the
charge carriers in semiconductors move slowly on atomic positions,
being much localized on the atoms. They possess an effective mass
denoted by m (close to the electron mass), arising from their mo-
tion in the potential of the crystalline lattice (band mass, due to the
interaction with the lattice), and a ±e charge, where −e is the elec-
tron charge. The computations for holes are similar with those for
electrons, with due care for the origin of energy and the correspond-
ing chemical potentials; such computations are illustrated below for
electrons.
In this extreme limit of very low concentrations the charge carriers
(which are excitations across the Fermi surface) are described by the
Boltzmann statistics for any usual temperature. The charge carriers
behave like a classical gas of particles, and the characteristic quantum-
mechanical energy εq = �

2/ma2, where � is Planck’s constant and a
(∼ 1/n1/3) is the mean electron separation, is much smaller than the
temperature T ; the criterion for classical behaviour is �

2/ma2 	 T ,
and typical values for a are a ∼ 100Å. For such a dilute electron
gas the electrons are localized, and have trajectories, their mechanical
states being described by position r and velocity v = ṙ. For a classical
gas the temperature T is high enough for statistical motion to local-
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10 Semiconductors

ize the particles over thermal wavelengths λth =
√
�2/mT 	 a, much

shorter than the average particle separation. Such thermal lengths
are of the order of 10 inter-atomic distances. However, in compari-
son with their atomic localization the temperature produces rather a
delocalization over thermal lengths.

Being so localized, the electrons interact weakly with the long-wave-
length phonons, but they interact more with the atomic vibrations.1

The corresponding cross-section is of the order of the square of the
inter-atomic distance. In addition, they collide with themselves, with
a cross-section of the same order of magnitude. According to the
Boltzmann distribution the particle state density is given by

dn =
2

(2π�)3
e(μ−ε)/T dpdr , (10.1)

where μ is the chemical potential, ε = p2/2m and momentum p = mv;
we get μ = T ln[n(2π�2/mT )3/2/2], spin included; therefore,

dn =
n

(2πmT )3/2
e−ε/Tdpdr . (10.2)

The number of particles with velocity v moving (along z-axis) per
unit time per unit area is given by

dν = n(m/2πT )3/2e−mv2/2T vzdvxdvydvz ; (10.3)

the density of particles having the velocity v with respect to one
particle is therefore given by

dν = n
π

2
(m/πT )3/2e−mv2/4T v2dv , (10.4)

1It is worth comparing this situation with the electron-phonon interaction in the
electron liquid; due to the delocalization of both the electron quasiparticles
and the phonons, this interaction brings a factor ∼ (m/M)1/2(μ/�ωD) to its
matrix elements, where μ is the electron Fermi level and M is the atomic mass;
consequently, the uncertainty in the electron energy is ∼ T (m/M)(μ/�ωD)2,
hence the lifetime τ given by 1/τ ∼ T/�F , where F = (M/m)(�ωD/μ)2; the ef-
fect of the electron-phonon interaction upon the phonons is less relevant, as the
short-wavelength phonons (that are denser) are much less thermally activated,
while the long-wavelength ones are very dilute. It is worth noting that the
above estimation is valid for high ωD, such that the adiabatic coefficient m/M
is able to ensure the thermal equilibrium of the electrons with the phonons.
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10 Semiconductors

where the relative mass m→ m/2 is used. The collision cross-section
σ is the ratio of the number of collisions per unit time (collision rate)
to the flux of the incoming particles, i.e. their density multiplied by
their velocity: σ = dνcoll/vdν; it follows that the total number of
collisions suferred by a particle per unit time is

νcoll = n
π

2
(m/πT )3/2

ˆ
e−mv2/4Tσv3dv = 4nσ(T/πm)1/2 ; (10.5)

since
√
T/m is the mean square velocity v along one direction, one

may write more conveniently νcoll = nσ(T/m)1/2 = nσv, where σ →
4σ/

√
π is a cross-section. The (quasi-) particle lifetime is given by

τ = 1/νcoll. (The difference from a classical gas comes from the
electron localization). The above derivation holds also for electron-
atom collisions, only that the number of collisions is increased in this
case by the factor a2/σ, accounting for the higher density of atoms.
This factor leads to an effective cross-section a2, which is by far higher
than σ, such that (according to Matthiessen’s rule) it dominates the
number of collisions. The number of collisions can therefore be written
as

νcoll 
 1

a
(T/m)1/2 , (10.6)

and the corresponding lifetime

τ = 1/νcoll =
√
ma2/T = �/

√
εqT ; (10.7)

the corresponding uncertainty in energy is �/τ ∼√εqT , and the mean
freepath is Λ ∼ vτ ∼ a. The difference with respect to the standard
classical gas of particles (where Λ ∼ a3/σ) comes from the electron-
phonon interaction. In this respect the low-concentration electrons in
semiconductors may be called a dilute electron liquid. The mobility B
under a force F = mv/τ = v/B is obtained as B = τ/m =

√
a2/mT .

The corresponding mean freepath is much longer than the inter-atomic
distances, and the thermal energy T (and fluctuation energy as well)
is much larger than the (quasi-) particle energy

√
εqT , such that the

thermal equilibrium is attainable, as expected.2

2It is worth recalling that the thermal time (th), fluctuating time (f), elementary
excitation lifetime (ex) and, externally observable time (e) are ordered through
τth ≤ τf � τe � τex.
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10 Semiconductors

The (small) effect of the electron-phonon interaction in semiconduc-
tors, both on the phonons and the electrons (charge carriers), is dis-
cussed in one of the next chapters.

10.2 Transport coefficients

The density of particles with momentum p is given by

f =
n

(2πmT )3/2
e−ε/T ; (10.8)

these particles transport an energy density

∂

∂T
(εf) ·ΔT , (10.9)

where ΔT is the temperature drop along the sample (z-axis); the
density of energy is transported with velocity v‖ = v cos θ along the
sample, such that the heat flux is given by

∂

∂T
(εf) · v‖τ ·ΔT ; (10.10)

for v‖τ 	 l (and the transverse size of the sample much smaller than
l), where l is the sample length; we obtain the total heat flow

∂Q

∂t
=

ˆ
dp · ∂

∂T
(εf) · v2‖τ ·

∂T

∂z
, (10.11)

and the thermoconductivity

K =

ˆ
dp · ∂

∂T
(εf) · v2‖τ . (10.12)

The effect of the sample boundaries is less relevant at high temper-
atures, such that we may use for τ the lifetime given by (10.7); we
obtain easily

K =
5nτT

m
=

5

a2

√
T/m ; (10.13)
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10 Semiconductors

since the heat capacity per unit volume is C = (3/2)(1/a3), we may
also write a typical representation K = (10/3)Cvλ for thermocon-
ductivity; another representation is K ∼ v/σ, where σ denotes the
cross-section.

The above computations are valid for a constant number of particles;
for constant chemical potential, i.e. using

f =
2

(2π�)3
e(μ−ε)/T , (10.14)

we obtain similarly the thermoconductivity3

K =
5nτT

2m
(7/2− μ/T ) =

5

2a2

√
T/m(7/2− μ/T ) , (10.15)

where the chemical potential is given by

μ = T ln[
n

2
(2π�2/mT )3/2] ; (10.16)

it can also be written as

μ/T 
 −3 ln(a/λth) + 2 , (10.17)

where λth =
(
�
2/mT

)1/2
is the thermal wavelength; the logarithm

is a slow function, and for typical values of temperature and charge
carrier concentration in semiconductors −μ/T 
 2.

The charge density per (quasi-) electron is

−eδf = e2
∂f

∂ε
· δU , (10.18)

where δU is the local voltage; the charge flux is

e2
∂f

∂ε
· v‖τ · δU , (10.19)

such that the electric flow is given by

j =
∂Q

∂t
=

ˆ
dp · e2 ∂f

∂ε
· v2‖τ ·

∂U

∂z
; (10.20)

3For an electron liquid such a difference is irrelevant, because the chemical po-
tential varies slowly with temperature in that case.
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10 Semiconductors

hence the electrical conductivity

σ = −
ˆ

dp · e2∂f
∂ε
· v2‖τ ; (10.21)

it is the same either for a constant number of particles or for a con-
stant chemical potential;4 under the same conditions as above we get
straightforwardly

σ =
e2nτ

m
=

e2

a2
· 1√

mT
; (10.22)

it may also be represented as σ = (e2/aT ) · v/a = (e2/aT ) · (1/τ). A
Lorenz number can be defined as L = K/σT = 5/e2 from equations
(10.13) and (10.22), or L = (5/2e2)(7/2−μ/T ) from equations (10.15)
and (10.22).

The variation of the chemical potential given by equation (10.16) is
given by

δμ = (μ/T − 3/2)δT ; (10.23)

it is equivalent with a change −δμ in particle energies, i.e. a voltage
δU , such that

−eδU = −δμ = (3/2− μ/T )δT ; (10.24)

it follows that the thermopower Q = δU/δT is given by

Q = −1

e
(3/2− μ/T ) . (10.25)

In a typical thermoelectric circuit operated at equilibrium the electric
flow j and the heat flow q are given by the fundamental equations of
the thermoelectricity

j = −σQgradT ,

q = QT j−KgradT
(10.26)

(in the absence of the electric field). The heat density is obtained
from these equations as

−divq = −QjgradT + div (KgradT ) = j2/σ + div (KgradT ) (10.27)

4The charge transport is not a thermal transport.
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10 Semiconductors

(since div j = 0), where we can identify the dissipated Joule-Lenz heat
j2/σ (per unit volume and unit time) and the thermoconducted heat
KgradT (per unit area of the sample cross-section); one can check also
that the entropy increases in time, i.e. ∂S/∂t = − ´ dr·(divq)/T > 0.
The efficiency coefficient is given by

η =
j2/σ ·Al

j2/σ · Al −QT jA+KAgradT
, (10.28)

where A is the sample cross-section (and l denotes the sample length);
we obtain easily

η =
ηc

ηc + (K +Q2σT )/Q2σT
, (10.29)

where ηc = ΔT/T is the efficiency coefficient of the Carnot cycle, and

ZT =
Q2σT

K +Q2σT
=

Q2

L+Q2
(10.30)

is called the figure of merit of the thermoelement; we can see that ZT
is always lower than unity, its maximum value; the Lorenz number in
equation (10.30) corresponds to the thermoconductivity computed at
constant chemical potential.

10.3 Thermodynamics

Let f be the Fermi or Boltzmann distribution per unit volume for
electron quasiparticles, or (quasi-) electrons possessing velocity, as in
a quasi-classical description, such that the particle density is given by
n =

∑
f , the summation being extended over all momentum states.

For constant chemical potential the transported particle density is
given by δn =

∑
(∂f/∂T )δT , where T is the temperature and δT is the

local variation of temperature; the particle flux is
∑

(∂f/∂T )vτδT ,
where v is the velocity and τ denotes the quasi-particle lifetime; for
small τ , such as to ensure the local equilibrium and the continuity of
the transport over large-scale distances and times, the particle flow is
given by the continuity equation, such that we may write down∑

(∂f/∂T )vτ(vgradT ) (10.31)
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10 Semiconductors

for the particle flow lost in the direction of the temperature gradient;
for a homogeneous sample and in the absence of the magnetic field it
is easy to see that we get the longitudinal particle flow

−
∑

(∂f/∂T )v2τgradT , (10.32)

representing the number of particles crossing the unit area of the cross-
section per unit time. The electric flow is now easily obtained as

j = e
∑

(∂f/∂T )v2τgradT = −σQgradT , (10.33)

where the electrical conductivity σ is introduced for convenience, and
Q is the thermopower. This is the first of the two equations of the
thermoelectricity (in the absence of external electric fields). It is easy
to see that the electric flow in equation (10.33) arises from a (thermo-)
electric field E = −QgradT , and a (thermo-) voltage drop ϕ = QT ;
consequently, an electric energy flow ϕj = QT j appears (which is also
called the Peltier heat), and a corresponding density of electric en-
ergy jE = j2/σ is produced per unit time and per unit volume; the
latter is the dissipated Joule-Lenz heat. On the other hand, besides
the electric flow of energy QT j, there exists the transported inter-
nal energy, whose density is

∑
ε(∂f/∂T )δT ; the corresponding flux

is
∑

ε(∂f/∂T )vτδT , and the lost flow is
∑

ε(∂f/∂T )vτ(vgradT );
therefore, the longitudinal energy flow is given by

−
∑

ε(∂f/∂T )v2τgradT = −KgradT , (10.34)

where K is the thermoconductivity; it is the heat passing through the
unit area of the cross-section per unit time. Therefore, the total heat
flow q is given by

q = QT j−KgradT ; (10.35)

this is the second equation of the thermoelectricity. The heat pro-
duced per unit time and unit volume is −divq = j2/σ+ div (KgradT )
(which amounts in fact to the dissipated Joule-Lenz heat j2/σ, since
the charge conservation in the stationary flow div j = 0 implies gradT =
const from equation (10.33); and the transport coefficients are con-
stant for a homogeneous sample). One can also check the increase
of entropy with time, ∂S/∂t = − ´ dr · (divq)/T =

´
dr · (j2/σT +
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K(gradT )2/T 2) > 0 (in fact
´
dr · j2/σT > 0). It is worth noting

that both the Peltier heat and the thermoconducted heat in equation
(10.35) are conducted heats.

The heat produced in the sample per unit time is (j2/σ)·Al = Q2σΔT ·
gradT ·A, where A is the area of the sample cross-section (A), l denotes
the length of the sample and ΔT is the temperature drop along the
sample; the thermoconducted heat per unit time is AKgradT and
the Peltier (thermoelectric) heat is −QT jA = Q2σT ·AgradT ; we get
easily the efficiency coefficient given by equation (10.28).

Similarly, for an external voltageϕ the transported density of electrons
is
∑

(∂f/∂ε)(−eϕ), the flux is
∑

(∂f/∂ε)vτ(−eϕ) and the lost flow
is
∑

(∂f/∂ε)vτ(−evgradϕ) = e
∑

(∂f/∂ε)vτ(vE), where E is the
external electric field; longitudinally, it is −e∑(∂f/∂ε)v2τE, since
vE = −vE; therefore, we obtain the particle flow as e

∑
(∂f/∂ε)v2τE

and the corresponding electric flow

j = −e2
∑

(∂f/∂ε)v2τE = σE , (10.36)

where σ is the electrical conductivity; the first equation of the ther-
moelectricity becomes j = σE − σQgradT , while the corresponding
energy must be added to the second equation of the thermoelectricity,
i.e. q = ϕj+QT j−KgradT .

The change in the particle density is given by δn =
∑

(∂f/∂T )δT −∑
(∂f/∂ε)δμ = 0; on the other hand, δμ = −δε = eδϕ, such that∑
(∂f/∂T )δT − e

∑
(∂f/∂ε)δϕ; hence the thermopower

Q = δϕ/δT =
1

e

∑
(∂f/∂T )/

∑
(∂f/∂ε) ; (10.37)

it is consistent with that obtained from equations (10.33) and (10.36),

Q = −e∑(∂f/∂T )v2τ/σ =

= 1
e

∑
(∂f/∂T )v2τ/

∑
(∂f/∂ε)v2τ .

(10.38)

Also, from equation (10.32) we obtain the particle flow

i = −
∑

(∂f/∂T )v2τgradT ; (10.39)

285

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



10 Semiconductors

on the other hand, gradn =
∑

(∂f/∂T )gradT , such that

i = −[
∑

(∂f/∂T )v2τ/
∑

(∂f/∂T )]gradn = −Dthgradn , (10.40)

where Dth is the thermodiffusion coefficient, according to Fick’s law;
it transports mass, momentum and energy. Similarly, under the vari-
ation of the chemical potential there appears a change in the particle
density δn = −∑(∂f/∂ε)δμ, a flux of particles −∑(∂f/∂ε)vτδμ and
a particle flow

i =
∑

(∂f/∂ε)v2τgradμ =

= −[∑(∂f/∂ε)v2τ/
∑

(∂f/∂ε)]gradn = −Dgradn
(10.41)

where D is the diffusion coefficient; it contributes to electrodiffusion.

10.4 Magnetic transport

For high temperatures and low magnetic fields H , as long as ωcτ 	 1,
where ωc = eH/mc is the cyclotron frequency and τ is the (quasi-)
electron lifetime, the lateral conductivities are the longitudinal ones
multiplied by ωcτ ; specifically, the transverse thermoconductivity
Kyx = LH = −K(ωcτ), the transverse electrical conductivity σyx =
−σ(ωcτ) (and the Hall resistance R is given by RH = −σyx/σ

2 =
(1/σ)(ωcτ)), and the transverse thermopower NH = Q(ωcτ); the
longitudinal coefficients K, σ and Q are those computed above, L is
the Leduc-Righi coefficient and N is the Nernst coefficient, according
to the basic equations of the thermomagnetoelectricity.

For high magnetic fields and low temperature ωcτ � 1, the charge
carriers become localized, the cyclotron length ξc =

√
2c�/eH =√

12/H(Gs) · 104Å becomes comparable or shorter than the mean
electron separation, and the continuity of the local equilibrium, and,
consequently, the transport becomes problematic. However, under the
action of an electric field E the electrons acquire small drift velocities,
according to the law of motion

m

τ
v = −e(E+

1

c
v ×H) ; (10.42)
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solving for velocities and introducing the electric flow j = −env one
obtains the conductivity tensor

σ̃ =
σ

1 + (ωcτ)2

⎛⎝ 1 −ωcτ 0
ωcτ 1 0
0 0 1 + (ωcτ)

2

⎞⎠ , (10.43)

where σ = e2nτ/m, and the resistivity tensor

ρ =
1

σ

⎛⎝ 1 −ωcτ 0
ωcτ 1 0
0 0 1

⎞⎠ ; (10.44)

if, however, the motion is blocked along, say, y-direction, as for a
corresponding open cyclotron orbit, then the longitudinal resistivity
ρxx ∼ H2, as for a giant magneto-resistance.
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11 Electron-Phonon

Interaction

11.1 Introduction

The cohesion of solids is caused by the ion-ion, electron-electron and
ion-electron Coulomb interaction; once the cohesion is established,
we can determine the thermodynamics of the solids, in particular the
thermodynamics of their excited states. The excited states are deter-
mined by changes δn in electron density and displacement u in ionic
positions, as well as changes in other interacting physical quantities
(like magnetic moments, for instance). The first-order variations with
respect to the cohesion state are vanishing, since this state is an equi-
librium state. The second-order changes in the ionic positions give the
vibrations of the solid, which, at least in the long-wavelength limit,
can be analzyed in terms of phonons. The second-order changes in
the electron density give an interaction between the electrons. The
second-order combined change in electron density and ionic positions
gives the electron-phonon interaction.

In metals the change δn in electron density leads to quasiparticle ele-
mentary excitations (quasi-electrons) and collective elementary excita-
tions (plasmons). Since the quasi-electron energies are low, the quasi-
electrons interact with (longitudinal) acoustic phonons. In general,
such an interaction implies the product δnϕ, where ϕ is the potential
generated by the ion displacement. Since the quasi-electrons are mo-
bile, they screen the ionic potential, such that the ionic potential is
proportional to the ionic change in density, i.e. it is proportional to
divu, where u is the displacement field. Due to the Fermi statistics,
we may replace δn by n; the electron-phonon interaction in metals
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reads

He−ph = −C
ˆ

dr · n(r)divu = − C√
N

∑
kq

iquqc
+
k+qck , (11.1)

where we use the Fourier transforms

u(r) =
1√
N

∑
q

uqe
iqr (11.2)

for the longitudinal acoustic phonons and

ψ(r) =
1√
V

∑
k

cke
ikr (11.3)

for the electron annihilation operators; N denotes the number of ions,
V denotes the volume and the summation over spin is included. In
equation (11.1) C > 0 is a constant. The minus sign accounts for the
attractive nature of this interaction.

The electron density

n(r) =
∑
i

δ(r− ri) (11.4)

becomes in the second quantization

n(r) = ψ+(r)ψ(r) = 1
V

∑
kq c

+
k+qcke

−iqr =

= 1
V

∑
k c

+
k ck + 1

V

∑
kq �=0 c

+
k+qcke

−iqr ,
(11.5)

whence we can see that c+k+qck, q �= 0, is associated with density
variations.

The interaction given by equation (11.1) can also be obtained by tak-
ing the mixed second-order change in the energy of the electron liquid
given in the "Electron Liquid" chapter. The cohesion theory of the
metals given in that chapter offers the possibility of estimating the
constant C, which is of the order 10−2μ, where μ is the chemical po-
tential of the electrons. An approximate estimation is provided by the
change in the Fermi level δμ = −2μ(δa/a) = − 2

3μ(δV/V ), by using
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δV/V = −δni/ni = divu, where a is the mean separation distance
between the electrons, which is taken equal with the mean separation
distance between the ions with density ni; hence C = 2μ/3. Since the
effective ion charge is ze, where z is of the order z = 10−1 (and −e
is the electron charge), it is easy to see that the interaction ∼ z2 is
reduced by a factor of the order 10−2.

First, we note that the electron-phonon energy, which is of the order
C, is higher than the quasi-electron energy uncertainty T 2/μ, where
T denotes the temperature; therefore, it makes sense to treat He−ph

as an interaction. Similarly, C is higher than the uncertainty in the
phonon energy �T/Mca, where M is the ion mass, c is the sound
velocity (actually the phonon group velocity) and a denotes the mean
separation distance between the ions; the corresponding inequality
is T < M

m �ωD, where m is the electron mass and ωD is the Debye
frequency. Again we arrive at the conclusion that we may treat the
electron-phonon coupling as an interaction, which does not disturb
the main picture of phonons and quasi-electrons; this means that we
may treat the electron-phonon interaction within the first orders of
the perturbation theory.

However, if we look carefully at the electron-phonon interaction hamil-
tonian given by equation (11.1), we can see a few interesting things.
First we note that the first contribution to energy arises from this
hamiltonian in the second-order of the perturbation theory, where
the well-known denominator which involves energy differences may
be negative; this may lead to a pairing instability at low tempera-
ture, which changes completely the electron-liquid structure and is
the cause of the superconductivity.1 Moreover, this result tells us
that at higher temperatures, where the pairing instability is not effec-
tive, the electron-phonon interaction has a small effect on the quasi-
electrons, except for inducing an uncertainty in their energy given by
�/τe−ph = T/F , F = M

m (�ωD/μ)2 (given in the "Phonons in Solids"
chapter). Also, since the electrons follow rapidly the ionic motion,2

1H. Frohlich, "Theory of the superconducting state. I. The ground state at the
absolute zero of temperature", Phys. Rev. 79 845 (1950); L. Cooper, "Bound
electron pairs in a degenerate Fermi gas", Phys. Rev. 104 1189 (1956); J.
Bardeen, L. N. Cooper and J. R. Schrieffer, "Theory of Superconductivity",
Phys. Rev. 108 1175 (1957).

2M. Born and J. R. Oppenheimer, "Zur Quantentheorie der Molekulen", Ann.
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11 Electron-Phonon Interaction

the effect of the electron-phonon interaction on the phonons is small.

Second, we note that if the phonon wavevector q in equation (11.1)
couples large portions of the Fermi surface (the so-called nesting por-
tions, giving rise to macroscopic contributions), as in low-dimensional
solids, then the electron-phonon interaction becomes large; as a conse-
quence, it may lead to the Kohn anomaly3 in the phonon spectrum and
even to the Peierls-Frohlich distorted state of charge density waves,4

where, again, the electron-liquid structure is completely changed (such
a distorted state of the solid is similar with the Jahn-Teller effect, re-
lated to the interaction between electrons and molecular vibrations5).

Most of the covalent solids are insulators. When conducting, like
semiconductors, the electron excitations are the charge carriers, with
narrow energy bands and effective mass. The electron-phonon interac-
tion given by equation (11.1) is applicable, but the coupling constant
C is small. The energy uncertainty in semiconductors is Δε =

√
εqT ,

where εq = �
2/ma2, a being the mean separation distance between

the charge carriers (given in the "Semiconductors" chapter). The
charge-carrier density is low, and a acquires large values (typically
100Å). We can see that Δε	 C, such that it makes sense to use the
electron-phonon interaction within the charge-carrier picture. Since
C is small, the perturbation theory is sufficient. The effect of the
lifetime given by �/τe−ph = T/F , generated by the electron-phonon
interaction, is small in comparison with the semiconducting lifetime
�/Δε. Similarly, the effect of the electron-phonon interaction is small.

In ionic (polar) solids the situation is different. These solids exhibit
optical phonons, which are localized vibrations and imply a polar-
ization of the body. The electrons themselves have a small mobility.

Phys. 389 457 (1927).
3W. Kohn, "Image of the Fermi surface in the vibration spectrum of a metal",

Phys. Rev. Lett. 2 393 (1959).
4H. Frohlich, "On the theory of superconductivity: the one-dimensional case",

Proc. Roy. Soc. London A223 296 (1954); R. Peierls, Quantum Theory

of Solids, Oxford University Press, Oxford (1955); see also M. Apostol and
I. Baldea, "On the charge density wave state in the quasi-one-dimensional
compound K2[Pt(CN)4]Br0.3 × 3.2H2O (KCP)", Rev. Roum. Phys. 30 605
(1985).

5H. A. Jahn and E. Teller, "Stability of polyatomic molecules in degenerate
electronic states - I - Orbital degeneracy", Proc. Roy. Soc. London A161 220
(1937).
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11 Electron-Phonon Interaction

The interaction of these polarization modes with the electrons is pro-
portional to δnϕ, where ϕ is the Coulomb potential in a dielectric
substance; on the other hand, the potential ϕ is related to the polar-
ization, and the latter is given by the displacement of the ions. The
electron-phonon interaction acquires the form

He−ph = −C ′
∑
kq

(iquq/q
2)c+k+qck (11.6)

(for longitudinal modes), where C
′

is a constant. The long-range
Coulomb interaction in equation (11.6) is stronger than the local in-
teraction in equation (11.1), such that the perturbation-theory cal-
culations are questionable. The electrons get a large effective mass,
their mobility is low and the solid is locally distorted; this elementary
excitation is called polaron.6

11.2 Renormalization of velocity

The change δn in the electron density in equation (11.1) can be writ-
ten as δn = −ndivv, where v is their displacement, with a slight
spatial variation. The electron-phonon hamiltonian given by equa-
tion (11.1) generates an additional force which acts both on the ionic
motion (displacement u) and electron motion (displacement v). The
equations of motion for the Fourier transforms of the displacement
can be written as

(ω2 − ω2
q)u− Cn

ρ q2v = 0 ,

(ω2 − ω2
0)v − C

mq2u = 0 ,

(11.7)

where ρ is the mass density of the ions, ωq = cq is the frequency of the
longitudial phonons (c being the sound velocity and q the wavevector)
and ω0 = (4πne2/m)1/2 is the plasma frequency; −e and m denote

6L. Landau and S. I. Pekar, "The effective mass of the polaron", ZhETF 18 419
(1948) (in Russian); R. Feynman, "Slow electrons in a polar crystal", Phys.
Rev. 97 660 (1955); R. Feynman, R. W. Hellwarth, C. K. Iddings and P. M.
Platzman, "Mobility of slow electrons in a polar crystal", Phys. Rev. 127

1004 (1962).
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11 Electron-Phonon Interaction

the electron charge and mass, respectively. It is worth noting the
occurrence of the plasma frequency in these equations, due to the
polarization generated by the charge motion; it corresponds to the
Coulomb interaction between the electron collective excitations. The
displacements u and v in these equations are not independent: due
to the fast accommodation of the electrons to the ionic motion (the
electrons follow rapidly the adiabatic ionic motion), the changes in the
electron and ion densities are equal; i.e., nv = (ρ/M)u in equations
(11.7), where ρ is the ion mass density and M is the ion mass. We
get immediately

ω̃2
q = ω2

q +
C
M q2 = c2

(
1 + C

Mc2

)
q2 ,

ω̃2
0 = ω2

0 +
Cn
mni

q2
(11.8)

for the renormalized frequencies, where ni is the ion density. If we
assume C = 2

3μ and n = ni, we get the renormalized sound velocity

c̃ =

(
1 +

m

3M

v2F
c2

)1/2

c (11.9)

and the renormalized plasma frequency

ω̃2
0 = ω2

0 +
1

3
v2F q

2 , (11.10)

where vF is the Fermi velocity. We can see that the correction to
the sound velocity is of the order m/M .7 This is known sometimes
as Migdal’s theorem, since the energy conservation produces a ratio
p/P =

√
m/M of the electron momentum p to the ion momentum

P .8 We note that these corrections are very small (the constant C is
much smaller than 2μ/3 and n < ni), such that we may neglect them.
In addition, the plasmons are well-defined in the limit q → 0, such
that the q2-term in equation (11.10) is irrelevant.

7J. Bardeen and D. Pines, "Electron-phonon interaction in metals", Phys. Rev.
99 1140 (1955).

8A. B. Migdal, "Interaction between electrons and lattice vibrations in a normal
metal", Sov. Phys.-JETP 7 996 (1958) (ZhETF 34 1438 (1958)).
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11 Electron-Phonon Interaction

11.3 Lifetime and interaction

The interaction introduces limitations on the physical properties of
the particles. Typical examples of interaction are the electron-electron
interaction in an electron liquid, or fermion-fermion interaction in a
normal Fermi liquid, or electron-phonon interaction, or boson inter-
action in a Bose gas or a Bose liquid.9 A convenient way of discussing
interaction in ensembles of particles is Feynman’s diagramatic theory
of quantum electrodynamics.10 The fundamental vertex is particle-
interaction-particle, e.g. electron-phonon-electron. In the first order
of the perturbation theory the particles are dressed with the Hartree-
Fock approximation to the interaction. For the long-range Coulomb
interaction the random phase approximation is needed for the interac-
tion, which implies an infinite series of higher-order interaction terms.
With this effective interaction, the theory looks like a first-order per-
turbation theory, which preserves the notion of particle (including the
particle which carries the interaction). The effect is the renormaliza-
tion of mass and interaction coupling constant. A unitary transfor-
mation may even eliminate the interaction and reduces the vertex to
a second-order particle-particle coupling (though the electron wave-
functions are changed by the unitary transformation). All the internal
lines in the diagrams corresponding to this approximation are virtual
particles (as for any internal line), i.e. particles for which the relation
between energy and momentum is not that of real particles; but the
external lines in these diagrams, corresponding to renormalized par-
ticles, pertain to real particles. The f -function of Landau’s theory of
the normal Fermi liquid represents this approximation; not only the
individual particles can be described this way, but also the collective
modes.
The dressing of the vertex part changes this picture; a dressed ver-
tex destroys the notion of particle, by mixing up interacting parti-
9A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems,

McGraw-Hill, NY (1971); G. D. Mahan, Many-Particle Physics, Kluwer, NY
(1981).

10R. Feynman, "The theory of positrons", Phys. Rev. 76 749 (1949); "Space-time
approach to quantum electrodynamics", Phys. Rev. 76 769 (1949); F. Dyson,
"The radiation theories of Tomonaga, Schwinger and Feynman", Phys. Rev.
75 486 (1949); "The S matrix in quantum electrodynamics", Phys. Rev. 75

1736 (1949).
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11 Electron-Phonon Interaction

cles. Assuming that the perturbation theory gives finite results, these
higher-order effects are included in a small contribution which is an
uncertainty in energy, related to a lifetime. The particles have now
a finite life, they are destroyed and created continuously, with a fi-
nite, short lifetime. They become elementary excitations of the quasi-
particle type or collective modes. The lifetime can be computed by
the transition probability, involving second-order perturbation theory
(higher-order corrections, which would be corrections to corrections,
are irrelevant). This is the notion of elementary excitations introduced
by Landau. The probability transition (the scattering) involves real
particles, with interaction which includes internal lines, i.e. virtual
particles. If the perturbation series does not look formally conver-
gent, it is a problem with its expansion; if it implies infinities, like in
quantum electrodynamics, arising from self-interaction, they can be
removed by renormalization techniques in each order of the pertur-
bation theory (the quantum electrodynamics involves both infinities
and non-convergence).

Summarizing, in an interacting ensemble of particles we have inter-
action effects of the first-order type (or second-order type effective-
interaction effects), which renormalize the particles (e.g., their mass)
and finite lifetime effects, which are effects of the second-order type.
An example of the former is the renormalization of the sound velocity
in equation (11.9), while an example of the latter is the electron-
phonon lifetime given above by �/τe−ph = T/F . The electron-phonon
interaction does not renormalize the quasi-electrons, but it renormal-
izes the phonons and the plasmons (it couples the phonons to the
collective modes of electron density); however, it affects the quasi-
electron lifetime.

The uncertainty in energy Δε associated with a transition produced
by an interaction V is of the order

Δε 
| V |2 1

δε
Δν , (11.11)

where | V |2 stands for the square of the matrix element of the in-
teraction, 1/δε is the density of states per particle and energy and
Δν is the number of scattering possibilities. The state density for
fermions with density n is 3n/2μ, such that we may take 1/δε 
 1/μ
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11 Electron-Phonon Interaction

(per volume); each fermion has 
 T/μ states for scattering, such that
there is Δν 
 (T/μ)2 scattering possibilities (per volume); we get
Δε 
| V |2 T 2/μ3; for interacting electrons we may take | V |2

(e2/a)2, where a is the mean separation distance between electrons;
since e2/a 
 μ, we get Δε 
 T 2/μ (at zero temperature T 2 is replaced
by (ε− μ)2); the corresponding lifetime is the quasi-electron lifetime
given by 1/τe 
 Δε/� 
 T 2/�μ.

For the electron-phonon interaction δε 
 �ωD, where ωD is the Debye
frequency (acoustic phonons) and Δν 
 T/�ωD; we get Δε 
| V |2
T/(�ωD)

2. For the interaction V we may take
√

m/Mμ, taking into
account the energy conservation in the momentum exchange (where m
is the electron mass and M is the ion mass); the energy uncertainty
becomes Δε 
 m

M T (μ/�ωD)
2 and the lifetime given by 1/τe−ph =

T/�F , where F = M
m (�ωD/μ)2.11 At zero temperature T is replaced

by �ωD (relaxation time of the electron).12 It is worth noting that
we estimate the interaction which affects the electron energy (and the
quasi-electron lifetime caused by the electron-phonon interaction).

11.4 Ultrasound attenuation

The electron-phonon interaction provides a mechanism of phonon ab-
sorption, especially in metals. The free lagrangian of the acoustic
phonons is

L0 =
1

a3

ˆ
dr

[
1

2
M u̇2 − 1

2
Mc2(divu)2

]
, (11.12)

where a is the mean separation distance between the ions, M denotes
the ion mass, u is the displacement and c is the sound velocity. Us-
ing the Fourier transform given by equation (11.2), we get the free
hamiltonian

H0 =
∑
q

(
1

2M
pqp−q +

1

2
Mω2uqu−q

)
(11.13)

11A. H. Wilson, The Theory of Metals, Cambridge University Press, Cambridge
(1953).

12C. Kittel, Quantum Theory of Solids, Wiley, NY (1963).
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for longitudinal phonons, where ω = cq is the phonon frequency and
pq is the associated momentum. The quantization of this hamiltonian,

H0 =
∑
q

�ω(a+q aq + 1/2) , (11.14)

is achieved by using

uq =
√

�

2Mω

(
a+q + a−q

)
,

pq = i
√

�Mω
2

(
a+q − a−q

)
,

(11.15)

where aq(a+q ) are phonon destruction (creation) operators. We note
the commutation relation

[u(r), p(r′)] = i�δr,r′ . (11.16)

The hamiltonian of the electron-phonon interaction given by equation
(11.1) becomes

He−ph = − C√
N

∑
kq iquqc

+
k+qck =

= − C√
N

∑
kq iq

√
�

2Mω

(
a+q + a−q

)
c+k+qck .

(11.17)

The probability of absorbing a phonon per unit time from n phonons
is

w− =
2π

�
· C

2

N

�q

2Mc
n ·
∑
k

n(k) [1− n(k+ q)] δ(εk+q − εk − �ω) ,

(11.18)
where n(k) is the Fermi distribution (number of electrons in the k-
state) and εk is the electron energy (we perform the calculation for
metals). Similarly, if a photon is emitted in the state with n − 1
phonons, the emission probability per unit time is

w+ =
2π

�
· C

2

N

�q

2Mc
n ·
∑
k

n(k) [1− n(k− q)] δ(εk−q − εk + �ω) .

(11.19)
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The difference w− − w+ is the phonon loss rate. If the electron pro-
cesses generate a slight spatial variation in the phonon number, i.e.
if

Λq � 1 , (11.20)

where Λ is the electron mean freepath, we may write the decay equa-
tion

dn

dt
= −(w− − w+)n , (11.21)

where

1
τph−e

= (w− − w+) =

= 2π
�
· C2

N
�q

2Mc

∑
k n(k)·

· [n(k− q)− n(k+ q)] δ(�2kq/m− �ω) ,

(11.22)

or

1

τph−e
= −2πC2

N

q

Mc

∑
k

n(k)
kq

k

∂n(k)

∂k
δ(�2kq/m− �ω) , (11.23)

where we assume that n(k) depends only on k and neglect the q2-term
in the energy differences, because it is too small; τph−e is the phonon
lifetime, caused by the interaction with the electrons. The integral in
equation (11.23) can be reduced to

1

τph−e
= −C2m2a3

π�3Mc
ω

ˆ
dk · n(k)∂n(k)

∂k
(11.24)

(where the spin factor 2 is introduced). We get finally

1

τph−e
=

C2m2a3

2π�3Mc
ω (11.25)

(leaving aside small temperature corrections). The attenuation coef-
ficient is α = 1/cτph−e. In this equation we may put C = 2μ/3 for
metals.

A more useful form of equation (11.25) is 1/τph−e 
 (m/M)vF q, where
vF is the Fermi velocity. Since, usually, (m/M)vF 	 c, we can see
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that the uncertainty in the phonon energy is much smaller than the
phonon energy �ω = �cq, as expected. On the other hand, we should
compare the lifetime τph−e with the intrinsic phonon lifetime τph =
Mca/T , introduced in the "Phonons in Solids" chapter. For q close to
1/Λ these two times are comparable at room temperature, while for
higher values of q (
 1/a) the time τph−e is shorter and may dominate
the transport at room temperature; for very large temperatures the
transport is still governed by τph. This is why we need to use 1/τ =
1/τph + 1/τph−e for the phonon transport time τ .

Similar considerations can be made for the electron-phonon interac-
tion in semiconductors, where the density of the charge carriers is very
low (and the interaction constant C is small); the phonons are little
affected by this interaction.

11.5 Sound absorption

What happens in the long wavelength limit Λq 	 1, which cor-
responds to sound phonons? The phonon lifetime caused by the
electron-phonon interaction is given in this case by

τph−e =
T

(Λ/λ)
=

1

ωqΛ
, (11.26)

where T is the phonon period, λ is its wavelength and Λ is the electron
mean freepath; this formula can be related to the electron viscosity η
by

τph−e =
1

ωqΛ
=

ρc2

ω2η
, (11.27)

where ρ is the ion density; we can see that the ions move with velocity
c (phonon velocity) through the electron gas; it follows

1

τph−e
=

η

ρc2
ω2 ; (11.28)

since ω → 0, this contribution is very small; it may be used for semi-
conductors as well (also, it gives the sound absorbtion in gases).
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The viscosity of the electron gas is η = mnv2F τe, where τe is the
electron lifetime; or η = nμτe, such that we get

1

τph−e
=

nμ

ρc2
τeω

2 
 μ

Mc2
τeω

2 ; (11.29)

since τe 
 �μ/T 2, we can see that the sound is not propagated in
the limit of zero temperature.13 The above equations can be applied
to semiconductors also, where τe = a

√
m/T (thermal velocity v =√

T/m). We note that 1/τph−e is proportional to the conductivity σ =
ne2τe/m. Also, the long wavelength lifetime given by equation (11.29)
(sound lifetime) is the short-wavelength lifetime given by equation
(11.25) (ultrasound lifetime) multiplied by 1/Λq.
We note that viscosity is one mechanism of sound absorption; another
one is provided by thermoconduction (described in the "Phonons in
Solids" chapter).

11.6 Electron lifetime

The electron-phonon interaction causes an electron lifetime τe−ph.
The estimation for metals is 1/τe−ph = T/�F , F = M

m (�ωD/μ)2

(given in the "Phonons in Solids" chapter). It is generated by the
absorption of a phonon from n phonons, or by emission of a phonon
from n − 1 phonons. According to the electron-phonon interaction
given by equation (11.17), the transition probability per unit time is

1

τe−ph
=

2π

�

C2

N

∑
q

�

2Mω
q2nδ(εk+q − εk − �ω) , (11.30)

an equation which can be transformed as

1

τe−ph
=

C2a3

4πMc

ˆ
dq · q3n

ˆ
duδ(

�
2kq

m
u− �cq) . (11.31)

We can see that u = c/v, where u = cos θ, θ being the angle made
by k and q, and v is the electron velocity. For metals v = vF and
13I. Pomeranchuk, "On the theory of liquid He3", ZhETF 20 919 (1950) (in

Russian); L. Landau, "Oscillations in a Fermi liquid", Sov. Phys.-JETP 5 101
(1057) (ZhETF 32 59 (1957)).
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c/vF 	 1; for semiconductors v =
√
T/m and, usually, c/v < 1.

Equation (11.31) leads to

1

τe−ph
=

mC2T 3

4πM(�ωD)4
1

�(akF )

ˆ
�ωD/T

0

dx · x2

ex − 1
. (11.32)

For �ωD/T � 1 (low temperature) the integral is 2.4 and 1/τe−ph goes
like T 3; it is smaller than the inverse of the intrinsic electron lifetime
(1/τe 
 T 2/�μ) in metals (the same situation is in semiconductors).
For �ωD/T 	 1 (high temperature) we get

1

τe−ph
=

T

18π�F

1

(akF )
, F =

M

m

(
�ωD

μ

)2

(11.33)

for metals, which, for akf 
 1 is the well-known formula of the elec-
tron lifetime caused by the electron-phonon interaction given in the
"Phonons in Solids" chapter.14 The same formula can be used for
semiconductors with a much smaller μ and �kF replaced by mv =√
mT ; 1/τe−ph goes like

√
T in this case, which is the same tempera-

ture dependence as for the intrinsic electron lifetime τe. We get in this
case 1/τ = (1+1/18πF ) ·1/τe, which shows that the intrinsic electron
lifetime is slightly renormalized by the electron-phonon interaction.

11.7 Non-equilibrium phenomena

The condition Λq � 1, where Λ is the mean freepath of the electrons
and q is the wavevector of the phonons, indicates that the electrons are
not in equilibrium with the phonons. Indeed, since Λ = vF τ , where
τ is the lifetime of the electrons (and vF is the Fermi velocity, or
the thermal velocity in semiconductors), this condition implies a long
electron lifetime (for finite q). The lifetime ensures the equilibrium
and, also, it is the non-equilibrium time. Therefore, it appears in the
collision term of the Boltzmann equation, which is proportional to
1/τ . If τ is short, the collision term is large, and the equilibrium is
achieved rapidly; such that we may use the equilibrium Boltzmann

14A. H. Wilson, The Theory of Metals, Cambridge University Press, Cambridge
(1953).
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equation with a short lifetime, suitable for slow variations (which are
also spatially slight). If τ is long, the equilibrium is achieved slowly,
and we are, in fact, in non-equilibrium. The condition Λq � 1 can also
be written as vF

c · τT � 1, which shows that the period of the phonons
may be short; these phonons may generate non-equilibrium, and the
electrons would not be able to respond quickly, in order to establish
the equilibrium; this may happen at low temperatures. This condition
may be satisfied for optical phonons too. A short-time perturbation,
like that produced by ultrasound or optical phonons, may not be
equilibrated quickly by slow electrons. In this case, the transport
should be treated by using the Boltzmann equation with the collision
term. We note that this is not valid in the long wavelength limit
q → 0 of the sound waves; the sound is not in equilibrium with the
lattice (for reasons similar with those described above), but it may be
in equilibrium with the electrons.

The Boltzmann equation with collision term may generate a drag force
on the electrons on behalf of the phonons, and may lead to the attenu-
ation of the transverse phonons. Also, it describes the anomalous skin
effect.15 In this context, we note that the sound attenuation exhibits
typical oscillations with 1/H in a magnetic field H .16

15C. Kittel, Quantum Theory of Solids, Wiley, NY (1963).
16See also M. Apostol, "On the non-thermal relaxation time in the magnetic

quantum tunneling", Fizika A1 231 (1992); "On a field-induced spin-density
wave in Bechgaard salts", Acta Phys. Pol. A85 971 (1994);
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12 Superconductivity

12.1 Introduction

Superconductivity was discovered in 1911, when it was noticed that
the electrical resistance of mercury (Hg) disappears below some crit-
ical temperature Tc ∼ 3K, comparable with the liquefaction tem-
perature ∼ 2K of helium four (He4).1 Thereafter, it was noticed
that some materials become superconductors below some low temper-
atures, while others do not. For instance magnetic impurities destroy
the superconductivity.

Insights into superconductivity have been developed along the time.2

The theory was given by Ginsburg and Landau in 19503 and by
Bardeen, Cooper and Schrieffer (BCS) in 1957.4

The highest superconducting critical temperature was for a long time
∼ 20K for Nb3(Al0.8Ge0.2). In 1986 there have been discovered
cuprate oxides5 with superconducting critical temperatures up to ∼
1O. Kamerlingh Onnes, Akad. van Wetenschappen (Amsterdam) 13 1107, 1274;

14 113, 204 (1911); Commun. Leiden 119b, 120b, 122b, 123a (1911).
2C. J. Gorter and H. G. B. Casimir, "Zur Thermodynamik des supraleitenden

Zustandes", Phys. Z. 35 963 (1934); "Zur Thermodynamik des supraleitenden
Zustandes", Z. Tech. Phys. 15 539 (1934); F. London and H. London, "The
electromagnetic equations of the supraconductor", Proc. Roy. Soc. London
A149 71 (1935); "Supraleitung und Diamagnetismus", Physica 2 341 (1935);
F. London, Superfluids, Wiley, NY (1950); M. R. Schafroth, "Bemerkungen
zur Frohlichschen Theorie der Supraleitung", Helv. Phys. Acta 24 645 (1951);
J. M. Blatt, Theory of Superconductivity, Academic Press, NY (1964).

3V. L. Ginsburg and L. Landau, "On the theory of superconductivity", ZhETF
20 1064 (1950) (in Russian).

4J. Bardeen, L. N. Cooper and J. R. Schrieffer, "Microscopic theory of supercon-
ductivity", Phys. Rev. 106 162 (1957); "Theory of superconductivity", Phys.
Rev. 108 1175 (1957).

5J. G. Bednorz and K. A. Muller, "Possible high Tc superconductivity in the
Ba − La− Cu− O system", Z. Phys. B64 189 (1986).
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12 Superconductivity

40K (La2−xSrxCuO4) and latter on ∼ 90K (Y Ba2Cu3O7) and ∼
120K (Bi2Sr2CaCu2O8). It would be likely that the theory of high-
Tc superconductivity is similar in its basic patterns with the standard
superconductivity theory described herein.6

12.2 Cooper pair

The electron-phonon interaction may lead to an attractive electron-
electron interaction which is relevant for superconductivity.7 With
usual notations we write the hamiltonian as

H =
∑
kα

εkc
+
kαckα − (λ/V )

∑
kk′α

c+kαc
+
−kᾱc−k′ᾱck′α . (12.1)

The coupling constant λ (> 0) is an energy like ϕ ∼ e2/a multiplied
by volume ∼ a3 where a is the mean inter-electron distance. It does
not depend on the momentum transfer, so it is equivalent with a δ-
potential. It follows that the spins in the pair operators in equation
(12.1) are opposite to each other (ᾱ = −α) and the pair is an s-wave.
The wavevectors k’s are restricted to the neighbourhood of the Fermi
surface.

6See for instance M. Apostol, "On the mechanism of high-temperature supercon-
ductivity in Ba−La(Y )−Cu−O type systems", Int. J. Mod. Phys. B1 957
(1987); M. Apostol and L. Vasiliu-Doloc, "High-temperature superconductivity
from electron-lattice coupling", Int. J. Mod. Phys. B6 1539 (1992).

7H. Frohlich, "Theory of the superconducting state. I. The ground state at the
absolute zero of temperature", Phys. Rev. 79 845 (1950). Superconductivity
has also been derived by starting directly with the electron-phonon interaction
(G. M. Eliashberg, "Interaction between electrons and lattice vibrations in a
superconductor", Sov. Phys.-JETP 11 696 (1960) (ZhETF 38 966 (1960)); see
also L. P. Gorkov, "On the energy spectrum of superconductors", Sov. Phys.-
JETP 7 505 (1958) (ZhETF 34 735 (1958)); Y. Nambu, "Quasi-particles and
gauge invariance in the theory of superconductivity", Phys. Rev. 117 648
(1960)) and the presumably high effect of the (screened) Coulomb repulsion
was "renormalized" for pairing electrons by N. N. Bogoliubov, V. V. Tolmachev
and D. V. Shirkov, A New Method in the Theory of Superconductivity, Con-
sultants Bureau, NY (1959). Retardation and damping effects can then be
dealt with (like in lead (Pb), for instance) without any qualitative change of
the superconducting "picture" (except that the superconducting quasiparticles
are not well defined anymore).
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12 Superconductivity

We introduce the pair operators P+
kα = c+kαc

+
−kᾱ and see that a non-

trivial Schrodinger’s equation

(2εk − ε)P+
kα = (2λ/V )

∑
k′

P+
k′α (12.2)

is obtained for one pair. The spectrum of this equation is given by

1 = (2λ/V )
∑
k

1

2εk − ε
. (12.3)

It is easy to see that the solution of equation (12.3) is given by

ε = 2εF − 2εce
−1/λρ , (12.4)

where we have assumed that the interaction extends from εF to εF+εc,
εc 	 εF , and ρ = mkF /2π

2
�
2 = 3n/4εF is the density of states per

unit volume and per spin at the Fermi surface. The electron density
is n = k3F /3π

2 ∼ 1/a3. We can see that the attractive interaction
leads to a bound pair of electrons. This is the Cooper pair.8 Since the
attractive interaction originates in the exchange of virtual phonons we
may take εc ∼ �ωD where ωD is the Debye frequency. For λ ∼ εFa

3

we get λρ ∼ 1 and εc can be taken as the order of magnitude of the
pair binding energy.9 Typical values are such that e−1/λρ 	 1.
There may exist therefore a "condensate" of electron pairs with den-
sity ∼ k2F εc/�vF ∼ (εc/εF )n, in accordance with an earlier hypothesis
of two fluids (condensate and normal).10 The size of a pair is of the
order of ∼ �vF /εc ∼ a(εF /εc). It can be taken as a "coherence"
length of the condensate.
Obviously, the electron pairs conduct the electrical current without
dissipation. Thus we have the superconductivity phenomenon.
8L. N. Cooper, "Bound electron pairs in a degenerate Fermi gas", Phys. Rev.

104 1189 (1956).
9λρ = 1 may be taken as the maximum value for the coupling parameter of the

pairing theory leading to a maximum superconducting critical temperature. It
is known as the "McMillan ceiling" (W. L. McMillan, "Transition temperature
of strong-coupled superconductors", Phys. Rev. 167 331 (1968); see also M.
L. Cohen and P. W. Anderson, "Comments on the maximum superconducting
temperature", AIP Conf. Proc. 4 17 (1972); P. W. Anderson and C. C. Yu,
in Proc. Int. School Phys. "Enrico Fermi", eds F. Bassani, F. Fumi and M.
Tosi, NH, Amsterdam (1983).

10C. J. Gorter and H. G. B. Casimir, loc. cit.
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12 Superconductivity

12.3 BCS theory

Following a method of Bogoliubov11 and Valatin12 we introduce

Δ+
α =

λ

V

∑
k

〈
c+kαc

+
−kᾱ

〉
, (12.5)

where the average is taken over the ground-state for one spin-orientation
and write the hamiltonian given by equation (12.1) for a constant
number of particles as

H =
∑
kα

(εk − μ)c+kαckα −
1

2

∑
kα

(Δαc
+
kαc

+
−kᾱ + h.c.) , (12.6)

where μ is the chemical potential. We may assume the parameter Δα

real, but note that Δα = −Δᾱ. The hamiltonian given by equation
(12.6) is diagonalized by the canonical transformation

ckα = ukαakα + vkαa
+
−kᾱ , akα = ukαckα − vkαc

+
−kᾱ , (12.7)

where ukα, vkα are real, u2
kα+v2kα = 1, u−kᾱ = ukα and v−kᾱ = −vkα.

We get

u2
kα =

1

2

(
1 +

εk − μ

Ek

)
, v2kα =

1

2

(
1− εk − μ

Ek

)
(12.8)

and

ukαvkα =
Δα

2Ek

, (12.9)

where
Ek =

√
(εk − μ)2 +Δ2

α . (12.10)

These relations correspond to εkukαvkα −Δα(u
2
kα − v2kα)/2 = 0. We

can see that u and v do not depend on α, except for v which changes
sign for α → ᾱ as Δα does. We may omit the suffix α where it is
irrelevant. The hamiltonian becomes

H =
∑

kα

[
(εk − μ)v2k −Δukvk

]
+

+
∑

kα

[
εk(u

2
k − v2k) + 2Δukvk

]
a+kαakα ,

(12.11)

11N. N. Bogoliubov, V. V. Tolmachev and D. V. Shirkov, loc. cit.
12J. Valatin, "Comments on the theory of superconductivity", Nuovo Cimento 7

843 (1958).
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12 Superconductivity

or
H =

∑
kα

1

2
(εk − μ− Ek) +

∑
kα

Eka
+
kαakα . (12.12)

We can see that the energy of the ground state is lowered according
to the first term in the rhs of this equation. The hamiltonian exhibits
the structure of a gas of free quasiparticle excitations with energies Ek

given by equation (12.10). The spectrum of the original quasiparticles
exhibits a gap 2Δ at the Fermi level where ε ∼ μ±√(εk − μ)2 +Δ2

with the quadratic dependence (εk − μ)2.

Similar results are obtained by using the original BCS ground-state
wavefunction13

ψBCS ∼
∏
kα

(1 + gkαP
+
kα) |0〉 , (12.13)

where Pkα are the pair operators introduced above, and minimizing
the ground-state energy. We get u2

k = (1 + g2k)
−1/2 and vk = gk(1 +

g2k)
−1/2.

12.4 The gap equation

Making use of equation (12.7) in equation (12.5) we get the gap equa-
tion

Δ =
λ

V

∑
k

ukvk =
λ

V

∑
k

Δ/2Ek , (12.14)

where the summation is extended from −εc to εc. We get

1 = λρ

ˆ εc

0

dε · 1√
ε2 +Δ2

(12.15)

and the gap
Δ = 2εce

−1/λρ . (12.16)

It is the same as the pair binding energy given by equation (12.4).

13J. Bardeen, L. N. Cooper and J. R. Schrieffer, loc. cit.
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12 Superconductivity

12.5 Critical temperature

At finite temperature equations (12.5) and (12.7) give

Δ =
λ

V

∑
k

ukvk(1− 2fk) =
λ

V

∑
k

Δ

2Ek

tanh(Ek/2T ) , (12.17)

where fk = [exp(Ek/T ) + 1]−1 is the Fermi distribution for the quasi-
particles. It can also be written as

Δ = λρ

ˆ εc

0

dε · Δ√
ε2 +Δ2

· tanh
(√

ε2 +Δ2/2T
)

. (12.18)

This equation has two distinct solutions. For low temperatures there
is a finite gap Δ given by equation (12.16). For high temperatures
the solution is Δ = 0. The critical temperature is obtained by

1 = λρ

ˆ εc

0

dε · 1
ε
· tanh (ε/2T ) = λρ

ˆ εc/2T

0

dx · tanhx
x

. (12.19)

The integral in equation (12.19) is written as

I(C) =

ˆ C

0

dx+

ˆ εc/2T

C

dx/x = C + ln(εc/2CT ) . (12.20)

The minimum value of I(C) is obtained for C = 1. The integral is
I = ln(eεc/2T ). We get the critical temperature

Tc 
 1.36εce
−1/λρ . (12.21)

It is comparable with the gap given by equation (12.16) (the exact
numerical factor in equation (12.21) is 1.14). Since εc ∼ �ωD ∼
M−1/2, where M is the atomic mass we get the isotopic shift Tc ∼
M−1/2 as emphasized originally by Frohlich.14 Typical values for Tc

of a few K’s can be taken as an order of magnitude for the pair binding
energy with a coherence length l ∼ a(εF /Tc) ∼ 10−4cm.

We can expand equation (12.18) for T < Tc in powers of Tc − T
and Δ2. Making use of the C-cutoff method above we obtain Δ 

14H. Frohlich, loc. cit.
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12 Superconductivity

√
6Tc(1 − T/Tc)

1/2. This is a typical temperature dependence of an
order parameter (Δ) in the Landau theory of phase transitions (mean-
field theory).15 It follows that the superconductivity is a phase tran-
sition of the second kind.

12.6 Thermal properties

The ground-state energy of the superconducting phase given by equa-
tion (12.12) can be written as

E =
∑
kα

1

2
(εk − μ− Ek) = ρ

ˆ εc

−εc

dε ·
(
ε−

√
ε2 +Δ2

)
(12.22)

(per unit volume). We get E = −ρε2c − ρΔ2 ln(2εc/Δ). The change
with respect to the normal state is ΔE = E − E(Δ = 0) =
= −ρΔ2 ln(2εc/Δ) or, making use of equation (12.16),

ΔE = −Δ2/λ . (12.23)

At finite temperature the energy is given by

E =
∑
kα

1

2
(εk − μ− Ek) +

∑
kα

Ekfk , (12.24)

where fk = [exp(Ek/T ) + 1]
−1. The second term in equation (12.24)

is the thermal energy Eth. For βΔ � 1 (low temperature) the C-
cutoff method employed above gives Eth 
 4ρΔ2e−βΔ. For βΔ 	 1
(just below the critical temperature) the cutoff is C 
 1/βΔ and we
get Eth 
 (4/e)ρT 2. It can be compared with a similar T 2-correction
for the free-electron energy.

The entropy is given by

S = −
∑
kα

[fk ln fk + (1 − fk) ln(1 − fk)] . (12.25)

15L. Landau, "Zur Theorie der Phasenumwandlungen I", Phys. Z. Sowjet. 11

26 (1937) (ZhETF 7 19 (1937)); "Zur Theorie der Phasenumwandlungen II",
Phys. Z. Sowjet. 11 545 (1937) (ZhETF 7 627 (1937)).
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It can be written as

S = −4ρI + 4ρβ
∂

∂β
I (12.26)

(per unit volume), where

I =

ˆ εc

0

dε · ln
(
1 + eβ

√
ε2+Δ2

)
. (12.27)

For βΔ� 1 we can apply the C-cutoff method for I−β(∂I/∂β). The
result is S 
 4ρβΔ2e−βΔ. We can see that the entropy and the heat
capacity cs = T (∂S/∂T ) fall off exponentially in the low-temperature
limit. For βΔ	 1 (just below the critical temperature) the cutoff is
C 
 1/βΔ and we get the entropy and the heat capacity (per unit
volume) S = cs 
 4(3/e+ ln 2)ρT . It can be compared with the heat
capacity for the free electrons cn = (2π2/3)ρT. We can see that the
heat capacity has a jump cs−cn 
 0.32ρTc at the critical temperature.

12.7 Acoustic attenuation

With usual notations the electrons are coupled to phonons through a
typical term of the form gc+k′ckb for a fixed phonon wavevector. We
compute the rate of phonon absorption and emission by second-order
theory of perturbations. Making use of equation (12.7), it is easy to
see that the couple c+k′ck brings a "coherence" factor

n = uu′ − vv′ , (12.28)

with simplified notations. The absorption rate is then

wa = (4πg2/�)
∑

n2f(1− f ′)Nδ(E′ − E − �ω) (12.29)

where N is the number of phonons with frequency ω. A factor 2 is
included for spin. Similarly, the emission rate is given by

we = (4πg2/�)
∑

n2f ′(1 − f)(N + 1)δ(E′ − E − �ω) . (12.30)

The phonons kinetics is governed by wa − we for absorption from N
and emission from N − 1 phonons, according to

dN/dt = −αN (12.31)
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where

α = (4πg2/�)
∑

n2(f − f ′)δ(E′ − E − �ω) (12.32)

is the attenuation coefficient.

The summation in equation (12.32) is limited to k in the equatorial
plane defined by q tangent to the Fermi surface, where q is the phonon
wavevector. We have

∑
= (2π)−3πk2FΔk = (ρ/4)Δε = (ρ/4)

´
dε

(per unit volume). On the other hand δ(ε− ε′) = (1/�vF )δ(k − k′) =
1/�vF q. We get

∑
= (ρ/4�vF q)

´
dεdε′. For ρ = mkF /2π

2
�
2 we

obtain
∑

= (m2/8π2
�
4q)
´
dεdε′ and equation (12.32) becomes

α = (m2g2/2π�5q)

ˆ
dεdε′·n2(−∂f/∂E)·�ω·δ(E′−E−�ω) . (12.33)

The "coherence" factor gives

n2 =
1

2

(
1 +

εε′

EE′
− Δ2

EE′

)
(12.34)

and the εε′-contribution vanishes upon integration. Then we use
εdε = EdE and get

α = (m2g2ω/4π�4q)·

· ´
Δ
dE · EE′−Δ2√

E2−Δ2
√
E′2−Δ2

(−∂f/∂E) ,
(12.35)

or
α = (m2g2ω/4π�4q) · 1

eβΔ + 1
. (12.36)

The ratio
αs/αn =

1

eβΔ + 1
(12.37)

has a sudden drop at the critical temperature (Δ = 0) and falls off
exponentially below the critical temperature.16

16On a related problem see M. Apostol, "Ultrasound attenuation in (TaSe4)2",
Tr. J. Phys. 17 995 (1993).
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12.8 Microwave absorption

The microwave absorption is calculated in a similar way as the sound
attenuation coefficient. According to equation (12.35) at zero temper-
ature we can write17

σs/σn =
1

�ω

ˆ
�ω−Δ

Δ

dE · E(�ω − E)−Δ2

√
E2 −Δ2

√
(�ω − E)2 −Δ2

(12.38)

for the ratio of the two conductivities. In the limit of small ω this
ratio behaves like

σs/σn ∼ 1

�ω

ˆ �ω−Δ

Δ

dE = 1− 2Δ/�ω . (12.39)

One can see that the conductivity vanishes for �ω = 2Δ (and absorp-
tion increases).

12.9 Nuclear spin relaxation rate

The flip of the nuclear spin is determined by a coupling of the form
∼ I−c+k′upckdown with the electrons, where I− = Ix−iIy is the nuclear
spin. The spin-flip rate is of the form

w ∼
∑

l2f(1− f ′)δ(E′ − E − �ω)Nup , (12.40)

where the "coherence" factor is

l2 = (uu′ + vv′)2 =
1

2

(
1 +

εε′

EE′
+

Δ2

EE′

)
(12.41)

17See for instance D. C. Mattis and J. Bardeen, "Theory of the anomalous skin
effect in normal and superconducting metals", Phys. Rev. 111 412 (1958);
A. A. Abrikosov and L. P. Gorkov, "On the theory of superconducting alloys;
I. The electrodynamics of alloys at absolute zero", Sov. Phys.-JETP 8 1090
(1959) (ZhETF 35 1558 (1958)); "Superconducting alloys at finite tempera-
tures", Sov. Phys.-JETP 9 220 (1959) (ZhETF 36 319 (1959)).
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and ω is the Zeeman frequency. The calculation of the decay rate goes
similarly as the sound attenuation. We get

α ∼ ´
Δ
dE · E√

E2−Δ2
· E+�ω√

(E+�ω)2−Δ2
·

·
[
1 + Δ2

E(E+�ω)

]
· (−∂f/∂E)T

(12.42)

and the ratio

αs/αn =
´
Δ
dE · E√

E2−Δ2
· E+�ω√

(E+�ω)2−Δ2
·

·
[
1 + Δ2

E(E+�ω)

]
· (−∂f/∂E) .

(12.43)

We can see that the decay rate of the nuclear spins has a logarith-
mic singularity for ω = 0. It increases abruptly below the critical
temperature due to the high electron density of states and falls off
exponentially with decreasing temperature.

12.10 Electron tunneling

Let us consider a 1 − 2-junction. The tunneling hamiltonian can be
written as

Ht = t
∑
kk′

c+2kc1k′ + h.c. (12.44)

where t is the tunneling amplitude.18 We omit the spin suffix. We
consider transitions between a state α with energy Eα in 1 and a state
β with energy Eβ = Eα − eV in 2 under a voltage V . The transition
probability is given by

w = (2πt2/�)
∑
αk′

|(c1k′)0α|2
∑
βk

∣∣(c+2k)β0∣∣2 δ(Eβ −Eα + eV ) . (12.45)

18J. Bardeen, "Tunneling from a many-particle point of view", Phys. Rev. Lett.
6 57 (1961); "Tunneling into superconductors", Phys. Rev. Lett. 9 147 (1962);
M. H. Cohen, L. M. Falicov and J. C. Phillips, "Superconductive tunneling",
Phys. Rev. Lett. 8 316 (1962).
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The electrical current is I = −ew. We introduce the spectral weight
functions

N1(E) =
∑
αk′

|(c1k′)0α|2 δ(E − Eα) (12.46)

and
N2(E) =

∑
βk′

∣∣(c+2k)β0∣∣2 δ(Eβ − E) (12.47)

and write the current as

I = −(2πt2e/�)
ˆ eV

0

dE ·N1(E)N2(E − eV ) . (12.48)

This is valid at zero temperature.

For a normal (n) metal 1 we get

N1(E) =
∑
α

δ(E − Eα) = ρ (12.49)

where ρ is the density of states at the Fermi surface. For a supercon-
ductor (s) 2 we use equations (12.7) and get

N2(E) ==
∑
β

u2
βδ(Eβ − E) = ρ

|E|√
E2 −Δ2

(12.50)

for |E| > Δ; the ε-term does not contribute to integral. We get the
n− s current19

I = −(2πt2e/�)ρ2 ´ eV−Δ

0 dE · |E−eV |√
(E−eV )2−Δ2

=

= −(2πt2e/�)ρ2√(eV )2 −Δ2 .

(12.51)

We can see that the current occurs for eV > Δ. At finite temperature
there is also a current for eV < Δ.20 Also, there is a current of

19See for instance J. R. Schrieffer, "Theory of electron tunneling", Revs. Mod.
Phys. 36 200 (1964).

20I. Giaever, "Energy gap in superconductors measured by electron tunneling",
Phys. Rev. Lett. 5 147, 464 (1960); "Electron tunneling between two super-
conductors", Phys. Rev. Lett. 5 464 (1960); L. Esaki, "Long journey into
tunneling", Revs. Mod. Phys. 46 237 (1974).
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quasiparticles at the junction of two superconductors. In general the
flow of an injected electrical current through a superconductor exhibits
both a transmission and a reflection of quasiparticles. This is known
as the Andreev reflection.21

12.11 Josephson current

The tunneling hamiltonian given by equation (12.44) induces also a
pair tunneling between two superconductors. In the second order of
the perturbation theory it gives a matrix element between states ψn

and ψn+1 where n is the number of pairs. The matrix elements can
be calculated in a similar way as above. We consider a superposition

ψα =
∑

eiαnψn (12.52)

of states and notice that the transition rate contains factors e±iα. We
can write the shift in the energy of the α-state as

Eα = −1

2
�J cosα (12.53)

where J is related to the transition rate. The change in pair popula-
tion is

dn/dt = dEα/�dα =
1

2
J sinα (12.54)

because �α in equation (12.51) acts like a momentum. Equation
(12.53) defines a velocity. The rate of changing the momentum is
given by

d(�α)/dt = 2eV (12.55)

where V is the voltage. We get therefore α = 2eV t/� and the current

j = −2edn/dt = −eJ sin(2eV t/�) . (12.56)
21A. F. Andreev, "The thermal conductivity of the intermediate state in super-

conductors", Sov. Phys.-JETP 19 1228 (1964) (ZhETF 46 1823 (1964)). See
also O. A. Dobrescu, L. C. Cune and M. Apostol, "Electric flow through a
ferromagnet-superconductor junction", Roum. Reps. Phys. 60 327 (2008);
"Ferromagnet-superconductor junction", Roum. Reps. Phys. 60 353 (2008);
"Electric flow through an ideal ferromagnet-superconductor junction", Physica
C469 273 (2009); M. Apostol and L. C. Cune, Field-Controlled Superconduct-

ing Transistor, apoma, MG (2003).
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12 Superconductivity

This is known as the Josephson current between two superconduc-
tors.22 The voltage-rate of the oscillation frequency is ν = 2e/h 

500MHz/μV .

12.12 Ginsburg-Landau theory

We focus upon the onset of the superconductivity just below the criti-
cal temperature Tc. There appear (and disappear) electron pairs with
an interacting energy ϕ and a binding energy Δε both of the order of
Tc. It follows the coupling constant λ = ϕa3 ∼ ϕ/n ∼ Tc/n. Accord-
ing to equation (12.23) the energy (per unit volume) is diminished
by ΔE = Δ2/λ ∼ Δ2n/Tc. It is given by a pair density ns multi-
plied by a pair energy Δε ∼ Tc. It follows ΔE ∼ nsTc ∼ Δ2n/Tc.
Therefore we have ns ∼ Δ2n/T 2

c pairs per unit volume just below the
critical temperature; and Δ ∼ Tc(1 − T/Tc)

1/2. This was Gorkov’s
result23 for London’s superconducting fluid24 and Landau-Ginsburg’s
order parameter ψ.25

The pair condensate is described by a wavefunction ψ such that |ψ|2 =
ns ∼ Δ2n/T 2

c . Therefore ψ ∼ Δ
√
n/Tc. It is an order parameter. It

may have spatial and temporal variations. The density of free energy
can be expanded in powers of |ψ|2 just below the critical temperature.
In addition, it contains a |−i�gradψ|2 /2m∗ term where m∗ = 2m is
the pair mass. The internal magnetic field h may exist. The density
of the free energy reads

ΔF = |(−i�grad+ e∗A/c)ψ|2 /2m∗+

+a |ψ|2 + 1
2b |ψ|4 + h2/8π ,

(12.57)

22B. D. Josephson, "Possible new effects in superconducting tunneling", Phys.
Lett. 1 251 (1962). See also P. W. Anderson, in Proc. Ravello Spring School,
vol.2, ed. E. R. Caianiello, Academic Press, NY (1964), p.113.

23L. P. Gorkov, "Microscopic derivation of the Ginsburg-Landau equations in the
theory of superconductivity", Sov. Phys.-JETP 9 1364 (1959) (ZhETF 36

1918 (1959)); "The critical supercooling field in superconductivity theory",
Sov. Phys.-JETP 10 593 (1960) (ZhETF 37 833 (1959)).

24C. J. Gorter and H. B. G. Casimir, loc. cit.; F. London, loc. cit.
25V. L. Ginsburg and L. Landau, loc. cit.
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12 Superconductivity

where h = curlA, e∗ = 2e is the pair charge and ΔF = Fs − Fn is
the superconducting contribution with respect to the normal state.
The coefficients are a = a′(T − Tc), a′, b > 0. In the presence of an
external magnetic field H a term −hH/4π must be added, giving the
Gibbs free energy.26

Variations with respect to ψ and A in equation (12.57) lead to

(−i�grad+ e∗A/c)
2
ψ/2m∗ + aψ + b |ψ|2 ψ = 0 (12.58)

and

c

4π
curlh = − e∗�

2m∗i
(ψ∗gradψ−ψgradψ∗)− e∗2

m∗c
|ψ|2 A = j , (12.59)

where j is the current density. It contains both the paramagnetic
and diamagnetic contributions. In normal state these contributions
cancel each other out, in the superconducting state they do not, due
to the pair condensate. The resulting supercurrent expels an external
magnetic field.

Equation (12.58) is a non-linear Schrodinger equation. Equation (12.59)
is a Maxwell equation. The surface terms in the variations of equation
(12.57) give the boundary conditions

n · (−i�grad+ e∗A/c)ψ = 0 (12.60)

and
n× (h−H) = 0 , (12.61)

where n is the unit vector perpendicular to the surface. The first
condition means that the current is parallel to the surface, while the
second condition means that the tangential component of the mag-
netic field is continuous at the surface.

12.13 Phase transition

Let ψ be uniform and h be uniform. According to equations (12.58)
and (12.59) A = 0.

26This is the basis of Landau’s theory of phase transitions of the second kind (L.
Landau, loc. cit.)
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Equation (12.58) gives ψ = 0 for T > Tc and

|ψ| = [a′(Tc − T )/b]
1/2 (12.62)

for T < Tc. Since |ψ| ∼ Δ
√
n/Tc, we have the gap Δ ∼ Tc(1−T/Tc)

1/2

and a′/b ∼ n/Tc. The free energy is

ΔF = −(a′2/2b)(Tc − T )2 (12.63)

and the jump in the heat capacity is given by Δc = −T (∂2ΔF/∂T 2) =
Tc(a

′2/b) ∼ na′. If we compare it with Δc ∼ ρTc we get a′ ∼ ρTc/n
and b ∼ ρT 2

c /n
2.

12.14 Meissner effect

Let ψ be uniform and h be uniform. Equation (12.59) shows that
h = 0 (and A = 0). Equation (12.59) gives

j = − e∗2

m∗c
|ψ|2 A . (12.64)

This is known as London’s equation.27 Since curlh = 4πj/c we get

Δh =
4πe∗2

m∗c2
|ψ|2 h =

1

λ2
h , (12.65)

where
λ =

(
m∗c2/4πnse

∗2)1/2 (12.66)

is the penetration depth. Indeed, according to equation (12.65), h =
He−z/λ where z is the coordinate perpendicular to a free plane surface
at z = 0. It follows that the superconducting state expels external
fields H . This is known as the Meissner effect.28 There exists a
"supercurrent" in equation (12.59) which creates a "diamagnetic" field
which compensates the external magnetic field. The superconducting
state is "rigid" with respect to an external magnetic field. This is
known as London’s "rigidity".
27F. London, loc. cit.
28W. Meissner and R. Ochsenfeld, "Ein neuer Effekt bei eintritt der Supraleit-

fahigkeit", Naturwiss. 21 787 (1933).
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Since |ψ|2 = ns = a′(Tc − T )/b we get the penetration length

λ =
(
mc2b/8πe2a′Tc

)1/2 · (1− T/Tc)
−1/2 



 (mc2/8πne2
)1/2 · (1− T/Tc)

−1/2 .

(12.67)

We can see that it diverges at the critical temperature. The prefactor
is of the order of ∼ 100Å.

The gain given by equation (12.63) in the free energy must be com-
pensated by the energy of the expelled field.29 It follows that there
exists a critical magnetic field Hc given by

ΔF = −(a′2/2b)(Tc − T )2 = −H2
c /8π , (12.68)

or

Hc = (4πa′2/b)1/2Tc(1− T/Tc) ∼ ρ1/2Tc(1 − T/Tc) (12.69)

just below the critical temperature. For H > Hc the superconduc-
tivity is destroyed. The prefactor in equation (12.69) is of the order
∼ 100Gs.

12.15 Flux quantization

In general ψ = |ψ| eiϕ. The current given by equation (12.59) is

j = −e�

m
nsgradϕ− 2ens

mc
A . (12.70)

If we integrate this equation along a closed circuit we getˆ
df · h+

mc

2ens

˛
dl · j = hc

2e
n , (12.71)

where n is an integer.30 We can see that the flux of the magnetic field
is quantized in hc/2e units. It is hc/2e 
 2×10−7Gs ·cm2.31 We note
29F. London, "On the problem of the molecular theory of superconductivity",

Phys. Rev. 74 562 (1948).
30F. London, loc. cit.
31We recall that the electron charge is −e = −4.8 × 10−10esu (for length in cm,

energy in erg and magnetic field in Gs).
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the occurrence of the charge 2e in comparison with the charge e of
the free electrons. The circulation of the current in equation (12.71)
supports a similar quantization. In superconducting rings there may
appear interference of the phase ϕ of the order parameter.32

12.16 Coherence length

Equation (12.58) without magnetic field and for one z-coordinate
reads

− �
2

2m∗
· d2

dz2
ψ + aψ + b |ψ|2 ψ = 0 . (12.72)

For ψ = ψ(∞)f = (|a| /b)1/2 f this equation becomes

− �
2

2m∗ |a|f
′′ − f + f3 = 0 . (12.73)

It has a characteristic length

ξ =
(
�
2/2m∗ |a|)1/2 
 a(εF /Tc)(1 − T/Tc)

−1/2 , (12.74)

where a in the rhs of equation (12.74) is the mean inter-electron dis-
tance. The prefactor is of the order of ∼ 104. ξ is a distance over
which the condensate pairs may preserve their individuality; or it is
the extent of a pair. The solution is f(z) = tanh(−z/√2ξ).
With equation (12.74) and making use of equations (12.67) and (12.69),
we may write Hc 
 (hc/e)/ξλ.

12.17 Surface energy

Let us consider a normal-superconductor interface at z = 0. The
Gibbs free energy for the normal state per unit area amounts to

ˆ λ

−∞
dz(−H2

c /8π) , (12.75)

32B. D. Josephson, "Supercurrents through barriers", Adv. Phys. 14 419 (1965).
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while the Gibbs free energy for the superconducting state is
ˆ ∞
ξ

dz(−H2
c /8π) . (12.76)

The difference with respect to the normal state is therefore

Δσ =

ˆ ξ

λ

dz ·H2
c /8π = (ξ − λ)H2

c /8π . (12.77)

For κ = λ/ξ < 1 the interface is unstable and the sample is either
normal or superconducting. For κ > 1 there exists such a normal-
superconducting interface. It follows that in the latter case there
exist two critical values of the magnetic fields: Hc1, when the sample
breaks up in superconducting domains (with quantized flux) known
as superconducting vortices, and Hc2 > Hc1, when the superconduct-
ing state is completely destroyed. The actual critical value of κ is
1/
√
2.33 The superconductors with κ > 1/

√
2 are known as type-2

superconductors (or "hard" superconductors) and the vortex state is
also known as the mixed state.

12.18 Comments and remarks

The superconductivity is pretty robust to chemical impurities
("dirty" superconductors), while it is quickly destroyed by magnetic
impurities. This is so because the magnetic impurities destroy the
symmetry of the pair mates under time reversal while the chemical
ones do not.34 The magnetic impurities may lead to "gapless" super-
conductivity35 and the Kondo effect.36

33A. A. Abrikosov, "On the magnetic properties of superconductors of the second
group", Sov. Phys.-JETP 5 1174 (1957) (ZhETF 32 1442 (1957)).

34P. W. Anderson, "Theory of dirty superconductors", J. Phys. Chem. Solids 11

26 (1959).
35A. A. Abrikosov and L. P. Gorkov, "Contribution to the theory of superconduct-

ing alloys with paramagnetic impurities", Sov. Phys.-JETP 12 1243 (1961)
(ZhETF 39 1781 (1960)).

36J. Kondo, "Resistance minimum in dilute magnetic alloys", Progr. Theor. Phys.
32 37 (1964); "Giant thermo-electric power of dilute magnetic alloys", Progr.
Theor. Phys. 34 372 (1965).
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12 Superconductivity

The coherence length ξ competes with the electron mean freepath l,
such that a renormalized coherence length given by 1/ξ̄ = 1/ξ + 1/l
might be relevant. The penetration depth increases with decreasing
l37 and, since it enters the equations as λ2, the relevant renormaliza-
tion is, probably, λ̃ = λ(1 + ξ/l)1/2. London’s equation j ∼ A is in
general non-local.

The retardation and damping effects arise from electron-phonon in-
teraction via the Green functions formalism. This formalism allows
the consideration of the interacting effects produced by quasiparticles
which do not obey the momentum-energy relationship (are not on the
mass-shell). The diagram summation and the solution of the coupled
Dyson equations in this context38 lead to minor quantitative changes
in the standard results, except, possibly, for explaining some devia-
tions of the superconducting "bad actor" Pb. In particular, a possible
electron interaction V like the Coulomb repulsion is renormalized as
Ṽ = V − V Ṽ

´
ρdε/ε which gives Ṽ = V [1 + ρV ln(εF /�ωD)]

−1.39

The pairing theory breaks the gauge invariance under the transfor-
mation ψ → ψeiϕ for the electron field operators. This is related to
longitudinal electron-density modes. Plasmons do not affect the su-
perconductivity,40 but there are sound-like modes of the condensate
which help restoring the gauge invariance.41 The Coulomb interaction

37A. B. Pippard, "An experimental and theoretical study of the relation between
magnetic field and current in a superconductor", Proc. Roy. Soc. London
A216 547 (1953).

38P. Morel and P. W. Anderson, "Calculation of the superconducting state pa-
rameters with retarded electron-phonon interaction", Phys. Rev. 125 1263
(1962); J. R. Schrieffer, D. J. Scalapino and J. W. Wilkins, "Effective tunnel-
ing density of states in superconductors", Phys. Rev. Lett. 10 336 (1963); J.
M. Rowell, P. W. Anderson and D. E. Thomas, "Image of the phonon spec-
trum in the tunneling characteristic between superconductors", Phys. Rev.
Lett. 10 334 (1963). See also J. Bardeen and J. R. Schrieffer, in Progress in

Low Temperature Physics, ed. C. J. Gorter, North-Holland (1961), vol. 3 p.
203.

39N. N. Bogoliubov, V. V. Tolmachev and D. V. Shirkov, loc. cit.
40D. Pines and J. R. Schrieffer, "Gauge invariance in the theory of superconduc-

tivity", Nuovo Cimento 10 496 (1958).
41P. W. Anderson, "Coherent excited states in the theory of superconductiv-

ity: gauge invariance and the Meissner effect", Phys. Rev. 110 827 (1958);
"Random-phase approximation in the theory of superconductivity", Phys.
Rev. 112 1900 (1958); "Plasmons, gauge invariance, and mass", Phys. Rev.
130 439 (1963).
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pushes them upward to the plasma frequency. Technically, the gauge
invariance is related to the Ward identities for the vertex function of
interaction.42

Superconducting vortices may be pinned down, may creep, flow and
interact with themselves, dissipating supercurrents.43

The pairing theory has been applied to atomic nuclei.44 Also, four-
particle superconducting correlations have been considered in this
case.45

12.19 Andreev reflection

With usual notations the motion of an electron destruction operator
close to the Fermi surface is given by

i�∂ckα/∂t = (μ− �vkF + hvk)ckα , (12.78)

where v stands for the Fermi velocity. Leaving aside the chemical
potential, we have

i�∂ψα/∂t = (−�vkF − i�vgrad)ψα+

+
´
dr′g(r− r′)ψ+

β (r
′)ψβ(r

′)ψα(r)
(12.79)

for the field operator with interaction. We assume a delta interaction
g(r − r′)=λδ(r − r′) and a non-vanishing average Fα = λ 〈ψ−αψα〉.
42Y. Nambu, "Quasi-particles and gauge invariance in the theory of superconduc-

tivity", Phys. Rev. 117 648 (1960); see also M. Apostol, "Ward identity for
non-relativistic fermions", Phys. Lett. A78 91 (1980); "On the vertex function
method in the Tomonaga-Luttinger model", J. Phys. C16 665 (1983).

43See for instance P. W. Anderson and Y. B. Kim, "Hard superconductivity:
Theory of the motion of Abrikosov flux lines", Revs. Mod. Phys. 36 39
(1964).

44A. Bohr, B. R. Mottelson and D. Pines, "Possible analogy between the excitation
spectra of nuclei and those of the superconducting metallic state", Phys. Rev.
110 936 (1958).

45M. Apostol, "Four-fermion condensate", Phys. Lett. A110 141 (1985); M.
Apostol, I. Bulboaca, F. Carstoiu, O. Dumitrescu and M. Horoi, "Alpha-like
four nucleon correlations in superfluid phases of atomic nuclei", Nucl. Phys.
A470 64 (1987).
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Since F−α = −Fα and F ∗−α = Fα by time-reversal symmetry, we have
F ∗α = −Fα. We may write Fα = iΔα. Equation (12.79) becomes

i�∂ψα/∂t = (−�vkF − i�vgrad)ψα + iΔαψ
+
−α ,

−i�∂ψ+
−α/∂t = (−�vkF − i�vgrad)ψ+

−α + iΔαψα ,
(12.80)

or

i�∂ckα/∂t = (−�vkF + hvk)ckα + iΔαc
+
−k−α ,

−i�∂c+−k−α/∂t = (−�vkF + hvk)c+−k−α + iΔαckα .
(12.81)

These are Gorkov’s equations of motion for the quasiparticles.46 It is
easy to see that the pairing theory can be obtained from equations
(12.81).

We introduce the amplitudes ϕα = (ψα)0;1α and χα = (ψ+
−α)0;1α.

The former represents a quasiparticle, the latter represents a pair or,
equivalently, a quasi-hole besides the quasiparticle. Equations (12.80)
give

i�∂ϕα/∂t = (−�vkF − i�vgrad)ϕα ++iΔαχα ,

−i�∂χα/∂t = (−�vkF − i�vgrad)χα + iΔαϕα ;
(12.82)

it is easy to check the continuity equation

∂

∂t

(
|ϕα|2 + |χα|2

)
+ vgrad

(
|ϕα|2 − |χα|2

)
) = 0 . (12.83)

A superconducting quasiparticle is therefore localized with probability
|ϕα|2 + |χα|2 and flows with the current

j = v
(
|ϕα|2 − |χα|2

)
. (12.84)

It acquires two distinct states: ϕ, as a quasiparticle and χ, as a quasi-
hole. The quasi-holes flow backward according to equation (12.84).

46L. P. Gorkov, "Microscopic derivation of the Ginsburg-Landau equations in the
theory of superconductivity", Sov. Phys.-JETP 9 1364 (1959) (ZhETF 36

1918 (1959)); "The critical supercooling field in superconductivity theory",
Sov. Phys.-JETP 10 593 (1960) (ZhETF 37 833 (1959)).
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This is known as the Andreev reflection.47 The transport processes in
superconductors must include this particularity. It is easy to see that
ϕ ∼ u2 and χ ∼ iuv where u and v are the pairing-theory weights.

Since Δα and χα are odd functions of α we may drop out the suffix α
in equations (12.82). We may also drop out the kF -term in equation
(12.82) and get the superconducting spectrum �ω = ±√�2v2k2 +Δ2

and
ϕ = C

2

√
1 + vk/ω ,

χ = −iC
2

√
1− vk/ω

(12.85)

for �ω > Δ where C is a constant. The current given by equation
(12.84) becomes

j = C2v(vk/ω) (12.86)

for both spin orientation. The incident current is jin = A2v and the
continuity provides A = (C/

√
2)
√
1 + vk/ω. Thus, we get finally the

transmission coefficient

w = j/jin =
vk/ω

1 + vk/ω
, (12.87)

or
w 


√
�ω/Δ− 1 (12.88)

for �ω � Δ. This coefficient affects all the relevant transport rates.

For instance, the electrical conductivity48

σ ∼
ˆ
Δ

d(�ω) ·
√

�ω/Δ− 1 · e−β�ω ∼
√
T/Δe−Δ/T . (12.89)

A similar result holds for thermoconductivity.49

47A. F. Andreev, "The thermal conductivity of the intermediate state in super-
conductors", Sov. Phys.-JETP 19 1228 (1964) (ZhETF 46 1823 (1964)).

48See for instance M. Apostol and L. C. Cune, loc. cit.
49See also J. Bardeen, G. Rickayzen and L. Tewordt, "Theory of the thermal

conductivity of superconductors", Phys. Rev. 113 982 (1959).
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12.20 Comments on transport

The free electrons (fermions) have a ground state which is the Fermi
sea and single-particle energies ε(p) = p2/2m, where p is momentum
and m is the particle mass. This picture is changed, to some extent, by
interaction. The Hartree-Fock approximation and the random phase
approximation allow us to retain the single-particle picture for excited
states in the neighbourhood of the Fermi surface; the change in the
ground state remains, to a large extent, unknown, but the motion of
the ensemble of particles and, in particular, the transport are governed
by excitations. The two approximations imply corrections generated
by virtual particles, which renormalize the particles and the interac-
tion. The remaining part of the interaction, which renormalizes the
interaction vertex, destroys, to some extent, this single-particle pic-
ture. The limitations brought about by this residual interaction are
included in the finite lifetime of the particles; which, thereby, become
quasiparticles (including their combinations which give the collective
modes). This is the basic picture of Landau’s elementary excitations
(quasiparticles and collective modes) in a normal Fermi liquid. The
temperature determines a behaviour similar to that generated by in-
teraction, such that the temperature effects can be included in this
picture.

A similar situation occurs for the elementary excitations of the super-
conducting state, with the energy spectrum

ε̃(p) = ±
√
ε2(p) + Δ2 , (12.90)

where ε(p) stands now for p2/2m − μ, μ being the chemical poten-
tial, and Δ is the superconducting gap; similarly, ε̃(p) is measured
from μ. We note that these excitations are both particles and holes.
The superconducting spectrum is generated by the electron-phonon
interaction and is constructed with quasiparticles, which have a finite
lifetime; moreover, the superconducting gap depends on the tempera-
ture, which reflects again the quasiparticles as the basis of constructing
the spectrum. In this respect the superconducting spectrum has the
quantum-mechanical meaning only at zero temperature. This partic-
ularity, of deriving an energy spectrum which depends on the temper-
ature, reflects the symmetry breaking (gauge symmetry) associated
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with the superconductivity. This shows that the superconductivity
is a phase transition (with a critical temperature), according to the
Ginsburg-Landau theory.

The electron quasiparticles and the phonons, including their lifetime,
are independent particles; the electron-phonon interaction (with acous-
tic longitudinal phonons) couples them. In "Electron-Phonon Inter-
action" chapter we have seen that the effects of the electron-phonon
interaction are larger than the lifetime effects, such that it is mean-
ingful to treat the electron-phonon coupling as an interaction. Except
for the renormalization of the phonon velocity (where the electron and
phonon coordinates are not independent), the electron-phonon inter-
action brings a second-order coupling between the electrons. This
effective coupling can be estimated in the second-order perturbation
theory; it arises from virtual phonons. Let us write the hamiltonian
of the electrons and phonons as

H = H0 +H1 ,

H0 =
∑

k εkc
+
k ck +

∑
q �ωa

+
q aq ,

H1 =
∑

kq Bq

(
a+q + a−q

)
c+k+qck

(12.91)

where Bq =- C√
N
iq
√
�/2Mω, with usual notations. We perform a

canonical transformation H̃ = e−SHeS with H1 = −[H0, S], which
leads to

H̃ = H0 +
1

2
[H1, S] + ... ; (12.92)

it is easy to see that the one-phonon states are eliminated by the
effective interaction

H2 = 1
2 [H1, S] =

1
2

∑
kk′q |Bq|2 c+k′+qck′c+k−qck·

·
(

1
εk−εk−q−�ω − 1

εk′+�ω−εk′+q

)
;

(12.93)

if we group the ±q-terms we get

H2 =
∑
kk′q

|Bq|2 �ω

(εk − εk−q)2 − �2ω2
c+k′+qck′c+k−qck . (12.94)
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We note that the transformation used here corresponds to the Hartree-
Fock approximation, which dresses the electrons with a cloud of phonons
(polaronic cloud).

We can see that the effective interaction H2 brings an electron-phonon
contribution to the f -function of the collective excitations (plasmons)
of the electron liquid; since the original contribution is the Coulomb
interaction, this small additional contribution has negligible effects.
However, a subset of states defined by

k
′

+ q = k1 , k
′

= k2 (12.95)

and k = −k2 deserves a special attention; it gives a reduced interac-
tion

H2red =
∑
k1k2

|Bk1−k2
|2 �ω

(εk1
− εk2

)2 − �2ω2
c+k1

c+−k1
c−k2

ck2
, (12.96)

which, for k1,2 close to the Fermi surface, is

H2red = − C2

2Mc2N

∑
k1k2

c+k1
c+−k1

c−k2
ck2

; (12.97)

this is an attractive interaction of the form given by equation (12.1),
which leads to the superconducting instability. We can see that it cor-
responds to an exchange of wavevectors q which are quasi-tangential
to the Fermi surface, such that the superconducting instability is not
affected by plasmons, nor the latter by the former. A comparison
with the parameter λρ in equation (12.4), for C 
 μ, indicates a
pretty large coupling (gap and critical temperature), of the order of
the Debye frequency. This rather strong superconducting coupling
arises from the coherence of the Cooper pairs. Actually, there exists
a serious restriction upon these estimations, which arises from the
quasi-tangential correlations between k1and k2; this restriction intro-
duces an additional factor of the order c/vF in the estimation of εc
from �ωD.

The transport in the superconducting phase is performed both by
quasiparticles and quasiholes; from equation (12.90) we can see that
the group velocity of these excitations is small, such that they do not
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12 Superconductivity

contribute much to transport. Moreover, their energy uncertainty is

Δε̃ =
εΔε

ε̃
, (12.98)

where Δε is the uncertainty in energy of the original quasi-electrons;
we can see that Δε̃ is small, such that the lifetime of the superconduct-
ing quasiparticles is long. In addition, the energy uncertainty given by
equation (12.98) is multiplied by the Fermi distribution

(
eε̃/T + 1

)−1
,

which, for quasiparticles, acquires very low values at low tempera-
tures. Another source of energy uncertainty (and lifetime), both for
Cooper pairs and quasiparticles, is the retardation of the interaction;
the energy uncertainty is �/τ = �c/ξ, where ξ is the coherence length;
an overestimate is �/τ 
 �

2ω2
D/μ.

The order parameter may have its own dynamics and relaxation. In
charge-density waves the excitations of the order parameter are known
as phasons and amplitudons.50

12.21 Concluding remarks

Superconductivity is a vast subject.51 It includes fundamental con-
cepts of the theory of condensed matter, like symmetry breaking, off-
diagonal long-range order, macroscopic wavefunction of the conden-
sate, order parameter and its dynamics, gauge invariance, flux quanti-
zation, magnetic effects, finite-size effects, etc. The BCS mechanism
of superconductivity is still open to questions.52

50M. Apostol and I. Baldea, "On the charge density wave state in the quasi-one-
dimensional compound K2[Pt(CN)4]Br0.3 × 3.2H2O (KCP )", Rev. Roum.
Phys. 30 605 (1985); M. Apostol, "Phason contribution to the lattice heat
capacity and thermoconductivity", Commun. Theor. Phys. 20 249 (1993);
"Ultrasound attenuation in (TaSe4)2", Tr. J. Phys. 17 995 (1993).

51D. Schoenberg, Superconductivity, Cambridge (1952); E. A. Lynton, Supercon-

ductivity, Methuen (1963); J. R. Schrieffer, Theory of Superconductivity, Ben-
jamin (1964); G. Rickayzen, Theory of Superconductivity, Interscience (1965);
P. G. de Gennes, Superconductivity of Metals and Alloys, Benjamin (1966); M.
Tinkham, Introduction to Superconductivity, McGraw-Hill (1975).

52See for instance B. T. Matthias, Science 144 378 (1964) and references therein.
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13 Superfluidity

13.1 Introduction

We include here the basic elements of the theory of the superflu-
idity. The quantum-mechanical hydrodynamics and the quantum-
mechanical nature of the vortices are discussed, and the essential role
played by the crystaline-ordered superfluid ground state is empha-
sized; the vortex and roton spectrum of a superfluid is derived. It is
shown that the quantum of vorticity is also the quantum of viscosity
and the turbulence originates in quantum-mechanical vortices. The
condensate wavefunction is introduced, allowing for the sound waves,
vortices and rotons, and the quanta of these elementary excitations
are thereby derived. The subject is also known as the Bose-Einstein
condensation in dilute gases of alkali atoms.1

Atomic beams of 87Rb or 23Na, which have an integral spin and,
therefore, we call them bosons, are slowed down by photons in laser
beams, taking advantage of the frontal Doppler shift. Optical and
magnetic fields provide magneto-optical traps for such cold atoms,
while another laser beam or a rotating magnetic field polarizes the
atomic spins in the traps. Dilute alkali gases of several thousands
of atoms in a space region of about 1μm are thus obtained at a very
low temperature of tens of nK = 10−9K. Such temperatures are suffi-
ciently low for the average inter-atomic separation (several hundred of
Å) to make these atomic ensembles very dilute quantum-mechanical
liquids of bosons undergoing Bose-Einstein condensation and super-
fluidity. Indeed, light scattering pictures the small, condensed liquid

1M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cor-
nell, "Observation of Bose-Einstein condensation in a dilute atomic vapor",
Science 269 198 (1995); K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van
Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, "Bose-Einstein condensa-
tion in a gas of sodium atoms", Phys. Rev. Lett. 75 3969 (1995).
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13 Superfluidity

drop; splitting such a drop and thereafter bringing together the two
fragments causes an interference, as for a coherent atomic state, and
many vortices are also observed in these superfluid droplets. All these
are signatures of a Bose-Einstein condensation and superfluidity.

All these may be interesting laboratory techniques, experimental meth-
ods and procedures. Bose-Einstein condensation and superfluidity
are well-established and well-known, and He4 superfluidity has been
known since 1911.2

If we are to consider an elementary particle and still care about its
internal structure, then its internal coordinates vanish, its internal
momenta go to infinity, such that, besides the internal energy, we
may have, at most, a finite internal angular momentum, as an inter-
nal prime integral. This is �s, where � is Planck’s constant and s is
the spin of the particle. A spinning electron was suggested originally
in connection with the Zeeman effect,3 especially that a magnetic
momentum is often associated with spinning particles (through the
gyromagnetic factor), and assigned a quantum-mechanical number of
one half.4 Indeed, as an angular momentum, its projection along one
axis has 2s + 1 states, and 2s must be an integer; therefore, spin s
may be an integer or half an integer. 2s + 1 states are described by
a symmetric tensor of rank 2s whose labels take two values; this is
called a spinor; it rotates under a rotation about one axis. It is worth
noting that spin vanishes in the quasiclassical description. Particles
with an integral spin are described by Klein-Gordon-type equations;
the energy in this case is a quadratic form in particle fields plus a
quadratic form in hole fields; it is positive definite providing the fields
commute; if the fields commute, the wavefunctions of identical parti-
cles are symmetric under particle permutations; if the wavefunctions
are symmetric, the occupation number of one-particle states may take
any positive, integral value; consequently, particles of integral spins
obey the Bose-Einstein statistics and are called bosons. Particles with
a half-integral spin are described by Dirac-type equations; the energy

2H. Kamerlingh Onnes, Proc. Roy. Acad. Amsterdam 13 1107, 1274 (1911).
3See, for instance, G. E. Uhlenbeck and S. Goudsmit, "Ersetzung der Hypothese

vom unmechanischen Zwang durch eine Forderung bezuglich des inneren Ver-
haltens jedes einzelnen Elektrons", Naturwissenschaften" 13 953 (1925).

4W. Pauli, "Uber den Zusammenhang des Abschlusses der Elektronengruppen
im Atom mit der Komplexstruktur des Spektren", Z. Phys. 31 765 (1925).
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in this case is a quadratic form in particle fields minus a quadratic form
in hole fields; it is positive definite providing the fields anticommute;
the wavefunctions of identical particles are then antisymmetric un-
der particle permutations and the occupation number of one-particle
states may only take two values, zero and one. Consequently, such
particles obey the Fermi statistics and are called fermions. This is the
spin-statistics theorem.5

The constituents of a composite particle have both a total orbital
momentum L and a total spin S. The particle is invariant under
rotations, such that its total angular momentum J = L + S is con-
served; consequently, it is described by a symmetric spinor of rank
2J , which has 2J +1 components; therefore, J is its spin. The hamil-
tonian of the particle may contain additional terms like ∼ J2, and
the ground state corresponds to the lowest value |L− S| of J , or to
the highest |L+ S|, depending on the sign of such terms (since the
energy has a lower bound, the internal structure of composite parti-
cles is non-relativistic, with relativistic corrections; such an additional
term comes usually from the spin-orbit interaction). Frequently, the
constituents of composite particles are identical particles, like elec-
trons in atoms, or nucleons in atomic nuclei. The energy levels of
identical particles are labelled by the irreducible representations of
the permutations group. For identical particles with spin one-half
these representations correspond to a well-determined total spin S,
and the spin dependence of the energy levels of two identical fermions
with spin one-half is the exchange interaction. The interacting par-
ticles building up a composite particle move in a self-consistent field,
such that one-particle states are appropriate. The one-particle lev-
els group themselves in energy shells, and the total spin and total
orbital momentum in each shell is such as to minimize the energy,
for the ground state of the composite particles. Consequently, for
electrons, a shell has the highest possible spin and the highest possi-
ble orbital momentum (which is known as Hund’s rule6), the corre-
sponding symmetry of the wavefunction under permutations ensuring

5W. Pauli, "The connection between spin and statistics", Phys. Rev. 58 716
(1940).

6F. Hund, "Zur Deutung verwickelter Spektren, insbesondere der Elemente Scan-
dium bis Nickel", Z. Phys. 33 345 (1925); "Zur Deutung verwickelter Spektren.
II.", 34 296 (1925).
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13 Superfluidity

thereby as lowest an energy as possible, for the ground state. Closed
shells have vanishing L and S, while open shells have J = |L− S| if
they are less than half filled, and J = L + S if they are more than
half filled, according to the spin-orbit interaction. This way, having
determined the energy shells, one may know the spin, the orbital mo-
mentum and the total angular momentum. For instance, 87

37Rb has a
...3d104s24p65s1 succession of shells, labelled by the principal quantal
number n, orbital quantal number l (0, 1, 2... correspond to s, p, d...),
the superscript indicating the total number of electrons in the shell;
consequently, the total spin of the electrons is S = 1/2, the total
orbital momentum is L = 0 (S) and the total angular momentum is
J = |L− S| = 1/2, as given by the open upper shell (the ground state
is therefore labelled by the electronic term 2S1/2, i.e. 2S+1(L)J ).
Similarly, 23

11Na has a 2S1/2 ground state, with a ...2p63s1 upper
shell. For nucleons the difference is made by the fact that the nuclear
forces depend on spin, such that the self-consistent field gives rise to a
stronger "spin-orbit" interaction, which, accordingly, classifies the en-
ergy bands by the angular momentum j of the nucleon. The nucleon
states are labelled by nlj , where the principal quantum-mechanical
number n = 1, 2, ... and the orbital quantal number l = j ± 1/2 is
well-defined, as the nucleon states have a well-defined parity. The
nucleon shells are (1s1/2), (1p3/2, 1p1/2), (1d5/2, 1d3/2, 2s1/2, 1f7/2),
(2p3/2, 1f5/2, 2p1/2, 1g9/2), etc.7 The band filling is dictated by the
nuclear pairing which couples nucleon pairs at a vanishing angular
momentum, such that the even-even nuclei (i.e. an even number Z of
protons and an even number A−Z of neutrons) have a vanishing total
angular momentum J = 0, odd-even nuclei have a total angular mo-
mentum J = j of the upper unpaired nucleon, and the odd-odd nuclei
have a total angular momentum J = 2j; indeed, in the latter case the
isotopic spin (T = 0) corresponds to an antisymmetric wavefunction
and the rest of the wavefunction (spin and coordinate parts) must
be symmetric. For instance, the 37 protons of 87

37Rb are arranged in
a closed shell of 28 and an open shell ...2p3/2 1f5/2 2p1/2 (1g9/2) with
one unpaired proton on 1f5/2; consequently, the nuclear spin of 87

37Rb
is I = 5/2. Similarly, 23

11Na should have a nuclear spin I = 5/2;

7O. Haxel, J. H. D. Jensen and H. E. Suess, "On the "magic numbers" in nuclear
structure", Phys. Rev. 75 1766 (1949); M. G. Mayer, "On closed shells in
nuclei. II.", Phys. Rev. 75 1969 (1949).
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13 Superfluidity

however, it is an exception, it has I = 3/2 for its nuclear spin. The
spin of the atom is therefore F = J + I, which is conserved, and the
hamiltonian contains the electron-nucleus hyperfine interaction ∼ F2;
this interaction always tends to anti-allign the spins, by the effect of
the magnetic field, such that the atomic spin in the ground-state is
F = |J + I|; therefore, for 87

37Rb and 23
11Na the atomic spins are F = 2

and F = 1, respectively.

The statistical distribution for identical particles with integral spin
has been introduced by Bose.8 Einstein noticed that at low tem-
peratures such particles occupy the lowest energy level, in order to
accommodate the macroscopic number of particles.9 This is the Bose-
Einstein condensation. Its connection with the superfluidity of He4

has been suggested by London.10 However, the Bose-Einstein con-
densation is a third-order phase transition, while the superfluidity
is a second-order one. The superfluid transition is described by the
Ginsburg-Landau theory,11 while the theory of superfluidity was given
by Landau.12 It is the excitation spectrum of the condensate which
is relevant for superfluid properties; it consists of sound-like phonons
for long wavelengths and vortices and rotons for shorter wavelengths.
The sound-like phonons were derived as long-wavelength elementary
excitations of an interacting Bose-Einstein condensate,13 while vor-
tices and rotons are suggested, in a certain sense, by Gross-Pitaevskii
equation.14 The interaction of the Bose quantum liquid is repulsive,

8S. Bose, "Plancks Gesetz und Lichtquantenhypothese", Z. Phys. 26 178 (1924).
9A. Einstein, "Quantentheorie des einatomigen idealen Gases. 2. Abhandlung",

Sitzungsber. Preuss. Akad. Wiss. 3 18 (1925).
10F. London, "On the Bose-Einstein condensation", Phys. Rev. 54 947 (1938).
11L. Landau, "On the theory of phase transitions, I, II", ZhETF 7 19, 627 (1937)

(Phys. Z. Sowjet. 11 26, 545 (1937)) (in Russian); V. L. Ginsburg and L.
Landau, "On the theory of superconductivity", ZhETF 20 1064 (1950) (in
Russian).

12L. Landau, "The theory of superfluidity of helium II", ZhETF 11 592 (1941)
(J. Phys. USSR 5 71 (1941)) (in Russian); "On the hydrodynamics of helium
II", ZhETF 14 112 (1944) (J. Phys. USSR 8 1 (1944)) (in Russian); "On the
theory of superfluidity of helium II", J. Phys. USSR 11 91 (1947) (in Russian);
"Theory of the superfluidity of helium II", Phys. Rev. 60 356 (1941); "On the
theory of superfluidity", Phys. Rev. 75 884 (1949).

13N. Bogoljubov, "On the theory of superfluidity", J. Phys. USSR 11 23 (1947).
14E. P. Gross, "Structure of a quantized vortex in boson systems", Nuovo Cimento

20 454 (1961); L. P. Pitaevskii, "Vortex lines in an imperfect Bose gas", Sov.
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and the Bose-Einstein condensation is preserved for an interacting
liquid of bosons.15

The attractive part of the interaction of some kind of atoms may
not be strong enough to solidify them under normal pressure even
at vanishing temperatures, especially for lighter atoms; consequently,
they form quantum liquids; the typical examples are He4 below ∼
2.17K and He3 below ∼ 3.2K; the former is a Bose quantum liquid,
while the latter is a Fermi quantum liquid. While the atoms in a
quantum liquid move quasi-freely over most part of their paths, they
may experience strong collisions with each other, due to the repulsive
part of the interaction. Apart from such collisions the atoms are
otherwise weakly interacting, which explains why the Bose-Einstein
condensation is possible in an interacting quantum liquid of bosons
and why the interaction effects are perturbation-like in a quantum
liquid of fermions. However, the effects of the interaction are quite
distinct for bosons and for fermions, as a consequence of their distinct
statistics.

13.2 Landau’s theory

Let such a quantum liquid of bosons be in its ground state, at van-
ishing temperature, where all the atoms are on the zero energy lev-
els (on the same one-particle state with zero energy). Any interac-
tion takes such a quantum liquid from its ground state to its excited
states; the later are characterized by an energy and, sometimes, by a
momentum; their quanta are called elementary excitations.16 Small,

Phys.-JETP 13 451 (1961) (ZhETF 40 646 (1961)); see also V. L. Ginsburg
and L. P. Pitaevskii, "On the theory of superfluidity", Sov. Phys.-JETP 7 858
(1958) (ZhETF 34 1240 (1958)).

15R. Feynman, "The λ-transition in liquid helium", Phys. Rev. 90 1116 (1953);
"Atomic theory of the λ-transition in helium", Phys. Rev. 91 1291 (1953);
"Atomic theory of liquid helium near absolute zero", Phys. Rev. 91 1301
(1953); "Atomic theory of the two-fluid model of liquid helium", Phys. Rev.
94 262 (1954); R. Feynman, in Progress in Low Temperature Physics, ed. by
C. J. Gorter, Interscience, NY (1955); R. Feynman and M. Cohen, "Energy
spectrum of the excitations in liquid helium", Phys. Rev. 102 1189 (1956).

16L. Landau, "The theory of superfluidity of helium II", ZhETF 11 592 (1941)
(J. Phys. USSR 5 71 (1941)) (in Russian); "On the hydrodynamics of helium
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long-wavelength, longitudinal disturbances of the liquid density may
propagate above the ground state, governed by the repulsive interac-
tion; they are quanta of sound and are the basic excitations of the
Bose-Einstein condensate; they have momentum. For a given mo-
mentum there are no other excitations below the sound quanta in the
Bose-Einstein condensate, and this is the basic point explaining the
superfluidity. Indeed, a slightly excited atom would soon fall down
in the condensate, as a consequence of the Bose-Einstein statistics, in
contrast to the Fermi statistics where the fermions may assume indi-
vidually excited states (or in contrast also to a classical liquid); in this
latter case the excitations are quasiparticles, and they may have van-
ishing energies. Therefore, an excited Bose-Einstein condensate may
only take an energy and a momentum corresponding to the disper-
sion relation of the sound quanta, i.e. internal motion with velocities
smaller than the sound velocity are allowed without viscosity within
the liquid; this is the superfluidity phenomenon. Indeed, a mass M
of a fluid moving with velocity v has an energy Mv2/2, and a small
change δv in the velocity means an energy change ε = Mvδv = vp,
where p is the momentum; in order to excite a sound quanta ε must
be as large as the sound quanta of energy up at least, where u is the
sound velocity; i.e. vp > up; for v < u the motion proceeds without
loss, i.e. without viscosity, i.e. the liquid is superfluid. It is easy
to see also that heat is not propagated into a superfluid. However,
for velocities v smaller than sound velocity u by a finite amount the
superfluidity is destroyed, which suggests another kind of elementary
excitations, lying close to a finite momentum and having a quadratic
dispersion around an energy gap; such excitations were called rotons
and the energy gap was assigned to localized vortices.

Indeed, the average inter-atomic separation a in a Bose liquid plays
a relevant role. Since the bosons may assume identical states, the
effect of their interaction is local, in contrast to fermions, where the
interaction acts globally, in accordance with the fact that they as-
sume only individual states. A localized effect of the interaction may
lead to localized excitations for bosons, over distances of the order of

II", ZhETF 14 112 (1944) (J. Phys. USSR 8 1 (1944)) (in Russian); "On the
theory of superfluidity of helium II", J. Phys. USSR 11 91 (1947) (in Russian);
"Theory of the superfluidity of helium II", Phys. Rev. 60 356 (1941); "On the
theory of superfluidity", Phys. Rev. 75 884 (1949).
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a, obviously corresponding to a momentum of the order of 1/a, and
having a finite energy gap; the energy gap is of the order of �2/ma2,
where m is the atomic mass (and � denotes Planck’s constant). Such
excitations lie below the sound quanta in energy at that 1/a momen-
tum, for obvious reasons (as for a liquid); such excitations are called
vortices, for reasons to be seen shortly. Moreover, the excitations of
such vortices, to say so, are called rotons and, obviously, they are
particle-like excitations, i.e. their spectrum is p2/2μ with respect to
the vortices, where μ is an effective mass. Everything happens as if
an atom is caught in a cage made of the surrounding atoms, where it
moves around, together with its surrounding. It is also worth noting
that the interaction is "removed" in such a picture, as if its effects
were known.
The local effects of the interaction being important for a Bose liquid,
it is then appropriate to view it as a quantum fluid, described by local
quantities. Indeed, Landau quantized the motion of a fluid starting
with a particle (mass) density ρ =

∑
mδ(r − R) and a (mass) flow

of particles j = (1/2)
∑

[pδ(r −R) + δ(r −R)p], where the particles
are placed at R. Obviously, this is a ψ(r)-field theory, the particle
density being ψ+(r)ψ(r) (mass density being ρ(r) = mψ+(r)ψ(r))
and the mass flow being j(r) = (1/2)[ψ+(r) · pψ(r) − pψ+(r) · ψ(r)].
A velocity field v(r) = (1/2m)[ψ+(r) · pψ(r) − pψ+(r) · ψ(r)] is also
introduced,17 and commutation relations

vi(r)vk(r
′)− vk(r

′)vi(r) = −(i�/2m)δ(r− r′)(curlv)ik (13.1)

are found, where i, k denote the components of the velocities and
(curlv)ik = ∂vk/∂xi − ∂vi/∂xk. These are the basic equations which
led Landau to substantiate the idea of vortices and rotons; their main
characteristics are the inhomogeneity in velocities, i.e. the lhs of equa-
tion (13.1) is of second-order in velocities while the rhs of equation
(13.1) is of first order in velocities; and, of course, the non-vanishing
commutator in equation (13.1).
Before analyzing equation (13.1) with respect to vortices and rotons it
is worth making some remarks. First, such a quantum hydrodynamics,
17Actually, Landau ("The theory of superfluidity of helium II", ZhETF 11 592

(1941) (J. Phys. USSR 5 71 (1941)) (in Russian)) works in the "first quan-
tization", and finds it more conveniently to use a "mean" velocity v =
(1/2)[(1/ρ)j + j(1/ρ)].
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i.e. a local field theory, is generally valid for any quantum liquid (equa-
tion (13.1) including). However, it is superfluous to a great deal of
extent for fermions, because the excited states therein are delocalized,
and the curl of a velocity near the (large) Fermi velocity is vanishing,
since the change in such a velocity proceeds by vanishing changes in
momenta. This is why one prefers to work with global quantities in the
second quantization for fermions, i.e. with integrating densities of the
type above over the whole volume of the liquid. The two formalisms,
by the way, i.e. the local quantum hydrodynamics on one side, and
the global second-quantized field theory on the other, already contain
in themselves the solution of the interaction problem for bosons and
fermions, which is remarkable. Second, it is worth noting that the field
ψ(r) is analyzed in plane waves, as usually, making the understanding
of equation (13.1) much easier. Further on, it is worth stressing that
the velocity v(r) introduced above is a field operator, i.e. an operator
in the occupation number of plane waves. In particular, the average
velocity v = (−i�/2m)[ψ∗(∂ψ/∂r) − (∂ψ∗/∂r)ψ], where ψ ∼ eiΦ is
a wavefunction is v = �gradΦ/m, and its curl is always vanishing
(curlv is off-diagonal). Also, the velocity as defined above can be
written as

v(r) = (�/2m)
∑

(2k+ q)a+k ak+qe
iqr , (13.2)

where a+k , ak are creation and destruction operators of plane waves;
now, one can see easily that a longitudinal wave has a vanishing curl
of velocity, such that the sound waves are not affected by equation
(13.1) (and the velocity of a quasiparticle excitation close to the Fermi
surface has a vanishing curl too). Moreover, the curl of velocities is
the highest for both k and q close to the highest relevant wavevectors,
i.e. wavevectors of the order of 1/a; it follows that equation (13.1)
involves a motion localized over the average inter-atomic separation
a and interaction processes that exchange momenta of the order �/a;
such a motion is relevant for bosons; it may be called a vortex, since
the curl of its velocity is non-vanishing. It is also worth noting that
such atomic movements are spatially disentangled from each other,
since equation (13.1) is effective only at the same location. Also, it
follows that any motion in the superfluid state, i.e. a motion with
a velocity v low enough so as not to excite vortices, is a potential
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motion, i.e. irrotational, i.e. curlv = 0. Indeed, if curlv is zero
everywhere it commutes with everything, including the hamiltonian,
and is conserved.

Indeed, the hamiltonian of an interacting ensemble of particles reads

H =
∑

p2/2m+
1

2

∑
v(R−R′) (13.3)

(spin neglected), or

H =
∑

(p2/2m)a+pap+

+(1/2V )
∑

v(q)a+p1
a+p2

ap2−�qap1+�q ,
(13.4)

where v(q) =
´
dr · v(r)eiqr and V is the volume of the ensemble; one

can easily recognize the density n(r) in the interacting term in equa-
tions (13.3) and (13.4); in addition, a displacement field u(r) produces
a change δn = −ndivu in density; for bosons we get straightforwardly
the frequency ω = [nv(q = 0)/m]1/2q of longitudinal sound waves;
similarly, we can obtain sound for fermions too (where the contribu-
tion of kinetic energy must be included), but it is unstable against the
quasiparticle excitations.18 Further on, curlv does not commute with
the kinetic hamiltonian (though it commutes with the density; and
with itself!), such that it has not defined values for the elementary
excitations, except for those which are longitudinal (where it van-
ishes); therefore, a vortex (with defined energy) has not a well-defined
curl, and, conversely, a well-defined curl has not a well-defined en-
ergy. Moreover, curlv �= 0 requires a non-vanishing velocity in order
to satisfy the inhomogeneous equation (13.1), such that such a vortex
must have a finite energy, i.e. a gap in the excitations energy. (In ad-
dition, it is worth noting that the quantum hydrodynamics obeys the
continuity equation and Euler’s equation of motion for fluids). Obvi-
ously, a local non-vanishing velocity may only arise from interaction
processes exchanging momenta of the order �/a. For such interaction
processes we obtain an average velocity v ∼ (�/m)(sin r/a)/r from
equation (13.2), whose curl is curlv ∼ (�/ma)(cos r/a)/r (having not

18Though global, delocalized density oscillations may propagate in ensembles of
fermions, like the zero-sound of the quasiparticle states, or plasma oscillations
of the electron ensemble.
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13 Superfluidity

a definite orientation, v does not come from a grad). The integral´
ds · curlv over any surface around the point is then the circulation¸
dl · v of the velocity around that point, and equals ∼ �/m. It is

called vorticity and its quantum is h/m (� = h/2π); it is the same
as the quantum of viscosity,19 for obvious reasons; indeed, the origin
of viscosity is quantum-mechanical (it is worth noting in this connec-
tion that the quantum uncertainty in the fermion quasiparticle energy
may originate in a vortex too); also, the classical turbulence is made
of quantum vortices. In particular, one can notice that curlv ∼ p×v,
which is a purely quantum quantity.
The ground-state of a liquid consisting of identical interacting bosons
is a crystaline-ordered state, characterized by a set of three reciprocal
vectors G, the atoms being placed at Ri. Atoms, however, may oscil-
late within their atomic cages, with very low energies, and momenta
�g, where g is a multiple nG of G. The average of the structure
factor

∑
eiqRi gives g-peaks decreasing like 1/q3, as for a genuine liq-

uid with short-range order. Delocalized states, like an atom travelling
with momentum �k, are therefore identical with "umklapp" scaterred
states, in particular an atom travelling with a momentum �(k + g);
therefore, ak+g can be replaced by ak. Only G-scattering processes
should be kept in collisions, in view of the "short-range" character of
the interaction, such that the velocity in equation (13.2) becomes

v(r) = (�/m)ka+k ak
∑

eiGr (13.5)

for one particle, where the summation extends over G’s; correspond-
ingly, its curl is

curlv = i(�/m)
∑

(k×G)a+k ake
iGr ; (13.6)

one can see that, now, they are diagonal in the particle occupancy;
and, of course, they do not commute anymore with the hamiltonian, in
particular with the G-interaction processes in equation (13.4). For a
vortex, the particle momentum is g in principle (actually of the order
of G), and its (minimal) energy is of the order of Δ = �

2/ma2 (for He4

∼ 9K from neutron scattering,20 with a ∼ 3.7Å). A particle may es-
19(curlv)z = ∂(rvθ)/r∂r − ∂vr/r∂θ; (gradΦ)r = ∂Φ/∂r, (gradΦ)θ = ∂Φ/r∂r
20D. G. Henshaw and A. D. B. Woods, "Modes of atomic motions in liquid helium

by inelastic scattering of neutrons", Phys. Rev. 121 1266 (1961).
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13 Superfluidity

cape a vortex after, at least, one planar loop involving 4 G-collisions;
its energy is then �

2(k2 + 4G2)/2m, and for k ∼ G, it involves an
effective mass μ ∼ m/5 = 0.2m (the experimental value from neutron
scattering is 0.16m for He4). In addition, it is worth noting the po-
sition of the vortex gap at G ∼ 1/a, actually at 2π/a = 1.7Å

−1
; the

experimental location is 1.9Å
−1

; and the roton energy p2/2μ which
is quadratic in momenta. From equations (13.5) and (13.6) one can
see again that the vorticity is ∼ nh/m, i.e. it is quantized in quanta
h/m; and curl is represented as (�/m)(g ×G), where k ∼ g (∼ G).

The ground-state of the hamiltonian given by equation (13.4) is a
condensate with all p = 0; its elementary excitations consist of pairs
of interacting particles; we get straightforwardly21

H = 1
2Nnv(0) + 1

2n
2
∑ v2(p)

p2/m +
∑

(p2/2m)a+pap+

+ 1
2n
∑

v(p)[a+p a
+
−p + a−pap + 2a+p ap]

(13.7)

for the hamiltonian of these excitations; it is worth noting that the
excitation contributions are consistently included in equation (13.7)
up to the second order of the perturbation theory, and the ground-
state energy is, accordingly, renormalized by the second term in the
rhs of equation (13.7). The diagonalization of the hamiltonian above
is straightforward, and the excitation spectrum is given by

ε(p) = [nv(p)p2/m+ (p2/2m)2]1/2 , (13.8)

while the ground-state energy reads

E0 = 1
2Nmu2 + 1

2n
2
∑ v2(p)

p2/m+

+ 1
2

∑{ε(p)− [p2/2m+ nv(p)]} ,

(13.9)

where u =
√
nv(0)/m is the sound velocity (∼ 240m/s); carrying

out the integration in equation (13.9) we get E0 = (1/2)Nmu2[1 +
α(mu)3/2π2

�
3n], where α is slightly smaller than the usual value

21N. Bogoljubov, "On the theory of superfluidity", J. Phys. USSR 11 23 (1947).
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13 Superfluidity

α = 2.3 corresponding to a δ-type interaction (v(p) = v(0)). For typ-
ical hard-core atomic potentials the experimental spectrum of excita-
tions is obtained from equation (13.8); similarly, it is given by screened
Coulomb potentials with oscillatory tails.22 The excitation spectrum
given by equation (13.8) can also be put in another form; indeed, de-
noting ε0 = p2/2m one gets from equation (13.8) ε = ε0(1+nv(p)/ε0)
for large p; on the other hand, the pair distribution function is given
by S(q) = (1/N)

∑
eiq(Ri−Rj) =

∑′
eiqRi (where N is the number of

atoms and prime means summation over neighbours), and the poten-
tial can be written as v =

∑
v(r−Ri) ∼ nv(q)S(q) for q ∼ 1/a; there-

fore, ε = ε0(1 + v/S(q)ε0); in addition, the energy of the excitation
can also be written approximately as Sε0+v = ε0 for the movement of
an atom around its position Ri, hence ε = ε0/S(q) = �

2q2/2mS(q),
as suggested by Feynman (quoted above).

The excitations of the superfluid form its normal component, while
the remaining part is the superfluid component; they have distinct
densities, and a two-fluid picture holds for superfluidity, as suggested
earlier.23 Sound, vortices and rotons do scatter on each other in the
normal part of the superfluid, and the corresponding cross-section can
be estimated.24 The superfluid flows frictionlessly through capillaries
and narrow slits, in a rotating vessel the superfluid does not rotate, has
not an inertia momentum (it is incapable of rotational flow), exerts
no pressure on an immersed body (Euler’s paradox); since the normal
part and the superfluid part are in equilibrium, there is no entropy
transfer between them, and, of course, no friction and no viscosity in
the relative motion of the two fluids one against the other. The super-
fluid flows like an "ordered" fluid, without changing the entropy, and
does not carry heat (and the superfluid motion is thermodynamically

22L. C. Cune and M. Apostol, "On the superfluid spectrum of He4, J. Theor.
Phys. 94 (2004).

23L. Tisza, "Transport phenomena in helium II", Nature 141 913 (1938); "Sur la
theorie des liquides quantiques. Application a l’helium liquid. I, II.", J. Phys.
et Radium 1 164, 350 (1940); "The theory of liquid helium", Phys. Rev. 72

838 (1947); see also F. London, Superfluids, Dover, NY (1964).
24L. Landau and I. M. Khalatnikov, "The theory of the viscosity of helium II:

I. Collisions of elementary excitations in helium II", ZhETF 19 637 (1949)
(in Russian); "The theory of the viscosity of helium II: II. Calculation of the
viscosity coefficient", ZhETF 19 709 (1949) (in Russian); I. M. Khalatnikov,
An Introduction to the Theory of Superfluidity, Benjamin, NY (1965).
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13 Superfluidity

reversible); and, of course, it is so at zero temperature, practically;
flowing out of vessels and carrying no heat, the superfluid leaves be-
hind the heat which boils the remaining fluid (this is the thermome-
chanical effect). The heat is transported by the normal fluid, which
flows to the cold temperatures, while the superfluid flows in compen-
sation to the warmer temperatures; this out-of phase mutual flow of
the two fluids may proceed by temperature waves, which are called
the second sound, and whose velocity is u/

√
3 at vanishing tempera-

ture, in contrast to the usual u-sound which is called the first sound.
Indeed, the interaction of the phonons with atoms gives Boltzmann’s
equation ∂f/∂t+(uqi/q)∂f/∂xi = I for their distribution function f ,
where I is the collision integral; introducing momentum Pi =

´
qif

and energy E = u
´
(q2i /q)f one gets ∂Pi/∂t + (1/3)∂E/∂xi = 0 as

well as ∂E/∂t+u2∂Pi/∂xi = 0 (collisions do conserve the momentum
and energy), hence ∂2E/∂t2 − (u2/3)∂2E/∂x2

i = 0 and the second
sound velocity u/

√
3.

It is now worth turning back to vortices. One may notice for the
beginning that vortices given by equations (13.5) and (13.6) do not
commute with the hamiltonian (13.7). The wavefunction of a fluid
moving with the velocity v has the form ψ ∼ exp(imv

∑
R/�), and

for a fluid rotating with the angular velocity ω the circulation of this
velocity on a closed loop is of course

¸
dl · v = (h/m)× integer from

the periodicity of the wavefunction, i.e. it is quantized by h/m, and its
curl is 2ω; obviously, v = ωr = (L/m)/r in this case, and the vorticity
is nothing but the quantization of the angular momentum L, and its
curl is vanishing. Such a motion is called a "vortex" too, but of course
v
∑

R = 0 in this case; it was suggested25 that space is disconnected,
and has a "hole", for instance at the centre, in which case ψ would go
like ψ ∼ exp(iϕ(R)/�); however v = (�/m)gradϕ would have no curl
then, but, nevertheless, it is supposed further on that it may have
a singularity at the "hole", where its curl might be non-vanishing,
and Stokes’ theorem would be used on the external loops only; in
which case such a vortex might probably be better called a "circulating
vortex", or an L-vortex, in contrast with a "curl, or an ω-, vortex".

25L. Onsager, "Statistical hydrodynamics", Nuovo Cimento 6, Suppl. 2, 279
(1949); R. Feynman, in Progress in Low Temperature Physics, ed. by C. J.
Gorter, Interscience, NY (1955).
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13 Superfluidity

In any case, it has nothing to do with the superfluid excitations called
vortices. Nonetheless, such an irrotational motion does exist of course,
with v = ωr = L/mr, and the energy associated with one quantum
of rotating velocity is the centrifugal energy

´
πrdr · nm(�/mr)2d,

i.e. πn(�2/m) ln(b/a) per unit depth d of the liquid; which is not
compensated by the surface tension of a real hole; however, many
such "linear holes", i.e. cylinders, do appear in a rotating superfluid,
whose free surface is finely rigged with them, such as to minimize the
energy and conserve the angular momentum, and they are related to
the capacity of the superfluid to create internal non-uniformities of a
normal fluid, by exciting true vortices.

13.3 Wavefunction of the condensate

Let ψ(r, q) be the wavefunction of an ensemble of particles, for one
particle at r and the rest with coordinates q. The one-particle den-
sity matrix ρ(r − r′) =

´
dqψ∗(r, q)ψ(r′, q) has the Fourier trans-

form
´
dRρ(R)eikR = (1/V )

´
dq |ψ(k, q)|2, and (1/V ) |ψ(k, q)|2 is

the probability for one particle of being in the k-state; for a con-
densed Bose liquid all the particles are deployed on the state k = 0,
such that ρ(r) is finite at infinity; this is an off-diagonal long-range or-
der.26 What is more interesting is that the condensate has a field a0,
or, for a non-uniform condensate moving with some velocity, a field
ψ(r) = a(r)eiφ(r), where a(r) is the amplitude and Φ(r) is a phase;
this is a classical field (though for a quantum object), and is called
the wavefunction of the condensate; the velocity is v = (�/m)gradΦ
and it is irrotational (curlv = 0), as for a superfluid condensate. It is
easy to see that ψ(r) obeys

(− �
2

2m
Δ− μ)ψ(r) + v(r = 0)a3 |ψ(r)|2 ψ(r) = 0 (13.10)

26Note #11 and O. Penrose and L. Onsager, "Bose-Einstein condensation and liq-
uid helium", Phys. Rev. 104 576 (1956); C. N. Yang, "Concept of off-diagonal
long-range order and the quantum phases of liquid He and superconductors",
Revs. Mod. Phys. 34 694 (1962); W. L. McMillan, "Ground state of liquid
He4", Phys. Rev. 138 442 (1965).
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13 Superfluidity

for a δ-potential, which minimizes the classical energy for an average
number of particles (μ is the chemical potential); this is the Gross-
Pitaevskii equation,27 and describes non-uniformities of a moving con-
densate; in particular, it gives a depletion of the superfluid near a wall
(and the surface tension of the superfluid), as well as cylindrical "cir-
culating vortices" for a rotating superfluid (vθ ∼ 1/r); in the latter
case ψ goes like ψ ∼ eiθ and it is ψ ∼ eiLθ/�, corresponding to an
angular momentum L = �; and the velocity reads vθ = L/mr; it has
nothing to do with the true superfluid "curl vortices" (which, in par-
ticular, are associated with a hard-core potential). It is worth noting
that the other two components of the angular momentum are vanish-
ing as for a vanishing macroscopic rotation of the cylindrical vortex
about the corresponding directions. Superfluid motion of non-uniform
Bose condensates, as well as their long-wavelengths excitations, or
macroscopic flows, superfluid hydrodynamics, including phase inter-
ference, Josephson-like oscillations of the flows, etc, are described by
the Gross-Pitaevskii equation (13.10),28 which amounts, for these rea-
sons, to a mean-field theory; beyond this mean-field regime the picture
is dominated by the atomic limit of the true curl -, quantum vortices.

Since the condensate does not conserve the number of particles (and
its gauge symmetry ap → ape

iϕ is broken, as one can see, for instance,
from equation (13.7)), and, in order to allow for the excitations in the
condensate, it must be written as

ψ(r) =
√
n(1− 1

2
divu)eiΦ , (13.11)

where u is the slowly varying long-wavelengths sound field, while Φ is
associated with all the rest of possible movements, macroscopic mo-
tion included. Indeed, |ψ(r)|2 = n(1− divu) is the change in density,
while Φ-motion does not change the density; of course, by including
excitations the condensate wavefunction given by equation (13.11) has

27E. P. Gross, "Structure of a quantized vortex in boson systems", Nuovo Cimento
20 454 (1961); L. P. Pitaevskii, "Vortex lines in an imperfect Bose gas", Sov.
Phys.-JETP 13 451 (1961) (ZhETF 40 646 (1961)); see also V. L. Ginsburg
and L. P. Pitaevskii, "On the theory of superfluidity", Sov. Phys.-JETP 7 858
(1958) (ZhETF 34 1240 (1958)).

28F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, "Theory of Bose-Einstein
condensation in trapped gases", Revs. Mod. Phys. 71 463 (1999).
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13 Superfluidity

to be quantized; for the beginning, it may be viewed as a quasiclassical
description. In addition, the macroscopic motion may be left aside,
and the phase Φ may be viewed as varying abruptly over atomic dis-
tances near a given position; the direction of its variation changes
continuously, and this is the sense in which it describes a quasiclassi-
cal motion; otherwise, due to its localization and to the uncertainty
in the direction of its variation, it corresponds to a quantum motion.
The energy can easily be derived from equation(13.3) as

H =
´
dr · ψ+(p2/2m)ψ+

+ 1
2

´
v(r− r′)ψ+(r)ψ+(r′)ψ(r′)ψ(r) =

= �
2n
2m

´
dr · |gradΦ|2 +

+ 1
2n

2
´
v + 1

2n
2
´
v · (divu)(div′u) =

= �
2n
2m

´
dr · |gradΦ|2 + 1

2n
2V
∑

v(q)+

+ 1
2n

2V
∑

v(q)q2u∗quq .

(13.12)

With the kinetic term
´
dr ·mn|∂u/∂t|2 /2 we get the sound quanta

ω =
√
nv(0)/mq for the u-motion in equation (13.12). For the Φ-

phase in equation (13.11) we may take Φ = gu according to the
discussion above, where u is the displacement along a wavevector g

of the order of the reciprocal vector G (in which case the direction
of the phase variation may also be quantized). The displacement u
is developed in Fourier series as u =

∑
uge

i(g+q)r, where q is very
small in comparison with g (such that n

´
dr = 1). The gradient of

the phase can be represented as gradΦ ∼ −gu/a + g · gradu, since
gradg ∼ −g/a, such that the velocity is v ∼ (�/m)(−gu/a+g·gradu),
and its curlv ∼ −i(�/ma)

∑
g×g′ug′eig

′r is non-vanishing. The cor-
responding energy as estimated from equation (13.12) is given by

�
2

2m(g2 |ug|2 /a2 + g2 |ug|2 /a2 + g2q2 |ug|2) 



 {�2(ag)2/ma2 + (ag)2p2/2m}a+g ag ,

(13.13)

where ug ∼ aag; for ag = π one obtains an energy Δ+ p2/2μ, where
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13 Superfluidity

Δ = π2
�
2/ma2 
 8K and μ = m/π2 
 0.1m for He4, which is the

rotons spectrum. (It is worth noting that
∑

gq = 0 in equation
(13.13)). However, curlv does not commute with equation (13.13); it
may be viewed as a spin S of magnitude unity, corresponding to the
vector g, in which case the energy is represented as (Sug)

2, but still
S is not determined. Rotons and the superfluid vortices are purely
quantum particles. In addition, the phase is not determined, as for a
determined number of atoms (one), and this is a phase diffusion.

It is energetically favourable for vortices to turn about the same direc-
tion in order to get together, forming larger vortices (and antivortices)
which are classical, and are "curl vortices"; however, they create dis-
continuities in the superfluid velocity, associated with the surface ten-
sion, and the free surface of a rotating superfluid is rippled with such
layers of discontinuity.29 The superfluid velocity goes like 1/r in such
a rotating fluid, for conserving the angular momentum (and like in
Gross-Pitaevskii equation), and of course, it is irrotational (and flow
conserving, divv = 0); at least one true vortex exists at the centre.30

There is still another equivalent representation of the wavefunction
given by equation (13.11). Indeed, the long wavelengths part can
also be written as ψ =

√
neiu/a, and the density is given by ψ+(r −

ia/2)ψ(r+ ia/2) = n(1−agradu/a) = n(1− divau/a) = n(1− divu);
this form of the wavefunction shows up the condensate interference.
A classical phase, i.e. a determined phase, corresponds to an un-
determined number of particles, and these are so indeed, since the
atomic distances are uncertain. As regards the vortex part of the
wavefunction given by equation (13.11), the phase Φ may be writ-
ten as (1/�)

´
prdr + (1/�)

´
pθrdθ + (1/�)

´
pϕr sin θdϕ in spherical

coordinates, which means

(1/�)

ˆ
prdr + (1/�)

ˆ
Lϕdθ − (1/�)

ˆ
Lθ sin θdϕ , (13.14)

where L is the angular momentum; in particular Lθ sin θ = Lz, and

29L. Landau and E. M. Lifshitz, "On the rotation of liquid helium", Dokl. Akad.
Nauk SSSR 100 669 (1955).

30See also M. Apostol, "Fluids, fluid vortices and the theory of electricity and
magnetism", J. Theor. Phys. 135 (2006).
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Lϕ = rpθ, Lθ = −rpϕ. Therefore,

gradΦ =
1

�
(pr, Lϕ/r, −Lθ/r) =

m

�
(vr , rωϕ, r sin θ · ωz) , (13.15)

where angular frequencies ωϕ,z are introduced as for a free angular
motion. One can see that curlv = (2 cos θ · ωz, −2 sin θ · ωz, 2ωϕ),
which is non-vanishing for a non-vanishing L; in cartesian coordinates
curlv = 2(−ωϕ sinϕ, ωϕ cosϕ, ωz). The energy given by equation
(13.12) reads

�
2n

2m

ˆ
dr · |gradΦ|2 =

1

2m
p2r +

1

2mr2
L2 , (13.16)

and its minimum value is Δ = (π2 + 2)�2/ma2, corresponding to
r = a/

√
2 and l = 1; it gives 9.6K for the vortex excitation in liq-

uid He4, in perfect agreement with the experimental data.31 One
can see that the vortices are not defined for a given energy (except
for the Lz-component in the wavefunction). In addition, writing up
Δ = p2/2μ with p = �(2π/4r) = �(π/

√
2a), we get the effective mass

μ = 0.2m for rotons, in good agreement with the experimental data.
It is worth noting that even if Lz is determined, together with the
vortex energy, the velocity and its curl are not, as a consequence of
the quantum nature of the particle microscopic motion; or, conversely,
if one allows for an undetermined energy of the vortex, and requires
a well-determination of the wavefunction, or of velocity and its curl,
it is again impossible, due to the quantum nature of the angular mo-
mentum components. However, there is one case where the quantum
vortex is well defined, and this corresponds to a cylindrical rotator.
The phase of the vortex reads then

(1/�)

ˆ
pzdr + (1/�)

ˆ
Lzdθ , (13.17)

its gradient is given by

gradΦ =
1

�
(pz, Lz/r) =

m

�
(vz , rωz) , (13.18)

31D. G. Henshaw and A. D. B. Woods, "Modes of atomic motions in liquid helium
by inelastic scattering of neutrons", Phys. Rev. 121 1266 (1961).
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and the energy reads

�
2n

2m

ˆ
dr · |gradΦ|2 =

1

2m
p2z +

1

2mr2
L2
z . (13.19)

The excitation energy diminishes a little (for Lz = 1), the roton mass
increases slightly, the energy is defined together with the wavefunc-
tion, the curl of velocity is 2ωz, but it is not defined (actually it
vanishes) for a given momentum and energy, since vθ = rωz = Lz/mr
in that case. Finally it is also worth noting that the condensate wave-
function is actually a field operator for vortices, as expected for such
quantum objects. Also, a rigid body rotates with an angular velocity
without conserving the local angular momentum (v = ωr), and the
local velocity has a non-vanishing curl (2ω), such that it has a rota-
tional flow, in contrast with a superfluid that rotates with a constant
distribution of angular momentum (v = L/mr), and no curl of ve-
locity (potential flow); a classical fluid is capable of both a potential
and a rotational flow (as an excited superfluid too), and the extent to
which its flow is rotational expresses its resemblance to a rigid body
and its developing turbulence.
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14 Pulse Thermoelectricity

14.1 Figure of merit

It is well-known that thermoelements, which may be used either as
Seebeck electric generators or as Peltier electric coolers, are charac-
terized by a ”figure of merit”, according to which the Seebeck ther-
mopower and the electrical conductivity must be as high as possible,
while the thermoconductivity must be as low as possible, in order to
get a high efficiency quotient.1 We limit ourselves to the classical way
of operating the thermoelectric circuits, where the local thermody-
namic equilibrium is ensured, while small and continuous temperature
and voltage gradients are established along the sample. In addition,
the sample is assumed to be homogeneous on the macroscopic scale,
as for a stable thermodynamical phase. Under these circumstances,
the electric flow j and the heat flow q, i.e. the electric charge and the
heat flowing across the unit area of the cross-section per unit time,
are given by the basic equations of the thermoelectricity2

j = σE− σQgradT (14.1)

and
q = ϕj+QT j−KgradT , (14.2)

where σ is the electrical conductivity, E is the electric field, Q is
the thermopower, T is the temperature, ϕ is the electric potential
(E = −gradϕ), and, finally, K denotes the thermoconductivity; the

1D. M. Rowe and C. M. Bhandari, Modern Thermoelectrics, Holt-Technology,
Reston, VA (1983); G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics.

Basic Principles and New Materials Developments, Springer, NY (2001).
2See, for instance, L. D. Landau and E. M. Lifshitz, Course of Theoretical

Physics, vol. 8, Electrodynamics of Continuous Media, Elsevier, Oxford
(2004).
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14 Pulse Thermoelectricity

gradient may be specialized to the x-direction, i.e. grad = ∂/∂x. One
can see from equation (14.1) that a temperature gradient gives rise
to an electric field E = −QgradT , controlled by the Seebeck ther-
mopower coefficient Q; this is the Seebeck effect; while, from equation
(14.2), the continuity of the flows across a junction leads to a released
heat −ΔQ · T j = Πj = −Δ(KgradT ) per unit time and per unit area
of the junction, which is the Peltier effect, and Π = −TΔQ denotes
the Peltier coefficient. One can already notice from equations (14.1)
and (14.2) that a high efficiency requires a high Q and σ and a low
K.

Indeed, heat per unit volume and unit time is given by

−divq = Ej− jgrad(QT ) + div(KgradT ) (14.3)

from equation (14.2) (since divj = 0, as for a steady flow which con-
serves the charge), or, making use of equation (14.1),

−divq = j2/σ − T jgradQ+ div(KgradT ) . (14.4)

We note that equation (14.4) holds irrespective of the presence or ab-
sence of the external electric field E. In the r.h.s. of equation (14.4)
the first term is the dissipated Joule-Lenz heat, the second term is
the heat associated with thermoelectric effects, while the third con-
tribution is the thermoconducted heat. Rigorously speaking, for an
inhomogeneous sample there may be problems with establishing the
thermodynamical equilibrium, so it is appropriate to restrict ourselves
to homogeneous samples, as it was said above. For homogeneous sam-
ples at equilibrium σ, Q and K are constant, and the conservation of
steady charges divj = 0 in neutral conductors, i.e. divE = −Δϕ = 0,
requires gradT = const from equation (14.1), so the only heat is the
dissipated heat j2/σ. Under these circumstances there is no thermo-
electric heat −T jgradQ and no volume contribution to the thermo-
conducted heat, div(KgradT ) = 0; both the thermoelectric heat and
the thermoconducted heat are fully transported through the sample.
It is also worth noting that equations (14.1) and (14.2) correspond to
small j, E, gradT and q; j and E are small in comparison with their
counterpart on the atomic scale, since they are produced by macro-
scopic sources. Equations (14.1) and (14.2) should also be viewed
as series expansions in gradT , which must be small in comparison

354

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



14 Pulse Thermoelectricity

with T ; if not, the second-order contribution in gradT , which would
lead to non-linear thermoelectrics equations, may imply unphysical
temperature gradients, according to material constants, by the same
reason of charge conservation. It is also worth stressing the fact that
the density of heat per unit time given by equation (14.3) or (14.4)
is a second-order effect, such that T in the QT j-term in equation
(14.2) must be viewed as the local temperature, and, consequently,
position-dependent. This is related to Onsager’s symmetry of kinetic
coefficients, and ensures the increase in the entropy with time;3 in-
deed, the time variation of entropy is easily obtained from equation
(14.4) as

∂S/∂t = −
ˆ

dr
divq

T
=

ˆ
dr·[j2/σT+K(gradT )2/T 2] > 0 , (14.5)

and it is worth noting that the fully transported thermoconducted
heat does not produce, in fact, entropy, since the volume term in
equation (14.5) cancels out the surface contribution (the latter not
written in equation (14.5); this assertion can also be verified directly
by performing the integral

´
drdiv(KgradT )/T with gradT = const

and K = const). From such a standpoint, corresponding to a per-
fectly ideal situation, the only source of entropy, and the only true
dissipation, is through the Joule-Lenz heat, as expected.

It is therefore appropriate to restrict ourselves to the linear equations
of thermoelectricity (14.1) and (14.2) in the sense discussed above,
which provide a consistent description of the thermoelectric phenom-
ena in homogeneous samples; they imply also a small heat flow, in
comparison with the internal energy of the sample, as expected, and
in agreement with the macroscopic nature of the heat flows. Under
these circumstances there is no internal (i.e. volume) thermoelectric
or thermoconducted heat, as remarked before, and the only source
of increasing the entropy is the Joule-Lenz dissipation. Nevertheless,
in order to preserve some generality, though at the price of possible

3L. Onsager, "Reciprocal relations in irreversible processes. I.", Phys. Rev.
37 405 (1931);"Reciprocal relations in irreversible processes. I.", Phys. Rev.
38 2265 (1931); H. B. G. Casimir, "On Onsager’s principle of microscopic
reversibility", Revs. Mod. Phys. 17 343 (1945); H. B. G. Callen, "The ap-
plication of Onsager’s reciprocal relations to thermoelectric, thermomagnetic,
and galvanomagnetic effects", Phys. Rev. 73 1349 (1948).

355

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



14 Pulse Thermoelectricity

inconsistencies, it is customary to include the thermoconduction con-
tribution to the increase in entropy in equation (14.5), and, similarly,
one may admit localized inhomogeneities for material constants, as
appropriate for junctions, for instance. In particular, Q may vary
locally, as K may do as well (which does not mean that charge accu-
mulates on, or disappears at junctions, as the normal components of
the electric flow are continuous according to the boundary conditions).
So, we are led to define the Thomson coefficient τ = T (∂Q/∂T ), and
get the Thomson thermoelectric heat in equation (14.4)

−T jgradQ = −T j(∂Q/∂T )gradT = −τjgradT , (14.6)

per unit time; τ is in fact closely related to Peltier coefficient through
Δτ = −T∂(Π/T )/∂T . However, one must be aware, for instance, that
negative-valued non-vanishing surface contributions may appear in the
entropy variations through a position-dependent Q, which would be
unphysical; in fact, the Thomson heat must be viewed as correspond-
ing to Peltier heat, expressed, however, in terms of volume contribu-
tions and not as discontinuities at a junction which has a slight spatial
extension.

The critical analysis made above is meant to point out the kind of
difficulties which may be encountered in practical operation of the
thermoelements, as the practitioners are well aware of.

According to the above discussion we limit ourselves to the perfectly
ideal situation, where the only volume heat is the dissipated Joule-
Lenz heat j2/σ per unit time and unit volume. This heat may, in
principle, be used, as the heat produced by thermoelectric effects.
Indeed, in addition, we assume that there is no external electric field,
such that j = −σQgradT . Actually, as it is well-known, only half
of this amount of heat, at most, may in fact be used in an external
electric circuit; however, in principle, the whole amount j2/σ may be
used in an ideal situation where the thermoelement is at the same
time both source and user of electricity. The same amount of energy
is consumed by the thermoelement for establishing the electric flow;
in addition, the thermoconducted heat injected at the hot end of the
sample, and integrally recuperated at the cold end, is also a consumed
energy; it is given by KgradT from equation (14.4) per unit area of
the cross-section and per unit time. It follows that the transformed
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energy can be written as j2/σ · lA = Q2σ(ΔT )2 · A/l per unit time,
where l is the length of the sample, A is the area of its cross-section
and ΔT is the temperature drop along the sample. Similarly, the
consumed thermoconduction heat is K |gradT | · A = KΔT · A/l per
unit time. In addition, according to equation (14.2), the Peltier heat
−QTj = Q2σT |gradT | per unit area of the cross-section and per
unit time is also consumed; it can be written as Q2σT |gradT | · A =
Q2σTΔT · A/l. Consequently, one may write down successively the
efficiency coefficient

η = j2/σ·lA
j2/σ·lA+Q2σT |gradT |·A+K|gradT |·A =

= Q2σ(ΔT )2·A/l
Q2σ(ΔT )2·A/l+Q2σTΔT ·A/l+KΔT ·A/l =

= ΔT
ΔT+T+K/Q2σ = ηc

ηc+1/ZT

(14.7)

of this perfect, ideal thermoelectric "machine", where ηc = ΔT/T is
the efficiency coefficient of a perfect Carnot engine, and

ZT = Q2σT/(K +Q2σT ) (14.8)

is the "figure of merit" of the thermoelement; it can also be written
as

ZT =
Q2

L+Q2
, (14.9)

where L = K/σT is the Lorenz number.4

Usually, Q2σT/K is called "figure of merit",5 but the definition given
by equation (14.8) is more appropriate. From equations (14.8) and
(14.9) we can see that ZT can never exceed unity, ZT < 1. Since η
must be smaller than ηc, i.e. η < ηc, it follows also ZT < 1/(1−ηc) =
1/(1−ΔT/T ) for any ΔT , which shows again that

ZT < 1 . (14.10)

4M. Apostol, "Generalized theory of thermoelectric figure of merit", J. Appl.
Phys. 104 053704 (2008).

5A. F. Joffe, Semiconductor thermopower and thermoelectric cooling, Infosearch
Ltd., London (1957).
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Accordingly, the maximal value of the efficiency coefficient is η =
ηc/(1 + ηc), which can never be attained. It is worth noting that, in
contrast to the dissipated Joule-Lenz heat, any other amount of heat,
like the Thomson heat, or the heat arising from thermoconduction are
not utilizable in a thermoelectric thermal engine. It is worth noting
that previous works focused on Joffe’s definition of the figure of merit
ZT = Q2σT/K.

14.2 Pulsed thermoelectricity

A special mechanism of thermoelectric transport is described here,
consisting of pulses of charge carriers which "fly" periodically through
the external circuit from the hot end of the sample to the cold end,
with a determined duration of the "on" and "off" times of the electric
contacts, while maintaining continuously the thermal contacts. It is
shown that such a "resonant" ideal thermogenerator may work cycli-
cally, with the same efficiency quotient as the ideal efficiency quotient
of the thermoelectric devices operated in the usual stationary trans-
port regime, but the electric flow and power are increased, as a con-
sequence of the concentration of the charge carriers on pulses of small
spatial extent. The process is reversible, in the sense that it can be
operated either as a thermoelectric generator or as an electrothermal
cooler.
It is well known that the classical way of operating the thermoelectric
circuits consists in establishing small and continuous temperature and
voltage gradients along a thermoelectric sample, while maintaining the
local thermodynamic equilibrium. The sample is assumed to be ho-
mogeneous on the macroscopic scale, as for a stable thermodynamical
phase. The physics and technology of the classical thermoelectricity
is described in great detail in reference treatises, textbooks or hand-
books. The electric flow j and the heat flow q, i.e. the electric charge
and the heat flowing across the unit area of the cross-section per unit
time, are given by the basic equations of the thermoelectricity

j = σE− σQgradT (14.11)

and
q = ϕj+QT j−KgradT , (14.12)
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Figure 14.1: Heating a thermoelectric sample.

where σ is the electrical conductivity, E is the external electric field,
Q is the thermopower, T is the temperature, ϕ is the electric potential
(E = −gradϕ), and K denotes the thermoconductivity. The gradient
may be specialized to the x-direction, i.e. grad = ∂/∂x. One can
see from equation (14.11) that a temperature gradient gives rise to an
electric field E = −QgradT , controlled by the Seebeck thermopower
coefficient Q; this is the Seebeck effect. By equation (14.12), the
continuity of the flows across a junction leads to a released heat −ΔQ·
T j = Πj = −Δ(KgradT ) per unit time and per unit area of the
junction, which is the Peltier effect, and Π = −TΔQ denotes the
Peltier coefficient. One can already notice from equations (14.11) and
(14.12) that high values of Q and σ and low values of K are desirable.
Unfortunately, high values of electronic properties like σ and Q are
usually related to a high K, which lowers the effectiveness of the
thermoelectric devices.

There have been long and sustained efforts along the years to improve
upon the performances of the thermoelectric devices. Particular em-
phasis was being given to designing new materials and devices, with
high efficiency, engineering functionally graded materials, segmented
or cascade devices, or assessing the compatibility of thermoelectric
materials. Thermoelectric thin films, nanocomposites and nanostruc-
tured materials can enhance the efficiency, presumably by interface
reflection of heat (which may not impede upon the electrical con-
ductivity), or by highly-peaked electron density of states, as in low-
dimensional materials. The inherent limitations of the classical mode
of operating the thermoelectric devices originate in the small, con-
tinuous temperature gradient super-imposed along the whole length
of the sample. This circumstance brings about both small currents
and heat flows, on one hand, and may increase appreciably the risk of

359

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



14 Pulse Thermoelectricity

heat loss through a spatially-extended dissipation, on the other hand.
In particular, the undesired effects of a high thermoconductivity are
enhanced by a continuous temperature gradient extending over the
whole length of the sample. We put forward here a different mecha-
nism of thermoelectric transport, based on pulses of heat and current,
which may circumvent, to some extent, the aforementioned limita-
tions.6 It leads to high electric pulses "flying" periodically through
the external circuit. The objectives of the pulse thermoelectric device
are to increase the delivered electric flow and power, by concentrating
the charge carriers on pulses of small spatial extent.

14.3 Basic ingredients

Usually, the transport in condensed matter proceeds by quasiparti-
cles. As it is well-known, quasiparticles are elementary excitations
possessing velocity (momentum) and a finite lifetime τ . They obey
either a Bose-Einstein distribution, like phonons (with a vanishing
chemical potential), or a Fermi distribution, as for electron quasipar-
ticles of the Fermi liquid in metals, or Boltzmann’s distribution, as
for the quasi-classical charge carriers (electrons and holes) in typical
semiconductors. We adopt here a simple, general picture of this type
of entities. For instance, we may assume that the electron quasiparti-
cles of a Fermi liquid possess the Fermi velocity vF , while the quasi-
classical charge carriers in semiconductors have a mean thermal ve-
locity v =

√
T/m, where T is the temperature and m denotes a mean

effective mass. It is easy to see (by averaging over the solid angle)
that the transport along one direction, say, the positive x-direction,
proceeds with a mean transport velocity v = v/2, or v = vF /2, re-
spectively, where vF denotes the average of the Fermi velocity (which
may be anisotropic). The mean freepath of the quasiparticles can be
represented as Λ = vτ .

Under these conditions the local change ∂n/∂t+v0∂n/∂x in the quasi-
particle density n(x, t) at position x and time t, where v0 is a transport
velocity, is given by the local imbalance (1/2τ)[n(x+Λ, t)+n(x−Λ, t)−
6M. Apostol and M. Nedelcu, "Pulsed thermoelectricity", J. Appl. Phys. 108

023702 (2010).
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Figure 14.2: Diffusion limits the free transport.

2n(x, t)] in the quasiparticle density,

∂n/∂t+ v0∂n/∂x = (1/2τ)[n(x+ Λ, t) + n(x− Λ, t)− 2n(x, t)] =

= 1
2vΛ∂

2n/∂x2 .
(14.13)

This is the well-known diffusion equation. It describes a macroscopic,
non-equilibrium transport (in contrast to the local equilibrium trans-
port), for densities varying slowly over large distances and long times
in comparison with the quasiparticle mean freepath and lifetime. It
may also be generalized to an anisotropic spatial transport, and ap-
plied also to fluctuations (with the fluctuating time and length instead
of quasiparticle lifetime and mean freepath), describing the approach
to equilibrium. In this form, equation (14.13) has been used by Ein-
stein in his classical analysis of the brownian motion.

For an initial δ-condition n(x, t = 0) = V δnδ(x), where V is the
original volume of the δ-peak and δn is the quasiparticle density in
the δ-peak, equation (14.13) has the well-known gaussian solution

n(x, t) =
V δn√
2πvΛt

e−(x−v0t)
2/2vΛt . (14.14)

The gaussian pulse given by equation (14.14) may move as a whole
with the transport velocity v0, and has a spatial extension

l′ =
√
vΛt (14.15)

(in one direction). This is taken as the pulse length. As one can
see, it goes like the square root of the product of velocity by mean
freepath by the duration, as it well konwn. The pulse τ flattens grad-
ually on increasing the time, and vanishes in the limit of an infinite
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duration; in the opposite limit of a very short time the gaussian pulse
reduces to the original δ-pulse, as expected. Indeed, for very short
times and distances the diffusion term in equation (14.13) may be ne-
glected, and we are left with the continuity equation whose solution
is V δnδ(x − v0t) for the original V δnδ(x) peak. The total number
of quasiparticles in the gaussian peak is V δn, and it may be repre-
sented as 2l′δn (for a unit area of the cross-section), where δn is the
average quasiparticle density; on the other hand, the maximum value
of the density in the gaussian peak is V δn/

√
2πl′ =

√
2/πδn from

equation (14.14), whence one can see that the maximum value of the
quasiparticle density is very close (up to a factor

√
2/π = 0.8) to the

average quasiparticle density. Therefore, one may take, with a good
approximation, V δn for the total number of quasiparticles in a gaus-
sian peak, where V = 2l′ (for unit area of the cross section) and δn is
the maximum value of the quasiparticle density; this is identical with
the representation of the δ-pulse, and it holds also for half a gaussian
pulse, of course, where V = l′.

14.4 Thermal and charge pulses

Let a homogeneous conducting sample of length l and uniform cross-
section, at temperature T , be uniformly heated at one end, such as
to rise locally its temperature by the small amount δT , as shown in
Fig. 14.1. We may neglect the small changes in volume, or pressure,
and write n = f(μ, T ) for the concentration n of the quasiparticles at
equilibrium, where f is the integral over statistical distributions and μ
denotes the chemical potential. As it is well known, for electron quasi-
particles in metals f(μ, T ) = [2/(2π�)3]

´
dp ·{exp[(ε− μ)/T ] + 1}−1,

i.e. the Fermi-Dirac distribution, while f(μ, T ) = [2/(2π�)3] exp(μ/T )·
· ´ dp · exp(−ε/T ) is the Boltzmann distribution of the charge carri-
ers in semiconductors; p denotes the quasiparticle momentum and
ε = p2/2m is the quasiparticle energy (for a spherical Fermi surface).
At constant chemical potential the quasiparticle density changes by
δn = (∂f/∂T )δT , as a consequence of the change in temperature.
This change evolves in time and space according to equation (14.13),
so the quasiparticle density is given by the gaussian in equation (14.14)
for δn = (∂f/∂T )δT . The number of quasiparticles in the gaussian
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Figure 14.3: Diffusion of a gaussian pulse.

pulse increases in proportion to the extension l′ of the pulse (l′ < l),
and, similarly, the temperature drop broadens in the same proportion,
by continuously absorbing heat from the external source. It follows
that both the quasiparticle density δn(x, t) and the temperature drop
δT (x, t) can be represented by a gaussian of the form given by equa-
tion (14.12). The motion of the pulse as a whole is blocked in one
direction by the sample end-wall, where the quasiparticles are con-
tinuously reflected, while its motion in the opposite direction along
the sample is limited by diffusion; along this direction the pulse only
broadens gradually by diffusion, which is a much slower process than
the transport motion. Consequently, the pulse is in fact half of a gaus-
sian pulse with its peak on the very hot end of the sample. Such a
gaussian pulse is shown in Fig. 14.2.

Everywhere in this chapter we use, for the sake of the numerical il-
lustration, a set of typical values for the basic physical quantities.
For instance, we take the density n = 1022cm−3 for electrons in met-
als and the chemical potential μ = 1eV . We take v = 105m/s for
the Fermi velocity and Λ = 103Å for the electron mean freepath (at
room temperature). We denote by t′ = τoff the time t in equa-
tion (14.15) needed to build up the pulse. From equation (14.15) we
get l

′

= 105τ
1/2
offμm (microns) for the spatial extension of the pulse,

which is much smaller than the sample length l for sufficiently small
τoff . Its limiting value is of the order of the mean freepath Λ. For
instance, for τoff = 10−6s we get l′ = 100μm. For semiconduc-
tors we take n = 1017cm−3 as a typical value, corresponding to a
chemical potential given by μ/T 
 −5.7 (this is easily derived from
the Boltzmann distribution given above). In semiconductors we use
v = 104m/s for velocity and Λ = 102Å (at room temperature) for the
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mean freepath. The spatial extent of the pulse is given by equation
(14.15) as l′ = 104τ

1/2
offμm. For τoff = 10−6s the spatial extent is

l′ = 10μm. All these are typical figures for metals and semiconduc-
tors, which we use here in order to illustrate numerical estimations.

14.5 Heat and electric flows

A thermal pulse needs a build-up time t′, according to l′ =
√
vΛt′,

hence t′ = l′2/vΛ. During this time a heat flow (heat per unit area
of the cross-section and per unit time) q = cl′δT/t′ = cvΛ(δT/l′) is
absorbed, where c is the heat capacity per unit volume; this heat flow
may be represented as q = −cvΛgradT = −KgradT , where K = cvΛ
is a well-known representation for the thermoconductivity. Similarly,
one can say that the heat flux (heat per unit area of the cross-section)
absorbed by a gaussian pulse of extension l′ is δE = (Kl′/vΛ)δT . In
the limit of the δ-pulses, whose spatial extension is of the order of the
mean freepath Λ, it reduces to δE = (K/v)δT , and one can see, as
expected, that the heat absorbed by a pulse is proportional to its ex-
tension. In the opposite limit of a pulse as broad as the length of the
sample, i.e. l′ = l, the stationary transport regime starts to set up,
where a small, uniform, continuous gradient of quasiparticle density
and temperature extends over the whole length of the sample. This is
valid for both charge carriers and phonons; the phonon thermoconduc-
tivity (as well as the thermoconductivity of other quasiparticles) must
be added to the thermoconductivity K of the charge carriers given
above. The diffusion of a gaussian pulse is shown in Fig. 14.3, the
stationary transport is shown schematically in Fig. 14.4, and the pulse
used in the pulsed mode of operation is shown in Fig. 14.5. For our
models of metals and semiconductors used here (defined by the statis-
tical distributions given above) it is easy to derive the heat capacity
c and the thermoconductivity K. Although these expressions are not
relevant for the subsequent discussion we note them here for the sake
of a more detailed information. The heat capacity per unit volume is
c = π2nT/2μ for metals (Fermi liquids) and c = (3/2)(5/2 − μ/T )n
for semiconductors. The thermoconductivity can be represented as
K = π2nvΛT/2μ for metals and K = (5nΛT/2mv)(7/2 − μ/T ) for
semiconductors. These expressions agree with K = cvΛ up to some
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Figure 14.4: Stationary regime.

minor numerical factors.

The heat δE absorbed by the pulse is its internal thermal energy, due
to the thermal excitations of the quasiparticles. For instance, it is
due to the particle-hole excitations of the electron quasiparticles in a
Fermi liquid. Apart from this energy, the electron quasiparticles in a
pulse possess also single-particle energy, arising from the change in the
chemical potential. Indeed, in order to preserve the charge neutrality
of the sample, a change (∂f/∂μ)δμ occurs in the quasiparticle density
at the cold end of the sample, such as (∂f/∂T )δT + (∂f/∂μ)δμ = 0;
it follows that a voltage drop U appears at the hot end of the sample,
with respect to the rest of the sample, such as −eU = −δμ, or

U = −1

e
[(∂f/∂T )/(∂f/∂μ)]δT = QδT (14.16)

where −e is the electron charge and Q = −(1/e)[(∂f/∂T )/(∂f/∂μ)]
is the well-known Seebeck thermopower coefficient. One can see eas-
ily that Q acquires negative values for electrons. The voltage U has
the same spatial dependence as the temperature drop and the quasi-
particle density, i.e. the gaussian given by equation (14.14). Again,
making use of the statistical distribution functions, it is easy to com-
pute the thermopower. For metals Q = −(π2/6e)(T/μ), while for
semiconductors Q = −(1/e)(3/2− μ/T ). One can see easily that the
thermopower coefficient Q is much higher for semiconductors than for
metals, as it is well known (typical values for semiconductors are of
the order of 200μV/K).

The voltage U corresponds to an electric field −gradU = −QgradT ,
and therefore an electric flow (charge per unit area of the cross section
and unit time) occurs inside the pulse, given by j = −σQgradT ,
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Figure 14.5: A thermoelectric gaussian half-pulse.

where σ denotes the electrical conductivity; this is a well-known basic
equation of the thermoelectricity (in the absence of external electric
fields). It is worth noting the opposite flow of the electrons with
respect to the temperature gradient as well as the high current density
for pulses due to gradT = δT/l′ (not δT/l; l′ 	 l).

It is also worth noting that j is the electric flow inside the pulse, as
given by the microscopic transport of the charge carriers. It can also
be written as

j = −ev[δn(x)− δn(x+ δx)] = evΛ(∂f/∂T )(∂T/∂x) , (14.17)

hence the electrical conductivity

σ = −evΛ(∂f/∂T )/Q = e2vΛ(∂f/∂μ) . (14.18)

This is a well-known representation for the electrical conductivity,
where ∂f/∂μ ∼ n/mv2. Making use of the statistical distributions
given above, we get σ = 3e2nvΛ/2μ for metals and σ = e2nvΛ/mv2

for semiconductors. Using the thermoconductivities computed above,
we can obtain the Lorentz number defined as L = K/σT . It is given
by L = π2/3e2 for metals and L = (5/2e2)(7/2 − μ/T ) for semicon-
ductors, as it is well known.

The electric power per unit volume is given by−gradU ·j = −QgradT ·
j = j2/σ, which is the Joule-Lenz dissipated heat. Indeed, a voltage
drop U = QδT implies an electric potential ϕ = QT , and therefore
a heat flow q = QT j; this is the Peltier heat, electrically transported
(or the electrothermal Peltier heat), which is included in the basic
equation (14.12) of the thermoelectricity (q = QT j−KgradT ). From
q = QTj one gets easily the dissipated heat per unit volume and unit
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Figure 14.6: Pulse and the thermoelectric "condenser".

time −∂q/∂x = −Qj(∂T/∂x) = j2/σ, i.e. the Joule-Lenz dissipated
heat. The Peltier heat q = QTj is worth to be noted: if we are going
to get high currents in the pulsed transport, we get a high Peltier
cooling by reversing the mode of operation.

The electric power of a pulse of extension l′ is therefore j2/σ · l′ =
Uj = −σQ2δT (∂T/∂x) (per unit area of the cross-section). The effi-
ciency quotient of such a thermoelectric pulse is obtained by dividing
the electric power j2/σ · l′ = −σQ2δT (∂T/∂x) to the sum of this
electric power, the Peltier heat QTj and the thermoconducted heat
−K(∂T/∂x), using j = −σQgradT and dividing both the numera-
tor and the denominator by σQ2T (∂T/∂x). The result was obtained
above. We get straightforwardly

η =
j2/σ · l′

j2/σ · l′ +QTj −K(∂T/∂x)
=

ηc
ηc + 1 +K/Q2σT

, (14.19)

where ηc = δT/T is the Carnot efficiency quotient and L = K/σT is
the Lorenz number.

The efficiency quotient can also be written as η = ηc/(ηc + 1/ZT ),
where ZT = Q2/(L + Q2) is a "figure of merit". This generalized
"figure of merit" has been recently discussed in a broader context
of thermoelectric transport. One can see that the "figure of merit"
introduced here can never exceed unity, and it is related to the usual
"figure of merit" ZT ′ = Q2/L by ZT = ZT ′/(1 + ZT ′). Since L =
π2/3e2 and Q = −(π2/6e)(T/μ) for the electron quasiparticles in

367

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use
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metals, we have L� Q2, and ZT reduces to ZT ′; as it is well known
the efficiency quotient is very low in this case. On the contrary, for
electrons in typical semiconductors one obtains L = (5/2e2)(7/2 −
μ/T ) and Q = −(1/e)(3/2− μ/T ), as noted above, so that L and Q2

are comparable; for large values of the ratio−μ/T the "figure of merit"
ZT approaches unity, and the efficiency quotient is increased. On the
other hand, however, the Joule-Lenz heat is drastically diminished, as
a consequence of the low electrical conductivity of the dilute gas of
charge carriers in typical semiconductors, as it is also well known.

It is worth noting that the efficiency quotient derived above for pulses
is the same as for an ideal stationary thermoelectric transport.

14.6 Thermoelectricity of pulses

The efficiency quotient, as well as the electric flow, the electric power,
and the basic equations of the thermoelectricity are derived above for
the internal, microscopic transport inside pulses. As expected, they
agree (are practically identical) with the corresponding quantities of
the classical, stationary transport, where a small, uniform, continuous
gradient of temperature and quasiparticle density extends over the
whole length of the sample. One can also say that this microscopic
transport holds for pulses at rest. It is easy to see however that these
equations hold also for the macroscopic pulse-like transport as well,
whereby a pulse is viewed as a whole. Indeed, the electric flow of such
a pulse is given by

j = −eδnl′/t′ = −evΛδn/l′ = −evΛ(∂f/∂T )δT/l′ , (14.20)

and one can see that it is identical with the electric flow of the micro-
scopic transport as given by equation (14.17). Such an electric pulse
dissipates gradually the Joule-Lenz heat −eδnl′QδT (per unit area of
the cross-section); it is easy to see, by making use of equations (14.16)
and (14.18), that the Joule-Lenz heat can also be written as

−eδnl′QδT = (j2/σ)(l′3/vΛ) , (14.21)

where the electric flow is given by equation (14.20); hence, making
use of equation (14.15), the electric power of the pulse is
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Figure 14.7: Discharge of the "condenser".

P = j2/σ · l′ (14.22)

(per unit area of the cross-section), as for the microscopic transport
used in equation (14.19). Similarly, the flow of the Peltier heat is QTj
and the flow of the thermoconducted heat is KδT/l′ = −K(∂T/∂x),
so the efficiency quotient of the pulse-like transport is the same as that
given by equation (14.19) for the microscopic transport, as expected.
All these flows, as well as the electric power, last for a time t′, i.e. the
time during which the pulse is built up at the hot end of the sample.
In addition, the pulse contains also its internal heat δE = cl′δT . It is
worth emphasizing that the electric flow of the pulse-like transport,
as given either by equation (14.17) or equation (14.20), can also be
written as

j = js(l/l
′) , (14.23)

where js corresponds to the electric flow in the stationary transport,
i.e. to the pulse extending over the whole length of the sample (l′ = l).
One can see that the electric flow is increased in the pulse-like trans-
port by the ratio l/l′ of the sample length to the pulse extension, as
expected. This increase originates in the concentration of the charge
carriers on small spatial extensions of narrow pulses. Similarly, the
dissipated Joule-Lenz heat per unit area of the cross-section and per
time, i.e. the flow of electric power as given by equation (14.22), can
be written as

P = Ps(l/l
′) , (14.24)
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14 Pulse Thermoelectricity

i.e. the electric power produced by the pulse transport is higher, by
the same factor l/l′, than the corresponding electric power delivered
in the stationary transport. It is easy to see that the stationary power
Ps = j2s/σ · l (per unit area of the cross-section) can also be written
as Ps = σU2/l, which is Ps = U2/r, where r is the internal electric
resistance, as expected.

14.7 "Flying" pulses

A thermoelectric sample with a charge pulse built up at the hot end
evokes an electric "condenser", and, like any other "condenser", such
a "thermoelectric condenser" can be "discharged" by switching on the
electric contacts to the external circuit. Under these circumstances
the (ideal) sample end-wall does not block anymore the motion of
the charge carriers, and the pulse "flies" through the external circuit
as a whole, with the transport velocity v0 = v, according to equa-
tions (14.13) and (14.14). This is a macroscopic, non-stationary, fast,
pulsed-like transport, taking place in the transient regime prior to
establishing the extension of the pulse along the whole length of the
sample. In order to allow a smooth "fly", the cross-section of the ex-
ternal circuit must be equal to, or greater than, the cross-section of
the sample (and, of course, the contacts are assumed to be perfect).
The "flying" of the pulse through the external circuit of length le takes
an on-time τon = le/v. On the other side, the time t′ needed to build
up a pulse at the hot end of the sample is an off-time, τoff = t′. In
addition, it is worth noting that such a "flying" pulse does not obey
Ohm’s law, as the transport is discontinuous. The electric charge is
conserved, so the external (local) electric flow is

je = −eδnl′/(l′/v) = −evδn =

= j(t′/l′)v = j(τoff/τon)(le/l
′) ,

(14.25)

where equation (14.20) has been used. The energy is conserved, i.e.
the electric energy Eel = −eδnl′QδT (per unit area of the cross-
section) as given by equation (14.21) is the energy delivered into the
external circuit. The (discontinuous) power delivered into the ex-
ternal circuit is Eel/(l

′/v) = (τoff/τon)(lle/l
′2)Ps, where equation
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Figure 14.8: Deflating the pulse, ready for another operation.

(14.24) has been used. It is less relevant; less relevant also is the ex-
ternal power averaged over the on-time, Eel/τon = (τoff/τon)(l/l

′)Ps.
While "flying" through the external circuit the pulse dissipates grad-
ually the Joule-Lenz heat Eel, and gives away the Peltier heat (the
Peltier heat is transported from the hot junction to the cold one),
until it reaches the cold end of the sample and compensates the pos-
itive ionic charges there. After completing its "flight" through the
external circuit the pulse is left with its internal heat δE = cl′δT ,
and it must be "deflated" of this internal energy in order to have a
cyclic process. The time needed to extract this amount of heat is
t′ = τoff , i.e. precisely the time during which an identical pulse is
built up at the hot end of the sample, such that, after this duration,
the thermoelectric sample is ready for another operation. It follows
that the thermal contacts should be maintained continuously during
the operation of such a pulsed-like transport, while the electric con-
tacts must be switched off once the pulse arrived at the cold end of
the sample; otherwise, the pulse would move continuously through
the entire circuit and the stationary regime would set up. Therefore,
the electric contacts must be switched on and off periodically, with a
certain frequency f = 1/(τoff + τon), where τon = le/v, and a certain
duration of the on- and off- times. The building of the pulse at the
hot end is shown in Fig. 14.6, the flying pulse is shown in Fig. 14.7
and the deflation of the pulse at the cold end is shown in Fig. 14.8.

As it was said above, the on-time is the "flight" time τon = le/v
of the pulse through the external circuit, where le is the length of
the external circuit. The off-time, or the waiting time, is the time
t′ = l′2/vΛ needed for building up a pulse of length l′ at the hot end
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Figure 14.9: Building up a gaussian pulse in a thermoelectric "con-
denser".

of the sample (and for "deflating" a similar pulse of its internal heat
at the cold end of the sample). The operating frequency is therefore
f = 1/(τon + τoff ) = v/(le + l′2/Λ), and it ranges between f0 =
v/(le + Λ) 
 v/le, corresponding to δ-pulses, and f1 = v/(le + l2/Λ),
for pulses extending over the whole length l of the sample, where the
stationary transport regime begins to set up. For reasonable values of
le, the ratios l2/Λle and l′2/Λle acquire large values, so that one may
write f = vΛ/l′2 = f1(l/l

′)2, i.e. the operating frequency is quadratic
in the ratio l/l′ of the sample length l to the pulse extension l′. This
corresponds to very short on-times τon in comparison with the off-
times τoff = t′, and to pulses of large extension l′. For τon ≥ t′, i.e.
le ≥ l′2/Λ the extension of the pulses starts to become microscopic.
It is worth noting that during the on-time the sample is not at local
equilibrium, and additional elastic waves may be excited inside the
sample, which takes over the heat excess, allowing thus the flowing of
heat. In addition, the phonon thermoconduction may be present in
the sample, as well as the heat thermoconducted by other elementary
excitations, which may tend to establish in fact a small, uniform,
continuous gradient of temperature along the sample. However, this
local-equilibrium regime bears no relevance upon the pulses of the
charge carriers as described herein, because the latter are not at local
equilibrium, and are practically decoupled from the rest of the sample.
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14.8 Power in external circuit

The Joule-Lenz heat Eel as given by equation (14.21) is the total
energy (per unit area of the cross-section) dissipated by a pulse dur-
ing its "flight". Consequently, the average power produced in such a
pulsed transport cyclically operated is given by

P = (j2/σ)(l′3/vΛ) · 1

τon + τoff
= Ps(l/l

′) · 1

1 + Λle/l′2
, (14.26)

where equations (14.23) and (14.24) have been used. One can see
that for macroscopic pulses, corresponding to short on-times, i.e. for
Λle/l

′2 	 1, the average power is practically identical with the pulse
power given by equation (14.24), P = P = Ps(l/l

′), i.e. it is increased
by the factor l/l′. In this case, the operating frequency f = f1(l/l

′)2

given above is proportional to the square of the electric power, i.e.
f ∼ P 2. In the opposite limit however, corresponding to microscopic
pulses of extension Λ, the increase factor is controlled by the ratio l/le
of the sample length to the length of the external circuit (which may
be higher than unity very well). In both cases the average power is in-
creased in comparison with the equilibrium-operated thermoelements.
The maximum value of the average power is obtained for l′ =

√
Λle,

i.e. just for the border between microscopic and macroscopic pulses,
as defined before. It is given by

P
max

=
1

2

l√
Λle

Ps ; (14.27)

it corresponds to an optimal τoff = le/v = τon (ratio τon/τoff = 1)
and an optimal frequency f = v/2le. It is, perhaps, more conve-
nient to refer the power to the maximal power Pdc = U2/4r = Ps/4,
corresponding to a load electric resistance equal to the internal resis-
tance in a stationary operating regime (drift current). One obtains
therefore P

max
= 2(l/

√
Λle)Pdc. The optimal power in the pulsed-

operating regime as given by equation (14.27) is much higher than the
stationary power.

The external power given by equation (14.26) can also be written as

P = Ps(l/l
′) · τoff

τon + τoff
=

l√
vΛ

√
f(1− τonf)Ps , (14.28)
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Figure 14.10: Discharging a gaussian pulse in the thermoelectric "con-
denser".

where τon = le/v and (1 + l2/Λle)
−1 < τonf < (1 + Λ/le)

−1. It has
a maximum value at the optimal frequency f = 1/2τon given before,
and a characteristic frequency dependence. Making use of τon = le/v
equation (14.28) gives also a characteristic dependence of the external
power on the load resistance ∼ le.

The pulsed-operating mode of the thermoelectric transport is shown
in Figs. 14.9-14.11.

Finally, we give here some numerical estimates. For typical values
n = 1022cm−3, μ = 1eV and v = 105m/s in metals, and for room
temperature T = 300K and δT = 100K one obtains a δ-pulse electric
flow j 
 107A/cm2, according to equation (14.20). Indeed, it is easy
to see, making use of the Fermi-Dirac distribution, that the variation
in the charge density is given by δn = (π2/4)(nTδT/μ2). Making use
of a typical mean freepath value Λ = 103Å one obtains a stationary
flow js 
 103A/cm2 for a sample length l = 1mm. The voltage
is U 
 4 × 10−4V (thermopower coefficient Q = −(π2/6e)(T/μ) 

4 × 10−6V/K). The electric power of the pulse is therefore P 

4kw/cm2, in comparison with the stationary power Ps 
 0.4w/cm2,
which implies a factor 104. For an optimal pulse length l′ = l/10 the
current is j = 104A/cm2, the power is P 
 4w/cm2 and the maximal
power is P

max ∼ 2w/cm2 for an operating frequency f 
 500kHz,
with a very short on-time (τon 
 10−6s and le = 10cm). This implies
an increase factor 5 in comparison with the stationary regime (Ps 

0.4w/cm2).

For electrons in semiconductors we may take n = 1017cm−3 and v =
104m/s as an illustrative example; one obtains μ/T = −5.7 (μ/T =
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Figure 14.11: Deflating the pulse while building up another.

ln[n(2π�2/mT )3/2/2] from the Boltzmann distribution,) and an elec-
tric flow j 
 4 · 104A/cm2 for a δ-pulse (δn = n(3/2 − μ/T )δT/T ,
similarly, from the Boltzmann distribution), for the same temper-
ature values as those used above; the voltage is U 
 6 × 10−2V
(Q 
 6 × 10−4V/K), and the electric power P 
 2.4kw/cm2. For
a mean freepath Λ = 100Å one obtains js 
 0.4A/cm2 for a sample
length l = 1mm and a stationary power Ps 
 2.4× 10−2w/cm2. The
increase factor is 105. For a pulse of optimal extension l′ = l/30, the
operating frequency is approximately f 
 50kHz, the current is j =
12A/cm2, the electric power P 
 0.72w/cm2, and the maximal power
is P

max ∼ 0.36w/cm2; the on-time is τon 
 10−5s (for le = 10cm).
Comparing P

max ∼ 0.36w/cm2 with Ps 
 2.4 × 10−2w/cm2 we can
see an increase factor 15.

14.9 Conclusions

In conclusion, a mechanism of thermoelectric transport has been de-
scribed here, which proceeds by pulses of charge carriers. It is a
macroscopic, cyclic, non-stationary, fast, transient transport regime,
which may diminish the effects of a spatially-extended thermal dif-
fusion. This pulsed-like transport regime is operated by periodically
switching on and off the electric contacts, while maintaining continu-
ously the thermal contacts. The operating frequency is determined, as
well as the on- and off-times, as functions of the nature of the sample,
the extension of the pulses and the length of the external circuit. The
electric flow and the power are higher for pulsed-like transport than
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for stationary, classical transport, as a consequence of concentrating
the charge carriers on pulses of small spatial extent. Such a pulsed-like
transport may be operated cyclically, with an ideal efficiency quotient
equal with the ideal efficiency quotient of the stationary transport.
It may open the possibility of a practical realization of a high-power
thermoelectric converter. High values of thermopower Q and conduc-
tivity σ are desirable, but low values of thermoconductivity K are not
critical.

Of course, the pulsed transport described here is an ideal process,
intended to illustrate the physical principles of another type of ther-
moelectric transport. As regards practical purposes, there are several
technical issues which must be addressed, in order to get the increasing
performance of this type of thermoelectric transport. Among these, we
may say that the contacts, both electric and thermal, must be as good
as possible, in order to minimize the loss. In this respect, although the
ideal efficiency coefficient of the pulsed transport is equal to the ideal
efficiency coefficient of the stationary, continuous regime, the tech-
nical efficiency may be increased for the former, because the pulsed
transport reduces the risk of heat loss due to spatially-extended dissi-
pation along the whole length of the sample. Another important issue
related to the pulsed transport is the extraction of the electric energy
delivered into the external circuit. At high frequencies, the transport
proceeds mainly by impedance, and most of the energy may reside in
the electromagnetic field of the reactances, so the usual Joule-Lenz
effect is diminished, in fact. Finally, one may also note that the ma-
terial parameters which usually decrease the efficiency of a classical
thermoelement are not critical anymore for a pulsed transport, so we
may, therefore, be open to employing new classes of thermoelectric
materials in pulsed transport.
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15 Liquids

15.1 Introduction

The liquids discussed herein are represented as correlated ensembles
of particles, moving around and interacting with strong, short-range
forces. A spectrum of local vibrations is introduced for the local, col-
lective movements of particles in such model liquids. The resulting
statistics is formally equivalent with that of an ideal gas of bosons in
two dimensions, which in turn, as it is well-known, leads to a ther-
modynamics which is equivalent to that of an ideal gas of fermions in
two dimensions. The parameters used for describing the statistics of
the model are the cohesion energy per particle, the spacing between
the energy levels of local vibrations and a constraining volume. The
corresponding thermodynamics is derived, with explicit emphasis on
both low- and high-temperature regimes. The condensation occurring
in the low-temperature limit is discussed.

15.2 Local vibrations

Let us consider an ensemble of particles moving around and inter-
acting strongly with short-range forces. The motion of the particles
is highly correlated over short distances, in the sense that the move-
ment of a particle entails appreciable movements of the neighbouring
particles. The local character of the short-range, strong forces and
the high correlations involved have special consequences on the parti-
cle motion. First, the particle movements are collective, so they may
imply comparatively small amounts of energy, in contrast to highly-
localized movements. Next, the correlated particle movements are
local. In addition, the strong character of the interaction gives rise to
a cohesion energy −ε0 < 0, in the sense that one needs to spend such
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an amount of energy in order to take a particle out of the ensemble.
The role played by the strong interactions and short-range correlations
in such ensembles of particles has been previously emphasized.1

The short-range correlations reduce the number of available spatial
states of particles moving in volume V of the liquid. The motion of
each particle is restricted by its neigbouring particles. These short-
range correlated configurations of particles are identified by their dis-
tinct positions in space. It is convenient to associate a volume b to
each of such local particle configurations, such that the total num-
ber of available spatial states is V/b and the corresponding density of
states can be written as dV/b. In view of the short-range character of
these local correlations, the constraining volume b is, typically, of the
order of a3, where a is the mean inter-particle distance.

The energy of an ensemble of interacting particles in equilibrium de-
pends on this mean inter-particle distance a. An energy ε(a) may,
therefore, be assigned to each particle, such as the total energy can
be written as Nε(a), where N is the number of particles. This en-
ergy depends on the nature of the liquid, i.e. on the forces acting
between the particles, on their mass, etc. In order to identify the
possible movements of particles, one may allow small deviations δa
of the mean inter-particle distance from its equilibrium value a and
write down a series expansion of ε(a) in powers of δa. Such a series
expansion reads

ε = −ε0 +A(δa)2 + ... , (15.1)

where A is an expansion coefficient. The first power in δa is missing
in equation (15.1), as for an expansion about the equilibrium. Equa-
tion (15.1) suggests that the local spectrum of energy in such a model
liquid is a spectrum of vibrations with one degree of freedom. Higher-
order terms may be included in the expansion (15.1), as corresponding

1J. E. Lennard-Jones and A. F. Devonshire, "Critical phenomena in gases. I",
Proc. Roy. Soc. (London) A163 53 (1937); "Critical phenomena in gases.
II. Vapour pressures and boiling points", Proc. Roy. Soc. (London) A165 1
(1938); J. de Boer, "Theories of the liquid state", Proc. Roy. Soc. (London)
A215 4 (1952); "Cell-cluster theory for the liquid state I", Physica 20 655
(1954); J. G. Kirkwood,"Statistical mechanics of fluid mixtures", J. Chem.
Phys. 3 300 (1935); M. Born and H. S. Green, "A general kinetic theory of
liquids I. The molecular distribution functions", Proc. Roy. Soc. (London)
A188 10 (1946); J. Frenkel, Kinetic Theory of Liquids, Dover, NY (1955).

378

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



15 Liquids

to anharmonic vibrations. The local, short-range correlations make
the vibration spectra given by equation (15.1) to be independent for
each local particle configuration, in the sense that these vibrations are
not coupled to each other for various particle configurations. At the
same time, these vibrations do not correspond to individual particles,
but to local particle configurations. Correspondingly, they represent
collective movements, extended over relatively short distances, and
the expansion coefficient in equation (15.1) may correspond to vibra-
tion frequencies (and energies) much lower than the frequencies of a
highly-localized particle. The dynamics of the present model liquid
is therefore represented by local particle configurations, labelled by
distinct positions in space, moving around over a restricted number
of spatial states and vibrating locally according to the vibration spec-
trum given by equation (15.1). These particle configurations can be
viewed as elementary excitations of the model liquid.

The spectrum given by equation (15.1) corresponds to an isotropic
liquid, where local vibrations do not depend on direction. More par-
ticular assumptions can be employed. Specifically, the range of the
correlations may be extended, or the anisotropies may be taken into
account, or anharmonicities may be included, etc; the local vibrations
considered here include longitudinal phonons; transverse phonons are
present in liquids, for limited wavevectors.2 The discussion herein is
limited to the most simple spectrum as the one described by equation
(15.1), corresponding to a set of independent harmonic oscillators with
one degree of freedom. The corresponding energy levels are therefore
given by3

ε = −ε0 + ε1(n+ 1/2) , (15.2)

where n = 0, 1, 2, ... is the quantum number of vibrations and ε1is the
spacing between the energy levels. Both parameters ε0 and ε1 in equa-
tion (15.2) depend on a. For a continuum spectrum the dependence
of ε1 on a may be neglected.

2J. Frenkel, Kinetic Theory of Liquids, Dover, NY (1955).
3M. Apostol, "A model for the thermodynamics of simple liquids", Physica B403

3946 (2008).
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15 Liquids

15.3 Statistics

The next step is to set up the statistics for such a model, in order
to establish its thermal properties. The vibration spectrum given by
equation (15.2) corresponds to a Bose-Einstein type of statistics. It is
associated with each local particle configuration, these configurations
being labelled by distinct positions in space. Since these positions are
different, and since the vibration spectrum given by equation (15.2)
corresponds to a collective motion, it follows that the Bose-Einstein
statistics, as defined by the energy spectrum (15.2) and by the mo-
tion of the vibrating configurations among distinct positions in space,
does not depend on the particular fermionic or bosonic character of
the constitutive particles of the liquid. It holds therefore for ensem-
bles of particles, irrespective of the fermionic or bosonic character of
the underlying particles in the ensemble. This is a consequence of the
assumption of strong interaction and collective and correlated move-
ments. As mentioned above, the quanta of the vibration spectrum
given by equation (15.2) associated with the particle configurations
moving around through the liquid may be viewed as the elementary
excitations of such liquids.

Since the vibration spectrum given by (15.2) associates one degree of
freedom to each particle, through the mean inter-particle spacing a,
it follows that the mean occupation number of vibrations of each par-
ticle configuration is determined by the size of these configurations.
Therefore, the Bose-Einstein statistics has a determined chemical po-
tential μ and, for a continuum spectrum of energy with density dε/ε1,
the number of particles can be written as

N =
V

bε1

ˆ ∞
0

dε
1

z exp(βε)− 1
, (15.3)

where β = 1/T is the inverse of temperature T and z = exp[−β(μ+
ε0)] is the inverse of the fugacity. The particle concentration is written
as c = N/V = 1/a3. The continuum-spectrum approximation is valid
for T � ε1. The degeneracy associated with the energy levels given by
equation (15.2), as naturally arising from various particle movements
in space, is incorporated in the spatial density of states dV/b.

The statistics given by equation (15.3) corresponds to an ideal gas
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15 Liquids

of bosons in two dimensions. It is well-known that it is equivalent
with the statistics of an ideal gas of fermions in two dimensions,4 as
expected from its applicability, irrespective of the fermionic or bosonic
character of the constitutive particles, as noted above.

Equation (15.3) requires z > 1, i.e. μ + ε0 < 0. With decreasing
temperature the integral in equation (15.3) decreases, so that μ + ε0
increases, in order to satisfy this equation. For the limiting value
μ + ε0 = 0 (z = 1) the integral in equation (15.3) has a logarith-
mic singularity at ε = 0, so it is divergent, in contrast to the three-
dimensional case. Consequently, there is no critical temperature cor-
responding to a Bose-Einstein condensation in two dimensions, as it
is well-known. However, a continuous, gradual condensation on the
zero-point vibration level occurs in the limit of the low temperatures,
as it is shown below.

The integral in equation (15.3) can be performed straightforwardly.
We get

bε1/a
3T =

∑
n=1

(nzn)−1 = ln[z/(z − 1)] , (15.4)

whence z = (1− e−C)−1 and the chemical potential

μ = −ε0 + T ln(1− e−C) , (15.5)

where C = bε1/a
3T = bε1c/T .

Similarly, the energy is given by

E = −Nε0 +
V T 2

bε1
G(z) , (15.6)

where
G(z) =

∑
n=1

(n2zn)−1 =
∑
n=1

1

n2
(1 − e−C)n . (15.7)

In the low-temperature limit ε1 	 T 	 bε1/a
3 it amounts to

E = −Nε0 + π2V T 2/6bε1 , (15.8)
4M. H. Lee, "Equivalence of ideal gases in two dimensions and Landen’s rela-

tions", Phys. Rev. E55 1518 (1997); R. M. May, "Quantum statistics of ideal
gases in two dimensions", Phys. Rev. 135 A1515 (1964); M. Apostol, "Di-
mensionality effects in the ideal Bose and Fermi gases", Phys. Rev. E56 4854
(1997).
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15 Liquids

and for high temperature T � bε1/a
3

E = −Nε0 +NT , (15.9)

as for a classical ensemble. However, anharmonic corrections in the
expansion (15.1) may be important in this limit, which would modify
the simple T -law given by equation (15.9).
The entropy for the Bose-Einstein distribution introduced here is given
by

S =
V

bε1

ˆ ∞
0

dε[(n+ 1) ln(n+ 1)− n lnn] , (15.10)

where n = (zeβε − 1)−1 is the mean occupation number. It leads to

S = −N ln(1− e−C) +
2V T

bε1
G(z) , (15.11)

the free energy

F = E − TS = −Nε0 +NT ln(1− e−C)− V T 2

bε1
G(z) (15.12)

and the thermodynamic potential

Ω = F − μN = V T
bε1

´
dε ln(1− e−βε/z) =

= −(E +Nε0) = −V T 2

bε1
G(z) .

(15.13)

The pressure p = −(∂F/∂V )T,N is given by

p = −c2ε′0 +
T 2

bε1
G(z) , (15.14)

where ε′0 is the derivative of the energy ε0 with respect to concen-
tration c. This is the equation of state of the present liquid model.
The dependence of ε1 on concentration is neglected. We note that for
suitable values of c2ε′0 the equilibrium can be reached for low values
of pressure.
In the low-temperature limit ε1 	 T 	 bε1/a

3, the pressure given by
equation (15.14) reads p = −c2ε′0+π2T 2/6bε1, whence the isothermal
compressibility

κT = V −1(∂V/∂p)T =
1

c∂(c2ε′0)/∂c
< 0 . (15.15)
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It is worth noting that c∂(c2ε′0)/∂c must acquire large, negative val-
ues for the stability of the ensemble and for ensuring low values of
the compressibility, in accordance with the behaviour of such liquids.
Similarly, the thermal expansion coefficient at constant pressure is
given by

α = V −1(∂V/∂T )p = −π2T

3bε1
κT > 0 . (15.16)

The entropy given by equation (15.11) at low temperatures reads
S = π2V T/3bε1 and the heat capacity at constant volume is cV =
= T (∂S/∂T )V = S. The heat capacity at constant pressure is given
by cp = cV − V α2T/κT > cV . Similarly, the adiabatic compressibil-
ity is given by κS = V −1(∂V/∂p)S = κT (1 + π2T 2κT /3bε1) > κT .
It is related to the sound velocity u by u2 = −1/ρκS, where ρ is
the mass density. These quantities may give access to experimental
determination of the parameters ε0 and bε1.

In the high-temperature limit T � bε1/a
3 the present liquid model

behaves classically, with the entropy S = N ln(e2a3T/bε1) and pres-
sure p = −c2ε′0 +NT/V . The compressibilities are given by

κT = − 1
c · 1

T−∂(c2ε′
0
)/∂c ,

κS = − 1
2c · 1

T−(1/2)∂(c2ε′
0
)/∂c ,

(15.17)

the coefficient of thermal expansion is

α =
1

T − ∂(c2ε′0)/∂c
, (15.18)

and the heat capacities are cV = N and

cp = cV − V Tα2/κT = cV +
NT

T − ∂(c2ε′0)/∂c
. (15.19)

The validity of these expressions is restricted to a limited range of
temperature and concentration characteristic for such liquids. Their
experimental determination gives access only to the parameter ε0.
Also, for high values of T anharmonic corrections have to be included.
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15 Liquids

15.4 Low temperature

For values of the temperature T comparable with the spacing ε1 be-
tween the energy levels the quantum effects are important and the
accuracy of replacing the summation over n in equation (15.2) by
the integral given by equation (15.3) must be checked, according to
MacLaurin’s formula

b∑
a

f(xn) =

ˆ b+1/2

a−1/2

f(x)dx− (1/24)f
,b+1/2
a−1/2 + ... . (15.20)

Applying this formula to function f = [ze−βε1(n+1/2) − 1]−1 we get

b/a3 =
∑

n=0
1

z exp[βε1(n+1/2)]−1 =

=
´
0
dn 1

z exp(βε1n)−1 − βε1
24 · z

(z−1)2 + ... =

= 1
βε1

ln z
z−1 − βε1

24 · z
(z−1)2 + ... ,

(15.21)

and we can see that the error made in approximating the summation
by integral becomes comparable with the integral for large values of
βε1 and z → 1. This error arises from the fact that the integral gives
little weight to the value of the function at n = 0. Consequently, we
single out the term n = 0 in equation (15.21), and write

b/a3 = 1
z′−1 + 1

βε1
ln z′eβε1/2

z′eβε1/2−1
− βε1

24 · z′eβε1/2

(z′eβε1/2−1)2
+ ... , (15.22)

where z′ = zeβε1/2. In the low temperature limit βε1 → ∞ it is the
first term in equation (15.22) that brings the main contribution and
we have

z = (1 + a3/b)e−βε1/2 , βε1 →∞ . (15.23)

In the high-temperature limit βε1 → 0 the main contribution is
brought by the ln-term in equation (15.22), and

z =
a3T

bε1
e−βε1/2 , βε1 → 0 . (15.24)
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A fair interpolation between equations (15.23) and (15.24) gives

z = (1 + a3/b+ a3T/bε1)e
−βε1/2 (15.25)

and the chemical potential

μ = −ε0 + ε1/2− T ln(1 + a3/b+ a3T/bε1) . (15.26)

As one can see, although there is a condensation on the lowest state
of zero-point vibrations in the limit of low temperatures, there is no
phase transition, i.e. no discontinuity, and z approaches gradually
zero (not unity!) for T → 0, in contrast to the Bose-Einstein conden-
sation in the three-dimensional case5 (a behaviour which may indicate
a superfluid transition). The characteristic temperature of this con-
tinuous condensation is given by βε1 ∼ 1. For such temperatures,
the liquid may undergo, very likely, a phase transition, probably to a
solid-like phase. Such a transition is characterized by the increase of
the constraining volume b, which becomes of the order of the volume
V = Na3, such that the number of the available spatial states for each
particle in the ensemble reduces to unity. The ensemble becomes now
rigid and it can only move as a whole. At the same time, the vibra-
tion spectrum changes correspondingly, from one of local vibrations
to global, collective oscillations.

The low-temperature behaviour derived herein has long been intro-
duced in the statistical model of the atomic nuclei.6 Making use of
equations (15.8), (15.11) and (15.12), we get

Q = E +Nε0 = −(F +Nε0) = π2V T 2/6bε1 , (15.27)

and
S = π2V T/3bε1 =

√
2π2V Q/3bε1 (15.28)

where Q denotes the excitation energy of the nucleus. The density of
states ρ = dN/dQ = eS(dS/dQ) gives the spacing between the energy

5M. F. M. Osborne, "The Bose-Einstein condensation for thin films", Phys. Rev.
76 396 (1949).

6H. Bethe, "An attempt to calculate the number of energy levels of a heavy nu-
cleus", Phys. Rev. 50 332 (1936); "Nuclear radius and many-body problem",
Phys. Rev. 50 977 (1936); L. Landau, "On the statistical theory of nuclei",
ZhETF 7 819 (1937) (Phys. Z. Sowjet. 11 556 (1937)) (in Russian); J. M.
Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, Dover, NY, (1991).
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levels
δε = δQ =

√
6bε1Q/π2V e−

√
2π2V Q/3bε1 . (15.29)

These equations are valid in the low-temperature limit corresponding
to ε1 	 T 	 bε1/a

3, where T =
√
6bε1Q/π2Na3. The distribu-

tion of the energy levels among states with different angular momenta
changes to some extent the prefactor in equation (15.29), without ma-
terial consequences for the estimations given here.7 For heavy nuclei
one may take approximately δε ∼ 5eV for Q 
 8MeV , as derived
from experiments of neutron scattering, resonances, or radiative cap-
ture. Equation (15.29) gives then bε1/a

3 
 40MeV and tempera-
ture T 
 1MeV for N ∼ 200. If volume b is of the order of a3,
this temperature would be much lower than the energy ε1 as derived
from bε1/a

3 
 40MeV . It is likely, therefore, that a transition to a
solid-like state is expected, i.e. the volume b becomes of the order
of b = Na3 (the volume of the nucleus is given by V = Na3, where
a = 1.5 × 10−15m = 1.5fm). The energy ε1 acquires then the value
ε1 ∼ 40MeV/N = 200keV for N = 200, and it may be viewed as an
estimate of the mean separation of the energy levels in the nucleus.

A similar evaluation can be made for classical, common, liquids. A
typical value for ε1 for such liquids might be of the order of 1meV .
The mean inter-particle spacing is a few Ås and this is also the order
of magnitude of the molecular size and short-range forces. It follows
that each molecule has a number of spatial states of the order of N
at its disposal, i.e. b is of the order of a3.

15.5 Summarizing remarks

In conclusion, a liquid model is introduced herein, described as a cor-
related ensemble of particles, moving around and interacting strongly
with short-range forces. The correlations give rise to a constraining
volume b, which is one of the parameters of the thermodynamics of
such a liquid model. The local, collective movements are described as
a set of independent harmonic oscillators with one degree of freedom,
corresponding to vibrations of local particle configurations. The other
7L. Landau, "On the statistical theory of nuclei", ZhETF 7 819 (1937) (Phys.

Z. Sowjet. 11 556 (1937)) (in Russian).
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two parameters are the distance ε1 between the energy levels of these
vibrations and the cohesion energy −ε0 per particle. The statistics
derived on this basis is formally equivalent with the statistics of an
ideal gas of bosons in two dimensions, which, as it is known, leads to
a thermodynamics equivalent with that of an ideal gas of fermions.
This thermodynamics is explicitly derived, both in the low- and the
high-temperature limits. The limit of temperatures comparable with
the distance ε1 between the energy levels is also discussed, where a
continuous, gradual condensation on the lowest energy level occurs,
which may be the precursor of a transition towards a solid-like state.

15.6 Transport properties

The elementary excitations in liquids consist of quanta ε of local vi-
brations associated to short-range correlated particle configurations
which move around with the spatial density of states dV/b, where V
is the volume of the liquid and b is a "constraining " volume. The vol-
ume b is of the order of the molecular volume a3, where a is the mean
inter-particle spacing (b > a3). The vibration quanta are governed
by the Bose-Einstein distribution n with a non-vanishing chemical
potential corresponding to the number N of particles in liquid.

The transport is performed by elementary excitations. Each elemen-
tary excitation carries a density of energy ∂(εn/b)/∂T ·ΔT with ve-
locity v‖ along a gradient ∂T/∂z of temperature in the z-direction.
Therefore, the energy flux is ∂(εn/b)/∂T · ΔT · v‖τ , where τ is the
lifetime of the elementary excitations. The flow is given by ∂q/∂t =
∂(εn/b)/∂T ·v2‖τ ·∂T/∂z, where v2‖ = v2/3, v being the velocity of the
elementary excitations. The thermoconductivity is defined as

K =

ˆ
(dε/ε1)∂(εn/b)/∂T · v2‖τ ; (15.30)

it is easy to see that it can be written as

K =
1

3
cvΛ , (15.31)

where c is the heat capacity per volume and Λ = vτ is the mean
freepath of the excitations. The heat capacity per volume (at constant
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volume) is given by c = π2T/3bε1 in the low-temperature limit ε1 	
T 	 bε1/a

3 and c = 1/a3 in the high-temperature limit T � bε1/a
3

(according to the calculations described above). The mean freepath
is given by Λ = b1/3. In the low-temperature limit the thermal en-
ergy per particle is given by π2a3T 2/6bε1, such that a composite of
b/a3 particles carries the energy εexc = π2T 2/6ε1. It may be taken as
the energy of the elementary excitations in the low-temperature limit,
and τ ∼ �/εexc may be taken as their lifetime (which means that such
excitations are rather poorly defined). (Such a procedure exhibits an
interesting general potential of being used in estimating the lifetime
and mean freepath effects in the vortex-roton-sound quanta in super-
fluids). The momentum is therefore given by �/b1/3, and the velocity
v = εexcb

1/3/�. The thermoconductivity becomes

K =
π4

54
· T 3

�b1/3ε21
(15.32)

in the low-temperature limit. In the high-temperature limit the energy
of the elementary excitations is given by εexc = bε1/a

3, such that the
thermoconductivity becomes

K =
b5/3ε1
3�a6

(15.33)

for T � bε1/a
3.

As it is well-known, the fluctuations are governed by the probability
∼ eS , where S is the entropy (actually, the probability is given by
exp[(TΔS − ΔE − pΔV )/T ], as for non-equilibrium; the variations,
given by the second derivatives, are those pertaining to ΔE; they
are equivalent with those given in the main text; equally well, from
dE = −pdV + TdS, we get (ΔTΔS − ΔpΔV )/T for the exponent
of the probability (with minus sign)). For instance, the fluctuations
δV 2 in volume are given by

∣∣∂2S/∂V 2
∣∣ = |(∂p/∂V )/T | = 1/ |V TκT |,

where κT is the isothermal compressibility, so the fluctuations in vol-
ume per particle are given by δv ∼√|vTκT |, and the fluctuations in
the mean inter-particle distance are δa ∼ √|TκT | /a. The compress-
ibilities of the liquid are given below. In the low temperature limit
the fluctuations δa go like

√
T , while in the high-temperature limit

they go like δa ∼ a.
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Similarly, the fluctuations δE in energy are given by
∣∣∂2S/∂E2

∣∣ =∣∣(∂T/∂E)/T 2
∣∣ , and the fluctuations in energy per particle are there-

fore given by δε ∼ T
√
∂e/∂T , where e is the energy per particle. The

energy per particle for a liquid is given by

e = −ε0 + π2a3T 2/6bε1 (15.34)

in the low-temperature limit, and by e = −ε0 + T in the high-
temperature limit. Therefore, we get

δε ∼ T (π2Ta3/3bε1)
1/2 , T → 0 , (15.35)

and δε ∼ T for T →∞.

We can check the series of inequalities εeq > T > δεf > δεex � δεq >
δεobs, where εeq is the scale energy for statistical equilibrium (cohe-
sion energy per particle ε0), δεf is the fluctuation energy per particle
derived above, δεex is the uncertainty in the energy of the elementary
excitations (related to their lifetime, herein εex), δεq is the separation
between the quantum-mechanical energy levels (ε1), and, finally, δεobs
is the measured (observed) energy per particle. According to the re-
sults given above, in the low-temperature regime ε1 	 T 	 bε1/a

3

these inequalities read

T > T (π2Ta3/3bε1)
1/2 > π2T 2/6ε1 � ε1 , (15.36)

and one can see that they are fulfilled. Therefore, the equilibrium is
attained in this regime, and the excitations are well-defined. In the
high-temperature regime T � bε1/a

3 the above inequalities become

T > δεf > bε1/a
3 � ε1 , (15.37)

and one can see that they are again fulfilled; δεf is actually lower than
its asymptotic T -value given above.

The fluctuations give an additional pressure δp related to the velocity
fluctuations through δp ∼ η(δv/δa) ∼ η/τf ∼ ηδε/n�, where η is the
viscosity and n is an undefined quantum-mechanical number depend-
ing on the nature of the fluid, the process, etc. The fluctuations in
pressure are given by

∣∣∂2S/∂p2
∣∣ = |(∂V/∂p)S/T | = |V κS/T |, such

that δp ∼√|T/vκS |, where κS is the adiabatic compressibility (sim-
ilarly, we get the fluctuations in temperature from

∣∣∂2S/∂T 2
∣∣, which
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leads to δT ∼ T/
√
cV , where cV is the heat capacity per particle at

constant volume). Therefore, we get

η =
√
T/a3 |κS| · n�

δε
, (15.38)

such that η ∼ 1/T in the low-temperature limit and η ∼√T (T + c)/T
in the high-temperature limit, where c is a constant (see below). For
classical ideal gases we get η = n�/a3, which suggests a quantum �

for viscosity ηa3.8

The pressure of the liquid is given by

p = −c2ε′0 + π2T 2/6bε1 (15.39)

in the low-temperature limit and by

p = −c2ε′0 + cT (15.40)

in the high-temperature limit, where−ε0(c) < 0 is the cohesion energy
per particle (here c = 1/a3 is the concentration). The isothermal
compressibility (given above) reads

κT =
1

c∂(c2ε′0)/∂c
< 0 (15.41)

in the low-temperature limit and

κT = −1

c
· 1

T − ∂(c2ε′0)/∂c
(15.42)

in the high-temperature limit. Similarly, the isentropic compressibili-
ties are given by

κS = κT (1 + π2T 2κT /3bε1) (15.43)

in the low-temperature limit and

κS = − 1

2c
· 1

T − (1/2)∂(c2ε′0)/∂c
(15.44)

in the high-temperature limit. The diffusion coefficient is defined as
D ∼ (δa)2/τf , and we get D ∼ T 5/2 in the low-temperature limit and
D ∼ a2T/n� in the high-temperature limit. In the latter case one may
check the validity of the hydrodynamic representation D ∼ T/aη.
8M. Apostol, "Quanta of viscosity", J. Theor. Phys. 62 (2001).
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15.7 Non-equilibrium

The liquid state provides an opportunity to discuss the main problem
of Statistical Physics, which is the derivation of the statistical equilib-
rium from mechanical motion. This is so, because the liquids exhibit
a more correlated motion of their molecular components, which, hope-
fully, will make easier the solution. On the other hand, the classical
liquids may set the problem in more intuitive terms. The procedure
consists in the Liouville equation for the distribution function of n
particles, which connects this function to higher-order distribution
functions of n + 1, n + 2, etc particles; it is known as the BBGKY
hierarchy.9 It is a generalization of the Boltzmann equation. The in-
teraction between particles gives the collision integral. The hope is to
describe the approach to equilibrium. This equation hierarchy illus-
trates a mechanical motion of many particles, which is not integrable;
various approximations are not warranted. Close to equilibrium these
equations may describe, at most, the compatibility of the statistical
motion with the mechanical motion. For transport, the equations
at local equilibrium are solved by using non-mechanical concepts like
lifetime and mean freepath. The approach to equilibrium is not me-
chanical, it is statistical; it is embodied in the statistical principle.

Along similar lines, the direct and indirect two-particle correlation
functions are related through the Ornstein-Zernike integral equation10

and Percus-Yevick closure relation (approximation) or hypernetted-
chain approximation.11 These procedures aim at deriving the prop-

9J. Yvon, "La théorie statistique des fluides et l’équation d’état", Actual. Sci. &
Indust. 203, Paris, Hermann (1935); J. G. Kirkwood, "The statistical mechan-
ical theory of transport processes I. General theory", J. Chem. Phys. 14 180
(1946); "The statistical mechanical theory of transport processes II. Transport
in gases", J. Chem. Phys. 15 72 (1947); M. Born and H. S. Green, "A general
kinetic theory of liquids I. The molecular distribution functions", Proc. Roy.
Soc. A188 10 (1946); N. N. Bogoliubov, "Kinetic equations", ZhETF 16 691
(1946) (in Russian) (J. Phys. USSR 10 265 (1946); N. N. Bogoliubov and K.
P. Gurov, "Kinetic equations in quantum mechanics", ZhETF 17 614 (1947)
(in Russian).

10L. S. Ornstein and F. Zernike, "Accidental deviations of density and opalescence
at the critical point of a single substance", Proc. Roy. Netherlands Acad. Arts
and Sciences (KNAW) 17 793 (1914).

11J. K. Percus and G. J. Yevick, "Analysis of classical statistical mechanics by
means of collective coordinates", Phys. Rev. 110 1 (1958).
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15 Liquids

erties of correlated ensembles (like liquids, including the approach to
equilibrium) from their internal interactions.12 However, it is worth
noting that the statistical behaviour of matter is irrelevantly related
to the internal interaction. "To solve such a problem is not only im-
possible, but it is not even needed" (Landau, approximate quote).

12J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, NY (1940).
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16 Density Oscillations in

Water

16.1 Introduction

We suggest here that the dynamics of liquid water has a compo-
nent consisting of O−2z (oxygen) anions and H+z (hydrogen) cations,
where z is a (small) reduced effective electron charge. Such a model
may apply to other similar liquids. The eigenmodes of density oscil-
lations are derived for such a two-species ionic plasma, including the
sound waves, and the dielectric function is calculated. It is shown
that the sound anomaly in water can be understood on the basis of
this model. The results are generalized to an asymmetric short-range
interaction between the ionic species as well as to a multi-component
plasma, and the structure factor is calculated.1

As simple as it may appear, water is still a complex liquid involving
various interactions as well as kinematic and dynamic correlations.
It is widely agreed that the water molecule in liquid water preserves
to some extent its integrity, especially the directionality of the sp3-
oxygen orbitals, though it may be affected substantially by hydrogen
bonds.2 As such, it is conceived that water has a molecular electric
moment, an intrinsic polarizability and hindered rotations (librations)
which may affect its orientational polarizability. We examine herein
another possible component of the dynamics of the liquid water, as
resulting from the dissociation of water molecule.

Water molecule H2O has two H −O (hydrogen-oxygen) bonds which
make an angle of about 109◦ in accordance with the tetragonal sym-

1M. Apostol and E. Preoteasa, "Density oscillations in a model of water and
other similar liquids", Phys. Chem. Liq. 46 653 (2008).

2L. Pauling, General Chemistry, Dover, NY (1982).
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16 Density Oscillations in Water

metry of the four hybridized sp3-oxygen orbitals. The "spherical"
diameter of water molecule is approximately 2.75Å and the inter-
molecular spacing in liquid water under normal conditions is a ∼ 3Å.
This suggests that water molecule in liquid water, while preserving the
directionality of the oxygen electronic orbitals, might be dissociated
to a great extent. Dissociation models which assume OH− −H+ or
OH−−H3O

+ pairs are well-known for water. This indicates a certain
mobility of hydrogens (and oxygens) in water. We analyze herein the
hypothesis that water may consist of O−2z anions of mass M = 16amu
and density n and H+z cations (protons) of mass m = 1amu and
density 2n, where z is a small reduced effective electron charge (the
atomic mass unit is 1amu 
 1.7× 10−24g.). We shall see that such a
hypothesis adds another dimension to the dynamics of water. Such a
model may be used for other similar liquids.

Due to their large mass the ions have a classical dynamics. Herein,
we limit ourselves to considering the ions motion in water under the
action of the Coulomb potentials ϕOO = 4z2e2/r, ϕHH = z2e2/r
and ϕOH = −2z2e2/r, where −e (
 −4.8× 10−10esu) is the electron
charge and r denotes the distance between the ions. For stability,
it is also necessary to introduce a short-range repulsive (hard-core)
potential χ.3 It is shown that in the limit z → 0 water may exhibit an
anomalous sound-like mode besides both the ordinary (hydrodynamic)
one and the non-equilibrium sound-like excitations governed by short-
range interactions. We compute the density oscillations for this model,
the dielectric function, the structure factor, and extend the model
to a multicomponent plasma, including an asymmetric short-range
interaction between ion species.

3See also in this respect E. Teller, "On the stability of molecules in the Thomas-
Fermi theory", Revs. Mod. Phys. 34 627 (1962)l; E. H. Lieb and B. Simon,
"Thomas-Fermi theory revisited", Phys. Rev. Lett. 31 681 (1973); "The
Thomas-Fermi theory of atoms, molecules and solids", Adv. Math. 23 22
(1977); L. Spruch, "Pedagogic notes on Thomas-Fermi theory (and on some
improvements); atoms, stars, and the stability of bulk matter", Revs. Mod.
Phys. 63 151 (1991). As it is well-known, a classical (jellium) plasma with
Coulomb interaction is unstable.
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16 Density Oscillations in Water

16.2 Plasmons

Let us consider one species of charged particles, with charge −ze, con-
tinuously distributed with density n in a neutralising rigid continuous
background of positive charge. This is the well-known jellium model.4

The Coulomb interaction reads

U =
1

2

ˆ
drdr′ϕ(r− r′)δn(r)δn(r′) , (16.1)

where δn(r) denotes a small disturbance of density (which preserves
the global neutrality). We introduce the Fourier representation

δn(r) =
1√
N

∑
q

δn(q)eiqr , δn(q) =
n√
N

ˆ
drδn(r)e−iqr , (16.2)

where N = nV is the total number of particles in volume V . Similarly,

ϕ(r) =
1

V

∑
q

ϕ(q)eiqr , ϕ(q) =

ˆ
drϕ(r)e−iqr , (16.3)

where ϕ(q) = 4πz2e2/q2 is the Fourier transform of the Coulomb
potential (interaction). The Coulomb interaction given by equation
(16.1) becomes

U =
1

2n

∑
q

ϕ(q)δn(q)δn(−q) (16.4)

(where the q = 0-term is excluded by the positive background).
The small variations δn(r) in density can be represented as δn =
−ndivu, where u is a displacement vector. We emphasize that such a
representation holds for qu(r)	 1. It follows δn(q) = −inqu(q), and
one can see that the Coulomb interaction involves only longitudinal
components of the displacement vector u(q) along the wavevector q.
Therefore, we may write u(q) = (q/q)u(q), with δn∗(−q) = δn(q),
u∗(−q)=u(q) and u∗(−q) = −u(q). The Coulomb interaction given
by equation (16.4) becomes

U = −n

2

∑
q

q2ϕ(q)u(q)u(−q) . (16.5)

4D. Pines, Elementary Excitations in Solids, Benjamin, NY (1963).
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16 Density Oscillations in Water

The kinetic energy associated with the coordinates u(q) is given by

T =
1

2

ˆ
drnmu̇2 = −1

2
m
∑
q

u̇(q)u̇(−q) , (16.6)

where m denotes the particle mass. The equations of motion obtained
from the Lagrange function L = T − U are

mü(q) + nq2ϕ(q)u(q) = 0 , (16.7)

which leads to the well-known plasma oscillations with frequency given
by ω2

p = 4πnz2e2/m.

16.3 Two ionic species

We apply the above model to the two species of ions O−2z and H+z.
The change in density is associated with a displacement vector v in the
former and a displacement vector u in the latter. First we note that
the Fourier transforms of the Coulomb potentials are given by ϕOO =
4ϕ(q), ϕHH = ϕ(q) and ϕOH = −2ϕ(q), where ϕ(q) = 4πz2e2/q2.
Therefore, the interactions can be written as

UOO = −n
2

∑
q q

2 [4ϕ(q) + χ(q)] v(q)v(−q) ,

UHH = −2n∑q q
2 [ϕ(q) + χ(q)]u(q)u(−q) ,

UOH = n
∑

q q
2[2ϕ(q)− χ]u(q)v(−q) ,

(16.8)

where n = N/V is the density of water molecules and the Fourier
transform χ of a hard-core potential has been introduced (the same
for both species). The kinetic energy is given by

T = −1

2
M
∑
q

v̇(q)v̇(−q)−m
∑
q

u̇(q)u̇(−q) (16.9)

and the equations of motion read

mü+ 2nq2(ϕ+ χ)u − nq2(2ϕ− χ)v = 0 ,

Mv̈ + nq2(4ϕ+ χ)v − 2nq2(2ϕ− χ)u = 0 ,
(16.10)
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16 Density Oscillations in Water

where we have dropped out the argument q.

The solutions of these equations can be obtained straightforwardly.
In the long wavelength limit q → 0 there are two branches of eigen-
frequencies, one given by

ω2
p =

16πnz2e2

μ
(16.11)

corresponding to plasma oscillations and another given by

ω2
s =

9nχ

M + 2m
q2 = v2sq

2 (16.12)

corresponding to sound-like waves propagating with velocity vs given
by equation (16.12). μ = 2mM/(2m+M) is the reduced mass. The
plasma oscillations are associated with antiphase oscillations of the
relative coordinate (2mu + Mv = 0), while the sound waves are as-
sociated with in-phase oscillations of the center-of-mass coordinate
(u− v = 0).

16.4 Polarization

An external electric field arising from a potential φ(r) gives an addi-
tional energy

Ui = qi

ˆ
drφ(r)δni(r) = −i(niqi/n)

∑
q

qφ(q)ui(−q) (16.13)

for a species of ions labelled by i, with electric charge qi and density
ni. We apply this formula to the two-species ionic plasma, and get

UH = −2ize
∑
q

qφ(q)u(−q) , UO = 2ize
∑
q

qφ(q)v(−q) . (16.14)

Adding these two terms to the lagrangian, the equations of motion
(16.10) become

mü+ 2nq2(ϕ+ χ)u − nq2(2ϕ− χ)v = −izeqφ ,

Mv̈ + nq2(4ϕ+ χ)v − 2nq2(2ϕ− χ)u = 2izeqφ ,
(16.15)
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16 Density Oscillations in Water

where we have dropped out the argument q. This is a system of
coupled harmonic oscillators under the action of an external force. In
the limit of long wavelengths its solutions are given by

u = izeq
m φ

ω2− 2m
3μ ω2

s

(ω2−ω2
p)(ω

2−ω2
s)

,

v = − 2izeq
M φ

ω2− 2M
3μ ω2

s

(ω2−ω2
p)(ω

2−ω2
s)

.

(16.16)

On the other hand, equation nidivui = −δni is, in fact, the Maxwell
equation divEi = 4πqiδni, where the electric field is given by Ei =
−4πnqiui. We have therefore the internal electric fields Eu = −8πnzeu
and Ev = 8πnzev. The polarization P = −(Eu + Ev)/4π is given by

P (q) = 2nze [u(q)− v(q)] =
iq

4π
φ(q)

ω2
p

ω2 − ω2
p

. (16.17)

The external field is related to the external potential through D(q) =
−iqφ(q) and the dielectric function ε is given by D = εE = ε(D +
Eint), where Eint = Eu+Ev is the internal field. We get the dielectric
function

ε = 1− ω2
p/ω

2 , (16.18)

as expected (we disregard here the intrinsic and orientational polar-
izabilities). As it is well-known, its zero gives the longitudinal mode
of plasma oscillations.

The ωp in the nominator of equation (16.18) defines also the plasma
edge: for frequencies lower than ωp the electromagnetic waves are ab-
sorbed (the refractive index is given by n2 = ε). It is well-known that
water exhibits indeed a strong absorption in the gigahertz-terrahertz
region. On the other hand, neutron scattering on heavy water, as well
as inelastic X-ray scattering, revealed the existence of a dispersionless
mode 
 4− 5meV (
 1013s−1) in the structure factor, which may be
taken tentatively as the ωp-plasmonic mode given by equation (16.11).
Making use of this equation we get ωp 
 3 × 1014zs−1(n = 1/a3,
a = 3Å), so we may estimate the reduced effective charge z 
 3×10−2.
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16 Density Oscillations in Water

16.5 Dielectric function

The dielectric function given by equation (16.18) has a singularity for
ω = 0, as arising from the exact cancellation in the static limit of
the external field by the internal field. It is plausible to assume that
residual polarization fields are still present in this static limit, like, for
instance, the intrinsic polarizability. In this case, equation (16.18) is
modified, and the dielectric function is of the type

ε =
ω2 − ω2

p

ω2 + ω2
0

, (16.19)

where ω0 is a plasma frequency associated with the intrinsic, molecular
polarizability. As such, it is a very high frequency, and equation
(16.19) gives a small, negative contribution to the dielectric function
in the static limit (ω → 0).

A static field D produces an electric dipole p = qex, where qe is the
electric charge and x is a small displacement subjected to the equation
of motion meẍ+meω

2
px = qeD, where me is the mass of the electronic

cloud. According to the plasma model suggested here, we assume that
the electronic cloud in the H−O bonds has the same eigenfrequency ωp

as the H−O ensemble. In the static limit x = qeD/meω
2
p (polarizabil-

ity α = q2e/meω
2
p in p = αD), and we get a polarization P = p/a30 =

q2eD/mea
3
0ω

2
p, where a0 is of the order of the atomic size. We get an

internal field Eint = −4πP = − (4πq2e/mea
3
0

)
D/ω2

p = − (ω2
0/ω

2
p

)
D,

where ω0 is a frequency of the order of atomic frequencies. Conse-
quently, the dielectric function ε in equation D = εE = ε(D + Eint)
is given by ε 
 −ω2

p/ω
2
0 (ω2

p/ω
2
0 	 1), which is precisely the static

dielectric function given by equation (16.19).

The dielectric properties of water are still a matter of debate. It is
agreed that the permitivity dispersion of water is described to some
extent by a Debye model of the form ε = a + b/(1 − iωτ), where a
and b are semi-empirical parameters and τ ∼ ηa3/T is a relaxation
time; η denotes the viscosity and T is the temperature.5 This De-
bye model assumes mainly an orientational polarizability of electric

5H. Frohlich, Theory of Dielectrics, Oxford (1958); P. Debye, Polar Molecules,
Dover, NY (1945).
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16 Density Oscillations in Water

dipoles, which, due to the preservation of the directional character
of the O −H bonds, is compatible with the plasma model suggested
here for water. Therefore, the contribution given by equation (16.19)
should be added to the above Debye formula for the dielectric func-
tion, which becomes

ε = a+
b

1− iωτ
+

ω2 − ω2
p

ω2 + ω2
0

. (16.20)

Parameters a and b in equation (16.20) are related to the static per-
mitivity ε0 and high-frequency permitivity ε∞ through

ε0 = a+ b− ω2
p/ω

2
0 , ε∞ = a+ 1 . (16.21)

We may neglect ω2
p/ω

2
0 here because it is too small, and we may

also take ε∞ = 1(a = 0). The static permitivity ε0 = b is given
mainly by the electric dipoles. Let p be such an electric dipole.
Its energy in an electric field D is −pD cos θ, where θ is the an-
gle between p and D. The thermal distribution of such dipoles is
dw ∼ exp(−pD cos θ/T )d(cos θ), where T denotes the temperature.
We get easily the thermal average 〈cos θ〉 = −L(pD/T ), where L(x) =
cothx− 1/x is the well-known Langevin’s function.

We take p = 2eze(a/2) = ezea, where a ∼ 3Å and ze is a delocalized
reduced charge associated with the H − O dipole. We estimate the
argument pD/T of the Langevin’s function. At room temperature,
we find pD/T 
 3 × 10−4Dze. For pD/T = 1 this corresponds to
an external field D = 1

3ze
× 104esu, or D = 108/zeV/m (1esu =

3 × 104V/m). This is an extremely high field, so we are justified
to take pD/T 	 1, and L(pD/T ) 
 pD/3T . We get therefore a
polarization P = −np 〈cos θ〉 = np2D/3T , an internal field Eint =
−4πP = −4πnp2D/3T , and a permitivity

ε0 = b =
1

1− 4πnp2/3T
(16.22)

from D = εE = ε(D + Eint). This is the well-known Kirkwood for-
mula. For the empirical value ε0 = 80, we get (at room temperature)
a reduced charge ze 
 10−2. This is in good agreement with the
H+z − O−2z plasma charge z estimated above.
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16 Density Oscillations in Water

16.6 Cohesion and thermodynamics

In "Liquids" chapter a model of liquid has been introduced, based on
an excitation spectrum (per particle) of the form εn = −ε0 + ε1(n+
1/2), where ε0 is a cohesion energy and ε1 is the quanta of energy of a
harmonic oscillator with one degree of freedom; n represents here the
quantum number. The model includes also the kinematic correlations
(spatial restrictions) of the movement of the liquid molecules. This
model leads to a consistent thermodynamics for liquids, arising from
a statistics which is equivalent with the statistics of bosons in two
dimensions.

For water, the cohesion energy per particle ε0 can be estimated from
the vaporization heat (
 40kJ/mol). It gives ε0 ∼ 103K. On the
other hand, it was shown6 that the transition temperature between a
gas and a liquid of identical particles is approximately given by

Tt =
4

3

ε0
ln(ε0/T0)

, (16.23)

where T0 = �
2n2/3/m is a characteristic temperature of the gas. We

can apply this formula to water dissociation, taking n as the density
of hydrogen atoms, m as the mass of two hydrogen atoms and Tt =
383K (at normal pressure; ε0 depends on the inter-particle spacing).
We may neglect the oxygen, as it is too heavy in comparison with
the hydrogen atoms. We get T0 
 2K and the above formula gives
ε0 
 2000K 
 200meV for the cohesion energy of water per molecule,
which is consistent with the above estimate (1eV 
 11.6 × 103K;
n 
 1/a3 with a = 3Å and � 
 10−27erg · s; Bohr radius aH =
�
2/mee

2 
 0.53Å, e2/aH 
 27.2eV , where me is the electron mass).
It is worth noting that the mechanism of vaporization assumed here
implies the dissociation of the water molecule.

The plasma oscillations obtained above can be quantized and the en-
ergy levels of the plasma read

En =
∑
q

�ωp(n+ 1/2) =
V

(2π)3
4π

3
q3c · �ωp(n+ 1/2) , (16.24)

6M. Apostol, "The condensation of matter-a model of phase transition of the
first kind", Mod. Phys. Let. B21 893 (2007).
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16 Density Oscillations in Water

where qc is a cutoff wavevector. The prefactor in equation (16.24) is
V q3c/6π

2 
 N(aqc/4)
3, so the energy levels given above can be written

as
En = Nε1(n+ 1/2) , (16.25)

where ε1 = (aqc/4)�ωp. These energy levels correspond to a harmonic
oscillator with one degree of freedom. It follows that the present
description of water as a two-species of highly dissociated ionic plasma
provides a further support for the liquid model mentioned above. If
we take qc 
 1/a, the energy quantum ε1 = (aqc/4)

3
�ωp =
 3zmeV

represents the ε1 parameter in the spectrum of the liquid. (The plasma
frequency given by equation (16.11) is ωp 
 200zmeV ).

16.7 Debye screening

As it is well-known the plasma excitations described above represent
collective oscillations of the density in the long wavelength limit. At
the same time, they induce correlations in the ionic movements. For
a classical plasma these correlations are associated with a screening
length given by the Debye-Huckel theory as

κ−1 =
(
T/24πnz2e2

)1/2
(16.26)

for our case (κ−1 =
(
T/4πe2

∑
i niz

2
i

)−1
where i labels the ionic species

with density ni and charge ezi). The formula is valid for the Coulomb
energy z2e2/a much lower than the temperature T . In the present case
we have z2e2/a 
 45K (for z 
 3×10−2), which shows that the above
condition is fulfilled. From equation (16.26) we get κ−1 ∼ 1Å (at room
temperature), in agreement with the present molecular-dissociation
model. The correlation energy per particle is given by

εcorr = −e2

a

√
πe2

Ta
(6z2)3/2 (16.27)

(εcorr = −(e2/a)√πe2/Ta(
∑

i niz
2
i )

3/2). The estimation of this en-
ergy gives εcorr ∼ 102K (at room temperature). It contributes to the
cohesion energy.
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16 Density Oscillations in Water

16.8 Sound anomaly

The sound-like branch ω2 
 ωs = vsq, where vs =
√
9nχ/(M + 2m)

according to equation (16.12), is distinct from the ordinary hydrody-
namic sound whose velocity is given by the well-known formula v0 =
1/
√
κnm for a one-component fluid, where κ is the adiabatic compress-

ibility. For the present two-component fluid (H+z − O−2z plasma),
the velocity of the ordinary sound is given by v0 = 1/

√
κn(M + 2m).

The former represents a non-equilibrium elementary excitation, whose
velocity vs does not depend on temperature, while the latter proceeds
by thermodynamic, equilibrium, adiabatic processes, and its velocity
v0 depends on temperature through the adiabatic compressibility κ.
In order to distinguish them from the hydrodynamic sound we pro-
pose to call the sound-like excitations derived here density "kinetic"
modes or "densitons". The distinction between the two sounds is
made by a threshold wavevector qt in the following manner. Suppose
that there is a finite lifetime τ for the sound-like excitations ωs propa-
gating with a velocity vs and a corresponding mean freepath Λ = vsτ .
If the sound-like wavelength λ is much longer than the mean freepath,
λ� Λ, then we are in the collision-like regime (ωsτ 	 1), and the col-
lisions may restore the thermodynamic equilibrium. In this case the
hydrodynamic sound propagates, and the sound-like excitations do
not. This condition defines the threshold wavevector qt = 1/vsτ . In
the opposite case, q � qt (collisionless regime), it is the sound-like ex-
citations that propagate, and not the hydrodynamic sound. The finite
lifetime τ originates in the residual interactions between the collective
modes and the underlying motion of the individual particles. It is
easy to estimate this residual interaction. It is given by

√
εT , where

ε is the mean energy per particle corresponding to the motion of the
individual particles. We get therefore τ 
 �/

√
εT and the threshold

wavevector qt =
√
εT/�vs. It is difficult to have a reliable estima-

tion of the mean energy ε; for a resonable value ε = 10meV we get
qt 
 0.1Å

−1
at room temperature for v = 3000m/s, which is in good

agreement with experimental data.

Indeed, the phenomenon of two-sound anomaly in water is well-docu-
mented. Neutron, X-ray, Brillouin or ultraviolet light scattering on
water revealed the existence of a hydrodynamic sound propagating
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16 Density Oscillations in Water

with velocity v0 
 1500m/s for smaller wavevectors and an addi-
tional sound propagating with velocity 
 3000m/s for larger wavevec-
tors. In addition, though both sound velocities do exhibit an isotopic
effect, their ratio does not. According to the above discussion, we
assign this additional, faster sound to the sound-like excitations de-
rived here. We can see that both v0 and vs given above exhibit a
weak isotopic effect, while their ratio vs/v0 = 3n

√
κχ does not. From

vs =
√

9nχ/(M + 2m) = 3000m/s we get the short-range interaction

χ 
 7eV · Å3
. Similar results are obtained for other forms of dis-

sociation of the water molecule, like OH− − H+ or OH− − H3O
+,

so the H+z − O−2z plasma model employed here can be viewed as
an effective model for various plasma components that may exist in
water.

16.9 Another sound

It is worth calculating the spectrum given by equations of motion
(16.10) without neglecting higher-order contributions in q2. The result
of this calculation is given by

ω2
1,2 =

1

2
ω2
p

[
1 +Ax2 ±

√
1 + 2Bx2 +A2x4

]
, (16.28)

where

A =
1

9α
(2 + 5α+ 2α2) , B =

1

9α
(2− 13α+ 2α2) , (16.29)

α = m/M and x = vsq/ωp. It is shown in Fig. 16.1.

Frequency ω2 in equation (16.28) represents the sound-like branch,
which goes like ω2 
 ωs = vsq in the long wavelength limit and
approaches the horizontal asymptote ω2 = ωp/

√
A 
 ωp

√
m/2M for

shorter wavelengths. Frequency ω1 in equation (16.28) represents the
plasmonic branch (ω1 
 ωp for q → 0). In the long wavelength limit
it goes like

ω1 
 ωp +
(M −m)2

9mM
v2sq

2/ωp , q → 0 . (16.30)

404

 EBSCOhost - printed on 2/13/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



16 Density Oscillations in Water
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Figure 16.1: The spectrum of the density oscillations given by equa-
tion (16.28) for the H+z − O−2z plasma with the same
short-range interaction between ionic species.

Due to the large disparity between the two masses m and M we can
see that the plasma frequency has an abrupt increase towards the
short-wavelength oblique asymptote given by

ωa 

√
Avsq 


√
2M/9m+ 5/9vsq . (16.31)

For small values of ωp (vanishing Coulomb coupling, z → 0) this
asymptotic frequency may look like an anomalous sound propagating
with velocity

va 

√
2M/9m+ 5/9vs . (16.32)

For water, we get va 
 2vs from this formula. However, the ratios
va/vs or va/v0 exhibit a rather strong isotopic effect, which is not
supported by experimental data.

16.10 Multi-component plasma

The model presented herein might be generalized to a multi-component
plasma consisting of several ionic species labelled by i, each with a
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16 Density Oscillations in Water

number of particles Ni, density ni, charge zie and mass mi, such that∑
i zini = 0.

The lagrangian of the density oscillations is given by

L = − 1
2n

∑
iq miniu̇i(q)u̇i(−q)+

+ 1
2n

∑
ijq ninjq

2 [ϕij(q) + χ(q)]ui(q)uj(−q)+

+i en
∑

iq niziqφ(q)ui(−q) ,

(16.33)

where ϕij(q) = 4πzizje
2/q2. The equations of motion are given by

miüi + 4πe2zi
∑
j

zjnjuj + q2χ
∑
j

njuj = −iqeziφ . (16.34)

Making use of the notations

S1 =
∑
i

z2i ni/mi , S2 =
∑
i

ni/mi , S3 =
∑
i

zini/mi , (16.35)

the eigenfrequencies ω1,2 of the system of equations (16.34) in the long
wavelength limit are given by

ω2
1 
 ω2

p = 4πe2S1 =
∑
i

4πe2z2i ni

mi
, (16.36)

which represents the plasma branch of the spectrum, and

ω2
2 
 ω2

s =
(
S2 − S2

3/S1

)
χq2 = v2sq

2 , (16.37)

which represents the sound-like excitations (the sound velocity given
by equation (16.37) is always a real quantity, as a consequence of the
Schwarz-Cauchy inequality.). The plasma branch of the spectrum has
an oblique asymptote given by ω1 
 ωa =

√
χS2q, which may be

taken as an anomalous sound propagating with velocity va =
√
χS2

for small values of ωp. The ratio of the two sound velocities is given
by

va/vs =
1√

1− S2
3/S1S2

, (16.38)
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16 Density Oscillations in Water

which is always higher than unity. The sound branch of the spec-
trum has an horizontal asymptote given by ω2 


√
1− S2

3/S1S2ωp.
For the H+z −O−2z plasma we can check from equation (16.38) that
va/vs 
 (2M/9m+ 5/9)1/2 
 2, and ω2 
 3

√
m/2Mωp, as obtained

above. As we have discussed above this ratio exhibits a rather strong
isotopic effect, which is not in accord with experimental data. We
assign therefore the additional sound to sound-like excitations prop-
agating with velocity vs given by equation (16.37). The ordinary,
hydrodynamic sound in a multi-component mixture has the velocity
v0 = 1/

√
κ
∑

i nimi. It can be shown that v2s/v
2
0 ≥ n2κχ for a neutral

multi-component mixture.
The internal field is given by

Eint = −4πe
∑
i

ziniui ; (16.39)

we get easily from equations (16.34)

Eint = −iqφ
ω2
p

ω2 − ω2
p

(16.40)

and the dielectric function ε = 1− ω2
p/ω

2, as expected.

16.11 Structure factor

The structure factor is defined by

S(q, ω) = 1
2π

´
drdr′dt 〈δn(r, t)δn(r′, 0)〉 eiq(r−r′)−iωt =

= N
2πn2

´
dt 〈δn(q, t)δn(−q, 0)〉 e−iωt ,

(16.41)

where the brackets stand for the thermal average (we leave aside the
central peak). Since

δn(q, t) = −iq
∑
i

niui(q, t) , (16.42)

it becomes

S(q, ω) =
Nq2

2πn2

ˆ
dt
∑
ij

ninj 〈ui(t)uj(0)〉 e−iωt , (16.43)
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16 Density Oscillations in Water

where we dropped out the argument q.

In order to calculate the thermal averages we turn back to the system
of equations (16.34) without the external electric field. This system
can be written as

(−ω2 + aS1)x + bS3y = 0 ,

aS3x+ (−ω2 + bS2)y = 0 ,
(16.44)

where a = 4πe2, b = χq2, S1,2,3 are given by equation (16.35) and

x =
1

n

∑
i

ziniui , y =
1

n

∑
i

niui . (16.45)

In addition,

ui =
anzi
miω2

x+
bn

miω2
y . (16.46)

The system of equations (16.44) has two eigenfrequencies ω1,2 as given
by equations (16.36) and (16.37). The corresponding eigenvectors are
given by

x1 ∼ S1 , y1 ∼ S3 ; x2 ∼ bS3 , y2 ∼ −aS1 (16.47)

in the long wavelength limit. According to equation (16.46) the coor-
dinates ui can be written as

u
(1,2)
i =

anzi
miω2

1,2

x1,2e
iω1,2t +

bn

miω2
1,2

y1,2e
iω1,2t , (16.48)

and one can see that they are coordinates of linear harmonic oscilla-

tors with frequencies ω1,2 and potential energies miω
2
1,2

[
u
(1,2)
i

]2
/2.

The thermal distribution of the coordinate u for such an oscillator
is given by dw =

√
mω2/2πT exp

(−mω2u2/2T
)
du in the classical

limit, where T denotes the temperature (T � �ω). It follows〈
u
(1,2)
i u

(1,2)
j

〉
=

T

miω2
1,2

δij . (16.49)

Writing
ui = u

(1)
i eiω1t + u

(2)
i eiω2t (16.50)
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16 Density Oscillations in Water

and making use of equation (16.49) the structure factor given by equa-
tion (16.43) becomes

S(q, ω) = NTq2
(∑

i n
2
i /n

2mi

) ·
·
[

1
ω2

1

δ(ω − ω1) +
1
ω2

2

δ(ω − ω2)
]
.

(16.51)

We can see from this equation that the relevant sound contributions
are given by

S(q, ω) 
 NT

v2s,a

(∑
i

n2
i /n

2mi

)
δ(ω − vs,aq) . (16.52)

The relaxation and damping effects can be included in the above ex-
pressions of the structure factor. As it is well-known, they amount to
representing the δ-functions by lorentzians.

16.12 Asymmetric interaction

Up to now, the short-range interaction was assumed to be the same
for all ionic species. In general, we may introduce a short-range in-
teraction χij depending on the nature of the ionic species. If this in-
teraction is separable, the solution given above for a multi-component
plasma holds with minor modifications. For a non-separable short-
range interaction, appreciable changes may appear in the spectrum,
which may exhibit multiple branches. Such a spectrum may serve to
identify the nature (mass, charge) of various molecular aggregates in a
multi-component plasma. It is worth noting that a range of frequen-
cies 1010s−1 − 1012s−1 is documented in living cells by microwave,
Raman and optical spectroscopies and by cell-biology studies, upon
which the theory of coherence domains in living matter is built.7

We consider here again the H+z −O−2z plasma with different short-
range interaction χHH = χ1 , χOO = χ2 , χOH = χ3; it still exhibits

7H. Frohlich, "Bose condensation of strongly excited longitudinal electric modes",
Phys. Lett. A26 402 (1968); H. Frohlich, "Long-range coherence and en-
ergy storage in biological systems", Int. J. Quant. Chem. 2 641 (1968); G.
Preparata, QED Coherence in Matter, World Sci. (1995).
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16 Density Oscillations in Water

two branches of frequencies, a plasmonic one (ω1) and a sound-like one
(ω2), but the spectrum may have certain peculiarities (the dielectric
constant is not affected by this modification). Equations of motion
(16.15) become now

mü+ 2nq2(ϕ+ χ1)u − nq2(2ϕ− χ3)v = −izeqφ ,

Mv̈ + nq2(4ϕ+ χ2)v − 2nq2(2ϕ− χ3)u = 2izeqφ .
(16.53)

We introduce the notations

a = 2nq2ϕ/m = 8πne2z2/m , b1,2,3 = nχ1,2,3/m . (16.54)

The dispersion relations can be computed straightforwardly. In the
long wavelength limit (q → 0) we get the plasmonic branch

ω2
1 
 (1 + 2α)a+

2b1 + α2b2 − 4αb3
1 + 2α

q2 , (16.55)

where (1+2α)a = 16πne2z2/μ is the plasma frequency, and the sound-
like branch

ω2
2 


α(4b1 + b2 + 4b3)

1 + 2α
q2 = v2sq

2 ; (16.56)

one can see that the sound velocity vs is always a real quantity.

The sound-like branch exhibits an asymptote in the short-wavelength
limit given by

ω2
2 ∼

1

2

[
2b1 + αb2 −

√
(2b1 − αb2)2 + 8αb23

]
q2 , (16.57)

whose slope may have either sign or vanish. It is easy to see that this
slope is positive for b23 < b1b2, negative for b23 > b1b2 (when the sound-
like branch has a maximum value) and it vanishes for b23 = b1b2 (when
the sound-like branch has an horizontal asymptote). In the case of a
negative slope the sound velocity may exhibit a negative velocity and
the sound may suffer a strong absorption for moderate values of the
wavevector, which may indicate an anomalous or unphysical situation.

We return now to the plasmon branch given by equation (16.55), and
write it as

ω2
1 = ω2

p + b2
2x2 − 4αλx+ α2

1 + 2α
q2 , (16.58)
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Figure 16.2: Excitation spectrum given by equation (16.59) for the
H+z − O−2z plasma with short-range potentials χOO =
χHH = 0 and χOH = χ �= 0.

where λ2 = b23/b1b2 and x =
√
b1/b2. It is easy to see that for λ2 > 1

the plasmonic spectrum exhibits a dip around a certain value q0 of the
wavevector q for

(
λ−√λ2 − 1/2

)
α <

√
b1/b2 <

(
λ+

√
λ2 − 1/2

)
α;

it approaches an asymptote with a positive slope for q → ∞, which
may define again an anomalous sound for small values of ωp.

We illustrate these anomalies for a particular case of short-range in-
teraction χ1,2 = 0 and χ3 = χ (b3 = nχ/m). The dispersion relations
of the system of equations (16.53) become

ω2
1,2 =

1

2
ω2
p

[
1±

√
1− 4v2sq

2/ω2
p +

(1 + 2α)2

2α
v4sq

4/ω4
p

]
. (16.59)

The plasmonic branch has a minimum value for q0 
 2
√
m/Mωp/vs,

where the sound-like branch has a maximum value (
 √
2m/Mωp).

The spectrum is shown in Fig. 16.2. Using ωp 
 1013s−1 estimated
above and the sound velocity vs 
 3000m/s in water we get q−1

0 
 6Å.
We may expand ω1 in series of (q − q0)

2 about its minimum value at
q0 and get ω1 
 ωp + (M/4m + 1)(v4sq

2
0/ω

3
p)(q − q0)

2 = ωp + (1 +
4m/M)v2s(q − q0)

2/ωp. This is similar with the rotons-like dispersion
relation discussed in connection with the coherence domains in water.
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16 Density Oscillations in Water

Although this might be an interesting suggestion, it is inconsequential
here, because ωp is too small in comparison with the temperatures at
which water exists and, therefore, this "dip" feature has no effect for
the water thermodynamics.

16.13 Summarizing remarks

We summarize the main features of the model suggested here for liq-
uid water. First, we assume, as it is generally accepted, the four,
directional sp3-oxygen electronic orbitals. The electron delocalization
along two such orbitals together with a corresponding delocalization
of the hydrogen electronic charge lead to the water cohesion. It is
represented by the cohesion energy ε0 discussed here. Within such a
picture, we can still visualize the oxygen and the hydrogen as neutral
atoms, moving around almost freely (as a consequence of the unifor-
mity of the environment). This gives a noteworthy support to the "hy-
drogen bonds" concept. The point of view taken in this paper is that
the hydrogen bonds in water are introduced in order to account for
the uniformity of the environment of a water molecule in liquid water.
As such, it helps understand the cohesion. However, a consistent up-
holding of the hydrogen-bonds concept would mean a vanishing dipole
momentum of liqud water. Pauling,8 who introduced originally this
concept, qualifies it by admitting an asymmetry in the four hydrogen
bonds around an oxygen ion, arising from the two-out-of-four occupied
orbitals. We suggest that the uniformity of the environment makes
the hydrogen atoms (ions) moving as independent entities, while the
asymmetry induces a small charge z, so the ion motion is subjected
to Coulomb (and short-range interactions). The electric moment is
ascribed to the directional character of the sp3-oxygen electronic or-
bitals and the charge transfer between oxygen and hydrogen. Thereby,
the hydrogen-bond concept is employed here through its two features,
directionality and uniformity, with a slight asymmetry, all viewed as
independent qualitative ingredients. To this picture the present model
adds another component, arising from a very small charge transfer be-
tween hydrogen and oxygen atoms, leading to a H+z −O−2z plasma,

8L. Pauling, General Chemistry, Dover, NY (1982).
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16 Density Oscillations in Water

with the reduced charge z. It may originate in the weak asymme-
try of the two occupied sp3-oxygen electronic orbitals with respect to
the other two unoccupied orbitals. Under these circumstances, the
hydrogen and the oxygen ions interact, both by Coulomb and short-
range potentials. This interaction gives the plasma frequency and the
sound-like excitations frequency. The plasmons contribute to the ex-
citations which give rise to a consistent thermodynamics for liquids.
In addition, the ionic plasma oscillations entail oscillations of the delo-
calized electronic cloud, with the same eigenfrequency. Subject to an
external field, these electronic oscillations produce an intrinsic polar-
izability which removes the ω = 0 singularity in the plasma dielectric
function (the ω0 frequency). In addition, the magnitude of the electric
moment p which is responsible for the orientational, static dielectric
function is in satisfactory agreement with the plasma charge z derived
herein.

On the basis of this model we are able to understand to some extent,
both qualitatively and in some places even quantitatively, the sound
anomaly, the dielectric function (permitivity dispersion), the structure
factor, cohesion and thermodynamics of water. The model is extended
to a multi-component classical plasma, including an asymmetric short-
range interaction between the components, which might be relevant
for more complex structural aggregates like those in biological matter.

16.14 Molecular mixtures

We compute here the excitation spectrum of the density collective os-
cillations for multi-component molecular mixtures both with Coulomb
and (repulsive) short-range interactions. Distinct sound-like exci-
tations appear, governed by the short-range interaction, which dif-
fer from the ordinary hydrodynamic sound. The dielectric function
and the structure factor are also calculated. The "two-sounds phe-
nomenon" can be understood by means of the predictions of this
model.9

The "two-sounds anomaly" is persistently reported over the years in

9M. Apostol, "Dynamics of collective density modes in multi-component molec-
ular mixtures", Phys. Chem. Liq. 47 35 (2009).
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16 Density Oscillations in Water

water, either in normal conditions or undercooled, as well as in other
liquid molecular mixtures. Inelastic neutron, X-ray, Brillouin and,
more recently, ultraviolet scattering, either in ordinary or in heavy
water, seem to indicate an additional, faster, higher-frequency sound,
propagating with velocity 
 3000m/s up to intermediate wavevec-
tors (mean inter-molecular distance in water is 
 3Å), besides the
ordinary hydrodynamic sound propagating with velocity 
 1500m/s.
A dispersionless mode (
 1013s−1) was also reported sometimes (as
well as no additional sound). The phenomenon is also documented
both by simulations of molecular dynamics and experimental data in
binary mixtures with large mass difference (metallic alloys, rare-gas
mixtures).

We show herein that such a "two-sounds anomaly" may appear in
interacting molecular systems with (repulsive) short-range interaction.
Such a model could reasonably be related to liquid water (or other
physical systems as those indicated above). The velocity of the sound-
like excitations is independent of temperature, in contrast with the
velocity of the hydrodynamic sound which is governed by the adiabatic
compressibility, and thus temperature-dependent. In addition, the
plasma-like branch of the spectrum due to the Coulomb interaction
may appear as another sound-like mode for shorter wavelengths and
weak Coulomb coupling. We report here also the computation of the
dielectric function and the structure factor within such a model.

We start with the well-known representation of the particle density

n(r) =
∑
i

δ(r− ri) =
1

V

∑
q

eiqr
∑
i

e−iqri (16.60)

for a collection of N particles enclosed in volume V , where ri denotes
the position of the i-th particle. We consider a small displacement
ri → ri + u(ri) in these positions, as given by a displacement field
u(ri), such that the particle density becomes

ñ(r) = 1
V

∑
q e

iqr
∑

i e
−iq[ri+u(ri)] =

= 1
V

∑
q e

iqr
∑

i e
−iqri [1− iqu(ri) + ...]

(16.61)
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16 Density Oscillations in Water

for qu(ri)	 1. Now we employ a Fourier representation

u(ri) =
1√
N

∑
q

u(q)eiqri (16.62)

as well as the well-known random-phase approximation∑
i

ei(q−q′)ri = Nδq,q′ (16.63)

to get

ñ(r) = n− in
1√
N

∑
q

eiqrqu(q) , (16.64)

where n = N/V is the particle density. By comparing equations
(16.60) and (16.64), we can see that the small change in the density
can be represented as

ñ(r) − n = δn(r) = −ndivu(r) , (16.65)

and its Fourier transform δn(q) = −inqu(q).
We apply this displacement-field approach to a multi-component molec-
ular mixture consisting of several species labelled by i, each with Ni

particles in volume V , mass mi and electric charge ezi, where −e is
the electron charge and zi is a reduced effective charge, interacting
through Coulomb potentials ϕij and short range potentials χij . The
mixture is subjected to the neutrality condition

∑
i nizi = 0, where

ni = Ni/V is the particle density of the i-th species. We consider ele-
mentary excitations of the particle density, whose interaction energy
is given by

U =
1

2

∑
ij

ˆ
drdr′ [ϕij(r− r′) + χij(r− r′)] δni(r)δnj(r

′) , (16.66)

where ϕij = e2zizj/ |r− r′| and δni(r) denotes a small density distur-
bance which preserves the neutrality. According to equation (16.65)
it can be represented as δni = −nidivui, where ui is the displacement
field. We use the Fourier transforms

δni(r) =
1√
N

∑
q

δni(q)e
iqr , ϕ(r) =

1

V

∑
q

ϕ(q)eiqr , (16.67)
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16 Density Oscillations in Water

where N =
∑

iNi is the total number of particles, ϕ(r) = e2/r and
ϕ(q) = ϕ(q) = 4πe2/q2. A similar Fourier transform is employed for
the displacement field ui, which leads to δni(q) = −iniqui(q). We
can see that only the longitudinal components ui(q) of the displace-
ment field are relevant, so we may write ui(q) = (q/q)ui(q), δni(q) =
−iqui(q), with δn∗i (−q)=δni(q), u∗i (−q) = ui(q) and u∗i (−q) =
−ui(q). Making use of the Fourier transforms introduced above, the
interaction U given by equation (16.66) can be written as

U = − 1

2n

∑
ijq

ninjq
2 [ϕij(q) + χij(q)]ui(q)uj(−q) , (16.68)

where ϕij(q) = zizjϕ(q) and n = N/V is the total density of parti-
cles. We assume a weak q-dependence of χij(q), as for short-range
potentials.

Similarly, the kinetic energy associated with the coordinates ui is given
by

T = − 1

2n

∑
iq

miniu̇i(q)u̇i(−q) . (16.69)

In addition, we introduce an external field φ(r), coupled to the elec-
trical charges, which gives rise to the interaction

V = −i e
n

∑
iq

niziqφ(q)ui(−q) . (16.70)

The equations of motion corresponding to the lagrangian L = T −
U − V are given by

miüi + 4πe2zi
∑
j

zjnjuj + q2
∑
j

χijnjuj = −iqeziφ , (16.71)

where we dropped out the argument q in ui(q) and φ(q) and neglect
the weak q-dependence of χij(q) = χij . In order to simplify these
equations we take the same (repulsive) short-range potentials for all
species, χij = χ > 0, and analyze first the homogeneous system of
equations (16.71). We introduce the notations a = 4πe2, b = q2χ,

S1 =
∑
i

z2i ni

mi
, S2 =

∑
i

ni

mi
, S3 =

∑
i

zini

mi
, (16.72)
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and
x =

1

n

∑
i

ziniui , y =
1

n

∑
i

niui . (16.73)

Making use of these notations, the homogeneous system of equations
(16.71) can be written as(−ω2 + aS1

)
x+ bS3y = 0 ,

aS3x+
(−ω2 + bS2

)
y = 0 .

(16.74)

In addition, we have

ω2ui =
anzi
mi

x+
bn

mi
y . (16.75)

The spectrum of frequencies ω of the system of equations (16.74) can
be obtained straightforwardly. It is given by

ω2
1,2 =

1

2

[
aS1 + bS2 ±

√
a2S2

1 + 2ab (2S2
3 − S1S2) + b2S2

2

]
.

(16.76)

The ω1-branch in equation (16.76) (corresponding to the plus sign)
represents the plasmonic excitations. In the long wavelength limit it
reads

ω2
1 = aS1 + bS2

3/S1 = ω2
p + bS2

3/S1 , q → 0 , (16.77)

where ωp, given by

ω2
p = aS1 = 4πe2

∑
i

z2i ni

mi
, (16.78)

is the plasma frequency. For shorter wavelengths the ω1-branch ap-
proaches an asymptote given by

ω2
1 
 bS2 + aS2

3/S2 , q →∞. (16.79)

The ω2-branch in equation (16.76) (corresponding to the minus sign)
represents sound-like excitations. In the long wavelength limit it is
given by

ω2
2 =

(
S2 − S2

3/S1

)
b = v2sq

2 , q → 0 , (16.80)
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16 Density Oscillations in Water

where
vs =

√
(S2 − S2

3/S1)χ (16.81)

is the corresponding sound velocity. We can see easily, by applying
the Schwarz-Cauchy inequality to the vectors ai =

√
ni/mi and bi =

zi
√
ni/mi, that v2s is always positive ((S2 − S2

3/S1) ≥ 0). For shorter
wavelengths the ω2-branch of the spectrum approaches an horizontal
asymptote given by

ω2
2 


(
1− S2

3/S1S2

)
ω2
p , q →∞ . (16.82)

In the limit of vanishing Coulomb coupling (a→ 0) the sound-branch
of the spectrum becomes ω2

2 = bS2 = v2sq
2, where

v2s = χS2 = χ
∑
i

(ni/mi) , (16.83)

an expression which holds also for the same mass mi = m for all
particles (one component), due to the neutrality condition (S3 = 0).

The above elementary excitations, which are governed by interac-
tion, are non-equilibrium collective modes which might be termed
density "kinetic" modes. The sound-like excitations (ω2-branch in
equation (16.76)) may be called "densitons", in order to distinguish
them from plasmons (ω1-branch in equation (16.76)) and from the or-
dinary sound. They may correspond to the density collective modes
suggested by Zwanzig for classical liquids.10 We emphasize that these
sound-like excitations are distinct from the ordinary hydrodynamic
sound. It is also worth noting that the densitons have the same origin
as the superfluid sound modes.

Indeed, the interaction corresponding to the latter can be written as

U =
1

2κ

ˆ
dr [divu(r)]

2
= − 1

2κn

∑
q

q2u(q)u(−q) , (16.84)

where κ = −(1/V )(∂V/∂p)S is the adiabatic compressibility (p de-
notes the pressure and S stands for entropy). The above equation is

10R. Zwanzig, "Elementary excitations in classical liquids", Phys. Rev. 156 190
(1967).
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16 Density Oscillations in Water

derived by making use of the change δV = −V (δn/n) = V divu in
volume. We emphasize that for thermodynamic equilibrium we have
only one displacement field u(r). Equation (16.84) together with the
kinetic energy given by equation (16.69) for ui(q) = u(q) lead to
the sound branch ω2

0 = v20q
2, corresponding to the ordinary sound

propagating with a velocity v0 given by

v20 =

(
κ
∑
i

nimi

)−1

. (16.85)

For mi = m (one component) the above equation gives the well-known
velocity v0 = 1/

√
κnm of the ordinary sound. As it is well-known, it

has a slight temperature dependence, through the compressibility, in
contrast with the velocity vs given above for the sound-like excitations.
For an electrically neutral multi-component mixture it can be shown
easily that v2s/v

2
0 ≥ n2χκ.

If we apply equations (16.83) and (16.85) to both ordinary and heavy
water (one component, neutral molecule), and assume that interaction
χ and the compressibility κ are the same for the two kinds of water,
we can see that the two sound velocities vs and v0 exhibit a slight
isotopic effect, while their ratio vs/v0 = n

√
χκ does not exhibit such

an isotopic effect, in agreement with experimental data. In this case
we may take v0 = 1500m/s and vs = 3000m/s from experimental
data and get the interaction parameter χ 
 60eV · Å3

(for a mean
inter-molecular spacing 
 3Å) . A similar picture, given by equations
(16.83) and (16.85), may apply to rare-gas mixtures, while for metallic
alloys the Coulomb coupling must be taken into account (and equation
(16.81) employed).

If we assume the existence of a dispersionless mode in water, then we
may consider that water molecule is dissociated to some extent, and
its components have an electric charge, such that the plasmonic mode
given by equation (16.78) can be identified with such a dispersionless
mode. Various models of dissociation of the water molecule are known,
like OH− − H+ or OH− − H3O

+. In all cases a certain mobility
of the H+ (hydrogen) cations and O− (oxygen) anions is implied.
We assume here that the dynamics of liquid water has a plasma-
like component consisting of H+z cations with density 2n and mass
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16 Density Oscillations in Water

m (proton mass) and O−2z anions with density n and mass M =
16m, where n is the density of water. The excitation spectrum given
by equations (16.76) for such an O−2z − H+z plasma is shown in
Fig. 16.1. Taking ω = 1013s−1(
 5meV ) of the dispersionless mode
as the plasma frequency ωp given by ω2

p = 16πne2z2/μ (equation
(16.78)), where μ = 2mM/(M + 2m) is the reduced mass, we get
z 
 3 × 10−2. The velocity of the hydrodynamic sound is given by
v0 = 1/

√
κn(M + 2m) according to equation (16.85) and the velocity

of the sound-like excitations is given by vs =
√
9nχ/(M + 2m) from

equation (16.81). We can see that both velocities exhibit an isotopic
effect, but their ratio vs/v0 = 3n

√
χκ does not, in agreement with the

experimental data. From vs = 3000m/s we derive the interaction χ 

7eV ·Å3

. Similar results are obtained for other forms of dissociation,
like OH− −H+ or OH− −H3O

+. In this respect, the O−2z −H+z

plasma model can be viewed as an average, effective model for various
plasma components that may exist in water.

According to equation (16.79), for shorter wavelengths the ω1-branch
approaches an asymptote given by ω2

1 ∼ bS2+aS2
3/S2. In the limit of

weak Coulomb coupling this ω1-branch may appear as an "anomalous"
sound given by

ωa =
√
bS2 = vaq , (16.86)

propagating with velocity

va =
√
S2χ =

1√
1− S2

3/S1S2

vs (16.87)

(which is always a positive quantity). This additional, anomalous
sound is always faster than the sound-like excitations propagating
with velocity vs, since

va
vs

=
1√

1− S2
3/S1S2

> 1 . (16.88)

It is worth noting that the molecular dynamics studies which origi-
nally predicted such a fast, anomalous sound11 employed, indeed, a

11A. Rahman and F. H. Stillinger, "Propagation of sound in water. A molecular-
dynamics study", Phys. Rev. A10 368 (1974).
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16 Density Oscillations in Water

Coulomb interaction and a short-range one. We note, however, that
the velocity va as given by equation (16.87) does not depend on the
Coulomb coupling. In the plasma model for water discussed above
the ratio va/v0 is approximately 2 (
 √

2M/9m+ 5/9), but it ex-
hibits an isotopic effect, which does not seem to be supported by the
experimental data.

It is easy to derive the dielectric function in the limit of long wave-
lengths from equation (16.71). Indeed, for charged particles equation
δni = −nidivui is equivalent with Maxwell equation divEi = 4πqiδni,
where the electric field is given by Ei = −4πqiniui and qi = ezi is the
electric charge of the i-th species. It follows that the internal field is
given by

Eint = −4πe
∑
i

ziniui . (16.89)

We get easily this field from equations (16.71),

Eint = −iqφ
ω2
p

ω2 − ω2
p

(16.90)

in the long wavelength limit (it is proportional to x given by equation
(16.73)). The dielectric function is defined by D = εE = ε(D+Eint),
where D = −iqφ is the external field (electric displacement). We get
the plasma dielectric function

ε = 1− ω2
p/ω

2 , (16.91)

as expected. It exhibits an absorption edge (ωp) for very low frequen-
cies. In the static limit it is reasonable to admit the existence of an
additional internal field of intrinsic polarizability which removes the
ω = 0 singularity.

We pass now to the calculation of the structure factor. From equa-
tion (16.75) we can see that the displacement ui is a superposition of
the two eigenvectors of the system of equations (16.74), which oscil-
late with eigenfrequencies ω1,2. It follows that these coordinates are
those of linear harmonic oscillators with the potential energy of the
form miω

2u2
i /2. The statistical distribution of the coordinates ui in

the classical limit is given by dw ∼ exp(−miω
2u2

i /2T )dui, where T
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16 Density Oscillations in Water

denotes the temperature. We get the thermal averages

〈uiuj〉 = T

miω2
δij . (16.92)

On the other hand the structure factor defined by

S(q, ω) = 1
2π

´
drdr′dt 〈δn(r, t)δn(r′, 0)〉 eiq(r−r′)−iωt =

= N
2πn2

´
dt 〈δn(q, t)δn(−q, 0)〉 e−iωt

(16.93)

(we leave aside the central peak) can be written as

S(q, ω) =
Nq2

2πn2

ˆ
dt
∑
ij

ninj 〈ui(t)uj(0)〉 e−iωt . (16.94)

Writing
ui = u

(1)
i eiω1t + u

(2)
i eiω2t (16.95)

and making use of equation (16.92) we get the structure factor

S(q, ω) = NTq2
(∑

i n
2
i /n

2mi

) ·
·
[

1
ω2

1

δ(ω − ω1) +
1
ω2

2

δ(ω − ω2)
]
.

(16.96)

We can see that the relevant sound contributions read

S(q, ω) 
 NT

v2s,a

(∑
i

n2
i /n

2mi

)
δ(ω − vs,aq) . (16.97)

The relaxation and damping effects can be included in the above ex-
pressions of the structure factor. As it is well-known, they amount to
representing the δ-functions by lorentzians.

The short-range interaction χ can be generalized to an interaction
matrix χij with distinct elements for each pair of species. In this
case, the excitation spectrum of the density oscillations may exhibit,
in general, multiple branches, for a multi-component mixture. In ad-
dition, it may have special features, like a dip in the plasmonic branch,
or negative velocity for the sound-like excitations, which may indicate
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16 Density Oscillations in Water

either an anomalous behaviour or unphysical situations, depending on
the mutual magnitudes of the short-range potentials χij .

Now it is worthwhile commenting upon the validity of the approach
presented above. If we keep higher-order terms in the expansion given
by equation (16.61) (i.e. for moderate values of qui), then additional
interactions appear in equation (16.68), which lead to finite lifetimes
for the density excitations. This means that for larger wavevectors
q these excitations are not anymore well-defined excitations, as ex-
pected. Making use of equation (16.92) we can estimate the mean
product qui for the sound-like branch as qui ∼

√
T/miv2s , where

the velocity vs is given by equation (16.81). This gives rather small
values for qui. For instance, for water we get qu ∼ 0.5 (at room tem-
perature), which shows that the wavevector q may take reasonable
large values providing the displacement u is sufficiently small. For the
plasmonic branch, the condition qui 	 1 gives a cutoff wavevector

qic 

√
miω2

p/T for large ωp; for small values of the plasma frequency

the condition becomes qui ∼
√
T/miv2a 	 1.

Another source of finite lifetime for the density excitations arises from
the kinetic term. Indeed, under the displacement rik → rik +ui(rik),
where rik is the position of the k-th particle in the i-th species, a
mixed term

Hint =
∑
ik

miviku̇i(rik) (16.98)

appears in the kinetic term, where vik = ṙik is the velocity of the
ik-particle. It is easy to get an upper bound for this term, by using
the Schwarz-Cauchy inequality. It is given by N

〈
miv

2
ik

〉1/2 〈
miu̇

2
i

〉1/2
or, by making use of equation (16.92),

√
εT per particle, where ε rep-

resents the mean kinetic energy (which depends on temperature, in
principle). This estimation can be taken as an uncertainty in energy,
leading to a lifetime τ 
 �/

√
εT and a corresponding mean freepath

Λ = vsτ for the sound-like excitations. For wavelengths λ much longer
than the mean freepath, i.e. for wavevectors q such as q 	 1/vsτ we
are in the collision-like regime (ω2τ 	 1), and the collisions can es-
tablish the thermodynamic equilibrium (hydrodynamic regime). In
this case the ordinary sound can be propagated (with velocity v0).
For q � 1/vsτ we are in the collisionless regime, the ordinary sound
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16 Density Oscillations in Water

is absorbed, and the non-equilibrium sound-like excitations ("den-
sitons") can be propagated (with velocity vs). Unfortunately, it is
difficult to have a reliable estimation of the energy ε, and so of the
threshold wavevector qt = 1/vsτ =

√
εT/�vs. For ε = 10meV (and

vs = 3000m/s, T = 300K) we get qt 
 0.1Å
−1

, which is in a rea-
sonable order-of-magnitude agreement with the experimental data.
It is interesting to note that if we apply this estimation to weakly-
interacting gases, where we may take ε ∼ T , we get a high value
of the threshold wavevector qt ∼ T/�vs, since vs is very small (the
short-range interaction is weak). We may say that in gases there is
very unlikely to exist sound-like excitations; it is only the ordinary
sound that exists. On the contrary, the collision-like regime is quite
unlikely in ordinary solids, so we have there sound-like excitations and
to a much lesser extent ordinary sound.

Finally, we note that the collective excitations derived above con-
tribute to the thermodynamics of liquids. Indeed, the free energy can
be written as

F = F0 + F1 + F2 = F0 + T
∑

q ln
(
1− e−�ω1/T

)
+

+T
∑

q ln
(
1− e−�ω2/T

)
,

(16.99)

where F0 is the free energy associated with the particle movements
and ω1,2 are given by equation (16.76). The evaluation of integrals
in equation (16.99) depends on the particular magnitude of the ex-
citation spectrum, but usually the integrals are rapidly convergent
and their contribution to the thermodynamic properties of the liquid
is small. For instance, the sound-like contribution is approximately
given by F2 
 −π2V T (T/�vs)

3/90, which is indeed a small correction
to F0 (the latter being governed mainly by the liquid cohesion).

In conclusion, we have shown that sound-like excitations may appear
in interacting molecular systems, controlled by short-range interac-
tions, distinct from the ordinary hydrodynamic sound. The former are
non-equilibrium excitations, while the latter appear through equilib-
rium, adiabatic processes. The velocity vs of the sound-like excitations
is independent of temperature, while the velocity v0 of the ordinary
sound depends on temperature, through the adiabatic compressibility.
In order to distinguish them we propose to call the former "kinetic"
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16 Density Oscillations in Water

modes of particle density, or "densitons". In addition, in the presence
of Coulomb interaction, the well-known plasmonic branch is present in
the spectrum of the density excitations, which, for shorter wavelengths
and weak Coulomb coupling may look like another, anomalous, fast
sound. We have shown that the "two-sounds anomaly" reported in
liquids like water, rare-gas mixtures, metallic alloys, etc, and docu-
mented by molecular dynamics studies, can be understood on this
basis.
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A

acoustic attenuation, 313
ambipolar diffusion, 90
Andreev reflection, 326
anharmonic solids, 166
anomalous sound, 403, 414
approach to equilibrium, 46

B

barometric formula, 37
Boltzmann equation, 26
Boltzmann, H-theorem, 20
Bose-Einstein condensation, 337
Brownian motion, 71

C

charge carriers, lifetime, 279
charge pulse, 363
classical plasma, 111
coherence length, 322
collective excitations, 50
collision integral, 29
contact potential, 235
Cooper pair, 307
critical temperature, 310
cyclotron frequency, 248

D

de Haas-van Alphen effect, 264
Debye screening, 119
densitons, 403, 418

diamagnetic susceptibility, 220
dielectric function of water, 400
diffusion, 63
diffusion equation, 73, 85
dimensionality, 172, 202, 250

E

effective electron mass, 216
effective mass, 194
Einstein kinetic equation, 78, 361
Einstein, temporal ensembles, 23
electrical conduction, 88
electrical conductivity, 130, 227
electrocapillarity, 236
electrodiffusion, 244
electrolysis, 246
electrolytes, 91
electron magnetism, 259
electron tunneling, 316
electronic excitations, 215
electronic thermoconductivity, 222
electron-ion coupling, 116
electron-phonon, 171, 290
electron-phonon lifetime, 297, 302
electrophoresis, 93
elementary excitations, 180
entropy, 11
Ewald-Oseen theorem, 132

F

fermion thermodynamics, 201
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Fick’s law, 72
figure of merit, 357
fluctuations, 11, 78
fluctuations in liquids, 389
flux quantization, 250, 322
flying pulses, 371

G

galvanic cell, 236
gap equation, 309
gaseous plasma, 96
Gibbs distribution, 22
Ginsburg-Landau theory, 319

H

Hall effect, 232, 242, 268
Hartree-Fock approximation, 188
heat, 13
heat pulse, 363
helium four, 338
helium three, 175

I

interaction, 185
interaction corrections, 48
interaction, lifetime, 296
ionization, 104
ionized gases, 87

J

Josephson current, 317

K

kinetic coefficients, 68
kinetic modes, 418
kinetic solution, 33

L

Landau damping, 40, 137

Landau diamagnetism, 259
Landau levels, 249
Landau’s f -function, 193
lateral conductivities, 271
law of increase of entropy, 11
Leduc-Righi effect, 242, 272
lifetime series, 18
Liouville’s theorem, 19
liquid plasma, 125
liquids, condensation, 385
liquids, equation of state, 382
local vibrations, 379
Lorenz number, 227

M

magnetic oscillations, 265
magnetic transport, 272, 286
magnetism, 254
magneto-resistance, 270, 287
Maxwell, probability, 20
Meissner effect, 320
metallic cohesion, 209
metals, 213
microwave absorption, 314
molecular chaos, 11
molecular fluctuations, 81
molecular-kinetic theory, 18

N

Navier-Cauchy, 59
Navier-Stokes, 58
Nernst-Ettingshausen, 242, 272
non-equilibrium transport, 303
non-ideal gas, 55

O

Onsager relations, 230
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P

paramagnetism, 199
Pauli paramagnetism, 199
Peltier effect, 239, 356
phonon gas, 156
phonon kinetic equation, 161
phonon lifetime, 158, 167
phonon-electron lifetime, 299
phonon-mediated pairing, 330
phonons, 152
plasma isotherms, 123
plasma, Boltzmann equation, 135
plasma, external field, 141
plasma, oscillations, 138
plasma, penetration length, 144
plasma, phase diagram, 126
plasma, stability, 114
plasmons, 218
polaritons, 132
polarizability, 220
principle of equilibrium, 8
pulse thermoelectricity, 370

Q

quantum-mechanical diffusion, 84
quasiparticles, 177, 309

R

random phase approximation, 192
Reynolds, 58
roton energy, 350
rotons, 340

S

Saha equation, 97
second sound, 162
Seebeck effect, 239, 356
semiconductors, 278

semiconductors, transport, 282
solid plasma, 125
solid, thermoconductivity, 163
sound, 59
sound absorption, 301
sound anomaly, 403
sound quantum, 349
spectrum of liquids, 379
spin relaxation, 315
statistical distribution, 9
statistical motion, 7
structure factor of water, 409
superfluid sound, 339
superfluid structure factor, 345
superfluid vortices, 340
superfluid vorticity, 346
superfluidity, 339
surface plasmons, 133

T

temperature change, 46
temperature waves, 168
thermalization, 35
thermoconduction, 170
thermoconductivity, 62
thermoconductivity of liquids, 388
thermodiffusion, 75
thermodynamic potentials, 13
thermoelectricity, 238, 354
thermomagnetoelectricity, 242, 286
thermopower, 66, 225, 282
Thomas-Fermi theory, 207
Thomson effect, 239, 356
transport equation, 64

U

ultrasound attenuation, 300
uni-polar currents, 133
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V

van der Waals equation, 54
velocity renormalization, 294
viscosity, 62
viscosity of liquids, 390
vortex gap, 350

W

water, terrahertz absorption, 398

Z

zero sound, 197
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