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Anelectrocardiogram(ECG)isusedasoneoftheimportantdiagnostictoolsforthedetectionofthe
healthofaheart.Anautomaticheartabnormalityidentificationmethodssensenumerousabnormalities
orarrhythmiaanddecreasethephysician’spressureaswellassharetheirworkload.InECGanalysis,
themainfocusistoenhancedegreeofaccuracyandincludeanumberofheartdiseasesthatcanbe
classified.Inthischapter,arrhythmiaclassificationisproposedusinghybridfeaturesofT-waveinECG.
Theclassificationsystemconsistsofmajorlythreephases,windowingtechnique,featureextraction,and
classification.Thisclassifiercategorizesthenormalandabnormalsignalsefficiently.Theexperimental
analysisshowedthatthehybridfeaturesarrhythmiaclassificationperformanceofaccuracyapproximately
98.3%,specificity98.0%,andsensitivity98.6%usingMIT-BIHdatabase.
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Artificialintelligence(AI)isgoingthroughitsgoldenera.MostAIapplicationsareindeedusingmachine
learning,anditcurrentlyrepresentsthemostpromisingpathtostrongAI.Ontheotherhand,deeplearning,
whichisitselfakindofmachinelearning,isbecomingmoreandmorepopularandsuccessfulatdifferent
usecasesandisatthepeakofdevelopmentsbyenablingmoreaccurateforecastingandbetterplanning
forcivilsociety,policymakers,andbusinesses.Asaresult,deeplearningisbecomingaleaderinthis
domain.Thischapterpresentsabriefreviewofground-breakingadvancesindeeplearningapplications.
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Wellplacementoptimizationisoneofthemajorchallengingfactorsinthefielddevelopmentprocessin
theoilandgasindustry.Thischapteraimstosurveyprominentmetaheuristictechniques,whichsolve
welltheplacementoptimizationproblem.Thewellplacementoptimizationproblemisconsideredashigh
dimensional,discontinuous,andmulti-modeloptimizationproblem.Moreover,thecomputationalexpenses
furthercomplicatetheissue.Overthelastdecade,bothgradient-basedandgradient-freeoptimization
methodswereimplemented.Gradient-freeoptimization,suchastheparticleswarmoptimization,genetic
algorithm,isimplementedinthisarea.Theseoptimizationtechniquesareutilizedasstandaloneoras
thehybridizationofoptimizationmethodstomaximizetheeconomicfactors.Inthischapter,theauthors
surveythetwomostpopularnature-inspiredmetaheuristicoptimizationtechniquesandtheirapplication
tomaximizetheeconomicfactors.

Chapter 4
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Md. Shokor A. Rahaman, Universiti Teknologi PETRONAS, Malaysia
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Total organic carbon (TOC) is the most significant factor for shale oil and gas exploration and
developmentwhichcanbeusedtoevaluatethehydrocarbongenerationpotentialofsourcerock.However,
estimatingTOCisachallengeforthegeologicalengineersbecausedirectmeasurementsofcoreanalysis
geochemicalexperimentsaretime-consumingandcostly.Therefore,manyAItechniquehasusedfor
TOCcontentpredictionintheshalereservoirwhereAItechniqueshaveimpactedpositively.Having
bothstrengthandweakness,someofthemcanexecutequicklyandhandlehighdimensionaldatawhile
othershavelimitationforhandlingtheuncertainty,learningdifficulties,andunabletodealwithhighor
lowdimensionaldatasetswhichremindsthe“nofreelunch”theoremwhereithasbeenproventhatno
techniqueorsystemberelevanttoallissuesinallcircumstances.So,investigatingthecutting-edgeAI
techniquesisthecontributionofthisstudyastheresultinganalysisgivestoptobottomunderstanding
ofthedifferentTOCcontentpredictionstrategies.
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TheGenZkidshighlyrelyoninternetforvariouspurposeslikeentertainment,sports,andschoolprojects.
Thereisademandforparentalcontrolsystemstomonitorthechildrenduringtheirsurfingtime.Current
webpageclassificationapproachesarenoteffectiveashandcraftedfeaturesareextractedfromtheweb
contentandmachinelearningtechniquesareusedthatneeddomainknowledge.Hence,adeeplearning
approachisproposedtoperformURL-basedwebpageclassification.AstheURLisashorttext,the
modelshouldlearntounderstandwheretheimportantinformationispresentintheURL.Theproposed
systemintegratesthestrengthofattentionmechanismwithrecurrentconvolutionalneuralnetworkfor
effectivelearningofcontext-awareURLfeatures.Thisenhancedarchitectureimprovesthedesignof
kids-relevantURLclassification.ByconductingvariousexperimentsonthebenchmarkcollectionOpen
DirectoryProject,itisshownthatanaccuracyof0.8251wasachieved.

Chapter 6
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Diabeticretinopathy(DR),whichaffectsthebloodvesselsofthehumanretina,isconsideredtobethe
mostseriouscomplicationprevalentamongdiabeticpatients.Ifdetectedsuccessfullyatanearlystage,
theophthalmologistwouldbeable to treat thepatientsbyadvanced laser treatment toprevent total
blindness.Inthisstudy,atechniquebasedonmorphologicalimageprocessingandfuzzylogictodetect
hardexudatesfromDRretinalimagesisexplored.Theproposedtechniqueistoclassifytheeyebyusing
aneuralnetworkapproach(classifier)topredictwhetheritisaffectedornot.Here,aclassifierisadded
beforethefuzzylogic.Thisfuzzywilltellhowmuchandwhereitisaffected.Theproposedtechnique
willtellwhethertheeyeisabnormalornormal.
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Applyingdeeplearningtothepervasivegraphdataissignificantbecauseoftheuniquecharacteristicsof
graphs.Recently,substantialamountsofresearcheffortshavebeenkeenonthisarea,greatlyadvancing
graph-analyzingtechniques.Inthisstudy,theauthorscomprehensivelyreviewdifferentkindsofdeep
learningmethodsappliedtographs.Theydiscusswithexistingliteratureintosub-componentsoftwo:
graphconvolutionalnetworks,graphautoencoders,andrecenttrendsincludingchemoinformaticsresearch
area including molecular fingerprints and drug discovery. They further experiment with variational
autoencoder (VAE) analyzehow these apply indrug target interaction (DTI) and applicationswith
ephemeraloutlineonhowtheyassistthedrugdiscoverypipelineanddiscusspotentialresearchdirections.
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Multimediaapplicationisasignificantandgrowingresearchareabecauseoftheadvancesintechnology
ofsoftwareengineering,storagedevices,networks,anddisplaydevices.Withtheintentionofsatisfying
multimedia informationdesiresofusers, it is essential tobuild an efficientmultimedia information
process,access,andanalysisapplications,whichmaintainvarioustasks,likeretrieval,recommendation,
search,classification,andclustering.Deeplearningisanemergingtechniqueinthesphereofmultimedia
informationprocess,whichsolvesboththecrisisofconventionalandrecentresearches.Themainaim
istoresolvethemultimedia-relatedproblemsbytheuseofdeeplearning.Thedeeplearningrevolution
isdiscussedwiththedepictionandfeature.Finally,themajorapplicationalsoexplainedwithrespectto
differentfields.Thischapteranalyzesthecrisisofretrievalafterprovidingthesuccessfuldiscussionof
multimediainformationretrievalthatistheabilityofretrievinganobjectofeverymultimedia.
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Constructionofaneuralnetworkisthecardinalsteptoanymachinelearningalgorithm.Itrequiresprofound
knowledgeforthedeveloperinassigningtheweightsandbiasestoconstructit.Andtheconstruction
shouldbedoneformultipleepochstoobtainanoptimalneuralnetwork.Thismakesitcumbersomefor
aninexperiencedmachinelearningaspiranttodevelopitwithease.So,anautomatedneuralnetwork
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constructionwouldbeofgreatuseandprovidethedeveloperwithincrediblespeedtoprogramandrun
themachinelearningalgorithm.Thisisacrucialassistfromthedeveloper’sperspective.Thedeveloper
cannowfocusonlyonthelogicalportionofthealgorithmandhenceincreaseproductivity.Theuse
ofEnasalgorithmaidsinperformingtheautomatedtransferlearningtoconstructthecompleteneural
networkfromthegivensampledata.Thisalgorithmproliferatesontheincomingdata.Hence,itisvery
importanttoinculcateitwiththeexistingmachinelearningalgorithms.
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Naturaldataeruptingdirectlyoutofvariousdatasources,suchastext,image,video,audio,andsensor
data,comeswithaninherentpropertyofhavingverylargedimensionsorfeaturesofthedata.While
thesefeaturesaddrichnessandperspectivestothedata,duetosparsityassociatedwiththem,itaddsto
thecomputationalcomplexitywhilelearning,unabletovisualizeandinterpretthem,thusrequiringlarge
scalecomputationalpowertomakeinsightsoutofit.Thisisfamouslycalled“curseofdimensionality.”
Thischapterdiscussesthemethodsbywhichcurseofdimensionalityiscuredusingconventionalmethods
andanalyzesitsperformanceforgivencomplexdatasets.Italsodiscussestheadvantagesofnonlinear
methodsoverlinearmethodsandneuralnetworks,whichcouldbeabetterapproachwhencompared
toothernonlinearmethods.Italsodiscussesfutureresearchareassuchasapplicationofdeeplearning
techniques,whichcanbeappliedasacureforthiscurse.
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Theengenderingofuncertaindatainordinaryaccessnewssources,forexample,newssites,web-based
lifechannels,andonlinepapers,havemadeittryingtorecognizecapablenewssources,alongtheselines
expandingtherequirementforcomputationalinstrumentsreadytogiveintotheunwaveringqualityof
onlinesubstance.Forinstance,counterfeitnewsoutletswereobservedtobeboundtoutilizelanguage
thatisabstractandenthusiastic.AtthepointwhenspecialistsarechippingawayatbuildingupanAI-
basedapparatusfor identifyingcounterfeitnews, therewasn’tsufficient information toprepare their
calculations;theydidthemainbalancedthing.Inthischapter,twonoveldatasetsfortheundertaking
ofphonynewslocations,coveringdistinctivenewsareas,distinguishingproofofphonysubstancein
onlinenewshasbeenconsidered.N-grammodelwilldistinguishphonysubstanceconsequentlywithan
emphasisonphonyauditsandphonynews.Thiswaspursuedbyalotoflearninganalysestofabricate
precisephonynewsidentifiersandshowedcorrectnessofupto80%.

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use





Chapter 12
HeuristicOptimizationAlgorithmsforPowerSystemSchedulingApplications:Multi-Objective
GenerationSchedulingWithPSO....................................................................................................... 178

Anongpun Man-Im, Asian Institute of Technology, Thailand
Weerakorn Ongsakul, Asian Institute of Technology, Thailand
Nimal Madhu M., Asian Institute of Technology, Thailand

Power system scheduling is one of the most complex multi-objective scheduling problems, and a
heuristicoptimizationmethod is designed forfinding theOPF solution.Stochasticweight trade-off
chaotic mutation-based non-dominated sorting particle swarm optimization algorithm can improve
solution-search-capabilitybybalancingbetweenglobalbestexplorationandlocalbestutilizationthrough
thestochasticweightanddynamiccoefficienttrade-offmethods.Thisalgorithmwithchaoticmutation
enhancesdiversityandsearch-capability,preventingprematureconvergence.Non-dominatedsorting
andcrowdingdistancetechniquesefficientlyprovidetheoptimalParetofront.Fuzzyfunctionisusedto
selectthelocalbestcompromise.Usingatwo-stageapproach,theglobalbestsolutionisselectedfrom
manylocaltrials.Thediscussedapproachcanschedulethegeneratorsinthesystemseffectively,leading
tosavingsinfuelcost,reductioninactivepowerlossandbettermentinvoltagestability.

Chapter 13
MultiobjectiveOptimizationofaBiofuelSupplyChainUsingRandomMatrixGenerators............ 206

Timothy Ganesan, Royal Bank of Canada, Canada
Pandian Vasant, Universiti Teknologi PETRONAS, Malaysia
Igor Litvinchev, Nuevo Leon State University, Mexico

Asindustrialsystemsbecomemorecomplex,variouscomplexitiesanduncertaintiescomeintoplay.
Metaheuristic-typeoptimizationtechniqueshavebecomecrucialforeffectivedesign,maintenance,and
operationsofsuchsystems.However,inhighlycomplexindustrialsystems,conventionalmetaheuristics
arestillplaguedbyvariousdrawbacks.Strategiessuchashybridizationandalgorithmicmodifications
havebeenthefocusofpreviouseffortstoimprovetheperformanceofconventionalmetaheuristics.This
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scaleandcomplexityoftheproblem,therandommatrixapproachwasemployedtomodifythestochastic
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Deeplearningopensupaplethoraofopportunitiesforacademiaandindustrytoinventnewtechniques
tocomeupwithmodifiedorenhancedversionsofstandardizedneuralnetworkssothatthecustomized
technique is suitable for any specialized situations where the problem is about learning a complex
mappingfromtheinput totheoutputspace.Onesuchsituationlies inafarmwithhugecultivation
area,whereexaminingeachoftheplantforanyanomaliesishighlycomplexthatitisimpractical,ifnot
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Graphsarepowerfuldatastructuresthatallowustorepresentvaryingrelationshipswithindata.Inthe
past,duetothedifficultiesrelatedtothetimecomplexitiesofprocessinggraphmodels,graphsrarely
involvedmachinelearningtasks.Inrecentyears,especiallywiththenewadvancesindeeplearning
techniques,increasingnumberofgraphmodelsrelatedtothefeatureengineeringandmachinelearning
areproposed.Recently,therehasbeenanincreaseinapproachesthatautomaticallylearntoencodegraph
structureintolowdimensionalembedding.Theseapproachesareaccompaniedbymodelsformachine
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ongraphs.Thesecondgroupofmodelsassemblesgraphstructuretolearnagraphneighborhoodinthe
machinelearningmodel.Inthischapter,theauthorsfocusontheadvancesinapplicationsofgraphson
NLPusingtherecentdeeplearningmodels.
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Foreword



ArtificialIntelligenceandMachineLearninghavestartedtochangetheglobaleconomy.Theycanbe
seenasnewindustrieswhichproducenewbusinessmodelsacrossallsectors.Theyconstituteamajor
componentoftheIndustry4.0transformation,foracceleratingofoperationefficiencyandenterprise-
widegrowth.TheyalsohaveamajorroleintheSociety5.0transformation,mergingthephysicaland
cyberspaceandanalyzingbigdatavolumescollectedbysensorsanddevices.

Deeplearningtechniquesandoptimizationstrategieshavebeenthemaindrivingforceinrecentde-
velopmentsandachievementsintheanalysisofbigdata.Majorimprovements,relatedtoclassification,
regression,predictionanduncertaintyestimation,havebeenachieved,reaching,orevenexceedingre-
spectiveresultsprovidedbyhumans.Thishasbeenshowninmostimportantapplicationfields,including
vision,imageanalysisandsynthesis,speechandemotionrecognition,textanalysisandnaturallanguage
processing,healthcare,robotics,energyconsumption,smartagricultureandagri-food.

Itisthereforenecessarytoproducediversestrategiesandapplicationsofdeeplearningandoptimiza-
tion,whichwillformthebasisoffurtherdevelopmentofthefield,enhancingtransparency,explainability
andtrustfulnessofthederivedapproachesinhuman-centricframeworks.

Thisbookcomestocontributetothisgenerationofdiversedeeplearningandoptimizationstrate-
giesinthebigdataanalyticsfield.Theeditors,J.JoshuaThomas,PinarKaragoz,B.BazeerAhamed
andPandianVasant,havemanagedtogeneratearemarkablenumberofdifferentcontributionstoboth
technologyandapplicationdevelopmentinthefield.Thebookwillbeofgreatassistancetoresearch-
erswhowishtogetinformedaboutnewdevelopmentsandapplicationsofdeeplearning,aswellas
toresearchersthatarealreadyactiveinthefieldandfindfurtherinformationabouttheusageofdeep
learningandoptimizationmethodologiesintheirownorotherapplicationfields.

The17chapterscoveravarietyofstrategiesandapplications.Therearetworeviewsondeeplearning
andoptimizationmethodsandontheirapplications,aswellasthreepapersontransferlearningindeep
neuralnetworks,onnaturallanguageprocessingandondatadimensionalityreduction.Threepapers
refertoinformationanalysisontheWeb,focusingonfakenewsdetection,onmonitoringkids’surfing
andonmultimediainformationretrieval.Fivepapersfocusonhealthcare,biologicalandagricultural
prediction;specifically,ondetectionofdiabeticretinopathyandarrhythmia,ongraphnetworksfordrug
discovery,onproteinpredictionandoncrophealthclassification.Sevenpapersfocusonoptimization
andenergyrelatedproblems.Inparticularonoptimizationofdrillingoperations,ofwellboretrajectories,
ofwellplacementintheoilandgasindustrialoperation,ofbiofuelsupply,onpowersystemscheduling,
onpredictionoftotalorganiccarbonandonenergyefficiencyinIoTbasedonwirelesssensornetworks.

xviii
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Preface



Wearelivingintheeraofbigdata.Almostallactivites,whetherinbusinesslifeordailylife,involve
withproductionofdata.Thenumberisresourcesforsuchdataiscountlessandtheycomefromarich
varietyofactivities:financialtransactions,sensordataflowingfromalmosotalltypesofmachineryand
plants,andsurvelliencedevices,websearchactivities,socialmediaactivites,etc.

Inadditiontotheincreaseintheamountofdataproduced,thereisanincreaseincapabilitytostore
andprocessdata,aswell.Thankstoadvancementindatastoragedevices,anddatastoragemodelssuch
asthecloudstorageservices,itispossibletostorethehighamountofdatabeingproduced.Thiscapa-
bilityfurthertriggeredtheneedanddemandforobtainingusefulinformationstoreddata,andpavedthe
wayforbigdataanalyticscapabilities.

Bigdataanalyticsinvolveavarietyofartificialintelligenceandmachinelearningtechniques,aswell
asdescriptiveanalyticsapproaches.Inthisbook,amongthese,weparticularlyfocusondeeplearning
andoptimizationstrategies.Deeplearning,whichinvolvesmulti-layeredneuralarchitecturesandfocus
onfeaturelearningasacorestepofthelearningprocess,isacomparativelynewtechnique,providing
successfulresultsforwell-knownanalyticsandlearningproblemsinasetofdomainssuchasfacerecog-
nitionandnaturallanguageprocessing.Hence,itisconsideredasthebasisfornewgenerationartificial
intelligence.Itiscloselyrelatedwithbigdatainthesensethatdeeplearningtechniquesperformbetter
particularlyunderhighamountofobservations.

Ontheotherhand,optimizationisaverywell-knownareawithavastnumberofapplications,from
routefindingproblemstomedicaltreatmentandmaintenanceschedulesinplants.Underthehighamount
ofdata,conventionallinearprogramming-basedsolutionsandearlierheuristicsfallshortforthebig
dataera.Therefore,newoptimizationstrategiesadaptivetoincreasingamountofdatahaveemerged.

OBJECTIVE OF THE BOOK

Beingtwoimportantaspectsinbigdataanalytics,deeplearningtechniquesandoptimizationstrate-
gieshavebeenstudiedintenselyintheacademia,andvarioussolutionsareavailableandinuse.Inthis
book,gatheringtherecentadvancementsonthesetwoimportantaspect,weaimtoprovidearesource
fortheaudience.Anotherimportantobjectiveofthebookistopresentavarietyofdomainsinwhich
deeplearningtechniquesandoptimizationstrategiesareused.Thetechniquesandstrategiesneedad-
aptationsandtuningsaccordingtothenatureofthedataavailableinthedomain.Hence,thebookaims
toprovideareferenceandguidencefortheuseofdeeplearningandoptimizationforvariousdomains.
Additionally,thisprovidenceaguidenceastohowthesetechniquesandtuningscanbeappliedinother
domainsinthefuture.

xx
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Intermsofdeeplearningtechniques,thebookcoversawiderangeofneuralmodelsincludingCon-
volutionalNeuralNetworks(CNN),RecurrentNeuralNetworks(RNN),RecursiveRNNS,Bidirectional
GenerativeNeuralNetworks(BGNN),GraphNeuralNetworks.Thesetechnquesaredescribedinterms
offeaturesandstructure,andalsodomainsinwhichtheyaresuccessfullyapplied.Foroptimization
strategies,variousmetaheuristicalgorithmsarecoveredincludingGeneticAlgorithm,ParticleSwarm
Optimization(PSO),CuckooSearch(CS),andtheirvariants.

Intermsofdomainsinwhichdeeplearningtechniquesandoptimizationstrategiesareapplied,the
bookincludesavarietyofareas.Theaudiencecanfindrecentadvancementsofthesetechniquesand
strategiesinawidecoverageofareasincludinghealthcare,biologyandchemistry,eneryandpower
systems,informationretrieval,naturallanguageprocessingandagriculture.

TARGET AUDIENCE

Thebookintendstoprovideusefulinformationforaudiencewithvariousbackgroundandwithvarious
dataanalyticsexpertiselevel.Thebookincludeschaptersofferingoverviewofdeepneuralmodelsand
theirapplications,whichwouldbeusefulforaudiencefromanybackground.Thedetailsforspecific
neuralmodels and their adaptation invariousdomains are also available,whichwould address the
audiencewithdataanalyticsbackgroundorwithdomainknowledgeonareas,suchasgeology,power
systems,healtcare,agricultureornaturallanguageprocessing.Similarlyseveraloptimizationstrategies
aredescribedinmoredetail,whichwouldbeinformativetothosewhoareinterestedindomainspecific
optimizationproblems.

Thebookincludes17chapters,presentingrecentadvancementsondeeplearningtechniquesand
optimizationstrategiesonavarietyofmodels,algorithmsandapplicationdomains.

InChapter1,inhealthcaredomain,theuseofdeeplearningforautomaticheartabnormalityiden-
tificationispresented.Electrocardiogram(ECG)isoneofthemostimportantdiagnostictoolsforthe
healthstatusanalysisofaheart.Sensenumerousabnormalitiesorarrhythmiaautomaticallyfacilitates
thediagnosisprocessforthephysicians.InECGanalysis,themainobjectiveistoenhancethedegreeof
accuracyandtoincludeanumberofheartdiseasesthatcanbeclassified.Theauthorsproposeanauto-
encoderbaseddeepneuralnetworksolutionforarrhythmiaclassificationbyhybridfeaturesofT-wave
inECG.Theexperimentalanalysisshowsthattheproposedarrhythmiaclassificationtechniquehasac-
curacyofapproximately98.3%,specificityof98.0%andsensitivityof98.6%usingMIT-BIHdatabase.

Chapter2focusesontheuseofdeeplearningtechniquessuccessfullyinawiderangeofcases,and
presentsareviewofdeeplearningapplications.Fromspeechrecognitionandcomputervisiontovirtual
assistans,healthcareandself-drivingcars,groundbreakingadvancesindeeplearningapplicationsare
described.

InChapter3,wellplacementoptimizationproblemisstudied.Itisoneofthemajorfactorstobe
consideredinthefielddevelopmentprocessintheoilandgasindustry.Thewellplacementoptimiza-
tionproblemisconsideredasahighdimensional,discontinuousandmulti-modeloptimizationproblem
withhighcomputationalcomplexity.Theauthorsfocusontwopopularnature-inspiredmetaheuristic
optimizationtechniques,ParticleSwarmOptimizationandGeneticAlgorithm,anddescribehowwell
placementoptimizationproblemcanbespecifiedandsolvedbuusingthesetwotechniques.Thechapter
furtherdiscussestheuseofothermetaheuristicoptimizationtechniquesfortheproblem.

xxi
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InChapter4,AIbasedsolutionsfortheshalereservoiranalysisispresented.Thechallengedproblem
istheTotalorganiccarbon(TOC)contentprediction,asTOCisthemostsignificantfactorforshaleoil
andgasexplorationanddevelopment.Inthisdomain,directmeasurementsofcoreanalysisandgeo-
chemicalexperimentsarereportedtobetime-consumingandcostly.HenceAItechniquesfacilitatethe
processconsiderably.Theproblemhasseveralperformanceaspectssuchashandlinghighdimensional
dataandprovidingtimeefficiency.TheauthorsinvesgatetheperformanceofvariousAItechniques
throughvariousaspects,andprovideanunderstandingofthedifferentTOCcontentpredictionstrategies.

InChapter5,theuseofdeeplearningforwebpageclassificationproblemiselaboratedon.More
particularly,theaddressedproblemisURLclassificationforparentalcontrolofwebaccess.Theobjec-
tiveistotoblockthecontentbeforedownloadingthepage.Tothisaim,ConvolutionalNeuralNetwork
(CNN)iscombinedwithBidirectionalGatedRecurrentUnit(BGRU)inordertoextractrichcontext-aware
featuresaswellastopreservetosequenceinformationintheURL.Additionally,attentionmechanism
isincorporatedintheneuralarchitectureinordertoretainsignificantURLfeatures.Onthebenchmark
datacollection,82.2%accuracywasreported.

Chapter6isonanotherimportantdetection/classificationprobleminhealthcaredomain,Diabetic
Retinopathy(DR)detection.DR,whichaffectsthebloodvesselsofthehumanretina,isconsideredto
bethemostseriouscomplicationprevalentamongdiabeticpatients.Ifdetectedsuccessfullyatanearly
stage,theophthalmologistwouldbeabletotreatthepatientsbyadvancedlasertreatmenttopreventtotal
blindness.Inthechapter,authorsproposeahybridapproach,whichisacombinationofasupervisde
neuralmodelandfuzzylogic,inordertodetecthardexudatesfromDRretinalimages.

InChapter7,theauthorsstudygraphneuralnetworks,asinChapter16.However,thistimethefocus
isontwoparticularneuralmodels,GraphConvolutionalNetworks,andGraphAutoencoders.Thechapter
elaboratesontheuseofthesetwotechniquesonchemoinformatics,includingthetasksofmolecular
fingerprints,anddrugdiscovery.ExperimentswithvariationalAutoencoder(VAE)demonstratehowsuch
neuralmodelscanbeusedinchemoinformaticsresearch.Potentialresearchdirectionsarealsodiscussed.

Chapter8isonanotherimportantdomain,multimediainformationretrieval,inwhichdeeplearning
techniqueshaveacrucialrole.Multimediainformationretrievalistheprocessofretrievingmultimedia
objectsfulfillingthegivenquery.Multimediaretrievalhasbeeninvolvedinawiderangeofapplications,
resultingwithaneedofefficientmultimediainformationprocessing,access,andanalysissolutions.Deep
learningisanemergingtechniqueinthesphereofmultimediainformationprocessing,whichsolves
theshortcomingsoftheconventionaltechniques.Inthechapter,theauthorsdiscussthedeeplearning
revolutiondescribingthemainfeaturesandtechniquesofdeeplearning.Then,useofdeeplearning
techniquesformultimediainformationretrievaltasksaredescribed.

Chapter9isabouttheproblemofneuralmodelconstructionindeeplearning.Itrequiresprofound
knowledgeforthedeveloperinassigningtheweightsandbiases.Sincethetraininginvolvesmultiple
epochs,it isacumbersomeprocessforaninexperiencedmachinelearningpractitionertodecidefor
theoptimalstructure.Inthechapter,theauthorsfocusonConvolutionalNeuralNetworks(CNN)and
describeshowTransferLearningcanbeusedtofacilitatetheneuralmodelconstructionforthegiven
problem.Theprocessstartswithapretrainedarchitecture,byreusingthenetworkweightsandarchi-
tecture,andthenetworkmodelistrainedontheuser’sdatasetthroughEfficientNeuralArchitecture
Search(ENAS)algorithm.Theperformanceoftheapproachisanalyzedonataskoflearninggraph
analysisagainstbaselinemethods.

xxii
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InChapter10,theproblemofhandlinghighnumberofdimensionsinthedataisstudied.Inaddition
tothehighamountofdata,highdimensionalityinthedataposesachallengeforanalytics.Thechapter
initallydiscussesabouttheconventionalmethodsemployedforcurseofdimensionality,andanalyzes
theperformanceforacomplexbenchmarkdataset.Followingthis,advantagesofnonlinearmethods,
especiallyneuralnetworktechniques,overlinearmethodsfortheproblemarediscussed.Theauthors
elaborateontheuseofdeeplearningtechniquesasacureforthiscurseasfutureresearchareas,aswell.

InChapter11,fakenewsdetectionproblemisfocusedon.Duetoincreaseinonlinenewssourcesand
uncertainityinthequalityoftheonlinecontent,theneedforcomputationalinstrumentstomeasurethe
qualityofthecontentandthecredibilityofthesourcehasbeenincreasing.Inthechapter,theauthors
summarizevariousneuralmodelsthatcanbeutilizedinfakenewsdetectionproblem,andthenpresent
asolutionthatincorporatessemanticsimilarity.Theexperimentsconductedtwobenchmarkdatasets
showthattheproposedapproachprovidesfakenewsdetectionaccuracyuptoabout80%.

InChapter12,powersystemschedulingoptimizationproblemiselaboratedon.Theeffectivesched-
ulingisimportantforfuelcostsaving,reducingpowerlossandhavingbettervoltagestabilityindex.
TheauthorsdescribetheuseofavariantofParticleSwarmOptimization(PSO),whichisstochastic
weighttrade-offchaoticmutationbasednon-dominatedsortingparticleswarmoptimizationalgorithm,
forpowersystemscheduling.Thealgorithmmakesuseofchatoicmutationinordertoenhancediversity
andsearchcapability,andemploysnon-dominantsortingandcrowdingdistancetechniquesinorder
toprovidetheoptimalParetofrontefficiently.Usingatwo-stageapproach,theglobalbestsolutionis
selectedfrommanylocaltrials.

InChapter13,alarge-scalemultiobjectiveoptimizationproblem,biofuelsupplychainoptimization,
ispresented.Metaheuristic-typeoptimizationtechniqueshavebecomecrucialforeffectivedesign,main-
tenanceandoperationsofsuchsystems.Strategiessuchashybridizationandalgorithmicmodifications
hasbeenthefocusofpreviouseffortstoimprovetheperformanceofconventionalmetaheuristics.In
thechapter,theauthorsproposeamodificationonCuckooSearch(CS)technique,suchthat,duetothe
scaleandcomplexityoftheproblem,therandommatrixapproachisemployedtomodifythestochastic
generatorsegment.ComparativeanalysisoftheimprovedCSvariantispresentedagainsttheconven-
tionalCStechnique.

Chapter14focusesontheuseofdeeplearninginagriculturedomain.Precisionfarmingisoneofthe
subdomainswheredeeplearninghashighpotentionalforimprovingtheefficiency.Oneoftheimportant
problemsstudiedunderprecisionfarmingisthat,inafarmwithhugecultivationarea,examiningeach
oftheplantsforanyanomaliesishighlycomplex,anditisimpracticalforhumans.Theauthorspropose
anoptimizeddeeplearningarchitecturalmodel,combiningvarioustechniquesinneuralnetworksfor
precisionfarming.Moreprecisely,thousandsofcropsareexaminedautomaticallythroughtheproposed
neuralmodel,andclassifiedashealthyorunhealthy.Thenoveltyoftheproposedarchitectureliesinthe
strategicusageofspatialandtemporalfeaturesselectivelyinordertoreducetheinferencetime.

Chapter15discussestheuseofdeeplearningtechniquesfor thepredictionofproteinsecondary
structure fromaprotein sequence.Suchapredictionprovidesuseful information forpredicting the
three-dimensionalstructureandfunctionoftheprotein.Inrecentdecades,proteinsecondarystructure
predictionsystemshavebeenimprovedbenefitingfromtheadvancesincomputationaltechniquesaswell
asthegrowthandincreasedavailabilityofsolvedproteinstructuresinproteindatabanks.Theauthors
providesanoverviewoftheexistingcomputationalapproachestopredictthesecondarystructureof
proteins,focusingondeeplearningtechniques,withhighlightsonkeyaspectsineachapproach.
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InChapter16,theauthorsfocusongraphneuralmodelsandtheiruseinNaturalLanguageProcess-
ing(NLP)problems.Sincegraphsarepowerfuldatastructuresthatallowustorepresentvaryingkinds
ofrelationshipswithindata,neuralmodelsforgraphprocessingarearising.Thegraphneuralmodels
intheliteraturebasicallyaimtoperformfeatureengineeringandtolearngraphneighborhood.Among
variousdomains, inwhichsuchgraphmodelsareemployed,NLPapplicationspresentconsiderable
advancement.Theauthorsfirstlydescribethegraphneuralmodelsintheliterature,andthenpresentthe
useofsuchmodelsinvariousNLPapplications,includingmachinetranslation,visualquestionanswer-
ing,reasoningandtextclassification.

InChapter17,trajectoryofacomplexwellboreisstudiedasanoptimizationproblem.Thereduc-
tionofthewellborelengthisimportantinordertoprovidecostefficency.However,theexistanceofa
varietyofdrillingvariablesandconstraintsmakespecifyingwellboretrajectoryacomplexoptimization
problem.ThechapterfocusesontheuseofParticleSwarmOptimization(PSO)algorithmforwellbore
trajectoryoptimization,andreviewsvariationsofPSOfortheproblem.

Weaimtoprovidearichselectionofrecentadvancementsinbigdataanalyticsintheaspectsofdeep
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ABSTRACT

An electrocardiogram (ECG) is used as one of the important diagnostic tools for the detection of the 
health of a heart. An automatic heart abnormality identification methods sense numerous abnormalities 
or arrhythmia and decrease the physician’s pressure as well as share their workload. In ECG analysis, 
the main focus is to enhance degree of accuracy and include a number of heart diseases that can be 
classified. In this chapter, arrhythmia classification is proposed using hybrid features of T-wave in ECG. 
The classification system consists of majorly three phases, windowing technique, feature extraction, and 
classification. This classifier categorizes the normal and abnormal signals efficiently. The experimental 
analysis showed that the hybrid features arrhythmia classification performance of accuracy approximately 
98.3%, specificity 98.0%, and sensitivity 98.6% using MIT-BIH database.

INTRODUCTION

The digitalised electrocardiogram accession techniques form an important part of the contemporary 
framework in recognising and saving the signals at real time in order to assist in acknowledging the 
cardiac conditions.

This method does not incorporate dissection of the body or use of any insertion instruments. This 
technique is non-invasive and caters to a wide range of heart conditions like arrhythmia, heart rate 
variability, etc. that can be diagnosed with ease by employing the classifiers techniques in discussion 
system (Senapati, Senapati, and Maka, 2014). The process of analysing ECG signals is time consum-
ing and very laborious for the cardiologists and the possibility of omission of vital information due to 
human error is high and thereby computerized techniques for the determination of arrhythmia from the 
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various available medical data is much required (Dong, Wang, and Si, 2017 & Jadhav, Nalbalwar, and 
Ghatol, 2014). Many a times the medical practitioner are in a situation where in the signals obtained 
are; two signals having same patterns but indicate non-identical diseases and also the vice-versa where 
in the two signals with dissimilar patterns but revealing the same disease thus, complicating the task of 
ailment diagnosis for the doctor with . Hence, it can be noted that the appearances of the ECG signals 
are not completely accurate for the identification of the diseases. Therefore, employing the different 
characteristics of these signals would aid to corroborate the analyzing the respective heart conditions 
(Hassan, Saleem, and Habib, 2017). Many methods are used to identify and categorize the diseases 
interconnected to heart like abnormal and normal sinus rhythm etc.

Numerous methods for heart disease detections and ECG analysis have been discovered/developed 
in past few years for improvised classification of heart abnormality. P, Q, R, T and U are the five basic 
waves of an ECG waveform. Atrial depolarization is indicated by the P wave, ventricular depolarization 
is indicated by the QRS complex and repolarization of ventricle is indicated by T wave. The shape of 
the QRS complex is the most important and plays an integral role in the ECG signal analysis (Alickovic 
and Subasi, 2016).

The electrocardiogram signals are similar for different types of heartbeats as well as differ for the 
same person. Heart abnormality classification can be can be carried out by various existing techniques 
like; Support Vector Machine (SVM), Radial Basis Function (RBF), Linear Discriminant Analysis 
(LDA), Principle Component Analysis (PCA) (Elhai et. al, 2016). The method of using ECG signals for 
the detection of heart abnormality has major drawbacks due to the variations in signals depending on 
individual persons based on gender, age, etc. Another drawback includes the variations of the signals 
for the same person caused by few physical conditions. And due to these limitations following a single 
permanent method to carry out the detections seems inappropriate (Shadmand and Mashoufi, 2016).

In this chapter, characteristics based on both DWT coefficient and Time domain based features such 
as DE, peak magnitude RMS ratio, Auto regressive features like Yule-Walker Method, and Burgs method 
are used for the ECG signal feature extraction The improvisation of the ECG signal categorization is 
performed based on the above mentioned features and the two abnormalities of the heart can be identi-
fied using the SVM classifier.

LITERATURE SURVEY

A. Daamouche, L. Hamami, N. Alajlan, and F. Melgani (2012) presented a wavelet optimization strategy 
depends on the mixture of the poly phase representation of wavelets and PSO. This strategy finds the 
wavelets that indicate the beats of discrimination capability calculated through an empirical measure 
of the classifier efficiency. The SVM classifier illuminates the accuracy and stability of the proposed 
method and poly phase permits the wavelet filter bank from angular parameter. The wavelet method for 
ECG signal improves the classification accuracy but, this proposed technique not suitable for all datasets.

P. Kora and K.S.R. Krishna (2016) presented Wavelet Coherence (WTC) method for ECG signal 
investigation. The WTC measures the similarity among two waveforms in the frequency domain. The 
features are extracted from ECG signal after that optimized with the help of Bat algorithm. The optimized 
features are classified using Levenberg Marquardt neural network classifier. These techniques select the 
relevant features and reduce the feature redundancy as well as improve the classification accuracy but, 
this architecture is a bit time consuming.
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V.H.C. de Albuquerque et. al (2016) illustrated the arrhythmia identification in ECG signal using 
supervised machine learning methods of Optimum Path Forest (OPF) classifier. The proposed method’s 
efficiency and effectiveness are compared with the different feature extraction methods and classifiers. The 
OPF discovered more skills to generalize data. This technique is more efficient in terms of computation 
time of testing and training. But, sometimes possibilities of miss prediction activities were occurring.

S.S. Kumar, and H.H. Inbarani (2016) proposed Multi-granulation rough set based classification 
approaches are applied for ECG cardiac arrhythmia categorization. The classifier was verified ECG 
signals of 24 channels were recorded from the database. The Pan-Tomkins’s and Wavelet Transform 
(WT) methods have been decided on to gain a compact set of features. The classifier improves the clas-
sification accuracy. In this work, only a limited number of ECG channels are taken for the experiment 
and all channels are not taken.

D. Ai et. al (2015) evaluated Fast feature fusion technique of Generalized-N-Dimensional (GND)-ICA 
for ECF heartbeat classification based on multi-linear subspace learning. In feature fusion, all extracted 
feature of ECG signal heartbeat was arranged as a two-way tensor, in which feature-fusion procedure 
was implemented using a multi-linear subspace-learning method, GND-ICA. The SVM classifier was 
used for classification, which classified the heartbeats. This classifier decreased the classification time 
and removed the redundant features. This work achieved high accuracy, but limited number of ECG 
channels are used.

PROPOSED METHODOLOGY

ECG is one of the most important clinical tool for cardiologists which records the rhythm and function 
of the heart which further helps in diagnosis of different heart related diseases .The abnormalities can 
be detected by this information. The input signals are compiled from MIT-BIH database, IIR filter is 
used for the preprocessing of the input signals. The time and frequency domain factors are obtained 
through DWT. Methods used for obtaining the attributes of time domain, statistical based and morphol-
ogy include peak-magnitude-RMS ratio, DE, Yule Walker method, Burgs method and auto aggressive 
feature. In the end the signals are classified under normal signals and abnormal signals, if the signals 
are classified under abnormal signals they are further classified based on the different heart diseases. In 
Figure 1 shows the proposed architecture diagram and description.

Signal Data Accession

Heart rate, diseases, and heart related information and details could be detected with the help of acces-
sion of an ECG signal. Personal Health Record (PHR) dataset, MIT-BIH sinus arrhythmia and Normal 
Sinus Rhythm (NSR) dataset, etc. are the significant ECG database. In which the input ECG signals are 
taken from MIT-BIH Arrhythmia database for detecting the normal and abnormal signals. It contains 
48 half hour excerpts of two channel ambulatory ECG data taken from around 47 subjects researched by 
the BIH arrhythmia Laboratory between 1975 and 1979. At Boston’s Beth Israel Hospital, twenty three 
recordings were randomly taken from a set of 4,000 twenty four hour ambulatory ECG data collected 
from a mixed population inclusive of both inpatients (approximately 60%) and outpatients (approximately 
40%). The Remaining 25 recordings were chosen from the same set to add less common but clinically 
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significant arrhythmias. The ECG soundtracks are experimented at 360 Hz. Per channels with 11-bit 
resolution over 10 mV ranges.

Noise in ECG Signal and Filtering

The ECG signal is a very sensitive signal to the noise due to its low frequency-band having frequency 
range of 0.5-150 Hz (Abhinav-Vishwa, Lal, and Vardwai, 2011). The signal characteristics changes during 
recording due to the interference of different source of noises and artifacts. Therefore, it is a challenging 
task to extract useful information from the ECG signal for accurate detection of cardiac arrhythmias. The 
common noises are baseline wander, power line noise, and 11 muscular interference and these noises 
can be removed with appropriate filters (Kim, Min, and Lee, 2011 & Kora and Krishna, 2016 & Jadhav, 
Nalbalwar, and Ghatol, 2011). The preprocessing step is used to eliminate the noise and enhances the 
wanted signal components in ECG signal. The major source of noises in ECG signal is shown in Fig. 
1.7 and is explained as:

i)  Power Line Interferences: The power-line can cause 60 Hz sinusoidal interference due to electro-
magnetic fields which may appear as additional spikes in the recorded signal as shown in Figure 3b. 
This noise content, frequency of 60 Hz/50 Hz with an amplitude about 50 percent of peak-to-peak 
amplitude of electrocardiogram (ECG) signal (Shadmand and Mashoufi, 2016). The power line 
interferences are eliminated with 60 Hz notch filter.

ii)  Baseline Wander: It is a low-frequency of 0.5 Hz and high-bandwidth components, caused due 
to electrode-skin impedance, respiration and body movements. Sometimes this noise is generated 
due to variations in temperature and biasing in instrumentation amplifiers as shown in Figure 2 
and Figure 3 (c). A high-pass filter with 0.5 Hz cutoff frequency is used to remove the baseline 

Figure 1. Proposed architecture of arrhythmia classification
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drift. This may cause problems in analysis, especially during examining the low-frequency ST-T 
segment. High-pass filtering is apprehended in hardware or software to remove these noises.

iii)  Motion Artifacts: A Motion artifact occurs due to the movement of skin electrode that changes 
the in ECG waveforms and makes ECG interpretation difficult. It generates larger signal amplitude 
of 500 percent of Peak to Peak amplitude of ECG signal and its duration is about 100-500 mil-
liseconds as shown in Figure 3 (d). This interference of motion artifacts can be removed with an 
adaptive filter.

iv)  Muscle Contraction (EMG): EMG is the electrical activity produced by contraction of skeletal 
muscle as shown in Figure 3 (e). The signals amplitude is 10% of ECG and bandwidth of 20 - 
1000 Hz with duration is 50 ms. It generates rapid fluctuation in ECG wave and is eliminated by 
morphological filter of a unit square-wave structure.

Electrocardiogram Data

i.  The raw data available from MIT-BIH database is in the form of sample numbers corresponding 
to time (360 Hz sampling) and sample values corresponding to millivolts, (unipolar, 11 bit ADC 
over ± 5mV range) we have retained the same values instead of converting these into seconds and 
millivolts, but using the units as seconds and mV respectively, keeping in mind the conversion factor.

ii.  Eighteen varieties of two sets (Abnormal and Normal) heartbeats have been identified for the clas-
sification purpose.

iii.  The Arrhythmia benchmark database from Physionet Massachusetts Institute of Technology-Beth 
Israel Hospital (MIT-BIH): Abnormal ECG record numbers 111, 113, 114, 117, 118, 119, 121, 
200, 203, 207, 208, 210, 212, 213, 214, 217, 222, 228 and normal ECG record numbers 105, 106, 

Figure 2. ECG signal without baseline wander, with baseline wander and baseline
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107, 108, 109, 112, 115, 116, 122, 123, 124, 201, 202, 205, 209, 215, 219, 220 are used for guid-
ance, cross-confirmation and trail purposes. This dataset involve forty eight half-hour excerpts of 
2 channel ranging electrocardiogram recordings, secured from forty seven subjects studied by the 
BIH Arrhythmia Laboratory.

iv.  Morphological changes are considered for diagnosing, the only temporal aspect considered is R-R 
interval.

Figure 3. (a) Normal ECG signal without interferences; (b) ECG signal with powerline interference; 
(c) ECG signal with baseline wander; (d) ECG signal with muscle artifacts; (e) ECG signal with mo-
tion artifacts
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Signal Preprocessing

With the help of databases ECG signals are obtained. Baseline wandering and power line interference 
is the chief noises comprised in it. They are the most considerable noises in ECG signal analysis. Finite 
Impulse Response (FIR), Median Filter, Savitzky - Golay Filtering, Polynomial Filtering, etc. are the 
usual preprocessing procedures or techniques. Where the signal noise is removed using Infinite Impulse 
Response (IIR) filter. Baseline wandering that result from respiration deceits between 0.15Hz and 0.3 Hz.

The power-line interference is a narrow-band noise positioned at 60 Hz having a bandwidth of less than 
1 Hz. Many factors can affect Amplitude and baseline potential of ECG signal propagating from same, 
which will prominently alter the accurateness of recognition and classification. Normalization must be 
done to ECG signals in order to advance and improvise the accuracy of recognition and classification. 
This method involves setting up the baseline to 0, and the maximum amplitude to 1 or -1. Here, remove 
the features of R peak location as the major peaks. Next move certain sample of left side and some 
sample of right side to find PQST and R peaks to obtain that particular portion using windowing method.

Transformation

Shifting the signals from time domain to frequency domain can be carried out by a mathematical device, 
transformation. The representation of signal can be changed by transforms by projecting it into a set of 
basic functions but they do not alter the signal information. Discrete Wavelength Transform (DWT), 
Fast Fourier Transform (FFT), Walsh-Hadamard Transform (WHT), etc. are the chief transforms that 
are employed in peak recognition.

Discrete Wavelet Transform

The DWT is offering greater time resolution and frequency resolution. DWT can disclose the indigenous 
features of the input signal and helps to decrease the feature degradation with the help of its time and 
frequency localization ability. Information of signals in both time and frequency domain can be conveyed 
by Wavelet transform (WT). In wavelet transform, time-domain signals are circulated through numerous 
low cut and averaging filters, then, both are taken. This procedure is termed as signal decomposition. 
This process continues until the signal predefined level is reached. The subsequent signals contain both 
higher and lower frequencies, where the higher frequencies are better determined in time domain and 
lesser frequencies are improved by frequency. Continuous wavelet transform can be defined with the 
help of the below equation (1),

w a b x t
a

t b
a

dt,� � � � � ��
�
�

�
�
�

��

�

�
1
� ………………. (1)

Where a and b are the scale and translation parameters, respectively. ψ is wavelet family (mother 
wavelet). As the parameters (a, b) are constantly valued, the transform is known as continuous wavelet 
transform. Sufficient information for the exploration and synthesis of the raw ECG signal is offered by 
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discrete wavelet transform. The DWT decompose the signals at numerous bands with multi-resolutions 
to summon signals approximation and detail coefficient. The Discrete wavelet transform can be defined 
using the below equation (2),

� �m n m

m

ma
t nba
a

dt
,
�

��

�
�

�

�
�

1
………………….. (2)

Where m and n are the integers for managing the dilation and translations correspondingly, φ is a wavelet 
function and a is the parameter. Later the DWT based transformation signal is relocated to the feature 
extraction stage using distinctive features.

Feature Extraction

Wavelet Transform can provide the particular regularity of definite pattern and disintegrate signal into 
elementary building blocks, which are well, confined both in time and frequency domain. Important 
features from the ECG signal are obtained using the Wavelets coefficients. Various feature like, Time 
Domain features, Morphological features, and Statistical Features are involved in this system, in order 
to improvise heart related disease categorization.

Differential Entropy

The complexity of a continuous random variable, which is associated to the least description length, can 
be measured using differential entropy. The features of DE are most suitable for recognizing drowsiness. 
The average energy of ECG signals in frequency bands is the energy spectrum. DE is initially defined 
by equation (3),

h X f x f x dx
x

� � � � � � �� �� log …………………. (3)

Here, X is a random variable, f(x) is the probability density function of X. For the time series X obey-
ing the Gauss distribution N(μ,σ2) and the length of ECG sequence is static. Hence, DE is estimated by 
equation (4),

h X e e dx
x x
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It can be found that ECG signals are exposed to Gaussian distribution though the original ECG sig-
nals do not follow a definite fixed distribution. In a certain frequency band DE is equal to the logarithm 
energy spectrum. Logarithm energy spectrum is frequently utilized by investigators and the ability of 
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discriminating ECG pattern can be balanced between high and low frequency energy as the low frequency 
energy is higher than the high frequency energy in ECG, so after the logarithm of energy.

Peak-Magnitude to Root Mean Square Ratio

To determine the positive peak and negative peak values of the single transition waveform or the single 
pulse waveform consider the minimum peak value as the low or first state level and the maximum peak 
value as the high or second state level. The mathematical equations of Peak-Magnitude to Root Mean 
Square Ratio (PRMS) is defined in equation (5),

PRMS
X

N
X

n

N

n

�

��
�

1

1

2

…………………….. (5)

The waveforms with state levels of negligible or relatively short duration can be analysed by using 
this procedure.

Morphological Features

P wave, QRS complex and T wave are the three waveform components of one heartbeat of ECG. These 
ECG signals are biomedical signals and they are non-stationary in nature. Non-stationary nature is 
nothing but the presence of some statistical features. These signals are altered over position or time. 
MATLAB functions are used to detect the peaks and locations of several ECG signal parameters like P 
Q R S T waves to detect its amplitude and duration of the required parameter. Here, R peak, Tmin and 
Tmax peaks are used for feature extraction in order to efficiently calculate the normal and abnormal 
signals. T peaks are more effected to the abnormal signals compare to the other peaks, so Tmin and 
Tmax features are used.

Auto Regressive Feature

Power Spectrum Density (PSD) of the signal can be estimated by Autoregressive (AR) methods using 
a parametric approach. Hence, AR methods will not have any problems like spectral leakage and thus 
give better frequency resolution unlike nonparametric approach. The AR model is a depiction of a type 
of casual technique; which is used to describe the time varying progressions in nature. The AR model 
stipulates that the output variable depends linearly on its own previous values and on a stochastic term 
(an imperfectly predictable term); hence the model is in the form of a stochastic difference equation. 
By calculating the coefficients, that is, the parameters of the linear system under consideration we can 
estimate PSD. The following methods are used to estimate AR models,

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



10

Arrhythmia Detection Based on Hybrid Features of T-Wave in Electrocardiogram
 

Yule-Walker Method

This method involves estimation of AR parameters or coefficients utilizing the resulting biased approxi-
mate of the autocorrelation data function. This is carried out by subsequently finding the minimization 
of the least squares of the forward prediction error calculation given in the equation (6),
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Where rxx can be determined by the equation (7),
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Calculating the above set of (𝑝 + 1) linearequations, theARcoefficientscanbeobtained inequation (8),
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While 𝜎̂𝑤𝑝 gives the approximated lowest mean square error of the 𝑝 th-order predictor given as equa-
tion (9),
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Burg’s Method

The principle behind this method is AR spectral estimation which is based on reducing the forward 
and backward prediction errors to satisfy Levinson-Durbin recursion. The reflection coefficient can be 
estimated directly by Burg’s method without calculating the autocorrelation function. Following are the 
merits of this method:

1.  PSD’s data records can be estimated to look exactly like the original data value by Burg’s Method.
2.  It can yield intimately packed sinusoids in signals once it contains minimal level of noise.

The major difference between the method of Yule-Walker and Burg’s method is in the methodology 
of calculating the PSD. For Burg’s method, the PSD is estimated using equation (10),
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Parametric methods like autoregressive one reduce the spectral leakage issues and yield better fre-
quency resolution. The main advantages of the Burg method are resolving closely spaced sinusoids in 
signals with low noise levels, and estimating short data records, in which case the AR power spectral 
density estimates are very close to the true values. In addition, the Burg method ensures a stable AR 
model and is computationally efficient. After the feature extraction the signals are go through the clas-
sification step, here DNN classifier is used and described in below section.

Classification

After obtaining the features from pre analyzed data, the ECG data are used to predict abnormal and 
normal signal. The classification used is DNN, which create compositional models in which the object 
is expressed as a layered composition of primitives. The DNN, minimize the cross entropy or noise 
between the actual and predicted outcomes. Neural layers learning on huge dataset is involved in it. 
Hypothetically additional layers allow configurations of lower layer features constructing complex data.

Deep Neural Network Using Auto Encoder

The DNNs works like feed forward networks. where, the data flows from input layer to the output layer 
with no looping back. The main advantage of DNN classifier being, the possibilities of missing some 
signals in this situation the classifier will automatically take the signal and is used further process. The 
DNN assigns a classification score f(x) during estimate time. To every input data sample x=[x1,…,xN] 
via a forward pass. Typically, f is the function, which involves a series of layers of computation, which 
is signified in the equation (11),

Z x w Z Z b X g Z
ij i ij j

i
ij j j j= = + = ( )∑; ; ……………… (11)

Where, input of the layer is xi, its output is xjwij are the model parameters and g(.) realizes the mapping 
or pooling function.

Layer-wise Relevance Propagation decomposes the classifier output f(x) in terms of relevance’s ri 
attaching to each input component xi its share with which it contributes to the cataloging decision de-
scribed in equation (12),

f x r
i
i� � �� …………………………. (12)

Where, ri>0 indicates the positive indication supporting the classification decision and ri>0 negative 
evidence of the classification, otherwise neutral indication.
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Unknown feature coherences of input signals can be investigated by DNN. The DNN provides a hi-
erarchical feature-learning tactic. So, the high level features are derived from the low level feature with 
a greedy layer wise unsupervised pre-training data. Therefore, the fundamental objective of DNN is to 
handle complex functions that can represent high-level abstraction.

Stacked Auto Encoder

The auto encoder neural network comprises various layers of sparse auto encoders. Every layer output 
support to the input of the successive layers. An auto encoder attempts to learn an approximation to the 
identity function, shown in the equation (13),

Æ
,

x h x xw b� � � � ……………………….. (13)

The DLN exploits the unsupervised pre-training technique with greedy layer wise training. This 
technique executes at time one layer in unsupervised pre training, beginning from input to output layer. 
The first sparse auto encoder (1st hidden layer) is trained on the raw inputs (x) to learn primary features 
h(1) on the inputs.

Figure 4 shows the structure of an auto encoder. In the pre-training process, we can lessen the cost 
function by using all of weight and bias parameters. The Figure.5 depicts the Softmax classifier using 
auto encoder. Forward propagation is used by the input data to train sparse auto encoder to achieve the 
basic features.

In the next concealed layer of pre training data, the auto encoder technique calculates its features 
using the same method from the preceding hidden layers. Equation (14) defines auto encoder,
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Figure 4. Structure of an auto encoder
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Where, concealed nodes are signified in m, inputs are n, weight of sparsity penalty as β, the probability 
of firing activity indicated as pj� , the sparsity parameter is represented as ρ, λ is used to represent weight 
delay, Kullback-Leibler divergence function is denoted by KL, and θ is the weight of concealed nodes. 
By DNN classifier, the ECG signal is classified successfully whether the signal is normal or abnormal. 
Output images are validated with ground truth images after the classification, whether the DNN classi-
fier is properly classified or not, the ground truth images verify the output signals. Arrhythmia classifi-
cation’s experimental analysis and functioning calculations of existing and proposed techniques are 
described in the below segments.

Experimental Result and Discussion

This segment indicates the experimental results obtained during the process of the study. The experi-
ments were executed on PC with 1.8GHz Pentium IV processor by using MATLAB (version 6.5). Here, 
the several permutations of features were tested and qualified by using DNN of ECG signal from MIT-
BIH database. This dataset involve 48 half-hour excerpts of two channel ambulatory ECG recordings, 
obtained from 47 subjects studied by the BIH Arrhythmia Laboratory. Two sets of signals are taken in 
this study, such that 18 normal signals and 18 abnormal signals, so total 36 signals are considered in 
same training and testing cases. The proposed architecture recognize the normal or SNR and abnormal 
or Arrhythmia using ECG signal. The performance evaluation of the proposed system is defined further 
in the below segments.

Unsupervised pre-training techniques are deployed by DNN with greedy layer wise training, begin-
ning from the input layer to the soft max layer. To learn the primary features on inputs, firstly sparse 
auto encoder is trained on the features. The DNN parameter settings based on ECG signal are given in 
Table 1. The performance evaluation proposed method is explained in below sector.

The ECG factors along with their explanation and normal durations are portrayed in the Table 2. 
Usually, P wave, QRS complex, and T wave are the components of an ECG beat. Each peak (P, Q, R, S, 
T, and U), intervals (PR, RR, QRS, ST, and QT) and segments (PR and ST) of ECG signals will have 
their standard amplitude or duration values. These peaks, intervals, and segments are termed as ECG 

Figure 5. Stacked auto encoder with softmax classifier
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features. Thousands of such beats are comprised in a single ECG signal. The categorization of ECG 
signals plays a vital role in clinical diagnosis of heart disease. The normal ECG may differ from one 
person to another and sometimes a particular disease can have dissimilar signs on the ECG signals of 
different patients. This happens to be the main issue problem in detecting heart disease using ECG. Also, 
two different diseases can approximately show similar outcomes on normal ECG signals. Heart disease 
diagnose will get complicated because of these problems. Therefore, the implementation the method 
with the DNN classifier can refine the diagnoses of the new patients with ECG arrhythmia diagnoses.

Performance Evaluation

From the proposed combined features of time domain, morphological and statistical features such as 
DE, Peak magnitude RMS, Yule walker (YM) method, and Burgs (BR) method ECG signals are ob-
tained. Normal (SNR) or abnormal (Arrhythmia) signals are resolved by the DNN classifier. Neural 
Network (NN), Support Vector Machine (SVM), in terms of Accuracy, Specificity, and Sensitivity are 
some of the existing classifiers that are compared with the proposed DNN classifier performance in this 
experimental analysis. Using the values of TP, FP, FN, and TN estimation is done for these parameters, 
where TP refers to true positive, TN is true negative, FP is false positive and FN is false negative. The 
calculation of parameters is shown below,

Table 1. DNN parameter settings

     Specification      Values

     Maximum iterations: SAE learning      400

     Maximum iterations: Softmax learning      1000

     Hidden layer size      100, 50

     L2Weight Regularization      0.004

     Sparsity Regularization      4

     Sparsity Proportion      0.15

     Scale Data      False

Table 2. ECG factors and their normal durations

     Features      illustrations      Time Scale

     P      First short upward movement of the ECG 80ms

     PR      Measured from the beginning of the P wave to the beginning of the 
QRS complex 120-200ms

     QRS      Normally begins with a downward deflection Q, a larger upwards 
deflection R and ends with a downward S wave 80-120ms

     PR      Connects the P wave and the QRS complex 50-120ms

     ST      Connects the QRS complex and the T wave 80-120ms

     T      Normally a modest upward waveform 160ms

     QT      Measured from the beginning of the QRS 
     complex to the end of the T wave 420ms
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i)  i)  Accuracy: Accuracy is nothing but the most instinctive performance measure and it is simply 
a ratio of correctly predicted observation to the total observations. It is directly proportional to 
true results considering both true positives and true negatives among the total number of cases 
scrutinized. The parameter of accuracy can be calculated using equation (15),

Accuracy
TP TN

TP TN FP FN
�

�� �
� � �� �

�100…………………… (15)

ii)  ii)  Specificity: The measures of the amount of negatives that are accurately identified and 
specificity is shown in equation (16).

Specificity TN
TN FP

�
�� �

…………………………….. (16)

iii)  iii)  Sensitivity: The sensitivity calculates the ratio of positives that are appropriately rec-
ognized signals and mathematical equation of sensitivity is described in equation (17).

Sensitivity TP
TP FN

�
�� �

………………………………. (17)

In experimental analysis, the ECG signal based prediction of normal and abnormal signals. In below 
section, the Arrhythmia disease signal and Normal signals are shown below.

The Figure 6 explains the Arrhythmia disease ECG signal. Here, the black star is the P and T peak. 
Blue star is the R peak, pink star is the S peak and green peak is the Q peak. The T peak represents the 
high voltage effecting the disease signal. The T peak is much affected on the abnormal signals.

Figure 6. ECG signal of arrhythmia disease
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The Figure 7 shows the normal and abnormal ECG signals. The signals shown in the graph indicate 
X-axis of the sample in time (ms) and Y-axis is the Amplitude in mV. Name the figures – fig a is the 
input of normal signal and abnormal signals. In fig b represents the applied normalization techniques 
and detected R peaks. All R peaks are detected and based on R peak P, Q and T peaks are detected. Fig 
c represents the applied windowing technique. The windowing techniques to detected both normal and 
abnormal signal is as shown in third row.

The Table 3 represents signal based performance of the pre-existing classifiers and the proposed 
classifiers with various features such as DE, PRMS, BR, YM, Max, Min and, also a set of proposed 

Figure 7. Normal ECG signals
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combined features. The accuracy achieved in the combined feature comparison; NN classifier achieved 
77.085, SVM classifier achieved 86.11% and the proposed DNN classifier achieved 98.33%. The train-
ing and testing performance of the window based method

of Arrhythmia disease and Supraventricular Arrhythmia prediction is described below.
The Table 4 indicated as the training and testing performance of the Arrhythmia diseases and Supra-

ventricular Arrhythmia disease. A comparative performance study of the proposed DNN classifier with 
the existing classifiers such as NN and SVM is given in table -3. The training and testing performances 
are classified into three sections with 20 training samples-80 testing samples, 40 training samples- 60 
testing samples and 80 training samples-20 testing samples. It is seen that the training and performance 
of the Supraventricular Arrhythmia disease training and testing performance is lower than that of the 
arrhythmia classification. The below section represents the comparative analysis of the existing and 
proposed work.

The Table 5 elaborated the study conducted to formulate a parallel performance analysis of the pre-
existing work and that of the proposed work. Using machine-learning techniques the existing work of 
arrhythmia classification is achieved 96.21% of accuracy. Reducing the input space dimension or ap-

Table 3. Signal based performance evaluation of different classifiers and features

     Classifiers      Features      Sensitivity      Specificity      Accuracy (%)

     NN

     DE      67.50      58.61      63.06

     PRMS      55.56      57.78      56.67

     BR      69.70      63.61      66.67

     YM      60.83      64.17      62.50

     Max      65.00      60.00      62.50

     Min      65.83      63.33      64.58

     Proposed      75.83      78.33      77.08

     SVM

     DE      77.78      55.56      66.67

     PRMS      55.56      94.44      75.00

     BR      38.89      83.33      61.11

     YM      66.67      66.67      66.67

     Max      88.89      72.22      80.56

     Min      66.67      72.22      69.44

     Proposed      88.89      83.33      86.11

     DNN

     DE      75.28      65.83      70.56

     PRMS      68.06      96.39      82.22

     BR      89.17      87.78      88.47

     YM      94.72      11.67      53.19

     Max      85.56      76.67      81.11

     Min      74.17      65.56      69.86

     Proposed      98.61      98.06      98.33
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propriately describing the input features are some the vital data operating and post operational steps. 
Continuous Wavelet Transform (CWT) technique is used for various fields in arrhythmia classification.

In this section the, the execution of both Supraventricular ectopic beat class (S) and Ventricular ectopic 
beat class (V) on few of the subjects’ indicates stunted performance and an elevated load in computing. 
There by making the total precision of the CWT technique used for arrhythmia classification a 97.94%. 
The arrhythmia detection technique using the bat technique based screens for other additional features by 
overlooking features like the noise and unneeded components. Accuracy of the order 94.07% is achieved 
by other researcher, but the experiment uses less number of sampling signals. An accuracy of 93.95% 
is achieved in modular NN based arrhythmia classification technique inspite of limited sampling data 
available for the experiment. In the proposed work the experiment adopts both normal and abnormal 
samples and results in an accuracy of 98.33% which is greater than any of the pre-existing works.

Table 4. Training and testing performance of arrhythmia disease and supraventricular arrhythmia disease

     Arrhythmia Diseases

     Classifiers
     Training and Testing

     20-80      40-60      80-20

     NN      62.8      66.67      76.5

     SVM      60      71.90      74.67

     DNN      63.9      72.85      77.33

     Supraventricular Arrhythmia Disease

     Classifiers
     Training and Testing

     20-80      40-60      80-20

     NN      20-80      40-60      80-20

     SVM      53.8      62.4      71.9

     DNN      59      68.4      72.8

Table 5. Comparative study of prosed and existing work

     Existing Work      Accuracy

     Artificial Neural Network techniques of arrhythmia classification using ECG signals (Abhinav-Vishwa, 
Lal, and Vardwai, 2011)      96.21%

     An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects (Kim, 
Min, and Lee, 2011)      97.94%

     Arrhythmia disease detection of wavelet coherence and bat technique using ECG signals (Kora and 
Krishna, 2016)      94.07%

     Modular NN based arrhythmia classification (Jadhav, Nalbalwar, and Ghatol, 2011)      93.95%

     The Proposed work      98.33%
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CONCLUSION

An ECG signal based Arrhythmia classification is one of the most significant research areas in com-
puter-aided diagnosis. There are many types of heart arrhythmias which can be detected by analysis 
of the ECG signals. ECG signals have well defined P, T waves and QRS complexes. In this research 
windowing technique, various feature extraction methods and classification methods are used. A DNN 
classifier, categorize the signal as normal or abnormal after classification output data are verified with 
ground truth images. The experimental result demonstrated that existing classifiers as NN and SVM 
shows the lower result than proposed classifier and MIT-BIH database is taken for experiment. In 100th 
iteration the proposed DNN classifier has achieved approximately 98.33% accuracy. Here, performance 
is measured in various evaluation metrics such as Accuracy, Sensitivity, and Specificity. In the future 
work, for further improving the classification accuracy, a multi-objective classification method is used 
along with appropriate features.
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ABSTRACT

Artificial intelligence (AI) is going through its golden era. Most AI applications are indeed using ma-
chine learning, and it currently represents the most promising path to strong AI. On the other hand, deep 
learning, which is itself a kind of machine learning, is becoming more and more popular and successful 
at different use cases and is at the peak of developments by enabling more accurate forecasting and 
better planning for civil society, policymakers, and businesses. As a result, deep learning is becoming a 
leader in this domain. This chapter presents a brief review of ground-breaking advances in deep learn-
ing applications.

INTRODUCTION

Artificial intelligence (AI) is omnipresent, our daily life is mostly influenced by it in one way or the 
other. In recent years, most of the researchers are getting attracted towards AI domain due to its major 
applications including multimedia (text, image, speech, video) recognition, social network analysis, 
data mining, natural language processing, driverless car and so forth are using machine learning which 
leads this sub domain to the top of popularity amongst researchers and industrialist. Most AI applica-
tions are indeed using Machine learning and it currently represents the most promising path to strong 
AI. Machine-learning technology has a potential which influenced our modern society in all dimensions 
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like content mining social media networks to e-commerce websites, it has converted our simple calling 
phone to smart phone, normal camera to smart cameras. Apart from this Machine-learning are used in 
image identification, speech recognition and its translation to text, extraction of specific news, customer 
sentiment analysis for business growth etc .

Till now machine learning was implementing all above tasks in traditional way by processing raw 
data and then applying feature extraction techniques followed by matching and labeling. To execute these 
steps machine-learning system needed a significant skillful domain wise expertise to construct a feature 
extractor which can represent the raw data into specific feature vector which can be used by machine 
learning algorithm often a classifier, which can identify and classify input data. Machine learning uses 
single level at each stage of processing raw data to suitable representation for detection, recognition and 
classification. Due to this single level of processing between input and output, may lead to less accurate 
result, On the other hand recently to increase accuracy and speed of processing, Deep-learning methods 
are used which uses learning methods but with multiple intermediate layers of representation. These 
layers are incorporated by non-linear modules which modify the representation at one level into a more 
conceptual representation at next level. Complex functions are built using such simple transformation 
at each layer which can lead to decrease the variations and discriminations. Unlike machine learning 
feature extracting layers are not designed by human experts: they are learned from data using a general-
purpose learning procedure.

Deep learning is making a significant contribution for achieving more and more strong and accurate 
decision . Deep learning has changed the entire landscape over the past few years. Every day, there are 
more applications that rely on deep learning techniques in fields as diverse as healthcare, finance, human 
resources, retail, earthquake detection, and self-driving cars. In Overall dimensions in development DL 
is at the peak and hence DL is becoming a leader in this domain (LeCun, Bengio, and Hinton, 2015).

This chapter presents a brief review of pioneering advances in deep learning applications.

APPLICATIONS OF DEEP NEURAL NETWORKS

Here we will take a general review of several selected applications of the deep networks.

Speech Recognition

During the past few decades, machine learning algorithms have been widely used in areas such as 
automatic speech recognition (ASR) and acoustic modeling (Jaitly and Hinton, 2011 & Mohammed, 
Dahl, and Hinton, 2012 & Mohamed, Yu, and Deng, 2010 & Padmanaban and Premkumar, 2015). The 
ASR can be regarded as a standard classification problem which identifies word sequences from feature 
sequences or speech waveforms.

Many issues have to be considered for the ASR to achieve satisfactory performance, for instance, 
noisy environment, multi-model recognition, and multilingual recognition. Normally, the data should 
be pre-processed using noise removal techniques before the speech recognition algorithms are applied. 
Singh, Tripathy, and Anand (2014) reviewed some general approaches for noise removal and speech en-
hancement such as spectral subtraction, Wiener filtering, windowing, and spectral amplitude estimation.
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Traditional machine learning algorithms, such as the SVM, and NNs, have provided promising results 
in speech recognition (Hinton et. al, 2012). For example, Gaussian mixture models (GMMs) have been 
used to develop speech recognition systems by representing the relationship between the acoustic input 
and the hidden states of the hidden Markov model (HMM) (Baker et. al, 2009).

Since 2006, deep learning has emerged as a new research area of machine learning. As we just men-
tioned, deep learning algorithms can bring satisfactory results in feature extraction and transformation, 
and they have been successfully applied to pattern recognition. Compositional models are generated using 
DNNs models where features are obtained from lower layers. Through some well-known datasets including 
the large vocabulary datasets, researchers have shown that DNNs could achieve better performance than 
GMMs on acoustic modeling for speech recognition. Due to their outstanding performance in modeling 
data correlation, the deep learning architectures are now replacing the GMMs in speech recognition 
(Deng et. al, 2013 & Hinton et. al, 2012). Early applications of the deep learning techniques consist of 
large vocabulary continuous speech recognition (LVCSR) and phone recognition (Dahl et. al, 2012).

Computer Vision and Pattern Recognition

Computer vision aims to make computers accurately understand and efficiently process visual data 
like videos and images (Mohamed, Dahl, and Hinton, 2010 & Mohamed et. al, 2011). The machine is 
required to perceive real-world high-dimensional data and produce symbolic or numerical information 
accordingly. The ultimate goal of computer vision is to endow computers with the perceptual capability 
of human. Conceptually, computer vision refers to the scientific discipline which investigates how to 
extract information from images in artificial systems.

Recently, the development in deep learning architectures has provided novel approaches to the problem 
of pattern recognition, which will be discussed in what follows.

1)  Recognition: During the past few years, deep learning techniques have achieved tremendous prog-
ress in the domains of computer vision and pattern recognition, especially in areas such as object 
recognition (Ballard and Brown, 1982).

2)  Detection: Detection is one of the most widely known sub-domains in computer vision. It seeks 
to precisely locate and classify the target objects in an image. In the detection tasks, the image is 
scanned to find out certain special issues (Sonka, Hlavac, and Boyle, 2014).
3.  Other Applications: Face alignment plays an important role in various visual applications such 

as face recognition. However, for the extreme situations where the face images are taken, face 
alignment may lead to difficulties during the analyzing process. Therefore, different models 
for shape and appearance variation have been considered to solve this problem. Based on the 
model used, the standard approaches can be roughly divided into three groups: the active ap-
pearance model, the constrained local model and the regression. Compared with the normal 
regression based methods, the adaptive cascade deep convolution neural networks (ACDCNN), 
proposed by Dong for facial point detection, have dramatically reduced the system complex-
ity (Dong and Wu, 2015). Dong et al. improved the basic DCNNs by exploiting an adaptive 
manner for training with different network architectures. Experiment results showed that their 
networks can achieve better performance than the DCNNs or other start-of-the-art methods. 
It should be noted that the multi label image annotation is a hot topic in the field of computer 
vision (Zhu et. al, 2015). Furthermore, deep learning techniques have recently been applied 
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to the content-based image retrieval applications (Emad, Yassine, and Fahmy, 2015). More 
specifically, to address the cross-modal retrieval tasks, a correspondence AE (Corr-AE) was 
introduced by correlating the hidden representations of two uni-modal AEs (Feng, Wang, and 
Li, 2014).

Virtual Assistants

The most popular application of deep learning is virtual assistants ranging from Alexa to Siri to Google 
Assistant. Each interaction with these assistants provides them an opportunity to learn more about your 
voice and accent, thereby providing you a secondary human interaction experience (López, Quesada, 
and Guerrero, n.d.). Virtual assistants use deep learning to know more about their subjects ranging from 
your dine-out preferences to your most visited spots or your favorite songs. They learn to understand 
your commands by evaluating natural human language to execute them (Chung, Iorga, and Lee, n.d.). 
Another capability virtual assistants are endowed with is to translate your speech to text, make notes 
for you, and book appointments. Virtual assistants are literally at your beck-and-call as they can do ev-
erything from running errands to auto-responding to your specific calls to coordinating tasks between 
you and your team members. With deep learning applications such as text generation and document 
summarizations, virtual assistants can assist you in creating or sending appropriate email copy as well 
(Tulshan et. al, 2019).

Deep Learning is going to transform the worksplace, but often in ways that pose a threat to jobs. 
There’s a widespread notion that many tasks will be automated, and there’ll be no place for humans.

Healthcare

According to NVIDIA, “From medical imaging to analyzing genomes to discovering new drugs, the 
entire healthcare industry is in a state of transformation and GPU computing is at the heart. GPU-
accelerated applications and systems are delivering new efficiencies and possibilities, empowering 
physicians, clinicians, and researchers passionate about improving the lives of others to do their best 
work.” Helping early, accurate and speedy diagnosis of life-threatening diseases, augmented clinicians 
addressing the shortage of quality physicians and healthcare providers, pathology results and treatment 
course standardization, and understanding genetics to predict future risk of diseases and negative health 
episodes are some of the Deep Learning projects picking up speed in the Healthcare domain (Miotto 
et. al, 2017). Read missions is a huge problem for the healthcare sector as it costs tens of millions of 
dollars in cost. But with the use of deep learning and neural networks, healthcare giants are mitigating 
health risks associated with readmissions while bringing down the costs (Pitoglou, 2018). AI is also 
being exceedingly being used in clinical researches by regulatory agencies to find cures to untreatable 
diseases but physicians skepticism and lack of a humongous dataset are still posing challenges to the 
use of deep learning in medicine.

Self-Driving Cars

Deep Learning is the force that is bringing autonomous driving to life. A million sets of data are fed to a 
system to build a model, to train the machines to learn, and then test the results in a safe environment. The 
Uber AI Labs at Pittsburg is not only working on making driverless cars humdrum but also integrating 
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several smart features such as food delivery options with the use of driverless cars. The major concern 
for autonomous car developers is handling unprecedented scenarios (Bojarski et. al, 2017a). A regular 
cycle of testing and implementation typical to deep learning algorithms is ensuring safe driving with 
more and more exposure to millions of scenarios. Data from cameras, sensors, geo-mapping is helping 
create succinct and sophisticated models to navigate through traffic, identify paths, signage, pedestrian-
only routes, and real-time elements like traffic volume and road blockages. According to Forbes, MIT is 
developing a new system that will allow autonomous cars to navigate without a map as 3-D mapping is 
still limited to prime areas in the world and not as effective in avoiding mishaps (Bojarski et. al, 2017b). 
CSAIL graduate student Teddy Ort said, “The reason this kind of ‘map-less’ approach hasn’t really 
been done before is because it is generally much harder to reach the same accuracy and reliability as 
with detailed maps. A system like this that can navigate just with onboard sensors shows the potential 
of self-driving cars being able to actually handle roads beyond the small number that tech companies 
have mapped” (Bojarski et. al, 2016).

News Aggregation and Fraud News Detection

Extensive use of deep learning in news aggregation is bolstering efforts to customize news as per readers. 
While this may not seem new, newer levels of sophistication to define reader personas are being met to 
filter out news as per geographical, social, economical parameters along with the individual preferences 
of a reader. Fraud news detection, on the other hand, is an important asset in today’s world where the 
internet has become the primary source of all genuine and fake information. It becomes extremely hard 
to distinguish fake news as bots replicate it across channels automatically. The Cambridge Analytica is 
a classic example of how fake news, personal information, and statistics can influence reader perception 
(Bhartiya Janta Party vs Indian National Congress), elections (Donald Trump Digital Campaigns), and 
exploit personal data (Facebook data for approximately 87 million people was compromised). Deep 
Learning helps develop classifiers that can detect fake or biased news and remove it from your feed and 
warn you of possible privacy breaches. Training and validating a deep learning neural network for news 
detection is really hard as the data is plagued with opinions and no one party can ever decide if the news 
is neutral or biased (Najafabadi et. al, 2015 & Wang and Xu, 2018).

Entertainment

Wimbledon 2018 used IBM Watson to analyse player emotions and expressions through hundreds of hours 
of footage to auto-generate highlights for telecast. This saved them a ton of effort and cost. Thanks to 
Deep Learning, they were able to factor in audience response and match or player popularity to come up 
with a more accurate model (otherwise it would just have highlights of the most expressive or aggressive 
players). Netflix and Amazon are enhancing their deep learning capabilities to provide a personalized 
experience to its viewers by creating their personas factoring in show preferences, time of access, history, 
etc. to recommend shows that are of liking to a particular viewer. VEVO has been using deep learning 
to create the next generation of data services for not only personalized experiences for its users and 
subscribers, but also artists, companies, record labels, and internal business groups to generate insights 
based on performance and popularity. Deep video analysis can save hours of manual effort required for 
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audio/video sync and its testing, transcriptions, and tagging. Content editing and auto-content creation 
are now a reality thanks to Deep Learning and its contribution to face and pattern recognition. Deep 
Learning AI is revolutionizing the filmmaking process as cameras learn to study human body language 
to imbibe in virtual characters (Thomas et, al, 2018 & Yang, Yao, Wang, 2018 & Aznan et. al, 2018).

Fraud Detection

Another domain benefitting from Deep Learning is the banking and financial sector that is plagued 
with the task of fraud detection with money transactions going digital. Autoencoders in Keras and Ten-
sorflow are being developed to detect credit card frauds saving billions of dollars of cost in recovery 
and insurance for financial institutions (El Bouchti, Chakroun, and Okar, 2017). Fraud prevention and 
detection are done based on identifying patterns in customer transactions and credit scores, identifying 
anomalous behavior and outliers. Classification and regression machine learning techniques and neural 
networks are used for fraud detection. While machine learning is mostly used for highlighting cases of 
fraud requiring human deliberation, deep learning is trying to minimize these efforts by scaling efforts 
(Moro, Cortez, and Rita, 2015).

Personalizations

Every platform is now trying to use chatbots to provide its visitors with personalized experiences with a 
human touch. Deep Learning is empowering efforts of e-commerce giants like Amazon, E-Bay, Alibaba, 
etc. to provide seamless personalized experiences in the form of product recommendations, personalized 
packages and discounts, and identifying large revenue opportunities around the festive season. Even race 
in newer markets is done by launching products, offerings, or schemes that are more likely to please 
the human psyche and lead to growth in micro markets. Online self-service solutions are on the rise 
and reliable workflows are making even those services available on the internet today that were only 
physically available at one time. Robots specialized in specific tasks are personalizing your experiences 
real-time by offering you the most suited services whether it is insurance schemes or creating custom 
burgers (Schneider and Handali, 2019).

Autism Detection

Speech disorders, autism, and developmental disorders can deny a good quality of life to children suf-
fering from any of these problems. An early diagnosis and treatment can have a wonderful effect on the 
physical, mental, and emotional health of differently-abled children. Hence, one of the noblest applica-
tions of deep learning is in the early detection and course-correction of these problems associated with 
infants and children (Tariq et. al, 2019). This is a major difference between machine learning and deep 
learning where machine learning is often just used for specific tasks and deep learning on the other 
hand is helping solve the most potent problems of the human race. Researchers at the Computer Science 
and Artificial Intelligence Laboratory at MIT and Massachusetts General Hospital’s Institute of Health 
Professions have developed a computer system that can identify language and speech disorders even 
before kindergarten when most of these cases traditionally start coming to light. The researchers evalu-
ated the system’s performance using a standard measure called area under the curve, which describes 
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the tradeoff between exhaustively identifying members of a population who have a particular disorder. 
They use residual analysis that identifies the correlation between age, gender, and acoustic features of 
their speech to limit false positives (Heinsfeld et. al, 2018). Autism is often detected by combining it 
with cofactors such as low birth weight, physical activity, body mass index, learning disabilities, etc.

CHALLENGES

In the above section we took the review of various luring applications of deep learning. These applica-
tions are exciting people about the opportunities this field brings. Although it seems to be attracting 
the industries, but researcher are facing challenging problems to handle the exponentially growing data, 
overfitting issues in neural networks, minimization of hyper-parameter, lack of highly configured pro-
cessors, processing in hidden layers etc etc (Shrivataya, n.d.).

Voluminous Data

To increase the accuracy for getting desired result, Deep learning algorithms are trained on large data set 
like a human brain needs a lot of experiences to learn and deduce information. Researchers feed terabytes 
of data for the algorithm to learn which is really a time-consuming process and requires tremendous data 
processing capabilities. The neural network becomes more complicated as the number of parameters 
used in training goes on increasing.

Overfitting Problem

At times, there is a sharp difference in error occurred in training data set and the error encountered in 
a new unseen data set. It occurs in complex models, such as having too many parameters relative to the 
number of observations. The efficacy of a model is judged by its ability to perform well on an unseen 
data set and not by its performance on the training data fed to it.

Minimisation of Hyperparameter

Hyperparameters are the parameters whose value is defined prior to the commencement of the learn-
ing process. Changing the value of such parameters by a small amount can cause a large change in the 
performance of your model.

Relying on the default parameters and not performing Hyperparameter Optimization can have a 
significant impact on the model performance. Also, having too few hyperparameters and hand tuning 
them rather than optimizing through proven methods is also a performance driving aspect.

High-Performance Hardware

Deep learning algorithms requires a lot of data for training models. To perform a task to solve real 
world problems, the machine needs to be equipped with adequate processing power. To ensure better 
efficiency and less time consumption, data scientists switch to multi-core high performing GPUs and 
similar processing units. These processing units are costly and consume a lot of power.
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Industry level Deep Learning systems require high-end data centers while smart devices such as 
drones, robots other mobile devices require small but efficient processing units. Deploying Deep Learn-
ing solution to the real world thus becomes a costly and power consuming affair.

Neural Networks: Blackbox

We know our model parameters, we feed known data to the neural networks and how they are put to-
gether. But we usually do not understand how they arrive at a particular solution. Neural networks are 
essentially Blackboxes and researchers have a hard time understanding how they deduce conclusions.

The lack of ability of neural networks for reason on an abstract level makes it difficult to implement 
high-level cognitive functions. Also, their operation is largely invisible to humans, rendering them un-
suitable for domains in which verification of process is important.

Lack of Flexibility and Multitasking

Deep Learning models, once trained, can deliver tremendously efficient and accurate solution to a specific 
problem. However, in the current landscape, the neural network architectures are highly specialized to 
specific domains of application.

CONCLUSION

In this Chapter, we have touched most of the sensitive applications of deep learning including computer 
vision, pattern recognition, speech recognition, virtual assistant, driverless car, personisation, etc. Along 
with applications we also put light on the challenges in deep learning for the successful implementation 
of these applications. With the fast development of hardware resources and computation technologies, 
we are confident that deep neural networks will receive wider attention and find broader applications in 
the future. Still there is vast scope for further extensive research. In particular, more work is necessary 
on how we can adapt Deep Learning algorithms for problems associated with Big Data with high di-
mensionality, sparcity, streaming data analysis, scalability of Deep Learning models, improved formula-
tion of data abstractions, distributed computing, semantic indexing, data tagging, information retrieval, 
criteria for extracting good data representations, and domain adaptation. Future works should focus on 
addressing one or more of these problems often seen in Big Data.
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ABSTRACT

Well placement optimization is one of the major challenging factors in the field development process in 
the oil and gas industry. This chapter aims to survey prominent metaheuristic techniques, which solve 
well the placement optimization problem. The well placement optimization problem is considered as 
high dimensional, discontinuous, and multi-model optimization problem. Moreover, the computational 
expenses further complicate the issue. Over the last decade, both gradient-based and gradient-free 
optimization methods were implemented. Gradient-free optimization, such as the particle swarm opti-
mization, genetic algorithm, is implemented in this area. These optimization techniques are utilized as 
standalone or as the hybridization of optimization methods to maximize the economic factors. In this 
chapter, the authors survey the two most popular nature-inspired metaheuristic optimization techniques 
and their application to maximize the economic factors.
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INTRODUCTION

Metaheuristics are generally implemented to tackle problems when no satisfactory problem-specific al-
gorithm is available to solve them. “Conventional” mathematical programming methods such as gradient-
based methods have not provided satisfactory results in solving optimization problems which comprise 
of multi-modality, discontinuity, and non-smooth cost function. So, Metaheuristic has emerged as an 
alternative to traditional methods. In recent years Stochastic algorithms are widely used in different 
complex problems in the real world.

In the current epoch, the Well placement optimization problem has become a major concern in the field 
development process in the Oil and gas industry. This optimization problem is viewed as a challenging 
problem cause the objective function is multimodal, nonconvex and discontinuities (J. E. Onwunalu & 
Durlofsky, 2010). Previously Classical methods had been utilized to tackle well placement optimization 
problems(Rosenwald & Green, 1974), (Ma, Plaksina, & Gildin, 2013), (Pan & Horne, 1998), (Li & Jafar-
pour, 2012),(Jansen & Fluids, 2011), (Bangerth, Klie, Wheeler, Stoffa, & Sen, 2006),(Zhang et al., 2016) 
. On the other hand, Non-classical derivative-free stochastic techniques do not require the calculation 
of derivatives and they are less likely to get stuck in local optimal (Isebor, Durlofsky, & Ciaurri, 2014), 
(Giuliani & Camponogara, 2015), (Fahim Forouzanfar, Reynolds, & Engineering, 2013). Derivative-
free stochastic techniques have the capacity to avoid local optima due to their inherent stochasticity. 
Meta-heuristics approaches are probabilistic in nature and controlled by parameters, e.g., population, 
elite population size, the number of generations, etc. It is true that the performance of Metaheuristic is 
largely dependent on parameter tuning. Due to computational expenses, proper tuning of parameters for 
Well placement optimization is challenging and improper tuning may result in increased computation 
expenses or local optima. The Recent attention from the researcher in well placement optimization is 
summarized in the Table 1.

The motivation for this work is to consider a metaheuristic algorithm to tackle the well placement 
problem. Resolving placement optimization problems is a daunting task, despite evolution and improved 
computing power. The purpose of this chapter is to review the use of particle placement optimization 
algorithms and genetic algorithms for well placement optimization problems and to evaluate their con-
tribution in the solution of well placement optimization problems. PSO, GA, and its hybridization are 
used in many types of research.

This chapter consists of eight major units that explore various aspects of the paradigm of this study. In 
the first part, the author gives an overview of the optimization of well placement. The problem statements 
in the next section, on the other hand, illustrate different forms of the objective function. The third section 
represents different optimization techniques used for   well placement optimization problems. The next 
section will focus on quantitative analysis of various metaheuristic algorithms and the author’s opinion 
on future optimization methods. The final section provides a final comment on the optimization of well 
placement. Sections 6, 7and 8 provide the acknowledgment, references and nomenclature respectively.

WELL PLACEMENT OPTIMIZATION - RESEARCH CHALLENGE

The objective function NPV, can be represented as Equation 1 taking into account the price of oil sold, 
the cost of water production and injection, and the cost of drilling.
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Here Qo, Qw, Po is accumulative oil production, accumulative water production, oil’s cost respectively. 
OPEX is the operational cost, D is the discount rate, NPV is net present value, CAPEX is the capital 
expenditure, Cw is the cost per unit volume of produced water, and T is the number of years passed 
since the production has started. Table 2. Shows different cost function consideration in Well placement 
optimization problem.

METAHEURISTIC TECHNIQUES

In real-world engineering problems optimization techniques based on meta-heuristic techniques are more 
prevalent as they are gradient-free, easy to implement and can be employed in a vast range of problems. 
Metaheuristic techniques can be divided in three large groups: Evolutionary based algorithm (e.g. GA, 
DE etc.), physics-based algorithm (e.g. Cuckoo search, GSA etc.), and population-based algorithm (e.g. 
PSO, ACO etc.). Especially, metaheuristic algorithms work well on surfaces which are populated with 
many local optima. In this section Authors briefly discusses some well know methods and their variants. 

Table 1. Recently applied methods on well placement optimization

No. Reference work Year Diligence

1. (S. Ding et al., 2019) 2019 Incorporated DMPP technique with PSO.

2. (Redouane, Zeraibi, & Nait 
Amar, 2018) 2019 An intelligent neighborhood search mechanism is combined with GA to 

improve the quality of proxy models.

3. (Janiga, Czarnota, Stopa, & 
Wojnarowski, 2019) 2019 Authors developed a clustering approach that significantly reduces the 

convergence time of the particle swarm optimization algorithm.

4. (Miyagi & Yamamoto, 2018) 2018 CMA-ES is included with mixed-integer support for Well Placement 
optimization.

6. (Jang, Oh, Kim, Park, & Kang, 
2018) 2018 The search space is successively refined using an artificial neural 

network.

7. (Chen et al., 2018) 2018 Combined cat swarm optimization (CSO) algorithm, particle swarm 
optimization (PSO) mesh adaptive direct search (MADS) algorithm.

8. (Chen et al., 2017) 2017 An analytical expression used to calculate the cost function using the cat 
swarm optimization (CSO) algorithm.

9. (Hamida, Azizi, & Saad, 2017) 2017 PUNQ-S3 and Brugge field datasets are used to test the robustness of 
the Genetic Similarity Algorithm (GSA).

10. (Pouladi, Keshavarz, Sharifi, & 
Ahmadi, 2017) 2017

By combining FMM-based methods with Particle Swarm Optimization 
algorithms, authors introduced a surrogate model that includes cost 
functions.

11. (Sayyafzadeh, 2017) 2017 Development of a computationally cheaper self-adaptive model 
management strategy using a proxy support algorithm.

12. (Jesmani, Jafarpour, Bellout, 
Hanea, & Foss, 2016) 2016

Authors adopted the Simultaneous Perturbation Stochastic 
Approximation (SPSA) algorithm using an efficient stochastic gradient 
approximation.
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The success of a metaheuristic approach on a given problem depends on the balance between exploration 
and exploitation. In Exploitation mode, metaheuristic approaches fine-tune the solution in a specific 
area. Many classical and non-classical Optimization techniques have been employed for well placement 
optimization techniques. In the following section, a review of some popular optimization techniques is 
given. To overcome the lacking of mathematical model based approaches, non-conventional methods 
like PSO, GA, BA, DE, CMA-ES, and many other techniques have been implemented on well placement 
optimization problem. The main differences between all these metaheuristics are in which way create a 
balance between exploration and exploitation. Among all the Meta-heuristic algorithms that have been 
used in this particular problem, GA is the most famous, naturally inspired algorithm and PSO is the most 
prevalent one. In this paper, authors mainly focus on surveying GA and PSO because these two are the 
most prevalent in this area. PSO and GA are presented in the following Section respectively.

Particle Swarm Optimization (PSO)

PSO is a swarm based computing technique developed by Kennedy and Eberhart (Kennedy & Eberhart, 
1995). PSO has earned popularity because it is easy to implement and it has faster convergence. In PSO, 
Particles fly randomly and update their position according to its positon’s equation to identify the optimum 
solution in a search space (Rahman, Vasant, Singh, & Abdullah-Al-Wadud, 2016). At first, particles of 
the swarm initialize velocity and position randomly. Then the fitness of the probable solutions calculates 
and adjusts its position. PSO combines global search techniques with local search techniques to balance 
exploration and exploitation. Steps of PSO algorithm for optimization of well placement problem given 
in Fig. 1. A commonly used method is to represent the particle as 1 × n vector, where n is variables of 
the well placement optimization problem. Initially, a m × n position matrix is created, where m is the 
no. of particle The velocity of individual particles is updated using the following formula:

V wV c rand pbest x c rand gbest xi
k

i
k

i
k

i
k k

i
k� � � �� � � �� �1

1 1 2 2
……………… (2)

Here Vi  is the velocity of individual i at iteration k, w is weight vector, c and c
1 2

 are acceleration con-
stant, represents random numbers are represented by rand and rand

1 2
, xi

k  represents the particle i’s 
position at iteration k, pbesti

k  represents the optimal position of particle i up to k th iteration and gbestk  

Table 2. Consideration of different objective functions for well placement optimization

No Reference(s) Year Cost Function

1. (Cheng, An, Wang, & 
Zhu, 2012) 2012 Conventional net profit value.

2. (Chen et al., 2017) 2017 Objective function based on an analytic expression.

3. (Awotunde, Sibaweihi, & 
Management, 2014) 2014 NPV and Voidage Replacement Ratio both are objective function.

4. (Hutahaean, Demyanov, 
Arnold, & Vazquez, 2014) 2014 A multi-objective approach minimizing scale risk and maximizing oil 

recovery.

5. (Chen et al., 2018) 2018 Replaced the traditional objective function with a minimal Theil index.
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represents optimal position of the group up to k th iteration. Again, each particle uses the following 
formula to update the next position in the search space

x V xi
k

i
k

i
k� �� �1 1 ……………………………………………… (3)

At first, Onwunalu in his study used PSO where he narrowed down the search space by gradually chang-
ing from the exploratory mode to exploitive mode (J. Onwunalu, 2010). But this gradual change 
may be sensitive to search space. Feng Q. et al implemented Clerc’s proposed PSO algorithm 
which decreases the search process. (Feng, Zhang, Zhang, & Hu, 2012) (Clerc, 1999). In the PSO 
algorithm, a neighborhood topology provides different swarm searches in the landscape by enabling 
different flying patterns among its particles. The neighborhood topology has effects on the PSO 
convergence. Researchers utilized Random neighborhood with PSO to tackle Well placement 
optimization problem (J. E. Onwunalu & Durlofsky, 2010) (Foroud, Baradaran, & Seifi, 2018). In 
this topology the behavior of particle such that each particle is connected to some of the particles 
in the swarm but not to the remaining particles. This solution provides better global optima and 
avoids local optima.

Figure 1. Flow chart of particle swarm optimization
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Niches are one of the primitive approaches developed to address multimodalities, but relatively few 
researchers have proposed a PSO-based niche approach. Cheng et al. A variant of the PSO named 
Niche PSO was applied to optimize the well position (Cheng et al., 2012) (Brits, Engelbrecht, & 
Van den Bergh, 2002). This new technique can handle many multidimensional variables. In this 
way, the flock is divided into smaller subgroups. This technology has improved herd exploration 
capabilities. Experimental results show that increasing the size of the flock reduces the number of 
iterations and the niche PSO outperforms the standard PSO. Ding et al. introduced time-of-flight 
coefficients, modified inertial weight, velocity, and position update equations and incorporated 
the proposed MPSO with quality map technique(S. W. Ding, Jiang, Li, & Tang, 2014). The result 
shows that the proposed method can find the best location over SPSO, Central Progressive PSO 
(CP-PSO) and MPSO

HYBRID PSO

The MPSO algorithm is used by Ding et al. to optimize the type, location and shape of the well (S. Ding 
et al., 2016). Isebar incorporated PSO and a local optimization method MADS search methods by hy-
bridizing and to process nonlinear constraints filter-based methods is used (Isebor, Ciaurri, & Durlofsky, 
2014). In the experiment, the performance of the new hybrid technique is superior to the independent 
PSO and MADS. Nwankwor et al. proposed the HPSDE algorithm, incorporation of DE and PSO to find 
the best well location (Nwankwor, Nagar, & Reid, 2013). The results show that the HPSDE algorithm 
is better than two independent algorithms.

Genetic Algorithm (GA)

Inspired by the theory that only strong and fit species survive in nature, John Holland developed the 
Genetic Algorithm (GA) in 1970 (Holland, 1992). The GA algorithm’s population consist of a set of 
chromosomes. First, the process is started randomly and the crossover, mutation and recombination 
processes continue until a single optimal solution is reached. The general flow chart of the GA algorithm 
is shown in Figure 2.

Some of the Basic terms of Genetic Algorithm is described below:

1. Selection

According to Darwin’s evolution theory, the fittest ones should survive and produce new offspring. Some 
selection methods are tournament selection, roulette wheel selection, rank selection and some others. In 
GA Chromosomes are selected as parents for crossover.

2. Crossover

Crossover picks genes from parent chromosomes and produces a new offspring. The least intricate way 
to do this is to pick a crossover point randomly and duplicate everything before this crossover point from 
a first parent and duplicate everything after this point from the second parent.

The crossover would then be able to resemble this
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Chromosome 1 11011 | 00100111011
Chromosome 2 11000 | 11000011110
Offspring 1 11011 | 11000011110
Offspring 2 11000 | 00100111011

There are different ways how to make crossover, for instance, we can pick more crossover points. 
Crossover can be somewhat confused and very relies upon encoding of the chromosome. Explicit cross-
over made for a specific issue can improve execution of the genetic algorithm.

3. Crossover probability

Crossover probability indicates how regularly will be crossover executed. If the cross over is 0% then 
the offspring is exactly the same copy of the parent chromosomes from the old population. that does not 
mean that the offspring is the same. if crossover probability is 100%, at that point all-new generation is 
made by crossover. Crossover is made with the expectation that new chromosomes will have great pieces 
of old chromosomes and possibly the new chromosomes will be better.

Figure 2. Flow chart of genetic algorithm
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4. Mutation

Mutation takes place after a crossover is performed. This is to tackle local optimum in the optimization 
problem. The mutation changes haphazardly the new generation. For binary encoding, we can toggle 
bits from 1 to 0 or from 0 to 1. Example of mutation is:

Original offspring 1 1100111000011110
Original offspring 2 1101101100110110
Mutated offspring 1 1101111000011110
Mutated offspring 2 1101100100110100

5. Mutation probability

Mutation probability indicates how regularly will be portions of chromosome muted. if Mutation prob-
ability is 100%, at that point all new generation is changed. If the Mutation probability is 0% then, noth-
ing is changed. Mutation is made to avoid falling GA into local optimums, yet it should not happen very 
frequently, because then GA will become a random search.

Güyagülern and Horne implemented GA to optimize well location and injection rate, consid-
ering net present value (NPV) as the objective function (Guyaguler & Horne, 2001). Quality map 
is incorporated into genetic algorithms with nonlinear constraints (Emerick et al., 2009). The results 
show that the quality map helps determine the correct position for proper well placement. Lyons and 
Nasrabadi proposed combining pseudo-history matching and genetic algorithm (GA), indicating that the 
results reduced the computation time by a factor of four.(Lyons & Nasrabadi, 2013). Well placement 
optimization problem is considered as a multi-objective problem by Chang, Y.(Chang, Bouzarkouna, 
& Devegowda, 2015). In this research work, the “non-dominant sorting genetic algorithm-II (NSGA-II)” 
has been implemented to solve the multi-objective well placement optimization problem. In this work, 
a polynomial-based approach is used to reduce the computational cost. The results show that NSGA 
II is an effective and robust method for dealing with multi-objective problems. Ariadji et al. claimed 
that GA method is effective and robust for accurately solving well location problems m (Ariadji et al., 
2012). An important contribution of this technique is the formulation of the cost function.. Overall, in 
well placement optimization problem, GA and its variants are one of the most popular technique 
for optimization purpose. In general, GA can find global optima, but shows slow convergence rate.

OTHER ALGORITHMS

Taking into account NPV as an objective function, Ding uses CMA-ES to optimize well placement (D. 
Ding, 2008). The authors conclude that population size and parameters affect the performance of the 
algorithm. Forouzanfar et al. considered the well placement optimization problem as joint optimization 
problem and implemented the CMA-ES algorithm to solve the challenge (F. Forouzanfar, Poquioma, 
& Reynolds, 2016). Findings of the study suggest that the simultaneous optimization method produces 
better results than the sequential optimization method.
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Naderi and Khamehchi have implemented the Bat algorithm to successfully solve well placement 
(Naderi & Khamehchi, 2017). The experimental results show that compared with PSO and GA, BA 
increased NPV by 7.5% and 21.7%, respectively Dossary and Nasrabadi implemented the imperialist 
competitive algorithm(ICA) and compared the results with PSO and GA (Al Dossary, Nasrabadi, & 
Engineering, 2016) (Al Dossary & Nasrabadi, 2015). The results obtained reveal a significant improve-
ment in NPV and rapid convergence to global optimization. However, the three main ICA parameters 
are problem-specific and need to be adjusted for other search spaces.

DISCUSSION AND FUTURE WORKS

The authors conducted extensive searches in the Scopus and Web of Science databases. Figure 3 shows 
the number of papers that solved the well location optimization problem using meta-heuristics such as 
GA, PSO, CMA-ES and DE. The most commonly used algorithm can be seen in Figure 3. From this 
quantitative analysis, it is clear that researchers are interested in implementing an independent approach 
to solving WPO problems. In future research, a comparative study among Meta-heuristic algorithms on a 
common platform should be conducted for evaluation. Also, Future research should aim at reducing the 
computational time using surrogate approaches. There is a need for robust reliable optimization frame-
works that are useful for a large scale optimization problem. Furthermore, The techniques that narrow 
downs the search space for extreme-scale systems should be implemented. In recent years many new 
techniques have been developed. For example, the nature-inspired algorithms such as Hunting Search 
Algorithm(HSA), Firefly Algorithm (FA), Roach Infestation Optimization (RIO), Artificial Fish School 
Algorithm (AFS), Eagle Strategy (ES), Artificial Plant Optimization Algorithm (APO), Gravitational 
Search Algorithm (GravSA), Eagle Strategy (ES), Glowworm Swarm Algorithm (GlowSA), Bacterial 
Evolutionary Algorithm (BEA), Krill Herd Algorithm (KHA), Flower Pollination Algorithm(FPA) 

Figure 3. Number of papers by algorithms used for solving WPO problem
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and others. These Novel algorithms may possess some novel characteristics which can help tackle well 
placement problem. These 3rd generation algorithms may offer incredible preferences as far as finding 
the global optimality in tremendous and complex search spaces. The implementation of these approaches 
is moderately direct and simple. They are likewise sensibly adaptable as parameters can be changed 
effectively for better execution.

The issue in Well placement optimization largely related to multimodality problem and high compu-
tational expense. Researches have tried to tackle the multimodality problem with high diversity. Explora-
tion is empowered by high diversity but it does not necessarily mean that low diversity is exploitation 
as exploitation requires an extensive search in a small area. It is also true that adequate diversity does 
not guarantee to take care of the convergence issue since convergence is a much-complicated issue. 
Furthermore, a great balance between exploration and exploitation may make an approach work to its 
best ability, yet this does not really mean its convergence rate is high. Cunning exploitation at the right 
time at the right place can give fast convergence. But it is still an open issue. In this manner, appropriate 
diversity must be maintained during the searching procedure to tackle local optima, even with the cost 
of slower convergence. Also, hybridization has been a broadly worthy technique to advance exploration 
along the quest for the global optima. So, the future researcher may take interest in the hybridizing the 
meta-heuristic algorithms for well placement optimization. But some challenges arise concerning hybrid 
approaches also. For instance, most hybrid approaches will increase the number of parameters in the 
calculations, in this manner making it harder to tune their parameters. Moreover, hybrid approaches are 
somewhat harder to implement, and consequently increasingly inclined to blunders. Along these lines, 
care ought to be taken when translating results from hybrid approaches. Furthermore, hyper-heuristic 
approaches can be viewed as a sort of hybrid techniques. In hyper-heuristic strategies, parameters are 
chosen by a sub-algorithm or through a learning system.

Apart from multimodality problem, Well placement optimization problem creates another challenge 
by posing computationally expensive cost function. To tackle this problem many researchers have used 
surrogate model. The surrogate model intends to give a more straightforward, and thus quicker, model 
which imitates the actual behavior of the cost function. In talking about the application to Well Place-
ment of this technique, we note that surrogate model’s accuracy is largely dependent on data sampling; 
and some of the further developed surrogate strategies are yet to be implemented in the Well placement 
problem.

CONCLUSION

This chapter reviews the genetic algorithm and Particle swarm optimization implemented in the topic of 
well placement optimization. In the past decade, significant progress has been made in using the meta-
heuristic algorithm to achieve proper well location with higher net profit value. Metaheuristic algorithms 
are usually slower than deterministic algorithms. Due to the nature of randomness, premature convergence 
can be avoided if properly adjusted. A lot of work is required to properly adjust these algorithms. In this 
study, the authors found that PSOs and their variants converge faster and provide high-quality solutions. 
These variants of PSO and GA also provide a better solution from standard algorithms, indicating that 
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changes to specific problems lead to the right solution. The well placement optimization problem has 
proven to be very complex, multi-model and discontinuous. But the challenge for researchers is not just 
the complex surface. Since the cost function takes a long time to calculate, it is difficult to adjust the 
algorithm correctly. Therefore, the surrogate model can significantly reduce the calculations and help 
to tune the algorithm’s parameters.
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ABSTRACT

Total organic carbon (TOC) is the most significant factor for shale oil and gas exploration and devel-
opment which can be used to evaluate the hydrocarbon generation potential of source rock. However, 
estimating TOC is a challenge for the geological engineers because direct measurements of core analysis 
geochemical experiments are time-consuming and costly. Therefore, many AI technique has used for 
TOC content prediction in the shale reservoir where AI techniques have impacted positively. Having 
both strength and weakness, some of them can execute quickly and handle high dimensional data while 
others have limitation for handling the uncertainty, learning difficulties, and unable to deal with high or 
low dimensional datasets which reminds the “no free lunch” theorem where it has been proven that no 
technique or system be relevant to all issues in all circumstances. So, investigating the cutting-edge AI 
techniques is the contribution of this study as the resulting analysis gives top to bottom understanding 
of the different TOC content prediction strategies.

INTRODUCTION

For gas and oil exploration, it is critical to evaluate source rock property accurately. The abundance 
of organic carbon can be represented by Total organic carbon as a basic and important index (Passey, 
Creaney, Kulla, Moretti, & Stroud, 1990),(King, 2010). Generally, from core laboratory analysis, this 
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parameter is obtained which are time-consuming and expensive (Delvaux, Martin, Leplat, & Paulet, 
1990; Hare et al., 2014; Johannes, Kruusement, Palu, Veski, & Bojesen-Koefoed, 2006). This constrains 
the quick advancement of unconventional oil and gas exploration.

Then again, permeability, thermally mature, total organic carbon (TOC) content, porosity, saturation, 
mechanical properties and rock mineralogy etc. define the productivity of shale quality. Further, reser-
voir properties which are critical can judge qualitatively of most productive shale reservoir which are 
commercially potential typically has at least 2% TOC and Ro (more than 1.4 in gas dry window). For a 
good oil and gas flow capability and storage, it needs under 40% saturation and 100 nano-darcy perme-
ability and over 2% porosity. Further, low differential stress, a certain degree of natural fractures and 
over 40% quartz or carbonate in mineralogy is needed additionally for commercial shales (Sondergeld, 
Newsham, Comisky, Rice, & Rai, 2010). For basic and important index, TOC content is the one among 
the all factors representing the organic matter.

Well logging and direct geochemical analysis are utilized conventionally for TOC determination in 
the present petroleum industry. Whatever, core data for TOC are not available due to the time and cost 
required for testing and the difficulties related to gather occasion an intact and representative sample. 
Despite the fact that laboratory test of TOC is difficult, they are still the preferred and necessary tech-
niques (Guangyou, Qiang, & Linye, 2003; Jarvie*, Jarvie*, Weldon*, & Maende*, 2015).

For further prediction, these lab results are regularly applied as references for the mathematical 
approaches. With the fast advancement of unconventional exploration of gas and oil, the accurate and 
continuous study on the TOC is vital. High longitudinal resolution portrays well logging. For the fact of 
giving continuous TOC profiles that cover the entire interval of interest when continuity of the information 
and log-based TOC prediction are all the more universally applicable. By comparing with surrounding 
rocks, some specific geophysical responses (e.g., resistivity, neutron, density, and gamma-ray) of the 
source rock can be recognized. During utilization of log-based TOC prediction the empirical math-
ematical equations are commonly utilized. Notwithstanding, equation quality are incredibly dependent 
by the estimation result by logging data. Meanwhile, the gamma-ray and uranium correlation technique 
are some of the time not reasonable for shale reservoir. Having radioactivity in phosphatic fish plates 
in shale reservoir elevated gamma-ray and uranium counts can’t reflect TOC (Bessereau, Carpentier, & 
Huc, 1991; Passey et al., 1990).

A complicated non-linear function relationship is seen between the TOC content and the logging data. 
Between the logging data and the TOC content a complicated relationship is seen which are non-linear. 
By using simple linear regression, approximating the real function relationship is hard and utilizing the 
well log, it is impossible to predict the TOC content. Nowadays, most researchers have been attracted 
by AI. The real research demonstrates that AI strategies have extremely solid approximation abilities 
to non-linear implicit functions. On the other hand, the prediction of TOC content has been worked by 
AI strategies revealed by the current research result. Between TOC content and the logging parameters 
a correlation models have been established by utilizing the NN so as to accomplish a good prediction 
of TOC content. Indeed, the utilization of robust AI techniques approaches have been presented and 
effectively utilized in numerous engineering fields, for example, permeability estimation, lithology 
classification et al. (Shadizadeh, Karimi, & Zoveidavianpoor, 2010; Yuan, Zhou, Song, Cheng, & Dou, 
2014; Zoveidavianpoor, Samsuri, & Shadizadeh, 2013). Table 1 abridge current TOC prediction strate-
gies utilizing well logs.
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BACKGROUND

It is evident in published literature that the utilization of AI acts to diminish the framework complexities 
to be modeled. For the overall framework AI can give a high level of simulated accuracy. To give some 
examples such studies, we note that the AI technique can be classified into these algorithms: ANNs, FL, 
generalized regression neural network, SVMs, radial basis function, convolutional neural networks (CNNs), 

Table 1. Summary of log-based TOC prediction models

Method Parameters Explanation and feature Reference

LogR method Resistivity and Porosity

(1) TOC foundation levels and Baseline shift 
territorially 
(2) LOM range varies in specific areas 
(3) Underestimates TOC in reservoir with a 
plenitude of pyrite

[1], [13]– [15]

Bulk density method Density

(1) Suitable for reservoirs with similar consistent 
mineralogy and liquid phases. 
(2) Need a solid relationship amongst TOC and 
density.

(Schmoker, 1979; 
Schmoker & Hester, 
1983)

Natural gamma method Gamma intensity

(1) For non-radioactive or uranium content with 
phosphatic minerals has limitation. 
(2) Better for marine source rocks (with 
concentrated uranium)

(Beers, 1945; Hester & 
Schmoker, 1987)

Interval transit time method Compressional transit-
time

(1) Sonic velocities can be affected significantly by 
many variables. 
(2) Need a solid relationship between TOC and 
compressional transit time

(Autric, 1985; Decker, 
Hill, & Wicks, 1993)

Geochemical Laboratory 
measurements (Leco TOC 
and Rock Eval)

(1) Combust pulverized 
tock 
(2) S1, S2, S3 peaks in 
rock Eval technique

(1) Discrete data points 
(2) Direct measurements from core samples 
(3) Expensive

(Jarvie* et al., 2015; 
Peters, 1986)

Spectral gamma ray method Uranium, potassium, 
uranium content (1) Expensive and availability is less for all wells (Nardon et al., 1991)

Volume model method

Water volume and 
Hydrocarbon, carbonate 
volume, Kerogen 
volume clay volume, 
and siliceous volume

(1) Organic carbon conversion factor (K) changes 
territorially 
(2) Composite well log integration

(Mendelzon & Toksoz, 
1985)

Laser-induced 
breakdown spectrometry, 
chemostratigraphy, 
RockView

The carbon abundance 
of formation and 
carbonate mineral in 
spectroscopy

(1) International oil service companies 
(Schlumberger-Litho Scanner, Baker Huges-
RockView services et al.) controls the Core 
technologies 
(2) The chemical contents can be determined 
directly

(Charsky & Herron, 
2013; Pemper et al., 
2009)

Multivariate fitting Composite well logs

(1) Need database foundation 
(2) Hard to decide the significant parameters 
because of nonlinear connection between various 
well logs

(Heidari, Torres-
Verdin, & Preeg, 2011)

Neural network methods Composite well logs

(1) For over-fitting input issue data-pre-processing 
is essential 
(2) Suitable at the beginning time for TOC 
prediction. 
(3) Kernel functions are significant for SVR

(Huang & Williamson, 
1996; Kamali & 
Mirshady, 2004; Tan, 
Song, Yang, & Wu, 
2015)
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Genetic calculation (GA), PSO, Neuro Fuzzy (NF), Artificial intelligence system (AIS) et al. applied 
to optimize the whole modeling procedure (Ardabili, Mahmoudi, & Gundoshmian, 2016; Kalantari et 
al., 2018). Having the amazing capability of learning the patterns AI can perceive the complex behavior 
in such information for modeling the objective variable. Utilizing computer-based technique research 
demonstrates that for accomplishing a high level of accuracy, AI models can utilize significantly large 
volume of data. More importantly, AI methodologies with the assistance of computer assisted facilities 
can also enable a variety of decision-making alternatives modeled by realistic estimates of procedures 
that should be applied in practical life (O’Leary, 2013).

In the same way as other different fields, AI has achieved a decent spot in the optimization, produc-
tion and evaluation of source rock in shale reservoir predominantly on the grounds that the generation 
potential of source rock involving large volume of information with several input parameters is relatively 
complex process. Those can be breaking down cautiously and predict Total Organic Carbon in shale 
reservoir. Wang, Alizadeh, Johnson, Mahmoud, and Shi et al. utilized ANN to evaluate TOC content 
in shale reservoir whereas Peng, Tahmasebi, Wang et al. developed a hybrid method using FL, GA, 
LSSVM, PSO et al. Whatever remains of the studies, as displayed in Table 2, can be sorted dependent 
on the particular I approach.

MAIN FOCUS OF THE CHAPTER

The goal of this review is to investigate the cutting-edge AI approaches utilized in TOC content predic-
tion in shale reservoir as far as their setting of application, sensitivity and accuracy to the model’s input 
datasets. For providing comprehensive data on the usage of AI in TOC content prediction, an extensive 
interpretation, review and analysis is expected where the researcher would be helped by optimizing their 
methodology. This review work has five stages where the first stage is about a comprehensive introduc-
tion of TOC content in shale reservoir and its prediction procedure. In second stage, an arrangement of 
studies dependent on the developed AI technique in a more prominent detail is provided. The next stage 
presents AI and TOC content prediction strategies. The criteria for assessment of models is character-
ized in stage four and the final stage builds up the comparison dependent on assessment criteria and 
the general conclusion and the synthesis of cutting-edge studies reached in the review paper in TOC 
prediction studies.

METHODOLOGY

Eight recent articles of AI technique are adopted in this review which are the cutting-edge methods for 
TOC content prediction from well logs data. This information is gathered from IEEE, Science Direct 
and Springer. TOC content prediction strategy, modeling technique and the obtained results are reviewed 
in this paper. A list of studies on AI technique are provided in Table 2.

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



50

Artificial Intelligence Approach for Predicting TOC From Well Logs in Shale Reservoirs
 

CHARACTERISTICS OF THE STUDIES

The characteristics of studies such as methodology, modeling technique, input and output criteria of 
every AI approaches presented in Table 3

Table 2. Publications on AI techniques in field of TOC content prediction between 2012 and 2019

Row Published Year Author (s) Objective

Artificial neural network

1 2019 Huijun, Wei, Tao, Xinjun, 
Guangxu

To predict TOC, S1 and S2 with high accuracy based 
on well logs.

2 2018 Yousef, Ali Moradzadeh; 
Mohammad Reza

To estimate one dimensionally the organic geochemical 
parameters in one well of the Canning basin, Western 
Australia

3 2018 Bahram, Khaled, Mohamad 
Hossein

To estimate TOC; 
To estimate S2 and HI factors; 
To distinct the kerogen types

4 2018 Lukman, Reza, Ali, Gregory, 
Hongyan

To predict continuous geochemical logs in wells with 
no or limited geochemical information. 
To predict TOC, S1, S2

5 2017

Ahmed Abdulhamid, 
Salaheldin, Mohamed, 
Mohamed, Abdulazeez, 
Abdulwahab

To determine the TOC for Barnett and Devonian shale 
formation based on conventional logs

6 2016 Maojin, Xiaodong, Xuan, 
Qingzhao

To estimate the TOC content in gas-bearing shale (to 
investigate log-based TOC prediction 
for organic shale using the SVR method)

SVM, GA, PSO, ELM, FUZZY, and other methods

1 2018 Pan, Suping To predict TOC from well logs data

2 2018 Pan, Suping, Taohua To predict TOC from well logs data

3 2017 Linqi, Chong, Chaomo, Yang, 
Xueqing, Yuan, Yuyang, Le To predict TOC from well logs data

4 2017 Pejman, Muhammad To predict TOC and FI from well logs

5 2017 Vahid, Ali, Reza To formulate TOC values in the absence of laboratory 
TOC measurements from conventional well log data.

6 2016 Xian, Jian, Gang, Liu, Xinmin, To predict TOC from well logs data

7 2015 Sid-Ali, Leila

To predict TOC from well-logs data. 
To implant an intelligent system able to replace the 
Schmoke model in case of lack of measurement of the 
Bulk density.

8 2015 Maojin, Xiaodong, Xuan, 
Qingzhao

To estimate the TOC content in gas-bearing shale (to 
investigate log-based TOC prediction 
for organic shale using the SVR method)

9 2012 Ebrahim, Ali, Saeid To predict TOC using intelligent systems
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Table 3. Modeling characteristics

No Methodology

Modeling method/ 
classification method/ 

regression method/ 
clustering method

Input (s)/ objective 
functions (s)

Output (s)/ 
Criteria References

1

First- We made a correlation between TOC, S1, S2 and well logs to determine 
the suitable inputs. Second- 125 core shale samples and well logging data 
of Shahejie Formation from Dongying Depression, Bohai Bay, China were 
randomly split into 100 training samples and 25 validating samples to develop 
the proposed CNN for predicting TOC, S1 and S2. Third- all logs and chosen 
logs were used as inputs respectively for comparison.

Six Layer CNN

Density (DEN), 
resistivity (RT), 
neutron (CNL), and 
sonic transit time 
(AC)

TOC, S1 
and S2

Huijun et al 
(2019)

2

First, simulated annealing algorithm combined with the GA to analyze the 
fuzzy c-means clustering so as to classify sample data, and then to obtain the 
high-quality data. Then for the small sample data, LSSVM was established to 
predict TOC. Further, PSO-LSSVM was established to predict TOC content. At 
the same time, a BP-NN model for the contrastive analysis was established.

SAGA-FCM (Simulate 
annealing algorithm genetic 
algorithm-Fuzzy C mean 
clustering); LSSVM; PSO-
LSSVM; BPNN

SP, GR, DTC, RT, 
U, KTH, TH, DEN, 
CNL

TOC Pan et al 
(2018)

3

A multi-layer perceptron neural network used to predict S1, S2, S3 and TOC in 
presence of the petrophysical logs like GR, DT, SP, CAL, NPHI, FCNL, LLD, 
LLS, RHOB and MSFL as input variables. Then, the well-derived geochemical 
data were simulated by Sequential Gaussian Simulation (SGS) method.

MLP-NN and SGS (Sequential 
Gaussian Simulation)

GR, DT, SP, CAL, 
NPHI, LLD, LLS, 
RHOB, MSFL

TOC, S1 Yousef et al 
(2018)

4

ANN and ΔLogR techniques were used to make a quantitative and qualitative 
correlation between TOC content and wireline data. Then, Artificial Neural 
Network and mathematical relationship between geochemical factors were used 
to estimate S2 and HI factors. Furthermore, estimated parameters were used 
to distinct the kerogen types. Finally, geochemical and depositional properties 
of the Pabdeh Formation were evaluated to depict applicability of the method 
used.

ANN; ΔLogR techniques;

(1)ΔLogR 
technique, sonic log 
(DT), corrected 
resistivity log (Rt) 
and LOM factor; 
GR log; (2) TOC, 
Rt, DT, and LOM

(1) TOC; 
(2) S2

Bahram et al 
(2018)

5

The study investigates three types of models including PSO-LSSVM, LSSVM 
and ANN-BP for TOC prediction. Moreover, in this study, two cases of models 
will be designed. One takes the selected well logs as input, while the other takes 
all available well logs as input.

ANN-BP, LSSVM, PSO-
LSSVM

Selected Log= 
(CNL, DTC, 
RT,U,GR,DEN)

TOC Pan, Suping et 
al (2018)

6

ANN is utilized to predict organic geochemical data in two wells with no 
laboratory measured geochemical data, and four (4) wells with limited 
laboratory measured data. The distribution of these geochemical properties 
within the ∼200m–300m thick Goldwyer 3 Shale member is subsequently 
modelled across the Broome Platform of the Canning Basin.The methods 
employed in this study can be subdivided into four main steps. 
a. Well log to geochemical data compilation 
b. Identification of relationship between well logs and geochemical 
property 
c. Network Training 
d. Geochemical Property Model

ANN DTC; GR; CNL; 
DEN; KTH; TH; U TOC Lukman et al 

(2018)

7 Applied an ANN model with single hidden layer and 5 neurons to predict TOC 
in presence of the GR, RILD, ∆tb as input and TOC as output of process. ANN

Gamma ray log, 
deep induction 
resistivity log, 
compressional 
transient time, and 
bulk density log

TOC Ahmed et al 
(2017)

8

First, a method of data mining called stepwise regression for identifying the 
correlations between target (i.e., dependent) parameters- the TOC and FI 
and the available well log data (the independent variables). Then a hybrid 
machine-learning algorithm (FL-GA-ANN) is also presented that models 
more accurately the complex spatial correlations between the input and target 
parameters.

Multiple linear regression 
(MLR); Fuzzy Logic, Genetic 
algorithm, ANN, Hybrid 
Machine Learning (FL-GA-
ANN)

GR, Rhob, Nphi, 
DT, PE, RT10, SP, 
Ur, Thor, K

TOC, Fracable 
Index (FI)

Pejman et al 
(2017)

9

First- Rock-Eval pyrolysis measurements on drill cutting samples. Second, 
Synthesis of TOC log from conventional well log data using FL and calculating 
TOC applying △ log R technique. Third, grouping the synthesized TOC log 
data into clusters using k-means algorithm. Fourth, Training SVM and ANN 
classifiers to predict the source rock class membership (zones) from well log 
data and finally, Correlation of estimated with the achieved source rock class 
membership (zones)

FIS; K-means algorithm; 
SVM; ANN GR, RHOB, LLD TOC Vahid et al 

(2017)

10

Two methods are mainly used in the estimation of the total organic carbon from 
well logs data, the first one is called the Passey’s method or ΔLogR, the second 
method is called the Schmoker’s method, it requires a continuous measurement 
of the Bulk density. Then, comparison between the fuzzy logic and the artificial 
neural network in the prediction of the total organic carbon in case of the lack 
of measurement of the Bulck density were established.

Fuzzy Logic; MLP-NN

Gamma ray log, 
deep induction 
resistivity log, 
compressional 
transient time, and 
bulk density log

TOC Ahmed et al 
(2017)

11

An integrated hybrid neural network (IHNN), as an improved method, is 
optimized on the basis of BPNN from the following aspects including weight 
optimization before iteration, network structure optimization and serial-parallel 
integration was established for evaluating the TOC using conventional logging 
curves (low feature dimensions).

BP_AdaBoost; KELM; SVM; 
DEN; ΔlogR; IHNN

PE, KTH, AC, 
CNL, RD, TH, K, 
U, DEN, GR, SP

TOC Linqi et al 
(2017)

continued on the following page
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AI APPROACH EVALUATION CRITERIA

The viability of past AI approach connected in an issue of TOC content prediction has been assessed 
dependent on a correlation of the output of the developed model and the target values, utilized for most 
precise forecast, discovery, and streamlining and observing of the procedure in term of their measurable 
execution exactness. Table 4 exhibits the evaluating factors that have been utilized for looking at the 
productivity of the AI approach. The second segment portrays the parameters utilized in the performance 
indices.

STATE-OF-THE-ART OF AI APPROACHES IN TOC PREDICTION

Artificial Neural Network (ANN)

For learning and analyzing information features and subsequently implementing non-linear approxima-
tion function ANNs have a decent capacity and are being considered as a standout amongst the most 
effective strategies contrasted with statistical models. By working based on the biological neural system 
ANNs has prompted their effective applications in numerous regions, for example, image analysis, pat-
tern recognition, adaptive controls and so forth. Any initial assumption does not require for ANN for 
the nature of the information distribution or fitting function and making the model a primary advantage 
over the counterpart are statistical. Then again, experimental data can be trained by ANN. Importantly, 
complex frameworks can be demonstrated in an easy way by ANNs requiring no parametric form of 
complex physical equations, data assumption, and initial or on the other hand boundary conditions con-

No Methodology

Modeling method/ 
classification method/ 

regression method/ 
clustering method

Input (s)/ objective 
functions (s)

Output (s)/ 
Criteria References

12

An Extreme Learning Machine (ELM) network is a single hidden-layer 
feed-forward network with many advantages over multi-layer networks 
was employed to predict TOC from well logs data Then The results and 
performance characteristics of the ELM technique are compared to those 
obtained by the ANN method to evaluate the efficiency of these two networks 
during the prediction process.

ELM; ANN DTC; GR; CNL; 
DEN; KTH; TH; U TOC Xian et al 

(2016)

13

Three different regression algorithm (the Epsilon-SVR, Nu-SVR, and SMO-
SVR) and four different kernel functions (Linear function, Polynomial function, 
Gaussian function, Multilayer perceptron) used in a packet dataset validation 
process and a leave-one-out cross-validation process. Then, for comparison, the 
SVR-derived TOC with the optimal model and parameters is compared with the 
empirical formula and the logR methods. Additionally, the radial basis network 
(RBF) is also applied to perform tests with different inputs; the results of these 
tests are compared with those of the SVR method.

Epsilon-SVR; Nu-SVR; 
SMO-SVR

CNL; K; GR; U; 
TH; AC; DEN; PE; 
LLD

TOC Maojin et al 
(2015)

14

An Artificial Neural Network (ANN) was applied to predict the TOC form 
well-logs data in case of absence of measurement of the Bulk density log. Then, 
different methods that are used for the determination of the TOC had been 
explained. The implanted neural network machine is applied to two horizontal 
wells drilled in the Barnett shale.

MLP-ANN

Natural gamma ray, 
Neutron porosity, 
sonic P and S wave 
slowness

TOC Sid-Ali et al 
(2014)

15

Firstly, petro physical data were clustered into distinct groups. This 
classification does not require any further subdivision of the dataset but 
follows naturally based on the unique characteristics of well log measurements 
reflecting mineral and lithofacies responses within the logged intervals. Then, 
using an intelligent model such as Neural Network (NN) the amount of the- 
TOC was estimated in each individual EF(Electro-facies).

SOM; K-means clustering; 
Hierarchical Cluster Analysis; 
BP-ANN;

thermal neutron 
porosity (TNPHI), 
sonic transit time 
(DT), 
GR, CGR, SGR, K 
and THOR logs

TOC Ebrahim et al 
(2012)

Table 3. Continued
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Table 4. Model evaluation criteria

Accuracy and Performance Index Description
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• P, the number of data set patterns
• n is the number of the samples
• N, the number of output units
• Tij and Lij are target and output values
• pp is the output power
• pMi is the target power
• pm is the average power

Figure 1. 
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trasted with mathematical type models. ANN can be partitioned into single/multi-layer, self-organized 
and recurrent in terms of the topology of networks. In Figure 1 (Heiliö et al., 2016) a schematic of single 
and multi-layer networks is portrayed.

In Figure 2, the different attributes of ANNs of diverse categorization is summarized. Further the 
common activation function utilized in the design of ANNs structures have given in Table 3.

Depending on the classification of ANN and applied activation function on the input, different struc-
ture of ANN is conceivable (see Table 5 and Figure 5).

(Basheer & Hajmeer, 2000)displayed a summarization of popular networks in Table 6.

Support Vector Machine (SVM)

In 1960s, SVMs(Support Vector Machines) first introduced (Vapnik, 1963, 1964); nonetheless, the 
thought was revitalized (Cortes & Vapnik, 1995) later in 1990s when the SVM displayed better ex-
ecution in various classification issues over the ANN approach, which had been acknowledged as an 
effective strategy. As being popular AI method SVM is applied as per statistical learning theory, has a 
wide application in numerous fields of science and engineering including regression and classification 
problem (Ebtehaj, Bonakdari, Shamshirband, & Mohammadi, 2016; Ghorbani et al., 2017). SVM prefer 
the generalized upper bound error for reducing than the local training error which is one of the main 
advantages contrasted with the traditional machine learning methods. Further, by utilizing SRMP and 
presenting a decent generalization capacity to conquer the deficiencies of the conventional ANN model 
that uses the empirical risk minimizing in modeling a given variable by SVM.

SVM can be demonstrated by the idea of classification considering a 2D simplest case input space 
containing class1 and class 2 data. Linearly classification can be possible with these data. SVM sim-

Figure 2. Attributes of ANN
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ply illustrated in Figure 3 (Cortes and Vapnik, 1995). In Figure 3 circle and squares are recognized as 
class 1 and class 2 respectively in input space. Both Figure 3(a) and Figure 3(b) represents the smallest 
margin and largest margin of two classes. Further, both in Figure 3(a) and Figure 3(b), there are three 

Table 5. Activation functions of ANN (Da Silva, Spatti, Flauzino, Liboni, & dos Reis Alves, 2017)
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Table 6. A list of popular ANN design

ANN designs Characteristics Cons and pros Application in engineering

Backpropagation (BP) (Rumelhart, 
Hinton, & Williams, 1985)

• Backpropagation error with 
feedforward network 
• Supervised learning 
• MLP with more than one layer 
•Sigmoid activation function

• Most widely, simple, and straightforward 
(Priddy & Keller, 2005) • Trapping in local 
optima and slow learning • complex non-linear 
mapping can be handled (Priddy & Keller, 2005)

Image processing (Hassoun, 1995) • 
Modelling and control (Hassoun, 1995) 
•Pattern recognition (Hassoun, 1995) • 
Forecasting and mapping (Hassoun, 1995)

Radial basis function (RBF)(Broomhead 
& Lowe, 1988)

• Feed forward with error BP(Back 
Propagation) •Gaussian activation 
function • MLPs with three layers

• Flexibility is less and slower compared to BP • 
Using two-step unsupervised-supervised hybrid 
training makes it faster in training stage than BP 
networks

• Function approximation (Wei, 
Saratchandran, & Narasimman, 1999) 
• Adaptive control (Wei et al., 1999) • 
Non-linear dynamic system identification 
(Wei et al., 1999)•Signal processing (Wei 
et al., 1999)

Recurrent (Williams & Zipser, 1989)

• Exhibitions of memory of 
information sequence on network 
•Sigmoid activation function • Flow 
in both directions

• Difficulty in training and number of parameters 
are large (Lipton, Berkowitz, & Elkan, 2015) 
• Time varying patterns and sequential can be 
modelled simultaneously (Lipton et al., 2015)

•Filtering and control (Medsker & Jain, 
1999) • Dynamic system identification 
(Medsker & Jain, 1999) • Forecasting 
(Medsker & Jain, 1999)

Hopfield (Hopfield, 1984)
•Symmetric two-layer recurrent 
network •Sigmoid activation function 
• Non-linear associative memory

• Good for noisy and incomplete data • Except 
bipolar and binary input other input are useless.

•Intelligent computation (Tang, Tan, & 
Yi, 2007)• Optimization (Hoskins & 
Himmelblau, 1988)

Kohonen (self-organizing map, SOM) 
(Kohonen, 1989)

• Self-organizing • 2 layer network • 
Unsupervisely trained

• Number of clusters can be optimized on its 
own• Not an incremental network (Dokur, Ölmez, 
Yazgan, & Ersoy, 1997) • A few numbers of 
clusters are not good for it • Can organize large-
scale data (Recknagel, 2013)

•Data mapping (Basheer & Hajmeer, 
2000)•Pattern recognition (Basheer & 
Hajmeer, 2000)• Classification (Basheer 
& Hajmeer, 2000)

Grossberg(Adaptive resonance theory, 
ART) (Carpenter & Grossberg, 2016)

Recurrent network with 2 layer • 
Unsupervisely trained • Feed forward 
and feedback weight adjustments

• Fast training and continuous plasticity (Crestani 
& Pasi, 2013) • Because of representing clusters 
by nodes, network is susceptible of degradation 
and failure upon damage 
• Small clusters can be broken by large problems 
(Wunsch II, Hasselmo, Venayagamoorthy, & 
Wang, 2003)

•Classification (Basheer & Hajmeer, 
2000)•Pattern recognition (Basheer & 
Hajmeer, 2000)

Counter propagation (Hecht-Nielsen, 
1988)

•Combination of Kohonen (in hidden 
layer) and Grossberg (in output 
layer) networks •Sigmoid activation 
function • Trained by unsupervised-
supervised hybrid learning

• Faster than MLP in training (Kasabov, 1996) 
• Network optimization is time expensive 
and difficult (Ballabio, Vasighi, Consonni, & 
Kompany-Zareh, 2011) • Due to unsupervised 
learning the performance is better compared to 
BP(Taylor, 2006)

•Function approximation (Zupan 
& Gasteiger, 1991) •Pattern 
recognition (Zupan & Gasteiger, 1991) 
•Classification(Zupan & Gasteiger, 1991)

Convolutional neural networks (CNNs) 
(Rumelhart et al., 1985)

•Feed-forward multi-channel input 
•Preserves spatial dependency • 
Pooling operations and successive 
convulsion

• Large-scale problems can be handled (Kasabov, 
1996) • Limited semantic generalization 
(Hosseini, Xiao, Jaiswal, & Poovendran, 2017) • 
Reduced memory size (Zhang, Wang, Tao, Gong, 
& Zheng, 2017) • Mathematically more complex 
than MLPs (Caterini & Chang, 2018) • Lower 
chance of over-fitting and more training (Zhang 
et al., 2017)

•Image processing (McCann, Jin, & 
Unser, 2017)•Classification (McCann et 
al., 2017)

Deep neural networks (DNNs)

• More than one hidden layer 
• Processes data hierarchically (Cios, 
2018) 
• Usually supervised or semi-
supervised training 
• In fully supervised DNN, 
backpropagation with ramp activation 
function is used (Cios, 2018)

• Capable of large-scale data processing problems 
(Caterini & Chang, 2018) 
• More details (features) can be extracted in 
training due to hierarchical data processing (Cios, 
2018) 
• Cautions should be made in unsupervised 
learning applications with modified inputs (Cios, 
2018)

• Classification (Caterini & Chang, 2018) 
• Image processing (Caterini & Chang, 
2018) 
• Multivariate regression (Du & Xu, 
2017)

Deep belief networks (DBNs) 
(Hinton, Osindero, & Teh, 2006)

• Consists of a large number of 
layers; each layer consisting of 
restricted Boltzmann machines 
(RBMs) (Sun, Steinecker, & Glocker, 
2014) 
• Trained unsupervised layer-by-
layer, and weights are adjusted 
top-down (Sun et al., 2014)

• Can discover a structure in data which is not 
labelled or structured (Sun et al., 2014) 
• Can extract high-level features (Sun et al., 2014) 
• Requires an additional pre-training stage to 
familiarize the network with data (Sun et al., 
2014) 
• Unsupervised learning in DBNs may not 
properly work with networks with stochastic or 
randomly initialized variables (Sun et al., 2014)

• Classification and clustering(Fink, Zio, 
& Weidmann, 2015) 
• Image processing (Sun et al., 2014) 
• Model discrimination (Fink et al., 2015) 
• Monitoring and quality control (Sun et 
al., 2014)
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points (one circle and two squares) precisely fallen on the two lines on the two sides of the edge. These 
are called as the support vectors.

However, the classification of the SVM can be done in a higher dimensional space where the separation 
of two classes are non-linear utilizing transformation in kernel (or feature) space (sigmoid, polynomial, 
or/and radial basis function) delineated in Figure 4. And An outline of common kernel functions utilized 
in SVM is given in Table 7.

Figure 3. Class 1 and Class 2 classification (Cortes & Vapnik, 1995)

Figure 4. Transformation in feature space
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Fuzzy Logic

Zadeh (1965) first proposed Fuzzy Logic (FL) where the set theory of more than one valued logic being 
as a generalization. Frameworks having non-crisp boundaries are managed by it where characteristics 
for example being unclear/ambiguous and hazy are displayed by these frameworks (Terano, Asai, & 
Sugeno, 2014). Assume, in total space X, x is a member. In the crisp logic, the set A on total space (X) 
is defined by the characteristic function xA where the total space is being mapped to the set {0,1}, as 
following (Terano et al., 2014):

xA: X→{0,1} 

x x x
x A

x AA
→ ( ) =

∉
∈








0

1
 

Table 7. Kernel functions of SVM

Kernel Kernel function Parameters

Linear K(xi,xj) = (xi,xj)
a A∈N

Polynomial K(xi,xj) = (c + xixj)
a A, c∈N

Gaussian K x x
x x

i j

i j, exp –
–

( ) =














2 2σ

σ∈R, σ>0

Sigmoid K(xi,xj) = tan h(η(xixj)+θ) η, θ∈R

Figure 5. Bell-shape membership function of (a) contours and (b) distribution by fuzzy sets (Terano et 
al., 2014)
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In this manner, if x belongs to A, the value of 1 can be taken by the characteristic function, while 
if it is not a part of A, the function is 0. The following relationship is equivalent in the FL in Eq. (9):

mA: X→[0,1] 

x→mA(x) 

Figure 6. General framework of fuzzy logic

Table 8. Standard operation in FL system (Zoveidavianpoor, Samsuri, & Shadizadeh, 2012)

Fuzzy 
operator 

name

Algebraic 
operator 

name
Symbol Description Equation based on 

Algebraic
Equation based on 

Fuzzy

Intersection AND ∩

Applied to 
two fuzzy 
sets A and 
B with the 
membership 
function 
μA(x) and 
μB(x)

µ µ µ
A B A B

x x x X
∩( ) = ( ) ( ){ } ∈, , µ µ µ

A B A B
x x x X

∩( ) = ( ) ( ){ } ∈min , ,

Union OR ∪

Applied to 
two fuzzy 
sets A and 
B with the 
membership 
function 
μA(x) and 
μB(x)

µ µ µ
A B A B

x x x X
∪( ) = ( ) ( ){ } ∈, , µ µ µ

A B A B
x x x X

∪( ) = ( ) ( ){ } ∈max , ,

Complement NOT NOT

Applied to 
fuzzy sets 
A with the 
membership 
function 
μA(x) 

µ µ
A A
x x x X( ) = − ( ) ∈1 , µ µ

A A
x x x X( ) = − ( ) ∈1 ,
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in which, the mf(membership function) is represented by mA (Terano et al., 2014). Different notation 
appears in the membership function in the literature, for example, fA and μA (Zadeh, 1965). From the 
Eq. (9) and Eq. (10), Boolean set in the crisp logic and a domain in the FL are the mapping of space 
X. A continuum speaks a ‘’class’’ by Zadeh (Zadeh, 1965) work. Figure 5 outlines a portrayal of the 
fuzzy sets where mf as a continuum of the level of A-ness (Terano et al., 2014) or a continuum of the 
mg (membership grades) . Hence, the fuzzy sets consider the crisp sets as a special case.

In the theory of fuzzy logic other membership function exist beside the bell-shape membership (Figure 
5 (b)).

Evolutionary Algorithms

Numerous species over millions of years have evolved to adjust to different environments based on the 
Darwinian evolutionary theory. Considering the environment as a type of the problems and Evolutionary 
algorithm as an adaption of the population to fit the best environments, the same idea can be applied 
to numerical optimization. Until better solution is being achieved, the fundamental thought of evolu-
tionary algorithm is to evolve a population of candidate solutions under a selective process analogous 
to the mutation, natural selection and reproduction. To generate offspring solution, parent solution is 
combined utilizing effective search algorithm where the offspring solution can be evaluated and may 
themselves produce offspring (Husbands, Copley, Eldridge, & Mandelis, 2007). Continuation of the 
generation prompts better solution to optimization, search and design issues. Many algorithm-like genetic 
algorithms, evolutionary programming, evolution programs and evolution methodologies are included 
by evolutionary algorithm. Both GA and DE give extraordinary performance in dealing with solutions 
which have variety of engineering issues. Hence, they are briefly explained in the following section.

Genetic Algorithm (GA)

As being a prediction tool, in optimization and global search issues GA aims to create high quality solution 
(Salcedo-Sanz, Deo, Cornejo-Bueno, Camacho-Gómez, & Ghimire, 2018). By searching through a feature 
space, the nearest optimal solution is being able to deduce by this model (Eberhart & Kennedy, 1995; 

Figure 7. Population based optimization algorithms (Vasant & Vasant, 2012)
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Vasant & Barsoum, 2009). For candidate solution (CS) a solution needs to be chosen in GA technique 
where evolving towards a better solution is being set by its population. A set of properties are contained 
in each CS and these properties can mutate and change, in this manner the evolution is progressed as 
a duplicate process from a population of randomly generated individuals. Calculation of the objective 
function is done by each generation (the population). Then in the next iteration of the algorithm, the 
new generation of the candidate solution is used. The algorithm stops and uses the final model when a 
maximum number of generations have been produced to make the prediction. In Figure 8 and Figure 9 
overall optimization process are appeared. Further a flow chart of GA is given in Fig 10.

Differential Evolution (DE)

As a population-based model, DE uses a real-coded GA and a normal random generator for finding the 
global minimum of the objective function with an ARS (adaptive random search) (Maria, 1998). Mu-
tation operation is mostly based on DE where for finding the optimal solution GA relies on crossover 
operation (Ab Wahab, Nefti-Meziani, & Atyabi, 2015). Like other evolutionary algorithms, DE consists 
of four stages: initialization, mutation, crossover, and selection. During the initialization step, a popula-
tion/generation with a fixed number of candidate solutions (NP) using minimum and maximum values 
for each defined variable and a uniform random value in the range from 0 to 1 is created (Storn, 1995). 
The next step is to evolve the initial population in which every solution is mutated by adding the differ-
ence of two random solutions from the current population to a different selected random solution scaled 
by a factor F. Then, during the crossover process, diversity is created in the newly generated candidate 

Figure 9. (a) Crossover and (b) mutation

Figure 8. GA optimization (Velez-Langs, 2005)(Chen, 2013)
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solutions by applying the crossover probability rate (CR). There are two main crossover variants for 
DE: exponential and binomial. Finally, in the selection step, every solution vector in the trial popula-
tion is compared with the corresponding vector in the initial population and depending on the nature of 
the problem (minimization or maximization), the one with the lower or higher objective function value 
is moved to the next generation. The four-step process repeated until the stopping criteria (reaching to 
the maximum number of generations or obtaining the defined different tolerance between the objective 
function values in the current generation and the previous one) are met. Figure 4 shows different steps 
of the DE algorithm.

TOC Prediction Method

There is extensive application of artificial intelligence (AI)-based solution to complex engineering 
problems. In this section, we focus on the problems related to TOC content prediction in shale reservoir.

Sfidari et al (Sfidari, Kadkhodaie-Ilkhchi, & Najjari, 2012) firstly clustered Petro-physical data into 
distinct groups using Hierarchical cluster analysis and K-means clustering. For any further subdivision 
of the dataset no classification would be needed but rather pursues normally dependent on the special 
attributes pf well log estimation reflecting lithofacies and mineral reaction inside the logged interims. 
At that point, utilizing an intelligent model, for example, Neural Network (NN) the amount of the-TOC 
was assessed in every individual EF (Electro-facies). Here, 3 layered BP-NN model with Levenberg-
Marquardt training algorithm was utilized for prediction in the clustered intervals and MSE was high. 
Ouadfeula and Aliouane (Ouadfeul & Aliouane, 2014) utilized ANN to predict the TOC from well-logs 
data if there should arise an occurrence of nonappearance of estimation of the bulk density log. The 
implanted NN model is applied to two horizontal wells drilled in the Barnett shale and it gave great 
outcomes that were exceptionally near the determined TOC utilizing the Schmoker’s model. In their 
work, sonic P and S wave slowness logs, Neutron porosity, Natural gamma ray were utilized to predict 
TOC. From their work, it demonstrated the ability of the ANN to predict a TOC in case of nonappear-

Figure 10. The flow chart of DE algorithm (Ab Wahab et al., 2015; Khademi, Rahimpour, & Jahanmiri, 
2010)
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ance of the density log or a discontinuous of this log. Tan et al. (Ouadfeul* & Aliouane, 2015) pre-
sented three different regression algorithms (SMO-SVR, Nu-SVR and the Epsilon-SVR), four different 
kernel functions (Linear function, Polynomial function, Gaussian function and Multilayer perceptron) 
and a TOC prediction content that utilizes wireline logs in a leave-one-out cross-validation process and 
a packet dataset validation process. In following, the SMO-SVR, Nu-SVR and the Epsilon-SVR models 
are tested by comparison with respect to their TOC prediction accuracy. Both leave-one-out cross-val-
idation and packet dataset validation demonstrate that the Epsilon-SVR model is superior to the SMO-
SVR and Nu-SVR models. Rather than the RBF strategy, the SVR-derived TOC is in better agreement. 
Shi et al.(Tan et al., 2015)utilized MLP-NN and Fuzzy logic applied to two horizontal wells drilled in 
the lower Barnett shale formation to predict TOC from well logs data and to implant an intelligent 
framework ready to replace the Schmoke model in case of lack of measurement of the Bulk density 
where the utilization of ANN in the prediction of the TOC in shale reservoir was superior to the Fuzzy 
logic. Shi et al (Shi et al., 2016) used Artificial Neural Network (ANN) and Extreme Learning Machine 
(ELM) in TOC prediction where the Extreme Learning Machine (ELM) is a lot quicker than the Artifi-
cial Neural Network (ANN) model according to the training time comparison which made Extreme 
Learning Machine beneficial for practical use above ANN. For both ELM and ANN, DTC; GR; CNL; 
DEN; KTH; TH; U well logs data were used for training, testing and validation purpose to predict TOC. 
Zhu et al. (Zhu et al., 2018) utilized BP_Adaboost, KELM, SVM, DEN, ∆log R and Integrated hybrid 
neural network (IHNN) to predict TOC content from well-logs data. The author looked at the prediction 
models set up in 132 rock sample in the shale gas reservoir inside the Jiaoshiba zone, rather than the 
established models, the accuracy of the proposed IHNN method is a lot higher and thus the generaliza-
tion ability of the IHNN algorithm is also very strong. Measurements of drill cutting samples had been 
done by Rock-Eval pyrolysis and then FL synthesized the TOC log from conventional well log data. 
Further ∆logR method had been applied for calculating TOC and then the synthesized TOC log data 
have been assembled into cluster utilizing k-means algorithm. Furthermore, training ANN and SVM 
classifiers have been utilized to predict the source rock class membership (zones) from well-log data. 
In Bolandi et al. (Bolandi, Kadkhodaie, & Farzi, 2017) work, both ANN and SVM were used for clas-
sification problem of source rock zonation. In term of classification accuracy, the SVM with RBF 
kernel readily outperformed ANN. Tahmasebi et al (Tahmasebi, Javadpour, & Sahimi, 2017) borrowed 
a hybrid method from machine learning and artificial intelligence proposed for accurate prediction of 
the parameters. The two techniques have the capacity to be tuned quickly and to utilize the more estab-
lished database to precisely portray shale reservoirs. By this way, comparing with Multiple linear regres-
sion (MLR) the hybrid machine learning (HML) strategy gave considerably more accurate prediction 
to the TOC and FI. Mahmoud et al. (Mahmoud et al., 2017) utilized ANN model to estimate TOC for 
unconventional shale reservoir in Duvernay and Barnett shale formation utilizing conventional log-data 
(density log, gamma ray, compressional transient time, and deep induction resistivity log). ANN meth-
od gives better TOC estimations contrasted with available strategies by two criteria, higher coefficient 
of determination and lower average absolute deviation than accessible methods for Duvernay shale 
example. Furthermore, based on the weights and biases of the optimized ANN method, a new TOC 
empirical correlation was extracted for the first time so that without requiring the ANN model, it can be 
utilized with a high accuracy to estimate the TOC based on conventional log data. For accomplishing a 
quantitative and qualitative source rock characterization and distribution Johnson et al.(Johnson, Reza-
ee, Kadkhodaie, Smith, & Yu, 2018) utilized ANN across the Broome Platform of the Canning Basin. 
For the training, validation and test samples of the geochemical property the R2 values is upwards of 
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75%. Further by predicting with ANN is the accomplishment of more prominent resolution between 
geochemical data points, as well as the time and laboratory requirements is significantly decreased in 
their work. Three kinds of models including LSSVM, PSO-LSSVM, and ANN-BP had utilized for 
prediction in Wang et al. (Pan Wang, Peng, & He, 2018) work. In their work, two cases of models had 
been designed where one took the selected well logs (DTC, CNL, GR, U, DEN and RT) as input and 
the other took all available well logs as input. In view of the outcomes, the PSO-LSSVM method beat 
ANN-BP and LSSVM methods. To make a quantitative and qualitative correlation between TOC content 
and wireline data ANN and ∆ log R method were utilized in Alizadeh et al. (Alizadeh, Maroufi, & 
Heidarifard, 2018) work. At that point, to evaluate S2 and HI factor and to distinct the kerogen types 
mathematical relationship between geochemical factors and ANN were utilized. By utilizing the neural 
network, the mean TOC values were computed had higher correlation with real TOC determined from 
Rock Eval analysis. The neural network data showed better agreement in carbonate intervals with TOC 
calculated from Rock Eval. Nezhad et al.(Nezhad, Moradzadeh, & Kamali, 2018) utilized ANN for 
estimation where petrophysical logs and S1, S2, S3 and TOC data of geochemical analysis were respec-
tively utilized as input and outputs of the models. Then Sequential Gaussian Simulation (SGS) technique 
simulated the well-derived geochemical data. The acquired outcome showed that MLP-ANN have a high 
precision in estimation of S2 and kerogen type detection and SGS acts superior to the MLP-NN technique 
for organic geochemical parameter evaluation. The impact of the sample data was considered in Wang 
and Peng (Pan Wang & Peng, 2018) work on AI modeling. The simulated annealing algorithm combined 
with the genetic algorithm to analyze the fuzzy c-means for improving the classification accuracy of the 
fuzzy c-means clustering algorithm and to classify sample data and after that to acquire the high-qual-
ity data. In this study, for the prediction of the TOC content, the TOC content prediction model was built 
up based on the particle swarm optimization (PSO-LSSVM). In the meantime, for the contrastive ex-
amination a BP neural network model was built up. From their outcome it could be seen that TOC could 
be predicted all the more precisely with PSO-LSSVM model that with BPNN and LSSVM models. A 
correlation between TOC, S1, S2 and well logs were made by Wang et al. (H. Wang, Wu, Chen, Dong, 
& Wang, 2019) to determine the suitable inputs. At that point 125 core shale sample and well logging 
data of Shahejei Formation from Dongying Depression, Bohai Bay, China were arbitrarily split into 100 
training samples and 25 validating sample for building up the six-layer CNN for predicting TOC, S1 
and S2. Further, the performance of CNN was compared with Passey technique and BP. Considering 
the outcomes, CNN exhibited higher prediction precision in both training and validation data for TOC, 
S1 and S2 contrasted with BP-ANN model and Passey technique by two criteria, higher R2 and lower 
NRMSE.

STRENGTHS AND WEAKNESSES OF ARTIFICIAL 
INTELLIGENCE TECHNIQUES

In this section, the common models will be deliberated briefly which can be unified into the identification, 
classification, estimation, mathematical modeling, clustering and function evaluation of a hybrid model 
with application. In this review script, sub-models, for example, ANNs, SVM, FL, Swarm intelligence 
and Evolutionary algorithm (EA) will be explained through delivering the principle theoretical structures.

Of the seven AI procedures featured in this work, it is important to inquire as to whether there is any 
of them that can be said to be 100% faultless and fit for use in all situations. In what is by all accounts 
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a response to the above inquiry, Luchian et al. (2015) states that it is more useful concentrating on 
answering the problem as opposed to sitting around idly to locate the best method. Notwithstanding, a 
theorem yielded by Wolpert and Macready (1997) called the No Free Lunch Theorem for Optimization 
(NFLTO) states as follows: Given that all issues are thought to be equivalent in strength and irrespec-
tive of the criteria utilized for passing judgment on its performance, all techniques utilized for solving 
the issue have a similar act. In help of the NFLTO, Anifowose et al. (2016) opines that there is certainly 
not a solitary comprehensive AI approach that will adequately address all difficulties in all computing 
conditions and data since each of the AI methods is secured up its novel qualities and inevitable defects. 
Table 9 outlines the strengths and weakness of a portion of the AI strategies.

To demonstrate the effectiveness or otherwise of these AI procedures, a couple of researchers have 
endeavored to compare a couple of the AI systems.

SYNTHESIS OF RESULTS AND CONCLUDING REMARK

This section synthesizes the discoveries and discusses about the consequences of TOC prediction in 
previous studies. Figure 16 shows the distribution of AI model connected in TOC prediction in shale 
reservoir from 2012 to 2019. This tree has been sorted dependent on a kind of strategies gathering (single 
or hybrid) and publication year, and they are utilized for different obligations, for example, optimizing, 
developing, estimating, diagnosing and designing in the prediction of TOC in shale reservoir fields. This 
tree additionally portrays the application patterns for every strategy in every year. As is clear, 2017 and 
2018 has the most trends for applying AI techniques in TOC prediction. Likewise, the offer of utiliz-
ing single methods (78.9%) is higher than that of the hybrid methods (21.1%), then again, the assorted 
variety of single methods is higher than that of the hybrid methods. If there should arise an occurrence 
of strategy type, MLP has the most astounding utilization among different methods (both single and 
hybrid methods).

Table 4 shows a list of results dependents on the chosen paper number, gathered as far as the accuracy 
of the AI approaches and their impacts on the TOC prediction process.

To give further bits of knowledge Table 11 has been extricated from Table 10, which introduces the 
productivity of every AI techniques in more prominent detail.

Considering Table 10, the utilization of LSSVM and ELM introduced the highest correlation coef-
ficient and the lowest modeling error experienced in the prediction of the TOC content in the shale 

Table 9. Demonstrates a couple of these investigates

Benchmark ANN FUZZY SVM GA

Robustness against noise High High High High

Speed of convergence Slow Fast - Slow

Prone to over fitting? Yes, but depends on how 
the training is done - No -

Data Requirements Huge data required - Small data required -

Self-organization Yes - - No

Ability to generalize Yes - Yes -
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reservoir. In concentrates Referenced as 2, 10 and 11, the utilized techniques (for example LSSVM and 
ELM models) brought about the correlation coefficient values of about 0.9316, 0.9048 and 0.9493 for 
prediction of TOC. This value of correlation demonstrates the most noteworthy prediction ability of the 
developed approaches.

Then again, utilizing hybrid AI strategies, (for example, the PSO-LSSVM strategy) prompted an op-
timized and improved opportunity for the prediction of TOC content. For instance, in the investigation of 
Reference 2 and 11 that utilized PSO-LSSVM strategy, the outcome demonstrated a prediction accuracy 
with a correlation coefficient of 0.9451 and 0.9679 and in the investigation of Reference 5, the utilization 
of the FL and GA technique prompted an increase in the TOC content prediction contrasted with their 
Multiple Linear Regression (MLR) technique. That is, the FL-GA-ANN prompted an MSE magnitude 
of 0.08 for TOC content prediction, which was lower than that of the MLR method (at a value of 0.43).

In concentrates Referenced as 2, 9 and 15, the authors have utilized SAGA-FAC (Simulate anneal-
ing algorithm genetic algorithm-Fuzzy C mean clustering), K-means algorithm and K-means clustering 
and Hierarchical Cluster Analysis for the classification of the prediction method. This study demon-

Figure 11. AI methods in TOC prediction
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strated that the author of paper 2 combined simulated annealing algorithm with the GA to dissect the 
fuzzy c-means clustering in order to classify sample information, and after that to get the high-quality 
information. Further, in studies referenced as 9, combination of TOC log from conventional well log 
information utilizing FL and ascertaining TOC applying log R method. At that point, gathering the 
synthesized TOC log information into cluster utilizing k-means algorithm. Additionally, the following 
investigation’s author clustered petrophysical data into distinct groups by utilizing k-means clustering 
and Hierarchical cluster analysis.

Table 10. Total results of the presented studies

Paper No Result and evaluation

1 Based on the results, CNN presented higher prediction accuracy in both training and validation data for TOC, S1 and S2 compared to available 
methods Passey method and BP-ANN model by two criteria, lower NRMSE and higher R2.

2
Based on the results, TOC could be predicted more accurately with PSO-LSSVM model than with LSSVM and BPNN models, and it had a more 
favorable effect from visual comparison between the prediction results and the data of measured TOC, as well as error analysis (R2, RMSE, and 
VAF).

3 Based on the results, MLP-ANN have a high accuracy in estimation of S2 and kerogen type detection and the obtained results indicate that SGS acts 
better than the MLP-NN method for organic geochemical parameter evaluation.

4 Based on results, due to higher accuracy of ANN outputs and independency to the TOC content and type of lithology, author used ANN method to 
estimate TOC instead of ∆logR technique.

5 Based on the results, The PSO-LSSVM model outperforms ANN-BP and LSSVM intelligent models.

6

Considering the outcome, for the training, validation and test samples the R2 value in each of the geochemical property demonstrated is upwards 
of 75%. A decent connection with the laboratory measured data with correlation coefficient of 0.78 and 0.83 is demonstrated by the predicted logs, 
especially the TOC and S2 logs. The accuracy of the predicted S1 logs might be lower-relying upon the thermal development of the examples since 
the S1 isn’t an in-situ property.

7 Based on the results, ANN model provides better TOC estimations compared to available methods by two criteria, lower average absolute deviation 
and higher coefficient of determination than available techniques for Duvermay shale example.

8 Considering the outcome, the new hybrid machine (HML) technique gave considerably more exact prediction to the TOC and FI, when contrasted 
and those of the MLR technique are in great concurrence with the accessible experimental data for the two properties.

9 Based on results, ANN and SVM depicts that for classification problem of source rock zonation SVM with RBF kernel readily outperformed ANN 
in term of classification accuracy (0.9077 and 0.9369 for ANN and SVM, respectively).

10 Based on the results, author suggest the use of the artificial neural network in the prediction of the TOC in shale gas reservoirs rather than the Fuzzy 
logic.

11

Based on the result, it shows that TOC prediction is easier after logging prediction has been improved. Further, by comparing the prediction models 
established in 132 rock samples in the shale gas reservoir within the Jiaoshiba area, it can be seen that the accuracy of the proposed IHNN model is 
much higher than that of the other prediction models. The mean square error of the samples, which were not joined to the established models, was 
reduced from 0.586 to 0.442. This shows that the generalization ability of the IHNN algorithm is also very strong. Through comprehensive analysis 
of the results, we can see that the SVM has a poor prediction effect for data with noise and insufficient TOC information; therefore, it is not suitable 
for predicting the TOC problem. Because of the mechanism of random initial weights, the precision of the BP_AdaBoost algorithm is difficult 
to improve further, but it can better solve the problem of inaccurate calculation of the low TOC reservoir section. In addition, we can see that the 
KELM algorithm has a generalization ability which is inferior to that of conventional logging curves.

12
Based on result, The ELM performed slightly better in both training and validation accuracy. However, the ANN model can also produce good 
results. According to the training time comparison, the ELM model is much faster than the ANN model, which indicates that ELM should be chosen 
as the better option if processing speed is important.

13

Based on result, the Epsilon-SVR, Nu-SVR, and SMO-SVR algorithms are tested by comparison about their TOC prediction precision. Both packet 
dataset validation and leave-one-out cross-validation indicate that the Epsilon-SVR algorithm is better than the Nu-SVR and SMO-SVR algorithms. 
In contrast to the RBF method, the SVR-derived TOC is in better agreement than the RBF-based TOC, which indicates that the SVR method is 
more advantageous than certain neural networks.

14
Based on the results, it is clear that the implanted neural network machine is able to provide excellent results that are very close to the calculated 
TOC using the Schmoker’s model. Obtained results clearly show the ability of the artificial neural network to predict a Total Organic Carbon (TOC) 
in case of absence of the density log or a discontinuous measurement of this log.

15

Results show that a three-layered back propagation neural network model with the Levenberg–Marquardt training algorithm is a high-performance 
learning method for this case study. Accordingly, 7 NN model were created corresponding to the identified EF groups. Comparisons show that 
thermal neutron porosity (TNPHI), sonic transit time (DT), GR, CGR, SGR, K and THOR logs have strong relationships with TOC within each EF. 
The prediction was done in the clustered intervals and the measured MSE was as high as 0.0048.
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Table 11. The values of the model evaluating factors

Paper No Method Efficiency factor Value

1 BP-ANN R2 0.750 for TOC, 0.446 for S1 and 0.663 for S2 with all logs as input 
0.515 for TOC, 0.384 for S1 and 0.693 for S2 with selected logs as input

NRMSE 0.181 for TOC, 0.238 for S1 and 0.151 for S2 with all logs as input 
0.123 for TOC, 0.226 for S1 and 0.1727 for S2 with selected logs as input

CNN R2 0.792 for TOC, 0.740 for S1 and 0.806 for S2 with all logs as input 
0.828 for TOC, 0.738 for S1 and 0.839 for S2 with selected logs as input

NRMSE 0.119 for TOC, 0.120 for S1 and 0.124 for S2 with all logs as input 
0.101 for TOC, 0.117 for S1 and 0.109 for S2 with selected logs as input

2 LSSVM R2 0.9316 for TOC prediction

RMSE 0.4094 for TOC prediction

VAF 93.4207 for TOC prediction

PSO-LSSVM R2 0.9451 for TOC prediction

RMSE 0.3383 for TOC prediction

VAF 94.1019 for TOC prediction

BP-ANN R2 0.9184 for TOC prediction

RMSE 0.5119 for TOC prediction

VAF 91.2551 for TOC prediction

3 MLP-NN MSE 7.3% for training,5.6% for validation and 9.3% for testing samples in TOC prediction

4 ANN R2 0.89 for TOC prediction

NRMSE 0.0135 for TOC prediction

5 ANN-BP R2 0.9317 for TOC prediction

RMSE 0.0716 for TOC prediction

LSSVM R2 0.9493 for TOC prediction

RMSE 0.0658 for TOC prediction

PSO-LSSVM R2 0.9679 for TOC prediction

RMSE 0.0526 for TOC prediction

6 ANN R2 0.78 for TOC, 0.83 for S2 and 0.63 for S1

7 ANN R2 0.89 for TOC prediction

AAD 0.99 for TOC prediction

8 MLR MSE 0.43 for TOC prediction & 1.12 for FI prediction

HML MSE 0.08 for TOC prediction & 0.12 for FI prediction

9 SVM-RBF R2 0.9369 for TOC zonation

ANN R2 0.9077 for TOC zonation

10 BP_Adaboost RMAE 0.453 for well A & 0.542 for well B for TOC prediction

MSE 0.444 for well A & 0.586 for well B for TOC prediction

RRE 0.250 for well A & 0.355 for well B for TOC prediction

KELM RMAE 0.332 for well A & 0.547 for well B for TOC prediction

MSE 0.310 for well A & 0.670 for well B for TOC prediction

RRE 0.195 for well A & 0.523 for well B for TOC prediction

SVM RMAE 0.371 for well A & 0.695 for well B for TOC prediction

MSE 0.342 for well A & 0.865 for well B for TOC prediction

RRE 0.213 for well A & 0.485 for well B for TOC prediction

IHNN RMAE 0.303 for well A & 0.453 for well B for TOC prediction

MSE 0.294 for well A & 0.442 for well B for TOC prediction

continued on the following page
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In figure 3, we present the historical backdrop of AI strategies, characterizing a few outcomes started 
from different techniques to support the modeling efficiency and productiveness. In the present review 
article, an aggregate of 8 cutting edge research papers identified with the use of artificial intelligence 
(AI) methods for TOC prediction were gathered from highly cited publication, IEEE, Springer database 
and Science Direct and these were looked into regarding the prediction strategy, modeling techniques, 
and the acquired outcomes. The relatively low number of articles on account of utilizing AI strategies 
for TOC content prediction in the shale reservoir demonstrates a high research potential in this field.

The literature concerning the challenges and issues of the TOC content prediction in shale reservoir 
and application of AI strategies on prediction process have likewise been talked about. Because of a 
plenty of studies performed in the utilization of AI techniques, this article was not sorted into hybrid 
and single-based AI strategies. Be that as it may, the present assessment has been conducted utilizing 
past consequences of the most significant papers utilizing different datasets regarding the accuracy and 
sensitivity of the final prediction. In light of the combination of the outcomes, the utilization of hybrid 
strategy, for example, FL-GA-ANN or PSO-LSSVM prompts an improvement and optimization of the 
procedure of TOC content prediction in shale reservoir though the utilization of LSSVM and ELM 
techniques prompts the highest correlation and the lowest error for prediction of the TOC content in 
shale reservoir. In spite of various papers on different AI strategies in TOC content prediction in shale 
reservoir, there seems to have been an absence of concentrates if there should be an occurrence of get-
ting to an comprehensive dataset, analyzing and classification of the AI techniques on account of TOC 
content prediction in shale reservoir.

Paper No Method Efficiency factor Value

RRE 0.164 for well A & 0.284 for well B for TOC prediction

11 ANN MAE 0.0747 for input training & 0.0677 for input testing

RMSE 0.2734 for input training & 0.2602 for input testing

VAF 85.69 for input training & 86.30 for input testing

R2 0.8749 for input training & 0.8682 for input testing

ELM MAE 0.0692 for input training & 0.0827 for input testing

RMSE 0.2631 for input training & 0.1804 for input testing

VAF 90.41 for input training & 89.18 for input testing

R2 0.9048 for input training & 0.9099 for input testing

12 SVR R 0.8284 for TOC prediction

MAE 0.7775 for TOC prediction

RMSE 0.9868 for TOC prediction

15 BP-ANN MSE 0.0048 for TOC prediction

ANN MSE 0.0073 for TOC prediction

Table 11. Continued
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FUTURE RESEARCH DIRECTIONS

The present review study can just incompletely make up for this requirement for future researchers to 
concentrate in more prominent profundity on the issues brought up in this paper. Our future perspective 
is to build up a multi-factor system-based AI applied to TOC content prediction techniques in shale 
reservoir to achieve the superior in estimating and modeling and to structure a stage which contains ac-
curate and ground-breaking strategies for unsupervised learning on TOC content prediction information.

NOMENCLATURES

Adaptive Neuro-Fuzzy Inference System ANFIS
Artificial Neural Network ANN
Artificial Ant Colony Optimization ACO
Back Propagation Neural Network BPNN
Batch Hydrogen Production BHP
Correlation Coefficient R
Differential Evolution DE
Evolutionary Algorithm EA
Extreme Learning Machine ELM
Fuzzy Support Vector Machine FSVM
Fire Fly Algorithm FFA
Genetic Algorithm GA
Genetic Programing GP
Gray Wolf Optimization GWO
Levenberg Marquardt LM
Least Square Support Vector Machine LSSVM
Multi Layered Perceptron MLP
Monte Carlo Simulation MCS
Neuro-Fuzzy NF
Non-Dominated Sorting Genetic Algorithm NSGA
Particle Swarm Optimization PSO
Probability Distribution Functions PDF
Root Mean Square Error RMSE
Rotating Gliding Arc RGA
Self-Adaptive Gravitational Search Algorithm SAGSA
Support Vector Machines SVM
Self-Adaptive Learning Bat-Inspired Algorithm SALBIA
Teacher-Learning Algorithm TLA
Total Organic Carbon TOC
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ABSTRACT

The Gen Z kids highly rely on internet for various purposes like entertainment, sports, and school proj-
ects. There is a demand for parental control systems to monitor the children during their surfing time. 
Current web page classification approaches are not effective as handcrafted features are extracted from 
the web content and machine learning techniques are used that need domain knowledge. Hence, a deep 
learning approach is proposed to perform URL-based web page classification. As the URL is a short 
text, the model should learn to understand where the important information is present in the URL. The 
proposed system integrates the strength of attention mechanism with recurrent convolutional neural 
network for effective learning of context-aware URL features. This enhanced architecture improves the 
design of kids-relevant URL classification. By conducting various experiments on the benchmark col-
lection Open Directory Project, it is shown that an accuracy of 0.8251 was achieved.
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INTRODUCTION

Nowadays, everyone relies on the web and the internet has become the primary source for seeking 
information for various needs ranging from education to entertainment. Especially, children prefer to 
use the search engine for doing their school projects and assignments. In 2012, Yvonne et. al presented 
their study on the information seeking behavior of young children on the search engines. To enhance the 
searching for learning task, Ion Madrazo Azpiazu developed a web search environment that is suitable 
for children and teachers and analyzed the issues faced by them (Azpiazu et. al, 2017). To understand 
the search behavior of children, Nevena Dragovic analyzed the query logs and proposed a method to dif-
ferentiate the general queries from the children queries (Dragovic, Azpiazu, and Pera, 2010). It is evident 
from the above listed research works that, the Gen Z kids rely on the web for seeking information and 
the role of web in their daily life. However, most of the children are not monitored during their surfing 
time and it is important to analyse the suitability of the web page. So, we are in need of an automated 
system that can help to determine the kids-relevant web page. The traditional method of content based 
classification is not suitable, as the kids related content of the web page is highly dynamic in nature. 
Many approaches have been explored in the literature to determine the suitability of the web pages for 
children (Patel and Singh, 2016 & Gyllstrom et. al, 2010). When the web page has animated videos or 
if the textual content is not available in such web pages, the traditional content based methods cannot 
be applied for classifying the web pages. Tatiana et al. (2010) have performed a survey on information 
retrieval system for children. They outlined the search query, search strategy and the navigation style 
used by children and discussed the need for a separate page ranking algorithm for children web pages. 
To rank the child related web pages according to the relevance, Gyllstrom et al. (2010) suggested a link 
based algorithm. Zhang et al. (2006) analysed the role of URLs in finding the objectionable content, 
but in their approach, they have combined the content and the URLs for classifying the web page. But 
an effective way to find the Kids–relevant web page is to make use of the links that they visit during 
their browsing time. Hence, a simple URL based classifier method is suggested to address the problems 
found in content based classification approaches.

In this research, we have proposed a deep learning method to classify Kids-specific web page by 
extracting features from URLs alone. For URL classification, tokens based features are suggested in 
literature (Kan, 2004 & Baykan et. al, 2011). The advantage of token based approach is that, high preci-
sion can be achieved as they reflect the topic of a web page. However, in many cases, the tokens may 
be misspelled or shortened for making the URL fancy / funny / catchy. So, we have integrated an auto 
spelling correction method in this system. The URL is a sequence of tokens that are delimited by some 
characters like:, /, ., - etc. Also it may contain terms that are clueless to guess the topic it talks about. 
In some cases, the terms may be ambiguous, and may have different meaning based on the context. In 
traditional methods of URL classification, only the terms present in the URL are taken into account in 
the form of token features or n-gram features and the context of the terms are not considered. In the pro-
posed work, in order to obtain context of the token, we have used word embedding. The URL contains a 
sequence of tokens and hence we applied a Recurrent Neural Network and tried to make use of sequence 
information also for classification of web pages. For example, consider an URL, https://www.education.
com/kids-know-it/. The tokens ‘education’ and ‘kids’ are not adjacent to each to other, but if we use a 
Bi-directional Recurrent Neural Network, this information can be better utilized for classification. The 
earlier systems are limited by the hand-crafted features. In this research work, an attempt is made to 
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learn the rich features automatically from the URL by applying Convolutional Neural Network, instead 
of relying on the hand crafted features.

In this research work, the problem of determining the Kids-relevant web page is studied in detail 
by combining the advantages of Recurrent Neural Network (RNN) and Convolutional Neural Network 
(CNN). This combined model is termed as Recurrent Convolutional Neural Network (RCNN). Even 
though RCNN model is found to be effective compared to simple RNN or CNN, all the terms in the URL 
are treated with equal importance in this model. But in some situations, the context may not depend on 
the entire sequence of tokens, but limited to a set of key terms. To give high importance to few terms and 
to aggregate all this information in building a better model, we have combined an attention layer with 
the proposed RCNN architecture. With this attention mechanism, the key terms will be assigned with 
the higher weight compared to the common terms. This can enhance the performance of Kids-relevant 
URL classifier. We have conducted various experiments on the bench mark collection ODP dataset by 
considering 90,560 URLs and studied the effectiveness of various deep learning architectures. We have 
also evaluated our approach on a real time collection of URLs that are self-collected by sending the 
queries to the search engine. From the experimental results, we found that attention based BGRU with 
CNN is the suitable method for classifying the web pages as Kids-specific or not, and we have achieved 
an accuracy of 82.51% in this approach. The proposed approach was compared with the existing tech-
niques and there is a significant improvement.

The major highlights of the proposed approach are listed as follows:

• A deep learning model is proposed to classify the Kids-relevant web page based on URLs.
• This is the first attempt that considers the advantages of two different deep learning architectures 

namely Bidirectional Gated Recurrent Unit (BGRU) and Convolutional Neural Network (CNN) 
for Kids-relevant URL classification.

• Another major highlight of this work is the integration of attention mechanism with Bidirectional 
Gated Recurrent Unit and Convolutional Neural Network for effective classification

• The system is evaluated on a benchmark collection Open Directory Project and the comparative 
analysis shows significant improvement.

The remaining sections of the paper are organized as follows: The related works are presented in the 
Section 2, followed by the proposed methodology in Section 3. The experimental set up and the result 
discussion are detailed in Section 4. The concluding remarks are presented in Section 5.

BACKGROUND

Palon Jacovi et. al (2018) have done a detailed study on the application of Convolutional Neural Network 
for text classification. They have shown that a single filter can detect several semantics patterns in the 
text. Also, it is shown that the filters help not only to identify the good n-grams in the text, but also to 
suppress the bad n-grams. The problem of categorizing the web pages can be thought as a document 
classification problem. As the contents are not limited to text alone and also dynamic in nature, URL 
based web page classification has gained popularity in recent years and it has been studied by vari-
ous researchers. Many methods (Rajalakshmi and Aravindan, 2018a & Kan, 2004 & Rajalakshmi and 
Xavier, 2017 & Kan and Thi, 2005 & Rajalakshmi and Aravindan, 2018b & Baykan et. al, 2011) have 
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been suggested by extracting tokens or n-grams from the URLs and various machine learning techniques 
such as Naïve Bayes classifier, SVM etc. were applied for classification. By using Maximum Entropy 
binary classifier with n-gram (n = 4 to 8) URL features, Eda Baykan et. al (2011) tried to find the cat-
egory of a webpage. Instead of designing a binary classifier, a direct multiclass classifier was preferred 
in to classify the web pages of all ODP categories (Rajalakshmi and Arivandan, 2018b). A supervised 
feature selection method was proposed for Naïve Bayes classifier with a rejection framework and the 
URL classifier was designed. The significance of considering the n-gram features and various feature 
weighting methods were explored by considering a small WebKB dataset to classify the University web 
pages (Rajalakshmi and Xavier, 2017). A comparative study of various feature weighting methods and 
the deep learning methods are studied in (Sivakumar and Rajalakshmi, 2019). However, the application 
of deep learning models for URL classification has not been explored much.

Saxe et. al (2017) have proposed a character level based Convolutional Neural Network to extract 
the features automatically to detect the malicious URLs. It is applied for the cyber security problem 
and they have not relied only on the URLs, but extracted features from file paths and registry keys also. 
All the existing methods try to select the suitable features by applying the traditional machine learning 
algorithms and considered the features from the URLs alone. The context of the terms in URL is not 
explored much and the power of deep learning techniques has not been utilized. In Rajalakshmi and 
Ramrag (2019), a character embedding based CNN model has been proposed to assist in health informa-
tion search. To perform this task, an ensemble learning approach was suggested by extracting the features 
from the URLs alone and significant improvement has been achieved. In another work, Rajalakshmi, 
Ramraj, and Rameshkannan (2019), character level convolutional neural network has been applied and 
the features learnt from CNN was used to train the machine learning models such as Naive Bayes, XGB 
and SVM classifiers for identifying the malicious domain from DGA generated domain names. This 
transfer learning approach is found to be better than the other methods. But, the sequence information 
was not considered in this approach also. While simple convolutional kernels were used in a number 
of previous studies, determining the correct window size is still found to be difficult. If the window 
size is smaller, it results in loss of information and a larger window end up with an unnecessarily large 
parameter space, which results in difficulty in training.

Zhou et. al (2018) has proposed attention based approach for classifying the short text in Chinese 
language. They have combined the word level and character level attention for selecting the informa-
tive contents from the Chinese text. Aris et. al (2018) have suggested an attention based deep learning 
model for mining protein interactions and mutations in precision medicine. Yang et. al (2016) proposed 
a method for classifying the documents using hierarchical attention based models. Recurrent Neural 
Network (RNN) model analyses a text, word by word and stores the semantics of all the previous text 
in a fixed-sized hidden layer. Contextual information capturing is the major advantage of this model. 
However, one of the drawbacks of it is the presence of bias which reduces the overall effectiveness when 
it is capturing the semantics of an entire document, the reason being the occurrence of key components 
anywhere in the document instead at only the end.

In the URL also, the above problem exists as the topic class of the web page can be predicted in a 
better way, if the entire sequence is considered independent of its position in the URL. To overcome the 
limitations mentioned in the above models, Recurrent Convolutional Neural Network (RCNN) has been 
suggested. In the proposed approach, the combination of Recurrent Neural Network and Convolutional 
Neural Network has been applied to classify the URLs as kids - relevant or not. By this approach, an 
attempt is made to learn the token features along with their sequence and the context information. To 
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discard the irrelevant tokens and to retain the significant URL features, the attention based mechanism 
is introduced with RCNN based model. The details of the proposed methodology are described in the 
following sections.

PROPOSED METHODOLOGY

The objective of the proposed work is to determine the topic of a web page as Kids – relevant or not. 
As the content based approaches are not suitable for this task, and due to the dynamic nature of web, 
URL based classification may be performed. In general, the URL consists of sequence of tokens. For 
example, consider the URL, https://www.education.com/kids-know-it/. In this URL, ‘education’, ‘com’, 
‘kids’, ‘know’ and ‘it’ are said to be tokens. The overall architecture of the proposed system is presented 
in Figure 1.

The input URLs are pre-processed by tokenizing it and stop words, special character are removed, 
followed by Porter stemming. In general, the tokens in the URL need not be meaningful, so auto spell 
check feature is included. These pre-processed tokens are represented as a vector by adding an embed-
ding layer. To learn the appropriate and rich features, Convolutional Neural Network is employed. Then, 
a Bidirectional GRU is used to obtain the sequence information from the URL. Finally, an attention 
layer is added to retain the significant features and the suitable deep learning model is built. This trained 
model is used for predicting the category of an unseen URL as Kids-relevant or not.

The proposed system consists of the following stages viz.,

1.  Input Layer
2.  Embedding layer
3.  Convolutional Neural Network
4.  Bidirectional Gated Recurrent Unit
5.  Attention Layer
6.  Output layer

Figure 1. The overview of the proposed URL based deep learning model
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Input Layer

To make the URL suitable for input layer, the following pre-processing steps are to be performed: removal 
of the special characters, conversion of all the alphabetical characters to lower case, removal of stop 
words using porter stemmer algorithm. By this, tokens are separated and every URL is represented as

a collection of tokens. Let U = {t1, t2, t3, ….tn}. In general, the tokens of URL may not be meaning-
ful and may be a shortened word. An auto-spell correction feature is added with the Symspell library. 
This library supports compound aware automatic spelling correction of multiple words in the input. By 
this algorithm, it is possible to correct the misspelled word. This spelling correction algorithm is million 
times faster through Symmetric Delete spelling correction and is the suitable choice for obtaining the 
correct URL token on the fly. Next, tokenization is performed followed by padding.

Embedding Layer

In traditional machine learning algorithms, tokens act as features and the context information is not con-
sidered. So to represent any URL, keeping the tokens closer to each other is important. For this, we have 
used Global Vector for Word Representation (GloVe), which is an unsupervised learning algorithm used 
for representing words as vectors. In this work, GloVe is used to get the word vector (300 dimensional 
vector) for the tokens in every URL after pre-processing.

The pre-processed tokens need to be represented as a fixed length vector. Let xi denote the k-dimen-
sional word vector that corresponds to the ith token in the URL. We have the URL input, which is of 
varying size. In order to get a fixed length input, we have applied padding. Hence, each URL of length 
n is represented in Equation (1)

 (1)

where xi represents the k dimensional word vector and + denotes the concatenation operator.

Convolutional Neural Network

The application of Convolutional Neural Network (CNN) for the text classification problem has been 
increased in recent days, because of the significant performance of it. For this URL based classification, 
word based convolutions are applied by using CNN alone with pre-trained embedding from GloVe. The 
advantage of applying CNN for this task is that, a good representation of the input URL can be learnt 
automatically by the convolutional filters without providing the whole collection of tokens. CNNs are 
also found to be fast and effective. In this work, the kernel width is fixed to 300, as we have used the 
300 dimensional vector in GloVe and the length of the kernel is 3, ie. we have restricted to 3 tokens at a 
time. So, these convolutional filters capture the features that are similar to word n-grams, but it is done 
in a more compact way.

The convolution operation involves a kernel that is applied to a window of m tokens for producing a 
new feature. A feature Ci is generated from a window of

tokens by
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C f w x b
i i i m
= +( )+ −.

: 1
 (2)

Here b is the bias term and f is the non-linear function such as hyperbolic tangent. This filter is applied 
to each possible window of tokens in the URL { x x x x

m m m n m n1 2 1 3 2 1: : : :+ + − +… } to produce the a feature 
map

C C C C C
n m

= … − +[ , , , .
1 2 3 1

] (3)

The max pooling operation is applied on this feature map and maximum value is taken as the feature 
that corresponds to this particular filter. In this way, the most important feature is captured for each fea-
ture map. These learnt features are used as input for the recurrent layer in order to capture the sequence 
information also.

Recurrent Neural Network

In the CNN based Model, even though CNN learns the rich token features from the URL, the context 
information is not captured. It extracts the most informative tokens and considers their activations. For 
identifying the Kids related web page, the entire sequence of tokens present in URL may be considered, 
as some tokens in the initial parts of the URL may be related to other tokens in subsequent parts. To 
achieve this, RNN based approach is proposed in this paper. In RNNs, given an URL, when looking at 
a token, it tries to derive the relation from the previous tokens in that URL. That is, at any time step, to 
compute the output of current state, the previous output and the present input are considered. That is, at 
each time-step, the output of the previous step along with the next word vector xi in the URL, form the 
inputs to the hidden layer to produce a prediction output ( ŷ ) and output features ht . The inputs and 
outputs of each single neuron in this RNN based model is given below.

h wfh wh x
t t

x

t
� ��1  (4)

ŷ w f hs
t

= ( )�  (5)

Here, x
t
 are the word vectors corresponding to the URL corpus containing T tokens and h

t
 is the re-

lationship to compute hidden layer output features at time step t. whx  is the weight matrix used to 
condition the input word vector. h

t−1  is the output of non-linear function in the previous time step. ŷ  
is the output probability distribution over the vocabulary at each time step t. In this way, RNN is applied 
to find the confidence score, by using the previous token’s context score ( h

t−1 ) and the last observed 
word vector xt, .
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Bidirectional Gated Recurrent Unit

The RNN will not derive contexts from the far behind tokens, for a lengthy URLs. To overcome this is-
sue, Gated Recurrent Unit (GRU) has been widely used. In GRU, the amount of information to be passed 
to next state can be controlled. The update gate is used to decide the information that is to be passed 
to the next node, whereas the reset gate decides about the information that are needed to be discarded. 
Even though, this RNN based model is able to capture the context information, it is restricted to forward 
direction alone. In an URL, the tokens that appear in future depend on the previous tokens. In order to 
capture the dependency and information in both the directions, we have used Bidirectional GRU (BGRU). 
In this BGRU model, the context information is captured in both the directions.

Bidirectional Gated Recurrent Unit with CNN

To combine the advantages of CNN architecture to learn the importance of token features along with the 
context and sequence information, we have employed Bidirectional GRU with CNN. This combination 
of BGRU and CNN is found to be suitable for this URL classification problem. By this approach, the 
dependency between tokens present in different positions can also be determined. For example, con-
sider the URL https://www.education.com/kids-know-it/. There is a possibility that token ‘education’ 
and ‘kids’ may not appear adjacent to each other, and may be present in different parts in the URL. To 
address this, the update and reset gates are used. The role of update gate in GRU is to carry this informa-
tion back and forth, whereas the role of reset gate to discard the remaining tokens that are not directly 
contributing to this.

Attention Based Bidirectional Gated Recurrent Unit with CNN

In an URL, some tokens present in different parts of it may be relevant and the need higher weightage 
among them. So in order to give more attention to those terms, we have introduced an attention layer 
on top of this RCNN model. The advantage of attention model is that, it did not give equal importance 
to all the terms; instead it gives more attention and computes the sum of weights of the key tokens that 
are important at each time to decide the output state.

Output Layer

The final output layer is the dense layer with the soft-max activation function. We have set the number 
of output neurons to be two for the task of predicting the URL as a Kids-relevant web page or not.

RESULTS AND DISCUSSION

To study the performance of the proposed approach, we have conducted various experiments with 
benchmark collection Open Directory Project (ODP) data set. All the experiments have been carried 
out on a workstation with Intel Xeon QuadCore Processor, 32 GB RAM, and Ubuntu 16.04 LTS and 
used Keras for implementation.
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Dataset Description

The ODP dataset is a publicly available and it has been used as a benchmark data set for many web page 
classification tasks by various researchers. To perform the proposed Kids-specific URL classification, 
a total of 46280 positive samples (URLs) from Kids category have been considered. An equal number 
of negative samples are taken from all the remaining categories of ODP such as Adults, Arts, Busi-
ness, Computers etc. to perform binary classification. In this research, 80% of URLs were considered 
for training and 20% was kept aside for testing. Hence, the training set consists of 74048 URLs and the 
remaining 18512 URLs were reserved for testing.

Selection of Hyper-Parameters

The performance of the deep learning models depends on the selection of optimal hyper parameters. 
The grid search technique was applied to select the suitable parameters. The learning rate was fixed 
to 0.001 and the drop-out probability of 0.2 was assumed. The RMSprop optimizer was applied with 
momentum 0.2 with a ReLU activation function. As URLs are short text, a maximum length of input 
was fixed as 30 and vocabulary size as 20,000. All the experiments were carried out for 75 epochs with 
a batch size of 128.

Experiment-1: CNN Based Model

CNN was used to learn the features automatically from the given URL in the first experiment. The model 
was trained for 75 epochs with the selected hyper-parameters. An accuracy of 0.7314 was achieved. 
However, it is not guaranteed that, each token in the URL might be correctly spelled. To make these 
tokens meaningful, an automatic spelling correction was added using Symspell library. The model was 
retrained with the autocorrected input and accuracy 0.7521 was achieved.

Experiment-2: RNN Based Model

The dependence between the adjacent tokens in the URLs needs to be considered for better classifica-
tion. So, second experiment was conducted by applying RNN based approach. Among the RNN based 
models, two widely used variants are tried namely LSTM and GRU.

Choice of LSTM / GRU

The features that are learnt automatically using CNN serve as the rich features. To learn the long term 
dependency between tokens, RNN based model is preferred. As a first variant, LSTM was applied and 
an accuracy of 0.7254 was obtained. Also, GRU based model was trained with the same parameters 
mentioned above. It was observed that GRU based RNN model was comparatively faster and compu-
tationally efficient, yielding an accuracy of 0.7792. For URL classification, the classification has to be 
performed on the fly with less computational complexity. Hence, GRU serve as the better choice when 
compared to LSTM.
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Bidirectional GRU based RNN

The above GRU based RNN processes the input sequence in temporal order without considering the 
future context. But for URL classification, the context not solely depends on past sequence. Hence, 
this experiment considered both past and future sequence to construct a bidirectional GRU based RNN 
model. An accuracy of 0.7962 was obtained.

Experiments-3 Combination of Bidirectional GRU with CNN

By applying CNN, context based rich features were extracted in experiment-1. Considering the signifi-
cance of sequence information, experiment-2 was conducted using RNN. But for URL classification, 
these rich features can be combined with sequence information by considering the context in both direc-
tions. Hence, this experiment was conducted by combining CNN with bidirectional GRU. The context 
rich features generated by CNN are given as input to bidirectional GRU for further classification. This 
model was trained for 75 epochs and accuracy with 0.8204 was obtained.

Experiment-4 Attention based Bidirectional GRU with CNN

The above experiment using BGRU with CNN gives equal weightage to all tokens for training. From 
the input collection of tokens, only a few set of features may aid in identifying the correct context of the 
URL. Such features need to be weighted high to improve the classification accuracy. Hence, Attention 
mechanism was included on top of the architecture presented in Experiment 3. In this experiment, an 
accuracy of 0.8251 has been achieved.

Performance Analysis

The cumulative summary of all the experiments are highlighted in Table 1. It could be observed that the 
proposed attention based method yielded better accuracy when compared to the other methods.

The performance of the proposed approach was compared against the existing methods and the re-
sultant observations are presented in Table 1. By applying various techniques, the problem of identify-
ing the kids related web sites have been addressed by various researchers. Content based methods were 
applied in (Patel and Singh, 2016 & Zhang, Qin, and Yan, 2006). These methods may not be suitable if 
the contents of the webpage changes dynamically. Also these methods are time consuming and result in 
waste of bandwidth and the accuracy reported were in the range of 75%. Few works (Baykan et. al, 2011 

Table 1. The performance of the proposed method

Methods Accuracy

CNN 0.7521

RNN with LSTM 0.7254

RNN with Bidirectional GRU 0.7962

Bidirectional GRU with CNN 0.8204

RCNN with Attention 0.8251
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& Abdallah and Iglasia, 2014), were reported for URL classification using traditional machine learning 
techniques like SVM, Maximum Entropy Classifier, etc. The accuracy of the all-gram features is 0.801 
(Baykan et. al, 2011). But this methodology is not suitable for large scale data, as deriving n-grams 
(n=4 to 8) results in lot of redundant features and no feature selection method was applied. In Abdallah 
and Iglasia (2014), language modelling approach was applied by considering 4-grams alone. They have 
achieved an accuracy of 0.8109. In both the above methods, as n-grams are considered, it will increase 
the dimensionality of feature space and it depends on the size of training data. Also the context of the 
URL was not considered.

The performance of the above method solely relies on the hand engineering features and is error 
prone. In this research, an attempt is made using deep learning based approach for URL classification. 
It could be observed that the proposed attention based method was able to capture and learn the context 
aware URL features in an efficient way. As the bidirectional GRU is applied, the sequence informa-
tion in both the directions can also be utilized for classification in addition to automatically extracting 
rich context information from the URL by using CNN. The attention mechanism that is combined with 
CNN and BGRU plays a major role in filtering the unnecessary features by giving more attention to the 
significant URL features. An accuracy of 0.8251 was obtained, which is a significant improvement over 
the existing works as shown in Table 2.

CONCLUSION

The life style of everyone is getting changed in this digital era and the usage of internet by children has 
increased dramatically. The content based systems are found to be less effective due to the increased growth 
of internet. In this research, an attention based bidirectional GRU with CNN was employed to classify 
the input URLs as Kids specific or not. The proposed approach extracts the context aware rich features 
automatically using CNN and then combines it with BGRU to maintain the sequence information in both 
directions. The major highlight of this work is the integration of attention mechanism on top of the BGRU 
with CNN architecture. With the proposed attention based deep learning model, the irrelevant features 
are filtered and only the context aware URL features are retained for further classification. Based on the 
experimental analysis performed with ODP dataset, it is shown that the performance of the proposed 
method was significantly better than the existing works and an accuracy of 82.5% has been achieved. 
This work can be improved by considering the character level embedding instead of word embedding.

Table 2. Comparative study of the proposed approach

Methods Accuracy

All-gram features (Baykan et. al) 0.801

Language Model (Tarek Abdullah et. al) 0.8109

Proposed approach – Attention based Bidirectional GRU with CNN 0.8251
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ABSTRACT

Diabetic retinopathy (DR), which affects the blood vessels of the human retina, is considered to be the 
most serious complication prevalent among diabetic patients. If detected successfully at an early stage, 
the ophthalmologist would be able to treat the patients by advanced laser treatment to prevent total 
blindness. In this study, a technique based on morphological image processing and fuzzy logic to detect 
hard exudates from DR retinal images is explored. The proposed technique is to classify the eye by using 
a neural network approach (classifier) to predict whether it is affected or not. Here, a classifier is added 
before the fuzzy logic. This fuzzy will tell how much and where it is affected. The proposed technique 
will tell whether the eye is abnormal or normal.
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INTRODUCTION

There are three major complications of diabetes which lead to blindness. They are retinopathy, cataracts 
and glaucoma among which diabetic retinopathy (DR) is considered as the most serious complication 
affecting the blood vessels in the retina. DR occurs when tiny vessels swell and leak fluid or abnormal 
new blood vessels grow hampering normal vision. The early stage of DR is referred to as microaneu-
rysm which appears as tiny, dark red spots or minuscule haemorrhages forming clusters with circular 
shape. The size varies from 10 to 100 and it ap- proximates to 1/12th diameter of an average optic disc. 
Haemorrhages, that appear inside deeper layers of the retina, form a round or flame shape. However, 
when they appear in large numbers, such a feature is considered as non-proliferative retinopa- thy. Cotton 
wool spots are yellowish white, fluffy lesions in the nerve fibre layer and are also called soft exudates. 
These spots are created as a result of swelling of the nerve fibre axons. Although soft exudates are very 
common in DR, hard exu- dates are typically bright, reflective and not common in DR. They appear as 
white or cream coloured lesions on the retina with different sizes. Each hard exudate con- sists of blood 
plasma and lipids leaked from blood vessels. The aim of this research is to develop a system to detect 
hard exudates in DR using non-dilated DR images. The exudates are identified using morphological 
methods and categorised into hard exudates and non-hard exudates using an adaptive fuzzy algorithm. 
Detection and treatment of DR at an early stage help prevent total blindness. Therefore, early detec-
tion of DR is very important because the ophthalmolo- gist would then be able to treat the patients by 
advanced laser treatment.

Hard exudates are one of the features of diabetic retinopathy. These are yellowish waxy spots occurs 
due to lipid deposits. It can be seen on posterior pole and are arranged on macular area as stars or spots. 
This can be illustrated in Figure 1.

They are usually deposited on retinal veins. One of the early signs of diabetic retinopathy is referred 
as microaneurysms. If this appear as white spots and with no blood visible in the lumen are considered 
as hard exudates. This can be depicted as mild and severe conditions.

Details of Learning Algorithm

What is machine learning? As Arthur Samuel [1959] has said machine learning is the science of getting 
computers to learn without being explicitly programmed. He tested this in checkers player. The process 
of machine learning is introduced in figure 5.

Figure 1. Various stages of hard exudates seen as clusters
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Machine learning is an application of AI (Artificial Intelligence).It provides the system the ability to 
learn and tackle from experiences without being explicitly code the program.Machine learning is used 
to learn,predict,and improvise graphically.It can be supervised learning where by knowing input and 
output.It could be unsupervised learning that is we dont know about output and we need to identify the 
patterns and make groups. The actual processing is done in machine learning algorithm.

The algorithm in this paper detects hard exudates in DR using the prin- ciples of mathematical 
morphology methods and fuzzy logic. At the initial stage, the exudates are identified using mathemati-
cal morphology. This stage can be di- vided into three sub-stages, namely, pre-processing, optic disc 

Figure 2. Images of the exudates a)mild b)moderate

Figure 3. Images of fundus showing multiple microaneurysms (early sign of DR)
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elimination and ex- udates detection. Initially, the RGB colour space in the original fundus image is 
converted to HSI space. Then, the median filter is applied to the intensity band of the image for noise 
suppression. Subsequently, the contrast limited adaptive his- togram equalisation was applied for con-
trast enhancement to prevent over satura- tion of the homogeneous areas in retinal image. The Gaussian 
function is applied for noise suppression. The colour fundus image is converted to HSI image and the 
I-band of the fundus image is used for further processing. Since the optic disc and exudates have high 
intensity values on the intensity channel, the RGB fundus image is transformed into HSI image and the 
intensity channel of the HSI image is taken for further processing.

Figure 4. Fundus image of eye (hard exudates can be seen)

Figure 5. Process of machine learning
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As RGB to HSI conversion is straightforward, it is not required to convert the RGB image to grey-
scale as RGB to grey-scale conversion is not unique. To elimi- nate the optic disc, it is assumed that the 
component with the largest circular shape of a fundus image is the optic disc The second stage involves 
classification of eye as to detect if the eye is normal or abnormal using bayesian classifier. Later Fuzzy 
rules are formed using fuzzy sets derived from the RGB fundus image. These fuzzy rules are used to 
decide the presence of hard exudates in DR images.

In this chapter, gives details about the complications of diabetic retinopathy, definition of hard exudates, 
details of learning algorithm, and the ob- jective of the project and case report is further discussed. In the 
second section, theoretical investigations are reported. In the third section, methodology of the project 
is discussed and graphical representation of parameters depicted as by survey. Later on, in the fourth 
section existing system is studied. In the fifth section proposed work where the core idea is mentioned. 
In the sixth section first phase of the work is analysed with given output. Finally, conclusion and future 
work is further discussed. References are given.

LITERATURE SURVEY

Mrinal Haloi et al.Gaussian scale space approach, a novel method tech- nique is proposed which includes 
exudates detection and classification. Anisotropic diffusion filtering(preprocessing) is used to remove 
the noise from the images.These are done by preserving the edges. Two steps are involved in Gaussian 
scale space construction, this is to identify all exudates which was constructed. Morphological opera-
tions (closing operations) and local thresholding techniques are applied for segmentation. In the closing 
operations features are enhanced. Latter, the interest map is converted to binary map. Support Vector 
Machines are used for classification of exudates. This is to get the information whether the exudates are 

Figure 6. Hard exudates on fundus image
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soft or hard. Features of SVM, they are 22 dimensional. Exudates are checked by severity detection. By 
the International Council of Ophthalmology diabetic retinopathy is specifically clas- sified into many 
forms:none, mild, moderate, severe, proliferate. The severity of dis- eases are determined by location 
of exudates w.r.t fovea. Here, three datasets are in- volved that include 400 retinal images. They are DI-
ARETD131 and e-ophtha EX dataset. The evaluation measures is of 96.54% and 98.35% for sensitivity 
and pre- diction (Haloi, Dandapat, and Sinha, 2018).

Jaeger in 1856 described diabetic macular edema recognition as round yel- low spots in whole thick-
ness of retina. By using cascaded deep residual network technique diabetic macular edema is recognized 
or detected. This is done by two steps: by segmentation and classification results. In this approach pre-
processing or post processing steps are omitted, instead segmentation and classification is done. Deep 
fully convolutional residual network (FCRN) is applied for exudate segmentation. It fuses multi-level 
features w.r.t fields. In exudates segmentation probability map is obtained. After exudates segmentation, 
cascaded deep residual networks is applied here. This network will take the location with maximum 
probability as the input and distinguish DME.169 fundus images(115 healthy and 54 exudates) and 82 
retinal images(35 normal and 47 exudates) that of HEIMED and e-ophtha EX databases. Sensitivity of 
96% and specificity of 93% (Mo, Zhang, and Feng, 2018).

Convolutional Neural Network is used for testing and training of data.U-Net (neural membranes 
segmentation)and DCNN networks (to predict class of every pixels) are the steps involved. In the 
preprocessing thresholding method, histogram equalization and normalization of data is performed in 
the input image. Contrast lim- ited adaptive equalization is in the preprocessing. Graphics processing 
unit (GPU)is of about 20 minute runtime.e-ophtha EX,DIARETDB1-V2,HEI-MED,Messidor are the 
images. It includes 30 images with exudates and 50 normal images from kag- gle. Images are seen as 
small patches (Li et. al, 2018).

To detect diabetic macular edema a novel machine learning model is pro- posed. Extraction of region 
(ROI) 512X512 sized images. The pixels are cropped by 48x48pixels.By data augumentation it reduces 
overfitting. Exudate detection model (CNN), DME classification model (6 convolutional and 3 fully 
connected networks) are the types of models used. In the e-ophtha dataset 47 color fundus images and 
in messidor dataset 1200 color fundus images (Perdomo et. al, 2016).

Automatic exudate segmentation method is proposed here for boosted exudates segmentation. This 
is done by Residual Nets. Authors proposed an archi- tecture that is novel end-to-end segmentation 
framework using ResNets (Residual nets).Automatic method for segmenting exudates in retinal images. 
CNN is used for automatic lesion and landmark detection.e-ophtha EX dataset (82 images with differ-
ent size of images(1440x960px to 2544x1696px) and DIARETDB1 and DR2 public datasets are used 
here.89 color fundus images and 529 images are included (Abbasi-Sureshjani et. al, 2017). Ant colony 
optimization algorithm(ACO) performs better than kirsch filter. Swarm intelligence is another field of 
ACO. Its main purpose is edge detection, image seg- mentation, visual saliency detection and image 
thresholding. The evaluation mea- sures by using this proposed technique is much better than kirsch 
filter where sen- sitivity and specificity are of 80.8% and 99.16%.The images are normalized to improve 
algorithm capacity. Median filter is used for background estimation with 50x50 pixel kernel. Optic disc 
elimination is finalized by preprocessing (Ot, Perdomo, and Gonz, 2017).

Fuzzy Support Vector Machine (FSVM) classifier is used to detect the hard exudates in fundus images. 
Better discriminating power in the proposed technique than the conventional SVM. It is a novel based 
method. Dataset include canon CR6- 45NM retinal camera digital imaging system in JPEG format.200 
retinal images are collected from diabetic retinopathy screening programmes. The criteria involved are 
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optic disk removal, feature extraction, and classification. OD localization and OD segmentation (using 
morphological and edge based technique).29 features 9 for each pixel) where 25 features are law texture 
energy measures. FSVM classifier is divided into two: training phase and testing phase. FSVM classifier 
supported well than SVM classifier (Liu et. al, 2017).

A novel technique is proposed to automatically detect the exudates from DR patients retinal images. 
By neural network detection is done. The steps involved are preprocessing, contrast enhancement, fea-
ture extraction and learning, classification fi- nally. In the first stage of preprocessing, mean filtering 
is done that is used for the re- moval of noise. RGB color space is converted to lab color space and by 
replacing the luminosity. Contrast limited adaptive histogram equalization computes many his- tograms. 
Classification is done by neural network classifier where it classifies into exudates and non-exudates. 
Sensitivity and specificity is considered to be in better results that is96.3% and 99.8% (ManojKumar, 
Manjunath, and Sheshadri, 2015).

CNN approach is used in diagnosing digital fundus images and to classify its severity. The steps 
involved are preprocessing, training and augumentation. In pre- processing open CV software is used. 
Normalisation of color is implemented on images. Resized into 512x512 pixels. This is pre-trained on 
10,290 images. Network was trained using stochastic gradient descent with nestrov momentum. To 
improve localization ability of the network augumentation is done. The evaluation measures include 
specificity, accuracy and sensitivity that is of 95%,75%,and 30%.CNN is used for real time classification 
(Deshmukh et. al, 2015).

C Agurto et al. describes for the detection and classification of different types of NPDR lesions. 
This includes microaneurysms, haemorrages, and exudates. This is caused due to increased amount of 
insulin.120 fundus images are used in this. The steps involved are preprocessing, retinal image analysis, 
and classification of the re- gions. In preprocessing mean-variance method is used. It will remove noise 
from the image using hue, saturation and intensity channels. For the blood vessel segmenta- tion Gabor 
wavelet and multilayer thresholding is done. Optic disc is localized using averaging filter. Morphological 
closing and opening operations are applied on im- ages to enhance the contrast. This is done by adaptive 
contrast-enhancement. Many features are used here like area, eccentricity, perimeter, mean-intensity, 
aspectratio, compactness, mean-HSV, mean enhanced intensity, mean gradient magnitude, mean- box gradi-
ent, third momententropy, and mean range energy. Bayesian classifier is used for classification(Gaussian 
mixture model).Evaluation measures include sensitivity and specificity and takes values of 97.83% and 
98.36% (Agurto et. al, 2014).

A novel approach is done (by training deep CNN)with active learning. Here, dataset is split into 
three. Training split(8760 patches for each class),validation split(328/class) and test split(986/class).It 
contains 315 images with size 1440x960 px.268 images have no lesions and 47 contains exudates. In the 
labeled patch dataset 48x48 px contains exudates and healthy examples.This method generates masks 
for prediction and segments in ROI (Dashtbozorg, Mendonca, and Campilho, 2015).

M .U Akram et al. location to segmentation strategy is proposed. This strategy is used for automatic 
exudate segmentation in color retinal fundus images.Automatic structure removal where field view seg-
mentation, main vessels segmenatation and optic disk segmentation are introduced. Thereafter location 
of exudates are detected. A random forest classifier is used for classification. This is done to classify 
the patches in fundus image whether it is exudates patches and exudates-free patches. This is to describe 
the texture structures.e-optha EX dataset is used. For image-level evalua- tion the database used here is 
DiaRetDB1 where 89 images. The resolution of the retinal fundus images is 2544x1696px.The evalua-
tion results where sensitivity is of 76% (Akram et. al, 2014).
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For the diagnosis of the retinopathy feature extraction is done. There is an abnormal thickness in the 
blood vessels where the intersection occurs. This can be found out by locating the optic disk approxi-
mately. It is then localized by using color images. Dataset of 51 images where taken for evaluating the 
results of the al- gorithm.5 images from local eye hospitals, 18 images from STARE database,13 im- ages 
from DIARETDB0 database and 15 images from DRIVE database. The steps involved are morphologi-
cal (open and close)operations. Microaneurysms and haem- orrhages, blood vessels, exudates(hard and 
soft) are identified very accurately. Blood vessels and exudates are extracted by using open and close 
operations. Optic disk is detected by blood vessel extraction, exudate localization and detection, optic 
disk detection, microaneurysms and haemorrhages detection, and predicting the severity of diseases. 
The evaluation results is obtained (Patil et. al, 2016).

From local and mean entropy an algorithm is used to classify the hard exu- dates. Messidor database 
with total of 100 images is used for evaluating the algo- rithm. This database is publicly available. Im-
ages having the resolution of 2040x1448 pixels is in TIFF format. The steps involved are preprocessing, 
extraction and classi- fication.The images are classified accurately into normal and abnormal images 
(Balakrishnan, Venkatachalapathy, and Marimuthu, 2016).

A multiscale optimization approach is used to detect exudates in the macula region of the eye.
Optical thresholding technique is used here. Two databases are used for testing purposes. UTHSCSA 
and MESSIDOR datasets are used here.652 images from UTHSCSA and 400 images are from MES-
SIDOR sets.52 images are used for training purpose of the algorithm. No training sets are used for 
MESSI- DOR. The steps involved are preprocessing, amplitude-modulation and frequency modulation, 
parameter optimization, intensity constraint, morphology, feature extrac- tion, classification by SVM 
or KNN. Evaluation is done by adding up two datasets. The measures taken are sensitivity, specificity 
and accuracy (Welikala et. al, 2015).

C Pereira et al.optic disk is segmented by using sliding band filter. This is an automatic approach for 
OD segmentation using multiresolution filter. Public databases ONHSD,MESSIDOR and INSPIRE-
AVR are used. The steps involved are prepro- cessing, estimation of low resolution of the optic disc, 
and OD segmentation. After the preprocessing stage, sliding band filter is applied. And to focus on ROI 
region. In segmentation it includes high resolution SBF and boundary, extraction (Pereira, Goncalves, 
and Ferreira, 2015).

T Jaya et al intelligent system is proposed for detection and grading of mac- ular edema. This is to 
assist ophthalmologists in early detection of the eye dis- ease. This is a novel method for the accurate 
detection of macula. It is applied by detailed feature set and Gaussian mixtures model based classifier. A 
hybrid classifier (Gaussian model) is introduced and a SVM for the accurate detection of macula. This 
will give reliable classification of retinal images in stages of macular edema. The evaluation measures 
obtained (Jaya, Dheeba, and Singh, 2015).

S W Franklin et al. automatic detection of exudates optic disc, blood ves- sels, blood clots are re-
moved in two phases. These all are done by gradient vector flow snake algorithm and region growing 
segmentation algorithm. This method is applied for 850 test images. A high efficiency of 87% true 
exudates is obtained (Franklin and Rajan, 2014). An enhanced particle swarm optimization is another 
method for proposed. 

It is a feature selection approach with biometric authentication for the identification of DR. It is used 
for preprocessing the images which are given at the input. A multi relevance vector machine is intro-
duced. Here, images are classified into normal and abnormal. Evaluation results prove that it achieves 
good performance (Pratt et. al, 2016).
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M Usman Akram et al., a dual classification approach is done. PDR (proliferative diabetic retinopa-
thy) is a case where there is a growth of abnormal blood vessels. Independent classification is done on 
each feature vector. This is done by SVM (support vector machine) classifier. Dataset of 60 images are 
taken. The results are of good mea- sures (Usman et. al, 2014).

S Antelin Vijila et al, detected hard exudates in fundus images using cascaded correlation neural 
network classifier. Database used here consists of 300 retinal im- ages which are collected from the DR 
screening programmes from that 150 im- ages are normal fundus images. Neural network classifier 
has good performance. The method involves image acquisition, preprocessing, feature extraction and 
classifica- tion by neural network. In this histogram equalization is done for the RGB channel for im-
age matching. TEM (Texture Energy Measures)are extracted for the image. The classifier identifies the 
image whether it is normal or abnormal images of fundus. For the classification CCNN or supervised 
learning architecture is used whether exu- dates are present or absent. Accuracy of 92.405% we get as 
output (Vijila and Rajesh, 2018).

Suvajit Dutta et al proposed a automated knowledge model that is by deep learning for the classifica-
tion of diabetic retinopathy. The steps involved are prepro- cessing, feature extraction, fuzzy c means 
and neural networks. Median filter is used for removal of noise in the images. Edge detection by the 
use of canny edge method is highlighted. A standard clustering mechanism is used to identify member-
ship in- formation from the image and FCM clustering method is applied here. Back prop- agation is 
used by the use of softmax layer. Image is trained by CNN method. The network is trained by the CPU 
support. For the densed feature images it works very well. The database used here is fundus image of 
human retina (kaggle.com).35000 images are used for training and testing. For the error check RMSE 
(Root Mean Square Error) is calculated. BNN is used for high error rate detection. DNN is having good 
performance rate compared to CNN (Sriman and Ivenger, 2018).

Godlin Atlas L et al detected exudates in color fundus images and char- acterized. It involves distin-
guishing vein, recognize hemorrhages. and grouping of diabetic retinopathy. The database consists of 
65 retinal images and characterized into normal, moderate NPDR and severe NPDR cases from STARE. 
The criteria are training stage, classification stage and output stage. The mean affectability is of 92.8% 
and mean prescient is of 92.4% respectively. Random forest classifier(RF)is used by tree-type classifiers 
for the classification of exudates (L, Sreeji, and Parasuraman, 2018).

T P Udhay Sankar et al proposed a technique to automatically detect and to classify the severity of 
diabetic retinopathy. The database includes 214 fundus im- ages which is taken from DIARETDB1.Clas-
sification is done by ANN (Artificial Neural Network).Features such as area, perimeter and count from 
the lesions are used to classify the stages. In this proposed technique 96% of the accuracy is ob- tained 
(Sankar, Vijai, and Balajee, 2018).

Abhishek Vahadane et al predicted a label for the patches a deep convolu- tional neural network is 
used. And to predict the presence of DME,CNN rule based method is done (Vahadane et. al, 2018).
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EXISTING METHODOLOGY

Study of Existing Systems

Here, the authors proposed a technique for detecting the exudates and then classifying them. Initially, 
hard exudates are identified by using morphological method(mathematical morphology).In this criteria 
it includes optic disc elimina- tion.And by using Fuzzy logic classification is done.

Figure 7. Block diagram

Figure 8. Plot of parameters
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In the preprocessing stage, RGB color space is converted into HSI space after that I-band of the image 
is used for further processing. This is done in an original fundus image. Here, a median filter is applied 
for suppressing the noise that includes Gaussian function. Optic disc and exudates have high values of 
in- tensity. So there is no need to convert RGB to HSI and is straight forward and not unique. The second 
stage is about classification of exudates using fuzzy logic. This algorithm uses the values in RGB color 
space to form fuzzy sets and membership functions. Fuzzy output is calculated by corresponding RGB 
channels of a pixel in an exudates. Proposed technique is evaluated by detecting the exudates(hard exu- 
dates).The evaluation measures include sensitivity and specificity as 75.43% and 99.99% respectively.

Elimination of Optic Disc

At first, the closing operator with a flat disc shape structuring ele- ment is applied to the preprocessed 
image .The resultant image is binarised us- ing a thresholding technique. The new binary image consists 
of all the connected regions. Other than the background, the component having the largest number of 
pixels with circular shape contains the optic disc and therefore extracting this com- ponent separates 
the optic disc from all the other structures in the retinal image. If the largest connected component is 
the compactness. The compactness is measured by applying two thresholding techniques, namely, the 
P-tile method and Nilblacks method separately.

The optic disc can be considered as the largest connected component that provides high values of 
compactness among these two methods. In our algorithm, the optic disc is eliminated before detecting 
exudates as the optic disc and exudates contain similar colour and intensity. The resultant image after 
applying morpholog- ical closing operator with a flat disc to eliminate high contrast blood vessels.

Then, the optic disc could be identified as the largest circular connected com- ponent in the fundus 
image. A weight of 1.3 is used in Nilblacks method for thresh- olding. The region containing the optic 
disc is brighter than other regions in the retinal images. It was discovered that the optic disc occupies 
2% of bright regions in fundus images with the rest being the background. This percentage is used to 
perform the percentile method to obtain the binary images.

The largest connected component which provides a value of high compactness among these two 
methods is considered as the optic disc. In this case, the binary image obtained after applying Nilblacks 

Figure 9. Preprocessed images a) Original fundus image b)HSI image c)Intensity band of the image d)
Median filtering e)Contrast limited adaptive histogram equali- sation f)gaussian filtering
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method provides a high compact- ness for the large circular component. Although the Hough transfor-
mation can also be used to isolate the optic disc in retinal images, the results are not accurate when its 
shape is not circular (e.g. elliptical). As such, we believe that the Hough trans- form is not a reliable 
method to detect the optic disc as all retinal images do not have circular optic discs.

Figure 10. Elimination of optic disc images a) applying morphological closing operator b)Threshold 
images using Nilblack’s method c) Thresholded image us- ing percentile method d)large circular con-
nected component e)Inverted binary with large circular component f)optic disc is eliminated from the 
preprocessed image

Figure 11. Output images of exudates detection stage a) applying morphological closing operator b)
standard deviation of the image c)thresholded image using tri- angle method d)unwanted borders were 
removed e)holes are flood filled f)marker image g)morphological reconstructed image h)thresholded 
image i)result is super- imposed on original image
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Detection of Exudates

The next step in our strategy is to identify exudates from the image from which the optic disc was elimi-
nated. The morphological closing operator with a flat disc shape structuring element is applied to image 
to remove blood vessels as both exudates and blood vessels exhibit high contrast We have applied a mor- 
phological closing operator with a radius of 16 pixels-flat disc shape structuring element to eliminate the 
high contrast blood vessels in fundus images before ap- plying the thresholding techniques. It is used to 
preserve the disc shaped objects in retinal image as the optic disc may not appear as a circular object in 
some retinal images. The standard deviation of the resultant image is calculated.

Classification by Fuzzy Logic for Classifying Hard Exudates

The final stage in our proposed technique is to identify the exudates as hard exudates using fuzzy logic. 
We use values in the RGB colour space of retinal image to form the fuzzy set and MFs. It uses the red, 
green and blue values of a pixel as three input values for the fuzzy inference system giving a single 
output. To calculate the output of given a specific rule, the fuzzy inference system provides the degree 
of membership to the output variable. A de-fuzzification function based on the centroid method, is used 
to compute the final output for identification of hard exudates.

PROPOSED SYSTEM

The proposed system is based on bayesian classification to classify the eye whether it is normal or abnormal.

Bayes Classifier

In machine learning, naive Bayes classifiers are a family of simple ”probabilistic classifiers” based on 
applying Bayes’ theorem with strong (naive) independence assumptions between the features.

Naive Bayes has been studied extensively since the 1950s. It was introduced under a different name 
into the text retrieval community in the early 1960s, and remains a popular (baseline) method for text 
categorization, the problem of judging documents as belonging to one category or the other (such as 
spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate 
pre- processing, it is competitive in this domain with more advanced methods including support vector 
machines. It also finds application in automatic medical diagnosis.

Naive Bayes classifiers are highly scalable, requiring a number of parame- ters linear in the number 
of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by 
evaluating a closed-form expression, which takes linear time, rather than by expensive iterative approxi-
mation as used for many other types of classifiers.

A Bayesian classifier is based on the idea that the role of a (natural) class is to predict the values of 
features for members of that class. Examples are grouped in classes because they have common values 
for the features. Such classes are often called natural kinds.
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The idea behind a Bayesian classifier is that, if an agent knows the class, it can predict the values 
of the other features. If it does not know the class, Bayes’ rule can be used to predict the class given 
(some of) the feature values. In a Bayesian classifier, the learning agent builds a probabilistic model 
of the features and uses that model to predict the classification of a new example. A latent variable is 
a probabilistic variable that is not observed. A Bayesian classifier is a probabilistic model where the 
classification is a latent variable that is probabilistically related to the observed variables. Classification 
then become inference in the probabilistic model.

CONCLUSION AND FUTURE WORK

From the base paper and comparing the results of other references we can understand that the method 
for classifying the images has further impro- vised.SVM classifier is a technique for image classification 
purpose. By comparing its results with fuzzy logic its performance measures has improved. From the 
report its clear that, the existing system need to be modified. Neural networks(Bayesian) can be used 
with fuzzy logic for classification. This is to classify the images into normal and abnormal. Bayesian 
gives better results in terms of accuracy and other evaluation measures.Even though CNN is best in terms 
of accuracy it has a issue of higher memory where in practical application we cannot use it in all time
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ABSTRACT

Applying deep learning to the pervasive graph data is significant because of the unique characteristics 
of graphs. Recently, substantial amounts of research efforts have been keen on this area, greatly advanc-
ing graph-analyzing techniques. In this study, the authors comprehensively review different kinds of 
deep learning methods applied to graphs. They discuss with existing literature into sub-components of 
two: graph convolutional networks, graph autoencoders, and recent trends including chemoinformatics 
research area including molecular fingerprints and drug discovery. They further experiment with varia-
tional autoencoder (VAE) analyze how these apply in drug target interaction (DTI) and applications with 
ephemeral outline on how they assist the drug discovery pipeline and discuss potential research directions.
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INTRODUCTION

Graph neural networks (GNNs) are deep learning-centered methods that function in the graph region. Due 
to its substantial performance and high interpretability, GNN has been a widely applied graph analysis 
method recently. In the following paragraphs, we will illustrate the fundamental motivations of graph 
neural networks. Graphs are a kind of data structure, which models a set of objects (nodes) and their 
relationships (edges). Newly, researches of analyzing graphs with machine learning have been getting 
more and more attention because of the great communicative power of graphs, i.e. graphs can use as 
signification of a large number of systems across various areas including science (biomedical networks).

The motivation of GNNs roots in convolutional neural networks (CNNs) (LeCun et. al, 1998). CNN’s 
have the ability to extract multi-scale localized spatial features and compose them to construct highly 
expressive representations, which led to breakthroughs in almost all machine-learning areas and started 
the new era of deep learning (LeCun, Bengio, and Hinton, 2015). However, CNN’s can only operate 
on regular Euclidean data like images (2D grid) and text (1D sequence) while the data structures can 
regarded as instances of graphs. As we are going deeper into CNNs and graphs, we found the keys of 
CNNs: local connection shared weights and the use of multi-layer (LeCun, Bengio, and Hinton, 2015). 
However, as shown in Figure 1, it is hard to define localized convolutional filters and pooling operators, 
which delays the transformation of CNN from Euclidean domain to non-Euclidean domain.

Figure 1(a) Euclidean Space, 1(b) non-Euclidean space
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In this chapter, we try to fill this gap by comprehensive reviewing of deep learning methods on graphs. 
Specifically, as shown in Figure 1, we divide the existing methods into three main categories: semi-
supervised methods, unsupervised methods. Concretely speaking, semi-supervised methods include Graph 
Neural Networks (GNNs) and Graph Convolutional Networks (GCNs), unsupervised methods are mainly 
composed of Graph Autoencoders (GAEs). We summarize some main distinctions of these categories in 
Table 1. Approximately, GNNs and GCNs are semi-supervised as they apply node attributes and node 
labels to train model parameters end-to-end for a specific task, while GAEs mainly focus on learning 
representation using unsupervised methods. Recently advanced methods use other unique algorithms 
that do not fall in previous categories. Besides these high-level distinctions, the model architectures 
also differ significantly. We will provide a comprehensive overview of these graph methods in detail. 
We also analyze the differences between these models and how to composite different architectures. In 
the end, we briefly outline the applications of these methods applied in chemoinformatics and discuss 
potential future directions.

The tasks for learning a deep model on graphs have considered, and that will be the contributions 
of this chapter:

• To apply and provide a fundamental knowledge associated with graph deep learning models for 
prediction, and node recommendation.

• To provide a basis for the use of graphs and nodes for chemoinformatics, a summary of autoen-
coders for graphs and nodes has presented.

• Applications of graph neural networks, graph convolutional networks (GCN), graph autoencoders 
(GAE) models, which uses in chemoinformatics, has described in detail.

The rest of the chapter has organized as follows. In the next section, we give the formal graph neural 
networks with benchmarks. In Section 3, recent Graph Convolutional networks (GCNs). Followed by ap-
plications in chemoinformatics explaining Graph Autoencoders (GAE) in molecule design have presented 
in Section 4, and 5. We worked on the application areas of these in experimental analysis with drug target 
interaction (DTI) using VAE in section 6. The chapter has concluded with an overview in Section 7.

Table 1. Deep learning methods on graphs and its distinctions

Category Type Node Attributes Respective Domains

Graph Neural Networks (GNN) Semi-supervised Yes Recurrent Neural Networks

Graph Convolutional Networks 
(GCN) Semi-supervised Yes Convolutional Neural Networks

Graph Autoencoders (GA) Unsupervised Limited Autoencoders/Variational 
Autoencoders

Graph Recurrent Neural 
Networks (GRNN) Various Limited Recurrent Neural Networks
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2 GRAPH NEURAL NETWORKS (GNNs)

In this section, we review the most primitive semi-supervised deep learning methods for graph data, 
Graph Neural Networks (GNNs) and its improvement. The origin of GNNs can dated back to the pre-
deep learning era (Gori, Monfardini, and Scarselli, 2005). The idea of GNN is simple: to encode struc-
tural information of the graph, each node vi can be represented by a low-dimensional state vector 
s i N
i �
, � .1≤ ≤ Motivated by recursive neural networks, a recursive definition of states is adopted (Fra-

sconi, Gori, and Sperduti, 1998):

S s s
i

j i
i j

=
∈ ( )
∑
N

F( , , , , )
,

F F Fi
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j
V

i j
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ˆ )( ,y s F
i i i

V=  (2)

For graph-focused tasks, suggest adding a special node with unique attributes corresponding to the 
whole graph. To learn model parameters, the semi-supervised method have adopted together with other 
popular algorithms. After iteratively solving Eq. (1) to a stable point using Jacobi method (Powell, 1964), 
one step of gradient descent is performed using the Almeida-Pineda algorithm (Almeida, 1987 & Pineda, 
1987) to minimize a task-specific objective function, for example, the square loss between predicted 
values and the ground-truth for regression tasks; then, this process is repeated until convergence. Table 
1 shows the distinctions among deep learning graph methods and related domains.

In fact, GNNs and GCNs has unified into a common framework and GNNs is equivalent to GCN 
using identical layers to reach a stable state.

First, to ensure that Eq. (1) has a unique solution,  .� � has to be a reduction map (Khamsi and Kirk, 
2011), which severely limits the modeling ability. Second, since many iterations are needed between 
gradient descend steps, GNN is computationally expensive. Because of these drawbacks and perhaps 
the lack of computational power (e.g. Graphics Processing Unit, GPU, is not widely used for deep learn-
ing those days) and lack of research interests, GNN was not widely known to the community.

A notable improvement to GNN is Gated Graph Sequence Neural Networks (GGS-NNs) (Li et. al, 
2015) with several modifications. Most importantly, the recursive definition of Eq. (1) with Gated Recur-
rent Units (GRU) (Cordella et. al, 2004), thus removing the requirement of reduction map and support 
the usage of modern optimization techniques. Specifically, Eq. (3) is replaced by:

s z s z s
i

t

i

t

i

t

i

t
i

t( ) ( ) −( ) ( ) ( )
= − +( )1

1� ��  (3)

where z is calculated by update gates, s  are candidates for updating and t is the pseudo time. Secondly, 
the propose networks operating in sequence to produce a sequence output, which can be applied to ap-
plications such as program verification (Brockschmidt et. al, 2015). Consider Table 2 as the notations 
used throughout this chapter.
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GNNs and its extensions have many applications. For example, CommNet (Sukhbaatar and Fergus, 
2016) applies GNNs to learn multi-agent communication in AI systems by regarding each agent as 
a node and updating the states of agents by communication with others for several time steps before 
taking an action. Interaction Network (IN) (Battaglia et. al, 2016) uses GNN for physical reasoning by 
representing objects as nodes, relations as edges and using pseudo-time as a simulation system. VAIN 
(Hoshen, 2017) improves CommNet and IN by introducing attentions to weigh different interactions. 
Relation Networks (RNs) (Santoro et. al, 2017) propose using GNN as a relational reasoning module 
to augment other neural networks and show promising results in visual question answering problems.

Table 2. Common notations use in graphs representation

Notations Descriptions

G V E� � �, Graph

m m-dimensional Euclidean space

N, M The number of nodes and edges

V v v
N

= …{ }1
., The set of nodes

F Fv, E Attributes/Features for nodes and edges

A Adjacency matrix

D i i i j
j i

, ,( ) = ( )
≠
∑A The diagonal degree matrix

L = D – A The Laplacian matrix

Q› QT = L The eigendecomposition of L

P = D−1
 A The transition matrix

N �N
k
i i( ) ( ), k-step and 1-step neighbors of vi

H I The hidden representation of the lth layer

fl The number of dimensions of Hl

ρ(∙) Some non-linear activation

X X
1 2
� Element-wise product

⊖ Learnable parameters
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GRAPH CONVOLUTIONAL NETWORKS (GCNS)

Besides GNNs, Graph Convolutional Networks (GCNs) are another class of semi-supervised methods 
for graphs. Since GCNs usually can be trained with task-specific loss via back-propagation like standard 
CNNs, we focus on the architectures adopted. We will first discuss the convolution operations, then 
move to the readout operations and improvements. We summarize the main characteristics of GCNs 
surveyed in this paper in Table 3.

Convolution Procedures

Spectral Methods

For CNN’s, convolution is the most fundamental operation. However, standard convolution for image 
or text has applied to graphs because of the lack of a grid structure (Shuman et. al, 2013). Bruna et al. 
(2013) first introduce convolution for graph data from spectral domain using the graph Laplacian matrix 
L (Belkin and Niyogi, 2002), which plays a similar role as the Fourier basis for signal processing (Shu-
man et. al, 2013). Specifically, the convolution operation on graph G is defined as,

u u Q Q u Q uT T
1 2 1 2
* ( () )= ( )�  (4)

where u
1
, u

2
 ∈ are two signals defined on nodes and Q are eigenvectors of L. Then, using the 

convolution theorem, filtering a signal u can be obtained as:

uQ Q uT'  (5)

where u ' is the output signal,� � N N� �� �� x  is a diagonal matrix of learnable filters and ∧  are 
eigenvalues of L. Then, a convolutional layer is defined by applying different filters to a different input 
and output signals as follows:

Table 3. Comparison of graph neural networks (GNNs)

Method Convolutional Readout Scalability Multiple Graphs

DCGN(16) Spatial First order +Diffusion No -

MoNet(17) Spatial First-order Yes General Framework

GATs(18) Spatial First-order Yes Attention

R-GCNs(19) Spatial First-order Yes Edge Features

PinSage(20) Spatial Random-wald Yes -

FastGCN(21) Spatial First-order+sampling Yes Inductive setting

Chen et al. (22) Spatial First-order+sampling Yes -
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where l is the layer, u
j
i ∈  is the jth hidden representation for nodes in the lth layer

i j
i
,

 are learnable 
filters. The idea of Eq. (6) is similar to conventional convolutions: passing the input signals through a 
set of learnable filters to aggregate the information, followed by some non-linear transformation. By 
using nodes features FV as the input layer and stacking multiple convolutional layers, the overall archi-
tecture is similar to CNN’s. Theoretical analysis shows that such definition of convolution operation on 
graphs can mimic certain geometric properties of CNNs, which we refer readers to for a comprehensive 
survey (Bronstein et. al, 2017).

However, directly using Eq. (6) requires O(N) parameters to be learned, which may not be feasible 
in practice. In addition, the filters in spectral-domain may not be localized in the spatial

diag
i j
l

l i j
� K�
, , ,( ) = α  (7)

where   is a fixed interpolation kernel and αl i j, ,  are learnable interpolation coefficients. The authors 
also generalize this idea to the setting where the graph is not given but constructed from some raw fea-
tures using either a supervised or an unsupervised method (Krizhehvsky, Sutskever, and Hinton, 2012). 
However, two fundamental limitations remain unsolved. First, since the full eigenvectors of the Lapla-
cian matrix are needed during each calculation, the time complexity is at least O(N2) per forward and 
backward pass, which is not scalable to large-scale graphs. Second, since the filters depend on the ei-
genbasis Q of the graph, parameters cannot shared across multiple graphs with different sizes and 
structures. Let us look at the readout operations in convolutional operations.

Readout Operations

Using convolution operations, useful features for nodes have learnt to solve many node-focused tasks. 
However, to tackle graph-focused tasks, information of nodes need to be aggregated form a graph-level 
representation. In literature, it called the readout or graph coarsening operation. This problem is non-
trivial because stride convolutions or pooling in conventional CNNs cannot be directly used due to 
the lack of a grid structure. Order invariance. A critical requirement for the graph readout operation is 
that the operation should be invariant to the order of nodes, i.e. if we change the indices of nodes and 
edges using a bijective function between two vertex sets, representation of the whole graph should not 
change. For example, whether a drug can treat certain diseases should be independent of how the drug 
is represented as a graph. Note that since this problem is related to the graph isomorphism problem that 
is known to be NP (Cordella et. al, 2004). The next paragraph we can discuss the applications of GNNs 
in drug molecular design.
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Figure 2. Graph convolutional neural network in molecule

Figure 3. Encoder, latent space, decoder in VAE
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APPLICATIONS IN CHEMOINFORMATICS

In this section, we give details about the chemoinformatics applications of the proposed methodologies 
mentioned in the previous sections.

Computer-Aided Drug Design

In computer-aided drug design, traditional machine learning algorithms have a long history in the field 
of cheminformatics, notably in their contribution to quantitative structure activity relationship (QSAR) 
applications. In QSAR, the output has predicted is usually the biological activity of a compound. Usu-
ally regression models are used, and the input data are molecular descriptors, which are precomputed 
physicochemical properties of the molecule, designed from chemistry domain knowledge. Early work in 
QSAR applications used linear regression models, but these were quickly supplanted by Bayesian neural 
networks, (Soon, Hariharan, and Snyder, 2013) followed by RFs (Syetnik et. al, 2003) and SVMs (Du et. 
al, 2008). Practitioners in the field have historically favored models that allow for variable selection so 
that an informed chemist can determine if selected features made sense. In addition, models that allowed 
assessment of uncertainty of output predictions were also preferred. The field of QSAR is vast, and we 
refer readers to the following list of reviews for key historical technical developments (Tropsha, 2010). 
For the purpose of this review, we will limit the scope of discussion to the performance of deep neural 
networks DNN based QSAR models and appropriate comparisons to traditional machine learning models.

As these methods enabled the training of deeper and more complex neural network architecture, 
overfitting also became more of an issue, which led to the development of the dropout algorithm. In 
dropout, for each epoch of the training process, a fixed proportion of neurons have randomly selected, 
and temporarily excluded from the model. The net effect of dropout is that it simulates many different 
architectures during training, which prevents co-dependency among neurons and reduces overfitting 
(Srivastava et. al, 2014). While the architecture of modern DNNs vary widely, a popular configuration is 
rectilinear unit ReLU-based neural networks. When coupled with dropout and early stopping, such ReLU 
networks have often been enough to regularize the model (i.e., prevent overfitting) (Vincent et. al, 2008).

GRAPH AUTOENCODERS (GAEs)

Autoencoder (AE) and its variations are widely used for unsupervised learning (Krizhevsky, Sutskever, 
and Hinton, 2012), which are suitable to learn node representations for graphs without supervised infor-
mation. In this section, we will first introduce graph autoencoders and then move to graph variational 
autoencoders and other improvements.

Autoencoders

The use of AEs for graphs originated from Sparse Autoencoder (SAE) (MacQueen, 1967). The basic 
idea is that, by regarding adjacency matrix or its variations as the raw features of nodes, AEs can be 
leveraged as a dimension reduction technique to learn low-dimensional node representations. Specifi-
cally, SAE adopts the following L2 reconstruction loss:
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where P is the transition matrix, �̂P  is the reconstructed matrix, hi
d∈  is the low-dimensional repre-

sentation of node vi,  .� � is the encoder,  .� � is the decoder,d    is the dimensionality and ⊝ 
are parameters. Both encoder and decoder are multi-layer perceptron with many hidden layers. In other 
words, SAE tries to compress the information of P (i,:) into low-dimensional vectors hi and reconstruct 
the original vector. SAE also adds another sparsity regularization term. After getting, the low-dimen-
sional representation hi  k-means is applied for the node clustering task, which proves empirically to 
outperform non deep learning baselines (Wang, Cui, and Zhu, 2016). However, since the theoretical 
analysis is incorrect, the mechanism underlying such effectiveness remains unexplained. Structure Deep 
Network Embedding (SDNE) (Barabasi, 2016) fills in the puzzle by showing that the L2-reconstruction 
loss in Eq. (9) actually corresponds to the second-order proximity, i.e. two nodes share similar latten 
representations if they have similar neighborhoods, which is well studied in network science such as in 
collaborative filtering or triangle closure (Tang et. al, 2015). Motivated by network embedding methods, 
which show that the first-order proximity is also important (Kipf and Welling, 2016), SDNE modifies 
the objective function by adding another term similar to the Laplacian Eigenmaps (Belkin and Niyogi, 
2002):

min , || ||
�

N

L
2

1
2

+ = ( ) −
=
∑α
i

i j
A i j h h  (10)

i.e. two nodes also need to share similar latten representations if they are directly connected. The authors 
also modified the L2- reconstruction loss by using the adjacency matrix and assigning different weights 
to zero and non-zero elements.

Variational Autoencoders

As opposed to previous autoencoders, Variational Autoencoder (VAE) is another type of deep learn-
ing method that combines dimension reduction with generative models. VAE was first introduced into 
modeling graph data in (Diederik and Welling, 2014), where the decoder is a simple linear product:

pA H h h
i j

i j
T/ ( )

,

=
=
∏
1



σ  (11)

where hi are assumed to follow a Gaussian posterior distribution q h
i �
,|M £( ) =   h

i
|M i,( ,:( ) , diag 

(Σ (i,:))) or the encoder of mean and variance matrices, the authors adopt GCN in (Wang et. al, 2016):
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Then, the model parameters can be learned by minimizing the variational lower bound:
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However, since the full graph needs to be reconstructed, the time complexity is O(N2). Motivated by 
SDNE and G2G, DVNE (Kipf and Welling, 2016) proposes another VAE for graph data by also repre-
senting each node as a Gaussian distribution. Unlike previous works that adopt KL-divergence as the 
measurement, DVNE uses Wasserstein distance (Diederik and Welling, 2014) to preserve the transitivity 
of the node’s similarities. Similar to SDNE.

EXPERIMENT ANALYSIS

The experimental setting uses variational autoencoders (VAE) to determine drug-target interaction (DTI) 
prediction for repositioning drugs. Improvement in DTI prediction accuracy could save lot of time, effort 
and money invested for drug discovery and drug repositioning experiments. We propose auto-encoder 
(AE) based approaches to improve prediction accuracy. Extensive cross-validation experiments on 
four benchmark datasets using standard evaluation metrics (AUPR and AUC) show that the proposed 
algorithm improves the predictive performance and outperforms recent state-of-the-art computational 
methods by a large margin.

Results shows in Table 4 that the proposed technique in the other five competing datasets in 5-fold 
cross-validation experiments in terms of AUC=0.927, Sensitivity=0.886, Specificity=0.864, and G-
mean=0.874. Figure 4 to Figure 7 has shown the experimental plot on truth versus prediction in terms 
of drug property generation.

Table 4. Drug target interaction using variable autoencoder discovery on selected datasets

Dataset Mean(cv scores) Std(cv scores) CV scores K-Fold Avg=AUC

dataset_dgc.txt 664 444 516 5 0.940

e_admat_dgc 664 443 516 5 0.892

gpcr_admat_dgc 95 222 93 5 0.857

ic_admat_dgc 204 209 289 5 0.959

nr_admat_dgc 26 53 13 5 0.635
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Figure 4. Result of DTI-1

Figure 5. Result of DTI-2

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



119

Convolutional Graph Neural Networks
 

Figure 6. Result of DTI-3

Figure 7. Result of DTI-4

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



120

Convolutional Graph Neural Networks
 

CONCLUSION AND DISCUSSION

Drug-target interaction prediction is a crucial task in genomic drug discovery. Many computational 
techniques has proposed in the literature. In this work, we presented a novel variational autoencoder to 
understand the latent space in predicting the drug-target interactions; it is a graph-regularized version 
of the traditional algorithm, which incorporates multiple Graph Laplacians over the drugs and targets 
into the framework for an improved interaction prediction.
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ABSTRACT

Multimedia application is a significant and growing research area because of the advances in technology 
of software engineering, storage devices, networks, and display devices. With the intention of satisfying 
multimedia information desires of users, it is essential to build an efficient multimedia information pro-
cess, access, and analysis applications, which maintain various tasks, like retrieval, recommendation, 
search, classification, and clustering. Deep learning is an emerging technique in the sphere of multimedia 
information process, which solves both the crisis of conventional and recent researches. The main aim 
is to resolve the multimedia-related problems by the use of deep learning. The deep learning revolution 
is discussed with the depiction and feature. Finally, the major application also explained with respect 
to different fields. This chapter analyzes the crisis of retrieval after providing the successful discussion 
of multimedia information retrieval that is the ability of retrieving an object of every multimedia.

INTRODUCTION

The count of people using smart devices has been raised significantly with the speedy development 
of the mobile market. The immense growth in the field of networks, computers, software engineering, 
storage devices and display devices has made multimedia application an emerging and promising area 
of research. Various computing resources, like hardware encoder/decoder, are employed recently in 
modern smart devices, such as tablets, Smartphone and so on, so that the experience of the mobile us-
ers can be improved (Kim et al., 2017, Chen et al., 2015). Hence, the multimedia applications, such as 
game applications, video player applications, music player applications, and so on, are used by the users 
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without any restrictions in the resources and CPU usage. It is important to construct effective multimedia 
information processing, analysis applications, and access, for maintaining different processes, like re-
trieval, search, summarization, classification, recommendation, and clustering of multimedia information 
(Smolensky,1986, Howard et al., 2017). The purpose is to satisfy the information requirements of dif-
ferent users in online social multimedia environments. One of the techniques for processing multimedia 
information is deep learning, which addresses the conventional as well as current research problems. 
Therefore, the ultimate aim is to use deep learning to determine the multimedia-related troubles in the 
future. Multimedia Information Retrieval is a common system made of Visual Retrieval, Audio Retrieval, 
Text Retrieval, and Video Retrieval systems. So that, every kind of digital document may be examined 
and searched through the elements of language appropriate to its nature, and extend the search condition. 
Such method is known as the Content-Based Information Retrieval (CBIR), which is the core of MIR. 
This new concept of content-based information handling requires to be integrated with many traditional 
semantics. It directs on the processing tools and searching is valid for new multimedia documents of the 
content-based management. MIR presents improved information, and every kind of digital document 
can be retrieved and analyzed by the appropriate elements. The approach of MIR directly holds the real 
content of documents and also consists of semantic aspects.

Organization of this chapter: The introduction provides the brief explanation about multimedia infor-
mation retrieval. Then, the literature review discusses the various deep learning techniques for multimedia 
information retrieval. Afterthat, the various methods of deep learning are discussed and the supervised 
and unsupervised deep learning have been explained. The applications of deep learning are provided 
under Applications. Finally, the summarization of the chapter is provided in conclusion.

LITERATURE REVIEW

Deep learning is defined as a technique that automatically detects significant patterns in the data. For 
deep learning, data is important, from which the learning algorithm discovers and learns the data proper-
ties. Both the quality and the quantity of the dataset tend to degrade the performance of prediction and 
learning. However, the techniques based on deep learning are proven to be promising for extracting learn-
ing patterns and features even if the data is complex. Deep learning can be considered as methods that 
are based on data-driven artificial intelligence and are used to frame the relationship between the input 
given and the output to be generated. Moreover, deep learning has unique features, like feature learning, 
model training, and model construction. Deep learning can also be considered as representation learning 
approaches, having several levels of representation that are attained through non-linear modules, where 
the representation at a level is transformed into a higher level or abstract level. Hence, it is possible to 
learn complex functions with the utilization of these transformations. Learning the representations of 
data via the abstract levels is the basic idea of DL. The major advantage of DL is its ability to extract the 
features directly from the original data such that the complexity of feature engineering can be avoided.

The two properties of DL are:

• Numerous layers containing nonlinear processing units
• Feature presentation on every layer throughthe learning carried out either in supervised or unsu-

pervised manner
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To representveryexpressive abstraction; deep learning networks are executed using stacked autoencod-
ers. These abstractions can signify huge set of functions than shallow networks. A significant ability for 
learning tasks comprising complicated models is providing remarkable representative power that offers 
unidentified feature coherences of input signals. The benefits of DL are summarized below:

• Compared to shallow artificial neural networks deep learning seems effective as it requires less 
computational units than the shallow artificial neural networks to perform the same function.

• Without the interaction or guidance of users, it can extract the features automatically
• In many cases, deep learning gives improved precision than the traditional artificial neural 

networks.
• By approximating or reducing huge complex datasets into extremely perfect analytical and trans-

formative output, DL significantly facilitates human-centered smart systems, and has shown the 
considerable improvement in automatic feature extraction

• The existing model related to pattern recognition extracts hand-crafted features from the images 
before using trained classifier. By training with unlabelled data, the deep learning systems au-
tomatically extract the features, and then, it categorizes the image with an effective classifier by 
applying those automatically extracted features

• One of the major benefits of DL is that it can lessen the complexity in handcrafted feature engi-
neering by learning useful feature representations from the raw data automatically.

DL was first proposed to speech separation in two conference papers by Wang and Wang in 2012, 
and afterward, a journal version is extended in 2013 (Yao et al., 2018, Wang & Chen, 2018).The deep 
learning techniques have made a breakthrough for processing and analyzing data and they are rated one 
of the promising techniques in the 2013 MIT technology review. Deep learning techniques are mostly 
applied in the field of scientific and business fields and the primary invention of deep learning systems, 
especially, DistBelief(Dean et al., 2012, Liu et al., 2018) is launched by the Google in 2011.With an 
enormous quantity of data, DistBelief, which is a mixture of data parallelism and model parallelism, 
cantrain large-scale models using large number of free parameters. By making use of computing clusters, 
the software approach, DistBelief, was introduced.DistBelief is effective in training huge models using 
large amount of data by integrating data parallelism and model parallelism. For model parallelism, the 
huge deep learning model is divided into small blocks, where each block is allocated to a computer for 
training. In particular, for the fully-connected networks, like stacking auto-encoder and deep belief net-
work, DistBelief has to transfer data between the computers to train the deep learning models, providing 
huge deal of communication.

Since 2000, the neural networks with deep architectures have gained attention due to its achievements 
in image and speech recognition. The Imagenet classification that is performed using deep convolutional 
neural networks (Krizhevsky et al., 2012)has attained improved results in 2012 ImageNet Challenge 
by adapting a network comprised of three fully connected layers and five convolutional layers, along 
with 60 million parameters(Cheng et al., 2017). Deep learning methods are approved by most of the 
researchers and have attained considerable accuracy (Dediu et al., 2017, Jia, X. 2017) in recent ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) contests (Jia, X. 2017, Weston et al., 201).In the 
1980s(Fukushima & Miyake, 1982, Cao et al., 2018), the advanced framework for deep learning was 
constructed on ANNs, and in 2006(Cao et al., 2018), the effect of deep learning methods became notice-
able. According to MIT Technology Review (Wu et al., 2015),Deep Learning (DL) has been accepted as 
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one of the ten breakthrough technologies in 2013.ConvNets have been used in segmentation, detection, 
object recognition from images, and so on,(LeCunet al., 2015) since 2000.The mainstream computer-
vision and machine-learning communities mostly forsaken the ConvNets till the ImageNet (LeCun et 
al., 2015) competition was held in 2012(LeCun et al., 2015).In 1986, the first description modeling of 
Deep Belief Network (DBN) was published by Vojt (Vojt, 2016),andit was termed as “harmonium”(Vojt, 
2016)simultaneously. For mobile vision applications, Google Inc. introduced a class of effective deep 
learning models, called MobileNets(Liu et al., 2018, Baloujiet al., 2018).For minimizing the model size 
and latency during the execution, MobileNets try to construct smaller and faster deep convolutional 
neural network models using the resolution multiplier and the width multiplier. Due to the effectiveness 
of MobileNets, they are used to implement mobile AR systems. For recognizing dissimilar portions of 
machines, the models of MobileNets are employed to develop an energy-efficient and powerful vision-
based image recognition technique in the AR system.

Deep learning plays a major role in big data solutions as it can extract valuable information from 
complex systems. Since 2006(LeCunet al., 2015, Vanderbruggen& Cavazos, 2017), deep learning is 
considered as one of the most interesting areas of research among machine learning techniques. In 
2011 (Wu et al., 2015), Google developed the Google Brain projects with the introduction of Google X 
projects (Wu et al., 2015).Google developed the software that is based on deep learning, for analyzing 
millions of photos that are taken from YouTube videos so as to identify the objects, like human and cat 
faces, from the videos. The technology of the project is broadly used in Google+ by applying it in speech 
recognition system of the Android Operating Systems, and photo-search. Microsoft produced one of the 
best photograph classifiers,named project Adam, which enables practical computer vision, high-quality 
speech recognition, and email spam blocking. In 2007, Hinton planned to pre-train one layer at a mo-
ment through Restricted Boltzmann Machine (RBM) and then, it is fine-tuned using backpropagation 
algorithm. Thus, it forms the first advanced pre-training method used in DL that learns in unsupervised 
manner. Hochreiter’s group utilized the deep learners to investigate the effects that occur due to the toxic 
defects and won the “Tox21 Data Challenge”(LeCunet al., 1998), in 2014.CNN was utilized in image 
recognition for getting better visual pattern for the images, earlier in 2011 and later in May 2012, this 
approach was found meaningful in image segmentation.

For character recognition, face recognition and traffic sign recognition, which are carried out using 
image and speech signals, DL introduced various formats, like LeNet, GoogLeNet (Baloujiet al., 2018, 
Krizhevsky et al., 2012)and AlexNet(Krizhevsky et al., 2012, Vanderbruggen& Cavazos, 2017).To 
develop the research and to design various DL models, companies, such as VirusTotal and Reversing 
Labs, generate various streams of attacks. Reversing Labs provide access to large stream of attacks for 
detecting suspicious activities.

Zechao Li and Jinhui Tang (Li & Tang 2015) introduced a distance metric learning algorithm, named 
weakly-supervised deep metric learning (WDML), under the deep learning framework for community-
contributed image retrieval. This method was applied to image retrieval and the experimentaion was 
performed to analyze its effectiveness. This method was effective and promising. It could be applied to 
search-based image annotation/tagging. Xueyi Zhao et al. (Zhao et al., 2015)developed a joint learning-
to-rank method, named Deep Latent Structural SVM (DL-SSVM), which jointly learned the DNN and 
latent structural SVM to effectively model the interaction relationships at feature-level and ranking-level. 
This method obtained the promising results in the information retrieval application. Pengcheng Wu et al. 
(Wu et al., 2013) introduced a framework of online multimodal deep similarity learning (OMDSL), which 
optimally integrate multiple DNNs pretrained with stacked denoising autoencoder. The experimentation 
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was performed to analyze the performance of this method for multimodal image retrieval tasks, in which 
the encouraging results validate the effectiveness of this technique. However, this technique was rather 
generic for any multimedia retrieval tasks.

VARIOUS METHODS OF DEEP LEARNING

This section briefly explains the various methods of deep learning for knowledge computing.Table 1 
shows the various deep learning methods with their merits and demerits.

Deep Neural Network

Recently, Deep Neural Networks (DNNs) have attained significant attention and are being used in various 
applications, for achieving significant improvement in the accuracy.DNN is a feed-forward neural network 
and consists of few hidden layers that are framed between the input unit and output unit. The complex-
ity of input data is significantly reduced by adapting machine learning techniques by making relevant 
patterns of learning algorithms more focussed for functioning. Feature identification and extraction play 
important roles in DNN to enhance the performance. However, it is hard and costly regarding time and 
knowledge to concern this feature engineering approach based on domain knowledge and the data type.

The basic idea of neural network is to learn with the objective of finding optimal parameters so as to 
solve a certain task. It is necessary to initialize the network parameters before training the network. Even 
though the values of the parameters are chosen in random manner, initially, usage of few heuristics may 
offer optimal values for the parameters. By providing the training data to the network, it performs the 
learning. For producing a better result, the training set is analyzed to adjust the network frequently. When 
the network attains the expected performance for the given training data, the network is said to be trained.

DNNs are made up of interrelated artificial neurons with layered association of Multilayer 
Perceptrons(MLPs), and it is useful to model complex non-linear relationships. The object is considered 
as the layered primitive composition in the compositional models of DNN. Other layers assemble the 

Table 1. Deep learning methods

Methods Description Advantages Disadvantages

Deep Neural Network 
(DNN)

A DNN is a neural network with more 
than two layers.

learn high-level features from 
data in an incremental manner. 
This eliminates the need of 
domain expertise and hard core 
feature extraction.

It requires very large amount of 
data in order to perform better 
than other techniques. 
It is extremely expensive to train 
due to complex data models.

Deep Belief Network 
(DBN)

DBN is a DNN model, which has no 
difference with MLP from the network 
structure, but DBN uses greedy 
layerwise algorithm based on RBM 
to initial weight matrix of DBN while 
MLP initials weight matrix randomly.

It can be viewed as a 
composition of simple, 
unsupervised networks. This 
composition leads to a fast, 
layer-by-layer unsupervised 
training procedure.

The approximate inference based 
on mean field approach is slower 
compared to a single bottom-up 
pass as in DBN.

Deep Convolutional 
Neural Network 
(DCNN)

It is a DNN model that can use 
Backpropagation (BP) algorithm 
directly.

High accuracy High computational cost. 
Require large training data.
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features from the lower layers and replace the complicated data with smaller units. Also, deep archi-
tecture contains various fundamental techniques. The performance of multiple architectures cannot be 
compared when they are experimented using dissimilar datasets. For learning a complex relationship 
among multiple non-linear transformations, DNN utilized an MLPlayer with extra two hidden layers. In 
particular, DNN is used in various multimedia applications. They offer classifiers providing improved 
accuracy for extracting important information using raw data. Deep network contains various layers 
followed by the preceding layer. Every layer in DNN forms a simple function of the preceding layer. 
The initial layer contains original input data and the final layer produces the output. While using the 
input data, every layer continuously forma complex functions to provide the output.DNN have attained 
promising success for large vocabulary continuous speech recognition (LVCSR) tasks for performing 
state-of-the-art Gaussian Mixture Model/Hidden Markov Model (GMM/HMM) gaining large variety 
of small and large vocabulary tasks.

Stacked RBMs are used for initializing the weights of DNN, also called as multilayer network. It is 
responsible for providing a universal model, which can solve different tasks. Pooling, convolution and 
fully connected layers are the recent DNN architectures used for digit recognition. The representative 
features extracted from conceptual abstractions are free from human interference by comparing to that 
selected manually if the given data is used to train the DNN parameters. In gear fault diagnosis, several 
researches have used these approaches to identify the features perfectly and adaptively, and then, with 
minimal tuning, the classification of fault/damage is done automatically.

The ranking scores are predicted using forward propagation algorithm based on the extracted features 
given as the input to the DNN. However, deep neural networks are broadly utilized as front-end feature 
extractors and in several end-to-end speech processing systems. The incompatible conditions in the 
testing and the training data lead to the vulnerability of DNNs and thereby, degrade its performance, 
although DNNs are trained using huge databases for learning the variabilities in the input feature space 
(Wu et al., 2015).

The output layer of the deep neural network contains neuron functions, which are given as the input 
to the next layer. By allocating the weights, followed by the summation function, the neuron is signifi-
cant to determine the strength of the connections. The output generated from the neuron may contain 
a weight 0 in the summation function of the following neuron. Meanwhile, the output generated may 
include the weight having higher value for other neurons so as to improve the activation. Here, two 
things to be remembered are:

• A deep neural network is capable of representing any non-linear prediction space, irrespective of 
its complexity.

• The resultant output produced by the model depends on the neuron weights assigned.

As DNN learns a hierarchical data representation independently, it does not require novel feature 
extractors to solve each problem.

For each training situation, DNNs can be properly trained by back-propagating expressions of a cost 
function that measures the discrepancy between the target outputs and produced the actual outputs. 
While using the softmax output function, the natural cost function I is the cross-entropy between the 
target probabilities f and the outputs of the softmax, m:
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To train the DNN classifier, the target provided takes the value as one or zero.
DNNs learn and discover a good combination of features for complex tasks, which require a lot of 

human effort. DNN has been used in multimedia applications and has the ability to work on a very large 
dataset, such as ImageNet dataset with 1.2 million images and 1000 categories.

Deep Belief Network

One of the types of DNN is Deep Belief Network (DBN), which contains many layers that are connected 
between the layers but not between units. Without any supervision, DBN can reconstructs its input based 
on the set of training samples. The layers function as feature detectors and then, the classification is 
performed in DBN based on supervised learning. DBN is comprised of simple unsupervised networks, 
such as auto encoders and Restricted Boltzmann machines (RBMs),where each hidden layer of a network 
forms the visible layer of the following network. An RBM contains generative energy-based and undi-
rected model having visible input and hidden layer, in which connections are obtained among the layers 
and not within the layers. The connections between the peak two layers are undirected and symmetric.

Both layers contain visible and hidden neurons indicating the input and the output layer. The visible 
neurons are retained using the previous layer, for which these neurons are hidden. The interconnections 
are made between the visible neurons and the hidden ones.An important characteristic of DBN is that 
there is no relation between the visible and the hidden neurons and also between bothneurons. From 
the input data, the RBN themselves canextract and detect the features. To form a multilayer network, 
numerous layers of RBMs are stacked to each other. From previous RBM layer, every layer uses the 
hidden neurons. Various layers involved in the deep architecture help to extract deep hierarchical data 
representations.RBM layers are responsible for performing feature detection, whereas the classification 
is executed by adopting multilayer perceptron in the last layer. The input to the MLP layer is nothing but 
the hidden neurons of the previous RBM layer. Thus, the architecture is the combination of probalistic 
neurons and deterministric neurons in the feature extraction and the classification phases, respectively.

DBN is termed as a generative graphical model for learning a representation that can rebuild the train-
ing data with high probability.DBN contains one visible layer and several hidden layers. The statistical 
relationship can be obtained from hidden layers which are placed between upper layer and lower layer 
where the higher layer is more complicated. Greedy layer wise training is adopted in deep belief network 
for training the hidden layers in the bottom-up fashion.

Figure1 shows the DBN architecture, which contains RBM as well as MLP layers. However, RBMs 
use unsupervised learning and MLPs use supervised learning. Finally, a two-phase training process is 
obtained. The pre-training process, called first phase, separates the RBM layer used to perform unsuper-
vised training .The second method, known as gradientdescent method contains MLP and RBM layers. 
The training process, known as learning, can be executed by standard backpropagation algorithm.

RBM consist of energy based method useful for discriminative or else generative model for labelled 
as well as unlabelled data, contains single layer of hidden units and not contains interior layer of visible 
and hidden neurons. Following equation shows the mean squared error calculated at the output of each 
neuron,
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where ns is the total neuron present in the outputlayer, es
m  is the error, gx

m  denotes the output,and fx
m  

denotes the desired output. When the expected output and the target output remain same, mean square 
error becomes zero.

Figure 1. Architecture of DBN
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Especially in the case of the BP algorithm, DBNs were the primary projected in deep architecture to 
fine-tune initial network parameters, weights, and biases, rather than using the NN with random variables.

The training, as well as the pre-training process, are given below:

• The networks are initialized through random weights, biases and additional parameters
• The input data, which signifies the potentials in its visible neurons, to initialize the first layer of 

RBM. Then, for a predefined number of epochs, the unsupervised training is carried out in this 
layer to iterate the training dataset.

• The succeeding layer acquires its input by adopting sampling potentials produced from the hidden 
neurons present in the preceding layer. The unsupervised training is adopted on this layer using 
training data samples.

• To repeat the preceding step it requires the number of layers. For each repetition the samples are 
generated upwards the network. Finally, when the first layer of MLP is arrived, the pretraining 
phase completed its process.

• Fine tuning through supervised gradient descend begin the training is concluded once it arrives a 
predefined number of epochs or else reaching the target error rate is completed successfully.

As the MLP network, the neurons of the DBN are interrelated in the similar manner. Hence, the 
training of DBN in the second phase is done similar to the training of MLP. Hence, the training phase 
of the DBN follows the initialization process of weights and biases of a deep MLP using the values 
generated through unsupervised probabilistic pre-training. DBN is comprised of a several RBMs such 
that the hidden layer of an RBM is connected to the visible layer of the subsequent RBM.DBN follows 
downward directed connections such that each layer is connected to its lower layer; however, the first 
two layers are undirected.

Therefore, DBN can be considered as a hybrid model, where the initial two layers are undirected 
graphical model, and the other models are directed generative model. Here, various layers are trained in 
a layerwise greedy way and the fine-tuning is done with respect to desired output. Still, the process of 
training is computationally challenging. Deep Belief Neural Network (DBNN), which is kind of DBN, is 
a probabilistic generative graphical model that contains numerous layers of stochastic and latent variables.

DBN is a typical deep architecture and it can be used for dimensionality reduction of images and text 
documents and language modelling. Also, it is used for efficient image identification.
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Deep Convolutional Neural Network

Deep Convolutional Neural Network (DCNN) is another type of deep learning. An effective network 
has the capability to extract deep features of objects. By extracting the texture information by the filters 
at the low-layer and the semantic information using high-layer filters, DCNN developed multi-feature 
fusion that is being considered as a recent trend.

Another type of feed-forward neural network is CNN, and is used commonly for analyzing visual 
imagery. CNNs employ several MLPs for pre-processing. CNN, also known as space invariant or shift 
invariant artificial neural networks (SIANN), has a shared-weights architecture with translation invari-
ance characteristics.

At present, DCNN are widely used in various platforms, like CPU, GPU, etc. The embedded devices 
cannot meet the real-time performance on CPU. The subsampling layers, like pooling layer, convolutional 
layer and fully-connected layer are the three layers of CNN. In order to decrease the dimension, subsam-
pling operation is performed, where the layer of convolution uses convolution operation for sharing the 
weight. Without the considerations of manually designed features, DCNN can learn the features from 
the input data for the recognition or detection purpose. Various complex functions can be learned more 
precisely using DCNN compared to shallow networks. Therefore, DCNN can offer more sophisticated 
deep representations rather than hand-crafted features.

Based on the given training dataset, DCNN is used for the purpose of detection or recognition. Usu-
ally, DCNN model consists of multiple processing layers for learning dissimilar features. Comparing the 
hierarchy features in deep representation is more discriminative and effective. For this reason, numerous 
applications are attained using state-of-art. Due to its powerful capability, DCNN plays a very important 
role in learning. In recent years, effective intermediate regularization strategies and activation functions 
are proposed to recover the deep model of optimization.

In addition convolution neural network achieved the state of-the-art outcomes in phoneme recognition. 
CNN is significantly reduced the parameter involvement made by convolutional operations. Especially, 
convolutional deep belief networks (CDBNs) are used in spectrograms to facilaite the unsupervised 
acoustic feature learning that aimed at minimizing thereconstruction errors. Additionally, it is regular-
ized using the penalty termnamed sparsity so that to perform the effective audio classification. In the 
fully connected neural network, the individual neuron present in the layer is connected with the neurons 
in the next layer and in addition, it is interesting to note that the neurons present within a layer is inde-
pendent from each other.

CNNs are considered as spatially structured information. In the earlier period, CNNs have revolu-
tionized the pattern recognition community and computer vision. Here, so many layers are available, 
and the parameters considered here are 100 million. These parameters operate to its best to obtain the 
patterns from a complex image to offer a better pattern than is obtained manually. The architecture of the 
convolutional layer is understood better through presenting an image in the input layer of the network. 
The initial step of the network is regarding the extraction of the features that is brought about using the 
convolutional and sub-sampling layers, which consist of the feature maps. While extracting the feature in 
the convolutional layer, the specific feature is obtained through feeding the input image through a filter 
and it is quite interesting to note that the filtering is progressed through adjusting the weights, which is 
tuned using the back propagation algorithm. The filter aims at highlighting the potential of a pixel with 
respect to the surrounding pixels. In the second step, the classification is performed using the extracted 
features. Thus, it is well known that the individual layers are engaged in performing their own functions 
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of feature extraction and classification. The sub-sampling layer follows the convolutional layer and this 
arrangement continues and terminates with the subsampling layer based on the depth of the network. 
After the last sub-sampling layer, the fully connected layer follows, which forms the output layer of the 
convolutional neural network. Thus, it is well known that the CNNs find major applications in the areas 
of pattern recognition and particularly, in the visual domain.

Thus, a typical CNN consists of a numerous feature maps that engage themselves in extracting the 
local feature based on the weights irrespective of their position in the previous layer. The neurons present 
in a module are constrained to possess the same weights even though their receptive fields are different. 
The receptive field is nothing but the local area belonging to the previous layer linked with the respective 
neuron in such a way that the function of a weighted sum is similar to the convolution1. The individual 
convolutional layer engages itself in computing the local average or maximization of receptive fields of 
the neurons present in the convolutional layer as a result the resolution is minimized and the sensitiveness 
with respect to the local variations is reduced. The weigh sharing concept in CNN adds more value to the 
CNN in such a way that the training parameters employed are reduced. The incorporation of the domain 
knowledge in pattern recognition using the CNN requires training using the backpropagation algorithm 
in addition to the deep learning behaviour of CNN. The weight sharing in the CNNs is facilitated using 
the convolution operation in the convolutional layer, and at the same time, the dimensional reduction is 
facilitated using the subsampling layer. The weight sharing in the convolutional layer is given as,

g h s u lx vx v xv
� � ��( )  

where, gx indicates the xth output of the convolutional layer, sv specify the convolutional kernel with the 
vth input map uv. The discrete convolution operator is denoted as, ⊗  and the bias is denoted as, lx. The 
non-linear activation is indicated as, h, which is always a scaled hyperbolic tangent function.

In general, the dimension of the feature map is reduced with the use of sub sampling layer. This can 
be performed using the implementation of the max pooling operation or the average pooling operation. 
Then, the fully-connected layers of large number and the softmax layer are placed as the top layer of the 
recognition and the classification. Recently, the convolutional neural networks are applied in the field 
of speech recognition, language processing, and so on with great success. The artificial neurons that are 
present in the convolutional neural networks (CNNs) normally differ from all the other types of the deep 
learning methods as this method involves in the extraction of the features from only a small portion of 
the input image that is usually called as receptive fields. Thus, this type of feature extraction encourages 
the visual mechanisms of the living organisms, where the cells that are present in the visual cortex acts 
more sensitive to the smaller portion of the visual field. In the same way, various convolutional filters 
are used to convolute the image that is present in the convolutional layer by shifting the corresponding 
fields in step by step manner. In the model, each small portion that is obtained from the image, the same 
parameters are shared by the convolutional filters, and thus the number of the hyper parameters is re-
duced in large amount. The pooling layer makes in use of the max, mean, or the other statistics that are 
available in the features of various locations to reduce the variance of the image, and as a result, obtains 
the essential features. CNN acts as one of the important deep learning methods, in which the multiple 
layers are trained most robustly and thus, found to be more effective.
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The computer vision applications, namely object detection, video surveillance, and the image clas-
sification are carried out with the widely used DCNNs. The computational complexity and the huge data 
moment of the DCNN reduce the performance and the efficiency of the application that blocks the use 
of DCNN only in embedded devices, like intelligent vehicles and in smart phones. DCNN can be used 
in the analysis of medical images due to the better performance in the field of natural language process-
ing and the natural image processing. It can also be used in applications related to object segmentation, 
detection, and recognition. CNNs are used in medical imaging, such as lung nodule classification, 3D 
knee cartilage segmentation, and in the diagnosis of Alzheimer’s disease.

DCNNs are the most well-known architecture for visual analysis. It models the high-level abstractions 
in images by employing deep architectures composed of multiple non-linear transformations. In CNNs, 
features are extracted at various levels of abstracts and the system has been allowed to learn complex 
functions, which directly map raw sensory input data to the output, without relying on hand-engineered 
features using domain knowledge. Also, DCNN models have been used to improve the image retrieval 
workflow.

DEEP LEARNING: SUPERVISED LEARNING VS. UNSUPERVISED LEARNING

The classification algorithms of deep learning are similar with the algorithms used in machine learning, 
which may be either supervised or unsupervised.

Supervised Learning

In supervised learning, the accurate prediction of the given input is facilitated through the establishment of 
the relationship between the input and the output. When a training input is given, the supervised learning 
algorithm analyzes the data and generates an inferred function termed as a regression function or a clas-
sifier. Supervised Approach, which is an automatic learning approach, generates the rules automatically 
using the learning database that contains the instances of the cases dealt already. Therefore, the aim of 
the supervised algorithm is to generalize the unknown inputs and it is selective to learn from the data 
already managed by the experts. Thus, through the inferred function is generated through the analysis of 
the given training data that insists the supervised learning as the better classification algorithm. The deep 
learning strategies utilize supervised classification to transform the input to its intermediate data form 
similar to that of the principal components, and later establish the layered structures, thereby, minimizing 
the data redundancy. The popularity of the deep learning methods exists in the conversion of the data 
into its compact form. Thus, the accuracy of classification using the supervised learning depends on 
training a data sample using the data source that is already classified correctly by the domain experts. 
The afore-mentioned techniques are employed in MultiLayer Perceptron (MLP) or feed forward models. 
The characteristics of the MLP include:

• The complex issues are solved through the effective learning, which is brought about through the 
hidden neurons present in the network.

• The layer is capable of distinguishing the neuronal activity that exhibits the nonlinear nature.
• The connectivity of the network is enhanced through the availability of the interconnection among 

the neurons in the network.
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In Supervised learning, the weights in the interconnecting link is adjusted based on the error, whereas 
in unsupervised learning, information corresponding to the set of neurons are utilized. On the other hand, 
in case of the reinforcement learning, the reinforcement function is employed to change the parameters 
corresponding with the local weight. Additionally, the concept of machine learning deals with the auto-
mated extraction of the meaningful patterns from the data. In case of machine learning, data contributes a 
major role and the role of the learning algorithm is regarding the extraction of the significant information 
and properties buried in the data. Above all, the performance of learning and prediction is based on the 
quality and quantity of the dataset.

Unsupervised Learning

Learning of deep learning methods can also be done in unsupervised manner. In unsupervised learning, 
deep learner studies the structure of the data and its values, in addition to the underlying data distribution. 
Revealing the data patterns, which can be utilized for the activity recognition at higher levels, is the major 
purpose of the unsupervised learning approaches. Here, the actual or the target response is unknown. 
Unsupervised learning approach requires building a reference model identifying normal and abnormal 
situations (Weston et al., 2012). Unsupervised classification processes the input data, making decisions 
without any labelled responses. Due to the existence of large unlabeled data in the current scenario, 
unsupervised learning is much benefited. For the better representations, DNNs perform mappings and 
its features can be extracted from various network layers; this reduces the dimensionality of the data. For 
mapping the input data to the feature space, unsupervised classification employs representation learning. 
DNNs are capable of learning non-linear mappings that convert the data into other representations, to 
make unsupervised learning easier and effective.

As the datasets given as the input to deep learning is unlabeled, it is unfeasible to verify if the outcome 
is correct or not. However, the result attained may be an outcome that is unexpected and is a broader 
desired goal, or may offer a complex statistical function that result in extracting intended values. Hence, 
learning the similarities in an unsupervised manner without the requirement of any labels for tuning the 
learner is of great interest in the vision community. Therefore, it is possible to adopt even larger datasets 
without any restrictions in the cost. Moreover, it can learn and organize the data without generating an 
error signal.

APPLICATIONS

Multimedia is the integration of graphics, video, image, document, animation, drawings, audio, and so 
on. Among these, image, video, and document are the most significant multimedia content. This section 
describes the retrieval of these multimedia contents using deep learning methods. Table 2 shows the 
different deep learning methods used in Multimedia Information Retrieval.

Image Retrieval

In recent years, image retrieval based on deep learning methods has receive more attention because the 
traditional image retrieval based on content and text has not been able to meet the user requirements. 
The CNN extracts the image features by continuously learning all the images in the image database. 
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The high-level features of deep learning network are more efficient semantic features, which express the 
information presented in the image. The procedure of extorting the image features by CNN is the study, 
extraction and abstraction of the image layer by layer. The extraction of more features of the network 
architecture gives the more abstract description of the image; hence it can be more contribute to image 
retrieval. The content-based image retrieval is separated into three stages such as, based on the features 
of image semantic, artificial notes, and vision character of an image. Based on neural networks, there 
are several methods for the content-based image retrieval. The major attractive factor behind the neural 
networks in CBIR is the adaptive learning. The self-organizing quality of neural networks is used for 
supporting an image retrieval method. Content-based image retrieval (CBIR) is a technology which 
in principle assists for organizing the records of digital pictures with the visual content. A relevance 
feedback (RF) is a major advance made in the technology of user interaction for the image retrieval. An 
image retrieval system is created to provide a personal collection which is focused on the features such 
as flexibility of browsing, display methodology, and personalization. The methods of Text-based image 
retrieval are used for the applications of conventional database. Image retrieval also categorized into two 
type’s namely exact and relevant image retrieval. Exact image retrieval also referred as image recognition 
which requires matching on every image accurately, whereas the relevant image retrieval is based on the 
contents and depending upon the final values of the features, there is flexible scale of relevance. Text-
based image retrieval system was used for the applications of conventional database. This is used for the 
business purpose and applications but the volume and usage of digital images forms the accuracy issues 
for the text-based image retrieval methods. Latest methods which are developed for the image retrieval 
considered the texture, shapes, and color of an image object. In the present decades, more region-based 
methods for image retrieval are proposed which are not depending on the strong segmentation.

Table 2. Deep learning methods used in Multimedia Information Retrieval

Authors Method Purpose Advantages Disadvantages

(Pang et al., 2015) DCNN Video Retrieval
obtains best performances on two 
challenging 
TV-Series datasets

Time consuming

(Dong et al., 2016) deep Boltzmann machine Video Retrieval
Encouraging results are obtained when 
applying 
the deep features for cross-modal retrieval,

not applicable 
for hand-crafted features

(Krizhevsky & 
Hinton, 2011) Deep autoencoders Image Retrieval more accurate matching quadratic time complexity

Fang Zhao et al. 
(Zhao et al., 2015)

deep semantic ranking 
based hashing Image Retrieval High ranking performance High computational complexity

(Wu et al., 2013) online multimodal deep 
similarity learning Image Retrieval Obtains promising results for multimodal 

similarity search. generic for any multimedia retrieval tasks

(Lusci et al., 2013) recursive neural network 
approaches Chemoinformatics build aqueous solubility predictors

This model model with contracted rings has 
weaker 
predictive capabilities

(Mitchell, 2014) Machine learning methods Chemoinformatics kNN is an excellent and simple approach for 
problems with local data

QSAR and QSPR models reveal correlation 
between descriptors and properties, but 
do not by themselves prove mechanistic 
hypotheses.

(Lo et al., 2018) machine learning 
techniques Chemoinformatics capable of processing big data at high 

volume, High computational complexity

(Sugathadasa, et al., 
2018) Deep Learning Document Retrieval better accuracy levels complexities and difficulties

(Balaneshinkordan, et 
al., 2018) deep neural architecture Document Retrieval significant improvements of retrieval 

accuracy Time consuming
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Document Retrieval

Now a day, deep learning methods are widely used in document retrieval since they offer significant 
performance improvement in several branches, such as text recognition and handwritten character 
recognition. The recurrent neural network with long short-term memory (LSTM) and the CNN are the 
most triumphant deep learning methods in document retrieval. Document retrieval is the simple task 
in Information Retrieval (IR). In IR technique, the content is specified as a key word and has several 
documents. Every document is specified as a bag of words. The cosine similarity is determined among 
the document and tf-idf vectors of the query, which is considered as a matching score. The conventional 
technique works well in some cases but it suffers from mismatch problem. The semantic matching among 
the document and query is important to assist the user to determine the relevant information effectively. 
Deep learning methods are productively employed to conduct semantic matching in web search, and 
major improvement in relevance has been obtained. In Legal Document Retrieval by Deep Learning and 
Document vector embeddings, Document retrieval is about getting every correct document to the cor-
rect people, instantaneously. It is a combination of both the security and search criteria. The process of 
domain-specific information retrieval has been ongoing research and well-known in the field of processing 
natural language. Several researchers have included the various methods for outperforming the technical 
as well as domain specificity and offer an established model for different domains of interest. The major 
block in these retrieving is the serious combination of domain experts, which makes the whole process 
to be unwieldy and time-consuming. Here, three models have developed which are compared against a 
fair standard, generated via the on line repositories provided, especially for the legal domain. The three 
various models incorporated the representations of vector space of the legal domain, where the genera-
tion of document vector was completed in two different mechanisms. The ensemble model was built to 
show a higher accuracy level significantly, which certainly proves the requirements for incorporation of 
the domain-specific semantic similarity which calculates into the process of information retrieval. This 
also shows the influence of different distribution of the similarity measures, against different dimensions 
of document vector, which can lead to improve in the process of legal information retrieval. Document 
Retrieval is the process of creating a significance list of ranked documents in response to the request of 
an inquirer by comparing its request with a created index of the documents in the system. A document 
retrieval system is consisting of three modules such as document processor, matching function, and 
query analyzer. There are several theoretical models on which the document retrieval systems are based 
on Language Model, Boolean, Probabilistic, and Vector Space.

Video Retrieval

Video retrieval has received increasing attention due to the massive increase of online videos. In 
contradiction of image, videos have complex and different visual patterns with high-level semantic 
content between frames and low-level visual content in every frame, which makes the video retrieval 
more challenging. Due to the quick development of deep learning, various techniques depends on deep 
learning are employed for accurate and efficient video retrieval. In deep learning, the high-level se-
mantic features are obtained by combining low-level visual features. CNNs are the essential part of the 
proficient video retrieval method because they are the flexible image representation tools with strong 
generalization capabilities. Due to the victory of deep learning methods in image recognition, various 
research works use the deep learning architectures with hash function for efficient video retrieval. Also, 
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quick video retrieval by deep neural networks is receiving more attention. Newly, with the vast growth 
of online videos, research of fast video retrieval has received the rising attention. As an expansion of 
image hashing methods, usual video hashing methods are mostly based on the features of hand-crafted 
and transform the features of real-value into binary hash codes. Since video presents complex visual 
information than images, which extracts the features from videos which is much more demanding than 
that from the images. Therefore, semantic features of high-level are used to signify the essential videos 
rather than low-level hand-crafted methods. A deep convolutional neural network is developed to extract 
a binary hash function and the high-level semantic features then it is integrated into this framework for 
achieving an end-to-end optimization. Mainly, this also merges the triplet loss function which conserves 
the classification loss function, relative similarity and difference of videos. Experiments are performed 
on the two public datasets and the outcome shows the superiority of this method compared with the 
other methods of state-of-the-art video retrieval. Video retrieval is an insignificant expansion of text 
retrieval, but it is more complex. Most of the data is of sensory origin such as image, video and sound; 
hence the methods from the computer vision and digital signal processing are essential to remove the 
related explanation. Also, the significant and precious text data obtained from the audio analysis, much 
information is captured in the visual stream. Thus, a vast corpse of research in machine-driven video 
labeling has examined the purpose of visual content, with or without text.

CONCLUSION

Deep learning methods have improved the ability for recognizing, classifying, detecting and describing 
in a single word. Nowadays, deep learning is emerged as a significant method due to the ability of deep 
learning in the process of handling multimedia information. In this book chapter, the features and expla-
nation of the deep learning is discussed. In addition the revolution of the deep learning for compensating 
the inaccuracies in conventional neural networks is clarified. Furthermore, the various methods of deep 
learning like, DCNN, DBN, and DNN for computing knowledge is described in detail. The applicability 
of the deep learning for both unsupervised and supervised tasks is comparatively discussed in the end. 
Finally, the suitability and application of deep learning for various fields are concluded and discussed.
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ABSTRACT

Construction of a neural network is the cardinal step to any machine learning algorithm. It requires 
profound knowledge for the developer in assigning the weights and biases to construct it. And the con-
struction should be done for multiple epochs to obtain an optimal neural network. This makes it cumber-
some for an inexperienced machine learning aspirant to develop it with ease. So, an automated neural 
network construction would be of great use and provide the developer with incredible speed to program 
and run the machine learning algorithm. This is a crucial assist from the developer’s perspective. The 
developer can now focus only on the logical portion of the algorithm and hence increase productivity. 
The use of Enas algorithm aids in performing the automated transfer learning to construct the complete 
neural network from the given sample data. This algorithm proliferates on the incoming data. Hence, it 
is very important to inculcate it with the existing machine learning algorithms.
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INTRODUCTION

Artificial Intelligence (AI), a hot topic among the computer society these days.This revolutionary do-
main indirectly depends on Deep Learning to formulate the structure of the artificial neural network, 
the brain. Deep learning is process and a way to automate Predictive Analytics. Traditional machine 
learning algorithms are linear and are stacked in a hierarchy of increased abstraction and complexity. 
AutoML alleviates human exertion by computerizing the layout of ML algorithms (Afridi, Ross, and 
Shapiro, 2018). It is prevalent for the implementation of deep learning framework. But this perception 
incurs exalted computational cost. To reconcile this issue, we resolve to Transfer neural techniques that 
employs comprehension from preceding tasks to accelerate design of neural networks. We broaden probe 
routines to enable simultaneous practice over various tasks and then transit the probe strategy to new 
tasks. This proposal deduces the coupling time of a task training by significant degrees on many tasks.

The system controller is modelled over generic engineering composition and parameters, along with 
task-related decisions encrypted in the task implantation (Ahamed and Ramkumar, 2016). For any given 
task, the parameters of the corresponding task controller are reloaded and new implantations are randomly 
activated for the new task. The parameters of the controller are synchronized with the new task implan-
tations. By implantation for new tasks, the application that biases towards process actions that excelled 
well on other comparable tasks is learnt by the controller. This is the performance of transfer controller.

Designing these deep learning models is a difficult task on its own and it is not too farfetched, that it 
is a process of trial and error, as there is no fixed methodology to design a model that is guaranteed to 
perform well. Thus the focus of this implementation is to provide a modular and extensible framework 
that can automatically design high performing deep learning models.

BACKGROUND STUDY

Neural Networks and Domain Specific Language

Neural networks a set of logic and knowledge based approach sequenced, modelled based on the brain 
of human (Ahamed and Yuvaraj, 2018). They recognize by interpreting patterns, sensory data through 
machine perception. Commercial applications technologies generally focused on solving complex pattern 
or signal processing problems such as speech, handwriting, oil exploration data analysis, facial recog-
nition and weather predictions. A Domain Specific Language (DSL), computer programing restricted 
expressiveness focused on a specific domain. DSLs provides significant gain in Application productiv-
ity, creativity developers, portability and performance. DSLs offer pre-defined abstractions represent 
concepts from application domain. A programmer uses one or more of the DSLs write the programs 
using specific domain constructs and notations. In additional ability to use domain knowledge to apply 
static & dynamic optimizations to a program (Cessac et. al, 2016). DSL specifically targeted, machine 
learning, abstractions to define neural networks, capture high level information used to increased pro-
ductivity, performance and expose parallelism. It moves the programmers approach from a low level 
detailing that are not the focus of the system in development, lets them target on work the solution for 
the problem at hand.
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Transfer Leaning and Structural Learning

A neural network gains knowledge when trained on a data set using a set of parameters. The knowledge 
refers to the weights, connections and other hyper parameters which would produce the desired results 
for the neural network and the data set (Liu et. al, 2019). There will be a myriad set of parameters and 
combinations for each problem, called as the parameter space. Selecting these parameters manually can 
be laborious because the user will have to select the variables from the large parameter space by trial 
and error. The user will also have to spend hours or days training the network which may not yield the 
desired results. Transfer learning is a machine learning method in which the knowledge gained by a 
neural network for one task is transferred to another network that performs a similar task. The network 
can be fine-tuned to accomplish the new task (Jaafra et. al, 2018). Due to the transfer of weights, the 
network does not need to be trained from scratch. This reduces the time it takes to build and train the 
network. The design of the neural network architecture is a complex task that requires a wide range of 
manual configurations and expertise. To address the problem, several algorithms and analysis under 
the topic of Structural Learning were developed, to learn architecture and parameters automatically. 
It is an alternative learning method to transfer learning that decides the structure of a neural network. 
The optimal structure will be decided in the process of learning. Structural learning networks learn the 
appropriate network architecture for the learning task instead of having a fixed architecture design and 
parameters (Hu et. al, n.d.).

Starting from a simple network model, as the learning iterates over several epochs, the network starts 
to grow by adding and removing neurons necessary for the task. It will learn the parameters and their 
dependencies and also finds the connections that are best for the network during the training period. 
Most of the applications of structural learning algorithms are to find the optimal structure of ‘Bayesian 
networks’. There are several other algorithms and methods proposed structural learning of deep neural 
networks (Joglekar et. al, 2019).

Neural Architecture Search

Characterizer is used to represent/characterize a dataset. The characterizer extracts the features of a 
given dataset and computes the DCN using dataset difficulty estimation (Liu et. al, 2019). Trainer: The 
trainer implements algorithms like architecture searches, structural learning networks or just implements 
state-of-the-art neural network architectures. It is the job of the trainer to train and evaluate the neural 
network. Lifelong Database of Datasets: The LDD consists of datasets, their DCN and their corre-
sponding pre-trained, optimal neural network architectures. The corresponding network architectures 
are found by using Trainers. When the user loads a new dataset, the framework calculates its DCN, finds 
the most similar dataset from the LDD and returns its neural network. Transfer Learner: The neural 
network architecture found in the previous step is fed to the Transfer Learner, which reuses the network 
weights and architecture, and trains the network on the user’s dataset.

Neural Architecture Search (NAS) is a method of searching for the optimal architecture in the neural 
network search space. NAS can be done using brute force algorithms, evolutionary algorithms, reinforce-
ment learning and probability based methods. Training just one large neural network takes considerable 
time (Liu, 2017). NAS requires huge computations as the search algorithm has to select an architecture, 
train & validate it on the dataset and move on to the next, before finding an optimal architecture. NAS is 
computation intensive as it has to train multiple neural network architectures before convergence. NAS is 
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a search algorithm at its core, and hence it is not guaranteed to find the global optimum. However, results 
obtained by using NAS have already outperformed previous state-of-the-art neural network architectures.

Machine learning/ deep learning resulted in development of specialized frameworks to design neural 
networks, train and use them in production environment. These methods try to find a neural network 
that best suits the dataset by designing architectures that are more likely to give high accuracies and 
training them on the dataset. OptiML is a domain specific language for Machine learning and OptiML 
is developed at Stanford University’s Pervasive Parallelism Laboratory (Mundt et. al, 2019). DeepDSL 
also converts the program to an IR with the help of symbolic gradient, optimizes the code and finally 
generates a Java source code that can run on any CUDA enabled platforms. DeepDSL programs are 
also efficient and its runtime performance and memory consumption are significantly better than Caffe 
and Tensorflow. It has some feature which includes automatically loading the saved parameters and 
continuing the training from where it stopped at the previous execution.

Meta-QNN is a method for meta modelling of neural networks using reinforcement techniques. Q-
learning is chosen as reinforcement algorithm, epsilon-greedy search is used to switch between explor-
atory and exploitative actions of the reinforcement agent and experience replays are used to store the 
past experiences. DeepArchitect is a Domain Specific Language that allows the user to define the search 
space for NAS. The DSL allows any choice based NAS algorithm to be implemented in a modular and 
extensible fashion. ProxylessNAS is a method of modelling the architecture search space as a neural net-

Figure 1. Architecture of the framework based on transfer learning
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work, with each choice being represented as a path in the network. Path binarization is used to minimize 
the cost of training, as it represents the paths as O or 1, leading to only one path being active and trained 
at any instant. Each back propagation step includes weight updation and architecture learning (Musa, 
Elamin, and Elhassan, 2017). Source Selection can be automated by an information theoretic zero-shot 
method, which ranks the source convolutional neural networks based on a measure of transferability. 
Ranking the CNNs based on transferability is shown to achieve high correlation when compared with 
the accuracies obtained after transfer learning. Net2Net allows the user to transfer knowledge to wider 
and deeper networks with methods called Net2WiderNet and Net2DeeperNet respectively (Pham et. al, 
2018). This is a general overview of above discussed learning paradigms that can be applied to different 
scenarios based on need and requirements to satisfy the given problem statement. This can be adapted 
after the initial analysis about the project domain.

EXPERIMENTAL STUDY

Dynamic Approach for Constructing the Neural Network

DeepDSL outperforms benchmarking programs from the current mainstream. However, DeepDSL is not 
user friendly and only showcases the optimization and efficiency. Hence this project proposes a DSL 
that provides a user friendly API with simple constructs for defining neural networks (Zhao and Huang, 
2018, with its backend as DeepDSL. The following constructs had been implemented:Input layer, Fully 
connected layer, Convolution layer, Max pooling layer, Flattening layer, Relu, Softmax Activations and 
Mnistdataset. Here Input layer has 3 nodes, the first node with value 1, other two nodes with X1 and X2 
as inputs, there is no computation performed at Input layer, hence the outputs nodes remains same, which 
are fed into the consecutive Layer. From this output, convolution implementations are performed:max 
pooling and flattening. Rectified Linear takes real-valued input and thresholds at zero, replaces negative 
values with zero. This is the overall working of deepDSL.

The Constructs of our DSL are similar to Python’s Keras functional API (Figure 2). The python code 
written by the user generates the DeepDSLScala code when executed. The corresponding DeepDSL 
code is shown in Figure 2.

Figure 2. DSL code implementing the training neural network on MNIST dataset

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



147

Deep Learning Techniques and Optimization Strategies in Big Data Analytics
 

Construction of the Neural Network using Enas Algorithm

Defining layers manually is suboptimal as it is not guaranteed that it is found the models that give high 
accuracy. The user has to try out different architectures before finding an architecture that performs well. 
A framework can be made to automate this process (Weng et. al, 2019). Neural Architecture Search, 
Structural learning networks and Transfer learning are some concepts that can be used here. A framework 
is proposed that takes only a dataset as input and automatically finds the best neural network architecture. 
The framework would store many datasets and their corresponding architectures. When the user gives 
a new dataset, the framework chooses one of the stored architectures by finding a dataset which is most 
similar in characteristics to the user’s dataset.

ENAS algorithm is a very quick and efficient learning technique that always assures greater accuracy. 
ENAS is abbreviated as an Efficient Neural Architecture Search. It automatically starts off by framing 
a set of building blocks that helps in architecture generation. This algorithm makes use of a controller 
called recurrent neural network, which is responsible for sampling some of the building blocks and con-
necting them to provide a complete architecture. Because of these features it is considered the state of 
the art algorithm when combined with transfer learning.

Figure 3, we can observe the code grabs the useful components using the ENAS algorithm and the 
basic building blocks can be generated easily when compared to the simple generation. Once the archi-
tecture search algorithm uses both ENAS and Auto-ML the search becomes far more efficient as the 
neural network can be generated using a simple Graphical Processing Unit in a very minimalamount of 

Figure 3. Constructing the neural network using enas algorithm on the Mnist dataset
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time (Wistuba and Pedapati, 2019). This approach could be a break-through for the machine learning 
engineers in developing a neural network that can be of high efficiency while applying it to artificial 
intelligence.

From Figure 4, we can observe that the enas algorithm runs multiple times with the same hidden 
layer and learns from the mistakes done in the previous iterations. This is an automatic construction 
process for an efficient neural network. This network is constructed in the backend without the user’s 
manipulation. Hence it is an optimised method of constructing a neural network that can dynamically 
be generated on the basis of the user’s input.

Learning Graph Analysis

Figure 5 Describes the different learning rates that are possible when applying different machine learn-
ing algorithms. It tells about the amount of precision loss that takes place in various algorithms over 
the period of time.

Figure 6 distinguishes the performance between static and dynamic learning. From the graph, it is 
evident that dynamic learning tends to have a higher start when compared to static learning. The sample 
user data given for the machine to learn is responsible for the higher start. This dynamic approach can 
be made possible with the implementation of ENAS algorithm.

Different Architectures like Lenet-5, VGG-16, Overfeat were implemented using this DSL and evalu-
ated on the MNIST dataset. In doing this, it is shown that our DSL is able to provide enough constructs 
to implement most of the CNNs. However, advanced neural networks like Resnet and Inception require 
more constructs like residual (skip) connections to be implemented. From Table 1, it is observed that 
around 53% of DeepDSL’s code are hidden by DSL, thus reducing code in the same programs. The DSL 

Figure 4. The neural network constructed by the Enas algorithm
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Figure 5. Loss obtained over a period of time for different learning rates

Figure 6. Performance comparison between dynamic and static learning where the former has a better 
start due to prior user data knowledge

Table 1. Lines of code for implementing deep neural networks that train on MNIST dataset

Network Our DSL DeepDSL % decrease

Lenet - 5 13 29 55.17

VGG - 16 24 49 51.02

OverFeat 18 39 53.84

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



150

Deep Learning Techniques and Optimization Strategies in Big Data Analytics
 

programs take an average of 0.017 seconds for generating the DeepDSL source code, regardless of the 
neural networks implemented. The runtime performance can be expected to be identical to DeepDSL, 
as our DSL only generates the source code for DeepDSL.

Implementation Graph Analysis

The Figure 7 graph depicts the assessment accuracy that takes place in the initial iterations. Here it is 
observed that the assessment accuracy increases gradually over the learning time and the loss gained in 
the initial stages is very low because the user data is very similar to the input data.

The Figure 8 graph depicts the assessment accuracy that takes place in the iterations after the learning 
gradually increases. Now it is observed that the assessment accuracy is almost a hundred percent and the 
loss generated may have increased slightly. But the correctness of the output is very high.

Figure 7. Assessment accuracy calculated over multiple epochs at the initial stages

Figure 8. Assessment accuracy calculated over multiple epochs at the consecutive stages
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CONCLUSION

Development of this approach would include extending the domain of function to contain more exemplar 
objects. This incurs excessive computational cost. To resolve this issue we initiate transfer learning and 
this is implemented using controllers. This in hand diminishes the time for converging many records. 
Various transfer-based approach is applied across practicalities and configurations. Some preceding over 
prior distribution structures, obtained from NLP is used for domains where image related processing 
is involved. The controller that is part of transfer learning is made more robust to quantification noise, 
and to generalise the resulting learning model applicable for complex sample predictions. A series of 
analysis have been made to build up concrete vision in achieving dynamic approach towards neural 
network simulation. This project has not only looked into the theoretical aspects of functioning, but 
has also implemented it from the coding aspect in order to practically make this of avail. This system 
will enable in the development of dynamic networks based on user input. This is indeed a leap from the 
current existing structures. This combined approach of ENAS and Auto-ML with transfer learning to 
generate neural networks could be the future of artificial intelligence.
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KEY TERMS AND DEFINITIONS

Deep Architect: A domain-specific language that allows the user to define the search space for NAS. 
The DSL allows any choice based NAS algorithm to be implemented in a modular and extensible fashion.

Deep Learning (DL): A part of machine learning with its algorithms, to the structure and working 
of the brain called artificial neural networks; a knowledge process and a way to automate Predictive 
Analytics.

Domain-Specific Language (DSL): A computer programing-restricted expressiveness focused on 
a specific domain. DSL specifically targeted, machine learning, abstractions to define neural networks, 
capture high level information used to increased productivity, performance and expose parallelism.

Meta-QNN: The method for meta modelling of neural networks using reinforcement techniques.
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Net2Net: System that allows the user to transfer knowledge to wider and deeper networks with 
methods called Net2WiderNet and Net2DeeperNet, respectively.

Neural Architecture Search (NAS): The method of searching for the optimal architecture in the 
neural network search space.

ProxylessNAS: The method of modelling the architecture search space as a neural network, with 
each choice being represented as a path in the network.

Structural Learning: Networks that learn the appropriate network architecture for the learning task 
instead of having a fixed architecture design and parameters.
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ABSTRACT

Natural data erupting directly out of various data sources, such as text, image, video, audio, and sensor 
data, comes with an inherent property of having very large dimensions or features of the data. While 
these features add richness and perspectives to the data, due to sparsity associated with them, it adds to 
the computational complexity while learning, unable to visualize and interpret them, thus requiring large 
scale computational power to make insights out of it. This is famously called “curse of dimensionality.” 
This chapter discusses the methods by which curse of dimensionality is cured using conventional methods 
and analyzes its performance for given complex datasets. It also discusses the advantages of nonlinear 
methods over linear methods and neural networks, which could be a better approach when compared 
to other nonlinear methods. It also discusses future research areas such as application of deep learning 
techniques, which can be applied as a cure for this curse.

INTRODUCTION

Dimensionality Reduction in Big data

Big Data generally refers to”Complex” data that is unmanageable to store, process and derive insights 
out of it using the infrastructure/technology/tools that are currently available at our disposal. Hence, Big 
data has become more of a relative terminology because of the fact that what is ”big data” today shall 
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become ”small data” over a period of time as we see cheaper storage costs and increasing computing 
power and easy availability of volumes of natural data. To solve real world problems using big data, we 
face multitude of challenges such as high Dimensionality, Scalability and transparency of algorithms, 
Data visualization, Real time analysis and computational complexity in data processing, etc.

Natural data inherently has very large dimensions which makes the algorithms using them prohibi-
tively expensive in terms of computation. For example, a single grayscale image of a handwritten digit 
of size 28x28 pixels has to be represented as 728 vector values to represent each pixel (in this case each 
pixel is a dimension) and hence each image is dimensionally represented with 728 values. If we have 
to train a model to classify image of a digit, then we are talking about tens of thousands of examples 
to train and test. In the case of a document classification problem, each word which is occurring in the 
document is a dimension and this is complicated more with millions of documents. High dimensional 
natural data source comes with high volume of raw data along with thousands of features and in addi-
tion complicates the learning process from the data. Hence reducing the dimensions without losing the 
content and context of the data becomes a very important data processing step in Big Data analytics since 
it reduces the computational complexity to learn, minimizes storage requirements and makes raw data 
easier to visualize and interpret. Moreover, Dimensionality reduction is the solution for multiple other 
downstream problems such as classification and visualization and hence a key foundational problem to be 
addressed earlier in the cycle of Machine learning and Predictive analytics using Big data. Though there 
are many dimensionality reduction techniques used in practice and are in research, they are primarily 
divided into two categories Linear and Non-linear methods. This classification is based on whether the 
transformation function used in performing the dimensionality reduction is linear or not. Essentially the 
dimensionality reduction process projects raw data from high dimensional space to lower dimensional 
space (learned/extracted features) using this transformation function.

Non-Linear Methods of Dimensionality Reduction

Linear methods, such as PCA (Principal component analysis), though popular, presents very obvious 
features after transformation due the simplicity of the raw data being handled. Linear techniques assume 
and tend to fit the data and its features over a straight line and most real world complex datasets are not 
that simple. In complex datasets, multi dimensionality is key a attribute and Linear DR methods tend 
to lose the meaning inside such complexities. Non-linear DR methods do not assume that data lies in a 
linear fit or subspace and tend to be more robust and scalable in application using natural datasets such 
as images, audio and documents. Since the focus of the paper is on natural data sets, we will not focus 
on all linear techniques except PCA (for the purpose of benchmarking) and only analyze select nonlinear 
DR techniques and compare and discuss methods that are more suitable for such datasets. We will also 
not consider many variants and add-ons (such as Factor analysis, Principal curves, etc) which just align 
a mixture of linear models with the basic method. We will also not consider methods which are purely 
used in supervised mode such as Linear discriminant analysis and methods which are based on cluster-
ing techniques such as Self-organizing maps.

This chapter analyse the following twelve nonlinear techniques: (1) Kernel PCA,(2) Isomap, (3) Maxi-
mum Variance Unfolding, (4) diffusion maps, (5) Locally Linear Embedding,(6) Laplacian Eigenmaps, 
(7) Hessian LLE, (8) Local Tangent Space Analysis, (9) Sammon mapping,(10) multilayer autoencoders, 
(11) Locally Linear Coordination, and (12) manifold charting.
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Neural Network Based Dimensionality Reduction Methods

Dimensionality reduction methods such as PCA (Linear) or ISOMAP, MDS, LLE (Nonlinear) may fall 
short in extracting useful features from complex datasets whereas Neural networks, influenced by the 
function of human brain, tend to learn features in a hierarchical/layered architecture generating patterns 
beyond nearest neighbors in the data. With Input and Output data driving the design of source and target 
layers, key design consideration is the number of neurons in the hidden layer and hence does not require 
knowledge about the data or parameters which is required in other methods. This advantage enables 
unsupervised learning suited for natural datasets and also automatic extraction of features independent 
of human intervention in machine learning. Deep Neural network Learning architectures are designed 
with multiple hidden layers and have the capability to generalize the input data by preserving the global 
properties (e.g. properties that describe image as a whole and not part of the image) and also enable 
automatic extraction of features. The nonlinear function used (in most cases a Sigmoid function) auto-
matically fine tunes the weights to minimize the cost function (to reduce the reconstruction error) that 
transforms the data from high dimensional space to a lower dimensional space.

Though Neural networks are used for the purpose of Dimensionality reduction over the past decade, 
deep learning architectures have gained lot of mind share in the last couple of years and are used in many 
real world applications like computer vision, text analytics, voice analytics, etc. Using deep learning 
architecture for a key big data problem i.e. Dimensionality reduction, is a less explored area but initial 
studies have shown lot of promise and potential. In order to understand the intricacies of the behavior of 
various dimensionality reduction methods, the authors intend to study key nonlinear methods including 
a single-layer neural network based method and a deep learning method. This paper lays the founda-
tion for the comparative study of techniques and proposes the methods and metrics used to empirically 
compare the performance of those techniques.

Principle Component Analysis

A detailed study by Maaten et al (2009) compare linear and nonlinear dimensionality reduction methods 
in using artificial and natural datasets, observe and conclude that nonlinear methods perform well on 
selected artificial datasets but do not clearly outperform the simpler PCA technique on natural datasets. 
The authors also think development of techniques where the objective/transformation function can be 
optimized more (such as neural network based autoencoders) will gain more traction and focus. Sorzano 
et al (2014) categorize the DR techniques by methods based on Statistics and Information theory, Dic-
tionaries and Projections in their paper. Hinton et al in (2006) describe how neural networks can be used 
for Dimensionality reduction and explain an effective way to initialize the weights using autoencoders 
that learn low-dimensional features performing better than PCA for a variety of natural datasets. Chen 
et al (2010) discuss about how a standard stacked denoising autoencoders(SDAs) which are based on 
multi-layer deep neural network architecture can be extended to learn representations on text data. These 
extended or marginalized SDAs perform much better than classic SDAs and show better accuracy and 
computational efficiency in training time. In general, autoencoders project the input data to output and 
are generally used as a pre-training exercise to determine the best weights which can be used in neural 
networks instead of randomly initializing them as in traditional methods.As the input is easy to learn, 
normally a noise or corruption is induced which enables the autoencoders to learn better as it tries to 
denoise the input. Their approach marginalizes the noise and does not require an optimization algorithm 
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to learn parameters. They claim that the simplicity, faster training time and the ability to scale for dealing 
with high dimensional data make mSDA a promising pre-training method in machine learning. Kri-
zhevsky et al discuss in their paper (Chen et al, 2012), a deep learning convoluted neural net solution to 
classify using a subset of the ImageNet dataset which consists of 1.2 million training images with 1000 
different categories for classification.The authors claim to have trained the largest convolution neural 
network which produced the best ever accuracy ever reported on this very high dimensional dataset. 
They have also optimized the code for GPU implementation and methods such as dropout to improve 
the training time and accuracy. They trained the network for 90 iterations through the training set of 1.2 
million images for about 6 days on two 3GB GPUs.

Figure 1 shows a taxonomy of techniques for dimensionality reduction. Dimensionality reduction 
subdivided into convex and non-convex techniques. Convex techniques optimize an objective function 
that does not contain any local optima, whereas non-convex techniques optimize objective functions 
that do contain local optima.

PCA Approaches

There are three approaches to achieve PCA as shown in Figure 2.

Approach_1 (High Dimension Dataset, int k)

Input: High Dimensional dataset output: k Principal Components Step 1: Standardize the dataset by 
scaling and mean subtraction Step 2: Determine the value of reduced dimension k. Step 3: Obtain the 
covariance matrix C of the given dataset Step 4: Perform Eigen Decomposition on the Covariance matrix 

Figure 1. Taxonomy of dimensionality reduction techniques
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C and obtain the n Eigen Values and their corresponding Eigen Vectors. Step 5: Sort the Eigen Values 
in decreasing order and obtain the k largest Eigen vectors Step 6: Stack the k largest Eigen Vectors into 
a matrix M Step 7: Return M The second step is to perform the Eigen decomposition on the covariance 
matrix. The covariance matrix is a square matrix where each element in the matrix represents the cova-
riance between the features in the corresponding row and column. The Eigen-vectors and Eigen-values 
represent the essence of PCA. The Eigenvectors represent the new feature space and Eigen values explain 
their magnitude. The Eigen vectors will have to be sorted in decreasing order of Eigen values after which 
k principal components have to be chosen such that k < n where n is the total features available. The 
dimension of the matrix with k principal components stacked together will be n x k. The final step will 
be a matrix multiplication of the original data matrix of dimension X x n where x is the total number 
of observations and n is the number of features. This will result in a transformed matrix of size X x K 
where x is the original number of observations and k is the reduced dimension which is less than original 
n. The transformed matrix is the projection of the original matrix on a lesser dimensional feature space.

Approach 2

The second approach for PCA is to do Eigen decomposition on the correlation matrix. The correlation 
matrix can be understood as a normalized covariance matrix. For financial datasets correlation matrix 
is used instead of the covariance matrix to obtain the principal components.

Approach_2(high Dimension dataset, int k) Input: High Dimensional dataset output: k Principal 
Components Step 1: Standardize the dataset by scaling and mean subtraction Step 2: Determine the 
value of reduced dimension k. Step 3: Obtain the correlation matrix Cr of the given dataset Step 4: Per-
form Eigen Decomposition on Cr matrix. Step 5: Sort the Eigen Values in decreasing order and obtain 
the k largest Eigen vectors Step 6: Stack the k largest Eigen Vectors into a matrix M Step 7: Return M 
Normalization is the first step where the scaling and mean subtraction is performed because perform-

Figure 2. Approaches of Principle Component Analysis
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ing PCA without normalization will lead to insane results. Correlation matrix is obtained by obtaining 
the correlation coefficient like that of Pearson’s correlation coefficient between corresponding row and 
column elements. The formula for obtaining the correlation can be found in eq. (4). The Eigen decom-
position on the correlation matrix will yield the Eigen pairs which is then sorted on decreasing order 
of Eigen values to obtain k (< n) principal components. The k principal components are then used to 
project the original dataset into a lower dimensional sub space.

Approach 3

The third approach to doing PCA is to do a Singular value decomposition of the given dataset. SVD is 
a matrix factorization technique of the form U S V where U and V are orthogonal matrices and S is a 
diagonal matrix with non negative real values.

Approach_3(high Dimension dataset, int k) Input: High Dimensional dataset output: k Principal 
Components Step 1: Standardize the dataset by scaling and mean subtraction Step 2: Determine the value 
of reduced dimension k Step 3: Factorize the matrix to get U S Vt Step 4: Stack the k largest Eigen Vec-
tors from U corresponding to sorted diagonal elements from S in decreasing order into a matrix M Step 
5: Return M Eigen vectors with highest k Eigen values are picked for construction of the transformed 
matrix. The k Eigen values capture the desired variance and the Eigen vectors corresponding to dropped 
Eigen values are those that represent less information.

1.4.2 Choosing the k Value in PCA
The percentage of variance explains how good the approximation as compared to that of original data
Mean Square Projection Error
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n

= −∑
 (1)

where, Xi is the ith sample of X, Xprojected is the approximation of Xi obtained with PCA and n is the total 
number of samples.

Total Variation:
The total variation in a given dataset can be defined as follows
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where, Xi is the ith sample of X, Xprojected is the approximation of Xi obtained with PCA and n is the total 
number of samples. The constant on the right is 1-variance intended to be captured

Determining k with SVD
For a given k
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jj
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.  (4)

where, Sii are the diagonal elements of S matrix obtained from SVD.
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.  (5)

PCA tries to minimize the mean squared projection error which is given by eq. (1). The total varia-
tion of the original dataset is given by eq. (2). One approach for choosing k is to make the ratio of mean 
squared projection error to that of total variance less than or equal to a defined constant. This constant 
is nothing but 1-total variance that is intended to be captured with this reduced dimension as shown in 
eq. (8). The variance goal is to capture 99% from the original dataset in eq. (3). As stated in the mani-
fold hypothesis real life data are likely to concentrate on lower dimension as they are highly correlated. 
Hence lesser number of components tends to capture most of the original variance. So PCA has to be 
run with k = 1, k = 2, k = 3 and so on till a smallest k value for which the above mentioned ratio in 
eq. (3) is lesser than or equal to 0.01 holds good when 99% of variance is intended to be captured. This 
procedure is very inefficient as it is very time consuming to reach the final k value starting from first 
principal component. Another better approach is to perform SVD on the covariance matrix where it 
yields U, S and V. The S matrix is a square matrix with non negative real values across the diagonal 
and the non-diagonal elements are zeroes. For a given value of k the eq. (4) has to be ensured which is 
same as eq. (5). This approach is computationally efficient because as singular value decomposition is 
performed only once unlike the previous approach where PCA has to be performed for every k value.

In Figure 3, (Hinton et al, 2006), describes the classification of the chosen techniques based on their 
properties such as the broader category they belong to, if the convexity of the optimization function’s 
ability to find the global optimum (for Neural network and Deep autoencoders this may not be always 
guaranteed because they can be stuck in the local optimum), basic parameters (that influence the opti-
mization function directly) to be optimized and the dimensionality reduction technique’s computational 
complexity.
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CHARACTERIZATION OF THE TECHNIQUES

General Properties

In Figure 3, four general properties of 13 dimensionality reduction techniques are listed (1) the parametric 
nature of the mapping between the high-dimensional and the low-dimensional space, (2) the main free 
parameters that have to be optimized, (3) the computational complexity of the main computational part 
of the technique, and (4) the memory complexity of the technique.

Using the four general properties of the techniques for dimensionality reduction, the most important 
four observations are: (1) most nonlinear techniques for dimensionality reduction do not provide a para-
metric mapping between the high-dimensional and the low-dimensional space, (2) all nonlinear techniques 
require the optimization of one or more free parameters, (3) when D < n (which is true in most cases), 
nonlinear techniques have computational is advantages compared to PCA, and (4) a number of nonlinear 
techniques suffer from a memory complexity that is square or cube with the number of data points n. 
From these observations, it is observed that the nonlinear techniques enforce significant demands on 
computational resources, as compared to PCA. Attempts to decrease the computational and/or memory 
complexities of nonlinear techniques have been proposed for, e.g., Isomap (Zhange et al, 2015; Nick et 
al, 2015), MVU, and Kernel PCA (Anissa et al, 2015).

Autoencoders (Hinton and Salakhutdinov, 2006) are artificial neural networks used for learning efficient 
codings. The aim of an autoencoder is to learn a compressed representation (encoding) for a set of data. 
An autoencoder is often trained using one of the many back propagation variants (Conjugate Gradient 
Method, Steepest Descent, etc.) Though often reasonably effective, there are fundamental problems with 
using backpropagation to train networks with many hidden layers. Once the errors get backpropagated 
to the first few layers, they are minuscule and quite ineffectual. This causes the network to almost al-

Figure 3. Classification of dimensionality reduction techniques
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ways learn to reconstruct the average of all the training data. Though more advanced backpropagation 
methods (such as the Conjugate Gradient Method) help with this to some degree, it still results in very 
slow learning and poor solutions. This problem is remedied by using initial weights that approximate 
the final solution. The process to find these initial weights is often called pretraining. A pretraining 
technique developed by Geoffrey Hintonn (2006) for training many-layered deep autoencoders involves 
treating each neighboring set of two layers like a Restricted Boltzmann Machine for pretraining to ap-
proximate a good solution and then using a backpropagation technique to fine-tune. The computational 
complexity of autoencoders is dependent on n (the matrix size), w (the number of weights in the neural 
network) and i (the number of iterations). The memory usage is dependent on w weights. Therefore, if 
the weights and iterations are large, autoencoders can have very high complexity and memory usage.

Diffusion Maps (Yaginuma et al, 1996; Wang et al, 2012) are based on defining a Markov random 
walk on the graph of the data. The technique defines a system of coordinates with an explicit metric that 
reflects the connectivity of a given data set and that is robust to noise. This diffusion metric is a transi-
tion probabilities of a Markov chain that evolves forward in time and is very robust to noise, unlike the 
geodesic or Euclidean distance.

Though diffusion maps perform extremely well with clean, well-sampled data, problems arise with 
the addition of noise, or when the data exists in multiple submanifolds. Although diffusion maps are 
similar to Isomap, they integrate over all paths through the graph instead of only considering shortest 
paths. This makes them less sensitive to short-circuiting than Isomap.

Summarization of Techniques

Figure 5 summarizes the parameters that have to be optimized, the computational complexity of each 
method and the memory complexity of the method (Maaten et al, 2009). In Table 1, n is the matrix size, 
k is the nearest neighbors, p is the ratio of nonzero elements in a sparse matrix to the total number of 
elements, w is the number of weights in a neural network and i is the number of iterations. LLE, HLLE 
and LTSA are more computationally efficient than MDS and Isomap, with approximately similar memory 
usage. Of all the technique, autoencoders has the highest complexity as it takes a long time to converge 
if the numbers of weights are high (Zhao et al, 2015).

In Figure 4 list the non-linear methods based on how they preserve the properties of data (Kalmanovich 
et al, 2014). Global preservation techniques describe the data as a whole. For example, the Autoencoder 
method describes an image as a whole rather than parts/patches of the image. One disadvantage in this 
is that a change in one part of the image will affect the resulting global property and hence affects data 
comparison because all global properties has to match for image comparison to be classified as same. 
Whereas, techniques using local preserves properties of a part/patch of the data/image. Multiple local 
properties are used to define and classify a whole image but not all the local properties need to match 
for a comparison to be the same. The third category as the name suggests is an ensemble of techniques 
used in Global and Local property preservation techniques.

With the easy availability of very large, high-dimensional data sets the authors believe that non-linear, 
deep learning neural network based techniques for dimensionality reduction is a lesser researched area 
using very large natural datasets. There is a gap in understanding the pros and cons of available dimen-
sionality reduction techniques against the newly evolving deep learning techniques. Using a commonly 
available dataset such as MNIST handwritten digits as a baseline and comparing - a linear technique 
like PCA, a nonlinear technique like ISOMAP, a simple shallow neural network and a deep learning 
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Figure 4. Non-linear methods

Figure 5. Comparison of dimensionality reduction techniques
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architecture like autoencoders (Kalmanovich et al, 2014) would throw more light on the advantages and 
disadvantages of using the techniques for such a dataset and propel advanced research in this area. Efficient 
Neural Architecture Search (ENAS) (Pham et al, 2018), a fast and inexpensive approach for automatic 
model design. In ENAS, a controller learns to discover neural network architectures by searching for 
an optimal subgraph within a large computational graph. The controller is trained with policy gradient 
to select a subgraph that maximizes the expected reward on the validation set. Meanwhile the model 
corresponding to the selected subgraph is trained to minimize a canonical cross entropy loss. Thanks to 
parameter sharing between child models, ENAS is fast: it delivers strong empirical performances using 
much fewer GPU-hours than all existing automatic model design approaches, and notably, 1000x less 
expensive than standard Neural Architecture Search.

Application of Deep learning in Big Data analytics for high dimensional data still is largely unexplored. 
Future research areas include adapting existing approaches (CNN or mSDA) or develop novel solutions 
like using other Deep architectures like Deep Belief Network, Recurrent Neural Network (RNN), etc 
for solving the dimensionality reduction problem. Scalability/Performance of learning algorithms and 
Accuracy of the predicted output will be the two important metrics which will drive the development of 
new novel ideas. In this paper we discussed the importance of curing the curse of dimensionality in big 
data analytics and various methods which are currently being deployed on different type of datasets. Past 
research indicates that nonlinear dimensionality reduction techniques are still not capable of outperforming 
traditional approach like PCA. Recent research results have shown deep learning methods (such as CNN 
and mSDA) used to reduce dimensions, show better accuracy and the ability to scale in large non-linear 
natural data sets like video, audio and text. Extending and enhancing existing dimensionality reduction 
algorithms so that they are compatible in a distributed computing environment and using the Graphic 
processing unit (GPU) for complex computational requirements are other trends we are observing for 
curing the curse of dimensionality. Due to the digital initiatives taken by governments, organizations and 
society, data sets are becoming larger and more complex, specifically in terms of dimensionality of the 
data, high number of features means longer computational times for training and learning, interest levels 
in the theme of dimensionality reduction is ever increasing as a means to speed up machine learning 
times, simplify problems such as classification, cognitive computing, etc. and optimize performances 
for various techniques and algorithms.
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ABSTRACT

The engendering of uncertain data in ordinary access news sources, for example, news sites, web-based 
life channels, and online papers, have made it trying to recognize capable news sources, along these lines 
expanding the requirement for computational instruments ready to give into the unwavering quality of 
online substance. For instance, counterfeit news outlets were observed to be bound to utilize language 
that is abstract and enthusiastic. At the point when specialists are chipping away at building up an AI-
based apparatus for identifying counterfeit news, there wasn’t sufficient information to prepare their 
calculations; they did the main balanced thing. In this chapter, two novel datasets for the undertaking 
of phony news locations, covering distinctive news areas, distinguishing proof of phony substance in 
online news has been considered. N-gram model will distinguish phony substance consequently with an 
emphasis on phony audits and phony news. This was pursued by a lot of learning analyses to fabricate 
precise phony news identifiers and showed correctness of up to 80%.
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INTRODUCTION

Nowadays’ phony news is making various issues from snide articles to a created news and plan government 
purposeful publicity in certain outlets. Counterfeit news and absence of trust in the media are develop-
ing issues with enormous consequences in our general public. Obviously, deceptive story is “fake news 
“but lately blathering social media’s discourse is varying its definition. Some of them currently utilize 
the term to expel the realities counter to their favored perspectives. The importance of disinformation 
within American political discourse was the subject of weighty attention, particularly following the 
American president election. The term ‘fakes news’ wound up normal speech for the issue, especially to 
depict authentically off base and deceiving articles distributed for the most part to profit through page 
views. In this paper, it is seeked to make a model that can decisively envision the likelihood that a given 
article (Anderson et al, n.d.)

Face book has been at the epicenter of much critique following media attention. They have already 
implemented a feature to flag fake news on the site when a user see’s it ; they have also said publicly 
they are working on to distinguish these articles in an automated way. Certainly, it is not an easy task. 
A given calculation must be politically impartial – since phony news exists on the two finishes of the 
range – and furthermore give equivalent equalization to authentic news sources on either end of the 
range. That can precisely. In addition, the question of legitimacy is a difficult one. However, in order 
to solve this problem, it is necessary to have an understanding on what Fake News is. Afterward, it is 
expected to investigate how the systems in the fields of AI, characteristic language handling help us to 
recognize counterfeit news.

EXISTINGSYSTEM

Deep learning is progressively being recognized as an essential tool for artificial intelligence research in 
many suitable applications of different areas. Deep learning models are mostly used in image recognition 
and speech recognition (Ahamed et al, 2016). However, the research community applied deep learning 
algorithms to find out the solutions for different problems in varied alternative fields (Ahamed et al, 
2018). A deep learning algorithm is approximately classified into four types: 1.Q-learning, 2.Recurrent 
Neural Network (RNN), 3.Convolution Neural Network (CNN) and 4.Deep Neural Network (DNN). 
These functionalities quickly evolve with many packages together such as; Theano, Tensorflow, CNN, 
Caffee, and Keras, etc. The objective of traffic flow prediction is to give such traffic flow information in a 
visualized manner. The design of DNN is used to estimate the traffic conditions, exploitation time period, 
and transportation from a large amount of data. The recommended DNN model aims to differentiate the 
non-congested conditions through the provision of multivariate analysis. The stacked auto-encoder is 
employed to find out the general traffic flow options with a trained layer that works in a greedy manner. 
The authors of (Ahamed et al, 2018; Choi et al, 2014) have proposed most effective stacked auto-encoder 
method, which is applied in order to predict traffic flow features. In this, the feature functionality has 
been calculated based on the spatial and chronological connection square measure instinctively. The 
preliminary issues proposed by Poincare and Hilbert analyses that, deep learning permits the nonlinear 
functions for efficient modelling (Hornet et al, 2017; Lemann eta l, 2017) The Kolmogorov Arnold il-
lustration theorem gives the hypothetical motivation for deep learning analysis (Mukherjee et al, 2013). 
According to this, any continuous operate of n variables outlined by F(y) is shown in the below manner.
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Where pk and qij are the ceaseless capacities and qij is an aggregate premise that does not rely upon F. 
This outcome infers that any nonstop capacity can delineate the abuse tasks of summation and execu-
tion sythesis. In a neural system, work on n factors can be spoken to with 2n+1 actuation units and one 
shrouded layer (Conroy et al, 2015; Ott et al, 2011). In the course of recent years, profound learning has 
pulled in an a significant number of analysts to formalize the applications. For street data, the traffic 
stream example is prepared so as to remove intentional data by abusing multilayered structure through 
a profound algorithmic program (Ott et al, 2011). So as to perform relatedactivities and produce various 
examples inside the traffic stream, a model named misuse stacked auto-encoder has bee

Deep learning initially inspired by information communicated in the biological nervous system. Deep 
learning models are assembled by multiple layers, which include both the visible layers and hidden lay-
ers. Visible layers contain input and output, where hidden layers are designed to extract features from 
feed forward operations (Shojaee et la, 2013) back propagation based on the gradient to

train neural networks. Deep learning showcases good learning capability the increasing size of 
the dataset. Thus deep learning has got rapid growth in applications. Deep learning models such as 
multilayer perceptions (MLP), convolution neural network (CNN), recurrent neural network (RNN), 
generative adversarial networks (GAN), have been widely applied in computer vision, natural language 
processing, and audio generation, etc. (Wang et al, 2012). Q-learning is a commonly used model free 
approach which can be used for building a self-playing PacMan agent. It revolves around the notion of 
updating Q values which denotes value of doing action a in states. The value update rule is the core of 
the Q-learning algorithm. The Figure1 describes the work flow of deep conventional neural network

Figure 1.
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PARALLEL CONVOLUTION NEURAL NETWORKS (P-CNN)

A parallel convolution neural network, also known as P-CNN, has been widely applied in many areas and 
has shown outstanding capability in processing grid-like data. Examples include 1-D time series samples 
with regular time intervals and images which can be contemplation as 2-D grid pixels. In the mid-20th 
century, neurophysiologists tried to understand how the brain responds to images and discovered that 
some neurons in the brains of cats and monkeys are highly sensitive to edges in small regions in visual 
fields. Thus, as an artificial intelligence model, P-CNN is fundamentally supported by neuron science 
(Xie et al, 2012). A recent study of Ma et al. considers traffic data as 2-D images, one dimension of 
time, one dimension of location, and demonstrates better accuracy with P-CNN on the speed prediction 
and compared with CNN (Shojaee et al, 2013).

There exists an enormous group of research on the theme of AI strategies for misleading recognition; 
its majority has been concentrating on characterizing on the web audits and openly accessible online 
networking posts. Especially since late 2016 during the American Presidential decision, the topic of 
deciding ‘counterfeit news’ has likewise been the subject of specific consideration inside the literature 
(Wang et al, 2012). Frameworks a few methodologies that appear to be encouraging towards the point of 
impeccably characterize the deceptive articles. They note that straightforward substance related n-grams 
and shallow grammatical features (POS) labeling have demonstrated inadequate for the grouping task, 
frequently neglecting to represent significant setting data. Or maybe, these strategies have been indicated 
valuable just pair with progressively complex techniques for examination. Profound Language structure 
examination utilizing Probabilistic Setting Free Sentence structures (PCFG) have been demonstrated to 
be especially significant in blend with n-gram methods can accomplish 85%-91% precision in misdi-
rection related order undertakings utilizing on the web audit corpora. Ahamed et. al. said that noxious 
records can be effectively and immediately made to help the spread of phony news, for example, social 
bots, cyborg clients, or trolls. The current calculations for recognition of phony news are it is possible 
that i). News Substance Based or ii). Social Setting Based. News substance put together methodologies 
center with respect to removing different highlights in phony news content, including information based 
and style based. Social setting based methodologies expect to use client social commitment as assistant 
data to help recognize counterfeit news (Xie et al, 2012).Another related work was finished by Kang et 
al. who assessed impacts of individual factors and said that metadata and picture type components are 
the most grounded affecting elements in believability appraisal. They reviewed 183 individuals through 
MTurk and completed an investigation through different charts to be specific Likert scale, Hinton guide, 
and warmth map. They included 11 factors, notwithstanding, did not think about close to home elements.

THE PROPOSED MODEL

Propagation Path Construction and Transformation given a news story propagating on social media, 
initially to construct its propagation path by identifying the users who engaged in propagating the news. 
Then, its propagation path denoted as a variable-length multivariate time series. p tai xj� � � �� � �� �, ,  
is constructed by extracting user characteristics from relevant user profiles,the dataset composition on 
news spread via tweeter is described in Figure 2.
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In this paper a model is build based on the count vectorizer or a tfidf matrix (i.e) word tallies rela-
tives to how often they are used in other artices in your dataset) can help . Since this problem is a kind 
of text classification, implementing a Naive Bayes classifier will be best as this is standard for text-based 
processing. The actual goal is in developing a model which was the text transformation (count vectorizer 
vs tfidf vectorizer) and choosing which type of text to use (headlines vs full text). Now the next step 
is to extract the most optimal features for count vectorizer or tfidf-vectorizer, this is done by using a 
n-number of the most used words, and/or phrases, lower casing or not, mainly removing the stop words 
which are common words such as “the”, “when”, and “there” and only using those words that appear at 
least a given number of times in a given text dataset.

Data Pre-Processing

Before speaking to the information utilizing n-gram and vector-based model, the information should 
be exposed to specific refinements like stop-word expulsion, tokenization, a lower packaging, sentence 
division, and accentuation evacuation. This will enable us to diminish the size of real information by 
expelling the immaterial data that exists in the information. Conventional information pre-preparing 
capacity to evacuate accentuation and non-letter characters for each archive; at that point brought down 
the letter case in the report. What’s more, a n-gram word based tokenizer was made to cut the surveys 
content dependent

STOP WORD REMOVAL

Stop words are insignificant words in a language that will create noise when used as features in text 
classification. These are words commonly used in a lot sentences to help connect thought or to assist 
in the sentence structure. Articles, prepositions and conjunctions and some pronouns are considered 
stop words. The common words such as, a, about, an, are, as, at, be, by, for, from, how, in, is, of, on, or, 
that, the, these, this, too, was, what, when, where, who, will, etc. Those words were removed from each 
document, and the processed documents were stored and passed on to the next step.

Figure 2. Dataset composition on news spread via Tweeter
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STEMMING

After tokenizing the data, the next step is to transform the tokens into a standard form. Stemming, simply, 
is changing the words into their original form, and decreasing the number of word types or classes in the 
data. For example, the words “Running,” ”Ran” and “Runner” will be reduced to the word “run.” The 
stemming process is to make classification faster and efficient. Furthermore, Porter stemmer, which is 
the most commonly, used stemming algorithms due to its accuracy.

FEATURES EXTRACTION

There are large number of terms, words, and phrases in documents that lead to a high computational 
burden for the learning process. Furthermore, irrelevant and redundant features can hurt the accuracy 
and performance of the classifiers. Thus, it is best to perform feature reduction to reduce the text feature 
size and avoid large feature space dimension. Two features extraction methods, namely, Term Frequency 
(TF) and Term Frequency-Inverted Document Frequency (TF-IDF). These methods are described in 
the following.

TERM FREQUENCY (TF)

Term Frequency will represent each term in our vector with a measurement that illustrates how many 
times the term/features occurred in the document. Count Vectorizer class from scikit-learn, a Python 
module to produce a table of each word mentioned, and its occurrence for each class. Count Vectorizer 
learns the vocabulary from the documents and then extracts the words count features. Next, then created 
a matrix with the token counts to represent our documents. The News site with the most URLs in our 
dataset is indicated in Table 1.

Table 1. The news sites with the most URLs in our dataset

Site % Site %

youtube.com 4.319 wordpress.com 0.754

nytimes.com 3.145 nypost.co 0.625

theguardian.com 2.904 thehill.com 0.619

huffngtonpost.com 1.964 latimes.com 0.616

blogspot.com 1.202 newsmax.com 0.336

foxnews.com 1.262 dailycaller.com 0.367

indiatimes.com 1.458 reddit.com 0.38
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TF-IDF

The Term Frequency-Inverted Document Frequency (TF-IDF) is a weighting metric often used in infor-
mation retrieval and natural language processing. It is a statistical metric used to measure how important 
a term is in a document over a dataset. A term importance increases with the number of times a word 
appears in the document; however, this is counteracted by the frequency of the word in the corpus.

Let D denote a corpus, or set of documents.
Let d denote a document, 𝑑∈ ; to define a document as a set of wordsw. Let(𝑑) denote the number

of times word w appears in document d. Hence, the size of document d is

|𝑑|=Σ(𝑑)𝑤∈ 𝑑. (2)

The normalized Term Frequency (TF) for word w with respect to document d is defined as follows:

(𝑤)𝑑=𝑛𝑤(𝑑)/|𝑑| (3)

The Inverse Document Frequency (IDF) for a term w with respect to document corpus D,denoted𝐼𝐷𝐹(𝑤)
𝐷is the logarithm of the total number of documents in the corpus divided by the number of documents
where this particular term appears, and computed as follows:

𝐼(𝑤)𝐷=1+𝑙𝑜𝑔(|𝐷|/{𝑑:𝐷|𝑤∈ 𝑑}|) (4)

TF-IDF for the word w with respect to document d and corpus D is calculated as follows:

𝑇𝐹−𝐼(𝑤)𝑑,𝐷=𝑇𝐹(𝑤)𝑑×𝐼𝐷𝐹(𝑤)𝐷 (5)

So for example, let say a document with 200 words and need the TF-IDF for the word “people”. As-
suming that the word “people” occurs in the document 5 times then TF = 5/200 = 0.025. Now to calculate 
the IDF; let’s assume that 500 documents and “people” appears in 100 of them then IDF (people) = 1 
+ log (500/100) = 1.69. Then TF-IDF (people) = 0.025 × 1.69 = 0.04056.

SEMANTIC SIMILARITY MEASUREMENT
Wordnet is a lexical database spearheaded by George A. Miller, which is available in English. It consists 
of words, specifically nouns, verbs, adjectives, and adverbs. Words that are synonymous are grouped 
into synsets. Synsets are connected through semantic and lexical relations. The relationships between 
the words are categorized as follows:

• Synonymy is a symmetric relation; it is between words that equivalents to each other.
• Antonymy (opposing-name) relationship between words with opposite meaning such as “wet” 

and “dry.”
• Hyponymy (sub-name) is the most important relation among synsets; it connects abstract synsets 

with each other such as “bed” and “furniture; “bed” is a hyponym of “furniture”
• Meronymy (part-name) is a part-whole relationship, for example, “leg” and “chair” or “hand” and 

“arm”. The parts are inherited “downward”.
• Troponymy (manner-name) is similar to hyponymy, but it is for the verbs
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• Similarity Between Words

The semantic similarity between two words𝑤1 and 𝑤2, denoted(𝑤1,𝑤2), will be calculated as follows:

(𝑤1,2)=𝑓(𝑤1,𝑤2)×𝑓𝐻(𝑤1,𝑤2) (6)

Where:

• (𝑤1,𝑤2) is the path length between two synsets corresponding to 𝑤1 and 𝑤2, respectively.
• (𝑤1,𝑤2) is the depth measure between two synsets corresponding to𝑤1 and𝑤2, respectively.

The path length function takes two words and returns the measurement of the length of the shortest 
path in the lexical database. All values are normalized to range from one to zero. The following formula 
is used to calculate the path length:

(𝑤1,𝑤2)= 𝑒− 𝛼𝑙𝑑𝑖𝑠𝑡(𝑤1,𝑤2) (7)

EXPERIMENTAL EVALUATION

In the experiment, two public datasets, i.e., LIAR and BuzzFeed News4 to evaluate the performance of our 
algorithm. LIAR is one of the largest fake news datasets, containing over 12,800 short news statements 
and labels collected from a fact-checking website politifact.com. BuzzFeed dataset contains 1,627 news 
articles related to the 2016 U.S. election from Facebook. Twitter’s advanced search API with the titles 
of news to collect related news tweets. After eliminating duplicate news and filtering out the news with 
no verified user’s tweets. Finally obtain 332 news for LIAR and 144 news for BuzzFeed. For each news 
tweet, the unverified users’ engagements are also collected using web scraping. Observed that users tend 
to explicitly express negative sentiments (using words like “lie”, “fake”) when they think a news report 
is fake. Thus, the sentiments as their opinions. As for likes and retweets, treat them as positive opinions. 
Note that if a user has very few engagement records, the user’s credibility cannot be accurately estimated

Online news can be collected from different sources, such as news agency homepages, search engines, 
and social media websites. However, manually determining the veracity of news is a challenging task, 
usually requiring annotators with domain expertise who performs careful analysis of claims and addi-
tional evidence, context, and reports from authoritative sources. Generally, news data with annotations 
can be gathered in the following ways: Expert journalists, Fact-checking websites, Industry detectors, 
and Crowdsourced workers. However, there are no agreed upon benchmark datasets for the fake news 
detection problem. To evaluate the performance of algorithms for fake news detection problem, vari-
ous evaluation metrics have been used. In this subsection, the most widely used metrics for fake news 
detection. Most existing approaches consider the fake news problem as a classification problem that 
predicts whether a news article is fake or not. These metrics are commonly used in the machine learn-
ing community and enable us to evaluate the performance of a classifier from different perspectives. 
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Specifically, accuracy measures the similarity between predicted fake news and real fake news. Precision 
measures the fraction of all detected fake news that are annotated as fake news, addressing the important 
problem of identifying which news is fake. However, because fake news datasets are often skewed, a 
high precision can be easily achieved by making fewer positive predictions. Thus, recall is used to mea-
sure the sensitivity, or the fraction of annotated fake news articles that are predicted to be fake news. F1 
is used to combine precision and recall, which can provide an overall prediction performance for fake 
news detection. Note that for P recision, Recall, F1, and Accuracy, the higher the value, the better the 
performance. which measures the overall performance of how likely the classifier is to rank the fake 
news higher than any true news

By formulating this as a classification problem, following metrics has been defined. True Positive 
(TP): when predicted fake news pieces are actually annotated as fake news; True Negative (TN): when 
predicted true news pieces are actually annotated as true news; False Negative (FN): when predicted true 
news pieces are actually annotated as fake news; False Positive (FP): when predicted fake news pieces 
are actually annotated as true news

Precision = TP

TP + FN
 (8)

Recall = TP

TP + FN
 (9)

F1 = 2 ⋅
Precision ·Recall

P recision+Recall
 (10)

Accuracy = TP + TN

TP + TN + FP + FN
 (11)

• Function words are words with little lexical meaning, which are usually used to express a gram-
matical relationship with other words (e.g., the, she, of).

•  Content words are the opposite, in the sense that they stand on their own by carrying specific pur-
pose or meaning (not necessarily in connection to other words), such as, flew and mountain.

• FD
-n

�
� � � �� � �n n r n

n n
0 1 0 0

0 1

1 1 2( ) /
 (12)

The Fake news comparison with different datasets is indicated in Table 2.
The Fake news detection in social media is compared in detection deadline(minutes) with the number 

of Retweetes which are shown in the Figure 3.
The semantic measurement achieved rather good results. It is able to identify near-duplicated content 

with up to 65% of the text changed. In reality, the majority of near-duplicated contents are less than 25% 
different from the original contents. This model’s cross-validated accuracy score is 81.7%, true positive 
score is 92.6%, and its AUC score is 95%. Thus, to believe that our semantic measurement approach 
will be able to classify near-duplicate correctly in real-world data.
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CONCLUSION

In recent years, deceptive content such as fake news and fake reviews have increasingly become a danger-
ous prospect, for online users. Fake reviews have affected consumer and stores alike. The use of hired 
writers to produce fake reviews to boost sales is also growing. It has become difficult for consumers to 
recognize good products from bad ones based on reviews. Most of the popular fake news stories were 
more widely shared on Face book than the most popular mainstream news stories, fake news are a closely 
related phenomenon as both consist of writing and spreading false information or beliefs. The problem of 
detecting opinion spam using n-gram analysis which solely relies on the text of the fake content N-gram 
models were able to detect fake reviews, fake news, and fake essays with an almost exact efficiency. With 
results the semantic similarity metrics to detect near-duplicated content. Experimental results showed 
that semantic similarity measurement could detect near duplicated deceptive content similar to the ones 
available on online reviews websites. As for future work, it is planned to incorporate the features of news 
contents and user profiles into our current fake news detection model.

Table 2. Fake news comparison with different datasets

Datasets Fake news datasets Buzzfees data sets

# News 332 144

# True news 182 67

# Fake news 150 77

# Tweets 2589 1007

# Verified users 550 243

# Unverified users 3767 988

# Likes 5713 1277

# Retweets 10434 2365

Figure 3.
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ABSTRACT

Power system scheduling is one of the most complex multi-objective scheduling problems, and a heu-
ristic optimization method is designed for finding the OPF solution. Stochastic weight trade-off chaotic 
mutation-based non-dominated sorting particle swarm optimization algorithm can improve solution-
search-capability by balancing between global best exploration and local best utilization through the 
stochastic weight and dynamic coefficient trade-off methods. This algorithm with chaotic mutation 
enhances diversity and search-capability, preventing premature convergence. Non-dominated sorting 
and crowding distance techniques efficiently provide the optimal Pareto front. Fuzzy function is used to 
select the local best compromise. Using a two-stage approach, the global best solution is selected from 
many local trials. The discussed approach can schedule the generators in the systems effectively, leading 
to savings in fuel cost, reduction in active power loss and betterment in voltage stability.
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INTRODUCTION

Electric Power System is one of the most complex systems considering the ever-volatile nature of demand 
and the newly transformed deregulated market structure. Optimal operation of the system is desirable 
and essential from both the financial as well as sustainability point of views. The application of opti-
mization algorithms in power system scheduling is one of the most explored areas in power systems 
research. One of the major reasons for the same is the availability of numerous optimization algorithms. 
The introduction of heuristic algorithms provided an elegant platform where any system, despite their 
complex nature, could be optimized. The other reason being the flexibility of the methods, including 
the ability to handle multiple objective functions, constraints, etc. With the popularity of heuristic ap-
proaches, quite many applications have been identified in the field of scheduling.

The introduction of new entities into the power sector, starting from renewable power generation, has 
made the modelling aspect of the system quite complex. The uncertain nature of generation sources like 
Solar Photovoltaics and Wind Energy Systems, further complicate the process and increase the com-
putational time and effort. Deregulation of electricity market, coupled with the introduction of demand 
response, demand forecast error etc. have not been kind to the complexity of the problem. These factors 
are the reason why power system scheduling and optimization is the topic selected for discussion here, 
for it is one of the most complicated scheduling processes.

Based on the orientation of interests of invested entities, power system optimal scheduling cannot 
be solved as a single objective problem. For example, the net profit maximization in a microgrid will 
include the maximization of profit of both, the seller and the buyer, which are innately contradictive in 
nature. Hence, the result shall be the best compromise solution point, where all the interested parties 
stay satisfied. The optimal scheduling problem discussed here include opposing objectives and hence, 
a multi-objective formulation is adopted.

Stochastic weight trade-off chaotic mutation based non-dominated sorting particle swarm optimiza-
tion (SWTCM_NSPSO) is a newly devised iteration to the famous optimization algorithm, PSO. The 
said method shall be applied to solve a optimal power flow (MO-OPF) problem, considering multiple 
objectives including generator fuel cost, voltage stability, and active power loss. The optimal power flow 
(OPF) problem is a large-scale, highly constrained nonlinear, and non-convex multi-objective optimi-
zation problem. The aim of the OPF solution algorithm is to optimize the selected objective functions 
which satisfy power balance constraint and generation and transmission limit constraints [Abou El Ela, 
et.al, (2010), Deb, K. (2001), Jabr, R. A., & Pal, B. C. (2009), Niknam, T., et.al, (2011), Sayah, S., & 
Zehar, K. (2008), Wood, A. J. et.al, (1984)]. The considered objectives in this problem are justifying the 
financial perspective, alongside stability and efficiency concerns, too. The algorithm shall be tested on 
standard and famous test systems, compared with major competitions, and the results, hence obtained, 
analyzed to see how the formulation of the method allows in the identification of a better operating point 
considering all the said perspectives.

BACKGROUND

Many mathematical techniques are used to solve the simple OPF, formulated as single objective optimiza-
tion problems such as quadratic programming [Grudinin, N. (1998)], linear programming [Al-Muhawesh, 
T. A., & Qamber, I. S. (2008)], non-linear programming [Habibollahzadeh, H., et.al, (1989)], the interior 
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point method [Yan, X., & Quintana, V. H. (1999)], Newton approach [Sun, D. I. et.al, (1984)], the mass 
interaction and gravitation method based on Newton’s law [Duman, S. et.al, (2012)], and Krill herd algo-
rithm including chaotic method [Mukherjee, A., & Mukherjee, V. (2015)]. An OPF problem considering 
the operation cost, the constraints of valve point loading effect and prohibited zones, is solved using the 
Shuffle Frog Leaping algorithm, incorporated with Simulated Annealing (SA) method to improve the 
local exploitation for the best solution [Niknam, T. et.al, (2012)]. Invasive Weed Optimization combined 
with the chaotic mutation (CIWO) is also employed to optimize the non-convex optimization problem 
focusing on the generator fuel cost considering valve-point loading effect, prohibited zones, and differ-
ent fuel types as the non-convex OPF problem [Ghasemi, M., et.al, (2014)]. Lifetime operating expense 
as well as the investment cost are optimized by using the hybrid of Binary Enhanced PSO (BEPSO) 
and Modified Differential Evolution (MED), as a single objective optimization problem [Ahmadigorji, 
M., & Amjady, N. (2014)]. Another algorithm used to solve OPF problem is vortex search algorithm, 
which used piecewise quadratic cost curve for generators [Aydin, O., et.al, (2017)]. Valve point loading 
is also considered in the objective function. However, these techniques appear short-handed when used 
to solve the non-convex, multi-objective optimization problems.

Various methods, developed recently, to solve the multi-objective OPF problem have provided better 
solutions compared to single objective formulations. Decoupled Quadratic Load flow together with En-
hance Genetic Algorithm is used for solving the multi-objective OPF (MO-OPF) problems minimizing 
fuel cost, voltage stability index, and power loss [Kumari, M. S., & Maheswarapu, S. (2010)], where 
the optimal Pareto-front set is realized by Strength Pareto Evolutionary. Multi-objective harmony search 
algorithm [Sivasubramani, S., & Swarup, K. S. (2011)] is used to obtain the optimum Pareto front for a 
multi-objective problem by the fast non-dominate sorting and crowding distance techniques in harmony 
search method. To improve the convergence rate and quality of solution, the teaching learning-based 
optimization, combined with quasi-oppositional based learning is found effective [Mandal, B., & Roy, 
P. K. (2014)]. Four different objectives, including generator fuel cost, voltage stability index, power 
loss, and emission, are optimized using the said approach. The multi-objective evolutionary algorithm 
based on decomposition [Medina, M. A., et.al, (2014)] is developed by using the modified artificial bee 
colony algorithm and a teaching-learning algorithm and used to minimize the total generator fuel cost, 
active power loss and voltage stability index. The non-dominated sorting multi-objective gravitational 
search algorithm [Bhowmik, A. R., & Chakraborty, A. K. (2014)] is introduced for solving different 
OPF problems and it used non-dominated sorting and crowding distance method to manage the Pareto 
optimal front.

Imperialist competitive algorithm [Ghasemi, M., et.al, (2014)] is the kind that utilizes the competi-
tion between the groups of particles to solve multi-objective OPF problem. Reducing emission level 
and generator fuel cost considering the prohibition zones, valve-point loading effect and multiple fuel 
types is a mammoth of a MO problem, which is solved using hybrid PSO and Shuffle Frog Leaping 
algorithm. The method is designed to increase the search performance from the diversified solutions. 
Modified Imperialist Competitive Algorithm utilizes the Imperialist Competitive algorithm and fuzzy 
grouping method to enhance the global best exploration [Ghasemi, M., et.al, (2014)]. An improved 
Genetic Algorithm that uses a two-part crossover and uniform mutation is used to optimize the reactive 
power dispatch minimizing active power loss and maximizing L-index level [Devaraj, D. (2007)]. JAYA 
algorithm, with certain modifications, is used recently to solve a MO-OPF problem, considering four 
objective functions [Elattar, E. E., & El Sayed, S. K. (2019)]. The approach is formulated in the presence 
of renewable energy sources in the system.
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Swarm intelligence is a very successful and popular group of optimization algorithms. Particle swarm 
optimization (PSO), coupled with the diversity preserving technique and dynamic velocity control 
[Hazra, J., & Sinha, A. K. (2010)], is used to enhance the efficiency and to provide a well-distributed 
Pareto front. PSO is also used to determine economic operating situations in the presence of FACTS 
devices, considering multiple objectives and the control variables [Naderi, E., et.al, (2019)]. The popu-
larity of PSO is due to flexibility and ease in adapting the algorithm to suit the solution method. The 
multi-objective krill herd algorithm [Roy, P. K., & Paul, C. (2014)] is developed and used to minimize 
the total generator fuel cost and voltage deviation and maximize the voltage stability. Considering a 
dynamic load demand for a span of 24 hrs. with multiple conflicting objectives in an optimization prob-
lem, an improved artificial bee colony algorithm using the chaos queues method [Liang, R.-H., et.al, 
(2015)] is found to alleviate the search process getting trapped in local optima and also to be enhancing 
the performance. Multi-objective electromagnetism-like algorithm (MEMA) [Jeddi, B., et.al, (2016)] 
is developed by using the adaptive local parameter control, for balancing the exploration between local 
and global solutions. Social Spider Optimization is another nature-inspired algorithm, a modified ver-
sion of which, is found to provide faster convergence and better search capability, when used to solve a 
MO-OPF problem [Nguyen, T. T. (2019)].

Hybrid algorithms are also used for the solving the MO-OPF problems. The hybrid of Enhance grey 
wolf and Dragonfly algorithms [C., Shailaja., & T., Anuprasath. (2019)] is used to optimize a triple 
objectives OPF problem and is tested on a renewable powered hybrid microgrid, using Weibull distribu-
tion to forecast the renewable output. Hybrid of Moth Swarm and Gravitational Search algorithms are 
combined to solve a bi-objective OPF problem considering the variable nature of wind-based power 
generation [C., Shailaja., & T., Anuprasath. (2019)]. A different formulation is used when the system 
exhibits multiple characteristics, like AC-DC interconnected systems. Prominent optimization algorithms 
could be used on such systems, provided the modelling of the system is carried out aptly. A simplified 
OPF solving algorithm for solving such a hybrid system, involving HVDC connections, discussed by 
Renedo, J., et.al, (2019).

Though deep and machine learning approaches [Wang, X. Z., et.al, (2016), Zeng, P., et.al, (2019)] 
have been used for emergency energy management of power systems, their application to power flow 
related studies is quite less. Generation dispatch\scheduling is one of the key areas in the field that AI 
approach is being used for. Relaxed deep learning is used for real-time economic generation dispatch 
and control [Yin, L., et.al, (2018)]. Though classified as a dispatch strategy, the solution can give the 
same outcome as that of OPF. Deep learning based artificial dispatcher is discussed by Tomin, N. V. 
et.al, (2018), that combines the intelligence of the dispatcher and the speed of the automated devices, so 
that the best of both can be availed. There is also the argument that such data-driven methods can iden-
tify patterns effectively and make predictive solutions, that might not be a feasible one for power flow 
studies. The system must be compliant to such a solution, with all the associated constraints satisfied. 
In order to verify the feasibility of the obtained solution, a conventional OPF algorithm may be needed.
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MAIN FOCUS OF THE CHAPTER1

Issues, Controversies, Problems

With multi-objective non-convex problems, the basic PSO algorithm often face the problem of premature 
convergence. This happens when the algorithm gets trapped in the local optima, rather than migrating 
to the global solution, because the cognitive and social acceleration coefficients, along with the veloc-
ity momentum, become less interrelated to one another. Stochastic weight trade-off method can handle 
non-convex problem very well due to the balancing between global best and local best exploitation 
process. A stochastic weight trade-off particle swarm optimization (SWT_PSO) [Chalermchaiarbha, 
S., & Ongsakul, W. (2013)] is used for solving the single objective economic dispatch non-convex 
problem effectively. Chaotic mutation method is able to solve the problem of premature convergence 
and enhance the exploitation ability, both in terms of searching performance and convergence speed 
[Cai, J., et.al, (2007); Cai, J., et.al, (2009); He, D., et.al, (2011)]. Therefore, the combination between 
stochastic weight trade-off and chaotic mutation algorithm could be suitable for solving the non-convex 
multi-objective problem. In each trial of the algorithm, non-dominated sorting and crowding distance 
methods are used to obtain the optimal Pareto front, and the local best compromise solution from the 
Pareto front is selected by the fuzzy-based mechanism.

The multi-objective optimal power flow problem considered in this chapter is focused on minimizing 
the generator fuel cost and active power loss, alongside maximizing the voltage stability, quantified us-
ing, L-index. For this, a stochastic weight trade-off and chaotic mutation based non-dominated sorting 
particle swarm optimization (SWTCM_NSPSO) method is used and the detailed formulation shall be 
discussed. The SWTCM_NSPSO algorithm applies the trade-off stochastic weight method and dynamis-
tic coefficients trade-off mechanisms on the PSO-velocity updating function for balancing exploration 
process of the global and local best utilization. In order to overcome the issue of premature convergence, 
the mechanisms of lethargy and freak control factors are utilized. In addition, this also incorporates the 
chaotic weight mutation method to the inertial weight factor to enhance the search capability in the 
diversified space, while avoiding getting trapped in the local minima. To provide better pareto front 
solutions, the non-dominated sorting and crowding distance evaluation methods are incorporated with 
the said algorithm to increase efficient operations of sharing and sorting among swarm members. To 
ensure consistency, the algorithm is run multiple trials. Two stages of non-dominated sorting, crowding 
distance, and the best compromise selecting process are utilized to choose the global best solution from 
many local best trial solutions. The results are demonstrated on IEEE 30 and 118-bus systems.

FORMULATION OF THE OPF PROBLEM2

Objective Functions

There are three objectives to minimize including the generator fuel cost, L- index, and transmission 
system loss.

Objective 1: Generator fuel cost minimization.
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MinimizeC a P b P cF
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Objective 2: Voltage stability maximization
The voltage stability margin of system can be computed by minimizing L-index at all the load buses 

within the interval [0-1]. The system will be safe when the L-index is close to 0. If the L-index increases 
to the maximum value of one, the voltage collapse will be concerned [Man-Im, et.al, (2015); Duman, 
S., et.al, (2012); Lee, K. Y., & El-Sharkawi, M. A. (2008)]. L-index of each load bus is defined as in (2).
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j Nj
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�
�1 1

1

,..,  (2)

Matrix (F) is computed by (3) where [YLL] and [YLG] are submatrices of the YBUS matrix.

F Y YLL LG� � � �� � � ��1
 (3)

The voltage stability of whole system can be described in terms of a global indicator L-index (Lmax) as:

L Lmax j� � �max  (4)

To be against the voltage collapse point, Lmax should be minimized as:

Minimize L L
max j
= { }max  (5)

Objective 3: Transmission system loss minimization.
The total active power loss can be calculated using the bus voltage magnitudes and voltage angles 

from the power flow solution as:

MinimizeP g V V VVloss
l

N

l i j i j i j

line

� � � �� ��� ��
�
�
1

2 2
2 cos � �  (6)

Multi-Objective OPF Formulation

Here, the multi-objective OPF problem can be formulated as:

Minimize f f f C L P
obj obj obj F max loss1 2 3
, , , ,{ } = { }  (7)
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Subject to g s u,( ) = 0  (8)

h s u,� � � 0  (9)

The vector of dependent variables consists of active power output at slack bus, load bus voltage 
magnitudes, reactive power outputs, and transmission line loadings expressed as:

s P V V Q Q S SG L LN G GN L LN

T

L GEN line
� �� ��1 1 1 1

, ... , ... , ...  (10)

The control variables’ vector consists of active power output at PV bus excluding at the slack bus, 
generator terminal voltages, transformer tap settings, and shunt VAR compensations as:

u P P V V T T Q QG GN G GN N C CN

T
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� �� ��2 1 1 1

... , ... , ... , ...  (11)

Technical Constraints

1. Equality Constraints
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2. Inequality Constraints

Generation Constraints:
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Transformer Tap constraints
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Shunt VAR compensator constraints:

Q Q Q i N
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Ci Ci
max

C
≤ ≤ ∈,  (15)

Voltage magnitude constraints:

V V V i N
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Li Li
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≤ ≤ ∈,  (16)

Transmission line loading constraints:

S S i N
li
min

li line
≤ ∈,  (17)

To handle the inequality constraint violations, the dependent variables including PG1, VL, QG, and 
SL are added to an objective function as quadratic penalty terms. In this penalty function, the square of 
inequality constraint violations is multiplied with penalty coefficients and augmented into the objective 
function. Therefore, this augmented objective function is able to minimize the infeasible solutions [37-38]:
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The limit value of dependent variable slim is given as:
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PROPOSED APPROACH3

Stochastic Weight Tradeoff Chaotic Mutation Based NSPSO (SWTCM_NSPSO)

Particle swarm optimization (PSO) is an evolutionary computation technique modeled based on the social 
behaviors of bird flocking or fish schooling. A population of particles, like the flock of birds, moves 
in the multi-dimensional search space regulated by its location and velocity. During the movement, the 
velocity of each particle is adjusted in each searching process while its position is updated. PSO can 
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utilize the experience of each particle and its neighbors to observe the better position [Niknam, T., et.al, 
(2012); Medina, M. A., et.al, (2014); Bhowmik, A. R., & Chakraborty, A. K. (2014)]. The velocity and 
position updating functions of PSO are described in (20)-(21), where k=1, 2, ..., kmax, i=1, 2…n, and d=1, 
2…D. pbest is the best previous position of particle and gbest is the best particle among all particles.

v v c r pbest x c r gbest xid
k

id
k

id
k

id
k

id
k

id
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1 1 2 2
�  (20)

x x vid
k

id
k

id
k� �� �1 1  (21)

However, the PSO algorithm has some limitation if applied directly to solve the multi-objective opti-
mization problem. Since a particle is updated by using only its personal best and global best information, 
there is no sharing of its experience with the other particles. In addition, the velocity updating function 
of PSO is sensitive to cognitive parameter (c1) and social parameter (c2) which are incoherently gener-
ated. Hence, the local best and global best reached may not be optimum in the multi- objective problem 
[Ongsakul, W., & Vo, D. N. (2013); Kapse, S. P., & Krishnapillai, S. (2018)]. Moreover, the particles 
may be far away from the local optimum when c1 and c2 are too large or over dependent upon the own 
and neighbor experiences of each particle. If both c1 and c2 are too small, the experiences of own particle 
and its neighbors are of little effect leading to the premature convergence problem [Chalermchaiarbha, 
S., & Ongsakul, W. (2013)].

A stochastic weight trade-off chaotic mutation based non-dominated sorting particle swarm optimiza-
tion (SWTCM_NSPSO) is proposed to solve the MO-OPF problem. SWTCM_NSPSO features include 
the balance between global best exploration and local best exploitation processes, combination and non-
dominated sorting concept, and crowding distance assignment. The mechanisms are described as follows.

1. Balance of Global Best Searching and Local Best Utilization

v k r sign r v r c k r pbest xid
k k

id
k

id
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1� � . (22)
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2 2 1
r c k r gbest xid

k
id
k  (23)

The velocity and position updating equations from (20) is modified as in (22). To coherently generate 
between c1 and c2, the r1 and 1- r1 are used to balance the cognitive and social components. These stochastic 
weights will incorporate with the experiences of individual particle and its neighbors when the velocity 
of particle updates. Momentum of the previous velocity term affects the efficiency of searching global 
best and the position update. The small value of the previous velocity momentum would influence the 
cognitive and social accelerated components to control the performance of position update. Therefore, 
r2 and 1- r2 are stochastically generated for trade-off between the previous velocity term, the cognitive 
and social elements. On the other hand, if the momentum is too large, the particles may be driven away 
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from the global regions and difficult to change their directions into the optimum position. As a result, 
the direction of particle’s position may not lead to the global optimum regions. The lethargy factor is 
used to improve the reverse behavior of particles into the global best regions. This factor involves with 
the sign(r3) value defined as in (23).

If r P sign r P r
frk4 4 4

1 0> ( ) = ( ) =, ,  (24)

If r P sign r P r
frk4 4 4

1 1< ( ) = − ( ) =, ,  (25)

ϖ ϖ ϖ ϖk
k
k

k k
min max

max
max max( ) = −( ) + = …, , ,1 2  (26)

For the increasing the global search capability, the previous velocity term is modified as (24)-(25). 
The Pltg and Pfrk are represented to avoid the particles from the trapping in the local optimum regions 
avoiding the premature convergence problem. Consequently, the modified previous velocity momentum 
in (22) uses � k r sign r� � � �. .

2 3
.as the weighting control factor, where ϖ(k) is modified by using the 

gradual reducing method given in (26), to avoid the driving away from global optimum solution and to 
support the local searching capability for a candidate solution.

� � � � �k k k k� � � � �� � � �1
1 0 1,  (27)

The chaos characteristic is a deterministic dynamic system, unpredictable, and nonlinear phenomenon. 
For the proposed SWTCM_NSPSO, the chaotic mutation is applied into the inertia weight factor to 
enhance the search capability in the diversified search space. The simplest chaotic behavior is the Lo-
gistic map given in (27), where φ = 4 and η0 0 0 25 0 5 0 75 1 0∉ { }, . , . , . , . . To improve the local searching 
performance, the cognitive and social accelerated coefficients are designed to decrease linearly as (28)-
(29).
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2. Combination and Non-Dominated Sorting Concept

The combination method is utilized for sharing the individual experience of a particle with the others. 
In this method, the velocities and positions of ‘n’ particles are updated to become their ‘n’ offspring 
particles. The first ‘n’ particles will combine with the offspring particles to form a new population of 
2n particles. The non-dominated sorting solution is applied to sort these 2n particles into different non-
domination levels. The classification concept of non-domination is shown in Fig. 1 [Shi, Y., & Eberhart, 
R. (1998); Srinivas, N., & Deb, K. (1994); Wartana, I. M. (2015)]. In Fig. 1, particles in front 1 are the 
best non-dominated set dominating other particles. The remaining particles from front 1 are sorted by 
non-dominated solution again to classify the next levels of non-dominated solution.

3. Crowding Distance Assignment

To maintain the best distribution on the non-dominated set, the crowding distance is calculated for each 
individual particle in each front set. The crowding distance method makes use of the density of neigh-
bors, close to a specific point, on the non-dominated front. The density is estimated by average value of 
distance between an individual point/particle and its neighbors, as shown in Fig 2. The best n particles 
are selected from the non-dominated front lists based on their crowding distance in the descending order. 

Figure 1. Non-Dominated Sorting Concept [Shi, Y., & Eberhart, R. (1998); Srinivas, N., & Deb, K. 
(1994); Wartana, I. M. (2015)]

Figure 2. Crowding distance calculation [Shi, Y., & Eberhart, R. (1998); Srinivas, N., & Deb, K. (1994); 
Wartana, I. M. (2015)]
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The selected n best particles would lead toward the optimum region in the search space as pbest and 
the best value among the set of pbest is denoted as gbest [Shi, Y., & Eberhart, R. (1998); Srinivas, N., 
& Deb, K. (1994); Wartana, I. M. (2015)]. The schematic of the combination of non-dominated sorting 
and crowding distance approaches is shown in Fig. 3.

Procedure for SWTCM_NSPSO

Step 1: The power output of each conventional unit, generator bus voltages, transformer tap settings, 
and reactive power of shunt VAR compensators are set as decision variables in a position as in 
(30). The initial iteration counter k is set to 0. The initial positions ( xid

0 ) of all particles are gener-
ated by randomly selecting in limit of decision variables. The velocities (vid

0 ) of particles are 
randomly initialized within a range of [ v vid min id max, ,, ] defined as in (31).
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Step 2: The objective functions (1), (5), and (6) are evaluated for each particle.
Step 3: Non-domination sorting algorithm sorts all particles and stores them in the non-dominated list.
Step 4: The n particles of non-dominated list are selected as pbestk  set.
Step 5: The global best set ( gbestk ) is defined by randomly selecting from the top part (e.g. top 5%) 

of the non-dominated solution list.
Step 6: The updating functions in (21)-(22) are used to update all current particles. The updated particles 

are assigned as the offspring particles and calculate the objective values for each offspring particle 
from the objective functions. To handle the inequality constraints, the velocity and position of 

Figure 3. Schematic of combination of non-dominated sorting and crowding distance method approach

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



190

Heuristic Optimization Algorithms for Power System Scheduling Applications
 

particles need to be within their limits. If the velocity and position parameters violate their limits, 
their respective values will be set as:

If v v v v
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Step 7: The current P
i

k .nd offspring particles are combined into 2n population. All these particles are 
re-sorted by the non-domination criterion and crowding distance of each particle in each front is 
assigned.

Step 8: The particles in each front of non-dominated solution are re-arranged by considering descending 
order of crowding distance.

Step 9: The best n particles are selected from the 2n population based on priority lists of non-dominated 
solution.

Step 10: If the maximum iteration is met, stop. Otherwise, increase the iteration counter k = k+1, and 
return to step 3.

Selecting Compromised Solutions

After obtaining the Pareto-optimal front, a fuzzy-based mechanism is proposed to identify the best 
compromise solution as a decision-making function. The function for selecting compromise solutions 
are expressed in (34)-(35) [Sakawa, M., et.al, (1987); Carlsson, C., & Fullér, R. (1996); Farina, M., & 
Amato, P. (2004)].
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 (34)

In (34), the objective function is varied from 1 to 0 or completely satisfactory to unsatisfactory in 
a linear decreasing function. The normalized membership function is calculated in (35) for each non-
dominated solution j. The maximum value of f j is selected as the best compromise trial solution.

To ensure consistency, many trials of the algorithm needs to be carried out. The non-dominated solu-
tion and crowding distance assignment are applied to sort and assign crowding distant for the local best 
compromise solutions of each trial. Then, the Eq. (34) and (35) are utilized again to select the global 
best compromise solution from the local best compromise solution front. The schematic of the selecting 
the global best compromise solution from the local best compromise trial solutions is shown in Fig. 4.
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NUMERICAL SOLUTIONS AND RECOMMENDATIONS

For the OPF problem, the IEEE 30 and IEEE 118 bus are used as test systems with 100 MVA base. The 
IEEE 30 bus system consists of six generators at bus 1, 2, 5, 8, 11 and 13, four transformers with tap 
ratio in the transmission line 6–9, 6–10, 4–12 and 27–28 and reactive power injection at bus 10, 12, 15, 
17, 20, 21, 23, 24 and 29. The single line diagram of IEEE 30 bus test system is illustrated in Appendix 
A. The active power limit and reactive power limit are presented in Appendix A. All bus voltage limits 
are within the range [0.95-1.1] p.u. and tap ratio settings are within the range [0.95-1.1] p.u. The limit 
of reactive power of shunt VAR compensator is [0-0.05] p.u. The IEEE 118 bus test system consists of 
54 generators and 9 on load tap change transformers as shown in Appendix B. The software is written 
in MATLAB 8.1.0 and executed on an Intel(R) Core (TM) i5 processer personal computer with 2.0 GB 
RAM.

The SWTCM_NSPSO parameter settings are ϖ max = 1.3, ϖ min = 1.1, Pltg = 0.06, Pfrk = 0.06, the 
maximum and minimum acceleration coefficients are 2.8 and 2.4, respectively. The population size and 
iterations are 100 and 1000, respectively. For NSPSO parameters [Wartana, I. M. (2015)], the maximum 
and minimum inertia weights are 1.0 and 0.4, respectively. The acceleration coefficients c1 and c2 are 
set to 2. For NSGAII, the crossover and mutation operators are set to 20 [Wartana, I. M. (2015)]. For 
the consistency test, the algorithms run 50 trials. There are four different simulation cases on the IEEE 
30 bus system (Case I -III) and one case on the IEEE 118 bus system as (Case IV):

Case I  Multi-objective minimization between the generator fuel cost and the L-index
Case II  Multi-objective between L-index and active power loss minimization
Case III  Multi-objective among generator fuel cost, L-index and active power loss minimization
Case IV  Multi-objective among generator fuel cost, L-index and active power loss minimization 

for IEEE 118 bus test system
Selection of Global Best Solution

In Figs. 5-6, the local best solutions obtained from 50 trials for different methods are shown for Cases 
I - III, respectively. For each solution method, the fuzzy method in (34) - (35) is used to select the global 
best compromise solution from 50 local best trial solutions. Evidently, SWTCM_NSPSO can find a better 
global best compromise solution than SWT_NSPSO (Stochastic Weight Trade-off, NSPSO), NSPSO, 
NS_CPSO, and NSGA II (Non-dominated sorting Genetic Algorithm).

Figure 4. The schematic of the selection the global best compromise solution from many local best trials
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In Fig. 7, the global best compromise solution selected from 50 local best trial solutions for Case III 
is illustrated. All global best compromise multi-objective clearly indicates that the proposed SWTCM_
NSPSO algorithm provide better cluster and better global trade-off solutions than the SWT_NSPSO, 
NS_CPSO, NSPSO, and NSGA II as shown in Fig 7 (a), (b), (c), and (d), respectively.

The global best compromise solution selected from 50 local best trial solutions for 118 bus test system 
in Case IV is illustrated in Fig. 8. All global best compromises multi-objective of SWTCM_NSPSO of 
Fig. 8 (d) indicate that the proposed algorithm is able to provide lower global best trade-off solutions than 
the NSGA II, NSPSO, NS_CPSO, and SWT_NSPSO as shown in Fig. 8 (a), (b), and (c) respectively.

Figure 5. The global best compromise solution of multi-objective minimization for 50 trials in Case I

Figure 6. The global best compromise solution of multi-objective minimization for 50 trials in Case II
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Global Best Compromise Numerical Solution

1. Multi-Objective Between Fuel Cost, L-Index, And Active Power Loss Minimization

The algorithm is tested in the backdrop of IEEE 30-bus test system, minimizing the fuel cost, active 
power loss and maximizing the voltage stability. All the objective functions are optimized simultane-
ously, and the global best solutions given in Table I. The formulated algorithm, SWTCM_NSPSO can 
provide the better solution than those of all compared methods. The three-dimensional Pareto front of 
SWTCM_NSPSO remarkably provide the well- distributed than NSGA II, NSPSO, and NS_CPSO 
algorithms represented in Fig. 12 (a), (b), (c), respectively. SWTCM_NSPSO has better cluster and 
provides a lower pareto optimal front than SWT_NSPSO as shown in Fig. 12 (d).

Figure 7. The global best compromise solution of multi-objective minimization for 50 trials in Case III
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2. SWTCM_NSPSO Applied to IEEE 118 Bus Test System

While testing SWTCM_NSPSO on an IEEE 118-bus test system, it is observed that the method pro-
vided better solution compared with the other methods using the same test data, as shown in Table 2. 
The three-dimensional Pareto front from SWTCM_NSPSO remarkably provides a well-distributed and 
lower front than NSGA II, NSPSO, NS_CPSO, and SWT_NSPSO algorithms illustrated in Fig. 13 (a), 
(b), (c) and (d) respectively.

In all the cases, SWTCM_NSPSO algorithm outperform other algorithms in solving the multi-
objective OPF problem. The features that are attributed to the said algorithm increases the performance 
by improving the search capability, properly balancing between the global solution search and local best 
result utilization, and by being able to better share the individual characteristics and experiences among 
population. Therefore, the discussed optimizer could find a better trade-off trial solution from a well 
distributed Pareto front.

Figure 8. The global best compromise solution of multi-objective minimization for 50 trials in Case IV
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FUTURE RESEARCH DIRECTIONS

Based on the type of system to be scheduled, the features added to the optimization algorithm can vary. 
Also, depending on the application, the processing time need should also be acceptable. Based on the 
time period, the discussed algorithm can be applied from short term scheduling like, half hour ahead to 
day ahead scheduling of power systems. Hence, research can be focused on developing algorithms and 
equipping them with more/less features suitable according to the nature of system to be scheduled. Also, 
from the power system perspective, the incorporation of renewable energy forecasting can be incorporated 
into the discussion. Including emission equivalent as an additional objective function component could 
reduce the use of fossil fuel-based sources and prioritize renewable energy use.

Figure 9. Comparison between the global best solutions of considering all objective functions
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CONCLUSION

An optimization algorithm for power system scheduling is developed with certain features, that can 
enhance the performance of the said algorithm making it efficient and robust. The algorithm developed 
is SWTCM_NSPSO. It is developed to solve the complex and non-convex, multi-objective optimiza-
tion problem of OPF. The simulation results and the inference drawn from them indicate remarkable 
improvement in search capability, with the use of stochastic weight trade-off and dynamistic coefficients 
trade-off mechanisms, while balancing both global search and local utilization, simultaneously. The 
algorithm is successful at avoiding premature convergence issues due to the incorporation of chaotic 

Table 1. The global best solution between fuel cost, l-index, and active power loss minimization

Parameter NSGAII NSPSO NS_CPSO SWT_NSPSO SWTCM_NSPSO

Pg1 (MW) 130.805 123.291 119.212 112.178 111.677

Pg2 (MW) 45.925 55.534 50.969 58.706 53.990

Pg3 (MW) 30.427 30.942 31.843 35.597 39.434

Pg4 (MW) 35.000 35.000 35.000 31.749 34.546

Pg5 (MW) 24.136 25.643 27.547 27.214 28.025

Pg6 (MW) 22.735 18.541 23.902 22.821 20.354

Vg1 (p.u.) 1.099 1.100 1.100 1.100 1.100

Vg2 (p.u.) 1.084 1.090 1.090 1.091 1.093

Vg3 (p.u.) 1.057 1.079 1.080 1.071 1.080

Vg4 (p.u.) 1.067 1.091 1.082 1.090 1.093

Vg5 (p.u.) 1.100 1.100 1.100 1.098 1.097

Vg6 (p.u.) 1.099 1.100 1.100 1.098 1.100

Tap(6-9) 0.993 1.100 1.029 1.034 1.010

Tap(6-10) 0.972 0.900 0.900 0.910 0.906

Tap(4-12) 1.030 0.984 1.003 0.997 0.994

Tap(27-28) 0.939 0.947 0.977 0.959 0.965

QC10 (p.u.) 0.056 0.050 0.050 0.036 0.028

QC12 (p.u.) 0.027 0.000 0.050 0.045 0.038

QC15 (p.u.) 0.028 0.000 0.050 0.048 0.049

QC17 (p.u.) 0.043 0.000 0.000 0.021 0.026

QC20 (p.u.) 0.019 0.000 0.050 0.015 0.005

QC21 (p.u.) 0.029 0.000 0.050 0.016 0.021

QC23 (p.u.) 0.010 0.050 0.000 0.047 0.050

QC24 (p.u.) 0.039 0.023 0.050 0.044 0.048

QC29(p.u.) 0.025 0.000 0.050 0.010 0.010

Cost ($/hr) 823.407 827.075 833.159 842.644 849.598

L-index 0.126 0.125 0.126 0.125 0.125

Loss (MW) 5.629 5.552 5.073 4.864 4.626
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mutation, freak and lethargy factors. Non-dominated sorting concept and crowding distance technique 
are used to obtain the optimal pareto front. The MO-OPF solution provided by SWTCM_NSPSO is 
better than other prominent algorithms.
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Figure 10. Comparison between the global best solutions from various methods for IEEE 118-bus

Table 2. The global solutions for IEEE 118-bus

NSGA II NSPSO NS_CPSO SWT_NSPSO SWTCM_NSPSO

Cost ($/hr.) 71,672.290 71,090.657 70,958.756 69,796.957 69,018.870

Loss (MW) 104.896 97.822 87.043 78.003 71.012

L-index 0.063 0.063 0.062 0.059 0.059
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APPENDIX

IEEE 118-Bus system Data and Diagram

Figure 11. IEEE 118-Bus system
Source: https://al-roomi.org/power-flow/118-bus-system (Accessed last on 16-May-2019)
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Table 3. IEEE 118 Bus Data and Generator Cost Functions

   Bus No.

   Unit Cost Coefficients

   Pmax 
(MW)

   Pmin 
(MW)

   Qmax 
   (MVAR)

   Qmin 
   (MVAR)

   Vmax 
   (p.u.)

   Vmin 
(p.u.)   a 

   (MBtu)

   b 
   (MBtu/ 
   MW)

   c 
   (MBtu/ 
   MW2)

4 31.67 26.2438 0.069663 30 5 300 -300    1.1 0.95

6 31.67 26.2438 0.069663 30 5 50 -13    1.1 0.95

8 31.67 26.2438 0.069663 30 5 300 -300    1.1 0.95

10 6.78 12.8875 0.010875 300 150 200 -147    1.1 0.95

12 6.78 12.8875 0.010875 300 100 120 -35    1.1 0.95

15 31.67 26.2438 0.069663 30 10 30 -10    1.1 0.95

18 10.15 17.8200 0.012800 100 25 50 -16    1.1 0.95

19 31.67 26.2438 0.069663 30 5 24 -8    1.1 0.95

24 31.67 26.2438 0.069663 30 5 300 -300    1.1 0.95

25 6.78 12.8875 0.010875 300 100 140 -47    1.1 0.95

26 32.96 10.7600 0.003000 350 100 1000 -1000    1.1 0.95

27 31.67 26.2438 0.069663 30 8 300 -300    1.1 0.95

31 31.67 26.2438 0.069663 30 8 300 -300    1.1 0.95

32 10.15 17.8200 0.012800 100 25 42 -14    1.1 0.95

34 31.67 26.2438 0.069663 30 8 24 -8    1.1 0.95

36 10.15 17.8200 0.012800 100 25 24 -8    1.1 0.95

40 31.67 26.2438 0.069663 30 8 300 -300    1.1 0.95

42 31.67 26.2438 0.069663 30 8 300 -300    1.1 0.95

46 10.15 17.8200 0.012800 100 25 100 -100    1.1 0.95

49 28 12.3299 0.002401 250 50 210 -85    1.1 0.95

54 28 12.3299 0.002401 250 50 300 -300    1.1 0.95

55 10.15 17.8200 0.012800 100 25 23 -8    1.1 0.95

56 10.15 17.8200 0.012800 100 25 15 -8    1.1 0.95

59 39 13.2900 0.004400 200 50 180 -60    1.1 0.95

61 39 13.2900 0.004400 200 50 300 -100    1.1 0.95

62 10.15 17.8200 0.012800 100 25 20 -20    1.1 0.95

65 64.16 8.3391 0.010590 420 100 200 -67    1.1 0.95

66 64.16 8.3391 0.010590 420 100 200 -67    1.1 0.95

69 6.78 12.8875 0.010875 300 80 99999 -99999    1.1 0.95

70 74.33 15.4708 0.045923 80 30 32 -10    1.1 0.95

72 31.67 26.2438 0.069663 30 10 100 -100    1.1 0.95

73 31.67 26.2438 0.069663 30 5 100 -100    1.1 0.95

74 17.95 37.6968 0.028302 20 5 9 -6    1.1 0.95

76 10.15 17.8200 0.012800 100 25 23 -8    1.1 0.95

77 10.15 17.8200 0.012800 100 25 70 -20    1.1 0.95

80 6.78 12.8875 0.010875 300 150 280 -165    1.1 0.95

82 10.15 17.8200 0.012800 100 25 9900 -9900    1.1 0.95

85 31.67 26.2438 0.069663 30 10 23 -8    1.1 0.95

87 32.96 10.7600 0.003000 300 100 1000 -100    1.1 0.95

89 6.78 12.8875 0.010875 200 50 300 -210    1.1 0.95

continued on the following page
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   Bus No.

   Unit Cost Coefficients

   Pmax 
(MW)

   Pmin 
(MW)

   Qmax 
   (MVAR)

   Qmin 
   (MVAR)

   Vmax 
   (p.u.)

   Vmin 
(p.u.)   a 

   (MBtu)

   b 
   (MBtu/ 
   MW)

   c 
   (MBtu/ 
   MW2)

90 17.95 37.6968 0.028302 20 8 300 -300    1.1 0.95

91 58.81 22.9423 0.009774 50 20 100 -100    1.1 0.95

92 6.78 12.8875 0.010875 300 100 9 -3    1.1 0.95

99 6.78 12.8875 0.010875 300 100 100 -100    1.1 0.95

100 6.78 12.8875 0.010875 300 100 155 -50    1.1 0.95

103 17.95 37.6968 0.028302 20 8 40 -15    1.1 0.95

104 10.15 17.8200 0.012800 100 25 23 -8    1.1 0.95

105 10.15 17.8200 0.012800 100 25 23 -8    1.1 0.95

107 17.95 37.6968 0.028302 20 8 200 -200    1.1 0.95

110 58.81 22.9423 0.009774 50 25 23 -8    1.1 0.95

111 10.15 17.8200 0.012800 100 25 1000 -100    1.1 0.95

112 10.15 17.8200 0.012800 100 25 1000 -100    1.1 0.95

113 10.15 17.8200 0.012800 100 25 200 -100    1.1 0.95

116 58.81 22.9423 0.009774 50 25 1000 -1000    1.1 0.95

Table 3. Continued
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ABSTRACT

As industrial systems become more complex, various complexities and uncertainties come into play. 
Metaheuristic-type optimization techniques have become crucial for effective design, maintenance, and 
operations of such systems. However, in highly complex industrial systems, conventional metaheuristics 
are still plagued by various drawbacks. Strategies such as hybridization and algorithmic modifications 
have been the focus of previous efforts to improve the performance of conventional metaheuristics. This 
work tackles a large-scale multi-objective (MO) optimization problem: biofuel supply chain. Due to the 
scale and complexity of the problem, the random matrix approach was employed to modify the stochastic 
generator segment of the cuckoo search (CS) technique. Comparative analysis was then performed on 
the computational results produced by the conventional CS technique and the improved CS variants.

INTRODUCTION

Real-world industrial optimization often revolves around systems which have various complexities and 
uncertainties. Therefore heavy computational rigor becomes required when faced with these problems. 
This is when metaheuristic techniques become indispensable (Ganesan et al., 2016; Ganesan et al., 2018a; 
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Yang, 2013). A few examples of such complexities are: multiobjective (MO), non-convex, highly nonlinear, 
interlinked variables and multivariate. All these issues existing in a single problem have the capability to 
overwhelm the computational technique (conventional metaheuristics) - resulting in weak optimization 
capability. Thus, conventional metaheuristics are often improved via hybridization or other algorithmic 
enhancements (Ganesan et al., 2015; Ganesan et al., 2018b; Hong et al., 2016; Dong et al., 2016). As 
for optimization problems which are MO, the following frameworks have been introduced in the past:

• Strength Pareto Evolutionary Algorithm (SPEA-2) (Zhao et al., 2016)
• Weighted sum approach (Naidu et al., 2014)
• Normal-Boundary Intersection (NBI) (Ahmadi et al., 2015; Ganesan et al., 2013)
• Non-Dominated Sorting Genetic Algorithm (NSGA-II) (Mousavi et al., 2016)
• Epsilon-constraint method (Bouziaren and Brahim Aghezzaf, 2018)

Scalarization and NBI approaches involve the aggregation of multiple target objectives. This effectively 
transforms the MO problem into a single objective one - reducing its complexity to a high degree and 
thus making it easier to solve. Although other techniques like non-dominated sorting, SPEA and epsilon-
constraint approaches are equally effective for solving triple-objective MO problems, the weighted sum 
approach (scalarization technique) was used in this work since it was easier to work with. This is in the 
sense that scalarization approaches are readily compatible when used with a variety of metaheuristics 
as compared to other methods (e.g. nondominated sorting methods). Once the objective function is ag-
gregated, the problem could be solved using a variety metaheuristic as a single objective problem. This 
makes the weighted sum approach a very attractive option since a plethora of metaheuristic techniques 
could be implemented alongside it. On the other hand, the epsilon-constraint method could become te-
dious when dealing with problems having more than two objectives since the problem has to be solved 
multiple times with varying epsilon constraints - making it a computationally expensive approach.

In recent works, Cuckoo Search (CS) has been seen to be highly effective in solving MO supply 
chain problems as compared to other heuristics (e.g. bee colony optimization, genetic algorithm, particle 
swarm optimization and artificial fish swarm) (Elkazzaz et al., 2018; Liang and Sun, 2019, Srivastav and 
Agrawal, 2015). Therefore CS approach was utilized in conjunction with the weighted sum approach to 
tackle the biofuel supply chain problem in this work.

Supply chain problems are large-scale problems with complex interlinked variables. This sort of 
problem characteristics closely resemble structures often encountered in the nuclei of heavy atoms - e.g. 
platinum, gold or rhodium. Such structures are said to have the property of universality. Eugene Wigner 
developed an effective technique (using random matrices) for modeling complex systems endowed with 
universality (Che, 2017). Ever since then, random matrix theory (RMT) has been used extensively for 
modeling large complex structures with highly interlinked components in various fields: solid state 
physics (Verbaarschot, 2004; Beenakker, 2015), quantum chromodynamics (Akemann, 2017), quantum 
information theory (Collins and Nechita, 2016), transport optimization (Krbálek and Seba, 2000), Big 
Data (Qiu and Antonik, 2017) and finance (Zhaoben et al., 2014). Since supply chain networks share 
many key characteristics with some of the previously mentioned systems, these networks may naturally 
contain the property of universality.

In the past work, metaheuristic techniques have been effectively applied to solve the biofuel supply 
chain problem (Tan et al., 2017). Although effective in a bi-objective scenario, the performance of the 
approach may not be as stable in a triple-objective problem (large-scale) as encountered in this work 

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



208

Multiobjective Optimization of a Biofuel Supply Chain Using Random Matrix Generators
 

- producing a research gap. To account for the increase in complexity due to the additional objective 
function, the RMT framework was used to improve the conventional CS technique by modifying the 
stochastic generator component. Instead of employing the conventional Gaussian stochastic generator, 
this component was replaced with a RMT-based generator. The resulting four RMT-based CS algorithms 
were implemented on the biofuel supply chain problem: Gaussian Unitary Ensemble CS (GUE-CS), 
Gaussian Orthogonal Ensemble CS (GOE-CS), Gaussian Symplectic Ensemble CS (GSE-CS) and 
Poisson-based CS (Poisson-CS).

This paper is organized as follows: Section 2 provides the literature review and Section 3 presents 
the problem formulation of the MO biofuel supply chain model. In Section 4 the conventional CS ap-
proach is presented while an overview of RMT and its role in the development of stochastic generators 
is described in Sections 5 and 6. Section 7 presents the analyses on the computational results followed 
by the final section; conclusions and recommendations for future work.

LITERATURE REVIEW

Present day supply chain optimization challenges decision makers on a global scale due to its highly 
complicated nature as well as its large-scale structure. Over the years various cutting edge tools have 
been implemented for modeling supply chains (Seuring, 2013; Brandenburg et al., 2014; Ahi and Searcy, 
2013). These efforts are then followed by the application of optimization techniques - to efficiently aid 
the decision making process (Ogunbanwo et al., 2014; Mastrocinque et al., 2013). In this spirit, fuel 
supply chain networks have recently become a field of interest by decision makers and practitioners in 
various industries. This can be seen in the optimization work found in Lin et al., (2014) which aimed to 
minimize the annual biomass-ethanol production costs in a fuel supply chain. The supply chain prob-
lem in that work was a large-scale model consisting of stacking, in-field transportation, preprocessing, 
biomass harvesting, transportation, packing and storage, to ethanol production and distribution. The 
authors used a mixed integer programming technique to reduce the cost of production in a biorefinery 
(by approximately 62%). Similarly in Zhang et al., (2013) a switchgrass-based bioethanol supply chain 
located in North Dakota, U.S. was modeled and optimized. In the work of Lin et al., (2014), mixed integer 
linear programming was employed to optimize the model - where the authors obtained an optimal usage 
of marginal land for switchgrass production. This efforts were tailored for sustainable and economical 
harvest of bioethanol. Optimization of a large-scale sustainable dual feedstock bioethanol supply chain 
in a stochastic environment was done in Osmani and Zhang, (2014). The optimization was carried out 
while taking into consideration the biomass purchase price, sales price, supply and demand. The work 
used a sample average approximation algorithm as a decomposition technique with a mixed integer linear 
programming approach. Other works using mixed integer linear/nonlinear programming approaches in 
a fuel supply chain optimization context could be seen in Osmani and Zhang, (2013) and Gao and You, 
(2015). An example of a study that does not employ a mixed integer approach for fuel supply chain opti-
mization is Marufuzzaman et al., (2014). The solution procedure employed in that work was a combined 
approach of Lagrangian relaxation and L-shaped techniques. The numerical experiments performed in 
Marufuzzaman et al., (2014) provided interesting information on carbon regulatory mechanisms and 
uncertainties encountered in biofuel supply chains. In Castillo-Villar, K.K., (2014) and De Meyer et al., 
(2014), a general review is given on metaheuristics applied to bioenergy supply chains.
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Cuckoo search (CS) technique has been highly effective in optimizing real-world supply chains. For 
instance in the work of Mattos et al., (2017), a series of metaheuristics including CS was applied to a 
supply chain (consumer-packaged goods industry). Rigorous comparative studies was done on the per-
formance as well as the results generated by the techniques employed in that work. A similar case could 
be found in Abdelsalam and Elassal, (2014) - where CS was employed among other metaheuristics to 
a joint economic lot-sizing problem. The problem involved a multi-layered supply chain consisting of 
multiple retailers and a single manufacturer/supplier. The results showed that the CS technique favors 
the centralized policy as opposed to a decentralized one for safety stock. Another interesting implemen-
tation of CS is seen in the work of Srivastav and Agrawal, (2017). In that work, a MO lot-size reorder 
point backorder inventory problem was tackled using CS. The MO problem (three objective functions) 
consisted of the following targets (annual): expected number of stocked out units, total relevant cost and 
expected number of stocked-out occasions. An efficient Pareto curve between cost and service levels 
was constructed using the CS technique.

BIOFUEL SUPPLY CHAIN MODEL

The fuel supply chain model employed in this work was developed in Tan et al., (2017). In that work 
only two objective functions were considered: profit (PR) and social welfare (SW). The environmental 
benefits objective was incorporated into the SW function. In this work, the environmental benefits was 
isolated from the SW function and taken as an independent objective function (denoted Env). Therefore 
the fuel supply chain model in this chapter consists of three objective functions to be maximized along 
with associated inequality constraints (see equations (6) - (15)). The objective functions are shown in 
equations (1) - (5):
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The constraints for the biofuel supply chain model are given below:

qt≤qmax (6)

IQi,t≥SIlbi (7)
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such that,

i∈[1,2], k∈[1,10], t∈[1,12] (16)

The decision parameters are: qt, IQi,t, SQi,k,t, PPi,k,t, PQi,k,t and BRi,t. Detailed parameter settings of the 
biofuel supply chain model used in this work is available in Tan et al., (2017).

CUCKOO SEARCH

Similar to swarm intelligence techniques, CS is a population-based stochastic search and optimization 
algorithm (Mareli and Twala, 2017; Joshi et al., 2017). CS was originally inspired by brood parasitism 
often found among some species of cuckoo birds. The parasitism occurs when the cuckoo birds lay their 
eggs in the nests of other bird species (non-cuckoo birds). In a CS algorithm, a search pattern corresponds 
to a nest - where an individual attributed to a search pattern is represented by a cuckoo egg. Thus the 
cuckoo egg symbolizes a potential solution candidate to the optimization problem - which will be tested 
by the fitness function. Then the solution will be accounted for in subsequent iterations to see if it is fit 
(fulfilling the fitness criteria). Otherwise the solution (egg) would be discarded and another candidate 
solution would be considered. This way the solution to the optimization problem would be iteratively 
improved as the technique explores the search space. The stochastic generator of the CS technique is 
based on the heavy-tailed random walk probability distribution, Lévy flights. The equation for the itera-
tive candidate solution i and iteration t for the CS algorithm is given as:

y y Levyi
t

i
t� � � � � �1 � �  (17)

such that the Lévy distribution is given as follows:

Levy(λ) = t-λ (18)

where t is the random variable, β>0 is the relaxation factor (which is modified based on the problem at 
hand) and λ∈(1,3] is the Lévy flight step-size. With t≥1, λ is related to the fractal dimension and the 
Lévy distribution becomes a specific sort of Pareto distribution. The CS algorithm is based on a few fun-
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damental philosophies. For instance each cuckoo bird lays a single egg at one time and randomly places 
the egg in a selected nest. The second being: via fitness screening, the best egg (candidate solution) is 
carried forward into the next iteration. The worst solutions are discarded from further iterations. The nests 
represent the objective space (or the optimization problem landscape). The parameter setting for the CS 
technique used in this work is shown in Table 1 while its respective algorithm is given in Algorithm 1:

Algorithm 1: Cuckoo Search (CS)

Step 1: Initialize algorithmic parameters; y
i
, β, λ, N

Step 2: Define parameters in the constraints and decision variable 
Step 3: Via Lévy flights randomly lay a cuckoo egg in a nest
Step 4: Define fitness function based on solution selection criteria
Step 5: Screen eggs and evaluate candidate solution
     IF: fitness criteria is satisfied
          Select candidate solution (egg) to be considered in the next 

iteration, n+1      

     ELSE: fitness criteria is not satisfied
          Discard candidate solution (egg) from further iterations 

Step 6: Rank the best solutions obtained during fitness screening 
Step 7: If the fitness criterion is satisfied and t= Tmax

  halt and print 

solutions,else proceed to Step 3

RANDOM MATRIX THEORY

Random Matrix Theory (RMT) is a robust mathematical technique used to describe the behavior of 
complex systems. Due to its applicability to a vast range of systems, RMT is known to exhibit universal-
ity – a property of global symmetries shared by many systems within a certain symmetry class. In some 
sense RMT is a generalization of conventional statistical systems that often consists of matrices with 
fixed eigenvalues. In RMT, the eigenvalues themselves are statistically variant fitting into a probability 
distribution. This way RMT deals with the statistical behavior of the eigenvalues of random matrices. 

Table 1. CS Settings

Parameters Values

Total Number of Eggs (N) 20

Number of nests, nests 4

Lévy flight step-size, λ 1.5

Relaxation factor, β 
Maximum number iteration, Tmax

0.8 
300
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On the other hand, the random matrices have stochastic entries which are described by a distinct prob-
ability distribution function. Therefore in RMT there exists two probability distributions describing: the 
random matrix entries and the eigenvalue spread. The nearest neighbor spacing probability distribution 
(Schweiner et al., 2017) of eigenvalues is given by Wigner’s Surmise:

P s A s B si
i

i( ) exp( )� � 2  (19)

where s is the eigenvalue spacing, Ai and Bi are constant parameters. The normalized spacing, s and the 
mean spacing s is as follows:

s
s

n n�
��

�
�

�

�
��� �1 such that s n n� ��� �1  (20)

where λn is the nth eigenvalue sequentially such that λ1<…<λn<λn+1. The first type of random matrices are 
those that are modeled based on complex quantum systems (which have chaotic classical counterparts). 
The index i represents systems falling into this type of RMT theory - whereby i = 1, 2 and 4 denotes 
the Gaussian Orthogonal Ensemble (GOE) (Krishnan et al., 2017), Gaussian Unitary Ensemble (GUE) 
(Arguin et al., 2017) and Gaussian Symplectic Ensemble (GSE) (Rehemanjiang et al., 2016) spacing 
distributions respectively (Schierenberg et al., 2012). These spacing distribution are given as follows:

i.  i.  Gaussian Orthogonal Ensemble (GOE)

P s s s1

2

2 4
( ) exp( )� �

� �
 (21)

ii.  ii.  Gaussian Unitary Ensemble (GUE)

P s s s2 2

2 232 4
( ) exp( )� �

� �
 (22)

iii.  iii.  Gaussian Symplectic Ensemble (GSE)

P s s s4

18

6 3

4 22

3

64

9
( ) exp( )� �

� �
 (23)

The second type of random matrix is employed to model complex quantum systems which have in-
tegrable classical counterpart (non-chaotic). The spacing distribution for such random matrices usually 
obey the Poisson process:

Po(s) = exp(-s) (24)
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These ensembles describe the probability density functions governing the random matrix entries. The 
constants, Ai and Bi are selected such that the following averaging properties are respected:

dsP si � � �
�

�
0

1  (25)

dsP s si � � �
�

�
0

1  (26)

RANDOM MATRIX GENERATORS

Conventional metaheuristics are equipped with stochastic generators also known as the random genera-
tor component of the algorithm. This component randomly initializes the search of the metaheuristic, 
positioning the start point of the search process in the objective space. The technique then iteratively 
improves the quality of the solution as the search progresses. Previous works have been done where dif-
ferent types of stochastic generators were experimented and their impacts on the performance of certain 
metaheuristics were evaluated (Ganesan et al., 2018; Ganesan et al., 2016a; Ganesan et al., 2016b). In 
those works, it was observed that the changes in the type of stochastic generators do influence the results 
of the optimization efforts.

RMT could be considered as a generalization of conventional statistical systems. RMT was initially 
founded and used to solve problems involving systems with high levels of complexity - where the eigen-
states of the systems are non-stationary and conventional stochastic techniques breakdown. Examples 
of such systems are: the behavior of heavy nuclei (Firk and Miller, 2009), energy flows in molecules 
(Leitner, 2005), stability of large ecosystems (Gibbs et al., 2017) and properties of a gas of charged 
particles (Coulomb gas) (Cugliandolo, 2017).

In essence RMT deals with complex systems with a network of many interacting components. Similar 
problems have been found in real-world optimization – where the problems are large-scale and often 
contain many interacting parameters which are correlated in a complicated way. The natural extension 
to the conventional metaheuristics which enables it to deal with large-scale complex problems would be 
the generalization of its stochastic generator using RMT (creating a random matrix generator). In this 
spirit, the probability distribution function which randomizes the metaheuristics’ initialization is modified 
using RMT. The proposed algorithmic technique for creating a random matrix generator is as follows:

Algorithm 2: Random Matrix Generator

Step 1:  Generate random eigenvalue spacings, s from a Poisson/GUE/GOE/GSE
Step 2:  Determine the average eigenvalue spacing, Δλ
Step 3:  Set initial eigenvalue, λ0
Step 4:  Set initial n x n matrix, Hij
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Step 5:  Determine consequent eigenvalues, λi

λi+1 = λi + Δλ 

Step 6:  Determine n x 1 eigenvector, Ei:

E Hi ij
j

i� �� �  

Step 7:  Generate random variables from a Gaussian probability distribution function endowed 
eigenvector as the variance, σ2=Ei:

P x
E

x
Ei

i i

( ) exp� �
�� ��
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1

2 22

2

2
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RESULTS AND ANALYSIS

In this work, the objective functions of the MO biofuel supply chain problem was combined into a single 
function using the weighted sum approach. This procedure effectively transforms the MO problem into 
a single-objective optimization problem which can be solved for different weight values. The summing 
property for the weights are given as follows:

wi
i m�
� �
1

1
,..,

such that wi∈(0,1) (27)

where the index i represents the individual weights and m is the maximum number of objectives (which is 
equivalent to the maximum number of weights). Due to the stochastic nature of the algorithms employed 
in this work, the methods were executed multiple times (3 executions) and the best solution was sampled. 
28 variations of the weights were considered to construct the Pareto frontier - at which the individual 
solutions were classified as best, worst and median. The individual solutions were measured and ranked 
using the hypervolume indicator (HVI) (Jiang et al., 2015; Bringmann and Friedrich, 2013). The HVI 
effectively measures the dominance levels of solutions to a MO optimization problem. While using the 
HVI, the nadir point is commonly employed as a reference (or basis) during measurement. Hence the nadir 
point is considered as the most non-dominant point - where its exact value is used consistently on all the 
results obtained in this work. Considering the nadir point, the HVI is computed and scaled as follows:
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where x1, x2 and x3 are individual candidate solutions. The ranked weighted individual solutions obtained 
using the CS approach is provided in Table 2. The entire frontier constructed using the CS approach is 
shown in Figure 1:

Using the Poisson-CS approach, the resulting ranked individual solutions is given in Table 3 while 
its associated Pareto frontier is depicted in Figure 2.

Table 4 and Figure 3 provides the ranked individual solutions and the Pareto frontier obtained using 
the GSE-CS algorithm.

The ranked individual solutions as well as their respective weights for the GOE-CS and GUE-CS 
are given in Tables 5 and 6. Figures 4 and 5 depicts the solutions representing the entire Pareto frontier.

In addition, the HVI was used to measure the overall level of dominance for the entire Pareto frontier 
generated by each technique employed in this work. Figure 6 shows these degrees of dominance:

Figure 6 shows that the most dominant frontier was obtained using the GOE-CS followed by the con-
ventional CS technique. Interestingly, the other three techniques improved with random matrix generators 
produced the least dominant frontiers - GUE-CS, Poisson-CS and GSE-CS respectively.

The most dominant individual solution was achieved by the GOE-CS technique followed by the 
Poisson-CS and CS techniques (see Tables 5, 3 and 2). The least dominant individual solutions were ob-
tained using the GSE-CS and GUE-CS respectively (see Tables 4 and 6). To a high degree the dominance 

Table 2. Ranked individual solutions for the CS technique

Description Best Median Worst

weights

w1 0.3 0.2 0.6

w2 0.2 0.6 0.3

w3 0.5 0.2 0.1

Objective functions

PR 513,600,000 511,207,000 513,417,000

SW 1,018,670 1,021,820 1,020,790

Env 142,326 101,600 70,408.1

Iterations t 52 44 49

Metric HVI 7,307.18 5,193.35 3,594.96

Table 3. Ranked individual solutions for the Poisson-CS technique

Description Best Median Worst

weights

w1 0.4 0.4 0.3

w2 0.4 0.5 0.4

w3 0.2 0.1 0.3

Objective functions

PR 245,476,000 442,101,000 282,918,000

SW 1,006,110 1,004,330 1,004,940

Env 462,609 6,895.43 1,117.03

Iterations t 2 198 10

Metric HVI 11,241.33264 258.5735346 3.282591965

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



217

Multiobjective Optimization of a Biofuel Supply Chain Using Random Matrix Generators
 

Figure 1. Comparative Pareto frontier from the CS technique
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levels of the individual solutions were consistent with that of the entire Pareto frontier. For example in 
both instances the GOE-CS and CS techniques are the top three most dominant techniques. Similarly 
the GSE-CS, GUE-CS and the Poisson-CS came in lower in terms of dominance in both respects. It 
could be observed that the techniques that managed to focus their individual solutions at the optimal 

Table 4: Ranked individual solutions for the GSE-CS technique

Description Best Median Worst

weights

w1 0.2 0.3 0.5

w2 0.5 0.6 0.2

w3 0.3 0.1 0.3

Objective functions

PR 457,778,000 307,741,000 353,240,000

SW 1,004,270 1,004,690 1,004,450

Env 36,541.3 2,741.15 1,050.19

Iterations t 215 27 78

Metric HVI 1,614.146034 53.12461162 1.758080756

Table 5. Ranked individual solutions for the GOE-CS technique

Description Best Median Worst

weights

w1 0.6 0.2 0.1

w2 0.2 0.2 0.7

w3 0.2 0.6 0.2

Objective functions

PR 320,196,000 311,556,000 314,295,000

SW 1,004,690 1,004,800 1,004,820

Env 405,964 200,519 141,623

Iterations t 47 35 40

Metric HVI 12,857.6503 6,163.962109 4,382.82702

Table 6. Ranked individual solutions for the GUE-CS technique

Description Best Median Worst

weights

w1 0.5 0.4 0.2

w2 0.3 0.2 0.7

w3 0.2 0.4 0.1

Objective functions

PR 337,985,000 365,898,000 304,589,000

SW 1,004,570 1,004,440 1,004,660

Env 156,623 17,765 1,158.42

Iterations t 64 95 25

Metric HVI 5,215.785325 608.3501587 4.783774438
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Figure 2. Pareto frontier from the Poisson-CS technique
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Figure 3. Pareto frontier from the GSE-CS technique
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region of the objective space (as indicated in Figure 4) have a higher overall level of dominance. Besides 
GOE-CS, the conventional CS technique generates many individual solutions at that region (refer to 
Figure 1). Other techniques tend to generate solutions at other suboptimal regions in the objective space. 
For instance the Poisson-CS technique (in Figure 2) generates solutions at very low values of the Env, 
objective function while the GSE-CS technique (in Figure 3) generates scattered individual solutions 
which are non-uniformly distributed. On the other hand, the GUE-CS (in Figure 5) produces a relatively 
uniform distribution of solutions in the objective space - however these solutions are not located in the 
optimal region.

It is important to note that the Poisson-CS seems to behave in a contradictory way when the dominance 
of its individual solutions are compared with the dominance of the entire Pareto frontier. The Poisson-CS 
can be seen to have a high level of individual solution dominance (second to the GOE-CS; 11,241.33) 
but an extremely weak frontier dominance; ranking second last to the GSE-CS approach (see Figure 6). 
It is possible that the Poisson-CS approach seems to be highly incompatible with the problem at hand 
in the ‘No Free Lunch Theorem’ sense (Whitley, 2014). Such incompatibility could be observed in the 
anomalous solutions generated by the technique (as indicated in Figure 2).

It may be that in this work one of the risks of modifying the stochastic generator has been identified. 
Since the stochastic generator is a core component in metaheuristics, modifying it changes the very nature 
of algorithm. This could significantly boost the technique’s performance or it could negatively impact 
the technique by worsening its optimization performance - as observed in the case of the Poisson-CS 
technique in this work. The overall computational time taken for all the techniques utilized in this work 
to generate the entire Pareto frontier is shown in Figure 7:

The execution times of all the techniques in Figure 7 are observed to be consistent with the frontier 
dominance values (see Figure 6). The techniques generating the most dominant frontiers (GOE-CS, 
CS and GSE-CS) spent less time searching through the objective space as compared to the Poisson-CS 
as well as GUE-CS approaches. Due to their efficiency in reaching the optimal region in the objective 
space, execution time for these techniques are short.

In this work, the solutions produced by the all the techniques were found to be feasible as none of 
the constraints were violated. The algorithmic complexity of the techniques employed are fairly similar 
since no additional computational steps were added into the existing CS approach. The only difference 
is that the stochastic generators are replaced with different types of RMT-based distributions (Poisson, 
GUE, GOE and GSE). No premature convergence was observed during the execution of the techniques 
in this work. The fitness criteria specified in all the techniques were respected during program execution. 
All techniques implemented throughout this work performed stable computations.

CONCLUSION AND RECOMMENDATIONS

In this work, the GOE-CS technique outperformed all other approaches. From the analysis of the results 
of the computational experiments, it can be observed that the RMT-based stochastic generators could 
significantly affect the optimization performance of the CS method. The overall Pareto dominance pro-
duced by the GOE-CS was 34.276% higher than the conventional CS. The improved performance of the 
GOE-CS is reflected in its computational efficiency (20.931% faster convergence). Thus it can be seen 
that the RMT-based improvement to the conventional CS approach is very suitable to be employed in 
highly complex environments such as the MO biofuel supply chain problem.
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Figure 4. Pareto frontier from the GOE-CS technique
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Figure 5. Pareto frontier from the GUE-CS technique
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Although the GOE-CS performed better than the conventional CS, some RMT-based techniques 
was also observed to negatively impact algorithmic performance - as observed in the results produced 
by the Poisson-CS approach. Therefore further tests involving RMT-based stochastic generators could 
be conducted in future works. For instance, numerical experiments on the performance of RMT-based 
stochastic generators on other metaheuristics could be carried out - e.g. particle swarm optimization 

Figure 6. Degrees of dominance of the all the Pareto frontiers

Figure 7. Degrees of dominance of all the all the Pareto frontiers
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(Mousavi et al., 2016), differential evolution (Ganesan et al., 2015), bat algorithm (Singh et al, 2015) 
and fish swarm algorithm (Luan et al., 2016). In addition, research could also be done on methods to 
counter the effects of the unsatisfactory performance encountered by some RMT-based techniques (like 
the Poisson-CS).
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APPENDIX

Biofuel Supply Chain Parameters

AC abatement cost of carbon dioxide [yuan/kg]
CEicbik increment of carbon dioxide emissions with loading each additional ton of biomass fuel per 

kilometer when broker k collects biomass fuel i [kg/t and km]
AQmaxi,t maximum available quantity of local biomass fuel i in month t [t/month]
ACS average electricity consumer surplus [yuan/kWh]
CEitpk increment of carbon dioxide emissions with loading each additional ton of fuel per kilometer 

when broker k transports biomass fuel to biomass power plant [kg/t and km]
CEncbik carbon dioxide emissions per kilometer when broker k collects biomass fuel I with no-load 

conveyance [kg/km]
CEntpk carbon dioxide emissions per kilometer when broker k transports biomass fuel to biomass power 

plant with no load conveyance [kg/km]
CET carbon dioxide emissions of thermal power plant for unit power generation [kg/kWh]
Dcbik average transport distance when broker k collecting biomass fuel i [km]
Dtpk transport distance between broker k and biomass power plant [km]
E efficiency of biomass power plant [decimal fraction]
EC electricity consumption rate of biomass power plant [decimal fraction]
extraY1 first extra cost of excessive biomass power plant fuel inventory [yuan/month]
extraY2 second extra cost of excessive biomass power plant fuel inventory [yuan/month]
ERk expected return of broker k [decimal fraction mass/year]
FCbk fixed cost of broker k [yuan/year]
FCp fixed cost of biomass power plant [yuan/year]
GC unit generation cost of biomass power plant [yuan/kWh]
GS government subsidies to biomass power generation [yuan/kWh]
GT government tax revenues from biomass power plant [yuan/year]
HVi heat value of biomass fuel i [kJ/kg]
HVe heat value of electricity [kJ/kWh]
HVmax maximum heat value of mixed fuel [kJ/kg]
HVmin minimum heat value of mixed fuel [kJ/kg]
IQi,0 inventory quantity of biomass fuel i at the beginning of month 1 [tonnes]
CEcb carbon dioxide emissions during collecting biomass fuel [kg]
CEtp carbon dioxide emissions during transporting biomass fuel to biomass power plant [kg]
EIC extra inventory cost of biomass power plant [yuan]
IQi,t inventory quantity of biomass fuel i at the end of month t [tonnes]
PPi purchase price of biomass fuel i from brokers [yuan/t]
PQik,t purchase quantity of biomass fuel i by broker k in month t [t]
qt electricity generation of biomass power plant in month t [kWh/month]
Rt conversion rate from biomass fuel to electricity in month t [kg/kWh]
IQmax maximum inventory quantity of biomass power plant [t]
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IL rate of inventory loss [decimal fraction/month]
LCcbik load capacity of conveyance when broker k collects biomass fuel i [t]
LCtpik load capacity of conveyance when broker k transports biomass fuel i to biomass power plant [t]
MCmaxi maximum moisture content of biomass fuel i required by biomass power plant [decimal frac-

tion mass]
MCoriit original moisture content of biomass fuel i in month t [decimal fraction mass]
MCaftik moisture content of biomass fuel i after processing by broker k [decimal fraction mass]
P on-grid price of biomass power plant [yuan/kWh]
PQmax, k maximum purchasing quantity of biomass fuel by broker k [t/month]
qmax maximum monthly electricity generation quantity of biomass power plant [kWh/month]
Qmax maximum annual electricity generation quantity of biomass power plant [kWh/year]
Qmin minimum annual electricity generation of biomass power plant [kWh/year]
RIub1 first upper bound of reasonable fuel inventory [t]
RIub2 second upper bound of reasonable fuel inventory [t]
SIlbi lower bound of safety inventory for biomass fuel i [t]
SC unit storage cost of biomass power plant [yuan/month]
SQminik minimum supply quantity of biomass fuel i from broker
TCcbik average unit transportation cost of broker k when collecting biomass fuel i [yuan/ km]
TCtpik average unit transportation cost of broker k when transporting biomass fuel i to biomass power 

plant [yuan/km]
WRik,t ratio of the weight of biomass fuel i after processing to the weight before processing by broker k 

in month t [decimal fraction mass]
APik,t average price of broker k buying biomass fuel i in month t [yuan/t]
BCi,t biomass fuel i consumption in month t [t]
BRi,t blending ratio of biomass fuel i in mixed fuel in month t [decimal fraction mass]
CER carbon dioxide emissions reduction [kg]
CETeq carbon dioxide emissions of thermal power plant for power generation equal to biomass power 

plant [kg]
CEB carbon dioxide emissions of biomass power plant [kg]
SQik,t supply quantity of biomass fuel i by broker k in month t [t]
VCp total variable cost of biomass power plant [yuan/year]
Y1t binary variable to determine whether the inventory is over RIub1 at the end of month t
Y2t binary variable to determine whether the inventory is over RIub2 at the end of month t
PR Profits (yuan)
SW Social Welfare (yuan)
Env Environmental Benefit (kg/power station)

Random Matrix Theory and CS

P1(s) Probabilistic Spacing Distribution for Gaussian Orthogonal Ensemble (GOE)
P2(s) Probabilistic Spacing Distribution for Gaussian Unitary Ensemble (GUE)
P3(s) Probabilistic Spacing Distribution for Gaussian Symplectic Ensemble (GSE)
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Po(s) Probabilistic Spacing Distribution for Poisson Distribution
s Eigenvalue Spacing distribution
λ Eigenvalue
Δλ Eigenvalue Interval
Ei Eigenvector
Hij Initial Matrix
σ2 Statistical variance
μ Statistical Mean
wi Weights for the weighted sum method
Tmax Maximum limit of function evaluations
m Maximum number of objective functions
HVI Hypervolume Indicator
β Relaxation factor
iter Number of algorithm iterations
t Random Variable
yti Candidate solution
Levy(λ) Lévy Distribution
N Total Number of Eggs
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ABSTRACT

Deep learning opens up a plethora of opportunities for academia and industry to invent new techniques 
to come up with modified or enhanced versions of standardized neural networks so that the customized 
technique is suitable for any specialized situations where the problem is about learning a complex map-
ping from the input to the output space. One such situation lies in a farm with huge cultivation area, 
where examining each of the plant for any anomalies is highly complex that it is impractical, if not 
impossible, for humans. In this chapter, the authors propose an optimized deep learning architectural 
model, combining various techniques in neural networks for a real-world application of deep learning 
in computer vision in precision farming. More precisely, thousands of crops are examined automatically 
and classified as healthy or unhealthy. The highlight of this architecture is the strategic usage of spatial 
and temporal features selectively so as to reduce the inference time.

INTRODUCTION

There are numerous types of neural networks being invented and introduced on a daily basis. While such 
new neural network models can be designed and evaluated quickly, configuring them in a way to get the 
best out of them is quite challenging. That is why “configuring neural network models” is often termed 
as a “dark art.” The reasons for the lack of guidance can be attributed partly to the fact that many of the 
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techniques in machine learning space quickly lose relevance as faster and higher power hardware with 
superior architecture replace older hardware at a rapid rate. Another prime reason is that there can never 
be one best algorithm that works best for all cases as it is not possible to analytically evaluate the optimal 
configuration for a given problem and data set. It is always possible to tweak the configurations to make 
improvements to speed of learning, right-fitting of the model, accuracy of inference, etc.

Moreover, data for neural networks will be from several different sources. For example, in precision 
farming, data will come from multiple sensors, cameras, etc. Some of these might be complex data like 
multispectral images. Many neural network models can’t handle highly complex data. Others may not 
accurately capture the relationships between different variables. Hence there is a need to create a neural 
network system that would take simple and complex data as input and the system should be capable of 
working around the missing variables.

There are also some newer neural network architectures that can take multiple, heterogeneous in-
puts and extract features on their own and share the “learnings” with downstream sub-systems, thereby 
facilitating creation of an optimal learning system. Developing such deep learning systems working 
on heterogeneous data is very challenging since each data type may need distinct pre-processing steps 
and feature engineering. Hence it is still very much an open area of research and is very often heavily 
dependent on the specific problem on hand.

BACKGROUND

As evidenced by the detailed survey captured in (Radhakrishnan & Vijayarajan V., 2019), even as there 
are various researches happening in Deep Learning in the context of Farming 4.0, the economic viability 
of its application is still very less. The literature survey further provides research direction to optimize 
deep learning applications for monitoring crop health so as to make this technology useful to farmers. 
Hence the domain considered for this research work of optimizing deep learning system is “Precision 
Floriculture” in Green House cultivation where the produce is cut flowers.

That said, there are various researches being carried out to employ Deep Learning to classify plants 
based on their botanical parts like leaf, flower, etc. Han et al. (Han, Seng, Joseph, & Remagnino, 2017) 
investigated the use of deep learning to extract discriminatory features from images of leaves by learn-
ing and use them as classifiers to identify plant species. Their results demonstrate that compared to 
using hand crafted features of leaf images, learning the features using CNNs do provide better feature 
representations.

Gurnani et al. (Gurnani, n.d.) developed a deep learning framework to categorize flowers by do-
ing transfer learning from two famous CNN architectures called GoogleNet which was pre-trained on 
ILSVRC2014 dataset and AlexNet which was pre-trained on ILSVRC2012 dataset and found their 
accuracies to be 47% and 43% respectively. By the way, ILSVRC stands for ImageNet Large Scale 
Visual Recognition Competition. In this study they confirmed the popular claim by researchers that the 
performance of the neural network will be commensurate with the depth of the network. This claim is 
further ascertained by Liu et al. (Liu, Yang, Cheng, & Song, 2018) who designed a very deep leaf clas-
sification model using a ten-layer CNN based on LeNet architecture to classify 32 species of plants and 
achieved an accuracy rate of 87.92%.

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



235

Optimized Deep Learning System for Crop Health Classification
 

Further, the same LeNet architecture was used by Amara et al. (Amara, Bouaziz, & Algergawy, 2017) 
to build a deep neural network to detect two common banana diseases called banana sigatoka and banana 
speckle from banana leaves. Unlike other earlier experimental setups, they have used images captured 
under challenging conditions such as illumination, complex background, different images resolution, 
size, pose and orientation. The key take away from their work is that better accuracy of more than 90% 
is achievable using color images opposed to lower accuracy of about 85% using grey scale images. The 
authors achieved best performance with a train-test data split of 80%-20%.

Jeon et al. (Jeon & Rhee, 2017) proposed a deep learning method to classify leaves. They demonstrated 
that a variant of GoogleNet model with a network depth of 22 layers of inception modules achieved a 
recognition rate of more than 94%. Similarly for classification of plant species using leaf features, Tan 
et al. (Tan, Chang, Abdul-kareem, Yap, & Yong, 2018) proposed a model called D-Leaf for feature ex-
traction and compared the same with pre-trained and fine-tuned AlexNet models. The features extracted 
from these models were classified using various machine learning classifiers. The best performance 
achieved was using ANN for classification with a result of about 95%.

Hiary et al. (Hiary, Saadeh, Saadeh, & Yaqub, 2018) improved classification accuracy by employing a 
2-step deep learning model in which first step dealt with segmenting the flower using Fully Convolutional 
Network (FCN) thereby reducing the surrounding clutter and the second step involved a CNN classifier 
initialized using the trained FCN which itself was initialized from the VGG-16 model that provided the 
best result of about 97% for classifying flower images from ImageNet dataset.

Previous studies reveal that many variants of convolutional neural network models take multiple data 
types including images as inputs, extract features from the images and classify the images very well 
as trained. Yet there seems no good strategy for cases where there are different sets of secondary data 
that can be included to increase the classification accuracy and speed of inference. In such cases where 
secondary data can also be included, the data would become enormously large demanding very high 
computational and storage power. Hence the decision of augmenting additional input data can be made 
progressively. For example, secondary data may be augmented based on the confidence score of the 
model for a particular class thereby reducing the space and time complexity. If the difference between 
the probabilities of the outputs is not significantly high, then the classifier model with augmented data 
(other input data relevant to the class) can further be employed to improve the confidence score. As a 
result, there is clearly a need to create an optimization technique that leverages the spatial and temporal 
features to improve efficiency and accuracy of Deep Neural Networks. It is worthwhile to invent an 
optimization strategy combining multiple proven neural network models to progressively improve the 
efficiency and accuracy of Neural Networks based on earlier results and their confidence scores to in-
clude more spatial and temporal data as necessary.

Thus, to summarize, the mission is to build an optimized Deep Learning System that starts with a 
simple classification using select spatial data (features of flowers) and based on confidence scores of 
the prediction outcomes of this relatively simpler base Convolutional Neural Network model, the system 
should move on to employing specific additional models to use additional spatial data (features from 
leaves) in an attempt to ascertain the crop health. The aim is to put the classification inference speed 
ahead of the classification accuracy. This is achieved by using simpler CNN that uses only spatial features 
of flower to distinguish healthy crops from unhealthy crops. Only when the confidence score is low in 
this step, will the algorithm proceed to use more spatial features, this time from leaves. Further, only if 
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the algorithm is NOT able to ascertain that the crop is healthy (or classifies it as unhealthy) using these 
spatial features the algorithm proceeds to use temporal data. This way the system evolves the classifica-
tion by augmenting newer temporal data into the model.

ASSUMPTIONS AND CONSTRAINTS

There are some key assumptions made and constraints defined while designing this architecture. These 
provide a foundation to base the research work. The constraints are not true limitations of the system 
– they are there only to provide clarity to the scope of the research work. Relaxing a constraint will 
mandate a modification to the architecture.

1.  While there are so many ways in which the crop stress gets manifested, this work considers only the 
symptoms showing up in the flowers as primary and considers the difference in green wavelength 
reflectance showing up on the leaves as secondary.

2.  Wilting, malformed shapes, double-face or drooping of flowers and yellowing of leaves are the 
anomalies used to categorize a crop as unhealthy. The rationale for this is that most of the causal 
factors of an unhealthy crop will manifest as these anomalies. Table 1 lists some of the major 
anomalies in cut-flowers and their causal factors.

3.  The scope has been confined to only gerbera flowers of light pink colour so that the training data 
can be limited. To make the system colour agnostic, varieties of colours may be included for train-
ing, but data size needs to be proportionately large.

4.  The RGB (also called true color image wherein each pixel is represented as varying intensities 
in 3 channels, one each for Red, Green and Blue colors) and NIR images (Near-InfraRed images 
captured using special sensors that are extremely sensitive instruments, optimized to measure 
the absorbance of samples at specific wavelength regions from 780nm to 1300nm which lies just 
outside the visible spectrum) are captured at defined schedule for learning and inference.

Table 1. Common anomalies and their important causal factors

Anomaly Causal factor Remark

Double-faced Gerbera flower Nutrient imbalance Two-facedness is a physiological disorder caused by imbalance of 
nutrients.

Wilted flower / Malformed flower

Unsuitable Temperature 
and Humidity

The favourable temperature is 
10-25°C and optimum humidity is 70 – 80%

Pest infestation Pests like thrips & mites make flowers malformed. Thrip infestation 
is the prime reason for distorted shapes in the flowers of gerbera crop

Water Stress Excess or insufficient water in soil will cause flower wilting

Flower bent
Malnutrition Loss of cell turgidity due to under nutrition (Eg: insufficient 

Calcium)

Unsuitable Temperature 
and Humidity Harsh weather causes drooping of flowers

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



237

Optimized Deep Learning System for Crop Health Classification
 

5.  The images for training and inference are obtained directly from above the crop and thus only leaves 
and flowers need to be seen in the images.

6.  Classification results are required only once, though inference will be run for 3 consecutive days 
as elaborated in detail in Inference Methodology section.

7.  The finer details on the implementation of any standard neural networks (like CNN) used as sub-
systems are not discussed elaborately and only the non-standard changes (aka customizations) in 
the implementation are elaborated. It is assumed that the readers of this chapter already have a 
good understanding of the workings of standard neural networks.

DATA COLLECTION AND PREPARATION SCHEME FOR TRAINING

In order to train the system with spatio-temporal features impacting crop health, training data was col-
lected from a one-acre farm cultivating about 20,000 Gerbera crops as follows.

1.  RGB-NIR Images are collected at 9AM daily for 1000 crops for 3 consecutive days. Data from 
across days must be from same crops and next days’ data must be collated with corresponding data 
from the previous days. The rationale for capturing this data at same time is that ambient variables 
like air temperature and humidity conditions around the crops play a major role in determining 
the morphology of the leaves and flowers. Moreover, restricting data only for 3 days is due to the 
similar fact that the morphological changes to the flower and leaves are kept to a reasonable limit.

2.  Data Augmentation: Using the famous technique called “data augmentation”, more data gets gener-
ated from available data. In this case, 2000 random images from the image data store are duplicated 
and rotated to random angles and some flipped vertically and/or horizontally, thus making the image 
data store size to 5000. Other common techniques like warping and scaling are not employed to 
generate more data, because these transformation operations will change the morphology of flower 
images and may lead to inaccuracies in classification.

3.  Labelling and Creation of ground truth: Each of the images now goes through a laborious process 
of labelling using tools like LabelBox or Pascal VOC. In this case, there are only two labels per 
image, viz, Flower and Leaf. Thus, the label data store is created for the image data store contain-
ing 5000 RGB images.

4.  Use FCN (Fully Convolutional Networks, explained later in this chapter) to create mask using 
segmentation of the flower from each RGB image and applying the same in the image’s corre-
sponding NIR plane to remove the pixels representing the flowers. The removal of these pixels 
corresponding to flowers leaves the NIR plane only with the leaves pixels. This step is important 
to accurately calculate the NDVI (Normalized Difference Vegetative Index) of the crop. The FCN 
method is elaborated in the next sections.

5. Using the Red and NIR bands of the RGB-NIR images, NDVI images are created. NDVI is calculated 
on a per-pixel basis as the normalized difference between the red and near infrared bands from an 
image:

NDVI = (NIR - RED) / (NIR + RED) 
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where, NIR is the near infrared band value for a cell and RED is the red band value for the cell. NDVI 
can be calculated for any image that has a red and a near infrared band. The biophysical interpretation 
of NDVI is the fraction of absorbed photo-synthetically active radiation. Healthy leaves absorb most of 
red and blue but reflect only some green. On the contrary, healthy leaves reflect lot more Infrared and 
less red and blue compared to sick or dead leaves. Moreover, since it is a ratio of two bands, NDVI helps 
compensate for variation in illumination within an image owing to slope and variations in images due 
to factors like time of day when the images were acquired. Therefore, NDVI proves helpful to compare 
images over time and spot changes in crop health. This will be used as a temporal feature in this clas-
sification system.

6. Similar to NDVI, the Blue and NIR bands of the RGB-NIR images were used to create SI-NDVI im-
ages (Single Image NDVI) using the below formula:

SI-NDVI = (NIR - BLUE) / (NIR + BLUE) 

where, NIR is the near infrared band value for a cell and BLUE is the blue band value for the cell. 
Beisel et al., in their work (Beisel et al., 2018), elaborated how single-image normalized difference 
vegetation index (SI-NDVI) can be helpful in early detection of plant stress.

7.  Then, for each NDVI and SI-NDVI image, NDVI histogram is constructed and statistical data are 
calculated as follows and stored in a 1x4 vector.

 ◦ Mean = Sum of all pixel values / total number of pixels in the image
 ◦ Variance (S2) = average squared deviation of pixel values from mean
 ◦ Standard deviation (S) = square root of the variance
 ◦ Percentage of pixels that lie in the interval: - S < x < + S

This 1x4 vector for NDVI is augmented with 1x4 vector of SI-NDVI to create 1x8 vector, called as 
VI vector. Once this step is complete, it becomes clear on how to present the NDVI and SI-NDVI data 
to the input layer of the neural network.

8.  Normalizing and Standardizing: All the numerical data in VI vector are min-max scaled to the 
range [0, 1] and are then concatenated into a single feature vector (FV) to form the input into the 
multi-layer perceptron model.

Formatting the data correctly is one of the key aspects to the success of a Deep Learning System. 
The authors recommend segregating the data for training, validation and testing with a 50%, 25%, 25% 
split respectively.
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STANDARD NETWORKS AS SUBSYSTEMS

Before discussing the overall architecture and methodology, brief explanation of the three standard 
neural networks used as sub-models in the system, standard techniques like one-hot encoding and the 
rationale for using them are discussed in the next sections. Not all the nitty-gritties and internal configura-
tions of each of these standard neural networks are purposefully omitted since these are now becoming 
trivia of neural networks and would also be specific to real world scenarios and their data sets. What is 
more important is the overall architecture involving novel techniques in data collection and preparation 
scheme and efficient interplay of these models to make best use of the spatial and temporal data during 
the inference phase.

MULTI-LAYER PERCEPTRON (MLP) AND RATIONALE FOR INCLUSION

Multi-Layer Perceptron is a type of Feed Forward Artificial Neural Network that should contain one 
input layer, one output layer and one or more hidden layers. The primary difference between a linear 
perceptron and multi-layer perceptron is that linear perceptron will not be able to distinguish non-linearly 
separable data but MLP can do so due to the presence of multiple layers and non-linear activations. MLP 
uses back-propagation for training. Authors selected to use MLP with two hidden layers and sigmoid 
activations for 1x11 feature vector containing numeric data (NDVI stats, SI-NDVI stats, soil moisture, 
temperature and humidity) since it is the simplest deep learning model best suited for binary classifica-
tion when the inputs are purely numeric data. The concept of using multi-layer perceptron for time-series 
analysis of NDVI using remote sensing data to monitor temporal changes in vegetation was discussed 
by Stepchenko et al. in their paper (Stepchenko & Chizhov, 2015). This serves as an inspiration to use 
multi-layer perceptron for observing changes in NDVI and SI-NDVI in the leaves over a period of 3 
days in this experiment.

CONVOLUTIONAL NEURAL NETWORKS (CNN) 
AND RATIONALE FOR INCLUSION

Convolutional Neural Networks are very different from many other networks as they involve layers to 
convolve, which unlike normal layers, all nodes are not connected to all other nodes. Each node only 
focuses only on cells in their neighbourhood, thus trying to identify features like edges and corners. There-
fore CNNs are best suited for image classifications. Hence the authors decided to use the plain vanilla 
CNN for the base model which takes RGB image as input for binary classification. The hidden layers of 
the CNN model used for this binary classification contain a series of three convolutional, nonlinear and 
pooling layers followed by a fully connected layer. ReLu is the activation function for this model and 
max pooling, the most common pooling technique is used for pooling layer with pool size of 3 x 3 pixels.
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FULLY CONVOLUTIONAL NETWORK (FCN - SEMANTIC 
SEGMENTATION) AND RATIONALE FOR INCLUSION

Semantic Segmentation is a technique of classifying each pixel in an image into an object class. In other 
words, this technique assigns a label for each pixel. When convolution is used to classify an input image, 
it gets downsized as it goes through convolution and fully connected layers and outputs a predicted label. 
In the process of convolution, when going deeper, intricate features are obtained at the cost of spatial 
information. On the contrary, shallow layers tend to have more local information. Combining both will 
enhance the result. This is the key concept behind Fully Convolutional Networks (FCN) that serves as 
the basis for semantic segmentation. This technique is clearly explained in the work (Shelhamer, Long, 
& Darrell, 2017) by Shelhamer et al. In this chapter, semantic segmentation is used to identify the pixels 
pertaining to flowers in the RGB image so that these pixels will be zeroed out in the replicated RGB 
image and NIR image. This removal of pixels belonging to flowers from the images ensures that NDVI 
and SI-NDVI are calculated rightfully only for the leaves.

TRANSFER LEARNING AND RATIONALE FOR INCLUSION

Transfer learning is a technique to reduce training burden for new models by reusing the learning done 
by another model. The effectiveness of transfer learning depends on the applicability of low level features 
learned by the pre-trained model to the new models. For example, a model trained to classify birds will 
be more effective when retrained to classify animals than when retrained to classify vehicles. While 
retraining a new model, weights of one or more of the early convolutional layers of the network will be 
reused and last few layers will need to be retrained thus accelerating the training time drastically. For the 
problem on hand, transfer learning is used to retrain the FCN and downstream CNN from the base CNN 
trained for binary classification. Detailed of this retraining is presented later in this chapter.

OTHER MODEL ARCHITECTURES AND RATIONALE FOR NOT USING THEM

One common approach to the scenario of multi-class classification that the authors are proposing a new 
model architecture is to use a binary relevance method like One-Vs-Rest (OVR) or One-Vs-All, where in 
the strategy would be to fit one classifier per class so that deeper insights can be arrived about the plant 
from the perspective of that particular class. For example, an OVR classifier for “pest-infested versus 
other abnormality” would give greater knowledge of pest-infestations on the plant. This way multiple 
labels with varying probabilities can be assigned to each class. Similarly, there are certain architectures 
making use of OVR and ensemble techniques, wherein the results from the individual models are merged 
to predict multiple classes. But in all these architectures, there are many shortcomings for the problem 
on hand. As such there is no possibility of giving additional and appropriate inputs depending on the 
confidence score of the classifier. The relevance of these inputs will greatly improve if they happen to 
multiple data types like numeric and image, but these cannot be fed to the models. Moreover, there is 
no possibility of including temporal data for classification.
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The authors are defining the architecture for this problem wherein there are heterogeneous set of 
input data, like image (RBG), statistical data derived from the histogram of the NDVI image, all going 
into a downstream model with concatenation to predict crop anomaly.

ARCHITECTURE OF THE COMPLETE SYSTEM

Here authors present the overall architecture of the system. As show in figure 1, there are four virtual 
layers in the system. The first layer takes in input data from outside world. These primary inputs to the 
system are RGB and NIR images.

The next layer is also input layer, but this represents the secondary data derived / inferred from one 
of the neural networks or another process within the system and will be used by another neural network 
in the system. The label data-store which get generated by using a labelling tool, the masks that get 

Figure 1. Overall architecture of the complete system
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generated using the RGB images, leaves images that get generated applying the mask onto the RGB and 
NIR images, Vegetative Index vector that created using NDVI and SI-NDVI calculators and morpho-
logical defect categorization data that get generated by one of the neural network models are all part of 
the secondary input data.

The third virtual layer in the system is the most crucial layer that contains all the neural network 
models working in tandem. It is a known fact that deep neural networks are much more powerful than 
shallow networks, but training them is that much harder. Moreover, there will be significant processing 
time during inference as well. The beauty of this architecture lies in the fact that it is a system of networks 
stitched together using multiple sub-models, each tailored to perform specific subtask and share data with 
other sub-models, communicate with each other on the way to determining the crop health. Interesting 
thing to note is that all the sub-models will not be used for all the inference instances. For example, an 
image of a crop might only go through the first CNN model during an inference and when the image is 
classified as that of a “healthy” crop, it will not go through further models at all. More details on this 
are provided in the “Training methodology” and “Inference methodology” sections.

Each of the neural network models in this layer is described below.

Model M0: FCN model for semantic segmentation. This is an internal model, meaning, the output 
of this model is not be delivered to outside world, but is used to generate a mask that helps to carve out 
the flower portion and leave the leaves portion in the RGB and NIR images. These images are used to 
generate the NDVI images and further the VI vectors comprising of the statistical parameters of VI. 
These VI vectors are internally used as inputs by the downstream model, M2.

Input: RGB Image of the crop – scaled down to 64X64. Label data-store.
Output: Pixels pertaining to flower identified. Flower Mask created with flower pixels zeroed out. 

Leaves Mask created with leaves pixels zeroed out. One of the RGB images and its corresponding Flower 
Mask and Leaves Mask are shown in Figure 2.

Model M1: The base CNN binary classifier model which could be one of the off-the-shelf proven 
image classifiers. In order to accelerate training, this model can be retrained after transfer learning from 

Figure 2. An RGB image and its corresponding Flower Mask and the complementary Leaves Mask
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M0 using learning rate of 0.001 and batch size of 10. The only design consideration is that the output 
must be a sigmoid classifier so that the confidence score (probability) of the classification is known. 
The next model will be used during inference only based on this probability. The idea is the health of 
the horticultural crop will reflect in the morphology of the flower which is the ultimate produce of hor-
ticulture. Only when the binary image classifier is unable to classify the crop (read perfect flower) as 
“healthy” with high confidence score or when it is able to classify the crop health as “unhealthy” with 
high confidence score, will the next parameters be used to predict the crop health and further the causal 
factors attributed to the unhealthy crop (if found so).

Input: RGB Image of the crop after applying the flower mask so leaves are removed from the im-
age – scaled down to 64X64.

Output: Binary probabilistic classification of Healthy crop or Unhealthy crop.
Model M2: This is the base MLP binary classifier model which could again be one of the off-the-

shelf proven classifiers based on numeric inputs. Based on the classification confidence score by the 
earlier CNN model only, this subsequent model will be used during inference. The idea is the health 
of the horticultural crop will also reflect in the reflectance of visible and NIR light by leaves. Leaves 
contain a chemical compound called chlorophyll which strongly absorbs the red and blue wavelengths 
in the visible light spectrum of the radiation but strongly reflects green and NIR wavelengths. Higher 
the NDVI, healthier the plant is. NDVI approaches zero as the plant gets unhealthier. Hence VI vector 
is fed as input to this classifier. Only when the binary classifier predicts the crop as “unhealthy”, will 
the crop be shortlisted for further observation on the next 2 days.

Input: VI vector containing mean, variance, standard deviation and pixels percentage within one 
sigma of NDVI and SI-NDVI images.

Output: Binary probabilistic classification of Healthy crop or Unhealthy crop.
The last layer, obviously, the output layer shows the outputs from the various neural networks that 

are sub-models in the system. Outputs from M1 and M2 are predictions of crop health as “healthy” or 
“unhealthy”. Output form M0 is used internally. The true innovation is that the system uses the right 
information for binary classification, like using only the flowers section for CNN image classifier look-
ing for morphological anomalies in flowers and using only the leaves section for MLP classifier looking 
for reflectance (pixel intensities) anomalies of certain wavelengths in leaves.

TRAINING METHODOLOGY

Step 1: First step after collecting RGB-NIR images for 3 consecutive days at a particular time each day, 
is to construct a label data-store. Using a labelling tool, the flowers and background (leaves) are 
labelled in the RGB images and stored in the label data-store.

Step 2: Next step is curating and categorizing the images as that of healthy and unhealthy plants by 
experts after downsizing them to 64x64.

Step 3: Then the process moves on to constructing an FCN (M0) to classify each pixel in the input RGB 
image as either “flower” or “leaves”. Since this is a special CNN, off-the-shelf models trained to do 
binary classification of the image can be retrained after removing the final fully connected layers 
and adding upsampling / deconvolution layers. By using this semantic segmentation technique, 
the pixels pertaining to flowers and those pertaining to leaves in the RGB image are identified.
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Step 4: Each RGB image is duplicated and the pixels corresponding to the spatial location of leaves are 
zeroed out in this duplicated image. Similarly the pixels corresponding to flowers are made as 1. 
This binary image serves as the “flowers mask”. Meaning, when applied on its corresponding RGB 
image only the pixels corresponding to flowers will retain their pixel intensities and all other pixels 
will become zero values. The binary image thus created is complemented – meaning all zeroes 
become ones and vice versa. This new mask called “leaves mask” is now applied on RED, BLUE 
and NIR planes so that only leaves portion of the images will be used rightfully for the NDVI and 
SI-NDVI calculations.

Step 5: Next step is constructing a Convolutional Neural Network (M1) for binary classification. De-
pending on the real world problem, this could again be one of the proven off-the-shelf CNN for 
binary image classification. The input image is fed through three convolution layers and followed 
by that two fully connected (FC) layers, and output one predicted label for the input image which 
is either healthy or unhealthy. All the RGB images containing healthy crop depicted by flower 
without any anomaly are grouped as “healthy” and all images containing flowers with anomalies 
are grouped as “unhealthy”. Training helps the model learn and classify RGB images of crops with 
any anomaly in the morphology of the flower as “unhealthy” crop; all else as “healthy” crop. The 
output layer of this model needs to be sigmoid layer since what is needed is the confidence score 
of the two classes as opposed to true binary classification as either “healthy” or “unhealthy”. The 
purpose of this score is explained later in “Inference Methodology” section.

Step 6: Next, using the RED and BLUE planes of RGB image and NIR image, the NDVI and SI-NDVI 
of the leaves are calculated. Then the mean, standard deviation, variance and percentage of pixels 
within 1 sigma standard deviation are calculated for each NDVI and SI-NDVI image. These sta-
tistical parameters are maintained as Vegetative Index (VI) vector.

Step 7: Preserve the VI vectors belonging to healthy crops and unhealthy crops separately. Train a simple 
Multi-layer perceptron (M2) to do binary classification using the VI vectors as input.

Step 8: The model (M2) needs to be trained once each day using the corresponding data collected dur-
ing the three consecutive days, day 1 (d-2), day 2 (d-1) and day 3 (d). It is pretty obvious that the 
corresponding model of the previous day can be used to do “transfer learning” and retrain the new 
model for that day. Moving in the temporal dimension, the previously obtained VI vector needs to 
be appended to current data. For example, when training the model for day 2, that day’s VI vector 
appended to the day1’s VI vector, thereby providing temporal data to the system. Similarly, when 
training the model for day 3, that day’s VI vector also gets appended to the VI vector containing 
first day and second day data. In deep learning, LSTM (Long Short-Term Memory), GRU (Gated 
Recurrent Units) or any other variant of RNN (Recurrent Neural Network) will be used to model 
networks needing connection to temporal sequences. For the problem on hand, RNNs will be over-
kill since these parameters are modelled much easier. So, the outcome of this step is 3 temporal 
variants for model M2: (M2)d-2, (M2)d-1 and (M2)d

Step 9: So, by end of the training, M0, M1 and three variants of M2 will be available. Among these, 
the latter 4 models are trained to predict one of the two classes, of course using different inputs:
 ◦ Healthy
 ◦ Unhealthy
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INFERENCE METHODOLOGY

This section provides an overview of the inference methodology. The inference objective is to categorize 
thousands of crops as healthy or unhealthy. To be specific, the objective is to arrive at the percentage 
of unhealthy crops and to identify those needing immediate attention. Capturing RGB and NIR images 
of all crops for 3 days and continuously processing them all using the deep learning inference system is 
a cumbersome process. To strike right balance between load on the system and accuracy of prediction, 
three temporal checkpoints separated by an interval of 24 hours are identified: 9.00AM for 3 days. The 
unhealthy crops identified on first day need to be monitored on next day and if there’s improvement in 
the health (read classified as healthy), the same will be removed from the lot to be monitored for the 
next (third) day. The final set of “unhealthy” plants is identified during the inference on the third day.

Here is the sequence of events during each of the inference processes.

Inference: Day 1 @ 9.00 AM

Step 1: The entire process starts with collecting RGB-NIR images of the crops to be analysed for health. 
Care is to be taken to restrict to one flower per crop. Let us say there are 1000 crops considered 
for monitoring on a particular day. RGB-NIR images of these crops are captured as the first step.

Step 2: Each of the RGB image is sent to the deep learning system. The RGB image will be passed as 
input to the FCN (M1) which identifies the pixels corresponding to the flower. This data will be 
passed on to a module that creates a mask of same size as the image and will place 1 for all pixels 
identified as flower and 0 for all other pixels. This is called “Flower Mask”.

Step 3: This flower mask is then applied on the RGB image so that all the pixels in the RGB image 
corresponding to flowers are kept intact while other pixels are zeroes out.

Step 4: The RGB image which now contains only the flower is fed to the binary image classifier (M0) 
which predicts the health of the crop based on the morphology of the flower. The idea is that any 
issues with the crop will have an impact on the produce of the crop. If the CNN image classifier 
predicts the crop as healthy with a confidence score (read probability) of 0.75 or above, then the 
image (and hence the crop) will be removed from that day’s monitoring. In this case, the system 
moves on to picking the next RGB image and do all the processes explained in the previous steps.

Step 5: If the classifier predicts the crop as healthy with a score below 0.75 or it predicts the crop as un-
healthy with a score of 0.75 or above, then the system generates a complementary mask by inverting 
the ones to zeros and vice versa in the flower mask, thus generating what is called a “leaves mask”.

Step 6: This mask is then applied on the NIR image so that all the pixels in the NIR image corresponding 
to flowers are zeroes out, thus leaving the pixel values corresponding to the leaves intact.

Step 7: The resultant NIR image (containing only leaves pixels) are passed on to NDVI calculator module. 
The NDVI image and SI-NDVI image for this crop thus obtained are used to generate statistical 
parameters like mean, standard deviation, variance and percentage of pixels within 1 sigma stan-
dard deviation are calculated for each NDVI and SI-NDVI image. These statistical parameters are 
maintained as Vegetative Index (VI) vector.

Step 8: Then the base Multi-layer Perceptron (M2)d-2 for First Day which takes VI vector as input and 
does binary classification gets invoked. The binary classification is to categorize the plant as either 
healthy or unhealthy based on the NIR reflectance of the crop. Only when the plant is categorized 
as “unhealthy” by this model, there comes the need to keep a close tab on it. The idea is to observe 
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the change in NDVI and SI-NDVI before concluding if the plant is healthy or otherwise. In order 
to do that, temporal data of 2 temporal points are required. In this experimental setup, the authors 
decided the temporal points are 9AM on the next two days.

Step 9: If the MLP classifier (M2)d-2 predicts the crop as healthy, then the all the data pertaining to 
the crop (RGB-NIR image, Mask, NDVI data, etc.) are removed from the system and the system 
moves on to picking the next RGB image and do all the processes explained in the previous steps.

Step 10: Once the system completes processing all the images for that day, what will be left is a subset 
of images pertaining to crops to be monitored the next day.

Inference: Day 2 @ 9.00 AM

Step 1: The entire process for the second day starts with collecting RGB and NIR images for that subset 
of crops left for temporal monitoring from the previous day. Then the system processes the next 
steps for each image in this subset.

Step 2: Similar to the process explained in the Day 1 procedure, leaves mask is generated and subse-
quently the NIR image with only leaves get generated.

Step 3: Again, as explained in the Day 1 procedure, VI vector gets generated and is appended with Day 
1 VI vector.

Step 4: Then the Multi-layer Perceptron (M2)d-1 for Second Day which now takes the VI vector (contain-
ing data for day 1 and day 2) as input and does binary classification gets invoked.

Step 5: If the MLP classifier (M2)d-1 predicts the crop as healthy, then the all the data pertaining to 
the crop (RGB-NIR image, Mask, NDVI data, etc.) are removed from the system and the system 
moves on to picking the next RGB image and do all the processes explained in the previous steps. 
The idea is that the crop shortlisted for close monitoring is recovering or recovered and there is no 
need to include this plant in the final set of “unhealthy plants”.

Inference: Day 3 @ 9.00 AM

Step 1: The entire process for the third (last) day starts with collecting RGB and NIR images for that 
subset of crops left for temporal monitoring from the previous day. Then the system processes the 
next steps for each image in this subset.

Step 2: Similar to the process explained in the Day 1 procedure, leaves mask is generated and subse-
quently the NIR image with only leaves get generated.

Step 3: Again, as explained in the Day 1 procedure, VI vector gets generated and is appended with Day 
2 VI vector.

Step 4: Then the Multi-layer Perceptron (M2)d for Third Day which now takes the VI vector (containing 
data for day 1, day 2 and day 3) as input and does binary classification gets invoked.

Step 5: If the MLP classifier (M2)d predicts the crop as healthy, then the all the data pertaining to the 
crop (RGB-NIR image, Mask, NDVI data, etc.) are removed from the system and the system moves 
on to picking the next RGB image and do all the processes explained in the previous steps.

Step 6: The plants now left is the final set of “unhealthy plants”.
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RESULTS AND DISCUSSION

The plants left in the final set determined by the system as “unhealthy” are examined by experts to 
confirm if they are truly “unhealthy”. In this experiment, the authors observed that the system was able 
to predict unhealthy plants with about 75% accuracy. The loss and accuracy plots during training and 
validation are shown in the Figures 2 and 3.

Of the predicted 443 plants only 274 plants are truly “unhealthy”. This means, the precision score 
(True Positive / Actual Results) is 61% (274/443), which is not quite good. However, in this case, recall 
score (True Positive / Predicted Results) is more important, since the system should identify as much 
unhealthy crops as possible. Even if it incorrectly includes slightly more healthy plants into this category 
in an attempt to identify all the “unhealthy” crops, it is still OK. The system was able to “catch” 274 
of the 322 “unhealthy” plants. This means a recall score of 85% (274/322) which is quite impressive. 
Table 2 shows the confusion matrix.

Last but not the least, as shown in Table 3, the F1 score (2 X ((Precision X Recall) / (Precision + 
Recall)) of 71% and Accuracy (True Positive + True Negative / Total) of 78% are fine indicators that 
the system does a reasonably good job of classification.

Figure 3. Plot of Model Accuracy on Training and Validation Datasets
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Figure 4. Plot of Model Loss on Training and Validation Datasets

Table 2. Confusion matrix of the system

n = 1000
Predicted

Total
Healthy Unhealthy

Actual
Healthy 509 169 678

Unhealthy 48 274 322

Total 557 443 1000

Table 3. Performance metrics of the classification system

Precision 0.61851 F1 Score 0.71634

Recall 0.850932 Accuracy 0.783
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Error Analysis, Shortcomings, and Further Scope of Work

From the results, the authors observed that 169 of the 217 misclassifications were False negatives (78%) 
and 48 were False positives (22%). In other words, the system misclassified lot more healthy crops as 
unhealthy crops than the other way. Careful analysis of the misclassification revealed that most of the 
errors (about 30%) were due to the short-circuiting optimization in the system. It is possible to increase 
the confidence score threshold of the CNN model (M1) so it would further let the image go through 
other models in the system and this would improve the classification and reduce this type of error. But 
the downside to this will be that the classification time will increase which would make it impractical 
to classify thousands of flowers every day in the farm. This necessitates tuning the system in a way as 
to find the right balance between speed and accuracy when deployed in a farm.

It was also observed that the system misclassified most images that were included in the inference 
that came from a different distribution. This distribution contained images captured at a different season. 
This gave insight into how the system performs on images collected at a different season when the overall 
outlook of the farm changes. the inference accuracy will be impacted. The proposed model suffers from 
this shortcoming which leads to further research direction of recalibrating the trained models periodi-
cally as and when the deployed system deteriorates over a period of time.

CONCLUSION

The authors have developed an architecture that can assimilate multiple types of data from farm to cat-
egorise the crop issues despite some incomplete information like pest population and soil nutrition. If 
the objective was to classify only the morphological anomaly of the flower like bent, wilted or double-
faced, then the same could be achieved by training a CNN to perform multi-class classification with 
RGB images of various flowers with morphologically anomalies. But the objective was to start with a 
simple binary classification using select features and based on confidence scores of the prediction out-
comes of this Convolutional Neural Network model move on to use additional spatial data to improve 
the classification confidence and further evolve the classification by augmenting newer temporal data 
into the model thus progressively using more spatial and temporal data as needed. This was achieved by 
the fact that most crops get determined as healthy either by the first basic CNN binary image classifier 
that uses flower morphology and hence do not go through the remaining models thus avoid taxing the 
system. This short-circuiting proves very useful in farms where thousands of crops need to be monitored 
on a daily basis.
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ABSTRACT

The prediction of protein secondary structure from a protein sequence provides useful information for 
predicting the three-dimensional structure and function of the protein. In recent decades, protein sec-
ondary structure prediction systems have been improved benefiting from the advances in computational 
techniques as well as the growth and increased availability of solved protein structures in protein data 
banks. Existing methods for predicting the secondary structure of proteins can be roughly subdivided 
into statistical, nearest-neighbor, machine learning, meta-predictors, and deep learning approaches. 
This chapter provides an overview of these computational approaches to predict the secondary structure 
of proteins, focusing on deep learning techniques, with highlights on key aspects in each approach.

INTRODUCTION

Proteins constitute most of the dry mass of the cell. They are not just the building blocks of the cells; they 
also perform most of the functions of the cells. Proteins act as antibodies, antifreeze molecules, elastic 
fibres, signal integrators, enzymatic catalysis, toxins, hormones, transmembranal, and so on (Bruce et 
al., 2015). Majority of these functions are dependent on the 3D structure of proteins (Bruce et al., 2015). 
Accurate prediction of this 3D structure from the protein sequence is a very intricate task in computa-
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tional biology (Yang et al., 2018). Since the rapid expansion in the fields of genomics and proteomics; 
particularly, the DNA and protein sequencing technologies, there has been an enormous accumulation of 
protein sequence data. However, predicting the 3D structures of protein from its sequence data remains 
a key challenge facing bioinformatics (Jiang, Jin, Lee, & Yao, 2017). A proffered approach to resolving 
this prediction difficulty involves breaking down the problem into smaller structural problems, in the 
hope that their solutions will eventually result in a solution of predicting the 3D structure of proteins.

A number of these structural problems can be symbolized as 1D vectors along the protein sequence. 
Hence, they can be categorized as 1D structural features. Commonly used 1D structural features of 
protein are secondary structures (local conformations of the backbone of protein) (Voet & Voet, 2011), 
backbone torsion angles (rotation angles in the protein’s backbone) (Voet & Voet, 2011), residue depth 
(the distance of an amino acid residue in the protein sequence from the adjacent solvent molecule) 
(Chakravarty & Varadarajan, 1999), residue accessible surface area (solvent accessibility) (Pedersen 
et al., 1991), residue contact number (the count of spatially-close amino acid residues within a cut-off 
space) (Pollastri, Baldi, Fariselli, & Casadio, 2002), and half-sphere exposure (orientation-dependent 
contact numbers) (Hamelryck, 2005).

This chapter focuses mainly on predicting the secondary structure of proteins. This is imperative 
as precisely predicting the secondary structures of proteins is crucial for several 3D protein structure 
related predictions (Hanson, Yang, Paliwal, & Zhou, 2017; Heffernan, Yang, Paliwal, & Zhou, 2017). 
The prediction of secondary structures has an extensive background, starting by the early work on the 
secondary structures of the backbone of proteins (Pauling & Corey, 1951a, 1951b; Pauling, Corey, & 
Branson, 1951), but it is only with the application of modern deep learning techniques and the growth 
of resolved protein structures that we seem to be approaching the theoretical limit of 3-state prediction 
accuracy (88-90%) (Rost, 2001; Yang et al., 2018).

The purpose of this chapter is to review the various predicting approaches of the secondary structure 
of proteins with emphasis on deep learning methods. The paper begins with a brief overview of proteins 
and their structure levels, followed by sections presenting the approaches utilized for the prediction of 
the secondary structure of proteins.

BACKGROUND

Proteins

Proteins are the centre of many biological activities, including transporting molecules (Klingenberg, 
1981), responding to stimuli (Yoshida, Sanematsu, Shigemura, Yasumatsu, & Ninomiya, 2005), and 
catalysing metabolic reactions necessary for life possible (Margolis, 2008). Furthermore, proteins act as 
chemical go-betweens to sustain internal communication, as regulators to turn genes on and off, and as 
storages to store nutrients and energy-rich molecules for later use (Zvelebil & Baum, 2007). Most of the 
proteins are globular. Globular proteins are simpler to crystallize because of their chemical character-
istics. Conversely, non-globular proteins such as fibrous and membrane proteins are frequently defined 
by numerous repeated amino acid sequences with less distinctive chemical characteristics (Yoo, Zhou, 
& Zomaya, 2008).
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Protein Structure Levels

The structure of protein comprises four levels (primary structure, secondary structure, tertiary structure, 
and quaternary conformation), as shown in Figure 1. The primary structure is composed of the amino 
acid sequence ordered in the polypeptide chain. The secondary structure is the first level of protein 
folding, in which parts of the chain fold to form generic structures that are found in all proteins. The 
tertiary structure is produced by the additional combination, folding and packing together of these ele-
ments to ultimately provide 3D conformation that is exclusive to the protein. Many functional proteins are 
formed of more than one protein chain, in which case the individual chains are called protein subunits. 
The subunit composition and arrangement in such multi-subunit proteins is called the quaternary con-
formation. The structure adopted by a protein chain, and thus its function, is controlled entirely by its 
amino acid sequence, however, the rules that determine how a protein chain of a given sequence folds 
up are poorly comprehended (Zvelebil & Baum, 2007). The prediction of the 3D structure of proteins 
from a linear sequence of amino acids has proven difficult. Thus, the study of more predictable protein 
structural features that are valuable to the prediction of 3D structure of proteins (e.g. secondary structure) 
has been performed by many researchers (Hanson, Paliwal, Litfin, Yang, & Zhou, 2018).

Figure 1. Graphic illustrations of different levels of protein (Campbell et al., 2007)
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Amino Acids

Proteins are made up of 20 types of naturally existing amino acids. Each amino acid comprises a central 
alpha-carbon atom, a carboxyl group and an amino group on both ends, and a variable side-chain (see 
Figure 2). The side chain of the amino acid can affect the physicochemical characteristics of the amino 
acid such as mass, polarity, acidity, hydrophobicity, and electron charge. The functional properties of 
proteins are almost entirely due to side chain interactions (Zvelebil & Baum, 2007). The physicochemical 
features of amino acids significantly impact the secondary structures of proteins, and can be utilized for 
the prediction of protein secondary structures (Hanson et al., 2018). The 20 amino acids can be classified 
into eight groups based on the similarity of their physicochemical features, specifically, hydrophobic, 
hydrophilic; polar, non-polar; small, large; charged, uncharged (Pok, Jin, & Ryu, 2008). These eight 
characteristic physicochemical features can be applied to encode each amino acid residue and to obtain 
correlative data with respect to the creation of protein secondary structure. The hydrophobic, hydrogen 
bond and charge physicochemical features have the most considerable effect on the secondary structures 
of protein, hence they are often the most utilized physicochemical features in PSSP (Qu, Sui, Yang, & 
Qian, 2011).

Protein Secondary Structure

Comparison of the protein structural levels shows that the protein secondary structure plays the most 
critical role in the study of proteins. It comprises the primary fold of the polypeptide chain. Thus, the 
spatial structure of the protein is based on its secondary component. The secondary structure of the pro-
tein denotes the local conformations of the amino acid polypeptide due to interactions of the polypeptide 
backbone (Voet & Voet, 2011). Precisely, there are several methods of classifying the secondary structure 
of proteins, such as DSSP (Kabsch & Sander, 1983), STRIDE (Frishman & Argos, 1995), and DEFINE 
(Richards & Kundrot, 1988). Nonetheless, DSSP is the most frequently utilized technique in predicting 
the secondary structure of proteins. In reality, there are eight possible secondary structure conformations 
in a given protein: 3-turn helix (G), 4-turn helix (H), 5-turn helix (I), β-strand (E), β-bridge (B), bend (S), 
turn (T), and no structure (C). The eight conformations of protein secondary structure are further simpli-
fied into three states by the following transformation: G, H and I are altered into H (α-helix), B and E are 

Figure 2 The general structure of an amino acid (Zvelebil & Baum, 2007)
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converted into E (β-strand), whereas the others are transformed into C (coil). The diverse classification 
approaches for these eight classes significantly affects the predicted results (Y. Zhang & Sagui, 2015).

Hence, it is almost necessary to assess the accuracy of a set of predictions to determine the most 
accurate method available and also to identify successful improvements in developing and tuning param-
eters for new methods. Alternative measures have been proposed, some looking at the level of individual 
residues such as Q3 accuracy for 3-state secondary structure and Q8 accuracy for 8-state secondary 
structure, others focusing on complete helices and strands such as SOV3 and SOV8 (Zemla, Venclovas, 
Fidelis, & Rost, 1999) for 3- and 8-state secondary structures, respectively.

SECONDARY STRUCTURE PREDICTION APPROACHES

The prediction of the secondary structure of proteins has always been an issue in bioinformatics (Yang 
et al., 2018). Several methods were proposed for the prediction of the secondary structure of proteins. 
These methods can be roughly subdivided into: statistical, nearest-neighbour, machine learning, meta-
predictors, and deep learning approaches, see Figure 3. This subdivision illustrates how the methods 
have developed over time, and how new structural information has been combined with advances in 
computer technology. Statistical methods are developed according to the probability that an amino acid 
will produce a specific secondary structure. Nearest-neighbour methods apply pre-existing knowledge 
of resolved protein structures to a particular section of the target protein sequence. Machine learning 
methods train a learning algorithm to acquire structure-sequence relationships, which can subsequently 

Figure 3. Illustration of protein secondary structure prediction approaches with their representative 
methods
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be implemented to predict the secondary structure states of the target protein sequence. Meta-predictors 
methods combine a set of complementary techniques to improve the general accuracy of the prediction. 
Deep learning methods are the cutting-edge and influential machine learning techniques for predicting 
protein secondary structure. A more comprehensive explanation and overview of this subdivision is 
presented below.

Statistical Approach

Statistical methods utilize parameters derived from the sequence analyses of recognized protein struc-
tures to form statistical rules, given the probability that an amino acid will produce a specific secondary 
structure state. However, early statistical methods suffered from lack of data because of the few experi-
mentally unravelled 3D structures obtainable at the protein data bank. However, this is currently not a 
problem for globular proteins using simple statistical models. For many years, the most extensively ap-
plied statistical technique has been that of Chou and Fasman (1974), which was developed in the 1970s. 
Later, this method is superseded by more accurate statistical methods, such as the GOR method (Garnier, 
Osguthorpe, & Robson, 1978), which make assignments based on stretches of amino acid residues.

The method of Chou and Fasman was originally based on an examination of 15 proteins with about 
2,400 amino acids (Chou & Fasman, 1974). Later, the analysis was extended on larger data sets of 29 
proteins (Chou & Fasman, 1977), 64 proteins (Chou, 1989), and 144 proteins with an aggregate of 33,118 
amino acids (Kyngäs & Valjakka, 1998). This method simply assigns individual amino acids as α- or 
β-formers, indifferent, and α- or β-breakers. Short segments composed of formers (with the absence 
of many breakers) were assigned as the core of an α-helix or β-strand. The boundaries of secondary 
structure elements were delineated by the presence of strong breakers. The method attained a 3-state 
prediction accuracy of ~55%.

Garnier et al. (1978) make predictions based on stretches of amino acid residues in the protein se-
quence, thus, enabling the consideration of local interactions between amino acid residues. Over the years, 
the GOR method has been continuously enhanced by incorporating more detailed statistics and larger 
databases. GOR I (Garnier et al., 1978) used a dataset of 26 proteins with approximately 4,500 amino 
acids and reached a 3-state prediction accuracy of 56%. GOR II (Gibrat, 1986) used a larger dataset of 
75 proteins containing 12,757 amino acids and reached a 3-state prediction accuracy of 57.7%. Both 
versions used singlet frequency information within a 17-long window to predict the secondary structure 
states. GOR III (Gibrat, Garnier, & Robson, 1987) used further data relating to the frequencies of pairs 
of amino acids within the 17-long window of better refinement 68 proteins containing 11237 amino 
acids. The method reached a 3-state prediction accuracy of 63%. GOR IV (Garnier, Gibrat, & Robson, 
1996) employed 267 protein chains comprising 63,566 amino acids and reached 3-state prediction ac-
curacy of 64.4%.

The evolutionary information, obtained from multiple sequence alignments using PSI-BLAST 
(Altschul et al., 1997), has been included in the latest version GOR V (Kloczkowski, Ting, Jernigan, & 
Garnier, 2002). In the GOR V, a secondary structure prediction is obtained for each separate homolo-
gous sequence. These are then combined using the sequence alignment to identify equivalent amino 
acid residues. The structural state prediction score is averaged over all the sequences at each position of 
the query sequence. The final prediction at each position is the structural state with the highest average 
score. This could be subsequently modified by a filter to remove short strands and helices. The GOR V 
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used 513 non-homologous protein chains containing 84,107 amino acids and reached a 3-state predic-
tion accuracy of 73.5%.

In summary, statistical methods were employed to correlate structural and sequence features with the 
aim of forming statistical rules for the prediction of the secondary structure of proteins. The initial effort 
involved the correlation of the content of specified amino acids with that of an α-helix. This concept 
was extended for the correlation of the contents of all amino acids with those of α-helix and β-strand 
conformations. Furthermore, the information theory has been utilized to consider the local interactions 
between amino acids within a resizable window. The evolutionary information offered by multiple 
sequence alignments was also considered in the prediction process. Statistical methods are the earliest 
approach for predicting the secondary structure of proteins, and formed the basis for many subsequent 
approaches. Furthermore, they are easy to use and provide results that are easy to interpret. However, the 
accuracy is still relatively low. The statistical methods 3-state prediction accuracy has reached as high 
as 73.5%. Table 1 tabulates the performance accuracy of selected statistical methods.

Nearest-Neighbour Approach

The statistical prediction methods involve analysing recognized protein structures domiciled at the 
protein data bank to determine individual amino acid or amino acid pairing preferences, and prescrib-
ing a technique that combines these into a prediction. In contrast, nearest-neighbour methods directly 
apply the raw data of the observed protein structure domiciled in the protein data bank to a specified 
section of the target protein sequence. The approach adopts the principle that proteins with analogous 
sequences share the same fold and applies it at the level of short stretches of sequence. Furthermore, it 
assumes that even in a set of non-homologous proteins, short stretches of similar sequence could occupy 
the same secondary structure state.

The basic procedure of nearest-neighbour methods is as follows. First, for an individual segment of 
the target protein sequence, the best gapless alignments are retrieved from the data bank containing the 
recognized proteins. This often involves the implementation of a scoring scheme developed specifically 
for the task. Then, a set of the highest-scoring alignments are utilized to predict the structural state of the 
central amino acid for each segment. The prediction mainly involves taking the most commonly found 
states of the aligned amino acid, although it may also include weighted scores.

Despite the availability of many substitution-scoring matrices used in sequence alignment, most of 
nearest-neighbour secondary structure prediction methods frequently derived their own scoring schemes 
(Zvelebil & Baum, 2007). Early nearest-neighbour methods (Levin & Garnier, 1988; Levin, Robson, & 

Table 1. Summary of the performance accuracy of selected statistical methods

Author Q3% SOV3%

(Chou & Fasman, 1974) 55.0

(Garnier et al., 1978) 56.0

(Gibrat, 1986) 57.7

(Gibrat et al., 1987) 63.0

(Garnier et al., 1996) 64.4

(Kloczkowski et al., 2002) 73.5 70.8
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Garnier, 1986) used their own scoring matrices so that all segments whose alignment scores exceeded a 
cut-off value are included in the prediction. They used a window of 7-8 amino acid residues with a score 
cut-off value of 3-7 and obtained the 3-state prediction accuracy of 63% and 58%, respectively. Salzberg 
and Cost (1992) used distance tables, which describe the numeric distance between each amino acid 
pairs as well as attaching weights to each retrieved segment. Their method achieved a 3-state prediction 
accuracy of 71.0%.

Levin (1997) updated an earlier work (Levin & Garnier, 1988) to obtain a 3-state prediction accuracy 
of 72.8%. The modifications include the use of the Blosum62 matrix (Henikoff & Henikoff, 1992) as a 
scoring system and the use of an expanded dataset of recognized protein structures. Salamov & Solovyev 
(1997) implemented a combination of local structural environment scores and score matrix to calculate 
the top 50 non-intersected discrete alignments of the target protein sequence with each protein sequence 
at the protein data bank to achieve a 3-state prediction accuracy of 73.5%.

In a nutshell, nearest-neighbour methods apply the annotation of recognized protein structures stored 
in protein structure databases to predict the secondary structure states of the target protein sequence at 
the level of short segments. However, the main practical issue with this method is the lack of structural 
information on all possible segment sequences, hence similar sequences need to be examined. The key 
difficulty is defining the nearest-neighbour sequences using a quantitative measure. Another problem 
associated with this approach is that several proteins have alternate folds, with some regions having 
significantly different secondary structure states under different conditions (W. Li, Kinch, Karplus, & 
Grishin, 2015). The 3-state prediction accuracy of nearest-neighbour methods reached as high as 73.5%. 
Table 2 tabulates the performance accuracy of selected nearest-neighbour methods.

Machine Learning Approach

The secondary structure prediction methods discussed so far rely on some form of carefully designed 
model and statistical analysis of the existing protein structure data to obtain the prediction. Machine learn-
ing methods appear to lack this element of design. They simply use protein annotation with recognized 
structures that are domiciled in the protein structure database to train a machine learning model, which 
is then used to predict the secondary structure states of the target protein sequence. The most frequently 
used machine learning techniques for predicting secondary structure are support vector machines, hid-
den Markov models, and neural networks (Yoo et al., 2008). The neural network models of Qian and 
Sejnowski (1988) and of Holley and Karplus (1989) were two of the early methods of machine learning 
for predicting the secondary structure of proteins.

Table 2. Summary the performance accuracy of selected nearest-neighbour methods

Author Q3% SOV3%

(Levin et al., 1986) 58.0

(Levin & Garnier, 1988) 63.0

(Salzberg & Cost, 1992) 71.0

(Levin, 1997) 72.8

(Salamov & Solovyev, 1997) 73.5
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One of the most important aspects of neural networks is the way the input data are encoded within 
the network (Zvelebil & Baum, 2007). Holley and Karplus (1989) constructed a neural network model to 
predict the state of the secondary structure of the amino acid at the centre of 17-long windows. Twenty-
one bits are used to encode each of the 20 amino acids. The additional bit is utilized to indicate whether 
the window overlaps the N-terminal or the C-terminal of the protein sequence. The neural network ar-
chitecture includes a hidden layer and an output layer with two nodes in each layer. The method obtained 
a 3-state prediction accuracy of 63.2%. Qian and Sejnowski (1988) used the same coding for input data 
with marginally dissimilar network architecture. They considered 13-long windows in the input layer 
and had three nodes in the output layer. They also used a cascade of neural networks to capture correla-
tions between secondary structure predictions of adjacent amino acid residues. This method obtained a 
3-state prediction accuracy of 64.3%.

Rost and Sander significantly improved the prediction accuracy by integrating the evolutionary in-
formation encoded in multiple sequence alignments into a neural network model (Rost & Sander, 1993). 
Instead of using 20 bits to encode each amino acid, the normalized frequencies of the 20 amino acids 
occurring in the equivalent column of the multiple sequence alignment are used. This method increased 
the 3-state prediction accuracy to >70%.

The prediction accuracy of the neural network-based methods was further improved using additional 
accurate evolutionary information derived from larger databases and enhanced searches (Jones, 1999). 
Jones developed a neural network-based secondary structure prediction model using the PSI-BLAST 
(Altschul et al., 1997) sequence profile as input data. This model achieved a 3-state prediction accuracy 
of 76.5%. Cuff and Barton combined diverse kinds of multiple sequence alignment profiles derived from 
the same sequences to obtain different values of 3-state prediction accuracy that ranged from 70.5% to 
76.4%, depending on the data set evaluated (Cuff & Barton, 2000).

Further improvement in the prediction accuracy was achieved by combining different protein struc-
tural representations into neural networks. Wood and Hirst used the PSI-BLAST (Altschul et al., 1997) 
sequence profile to develop an iterative neural network model for predicting both the secondary structure 
and the ψ dihedral angles. The study achieved predictive values better than earlier iterations and obtained 
an overall 3-state prediction accuracy of 79.4% (Wood & Hirst, 2005). Yaseen and Li encoded statistical 
context-based scores together with the PSI-BLAST sequence profile to train a neural network model 
and developed a prediction method that achieved a 3-state prediction accuracy of 80.7% (Yaseen & Li, 
2014). In addition to neural network models, other machine learning models have been used to develop 
secondary structure prediction systems such as the probabilistic networks models (Bystroff, Thorsson, & 
Baker, 2000; Schmidler, Liu, & Brutlag, 2000) obtained a 3-state prediction accuracy of 74.3%. More-
over, support vector machine models have been employed to predict the secondary structure of proteins 
(Karypis, 2006; Kim & Park, 2003), reaching a 3-state prediction accuracy of 77.8%.

In summary, machine learning methods use the annotation of the known protein structures at protein 
structure databases to build models for predicting the secondary structure states of the target protein 
sequence. Machine learning approach is potentially very powerful because it can in principle represent 
the relationship between some input data and the output. Furthermore, machine learning methods can 
be parameterized by giving test sequences and their correct secondary structure without any other in-
formation. However, these methods are fully reliant on the input windows of neighbouring amino acid 
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residue data, implying they are incapable of wholly learning the relationship between the amino acid 
residues in the entire protein sequence. The 3-state prediction accuracy values of all aforementioned 
machine learning methods were slightly above 80%. Table 3 tabulates the performance accuracy of 
selected machine learning methods.

Meta-Predictors Approach

Meta-predictors methods use a mixture of previous techniques. The fundamental theory of this approach 
is that different types of algorithms can be combined to enhance the prediction of the secondary struc-
ture of proteins. Nearest-neighbour and machine learning methods significantly improved the prediction 
accuracy when a set of query derived similar fragments are available in the protein data bank, but are 
ineffective when such perfectly similar fragments are absent. Conversely, statistical methods fairly accu-
rately predict the secondary structures of less comparable fragments, even in the absence of appropriate 
structural fragments. The meta-predictors approach involves the combination of the outputs of several 
complementary methods so as to enhance the overall prediction of the secondary structure of proteins.

Early meta-predictors methods combined statistical and nearest-neighbour methods (e.g., Zpred 
(Zvelebil, Barton, Taylor, & Sternberg, 1987)). Zpred uses the GOR method (Gibrat, 1986) to obtain 
the secondary structure labels for each separate homologous sequence. These are then combined using 
the sequence alignment to identify equivalent residues. The structural state prediction score is averaged 
over all the sequences at each locus of the query sequence. A residue conservation score is calculated 
at each alignment location according to the classification of amino acid properties introduced by Taylor 

Table 3. Summary of the performance accuracy of selected machine learning methods

Author Q3% SOV3%

Neural Network Methods

(Qian & Sejnowski, 1988) 64.3

(Holley & Karplus, 1989) 63.2

(Rost & Sander, 1993) 69.7

(Jones, 1999) 76.5 78.7

(Cuff & Barton, 2000) 76.4 74.2

(Wood & Hirst, 2005) 79.4 77.5

(Yaseen & Li, 2014) 80.7 83.9

Probabilistic Network Methods

(Asai, Hayamizu, & Handa, 1993) 54.0

(Schmidler et al., 2000) 68.8

(Bystroff et al., 2000) 74.3

Support Vector Machine Methods

(Hua & Sun, 2001) 73.5 76.2

(Ward, McGuffin, Buxton, & Jones, 2003) 74.2 68.3

(Kim & Park, 2003) 76.6 80.1

(Karypis, 2006) 77.8 75
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(1986). The residue conservation score is assigned to the averaged prediction at each site of the query 
sequence. The final prediction at each position is the structural state with the maximum average score. 
The prediction accuracy of the Zpred technique exceeds that of GOR alone by 9%.

Moreover, meta-predictors methods of statistical and neural network models have been proposed, this 
includes PROF (Ouali & King, 2000) and YASPIN (K. Lin, Simossis, Taylor, & Heringa, 2005). PROF 
is formed by cascading different types of prediction, different versions of GOR technique (Garnier et al., 
1996, 1978; Gibrat, 1986; Gibrat et al., 1987), and different alignment algorithms within one program 
using neural networks to choose the final prediction. The PROF method obtained a 3-state prediction 
accuracy of 76.7%. YASPIN uses a combination of neural networks and hidden Markov model methods, 
attaining a 3-state prediction accuracy of 77%.

Furthermore, meta-predictors methods of nearest-neighbour and neural networks model have been 
proposed, this includes PROTEUS (Montgomerie, Sundararaj, Gallin, & Wishart, 2006), PORTER (Mi-
rabello & Pollastri, 2013) and SSPro (Magnan & Baldi, 2014). PROTEUS uses a set of query derived 
similar fragments from the protein data bank for predicting the secondary structures when homologous 
are obtainable in the protein data bank, and a jury of neural network-based secondary structure prediction 
methods when homologous are not available. PORTER combines the query derived similar fragments 
from the protein data bank with both the initial query sequence and equivalent PSI-BLAST profile to 
modify the input to a complex neural network ensemble. Similarly, SSPro combines the query derived 
similar fragments from the protein data bank to modify the prediction at the output level of a complex 
neural network.

Generally, the meta-predictors methods combine two or more complementary methods to improve 
the overall prediction of the secondary structure of proteins. The direct use of structural information 
contained in protein data bank accounts for the improved prediction of the secondary structure of proteins 
(Magnan & Baldi, 2014). This approach achieves a much better accuracy when homologous structures 
are obtainable in the protein data bank (Yang et al., 2018). However, when similar sequences are unavail-
able in the protein data bank, the approach performs slightly less than the previous approaches. Table 4 
tabulates the performance accuracy of selected meta-predictors methods.

Deep Learning Approach

Deep learning is a subset of machine learning that enables the feasibility of the computation of multilayer 
neural networks (Goodfellow, Bengio, & Courville, 2016). Deep neural architectures have become popular 
tools in a wide variety of tasks including speech recognition (Amodei et al., 2016), image recognition 

Table 4. Summary of the performance accuracy of selected meta-predictors methods

Author Q3% SOV3%

(Zvelebil et al., 1987) 66.0

(Ouali & King, 2000) 76.7 73.7

(K. Lin et al., 2005) 77.0 73.8

(Montgomerie et al., 2006) 81.3

(Mirabello & Pollastri, 2013) 82.2

(Magnan & Baldi, 2014) 79.0 - 92.9
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(He, Zhang, Ren, & Sun, 2016), natural language processing (Sundermeyer, Schlüter, & Ney, 2012), and 
a versatile artificial intelligence instrument in bioinformatics (Jiang et al., 2017). In contrast to shallow 
learning models, deep learning encompasses relatively more multilayer nonlinear operational elements 
as its hidden layers (Schmidhuber, 2015), as shown in Figure 4. This enables the model to discover ad-
ditional advanced features from raw data that are appropriate for the prediction process (Bengio & Delal-
leau, 2011). The pattern identification involved in the prediction of the secondary structure of proteins 
is highly nonlinear and complicated (Paliwal, Lyons, & Heffernan, 2015). Hence, several studies have 
attempted to explore the applications of deep learning in the prediction of the secondary structure of 
proteins because of its enormous potential and prospective effectiveness in processing bio-data.

Several deep neural networks were proposed for 3-state secondary structure problem (Heffernan et 
al., 2015; Qi, Oja, Weston, & Noble, 2012; Spencer, Eickholt, & Cheng, 2015) and subsequent attempts 
using convolutional (Busia & Jaitly, 2017; Fang, Shang, & Xu, 2018; Z. Lin, Lanchantin, & Qi, 2016; 
Zhou & Troyanskaya, 2014) and recurrent (Heffernan et al., 2017; Sønderby & Winther, 2014; Torrisi, 
Kaleel, & Pollastri, 2018) neural network architectures have achieved incremental improvement in deci-
phering the problem of 3- and 8-state secondary structure prediction. Moreover, convolutions combined 
with a Conditional Random Field (CRF) output layer (Wang, Peng, Ma, & Xu, 2016) or with recurrent 
neural networks (Hanson et al., 2018; Klausen et al., 2018; B. Zhang, Li, & Lü, 2018) have been utilized 
to improve performance on the 3- and 8-state secondary structure problem as well.

Taking inspiration from the natural language processing domain, Qi et al. (2012) created a multitask 
predictor to predict an array of local protein properties, which include the secondary structure of proteins, 
using a deep neural network (DNN) architecture. In addition to the evolutionary information captured 
using PSSM profiles, the study exploited a learned embedding to disseminate information across as-
sociated tasks with the aim of clearly mapping amino acid sequences into a feature space. This method 
achieved a 3-state prediction accuracy of 80.3%. Instead of using a learned embedding, physiochemical 
properties are used by Spencer et al. (2015) and Heffernan et al. (2015) to capture similarities information 
among amino acid types. Spencer et al. (2015) applied a deep belief network model to 3-state second-
ary structure prediction. Each layer in this model is a Restricted Boltzmann Machine (RBM) (Hinton 
& Salakhutdinov, 2006). This method achieved a 3-state prediction accuracy of 80.7%. Heffernan et al. 

Figure 4. Schematic illustration of deep neural network (Jiang et al., 2017)
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(2015) developed a multi-step iterative Stacked Spars Auto-Encoder (SSAE) deep neural network model 
that predicts four diverse sets of structural properties including protein secondary structure and achieved 
a 3-state prediction accuracy of 81.8%.

With the advent of deep learning techniques, recent efforts have focused on the prediction of 8-state 
secondary structures (Yang et al., 2018). The 8-state prediction is a significantly more complex proce-
dure than the 3-state prediction (Hanson et al., 2018). Zhou and Troyanskaya (2014) developed a deep 
learning approach to 8-state secondary structure prediction using a multi-layer convolutional supervised 
Generative Stochastic Network (GSN) (Bengio, Laufer, Alain, & Yosinski, 2014) and achieved an 8-state 
prediction accuracy of 66.4%. To leverage the spatial structure of the data, a deep convolutional neural 
network (CNN) architecture was developed by Z. Lin et al. (2016) for the prediction of protein properties. 
This architecture used a multilayer shift-and-stitch technique (Sermanet et al., 2013) to produce fully 
dense per-position predictions on protein sequences and achieved 68.4% 8-state prediction accuracy. 
Furthermore, a multi-scale convolutional architecture with residual connections have been integrated for 
secondary structure prediction (Busia & Jaitly, 2017; Fang et al., 2018) and achieved an 8-state predic-
tion accuracy of 71.4%.

Recurrent neural networks have proved more useful for sequential data (Amodei et al., 2016; Sun-
dermeyer et al., 2012). Sønderby and Winther (2014) applied a Bidirectional Long Short-Term Memory 
(BLSTM) neural network model to 8-state secondary structure prediction and achieved 67.4% prediction 
accuracy. Heffernan et al. (2017) applied BLSTM in place of SSAE neural network architecture used in 
their previous multitask predictor (Heffernan et al., 2015) and improved the performance accuracy for 
all predicted tasks. The use of BLSTM, in addition to using the evolutionary information captured by 
the PSSM and HHblits profiles, further improves the 3-state prediction performance to 84.5%. Torrisi et 
al. (2018) employed an ensemble of Bidirectional Recurrent Neural Networks (BRNN) using sequence 
profiles from multiple sequence alignment generated by PSI-BLAST (Altschul et al., 1997) and HHblits 
(Remmert, Biegert, Hauser, & Söding, 2011) algorithms. This method achieved 73% and 84.2% for 8- 
and 3-state prediction, respectively.

Furthermore, a combination of convolutions with sequential models (e.g., CRF, RNN) have been 
utilized to improve performance on the 3- and 8-state secondary structure problem. Wang et al. (2016) 
combined consecutive of five convolutional layers with a CRF output layer and demonstrated convincing 
improvements on the prediction accuracy. Z. Li and Yu (2016) utilized a multitask learning to achieve 
69.7% and 84% for 8- and 3-state predictions, respectively, using a collection of 10 independently trained 
models, with each consisting of a multi-scale convolutional layer followed by three layers of Bidirectional 
Gated Recurrent Units (BGRU). Klausen et al. (2018) employed a multitask learning using a multi-scale 
convolutional layer of large kernel sizes followed by two BLSTM layers and achieved 72.3% and 85.3% 
for 8- and 3-state prediction, respectively.

More recently, predictors of protein secondary structure have been proposed using convolutional, 
residual, and recurrent neural networks. Zhang et al. (2018) utilized a multi-scale convolutional layer 
flowed by three BGRU layers with residual connections to predict 3- and 8-state secondary structure. 
This method achieved 74% for 8-state prediction and 87.3% for 3-state prediction. Hanson et al. (2018) 
employed a multitask learning using an ensemble of nine independently trained models, each comprised 
of residual convolutional layers (ResNet) (He et al., 2016) and BLSTM layers. This method predicts six 
different sets of structural properties, including protein secondary structure, and achieved 77.1% and 
87.2% for 8- and 3-state prediction, respectively.
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In summary, traditional machine learning techniques, which include support vector machines, hidden 
Markov models and shallow neural networks are constrained by the complexity of the functions they can 
learn efficiently. Deep learning techniques have been proven to outperform these traditional techniques 
in a wide variety of areas (Amodei et al., 2016; He et al., 2016; Sundermeyer et al., 2012). The key 
advantage of deep learning is the ability to efficiently exploit large volume of data and high computing 
power. In recent times, prediction accuracy of the secondary structure of protein has been considerably 
enhanced, which can be attributed to the fast growth of resolved protein structures stored in protein 
structure databases as well as developments in deep learning methods, e.g. residual and multi-scale 
convolutional networks (He et al., 2016; Szegedy et al., 2015), and BRNNs (Hochreiter & Schmidhuber, 
1997; Schuster & Paliwal, 1997). The 3-state prediction accuracy of deep learning methods described 
above has reached as high as 87%, approaching the theoretical upper limits of effective 3-state second-
ary structure prediction accuracy of 88-90% (Rost, 2001; Yang et al., 2018). Furthermore, deep learn-
ing methods significantly improved the prediction accuracy of 8-state secondary structure, reaching as 
high as 77% Q8 accuracy. Table 5 tabulates detailed information of models architecture, data used, and 
performance accuracies achieved in selected deep learning-based methods.

DISCUSSION

The last few decades have witnessed significant improvements in the prediction of secondary structure. 
Diverse algorithms have been implemented for the prediction of the secondary structure of proteins. These 
algorithms have advanced from simple linear statistical models to complex machine learning models. 
The prediction has increasingly improved, consistently with advances in computational techniques, as 
well as the development and increased accessibility of solved protein structures stored in the protein data 

Table 5. Summary of the models architecture, data used, and performance accuracies achieved in se-
lected deep learning-based methods

Author Neural Network Architecture Ensemble Multitask Train Data Test Data Q3% Q8%

(Qi et al., 2012) DNN ✓ 11,795 513 80.3

(Zhou & Troyanskaya, 2014) GSN ✓ 5,600 513 66.4

(Sønderby & Winther, 2014) BLSTM 5,600 513 67.4

(Spencer et al., 2015) RBM 1,230 198 80.7

(Heffernan et al., 2015) SSAE ✓ 5,600 1,199 81.8

(Z. Lin et al., 2016) CNN ✓ 11,795 513 68.4

(Wang et al., 2016) CNN; CRF 5,600 513 82.3 68.3

(Z. Li & Yu, 2016) CNN; BGRU ✓ ✓ 5,600 513 84.0 69.7

(Heffernan et al., 2017) BLSTM ✓ 5,600 1,199 84.5

(Busia & Jaitly, 2017) CNN ✓ 5,600 513 71.4

(Fang et al., 2018) CNN 9,000 513 70.6

(Torrisi et al., 2018) BRNN ✓ 15,800 3,155 84.2 73.0

(Klausen et al., 2018) CNN; BLSTM ✓ 10,337 513 85.3 72.0

(B. Zhang et al., 2018) CNN; BGRU ✓ 11,700 513 87.3 74.0

(Hanson et al., 2018) ResNet; BLSTM ✓ ✓ 10,029 1,213 87.2 77.1
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banks in addition to the advancement of alignment algorithms. A minor enhancement in the prediction 
accuracy of secondary structure can considerably resolve several research issues and the associated 
software tools (Fang et al., 2018). The 3-state prediction accuracy of 55% achieved in 1974 by Chou 
and Fasman (1974) was increased to 70% by PHD server (Rost & Sander, 1993), to 82% by PORTER 
using BRNNs (Mirabello & Pollastri, 2013), and to 87% by SPOT-1D using structural features predic-
tion by an ensemble of residual convolutional and BLSTM models (Hanson et al., 2018), see Figure 5. 
Besides the 3-state prediction, deep learning-based approaches were applied to predict 8-state secondary 
structure, reaching Q8 prediction accuracy range of 72-77%.

Concisely, the development of the prediction techniques of the secondary structure of proteins is 
presented in this chapter. Early methods correlate structural and sequence features to form statistical 
rules for prediction of the secondary structure of proteins. Subsequent methods used the annotation of 
the recognized protein structures stored in protein structure databases to develop prediction models of 
secondary structure. In present times, deep learning techniques have evolved into the most popular ap-
proach for the prediction of protein secondary structure, due to their capacity to extract significant and 
tiered representations from large datasets (Torrisi et al., 2018).

Recent advances including the availability of progressively larger training data sets, utilizing of dif-
ferent methods to leverage evolutionary information, use of multitask learning, and use of an ensemble 
of several independently trained models, have enhanced the secondary structure prediction accuracy. For 
examples, the large dataset size of 10029 proteins contributed to an improvement in the 3-state secondary 
structure predictions of SPIDER3 (Heffernan et al., 2017) by about 1.6% compared to the previously 
reported prediction accuracy when using a dataset size of 5600 proteins (Hanson et al., 2018). Using two 
different algorithms, PSI-BLAST (Altschul et al., 1997) and HHblits (Remmert et al., 2011), to extract 
evolutionary information boosted the prediction accuracy to some extent (Fang et al., 2018; Hanson et 
al., 2018; Torrisi et al., 2018).

Multitask learning methods used similarities among amino acid types along with the evolutionary 
information to perform secondary structure predictions (Heffernan et al., 2017; Z. Lin et al., 2016; Qi et 
al., 2012; Zhou & Troyanskaya, 2014). To capture these similarities, several secondary structure methods 
used the amino acid’s physiochemical properties (Fang et al., 2018; Spencer et al., 2015). Other methods 
used a learned embedding matrix to transform the sparse one-hot encoding of each amino acid into a 
denser representation (Busia & Jaitly, 2017; Z. Li & Yu, 2016; Z. Lin et al., 2016; Qi et al., 2012). A 
combination of embedding matrix and physiochemical properties of the amino acids is also used (B. 
Zhang et al., 2018). Other multitask learning methods used structural features of protein such as backbone 

Figure 5. The improving history of predicting protein secondary structure
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angles, solvent accessibility, and contact numbers, for prediction (Hanson et al., 2018; Klausen et al., 
2018). In addition to multitasking, ensemble learning is also used to improve the prediction performance 
(Haas et al., 2018; Z. Li & Yu, 2016).

Generally, deep learning techniques have managed to incrementally improve performance on second-
ary structure problem, beginning with the use of their capacity to extract valuable and tiered representa-
tions from protein sequences. This include the use of DNN (Qi et al., 2012), convolutional GSN (Zhou 
& Troyanskaya, 2014), RBM (Spencer et al., 2015), and SSAE (Heffernan et al., 2015). Moreover, 
translation-invariant deep learning architectures are applied to extract local contextual representations 
from protein sequences (Busia & Jaitly, 2017; Fang et al., 2018; Z. Lin et al., 2016). Furthermore, con-
sidering non-local interactions existing in amino acid sequences, bidirectional recurrent neural networks 
are applied to extract local and global contextual representations (Heffernan et al., 2017; Sønderby & 
Winther, 2014; Torrisi et al., 2018). Furthermore, combining different types of deep learning architec-
tures has been used for secondary structure problem, taking the advantage of their ability to capture 
local and/or nonlocal interactions. This include CNN and CRF (Wang et al., 2016), CNN and BGRU (Z. 
Li & Yu, 2016), CNN and BLSTM (Klausen et al., 2018), CNN and BGRU (B. Zhang et al., 2018), as 
well as ResNet and BLTSM (Hanson et al., 2018). Deep learning techniques have achieved incremental 
improvement in the prediction performance of 3-state secondary structure. Nonetheless, their prediction 
performance decreases when protein sequences with few known homologous sequences are predicted 
(Hanson et al., 2018). Therefore, it is crucial to develop secondary structure prediction techniques for 
sparse sequence profiles. Moreover, due to imbalanced dataset problem, advancement in prediction was 
hindered in the case of the more complex 8-state secondary structure prediction. This occurs since deep 
learning algorithms are typically developed to enhance the prediction accuracy by minimizing the error. 
Hence, the balance of classes is not considered by the deep learning techniques. However, combining 
deep models with different methods to resolve such class imbalance issues could be more helpful for 
the 8-state secondary structure problem.

CONCLUSION

This review illustrates how the prediction methods of secondary structure have developed with time, 
and how new structural information combined with computer technology have been incorporated into 
prediction models to improve their outcomes. The leading development since the inception of secondary 
structure prediction is the exploitation of evolutionary information that is exist in homologous proteins, 
as well as the use of deep learning techniques with improved capability to manipulate sequential data. 
However, proteins with few sequence homologs have very sparse sequence profile, and hence do not 
fare well. Their predictions are not very helpful to ab initio folding. Thus, the prediction of secondary 
structure from primary sequence rather than sequence profile remains challenging. Furthermore, a large 
portion of relevant information on the prediction of the secondary structure of an amino acid arises 
from the local interactions amongst relatively few of the directly neighbouring residues (Busia & Jaitly, 
2017). Nevertheless, accounting the non-local interactions in the prediction process is essential to im-
prove sequence-based prediction of protein structural properties (Hanson et al., 2018). Prioritizing the 
development of features that can enhance the prediction process over the contribution of only sequence 
profiles signifies a positive approach to improving the prediction accuracy.
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ABSTRACT

Graphs are powerful data structures that allow us to represent varying relationships within data. In the 
past, due to the difficulties related to the time complexities of processing graph models, graphs rarely 
involved machine learning tasks. In recent years, especially with the new advances in deep learning 
techniques, increasing number of graph models related to the feature engineering and machine learning 
are proposed. Recently, there has been an increase in approaches that automatically learn to encode 
graph structure into low dimensional embedding. These approaches are accompanied by models for 
machine learning tasks, and they fall into two categories. The first one focuses on feature engineering 
techniques on graphs. The second group of models assembles graph structure to learn a graph neighbor-
hood in the machine learning model. In this chapter, the authors focus on the advances in applications 
of graphs on NLP using the recent deep learning models.
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1 INTRODUCTION

A graph is a powerful data structure that can express complex data, while having the capacity to embody 
the relationships between the entities of the data, but it comprises some challenges. A graph does not 
have an order to allow them to be processed in a Convolutional Neural Network or Recurrent Neural 
Network. It does not have a fixed size of node either. Extracting features from k-hop neighbourhood of a 
node while preserving the complex structure of the graph and without losing information is not an easy 
task. In the recent years, the success of deep learning in many domains have shed light to graph neural 
models. A number of models using graph deep models are proposed on many tasks.

Graph structure is proven to be useful in various domains such as social media, chemistry and biol-
ogy. Another interesting domain that recently benefits from graph structure is natural language process-
ing (NLP). Conventionally, in NLP solutions, sentences are considered as sequence of tokens. Hence, 
sequence based representations and sequence based deep learning approaches have been popularly ap-
plied. With the use of graph models, graph embedding and graph based deep learning solutions reveal 
successful results for NLP solutions.

There is a rich variety of NLP problems that benefit from graph embedding and graph deep learning 
models (Goldberg, & Hirst, 2017). For natural language based data, such as text or voice that is converted 
to text, there are several possibilities to represent text as a graph, such as capturing relationships between 
a document and the words or semantic or co-occurrence based relationships between words. Furthermore, 
such a graph can be enriched with other types of entities such as authors, subject, and relationships among 
them. Once a text is represented as a graph, use of graph embedding facilitates applications involving 
finding similarity between two texts, such as news clustering and blog post recommendation.

There are also NLP applications that make use of graph deep learning models. For example, semantic 
parsing involves generating formal meaning representation of the given sentences so that it can be auto-
matically processed. Recent solutions for semantic parsing use various neural models involving graphs 
such that, the sentence is firstly represented as a graph and then, the graph processing neural models 
convert it to the desired representation. Machine translation is another popular NLP application that 
benefits from neural model. Machine translation is the transformation of a text in one natural language, 
such as English, to a text in another natural language, such as Turkish, having the same meaning. This 
also can be considered as a problem of transforming one sequence to another sequence. However, the 
recent approaches involve graph representations and graph processing neural models.

Below listed are the main objectives and contributions of this chapter:

• To the best of our knowledge, there is very limited work that presents the state-of-the-art graph 
deep learning models for natural language processing tasks. This survey summarizes the recent 
trends in the use of graph neural network models for NLP problems.

• To provide a basis for the use of graph neural network models for NLP, a summary of embedding 
methods for graph and nodes are given. Additionally, we present a time performance comparison 
on the same benchmark data set.

• Two basic graph deep learning models, Graph Convolutional Neural Network (GCN) and Graph-
to-Sequence (Graph2Seq) models, which are frequently applied on NLP problems are described 
in detail.
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The rest of the chapter is organized as follows. In the next section, we give the state of the art graph 
and node embedding methods with the benchmarks. In Section 3, recent GCN and Graph2Seq models 
are presented. In Section 4, we give the application areas of these recent models in Natural Language 
Processing. The chapter is concluded with and overview in Section 5.

2 GRAPH REPRESENTATION LEARNING: GRAPH AND NODE EMBEDDINGS

Graph is a very common and natural representation structure for data in various real-world applica-
tions such as social networking, natural language processing, online documents and their relationships. 
Finding the patterns within or between them can be very resource exhaustive due to the nature of graph 
operations. In order to optimize the graph operations while using in application areas such as pattern 
recognition and machine learning, transforming them into vector space can increase the performance. 
Recently, several methods have been proposed for the representation of graph and its nodes in vector 
space (Mikolov, Chen, Corrado, & Dean, 2013; Narayanan, Chandramohan, Chen, Liu, & Saminathan, 
2016; Ou, Cui, Pei, Zhang, & Zhu, 2016). While node embedding is used for the latent vector repre-
sentation of every vertex in the given graph, graph embedding is the latent vector representation of the 
whole graph itself. In this section, we present graph2vec (Narayanan et al., 2017) as an example to graph 
embedding solution, and summarize hope (Ou et al., 2016), node2vec (Tsoumakas, & Katakis, 2007) 
and deep-walk (Perozzi, Al-Rfou’, & Skiena, 2014) as the node embedding solutions.

Graph2vec

While graph structures are being used in a wide range of scientific areas, the methods to represent graphs 
start to change due to needs. For example, tasks such as graph classification, clustering and the analysis 
of the graphs may require to transform the graph structure to vector space since machine learning has 
a richer toolset of approaches when it comes to vectors. Even if the embedding can be done with graph 
kernels, they are limited to certain features such as using shortest path etc. In their work, Narayanan et 
al. (2017) propose graph2vec method to address the limitations of the graph kernels and offer a new 
solution. They use unsupervised learning method to learn the nature of different sized graphs and embed 
them into a fixed length vector. The idea is based on the skipgram method, which is mainly related with 
doc2vec, proposed by Le and Mikolov (2014), which is an an extension to word2vec (Mikolov et al., 
2013). Their approach provides significant improvements in the aspect of performance and accuracy on 
graph classification and clustering.

Additionally, Narayanan et al. (2016) propose a method for embedding rooted subgraphs of large 
graphs into vector space, prior to graph2vec approach. This former work relies on another approach 
called subgraph2vec. Their motivation is based on the usage of graph embeddings in malware detection 
and predicting the properties of the chemical compounds such as solubility and anti-cancer behaviour 
(Narayanan et al., 2017). As in graph2vec, they use unsupervised representation learning techniques 
and aim to outperform the graph kernels. They generally focus on building a deep learning variant of 
Weisfeiler-Lehman graph kernel, which is proposed as test method for graph isomorphism problem in 
1970’s (Shervashidze, Schweitzer, Leeuwen, Mehlhorn, & Borgwardt, 2011). The results are almost 
similar with the graph2vec.
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HOPE

High-Order Proximity Preserved Embedding (HOPE), is a graph embedding algorithm. It focuses on 
preserving asymmetric transitivity (Ou et al., 2016). In general terms, transitivity can be described as 
follows: In a graph, if there is an edge between vertices u and v and an edge between vertices v and w, 
then it is likely that there is an edge between vertices u and w. This property is asymmetric in directed 
graphs and symmetric in undirected graphs. Thus, it is intuitive to preserve it in undirected graphs. 
Some studies tackle the problem of embedding in directed graphs (Narayanan et al., 2017; Perozzi et al., 
2014), however none of them successfully preserve asymmetric transitivity. HOPE fulfils this by using 
Katz proximity (Katz, 1953). Katz proximity is correlated with asymmetric transitivity and higher Katz 
proximity indicates higher similarity.

Node2vec

Predictions over nodes and edges of graphs is an important task in network analysis. Tsoumakas et al. 
aim to find the most probable labels of nodes in the network (Tsoumakas, & Katakis, 2007). For node 
related predictions such as predicting interest of users in a social network or protein-protein interaction, 
using node embedding is a suitable solution. Any supervised machine learning algorithm requires a set 
of informative, discriminating, and independent features, which can be provided through feature vector 
representation for nodes and edges.

Node2vec is an algorithmic framework for learning continuous feature representations for nodes in 
networks. In node2vec, a mapping from the nodes to a low-dimensional space of features that maximizes 
the likelihood of preserving network neighbourhoods of nodes, is constructed (Grover, & Leskovec, 
2016). It is a semi-supervised algorithm for scalable feature learning in networks. The algorithm extracts 
feature representations of nodes in a d-dimensional feature space. Second order random walk approach 
is used in order to generate network neighbourhood for nodes.

Additionally, Grover and Leskovec (2016) proposed a model to extract embedding of edges between 
nodes for link prediction. Link prediction is used in genomics, finding interaction between genes, and in 
social networks. In order to generate feature representations of edges, they compose the learned feature 
representations of the nodes.

DeepWalk

Random walk is an algorithm that provides random paths on a graph. The method is successfully used 
in various problems to get accurate results in the presence of missing information. DeepWalk is a su-
pervised learning algorithm that uses local information obtained from truncated random walks to learn 
latent representations by treating walks as the equivalent of sentences (Perozzi et al., 2014). DeepWalk 
generates random walks for each vertex in the graph and each random walk has specific length. In ad-
dition, next step is selected uniformly among previous vertex’s neighbours.

Additionally, scalable, incremental and parallelizable nature make DeepWalk suitable for a broad class 
of real world applications such as network classification and anomaly detection (Perozzi et al., 2014).
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Experimental Analysis

In order to compare the performance of these embedding solutions, we use a textual data set (news col-
lection), which is represented as a graph. To represent the textual data as a graph structure, we designed a 
graph model that keeps the named entities of the text as the nodes of the graph using the model proposed 
by Seker and Eryigit (2012). Each method uses a different kind of representation of graph, for example 
HOPE expects edge list for each graph whereas graph2vec expects edge list with additional information.

The performance analysis of HOPE under different dimensions is shown in Figure 1-a. In this ex-
periment, we have increased the vector dimension by 4 while changing no other parameter. Here, time 
denotes the total execution time for 1000 news graphs. As it can be seen in Figure 1-a, as we increase 
dimensionality, execution time also increases, as expected.

For graph2vec method, we adjust configuration in three different parameters. The first parameter is the 
number of epochs. Graph2vec tool uses 10 epochs by default. For time performance analysis, the number 
of epochs is increased by 10 until 100. In order to see the effect of dimension, we apply graph2vec with 
the same number of epochs, but under different dimensions. To this aim, we choose the dimensions of 
32 and 256 as lower and upper bound. The results for this analysis is shown in the Figure 1-b.

As seen in the figure, the change in the dimension (from 32 to 256) does not affect the execution 
time much, but the higher execution cost is brought, when the number of epochs is increased. In order 
to analyse the effect of dimension change better, we conducted another experiment such that the size of 
the dimensions is increased by 32 starting from 32 until 256. Note that the default dimension size is 128 
for graph2vec. For each dimension size, we apply both 10 and 100 epochs (lower and upper bound for 
the analysis given in Figure 1-b). The result of this analysis is shown in Figure 1-c.

It is seen that the number of epochs is more effective than dimensions parameter on execution time 
performance. Thus, the number of dimensions can be used as the default for time performance consid-
eration. On the other hand, it will be better for finding the optimal number of epochs by experimenting 
on similarity accuracy.

In addition to epochs and dimensions, we have conducted another experiment in order to analyse 
how the number of workers effects the time performance under the default configuration on epochs and 
dimension. Such an analysis may guide the researcher to tune the parallelization of the task in order to 
improve time performance. The number of workers is 4 by default in graph2vec tool. Thus, we analysed 
the performance from 2 to 10 workers. The result of the analysis is shown in Figure 1-d.

As it is seen in the figure, the increase in the number of workers improves the performance in general. 
However, for our 1000 news data graphs, having more than 6 workers start to degrade the performance 
slightly. Therefore, for our data set, using the default setting (which is 4 workers) or having 6 workers 
appear as a feasible setting.

For node2vec method, we analysed the effect of two different parameters used in the configuration. 
The first parameter is the size of the dimension. The effect of dimension is analysed by varying dimen-
sion sizes from 10 to 50, under the default length of walk (16), number of walks (100) and number of 
workers (2). The analysis results are shown in Figure 2-a. The second parameter is the length of walk. 
The effect of the length of walk is analysed by varying the values from 5 to 25, under the default dimen-
sion size (20), number of walks (100) and number of workers (2). The results are given in Figure 2-b. 
As seen in the results, for both of the parameters, the effect on time performance is not exactly linear. 
On the other hand, the time cost is within a certain width and the overall time cost is higher than the 
other three methods.
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For DeepWalk, we designed our experiments to analyse the effect of two configuration parameters: 
dimension and walk length, as in the previous analysis. The dimension size is varied from 32 to 256 
under the default values for the other settings. The results are given in Figure 2-c. For the analysis on 
the effect of change in walk length, the dimension size is set to 32 and the walk length is varied from 5 
to 25. The results are shown in Figure 2-d. As seen in the figures, both parameters have a linear relation 
with the time performance, where the walk length causes a higher increase in time cost.

As the final observation, the time costs for importing these four embedding methods are given in 
Table 1. The import time cost is the smallest for node2vec, whereas the gap is almost 1.5 seconds for 
the highest import time cost of HOPE.

Figure 1. Experimental results for HOPE and graph2vec
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Figure 2. Experimental results for node2vec and DeepWalk

Table 1. Experimental results about import time in seconds.

Method Import Time (in seconds)

graph2vec 8.79

HOPE 9.41

node2vec 7.82

DeepWalk 9.29
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3 GRAPH DEEP LEARNING MODELS

In the last few years inspired from the recent success of deep learning models, a large number of models, 
Graph Convolutional Networks (GCN), Graph Attention Networks, Graph Autoencoders, Graph Generative 
Networks and Graph Spatial-Temporal Networks are proposed for graph data. In this section, we focus on 
GCN and Graph to Sequence (Graph2Seq) models mostly used in natural language processing applica-
tions, and give a summary of recent state-of-the-art proposed GCN and Graph2Seq models in general.

Graph Convolutional Neural Networks (GCN)

GCN models are like traditional Convolutional Neural Networks except that they redefine the convolu-
tion process specifically for graph data, which extract features from neighbourhood of the node. Since 
unstructured graph data do not have a grid structure, standart convolution operation can not be used 
for graphs. For each node, a node representation is extracted by composing of its features together with 
its neighbors features. The state-of-the art-models mostly use convolution operation for graph data in 
spectral and spatial domain. While Spectral GCNs use convolution filters based on graph spectral theory, 
convolution operation of Spatial GCNs is aggregating of feature information from its neighbours. After 
extracting features from nodes using convolution operation, these features are aggregated with an order 
invarient operation to form a graph-level representation. Because of the lack of grid structure, pooling 
operation in standart CNNs cannot be directly used. Sum, average or max-pooling operations are mostly 
used as aggregation operations. Till now, the neighborhoods of nodes are combined with equal weights. 
There might be a need to involve the effect of each neighbor to the model. Graph attention mechanism is 
used to assign larger weights to the more significant nodes in the graph. The weights are learned during 
the training of the neural network.

Peng et al. (2018) propose a graph neural network model called the Deep Graph-CNN to better 
classify long bodies of text. The model derives its embeddings based on non-consecutive words that 
appear within a small window and uses large scale hierarchal text classification. The embeddings can 
be retrieved by first converting long documents to graphs instead of viewing these documents as many 
words in sequences. Word co-occurrence is a method used to construct the graph. It involves building 
an edge between the node representations of two words that occur at the same time in a small window 
of texts. Once the graph is finished, any sub-graph can be considered akin to a “long distance n-gram” 
because it builds a correlation between these words in the same small window. A CNN model that does 
not involve any graphs have proven to be successful with natural language processing in earlier publica-
tions. CNNs already capture the meaning of text based on consecutive words. We can consider these 
consecutive words to be the equivalents of n-grams. However, the usage of the CNN alone fails to capture 
the meaning of text based on embeddings derived from its non-consecutive words.

Graph representation learning usually involves two methods. Generative models learn the connec-
tivity distribution of the graph and discriminative models predict the probability of an edge existing 
between any two given vertices. Wang et al. (2018) propose the graph representation learning framework 
Graph-GAN, which uses a combination of both of these methods. The usage of both of these methods 
at once actually enhances the model’s performance. This is because for a given vertex, the generative 
model tries to learn the connectivity distribution with respect to all other vertices and produces “fake” 
samples. These samples then fool the discriminative model, which tries to detect whether the sampled 
vertex is from ground truth or derived from the generative model. In other words, the signals from the 
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discriminator guide the generator and improve its performance and the generator pushes the discrimina-
tor to better identify the differences between ground truth from generated samples. The authors evaluate 
the performance of the proposed model and compare its performance to those of other state-of-the-art 
models, which are DeepWalk, LINE, Node2vec, and Struc2vec. The Graph-GAN model outperforms 
all of the state-of-the-art models across the applications of link prediction, node classification, and 
recommendation.

Network embedding is the method of learning low-dimensional embeddings of vertices in such a 
way that it captures and preserves the graph structure. The words “network” and “graph” can be used 
interchangeably in the context of this study. Because graph structures can be complex, baseline models 
for network embedding are considered shallow and do not yield sufficient graph representations. Wang, 
Cui and Zhu (2016) propose a network embedding method to solve this problem, which they introduce 
a Structural Deep Network Embedding (SDNE) model. The model first uses a semi-supervised deep 
learning model with multiple layers of non-linear functions. This allows the model to capture the highly 
non-linear structure of the input graph. Then the SDNE model employs the first-order and second-order 
proximity at the same time to preserve the graph structure. The supervised information uses first-order 
proximity to preserve the local graph structure and the unsupervised information captures the global graph 
structure. The model preserves both the local and global graph structure by using these two proximities 
and it is applicable to sparse graphs. The TSNE graphs of the baseline models showing the represen-
tations of three news topics all show a lesser distinction between the three categories than that of the 
SDNE model. In addition, the SDNE model outperforms all of the baseline models in the applications 
of multi-label classification, link prediction, and visualization.

Baseline graph similarity and graph distance computations are functional but are very inefficient in 
practice. SimGNN involves two components (Bai et al., 2019). The first is an embedding function that 
extracts graph embeddings with one embedding being derived from each graph. This graph-level em-
bedding preserves and accentuates the similarity between the graphs. The second is a node comparison 
method to derive node embeddings, which can be used to supplement the graph embeddings obtained 
by the proposed model. The combination of the graph embeddings and the node embeddings enhances 
the performance of the model. The proposed model returns less errors than the baseline models and 
achieves noticeable time reduction. However, SimGNN is not without flaws. It can process graphs with 
node types but it cannot process edge features. An analogy for this would be in the field of chemistry, 
where chemical bonds as well as elements are usually labelled and have a great effect on experimental 
outcome. Thus, an enhanced version of SimGNN would definitely allow the characterization of edge 
features as well.

Event detection models which rely on non-graph deep learning, lacks the ability to capture the non-
consecutive k-grams. These non-consecutive k-grams may give significant information about event 
triggers in the words far apart in the sentences. Nguyen and Grishman (2018) proposed to encode input 
sentences as an input to the deep learning models which composed of Bidirectional Long-Short Term 
Memory Network (BiLSTM) and GCN together. GCNs can only capture the information in the neigh-
bours. Although increasing the number of convolution layers can be a solution for the problem, Nguyen 
and Grishman (2018) proposed to employ a BiLSTM and extract new representation vectors, which is 
the concatenation of the forward and backward hidden vector sequences at the corresponding positions. 
They applied convolution over the dependency trees using the BiLSTM representation. These represen-
tations capture long range dependencies of words using fewer convolution layers in GCNs. They used 
pooling, feed forward and softmax layers.
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Although CNNs perform success with very deep models, because of the vanishing gradient problem, 
most state-of-the-art GCN models do not scale well to deep architectures. Stacking multiple layers of 
graph convolutions leads to high complexity in back-propagation. For this reason, GCNs are mostly no 
more than 3 layers deep. To avoid vanishing gradient problem in CNN, ResNet includes residual con-
nections between input and output layers. ResNets can reach more than 152 layers. An extension model 
that use connections between layers called DenseNet proposes to connect each layer to every other layer 
in a feed-forward fashion (Li, Müller, Thabet, & Ghanem, 2019). Li et al. (2019) proposed to transfer 
the ideas behind ResNet and DenseNet to enable much deeper GCNs that converge well and achieve 
superior performance. They show that adding a combination of residual and dense connections, and 
dilated convolutions, enables successful training of GCNs up to 56 layers deep.

Graph-to-Sequence Models

Sequence-to-sequence (Seq2Seq) models achieve excellent performance on many natural language tasks 
such as natural language generation, machine translation, machine summarization. The basic models 
mostly use encoder-decoder architectures with RNN or LSTM models. In the encoder, there is a stack of 
several units (RNN, LSTM or GRU cells) where each one gets a single element of the input sequence. 
Each cell gets the feature vectors of that element in the sequence and the previous information and 
propagates it to the next cell. The final hidden state encapsulates the information in the input sequence, 
and sends it to the decoder. In the decoder, there is a stack of cells where each cell predicts an output at 
a time step t. Similarly, each cell accepts a hidden state from the previous unit, and predicts the output 
element in the sequence. Most of the state-of-the-art models use attention mechanisms, bidirectional 
RNN or bidirectional LSTM to improve the performance of Seq2Seq models.

The limitation of Seq2Seq model is that the inputs are only represented as sequences. However, many 
data are best expressed with a more complex structure such as graphs. When the graph structured inputs 
are transformed into sequences, the problem becomes a sequence to sequence problem. However, because 
of the information loss in the conversion process, the Seq2Seq models do not perform well with graph 
data. For this reason, recent proposed models using graph structures as input do not transform the data 
and transfer the graph directly to the deep learning model.

The Graph-to-Sequence (Graph2Seq) models have a graph encoder, which embeds node embed-
dings, edge embeddings and graph network mostly using aggregators such as mean, LSTM and pooling 
aggregators, and attention mechanisms. The decoder takes the output of the graph encoder as the initial 
hidden state and continues similarly as it is in Seq2Seq decoder models.

Xu et al. (2018a) propose to use an end-to-end conventional encoder-decoder architecture that maps 
the input graph to a sequence of vectors, and then used another attention-based LSTM to decode the 
target sequence from these vectors. The method extracts the embeddings for forward nodes and backwards 
nodes in the graph, and concatenates these representations. The graph encoder neural network generates 
both the graph embeddings and the node embeddings. They applied a set of aggregation functions (mean, 
LSTM and pooling aggregators) to aggregate feature information from different number of hops away 
from each node. In the decoding, they used attention-based LSTM to decode the target sequence from 
these vectors. In their other work, Xu et al. (2018b) enhance their model by introducing syntactic graph 
which includes word order, dependency, and constituency features. They use a Graph2Seq model similar 
to the work proposed by Xu et al. (2018a) which includes a graph encoder and a sequence decoder with 
attention mechanism.

 EBSCOhost - printed on 2/9/2023 5:28 AM via . All use subject to https://www.ebsco.com/terms-of-use



284

Recent Trends in the Use of Graph Neural Network Models for Natural Language Processing
 

Beck, Haffari, and Cohn (2018) propose graph-to-sequence model that employs an encoder based 
on Gated Graph Neural Networks, which can incorporate the full graph structure without loss of in-
formation. The model is designed for rooted directed acyclic graphs (DAGs) where node embedding 
information is propagated in a top down manner. Since RNN based encoders can use backward propaga-
tion to their models too, reverse edges and self-loop edges are added to the graph. By adding the edges 
the graph becomes undirected which causes information loss. For this purpose, they added positional 
embeddings to every node. These embeddings are indexed by integer values representing the minimum 
distance from the root node and are learned as model parameters. The model has an encoder-decoder 
architecture. The encoder is a Gated Graph Neural Networks (GGNN) that gets the concatenation of 
node embeddings and positional embeddings as input. Attention and decoder components are similar 
to standard Seq2Seq models.

Marcheggiani, Bastings, and Titov (2018) propose a graph2seq model where a novel graph-state 
LSTM is used as an encoder. To capture non-local interaction between nodes, they allow information 
exchange between nodes through a sequence of state transitions. An RNN is used to model the state 
transition process.

4 APPLICATIONS IN NATURAL LANGUAGE PROCESSING

In this section, we give details about the natural language processing applications of the proposed meth-
odologies mentioned in the previous sections.

Machine Translation, Abstract Meaning Representations to Text and Concersation Model-
ling: Seq2Seq models are mostly used in machine translation and machine summarization. Graph2seq 
model proposed by Beck et al. (2018) benchmark their model in two Graph2Seq tasks, generation from 
Abstract Meaning Representations (AMR) and Machine Translation. They reported that their approach 
outperforms standard Seq2Seq models in both tasks. Song, Zhang, Wang and Gildea (2018) also propose 
a Graph2Seq model for AMR to text generation. Their model that allows high parallelization, is more 
efficient and gives better performance than the baseline Seq2Seq models. Marcheggiani et al. (2018) 
proposed to use GCNs for machine translation. Zayats and Ostendorf (2018) proposed a model based 
on graph-structured bidirectional LSTM for conversation modelling. Sorokin and Gurevych (2018) used 
Gated GNNs to encode the graph structure of the semantic parsing for knowledge base question answering.

Visual Question Answering: Visual Question Answering (VQA) has received increasing interest 
in the recent years. Given an image, and a text question about the image,VQA is to give a text answer. 
The recent proposed models in literature use deep neural networks, which encode the photo and the text 
question by combining the features from the picture using very deep models using many convolutional 
layers and RNN or LSTM models for the text question, and produce a text based answer by using a 
decoder similar in Seq2Seq models. For the question, an RNN or LSTM model is constructed. These 
two representations are transferred into a joint space and feeding the output to a decoder similar to in 
Seq2Seq model.

Some of the models represent the spatial relations of the scene using a graph and use Graph2Seq 
models in the task. Teney, Liu and Hengel (2017) describe a deep neural network suitable for processing 
the question and scene graphs to infer an answer. In a scene graph, nodes represent objects in the scene, 
and edges represent their spatial relationships. A parse tree is constructed as the question graph, where 
word embeddings for each word and syntactic dependencies for edges are used.
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Reasoning: Xu et al. (2018) benchmark their Graph2Seq model to test reasoning capabilities of 
the model. Given a set of sentences describing the relative geographical positions between objects, 
they aim to answer position related questions. For example, given a text such as “The garden is west of 
the bathroom. The bedroom is north of the hallway. The office is south of the hallway. The bathroom 
is north of the bedroom. The kitchen is east of the bedroom”, the model will answer a question as in 
“How do you go from the bathroom to the hallway?”. They transform the sentences to a graph using the 
relative geographical positions between them so that garden, bathroom, bedroom, hallway, office and 
kitchen will be represented by node A, node B, node C, node D, node E and node F, respectively. Then 
the question is transformed into finding the shortest path between two nodes. The proposed Graph2Seq 
model described in Section 4 is compared against an LSTM model as the baseline. The authors report 
that the LSTM model fails on the task, while the proposed Graph2Seq model outperforms the baseline. 
They also benchmark for a Natural Language Generation (NLG) task. They translate Structured Query 
Language (SQL) query to a natural language description of the query. They have two baselines, a Se-
q2Seq model and a Seq2Seq model with an attention mechanism. They get significantly better results 
in comparison to the baselines.

Semantic Parsing: Semantic parsing is creating a mapping from sentences to formal representations 
of its meaning. Xu et al. (2018b) propose a Graph2Seq model for semantic parsing. Their model which 
use both multiple trees and the word sequence for semantic parsing achieves competitive performance 
and outperforms the Seq2Seq baseline models.

Text Classification: For the text classification task, Peng et al. compare their proposed model with 
the state-of-the-art traditional hierarchical text classification methodologies and recent deep learning 
architectures as the baseline, which are Logistic Regression, Hierarchical SVM, Hierarchical Regulariza-
tion, Hierarchical RNN based Models, CNNs based Models, Deep Graph-CNN Models. They analyse 
their model for both effectiveness and efficiency. Their approach provides promising results.

Using Graph Embeddings For Natural Language Processing: Genc and Yilmaz (2019) propose 
to extract embeddings for varying levels of granularities of entities such as date, month, and year embed-
dings using node2vec method from Snake Graph model. They also propose enrichment methodologies 
to transfer non-graph data with the intention of making the model learn the embeddings more accurately, 
which may shed light to transfer learning on graph embedding methodologies. In the experiments, they 
propose to use date embeddings for event detection in social media analysis. Ganguly, Gupta, Varma, & 
Pudi (2016) propose a method to combine both textual information and the link information to extract 
author representations. They validate their methodology for link prediction and clustering tasks.

5 OPEN PROBLEMS AND FUTURE DIRECTIONS

With the recent advances in deep learning models, graph based deep learning models achieved success 
in varying fields. But still it comprises challenges when applying deep learning models to graph data. 
In this section, we will state some open problems and future directions in graph based deep learning 
models concerning NLP tasks (Zhou et al., 2018; Zhang, Cui, & Zhu, 2018; Wu et al., 2018; Zhang, 
Tong, Xu, & Maciejewski, 2018).

Shallow networks: The success of deep learning lies in deep models stacking hundreds of layers to 
get better performance. Although in image classification the number of layers in ResNet and DenseNet 
exceeds hundred layers, models in NLP tasks mostly use shallow networks. Similarly, in Graph Convo-
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lutional Networks with the increase in the number of layers, the model performance drops dramatically. 
That’s why, most of the models stuck on the shallow networks. But these shallow models may fail to 
discover the more complex patterns behind the graphs. Although Li et al. (2019) proposed to transfer 
the ideas behind ResNet and DenseNet to enable much deeper GCNs that achieve training of GCNs up 
to 56 layers deep while achieving better performance than shallow networks, designing deep GNN is a 
challenge and using these deeper graph deep models in NLP tasks will be interesting for future research.

Dynamic Graphs: Data changes over time. For example, in social networks, people may have new 
friends in time, that’s why the graph structure representing the network has to change. That’s why the 
graphs representing the model should have dynamic nature, where nodes, edges and their features will 
be different in varying time stamps. There is very limited preliminary work on this area, therefore new 
models should be developed to handle dynamic graphs (Ma et al., 2018; Manessi, Rozza, & Manzo, 2017).

Non-Structural Text Data: Graphs can have diverse structures like being homogenous or heter-
ogenous, weighted or unweighted depending on the problem. When we consider NLP related tasks, 
there is no optimal method to represent text with graphs. Mostly words or entities represent nodes. But 
how the relations will be contructed is a misery (Genc, & Yilmaz, 2019). The proposed models should 
consider these concerns.

Other Isssues: There are also challenges related to application of deep learning models to graph 
data just like scalability and parallelization. There is no straight-forward way to define convolution and 
pooling operation for graph data (Bronstein, Bruna, LeCun, Szlam, & Vandergheynst, 2017).

CONCLUSIONS

Deep neural network based solutions are proven to have successful results in various problems. Among 
them, NLP stands out as one of the domains having considerable accuracy increase in the solutions. 
Another interesting evolvement in this direction is the use of graph representations. Hence graph embed-
dings and graph deep learning models are successfully employed in open up new modelling and solution 
possibilities in various NLP tasks and problems. In this chapter, we aim to provide an overview on the 
recent trends and efforts toward this direction.
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ABSTRACT

Due to a variety of possible good types and so many complex drilling variables and constraints, optimiza-
tion of the trajectory of a complex wellbore is very challenging. There are several types of wells, such as 
directional wells, horizontal wells, redrilling wells, complex structure wells, cluster wells, and extended 
reach wells. This reduction of the wellbore length helps to establish cost-effective approaches that can 
be utilized to resolve a group of complex trajectory optimization challenges. For efficient performance 
(i.e., quickly locating global optima while taking the smallest amount of computational time), we have 
to identify flexible control parameters. This research will try to develop a review of the various (particle 
swarm optimization) PSO algorithm used to optimize deviated wellbore trajectories. This chapter helps 
to find out optimal wellbore trajectory optimization algorithms that can close the technology gap by 
giving a useful method. This method can generate a solution automatically.
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INTRODUCTION

In the oil and gas industry cost minimization is a major concern for drilling engineers. From the very 
beginning, the advantages of drilling deviated wellbore have been very well-known to the industry. 
Though it is costly, this drilling makes it possible to place the well-path within productive intervals. 
In the beginning of the 19th century near Texon, Texas, USA the first horizontal well drilled. Before 
1950 only a horizontal section of just a few tens of meters drilled during wellbore drilling, but gradu-
ally technology developed(Pratt, 2004). Directional drilling technology became a commercially-viable 
technology between the 1980s to 1990s. Directional drilling technology was the most preferred technol-
ogy at that time, but it was quite different from today. From previous studies, it is found that the cost 
of drilling directional is 1.4 times costlier than the drilling of vertical well(Joshi, 2003). But in both 
cases, the cost of drilling is directly proportional to two factors such as the length of a wellbore and 
computational time. So, under all geological constraints and limitations if it is possible to reduce the 
length of the wellbore trajectory it will typically decrease the time to reach the desired target destina-
tion. Finally, it will reduce the overall drilling cost. At the same time, it also reduces the probability 
of risk(Karimpour et al., 2016). There are some reasons which made directional drilling popular since 
1990(Short, 1993). Such as it increases well productivity, increases the net productive section length, it 
can improve the production by penetrating more fractures in a fractured reservoir, better control etcetera. 
From the literature review, it is found that in the early era due to lack of strong mathematical model and 
related optimization theories, well design strongly depends on the experiences of an engineer. There 
was no automated way. Due to this, the researchers did the selection and adjustment of parameters again 
and again. The repeated selection and adjustment are very time consuming and inefficient(Amara & 
Martin, 1990; Miska & Skalle, 1981; Rampersad, Hareland, & Pairintra, 1993). In 1998 Helmy(Helmy, 
Khalaf, Darwish, & completion, 1998) established the first nonlinear optimization theory-based practi-
cal good design method. In that method, he considered some constraints such as build-up rate, drop-off 
rate, casing setting depth, inclination angle, azimuth angle, kick off point, etc(Helmy et al., 1998). But 
the model was in 2D. After that, another optimization work of wellbore trajectory completed which was 
based on the 3D model(Shokir et al., 2004). But these types of traditional optimization methods used 
direct search methods like random search which is inefficient to find the global optima in a vast search 
area. If the search is gibbous these methods also show their lacking. All those methods only deal with 
the continuous variable. The perfect design of a wellbore trajectory during good planning may reduce 
the probability of borehole failure(Awal, Khan, Mohiuddin, Abdulraheem, & Azeemuddin, 2001). Thus 
to reduce the cost and computational time trajectory optimization of a complex wellbore is the main 
purpose in drilling engineering. In recent years optimization has been used frequently in the petroleum 
industry. There are so many AI techniques and algorithms for optimization(Vasant & DeMarco, 2015; 
Vasant & Vasant, 2012). It has been used for various purposes such as plant optimization, transport 
schedule optimization, process optimization etcetera (Atashnezhad, Wood, Fereidounpour, Khosravanian, 
& Engineering, 2014; Guria, Goli, & Pathak, 2014; Shokir et al., 2004). The heuristic algorithm tries to 
find a solution to the problem through trial and error method. They take a reasonable amount of time. 
Whether the solution will be acceptable and reasonable it completely depends on the type of optimiza-
tion task. Usually, the heuristic algorithm does not give a guarantee to find the best or global optimal 
solution. Rather it can provide an acceptable solution within a reasonable amount of time. Metaheuristic 
means a higher level heuristic algorithm(Bianchi, Dorigo, Gambardella, & Gutjahr, 2009; Yang, 2009) 
which is a combination of several low-level heuristic algorithms. A modern heuristic algorithm has two 
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key feature such as “intensification” and “diversification”. If an algorithm can produce a diverse range 
of solutions and have the potentiality to find global optima we can mark it as an effective optimization 
algorithm. Furthermore, it should have the ability to explore the whole search area and to intensify its 
investigation radius around the neighbourhood of an acceptable solution. Heuristic algorithms have been 
applied to the constrained problem from the 1940s (Polya, 1945). Started with Genetic Algorithm (GA)
(Gallagher, Sambridge, & Geosciences, 1994) the application of a metaheuristic algorithm in the form 
of a nature-inspired evolutionary algorithm (EA) escalated since the 1990s. And in many cases where 
those algorithms tried to solve effectively some nonlinear, non-smooth optimization challenges those 
performed better than the nonlinear gradient based optimizers. And this metaheuristic algorithm in the 
form of EA showed better and easier adaption power than others(Yang, 2010). 

Wellbore trajectory length minimization is typically desirable as a way to improve the economics of 
drilling operations. These researches infer that criteria to optimize wellbore trajectory can be various 
according to specific circumstances (such as the single-well or group wells, oil drilling or scientific drill-
ing) such as maximizing the oil production in oil drilling and the hole locating in the group well drilling. 
Particle swarm optimization (PSO) is a metaheuristic optimization method that makes few assumptions 
about the problem being optimized with the ability to search large solution spaces to findbetter solutions. 
It was first developed by Kennedy and Eberhart (1995) and Kennedy (1997). PSO optimizes a problem 
iteratively by monitoring and improving a population of candidate solutions, referred to as “particles”, in 
terms of an objective function or fitness test (i.e. measure of quality). It does this by repeatedly adjusting 
the position of the particles in the search-space according to simple

mathematical formulas that determine each particle’s “position” and “velocity” .How PSO and dif-
ferent version of PSO optimized wellbore trajectory problem will be discussed here.

BACKGROUND

As said earlier the cost of directional drilling is much higher than vertical drilling. But we can justify 
this method by its ability to increase the production of well. It can also reduce the overall cost of sup-
ply. In the drilling industry by collecting different data regarding the well a wellbore trajectory design 
is proposed. Then when drilling engineers start their drilling they try to follow the designed path or 
designed trajectory. But in maximum cases, it is not possible for them to follow the actual design path by 
point to point. In that case, there is a need for optimization of the different parameters of that wellbore 
trajectory. So that it can reduce the true measured depth (TMD). One point should be considered that 
the researchers must reach the actual target so that the researchers also need an actual path. So, if we 
want to reduce the overall cost and time we have to find optimized wellbore trajectory parameters and 
exact path. The final goal is to find out optimum directional well design parameters. But in that case, the 
coordinates of the reservoir and downhole target location should be available. So here measured drill-
ing depth is the objective function. It is a function of system variables. When different algorithm tries 
to optimize this problem at the end they bring out some probable solution. Those solutions depend on 
system variables and constraints. Among those solutions, some are trapped in local optima. But those 
are not an effective solution. The researchers have to find out the global optima by honoring all those 
system variables and constraints. Among those solutions, we have to mark them through different ranks. 
Among different ranks, the best global solution will come out based on its effective capability. There are 
so many methods used to evaluate trajectories. A few of them are the minimum curvature method, angle 
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averaging method, the radius of curvature method, tangential method etcetera. The tangential method 
only considers the direction angle and inclination angle. The tangent of these angels is a wellbore path. 
But the accuracy of this method is minimum. So some new methods were developed to calculate the 
trajectory(Suryanarayana, McCann, Rudolf, Rupani, & Journal, 1998; Xiushan, Zaihong, Sen, & Jour-
nal, 1997). Here in most cases, they applied the radius of curvature method to calculate the wellbore 
trajectory. Shokir (Shokir et al., 2004) in his paper consider a horizontal well to design the well problem.

Since 1980 radius of the curvature method has been well established(Adams & Charrier, 1985). Here 
a simple deviated wellbore shown in Fig 1. And the effective parameters are true vertical depths (TVD), 
lateral length, dogleg severity (DLS) etcetera. This well design is used to optimized through different 
algorithms here. We can calculate the constant of curvature between two points in space through equa-
tion (1) 
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where a is the curvature of the curve.
Now the radius of curvature is 
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where T is the dogleg severity

Figure 1. Vertical plane cross-section of a generic 3D-deviated-and-partially-horizontal well trajectory 
(Shokir et al., 2004)
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From Equations (1) and (2) the well path between two points in 3D can be calculated as a function 
of the radius of curvature as well as the change of inclination and direction
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So, from a general equation to calculate the well path of a horizontal well consists of seven segments, 
kickoff the segment, Dkop (Kick-off point), three-segment for build and drop D1, D2, D3, two hold seg-
ment D4, D5, and final lateral section in the target layer HD, as following:
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where, ∅kop  = inclination angle at kickoff point, which was assumed to equal zero (Adam, 1985), and 
r1, r2, and r3

can be calculated as:
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Equations (9) to (11) provide the north-south, east-west and true vertical depth (TVD) at any point 
along with specific curved segments of a wellbore trajectory. Equation (12) then calculates the true 
measured depth (TMD) of the wellbore trajectory, which is the objective function for this study: 

TMD =DKOP+ D1+D2+D3+D4+D5+HD……........…. (12)

USED METHODOLOGY

If the precinct of the downhole target and coordinates of wellhead are particularized, then an optimal 
wellbore trajectory can be designed to elect a set of geometry parameters, which in turn will satisfy 
both the technical constraints and geometrical constraints. This designed trajectory can escape from the 
intersection of certain faults, avoids shallow gas pocket. It can also elude the local optima and existing 
wellbore. But finding an optimum trajectory from a vast solution space is very difficult. Because space 
is non-linear and non-smooth. For improving the economy of the drilling operation length minimization 
plays an important role(Samuel, 2009). Till now so many metaheuristic algorithms used to optimize 
wellbore trajectory. Here the researchers will discuss how different Particle Swarm Optimization (PSO) 
algorithm used to optimize wellbore trajectory.

PARTICLE SWARM OPTIMIZATION 

It is a metaheuristic algorithm. It also tries to give some probable solutions for a problem. It has the 
ability to search for a solution in a large search space. The algorithm was first proposed by Kennedy and 
Eberhart(Kennedy, 1997; Kennedy & Eberhart, 1995). This algorithm uses random iterations. Here swarm 
can be made where the particles are grouped, and it depends on the neighborhood. Particle exchange 
their information within the group. How particles interact computationally can be known by the help 
of the adjacency matrix. In matrix row represent the same types of a swarm, they are called informing 
particles. They communicate within themselves. But the column represents the informed particles. They 
contain the information gathered by the different swarm. They also hold information about the global 
position. So the global position can be achieved when the informing particle communicates with the 
informed particles. PSO first monitor and then improve the candidate solution. Through this way, it tries 
to optimize an objective function. PSO adjusts the position again and again according to a mathematical 
formula. Then from this, it tries to find out the position and velocity of particles. (Ganesan, Vasant, & 
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Elamvazuthy, 2012; Shi & Eberhart, 1998). Recent research shows that PSO has been applied to a much 
diverse application (Eberhart & Hu, 1999; Han, Huang, Jia, Wang, & Li, 2005; Xiao, Dow, Eberhart, 
Miled, & Oppelt, 2003; Xu, Wunsch II, & Frank, 2007). This optimization technique has in recent years 
been successfully applied, often in hybrid methodologies involving other optimization tools, to success-
fully solve varied optimization problems in the petroleum industry, for example, prediction of reservoir 
permeability; prediction of minimum miscibility pressure for carbon dioxide injection; parameter estima-
tion for a polypropylene reactor . In fact, recent research has demonstrated that PSO applications include 
many diverse areas of potential application, such as: communication networks; robotics; signal process-
ing; power generation, transmission and distribution systems and networks; prediction and forecasting, 
electronics and electromagnetics; meteorological predictions; investment decision-making; face detection 
and recognition, etc. For example, in the medical and pharmaceutical sectors, some PSO applications 
include human tremor analysis for the diagnosis of Parkinson’s disease; inference of gene regulatory 
networks; gene clustering; and, DNA motif detection. Hence, this relatively recent tool has seen rapid 
and diverse uptake which testifies to its powerful and desirable performance. Here the author used the 
wellbore designed by Shokir(Shokir et al., 2004) to apply the PSO algorithm. Here the PSO algorithm 
used random candidates. GA has operators such as crossover and mutation but on the other hand, PSO 
does not have these types of operators. Here a particle is recognized as elements that are similar to 
chromosome in GA. Here each particle is assigned to an initial value. Later two vector such as velocity 
and position vector are assigned to each particle. Then the particles move around the search space. It 
tries to find out feasible solutions. It also tries to find out the next optimum candidate value. Memory is 
assigned for the best previous position. Later a general memory is assigned for the best position after the 
last iteration. By this way, it repeats the approach in the search for the best solution. When it gets a better 
solution, it replaces the previous value. This process will continue until it can find the global optima. 
But finding an actual global position is not guaranteed. (Sharma & Khurana, 2013). Here particles are 
grouped into swarm(Onwunalu, 2010). How particle will interact with each other this will determine 
by the concept of the adjacency matrix. Based on different communication topologies of neighborhood 
different types of PSO can be defined. In the PSO algorithm, three important components are cognitive 
component (φp), inertia component (ω) social component, (φg). For a two dimensional space 

V V r p X r g Xi d i d p p i d i d g g d i d, , , , ,� � �� � � �� �É � � ……………………. (13)

where 

Vi,d: Velocity of ith particle and for dth dimension
rp, rg: are random numbers uniformly distributed between 0 and 1, applied to the cognitive and social 

components, respectively
pi,d: Best particle value found in the current swarm for the dth dimension of ith particle, up to current iteration
Xi,d: Value of the dth dimension of ith particle
gd: Best global value found for the dth dimension by all particles in the current and previous swarms up to 

current iteration, which, at the end of the last iteration, contains the optimal values the dth dimension 

Xi+Xi+vi……………. (14) 
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In equation (14), the value of the ith particle, Xi, for each dimension, is adjusted by the calculated 
velocity to provide the particle values to test in the next iteration of the model.

Here the inertia component restricts the particles within the boundaries of the problem area. The 
particles move towards their best previous position when cognitive components play a role. And they can 
achieve their best global position with the help of social components. When Non tuned PSO algorithm 
applied to a wellbore trajectory a minimum trajectory length has achieved.

From the result (Fig 2), it is found that the non-tuned PSO algorithm cannot achieve the minimum 
length. In that case, the parameters of PSO algorithm can be tuned with the help of another PSO algo-
rithm. It is called meta optimization. After tuning the parameters of PSO new values were assigned to 
them. So in meta optimization, behavioral parameters of any algorithms are tuned. Meta optimization is 
a simple way of finding good behavioral parameters for an optimizer by applying another optimizer to 
tune the behavioral parameters. The search behavior of an algorithm controlled by the behavioral param-
eters. Flow chart of PSO shown in Fig 3. Here the swarms of first PSO algorithm is called super swarm 
which is used to tune and optimize another PSO algorithm. The swarm of another PSO algorithm used 
to optimize the wellbore trajectory. Those are called sub swarm. Super warm and subswarm are inter-
related.the quality of super swarm can be tasted by subswarm. The relations between super swarm and 
subswarm have shown in the flow chart of PSO in FIG 2. It is a 5-dimensional problem which includes 
4 behavioral parameter and unknown TMD.So in the meta optimization of this study 5 particle posi-
tions was searched. From the meta optimization result, the study has also found if the number of swarms 
reduced then eventually it reduces the computational time. The study has also found if the number of 
iteration is more it can also produce a more statistically reliable result. Later tuned PSO optimizer used to 
searched 65 positions in this study to find the wellbore trajectory. If we tune the PSO parameters, it can 
improve the efficiency of the algorithm. Here the author used meta optimization to tune the parameters 
of PSO(Pedersen, 2010). Meta optimization operators also help to tune the operators of GA(Mercer & 
Sampson, 1978). These optimized GA and PSO parameters were used by so many researchers (Keane, 
1995; Meissner, Schmuker, & Schneider, 2006; Pedersen & Chipperfield, 2010). Here the author used 
two PSO algorithm to optimize the wellbore trajectory. They were named as super swarm and subswarm. 
Super swarm used to tune the PSO behavioral parameters and subswarm tries to find out the global op-
tima. Here the author used the methodology proposed by Onwunalu(Onwunalu, 2010). The number of 
swarms represents the number of times particle positions are adjusted by the velocity function in each 
iteration of the algorithm. From Fig 4 it is found that PSO can give a minimum depth. But it is not the 

Figure 2. TMD VS Iteration number
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Figure 3. Flow chart of Particle Swarm Optimization(Atashnezhad et al., 2014; Onwunalu, 2010)

Figure 4. True measured depth after tuned PSO optimizer applied
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precise measured depth. If the number of swarms is lower, it will take less computation time. In the 
tuned PSO optimization the author used a 65 particles position and the iteration number is 200. From 
the result, the author shows that tuned PSO parameters give a better result than the non-tuned one. And 
here the convergence time is less than the tuned one. Tuned PSO parameters can show less dispersion. 
From the result, it is also clear that with the increase of dimension of a problem the search capability of 
PSO decreased. (Huang, Ding, Yu, Wang, & Lu, 2016)

For these researches, the objective function has usually been assumed to be the minimization of the 
total trajectory length, which forms a single objective optimization problem. However, a single objec-
tive optimization approach cannot ensure an appropriate wellbore trajectory, other factors that impact 
the drilling process should be taken into account. Thus, Multi-objective optimization has been used for 
the wellbore trajectory design issue. These researches infer that criteria to optimize wellbore trajectory 
can be various according to specific circumstances (such as the single-well or group wells, oil drilling 
or scientific drilling) such as maximizing the oil production in oil drilling and the hole locating in the 
group well drilling. The above researches also indicate that one essential and key factor for wellbore 
trajectory design is to minimize the trajectory length, as it affects the drilling time and its associated 
costs. However, wellbore safety is another unignorable factor on which more emphasis should be put 
during the whole drilling engineering procedure. Minimizing torque on the drill string considers the 
operating condition, and can help to avoid drilling and completion problems even failure before they 
occur. Minimization of the total well profile strain energy can help to guarantee a smooth trajectory and 
reduce some accidents such as pipe stuck in the complex well.

Multi-Objective Cellular Particle Swarm Optimization

In 1940s Von Neumann and Ulam invented Cellular automata (CA). Till today it has been used as an 
effective tool for scientific researcher and also recognized as an effective tool. There are several re-
search areas where it has been used as an effective tool such as fault detection, intelligent optimization 
algorithms, bus and traffic route system, digital artworks generation et cetera(Lárraga & Alvarez-Icaza, 
2011; Luo, Jia, Li, Wang, & Gao, 2012). Now, what are cellular automata? Actually neighboring au-
tomata provides information to uniformly arranged finite-state automata. Later these uniformly arranged 
finite-state automata consist a lattice. And this lattice is called cellular automaton. By utilizing a function 
which is called a state transit function the cellular automaton can compute their next states. The most 
important part of cellular automata is cellular which in turn can be recognized as cell or element. It is 
also the most basic part of cellular automata (CA). In cell space, there is some lattice called discrete 
crystal lattice. The cellular is distributed on this. Cell space refers to the set of all cell nodes distributed 
in the Euclidean space. In the Euclidean space, all cell nodes distributed randomly. The set of all cell 
nodes is called cell spaces. It can be randomly dimensional. Such as one dimensional, two dimensional, 
multi-dimensional. If the cell spaces are divided into different spaces then the cell can take different 
shapes. The isometric division is the sole way of dividing one-dimensional space. And it is the only 
piecewise dividing way. In the case of two-dimensional space, there are so many options such as it can 
be divided into square, triangle or hexagonal cell shapes. But generally at a single moment, one cell 
can only have a single state. But it can have multiple variables. These variables are used to describe the 
cell state at a time. Neighbor means those cell which is placed around the current cell and they have an 
influence on the behavior of the current cell. It has also an influence on the current cell when it updates 
the state. In the case of one-dimensional cellular automata, the neighbors can be determined on the basis 
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of the radius. Actually, that cell which remains within the radius is called neighbors. The definition of 
neighbors is more complex in the case of two-dimensional cellular automata. Here based on transition 
rule the cell state is determined. At the same time, it is applied to all cells. Thus the whole CA system 
is evolved through the design space.

Figure 5 shows the flow chart of CPSO. In cellular particle swarm optimization (CPSO) a cell can 
be defined as a selected candidate solution. Neighborhood function determines the neighborhood for 
PSO. In CA according to transition rule particle exchange information with neighbor particles. After 
that, it updates its velocity and position. Actually, the neighboring particle with the best fitness value is 
substituted for the current particle. So, in turn, the construction of the neighborhood is very important. 
It is a key step. But it is a complex task to determine the radius of a certain particle during the construc-

Figure 5. Flow chart of CPSO(Zheng, Lu, & Gao, 2019)
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tion of the neighborhood. If the radius is small then it may miss the global optimum. If the radius is 
large then it may get a global optimum but there may be a slow convergence. Here more importance is 
given on global search. It also tries to make a balance between local exploitation and global explora-
tion sufficiently. Here a new neighborhood function is considered. Where a 1×d matrix consists of d 
uniform random numbers in (−1, 1) is considered. If the current particle can gains better than a particle 
which has global best position value ten it may give a smaller radius ratio than the considered matrix. In 
that case, it gives more importance to local search. Among the particles generated via the new adaptive 
neighborhood function, a neighbor particle with the best fitness value is substituted for the ith particle 
Therefore, particles in CPSO updates its velocity and position.

But it should be considered that a single solution to a problem is not practically viable. Because a 
problem depends on several factors. During theoretical analysis, some parameters considered as a con-
stant. So, in that case, maximum algorithms try to find out Pareto optimal solution. 

In single-objective PSO, they can be determined simply and uniquely, whereas in the multiobjective 
optimization there are numerous potential feasible solutions which are unable to be distinguished through 
fitness values. In Pareto optimal solution both dominated and non dominated solutions become separate. 
Such a set of Pareto optimal solutions is called a Pareto optimal set. In the first non dominated front all the 
solutions will have their domination count as zero. After that, it tries to reduce the count of domination 
by one. Through the ongoing process if it again becomes zero, then it is assigned to a separate list. So 
these members remain under the second non dominated the front. If it follows the above procedure then 
the third front is identified. This process continues until all fronts are identified. Domination constraint 
rule is employed during handling the constraints. Among numerous solutions, there are some solutions 
which have smaller overall constraint violation. These solutions may be taken as superior. When the two 
solutions violate the same number of constraints, the one with violation of a smaller amount is superior. 
In the case of selecting flight trajectory, the selection of global optimal position and particle optimal 
position plays an important role. They can be determined uniquely and simply in case of single objective 
PSO. But it is difficult during multi-objective optimization. Because there are so many solutions and it 
is difficult to distinguish among them through the fitness value. Here through Pareto-based dominance, 
the particle optimal position is chosen. It takes on the non-dominated particle between the current posi-
tion and previous best position. But if the current particle position and previous particle best position 
do not dominate each other in that it takes a random value. Then it calculates the distance between the 
current particle and non inferior solutions. Then a particle which is situated at a maximum distance is 
taken. The whole process can be described as follows: (1) According to non-dominated ranking rule a 
comparison is made between the population particles and external archive particles, (2) Then the residue 
particles are categorized again according to the crowded distance. Among this particle, one particle will 
be found which has minimum crowded distance. Later this particle will be removed. One thing should 
be considered that in that case, the non-inferior solutions may be reached to a predetermined value. (3) 
when the number of particles has not reached the predetermined external archive size, all the-inferior 
particles are stored in the external archive. In the above external archive maintenance strategy, elitist 
solutions are efficiently preserved in the external archive. 
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RESULTS

After analyzing the optimization it is found that if the number of iteration is increased non dominated 
solutions are also increased. But in that case, non dominated solution may lose. The evolution is guided 
by the optimal position of the particle. This evolution process along with optimizing process helps the 
algorithm to achieve convergence. Here for the specific issue, a redundant set is provided. Particles 
are varied according to the problem in this redundant set. In the external archive, there are some elitist 
particles. These particles provide the particle for the redundant set. This set brings two advantages to 
optimization. Premature convergence of population to local optima is prevented by this. This is done by 
interfering with the population generation. Prevent the population into a premature convergence a local 
optimum by Increase the diversity of elite solutions by particle variation in the external archive. With the 
increasing of iterations, numbers of non-dominated solutions increase sharply. What is more, the global 
optimal position guided evolution and optimizing process could easily lead to a precocious convergence.

Finally, the radius parameter in the adaptive neighborhood function is analyzed to investigate its in-
fluence on MOCPSO performance Finally, the radius parameter in the adaptive neighborhood function 
is analyzed to investigate its influence on MOCPSO .performance

The redundant set brings two advantages into the optimization. Prevent the population into a prema-
ture convergence a local optimum by interfering with the population generation. 0Increasethe diversity 
of elite solutions by particle variation in the external archive. The NSGA-II is currently one of the most 
popular multi-objective genetic algorithms with a good convergence and has become a performance 
baseline for other multiobjective optimization algorithms.

The developed optimization algorithm has a good result in the wellbore trajectory design optimiza-
tion problem, however, limitations still exist. It has several limitations. There is so many problem prop-
erty information. In this algorithm, these are not utilized to improve the performance of the proposed 
optimization algorithm for wellbore trajectory optimization. Increasing the number of neighbors may 
contribute to the performance of the algorithm to a certain extent. On the other hand, it may increase 
the computational time and complexity simultaneously. Besides, the influence of the specific drilling 
equipment utilized on the objective functions was not taken into account in the formulation of the well-
bore trajectory design problem.

CONCLUSION

Designing a wellbore trajectory is an important step in the oil and gas industry. Here we analyze so many 
metaheuristic algorithms that were used to solve wellbore trajectories. Behavioral-parameter tuning has 
a significant effect on the convergence of the Meta-heuristic particle swarm optimization algorithm. 
This is clear from the comparisons between tuned and non-tuned algorithm. This approach is well suited 
to drilling optimization challenges. The hybrid PSO algorithm finds the optimum solution space for 
the complex wellbore trajectory TMD optimization case studied more rapidly than other evolutionary 
algorithms, using similar population sizes, a number of iterations run, VBA coding and execution on 
the same computer. Wellbore trajectory design. The drilling parameters, such as inclination hold angles, 
azimuth angles, dogleg severity, true vertical depths, and lateral length can be processed by using the 
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hybrid algorithm to optimize objective function TMD under the nine constraint conditions. The simula-
tions show that CPSO has better minimum objective value, faster-running speed. We believe that using 
the new algorithm in actual drilling processing for wellbore trajectory control can enhance the real-time 
processing ability, improve drilling efficiency, and reduce drilling cost and time.

FUTURE RESEARCH

Since quantitative approach means systematic analysis of social factor via computational, statistical and 
mathematical technique, the researcher is more interested in this. The objective of computable research 
is to flourish and engage numerical models, theories and/or speculation related to the case. Here the 
measurement process is central. There is a fundamental connection between empirical observations of 
quantitative relationships. Central measurement process provides this connection. In layman’s terms, 
this means that the quantitative researcher asks a specific, narrow question and collects a sample of 
numerical data from participants to answer the questions. Here we proposed PSO to be optimized with 
CCA (Cheetah chase algorithm.)

The methodology is summarized as follows:

1.  Identify the system.
2.  Collect data to describe the system: collect all related data to the well under consideration (e.g. 

geologic data, surface, and target coordinate, etc).
3.  Identify system variables.
4.  System constraints: constraints are all restrictions placed on the system. These constraints could 

take the form of either equalities or inequalities.
5.  Initialization.
6.  Evaluation.
7.  Velocity update.
8.  Solution construction.
9.  CCA-based search for updating the candidate groups.
10.  Application of algorithm.

The Cheetah is a giant and energetic civet that was once found all through Asia, Africa and certain 
places of Europe. Among the predators of Africa, Cheetahs are the most energetic predators. They are 
actually famous for their grotesque speed when in a chase. They can run at 60mph for a minimum span 
of time. The speediest animal on the earth is Cheetah. The Cheetah is one of a kind among Africa’s 
civets principally on the grounds that they are most dynamic amid the day. They keep themselves away 
from rivalry for nutriment. They do not engage with rivalry with other substances like Lions and Hyenas. 
Because they also go out for prey at the cooler night. The Cheetah has outstanding visual perception 
thus chases utilizing sight by first stalking its prey from between 10 to 30 meters away, and after that 
pursuing it when the time is correct. The Cheetah has a thin and light body. This makes it suitable for 
the speediest animal. These behaviors represent unique features of the cheetah’s capability to capture 
fast-moving prey. Cheetahs can start from 0 miles for per hour to 65 miles per hour in only 3.5 seconds. 
Cheetahs can achieve the best speed anyplace in the middle of 60 and 70 miles per hour, varies on the 
size of a cheetah. But, the fascinating thing is that cheetahs can just run that quick for 20 to 30 seconds. 
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Along these lines, they can’t maintain that speed for long circumstances. What is the reason they can’t 
run that quick for long? All things considered, in light of the fact that keeping up that speed for any 
more extended than 20-30 seconds could have an exceptionally negative impact on their organs, and the 
cheetah could experience the ill effects of extraordinary over-effort and over-warming. CCA was devel-
oped by Goudhaman(Goudhaman, Vanathi, & Sasikumar). The CCA is inspired by social behavior of 
Cheetah and its speed. The prey technique can be formulated in such a way that it is associated with the 
objective function to be optimized, which makes it possible to formulate new optimization algorithms.

Since PSO and CPSO both have the problem of local convergence. Sometimes this algorithm cannot go 
for search along the whole area, in that case, it needs an algorithm that not only gives good solutions but 
gives it more precisely and within least time. So, in that case, PSO needs hybridization. But the algorithm 
which will optimize PSO should be a faster one and should have the ability to avoid local convergence. 
Cheetah Chase algorithm one of them. Due to its faster speed and more convergence power, it can help 
PSO to optimize wellbore trajectory more precisely where the required time is less. In order to make the 
ants survey the overall search space, CCA is applied to update the candidate groups for the PSO which 
ensures highly preferable positions in the search space and increases the probability of finding a better 
solution. Framework of hybridization of PSO with CCA shown in Fig 6.

Figure 6. Framework of Particle swarm optimization and Cheetah chase algorithm
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