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Preface

Differential equations and game theory approaches have attracted a growing number 
of scientists, decision makers and practicing researchers in recent years. They are 
used for solving complex problems in real-world applications of economics, biology, 
neuroscience, medicine and engineering. 

Differential equations play a key role to understand the real-world problems. 
Therefore, the theory of differential equations has been studied by many authors in 
recent years. The obtained results help us to solve several problems in applied fields 
of science such as mathematical biology, neural networks, economics, mechanics, 
physics, medicine and differential game theory. As a result, it is very important to 
stimulate more studies on this area. 

Game theory serves as a new core perspective of the compendium and text book. 
It deals with multi-person decision making, in which each decision maker tries to 
maximize own utility. In such situations, decisions regarding whether (or not) to 
cooperate within the grand coalition rely on estimations of individual benefits/
costs gains importance. Game theory is a mathematical theory dealing with the 
modeling and the analysis of conflict and cooperation and has broad applicability 
in Operational Research, economy, modern finance, climate negotiations and policy, 
environmental management and pollution control, etc. 

With this book the editors aim as follows: 

•	 to offer a compendium for all researchers who will become able to familiarize 
with the emerging research subjects that are of common practical and 
methodological interest for representatives of engineering, economics and 
biology, 

•	 to provide a dictionary and encyclopedia that will enable scientists and 
practitioners to quickly access the key notions of their domains and, via 
suitable methods and references, to advance ahead and to branch further on 
the way to handle their own and their institutions’ problems and challenges, 

•	 to create an atmosphere in which young researchers can grow when reading 
the book and develop further towards becoming recognized experiments, 

xiii
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•	 and initiate a momentum of excitement and encouragement on the way of 
preparing this book and of reading it later on, that will strongly support 
interdisciplinary science, the solution of striking real-world problems and a 
creative and fruitful collaboration between experts from all over the world, 

•	 to further introduce IGI as a premium publisher in new regions and as a 
Center of Excellence.

This book provides an excellent reference to graduate, postgraduate students, 
decision makers and researchers in private sectors, universities, and industries in the 
field of various sciences, engineering and management such as mathematics/applied 
mathematics, game theory, biology, neuroscience, computer science, economics and 
finance wherever one wants to model their uncertain practical and real-life problems. 
This book aims to become significant and to become very fruitful for humankind.

The book is organized into 11 chapters, prepared by experts and scholars from 
all over the world. A brief description of each of the contents of the chapters is 
given as follows:

Chapter 1: This chapter defines an operation reckoned with closeness property 
for a nonempty set. Then the authors define the partial group as a generalization 
of a group. The operation effects and changes the properties of group axioms. So 
that lots of group theoretic theorems and conclusions do not work in partial groups. 
Thus, this description gives some fundamental and important properties from group 
theory. Also some differences from group theory are given.

Chapter 2: In this chapter, the authors study the exponential rational function 
method to find new exact solutions for the time-fractional fifth-order Sawada-
Kotera equation, the space-time fractional Whitham-Broer-Kaup equations and the 
space-time fractional generalized Hirota-Satsuma coupled KdV equations. These 
fractional differential equations are converted into ordinary differential equations 
by using the fractional complex transform. The fractional derivatives are defined in 
the sense of Jumarie’s modified Riemann-Liouville method. The proposed method 
is direct and effective for solving different kinds of nonlinear fractional equations 
in mathematical physics.

Chapter 3: This chapter explores an economy where entrepreneurs choose 
their financial reporting quality considering incentives imposed by the society, and 
rent-seeking auditors may manipulate their reports to extract gains in the expense 
of public interest. The analysis captures the dynamics of strategy changes among 
different actors, by introducing a population game framework. The steady-state 
equilibrium analysis shows that there is a pure state and mixed states whose stability 
is affected by policy parameters such as subsidies, taxes, competitive auditor fee 
and rate of adjustment of different behavioral dynamics. It appears that corruption 
in auditing sector and poor quality in financial reporting may arise as a temporally 
persistent outcome.

xiv
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Chapter 4: This chapter gives the Berezin number inequalities for an invertible 
operator and some other related results are. Also, some inequalities of the slater type 
for convex functions of self adjoint operators in reproducing kernel Hilbert spaces 
are obtained and related results are examined.

Chapter 5: In this chapter, the features of a continuous time GARCH (COGARCH) 
process is discussed since the process can be applied as an explicit solution for 
the stochastic differential equation which is defined for the volatility of unequally 
spaced time series. COGARCH process driven by a Lévy process, which is an 
analogue of discrete time GARCH process and is further generalized to solutions of 
Lévy driven stochastic differential equations. The Compound Poisson and Variance 
Gamma processes are defined and used to derive the increments for the COGARCH 
process. Although there are various parameter estimation methods introduced for 
COGARCH this study is focused on two methods: Pseudo Maximum Likelihood 
Method and General Methods of Moments. Furthermore, an example is given to 
illustrate the findings.

Chapter 6: The authors extend transportation situations under uncertainty by using 
grey numbers. Further, building models for grey game problems on transportation 
situations; proposing the ideas of grey solutions and their corresponding structures 
are given. In the sequel, cooperative grey games and grey solutions are introduced. 
The grey Shapley value and the grey core of the modeled game arising from 
transportation situations are handled. Moreover, the nonemptiness of the grey core 
for the transportation grey games, and some results on the relationship between the 
grey core are proven. 

Chapter 7: This chapter is concerned with the orthogonality property of the 
discrete q-Hermite I polynomials. Moreover, the orthogonality relation for the k-th 
order q-derivatives of the discrete q-Hermite I polynomials is obtained. Finally, it is 
shown that, under a suitable transformation, these relations give the corresponding 
relations for the Hermite polynomials in the limiting case as q goes to 1.

Chapter 8: The objective of this chapter is to investigate a boundary value 
problem for the second order differential equation with two boundary conditions. It 
is proved that the system of eigenfunctions and associated eigenfunctions is complete 
in the space and using elementary asymptotical methods asymptotic formulas for 
the eigenvalues are obtained.

Chapter 9: In this chapter, the authors consider a nonlinear epidemic equation 
by modeling it with generalized piecewise constant argument (GPCA). The authors 
investigate invariance region for the considered model. Sufficient conditions 
guaranteeing the existence and uniqueness of the solutions of the model are given by 
creating integral equations. An important auxiliary result giving a relation between 
the values of the unknown function solutions at the deviation argument and at any 
time t is indicated. By using Lyapunov-Razumikhin method for the differential 

xv
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equations with generalized piecewise constant argument (EPCAG), the stability 
of the trivial equilibrium is investigated in addition to the stability examination of 
the positive equilibrium transformed into the trivial equilibrium. Then, sufficient 
conditions for the uniform stability and the uniform asymptotic stability of trivial 
equilibrium and the positive equilibrium are given.

Chapter 10: This chapter aims to study the singular Hahn-Dirac system. In 
the sequel, the existence of a spectral function for this system is proved. Further, a 
Parseval equality and an expansion formula in eigenfunctions are proved in terms 
of the spectral function.

Chapter 11: This chapter proposes a nonlinear epidemic model by developing 
it with generalized piecewise constant argument (GPCA). The authors investigate 
invariance region for the considered model. For the model taken into consideration, 
they obtain a useful inequality concerning relation between the values of the solutions 
at the deviating argument and at any time for the epidemic model. The authors reach 
sufficient conditions for the existence and uniqueness of the solutions. Then, based 
on Lyapunov-Razumikhin method for the differential equations with generalized 
piecewise constant argument (EPCAG), sufficient conditions for the stability of the 
trivial equilibrium and the positive equilibrium are investigated. Thus, the theoretical 
results concerning the uniform stability of the equilibriums are given.

This book will be an excellent reference for the global research scholars across 
the planet in the research areas on application of differential equations and game 
theory. Firstly, we would like to sincerely thank all the authors for their marvelous 
contribution to the book in submitting their valuable book chapters. Secondly, thanks 
to all the referees for their valuable time and great effort in reviewing all the book 
chapters. Lastly but not least, we also thank to the editors for their strong support 
and motivation in making this book publication very successful.

Sirma Zeynep Alparslan-Gök
Süleyman Demirel University, Turkey 

Duygu Aruğaslan-Çinçin
Süleyman Demirel University, Turkey 
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ABSTRACT

For a nonempty set G, the authors define an operation * reckoned with closeness 
property (i.e.,* is an operation which is not a binary operation). Then they define 
the partial group as a generalisation of a group. A partial group G which is a non 
empty set satisfies following conditions hold for all a,b and c∈d:(PG1) If ab,(ab)c, 
bc and a (bc) is defined, then,(ab) c=a (bc)(PG2) . For every,a∈G there exists an 
e∈G such that ae and ea are defined and, ae=ea=a (PG3) . For every,a∈G there 
exists an a∈G such that aa and aa are defined and aa=aa=e. The * operation effects 
and changes the properties of group axioms. So that lots of group theoretic theorems 
and conclusions do not work in partial groups. Thus, this description gives us some 
fundemental and important properties and analogous to group theory. Also the 
authors have some differences from group theory.

INTRODUCTION

Groupoid is an algebraic structure which is first introduced by Brandt in “Über eine 
Verallgemeinerung des Gruppengriffes”. The definition of a groupoid is given as 
the following:
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A Generalization of Groups

Let G be a nonempty set. A binary operation on G is a mapping from G×G to G. 
If * is a binary operation on G, then it is known that a*b∈G for all a,b∈G. (*(a,b) 
is denoted by a*b).

A partially defined binary operation on G is a function from D to G i.e. *:D→G, 
where D is a subset of G×G.

If an operation * is a partially defined binary operation on G, then a*b is undefined 
or a*b is not contained in G for some a,b∈G.

A semigroupoid (which is also called as partial semigroup by Bergelson V., 
Blass A. and Hindman N., in “Partition theorems for spaces of variable words”) is 
a nonempty set G equipped with a partially defined binary operation * on G and 
this operation is associative in the following sense:

If either (a*b)*c or a*(b*c) is defined, then so is the other and 
a b c a b c�� �� � � �� � .

Let (G,*) is a semigroupoid. Then G is called a groupoid if it satisfies the 
following conditions:

1. 	 For each a in G, there are left and right identity elements er and el such that 
e a a a el r� � � � ,

2. 	 Each a in G has an inverse a-1 for which aa el
� �1  and a a er

� �1 .

An algebraic structure called as an effect algebra, has recently been introduced 
for investigations in the foundations of quantum mechanics by Foulis D., and Bennett 
M. K., in the paper “Effect algebras and unsharp quantum logics”.

Moreover, effect algebras play a fundamental role in recent investigations of 
fuzzy probability theory. The connection between effect algebras and probablity 
theory can be found in “Fundamentals of fuzzy probability theory” by Bugajski S.

The definition of an effect algebra is given as the following:
An effect algebra is an algebraic system (E,0,1,*) where 0,1 are distinct elements 

of E and * is a partially defined binary operation on E that satisfies the following 
conditions for all a,b and c∈E:

(E1): If a*b is defined then b*a is defined and a*b=b*a,
(E2): If a*b and (a*b)*c are defined, then b*c and a*(b*c) are defined and 

a b c a b c� �� � � �� �� ,
(E3): For every a∈E, there exists a unique a E'∈  such that a a∗ '  is defined and 

a a� �' 1,
(E4): If a*1 is defined, then a=0.
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This study occured by inspiration of the definitions of effect algebra and groupoid. 
In this paper, we introduced the notion named partial group as a generalization of 
definition of group. We also defined the notions of partial subgroup, cyclic partial 
subgroup and partial group homomorphism and obtained some fundamental 
properties.

PARTIAL GROUPS

In the following we will define the partial group. For brevity, if a*b∈G for any 
a,b∈G, a*b will be written as ab.

Definition 2.1: Let G be a nonempty set. G is called a partial group if the following 
conditions hold for all a,b and c∈G:
(PG1): If ab, (ab)c, bc and a(bc) is defined, then (ab)c=a(bc),
(PG2): For every a∈G, there exists an e∈G such that ae and ea are defined 

and ae=ea=a,
(PG3): For every a∈G, there exists an a G'∈  such that aa '  and a a'  are 

defined and aa a a e' '= = .

The element e∈G satisfies (PG2) in Definition 2.1 is called identity element of 
G and the element a G'∈  satisfies (PG3) in Definition 2.1 is called the inverse of 
a and denoted by a-1, in generally.

If the non empty set G satisfies only the axiom (PG1) then it is called semi partial 
group. Note that semi partial group differs from partial semigroup.

A partial group G is said to be abelian or commutative if ab=ba for all a,b∈G 
such that ab and ba are defined.

Proposition 2.2 Let G be a semi partial group. Then G is a partial group if and only 
if the following conditions hold:
1. 	 There exists an element e∈G such that ea and ae are exist and ea=ae=a.
2. 	 For each a∈G, there exists an element a-1∈G such that a-1a and aa-1 are 

defined and a-1a=aa-1=e.
Proof. The proof of proposition can be done straight forward from the definition of 

partial group and semi partial group.
Remark 2.3. Note that the definition of associativity is different from the definitons 

in effect algebra and groupoid.
Proposition 2.4. Every group is a partial group. Conversely it is not true. A partial 

group which is closed under its operation is a group.
Proof. It is clear by Definition 2.1.

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



4

A Generalization of Groups

Remark 2.5. In the above descriptions some concepts on group theory and partial 
groups have similarity. But if we want to give some counter descriptions we 
can look at Generalized Associative Law and Generalized Commutative Law. 
These properties give us some important results for group theory. But for 
partial groups these results do not work in general. Let remind these two law 
and think about why they do not work on partial groups:

Generalized Associative Law: If G is a semigroup and a1,a2,…,an∈G then any 
two meaningful products of a1,a2,…,an in this order are equal.

But in partial groups this law is not valid, because of the * operation is not closed 
and associativity property differs from group theory.

Similarly, we can state the following theorem:
Generalized Commutative Law: If G is a commutative semigroup and a1,a2,…

,an∈G, then for any permutation i1,i2,…,in of 1,2,…,n

a a a a a an i i in1 2
1 2

... ...= .	

But unfortunately, this is not possible in commutative partial groups too. These 
explanations states that; partial group structure is weaker than group structure. In 
the following some examples are given for partial groups:

Example 2.6. Let G n= { }, ,...,0 1∓ ∓  where n� �
 and + be known addition operation 

on  . Then it is easily seen that G is a partial group but it is not a group.

Example 2.7. Let G
n
n� ��

�
�

�
�
�

�� ∪ �1 *  where  

� � �� �0 . Then it is easily 

seen that G is a partial group but it is not a group by the known multiplication 
on � .

Example 2.8. Let G=[-r,r] where +  and + be known addition operation on + . 
Then it is easily seen that G is a partial group but is not a group.

Example 2.9. The set G i i i i
� � �

��
�
�

�
�
�

1 1 2
2

, , , , , , where i is a complex number with 

the multiplication operation on   is a partial group.
Proposition 2.10. Let G be a partial group. Then the following conditions are hold:

1. 	 The identity element e is unique,
2. 	 For each a∈G, a-1 unique,
3. 	 For each a∈G, (a-1)-1=a,
4. 	 İf ab (ab)b-1, b-1a-1, (ab)b-1a-1, a-1(ab) and b-1a-1(ab) are defined, then 

(ab)‑1=b-1a-1, 
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5. 	 İf ab, ac, a-1(ab) and a-1(ac) are defined and ab=ac, then b=c, 
6. 	 İf ab=ac, ba, ca, (ba)a-1 and (ca)a-1 are defined and ba=ca then b=c.

Proof.
1. 	 Suppose G has two identity elements such as e1,e2. Then by the definition 

of identity element e1,e2, e2,e1 are defined and e1,e2= e2,e1= e1=e2Thus 
the identity element e is unique.

2. 	 Similar to the proof of (i).
3. 	 This comes from the axiom (PG3).
4. 	 Since ab, (ab)b-1 are defined and from (PG3), bb-1 is defined then by 

(PG1) we have (ab)b-1 = a(bb-1) = ae = a. In this case, since b-1a-1 and 
(ab)b-1a-1 are defined, we get e aa ab b a ab b a� � � �� � � � �� �� � � � �1 1 1 1 1

.  
Similarly, we get a-1(ab) = (a-1a)b = eb = b. Then we obtain

e b b b ab e b b b a ab b a ab� � � �� � � � � � �� � � � �� �� � � � � � �1 1 1 1 1 1 1 	

Hence (ab)-1=b-1a-1.
5. 	 Let ab=ac. Then we have a-1(ab)=a-1(ac). Hence we get (a-1a)b=(a-1a)c 

that is b=c.
6. 	 Similar to the prof of (v).

Theorem 2.11. Let G is a partial group and a,b∈G. Then the following conditions 
are valid:
1. 	 If a-1b and a(a-1b) are defined then the equation ax=b has a unique solution 

x and x=a-1b.
2. 	 If ba-1 and (ba-1)a are defined then the equation ya=b has a unique solution 

y and y=ba-1.
Proof. The proof of the theorem comes from the Proposition 2.10.(v).
Example 2.12. For the partial group in Example 2.7. the equations 4x=2 and 

1
3 5� � �x  have solutions but the equation 4x=3 has not got any solution in 

G.
Lemma 2.13. Let G and H be two partial groups. Then the Cartesian product of G 

and H which is defined as

G H Hg h g G� � �� � �{ , | , } h 	

is also a partial group.

Proof. Let the operation * on G×H defined as
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g h g h g g h h
1 1 2 2 1 2 1 2
, , , .� ��� � � � � 	

Then we need to show that the axioms of partial group are satisfied:

(PG1): If xy, (xy)z and x(yz) is defined on G×H then we need to show (xy)z=x(yz). 
Let x=(g1,h1), y=(g2,h2) and z=(g3,h3). Since xy is defined then xy g g h h� � �1 2 1 2

,  
is defined. This means that g1g2 and h1h2 is defined. Similarly, since (xy)z and 
x(yz) is defined on G×H we obtain (g1g2)g3, (h1h2)h3 and g1(g2g3), h1(h2h3) are 
defined. Since G and H are partial groups we handle that (xy)z=x(yz).

(PG2): For each (g,h)∈G×H, let e e G HG H,� �� �  is candidate for the identity 
element of G×H. Since G and H are partial groups eG and eH are identity 
elements of G and H. So that the equality g h e e g h e g e gG H G H, , , ,� �� � � � � � � �  
holds.

(PG3): For every (g,h)∈G×H let g h� �� �1 1
, � �G H  candidate for the inverse 

element of G×H. Since G and H are partial groups g-1 and h-1 are inverse 
e l e m e n t s  o f  g  a n d  h  i n  G , H .  S o  t h a t  t h e  e qu a l i t y 
g h g h e e g h g hG H, , , , ,� �� � � � � � � �� �� � � �1 1 1 1

Definition 2.14. Let G be a partial group and a1,a2,…,an∈G. If a1a2 and (a1a2)a3 are 
defined then we can define

a a a ai
i

� � �
�
� 1 2 3

1

3

.	

By recursion for n≥4, if ai
i

n

�

�

�
1

1

 and a ai
i

n

n
�

�

��
�
�

�

�
�

1

1

 are defined then we can define 

a a ai
i

n

i
i

n

n
� �

�

� ��
�

�
�

�

�
�

1 1

1

.

Specially, for any a∈G, we can define a0=e, a1=a. For n≥2 if a
i

n

�

�

�
1

1

 and a a
i

n

�

�

��
�
�

�

�
�

1

1

 

are defined then we can define a a an

i

n

�
�

�
�

�

�
�

�

�

�
1

1

 for a∈G, a-1∈G. If (a-1)n is defined 

then we define (a-1)n=a-n. Also,

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



7

A Generalization of Groups

Remark 2.15. In a partial group, we defined an as a a an

i

n

�
�

�
�

�

�
�

�

�

�
1

1

 for n≥2. Note 

that in generally, in a partial group, a a an

i

n

�
�

�
�

�

�
�

�

�

�
1

1

 can not be equal to 

a a an

i

n

�
�

�
�

�

�
�

�

�

�
1

1

 as we can see in the following example for a partial group.

Example 2.16. Let G e a b c S e a b c d�� �� �� �, , , , , , ,  and “∙” be a partial defined 
operation on G as the following table:

⋅ e a b c
e e a b c
a a b c e
b b c e a
c c e d b

	

Note that c.b is undefined. Then G is not a group but it is a partial group. We 
can see that c c b c a2 � � � �  and c c c b d� � � �2 . So that c c c c2 2� � � .

Corollary 2.17. Let G be a partial group and n,i, j and k be nonnegative integers. 
Then the following statements are satisfied with;
(i) 	 if an is defined, then ak is defined for all k≤n,
(ii) 	 if for 2≤i+j≤n, aiaj is defined, a a ai j i j� � . .

Definition 2.18. Let G be a partial group, m∈Z+ and a∈G. If am is defined and m is 
the least integer such that am=e, the number m is called the order of a. In this 
case it is called that a has finite order. If there does not exist an m∈Z+ such 
that am=e (if only a0=e), then it is called that a has infinite order. The order 
of a is denoted by |a|.

Example 2.19. For the partial group in Example 2.9., |i|=4, |2i|=∞.
Definition 2.20. Let G be a partial group.

Z G x G ax xa a A ax xa( ) � � � �� �If   and  are defined for all  and 	

is called the center of G.

Remark 2.21. A partial group is centerless if Z(G) is trivial, i.e., it consists of only 
the identity element. If G is commutative then G=Z(G). 
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Definition 2.22. Let G be a partial group and H be a nonempty subset of G. If H is a 
partial group with the operation on G then H is called a partial subgroup of G.

Example 2.23. Let G be the partial group in Example 2.6. and H k�� �0 1, ,...,   
where 0≤k≤n and k∈Z. Then H is a partial subgroup of G.

Theorem 2.24. Let G be a partial group and H be a nonempty subset of G. Then H 
is a partial subgroup of G if and only if the following conditions are hold with;
(i) 	 e∈H, 
(ii) 	 a-1∈H for all a∈H. 

Proof. The proof of the theorem is straightforward by definition.
Proposition 2.25. The center Z(G) of a partial group G is a partial subgroup of G.
Proof. We need to show that;

1. 	 Is e∈G contained in Z(G)?

Since e is an identity element of the partial group G by (PG2) for all a∈G, ae=ea. 
Then e is contained in Z(G).

2. 	 If x∈Z(G), we need to show that x-1∈Z(G). 

Since x∈Z(G), for all a in G, ax and xa are defined and ax=xa. At the same time 
xx x x e Z G� �� � �1 1

( ),  sc. xx x x Z G� � �1 1
, ( ).  Then for all a∈G

ax ea x

xx a x

x x a x

x a x x
x Z G

� �

� �

� �

�

�

�

� � �� �
� � �� �
� � �� �

1 1

1 1

1 1

1

( )

( )

PG1

��

� �

�

�

�

� � �
�

1

1 1

1

1

PG1

( )( )x a xx

x a e

x a

	

and so that x-1∈Z(G). This completes the proof.

Example 2.26. Let G be a partial group, A and B be partial subgroups of G. Then 
the sets A B∩  and A B∪  are partial subgroups of G . In generally, if {Hi:i∈I} 
is a family of partial subgroups of Gwhich are finite or infinite, then the sets 
�
�i I iH  and �

�i I iH  are partial subgroups of G.

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



9

A Generalization of Groups

Let G be a partial group and a∈G. The smallest partial subgroup which contains 
a is {e,a,a-1}. Assume that X be a subset of G. Then the smallest partial subgroup 
of G contains X is the set X X e� ��1

{ }  where the set X-1 is the set of inverses of 
elements of the set X.

Example 2.27. For the partial group G i i i i� � � �� �1 1 2
2

, , , , ,  in Example 2.9, the 
smallest partial subgroup contains i is given by {1,i,-i}. The smallest partial 
subgroup contains {-1,i} is defined by {1,-1,i,-i}.

Let G be a partial group and let a be an element of G such that the elements ak 
for all k∈Z are defined. Assume taht the set is denoted by { : } .a k ak � � � �Z  It is 
clear that the set � �a  is a partial subgroup of G. The partial subgroup � �a  of G is 
called the cyclic partial subgroup generated by a. If there exists an element a in G 
such that � � �a G,  then G is called a cyclic partial group.

Example 2.28. For the partial group in Example 2.7., the set � � � �2 2{ : }
k k Z  is 

a cyclic partial subgroup of G.
Example 2.29. In the partial group in Example 2.17, since � � �a G,  G is a cyclic 

partial group.
Remark 2.30. All partial subgroups of a cyclic partial group can not be cyclic. 

For example, in Example 2.17, the partial subgroup H={e,a,c} is not cyclic 
partial subgroup.

Up to this part we gave some partial subgroup examples and explained some 
related structures. At this point we thought about Lagrange’s theorem which is not 
valid for partial groups. Let us remind Lagrange’s theorem in group theory:

Lagrange’s Theorem: If H is a subgroup of a group G then |G|=[G:H].|H|. In 
particular, if G is finite the order of subgroup of G divides the order of G.

But in partial groups, let consider the example 2.6: We can say that the subset 

S G n� � � � � �� �� � � � �� �0 1 2 3 4 5 0 1 2, , , , , , , ,..., 	

is also a partial subgroup of G. The subset S consists of 11 elements and the set G 
consists of 2n+1 elements. But the division algorithm in Lagrange’s theorem does 
not work in general except specific numbers. So that Lagrange’s theorem is not valid 
for partial groups under these assumptions.
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Definition 2.31. Let G and H be partial groups. A function ϕ:G→H is called a partial 
group homomorphism if for all a,b∈G such that ab is defined in G, ϕ(a) ϕ(b) 
is defined in H and ϕ(ab)= ϕ(a) ϕ(b). 

If ϕ is injective as a map of sets, ϕ is said to be a monomorphism. If ϕ is surjective, 
ϕ is called an epimorphism. If ϕ is bijective, ϕ is called by an isomorphism. In this 
case G and H are said to be isomorphic and written as G≅H. 

Example 2.32. Let G be partial group in Example 2.7. The map f: G→G f given by 

x
x



1
 is an isomorphism. But the map given by x x

2  is a homomorphism, 

it is not an isomorphism.
Definition 2.33. Let G and G be partial groups and ϕ: G→H be a partial group 

homomorphism. Then,
1. 	 Ker g G g eH� �� � � � � � �� �  is called the kernel of ϕ.

2. 	 If� � �A G  then the set � �A g g A� � � � � �� �  is called the image 
of A under ϕ and ϕ(G) is the image of ϕ.

3. 	 If � � �B H  then the set � �� � � � ��� �1
( )B g G g B  is called the 

preimage of B.
Proposition 2.34. Let G and H be partial groups and φ: G→H be a homomorphism 

of partial groups. Then the following conditions are satisfied:
1. 	 If A is a partial subgroup of G, then φ(A) is a partial subgroup of H.
2. 	 If B is a partial subgroup of H, then φ-1(B) is a partial subgroup of G.
3. 	 Ker(φ) is a partial subgroup of G.

Proof. Since A is a partial subgroup of G, then eG∈A. Using φ is a homomorphism 
φ(eG)∈ φ(A), and we obtain e e AH G� � �� � �� � .  After that let us show if 
x∈ φ(A) whether or not x-1 ∈φ(A). If x∈φ(A) then there exists an element a in 
A such that x= φ(A) and then since A is partial subgroup of G, when a∈A, also 
a-1∈A. Since φ is a homomorphism we get φ(a-1) ∈ φ(A). We know from the 
definition of partial group that aa-1 and a-1a are defined. Then the following 
equality

e e aa a a a a a aH G� � � � � � � � � � � � � � � � � � �� � � �� � � � � � �1 1 1 1 	

is valid. So that φ(a-1)= φ(a)-1 and x-1∈φ(A). 
Proofs of axioms (ii) and (iii) are held in similar a way of the proof of (i).
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CONCLUSION

In this paper, we introduced a notion named partial groups using a nonempty set 
and an operation which is not a binary operation on this set as a generalization of 
group theory. We also defined the notions of partial subgroup, cyclic partial group, 
cyclic partial subgroup and partial group homomorphism. We also obtained some 
fundamental properties about these notions. This work is an entry to a new concept 
and applicable to applied mathematics, such as fuzzy theory, probabilistic theory. We 
will continue to consider the properties of partial group and then introduce partial 
ring in the future work. Also, by reviewrs request we can prepare a new section as 
a second chapter of this partial groups such as partial free groups, partial quotient 
groups, isomorphism theories in partial groups, etc... by considering different 
properties and structers of groups.
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INTRODUCTİON

Fractional calculus deals with the derivatives and integrals of any real or complex 
order (Greenberg, 1978; Podlubny, 1999; Hilfer, 2000). This type of calculus was 
initiated and developed by many great scientists like Leibniz, L’Hospital, Euler, 
Bernoulli, Riemann, Liouville, and many others (Kilbas, Srivastava, & Trujillo, 2006). 
Many researchers have been working to develop the fractional calculus and make 
use of its applicability to various areas of mathematics, physics and engineering. It 
has been found that fractional calculus can be extensively used for many physical 
phenomena as a strong and effective tool to describe mathematical modeling (Caputo, 
& Fabrizio, 2015; Erbe, Goodrich, Jia, & Peterson, 2016).

In recent years, fractional differential equations (FDEs) have been popular among 
the researchers and gained much attention. FDEs are generalization of classical 
differential equations of integer order. They are widely used to describe various 
complex phenomena such as in fluid flow, control theory, signal processing, systems 
identification, viscoelasticity, acoustic waves etc. The exact solutions of nonlinear 
fractional differential equations by using various different methods have been 
investigated by many researchers. Many useful method for finding exact solutions 
of FDEs have been proposed. Such as the tanh-function expansion method (Fan, 
2000), the Jacobi elliptic function expansion (Liu, Fu, Liu, & Zhao, 2001), the 
homogeneous balance method (Wang, 1995; Wang, 1996; Wang, Zhou, &Li, 1996), 
the trial function method (Kudryashov, 1990), the exponential function method (He 
& Wu, 2006), the ( ′G G/ )-expansion method (Zhang, Tong, & Wang, 2008), the 
sub-ODE method (Zhang, Wang, & Li, 2006; Wang, Li, & Zhang, 2007), Adomian 
decomposition method (El-Sayed & Gaber, 2006; El-Sayed, Behiry, & Raslan, 
2010), the homotopy analysis method (Arafa, Rida, & Mohamed, 2011), the 
differential transformation method (Odibat & Momani, 2008), the fractional sub-
equation method (S. Zhang & H. Q. Zhang, 2011; Guo, Mei, Li, & Sun, 2012; Lu, 
2012) and so on.

There are several types of fractional derivatives, among the popular of them are 
given in the following sections.

Riemann-Liouville Fractional Derivatives

The Riemann-Liouville fractional integration operator is defined as

I f t t f d
t

a

� �

�
� � �� � � � �

� �� � � ��1 1

�
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where a>0, t>α, a,t,α∈R (Gorenflo & Mainardi, 2000). The Riemann-Liouville 
fractional differential operator is defined as

D f t
n

d
dt

f
t

d n n N

d
dt

f

n

n
a

t

n

n

n

�
��
�

�
� �

� � � �� �
� �

�� �
� � � �� � �

1
1

1�
,     

tt n N� � � �

�

�
�
�

�
�
� ,                           �

	

where a>0, t>α, a,t,α∈R (Gorenflo & Mainardi, 2000). The well-known fractional 
integral is the Riemann-Liouville type which is based on the generalisation of the 

usual Riemann integral � � �
x

f t dt
a

 (Jarad, Abdeljawad, & Baleanu, 2012).

Caputo’s Fractional Derivatives

An alternative definition of the fractional derivative is the Caputo’s fractional 
derivative, originally introduced by Caputo (Caputo, 1967) in the following form,

C

a

t n

nD f t
n

f
t

d n n�
��
�

�
� �� � �

�� �
� �

�� �
� � ��

� �

� �

1
1

1�
,     	

where n∈N and f(t) has n+1 continuous bounded derivatives in every finite interval 
[a,t].

The main advantage of Caputo’s approach is that the initial conditions for 
fractional differential equations with Caputo derivatives take on the same form as 
for integer-order differential equations. Although the Riemann-Liouville fractional 
integrals and derivatives contributed immensely to the development of the theory 
of fractional calculus, it turns out that this approach has certain disadvantages when 
trying to model real-world phenomena with fractional differential equations. Another 
difference between the Riemann-Liouville definition and the Caputo definition is 
that the Caputo derivative of a constant is zero, whereas in the case of a finite value 
of the lower terminal ‘a’ the Riemann-Liouville fractional derivative of a constant 
C is not zero.
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Hadamard Fractional Derivative

Hadamard proposed a fractional power of the form x d
dx

�
�
�

�
�
�
�

. This fractional 

derivative is invariant with respect to dilation on the whole axis. The Hadamard 
approach to fractional integral was based on the generalisation of the n-th integral

( ) .J f t dt
t

dt
t

f t dt
t

n

a

x

a

t

a

t

n
n

n

n

� � � � � �� � �
�

1

1

2

2

1 1

	

Just like Riemann-Liouville, Hadamard derivative has its own disadvantages as 
well, one of which is the fact that the derivative of a constant is not equal to zero 
in general. The authors in (Jarad, Abdeljawad, & Baleanu, 2012) resolved these 
problems by modifying the derivative into a more suitable one having physically 
interpretable initial conditions similar to the ones in the Caputo settings.

Jumarie’s Modified Riemann-Liouville Derivative

The Jumarie’s modified Riemann-Liouville derivative of order α is defined as in 
the following:

D f t

r a
t f f d a

r a
d

t
a

a
t

( )

( )
( ) ( ) ( ) ,

( )
�

�
� �� � �

�

� ��
1

1
0 0

1

1

1

0

� � �       

ddt
t f f d a

f t

a
t

n a n

( ) ( ) ( ) ,

( ( )) ,
( ) ( )

� �� � � ��

�

� � � �0 0 1

0

    

                                              n a n n� � � �

�

�

�
�
��

�

�
1 1,��

�
�

	

where f(t) is a continuous f t f t: ,R R ��� � � �  function and Γ(α) is the gamma 
function defined as:

� �
� � � �

�

� � �
�� � �� �� �� ���

lim
!

.
n

n n
n1 2

	

The Jumarie’s modified Riemann-Liouville derivative has many interesting 
properties such as;
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•	 D t
r
r

tt
r r� �

�
�

�� �
� �� �

��
�

1

1
,

•	 D f t g t g t D f t f t D g tt t t
� � �� � � �� � � � � � � � � � � �

•	 D f g t f g t D g t D f g t g tt g t g
� � � �� �� � � � ��� �� � � � � ��� �� � �� ��'

The α-order derivative of a constant is zero, and it can be applied to the functions 
whether are differentiable or not.

In this chapter we consider the exponential rational function method (Demiray, 
2004) for solving fractional partial differential equations in the sense of modified 
Riemann-Liouville derivative by Jumarie (Jumarie, 2006). The rest of this chapter 
is organized as follows. In Section 2, we describe the exponential rational functional 
method for solving fractional partial differential equations. In Section 3, we make 
use of this method to find new exact solutions for some space-time fractional partial 
differential equations and some discussions are given in the conclusion.

DESCRIPTION OF THE EXPONANTIAL 
RATIONAL FUNCTION METHOD

In this section we give the description of the exponential rational functional method 
for solving FDEs. Suppose that a nonlinear FDEs are in the following form:

P u D u D u D u D D u D ut x t t x x, , , , , ,... , ,
� � � � � � � �2 2

0 0 1� � � � �    	 (1)

where u=u(x,t) is an unknown function and P is a polynomial in u and its various 
partial fractional derivatives. This method can be summerized in the following steps 
(Yusufoğlu & Bekir, 2007).

Step 1: The fractional complex transform converts fractional differential equations 
into ordinary differential equations, so that all anlytical methods devoted to the 
advanced calculus can be easily applied fractional calculus (Li & He, 2010). 
Assign a compound variable ξ with the real variables x and t by the following 
transformation:

u x t U kx st
, ,� � � � � �

�� �
�

�� �
�� �

� �
�

� �

    
� �1 1

0
	 (2)
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where k and s are arbitrary constants. The wave variable assigned in Equation 2 
transforms Equation 1 into the following ordinary differential equation (ODE);

Q U U U U, , , ,...� �� ���� � � 0 	 (3)

where Q is a polynomial of U and its various derivatives. The superscripts stand for 
ordinary derivatives with respect to ξ. Integrate Equation 3 one or more as possible 
and for simplicity, set the constant(s) of integration to zero.

Step 2: We express the exact solution of Equation 3 in the following form:

U a

e

N

n

n
n�

�
� � � �

�� ��0 1

	 (4)

where ai(i=0,1,2,…,N) are arbitrary constants to be determined later, such that 
aN≠0. This formulation plays a significant and fundamental part for finding the 
exact solutions of mathematical problems.

Step 3: To determine the positive integer N, substitute Equation 4 into Equation 3 
and take the homogeneous balance between the highest order derivatives and 
the highest order nonlinear terms. If the degree of U(ξ) is deg[U(ξ)]=N, then, 
the degree of the other expressions will be as follows:

deg
d U
d

N m deg U
d U
d

m

m
m

l

l

p
�

�
�

�
� ��

�
�

�

�
� � �

� ��

�
��

�

�
��

�

�
�
�

�

�
�
�

,     �� � �� �Nm p N l 	

Step 4: Collect all terms with the same power of e ii� �� �0 1 2, , ,...  and equate the 
coefficients of eiξ  to zero in Equation 3. This procedure yields a system of 
algebraic equations which can be easily solved with the help of mathematical 
software programme such as Maple, Mathematica etc.. This completes the 
determination of the solutions.

In the following section, we present three examples to illustrate the applicability 
of the exponantial rational function method and fractional complex transform to 
solve nonlinear fractional differential equations.
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APPLICATION OF THE EXPONANTIAL 
RATIONAL FUNCTION METHOD

In this section we apply the exponential rational function method for solving for 
some FDEs.

The Time-Fractional Fifth-Order Sawada–Kotera Equation

The time-fractional fifth-order Sawada–Kotera equation is given

D u u u u u u uut xxxxx x x xx xxx
� �� � � �� � � � �45 15 0 0 1

2
,     	 (5)

where Dt
α  and Dx

α  are Jumarie’s modified Riemann–Liouville derivative of order 
α defined in Section 1. Equation 5 is the variation of the fifth-order Sawada–Kotera 
equation (Liu & Dai, 2008). There are a lot of studies for the classical Sawada–Kotera 
equation and some profound results have been established. The Sawada–Kotera 
equation is an important nonlinear evolution equation which arise in many different 
physical phenomena to describe the motion of long waves in shallow water under 
gravity and has wide applications in nonlinear optics. It is well known that wave 
phenomena of plasma media and fluid dynamics are modelled by kink shaped tanh 
solution or by bell shaped sech solution. On the other hand, it is often preferable in 
many physical situations to have an equation which allows us to model waves that 
propagate in opposite directions, and it belongs to the completely integrable hierarchy 
of higher-order KdV equations, and has many sets of conservation laws (Goktas, & 
Hereman, 1997). Many properties of Equation 5 have been researched intensively 
by other authors. For example, It has multisoliton solutions, conserved quantities, 
Bäcklund transformation, Darboux transformation and so on (Wazwaz, 2010).

Now we apply the exponential rational function method to the Equation 5. 
Suppose that

u x t U kx st
, ,� � � � � � �

�� �
�� �

�
��

�

    
� 1

0
	 (6)

where k,s,ξ0 are all constants with k,s≠0. Substituting Equation 6 into Equation 5 
reduces to the nonlinear ODE

sU k U kU U k U U UU� � � �� ���� � � �� � �� �5 5 2 3
45 15 0 	 (7)
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where � �U dU
d�

. Balancing the highest order derivative term and the nonlinear 

term in Equation 7, we have

U a a
e

a
e

�
� �� � � �

�� �
�

�0

1 2

2
1 1( )

. 	 (8)

Next substitute Equation 8 into Equation 7, we get a polynomial equation of 
e ii� �� �1 2 6, ,..., , and equating all the coefficients of this polynomial to zero, we 
get a set of linear equations. Using the mathematical software programme Maple 
to solve these equations, yields the following solutions for k,s,ai(i=0,1,2): 

Case 1

a k a k a k s k
0

2

1

2

2

2 5

3
2 2� � � � � � �, , , 	

Using these values with the Equation 8, we obtain the solitary wave solution of 
Equation 5:

U k k h�
�� � � � �

2 2

2

3 2 2
sec 	

where �
�

��
�

� �
�� �

�kx k t5
0

1�
.

Case 2

a k a k a k s k
0

2

1

2

2

2 5

3
4 4� � � � � � �, , , 	

Using these values with the Eq. (8), we obtain the solitary wave solution of Eq. (5)

U k k h�
�� � � � �

2

2 2

3 2
sec 	
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where �
�

��
�

� �
�� �

�kx k t5
0

1�
.

Case 3

a k k sk
k

a k a k s k
0

3 6

1

2

2

2 55 5 20

30
2 2�

� � �
� � � � �, , , 	

Using these values with the Equation 8, we obtain the solitary wave solution of 
Equation 5

U k k sk
k

k h�
�� � � � � �

�
5 5 20

30 2 2

3 6 2

2
sec 	

where �
�

��
�

� �
�� �

�kx k t5
0

1�
.

Case 4

a k k sk
k

a k a k s k
0

3 6

1

2

2

2 55 5 20

30
2 2� �

� �
� � � � �, , , 	

Using these values with the Equation 8, we obtain the solitary wave solution of 
Equation 5

U k k sk
k

k h�
�� � � � � �

�
5 5 20

30 2 2

3 6 2

2
sec 	

where �
�

��
�

� �
�� �

�kx k t5
0

1�
.

The Space-Time Fractional Whitham-Broer-Kaup Equations

The space-time fractional Whitham-Broer-Kaup equations in the following form

D u uD u D v D u
D v D uv D v D u
t x x x

t x x x

� � � �

� � � �

�
� �

� � � �
� � � � � �

�
�
�

��

2

2 3

0

0
,      0 1� �� 	 (9)
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where Dt
α  and Dx

α  are Jumarie’s modified Riemann–Liouville derivative of order 
α defined in Section 1. Equation 9 is the generalization of the Whitham-Broer-Kaup 
(WBK) equations (Xu et al., 2007). The WBK equations, describe the dispersive 
long wave in shallow water in physical context. u=u(x,t) is the field of horizontal 
velocity, and v=v(x,t) is the height deviating from equilibrium position of liquid, β 
and γ are real constants that represent different diffusion powers. If α=1, β≠0, γ=0, 
Equation 9 is the classical long-wave equations that describe shallow water wave 
with diffusion. If α=1, β=0, γ=1, Equation 9 reduces to the modified Boussinesq 
equations (Ablowitz & Clarkson, 1990).

We apply the exponential rational function method to Equation 9. Suppose that 
u(x,t)=U(ξ), v(x,t)=V(ξ), and

�
� �

�
� �

�
�� �

�
�� �

�
kx st

� �1 1
0

	

where k,s,ξ0 are all constants with k,s≠0. These transformations reduce the Equation 
9 to the following nonlinear ODEs

sU kUU kV k U

sV k UV k V k U

� � � ��

� �� ���

� � � �

� � � � � �

�

� �

2

2 3

0

0
'

	

integrating these equations and taking integrating constants to zero, gives

sU kU kV k U

sV kUV k V k U

� � � �

� � � �

�

� ��

1

2
0

0

2 2

2 3

�

� �
	 (10)

where � �U dU
d�

. Balancing the highest order derivative term and the nonlinear 

term in Equation 10, we get the following formal solutions

U a a
e

V b b
e

b
e

�

�

�

� �

� � � �
�� �

� � � �
�� �

�
�

0

1

0

1 2

2

1

1 1( )
.

	 (11)
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We substitute Equation 11 into Equation 10, we get a polynomial equation of 
e ii� �� �0 1 2 3, , , , and equating all the coefficients of this polynomial to zero, we 
get a set of linear equations. Using the mathematical software programme Maple 
to solve these equations, yields the following solutions for k,s,ai,bi(i=0,1,2): 
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a s
k

a s
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2 2
� � � , ,    	

b b s s
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b s s
k0 1 2 2 2

0 2 2� � ��
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�
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�
�

�
�
�, ,        � � 	

Using these values with the Equation 11, we obtain the solitary wave solutions of 
Equation 9
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� �
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Using these values with the Equation 11, we obtain the solitary wave solutions of 
Equation 9
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� �1 1
0
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The Space-Time Fractional Generalized Hirota–
Satsuma Coupled KdV Equations

The space-time fractional generalized Hirota–Satsuma coupled KdV equations [16] 
in the following form;

D u D u uD u D vw

D v D v uD v
D w D

t x x x

t x x

t x

� � � �

� � �

� �

� � � � � �

� � �
�

1

2
3 3 0

3 0

3

3

3 ww uD wx� �
� �

�

�

�
�

�

�
� 3 0

0 1

�

�,     	 (12)

where u=u(x,t), v=v(x,t) and w=w(x,t). Equation 12 describe the interaction of two 
long waves with different dispersion relations (Abazari & Abazari, 2012). Dt

α  and 
Dx

α  are Jumarie’s modified Riemann–Liouville derivative of order α defined in 
Section 1. When we take α=1, it reduces to the generalized Hirota-Satsuma coupled 
KdV equations (Wu, Geng, Hu, & Zhu, 1999). With the compatibility condition of 
a 4×4 matrix spectral problem, taking w=v* (where v*is the conjugate of v) the 
generalized Hirota-Satsuma coupled KdV equations can be reduced to the complex 
coupled KdV equations, and taking w=v, it reduces to the Hirota-Satsuma equations.

Next we apply the exponential rational function method to the Equation 12. 
Suppose that u(x,t)=U(ξ), v(x,t)=V(ξ), w(x,t)=W(ξ), and

�
� �

�
� �

�
�� �

�
�� �

�
kx st

� �1 1
0

	

where k,s,ξ0 are all constants with k,s≠0. These transformations reduce the Equation 
12 to the following nonlinear ODEs
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sU k U kUU k VW

sV k V kUV
sW k W

� ��� �

� ��� �
� ���

� � � �

� � �
� �

1

2
3 3 0

3 0

3

3

3

3

( )
'

kkUW � � 0

	 (13)

where � �U dU
d�

. Balancing the highest order derivative term and the nonlinear 

term in Equation 13, we get the following formal solutions
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We substitute Equation 14 into Equation 13 we get a polynomial equation of 
e ii� �� �1 2 3 4, , , , and equating all the coefficients of this polynomial to zero, we 
get a set of linear equations. Using the mathematical software programme Maple 
to solve these equations, yields the following solutions for k,s,ai,bi,ci(i=0,1,2): 
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Using these values with the Equation 14, we obtain the solitary wave solutions of 
Equation 12
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Using these values with the Equation 14, we obtain the solitary wave solutions of 
Equation 12
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Using these values with the Equation 14, we obtain the solitary wave solutions of 
Equation 12
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Using these values with the Equation 14, we obtain the solitary wave solutions of 
Equation 12
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Case 1 and Case 2 are similar solutions, so Case 3 and Case 4 are also similar 
solutions.

CONCLUSİON

In this chapter we have applied the exponential rational function method to the 
fractional partial differential equations namely the time-fractional fifth-order 
Sawada-Kotera equation, the space-time fractional Whitham-Broer-Kaup equations, 
the space-time fractional generalized Hirota-satsuma coupled KdV equations and 
succesfully found abundant new exact solutions and new hyperbolic solutions, which 
may be useful to further understand the nonlinear physical phenomena. In order to 
reduce these nonlinear fractional partial differential equations to the corresponding 
ODEs, we use the nonlinear fractional complex transformation. This transformation 
guaranties that a given fractional partial differential equation reduces to another 
ordinary differential equation of integer order, and the solutions can be expressed 
by a polynomial in eξ. The proposed method is shown to be easy, useful, direct, and 
powerful method for dealing with the systems of FDEs.
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ABSTRACT

Society often relies on information disclosed by enterprises and verified by auditors 
to decide on an efficient allocation of capital. Auditing sector serves as a means 
of verification to protect investors from making decisions based on inaccurate 
information. However, auditors can use their superior information for extracting 
additional rents. This study explores an economy where entrepreneurs choose their 
financial reporting quality considering incentives imposed by the society, and rent-
seeking auditors may manipulate their reports to extract gains in the expense of public 
interest. The analysis captures the dynamics of strategy changes among different 
actors by introducing a population game framework. The steady-state equilibrium 
analysis shows that there is a pure state and mixed states whose stability is affected 
by policy parameters such as subsidies, taxes, competitive auditor fee, and rate of 
adjustment of different behavioral dynamics. It appears that corruption in auditing 
sector and poor quality in financial reporting may arise as a temporally persistent 
outcome.
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INTRODUCTION

Investors and governments require financial information to evaluate a company’s 
performance because they make their economic decisions based on their interpretations 
of this financial information. However, the information does not serve much if it is not 
reliable. Today’s competitive market conditions put a great pressure on companies’ 
managements to meet their investors’ expectations. Due to this pressure, under-
performing companies become much more inclined to manipulate their financial 
statements (Carruth, 2011). There are significant losses due to investments based on 
inaccurate financial information, as in the cases of Enron and WorldCom (Brickey, 
2003). These experiences have highlighted the importance of obtaining reliable 
attestation over financial statements.

Self-interested actions of individuals in an economy may eventually result in 
market failures. In the context of this research, an example is an economy where some 
public companies report manipulated financial information, extracting additional 
gains through overstated performance, which undermines the efficient allocation 
of capital. Although the vast majority of companies avoid engaging in any sort of 
financial misconduct and play by the rules, even a couple of consecutive corporate 
scandals is enough to collapse the market, as in the cases of early and late 2000s of 
the U.S. Public authorities (i.e. governments) often intend to solve market failures 
by intervention in the market mostly through the use of agents (or bureaucrats) with 
relevant expertise and skills for collecting required information. However, this process 
inevitably creates room for other potential problems for the economy: inefficient 
spending, information asymmetry and principal-agent problem. Thus, there is a 
trade-off for public to consider when opting for and out of market interventions 
(Dollery & Wallis, 1997).

The independent auditors are considered to be the “watchdogs” of public interest. 
Their existence in the economy is for ensuring that all information published by 
public companies, are accurately stated, so that the investors supply their funds 
and capital to companies, conditional on their actual performance (Miller, 2006). 
Given the difficulty of understanding the complex nature of business models and 
the reporting standards that should be used to interpret the accuracy of the financial 
information, it would not be feasible for the investors to audit all the financial 
information regarding the performance of companies they plan to invest in, without the 
professional intermediacy of auditors who possess the required expertise and skills. 
From the perspective of the companies being audited, the intermediacy of auditors 
helps them in contractual terms, protecting their confidential private information 
from potential breaches in the absence of bilateral legally binding agreements. 
Therefore, the auditors have an important role in achieving a higher output for the 
society through a more efficient allocation of funds.
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As a matter of fact, there is also some evidence that the auditors’ existence causes 
a downside impact on the output through waste of resources, let alone helping to 
achieve a better one1. For example, many banks and investors have lost billions of 
dollars due to the accounting scandal of Enron in 2001. It was a huge energy company 
audited by Arthur Andersen, one of the largest audit firms in the world at the time. 
However, the auditors failed to reveal Enron’s fraudulent financial information, and 
investors’ trust for their assurance caused them to wastefully transfer their capital 
in a company in the edge of bankruptcy (Brickey, 2003).

Such audit failures can result from the conflicts of interest as well as the auditors’ 
incompetence. There are various ways that auditors may pursue their self-interest. 
An auditor, for instance, may gain from being more cost-averse by performing an 
audit with lower effort or by decreasing the size of its engagement teams, both of 
which would certainly decrease the quality of the audit. Alternatively, auditors may 
gain from seeking additional rents from the clients they audit by charging extra fees 
for reporting an opinion more favorable to their clients. In turn, such behavioral 
problems may damage the public interest by creating an inefficient capital allocation 
environment. In this paper, the auditors’ incentives to report dishonestly and how 
they are affected by deterrence policies are examined.

The public demand for auditing basically arises from the need for verified 
information. Using their professional skills and going through an exhaustive process, 
the auditors gather sufficient evidence to conclude whether the company’s financial 
statements are reported in accordance with some pre-established reporting standards, 
and whether they reflect its true financial position. This evidence provides the 
auditor superior information regarding the financial position of the entities they are 
auditing. It is expected from an auditor to use this superior information to report 
on any material misstatements by the company’s management that may influence 
the investors’ decisions. However, auditors, like all other actors in the economy, are 
self-interested. Thus, they might have incentives to diverge from acting in accordance 
with public expectations. In this study, the benefits and costs of the existence of 
auditors in the economy -with and without dishonest behavior- are analyzed. In 
addition to this analysis, an evolutionary interpretation is made with an attempt to 
observe the dynamics of strategy choices of agents in the economy.

The rest of the chapter is organized as follows. After a brief background on the 
objective and review of the literature, we set up the model; define the terms used 
throughout the chapter and give the static equilibrium results. Then, we extend the 
model using a population game setup to consider the dynamic aspects of dishonesty 
in the auditing sector and provide with the description of the dynamically stable 
outcomes of the model. We give examples of populations with some dishonesty 
in the auditing sector as a dynamically stable outcome. The chapter ends with the 
concluding remarks.
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BACKGROUND

In one of her speeches, Lynn Turner, a former chief accountant of the SEC, addresses 
the importance of financial information reliability by saying “The success of capital 
markets of the USA derived from people’s willingness to invest more capital there since 
they receive higher quality financial information than is available in any other place 
in the world” (Turner, 2001). So, if the information does not reflect the company’s 
financial position and performance fairly, there emerges a risk for investors that 
they invest in underperforming or insolvent companies due to misleading inaccurate 
financial information. The quality of financial reporting affects the reliability of 
financial statements by confirming companies’ affairs and reducing the information 
asymmetry (Ali, 2008; Fairchild, 2008). Gul et al. (2013) examines the effects of 
informational problems, the quality of financial reporting on firms’ cost of debt and 
suggest that the cost of debt is lower when financial audit is of higher quality and 
firms with more informational problems benefit more from the quality of reporting.

A major contribution of the auditing sector is considered to be its role in protecting 
investors from making decisions based on such inaccurate information, and thereby 
enhancing efficient allocation of capital in the economy (Doty, 2013; Zimmerman, 
2015). This is also the reason why the investors and regulators have high expectations 
of auditors’ work, reflected in their disappointment and criticisms in cases of audit 
failures (Bonner et al. 1998; Marriage, 2019). However, the sector brings its costs 
together with its benefits. In a model developed by Acemoglu and Verdier (2000), the 
costs of allocating some of the agents in the economy for verifying the information 
are simply categorized as follows: (1) the cost of withdrawing individuals (verifiers) 
from production sector to use them for monitoring, (2) the costs resulting from 
dishonest behavior of rent-seeking verifiers2. An auditor may gain from seeking 
additional rents from the clients he audits, that is, he can charge extra fees for 
reporting an opinion favorable to his client. Such behavioral problems would damage 
the public interest by creating an inefficient capital allocation environment. The 
regulators may try to prevent such behavior by imposing sanctions and punishments 
on auditors. Public Company Accounting Oversight Board (PCAOB), the regulator 
of the U.S. auditors, take action against non-complying engagement teams. These 
actions involve disciplinary proceedings including a censure, monetary penalties, 
revocation of a firm’s registration, and a bar on an individual’s association with 
registered accounting firms. The findings of Ye and Simunic (2016) suggest that 
when the legal regime is weak, regulatory oversight can improve social surplus by 
incentivizing auditors to comply with standards, and it can substitute for a weak legal 
system in disciplining auditors if regulatory penalty is sufficiently high. However, the 
sanctions are conditional on detection of auditors’ misconduct, and the inspections 
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to detect misconduct are sample based and costly. This clearly shows that there is a 
trade-off for the public authorities to consider while deciding whether to use auditors 
for monitoring financial information accuracy in the market.

The prevention of dishonest rent seeking behavior is costly and this would entail 
a certain share of dishonesty in the auditing sector. The main objective of this paper 
is to investigate the optimal and dynamically stable size of dishonest auditors in 
the auditing sector. The model illustrated in this chapter was inspired by Acemoglu 
and Verdier (2000) who suggest that because the corruption is costly to prevent, the 
regulators may find it more optimal to allow a certain fraction of corrupt officials as 
a second-best solution. Furthermore, using a similar setting Infante and Smirnova 
(2009) show that the existence of the dishonest verifiers are especially useful in an 
economy under weak institutional environment, where the proportion of incentives 
withheld by the verifiers are high. This chapter contributes to their findings by 
adapting this framework to a setting in which the regulator uses the non-producer 
market participants (i.e., auditors) instead of government bureaucrats to encourage 
the use of good technology over bad technology. This new setting not only allows 
examining the evolutionary dynamics of technology compliance in the production 
sector and honesty in the non-producing assurance sector, but also makes the findings 
more relevant for policy-making purposes as it remedies some of the prior setting’s 
abstractions from reality.

This remedy is essentially provided through two main adjustments: First, while 
the regulator’s objective of encouraging good technology usage is maintained in 
our setting, the responsibility of proving compliance is passed on to the market 
itself and thereby bearing the necessary costs. This property reflects the companies’ 
obligation to have their financial statements audited by independent professionals in 
today’s economy. The resulting opinion of the auditors becomes the input for critical 
decisions to be made by investors and regulators regarding the companies in question. 
Second, the present model introduces the auditors’ probability of being inspected 
by a bureaucrat and the respective punishment in case of detection. This property, 
in turn, reflects the fact that the independent auditors have to go through periodic 
inspections by their regulators over a small sample of their audit engagements. As a 
result of these inspections, the regulators infer whether there has been any violation 
of professional standards due to obvious conflict of interest concerns.

THE MODEL

The setting involves two main types of agents in the economy: entrepreneurs and 
auditors. The mass of the population of entrepreneurs and auditors are n=1 and m=1 
respectively. Entrepreneurs have a uniform production of y and choose between two 
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types of financial reporting: high quality financial reporting which accurately reflects 
the company’s performance and low quality financial reporting which is likely to 
include inaccurate information regarding the company’s performance. The fraction 
of those choosing high quality financial reporting will be denoted by x. There is 
an additional cost of providing high quality financial information, 0<e<y, for the 
entrepreneurs making it. However, the choice of high quality financial reporting 
provides all individuals in the economy, irrespective of their job and type of financial 
reporting choice, β>e units of positive externality for each entrepreneur using high 
quality reporting, that is βx. Consequently, the social surplus is:

SS = y +(β‑e)nx	 (1)

In the case of a decentralized economy, where there are no auditors and where 
all individuals are entrepreneurs (n=1) and their reporting choices are unknown 
to public, the social surplus is SS=y+(β‑e)x and the entrepreneurs making a high 
quality financial reporting and low quality financial reporting will face payoffs of 
πh and πl respectively:

πh=yβx‑e	 (2)

πl=y+βx	

The first best for this economy is given by n=1 and x=1 where all agents are 
entrepreneurs and provide high quality financial reports (Acemoglu & Verdier, 2000). 
This outcome, however, is not an equilibrium when agents decide simultaneously 
and non-cooperatively. It is evident that there is only one equilibrium here, which is 
n=1 and x=0. The simple reason is that the individuals are self-interested and there 
is no incentive for a single agent to contribute and face a cost of e. This equilibrium 
yields a social surplus of SS=y. It is important to note that the setting considers 
the production with high quality financial reporting creating a positive externality 
instead of the one which may use a low-quality financial reporting creating a negative 
externality. But this does not affect the model’s findings since the reasoning goes 
both ways. This equilibrium implies that no enterprise would be willing to report 
fairly in the absence of auditors as their integrity brings them to a disadvantaged 
position in the competitive market.

Hereafter, honest auditors will be introduced into this economy and their existence 
will be analyzed with respect to their impact on the utilization of positive externalities 
for reaching a better equilibrium. In this case, society imposes the entrepreneurs to 
hire an external auditor to monitor the quality choices of entrepreneurs and implement 
policies accordingly. The entrepreneurs using low quality financial reporting are 
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punished with a penalty3 of τ<y and those using high quality financial reporting 
are rewarded4 with a subsidy of s<y both being applicable given the results of the 
audit. The parameters τ and s are incentives imposed by society, for entrepreneurs 
to diverge from undesired behavior towards the desired behavior. They would want 
to reap rewards for creating positive externality or they would want to avoid penalty 
for not contributing to its creation. Auditors monitor entrepreneurs externally and a 
competitive audit service fee, w is paid by entrepreneurs irrespective of their choice 
of reporting quality. Thus, the entrepreneurs will have the following payoffs:

πh=y+βx‑e+s‑w	 (3)

πl=y+βx‑τ‑w	

It is assumed that the audit market is competitive. This implies that in a setting 
where auditors are completely honest, the optimality of their presence in the economy 
depends on the level of unit contribution to output that can be achieved through fair 
reporting. If the positive externality is higher than a certain threshold, then it is worth 
to impose external audits to create incentives towards the creation of that externality.

Now, consider that auditors may choose not to be honest and to use their superior 
information for extracting additional rents from the economy. There can be two 
circumstances, which enable these dishonest auditors to do that:

•	 They match with entrepreneurs choosing low quality financial reporting and 
take bribes to report that the quality is high.

•	 They match with entrepreneurs using high quality financial reporting and 
take bribes not to report that the quality is low or misreport so as to have an 
additional rent.

In both circumstances, the amount of rents that they receive can be no more 
than τ and s, because otherwise, it would not be feasible for entrepreneurs to bribe 
auditors. The auditors may accept only a share of τ or s. This share that they receive 
as bribes are denoted by σ∈[0,1] and assumed to be homogenous across the auditors. 
However, dishonest behavior is not tolerated by the society since it undermines its 
intention to foster the use of high quality reporting. For this reason, auditors are 
inspected by the regulator with a probability of q. That is, with probability q, an 
inspector is matched with a dishonest auditor, resulting in him losing his service 
fee w, and paying a fine of ϕs, which is determined as a share of the subsidy. On 
the other hand, with probability 1‑q, the dishonest auditor receives both the service 
fee and a rent of στ or σs, without being detected by the regulator. Note that with 
an absolute detection with probability q=1, the risk-neutral auditors would not dare 
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to demand rents and the optimum solution would be the same as that of the case 
with no dishonest behavior. However, inspection is costly and auditors are inspected 
with probability q<1.

This setting allows for a more realistic environment where independent auditors 
can be considered as self-interested payoff maximizers and analyze the appearance 
of corruption in the auditing sector as a strategic choice. It is possible for auditors to 
ask for rents from clients they found out to report inaccurate financial information, 
and in turn, giving assurance for this inaccurate information. However, they should 
do it taking the possibility of detection into account. That is, for instance, for a risk-
neutral auditor, the expected value of taking an extra fee for giving assurance over 
a low quality reporting decreases when there is high probability of being punished 
for that action.

The competitive fee w plays an important role in this new framework since if 
the fee for the audit service is too low, it is understandable that auditors become 
prone to seek additional rents for compensation. Since these rents are at the expense 
of public interest, the society may interfere with the determination of these fees 
so that the auditors do not diverge from doing what is expected of them, and their 
inspection continue to be useful for the promotion of high quality reporting. In the 
auditor population, the proportion of dishonest auditors is denoted as p and the rest 
of the auditor population is honest.

The utility of an entrepreneur choosing low quality financial reporting and high 
quality financial reporting are πl and πh respectively and in this new setting with 
auditors involved, they are given by the following equations:

� � �h y x e s p q s w� � � � � �� � �1 	

� � � �l y x p q p q s w� � � � �� �� � � �� � �� � �1 1 1 1 	 (4)

The utilities of the honest and dishonest auditors are given by πH and πD respectively 
and defined as:

πH=w+βx	

� � � �D xw x q w s x q x s� � �� � �� � � � � �� �1 1 1 	 (5)

It is clear that the probability of detection is important for determination of 
dishonest auditor’s utility πD. In order for an auditor to be punished for being dishonest, 
there should be an occasion, which will reveal that the auditor had been unable to 
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detect a material misstatement. In addition to that, judicial authorities should gather 
sufficient evidence that this failure is related with auditor’s negligent or fraudulent 
behavior, which requires substantial amount of physical and human resource. As the 
proportion of auditors choosing to pursue their self-interests increase in the economy, 
the government resources assignable for each case decreases. The less resource is 
assigned for detecting self-interested auditors, the less likely it is to spot and punish 
them. Thus, there is an inverse relationship between q and p. The authority finances 
the revenue to make these inspections by taxes levied from entrepreneurs who have 
chosen low quality financial reporting and who are not matched with dishonest 
auditors or otherwise who are matched with dishonest auditors and are caught 
through inspection. It is assumed here that the authority operates with a balanced 
budget. The following equation defines the budget balance:

p q s q xs x x s p xs x� �� � � � � �� � � �� �� �� � � �� � � � �� �� � �1 1 1 1 1 0� � � 	
(6)

Simplifying this equation, we get the following relationship:

q p x
s x p x x p

p x s s
,� � �

� �� �� � � �� � �� �
�� � � �� �
1 1 1

1

�

� �
	 (7)

For the society to be able to inspect with a non-negative probability, 
s x p x x p� �� �� � � �� � �� � �1 1 1 0�  so that q(x*,p*)≥0. The first term is the sum 
of subsidies distributed to high quality financial reporting entrepreneurs and low 
quality financial reporting entrepreneurs matched with self-interested auditors. The 
second term is the taxes collected by low quality financial reporting entrepreneurs 
matched with honest auditors. While p x s s1�� � � �� �� � , the term in the 
denominator is the welfare gain associated by catching dishonest auditors. When 
low quality financial reporting entrepreneurs matched with dishonest auditors, 
society loses the subsidy given to undeserved agents, the uncollected tax and if these 
are caught through inspection, the subsidy will be paid back together with the tax 
and penalty. q(x*,p*)≤1 when the welfare gain is greater

Replacing the value of q(p, x) in the utility of the dishonest auditors, we obtain 
the following payoff for the dishonest auditors:

� � �
�

� �
�D w s xn

s x p s
p x s s

w s� � � �
� �� � �� � �� �

�� � � �� �
�� �1 1

1
	 (8)
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This static model has an interior equilibrium where some of the entrepreneurs 
use good quality financial reporting and others use bad quality financial reporting 
and some others choose to be honest while others are dishonest if πl≤πh and πH≤πD. 
Society can impact the distribution of behaviors under balanced budget by either 
determining a minimum fee for financial auditing services, choosing the frequency 
of visits to auditors and playing with the levels of subsidies and taxes. The mentioned 
conditions can be expressed by the following two inequalities:

p
s w s x s w s
s s s x s w s

�
�� � � �� � �� � �� �
� �� � � �� � �� � �� �
� � �

� � � � �
1
1

	 (9)

1

1
2

� �
�� �

� �� � �� � � �� � �� � � � �� � �� � � � �
x

s s
p s s s p s s s s e s s

�

� � � � � � � � ��� �
	

(10)

We can illustrate above conditions using Figure 1 and Figure 2. In Figure 1, 
the solid line represents the first and the dashed line represents the second curve 
and in the hatched zone, both constraints are satisfied. Figure 2 provides on the 
other hand with a point of intersection where both conditions are satisfied and both 
entrepreneurs and auditor populations are mixed i.e. in the economy both high and 
low quality financial reporting are used and we can see honest as well as dishonest 
auditors in the auditor population.

POPULATION DYNAMICS

Population Games and Revision Protocols

In above results, we see that an economy with both high and low quality financial 
reporting and honest as well as dishonest auditors is an equilibrium outcome of the 
static model. This equilibrium outcome results from a one-shot game setup where 
rational agents interact strategically under perfect information i.e. agents act under 
perfect information to maximize their self-interests. The concept of equilibrium, 
on the other hand, is based on the assumption that the equilibrium is known. In 
other words, agents are able to collectively locate the equilibrium outcome. In this 
context, the problems commonly faced are multiple equilibria, the realism of the 
concept of hyper-rationality and the lack of a dynamic aspect of the environment.
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Figure 1. Mixed equilibrium conditions (e,w,s,τ,σ,ϕ) = (1,2,0.5,0.4,0.4,0.1) 

Figure 2. Mixed equilibrium conditions (e,w,s,τ,σ,ϕ) = (0.8,1,0.5,0.4,0.3,0.4) 
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Strategic interaction can also be described in many situations such as externalities, 
macroeconomic spillovers, centralized markets, highway congestion, transportation 
mode choice, selfish routing; as population games. In these games, the individual 
is a small unit and the roles that he can get are limited. Each individual interacts 
anonymously and returns are continuous. Collective behavior models are derived 
from open micro foundations. In situations where there are large numbers of 
individuals, the above-mentioned assumption of equilibrium knowledge cannot be 
maintained. Hence, a more appropriate dynamic interpretation is needed to explain 
how individuals update their strategies or behaviors and come up with a theory of 
how the population evolves.

The choice procedure followed by individuals is called a revision protocol. When 
a revision protocol for players is defined in the context of a population game, one 
can generally derive dynamics that show how behavior changes (Sandholm, 2010). 
A revision process ensures that the better performing behaviors are selected. The 
imitation dynamics is a type of these revision processes and according to the imitation 
dynamics, individuals switch to strategies whose current payoffs are reasonably 
good; in our context whose current payoffs performs better than the average payoff 
in the population.

The above model can be considered as a normal form game as there is a strategic 
interaction between the agents in the economy. Acemoglu and Verdier (2000) propose 
a standard analysis of this framework using a fixed probability of detection of dishonest 
behavior. Fully rational agents play exactly once this game knowing all the details 
of the game including the preferences of the other agents. When this situation is 
interpreted as a population game, on the other hand, it allows for all behaviors or 
strategies in the population of agents, letting each agent to start playing the game 
initially with a specific strategy and assuming that the revision protocol operates 
over time on this initial distribution of behaviors. In other words, each population 
has a set of available strategies out of which their members are able to select. Thus, 
in this dynamic setting, agents’ decision rules to choose a strategy does not depend 
on the expected utility evaluation based on probabilities, and rather depends on the 
strategy’s expected utility assessment compared to the mean utility of the population, 
which is directly related to the fraction of population using it.

Entrepreneurs have two strategies: high quality financial reporting and low quality 
financial reporting. Each agent in the entrepreneur population is assigned initially 
one of these strategies. Auditors have two strategies: being honest and being dishonest. 
Each agent in the auditor population is assigned initially one of these strategies. The 
mean utility levels of entrepreneur and auditor populations are given by π E  and 
π A  respectively as follows:

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



45

Auditors in the Economy and the Impact of Rent-Seeking Behaviour and Penalties

� � �E h lx x� � �� �1 	 (11)

� � �A D Hp p� � �� �1 	

However, agents of different occupations change their decisions at different paces. 
In particular, it is assumed in this model that an auditor becomes more easily corrupt 
than an entrepreneur choosing to change the information quality, since the latter 
is expected to involve certain structural investments that are costly to implement. 
The strategy revision pace of an auditor and an entrepreneur are denoted as vA and 
vE respectively, where vA>vE. Now, the imitation dynamics for each population can 
be defined as:

p
p

vA D A� �� �� � 	 (12)

x
x
vE h E� �� �� � 	

where p  and x  denotes the temporal changes in the proportions of dishonest 
auditors and high-quality reporting entrepreneurs, respectively. Thus, the left hand 
sides of the equations reflect the rate of changes from the initial proportions. Then 
the mean utilities are substituted into these equations to get:

p v p pA D H� �� � �� �1 � � 	 (13)

x v x xE h l� �� � �� �1 � � 	 (14)

It can be easily seen that there are trivial rest points for these equations, at which 
the economy would be in equilibrium. These are the points where all the members 
of a population choose one strategy or the other (i.e. p=0, p=1, x=0, x=1). We can 
refer to these states as pure states. In addition to these, it is possible to find interior 
population states that we can refer to mixed states where we can see different patters 
of behavior in the population. The roots of the following equations are mixed states 
of the model:

•	 Any x satisfying πh‑πl=0 or
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•	 Any p satisfying πD‑πH=0 subject to the constraint p,x∈(0,1) 

there is an interior rest point (x*,p*) for the system of dynamic equations. The 
first equation 

� � �h l e p q s� � � � � �� �� � �� � �1 1 0 	

has a root x* and the second equation � � � �D H x q w s s� � � �� � �� � � �1 0  has 
the root p* with 

q x p
x p

p x s
* *

* *

* *
,� � �

� �� � �� � �� �
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s s

s

1 1

1

�

� �
. 	

The values of p* and x* are given by the solution of the following set of non-
linear equations:

p q x p s e
s

* * *
,1� � �� � � � �

�
�
�

	 (15)

1�� � � � �
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x q x p s
w s

* * *
,

�
�

	 (16)

By replacing q(x*,p*) in Equation 15 and 16, we get 
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Then by replacing p* in the second equation, we get 
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As p,x∈(0,1), this equation can be rewritten as a second degree polynomial and for 
a certain range of the parameters of the model, there is solution to this polynomial5. 
An example of an interior rest point can be seen in Figure 1(b) where equation 15 and 
16 are depicted and for the set of parameters (e,w,s,τ,σ,ϕ) = (0.8,1,0.5,0.4,0.3,0.4) 
the mixed state is (x*,p*) = (0.379,0.139).

Proposition 1. There exists an interior rest point of the dynamic system (x*,p*) where 
some auditors are honest and some are rent seeking and some entrepreneurs use 
high quality financial reporting while some use low quality financial reporting for a 
certain range of exogenous variables: cost of the effort for higher quality financial 
auditing (e), competitive auditor fee (w), subsidies (s), taxes (t), rent rate (𝜎) asked 
over subsidy and penalty rate (𝜙) taken over subsidy.

Note that the cost of choosing the higher financial reporting quality e affects only 
the interior rest point of entrepreneur population dynamics x* and the competitive 
auditor fee affects only the interior rest point of the auditor population dynamics 
p*. A population specific policy must aim either of these parameters.

Stability

The revision process determines how population shares corresponding to different 
pure strategies evolve over time. In this context, asymptotic stability of the rest 
points of the system of population dynamics given by equations 13 and 14 can be 
studied. We have pure states where all

Before starting with the stability of the pure states where agents choose one 
strategy or behavior over the other, note that the budget balance has to be satisfied. 
For p=0 where all auditors are honest, the budget balance is τ‑x(s+t), where there 
is a surplus if x=0 and there is a deficit if x=1. For p=1, all auditors are dishonest, 
and the balanced budget condition is � �� � � �� � �1 0q s q s� �  and for a certain 
level of inspection probability q satisfying � �� � � �� � �1 0q s q s� �  the budget 
balance is satisfied if x=0 and there is a deficit if x=1. Consequently, the only 
possible pure state is p=1 and x=0 if the society aims at a balanced budget. This 
case refers to a situation where an entire entrepreneur population is using low quality 
financial reporting and all auditors are dishonest.

Proposition 2. (x*,p*)=(0,1) is stable if �
�
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To check the stability of the rest points of the dynamics, the eigenvalues of the 
Jacobian of this system of dynamic equations should be evaluated at (x*,p*). If all 
eigenvalues turns out to be negative at the rest points of the dynamic equations, 
these rest points are considered asymptotically stable (Medio & Lines, 2001). The 
rest point is unstable if at least one of the eigenvalues is positive. The Jacobian 
evaluated at (x*,p*) is as follows:
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Proof of Proposition 2 requires checking the eigenvalues of the Jacobian of the 
dynamic system. For (x,p)=(0,1) the Jacobian is:
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For (x,p)=(0,1), the eigenvalues of the Jacobian are v e
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 (in this case the trace of the 

Jacobian is negative and its determinant is positive). This means that the society 
will be trapped at an inefficient and corrupt state if high quality financial reporting 
is costly enough and self-interested auditors require a sufficiently high share of the 
subsidies. The only way to get out of this trap is to give entrepreneurs enough 
incentive to cover their efforts when transitioning to a higher quality of financial 
reporting.
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Next, the stability of the mixed states, where some agents choose one strategy 
or behavior while some choose the other, will be analyzed. The rest point for the 
mixed states (x*,p*) are given above by equations 15 and 16. For (x*,p*)∈(0,1)2 the 
Jacobian is

J
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Proposition 3. (x*,p*)∈(0,1)2 is stable if and only if

1. 	 v x x p q
x
s v p p x q

p
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x q
x

q1 1 1 0.

Note that the first component of the first condition v x x p q
x
sE 1�� � �

�
�� ��  

relates to the match of a dishonest agent with an entrepreneur using low quality 
financial reporting and the inspection of the social loss of magnitude s+τ. This 
social loss will be recaptured more (less) with the increase (decrease) in the probability 
of inspection that would be due to the increase (decrease) in the share of entrepreneurs 
changing to higher quality of financial reporting x. The second component of the 

first condition � �� � �� � �
�

�� �v p p x q
p
w sA 1 1 �  relates to the dishonest auditor 

matched with an entrepreneur using low quality financial reporting and the resulting 
income if he is not inspected w+ϕs. This income will be earned if a honest auditor 
is inspected instead and this will be affected by the change in the probability of 
inspection created with the change in the population of dishonest auditors.

The eigenvalues of the Jacobian are the roots of a second degree equation. Instead 
of finding the roots explicitly, it is sufficient to look for the conditions ensuring that 
the eigenvalues are both negative. These conditions are that their sum shall be negative 
and their product shall be positive i.e. J(1,1) +J(2,2)<0 and J(1,1)J(2,2) – J(1,2)
J(2,1)>0.These conditions are expressed in Proposition 3 and can be rewritten as
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Note that the rates of adjustment vA and vE affect the stability of the rest points. 
We see that policy variables such as subsidies and penalties have an important 
impact on the stability of the mixed state as well as the level of rent seeking and 
punishment. The rates of adjustments of the dynamics also affect the stability of 
the mixed outcome.

Figure 3 provides an illustration of the rest points and their stability and is drawn 
based on the following values of the parameters (e,w,s,τ,σ,ϕ) = (0.8,1,0.5,0.4,0.3,0.4). 
The mixed state for this set of parameters is (x*,p*)=(0.379,0.139). This is a state 
where more than half of the entrepreneurs use low quality financial reporting and 
although a very high percentage is requested by dishonest auditors during external 
audits, the competitive audit fee and the punishment rate is high enough to create 
incentives to be honest. This mixed state where there is an inefficient allocation 
of capital but mostly honest auditors is a saddle. More than half of the auditors 
provide an honest external audit. The first stability condition is always satisfied 
(0.250vE‑0.396vA<0) and the second stability condition is satisfied 

( . ) . .
.

.
.4 167 0 0 250 0 396 0

0 396

0 250
1 584� � �v v v v v v v vE A E A E A E A . 	

However the trace of the Jacobian is 0.250vE‑0.396vA is negative if we satisfy 
above conditions for eigenvalues but the determinant is -0.127vEvA negative as well. 
Thus this interior rest point is a saddle. Figure 1provides with the simulation for 
another rest point of the dynamics: (x*,p*)=(0,0.525) and (x*,p*)=(0.357,0). For 
(x*,p*)=0,0.525) the first stability condition is satisfied (-0.396vA<0) and the second 
stability condition is satisfied (0.735>0). In Figure 3, we see that only (x*,p*)=0,0.525) 
is stable. The velocity vectors on the graph give the direction of the motion along 
the trajectories. These directions are given by the signs of x  and p  and whether 
they are equal to 0. If both are zero, then we have an equilibrium point.

CONCLUSION

This study reinterprets the static corruption model of Acemoglu and Verdier (2000) in 
the context of the provision of incentives for entrepreneurs for higher quality financial 
reporting using external audits in order to analyze the impact of auditors’ existence 
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in the economy as monitoring agents. The results suggest that having auditors in 
the economy are feasible only if the positive externality being promoted is worth 
bearing the opportunity cost of allocating auditors in the production sector. Then 
the analysis is extended into a population game framework in which heterogeneous 
agents of different occupations are able to change their strategies or behaviors over 
time, based on their evaluations of their strategies’ utility compared to the mean 
utility of their population.

Steady state equilibrium analysis of the dynamic equations shows that there 
is a pure state and a mixed state whose stability is affected by policy parameters 
such as subsidies, taxes, competitive auditor fee and rate of adjustment of different 
dynamics. The pure state is a bad equilibrium where the society is trapped at an 
inefficient and corrupt state. This happens only if high quality financial reporting 
is costly enough and self-interested auditors require a sufficiently high share of 
the subsidies. This result is in accordance with the results of Çule & Fulton (2009) 
where increase in penalties or inspection can have a perverse effect and create high 
cheating and corruption. In their study, when evasion and corruption are common, 
they become more acceptable and their cost is lowered and thus a perverse effect 
arises. In our model, the only way to get out of this trap is to give entrepreneurs 
enough incentive to cover their efforts when transitioning to a higher quality of 
financial reporting. The extent to which subsidies cover the cost of adopting a high 

Figure 3. Velocity plot for (e,w,s,τ,σ,ϕ) = (0.8,1,0.5,0.4,0.3,0.4) 

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



52

Auditors in the Economy and the Impact of Rent-Seeking Behaviour and Penalties

quality financial reporting play an important role in avoiding a stable equilibrium 
where all entrepreneurs adopt a low-quality reporting system and all auditors are 
better off being dishonest. Practically, this implies that it is not enough for regulators 
on focusing solely on punishing auditors’ misconduct, but also on keeping the 
benefits of high-quality financial reporting high enough at least to compensate the 
respective costs.

Finally, we have analyzed the stability of the mixed states, where some agents 
choose one strategy or behavior while some choose the other. At this point, we see 
that the rates of adjustment affect the stability of the rest points just like the policy 
variables such as subsidies and penalties and the level of rent seeking and punishment. 
Van Rijckeghem and Weder di Mauro (2001) study corruption in civil service and 
find using a data set on wages for low-income countries evidence of a statistically 
and economically significant relationship between relative civil-service pay and 
corruption where a rather large increase in wages is required to end corruption only 
using wages as a policy. In line with this empirical study, we also see that when 
enforcement is costly some dishonest rent seeking behavior may prevail in the 
economy. We also see that the behavioral aspects of the problem contribute to the 
complexity of the solution concept: when agents revise their behaviors at different 
rates, the enforcement of the honesty in the auditor sector may be difficult to achieve.
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ENDNOTES

1 	 Much of this evidence is investigated in prior literature such as Agarwal, 
Echambadi, Franco, and Sarkar (2004); Moore, Tetlock, Tanlu, and Bazerman 
(2006).

2 	 In fact, the model of Acemoglu and Verdier (2000) investigates the case where 
governments need bureaucrats to monitor entrepreneurs’ choice of technology 
(good or bad) and implement policies accordingly. Our interpretation of it 
provides insight and basis to understand the dynamics of rent-seeking behavior 
of auditors in the economy.

3 	 In fact, those companies, statements of which have been detected to include 
inaccurate information are either asked to make the necessary corrections, 
often causing them to bear additional costs, or they end up in court trials being 
subject to high amounts of fine payments.

4 	 This can alternatively be seen as a compliance audit from which the companies 
are required to get a passing opinion to be able to receive a subsidy. This 
practice is especially common in tax immunity privileges conditionally granted 
to certain specialized startup companies.

5 	 aX2‑bX+σs=0 where X=(1‑x*), a
w s
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c=σs. For b2‑4ac≥0 there is a solution to this equation.
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ABSTRACT

A reproducing kernel Hilbert space (shorty, RKHS) H=H(Ω) on some set Ω is a 
Hilbert space of complex valued functions on Ω such that for every λ∈Ω the linear 
functional (evaluation functional) f→f(λ) is bounded on H. If H is RKHS on a set 
Ω, then, by the classical Riesz representation theorem for every λ∈Ω there is a 
unique element kH,λ∈H such that f(λ)=〈f,kH,λ〉; for all f∈H. The family {kH,λ:λ∈Ω} is 
called the reproducing kernel of the space H. The Berezin set and the Berezin number 
of the operator A was respectively given by Karaev in [26] as following 
Ber(A)={A(λ):λ∈Ω} and ber(A):= sup

λ∈Ω
|A(λ)|. In this chapter, the authors give the 

Berezin number inequalities for an invertible operator and some other related results 
are studied. Also, they obtain some inequalities of the slater type for convex functions 
of selfadjoint operators in reproducing kernel Hilbert spaces and examine related 
results.
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INTRODUCTION

Firstly, we will mention about importance of the reproducing kernel as follows 
(Saitoh & Sawano, 2016; Saitoh, 1988).

The theory of reproducing kernels began with two papers of 1921 (Szego, 1921) 
and 1922 (Bergman, 1922) which is related with typical reproducing kernels of 
Szegö and Bergman, and since then the theory has been improved into a large and 
deep theory in complex analysis by many mathematicians. But, exactly, reproducing 
kernels appeared previously during the first decade of the twentieth century by S. 
Zaremba (1907) in his work on boundary value problems for harmonic and biharmonic 
functions. But he did not improve any further theory for the reproducing property. 
Furthermore, in fact, we know many concrete reproducing kernels for spaces of 
polynomials and trigonometric functions from much older days. On the other hand, 
the general theory of reproducing kernels was established in a complete form by 
N. Aronszajn (1950) in 1950. Furthermore, L. Schwartz (1964), who is a Fields 
medalist and founded distribution theory, improved the general theory remarkably 
in 1964 with a paper of over 140 pages (see Saitoh & Sawano, 2016; Saitoh, 1988).

When linear mappings in the framework of Hilbert spaces are considered, we will 
encounter in a natural way the notion of reproducing kernels; then the general theory 
is not restricted to Bergman and Szegö kernels, but the general theory is as important 
as the concept of Hilbert spaces. It is a main concept and important mathematics. The 
general theory of reproducing kernels is depending on elementary theorems on Hilbert 
spaces. The theory of Hilbert spaces is the minimum core of functional analysis. 
But, when the general theory is combined with linear mappings on Hilbert spaces, 
it will have many relations in various fields, and its fruitful applications will spread 
over to differential equations, integral equations, generalizations of the Pythagorean 
theorem, inverse problems, sampling theory, nonlinear transforms in connection with 
linear mappings, various operators among Hilbert spaces, and many other broad 
fields. Furthermore, when we apply the general theory of reproducing kernels to the 
Tikhonov regularization, it produces approximate solutions for equations on Hilbert 
spaces which contain bounded linear operators. Looking from the point of view of 
computer users at numerical solutions, we will see that they are fundamental and 
have practical applications (see Saitoh & Sawano, 2016; Saitoh, 1988).

Concrete reproducing kernels such as Bergman and Szegö kernels will produce 
many wide and broad results in complex analysis. They improved some important 
theory and lead to profound results in complex analysis containing several complex 
variables. On the other hand, the formal general theory given by Aronszajn also has 
favorable connections with various fields such as learning theory, support vector 
machines, stochastic theory, and operator theory on Hilbert spaces (see Saitoh & 
Sawano, 2016; Saitoh, 1988).
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A reproducing kernel Hilbert space (shorty, RKHS) H H= ( )Ω  on some set Ω 
is a Hilbert space of complex valued functions on Ω such that for every λ∈Ω the 
linear functional (evaluation functional) f→f(λ) is bounded on H . If H  is RKHS on 
a set Ω then, by the classical Riesz representation theorem for every λ∈Ω there is 
a unique element kH H,λ ∈  such that f f k( ) , ,λ λ= H  for all f ∈H . The family 

kH, :λ λ ∈{ }Ω  is called the reproducing kernel of the space H.  The reproducing 
kernel of the space H  for any orthonormal basis {en(z)}n≥0 of the space H  can be 
represented by (see Aronzajn, 1950; Saitoh & Sawano, 2016)

k z e e z
n

n nH, .λ λ( ) = ( ) ( )
=

∞

∑
0

	

The normalized reproducing kernel of the space H  is denoted by Æ
,

,

,
k k

kH λ
λ

λ
= 


. 

For a bounded linear operator A on the RKHS H , its Berezin symbol �A  is defined 
by the formula (see Berezin, 1972)

�A Ak k( ) : Æ , Æ ., ,λ λ λ=   	

The Berezin symbol of the operator A is a bounded function because of �A A( )λ ≤  
for all λ∈Ω. The behavior of the Berezin symbol of an operator provides important 
information about the operator. More information about reproducing kernels and 
Berezin symbols, can be found in Karaey (2013) and Karaey, Gurdal, and Yamanci 
(2013, 2014).

The Berezin symbol of an operator was first introduced by F. A. Berezin (1972) 
as an extension of Wick symbols on the Fock space. There are several branches of 
this topic from his original work. One branch uses the transform as an algebraic 
isomorphism to formulate function spaces with a non-commutative (non-pointwise) 
product which is useful in the quantization of physical systems (see Berezin, 1974). 
Another branch asks operator theoretic questions about how properties of the Berezin 
syrnbol are related to the properties of A. Among today’s authors working in the fields 
of Toeplitz, Hankel and composition operators. The Berezin symbol has become 
another item of baggage carried by operators that is useful in the characterization 
of operator classes (see Potter, 2000).

Following Coburn (2004), note that since the Berezin map A AB → � is linear 
and in most familiar RKHSs it is one-to-one, it “encodes” operator-theoretic 
information into function theory in a striking but somewhat impenetrable way. In 
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fact, since Ækλ → 0  weakly as λ→∂Ω (of course, if the space H(Ω) is standard in 
sense of Nordgren and Rosenthal (1994), it is clear that B maps compact operators 
on these spaces into functions that vanish at the boundary ∂Ω. Because of these 
properties, the mapping B has found useful applications in dealing with operators 
“of function-theoretic significance” such as Toeplitz and Hankel operators on the 
Hardy, Bergman and Fock spaces (for more information, see, for instance, Coburn 
(2004), Berger and Coburn (1987) and Engliš (1994, 1995, 1999).

The Berezin set and the Berezin number of the operator A was respectively given 
by Karaev (2006) as following

Ber A A ber A A( ) : : sup .= ( ) ∈{ } ( ) =
∈

( )� �λ λ
λ

λΩ
Ω

 and  	

The Berezin number of the operator A has a relationship with its numerical 
radius as follows:

ber A w A Af f f( ) ≤ ( ) = ={ }: sup , : .
H

1 	

The authors have obtained many results about numerical radius inequalities (see 
Abu-Omar & Kittaneh, 2015; Dragomir, 2006; Gustafson & Rao, 1994; Kittaneh, 
2005; Kittaneh, Moslehian & Yamazaki, 2015; Sattari, Moslehian & Yamazaki, 
2015). Recently, the concept of the Berezin number has attracted the attention of 
many authors; for example, using the Hardy-Hilbert type inequalities and some basic 
well-known inequalities, interesting results about the Berezin number inequalities 
were obtained (Bakherad, 2018; Bakherad & Garayev, 2019; Garayev, Gurdal & 
Okudan, 2016; Garayev, Gurdal & Saltabn, 2017; Garayev, Salton & Gundogdu, 
2018; Hajmohamadi, Lashkaripour & Bakherad, n.d.; Yamanci, Gurdal & Garayev, 
2017; Yamanci & Gurdal, 2017; Yamanci, Garayev & Celik, 2019).

INEQUALITIES FOR THE BEREZIN NUMBER 
OF AN INVERTIBLE OPERATOR

In this part, we suppose that B :H H→  is an invertible bounded linear operator 
and B− →1 :H H  is its inverse. Then, clearly,
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Bk
B

kÆ Æ
λ λ≥

−

1
1

	

for any λ∈Ω.
In the present paper, by using some ideas of papers (Dragomir, 2007a, 2007b), 

we give the Berezin number inequalities for an invertible operator and some other 
related results are studied.

Now we are ready to give our results.

Theorem 2.1. Let A,B be two bounded linear operators on reproducing kernel Hilbert 
space H  and let B be invertible with the property that

A B− ≤ β 	 (1)

for β>0. Then

A
B

ber B A
−

∗≤ ( ) +1
21

2
β . 	

Proof. From the condition (1), we obviously say that

Ak Bk B A k kÆ Æ Re Æ, Æ
λ λ λ λ β

2 2
22+ ≤ ( ) +∗ 	 (2)

for any λ∈Ω. Since B is an invertible operator, that is,

Bk
B

kÆ Æ
λ λ

2

1 2

21
≥

−
	

and Re * *� �B A B A( )( ) ≤ ( )( )λ λ , the inequality (2) becomes as following:

Ak
k

B
B AÆ

Æ
*

λ

λ
λ β

2

2

1 2
22+ ≤ ( )( ) +

−
� 	 (3)
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for any λ∈Ω.
Taking the supremum on λ∈Ω in above equation, we have

A
B

ber B A2

1 2
21 2+ ≤ ( ) +

−

∗ β . 	 (4)

From the elementary inequality

2 1
1

2

1 2

A
B

A
B− −

≤ + 	

and above inequality, we obtain

A
B

ber B A
−

∗≤ ( ) +1
21

2
β . 	

Theorem 2.2. Let A,B and β be as in Theorem 2.1. Then

A B
B B

B
ber B A−

−
≤ ( ) +

−

−

∗

2 1 2

1 2
2

1 1
2
β . 	

Proof. Due to A B− ≤ β , we get that

Ak Bk Ak BkÆ Æ Re Æ, Æ
λ λ λ λ β

2 2
22+ ≤ + 	

for any λ∈Ω, or equivalently

B Ak B Ak k Bk B2 2 2 2 22+ ≤ − + +∗Æ Re Æ, Æ Æ .λ λ λ λ β 	 (5)

Due to
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Bk
B

k B A k k B AÆ Æ , Re Æ, Æ *
λ λ λ λ λ

2

1 2

21
≥ ( ) ≤ ( )( )

−

∗ � 	

and

B Ak Ak B2 2
2+ ≥Æ Æ

λ λ 	

for any λ∈Ω, therefore by (5) we have

2 2
1

2

2

2 1 2

1 2

2

2

Ak B B A
B B

B

B A
B B

Æ

sup

*

*

λ

λ

λ β

λ β

≤ ( )( ) + +
−

≤ ( )( ) + +

−

−

∈

−

�

�
Ω

11 2

1 2

1−
−B

	

for any λ∈Ω. This implies that

A B
B B

B
ber B A−

−
≤ ( ) +

−

−

∗

2 1 2

1 2
2

1 1
2
β , 	

which gives the desired result.

Theorem 2.3. Let A,B and β be as in Theorem 2.1. If B is invertible with the 
property that

A B B− ≤ <β , 	 (6)

then

B A ber B A
B B

B
2 2

2 1 2

1 2

1

2
− ≤ ( ) + −

∗
−

−
β . 	
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In particular, if B=αI with |α|>β and B=αA* with A ≥
β
α

 (α≠0), then, 

respectively,

1
2

−








 ≤ ( )β

α
A ber A 	 (7)

and

A A ber A
A A

A
2

2

2

2 1 2

1 2

1

2
−








 ≤ ( ) + −−

−

β
α

α . 	 (8)

Proof. Because of the first side of (6), we can write

Ak Bk Ak BkÆ Æ Re Æ, Æ
λ λ λ λ β

2 2
22+ ≤ + 	

for any λ∈Ω, or equivalently

B Ak B Ak k Bk B2 2
2

2 22+ − ≤ − +∗Æ Re Æ, Æ Æ .λ λ λ λβ 	 (9)

Due to

Bk
B

k B A k k B AÆ Æ , Re Æ, Æ *
λ λ λ λ λ

2

1 2

21
≥ ( ) ≤ ( )( )

−

∗  � 	

and the second side of (6), we have

B Ak B Ak2 2
2 2 22+ − ≤ −Æ Æ

λ λβ β 	

for any λ∈Ω. Therefore, we obtain from (9) 
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2 2
12 2

2 1 2

1 2B Ak B A
B B

B
− ≤ ( )( ) +

−−

−
β λλ

�* 	 (10)

for any λ∈Ω.
Taking the supremum on λ∈Ω, we reach the desired result. In particular, putting 

the B=αI and B=αA* in (10), we get the (7) and (8).

Theorem 2.4. Let A,B and β be as in Theorem 2.1. Also, if

B− <1 1
β

, 	 (11)

then

1 2 1 2 1− ≤ ( )− − ∗β B A B ber B A . 	

Proof. From (4), we get

A
B

B
ber B A2

2 1 2

1 2

1
2+

−
≤ ( )

−

−

∗
β

. 	 (12)

Using the basic inequality and condition (11(, we have

2 1
1

1
2 1 2 2

2 1 2

1 2

A
B

B A
B

B−
−

−

−
− ≤ +

−
β

β
. 	 (13)

So, from (12) and (13), we obtain the desired result.

Theorem 2.5. Let A,B be two bounded operators. If B is invertible such that 
A B− ≤ β and
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1
1

1
2

1

+
≤ <−

β β
B , 	 (14)

then

A ber B A ber B A
B B

B
2 2

1 2 1 2

1
2

1
− ( ) ≤ ( )

− −
∗ ∗

− −

−

β
. 	

Proof. We get from (4) that

Ak
B

B AÆ *
λ λ β

2

1 2
21 2+ ≤ ( )( ) +

−
� 	

for any λ∈Ω and since 
1

1 2
2

B−
> β , we can say that �B A*( )( ) >λ 0  for any 

λ∈Ω
If we divide in both sides of (5) with �B A*( )( )λ , we have

Ak

B A B B A B A

Æ
.

* * *

λ

λ λ

β

λ

2

1 2

21 2
� � �( )( )

+
( )( )

≤ +
( )( )−

	 (15)

Subtracting �B A*( )( )λ  from both sides of above inequality, we have
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Ak

B A
B A B A

B

B B A

Æ

( * )( )
( ) ( )

( * )( )
* *λ

λ
λ λ

β

λ

2
2 1 2

1 22
1

2

− ( ) ≤ − ( ) −
−

=

−

−
� �

−−
−

− ( ) −
−

( )

≤
− −

−

−

−

−

−

2 1 1

2
1

2 1 2

1

2 1 2

1

1 2

β
λ

β

λ

β

B

B
B A

B

B B A

B B

( ( )
( )

)*

*

�
�

−−

−

1 2

1B

	

which shows that

A B A ber B A
B B

B
2 2

2
1 1 2 2

1

1

− ( )( ) ≤ ( )
− −

∗

− −

−

�* λ
β

	

for any λ∈Ω.

Since, by (14), B B− −− − ≥1 2 1 2
1 0β , taking the supremum in above 

inequality on λ∈Ω, we get the desired inequality.

Theorem 2.6. Let A,B be two bounded operators. If B is invertible such that 
A B− ≤ β and B− <1 1

β , then

0 2 12 2 2
1

1 2 1 2
≤ − ( ) ≤ ( ) − −








∗ ∗
−

− −A B ber B A ber B A
B
B

B B B. .β 	

Proof Subtracting 
�B A

B

*( )( )λ
2  from both sides of (15), we obtain
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0 2
1

2

2 2

2 1 2

1 2≤
( )( )

−
( )( )

≤ −
( )( )

−
− −

−

Ak

B A

B A

B

B A

B

B

B B

Æ

*

* *

*

λ

λ

λ λ β
�

� �

� AA

B

B B

B A

B

B

B B A

( )( )

= −
−

−
( )( )

−
−

( )( )





−

−

−

−

λ

β λ β

λ
2

2 1 12 1 2

1

2 1 2

1

�

�

*

*











≤
− −− −

−

2

1 2 1 2

1
2

1B B B

B B

β
,

	

or equivalently

0

2 1

2 2 2

1
1 2 1 2

≤ − ( )( )

≤ ( )( ) − −





−

− −

Ak B B A

B
B

B A B B B

Æ *

*

λ λ

λ β

�

�
	

for any λ∈Ω. Since B B B− −− − ≥1 2 1 2
1 0β  from above inequality, we obtain

sup Æ sup sup* *

λ
λ

λ λ
λ λ

∈ ∈
−

∈

−≤ ( )( ) + ( )( ) − −
Ω Ω Ω
Ak B B A

B
B

B A B B
2 2 2

1
12 1� � ββ 2 1 2

B−





 	

for any λ∈Ω. This implies the desired result.

SLATER TYPE INEQUALITIES IN REPRODUCING 
KERNEL HILBERT SPACES

Let I be an interval of real numbers with interior int(I) and f I: → �  be a convex 
function on I. Then f is continuous on int(I) and has finite right and left derivatives 
at every point of int(I). Also, if x,y∈ int(I) and x<y, then 

′ ≤ ′ + ≤ ′ ( ) ≤ ′ + ( )f x f x f y f y_( ) ( ) _  	
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which gives that both f−
'  and f+

'  are nondecreasing function on int(I). A convex 
function must be differentiable except for at most countably many points.

The subdifferential of f for a convex function f I: ,→�  is the set of all functions 
ψ: I→[-∞,∞] with property that ψ int I( )( ) ⊂ �  and f y x y y f x( ) ( ) ( ) ( )+ − ≤ψ  
for any x,y∈I and it is denoted by ∂f. 

Recall that if f is convex on I, then ∂f is nonempty, f f f−
′

+′ ∈∂   and if ψ∈∂f, 
then for any x∈ int(I). 

′ ( ) ≤ ( ) ≤ ′ +f x x f x_ ( )ψ . 	

Particularly, Ψ is a nondecreasing function.
If f is differentiable and convex on int(I), then ∂ = ′f f{ }.
The following result is called as the Slater inequality in the literature:

Theorem 3.1 (Slater, 1981). If f I: →�  is a nondecreasing (nonincreasing) 
convex function, pi≥0, xi∈I, such that P pin i

n:= ∑ >=1 0  and i
n

i ip x=∑ ( ) ≠1 0ψ  
where ψ∈∂f, then

1
1

1

1P
p f x f

p x x
p xn i

n

i i
i
n

i i i

i
n

i i=

=

=
∑ ( ) ≤ ∑ ( )

∑ ( )










ψ
ψ

.	

The monotonicity assumption for the derivative φ, as stated in Dragomir (2004), 
can be changed with the condition

i
n

i i i

i
n

i i

p x x
p x

I=

=

∑ ( )
∑ ( )

∈1

1

ψ
ψ

, 	

which is more general and can satisfy for convenient points in I and for not inevitably 
monotonic functions.

Let A be a selfadjoint linear operator on a complex Hilbert space H.  The Gelfand 
map establishes a *-isometrically isomorphism Φ between the set C(Sp(A)) of all 
continuous functions defined on the spectrum of A, denoted by Sp(A), and the C*-
algebra C*(A) generated by A and the identity operator 1H  on H  as follows (see for 
instance Furuta, et al., 2005).

For any f,g∈C(Sp(A)) and any α β, ∈� , we get:
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1. 	 Φ(αf+βg) = αΦ(f) = βΦ(g); 
2. 	 Φ(fg)=Φ(f)Φ(g) and Φ Φf f( ) = ( )∗ ;

3. 	 Φ f f f t
t Sp A

( ) = = ( )
∈

: sup ;
( )

4. 	 Φ(f0)=I and Φ(f1)=A, where f0(t)=1 and f1(t)=t, for t∈Sp(A).

With this concept we define f(A):=Φ(f) for all f∈C(Sp(A)) and it is called the 
continuous functional calculus for the selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on Sp(A), 
then f(t)≥0 for any t∈Sp(A) implies that f(A)≥0 on H . Therefore, if f and g are real 
valued functions on Sp(A) then the following basic property holds:

f(t)≥g(t) for any t∈Sp(A) implies that f(A)≥g(A)	 (16)

in the operator order of B( ).H
A real valued continuous function f on an interval J is said to be operator convex 

(operator concave) if

f(((1‑λ)A+λB)≤(≥)(1‑λ)f(A)+λf(B) 	

in the operator order, for all λ∈[0,1] and for any self-adjoint operators A and B on 
H  whose spectra are contained in J. Obviously, a function f is operator concave if 
-f is operator convex.

A real valued continuous function f on an interval J is said to be operator monotone 
if it is monotone with respect to the operator order, i.e., A≤B with Sp(A), Sp B J( ) ⊂  
imply f(A)≤f(B). (For more facts on operator convex (operator concave) and operator 
monotone functions, the reader can be consult in Furuta et al., 2005 and its references).

In this section, we obtain some inequalities of the slater type for convex functions 
of selfadjoint operators in reproducing kernel Hilbert spaces and examine related 
results.

Before giving our results, we need some well-known results.
The following result is due to Mond & Pečarić (1933):

Theorem 3.2 (Mond & Pečarić, 1993). Let A be a selfadjoint operator on the Hilbert 
space H and assume that Sp A m M( ) [ , ]⊆ for some scalars m,M with m<M. 
If f is a convex function on [m,M], then for each x∈H with x =1 ,

f Ax x f A x x, ,( ) ≤ ( ) .	

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



69

Berezin Number Inequalities of an Invertible Operator and Some Slater Type Inequalities

The next result is a special case of Theorem 3.2.

Theorem 3.3 (McCarthy, 1967). Let A be a selfadjoint positive operator on a Hilbert 
space H  and let x∈H  be any unit vector. Then(i) A x x Ax xr r, ,≥  for all 

r>1;(ii) A x x Ax xr r, ,≤  for all 0<r<1;(iii) If A is invertible, then 

A x x Ax xr r, ,≥  for all r<0.

Our aim in this paper is to give some Slater’s type inequalities for the convex 
functions of selfadjoint operators in reproducing kernel Hilbert space.

Theorem 3.4. Let f I: →�  be a convex and differentiable function on int(I) (the 
interior of I) whose derivative ′f  is continuous on int(I). Then

0 ≤ ( )
( )( )














− ( )( ) ≤ ′ ( )f

Af A
f A

f A f
Af A
f

�

�
�

�
�

'( )
'( )

'( )
'(

λ

λ
λ

λ
AA

Af A A Af A
f A)

'( ) '( )
'( )λ

λ λ λ
λ( )











( ) − ( ) ( )
( )













� � �
�

	

(17)

for any selfadjoint operator A on the reproducing kernel Hilbert space H Ω( )with 
Sp A m M I( ) [ , ] int⊆ ⊂ ( ) and ′f A( )  is a positive definite operator on H  and any 
λ∈Ω. 

Proof. Since F is differentiable and convex on int(I), then we get that

′( ) −( ) ≤ ( ) − ( ) ≤ ′( ) −( )f s t s f t f s f t t s. . 	

for any t,s∈[m,M]. 
Let us fix t∈[m,M]. By applying the property (16) for the self adjoint operator 

A, then we get

′( ) − −( ) ≤ ( ) − ( )  ≤ ′( ) −f A t A k k f t f A k k f t t AH H H. Æ, Æ . Æ, Æ . .1 1 1λ λ λ λ (( ) Æ, Æk kλ λ 	

for any λ∈Ω and t∈[m,M] or equvialently

tf A f A A f t f A f t t f t A� � � � �'( ) '( ) ( ) ( )λ λ λ λ( ) − ≤ ( ) − ( ) ≤ ′( ) − ′( ) ( ) 	 (18)

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



70

Berezin Number Inequalities of an Invertible Operator and Some Slater Type Inequalities

for any λ∈Ω and t∈[m,M].
Because A is selfadjoint with mI≤A≤MI and ′f A( )  is positive definite, then

mf A Af A Mf A� � �'( ) '( ) '( )( )λ λ λ( ) ≤ ( ) ≤ 	

for any λ∈Ω, which gives that

t
Af A
f A

m M0 :
'( )

'( )
, .=

( )
( )

∈[ ] ∈
�
�

λ
λ

λ for any Ω 	

As a result, putting t=t0 in the equation (18), then we have the desired result (17). 

Remark 3.1. The assumption that ′f A( ) is a positive definite operator on H Ω( )
can be changed with the more general condition that

Af A
f A

I
�
�

'( )
'( )

int ,
λ
λ

λ
( )
( )

∈ ( ) ∈ for any Ω 	 (19)

which might be confirmed for special convex functions f. 

Remark 3.2. Let the function be concave on int(I). If the condition (19) satisfies, 
then we get the following inequality

0 ≤ ( ) − ( )
( )









 ≤ ′ ( )�

�
�

�
�f A f

Af A
f A

f
Af A
f A

( )
'( )

'( )
'( )
'( )

λ
λ
λ

λ
λλ

λ λ λ
λ( )











( ) ( ) − ( )
( )













.
'( ) '( )

'( )

� � �
�

A f A Af A
f A

	

for any λ∈Ω.
Let us define

�
�

�
�B f A

f A
f
Af A
f A

′( ) =
( )

′ ( )
( )









, ; :

'( )
.

'( )
'( )

λ
λ

λ
λ

1 . 	

The following results provide more useful upper bounds for the nonnegative 
quantity
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f
Af A
f A

f A
�
�

�'( )
'( )

'( ) .
λ
λ

λ λ
( )
( )









 − ( ) ∈ for Ω 	

Theorem 3.5. Let f I: →�  be a convex and differentiable function on int(I) (the 
interior of I) whose derivative ′f  is continuous on int(I). Then

0

1
2

≤( )
′ ( )
′ ( )









 − ( )

≤ ′( )×
−

f
Af A
f A

f A

B f A
K

�
�

�

�

( )
( )

( )

, ;
.

λ
λ

λ

λ
kk f A k f A

f K f k Ak A

( ) ′( ) − ( )





′( ) − ′( )( ) −

Æ '( )

. Æ

/

λ

λ

λ

λ

2 2
1 2

1
2

2

�

� (( )














≤ −( ) ′( ) − ′( )( ) ′( )
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(21)

for any selfadjoint operator A on the reproducing kernel Hilbert space H Ω( )  with 
Sp A m M I( ) [ , ] int⊆ ⊂ ( )  and ′f A( )  is a positive definite operator on H  and any 
λ∈Ω, respectively.

Furthermore, if A is a positive definite operator, then
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(22)

for any λ∈Ω.

Proof. From Corollary 1 in [11, 13], we have that
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for each λ∈Ω, which together with (17) give the desired result (20). 
By using Lemma 3 in Dragomir (2008, 2011), we have that
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for each λ∈Ω. This inequality together with (17) gives the desired result (21). 
Lastly, taking advantage of Lemma 3 in [7, 8], we get that
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for each λ∈Ω. So, above inequality together with (17) gives the desired result (22). 

Remark 3.3. We get from the first inequality in (23) that
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for all λ∈Ω, since ′f  is monotonic nondecreasing and A is positive definite.
The first inequality in (22) implies the following result
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for all λ∈Ω.
We also have from the second inequality in (22)
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for all λ∈Ω.
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ABSTRACT

In this chapter, the features of a continuous time GARCH (COGARCH) process is 
discussed since the process can be applied as an explicit solution for the stochastic 
differential equation which is defined for the volatility of unequally spaced time 
series. COGARCH process driven by a Lévy process is an analogue of discrete time 
GARCH process and is further generalized to solutions of Lévy driven stochastic 
differential equations. The Compound Poisson and Variance Gamma processes are 
defined and used to derive the increments for the COGARCH process. Although there 
are various parameter estimation methods introduced for COGARCH, this study is 
focused on two methods which are Pseudo Maximum Likelihood Method and General 
Methods of Moments. Furthermore, an example is given to illustrate the findings.

INTRODUCTION

Mandelbrot (1963) pointed out that the financial time series are not usually stationary, 
and the increments of these series have no autocorrelation but their squares present 
out a correlation. Furthermore, he showed the volatility of financial series which 
exist in volatility cluster is not constant and the distribution of the series is not normal 
since leptokurtic shape. Black (1976) showed leverage-effect is another stylized 
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fact of financial series. The leverage-effect occurs when the negative fluctuations 
on stock price have a greater influence on volatility than positive fluctuations do 
where negative and positive fluctuations have the same magnitude. The long-term 
persistence is another important subject to discuss for financial series. Fractal 
mathematics helps us to identify the long-term persistence via models which are 
the generalization of short-term memory models such as Autoregressive Integrated 
Moving Average (ARIMA) models with Chaos theory. The randomness generated 
by deterministic systems, as in how the sensitivity of chaotic systems to their initial 
conditions can be assumed as a definition of Chaos theory. After the study of Hosking 
(1981) that is the introduction of the fractional differentiation operator makes these 
models especially important. The chaotic systems, which have complex forms, 
are becoming indistinctive with respect to the randomness when the time is going 
up. Thus, the term pseudo-randomness is sometimes used to define the behaviour 
of chaotic systems. On the other hand, the scope of non-linear models is the non- 
stationary of increments assuming the presence of heteroskedasticity in the model. 
The Autoregressive Conditional Heteroscedastic (ARCH), Generalized ARCH 
(GARCH) and Continuous GARCH (COGARCH) models and their extensions are 
the part of this approach.

Engle (1982), The Nobel Prize laureates, has introduced the ARCH models 
that are proper to represent the typical empirical findings of financial time series. 
Although the ARCH model can yield volatility clusters, it also has some weaknesses 
in describing the stylized fact of financial series. It can be concluded that a mechanical 
way to describe the behaviour of the conditional variance. But it gives no indication 
of the behaviour of conditional variance because it assumes that positive and negative 
shocks have the same effects on volatility since it depends on the square of the 
previous shocks (Tsay, 2013).

After Engle, Bollerslev (1986) whose study was another milestone for financial 
time series analysis was GARCH model. The discrete-time GARCH models, which 
are improper models to deal with heteroscedasticity in time series, capture some of 
the most prominent features in financial data, particularly in the volatility process. 
In ordinary discrete time GARCH models, time series are assumed to be equally 
spaced. But time series have often irregular space between two observations. Tick-
by-tick data and daily data are examples of this situation. To accommodate the 
irregularity of time spaces, Klüppelberg et al. (2004) proposed a continuous time 
GARCH (COGARCH) process driven by a Lévy process, which is an analogue of 
discrete time GARCH process and is further generalized to solutions of Lévy driven 
stochastic differential equations. Like in the discrete time case, the COGARCH 
model cannot model this stylized fact of time series. Therefore, Haug (2006) have 
developed the exponential COGARCH model as the first extension of the COGARCH 
model that is based on the discrete time EGARCH model.
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The aim of this chapter is to define and to discuss the properties of COGARCH 
models with examples. In this context, the outline of the chapter is designed as follows;

The general form of the stochastic differential equations (SDEs) is given in 
Section 2. Then, the properties of the discrete time GARCH model is discussed 
in section 3. COGARCH process is a Lévy-driven process, therefore the basis of 
this process is constructed on Compound Poisson and Variance Gamma which are 
also stochastic processes like Brownian Motion, are defined in Section 4. In the 
subsection 4.1, derivation of Continuous time GARCH Process and second-order 
properties of the volatility process will be defined and discussed, depending on the 
approach of Klüppelberg et al. (2004) and Klüppelberg et al. (2011). Moreover, 
some classical and Bayesian estimation methods for COGARCH models will be 
mentioned in Section 5. Compound Poisson COGARCH(1, 1) and Variance Gamma 
COGARCH(1, 1) simulations will be given as examples and furthermore, the model 
will be applied to real-life data.

FROM DETERMINISTIC TO STOCHASTIC

It is useful to begin with an example of ordinary differential equation (ODE) to 
understand the structure of stochastic differential equations. An ODE has a general 
form as following;

dx t

dt
f t x   dx t f t x d

� �
� � � � � � � �, , , 	 (1)

with initial condition x(t)=x0By taking the integral of above Equation 1, the integral 
form can be written as

x t x f s x s ds

t

� � � � � ��0

0

, ( ) 	 (2)

where x(t)=x(t,x0,t0) is the solution of ODE depending on initial condition. Let

dx t

dt
a t x t   x x

� �
� � � � � � � �, 0

0
	 (3)
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be an example, where a(t) is a determistic parameter. When it is assumed that a(t) 
is a deterministic parameter but rather a stochastic parameter for ODE in Equation 
3, the stochastic parameter a(t) can be defined as

a(t) = f(t) + h(t)ε(t)	 (4)

where ε(t) is awhite noise process. Thus, the following stochastic differential equation 
(SDE) is obtained;

dX t

dt
f t X t h t X t µ t

� �
� � � � � � � � � � � � 	 (5) 

If Equation 5 is rewirtten in the differential form using dW(t)=ε(t) dt, where 
dW(t) denotes the differential form of the Brownian motion, the following is obtained

dX(t) = f(t)X(t)dt + h(t)X(t)dW(t)	 (6)

The general form of an SDE is given as

dX(t,ω) = f(t,X(t,ω))dt + g(t,X(t,ω))dW(t,ω)	 (7)

where ω denotes that X=X(t,ω) is a random variable and having an initial condition 
X(0,ω)=X0 with probability one. The Equation 7 can be written in the integral 
equation as

X t X f s,X s ds g s,X s, dW s, , ,� � � �� � � � � �� � � � �� � � �� �0

0 0

t t

	 (8)

where f t,X t,�� �� �� , g t X t, ,�� �� ��  and W t,�� �� .

THE DIFFERENCE EQUATIONS OF VOLATILITY: 
ARCH AND GARCH MODELS

Engle (1982) has shown that the ARCH models are proper models to represent 
the typical empirical findings of financial time series, e.g. the conditional 
heteroscedasticity. The amplitude of the returns varies over time is described as 
“volatility clustering.” The ARCH model is designed to deal with just this set of issues. 
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They have become common implements for dealing with time series heteroskedastic 
models. Such models that can be used in financial decisions concerning risk analysis 
of holding an asset or the value of an option, portfolio selection and derivative pricing 
(Engle, 2001) provide a volatility measure, like a standard deviation. The basic 
concept of the ARCH model is that the series of errors are serially uncorrelated, 
though dependent on its p squared lag values.

Definition 1: ARCH(q) Process

Given that the volatilities σ t

2  are stationary and independent random variables and, 
assuming that ϵt is a sequence of random variables, independently and identically 
distributed, the process at is an ARCH(q) model if at=σtϵt, ϵt~fv(0,1) where 

� � �
t

i

q

i t i
a

2

0

1

2� �
�

�� , t∈  where α0 and αi are the parameters and they are satisfying 

α0>0 and 
i

q

i

�
� �

1

1�  to guarantee that the variance is positive and is a stationary 

process.
Although the ARCH model can yield volatility clusters, it also has some 

weaknesses; first of all, it assumes that positive and negative shocks have the same 
effects on volatility because it depends on the square of the previous shocks. But, 
the financial asset responds differently to positive and negative shocks. The ARCH 
model does not provide any new insight for understanding the source of variations 
of a financial time series. We only conclude a mechanical way to describe the 
behaviour of the conditional variance. It gives no indication of the behaviour of 
conditional variance (Tsay, 2012).

Bollerslev (1986) extended the ARCH model to the Generalized Autoregressive 
Conditional Heteroscedastic (GARCH) model, which assumes that the conditional 
variance depends on its own p past values and q past values of the squared error 
terms. This model is denoted as GARCH(p,q). In most applications, the GARCH 
(1,1) model captures the volatility of financial data and has been utilized widely by 
practitioners and academicians and therefore has been studied extensively, see for 
example Tsay (2012).

Definition 2: GARCH(p,q) Process

Assuming that volatilities σ t

2  are random variables and ϵt is a sequence of random 
variables, independently and identically distributed, then at follow a general GARCH(p, 
q) model if at=σtϵt where ϵt~fv(0,1). The variance equation of the GARCH (p,q) 
model can be expressed as
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� �� � �
t

i

q

i t i

i

q

i t i
a

2

0

1

2

1

2� � �
�

�
�

�� � 	 (9)

where the innovations follow the probability density function fv(0,1) with zero 
mean and unit variance. In non-normal case, v is used as additional distributional 
parameters for the scale and the shape of the distribution.

Bollerslev (1986) has shown that the GARCH(p,q) process is covariance stationary 

with E(at) = 0, var(at) = α0 / 1
1 1

� �
�

�
�

�

�
�

�

�
��

�

�
��

� �
� �
i

q

i

i

p

i
� �  and cov(at, as) = 0 for t ≠ s if 

and only if 
i

q

i

i

p

i

� �
� ��

1 1

� �  < 1. He used the MLE method by maximizing the given 

log-likelihood function 

L ln f a E a I
t

v t t t t� �� � � � �� �� �, | ,1 	

where fv is the conditional distribution function. The second argument of fv denotes 
the mean, and the third argument the standard deviation. The full set of parameters 
ϑ includes the parameters from the variance equation ϑ=(α0,α1,…,αp, β1,…,βq) and 
the distributional parameters (v) in the case of a non-normal distribution function.

COGARCH MODELS

In this section, the definitions and properties of Brownian motion and Lévy processes 
will be given. Then Compound Poisson process, Variance Gamma process and The 
Lévy -Ito decomposition will be defined based on the study of Applebaum (2009).

Definition 3: Brownian Motion

A Brownian motion is a stochastic process Bt for t>0 which satisfies the following 
conditions;

1. 	 The starting value of Brownian motion is B0=0
2. 	 The increments of Brownian motion are independent, which means that 

B B
t s t� �  is independent of σ(Bt) for all 0≤s, t≤∞.

3. 	 B B N s
t s t� � � �~ ,0  for all 0≤s, t≤∞ means that the increments are normally 

distirbuted.
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4. 	 Brownian motion has continuous trajectories.

Some basic properties of the Brownian motion are

•	 The random variables Bt‑Bs and B
t s−  follow a normal distribution with zero 

mean and (t-s) variance where t<s. Larger fluctuations are observed where 
the intervals are larger in Brownian motion since the variance is the length of 
the interval.

•	 The finite-dimensional distributions of the Brownian motion are multivariate 
Gaussian distributions since Brownian motion is a Gaussian process.

•	 B B B B B Bt t t t t tn n1 0 2 1 1
� � � �

�
, , ,  are independent since the process has 

independent increments where 0≤t0<t1<…<tn<∞ and n≥0.
•	 Cov(Bt, Bs = min(s,t) for 0≤t<s<∞

Definition 4: Lévy Processes

A Lévy process is a stochastic process L
t t

� � �0
 that satisfies the following properties:

1. 	 The starting value of the Lévy process is L0=0
2. 	 It has independent and stationary increments.
3. 	 It is stochastically continuous.

Having continuous sample paths with probability one is a characteristic of the 
Brownian motion. But, this assumption is required that the process should be a 
càdlàg process which is

•	 lim
s t s tL L
�

�  means that the process is right-continuous.

•	 L L
t s t s� �

�
lim  means that the process has limits from the left with probability 

one.

Thus, it can be concluded that jumps of the Lévy process �L L Lt t t
� � �  are 

also a càdlàg process and these jumps are observed often in financial time series.
The Lévy process Lt is infinitely divisible for ∀t≥0. So, the process characterized 

by its characteristic exponent that satisfies the Lévy -Khintchine formula. Then, its 
characteristic function can be defined as � � � � � �t

iuLu E e t  and it can be written 

in terms of the characteristic function of L1, �� � � � �u E eiuL1 .
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The characteristic function � � �L u  can be used to characterize the distribution 
of a Lévy process where

� � � � � � � � �� �L
iuLu E e exp t ut � 	

where Ψ(u) is the characteristic exponent of L1 and Ψ(u) is given by

�
�

�u u e dxiux
x� � � � � � �� � � �

� �
�� ��iau iux

2 2

0

12
1 1



	

where a∈ , σ>0 and v is the Lévy measure of Lt that satisfies v({0}=0 and 
� � � � � � �min , .x dx2

1 �  (See Applebaum, 2009, Theorem 1.2.14 Lévy–Khintchine)

Definition 5: Compound Poisson Process

A Poisson process N for t≥0 and parameter λ>0, If a Poisson process is independent 
of an i.i.d. (independent and identically distributed) sequence of random variables 

Y
i i

� �  , then a compound Poisson process L is defined as

L Y   t
t

i

N

i

t

� �
�
�

1

0, 	 (9)

The compound Poisson (CP) process has jumps with random size instead of the 
constant jumps of size 1 of a Poisson process.

Definition 6: Variance Gamma Process

A Variance Gamma (VG) process is obtained by evaluating Brownian motion with 
drift at a random time given by a Gamma process. Let B(t) be a standard Brownian 
motion then Brownian motion with drift can be defined as

b(t,θ,σ) = θt + σB(t) t≥0	 (10)

where � �  is the drift term and σ is variance? The time change of the Brownian 
motion is done with respect to a Gamma process H

t t
� � �0

 with parameters a, b>0, 
such that each of the i.i.d increments is Gamma distributed with density
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f x
b

at
e e for  x  

H

at

at bx

t
� � � � �

�� �

�
1

0 	

where Γ(.) is Gamma function. Thus, the VG process V
t t

� � �0
 can be obtained by

V H B t  
t t Ht
� � �� � 0 	 (11)

Continuous Time GARCH Process

In this subsection, derivation of Continuous time GARCH process and second-order 
properties of the volatility process will be defined and discussed, depending on the 
approach of Klüppelberg et al. (2004) and Klüppelberg et al. (2011).

The approach of Klüppelberg et al. (2004) includes only one source of uncertainty 
(two of the same kind). The increments of a Lévy process replace the innovations of 
a discrete time GARCH model. Additionally, it contains the autoregressive property, 
which can be found in the discrete time case. The idea of Klüppelberg et al. (2004) 
for the construction of a continuous time GARCH model is to preserve the structure 
and the main characteristics of a discrete time GARCH model.

Klüppelberg et al. (2004) used the discrete time GARCH (1,1) process to build 
continuous time analogue. Let an=σnϵn where ϵn~fv(0,1) and � �� � �

n

2

n-1

2

n-1

2
a� � �

0 1 1  
be a discrete time GARCH(1,1) process where α0, α1 and β1 are constant parameters. 
The idea is to replace the white noise sequence of the discrete equation with the 
increments of a Lévy process. So, the continuous time GARCH process G

t t
� � �0

 
can be defined as

G dL
t t

t

s s� � �
� ��0

0

� 	 (12)

The volatility process is defined as a random recurrence equation and iterating 
the recurrence:

� � �� � � �
n

t

n

j i

n

j

j

n

j
a a

2

0

0

1

1

1

1 1

2

0

2

0

1

1 1

2� �� � � �� �
�

�

� �

�

�

�

�� � 	 (13)

Replacing the sum in the Equation 13 by integration the volatility process becomes
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� � � � �n

n

j

s

j

j

exp log a ds exp2

0

0 0

1 1

2

0

2� � �� ��

�
��

�

�
�� �

�

�
�
�

�



�
�

� 

� �00

1

1 1

2
n

jlog a
�


 �� ��

�
��

�

�
��� � 	 (14)

Replacing the β=α0, η= ‑logβ1 and �
�
�

� 1

1

 in the Equations 14 the volatility 

process is obtained by

� � �
n

n

X X
e ds es t2

0

0

2� �
�

�
�

�

�
�� � 	 (15)

with the auxiliary process X t log Lt

s t

s� � � � �� �
� �
�� �
0

2
1 �  where t≥0 and Lt is a 

Lévy process.
Then, the COGARCH(1,1) can be defined as the càdlàg process that satisfies 

the following stochastic differential equation

dG dL
t t t
� �� , for t≥0 and G0=0	 (16)

The process � t
t

2

0
� �

�
 satisfies the following stochastic differential equation

d dt d L L
t t- t t

d� � �� ��2 � �� � � � �� , 	 (17)

where [L,L]t is the quadratic variation of the Lévy process

L L t L t L L
t

s t

s t

d
, ,� � � � � � � �� �

� �
�� �2

0

2 2� 	

where L L L
t

d

s t

s
,� � � � �

� �
�

0

2�  is the discrete part of the quadratic variation of Lt.

Definition 7: Continuous time GARCH(1,1) Process

Let L L
t t

� � � �0
 be a Lévy process with triplet (a,σ2,v) where v is a Lévy measure. 

Given a finite random variable independent of Lt, the COGARCH process G
t t

� � �0
 

and the variance process � �2 2

0
� � �

�t
t

 are defined by the stochastic differential 

equations

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



89

COGARCH Models

dG dL
t t t
� �� 	

d dt d L L
t t t t

d� � �� ��2 � �� � � � �� � , 	

for t≥0 and G0=0, β>0, η>0, φ≥0 and L L
t

d
,� �  is the discrete part of the quadratic 

variation Lévy process. 
It can be inferred from the Definition 7 that the process G jumps at the same 

times as L does, and the size of its jumps is ∆Gt=σt∆Lt for t≥0. So, ∆Lt can be 
assumed as innovations in case of discrete GARCH models.

THE ESTIMATION METHODS FOR COGARCH MODELS

The several frequentists and Bayesian estimation methods have been introduced to 
estimate the parameters of COGARCH and its extensions models in the last decade. 
The method of moments (MM) procedure is used by Haug et al. (2007). They estimate 
the model parameters from the log-returns by matching the empirical autocorrelation 
function and moments to their theoretical counterparts. However, their methodology 
is only valid if the driving Lévy process has finite variance, e.g., is a Compound 
Poisson process with normally distributed jumps or a Variance-Gamma process. 
For MM, there is no need to specify the driving Lévy process, however, it can only 
be applied to equally spaced observations and is, therefore, not applicable in many 
interesting situations. Moreover, it has been shown that, as for many other models, 
this moment method - although being consistent - is not very efficient.

Müller (2010) proposed that it is also possible to use Bayesian methods to estimate 
COGARCH(1,1) parameters by MCMC simulations. This method is also restricted 
by the condition that the driving Lévy process is Compound Poisson.

Maller et al. (2008) used an approximation to fit the model to unequally spaced 
time data, by deriving a pseudo-maximum likelihood (PML) function and numerically 
maximizing it in order to estimate the corresponding parameters. In this way, given 
a COGARCH model, there exists a sequence of GARCH models, which converges 
to it. They proved that the COGARCH model occurs as a continuous-time limit 
of GARCH in a strong sense and construct a sequence of discrete time stochastic 
processes that converge in probability and in the Skorokhod metric to a COGARCH 
model. The result is useful for the estimation of the continuous model defined for 
irregularly spaced time series data. The estimation procedure is extended and is 
implemented in the R package “yuima” by Iacus et al. (2015). A simulation study 
demonstrates that if a compound Poisson with normal jumps, using PML the mean 
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squared errors is reduced with respect to the MM drives the model, but relevant 
biases can be found. Although being not consistent, PML method gives only slightly 
better estimates for realistic sample sizes. Behme et al. (2014) used PML method to 
estimate the parameters of Asymmetric Power COGARCH (APCOGARCH) and its 
reduced form Glosten, Jagannathan and Runkle COGARCH (GJR- COGARCH).

Bayraci et al. (2014) introduced a simulation-based indirect inference approach 
in order to estimate the COGARCH(1,1) model. The basic idea of the indirect 
inference is that when a model leads to a complicated structural or reduced form 
and therefore to intractable likelihood functions, estimation of the original model 
can be indirectly achieved by estimating an auxiliary model which is constructed 
as an approximation of the original one.

Marín et al. (2015) use the data cloning methodology, which is another Bayesian 
approach; one can obtain approximate maximum likelihood estimators of COGARCH 
models avoiding numerically maximization of the pseudo-likelihood function. They 
take the pseudo-likelihood function to build the joint posterior distribution of the 
parameters, as a previous step to deal with the data cloning methodology. But, in 
this case, as the procedure is based on an MCMC algorithm, it is not necessary to 
numerically maximize the pseudo-likelihood function as in Maller et al. (2008).

Marín et al. (2016) proposed two Bayesian methods which are Hamiltonian 
Monte-Carlo (HMC) methodology and Approximate Bayesian Computation (ABC) 
methodology. HMC methodology can be applied using the following steps; the first 
generate the initial values for model parameters and for momentum variables; then 
the second step is to implement the called Leapfrog algorithm, which depends on 
the derivative function of the logarithm of the posterior density function and on a 
scale factor and the last step to include the accept-reject Metropolis-Hasting method 
for the previously obtained values. In ABC method, they generate the parameter 
values from the prior distributions, simulate with them a sample path and consider 
the proposed values as good if the obtained trajectory is similar enough to the 
original data, considering several goodness of fit statistics. They complete the ABC 
algorithm using accept-reject Metropolis-Hasting algorithm.

The estimation is essential since it enables us to make the following possible 
interpretations using the parameters of the model. The values of the parameters in 
COGARCH model demonstrate the speed of the decline of a volatility burst which 
appears due to the arrival of new information to markets. Moreover, those values 
show the level of volatility and the magnitude of the volatility jumps that may be 
considered as a measure of how information affects volatility and how fast market 
assumes new events. Hence; the estimation helps us understanding how large-scale 
financial activities will develop.
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Estimation of COGARCH(1,1) by Pseudo-
Maximum Likelihood (PML) Method

Maller et al. (2008) developed PML method based on the GARCH approximation 
to COGARCH for irregularly observed time series data from the COGARCH(1,1) 
model. They suppose that the observations are G(ti), 0=t0<t1<…<tN=T, on the 

integrated COGARCH G dL
t t

t

s s� � �
� ��0

0

�  and assumed to be stationary. The {ti} 

are assumed fixed time points. Let a Y G t G ti i i i� � � � � � ��1 denote the observed 
returns and �t t ti i i:� � �1

. So, the observed return can be written as following 

Yi � � �
0

t

s s
dL�  where L is a Lévy process with E[L(1)]=0 and E[L2(1)]=1.

The purpose is to estimate (β,η,φ) from the observed Y1,Y2,…,YN using pseudo-
maximum likelihood (PML) method. Yi is conditionally independent of Y Yi i� � �

1 2
, ,  

given information set Ft−1  since σ is Markovian. So, E Y Fi t( | )� �
1

0  for the conditional 
expectation of Yi, and, for the conditional variance,

� �
�

� � � �

� �

i i t i

t

E Y F t e
i

i
2 2 2
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� � ��
� �
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E �
�

� �
2

0( )� � �
�

, with η>φ and E[L2(1)]=1 satisfy the stationarity of the model. 

The pseudo-maximum likelihood function for Y1,Y2,…,YN can be written as following 
with the assumption of Yi, are conditionally N i( , )0

2ρ

L L Y
i

i

ii

N

� � � � �
�

�
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�
�

�
�( , , ) log( ) ln� � � � �

�
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2
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1

2

1
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2
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1

	

Above equation needs a calculable quantity for ρi
2 . Hence � 2

1
( )ti�  should be 

substituted by � � � �� �
i i

t
i

t
it e e Yi i2

1

2 2� � ��
�

�� � � . After substituting σ i
2  for � 2

1
( )ti�  

and resulting modified ρi
2 , pseudo-maximum likelihood function can be found for 

fitting a GARCH model to the unequally spaced series. The recursion of σ i
2  can 

be easily done taking σ2(0)=β/(η‑ϕ) as an initial value. The maximization of 
L=L(β,η,φ) gives PMLEs of (β,η,φ).
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General Method of Moment (GMM) Estimation 
in the COGARCH(1,1) Model

In this part, the method of Haug et. al. (2007) is followed. The auxiliary process Xt 
is a spectrally negative Lévy process, with drift η, no Gaussian part and with Lévy 
measure vX.

� � � �X X L
xx y y e x0 0 0, ) , , : / ,�� � �� �� � � � �� �� � �   	 (18)

The Laplace transform E e esX t st� � ��� �� �
�  with Laplace exponent is also used in 

this method where

� s s x dx s
s

L� � � � � �� � �� � ��� � �1 1 0
2



, .  	

Proposition 1

Suppose that the Lévy process L
t t

� � �0
 has finite variance and zero mean, and that 

Ψ(1)<0. Let �
t

t

2

0
� �

�
 be the stationary volatility process, so that G

t t
� � �0

 has 

stationary increments. Then E G
t

2� � � �  for all t≥0, and for every t,h≥r>0 it holds

E E r E Covr r r r
G   G L   G G

t t t t h

� � � � � �
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If further E L
1

2� � � � and Ψ(1)<0, then E G
t

4� � � �  for all t≥0 and, if additionally 

the Lévy measure vL of L is such that 

� � � �x dxL

3
0� , then it holds for every t,h≥r>0
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where �
L

2
0�  the variance of the Brownian motion component of L.

Let � h Cov hr r� � � � � � ��
�
� �

�
� �� �

�
� �

G G   
ri r i h

2 2

, ,
(

  the autocovariance function then 

� h Cov hr r� � � � � � ��
�
� �

�
� �� �

�
� �

G G   
ri r i h

2 2

, ,
(

  is the autocorrelation function of the 

discrete time process Gri
r
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Let μ,γ(0), k,p>0 be constants such that

E Gi
1

2� �� ��
�
� �

�
� � � 	

Var Gi
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0
� �� ��

�
� �

�
� � � �� 	

� h Cov ke hr r hp� � � � � � ��
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�
� � �� �

�
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G G   
ri r i h

2 2

, ,
(

 	

Then the first and the second moments of COGARCH(1,1) process for equally 
spaced returns are

M p e
e e

k
p

p p1

2
0 2 6

1

1 1
0:� � � � �

� �
�� � �� � � �

�

�
� � � 	 (19)
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M
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M e ep p2
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2 0

1 1
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�
	 (20)

The estimations of the parameters (β,η,φ) using the Equations 19 and 20 are 
obtained by

β=μ	 (21)

� � � �p 1
2

M p 	 (22)

� � � � �� � �� � � � � �� �p
L L L

1 1 1
2

2 2 2M p p 	 (23)

where the variance τ
L

2 of the Brownian motion component of L is known with 
0 1

2� ��
L

.

EXAMPLE of COGARCH(1, 1) PROCESS

In this section, CP COGARCH(1, 1) and VG COGARCH(1, 1) simulations are given 
as examples. The simulation study is done using the R package “yuima” by Iacus et 
al. (2015). The estimation results for CP COGARCH(1, 1) and VG COGARCH(1, 
1) are given in Table 1 with standard errors of estimates. The estimations are done 
by the general method of moments. The standard error for the parameter β is not 
provided in the summary since its value is obtained once the parameters φ and η are 
estimated and then the variance-covariance matrix refers only to these parameters. 
According to the estimations, stationarity conditions are satisfied and the variance 
process is positive. The summary statistics for the increments are given in Table 2.

Table 1. The estimation results compound poisson and variance gamma COGARCH(1, 
1)

Param Real Param GMM-CP Std. Error GMM-VG Std. Error

β 0.755 1.032 NA 0.595 NA

φ 0.038 0.034 0.029 0.0248 0.016

η 0.053 0.068 0.069 0.0326 0.026
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Table 2. The summary statistics for the increments

Compound Poisson Variance Gamma

Number of increments 24000 24000

Average of increments -0.00211 0.000186

Standard Dev. of increments 0.25657 0.255978

Minimum of increments -2.839877 -3.468155

Maximum of increments 3.685463 3.694253

Log.obj. Function -3.52325 -3.146079

Figure 1. a) Simulated sample paths of CP COGARCH(1, 1) and VG COGARCH(1, 
1) b) Estimated increments of CP COGARCH(1, 1) and VG COGARCH(1, 1) c) 
Estimated sample paths of CP COGARCH(1, 1) and VG COGARCH(1, 1)
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The plots of the simulations of COGARCH(1, 1) driven by Compound Poisson 
Process and Variance Gamma Process are given in Figure 1. Moreover, the estimated 
increments and the estimated sample paths of CP COGARCH(1, 1) and VG 
COGARCH(1, 1) models with estimated increments are given in the same figure.
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ABSTRACT

In this chapter, the authors extend transportation situations under uncertainty by 
using grey numbers. Further, they try in this research building models for grey game 
problems on transportation situations proposing the ideas of grey solutions and 
their corresponding structures. They introduce cooperative grey games and grey 
solutions. They focus on the grey Shapley value and the grey core of the modeled game 
arising from transportation situations. Moreover, they prove the nonemptiness of the 
grey core for the transportation grey games, and some results on the relationship 
between the grey core.
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INTRODUCTION

Game theory is a modern section of decision theory, having various applications 
in socio-economic, political, organizational, ecological processes. The subject 
of this study is conflict and cooperation. The situations in which the interests of 
participants collide. Essentially all aspects of human activities affect to some extent 
the interests of different parties and therefore belong to the field of game theory. 
However, at present methods theory of games in real control procedures (primarily 
in the construction of organizational systems, the formation of economic mechanism 
and procedures political negotiations, socio-economic planning and forecasting) 
are not widely used. This is due to both the lack of theoretical and game training 
of management experts, and the fact that classic game models are too abstract and 
difficult to adapt to real processes of management and decision-making. Currently, 
various sections of the theory of games are included in the programs compulsory and 
special courses of many higher educational institutions. The study and teaching of 
this discipline entail serious difficulties, associated with a lack of necessary literature. 
This report is an exposition of transportation situations under grey games. By and 
large, makers and retailers are going to minimize their costs or maximizing their 
benefits. Makers and retailers can shape coalitions to get however much as possible. 
Constitutionally, a transportation situation comprises two sets of agents called makers 
and retailers which deliver/request merchandises. The transport of the merchandise 
from the makers to the retailers must be beneficial. Thusly, the primary goal is to 
transport the products from the makers to the retailers at greatest benefit (Aparicio 
et al. 2010). Such a participation can happen in transportation situations (Aziz et 
al. 2014; Frisk et al. 2010; Zener and Ergun 2008; Snchez-Soriano 2006; Snchez-
Soriano et al. 2002, 2001; Soons 2011; Theys et al. 2008). Be that as it may, when 
the agents included concurring on a coalition, the subject of conveying the acquired 
benefit or expenses among the specialists emerges. The cooperative game theory 
is broadly utilized on intriguing sharing cost/benefit issues in numerous regions of 
Operational Research, for example, association, steering, planning, creation, stock, 
transportation, and so forth. (See Borm et al. 2001 for a survey on Operational 
Research Games). Transportation games are inspected in Sanchez-Soriano et al. 
(2001). Our paper studies the core of the transportation games and illustrates the 
non-emptiness of the core of transportation games. Also, Sanchez-Soriano et al. 
(2001) give a few outcomes about the connection between the core and dual optimal 
solutions of the transportation issue. The paper Sanchez-Soriano (2003) presents 
a specially appointed solution idea for transportation games called the pairwise 
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egalitarian solution. In the continuation, the article Sanchez-Soriano (2006) looks 
at the relationship between the pairwise solutions and the core of transportation 
games. Besides, Sanchez-Soriano (2006) demonstrates that each core component 
of a transportation game is contained in a pairwise solution with a particular weight 
framework. In the traditional way to deal with the issue, the parameters are precisely 
known. In this case, the issue is completely understood utilizing the results of 
Sanchez-Soriano et al. (2001). However, in real-life transportation situations, issue 
parameters are not known precisely. Agents considering cooperation can rather figure 
lower and upper limits on the result of their cooperation. In this manner, we have a 
transportation interval situation and to solve the related sharing benefit issues, we 
require suitable sets of solutions. To deal with transportation situations with interval 
information, the theory of cooperative interval games is appropriate (Alparslan Gok 
et al. 2008, 2009a, b). The per-user is alluded to Branzei et al. (2010a, b) for a short 
study on cooperative solution concepts and for a guide for utilizing interval solutions 
when uncertainty about information is deleted Alparslan Gok et al. 2011). This 
paper broadens the examination of two-sided transportation situations (Sanchez-
Soriano et al. 2001). Furthermore, their related cooperative games to a setting with 
interval information, i.e., the benefit bij of goods j by a maker i, the generation pi of 
products of the maker i, and the request qi of goods retailer j, in the transportation 
model now lie in intervals of genuine numbers acquired by forecasting their values 
from the viewpoint of a specialist see. This report consists of five sections which 
as follows: In the first section, we will review basic concepts and definitions from 
grey numbers and game theory. In the second section, we consider special classes 
of cooperative grey games, classification and mathematical models of decision-
making problems. The third section, we study transportation interval situations, 
where we present transportation interval situations and related games, we will give 
some properties of the grey Shapley value on transportation interval situations and 
we use transportation situations dealing with the application of scientific methods 
for making a decision, and especially to the allocation of connections and routing 
games. Subsequent sections show our new results. In the fourth section, we introduce 
the transportation grey situations and related games, we will calculate both of the 
grey Shapley value and the core of the transportation grey game. The main purpose 
of transportation situations is to provide a rational basis for decisions making in 
the absence of complete information, because the systems composed of human, 
machine, and procedures may do not have complete information.
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BASIC CONCEPTS

Grey Numbers

Grey theory (Deng, 1982), originally developed by Professor Deng in 1982, has 
become a very effective method of solving uncertainty problems under discrete data 
and incomplete information. Grey theory has now been applied to various areas such 
as forecasting, system control, decision making and computer graphics. Here, we 
give some basic definitions regarding relevant mathematical background of grey 
system, grey set and grey number in grey theory:

Definition 2.1.1. A grey number takes an unknown distribution between fixed lower 
and upper bounds, denoted as ��� �a a, , where a and a  are respectively, 
the lower and upper bounds for ⊗ .

Operations on interval grey numbers: Let � �� � � ��� ��1 2
a a b b, , ,  and α is a 

positive real number, then

� �� ��� ��� �� � � �� � � ��� ��1 2 1 2
a a b b a b a b, , , 	

1. 	 The scalar multiplication of α and ⊗  is defined as follows:

� � ���� �a a, .	

We denote by  � �  the set of interval grey numbers in R. Let � � � � �1 2
,    

with � �� � � ��� ��1 2
a a b b, , , ,

� � �1 a a  and� � � . Then by parts 1 and 2 we see that  � �  has a cone 
structure.

2. 	 In general, the difference of ⊗1  and ⊗2  is defined as follows:

� � � � � ��� �� � ��� ��1 2 1 2
 a b a b, .	

Different from the above subtraction we use a partial subtraction operator. We 
define ⊗ ⊗

1 2
 , only if a a b b� � � , by � �� � � ��� ��1 2

a b a b, . Note that 
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a b a b� � � . We recall that a a,� �  is weakly better than b b,�� �� , which we denote 

by a a b b, ,� � �� �� , if and only if a≥b and a b≥ . We also use the reverse notation 

a a b b, ,� � �� �� , if and only if a≤b and a b≤   (Alparslan Gok et al., 2009).

Cooperative Interval Games

In this section we give some basic facts and definitions from cooperative interval 
games.

Definition 2.2.1. (Cooperative interval game) A cooperative game is an ordered 
pair (N,w), where N={1,2,…,n} is a set of players and w N

: 2 →  is a 
characteristic function of cooperative game. We further assume that w(ϕ)=[0,0]. 
Set of all interval cooperative games on player set N is denoted by IGN. We 
often write w(i) instead of w({i}).

It will be useful to name the following important games associated with each 
element of IGN.

Definition 2.2.2. (Border games) For every (N,w)∈IGN, border games N w,� �  
(lower border game) and N w,� �  (upper border game) are given by 

w S w S� � � � �  and w S w S� � � � �  for every S∈2N.

Definition 2.2.3. Length game of (N,w)∈IGN, is a games (N,|w|)∈IGN, where

w S w S w S S N� � � � � � � � � �,  2 	

Definition 2.2.4. (Interval imputation)) Set of interval imputations of (N,w)∈GN, 
is defined as

I w I I I IR I w N I w i i Nn
N

i N
i i� � � �� �� � � � � � � �

�
�
�

�
�
��

�1 2
, , , | , ,   	

Definition 2.2.5. (Interval core) Set of interval core of (N,w)∈GN, is defined as

C w I I I I w I w S Sn
i S

i
N� � � �� �� � � � � � � �� ��

�
�

�
�
��

�1 2
2, , , | , \  	
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Important difference between these four definitions is that selection concepts 
yield a payoff vectors from N , while I(w) and C(w) yield vectors from I N . 
That means that the selection-based approach gives us payoffs with no additional 
uncertainty. However, this approach was never systematically studied and very little 
is known. This thesis is trying to fix this and we concentrate almost purely on 
selections.

Existing Classes of Interval Games

This subsection aims on presenting existing classes of interval games which have 
been studied earlier see Alparslan Gok et al. (2009). This is necessary later when 
we recall selection-based classes and show their relations with the existing ones.

Definition 2.3.1. (Size monotonicity) A game (N,w)∈IGN is size monotonic if holds

w T w S T S N| .� � � � � � �  for every  	

That is when the length game of w is monotonic. Class of size monotonic games 
on player set N is denoted by SMIGN. As we can see, size monotonic games capture 
situations in which an interval uncertainty grows with the size of coalition.

Definition 2.3.2. (Convex interval game) An interval game (N,w) is convex interval 
if its border games and length game are convex.

We write CIGN for a set of convex interval games on player set N.
Convex interval game is supermodular as well but converse does not hold in 

general.
See Alparslan Gok at al. (2009) for characterizations of convex interval games 

and discussion on their properties.

Proposition 2.3.3. An interval game (N,w) is selection convex if and only if for 
every S,T∈2N such that S T T S S T , , ,   � � � �  holds

w S w T w S T w S T� � � � � � �� � � �� � 	

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



104

Cooperative Grey Games

Cooperative Grey Games

In this section, we introduce the notion of cooperative grey games. A cooperative 
grey game is an ordered pair N w, ′  with the player set N={1,…,n} in which 
� � � � � �w N

: 2    is the grey payoff characteristic function such that 

� �� � � � �� ��w 0 0, , grey payoff function �� � � � ��� ��w S A AS S S,  refers to the 

valuing area of the grey expectation benefit which is belonged to a coalition S∈2N, 
where AS  and AS  represent the maximum and minimum possible profits of the 
coalition S. So, a cooperative grey game can be considered as a classical cooperative 
game with grey profits ⊗ . Grey solutions are useful to solve reward/cost sharing 
problems with grey data using cooperative grey games as a tool. Building blocks 
for grey solutions are grey payoff vectors, i.e. vectors whose components belong to 
 � � . We denote by  � �N  the set of all such grey payoff vectors. We denote 
by GN  the family of all coopvvdyrioiwmbndbso9erative grey games.

The following example illustrates a grey game.

Example 2.4.1. (Grey glove game). Let N={1,…,n} be the set of players consisting 
of two disjoint subsets L and R. The members of L possess each one left-
hand glove, the members of R one right-hand glove. A single glove is worth 
nothing, a right-left pair of gloves is worth between 10 and 20 Euros. In case 
L={1,2} and R={3}, this situation can be modelled as a three-person grey 
game, where the coalitions formed by players 1 and 3, players 2 and 3, and 
the grand coalition obtain an element of the worth [10,20]. The worth gained 
in other cases is [0,0], i.e. 

� � � � � � � � � � � � � ��� �� � �
13 23

1 3 2 3 10 20w w w NN, , , 	

and � � � ��� ��S w S 0 0, , otherwise (Palanci et al., 2015b).
The grey game in Example 4.1 has a nice interpretation with the Technology-

Emissions-Means model (in short: TEM model) which was prepared within the 
occasion of the Kyoto Contract (1997) and Kyoto Protocol (1997c). The TEM 
model allows a simulation of technical and financial parameters and describes the 
economical interactions between several players (countries, companies) which 
intend to minimize their emissions or, in that process of emission reduction, to 
optimize their payoff function, by means of cooperative game theory. In fact, the 
game theoretical character of the TEM model was early recognized and approached 
from different perspectives (Pickl at al., 2000 and Pickl, 2002). Let us consider two 
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complementary countries in technological sense, which do not have enough money 
to reduce their greenhouse gas emissions. In a sense we can consider these countries 
like one producing left-hand and the other right-hand gloves (e.g. Australia and 
New Zealand have different roles compared with Indonesia). These countries have 
to cooperate to reduce their emissions which shows the necessity of constructing 
a cooperative game.

The next example models a sequencing production situation with grey data 
(Branzei at al., 2011).

Example 2.4.2. Consider a production situation with 3 departments involved in the 
working process of a raw material. Each department assures one stage of 
processing and there is a hierarchy between them: the material is processed at 
stage i only after its processes in stages 1,…,i‑1. At any stage i,i=1,2,3, there 
is a fixed cost necessary to process the material. However, the cost at stage 2 
may increase with an additional amount, for example due to a machinery 
accident and related maintenance. Suppose that the cost at stages 1 and 3 are 
7 and 12, respectively, whereas the cost of stage 2 is in between 5 and 10. The 
uncertainty due to department 2 affects the departments that are not its superiors. 
This situation is modelled as the cooperative grey N w, ′  with N={1,…,n} 
and 

� � � � � � � � �� � �� � � � �� �
1 13

1 1 3 7 5 7 10 12 17w w , , , , 	

� � � �� � � � �� � � � ��
123

1 2 3 7 5 12 7 10 12 24 29w , , , , 	

and � � � ��� ��S w S 0 0,  in any other case (Palanci et al., 2015b).
Now, we introduce some theoretical notions from the theory of cooperative grey 

games. For w, w1, w2 ∈ IGN and � �w w w GN
, ,

' '

1 2
  we say that w w w w

1 1 2 2

' '� � �  
if w S w S

1 2

' � � � � � , where w S w S
1 1

' � �� � �  and w S w S
2 2

' � �� � � , for each S∈2N. 
For w w GN

1 2

' '
, ∈  and � � �  we define N w w,

' '

1 2
+  and � �N w, '�  by 

( )
' ' ' 'w w S w S w S
1 2 1 2
� � � � � � � � �  and � ��� �� � � � �w S w S'  for each S∈2N. So, we 

conclude that GN endowed with “≤” has a cone structure with respect to addition 
and multiplication with non-negative scalars above. For w w GN

1 2

' '
, ∈  where 

w w w w
1 1 2 2

' '
,∈ ∈  with w S w S

1 2� � � � �  for each S∈2N, N w w,
' '

1 2
−  is defined by 

( )
' ' ' 'w w S w S w S w S w S
1 2 1 2 1 2
� � � � � � � � �� � � � � � . We call a game N w, ′  grey 

size monotonic if N,|w| is monotonic, i.e. w S w T� � � � �  for all S,T∈2N  with 
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S T⊂ . For further use we denote by SM G N  the class of grey size monotonic 
games with player set N. The grey marginal operators and the grey Shapley value 
are defined on SM G N .

Grey Shapley Value

Denote by Π(N) the set of permutations σ:N→N of N. The grey marginal operator 
m SM G� :  N N� � �  corresponding to σ, associates with each w SM G'∈  N  
the grey marginal vector m w� '� �  of w '  with respect to σ defined by

m w w P i i w P i A A Ai P i i P i P i
� � �

� � �� � �� � � � ��� �� � � � �� �� �� ��� � � � � ��: ,
ii P i
A� � � ���

��
�
��

� , 	

for each i∈N, where Pσ(i) = {r∈N|σ-1(r)<σ-1(i)}, and σ-1(i) denotes the entrance 
number  of  p layer  i .  For  g rey  s ize  monotonic  games  N w, ′ , 
� �� � � � �� � � � � �w T w S w T w S  is defined for all S,T∈2N with S T⊂  since |w(T)|= 

|w|(T)≥ |w|(S)= |w(S)|. We notice that for each w SM G'∈  N  the grey marginal 
vectors m w� '� �  are defined for each σ∈Π(N), because the monotonicity of |w| 

implies A A A AS i S i S S�� � �� �� � � , which can be rewritten as A A A AS i S S i S�� � �� �� � � . 

So, � ��� �� � � � �� �� �� � � � �w S i w S w S i w S  is defined for each S N⊂  and 
i S∉ . Next, we notice that all the grey marginal vectors of a grey size monotonic 
game are efficient grey payoff vectors. The grey Shapley value � � � �� : SM GN N    
is defined by

�� � � � �� � � � ��

�
�

��� � ��� � ��� �
� � �� w

n
m w

n
m A

n
m A

N N N

:
!

'
!

,
!

1 1 1

�

�

�

�

�

���
�

�

�
�
�

, 

for each w SM GN'∈  .	 (1)

We can write the last equation as follows:
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� � � � � ��� �� � � � �� ��
�

�
�

�

� � �
��� �

��� �

�

�

�i
N

N

w
n

w P i i w P i

n
A

:
!

!

1

1

�

� �

�
PP i i P i

N
P i i P i

A
n

A A� � � �

�
� ��� � � �

��� �
� ��� � � �� �

�

�
�
�

�

�





�,
!

1
	 (2)

The terms after the summation sign in Equation (2) are of the form 
� ��� �� � � � �w S i w S ,  where S is a subset of N not containing i. Note that there are 

exactly |S|!(n‑1‑|S|)! orderings for which one has Pσ({i})=S. The first factor, |S|!, 
corresponds to the number of orderings of S and the second factor, (n‑1‑|S|)!, is just 
the number of orderings of N S i/ �� �� � . Using this, we can rewrite Equation (2) 
as

� � � �
� �� �

�� �� � � � �� �� � �
�
��i
S i S

w
S n S

n
w S i w S

:

! !

!
,

1
	

Let us note that

S i S

S n S
n:

! !

!�
�

� �� �
�

1
1 	

The following example illustrates the calculation of the grey Shapley value.

Example 2.4.3. (Palanci et al., 2015b) Let N w, ′ , be a cooperative grey game with 
N={1,2,3} and 

� � � � � � � � ��� � � � � ��� �� � �
1 13 12

1 1 3 7 7 12 12 17w w w, , , , ,  	

� � � ��� ��N w 123 24 29,  and � � � ��� ��S w S 0 0,  otherwise. Then the grey 
marginal vectors are given in the following table, where σ:N→N is identified with 
(σ(1),σ(2),σ(3)). Firstly, for σ1=(1,2,3), we calculate the grey marginal vectors. 
Then,

m w w
1

1 1 7 7
� � �� � � � ��� �, ,	
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m w w w
2

1 12 1 12 17 7 7 5 10
� � � �� � � � � � � ��� ��� � � � �, , , ,	

m w w w
3

1 123 12 24 29 12 17 12 12
� � � �� � � � � � � ��� ��� � � � �, , , .	

The others can be calculated similarly, which is shown in Table 1.
The average of the six grey marginal vectors is the grey Shapley value of this 

game which can be calculated as:

�� �� �
��

�
��
�
��

�
��
� ��

�
�

�

�
��
 w 27

2
16

13

2
9 4 4, , , , , .	

TRANSPORTATION INTERVAL SITUATIONS AND GAMES

In this section, we present the transportation interval situations propelled by Sánchez-
Soriano et al. (2001). In a transportation interval situation, the set of players is 
parceled into two disjoint subsets P and Q, containing n and m players, separately. 
The individuals from P will be called makers, while the individuals from Q will be 
the retailers. Every inception player i∈P has a positive integer interval number of 
units of a certain indivisible good, pi

' , and every goal player j∈Q requests a positive 
integer interval number of units of this good, q j

' . The delivery of one unit from 

Table 1. Grey marginal vectors of the cooperative grey game

𝛔 m w1
�� ���� �� m w2

�� ���� �� m w3
�� ���� ��

σ1=(1,2,3) m w
1

1 7 7
� �� ���� ��, m w

2
1 5 10
� �� ���� ��, m w

3
1 12 12
� �� ���� ��,

σ2=(1,3,2) m w
1

2 7 7
� �� ���� ��, m w

2
2 17 22

� �� ���� ��, m w
3

2 0 0
� �� ���� ��,

σ3=(2,13) m w
1

3 12 17
� �� ���� ��, m w

2
3 0 0

� �� ���� ��, m w
3

3 12 12
� �� ���� ��,

σ4=(2,3,1) m w
1

4 24 29
� �� ���� ��, m w

2
4 0 0

� �� ���� ��, m w
3

4 0 0
� �� ���� ��,

σ5=(3,1,2) m w
1

5 7 7
� �� ���� ��, m w

2
5 17 22

� �� ���� ��, m w
3

5 0 0
� �� ���� ��,

σ6=(3,2,1) m w
1

6 24 29
� �� ���� ��, m w

2
6 0 0

� �� ���� ��, m w
3

6 0 0
� �� ���� ��,
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source player i to goal player j creates a nonnegative interval real benefit bij
' . Here 

we have

p p p q q q b b b Ii i i i i i i i i
' ' ' ' ' ' ' ' '

 and : , , : , : ,� ��
�
� � ��

�
� � ��

�
�� ���. 	

A transportation interval situation like this is described by a 5-tuple 
P Q B p q, , , ,� � �� � , where ′B  is the n×m grid of interval benefits, ′p  is the 

n-dimensional vector of accessible interim units at the starting points, and ′q  is the 
m-dimensional vector of interval requests.

For each transportation interval situation P Q B p q, , , ,� � �� �  and each coalition 
S N P Q� � �: , with makers S S PP :� �  and retailers S S QQ :� � , and 
accepting that these sets are both nonempty, we can characterize the maximization 
issue of the pessimistic scenario by

T b x

x p i S
i S j S

ij ij

j S
ij i P

i S

P Q

Q

:

, ,

maximize

such that  

'

'

� �

�

�

��

� � �

PP

x q j S

x i j S S

ij j Q

ij P Q

� � �

� � �� �

'
 

 

, ,

, , ,0

	 (5)

and the maximization issue of the optimistic scenario give as

T b x

x p i S

i S j S
ij ij

j S
ij i P

i S

P Q

Q

:

, ,

maximize

such that  

'

'

� �

�

�

��

� � �

PP

x q j S

x i j S S

ij j Q

ij P Q

� � �

� � �� �

'
 

 

, ,

, , ,0

	 (6)

Let’s take ϑ(T(S)) which means the optimal interval estimation of the issue T(S) 
such that � � �T S T S T S I R� �� � � � �� � � �� ��� ��� � �,  and here ϑ(T(S)) is the 

optimal value of the maximization issue of the pessimistic scenario, � T S� �� �]  is 
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the optimal value of the maximization issue of the optimistic scenario. So, we can 
define a cooperative interval game associated with every transportation interval 
situation P Q B p q, , , ,� � �� �  in the going with way:

•	 The set of players is N P Q� � ;
•	 The characteristic function � ��N v,  is given by

�� � � � � �
v S

S S P Q
:

, , ,

,

0 0 if  or  is contained in  or 

otherwise

�
,,

�

�
� 	

where �� �v S  satisfies the condition

� � � �T S T T T T T S S T� �� � � � �� � � � �� � � � �� � � for all . 	

Presently, we display definition of a transportation interval game.

Definition 3.1. A transportation interval game is a cooperative interval game 
��v IGN  arising from a transportation situation P Q B p q, , , ,� � �� � . Often, we 

identify a transportation interval situation P Q B p q, , , ,� � �� �  with its associated 
transportation game ′v .

Now, we examine the properties of transportation interval games. We begin 
by taking note of that, in view of its definition, a transportation interval games is 
interim zero-standardized. Plainly a transportation interval game is superadditive, 
measure monotonic but not necessarily convex. In the following section, we show 
that transportation interval games are size monotonic.

Example 3.2. Consider the 3-person transportation interval situation P Q B p q, , , ,� � �� �  
which has one maker and two retailers:

P Q B p q�� � � � � � � ��� ��� � � � � � � ��� ��� � �1 2 3 3 5 5 6 3 5 2 4 1 3, , , , , , , , , , , ,�� �. 	

Now, we characterize a transportation interval game related with a transportation 
interval situation P Q B p q, , , ,� � �� � . Here, N={1,2,3} is the set of players and the 
trademark elements of the transportation interval game are as the following:
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� � � � � �� � � � � � � � � � � � � � � � � � � � � � � �v v v v v v1 2 3 23 0 0 12 6 20 13 5 18, , , , , ,, , .�� � � � �v 123 11 28 	

Along these lines, we acquire the transportation interval game � ��N v,  comparing 
to a transportation interval game. We take note of that this game is interval zero-
normalized since for all i∈N we have �� � � � �v i 0 0, . Obviously this game is 
superadditive be that as it may, not raised. For the coalitions S=(12) and T=(13), 
this game does not satisfy the state of convexity:

� � � �� � � � � � � � � � �� �v v v v12 13 1 123 27 19. 	

The Interval Shapley Value of the Transportation Interval Game

In this area, we calculate the interval Shapley value of the transportation interval 
game. To begin with, we recall the definition of the interval Shapley value. For this, 
we require reviewing some notions from the theory of cooperative interval games 
(Alparslan Gök et al. 2009a).

Interval solutions are helpful to understand reward/cost sharing problems with 
interval information utilizing cooperative interval games as an instrument.The 
interval payoff vectors, which are the building blocks for interval solutions, are the 
vectors whose components belong to � � . We indicate by I N

( )  the set of all 
such interval payoff vectors. We call a game � ��N v,  size monotonic if � ��N v,  is 

monotonic, i.e., � �� � � � �v S v T  for all S,T∈2N with S T⊂ . For further use we 

mean by SMIGN the class of size monotonic interval games with player set N.
The following theorem demonstrates that the transportation interval games are 

size monotonic.

Theorem 3.1.1. The transportation interval game N v, ′  belongs to class of SMIGN.
Proof. We have

� �� � � � � � �v S v T S T S TN
 for all with  , 2 	

Take S,T∈2N with S T⊂ . If S=ϕ or S is contained in P or Q, then 
� �� � � � � � � �v S v T0 0, . Now, it is obvious that
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� �� � � � �v S v T 	

If S≠ϕ or S is not contained in P or Q, then �� � � � �� � � �� ��� ��v S T S T S� �,  

with � �T S T S� �� � � � �� � . For S T⊂ , using the definition of a transportation 
interval game we obtain

ϑ(T(S))≤ϑ(T(T)) 	

� �T S T T� �� � � � �� � 	

Then,

� �� � � � �v S v T , 	

� � � �T S T S T T T T� �� � � � �� � � � �� � � � �� � , 	

� � � �T T T S T S T T� �� � � � �� � � � �� � � � �� � , 	

for all S,T∈2N with S T⊂ . Since ′v  satisfies the condition

� � � �T T T S T S T T� �� � � � �� � � � �� � � � �� � , 	

� ��N v,  belongs to the class of SMIGN.
We realize that if an interval game is belonging to SMIGN, then the interval 

Shapley value is constantly given (Alparslan Gök et al. 2009a).
The interval marginal operators and the interval Shapley value were defined on 

SMIGN in Alparslan Gök et al. (2009a) as follows:
Mean by Π(N) the set of permutations σ:N→N of N={1,2,3}. The interval 

marginal operator m SMIG IN N�
: ( )�   relating to σ, partners with each 

��v SMIGN  the interim minor vector m v� �� �  of ′v  as for σ, characterized by 

m v v P i i v P ii
� � �� � �� � � � ��� �� � � � �� �  f o r  e v e r y  i ∈ N ,  w h e r e 

P i r N r i� � �� � � � � � � � �� �
: { | }

1 1 . Here, � � � �1 i  indicates the passageway number 
of player i. For size monotonic games � ��N v, , � �� � � � �v T v S  is defined for all 
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S,T∈2N with S T⊂ , since � � � �� � � � � � � � � � �v T v T v S v S . Now, we see that 

for all ��v SMIGN  the interval marginal vectors m v� �� �  are defined for all σ∈Π(N), 

because the monotonicity of ′v  implies � � � ��� �� � � �� �� � � � � � � �v S i v S i v S v S , 

which can be reworked as � � � ��� �� � � � � � �� �� � � � �v S i v S v S i v S . So, 

� ��� �� � � � �v S i v S  is defined for all S N⊂  and i S∉ . We take note of that all 
the interval marginal vectors of a size monotonic game are efficient interval payoff 
vectors.

The interval Shapley value relegates to every cooperative interval game a payoff 
vector whose segments are minimized intervals of real numbers. Cooperative games 
in the added substance cone on which we utilize the interval Shapley value emerge 
from some Operations Researches and economic situations with interval information.

We can define the interval Shapley value as following:

� : ( ) ,SMIG IN N�  	

such that

�
�

� �� � � � �
� � �
�v

n
m v

N

:
!

,
1

�

� 	

for each ��v SMIGN .
Now, we would computation be able to of the interval Shapley value in the 

transportation interval game from the last example as follows:

Example 3.1.2. Consider � ��N v,  shown in the last example as the transportation 
interval game. We have that, N{1,2,3} and the characteristic function ′v  is 
given by

� � � � � �� � � � � � � � � � � � � � � � � � � � � � � �v v v v v v1 2 3 23 0 0 12 6 20 13 5 18, , , , , ,, , .�� � � � �v 123 11 28 	

Here, the set of permutations of N is

� N� �
� � � � � � � � � � � � � � �� � � � �

1 2 3 4 5
1 2 3 1 3 2 2 1 3 2 3 1 3 1 2, , , , , , , , , , , , , , �� � � �� �, , ,�

6
3 2 1
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In the first, we compute the interval marginal vectors for σ2=(1,2,3), that is

m v v
1

1 1 0 0
� � �� � � � � � � �, , 	

m v v v
2

1 12 1 6 20 0 0 6 20
� � � �� � � � � � � � � �� � �� ��� ��, , , , 	

m v v v
3

1 123 12 11 28 6 20 5 8
� � � �� � � � � � � � � �� � �� ��� ��, , , . 	

Similarly, we can compute the other values, as shown in Table 2.
Table 2 is shows the interval marginal vectors of the cooperative transportation 

interval game in Example 3.1. So, the interval Shapley value of this game is the 
average of the six interval marginal vectors, which can be written as

� �� � � � � � ��
��

�
��

�

�
�

�

�

v 11

2

47

3
3

20

3

5

2

17

3
, , , , , 	

The paper Pulido et al. (2002) analyzes a contention circumstance in college 
administration. The creators contemplate how to apportion cash among the offices to 
purchase gear for teaching laboratories. They present a broadened bankruptcy issue 
in which two methods for estimating the requests of the administrative entities exist: 
the ” objective privileges” and the ” claims”. They examine and propose reasonable 
bankruptcy rules for the new kind of issue.

Table 2. Interval marginal vectors

𝛔 m v1
σσ ( )' m v2

�� ���� �� m v3
�� ���� ��

σ1=(1,2,3) m v
1

1 0 0
� �� � � �� ��, m v

2
1 6 20
� �� � � �� ��, m v

3
1 5 8
� �� � � �� ��,

σ2=(1,3,2) m v
1

2 0 0
� �� � � �� ��, m v

2
2 6 20

� �� � � �� ��, m v
3

2 5 18
� �� � � �� ��,

σ3=(2,1,3) m v
1

3 6 20
� �� � � �� ��, m v

2
3 0 0

� �� � � �� ��, m v
3

3 5 8
� �� � � �� ��,

σ4=(2,3,1) m v
1

4 11 28
� �� � � �� ��, m v

2
4 0 0

� �� � � �� ��, m v
3

4 0 0
� �� � � �� ��,

σ5=(3,1,2) m v
1

5 5 18
� �� � � �� ��, m v

2
5 6 10

� �� � � �� ��, m v
3

5 0 0
� �� � � �� ��,

σ6=(3,2,1) m v
1

6 11 28
� �� � � �� ��, m v

2
6 0 0

� �� � � �� ��, m v
3

6 0 0
� �� � � �� ��,
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The work Pulido et al. (2008) studies new bankruptcy situations where what’s 
more to claims an exogenously given reference point for the allocation of the estate 
is available. The authors present and investigate two sorts of bargain solutions and 
demonstrate that they coincide with the τ-value of two corresponding transferable 
utility games. Also, they explain a bankruptcy situation with references by implies 
of a compromise solution. They decide for every player which mix of references and 
claims prompts the most astounding result for him/her and which to the least result. 
This leads to an upper and lower bound for the allocation estate. The compromise 
solution is then basically defined as the unique efficent convex combination of 
these two vectors. We use a method which was presented in Branzei et al. (2010b) 
that changes an interval allocation into a payoff vector, under the presumption 
that exclusive the uncertainty as to the value of the stupendous coalition has been 
resolved. The research question addressed here is as follows: How to determine for 
all players their payoff generated by cooperation within the grand coalition in the 
promised range of payoffs to establish such a cooperation after the uncertainty in 
the payoff for the grand coalition has been resolved? This question is an important 
one that deserves attention both in the literature and in game practice.

Now, we utilize the basic (one-stage) procedure, presented by Branzei et al. 
(2010b).

Let N be a set of players that consider cooperation underneath uncertainty of 
coalition values, i.e., understanding what each group S of players (coalition) can 
obtain between two bounds, �� �v s  and �� �v s , through cooperation. If the players 

use cooperative game theory as a tool, they are able to pick out an interval solution 
concept, say the value-kind Solution Ψ that associates with the related cooperative 
interval game � ��N v, , the interval allocation � �� � � � �v J J Jn1 2

, ,...,  which ensures 

for every player i∈N a final payoff within the interval J J Ji i i� �� ��, , when the value 

of the grand coalition is known. Surely, �� � �
�
�v N J
i N

i  and �� � �
�
�v N J
i N

i . For each 

i∈N the interval J Ji i,�� ��  can be viewed as the interval claim of i on the realization 

R of the payoff for the grand coalition N v N R v N� �� � � � � �� � . One should 

determine payoffs x J Ji i i��� ��, , i∈N (the feasibility condition) such that 
i N

ix R
�
� �  

(the efficiency condition). We take note of that for the case R v N� � ��  the payoff 

vector x is J J Jn1 2
, ,...,� � , in the case R v N� � ��  we get x J J Jn� � �1 2

, ,..., , but 

in the case � �� � � � � �v N R v N  there are endlessly numerous approaches to determine 
allocations (x1,…,xn) fulfilling both the efficiency and the feasibility conditions. In 
the last case, we require appropriate distribution tenets to determine fair allocations 
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(x1,…,xn) of R fulfilling the above conditions. As players incline toward as expansive 
payoffs as possible and as the sum R to be divided between them is littler than 

i N
iJ

�
� , 

the players are facing a bankruptcy-like situation, suggesting that bankruptcy rules 
are great possibility for changing an interval allocation (J1,J2,…,Jn) into a payoff 
vector (x1,x2,…,xn).

Since R appears as a realization of �� �v N , one can with the exception of that

� �� � � � � �v N R v N . 	

One basic idea is to determine λ∈[0,1] such that

R v N v N� � � � �� � � �� �� �1 , 	 (7)

and for each i∈N the payoff is

x J Ji i i� � �� �� �1 . 	

We note that J x Ji i� � �� �'
1 �  and

i N
i

i N
i

i N
ix J J v N v N R

� � �
� � �� � �� � � � � � �� � � � �� �� � � �1 1 . 	

So, x is an efficient payoff vector corresponding to R.
We review that a bankruptcy situation with set of claimants N is a pair (E,d), 

where E≥0 is the estate to be divided and d N� �  is the vector of claims such that 

i N
id E

�
� � . Let BRN is the set of bankruptcy situations with player set N. So, we can 

define a function f BRN N: →  which allocates to every bankruptcy situation 
(E,d)∈BRN apayoff vector f E d N,� ��  such that 0≤f(E,d)≤d (reasonability) and 

i N
if E d E

�
� � � �,  (efficiency). In this paper, we use three bankruptcy rules: the 

proportional rule (PROP), the constrained equal awards rule (CEA) and the constrained 
equal losses (CEL) rule. Now, we recall those three bankrupcty rules. The bankrupcty 
rule PROP is defined by PROP E d d di i

j N
j, ( /� � �

�
� . E for each bankruptcy problem 

(E,d) and all i∈N. This rule gives allocations in the core of the (pessimistic) bankruptcy 
game related with a bankruptcy situation and are generally used in applications. 
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The bankrupcty rule CEA is defined by CEAi(E,d) = min{di,α}, where α is determined 
by 

i N
iCEA E d E

�
� � � �,  for each bankruptcy problem (E,d) and all i∈N, while the 

bankrupcty rule CEL is defined by CELi(E,d) = min{di‑β,0}, where β is determined 
by 

i N
iCEL E d E

�
� � � �,  for each bankruptcy problem (E,d) and all i∈N.

For additionally use, we present the notation  �� �PROP CEA CEL, ,  and let 
f ∈ . Then, we can partition the sum R accomplished by N through handing out 

the sum J f E di i� � �,  to each player i∈N, where E R J
i N

i� �
�
�  and d J Ji i i� �  

for each i∈N.
Now, we introduce the one-stage procedures where some bankruptcy rule f ∈  

is utilized.

Example 3.1.3. Let � ��N v,  be the three-person transpotation interval game with

� � � �� � � � � � � � � � � � � �v v v v1 2 3 23 0 0, , 	

� � �� � � � � � � � � � � � � � �v v v12 6 20 13 5 18 123 11 28, , , , , . 	

Let the realization of �� �v N  is R=20 and think about that cooperation inside 
the grand coalition depended on the utilization of interval Shapley value. Then,

� �� � � �
��

�
��
�
��

�
��
�
��

�
��

�

�
�

�

�
�v 11

2

47

3
3

20

3

5

2

17

3
, , , , , 	

In the beginning, we note that condition � �� � � � � �v N R v N  is satisfied. Then, 

from (7) we have 20 = λ(11) + (1‑λ)(28), we get � �
8

17
, so the payoff vector is 

x � �
�
�

�
�
�

122

17

84

17

71

17
, , .

Let us decide individual uncertainty-free shares by using PROP, CEA and CEL 
to distribute the sum R‑ (J1+J2+J3) =9 among the three agents. We note that here 

we focus on a classical bankruptcy problem (E,d) with E=9 and d � �
�
�

�
�
�

61

6

11

3

19

6
, , . 
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Using the one-stage producere with PROP, CEA and CEL in the role of f, this is 

shown in Table 3. Then, we get x f� �
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
�

11

2
3

5

2
6

61

6

11

3

19

6
, , , , , , see Table 

4.
A correlation of the payoff vectors got using PROP, CEA, and CEL can be valuable 

by and by to help the decision of the favored bankrupcty rule to be implemented.

The Interval Core of the Transportation Interval Game

In this segment, we exhibit some fascinating outcomes concerning the interval core 
of a transportation interval game. It is outstanding that the transportation games 
have nonempty cores (Branzei et al. 2010b). Now, we check if this property can be 
expanded to transportation interval situations.

The dual problem of the maximization issue for the critical situation (1) is given 
by the minimization issue:

T S p u q v

u v b i j

D

i S
i i

j S
j j

i j ij

P Q

� � �

� � � �
� �
� �:

, ,

minimize

such that  �� �

� � �

S S

u v i S j S
P Q

i j P Q

,

, , , ,0   

	

Also, the dual issue of the maximization issue for the hopeful situation (2) is 
given by the minimization issue:

Table 3. The bankrupcty rules

PROP(E,d) CEA(E,d) CEL(E,d)

5
13

34
1

16

17
4

23

34
, ,

�
�
�

�
�
� 4

3

8
4

3

8
3

1

6
, ,

�
�
�

�
�
� 7

3

4
1

1

4
0, ,

�
�
�

�
�
�

Table 4. A payoff vecrors

PROP(E,d) CEA(E,d) CEL(E,d)

10
15

17
4

16

17
4

3

17
, ,

�
�
�

�
�
� 9

7

8
7

3

8
5

2

3
, ,

�
�
�

�
�
� 13

1

4
4

1

4
2

1

2
, ,

�
�
�

�
�
�
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T S p u q v

u v b i j

D

i S
i i

j S
j j

i j ij

P Q

� � �

� � � �
� �
� �:

, ,

minimize

such that  �� �
� � �

S S
u v i S j S

P Q

i j P Q

,

, , , ,0   

	

Remark 3.2.1. An optimal solution for a linear program is an achievable solution 
with the biggest objective function value. The value of the objective function 
for the optimal solution is said to be the value of the linear program. A linear 
program may have multiple optimal solutions but only one optimal solution 
value. For our situation, there are optimal interval solutions. But some of them 
are not all around characterized. We need to pick well-defined characterized 
optimal interval solutions. From that point forward, we just use the optimal 
interval solutions with the well-characterized one.

Now, we give an example for this situation.

Example 3.2.2. Consider the three-person transportation interval situation 
P Q B p q, , , ,� � �� �  such that

P Q B p q�� � � � � � � ��� ��� � � � � � � ��� ��� � �1 2 3 1 3 2 4 3 5 2 4 1 3, , , , , , , , , , , ,�� �. 	

The dual issue of the maximization issue for the pessimistic situation TD({1,2,3}) is

minimize

such that

3 2 1

1

2

0

1 2 1

1 2

1 3

1 2 3

u v v
u v
u v
u v v

� �
� �
� �

�

,

,

, , .

	 (8)

When we solve the linear programming problem in Eq. (7), we see that there are 
numerous optimal solutions. One of them is (0,1,2) and the other solution is (0,1,0).

The dual issue of the maximization issue for the optimistic situation TD({1,2,3}) is
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minimize

such that

5 4 3

3

4

0

1 2 1

1 2

1 3

1 2 3

u v v
u v
u v
u v v

� �
� �
� �

�

,

,

, , .

	 (9)

Similarly, when we solve the linear programming problem in Eq. (8), (3,0,1) is 
the optimal solution of this linear programming problem. If we take (0,1,2) as an 
optimal solution of the linear programming problem in Eq. (7) and (3,0,1) as an 
optimal solution of the linear programming problem in Eq. (8), then the interval core 
imputation ([0,15], [1,0], [1,3]) is not well defined. Then, we could not choose from 
the optimal solutions which are not well defined. Moreover, we can select (1,0,1) as 
an optimal solution of the linear programming in Eq. (7) and (3,0,1) as an optimal 
solution of the linear programming problem in Eq. (8). Finally, if we take (1,0,1) as 
an optimal solution in Eq. (7) and (3,0,1) as an optimal solution in Eq. (8), then the 
interval core imputation ([3,15], [0,0], [1,3]) is well defined. As we can see, there 
are optimal interval solutions but some of them are well defined. Then, we choose 
optimal interval solutions as well-defined optimal interval solutions.

The optimal interval value (well defined the optimal interval solution) of TD(S) 
will be denoted by ϑ(TD(S)). Here, such that ϑ(TD(S)) is the optimal value of the 

minimization problem of the pessimistic situation. Here, � T SD � �� �  is the optimal 

value of the minimization problem of the optimistic situation. In the next theorem, 
we make use of the well-known Duality. Theorem from linear programming to show 
that every optimal solution of TD(S) determines an imputation in the core of the 
corresponding transportation game. It is clear that this theorem can be extended for 
transportation interval games. As it is well known, the Duality Theorem asserts that 
the objective functions of a linear programming problem and its dual attain the same 
optimal value, provided that both problems have finite optimal values, as it happens 
in our case (Schrijver 1986). Thus, we have ϑ(T(S)) = ϑ(TD(S)) and 

� �T S T SD� �� � � � �� � , for every S N⊂  such that S P∩  and S Q∩  are 

nonempty.
We would like to recall the idea of Owen set on transportation games (Llorca et 

al. 2004). Thus, for an arbitrary transportation interval game we can always select 
a interval core element, but with great difficulty. Owen (1975) introduced the class 
of linear production games and presented a method to find a nonempty subset of 
the core of these games. Since a transportation game may seem as a special case of 
linear production games, we can use this method to derive interval core elements. 
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This set is the so-called interval Owen set of the transportation interval situation, 
which is defined by

OS v x x x p u i P x y I I y

y y

d i i i i i
P Q

j

j j

�� � � � �� � � � � �� �

� ��

[ , , , , ( ) ( ) |

,

 

��
� �

�
�

�
� � � � �� � ��q v q v j Q u v OS vj j j j d, , , ; ,with

* *
	

where OS vd �� �  is the set of optimal solutions of the dual program of the transportation 
game for the grand coalition.

Corollary 3.2.3. Let P Q B p q, , , ,� � �� �  be a transportation interval situation and 
consider its corresponding transportation interval game � ��N v, . Then,
1. 	 the interval Owen set of transportation interval game is nonempty,
2. 	 OS v C vd � �� � � � � ,
3. 	 transportation interval games are I-balanced.

TRANSPORTATION GREY SITUATIONS AND GAMES

In this section, we introduce the transportation grey situations inspired by Sánchez-
Soriano J et al. (2001) and PalancıO et al. (2016). In a transportation grey situation 
the set of players is partitioned into two disjoint subsets P and Q, containing n and 
m players respectively. The members of P will be called producers, whereas the 
members of Q will be the retailers. Each origin player i∈P has a positive integer 
grey number of units of a certain indivisible good, pi

' , and each destination player 
j∈Q demands a positive integer grey number of units of this good, q j

' . The shipping 
of one unit from origin player i to destination player j produces a nonnegative grey 
real profit bij

' . Here, p p p q q qi i i j j j
' ' ' ' ' '���

�
� � ��

�
�, , ,  and b b bij ij ij

' ' '���
�
�� � �, . 

A transportation grey situation like this is characterized by a 5-tuple 
P Q B p q, , , ,� � �� � , where ′B  is the n×m matrix of grey profits, ′p  is the n-dimensional 

vector of available grey units at the origins, and ′q  is the m-dimensional vector of 
grey demands.

For every transportation grey situation P Q B p q, , , ,� � �� �  and every coalition 
S N P Q� � �: , with producers S S PP :� �  and retailers S S QQ :� � , and 
assuming that these sets are both non-empty, we can define the maximization problem 
of the pessimistic scenario by:
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T S b x

x p i S
i S j S

ij ij

j S
ij i P

P Q

Q

� �

� �
� �

�

��

�

:

, ,

maximize

such that  

'

'

ii S
ij j Q

ij P Q

P

x q j S

x i j S S
�
� � �

� � �� �

'
 

 

, ,

, , ,0

	 (12)

and the maximization problem of the optimistic scenario is stated as:

T S b x

x p i S

i S j S
ij ij

j S
ij i P

P Q

Q

� �

� �

� �

�

��

�

:

, ,

maximize

such that  

'

'

ii S
ij j Q

ij P Q

P

x q j S

x i j S S
�
� � �

� � �� �

'
 

 

, ,

, , .0

	 (13)

We denote by ϑ(T(S)) the optimal grey value of the problem T(S) Here, 
� � �T S T S T S� �� �� � �� � � �� ��� ��,  such that ϑ(T(S)) is the optimal value of the 

maximization problem of the pessimistic scenario, � T S� �� �  is the optimal value 
of the maximization problem of the optimistic scenario. Then, we can define a 
cooperative grey game associated with every transportation grey situation 
P Q B p q, , , ,� � �� �  in the following way:

•	 The set of players is N P Q� � ;
•	 The characteristic function N w, ′  is given by:

�� ��
� � � �

� �� �w S
i S S P Q

T S

0 0, , ,

,

f  or  is contained in  or in 

� �� T S� �� ��� ��

�
�
�

�� , ,in any other case
	

and �� �w S  satisfies the condition

� � � �T S T T T T T S S T� �� � � � �� � � � �� � � � �� � �forall . 	
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Now, we present the definition of a transportation grey game.

Definition 4.1 A transportation grey game is a cooperative grey game ��w GN  
arising from a transportation situation P Q B p q, , , ,� � �� � . Often, we identify a 
transportation grey situation P Q B p q, , , ,� � �� �  with its associated transportation 
game ′v .

Now, we study the properties of transportation grey games. We start by noting 
that, in view of its definition, a transportation grey game is grey zero-normalized. 
It is clear that a transportation grey game is superadditive, size monotonic but not 
necessarily convex. In the following section, we show that transpotation grey games 
are size monotonic.

Finally, we present an example of a 3-person transportation grey game.

Example 4.2. Consider the 3-person transportation grey situation P Q B p q, , , ,� � �� �  
which has one producer and two retaliers:

P Q B p q� � � � � � � � � � �� � �� � � � � � �� �� � �1 2 3 3 5 5 6 3 5 2 4 1 3, , , , , , , , , , , . 	

Now, we define a transportation grey game associated with a transportation grey 
situation P Q B p q, , , , .� � �� �  Here, N={1,2,3} is the set of players and the characteristic 
functions of the transportation grey game are as follows:

� � � �� � � � � � � � � � ��� �w w w w1 2 3 23 0 0, , 	

� � �� ��� � � ��� � � ��� �w w w12 6 20 13 5 18 123 11 28, , , , , . 	

So, we obtain the transportation grey game N w, ′  corresponding to a 
transportation grey situation.

The Grey Shapley Value of the Transportation Grey Game

In this section, we calculate the grey Shapley value of the transportation grey 
game. Firstly, we recall the definition of the grey Shapley value. For this, we need 
to recall some notions from the theory of cooperative grey games (Alparslan Gök 
SZ et al., 2009a).
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Grey solutions are useful to solve reward/cost sharing problems with grey data 
using cooperative grey games as a tool. The grey payoff vectors, which are the 
building blocks for grey solutions, are the vectors whose components belong to 
 � � . We denote by ( ) N  the set of all such grey payoff vectors.

We call a game N w, ′  grey size monotonic if N w,  is monotonic, i.e., 

w S w T� � � � �  for all S,T∈2N with S T⊂ . For further use we denote by SM GN  
the class of grey size monotonic games with player set N.

The following theorem shows that the transportation grey games are size 
monotonic.

Theorem 4.1.1. The transportation grey game N w, ′  belongs the class of SM GN .
Proof. We show that the transportation grey game ′v  belongs to the class of 

SM GN .  For this,

� �� � � � � � �w S w T S T S TN
 for all  with  , .2 	

Take S,T∈2N with S T⊂ . If S ��  or S is contained in P or in Q, then 
� �� � � � ��� �w S w T 0 0, .  Now, it is obvious that

� �� � � � �w S w T . 	

If S ��  or S is not contained in P or in Q, then �� �� � �� � � �� ��� ��w S T S T S� �,  

with � �T S T S� �� � � � �� �.  For S T⊂ , by using the definition of a transportation 
grey game we obtain:

ϑ(T(S))≤ϑ(T(T)),	

� �T S T T� �� � � � �� �. 	

Then,

� �� � � � �w S w T , 	

� � � �T S T S T T T T� �� � � � �� � � � �� � � � �� � , 	
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� � � �T T T S T S T T� �� � � � �� � � � �� � � � �� � , 	

for all S,T∈2N with S T⊂ .  Since ′w  satisfies the condition

� � � �T T T S T S T T� �� � � � �� � � � �� � � � �� � , 	

N w, ′  belongs to the class of SM GN .
We know that if an grey game is belonging to SM GN ,  then the grey Shapley 

value is always given (Alparslan Gök SZ et al., 2009a).

Remark 4.1.2. The grey Shapley value of the transportation grey games always exists.

The grey marginal operators and the grey Shapley value were defined on SM GN  
in Alparslan Gök SZ et al. (2009a) as follows.

The grey Shapley value assigns to each cooperative grey game a payoff vector 
whose components are compact greys of real numbers. Cooperative games in the 
additive cone on which we use the grey Shapley value arise from several OR and 
economic situations with grey data.

The grey Shapley value � : ( )SM GN N �   is defined by

�
� � �

' :
! !

,
!

].� �� � � � �� � � � �
� � � � � � � � �
� � �w

n
m w

n
m A

n
m A

N N N

1 1 1

�

�

�

�

�

� 	

The following example shows the calculation of the grey Shapley value in the 
transportation grey game.

Example 4.1.3. Consider N w, ′  as the transportation grey game in Example 3.1. 
Here, N={1,2,3} and the characteristic function ′w  is given as

� � � �� � � � � � � � � � ��� �w w w w1 2 3 23 0 0, , 	

� � �� � � � � � � � � � � ��� �w w w12 6 20 13 5 18 123 11 28, , , , , . 	

Then, the grey marginal vectors are given in the Table 1. The set of permutations 
of N is
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�
� � �
� �

N� � �
� � � � � � � � �
� � � � �

1 2 3

4 5

1 2 3 1 3 2 2 1 3

2 3 1 3 1 2

, , , , , , , , ,

, , , , , �� � � �
�
�
�

��

�
�
�

��, , ,
.

�
6

3 2 1
	

Firstly, for σ2=(1,3,2) we calculate the grey marginal vectors. Then,

m v w
1

2 1 0 0
� � �� � � � ��� �, , 	

m v w w
2

2 123 13 11 28 5 18 6 10
� � � �� � � � � � � ��� ��� � � � �, , , , 	

m v w w
3

2 13 1 5 18 0 0 5 18
� � � �� � � � � � � ��� ��� � � � �, , , . 	

The others can be calculated similarly, which is shown in Table 5.
Table 5 illustrates the grey marginal vectors of the cooperative transportation 

grey game in
The average of the six grey marginal vectors is the grey Shapley value of this 

game, which can be written as:

� �� �� �
��

�
��
�
��

�
��
�
��

�
��

�

�
�

�

�
�w 5

1

2
15

2

3
3 6

2

3
2

1

2
5

2

3
, , , , , . 	

Table 5. Grey marginal vectors

𝛔 m w1
�� ���� �� m w2

�� ���� �� m w3
�� ���� ��

σ1=(1,2,3) m w
1

1 0 0
� �� ���� ��, m w

2
1 6 20
� �� ���� ��, m w

3
1 5 8
� �� ���� ��,

σ2=(1,3,2) m w
1

2 0 0
� �� ���� ��, m w

2
2 6 20

� �� ���� ��, m w
3

2 5 18
� �� ���� ��,

σ3=(2,1,3) m w
1

3 6 20
� �� ���� ��, m w

2
3 0 0

� �� ���� ��, m w
3

3 5 8
� �� ���� ��,

σ4=(2,3,1) m w
1

4 11 28
� �� ���� ��, m w

2
4 0 0

� �� ���� ��, m w
3

4 0 0
� �� ���� ��,

σ5=(3,1,2) m w
1

5 5 18
� �� ���� ��, m w

2
5 6 10

� �� ���� ��, m w
3

5 0 0
� �� ���� ��,

σ6=(3,2,1) m w
1

6 11 28
� �� ���� ��, m w

2
6 0 0

� �� ���� ��, m w
3

6 0 0
� �� ���� ��,
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The Grey Core of the Transportation Grey Game

In this section, we present some interesting results concerning the grey core of 
a transportation grey game. It is well known that the transportation games have 
non-empty cores (Branzei R et al., 2010b). Now, we check if this property can be 
extended to transportation grey situations.

The dual problem of the maximization problem for the pessimistic scenario (12) 
is given by the minimization problem:

T S p u q v

u v b i j

D

i S
i i

j S
j j

i j ij

P Q

� � �

� � � �
� �
� �:

, ,

minimize

such that  �� �

� � �

S S

u v i S j S
P Q

i j P Q

,

, , , ,0   

	

and the dual problem of the maximization problem for the optimistic scenario (13) 
is given by the minimization problem:

T S p u q v

u v b i j

D

i S
i i

j S
j j

i j ij

P Q

� � �

� � � �
� �
� �:

, ,

minimize

such that  �� �
� � �

S S
u v i S j S

P Q

i j P Q

,

, , , .0   

	

Remark 4.2.1. An optimal solution to a linear program is a feasible solution with 
the largest objective function value. The value of the objective function for 
the optimal solution is said to be the value of the linear program. A linear 
program may have multiple optimal solutions but only one optimal solution 
value. In our case, there are optimal grey solutions. But some of them is not 
well-defined. We want to choose well-defined optimal grey solutions. After 
that, we only use the optimal grey solutions with well-defined.

Now, we give an example for better understand this situation.

Example 4.2.2. Consider the 3-person transportation grey situation P Q B p q, , , ,� � �� �  
in

P Q B p q�� � � � � � � � � �� � �� � � � � � �� �� � �1 2 3 1 3 2 4 3 5 2 4 1 3, , , , , , , , , , , . 	
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The dual problem of the maximization problem for the pessimistic scenario 
TD({1,2,3}) is:

minimize

such that

3 2 1

1

2

0

1 2 3

1 2

1 3

1 2 3

u v v
u v
u v
u v v

� �
� �
� �

�

,

,

, , .

	 (14)

When we solve the linear programming problem in Eq. (14), we see that there 
are many optimal solutions. One of them is (0,1,2) and the other solution is (1,0,1). 

Example 4.2.3. The dual problem of the maximization problem for the optimistic 
scenario TD({1,2,3}) is:

minimize

such that

5 4 3

3

4

0

1 2 3

1 2

1 3

1 2 3

u v v
u v
u v
u v v

� �
� �
� �

�

,

,

, , .

	 (15)

Similarly, when we solve the linear programming problem in Eq. (15), (3,0,1) 
is the optimal solution of this linear programming problem. If we take (0;1,2) as 
an optimal solution of the linear programming problem in Eq. (14) and (3;0,1) as 
an optimal solution of the linear programming problem in Eq. (15), then the grey 
core imputation ([0,15], [1,0], [1,3]) is not well-defined. Then, we could not choose 
from the optimal solutions which are not well-defined. Moreover, we can select 
(1;0,1) as an optimal solution of the linear programming in Eq. (14) and (3;0,1) as 
an optimal solution of the linear programming problem in Eq. (15). Finally, if we 
take (1;0,1) as an optimal solution in Eq. (14) and (3;0,1) as an optimal solution in 
Eq. (15), then the grey core imputation ([0,15], [0,0], [1,3]) is well defined. As we 
can see that, there are optimal inverval solutions but some of them is well-defined. 
Then, we choose optimal grey solutions as well-defined optimal grey solutions.

The optimal grey value (well-defined the optimal grey solution) of TD(S) will 
be denoted by ϑ(TD(S)). Here,

� � �T S T S T S ID D D� �� �� � �� � � �� ��
�

�
�� � �,  	
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such that ϑ(TD(S)) is the optimal value of the minimization problem of the pessimistic 
scenario. Here, ϑ(TD(S)) is the optimal value of the minimization problem of the 
optimistic scenario. In the next theorem, we make use of the well-known Duality 
Theorem from linear programming to show that every optimal solution of TD(S) 
determines an imputation in the core of the corresponding transportation game. It 
is clear that this theorem can be extended for transportation grey games. As it is 
well known, the Duality Theorem asserts that the objective functions of a linear 
programming problem and its dual attain the same optimal value, provided that both 
problems have finite optimal values, as it happens in our case (Schrijver A, 1986). 

Thus, we have ϑ(T(S)) = ϑ(TD(S)) and � �T S T SD� �� � � � �� � ,  for every S N⊂  

such that S P∩  and S Q∩  are non-empty. The following theorem is inspired by 
the paper Sánchez-Soriano J et al. (2001).

Theorem 4.2.4. Let P Q B p q, , , ,� � �� �  be a transportation grey situation and consider 

its corresponding transportation grey game N w, .′  Let u v n m* *
;� �� � � �   

be a well-defined grey optimal solution of TD(N) such that 

u v u u v v* * * * * *
; , ; , .� �� �

�
�
�
�
�

�
�� �  Then,

u p u p v q v q

u p u p u p u p

n n m m

n n n

1 1 1 1

1 1 1 1

* * * *

* * * *

, , ; , ,

, , , ,

 



� �
� �

�
�
� nn m m m mv q v q v q v q�

�
�
�
�
�

�
�

�
�

�
�� �; , , , ,

1 1 1 1

* * * *


	

belongs to the core  �� �w .

Proof. From the Duality Theorem (Schrijver A, 1986) we conclude that for all 
S N⊂  such that S P∩  and S Q∩  are non-empty, it holds

�� � � � �� � � � �� �w S T S T SD� � . 	

In addition, it is clear that u vS S
* *
;� � , the restriction of u v* *

;� �  to S, is a feasible 
grey solution of Eqns. (4) and (5). Thus,
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� � �T S T S T S

u p v q

D D D

i S
i i

j S
j j

i SP Q

� �� �� � �� � � �� ��
��

�
��

�
� � �
� �

, ´

,
* *

PP Q

u p v qi i
j S

j j� ��
�

�
�
�

�

�
�
��

* *
.

	

Therefore,

u p u p v q v q

u p u p u p u p

n n m m

n n n

1 1 1 1

1 1 1 1

* * * *

* * * *

, , ; , ,

, , , ,

 



� �
� �

�
�
� nn m m m mv q v q v q v q�

�
�
�
�
�

�
�

�
�

�
�� �; , , , ,

1 1 1 1

* * * *


	

belongs to the grey core of the ′w ,  since for the other possible coalitions we know 
that �� � � � �v S 0 0, .

This theorem shows that transportation grey games have non-empty cores. For 
transportation grey games we show that the non-negative optimal dual solutions of the 
asscoiated transportation grey problems yield some imputations of their grey cores.

The set of all imputations obtained in this way through the different optimal 
solutions of TD(N) is denoted by OS wd �� �;  i.e.,

OS w u p u p v q v q u vd n n m m�� �� � � � �� 1 1 1 1

* * * * * *
, , ; , , | ; 

                     is optimal for T ND � ��.

	

The last theorem shows that OS wd �� �  is contained in the grey core of the 
transportation grey game ′w ; i.e., OS w wd � �� � � � � .

We would like to apply the idea of Owen set on transportation games (Llorca 
et al. 2004). Thus, for an arbitrary transportation grey game we can always select 
a grey core element, but with great difficulty. Owen (1975) introduced the class of 
linear production games and presented a method to find a non-empty subset of the 
core of these games. Since a transportation game may seen as a special case of linear 
production games, we can use this method to derive grey core elements. This set is 
the so-called grey Owen set of the transportation grey situation, which is defined by
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OS w x y I I

x x x p u p u i P

yP Q

i i i i i i i

�� �� � �� � � � � �

� �� �� � �� �� � �

, |

, , , ,

  jj j j j j j j

d

y y q v q v j Q

u v OS v

� ��
�
� �

�
�

�
� � �

� �� � �

�

�

�
�

�

�
� �

, , , ,

;with
* *

��

�

�
�

�

�
�

, 	

where OS vd �� �  is the set of optimal solutions of the dual program of the transportation 
game for the grand coalition.

Corollary 4.2.5. Let P Q B p q, , , ,� � �� �  be a transportation grey situation and consider 
its corresponding transportation grey game N w, .′  Then,
a) 	 the grey Owen set of transportation grey game is non-empty,
b) 	 OS w wd � �� � � � � ,
c) 	 transportation grey games are  -balanced.

Proof. From Theorem 5.1, the conditions a) and b) are satisfied. Transportation 
grey games have non-empty grey cores. We know that an grey game is  -balanced 
if and only if its grey core is non-empty of Theorem 3.1 in Alparslan Gök et al. 
(2008). Then, we can say that transportation grey games are  -balanced.

CONCLUSION

This paper examines two-sided transportation situations where the operators’ 
unitary issue parameters (bij,pi,qj) in the transportation demonstrate are compact 
grey of real numbers. To begin with, we present the transportation grey situations. 
Second, we compute the grey Shapley value of a transportation grey game and 
show interesting results concerning the grey core of a transportation grey game. In 
addition, we recommend a methodology that changes a grey allocation into a payoff 
vector, under the presumption that lone the uncertainty with respect to the value of 
the stupendous coalition has been settled.

Let us say that a semi-limitless programming issue is an enhancement problem 
in which limitedly numerous factors show up in interminably numerous limitations 
(Hettich and Kortanek 1993). This model normally emerges in a bounteous number 
of applications in diverse fields of science, financial aspects, and building.
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ABSTRACT

Discrete q-Hermite I polynomials are a member of the q-polynomials of the Hahn 
class. They are the polynomial solutions of a second order difference equation of 
hypergeometric type. These polynomials are one of the q-analogous of the Hermite 
polynomials. It is well known that the q-Hermite I polynomials approach the 
Hermite polynomials as q tends to 1. In this chapter, the orthogonality property of 
the discrete q-Hermite I polynomials is considered. Moreover, the orthogonality 
relation for the k-th order q-derivatives of the discrete q-Hermite I polynomials is 
obtained. Finally, it is shown that, under a suitable transformation, these relations 
give the corresponding relations for the Hermite polynomials in the limiting case 
as q goes to 1.

On the Orthogonality of the 
q-Derivatives of the Discrete 

q-Hermite I Polynomials
Sakina Alwhishi

El Mergib University, Libya

Rezan Sevinik Adıgüzel
Atılım University, Turkey

Mehmet Turan
Atilim University, Turkey

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



136

On the Orthogonality of the q-Derivatives of the Discrete q-Hermite I Polynomials

INTRODUCTION

The so-called q.polynomials have great applications in several problems on theoretical 
and mathematical physics, for example, in the continued fractions, Eulerian series 
(Fine, 1988), algebras and quantum groups (Koornwinder, 1995, 1994; Vilenkin & 
Klimyk, 1998), discrete mathematics, algebraic combinatorics (coding theory, design 
theory, various theories of group representation) (Bannai, 1990), q.Schrödinger 
equation and q.harmonic oscillators (Askey et al., 1993; Askey & Suslov, 1993; 
Atakishiyev & Suslov, 1991; Berg & Ismail, 1994; Borzov & Damaskinsky, 2003; 
Macfarlane, 1989).

Discrete q.Hermite I polynomials form an important class of q.polynomials in the 
Hahn sense. They satisfy the following q.difference equation of hypergeometric type:

� �
�

� �� �D D y x
q
D y yq q q1 1

1
0� , 	 (1)

where λ.is a constant which has a particular form depending on the parameter q. 
and Dq. is the q.Jackson derivative (Koekoek et al., 2010; Nikiforov et al., 1991; 
Nikiforov & Uvarov, 1986, 1988).

In fact, discrete q.Hermite polynomials are the q.analogous of the Hermite 
polynomials which are one of the important orthogonal family of the classical 
orthogonal polynomials (Koekoek et al., 2010; Nikiforov et al., 1991; Nikiforov & 
Uvarov, 1986, 1988; Szegö, 1939) that have enormous applications in mathematics 
and physics. They satisfy the following differential equation of hypergeometric type

y zy ny'' '� � �2 2 0, 	 (2)

where n∈0 .The Hermite polynomials and their q.analogues can be obtained by 
using an appropriate limit relation from the other orthogonal polynomials (Andrews 
et al., 1999; Koekoek et al., 2010).

The classical orthogonal polynomials and their q.analogues have several 
properties. For example the differential and the difference equations that they satisfy 
have special forms, which are studied by Bochner in 1929 (Bochner, 1929) and by 
Routh in 1885 (Routh, 1885). Rodrigues formula is another property that provides a 
representation for the classical polynomials derived by Tricomi (Tricomi, 1955) and 
(Cryer, 1970). The three terms recurrence relation (TRRR) is also a way to construct 
classical orthogonal polynomials considered by Chihara (Chihara, 1978) and Szegö 
(Szegö, 1939). Moreover, the generating function is another option to define these 
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polynomials. Using generating function, such polynomials can be obtained in a series 
form which is first studied by Abraham and Moivre in 1730 (Koekoek et al., 2010).

Another most practical property of the so-called classical polynomials are 
developed by Sonine in 1887 and by Hahn in 1939, which is stated in the following 
theorem:

Theorem 1.1 (Sonine-Hahn, (Alvarez-Nodarse, 2006; Hahn, 1935; Marcellan et 
al., 1994)) A given sequence of orthogonal polynomials (Pn)n.is a classical 
sequence if and only if the sequence of its derivatives ( ' )P n n .is an orthogonal 
polynomial sequence.

As a result, the orthogonality property with respect to a suitable inner product 
(Nikiforov et al., 1991; Nikiforov & Uvarov, 1986, 1988) is also an important 
characteristic property.

The main idea of this work is to study the orthogonality properties of discrete 
q.Hermite I polynomials and their q.derivatives which will also coincide with the 
classical Hermite polynomials with a suitable transformation in the limiting case as 
q→1.This chapter is organized as follows: In the next section, some basic definitions 
related to q.calculus are given. Later on, the authors introduce some properties of 
the discrete q.Hermite I polynomials and then the orthogonality properties of the 
discrete q.Hermite I polynomials and their k.th order q.derivatives are constructed. 
In the last part, the authors consider a suitable transformation after the application 
of which the presented orthogonality relations lead to the classical orthogonality 
relations in the limiting case as q→1.

BACKGROUND

In this section, some notations that are used in q.calculus will be presented. The 
definitions and notations that are given here can be found in (Andrews et al., 1999; 
Koekoek et al., 2010; Nikiforov et al., 1991; Nikiforov & Uvarov, 1986, 1988).

Let q>0.For any n∈
0
, .the q.integer [n]q.is defined by

[ ] : , , , ,[ ] : ,n q q q
q
nq

n
n

q� � � � �
�
�

� � ��
1

1

1
1 2 0 0

1
 	 (3)

the q.factorial [n]q!.by 

[n]q!=[1]q[2]q…[n]q, n=1,2,…,[0]q! :=1. 	
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and the q-Pochhammer’s symbol (or q-shifted factorial) is defined by

( ; ) : , ( ; ) : ( ), ( ; ) : ( ).a q a q aq a q aqk
s

s

k
s

s
0

0

1

0

1 1 1� � � � �
�

�

�
�

�

� �  	

Note that for q≠1.one can write

[ ] : , , ,...,[ ] : .n q
q

nq

n

q�
�
�

� �
1

1
1 2 0 1 	

Lemma 2.1 For a∈ .and k∈
0
, .the authors have (a;q2)k(aq;q2)k=:(a;q)2k.

Proof:

( ; ) ( ; )a q aq q aq aqk k
s

k
s

s

k
s

s

k
2 2

0

1
2

0

1
2 1

0

2 1

1 1 1� �� � �� � �
�

�

�

�
�

�

�

� � � ��� � �aq a qs
k( ; ) .

2
	

A simple corollary of this result is stated below which can be obtained by taking 
the limit as k→∞.

Corollary 2.2 For a∈, .the authors have (a;q2)∞(aq;q2) ∞=:(a;q) ∞.
Lemma 2.3 For a∈ .and k∈

0
, .the authors have (a;q)k(-aq;q)k=:(a2;q2)k.

Proof: It is easy to see that

( ; ) ( ; )a q a q aq aq a qk k
s

k
s

s

k
s

s

k
s� � �� � �� � � ��

�

�

�

�

�

�

� � �
0

1

0

1

0

1
2 2

1 1 1 �� � ( ; )a q k
2 2 	

which completes the proof. 
Taking the limit as k→∞, one arrives at the following result:

Corollary 2.4 For any a∈, .the authors have (a;q)∞(-aq;q)∞=:(a2;q2)∞.

The Pochammer’s symbol is given in general for complex numbers. Accordingly, 
the definition of -integer given by (3) is extended to the complex numbers and the 
authors have, for

The limit relation between the Pochammer’s symbol and the q.Pochammer’s 
symbol is given by the following lemma:
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Lemma 2.5 For � � .and positive integer k,.the authors have

lim
q

k
k k

q q
q� �

�
1 1

( ; )

( )
( )

�

� .	 (4)

where (α)k.is the Pochammer symbol defined by (α)k = α(α+1)…(α+k‑1) for k1 .and 
(α)0:=1.

Proof: First of all, the authors note that

Now, since limq qm m� �
1
[ ] , .taking the limit of both sides as q→1 in the above 

expression, the authors get the stated result. 
Next, the definition of the q.gamma function (Andrews et al., 1999) is given:

Definition 2.6 The q.gamma function is defined by

�q x
xx q q

q q
q� � � ��

�

�( ; )

( ; )
( ) .1

1 	 (5)

This is a q.analogue of the gamma function and the authors have

lim .
q q x x
�

� � � � �
1

� � 	 (6)

Note that, Γq(1)=1, Γq(x+1)=[x]qΓq(x).
Next, the q.derivative of a function when q≠1 is provided. The q.derivative which 

was first defined by Jackson is a q.analogue of the classical ordinary derivative. It 
is also called the q.Jackson derivative.

Definition 2.7 (q-Derivative) The q.derivative of a function f, for q≠1, is defined as

D f x
f x f qx

q x
x

f x
q � � �

� � � � �
�� �

�

� � �

�

�
�

�
�

1
0

0 0

,

,'

.	 (7)

Observe that if f is differentiable, then
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lim ( )
( )

q qD f x df x
dx�

�
1

	

It is not difficult to see that the operator Dq.is linear. That is, for constants a and 
b, and functions f and g, one has

Dq(af(x)+bg(x)) = aDqf(x)+bDqg(x).	

If α is a nonzero scalar, then

D f x
f x f q x

q x
f x f q x

q x
D f tq q t

�
� �

�
� �

�
�

�
� � � � � � � �

�� �
�

� � � � �
�� �

� � �
�1 1 xx

, 	

or, equivalently,

D f t D f xq t x q� � � � �
�

�

�
� �1

. 	 (8)

Also,

D f q x
f q x f x

q x
f q x f x

q q x
q Dq q

�
� �

�
�� � � � � � � �

�� �
�

� � � � �
�� �

� �
1

1 1

1

1

1 1
1 ff x� �. 	 (9)

However, the q.derivative of f at q-1x is the q-1.derivative of f at x. More precisely, 
for α=q-1.in (8), the authors get

D f t qD f q x D f xq t q x q q� � � � � � � �
�

�
� �1 1

1
. 	 (10)

Similarly,

D f t D f x
q t qx

q� � � � � �
�

1 . 	 (11)

The higher order q derivative of f is defined in a similar way that the higher order 
derivative in classical sense is defined. The n.th order q derivative of f is
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There is a nice relation between D Dq q−1
 and D D

q q−1  as stated in the following 

lemma.

Lemma 2.8 For any q≠1, the following relation holds:

D D q D Dq q q q� �� �
1 1

1
. 	 (12)

Proof: For any f the authors have

D D f x
D f x D f t

q xq q
q q t qx

�

� �

� � �
� � � � �

�� �
�

1

1 1

1

|
. 	

Using (10) and (11), the authors get

D D f x
D f t D f x

q x
q D D f xq q

q t q x q
q q�

�

��
�

�
�� �

1

1

1

1

1
( )

( ) | ( )

( )
( ) 	

which shows the validity of the claimed identity. 
The product rule for q derivative slightly differs from that of ordinary derivative. 

More precisely, for functions f and g, the authors have

D f x g x f x D g x g qx D f xq q q� � � �� � � � � � � � � � � � 	 (13)

and

D f x g x
n
k

D f x D g tq
n

k

n

q
q
k

q
n k

t q xk� � � �� � � �

�
�
�

�
� � � � � �

�

�
��

0

| 	 (14)

where 
n
k q

�

�
�
�

�
�  is the q binomial coefficient defined by

n
k

n
k n kq

q

q q

�

�
�
�

�
� �

�

[ ] !

[ ] ![ ] !
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The authors now give the q binomial theorem (Andrews et al., 1999, Theorem 
10.2.1).

Theorem 2.9 For |x|<1, |q|<1,

k

k

k

ka q
q q

x ax q
x q�

� �
0

�
�

�

( ; )

( ; )

( ; )

( ; )
.	 (15)

Some immediate consequences of this theorem are stated below:

Corollary 2.10 (Euler) For |x|<1, |q|<1

k

k

k

x
q q x q�

� �
0

1�

�( ; ) ( ; )
	 (16)

Proof: Put a=0 in (15). 

Corollary 2.11: n k
k

x
x qqk

n
k

n

� ��

�
�

�

�
� �

�
� 1 1

0
( ; )

 

Proof: First, let a=qn in (15):

( ; )

( ; )

( ; )

( ; )

q q
q q

x q x q
x q

n
k

k
k

k

n

�

�
�

�
� �

0

	

Note that ( ; ) ( ; ) ( ; ) .q q q q q qn k n
n

k� � ��
1 1

 Therefore,

1

0

1

10
( ; )

( ; )

( ; )

( ; )

( ; ) ( ; )x q
q q
q q

x
q q

q q q q
x

n

n
k

k

k

k

n k

k n

k

k

� �
�

�
� �

��
�

��

�
� �� � ��

�
�

�

�
�

n k
k

x
q

k

k

n
1

0

	

as stated. 

Corollary 2.12:

lim
q

x

q x q
e

� �� �
�

1

1

1( ; )
.

�

	 (17)

Proof: Replace x with (1‑q)x in (16) to get:
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1

1

1

0
( ) ;

( )

( ; )�� �
�

�

� �

�

�q x q
q x
q q

k k

kk

	

Taking the limit as and using (4) with the authors get

lim
( ) ; ( ) !q

k

kk

k

k

x

q x q
x x

k
e

�
� �

�

�

�

�� �
� � �� �

1
0 0

1

1 1
	

which completes the proof. 

Lemma 2.13: 
k

k

k

q
q q

q q
�

�

�� � �
0

2 2
( ; )

( ; ) .

Proof: In (16), replace q with q2 and take x=q:

q
q q q q

q q
q q q q

k

kk ( ; ) ( ; )

( ; )

( ; ) ( ; )
2 2 2

0

2 2

2 2 2

1
� �

��

�
�

� �
� 	

Using Lemma 2.2 with this becomes

q
q q

q q
q q

k

kk ( ; )

( ; )

( ; )2 2

0

2 2

�

�
�

�
� � 	

Now, using Corollary 2.4 with a=q.yields the result. 
The q integral of a function f is defined to be the q antiderivative of a function 

F whose q derivative is f.

Definition 2.14 (q-Integral) The q integral of f is defined as

f x d x q a q f q aq

a
k k

k
( ) ( ) ( )

0 0

1� �� �
�

�

	 (18)

for a0. .
In fact, when f(x)0 for x∈[0a], the right side of (18) is nothing but the Riemann 

sum as the sum of the areas under the graph of f on the interval [0,a] with the base 
on the interval q a q ak k��� ��

1
, .and the height f q ak� �.
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When a<0 the q-integral, on the interval [a,0] is defined as

f x d x f x d xq
a

q

a

( ) ( )

0

0

� �� �
�

	

For 0<a<b, the authors have

f x d x f x d x f x d xqa

b
q

b
q

a
( ) ( ) ( ) ,� � �� �

0 0
	

and for a<0<b, the authors have

f x d x f x d x f x d xqa

b
qa q

b
( ) ( ) ( )� � �� �

0

0
	

For functions f and g on an interval [a,b] the authors have the q integration by parts

f x D g x d x f x g x g qx D f x d xq q a
b

a

b
q qa

b
( ) ( ) ( ) ( ) | ( ) ( )� �� � 	

As the authors are going to deal with the orthogonality of polynomials, an inner 
product is going to be needed. The inner product of f and g on the interval [a,b] with 
respect to a q weight function wq(x) is given as

� � � � � � � � ��f g w x f x g x d xq
a

b

q q, . .	 (19)

MAIN FOCUS OF THE CHAPTER

The q Hermite difference equation has the form:

� �
�

� �� �D D y x
q
D y yq q q1 1

1
0� . 	 (20)

It should be noted here that the general property of the q difference equation of 
hypergeometric type is given in the book (Nikiforov et al., 1991, page 61) and also 
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discussed in the book (Alvarez-Nodarse, 2003). Theorems 3.1 and 3.2 below are 
special cases of the results given in these books.

Theorem 3.1 All q derivatives of a solution of (20) are also solutions of an equation 
of the same kind. More precisely, if v D y xk q

k� � � .with v0=y(x),.then for any 
k=0,1,….the function vk.is a solution of

� �
�

� �� �D D v x
q
D v vq q k q k k k1 1

1
0� , 	 (21)

where

� �k
k qq

q k
q

� �
�

[ ]
.

1
	 (22)

Proof: Taking the q-derivative of (20), and using the product rule for the q-derivatives 
given in (13) with f(x)=z/(1‑q) and g x D yq( ) � �1 , the authors get

D D D y x
q
D D y D x

q
D y t D yq q q q q q q t qx q[ ] ( ) |� �

�
�

�
�

�
�

�

�
� � �� � � �1 1 1

1 1
0� 	

Using (11) and (12), the last equation becomes

� �
�

�
�

� ��
�

� �q D D D y x q x
q
D D y x

q
D y x D y xq q q q q q q

1
1

1 1

1

1

1
0( ) ( ) ( ) ( )� 	

Multiplying this equation by q and letting v1=Dqy, the authors obtain

� �
�

� �� �D D v x
q
D v vq q q1 11 1 1 1

1
0� 	

where

� �1 1
� �

�
q q

q
	

Suppose now that v D yk q
k= .is a solution of
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� �
�

� �� �D D v x
q
D v vq q k q k k k1 1

1
0� 	

for some k∈
0
. .Taking the q derivative of both sides, and using (11) and (12) 

yields

� �
�

�
�

� ��
�

� �q D D D v q x
q
D D v

q
D v x D vq q q k q q k q k k q k

1
1

1 1

1

1

1
0( ) � 	

Thus, v D y D vk q
k

q k�
�� �1
1 .satisfies the equation

� �
�

� �� �� � � �D D v x
q
D v vq q k q k k k1 11 1 1 1

1
0� 	

where � �k kq q q� � � �� �1
1/ . .So, by mathematical induction, 

v z D y zk q
k� � � � �: .satisfies the equation

� �
�

� �� �D D v x
q
D v vq q k q k k k1 1

1
0� 	

for all k=0,1,… where v0(z):=y(z), μ0:=λ, and

� � � �k k
k

k k
k qq q

q
q q q q

q
q

q k
q

� �
�

� �
� � �

�
� �

��

�

1 0

1

1 1 1



[ ]
	

which completes the proof. 

Theorem 3.2 If � �� � �
�

�

n

n
qq n

q
:

[ ]
,

1

1
.then the equation (20) has a polynomial 

solution of degree n.
Proof: Substituting λ=λn into (22) leads to μn=0. Then, for k=n (21) becomes

� �
�

�� �D D v x
q
D vq q n q n1 1

1
0 	
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Clearly, this equation has a constant solution, say vn=c. Since v D y xn q
n� � � , .the 

authors have D y x cq
n � � � . .After q integrating n times, the authors see that y is a 

polynomial of degree n.

Definition 3.3 For each n∈
0
, .the monic polynomial solution of q Hermite 

difference equation is called q Hermite I polynomial and is denoted by 
h xn q, � � .and it satisfies

� �
�

�
�

�� �

�

D D y x
q
D y

q n
q
yq q q

n
q

1 1

1 1
0

1
[ ]

. 	 (23)

Remark 3.4 Taking (21) into account, one can see that v D h xkn q
k
n q:

,
� � � .is a 

polynomial solution of the equation

� �
�

� �� �D D v x
q
D v vq q kn q kn kn kn1 1

1
0� 	 (24)

where

� � �kn
k
n

q
n k

q
n kq

q k
q

q n k
q

� �
�

� �
�

�
�

� �

�

[ ] [ ]

1 1

1

	 (25)

for all n∈0 .and k=0,1,…,n.
Let us consider the Sturm-Liouville or formal self-adjoint form of (23)

D x D y q x y
q q q q n� � � ��� �� � � � �1 0� � � , 	 (26)

where ρq(x) satisfies the so-called Pearson equation

D x qx
q

x
q q q� � � ��� �� � �

� �1

1
� � . 	 (27)

From (27), one obtains ρq(q
-1x) = (1‑x2)ρq(x) or ρq(x) = (1‑q2x2)ρq(qx). Using this 

relation repeatedly, the authors obtain…
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Taking the limit as n→∞, the authors find � ��q qx q x q� � � � �( ; )
2 2 2

0 . Setting 
ρq(0):=1 and using Corollary 2.4 the authors obtain

ρq(x) = (qx, ‑qx; q)∞,	 (28)

which is called the q weight function.

ORTHOGONALITY

Orthogonality of hn,q(x)

Lemma 4.1 The set of q Hermite I polynomials h xn q n, � �� �
�

�

0
.is orthogonal on the 

interval (a,b) with respect to the weight function ρq(x).given in (28) if

�q
s
x a bq x x s�
�� � � � �1

0 0 1 2| , , , ,
,

.	 (29)

Proof: From (26) one has

� � � � ��� �� � � � � � ��D x D h x q x h x
q q q n q q n n q1 0� � �

, ,
	 (30)

and

� � � � ��� �� � � � � � ��D x D h x q x h x
q q q m q q m m q1 0� � �

, ,
. .	 (31)

Multiplying (30) by hm,q(x) and (31) by hn,q(x) and taking the difference of the 
equations, the authors get

� � �
� � �

�

� �

h x D x D h x

h x D x D h x

m q q q q n q

n q q q q m q

, ,

, ,

( ) ( ) ( )

( ) ( ) ( )

1

1 1

�

� �� �� � � � � � � � �q x h x h xn m q n q m q� � �
, ,

.0
	

Take the q integral of both sides over the interval (a,b), and use (9):
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( ) ( ) ( ) ( ) ( ) (
, , , ,

� � � �n m q qa

b

q q q n qn q m q m qx x d x x D q x D h th x h h� �� �� �1
)) | )

|
, ,

t q x qa

b

a n q q q q m q t q x q

d x

h x D q x D h t d x

�

�
�

�

�

� �
� � � � � � �� �

� 1

1

1�
bb

�
.	

Using integration by parts and taking (10) into account, the first integral on the 
right side becomes

h

q x h

x D q x D h t d x

x D

m q

q m q

q q q n q t q xa

b

q,

,

,
( ) ( ) ( ) |

( )

�

�

�
�

�

�� �
� � �
� 1

1

1

qq n q a
b

q n q q m q qa

b

qh x D h x D h x d xx�� � � � ��1 , , ,
( ) | ( ) ( )�

	

Similarly,

h

q x h

x D q x D h t d x

x D

n q

q n q

q q q m q t q xa

b

q,

,

,
( ) ( ) ( ) |

( )

�

�

�
�

�

�� �
� � �
� 1

1

1

qq m q a
b

q m q q n q qa

b

qh x D h x D h x d xx�� � � � ��1 , , ,
( ) | ( ) ( )�

	

Therefore,

� � � �n m
a

b

q n q m q q q q m q n qx h x h x d x q x W h x h x�� � � � � � � � � � � � �� �
�, , , ,

,
1

1 �� ��� �� | ,a
b 	

(32)

where W h x h x h x D h x h x D h
q m q n q m q q n q n q q m q� � �� � � ��� �� � � � � � � � �1 1 1, , , , , ,

, xx� �  is a 

polynomial of degree n+m‑1. Because of (29), the right side of (32) vanishes and 
the authors obtain

� � �n m q n q m q qa

b
x h x h x d x�� � � � � � � � �� , ,

0 .	 (33)

Now, n≠m if and only if � �n m
m nq q q� � � � �� �

( ) / ( )
1 1 2

1 0 . Therefore, (33) gives 
us

�q n q m q qa

b
x h x h x d x n m� � � � � � � �� , ,

0 for all 	
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When n=m, the integral in (33) becomes a positive number whose value will 
be specified later. 

Remark 4.2 Since ρq(q
-1x) = (x,‑x;q)∞, it is easy to see that (29) is true if one 

chooses a=‑1, b=1. Moreover, it should be pointed out that (29) provides only 
a sufficient condition.

In fact, the authors have proved the following theorem:

Theorem 4.3 The set { }
,
h xn q n� � �

�
0

.of q Hermite I polynomials is an orthogonal set 
on the interval (‑1,1) with respect to the q weight function ρ(x) = (qx,‑qx;q)∞. 
More precisely, the q Hermite I polynomials hn,q(x) satisfy

�
� � � � � � � �
1

1

2� �q n q m q q n nmx h x h x d x
, ,

, 	 (34)

where n .is the norm of hn,q(x).

Orthogonality of D h xq
k
n q, � �

Consider the self-adjoint form of (24)

� � � � ��� �� � � � � � ��D x D v x q x v x
q q q kn kn q kn1 0� � � , 	 (35)

in which v x D h xkn q
k
n q� � � � �, ,  k=0,1,…,n and μkn is given by (25). The same form 

for vkm(x) is

� � � � ��� �� � � � � � ��D x D v x q x v x
q q q km km q km1 0� � � . 	 (36)

As it was done before, multiply (35) by vkm(x), (36) by vkn(x) and subtract the 
resulting equations from each other to obtain

q x v x v x

v x D x D v x v x
kn km q kn km

km q q q kn kn

� � �

�

�� � � � � � � �
� � � � � � �� � ��1 �� � � � � �� ��D x D v x

q q q km1 � ,
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or, using (9),

� � �

�

kn km q kn km

km q q q kn t q x

x v x v x

v x D q x D v t

�� � � � � � � �
� � � � � � ��

� �
1

1|�� � � � � � � � �� ��
� �v x D q x D v tkn q q q km t q x

� 1
1| .

	

Take the q integral of both sides over the interval (-1,1):

� � �

�

kn km q kn km q

km q q q k

x v x v x d x

v x D q x D v

�� � � � � � � �

� � � � �
�

�

�

�

�

1

1

1

1

1

nn t q x q kn q q q km t q x qt d x v x D q x D v t d x� �� � � � � � � � �� ��
�

�
�� ��| |1 1

1

1

1� ..

	

Using integration by parts and taking (29) into account, the first integral on the 
right side becomes

�

�
�

�
� �� � � � � �� � � � � � ��

1

1

1

1

1

1v x D q x D v t d x x D v xkm q q q kn t q x q q q km� �| �� � �D v x d xq kn q . 	

Similarly,

�

�
�

�
� �� � � � � �� � � � � � ��

1

1

1

1

1

1v x D q x D v t d x x D v xkn q q q km t q x q q q kn� �| �� � �D v x d xq km q . 	

Therefore,

� � �kn km q kn km qx v x v x d x�� � � � � � � � �
�
�
1

1

0. 	 (37)

Now, if n≠m then from (25) one sees that � �kn km
k m nq q q q� � �� � � �� � �1 2

1 0/ ( ) .  
Therefore, (37) yields
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�
� � � � � � � � �
1

1

0�q kn km qx v x v x d x n m for all . 	

When n m k=  ,  the left side of (37) will be a positive number, and hence, the 
authors have shown that the following result holds:

Theorem 4.4 For all k=0,1,…, the set D h xq
k
n q n, � �� �

�

�

0
is orthogonal with respect 

to the inner product defined by (19) over the interval (-1,1) with the q-weight 
function ρq(x). More precisely,

�
� � � � � � � �
1

1

2� �q q
k
n q q

k
m q q kn nmx D h x D h x d x

, ,
 	 (38)

where δnm is the Kronecker’s delta and kn  is the norm of D h xq
k
n q, .� �

Remark 4.5 When k>n the authors have D h xq
k
n q, .� � � 0  Thus, it is clear from (38) 

that kn = 0  for k>n.

Evaluation of The Norms

First, the authors note that  n n= 0  for all n=0,1,… Also, as observed before, 
the authors have kn = 0  for k>n.

Lemma 4.6 Let kn  denote the norm of D h xq
k
n q, .� �  That is,

kn q kn qx v x d x2

1

1

2� � � � �
�
�� . 	 (39)

Then, for all k=0,1,…,n‑1, the authors have

 kn
kn

k n
2

1

21
�
�

�� ,
. 	 (40)

Proof: Multiply the self-adjoint form (35) by vkn(x) and use (9):
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� � �kn q kn kn q q k nx v x v x D q x v q x� � � � � � � � � � �� ��
�

�2 1

1

1

,
. 	

Then, q-integrate both sides over the interval (-1,1) and use the integration by 
parts on the right side:

� � �kn q kn q q kn k nx v x d x q x v x v q x
�

�
�

�
�

�
� �� � � � � � � � � � � �
1

1

2 1

1

1

1

1

1

1

,
| ��q k n q k n qx v x D v x d x� � � � � ��1, ,

. 	

Using (29) and the fact that D v x v xq kn k n� � � � ��1,
,  the authors arrive at

� �kn kn q k n q k nx v x d x 2

1

1

1

2

1

2� � � � � � � �
�

� �� , ,
, 	

which completes the proof. 
To continue evaluating the norms kn  the authors shall need the following 

auxiliary results:

Lemma 4.7

�
� � � � �� � � �
1

1

1 1� �q qx d x q q q q( , , ; ) . 	

Proof: First of all, note that

� � � � �q k
k

k
kq q q q q q q q q q q q q q1

1 1 2� � � � � � � �� �
( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ;

22
)k q

kq� � � 	
(41)

for all k=0,1,… Thus, since ρq(-x)=ρq(x), 

� �
� � �� � � � � � �� � � �
1

1

0

1

0

2 2 1� � �
�

q q q q
k

k
q

kx d x x d x q q q . 	

Using (41) and Lemma 2.13, the above equality becomes
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� �
� �� � � �� � � � � �� � � � �
1

1

0

2 2
2 1 1 2 1 1� � �

�

�q q q
k

k

k
qx d x q q

q q
q q q

( ; )
( ; ) .. 	

As 2(-q;q)∞=(-1;q)∞, the authors get

�
� � � � �� � � � � � �� � � �
1

1

1 1 1 1 1� � � �q q qx d x q q q q q q( ; ) ( , , ; ) 	

which completes the proof. 

Lemma 4.8 nn qq q q q n� �� � � � � ��1 1
2

( , , ; ) [ ] !  for all n=0,1,… 

Proof: Since v x D h xnn q
n
n q� � � � �,  and hn,q(x) is a monic polynomial of degree n, 

the authors have vnn=[n]q!. Thus, for k=n, in (39), the authors get

nn q nn q q q qx v d x n x d x q q q q2

1

1

2
2

1

1

1 1� � � � � � � � � �� � � �
� �
� �� �[ ] ! ( , , ; )) [ ] ! .� n q� �2

	

Lemma 4.9 For n∈0 and k=0,1,…,n‑1, the authors have

kn
n k

n k
q

q

q q q q q
n
n k

2 1 2

2

1 1� � � �
� �
�

� �

��

�
�

�

�
�

( ) ( , , ; )
[ ] !

[ ] !
.� 	

Proof: Repeated application of (40) gives us

  kn
kn

k n
kn k n

k n

n k

kn k n

2

1

2

2

1

2

2

1

1 1 1
�
�

�
�

�
�

�
�

�

�

�� � � � � �,

,

,

,

( ) ( )

 nn n
nn

�1

2

,

. 	

Since

s k

n

sn
s k

n n s
q

s

n k s
qq n s

q
q s

q�

�

�

� � �

�

� � �

� � ��
� �

�
�

� �

�
�

1 1 1

0

1

1

1

1
�

[ ] [ ] (( ) [ ] !

( )

,
� �

�

�

�

��

�
�

�

�
�

1

1
2

n k
q

n k
n k

n k

q q

	

using Lemma 4.8, the authors arrive at the stated result. 
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Thus, the authors proved the following orthogonality relation for D h xq
k
n q, .� �

Theorem 4.10 Let vkn(x) be the kth order q-derivative of hn,q(x) and p=min{k,n} 
Then, for all k m n, , ,∈

0
 the authors have

�

� �

��

�
�

�

�
�

� � � � � � � � � � �
1

1

1 2
1 1� �q kn km q

n k
n k

x v x v x d x q q q q q( ) ( , , ; )
[[ ] !

[ ] !
.

n
n k

q

q
kp mn

� �
�

2

� � 	

(42)

Corollary 4.11 For all m n, ,∈
0

 the authors have

�
� � � � � � � �
1

1

2� �q n q m q q n nmx h x h x d x
, ,

, 	 (43)

where

n n

n

q q q q q q q2 2
1 1� �� � � �

�

�
�
�

�
�

( , ) ( , , ; ) .� 	 (44)

Proof: Let k=0 in (42) and use the relation [n]q!=(1‑q)-n(q;q)n. 

LIMIT RELATIONS

Limit Relation Between the Differential Equations

Consider the equation (23). Let x q z� �1
2  and set u z y q z� � � �� �1

2
.  Using 

(8) with � � �1
2q ,  the authors see that

D y x
q
D y q z

q
D u z

q x q z q q� � �� � �
�

�� � �
�

� �
� �

1 2 1 1
1 2

2

2

1

1
1

1

1
| , 	

and,
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D D y x
q
D D y q z

q
D D u zq q x q z q q q q� � �� � �

�
�� � � �

� �
� �

1 2 1 1
1 2

2

2

1

1
1

1

1
| . 	

Thus, (23) becomes

�
�

� � �
�

� � �
�

� � �� �

�
1

1 1 1
0

2

1

1 1q
D D u z z

q
D u z q

q
n u zq q q

n

q[ ] . 	 (45)

Multiplying this equation by –(1‑q2), gives us

D D u z q zD u z q q n u zq q q
n

q� �� � � �� � � � � �� � � � ��
1 11 1 0

1
[ ] . 	

Finally, taking the limit as q→1 yields

u z zu z nu z'' '� � � � � � � � �2 2 0, 	 (46)

which is the Hermite differential equation. Since monic polynomial solutions of 
(45) and (46) are

h q z

q
H zn q

n
n
n

,

/
( )

,

1

1 2

2

2 2

�� �
�

� �
and 	

respectively, in fact, the authors have shown that the following result is true:

Theorem 5.1 For all n∈
0
,

lim
q

n q

n
n
n

h q z

q
H z

�

�� �
�

�
� �

1

2

2 2

1

1 2

,

/
( )

. 	 (47)

Limit Relation Between the Weight Functions

In the q-weight function ρq(x) = (q2x2;q2)∞, let x q z� �1
2

:
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�
�

�
q q z q q z q

q z q

q z
1 1

1

1 1

2 2 2 2 2

2 2 2

2 2
�� � � �� �� � �

�� �� �
� �� �

;
;

. 	

Now, take the limit as q→1 and use the relation (17) with q replaced by q2:

lim lim
q q q

zq z
q z q

q z
e

� �

��� � � �� �� �
� �� �

�
1

2

1

2 2 2

2 2
1

1

1 1

2

� �
;

. 	

This tells us that

lim
q q q z z
�

�� � � � �
1

2
1� � 	 (48)

where ρq(x) is the q-weight function for the q-Hermite I polynomials and ρ(z) is the 
weight function for the Hermite polynomials.

Limit Relation Between the Orthogonalities

Using the substitution x z q� �1
2  in the orthogonality relation (43), the authors 

get

�
�

�

� �� � �� � �� � � �
1

1

1

1

2 2 2 2 2

2

2

1 1 1 1

q

q

q n q m q q n nmq z h q z h q z q d x� �
, ,

, 	

where n  is the norm of hn,q(x) given in (44). Dividing both sides by ( )1
2

1

2�
� �

q
n m

 
gives us

�
�

�

� �� �
�� �

�

�� �
�1

1

1

1

2

2

2 2

2

2

2

2

1

1

1

1

1
q

q

q

n q

n

m q

mz q
h z q

q

h z q

q
�

, ,

( ) ( ) 22

2

2

1

21

d z
q

q
n
n m nm�

�
� �



( )

.� 	
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Taking the limit as q→1, the authors obtain

�

�

� � ��
� � � �

�
��

�

�e
H z H z

dz
q

z n
n

m
m q

n
n m nm

2

2 2
1

1

2

2

1

2

lim


( )

. 	

Since δmn=0 for m≠n, the above relation can be written as

�

�

� �� � � � � �
��

�

�e H z H z dz
q

z
n m q

n
n
n nm

2

1

2 2

2

2 1

2

2

1

lim


( )

. 	 (49)

Now,

lim lim
q

n
n q

n
n

q

q q q q q q

q
� � �

�
�

�� � � �

�
1

2

2

2 1

2

1
2

2

1

1 1

1



( )

( ; ) ( , , ; )

( )

�
�� � �

�

�
�� � �

�

� �

1

2

1

2 2

2

2 1

2

1

1 1

1

1

lim

lim

q

n
n

q

q q q q q q

q

q

( ; ) ( ; ) ( , )

( )

� �

�� �
�

�

� �
� �� �

�

( ; )

( )

( ; ) ( ; )

( )

[ ] !
(q q

q
q q q

q q
q nn

n n q q
1

1

1 1

1

2 2

2 1

� �
lim

qq q q
q qn

2 2

2

1

1 1

; ) ( ; )

( )

.
� ��

� �

	

From (5), one can see that

�
q

q q
q q

q2

1

2
1

2 2

2

2�
�
�

�
�
� � ��

�

( ; )
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where the authors have used the fact that (-1;q)∞=2(-q;q)∞. Using Lemma 2.2 and 
Corollary 2.4 with a=q, one obtains (q;q2)∞(-q;q)∞=1. Also, from (6) one has

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



159

On the Orthogonality of the q-Derivatives of the Discrete q-Hermite I Polynomials
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As a result, (49) gives us

�

�� � � � � �
�

�

��e H z H z dz nz
n m

n
nm

2

2 ! 	

which is the orthogonality relation for the Hermite polynomials.

FUTURE RESEARCH DIRECTIONS

The discrete q-Hermite I polynomials constitute only one subclass of the q-polynomials. 
The other class of q-polynomials can also be considered in the same direction in 
the limiting case as q→1.

CONCLUSION

A complete study for the orthogonality of the discrete q-Hermite I polynomials has 
been introduced using the q-Sturm-Liuville approach starting from the second order 
difference equation of hypergeometric type that they satisfy. Moreover, the limit 
relation as q→1 has been considered.

The authors notice that the family of discrete q-Hermite I polynomials is a 
special case of the Al-Salam and Carlitz I polynomials with a=-1 (Koekoek et al., 
2010, page 547) and the main algebraic properties, that characterize them, were 
considered in Table 3 of (Medem et al., 2001) as well as in the aforesaid page of 
the book (Koekoek et al., 2010).
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ABSTRACT

A boundary value problem for the second order differential equation -y′′+∑_
{m=0}N−1λ^{m}q_{m}(x)y=λ2Ny with two boundary conditions a_{i1}y(0)+a_{i2}
y′(0)+a_{i3}y(π)+a_{i4}y′(π)=0, i=1,2 is considered. Here n&gt;1, λ is a complex 
parameter, q0(x),q1(x),...,q_{n-1}(x) are summable complex-valued functions, a_{ik} 
(i=1,2; k=1,2,3,4) are arbitrary complex numbers. It is proved that the system of 
eigenfunctions and associated eigenfunctions is complete in the space and using 
elementary asymptotical metods asymptotic formulas for the eigenvalues are obtained.
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INTRODUCTION

Consider the boundary value problem generating in the interval by the Sturm-
Liouville pencil

� � �
�

�

�y q x y y
m

n
m
m

n'' ( )

0

1
2� � 	 (1)

and two boundary conditions

a y a y a y a y ii i i i1 2 3 40 0 0 1 2( ) '( ) ( ) '( ) , , ,� � � � �� �  	 (2)

where n>1, λ is a complex parameter, q0(x), q1(x),…,qn-1(x) are summable complex-
valued functions, aik (i=1,2: k=1,2,3,4) are arbitrary complex numbers. In the 
case n>1 the equation (1) is a classical Sturm-Liouville equation and the spectral 
problem under boundary conditions (2) was completely studied in (Marchenko, 1997) 
where special integral representations called transformation operators for linearly 
independent solutions of the Sturm-Liouville equation are applied to investigate 
the spectral problem. In this monograph, using some important properties of the 
transformation operators, especially the relations between the potential of the Sturm-
Liouville equation and the kernel of the transformation operators, the boundary 
value problem generated in a finite interval by the Sturm-Liouville equation and by 
regular boundary conditions of type (2) was investigated, the completeness of the 
system of eigenfunctions and associated eigenfunctions was proved and asymptotical 
formulas as λ→∞ was obtained for the solutions of the Sturm-Liouville equation. 
These asymptotic formulas of solutions are important to obtain the asymptotical 
formulas for the eigenvalues. The transformation operators allow to estimate the 
remainder part of the asymptotic formulas for the eigenvalues in relation with 
smoothness of the potential.

Second order differential equation (1) or its general form

� � � �
�

�

�y q x y y n
m

n
m
m

n'' ( ) ,

0

2 1
2� �  N (1’)	

arises in relation with some integrable nonlinear systems of differential equations 
(Jaulent and Jean, 1982; Alonso, 1980). Such equations are called as a polynomial 
pencil of the Sturm-Liouville equation. In the paper (Alonso, 1980) authors considered 
full line inverse scattering problem for the equation (1’) with q xn k� �( ) ,0  k=1,…, 
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n‑1 and examined some spectral properties of this equation under some regularity 
conditions of the potential functions q0(x),q1(x),…,qn(x). They reduced this equation 
to the second order pencil of the matrix Sturm-Liouville equation and gave the 
method of solution of the inverse scattering problem in a special case. But a vector 
form of solutions and strong regularity conditions on the potential functions are not 
suitable for applications and further investigations. The first attempt to construct 
special solutions of equation (1’) on the reel line was considered in (Jordanov, 1984). 
But form of these solutions also is not of type integral transformations as Fourier 
or Laplace, so they are not also suitable for applications. Later in (Guseinov, 1997) 
the author has found a significant relation between special solutions of the equation 
(1) on the semiaxis and Riemann-Liouville fractional integro- differential operators. 
It was opened the fact that Jost type solutions of equation (1) which satisfy a condition 
at infinity may be represented by transformation operators similarly to the case n=1 
(Marchenko, 1997), but with essentially different properties of the kernel function 
of the transformation operator. Namely, the kernel function of the transformation 
operator has not ordinary derivatives with respect to the integration variable, but it 
has some integrable fractional derivatives of order 1

n .  After work (Guseinov, 1997), 
the same author with his group have constructed transformation operators for the 
eqaution (1) in a finite interval and they investigated important properties of the 
solution of equation (1) widely using Riemann-Liouville fractional integrals and 
derivatives (Guseinov et al., 2000). Later the integral representation for the Jost 
solutions of equation (1’) with q xn k� �( ) ,0  k=1,…,n‑1 on the real line were constructed 
in (Nabiev and Guseinov, 2005) where relations between potential functions and 
fractional integrals of the kernel of the transformation operator have been obtained. 
And these results motivated the author to investigate the full line inverse scattering 
problem for the equation (1) without eigenvalues (Nabiev, 2006). Note that in the 
case n=1 equation (1’) is the second order pencil called a quadratical pencil of the 
Sturm-Liouville equation and it is known integral representations of the special 
solutions of the equation (1’) for this case in both infinite and finite intervals (see 
(Jaulent, 1972; Jaulent and Jean, 1976; Guseinov, 1985)). In this case a direct and 
inverse spectral problems have been widely investigated by many authors (see 
(Gasymov and Guseinov, 1981; Gasymow and Gasymow, 1982; Tsutsmi, 1981; 
Aktosun et al., 1998; Sattinger and Szmigielski, 1995; Van der Mee and Pivovarchik, 
2001; Yurko, 2000; Nabiev, 2004; Maksudov and Guseinov, 1986; Kamimura, 2007) 
for details). Spectral analysis and inverse spectral problems of the quadratical pencil 
of the Sturm-Liouville equation in a finite interval with various boundary conditions 
can be found in (Guseinov, 1985; Gasymov and Guseinov, 1981; Gasymow and 
Gasymow, 1982; Nabiev, 2004). Note also direct and inverse scattering problems 
for the quadratic pencil of the Sturm-Liouville equation with various settings have 
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been considered in studies (Aktosun et al., 1998; Sattinger and Szmigielski, 1995; 
Van der Mee and Pivovarchik, 2001; Yurko, 2000; Maksudov and Guseinov, 1986; 
Kamimura, 2007). It is important to investigate direct and inverse spectral problems 
for equation (1’) without any limits on potentials. Namely, it is important to construct 
the Jost solutions of equation (1’) similarly for the case (1) and then to investigate 
the relationships between potential functions and the kernel functions of the integral 
representations of Jost solutions. These problems are open and difficult problems 
as in the entire real line and halfline either in a finite interval.

In the present work some important spectral properties of the problem (1)-(2) 
are studied. As eigenvalues of the problem (1)-(2) we will understand those complex 
values of the parameter λ for which the equation (1) has a nontrivial solutions. This 
nontrivial solution which correspond to the eigenvalue λ of the problem (1)-(2) will 
be called an eigenfunction related with this eigenvalue. Investigating the boundary 
value problem (1)-(2) the question of multiple completeness of the system 
eigenfuntions and associated eigenfunctions are studied and asymptotic formulas 
for the series of eigenvalues from the sectors Sm m

n
m
n� � �� ��� �� �� �

: arg ,
1  m n� �0 2 1,  

are obtained. The spectral problem for the equation (1) with simple conditions 
y(0)=y(π)=0 was studied in (Guseinov et al., 2000) where Fourier type integral 
representations for the linearly independent solutions of the equation (1) were 
constructed and applied to investigate this spectral problem. As it is known (Guseinov 
et al., 2000) for each λ∈Sm equation (1) has two linearly independent solutions

y x e K x t ej
i x

x v m
ij n

j m

m
( , ) ( ( , )( )

( )
,

( )� �� ��

� ��
�

�
�

�� ��

��1

1 1
2

1 21

1 ��nt dt) 	 (3)

where Kv,m(x,t) ( ( ) ( )v j j m j� � � � ��
�

�
�

�1
2

1 1  is a summable function with respect to t 

in the interval ( ) ( )� � ��
�

�
�

�1 1
2

j m j x  for each x∈[0,π]. Moreover,

( )
,

( )( , )
� ��

�
�
�

��
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1 1

2

1
j m x v m

xK x t dt e� 	 (4)

where � ( ) ( ) ( )
( )

x x s q s dsk
n x

k

k
n
k
n

k
n

� ��
�

�� �
� �

0
1 2

1 0

1 1

�
 and Γ(.)is the Euler gamma function. 

Morover, the kernel functions Kj,m(x,.) (j=1,2) have summable derivatives with 
respect to x. Namely, if q0(x)∈C[0,a], qk(x)∈C1[0,a] k n� �1 1,  then 
�
� � � ��x mK x L x1 1, ( ,.) ( , )  and �

� � ��x mK x L2 1 0, ( ,.) ( , )  for each x∈[0,a]. The next 
important property of the kernel functions is the fact that they have not derivatives 
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with recpect to the variable t. But they have some Riemann-Liouville fractional 
derivatives (Samko et al., 1997).

Definition 1.1. The Riemann-Liouville fractional integral of order a (0<a<1) with 
respect to the variable t of a function f(x,.)∈L1(a,+∞) is the integral

I f x t
a

t s f x s dsa t
a

a

t a
, ( , )

( )
( ) ( , ) .� �� �1 1

�
	

The Riemann-Liouville fractional derivative of order a (0<a<1) with respect to 
the variable t of a function f(x,.)∈L1(α,+∞) is defined as

D f x t
t a

t s f x s dsa t
a

a

t a
, ( , )

( )
( ) ( , ) .�

�
� �

�� �1

1�
	

It was proved in (Guseinov et al., 2000) that if q0(x)∈C[0,a], qk(x)∈C1[0,a] 
k n� �1 1,  then the fractional derivatives ( ),D x t

pn
−
1

 K1,m(x,t) and ( ),D t
pn

0

1

 K2,m(x,t), 
where p=1,2,…,n, are summable with respect to on the intervals (-x,+∞) and (0,+∞) 
respectively. For more details related with other properties of the kernel functions 
we refer to (Guseinov et al., 2000) Further using the integral representations of the 
system of fundamental solutions of the equation (1) in (Guseinov et al., 2000) it 
was shown that the spectral problem generated by the equation (1) and simple 
Drichlet boundary conditions y(0)=y(π)=0 has an infinite number of eigenvalues 
and all these eigenvalues lie in the sectors Tm m

n n�
� �� �� � �� �: arg ,  where ε>0 is 

sufficiently small and m n� �0 2 1, .  Moreover, the eigenvalues consist of 2n series 
and mth series of them can be arranged as λ1,m, � � � �2 1, , , ,,..., ,...;m s m s m s m� �  and they 
can be defined asymptotically by the formula

�
�

k m
n

j

n j
m

e k
d

k
o
k

k m
im
n

j
n

n
n

,

( )

( ), , , ,..� � � � � �� �
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1 1 11 1

1
0 1  .., ,2 1n � 	

where d jm( )  are constants not depending on k.
Considering the integral representations (3) of the solutions

y x e oj
i xj n

( , ) ( ),( )� ��� � � ��� �1 1

1  	
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one can define solutions s(x,λ) and c(x,λ) of the equation (1) with initial conditions 
s c( , ) '( , )0 0 0� �� �  and s c'( , ) ( , ) .0 0 1� �� �  Namely, we have

s x y x y x
i

c x y x x
n( , )

( , ) ( , )
, ( , )

( , ) ( , )
�

� �
�

�
� �

�
�

�
�1 2 1

2 2
 	

which are also two linearly independent solutions of the equation (1). In (Agamaliyev 
and Nabiyev, 2005) other type special boundary conditions were considered for 
the equation (1) and asymptotic formulas were obtained for the eigenvalues of the 
considered problems. Note that in (Nabiev and Guseinov, 2005) it is also given more 
detailed asymptotic formulas for the solutions s(x,λ) c(x,λ), and their derivatives. We 
will use above results and other results of (Guseinov et al., 2000) and (Agamaliyev 
and Nabiyev, 2005) in the investigation of the spectral problem (1)-(2).

ON THE COMPLETENESS OF THE SYSTEM OF 
EIGENFUNCTIONS AND ASSOCIATED EIGENFUNCTIONS

Eigenvalues of the sspectral problem (1)-(2) coincide with the roots of the characteristic 
function

�( ) ( , ) '( , ) ( , ) '( , ),� � � � � � � � �� � � � � �d d d s d s d c d c12 34 13 14 32 42 	 (5)

where dij=a1ia2j‑a2ia1j (i,j=1,2). Further, let us consider the solutions ωi(x,λ) (i=1,2) 
of the equation (1) defined as

� � � � � � �

� �
i i i

i i

x a a s a s c x

a a c a

( , ) ( , ) '( , ) ( , )

( , )

� � �� � �

� � �
2 3 14

1 3 144c s x'( , ) ( , ).� � �� �
	

It is easy to check out that if the left hand-side of the boundary conditions (2) 
denote by Ui(y) then U1(ω1)=U2(ω2)=0, U1(ω2)=‑U2(ω1)=∆(λ). 

Definition 2.1. An eigenvalue of the boundary value problem (1)-(2) is called an 
eigenvalue with multiplicity p if it is a root of multiplicity p of the characteristic 
equation Δ(λ)=0.

It is easy to show that if λ=μ is an eigenvalue with multiplicity p then the function 
� � �

�i k k ix x
k k

k, !
( ) ( , )� �� � �

�

1  (0≤k≤p‑1) satisfies the boundary conditions (2). The first 
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nonzero function of the chain ωi,k(x) (i=1,2; k=0,1,…,p‑1) is the eigenfunction and 
the others are associated eigenfunction. Let know denote λKy(x,λ)=zk(x,λ), k n� �0 2 1, , 
where y(x,λ) is a solution of the problem (1)-(2). It is easy to obtain that the boundary 
value problem (1)-(2) is equivalent to the following spectral problem:

L d
dx
z z U z U z( ) , ( ) , ( ) ,� � ��   1 20 0 	 (6)

where z z z z n
T� �( , ,..., ) ,1 2 2 1  L d

dx( )  is the square matrix with elements Lij d
dx( ),  

i j n, ,� �0 2 1  such that

L d
dx

i n j i i n j n n

L

ij

i i

( ) ( , , , , ),

,

� � � � � � � � �0 0 2 2 1 2 1 2 1if   and if 
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2
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2 1
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,

,

d
dx

i n L d
dx

d
dx

q x

L d
dx

n

n j

 

)) ( ), , .� � �q x j nj 1 1

	

Lemma 2.2. The set of eigenvalues of the problems (1)-(2) and (5)-(6) are coincide. 
If y0(x) is the eigenfunction of the problem (1)-(2) corresponding to an eigenvalue 
λ0 then z x y x y x y xn T0

0 0
2 1

0( ) ( ( ), ( ),..., ( ))� �� �  is the eigenvector of the problem 
(5)-(6) corresponding to the same eigenvalue. Conversely, if 
z x z x z x z xn

T0
0
0

1
0

2 1
0( ) ( ( ), ( ),..., ( ))� �  is an eigenvector of the problem (5)-(6) related 

to some eigenvalue, then y x z x0 0
0( ) ( )=  is an eigenfunction of the problem 

(1)-(2) with the same eigenvalue.

From the above lemma it is obvious that if is an eigenvalue, the vector functions

W x x x x

W x x

n T
1 1 1

2 1
1

2 2

( , ) ( , ), ( , ),..., ( , ) ,

( , ) ( ,

� � � �� � � � �

� �

� � �
�

�

�� �� � � � �), ( , ),..., ( , )2
2 1

2x xn T�� �
	

satisfy the equation

L d
dx

W W ii i( ) ( , )� � �� 1 2 	 (7)

and the boundary conditions
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U1(Wi) = U2(Wi) = 0, i=1,2	 (8)

for λ=λm. Hence we have that if λ=λm is an eigenvalue of multiplicity p for the 
boundary value problem (1)-(2) then, this is also an eigenvalue with the same 
multiplicity for the problem (5)-(6). In this case the vector functions

W x
k

W x k pi k

k k

k i m, ( )
!

( , ) ( , )�
�� � �

�
� � � �

1
0 1

�
� � � 	

are the chain the first nonzero vector of which is an eigenvector and the others are 
associated eigenvectors of the problem (5)-(6).

Definition 2.3. If the system of eigenvectors and associated eigenvectors Z xk m( , ) ( )� �  

corresponding to all eigenvalues �k m m n,
,

� �
� �0 2 1

 of the problem (5)-(6) is complete 

in the space L n22 0( , )π  then the system of eigenfunctions and associated 
eigenfunctions y x z xk

m
k m( ) ( ),� � � � �0  of the problem (1)-(2) will be called 2n 

-fold complete in the space L2(0,π). 

Here L n22 0( , )π  is the 2n-dimensional vector space with vectors whose coordinates 
belong to L2(0,π). 

Let S is the spectrum, i.e. the set of all eigenvalues �k m m n,
,

� �
� �0 2 1

 of the boundary 

value problem (1)-(2) and pk
m( )  is the multiplicity of the eigenvalue λk,m. According 

to the previous discussions the vector functions �� � �
� � � � �1

0 1
s s

s k ms i k
mW x s p

!

( )
( , ) | ( ,

,� � ��  
i=1,2, λk,m∈S) are equal to zero or are eigenvectors or associated eigenvectors of the 
problem (5)-(6). Therefore, for the completeness of the system of eigenvectors and 
associated eigenvectors it is enough to prove the fact that if F x L n( ) ( , )� 2

2 0 �  and

�
�

��

s

s iW x F x
k m�

� � �( , ), ( ) |
,

0 	 (9)

for all λk,m∈S, 0 1� � �s pk
m( )

,  i=1,2 then F(x)=0 almost everywhere in L n22 0( , ).π  
Here, h x g x( ), ( )  is a scaler production in the space L n22 0( , )π  and it means

h x g x h x g x dx h x g x Ln

j

n

j j
n( ), ( ) ( ) ( ) , ( ), ( ) ( , ).� � ��

�

�

0
0

2 1

2
2 0 � 	 (10)
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In other hand the function W F W x F xi i( , ) ( , ), ( )� ��  is an entire function of the 
parameter λ. Therefore if (9) is valid then every pk

m( ) − fold root �k m m n, ( , )� �0 2 1  
of the characteristic function Δ(λ) is also a root (at least with the same multiplicity) 
of the functions Wi(F,λ)(i=1,2). Consequently we have that (9) is satisfied if and 
only if both the functions Wi(F,λ)[Δ(λ)]-1(i=1,2) are entire. Hence, to prove the 
completeness of the system of eigenvectors and associated eigenvectors it is enough 
to show that the functions Wi(F,λ)[Δ(λ)]-1(i=1,2) are entire if and only if F(x)=0 
almost everywhere in L n22 0( , ).π

Using integral representations, (3) as it is shown in (Guseinov et al., 2000; 
Agamaliyev and Nabiyev, 2005), we obtain the following asimptotic formulas for 
the solutions and:

s x x O e

s x x O e

n

n

x

n

n
x

n

n

( , )
sin

( ), ,

'( , ) cos (

Im

Im

�
�
� �

�

� �

�

�

� � � ��

� �

�1

��
�

� �
�

�

� � �

�

), ,

( , ) cos ( ), ,

'( , ) sin

Im

� ��

� � � ��

� � �

c x x O e

c x x O

n
x

n n

n

(( ), .
Im

� �
�n x

e
n� � ��1

	

Using the above asymptotic formulas it is easy to prove the following statement.

Lemma 2.4. For all functions f(x)∈L1(0,π) we have

lim ( ) ( , ) ) .
Im

�

� � � � �
���

�
� �e f x x dx

n

i0
0 	

The last lemma yields that if F x L n( ) ( , ),� 1
2 0 �  where L n1

2 0( , )π  is the 2n-dimensional 
vector space with vectors whose coordinates belong to L1(0,π) then

lim ( , ).
Im

�

� �
�

���

�
e W F

n

i 	 (11)

Examining the characteristic function ∆(λ) we have
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�( )

sin ( ),

cos (

Im

Im
�

� � � �

� �

� �

�
�

� � �

� �

d o e d

h h o e

n n n

n

n

n

42 42

1 2

0 if 

��

� �
� � � �

), ,

sin ( ),
Im

 if 

 if 

d h

d h o e h dn n n
n

42 1

13 2 1 42

0 0� �

� � � �� � 00 013,d �

�

�

�
��

�

�
�
�

	 (12)

where h1=d14+d32, h2=d12+d34.
From the formula (12) and Lemma 1.3.2 in (Marchenko, 1997) we have that 

there exist a sequence unboundely extending countour Km on which the inequality

�( )
Im

� �
� �

� �C en
n

	 (13)

is hold for some constant C>0. Now (11) and (13) imply

lim max
( , )

( )
, ,

m K
i
n

m

W F
i

�� �
� �

�

�
� ��

0 1 2 	

which allows us to confirm that if Wi(F,λ)[Δ(λ)]-1(i=1,2) is an entire function then 
it is growing slower than |λ|n as |λ|→∞. Then

0
0

2 1

0

1
�� � � � �� � � �

�

�

�

�

i
j

n
j

j
j

n

j
i jx f x dx a( , ) ( ) ( ) ( )� 	

W F ai
j

n

j
i j( , ) ( ) ( )� � �� �

�

�
�

0

1

	

with some constants a ji( ) . If we remember here the definition of the function Wi(F,λ) 
we can write from which it is easy to obtain

� � �
�

�

� �
j

n
j

j n ns f dx Q Q
0

2 1

1
1

22 1
2

12� � � � � �( , ) ( ) ( ) ( ) ( )
( ) ( )� � 	

where

�i i i i n
i

j

n

j
i ja a s a s Q a2 2 3 4 1

0

1

( ) ( , ) '( , ), ( )
( ) ( )� � � � � � �� � � � ��

�

�
 (( , ).i �1 2 	

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



173

Spectral Problem for a Polynomial Pencil of the Sturm-Liouville Equations

Therefore,

� � �

�

�

�

� �

�

j

n
j

j n n

n

s f dx Q a Q a

Q

0

2 1

1
1

22 1
2

12

1
1

� � � �

�

( , ) ( ) ( )

( )

( ) ( )

( ) aa Q a s Q a Q a sn n n23 1
2

13 1
1

24 1
2

14�� � � �� �� � �
( ) ( ) ( )

( ) ( , ) ( ) ( ) '� � � � � (( , ).� �
	

(14)

Now using expressions for the functions s(x,λ) and s x'( , )λ  from (Agamaliyev 
and Nabiyev, 2005) it is easy to derive that

s x x x e x e
xn n i x i x
n

n n
( , ) sin

( , ) ( , ) ( , )
,� � �

� �
�

� �
�

� �
�

� �� � � �� �1 2 3 	 (15)

s x x i x e i x e xn i x i x
n

n n
'( , ) cos

( , ) ( , ) ( , )
,� �

� �
�

� �
�

� �
�

� �� � � ��1 2 4 	 (16)

where lim max ( , )
Im

� �

� �
� �

��� � �

�
�

0
0

x i x e
n

 and δi(x,λ), i=1,2,3,4 is integrable over [0,π] 

for each value of the parameter λ. From the expression of s(x,λ) we immediately 
have that if Imλn=0 then s(fj,λ) = λ-n δj(λ) with δj(λ→0) as |λ|→+∞. Consequently, 
from the equation (14) we have

� � � �� �
� �

�

�

�

�
�

�

�

j

n
j
j

j

n

j j
n j

j

n

j

a a a a

a

0

2 1

0

1
1

22
2

12

0

1
1

� � � �( ) ( ) ( )

( )) ( ) ( ) ( )( , )a a a s a a a a sj
n j

j

n

j j
n j

23
2

13
0

1
1

24
2

14�� � � � �� ��

�

�
�� � � � ''( , ).� �

	

Now taking into our account equations (15) and (16) again for the entire functions 
s(π,λ) and s '( , )� �  we obtain

a a a a a a a a a a j nj j j j
( ) ( ) ( ) ( ) , , ,...,1

22
2

12 23
2

13 24
2

14 0 0 1� � � � � � � �11. 	

Hence it is obtained that

s(fj,λ) = 0, j=0,1,…,2n‑1.	 (17)
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Using the integral expressions of the solution s(x,λ) and the definition of s(fj,λ) 
we find that equalities (17) are equivalent to

0

0� �
�

�
�

�� � � �� � �� �
��

�
��f t e dt f t e dt e dt f x Kj

i t
j

i t i t
t j

n n n
( ) ( ) ( ) (xx t dx, ) ,� 0 	

where K(x,.) is summable function on the interval (-π,+∞) for each x∈[0,π]. From 
the last equality we find the equations

� � � � � � �

�

�
��

�
��

�

�

f t f x K x t dx t

f t f x K

j t j

j t j

( ) ( ) ( , ) , ,

( ) ( ) (

0 0 if �

xx t dx t

f x K x t dx tt j

, ) , ,

( ) ( , ) ,

� � �

�

�

�
�
�

�
�
� �

��
�

0 0 if 

 if 

�

�

	

which imply that F(x)=0 almost everywhere in L n22 0( , ).π  Hence we have proved the 
following theorem.

Theorem 2.5. The system of eigenfunctions and associated eigenfunctions of the 
boundary value problem (1)-(2) is 2n-fold complete in the space L2(0,π). 

ASYMPTOTIC FORMULAS FOR THE EIGENVALUES 
OF THE BOUNDARY VALUE PROBLEM

Consider the characteristic equation

Δ(λ)=0, λ∈Sm,	 (18)

where

�( ) ( , ) '( , ) ( , ) '( , ),� � � � � � � � �� � � � �d d s d s d c d c12 34 14 32 42 	

which is examining for the cases shown in the formula (12). We will consider these 
cases separately.

Case 1. Let d42≠0. In this case

�( ) sin ( ), lim ( )
Im

� � � � � � � � �
� �

�
� � � �

���
d en n n

n

42 1 1 0 	
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and as an unboundly extending contours we can choose the circles

D k kk n� � �
�
�
�

��

�
�
�

��
�� �: , , , ,...

1

2
0 1 2 	

on which the inequality (13) is satisfied. From here we conclude that there exists 
the constant C>0 such that

�( ) sin
Im

� � � � �
� �

� � �d C en n n n

42

1 	 (19)

is satisfied for sufficiently large |λ|. In particular, the inequality (19) is satisfied on 
Dk for sufficiently large k.

Fix a real number ε>0 ( )0
2

� �� �  and consider the angular domains

S m
n n

m
n n

m nm
� �

� �
�

� �( ) : arg , ,� � � �
�� �

�
�
�
�

��

�
�
�

��
� �

1
0 2 1 .	

When � �� S m( )  and λ has sufficiently large module the inequality

� � �
� � �n n
n

e
n

sin
Im

�
4

	 (20)

easily can be verified. Therefore from the estimates (19) and (20) we conclude that

�( ) sin sin� � � � � � �� �d dn n n n
42 42 	 (21)

in the domain S m
� � �( ) : ,� �� �  where  > 0  is sufficiently large number. Now 

the inequality (21) implies that there is not any zero of the function Δ(λ) in the 
domain S m

� � �( ) :� �� � . Hence, by the uniqueness theorem of analytical functions 
there may be at most a finite number of zeros of the function Δ(λ) in the domain 
S m
ε
( ) . Consequently, we can claim that for sufficiently large |λ|, where � �� S m( ) ,  the 

zeros of the function Δ(λ) may be concentrated near by the rays arg� �� m
n  and 

arg� �� �� �m
n
1 , m n� �0 2 1, .  Moreover, since for sufficiently large k we have
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� � �
� � � �n n
n

e e
n

sin
Im

� �

4
	 (22)

on the arcs D S Sk m
m� ( \ )( )
�  then the inequality (21) also takes place on the circles 

Dk for large values of the integer k. Applying the Rouche’s theorem we obtain that 
the number of zeros in Dk of the function Δ(λ) is equal to the number of zeros of 
the function λnsinλnπ. Since the function λnsinλnπ has 2n series of zeros inside the 
circle Dk then the zeros of Δ(λ) consists of 2n series with k+1 zeros in each series 
and m m nth ( , )� �0 2 1  seriés is concentrated near by the ray arg .� �� m

n  By the 
argument similar previous we can show that the function Δ(λ) has exactly 2n+1 
zeros inside the ring k kn n� � � �1

2
1
2

�  and each zero belongs to the different 
series. Consequently, we can arrange the eigenvalues of the problem (1)-(2) in sequel 
by the series:

� � � � �1 2 1, , , , ,, ,..., ,...; .m m s m s m s m� � 	

Now let us solve asymptotically the eigenvalue equation Δ(λ)=0 in the sector 
T m m

n n�
� �� �( ) : arg .� � �� �  Using asymptotic expressions of the functions s(x,λ), 

s x'( , ),λ  c(x,λ), c x'( , )λ  (Agamaliyev and Nabiyev, 2005) we can reduce the equation 
Δ(λ)=0 in the following asymptotical form:

e
a d i d d o

i k
n

k
n n

k

n
k
k2 0

1 2
42

1
31 141

1

1

1� �
�
�

� �
�

� � � �

�

�
� � � �� �

�
( )

( ) ( )

��
�� �

�

�
0
1 1 2

1

1

n
k

v
k
k a

S�
�

�
( )

,  	 (23)

and

e
a d i d d o

i k
n

k
n n

n
k
k� �

� � � �

�
� � � �

�

� �
�2 0

1 1
42

1
31 141

1

1

1� �
�
�

� �( )
( ) ( )

kk
n

k
v

k
k a

S
�
� �

� �
�

�
0
1 1 2 1

1

1

�
�

�
( )

, , 	 (24)

where �
�

k
k
n

i k
ne� �

2 2 ,  a a ik
i

k
i( ) ( )

( )( , )� �� 1 2  are constant related with integrals of the 
functions q0(x), q1(x), …,qn-1(x): 
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a x q s ds a x

q s ds

i
n

x
n k

i

n k
x
n k

0 1 0 1

1 0 1

( ) ( )
( ) ( ) , ( )

( ) (

�

� �

� �

� � � �

�

�

�

�

 

�� �

� �

�
� � ��1

1 1

1
0

) ( ) ( ) ,

, .

( )i

p

k

n p
x
n p n p

iq s a s ds

k n

�
� ������

	

Finally, solving asimptoticaly the equations (23) and (24) we obtain the following 
asymptotic formulas for the series of eigenvalues of the boundary value problem(1)-(2):

�
�

k m
n

j

n j
m

e k
a

k
o
k

k m
im
n

j
n

n
n

,

( )

( ), , , ,..� � � � � �� �
� � �� �
1 1 11 1

1
0 1  .., .2 1n � 	 (25)

Here a jm( )  are some constants not depending on k.

Case 2. Let d42=0, d32+d14≠0. In this case the equation ∆(λ)=0 can be written in 
the asymptotical form

�( ) cos ( ), lim ( ) ,
Im

� � � � � � �
� �

�
� � � �

���
h h en

n

1 2 2 2 0 	

where h1=d14+d32, h2=d12+d34.
As an unboundly extending contours we can choose the circles

D k k

D

k
n h

h

k

1
1

2

0 1 2 02

1

� �� � � � � �

� �

�� � � �

� �

: , , , ,... arccos( ) ,

:

  if 

22 1 0 1 2 0

2 0 1 22

k k

D k k

n

k
n

�� � � �
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, , , ,... ,

: , , , ,...

  if 

  if

�

� �   � �1

	

on which the inequality (13) is satisfied. By the similar arguments as in the Case 1 
using The Rouche’s theorem we can show that there are infinitely many eigenvalues 
of the problem (1)-(2) and sufficiently large in module eigenvalues are replaced 
near by the rays arg ( , ).� �� � �m

n m n0 2 1  Reducing the eigenvalue equation ∆(λ)=0 
to the form

cos
( )� �

�
�

�� � � �n i

k

n
k
k k

i

k

n
k

h
e a

h
e

n n
� � � �

�

�
�
�

�

�

�
�1
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1

21 0

1
1

1

1

1 0

1
1
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� �
�
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� �
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n

n
na h

h
o e

n

�
�� �

1

2 2

1

0
( ) Imsin

( ) 	

(26)
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as in the Case1 we solve the equation (26) asymptotically and get the following 
asymptotical formulas for the eigenvalue series λk,m: 

� �
�

k m
n

j

n j
m

e k
b

k
o
k

k m
im
n

j
n

n
n

,

( )

( ), , ,� � � � � � �� ��
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1
0

1 1 11 1
  11 2 1,..., n � 	 (27)

where � � �� � �� � � � � � � ��1 1
2

2

1

2

1

2

1

1arccos ( )
h
h i

h
h

h
hLn  and bjm( )  are some constants not 

depending on k.

Case 3. d42=d32+d14=0, d13≠0. In this case

�( ) sin ( ), lim ( ) .
Im

� � � � � � � � �
� �

�
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���
h d en n n

n

2 13 3 3 0 	

As an unboundedly extending contour we choose the circles Dk if h2=0 and the 
contours

D C C P hk v
n v vv
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By the same way and arguments as in the previous cases using the Rouche’s 
theorem we can show that there are infinitely many eigenvalues of the problem 
(1)-(2) for this case and sufficiently large in module eigenvalues are replaced near 
by the rays arg ( , ).� �� � �m

n m n0 2 1  The eigenvalue equation ∆(λ)=0 can be written 
as
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and as in the previous cases we solve the equation (28) asymptotically and obtain 
the following asymptotical formulas for the eigenvalue series λk,m: 
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if h2≠0. In the formula (29) c jm( )  are some constants not depending on k.
Thus we have proved the following theorem.

Theorem 3.1. Boundary value problem (1)-(2) has infinite number of eigenvalues. 
The eigenvalues with sufficiently large modules are placed near by rays 
arg ( , )� �� � �m

n m n0 2 1  and for the mth series of eigenvalues the asymptotic 
formulas (25), (27), (29)-(30) are satisfied.
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ABSTRACT

The authors consider a nonlinear epidemic equation by modeling it with generalized 
piecewise constant argument (GPCA). The authors investigate invariance region 
for the considered model. Sufficient conditions guaranteeing the existence and 
uniqueness of the solutions of the model are given by creating integral equations. 
An important auxiliary result giving a relation between the values of the unknown 
function solutions at the deviation argument and at any time t is indicated. By using 
Lyapunov-Razumikhin method developed by Akhmet and Aruğaslan for the differential 
equations with generalized piecewise constant argument (EPCAG), the stability 
of the trivial equilibrium is investigated in addition to the stability examination of 
the positive equilibrium transformed into the trivial equilibrium. Then sufficient 
conditions for the uniform stability and the uniform asymptotic stability of trivial 
equilibrium and the positive equilibrium are given.
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INTRODUCTION

In this chapter, the authors take a differential equation in population dynamics 
mentioned by Huang, Liu, and Fory´s (2016) into account. The considered equation 
represents a generalization of the SIS model established by Cooke (1979). The 
authors develop this model with a GPCA since change between the GPCA can be 
arbitrarily chosen. Since the taken model has a nonlinear function with GPCA, the 
model and the examinations performed for it are remarkable. As the beginning of 
these examinations, invariance region for the considered equation with GPCA is 
investigated by the authors. Besides, the authors give sufficient conditions for the 
existence and uniqueness of the trivial equilibrium and the positive equilibrium of 
the proposed model. Next, the authors give sufficient conditions guaranteeing the 
existence and uniqueness of the solutions of the nonlinear epidemic model by creating 
integral equations. The authors indicate an important auxiliary result giving a relation 
between the values of the unkown function at the deviation argument and at any 
time t of the proposed model. By using Lyapunov-Razumikhin method developed 
by Akhmet and Aruğaslan (2009) for EPCAG, the authors investigate the stability 
of the trivial equilibrium for the considered nonlinear epidemic model with GPCA. 
Moreover, based on the theoretical results in the paper (Akhmet & Aruğaslan, 2009), 
the authors investigate the stability of the positive equilibrium point by transforming 
it into the trivial equilibrium. Then, sufficient conditions for uniform stability and 
uniform asymptotic stability of the trivial equilibrium and the transformed positive 
equilibrium are given. Thus, the authors have reached the results depending on the 
parameters of the considered equation. During all these investigations, the nature of 
the solutions is evaluated within the biologically meaningful range [0,1] as required 
by the examination performed for the positive invariance region.

BACKGROUND

Differential equations are very valuable in understanding the real life problems 
since they allow the mathematical expression of the real phenomena. However, 
modeling of problems with ordinary differential equations is often not enough. 
Because, while problems are set up mathematically by neglecting the discontinuous 
effects, the models and thus the results of their qualitative analysis are far distance 
from the reality. This necessitated the introduction and development of the theory 
of differential equations with discontinuities. One type of equation developed as 
a result of this requirement is the differential equations with deviating arguments. 
Differential equations with deviating arguments host many classes of equations, 
such as functional differential equations, differential equations with delay, piecewise 
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constant argument and generalized piecewise constant argument. Differential 
equations in which the highest order derivative of the unknown function depends on 
the previous values of the unknown function are called delay differential equations. 
A delay differential equation is most fundamentally given by

�� � � � � �� �� �x t f t x t x t, , .� 	

Here, τ is the positive constant specified in the amount of delay, and it can be 
seen that the development of the state vector depends on the current time, the value 
of the state vector at this moment and also on the previous values of the process.

In the early 1980s, differential equations with piecewise constant argument which 
are in the class of delay differential equations are defined by Cooke and Wiener 
(1984) in the form of

�� � � � � � �� �� �x t f t x t x t, , . 	

The literature knowledge is intense for studies based on the transformation of 
such equations into discrete equations. While models are established by differential 
equations with piecewise constant argument, change between the arguments is constant 
and always one unit since the greatest integer function is taken as the deviation 
argument. However, this approach can contradict with the reality phenomenon. 
Because it is important to approach the fact of reality when establishing the real 
life problems. In the light of this idea, the theory of differential equations with 
deviating arguments have been developed over time. Differential equations with 
piecewise constant argument are generalized by Akhmet (2007a, 2007b) by taking 
an arbitrary piecewise constant function instead of the greatest integer function as 
deviation argument. In this way, differential equations with GPCA are given by the 
following equations

� �� � � � � � �� �� � � � � � � � �� �� �x t f t x t x t x t f t x t x t, , , , .� �  or  	

Piecewise constant functions β(t) or γ(t), t∈R, taken as a deviation argument in 
such equations allow arbitrary choice of time intervals. Thus, models can be addressed 
closer to reality phenomenon and be considered with a better approach. The piecewise 
function β(t) is defined by a real valued sequence {θi}, i∈Z, such as |θi|→∞ while 
i→∞, and it is assumed that β(t)=θi in the interval t i i�� ��� �,

1
. If θi=i, i∈Z, is 

chosen then the piecewise function β(t) corresponds to the greatest integer function 
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[t]. Moreover, the piecewise function γ(t), t∈R, is defined by real valued sequences 
{θi} and {ζi}, i∈Z, such as � � �i i i� � �1 , i∈Z. It is assumed that γ(t)=ζi in the 
interval t i i�� ��� �,

1
. Generally, Akhmet has examined these equations by writing 

equivalent integral equations, and the studies on the qualitative analysis of the 
problems modeled with these equations is intense in the literature (Akhmet, 2008a, 
2008b, 2010, 2011, 2014; Akhmet & Aruğaslan, 2009; Akhmet, Aruğaslan, & 
Yılmaz, 2010a, 2010b; Aruğaslan, 2009; Aruğaslan & Cengiz, 2017, 2018). These 
studies provide important contributions to the investigations of stability and periodicity 
properties of the solutions of EPCAG. The literature on the investigation of differential 
equations with GPCA by transforming them into discrete equations is very rare. 
Due to the arbitrary choice of the piecewise constant functions, the discretization 
process converts a differential equation with GPCA into a nonautonomous discrete 
equation. In this respect, the results achieved by Aruğaslan and Güzel (2015) in the 
stability analysis for a logistic population model are noteworthy.

It is very important that the models are developed and handled with the best and 
most natural approach. Differential equations with deviation arguments allow us to 
realize this approach. In addition, the analysis of the qualitative characteristics of 
their solutions is very important for understanding the real life problems. However, 
it is difficult to analyze the dynamic structure of the models established with such 
discontinuous effects. Knowledge of the behavior of these structures is possible 
with the help of qualitative theory. Within this broad theory, methods that provide 
information about their solutions without having to solve such equations are very 
useful. Lyapunov-Razumikhin and Lyapunov-Krasovskii methods, which are 
developed in this direction and shed light on the stability analysis of the solutions, 
attract the attention of the scientific world. The basics of these methods are based 
on the second Lyapunov method (1949). These methods have been remarkable 
in the stability analysis of ecological, biological, epidemiological, mechanical, 
economic, financial, etc. models (Arnold & Schmalfuss, 2001; Challamel & Gilles, 
2007; Gopalsamy & Liu, 1998; Hahn, 1967; Korobeinikov, 2006; Michel & Hu, 
2000; Miller & Michel, 1982). In Lyapunov method, analysis is carried out by 
establishing a function which provides certain features. Sometimes it is difficult to 
construct these functions, but the fact that we don’t need exact solutions to analyze 
the behaviour of solutions attracts notice to the usefulness of the method. Moreover, 
since models are considered as more complex structures when established with 
deviation arguments, trying to reach the solutions of these structures brings many 
difficulties and problems with them. As a remedy, Lyapunov-Razumikhin (1956) 
and Lyapunov-Krasovskii (1963) methods developed respectively by Razumikhin 
and Krasovskii for functional differential equations made a great contribution to 
the world of science. In Lyapunov-Razumikhin method, the analysis is carried 
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out by constructing a function which provides certain features. Furthermore, the 
development of this method for differential equations with generalized piecewise 
constant argument by Akhmet and Aruğaslan (2009) has been a gain in scientific 
knowledge. Because stability analysis with other methods brings about more intensive 
operations and calculations for such equations. In Lyapunov-Krasovskii method, 
analysis is carried out by constructing a functional which provides certain features. 
The analyzes conducted with the help of these methods are extensively available 
in the literature.

The real processes established by differential equations allow the understanding 
of the nature of the problems encountered in many areas. In this respect, population 
dynamics is a branch of science which examines the biological problems in the 
mathematical framework. Moreover, differential equations with deviating arguments 
make the time delays caused by various biological factors mathematically visible 
on the models. It is very important to construct the structures that give proportional 
definitions of epidemic outbreaks, to perform their dynamical analysis and to control 
them. Because, considering the danger of outbreaks that could seriously affect the 
population and looking at the history, it is essential to ensure the control of public 
health and to analyze the behavioral characteristics of the emerging diseases in 
terms of mathematics. In this respect, considerable studies are required. Although 
it is important to determine the variables that define the epidemic perspective, it 
is essential to establish time-dependent changes of these variables well. Because, 
it is obvious that the spreading process of the disease will vary depending on the 
persons and their environment. This process can be severely affected by a situation 
in the past. Evaluating these effects is possible by differential equations with 
deviating argument, and with the help of the qualitative theory of the differential 
equations with deviating argument, information about the behavior of the models 
can be obtained. Therefore, efforts to build and develop models representing real 
processes, has been and continues to be an ongoing phenomenon for many years. 
From this perspective, the delayed SIS model

�� � � �� � � � ��� �� � � �y t by t T y t cy t1 	 (1)

proposed by Cooke (1979) is notable. Here, b,c are positive and constant parameters 
corresponding to infection and recovery rates, respectively. The proportion of humans 
in the community who are infectious at time t and the proportion who are susceptible 
are denoted by y(t) and S(t), respectively. Then, Cooke (1979) takes y(t)+S(t)=1 by 
assuming that the infection in humans confers negligible immunity and does not 
result in death or isolation. At the end of this time expressed in this assumption, 
it is assumed that the vector can infect a susceptible human (Cooke, 1979; Huang 

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



187

Stability Analysis of a Nonlinear Epidemic Model With Generalized Piecewise Constant Argument

et al., 2016). Additionally, denote by z(t) the number of infectious vectors in the 
community at time t according to Cooke (1979). The population is evaluated in two 
classes: susceptible and infectious. This evaluation supports homogeneous mixing 
of the vector and human populations (Busenberg & Cooke, 1980).

According to Cooke (1979), the Equation 1 with delay has representation of the 
proportion of infective individuals by considering the following assumptions arising 
from the dynamic of the spread of a communicable disease:

1. 	 The infection is transmitted by a vector like mosquito to individuals.
2. 	 The infection in the individual gives an immunity, but does not cause death 

or isolation.
3. 	 The population is fixed without considering the change in births, deaths and 

immigration to the population.
4. 	 When a susceptible vector is infected by a person, there is a fixed time T during 

which the infectious agent develops in the vector. At the end of this time, the 
vector can infect a susceptible human.

5. 	 Human and vector populations have a homogeneous mixing.
6. 	 The rate of recovery of infected people is positive constant c.
7. 	 The vector population is very large and z(t) is simply proportional to y(t‑T). 
8. 	 The infection is transmitted by a vector like mosquito to individuals.

In the light of above descriptions and assumptions, the multiple of S(t)z(t) means 
the number of new infections per unit time, and so the time-dependent change of the 
proportion of infectious humans in the community is expressed by the differential 
equation (1) (Cooke, 1979).

Additionally, Huang et al. (2016) proposed the following equation

�� � � � � � �� �� � � � � �x t f x t x t cx t c1 0, ,�  	

which is a generalization of the nonlinear epidemic model (1). They investigated the 
global stability for equilibrium points of this equation by constructing appopriate 
Lyapunov functionals. In the related paper, Huang et al. (2016) give the assumptions 
on f for the existence and uniqueness of the trivial and positive equilibriums.

As the subject of the present chapter, the authors propose a differential equation 
in population dynamics by modeling it with GPCA. In other words, the following 
equation

�� � � � � � � �� �� � � � �x t f x t x t cx t1 , � 	
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is considered by developing the model with EPCAG which is introduced by 
Akhmet (2007a, 2007b). Due to the considered model, the analyzes performed in 
this chapter will shed light on the behavior of many epidemic models. Moreover, it 
is considerable that the present chapter addresses a stability examination with the 
help of Lyapunov-Razumikhin method for EPCAG (Akhmet & Aruğaslan, 2009; 
Aruğaslan, 2009). Because, this method requires less operations and calculations 
than other methods developed for stability analysis in the literature, and makes 
it easier to reach the desired results, as can be understood by the examination of 
the chapter. As a result, the analysis of models with complex structure and strong 
discontinuity effects can be easier by Lyapunov-Razumikhin method introduced for 
EPCAG (Akhmet & Aruğaslan, 2009).

MAIN FOCUS OF THE CHAPTER

Let R,N0 and R+ be the sets of all real numbers, non-negative integers and non-
negative real numbers, respectively, i.e., R=(-∞,∞), N0={1,2,…} and R+=[0,∞). 
Denote the n-dimensional real space by Rn, n∈N. Fix a real-valued sequence {θi}, 
i∈N0 such that 0=θ0<θ1<…<θi<… with θi→∞ as i→∞. In the present chapter, the 
authors propose a differential equation in population dynamics by modelling it with 
GPCA. In this context, the authors consider the following model

�� � � � � � � �� �� � � � �x t f x t x t cx t1 , .� 	 (2)

In model (2), c is a positive and constant parameter corresponding to recovery 
rates. This equation has a representation of the proportion of infective individuals 
by considering the expressions and the assumptions (A)-(H) in the Background 
above. Here, x∈R, t∈R+, β(t)=θi if t i Ni i�� � ��� �, , .

1 0
  For the sequence {θi}, 

i∈N0, let 0≤θi<θi+1 for all i∈N0 and θi→∞ as i→∞. Let us assume without loss of 
generality that θi<t0≤θi+1 for some i∈N0. Let   be a subset of the product R×R and 
let us assume f R:→  to be of class C1 � � .

Basically, the authors investigate uniform stability and uniform asymptotic stability 
of the trivial equilibrium and the positive equilibrium by using Lyapunov-Razumikhin 
method developed by Akhmet and Aruğaslan (2009) for EPCAG. Before the stability 
examinations, the authors indicate an important auxiliary result giving a relation 
between the values of the unknown function solutions at the deviation argument β(t) 
and any time t of the proposed model. This auxiliary result is useful in the proofs 
of the stability theory based on Lyapunov-Razumikhin method. Next, the authors 
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give sufficient conditions guaranteeing the existence and uniqueness of the solutions 
of the considered model by creating integral equation. Based on the results in the 
paper (Akhmet & Aruğaslan, 2009; Aruğaslan, 2009), the authors investigate the 
stability of the trivial equilibrium and the positive equilibrium after transforming 
it into the trivial equilibrium. Then, sufficient conditions for uniform stability and 
uniform asymptotic stability of the trivial equilibrium and the transformed positive 
equilibrium are given. Thus, the authors have reached the results depending on the 
parameters of the considered equation. During all these investigations, the nature of 
the solutions is evaluated within the biologically meaningful range [0,1] as required 
by the examination performed for the positive invariance region. Therefore, before 
these investigations, invariance region for the equation (2) with GPCA is investigated. 
Besides, the authors express sufficient conditions for the existence and uniqueness 
of the trivial equilibrium and the positive equilibrium of (2) by considering the 
nonlinear function f with GPCA in (2).

For these purposes, the following assumptions will be needed throughout the 
chapter:

(A1) there exists a positive number θ  such that � � �i i i N� � � �
1 0

,  ;
(A2) f u v R R, , ,� �� � � � �C    is a real-valued function, and let f R:→  

be of class C1 � � ;
(A3) f(u,v)≥0 for any u,v∈[0,1] and f(0,v)<c for any v∈[0,1]; 
(A4) f(u,0)=0 for any u∈[0,1]; 
(A5) fv(1,0)>c for the function f(u,v), u,v∈[0,1]; 
(A6) fu(1,0)+fv(1,0)>c and fuu(u,v)+2fuv(u,v)+fvv(u,v)<0 for any u,v∈[0,1]; 
(A7) f(u,v) satisfies the condition

f u v f u v u u v v
1 1 2 2 1 2 1 2
, ,� � � � � � � � �� � 	

for all t∈R+ and ui,vi∈[0,1], i=1,2, where  > 0  is a Lipschitz constant;

(A8) � � �
  

� �� � �� �� � ��� �c e c1 1;

(A9) � �
3 1

�� � ��� �c e c
;

(A10) 2 ≤ c .

It is obvious that x*=0 is an equilibrium point of (2) while f satisfies (A4) (Huang 
et al., 2016). The conditions (A3)-(A5) and (A6) are required for the existence and 
uniqueness of the positive equilibrium, respectively, similar to the results given by 

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



190

Stability Analysis of a Nonlinear Epidemic Model With Generalized Piecewise Constant Argument

Huang et al. (2016). Detailed information related to these assumptions can be found 
in paper (Huang et al., 2016) and by Lemma 2 given below.

Now, let us describe the crucial sets of functions:

 � � � � � � �� �� �a C R R a a, : , is strictly increasing and 0 0 	

 � � � � � � � � � � �� �� �d R R d d s sC , : , ,0 0 0 0  for 	

which will be used in the stability examinations.
In order to investigate stability of the positive equilibrium of the nonlinear 

epidemic equation (2) with the help of Lyapunov-Razumikhin method (Akhmet & 
Aruğaslan, 2009), the positive equilibrium point x*>0 of (2) is transformed into the 
trivial equilibrium by y=x‑x*, then the following equation is reached:

�� � � � � � � � �� � �� � � � � �y t f y t x y t x cy t cx1
* * *
, .� 	 (3)

The definitions related to solutions of the nonlinear epidemic models (2) and (3) 
are given by Definition 1 and Definiton 2, respectively.

Definiton 1 A function x(t) is a solution of (2) on R+ if:
1. 	 x(t) is continuous on R+;
2. 	 the derivative �� �x t  exists for t∈R+ with the possible exception of the 

points θi, i∈N0, where one-sided derivatives exist;
3. 	 equation (2) is satisfied by x(t) on each interval � �i i i N, , ,�� � �

1 0
  and 

it holds for the right derivative of x(t) at the points θi, i∈N0.
Definiton 2 A function y(t) is a solution of (3) on R+ if:

1. 	 y(t) is continuous on R+;
2. 	 the derivative �� �y t  exists for t∈R+ with the possible exception of the 

points θi, i∈N0, where one-sided derivatives exist;
3. 	 equation (3) is satisfied by y(t) on each interval � �i i i N, , ,�� � �

1 0
  and 

it holds for the right derivative of y(t) at the points θi, i∈N0.

Basic aim of the chapter is to investigate stability of the trivial equilibrium 
and the positive equilibrium for the proposed model (2) with GPCA. Accordingly, 
chapter is organized as follows: First section gives the results concerning the positive 
invariance of the solutions of (2). So, the invariance region of the solutions of (3) 
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becomes obvious. In second section, important auxiliary results for (2) are indicated 
by Lemma 3 and Lemma 4. These results give a relation between the values of the 
unknown function at the deviation argument β(t) and any time t of the models (2) and 
(3). Then, Section 3 addresses sufficient conditions guaranteeing the existence and 
uniqueness of the solutions of the models (2) and (3), by creating integral equations. 
Next, by using Lyapunov-Razumikhin method developed by Akhmet and Aruğaslan 
(2009) for EPCAG, stability of the trivial equilibrium and the positive equilibrium 
for (2) with GPCA is investigated in Section 4. Then, sufficient conditions for the 
uniform stability are given by Theorem 4 and Theorem 5. Moreover, sufficient 
conditions for uniform asymptotic stability of the trivial equilibrium and the positive 
equilibrium of (2) are obtained as seen in Theorem 6 and Theorem 7. The results 
depending on the parameters of the taken equation have been reached.

The Positive İnvariance for the Solutions of (2)

Now, positive invariance for (2) shall be investigated. So, the results concerning 
positive invariance for (2) is given by the lemma and the theorems below. So, this 
results give an information about the invariance region of the solutions for (3). Take 
only solutions x(t) with 0≤x(θ0)=x0≤1.

Lemma 1 The equation (2) with x(θ0)=x0 is equivalent to the following integral 
equation

x t e x e f x s x s ds tc t
t

c t s� � � � � � � � �� �� � �� �� �� � � �� ���

�

� � �0

0

0 0
1 , , , .. 	 (4)

Proof: Necessity. Let x(t) be the solution of (2) with x(θ0)=x0. Based on Definition 
1, (4) satisfies the equation (2) on each interval � �i i i N, ,� � ��1 0

 . For t∈[θ0,θ1), 
the solution is

x t e x e f x s x s dsc t
t

c t s� � � � � � � � �� �� �� �� � � �� ���

�

�0

0

0
1 , . 	

Letting t→θ1, by the continuity of the solutions, it is obtained that

x x e x e f x s x s dsc c s
1 1 0

1 0

0

1

1 1� � � � � � � � � �� �� �� �� � � �� ��� �� �

�

�
�

, . 	
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Therefore, (4) holds on [θ0,θ1]. Assume that (4) is valid on the interval [θ0,θk] 
for some k≥1, with the initial condition 

x x e x e f x s x s dsk k
c c sk

k

k� � � � � � � � � �� �� �� �� � � �� ��� �� �

�

�
�0

0

0
1 , . 	

Then, for t k k�� ��� �, ,
1

 it is true that

x t e x e f x s x s ds ec t
k

t
c t s c tk

k

k� � � � � � � � �� �� � �� �� � � �� � � �� ���

�

��1 , ee x

e e f x s x s ds

c

c t c s

k

k

k

k

� �� �

� �� � � �� �� � � � � �� �� � ��

� �

�

�

�
�

�

�

0

0

0

1 ,

kk

t
c t s

c t
t

c t s

e f x s x s ds

e x e f

�

�

� �� �

� �� � � �� �

� � � � �� �� �

� �

1

10

0

0

, �

�

�

�� � � � �� �� �x s x s ds, .�

	

Letting t k� �� 1 , it can be seen that

x x e x e f x s x sk k
c c sk

k

k
� �

� �� � � �� �� � � � � � � � ��

�

��1 1 0

1 0

0

1

1 1� �� �

�

�
�

, ��� �� �ds. 	

Thus, (4) holds on � �
0 1
, .k�� �  Based on the induction method, the result can be 

observed for all t≥θ0.
Sufficiency. Let x(t) be the solution of (2). Fix i∈N0 and consider the interval 

� �i i,� ��1
. Differentiating (4), it can be seen that x(t) satisfies (2). Letting t→θi from 

right and considering that x(β(t)) is a right continuous function, it is seen that x(t) 
satisfies (2) on � �i i,� ��1

. 

Theorem 1 If x:[θ0,α)→R is a solution of (2) for � � �
0 1
� � ��t i  satisfying the 

initial condition 0≤x(θ0)=x0≤1 and (A3) holds, then the set Ω={x∈R:0≤x≤1} 
is positively invariant for (2).

Proof: Let us assume without loss of generality that � �i it� � �0 1
 for some i∈N0. 

Let x(t):[ θ0,α)→R be a solution of (2) through the initial condition x(θ0)=x0 
satisfying 0≤x0≤1. Then, the solution of (2) is equivalent to the following 
integral equation
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x t e x e f x s x s ds tc t
t

c t s� � � � � � � � �� �� � �� �� �� � � �� ���

�

� � �0

0

0 0
1 , , , .. 	

Now, assume that there exists a t  such that 0 0� � �� �t  and x t� � � 0 . 
Hence, by (A3),

�� � � � � �� � � � � � � � �x t f x t x cx t f x1 1 0
0 0

, , 	

is found, which means that x(t) does not exceed the value x=0. Thus, x(t) satisfies 
0≤ x(t) for all t in [θ0,α) while 0≤x(θ0)=x0≤1.

Next, assume that there exists a t  such that 0 0� � �� �t  and x t� � �1 . 
Hence, by (A3),

�� � � � � �� � � � � � � � � � � �x t f x t x cx t f x c c c1 0 0
0 0

, , 	

is found, which means that x(t) does not exceed the value x=1. Thus, x(t) satisfies 
x(t)≤1 for all t in [θ0,α) while 0≤x(θ0)=x0≤1.

Thus, it is seen that x(t) satisfies 0≤x(t)≤1 for all t in [θ0,α) while 0≤x(θ0)=x0≤1. 
Since (3) is reached by a linear tranformation of (2), the set Ω*= {y∈R: ‑x*≤y≤1‑x*, 

‑x*>0} obviously shows the invariance region for (3).
Lemma 2 gives sufficient conditions for the existence and uniqueness of the 

positive equilibrium of (2).

Lemma 2 Let the conditions (A2)-(A6) hold true. Then, the equation (2) has a 
positive equilibrium x*>0 in Ω.

Proof: Define the following function g(u,v) = f(u,v)‑c(1‑u) or g(v) = f(1‑v,v)‑cv 
for any v∈[0,1]. 

It can be seen that g(0)=0 and g(1)<0 by the assumption (A3). Based on these 
values, there exists a positive equilibrium point if g(v)>0 is valid for v∈(0,δ), 0<δ<1. 
Moreover, it is obtained that

lim lim
,

lim
, ,

v v v

g v
v

f v v
v

c
f v v f v

v� � �� � �

� �
�

�� �
� �

�� � � �� �
�

0 0 0

1 1 1 0
cc f cv� � � �1 0, . 	
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Thus, by (A5), it is seen that fv(1,0)>c and then 
g v
v
� �

� 0 . Hence, there exists 

a positive number v* in (δ,1] satisfying g(v*)=0. 
Besides, geometrically, sufficient conditions for uniquness of the positive 

equilibrium point can be determined by assuming that the function g is concave for 
∀v∈(0,1) and strictly increasing at v=0. In detail, this assumption gives 
fuu(u,v)+2fuv(u,v)+fvv(u,v)<0. Besides, it is known that g is a continuous function on 
[0,1] and is differentiable on (0,1). So, assume that the function g has not an inflection 
point for v∈(0,1). For this aim, it is sufficient to take ��� � �g v 0  which does not 
contradict with the concavity, and to take fu(1,0)+fv(1,0)>c. 

The Auxiliary Results for the Solutions of (2)

Now, the lemmas given for the nonlinear epidemic model (2) contain an auxiliary 
result which is crucial for the proof of stability analysis in the sense of Lyapunov-
Razumikhin method.

Lemma 3 Let the assumptions (A1)-(A4), (A7) and (A8) be satisfied. Then, the 
following inequality

x t x t� � �� � � � �h1 	 (5)

holds for (2) and for all t≥0, x∈Ω, where h1
1

1 1� � � �� �� �� ��� � �
 c e c .

Proof: Let us fix t∈R+. Then there exists k∈N0 such that t k k�� ��� �,
1

. The solution 
x(t) of (2) is equivalent to the integral equation

x t x f x s x cx s ds tk

t

k k k

k

� � � � � � � � � � �� � � � �� � �� �� �� � � �
�

1
1

, , , , 	

and thus, by adding the term f(1‑x(s),0) due to the condition (A4), it can be written as
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x t x t x f x s x cx s f x s ds

x

k

t

k

k

� � � � � � � � � � � � � �� � � � � � � � �� �

�

�� �

�

�

1 1 0, ,

kk

t

k

k

t
k

k

f x s x f x s cx s ds

x

� � � � � � � �� � � � � �� � � � �� �

� � � �

�

�

�

�

�

�

1 1 0, ,

xx cx s ds x cx s dsk k

t

k

� � �
�

� � � � �� � � � � �� � � � ��1 

.	

Based on the Gronwall-Bellman Lemma and then the condition (A1), the 
following inequality

x t x e x ek
t c

k
ck� � � � � �� � � � � �� ��� �� � � �� �1 1  	 (6)

is obtained. Besides, for t k k�� ��� �,
1

, it can be written

x x t f x s x cx s dsk

t

k

k

� �
�

� � � � � � � � � � �� � � � �� �� 1 , . 	

The last equality gives

x x x t

f x s x cx s f x s ds x

k k

t

k

k

� �

�
�

� � � � � � � �

� � � � � �� � � � � � � � �� � �� 1 1 0, , tt cx s x ds
k

t

k� � � � � � � �� ��
�

� .
	

The inequality (6) leads to

x x t c e xk
c

k� � � ��� � � � � � �� � �� � � �1   . 	

Then,

x c e x tk
c� � � �� � � � � �� �� �� � � �

�
1 1

1

  . 	
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It follows from the condition (A8) that the inequality (5) is true for t k k�� ��� �, .
1

 
Hence, (5) holds for all t≥0. 

Similarly, Lemma 4 gives an auxiliary result for (3).

Lemma 4 Let the assumptions (A1)-(A6), (A7) and (A8) be satisfied. Then, the 
following inequality

y t y t� � �� � � � �h2 	 (7)

holds for (3) and for y∈Ω*, t≥0, where h
2

1

1 1� � � �� � �� �� �� ��� �
�

� � �
  

c e c .

The Existence and Uniqueness of the Solutions

Now, sufficient conditions are given for the existence and uniqueness of the solutions 
of the nonlinear epidemic model (2) with GPCA.

Lemma 5 Let (A1)-(A3) and (A7)-(A9) be satisfied and i∈N0 be fixed. Then for 
every � � �, , ,x i i0 1� ��� ��� �  there exists a unique solution x t x t x� � � � �, ,�

0
 

of (2) on � �i i, .� ��1

Proof: Existence. Fix i∈N0 and assume without loss of generality that � � �i i� � �1
.  

Define a norm x t x t
i

� � � � �
� �0
max

,� �
. Take x0(t)=x0 and define a sequence

x t x f x s x cx s ds p tp
t

p p
i

p
i i

�
�� � � � � � � � �� � � � �� � � �� ��1 0

1
1 0

�

� � �, , , , .. 	

Then, for p=0, it is obtained that
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x t x t f x s x cx s ds
i

t

i
1 0

0

0 0 0
1� � � � � � � � � � �� � � � �� �

�

� � �max

max

� �
�

�

�
,

,

ii

i

t

if x s x cx s f x s ds
,

,

, ,
� �

�

� � � � � �� � � � � � � � �� �� �

�

�
�

�

�1 1 0
0 0 0 0

max
��

�

� �
�

�
�

� �

� � � � � �� � � � � �� � � � �� �

�

t

if x s x f x s c x s ds

i

1 1 0
0 0 0 0

, ,

,
max

tt

ix c x s ds c x c x� � � � � �� � � �� � � �� �  

0 0 0 0
2� � � .

	

(8)

Second, for p=0 and p=1, the following inequality is obtained:

x t x t f x s x f x s x
i

t

i i
2 1

0

1 1 0 0
1 1� � � � � � � � � � �� � � � � � � �

� � �max
� �

�

� �
,

, ,�� � � � � � � �� �

� � � � � � � �� � �
� � �

c x s x s ds

x x c x si i

t

i

1 0

1 0 1
 � � �

� �
�

max
,

�� � � �x s ds0
.

	

By (8), it is seen that

x t x t c c x c x2 1

0

0
2

0
2 2 2� � � � � � �� � �� � � �� �� �  �� � . 	

Similarly, for p=1 and p=2 for p=2 and p=3,…, x t x tp p� � � � � �1

0
 can be 

evaluated. Then, by the induction method, it can be seen that

x t x t c xp p p� �� � � � � � �� �� �1

0

1
0

2�  . 	

Then, the condition (A9) implies that the sequence xp(t) is convergent and its 
limit x(t) satisfies the following integral equation

x t x f x s x cx s ds
t

i� � � � � � � � �� � � � �� ��0
1

�

�, 	
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on t i�� �� �,  based on the result in the paper (Akhmet & Aruğaslan, 2009). The 
existence is proved.

Uniqueness: Let x t x t x x x jj j j j� � � � � � � � �, , , , , ,� �0 0
1 2  denote the solutions 

of (2) where � � �i i� � �1 . Now, it is shown that x1(t)≠x2(t) while x x
1

0

2

0≠  for every 
t i i�� ��� �, .

1
 For all t i i�� ��� �,

1
, the solutions x1(t) and x2(t) satisfy the following 

integral equations

x t x f x s x cx s ds
t

i1 1

0

1 1 1
1� � � � � � � � �� � � � �� ��

�

�, 	

and

x t x f x s x cx s ds
t

i2 2

0

2 2 2
1� � � � � � � � �� � � � �� ��

�

�, , 	

respectively. It is true that

x t x t x x f x s x cx s f x s x
t

i1 2 1

0

2

0

1 1 1 2
1 1� � � � � � � � � � � � �� � � � � � � � ��

�

�, ,
22 2
�i cx s ds� �� � � � �� � . 	

So,

x t x t x x f x s x f x s x
t

i i1 2 1

0

2

0

1 1 2 2
1 1� � � � � � � � � � � � �� � � � � � � �� ��

�

� �, , �� � � � � �� �

� � � � � � � � � � � � � �� ��

c x s x s ds

x x x x x s x s
t

i i

1 2

1

0

2

0

1 2 1 2

�

� � �� � � � � �� �

� � � � � � � � � �� � � � ��

c x s x s ds

x x x x c x s xi i

t

1 2

1

0

2

0

1 2 1
� � �

�

 

22
s ds� � .

	

Then, by the Gronwall-Bellman inequality, it can be written as

x t x t x x x x ei i
c

1 2 1

0

2

0

1 2� � � � � � � � � � � � �� � �� �� � � �




. 	 (9)
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Moreover, for t=θi, it is obvious that

x x x x x x ei i i i
c

1 2 1

0

2

0

1 2
� � � � � �� � � � � � � � � � � � �� � �� �



 	

and so

x x e x x ei i
c c

1 2

1

1

0

2

0
1� � � � �� � � � � � �� � ��� � � �� �



 

. 	 (10)

Substituting (10) into (9), the following inequality

x t x t

e e x x ec c c

1 2

1

1

0

2

0
1 1 1

� � � � �

� � �� �� � � � ��� � � �� � �� �� � �� � �
 

  



 e e x xc c�� � � �� �� � �� �1

1

0

2

0
	

(11)

is reached. Now, on the contrary, assume that there exists a t i i
*

,�� ��� �
1

 such that 
x1(t

*)=x2(t
*). Then, it can be written that

x x f x s x cx s f x s x cx
t

i i1

0

2

0

1 1 1 2 2
1 1� � � � � � � �� � � � � � � � � � �� � ��

�

� �
*

, ,
22
s ds� �� � , 	

so

x x x x c x s x s ds
t

i i1

0

2

0

1 2 1 2
� � � � � � � � �� � � � � � �� ��
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By (11), the last inequality takes the following form
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which is a contradiction due to the condition (A9). The uniqueness is proved. 
Then, based on Theorem 1.3 given by Akhmet and Aruğaslan (2009), Theorem 

2 gives sufficient conditions guaranteeing the existence and uniqueness of the 
solutions of (2) in Ω.

Theorem 2 Assume that the conditions (A1)-(A3) and (A7)-(A9) hold true. Then 
for every (t0,x0)∈R+×Ω, there exists a unique solution x(t)=x(t,t0,x0) of (2) on 
R+ in the sense of Definition 1 such that x(t0)=x0. 

Additionally, the following lemma and theorem give sufficient conditions 
guaranteeing the existence and uniqueness of the solutions of (3) in Ω* based on 
the paper (Akhmet & Aruğaslan, 2009).

Lemma 6 Let (A1)-(A6) and (A7)-(A9) be satisfied and i∈N0 be fixed. Then for 
every � � �, , ,

*y i i0 1� ��� ��� �  there exists a unique solution y(t)=y(t,ξ,x0) of 
(3) on � �i i, .� ��1

Theorem 3 Assume that the conditions (A1)-(A6) and (A7)-(A9) hold true. Then 
for every (t0,y0)∈R+×Ω, there exists a unique solution y(t)=y(t,t0,y0) of (3) on 
R+ in the sense of Definition 2 such that y(t0)=y0. 

The Stability Analysis of the Solutions for (2)

In this section, stability of the trivial equilibrium and the positive equilibrium of 
(2), i.e., the trivial equilibrium of (3), shall be investigated. While investigating 
the stability, Lyapunov-Razumikhin method developed by Akhmet and Aruğaslan 
(2009) for EPCAG will be taken into account. Since the epidemic equation (2) with 
GPCA corresponds to many logistic equations, the stability examinations performed 
in current section have an importance.

From now on, based on the Lyapunov-Razumikhin method developed by Akhmet 
and Aruğaslan (2009), the next theorems give sufficient conditions for the uniform 
stability of the trivial equilibrium and the positive equilibrium of (2), respectively.

Theorem 4 Assume that the conditions (A1)-(A4) and (A7)-(A10) are satisfied. 
Then, the trivial equilibrium of (2) is uniformly stable in Ω.

Proof: Based on Definition 1.4 in the paper which contains Lyapunov-Razumikhin 
method developed by Akhmet and Aruğaslan (2009), construct the following 
positive definite Lyapunov function

V(x(t))=x2(t)	 (12)
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Functions u v, ,∈  can be found such that u x V x v x x� � � � � � � � �, � . 
Now, let us evaluate the derivative of (12) for t≠θi i∈N0:

� � � � �� �� � � � � � � � � �� �� � � � �
� � � �

V x t x t x t f x t x t cx t

x t f x t

, ,� �2 1 2

2 1

2

�� � � �� �� � � � � � � �� � � � �

� � � � � � � ��
, ,

,

x t x t f x t cx t

x t f x t x t

�

�

2 1 0 2

2 1

2

��� � � � � �� � � � �
� � � � �� � � � � � � � � � �

f x t cx t

x t x t cx t x t x t

1 0 2

2 2 2

2

2

,

 � 22 2
2 2cx t c x t� � � � �� � � �

	

whenever x(β(t))≤x(t). Thus, by Theorem 2.4 in (Akhmet & Aruğaslan, 2009), the 

trivial equilibrium of (2) is uniformly stable if 
c


≥1 . Thus, the condition (A10) 

signs that the trivial equilibrium of (2) is uniformly stable. 

Theorem 5 Assume that the conditions (A1)-(A10) are satisfied. Then, the trivial 
equilibrium of (3) (i.e., positive equilibrium of (2)) is uniformly stable.

Proof: Based on Definition 1.4 in the paper which contains Lyapunov-Razumikhin 
method developed by Akhmet and Aruğaslan (2009), construct the following 
Lyapunov function

V(y(t))=y2(t).	 (13)

It is obvious that the Lyapunov function (13) is positive definite. Functions 
u v, ,∈  can be found such that u y V y v y y� � � � � � � � �,

*� . Now, let us 
evaluate the derivative of (13) for t≠θi i∈N0,

� �� � � �� �� � � � � � � � � � � � � � � �� � �� �
�

V y t y t y t y t y t f y t x y t x, ,
* *� �2 2 1

2ccy t y t cx y t f y t x y t x cy t

y t

2 2
2 2 1 2

2

� � � � � � � � � � � � � �� � �� � � � �

� �

* * *
, �

�� �� � � � � � � � � � �� � �� � � �� � �f x x y t f y t x y t x f x x cy t1 2 1 1 2
2* * * * * *

, , ,� �� �

� � � � � � � �� � � � � � � � � � � � � � �2 2 2 2 2 2
2 2 2 2 2

   y t y t y t cy t y t y t cy t� �� �� � � �2 2
2c y t

	

whenever |y(β(t))|≤|y(t)|. Therefore, based on Theorem 2.4 in (Akhmet & Aruğaslan, 
2009), the trivial equilibrium of (3) is uniformly stable, in other words, the positive 

equilibrium point x* of (2) is uniformly stable if 
c


≥ 2 . Thus, by condition (A10), 
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the trivial equilibrium of (3), in other words, the positive equilibrium of (2), is 
uniformly stable (Akhmet & Aruğaslan, 2009). 

From now on, based on the Lyapunov-Razumikhin method developed by Akhmet 
and Aruğaslan (2009), the next theorems give sufficient conditions for the uniform 
asymptotic stability of the trivial equilibrium and the positive equilibrium of (2).

Theorem 6 Assume that the conditions (A1)-(A4) and (A7)-(A10) are satisfied. 
Then, the trivial equilibrium of (2) is uniformly asymptotically stable.

Proof: Based on Definition 1.4 in the paper which contains Lyapunov-Razumikhin 
method developed by Akhmet and Aruğaslan (2009), construct the following 
positive definite Lyapunov function

V(x(t))=x2(t)	 (14)

Functions u v, ,∈  can be found such that u x V x v x x� � � � � � � � �, � . 
Based on Theorem 2.5 developed by Akhmet and Aruğaslan (2009), it can be said 
that the trivial equilibrium of (2) is uniformly asymptotically stable. In detail, let 

us take a constant h1  such that 1 1� �h
c


. Then, for � s s� � � h12
,  

w s c s� � � �� �2
1

2
h , let us evaluate the derivative of (14) for t≠θi i∈N0. 

� � � � �� �� � � � � � �� � � � �
� � � � � � �
V x t x t x t x t cx t

x t x t cx t

, � �2 2

2 2

2

1

2



 h �� � � �� � � �2
1

2c x th
	

whenever x t x t� � �� � � � �h
1

.  Here, φ is a continuous nondecreasing function such 
that φ(s)>s for s>0, and w∈.  Thus, condition (A10) signs that the trivial 
equilibrium of (2) is uniformly asymptotically stable. 

Theorem 7 Assume that the conditions (A1)-(A10) are satisfied. Then, the trivial 
equilibrium of (3) (i.e., positive equilibrium of (2)) is uniformly asymptotically 
stable.

Proof: Based on Definition 1.4 in the paper which contains Lyapunov-Razumikhin 
method developed by Akhmet and Aruğaslan (2009), construct the following 
Lyapunov function

V(y(t))=y2(t).	 (15)
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It is obvious that the Lyapunov function is positive definite. It can be found 
functions u v, ∈  such that u y V y v y y� � � � � � � � �,

*� . Based on Theorem 
2.5 developed by Akhmet and Aruğaslan (2009), it is said that the trivial equilibrium 
of (3) is uniformly asymptotically stable. In detail, let us take a constant h2  such 

that 1 1
2

� � �h
c


. Then, for � s s� � � h2

2
,  w s c s� � � � �� �� �2 1

2

2
 h , let us 

evaluate the derivative of (15) for t≠θi i∈N0.

� � � � �� �� � � � � � � � � �� � � � �
� � � �
V y t y t y t y t y t cy t

y t

, � �2 2 2

2 2

2 2

2

 

 h
22

2 2

2

2
2 2 1y t cy t c y t� � � � � � � � �� �� � � � h

	

whenever y t y t� � �� � � � �h
2

.  Here, φ is a continuous nondecreasing function 

such that φ(s)>s for s>0, and w∈.  Thus, by the condition (A10), the trivial 
equilibrium of (3), in other words, the positive equilibrium of (2), is uniformly 
asymptotically stable (Akhmet and Aruğaslan, 2009). 

FUTURE RESEARCH DIRECTIONS

In this chapter, a nonlinear epidemic model is developed by using the piecewise 
function β(t) as deviating argument. As a subject of future research, this model can 
be developed by EPCAG taking the piecewise function γ(t) as deviating argument, 
or by functional differential equations. Alternatively, different models may be 
subjected to similar analysis by developing them with the help of EPCAG or of 
functional differential equations.

CONCLUSION

The present chapter addresses a nonlinear epidemic equation modeled by differential 
equations with GPCA. The importance of developing and analyzing this model 
can be seriously understood by looking at the literature. Because, it is obvious that 
the model studied in this chapter is remarkable in order to control the health of the 
population and to examine the spreading behaviors of diseases. Furthermore, modeling 
this equation by a generalized piecewise constant argument which makes it possible 
to have knowledge about effects on the structures of past behaviors is a sign of the 
value of the results achieved in the chapter. Because, the effect of a past value of 
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real life problems on current behavior can be very serious. Even, the past situation 
of systems can change their current situation seriously. Therefore, the arguments 
chosen during the construction of models are very important. In this respect, the 
deviation argument considered for the nonlinear epidemic model in the present chapter 
is remarkable and it is obvious that it contributes to the development of model. The 
generalized piecewise constant argument provides a more natural approach. In the 
chapter, the fact that model contains such an argument makes it difficult to attain 
an explicit equation for its behavior. Therefore, analyzing the nonlinear epidemic 
model without reaching an explicit form of its solution has a facilitating effect. In this 
direction, the analysis of the equation studied in the chapter is performed with the 
help of Lyapunov-Razumikhin method without the need to reach its exact solution. 
It is seen that this method developed by Akhmet and Aruğaslan (2009) for EPCAG 
is very useful. Because, for the analysis of the model with GPCA, computations 
and operations performed in the sense of this method can be preferred conveniently 
compared to other methods in the literature.
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KEY TERMS AND DEFINITIONS

Epidemic: The occurrence of more cases of disease, injury or other health 
condition than expected in a given area or among a specific group of persons during 
a particular period. The cases are usually presumed to have a common cause or to 
be related to one another in some way.

GPCA: Generalized piecewise constant argument is a deviation argument which 
is a piecewise function considered in differential equations with piecewise constant 
argument of generalized type.

Outbreak: Sometimes distinguished from an epidemic as more localized, or the 
term less likely to evoke public panic.
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Population Dynamics: Population dynamics is the branch of life sciences that 
studies the size and age composition of populations as dynamical systems, and the 
biological and environmental processes driving them (such as birth and death rates, 
and by immigration and emigration). Example scenarios are ageing populations, 
population growth, or population decline.

SIS (Susceptible-Infected-Susceptible): It is a simple mathematical model of 
epidemics.

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  10

209

DOI: 10.4018/978-1-7998-0134-4.ch010

ABSTRACT

This work studies the singular Hahn-Dirac system given by
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Here 𝜇 is a  complex spectral parameter, p(.) and r(.) are real-valued continuous 
functions at 𝜔0, defined on [𝜔0,∞) and q∈(0,1), ω ω

0 1:= − q , 𝜔>0, x∈[𝜔0,∞). The 

existence of a spectral function for this system is proved. Further, a Parseval equality 
and an expansion formula in eigenfunctions are proved in terms of the spectral 
function.
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INTRODUCTION

The theory of Hahn difference operator was introduced by Hahn in 1949; see the 
papers (Hahn, 1949,1983). This operator provides a unifying structure for the study 
of the forward difference operator defined by

∆ω

ω
ω

f x
f x f x

x x
x( ) = +( ) ( )
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and the study of the quantum q-difference operator (Jackson, 1910) defined by
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−

≠: , . 0 	

Recently, Hahn difference operators are receiving an increase of interest due 
to their applications in the construction of families of orthogonal polynomials and 
approximation problems (see Alvarez-Nodarse, 2006; Dobrogowsa & Odzijewicz, 
2006; Kwon, Lee, Park & Yoo, 1998; Lesky, 2005; Petronilho, 2007 and the 
references therein).

In the literature there exist some papers studying the Hahn difference operator. 
The theory of linear Hahn difference equations was developed in the paper (Hamza 
& Ahmed, 2013). In (Hamza & Ahmed, 2013), the authors also study the existence 
and uniqueness of the solution for initial value problems related to Hahn difference 
equations. Hamza and Makharesh (Hamza & Makheresh, 2016) investigated Leibniz’s 
rule and Fubini’s theorem associated with the Hahn difference operator. The nonlocal 
boundary value problem for nonlinear Hahn difference equation was developed in 
the paper (Sitthiwirattham, 2016). In 2018, (Annaby, Hamza & Makherseh, 2018), 
the regular Hahn-Sturm-Liouville problem
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D D y x v x y x y x
q q qω ω λ

, , , 	

a y a D y
q q1 0 2 01 1 0ω ω

ω( ) + ( ) =− − −,
, 	

b y b b D y b
q q1 2 1 1 0( ) + ( ) =− − −ω ,

, 	
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has been studied, where ω λ0 1 2≤ ≤ ∈ ∈ = −∞ ∞( ) =x b a b ii i, , , : , , ,      C R  and 
v(.) is a real-valued continuous function at ω0, defined on [ω0,b]. Annaby et al. 
(Annaby, Hamza & Makherseh, 2018) defined a Hilbert space of ω,q- square 
summable functions. The authors discussed the formulation of the self-adjoint 
operator and the properties of the eigenvalues and the eigenfunctions. Furthermore, 
the authors constructed the Green’s function and gave an eigenfunction expansion 
theorem. This equation is reduced to classic Sturm-Liouville problem when ω→0 
and q→1. The French mathematicians Sturm and Liouville were introduced first 
this problem in 1837 (Sturm & Liouville, 1837). Since then this field is an active 
field of research. For a deeper discussion of this theory we refer the reader to (Zettl, 
2005; Amrein, Hinz & Pearson, 2005; Mukhtarov & Aydemir, 2018; Aydemir, 
Olgar, Mukhtarov & Muhtarov, 2018; Olgar, Mukhtarov & Aydemir, 2018; Aydemir 
& Mukhtarov, 2017; Allahverdiev, Eryılmaz & Tuna, 2017; Tuna, 2014, 2016; Tuna 
& Özek, 2017; Tuna & Eryılmaz, 2013).

In (Hira,2018), the author introduced the ω,q- analogy of the regular Dirac system

0 1

0

0
0

1 1 1

2

1
−























 +

( )
( )











− − −q
D

D

y
y

p x
r x

yq q

q

ω

ω

,

,
yy

y
y

x b
2

1

2
0









 =









 ∈( )µ ω, , , 	

where μ is a complex spectral parameter, p(.) and r(.) are real-valued continuous 
functions at ω0, defined on ([ω0,b), ω0<b<∞ where q∈(0,1) and ω>0. Hira investigated 
the existence and uniqueness of the solutions for this problem and gave its spectral 
properties. This system is reduced to classic Dirac system when ω→0 and q→1. 
Now, we give some information related to the physical meaning of classic dirac 
system. The Dirac system is the most important system in quantum mechanics. 
This system formulates the fundamental physics of realistic quantum mechanics. 
It predicts the existence of antimatter and gives a description of the electron spin. 
The spectral properties of the Dirac systems have been considered in (Levitan & 
Sargsjan, 1991; Weidmann, 1987; Stone, 1926, 1930; Thaller, 1992).

In mathematical physics, when a partial differential equation is solved by the 
method of separation of variables, the problem of expanding an arbitrary function 
as a series of eigenfunctions is matched. Thus the spectral expansion theorems are 
essential for solving various problems in mathematics. The first paper for the spectral 
expansion problem were done by Weyl in 1910 (Weyl,1910). Since then, by several 
methods, a lot of authors have studied such problems. For instance, by the methods 
of integral equations, contour integration and finite difference (see Allahverdiev 
& Tuna, 2018a, 2018b, 2019a, 2019b, 2019c, 2019d, 2019e ; Berezanskii, 1968; 
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Levitan & Sargsjan, 1991; Guseinov, 2007, 2008; Levinson, 1951 ; Titchmarsh, 
1962; Yosida 1950, 1960;).

It is the purpose of this paper to develop the spectral theory of singular Hahn-Dirac 
system. For this system, the existence of a spectral function is proved. A Parseval 
equality and an expansion formula in eigenfunctions are established.

PRELIMINARIES

In this section, some preliminary materials related to the Hahn calculus are provided. 
For more details, the reader may refer to (Annaby, Hamza & Aldwoah, 2012; Hahn, 
1949,1983) and (Annaby, Hamza & Makharesh, 2018). For the purposes here, it 
will be assumed that q∈(0,1) and ω>0.

Let ω ω
0 1:= − q  and I be a real interval containing ω0.

Definition 1 (Hahn, 1949,1983). Let f I: →  be a function. The Hahn difference 
operator is defined by

D f x
f qx f x

q x
x

f x
q

1
ω

ω
ω

ω

ω ω
,

,

-
( - )

, ,

,
( ) =

+( ) ( )
+

≠

( ) =









1 0

0 0

	

provided that f is differentiable at ω0. In this case, Dω,qf is called the ω,q- derivative of f.

Remark 2 The Hahn difference operator unifies two well known operators. When 
q→1, the forward difference operator is obtained, which is defined by

∆ω

ω
ω

f x
f x f x

x x
x( ) = +( ) ( )

+( )
∈:

-
-

,  � .	

When ω→0, the Jackson q- difference operator is obtained, which is defined by

D f x
f qx f x
qx x

xq ( ) = ( ) − ( )
−

≠: , . 0 	

Furthermore, under appropriate conditions, it is obtained that
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lim .,q q
1D f x f x

→
( ) = ( )

1 ω 	

Now some properties of the ω,q- derivative will be presented.

Theorem 3 (Annaby, Hamza & Makharesh, 2018) Let f g I, : →  be ω,q- 
differentiable at x∈I and h(x):=ω+qx. Then, we have

D af bg x aD f x bD g x a b Iq q qω ω ω, , , , , ,+( )( ) = ( ) + ( ) ∈ 	

D fg x D f x g x f xq D g xq q qω ω ωω, , , ,( )( ) = ( )( ) ( ) + +( ) ( ) 	

D f
g

x
D f x g x f x D g x

g x g xqq
q q

ω
ω ω

ω,
, , ,









( ) = ( )( ) ( ) − ( ) ( )

( ) +( )
	

D f h x D f x h x q xq q qω ω
ω, ,

, ,−
−

− −( )( ) = ( ) ( ) = −( )− −
1 1 1

1 1 	

for all x∈I. The ω,q- integral of the function f can be defined as follows.

Definition 4 (Jackson-Nörlund Integral (Annaby, Hamza & Makharesh, 2018 ). 
Let f I: →  be a function and a,b,ω0∈I. The ω,q- integral of the function 
f from a to b is defined by

a

b

q

b

q

a

qf x d x f x d x f x d x∫ ∫ ∫( ) = ( ) − ( )ω
ω

ω
ω

ω, , ,:
0 0

	

where

ω
ω ω ω

0

1 1
10

x

q
n

n
n

nf t d t q x q f q
q

xq x I∫ ∑( ) = −( ) −( ) −
−

+ ∈
=

∞

, : ( ),  	

provided that the series converges at x=a and x=b. In this case, f is called ω,q- 
integrable on [a,b].

Similarly, one can define the ω,q- integral of the function f over [ω0,∞) by 
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ω
ω

ω
ω

0 0

∞

→∞∫ ∫( ) = ( )f x d x f x d xq b

b

q, ,: lim .	

The following properties of ω,q- integration can be found in (Annaby, Hamza 
& Makharesh, 2018).

Theorem 5 (Annaby, Hamza & Makharesh, 2018) Let f g I, : →  be ω,q- 
integrable on I and let a,b,c∈I, a<c<b and α β, .∈  Then, the following 
formulas hold:
i) 	 D af bg x aD f x bD g x a b Iq q qω ω ω, , ,( )( ) ( ) ( ), ,+ = + ∈
ii) 	 D fg x D f x g x f xq D g xq q qω ω ωω, , ,( )( ) ( ) ( ) ( ) ( )= ( ) + +

iii) 	 D f
q

x
D f x q x f x D g x

g x g xqq
q q

ω
ω ω

ω,
, ,( )

( ) ( ) ( ) ( )
( ) ( )









 =

( ) −

+
iv) 	 D f h x D f x h x q xq q qω ω

ω, ,
( ) ( ), ( ) ( )−

−
− −( ) = = −− −

1 1 1
1 1

Now the ω,q- integration by parts is presented.

Lemma 6 (Annaby, Hamza & Makharesh, 2018) Let f g I, : →  be ω,q- integrable 
on I and let a,b∈I where a<b. Then, the following formula holds:

a

b

q q
a

b

q qf x D g x d x g qx D f x d x f b g b f a∫ ∫( ) ( ) + +( ) ( ) = ( ) ( ) − ( )ω ω ω ωω, , , , gg a( ). 	

The next result is the fundamental theorem of Hahn calculus.

Theorem 7 (Annaby, Hamza & Makharesh, 2018) Let f I: →  be continuous 
at ω0. Define

F x f t d t x I
x

q( ) = ( ) ∈∫: , .,
ω

ω

0

 	

Then F is continuous at ω0. Moreover, Dω,qF(x) exists for every x∈I and 
Dω,qF(x)=f(x). Conversely,
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a

b

q qD F x d x f b f a∫ ( ) = ( ) − ( )ω ω, , . 	

Let L qω ω, ( , )2
0 ∞  be the space of all complex-valued functions defined on [ω0,∞) 

such that

f f x d xq: .,= ( )










< ∞
∞

∫
ω

ω

0

2

1
2

	

The space L qω ω, ( , )2
0 ∞  is a separable Hilbert space with the inner product

f g f x g x d x f g Lq q, : , , ( , ),, ,= ( ) ( ) ∈ ∞
∞

∫
ω

ω ω ω
0

2
0 	

(see Annaby, Hamza & Makharesh, 2018).
We introduce a convenient Hilbert space ω ω ω, , (( , ); ) :q qL E E= ∞ =( )2

0
2  of 

vector-valued functions by using the inner product

f g f x g x d x

f x g x d x f x

E q

q

, : , ,

,

( ) = ( ) ( )( )

= ( ) ( ) + ( )

∞

∞ ∞

∫

∫ ∫

ω
ω

ω
ω

ω

0

0 0

1 1 2 gg x d xq2 ( ) ω ,

,	

where

f x
f x
f x

g x
g x
g x q( ) = ( )

( )








 ( ) = ( )

( )








∈

1

2

1

2

, ., ω 	

Let y x
y x
y x

z x
z x
z x

( ) = ( )
( )









 ( ) = ( )

( )










1

2

1

2

, . 

Then, the Wronskian of y(x) and z(x) is defined by the formula

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



216

The Parseval Equality and Expansion Formula for Singular Hahn-Dirac System

W y z x y x z h x z x y h x x, , [ , ).( )( ) = ( ) ( )( ) − ( ) ( )( ) ∈ ∞− −
1 2

1
1 2

1
0 ω 	

Definition 8 A matrix-valued function M(x,t) of two variables with ω0≤x,t≤b is 
called the ω,q- Hilbert-Schmidt kernel if

ω ω
ω ω

0 0

2
b b

E q qM x t d xd t∫ ∫ ( ) < +∞, ., , 	

Theorem 9 (Kolmogorov & Fomin, 1970) Let wn n( ) ∈
 be a uniformly bounded 

sequence of real non-decreasing functions on a finite interval a≤μ≤b, where 
 : , , , .= …{ }1 2 3  Then, there exist a subsequence wn kk( )

∈
 and a non-

decreasing function w such that

lim , .
k nw w a b

k→∞
( ) = ( ) ≤ ≤µ µ µ 	

Theorem 10 (Kolmogorov & Fomin, 1970) Assume that wn n( ) ∈
 is a real, uniformly 

bounded sequence of non-decreasing functions on a finite interval a≤μ≤b, 
and suppose that

lim , .
n nw w a b
→∞

( ) = ( ) ≤ ≤µ µ µ 	

If f is any continuous function on a≤μ≤b, then

lim .
n

a

b

n
a

b

f dw f dw
→∞ ∫ ∫( ) ( ) = ( ) ( )µ µ µ µ 	

Theorem 11 (Naimark, 1968) If

i k
ika

, =

∞

∑ < ∞
1

2 	 (1)

then the operator A defined by the formula A{xi}={yi}, i=1,2,…, where

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



217

The Parseval Equality and Expansion Formula for Singular Hahn-Dirac System

y a x ii
k

ik k= = …
=

∞

∑
1

1 2, , , 	 (2)

is compact in the sequence space l2.

Regular System

In this section, regular Hahn-Dirac system is studied.
The Hahn-Dirac system has the form

0 1

0

0
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 =
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 ∈ ∞( )µ ω, , . 	

(3)

Here μ is a complex spectral parameter, p(.) and r(.) are real-valued continuous 
functions at ω0, defined on [ω0,∞) where q∈(0,1) and ω>0. 

The system (3) with the boundary conditions

y y1 0 2 0 0ω µ β ω µ β β, sin , cos , ,( ) + ( ) = ∈  	 (4)

y q y q ss s
2 0 1 0 0ω µ α ω µ α α+( ) + +( ) = ∈ ∈− −, cos , sin , , , R N 	 (5)

is a regular boundary-value problem.

Theorem 12 The boundary value problem (3)-(5) has a compact resolvent operator, 
thus it has a purely discrete spectrum.

Proof Denote by

ϕ µ
ϕ µ
ϕ µ1

11

12

x
x
x

,
,
,

( ) = ( )
( )









 	

And
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ϕ µ
ϕ µ
ϕ µ2

21

22

x
x
x

,
,
,

( ) = ( )
( )









 	

respectively, the solution of the system (3) which satisfies the initial conditions 

ϕ ω µ β ϕ ω µ β11 0 12 0, cos , , sin ,( ) = ( ) = − 	 (6)

ϕ ω µ α ϕ ω µ α21 0 22 0+( ) = +( ) = −− −q qs s, cos , , sin . 	

Let us define the Green’s matrix by the formula

G x t
 
 

, ,
,

, , ,
, , ,

µ
ϕ ϕ

ϕ µ ϕ µ
ϕ µ ϕ µ

( ) = ( )
( ) ( ) ≤

( ) ( ) <
1

1 2

2 1

1 2W
x t t x
x t x t

T

T




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	 (7)

It will be proved that the function

y x G x t f t d t
q

q

s

, , , ,µ µ
ω

ω

ω( ) = ( ) ( )
+ −

∫
0

0

	 (8)

is the solution of the non-homogeneous system

− + ( ) −{ } = ( )−
− − −q D y p x y f x
q q

1
2 1 11 1ω

µ
,

, 	 (9)

D y r x y f xqω µ, ,1 2 2+ ( ) −{ } = ( ) 	 (10)

where

f
f
f

L q Eq
s.

.

.
(( , ); ),,( ) = ( )

( )








∈ + −1

2

2
0 0ω ω ω 	

which satisfies the boundary conditions (4)-(5).
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It follows from (8) that

y x
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From (11), we have
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The validity of (9) is proved similarly. Hence the function y(x,μ) in (8) is the 
solution of the system (9)-(10). It is checked at once that (8) satisfies the boundary 
conditions (4)-(5). Without loss of generality, assume that μ=0 is not an eigenvalue. 
Then, we have

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



220

The Parseval Equality and Expansion Formula for Singular Hahn-Dirac System

G x t G x t
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Now, it will be shown that G(x,t) defined by (13) is a Hilbert-Schmidt kernel. 
By the upper half of the formula (13), we have

ω

ω

ω
ω

ω

0

0

0

2
+ −

∫ ∫ ( ) < ∞
q

q

x

E q

s

d x G x t d t, ,, ; 	

and by the lower half of (13), we have

ω
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ω

0

0 0 2
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∫ ∫ ( ) < ∞
q

q
x

q

E q

s s

d x G x t d t, ,, 	

since the inner integral exists and is a linear combination of the products φij(x,0)
φkl(t,0)(i,j,k,l=1,2), and these products belong to

L q L qq
s

q
s

ω ωω ω ω ω, ,( , ) ( , )2
0 0

2
0 0+ × +− − 	

because each of the factors belongs to L qq
s

ω ω ω, ( , ).2
0 0 +

−  Then, we obtain

ω

ω

ω

ω

ω ω

0

0

0

0 2
+ +− −

∫ ∫ ( ) < ∞
q q

E q q

s s

G x t d xd t, ,, , 	 (14)

i.e., G(x,t) is a Hilbert-Schmidt kernel.
Now, it will be shown that the operator K defined by the formula

Kf x G x t f t d t
q

q

s

( )( ) = ( ) ( )
+ −

∫
ω

ω

ω

0

0

, , 	

is compact in L q Eq
s

ω ω ω, (( , ); ).2
0 0 +

−

Let ψ ψi i t i= ( ) ∈(   be a complete, orthonormal basis of L q Eq
s

ω ω ω, (( , ); ).2
0 0 +

−  
Since G(x,t) is a Hilbert-Schmidt kernel, we can define
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x f f t t d ti i
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0

0
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Then, L q Eq
s

ω ω ω, (( , ); )2
0 0 +

−  is mapped isometrically into l2. Consequently, 
the integral operator transforms to the operator defined by the formula (2) in the 
space l2 by this mapping, and the condition (14) is translated into the condition (1). 
It follows from Theorem 11 that this operator is compact. Therefore, the original 
operator is compact and has a purely discrete spectrum.

Construction of the Spectral Function

In this section, the existence of a spectral function is proved.
Denote by Φ(x,μ) the solution of the system (3) subjected to the initial conditions

Φ Φ1 0 2 0ω µ β ω µ β, cos , , sin .( ) = ( ) = − 	

Let us denote by µ
m q s, −  the eigenvalues of the problem (3), (4), (5), and by

Φ
Φ

Φ

Φ
Φ

m q

m q

m q

m qs

s

s

sx
x

x
x

x
,

,

,

,
,−

−

−

−( ) =
( )
( )














= ( ) =

( )

( )

1

2

1
µ

,,

,

,

,

µ

µ

m q

m q

s

sx

−

−

( )
( )













Φ2

	

the corresponding eigenfunctions which satisfy the conditions (4) and (5), where 
m∈ = ± ± …{ }( ) : , , , .0 1 2  If

f x
f x
f x

f x f x d x
q

q

s

( ) = ( )
( )









 ( ) + ( )( ) < ∞

+ −

∫1

2
1
2

2
2

0

0

, ,,
ω

ω

ω 	
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and 

α
ω

ω

ωm q

q

m q m q qs

s

s sx x d
, , , ,−

−

− −= ( )( ) + ( )( )







+
( ) ( )∫2 1 2 2 2

0

0

Φ Φ xx, 	

i.e., if f L qq
s. (( , ); ),,( )∈ + −

ω ω ω2
0 0

2  then we have

ω

ω

ω

ω

ω

α

0

0

0

0

1
2

2
2

2 1
1

+

=−∞

∞ +

−

−

−

∫

∑ ∫

( ) + ( )( )

= ( )

q

q

m m q

q

s

s

s

f x f x d x

f x

,

,

ΦΦ Φ
m q m q qs sx f x x d x

, , , ,− −
( ) ( )( ) + ( ) ( )( )













1
2

2

2

ω

	 (16)

which is called the Parseval equality.
Now let the non-decreasing step function 

q s−  on   be defined by


q

m q

m q

s

m q s s

m q s s

−

− −

− −

( ) =
− ≤

< <

≤ <

∑

∑
µ

α
µ

α

µ µ

µ µ

,

,

,

,

,

,

0
2

0
2

1 0

1

 for 

 ffor µ ≥













0.
	

Then, the equalities (16) can be written as

ω

ω

ω µ µ
0

0

1
2

2
2 2

+

−∞

∞−

−∫ ∫( ) + ( )( ) = ( ) ( )
q

q s q

s

sf x f x d x F d, , 	 (17)

where

F f x x f x x d xs

q

q

s

µ µ µ
ω

ω

ω( ) = ( ) ( ) + ( ) ( )( )
+ −

∫
0

0

1 1 2 2Φ Φ, , ., 	

It will be shown that the Parseval equality for the problem (3), (4) can be obtained 
from (17) by letting s→∞. For this aim, a lemma will be proved.
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Lemma 13 For any positive κ, there is a positive constant M=M(κ) not depending 
on q-s such that

∨
κ

κ

κ µ κ

µ
α

κ κ
−

− < <
−

− −

− −( ){ } = = ( ) − −( ) <∑  
q

m q
q qs

m q s s

s s M
, ,

.1
2 	 (18)

Proof Let sinβ≠0. Since Φ2(x,μ) is continuous on the region

x x a a, : , , ,µ κ µ κ ω ω( ) − ≤ ≤ ≤ ≤ + >{ }0 0 0 	

by the condition Φ2(ω0,μ)=-sinβ there is a positive number h and near by 0 such that

1 1
2

0

0

2

2

2

h
x d x

h

q
ω

ω

ωµ β
+

∫ ( )









>Φ , (sin ) ., 	 (19)

Let us define

f x
f x
f xh
h

h
( ) = ( )

( )










1

2

	

by

f x f x h
x h

x hh h1 2 00
1

0
( ) = ( ) =

≥






≤ <,

,

, .
ω 	

From (17), (18) and (19), we get

ω

ω

ω
ω

ω

ωµ
0

0

0

0

1
2

2
2

2
1 1+

−∞

∞ +

∫ ∫ ∫( ) + ( )( ) = ( )
h

h h q

h

qf x f x d x
h h

x d x, ,,Φ






 ( )

≥ ( )










−

−

−

+

∫ ∫

2

2

2
1

0

0

d

h
x d x d

q

h

q q

s

s





µ

µ µ
κ

κ

ω

ω

ωΦ , , (( ) > ( ) − −( ){ }− −

1
2

2(sin ) ,β κ κ 
q qs s
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which proves the inequality (18).

If sinβ=0, then the function f x
f x
f xh
h

h
( ) = ( )

( )










1

2

 is defined by the formula

f x h
x h

x h f xh h1 0 2

1

0
0( ) =

≥






≤ < ( ) =,

, .
, . ω 	

Thus we obtain the inequality (18) by applying the Parseval equality.
Let   be any non-decreasing function on -∞<μ<∞. Denote by L

2 ( )  the 
Hilbert space of all functions f : →  which are measurable with respect to the 
Lebesque-Stieltjes measure defined by   and such that

−∞

∞

∫ ( ) ( ) < ∞f d2 µ µ 	

with the inner product

f g f g d, : .( ) = ( ) ( ) ( )
−∞

∞

∫
µ µ µ 	

The Parseval Equality and Spectral Expansion Theorem

The main result of this work is the following theorem.

Theorem 14 For the singular Hahn-Dirac system (3)-(4), there exists a non-decreasing 
function  µ( )  on -∞<μ<∞ with the following properties:

(i) If f
f
f

L qq
s.

.

.
(( , ); ),,( ) = ( )

( )








∈ + −1

2

2
0 0

2
ω ω ω   there exists a function 

F L∈ ( )
2   such that

lim , , ,s

q

qF f x x f x x d x
s

→∞
−∞

∞ +

∫ ∫( ) − ( ) ( ) + ( ) ( )( )



−

µ µ µ
ω

ω

ω

0

0

1 1 2 2Φ Φ








( ) =d µ 0 	

(20)
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and the Parseval equality

ω
ω µ µ

0

1
2

2
2 2

∞

−∞

∞

∫ ∫( ) + ( )( ) = ( ) ( )f x f x d x F dq,  	 (21)

holds.

(ii) 	 The integrals 
−∞

∞

∫ ( ) ( ) ( )F x dµ µ µΦ1 ,   and 
−∞

∞

∫ ( ) ( ) ( )F x dµ µ µΦ2 ,   

converge to f1 and f2 in L qω ω, ( , ),2
0 ∞  respectively. That is,

lim , ,,n
n

n

qf x F x d d x
→∞

∞

−
∫ ∫( ) − ( ) ( ) ( )








 =

ω
ωµ µ µ

0

1 1

2

0Φ  	

lim , .,n
n

n

qf x F x d d x
→∞

∞

−
∫ ∫( ) − ( ) ( ) ( )








 =

ω
ωµ µ µ

0

2 2

2

0Φ  	

Note that the function   is called a spectral function for the singular system 
(3)-(4).

Proof Assume that the function f x
f x
f xξ
ξ

ξ

( ) = ( )
( )











1

2

 satisfies the following conditions.

1) 	 f xξ ( )  vanishes outside the interval [ , ], .ω ω ξ ξ
0 0 + <− − −q q q s 

2) 	 The functions f xξ ( )  and D f xqω ξ, ( )  are continuous at ω0. 
3) 	 f xξ ( )  satisfies the boundary conditions (4) and (5).

If we apply to f xξ ( )  the Parseval equality (17), then we obtain

ω

ω

ξ ξ ω ξ

ξ

µ µ
0

0

1
2

2
2 2

+

−∞

∞−

∫ ∫( ) + ( )( ) = ( ) ( )
q

qf x f x d x F d, , 	 (22)

where
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F f x x f x x d x
q

qξ
ω

ω

ξ ξ ωµ µ µ
ξ

( ) = ( ) ( ) + ( ) ( )( )
+ −

∫
0

0

1 1 2 2Φ Φ, , ., 	 (23)

Since Φ(x,μ) satisfies the system (3), it is seen that

Φ Φ Φ1
1

2 1
1

1 1x q D x p x x
q q

, , , ,
,

µ
µ

µ µ
ω( ) = − ( ) + ( ) ( )( )−
− − − 	

Φ Φ Φ2 1 2
1x D x r x xq, , , .,µ
µ

µ µω( ) = ( ) + ( ) ( )( ) 	

By (23), we get

F
f x q D x p x x

f x D

q q
ξ

ξ ω

ξ

µ
µ

µ µ
( ) =

( ) − ( ) + ( ) ( )( )(
+ ( )

−
− − −1 1

1
2 1

2

1 1,
, ,Φ Φ

ωω ωω

ω

µ µ, ,, ,q q

q

x r x x d x

s

Φ Φ1 20

0

( ) + ( ) ( )( ))
+ −

∫ 	

Since f xξ ( )  vanishes in a neighborhood of the point ω0+q-s and, f xξ ( )  and 
Φ(x,μ) satisfy the boundary condition (15), we obtain

F
x q D f x p x f x

x D

q q
ξ

ω ξ ξ
µ

µ

µ

µ
( ) =

( ) − ( ) + ( ) ( )( )(
+ ( )

−
− − −1 1

1
2 1

2

1 1Φ

Φ

,

,

,

ωω ξ ξ ωω

ω

, ,q q

q

f x r x f x d x

s

1 20

0

( ) + ( ) ( )( ))
+ −

∫ ,	

via ω,q- integration by parts. For any finite κ>0, by using (17), we have

F d

x q D f x

q

q

q q

s

s

ξ
µ κ

ω

ω

ω ξ

µ µ

κ

µ

2

2

1
1

21
0

0

1 1

( ) ( )

≤
( ) − ( )

−

−

− −

>

+
−

−

∫

∫



Φ ,
,

++ ( ) ( )( )(





+ ( ) ( ) + ( ) ( )( ) }

p x f x

x D f x r x f x d xq q

1

2 1 2

2

ξ

ω ξ ξ ωµΦ , , , dd
q s − ( )

>
∫

µ
µ κ
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≤
( ) − ( ) + ( ) ( )( )(






−
−

+

− −

−

∫1
2

1
1

2 11 1

0

0

κ

µ
ω ξ ξ

ω

ω

Φ x q D f x p x f x
q q

q s

,
,



+ ( ) ( ) + ( ) ( )( )) ( )

=

} −

−∞

∞

∫
Φ2 1 2

2

2

1

x D f x r x f x d x dq q q s, , ,µ µ

κ

ω ξ ξ ω

ω



00

0

1 1
1

2 1

2

1

ω

ω ξ ξ ω ξ

ξ+
−

−

−

− −∫ − ( ) + ( ) ( )( ) + ( ) + (
q

q q qq D f x p x f x D f x r x
, , )) ( )( )






f x d xq2

2

ξ ω , .

	

From (22), we see that

ω

ω

ξ ξ ω
κ

κ

ξ

ω

ω

ξ

µ µ

κ

0

0

0

0

1
2

2
2 2

2

1

+

−

−

−∫ ∫( ) + ( )( ) − ( ) ( )

≤

q

q q
f x f x d x F d s, 

++
−

−

−

− −∫ − ( ) + ( ) ( )( ) + ( ) + ( )
q

q q qq D f x p x f x D f x r x f
ξ

ω ξ ξ ω ξ
1

2 1

2

1 21 1, , ξξ ωx d xq( )( )







2

, .

	

(24)

By Lemma 13, the set 
q s− ( ){ }µ  is bounded. By using Theorems 9 and 10, we 

can find a sequence {q-s} such that the sequence 
q s− ( )µ  converges to a monotone 

function  µ( )  as s→∞. Passing to the limit with respect to {q-s} in (24), we get

ω

ω

ξ ξ ω
κ

κ

ξ

ω

ω

ξ

µ µ

κ

0

0

0

0

1
2

2
2 2

2

1

+

−

+

−

−

∫ ∫( ) + ( )( ) − ( ) ( )

≤

q

q

q

f x f x d x F d, 

ξξ

ω ξ ξ ω ξ ξ∫ − ( ) + ( ) ( )( ) + ( ) + ( ) (−
− − −q D f x p x f x D f x r x f x
q q q

1
2 1

2

1 21 1, , ))( )







2
d xqω , .

	

Hence, letting κ→∞, we obtain

ω

ω

ξ ξ ω ξ

ξ

µ µ
0

0

1
2

2
2 2

+

−∞

∞−

∫ ∫( ) + ( )( ) = ( ) ( )
q

qf x f x d x F d, . 	

Now, let f be an arbitrary function on L qω ω, (( , ); ).2
0

2∞   It is known that there 

exists a sequence f xξ ( ){ }  of functions satisfying the conditions 1-3 and such that
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lim .,ξ
ω

ξ ω→∞

∞

∫ ( ) − ( ) =
0

2
0f x f x d x

E q 	

Let

F f x x d xT

E qξ
ω

ξ ωµ µ( ) = ( ) ( )
∞

∫
0

Φ , ., 	

Then, we have

ω
ξ ξ ω ξ µ µ

0

1
2

2
2 2

∞

−∞

∞

∫ ∫( ) + ( )( ) = ( ) ( )f x f x d x F dq, . 	

Since

ω
ξ ξ ω ξ ξ

0

1 2

2

1 20
∞

∫ ( ) − ( ) → →∞f x f x d x
E q, , ,  as  	

we have

−∞

∞ ∞

∫ ∫( ) − ( )( ) ( ) = ( ) − ( ) →F F d f x f x d x
E qξ ξ

ω
ξ ξ ωµ µ µ

1 2

0

1 2

2 2
0 , 	

as ξ1,ξ2→∞. Consequently, there is a limit function F which satisfies

ω
ω µ µ

0

2 2
∞

−∞

∞

∫ ∫( ) = ( ) ( )f x d x F d
E q, , 	

by the completeness of the space L
2 ( ).

The next goal is to show that the sequence

K f x x f x x d x
q

qξ
ω

ω

ωµ µ µ
ξ

( ) = ( ) ( ) + ( ) ( ) 

+ −

∫
0

0

1 1 2 2Φ Φ, , , 	
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converges as ξ→∞ to F in the metric of the space L
2 ( ) . Let g be another function 

in L qω ω, (( , ); ).2
0

2∞   By similar arguments, let G(μ) be defined by g. It is clear 
that

ω
ω µ µ µ

0

2 2
∞

−∞

∞

∫ ∫( ) − ( ) = ( ) − ( ){ } ( )f x g x d x F G d
E q, . 	

Set

g x
f x x q

x q
( ) =

( ) ∈  

∈ ∞( )






−

−

, ,

, , .

 

 

ω ξ

ξ

0

0
	

Then, we have

−∞

∞ ∞

∫ ∫( ) − ( ){ } ( ) = ( ) + ( )( ) → →∞( )
−

F K d f x f x d x
q

qµ µ µ ξξ ω
ξ

2

1
2

2
2 0 , , 	

which proves that Kξ  converges to F in L
2 ( )  as ξ→∞. This proves (i).

Now, (ii) will be proved. Suppose that

f
f
f

g
g
g

L q.
.
.

, .
.
.

(( , );,( ) = ( )
( )









 ( ) = ( )

( )








∈ ∞1

2

1

2

2
0ω ω 22 ) 	

and, F(μ) and G(μ) are their Fourier transforms, respectively. Then F±G are the 
transforms of f±g. Consequently, by (21), we have

ω
ω µ µ

0

1 1
2

2 2
2

∞

−∞

∞

∫ ∫( ) + ( )  + ( ) + ( ) ( ) = ( ) + ( )f x g x f x g x d x F Gq, {{ } ( )2
d µ , 	

ω
ω µ µ

0

1 1
2

2 2
2

∞

−∞

∞

∫ ∫( ) − ( )  + ( ) − ( ) ( ) = ( ) − ( )f x g x f x g x d x F Gq, {{ } ( )2
d µ . 	
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Subtracting the second relation from the first, we get

ω
ω µ µ µ

0

1 1 2 2
2

∞

−∞

∞

∫ ∫( ) ( ) + ( ) ( )  = ( ) ( ) ( )f x g x f x g x d x F G dq,  	 (25)

which is called the generalized Parseval equality.
Set

f x
F x d

F x d
τ

τ

τ

τ

τ

µ µ µ

µ µ µ
( ) =

( ) ( ) ( )

( ) ( ) ( )


















−

−

∫

∫

Φ

Φ

1

2

,

,



 

, 	

where F is the function defined in (20). Let g
g
g

.
.
.

( ) = ( )
( )











1

2

 be a vector-function 

which is equal to zero outside the finite interval ω ω ϑ
0 0, ,+ 

−q  where ϑ∈.  
Thus we obtain

f g F x d g x d x
q

qτ
ω

ω

τ

τ

ω

ω

ϑ

µ µ µ, , ,( ) = ( ) ( ) ( )











( )

+

+

−

−

∫ ∫
0

0

1 1Φ 

00

0

2 2

ω

τ

τ

ω

τ

τ

ϑ

µ µ µ

µ

+

−

−

−

∫ ∫

∫
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From (25), we get
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f g F G d, .( ) = ( ) ( ) ( )
−∞

∞

∫ µ µ µ 	 (27

By (26) and (27), we have

f f g F G dτ
µ τ

µ µ µ−( ) = ( ) ( ) ( )
>
∫, . 	

By using the Cauchy-Schwarz inequality, we obtain

f f g F d G d F d Gτ
µ τ µ τ µ τ

µ µ µ µ µ µ−( ) ≤ ( ) ( ) ( ) ( ) ≤ ( ) ( )
> > > −∞

∞

∫ ∫ ∫ ∫,
2 2 2 2   22 µ µ( ) ( )d . 	

If this inequality is applied to the function

g x
f x f x x q

x q
( ) = ( ) − ( ) ∈ + 

∈ + ∞







−

−

τ
ϑ

ϑ

ω ω

ω

, , ,

, ( , ),

 

 
0 0

00
	

then we get

f f F dτ µ µ− ≤ ( ) ( )
−∞

∞

∫
2 2  . 	

Letting τ→∞ yields the desired results since the right-hand side does not depend 
on ϑ.
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ABSTRACT

The authors propose a nonlinear epidemic model by developing it with generalized 
piecewise constant argument (GPCA) introduced by Akhmet. The authors investigate 
invariance region for the considered model. For the taken model into consideration, 
they obtain a useful inequality concerning relation between the values of the solutions 
at the deviation argument and at any time for the epidemic model. The authors 
reach sufficient conditions for the existence and uniqueness of the solutions. Then, 
based on Lyapunov-Razumikhin method developed by Akhmet and Aruğaslan for 
the differential equations with generalized piecewise constant argument (EPCAG), 
sufficient conditions for the stability of the trivial equilibrium and the positive 
equilibrium are investigated. Thus, the theoretical results concerning the uniform 
stability of the equilibriums are given.
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INTRODUCTION

In the present chapter, the main objective is to provide information on the stability 
analysis of the susceptible-infected-susceptible (SIS) model established by Cooke 
(1979). This model is developed by GPCA which is defined by Akhmet (2007a, 
2007b). Firstly, invariance region for the considered equations with GPCA is 
investigated by the authors, respectively. The inequalities describing the relationship 
between the values received at this piecewise function and at any given time for 
the solutions of the models are given. This inequality is useful and important in 
the proofs of stability analysis in the sense of Lyapunov-Razumikhin method. It is 
aimed to obtain sufficient conditions guaranteeing the existence and uniqueness of 
the solutions of the proposed model. Afterwards, it is aimed to perform stability 
analysis with the help of Lyapunov-Razumikhin method developed by Akhmet and 
Aruğaslan (2009) (Aruğaslan, 2009) for EPCAG. Based on the relevant method, the 
conditions that guarantee the uniform stability and the uniform asymptotic stability 
of the trivial equilibrium and the positive equilibrium are presented. The obtained 
theoretical results depend on the parameters of the equation.

BACKGROUND

The mathematical evaluation of the problems encountered in real life and the 
interpretation of their past and future dynamics has been and continues to be a subject 
that attracted the attention of the scientific world. In this direction, it is possible 
to express these problems as mathematical models by differential equations. With 
the help of the qualitative theory of differential equations, informations about the 
behaviors of these models can be provided. However, the fact that these information 
presents distant results from the reality phenomenon strengthens the likelihood of 
misleading the behavior of real processes. In this situation, it is possible to reach the 
findings that will affect the life negatively by the models which do not fully reflect 
the dynamics of real life problems. In order to overcome this issue, it would be a 
step in the right direction to consider differential equations with deviation argument 
instead of ordinary differential equations. Because, differential equations with 
deviation argument improve models representing real life problems, and moreover 
they contribute to understanding how a situation in the past of these problems 
affect the current and subsequent state of them. In other words, the effects of a 
past value of the models that has been constructed and developed with the help of 
such equations on the current behavior can be observed. Therefore, the efforts to 
achieve the development of such equations have received considerable attention by 
many scientists. As a result of these efforts, the qualitative theory of such equations 
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has shown a serious development process. It is possible to see that this process 
introduces differential equations which have arguments such as delay, piecewise 
constant argument, generalized piecewise constant argument (Cooke & Wiener, 
1984; Akhmet 2007a, 2007b).

The use of such differential equations has led to the construction of remarkable 
models in many areas such as physics, engineering, medicine, biology, population 
dynamics, chemistry and economics. Thus, the scientific, technological, industrial 
and economic development of the society could be supported, and evaluations 
about the health of the society could be made possible. Of course, as time goes on, 
contributions to these supports and evaluations continue. Because, it is necessary to 
make different contributions to the changing problems of the developing world. In 
this respect, epidemic models can mathematically represent the problems encountered 
in the fields of medicine, biology and population dynamics. The negligence of the 
handling of such problems and the negligence of their scientific examination can 
affect the individuals and the development of the world with serious consequences. 
Because, the events affecting the health of the society directly concern people. It is 
not difficult to observe this fact. In order to understand the effects of the outbreaks 
affecting societies and cultures on populations, it is sufficient to examine the statistical 
numerals held in history. For this purpose, the following delayed SIS model

′( ) = −( ) − ( )  − ( )y t by t T y t cy t1 .	 (1)

was established by Cooke (1979). Here, b,c are positive and constant parameters 
corresponding to infection and recovery rates, respectively. The proportion of humans 
in the community who are infectious at time t and the proportion who are susceptible 
are denoted by y(t) and S(t) respectively. Then, Cooke (1979) takes y(t)+S(t)=1 by 
assuming that the infection in humans confers negligible immunity and does not 
result in death or isolation. At the end of this time expressed in this assumption, 
it is assumed that the vector can infect a susceptible human (Cooke, 1979; Huang 
et al., 2016). Additionally, denote by z(t) the number of infectious vectors in the 
community at time t according to Cooke (1979). The population is evaluated in two 
classes: susceptible and infectious. This evaluation supports homogeneous mixing 
of the vector and human populations (Busenberg & Cooke, 1980). The model (1) 
with delay is quite valuable epidemic model in population dynamics. So, this model 
has attracted the attention of many scientists.

According to Cooke (1979), the equation (1) with delay has representation of 
the proportion of infective individuals by considering the following assumptions 
arising from the dynamic of the spread of a communicable disease:
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(A) 	 The infection is transmitted by a vector like mosquito to individuals.
(B) 	 The infection in the individual gives an immunity, but does not cause death 

or isolation.
(C) 	 The population is fixed without considering the change in births, deaths and 

immigration to the population.
(D) 	 When a susceptible vector is infected by a person, there is a fixed time T during 

which the infectious agent develops in the vector. At the end of this time, the 
vector can infect a susceptible human.

(E) 	 Human and vector populations have a homogeneous mixing.
(F) 	 The rate of recovery of infected people is positive constant c.
(G) 	 Th vector population is very large and z(t) is simply proportional to y(t‑T). The 

infection is transmitted by a vector like mosquito to individuals.

In ligth of above descriptions and assumptions, the multiple of S(t)z(t) means the 
number of new infections per unit time, and so the time-dependent change of the 
proportion of infectious humans in the community is expressed by the differential 
equation (1) (Cooke, 1979).

In addition, differential equations have a theoretical background to examine 
the development of a process. The examination of structures only developed by 
ordinary differential equations may not yield the expected results. As a remedy to this 
situation, differential equations with deviation arguments can be used. Because, such 
equations allow the models to be established more closely to their nature. Moreover, 
the dynamics of the models can be analyzed in more detail by them. In this respect, 
EPCAG introduced by Akhmet is of great importance in order to understand the 
problems encountered in many areas better (Akhmet, 2007a, 2007b). The deviation 
argument defined in these differential equations is a piecewise function that provides 
certain properties. This piecewise function makes it possible to choose arbitrary 
argument and the difference between the arguments is arbitrary. Furthermore, this 
argument is a discontinuous argument. This includes a remarkable situation in the 
modeling of actual processes. The greatest integer function, which is considered as 
the deviation argument in the differential equations with piecewise constant argument, 
permits to take always one unit of change between the arguments. However, EPCAG 
have a more general form of deviation argument than the argument contained in the 
differential equations with piecewise constant argument. Such equations have enabled 
many theoretical and practical studies to be carried out (Akhmet, 2008a, 2008b, 2010, 
2011, 2014; Akhmet & Aruğaslan, 2009; Akhmet, Aruğaslan, & Yılmaz, 2010a, 
2010b; Aruğaslan, 2009; Aruğaslan & Cengiz, 2017, 2018; Aruğaslan & Güzel, 
2015). Besides, the construction of models with such differential equations brings 
about the process of examining the qualitative behaviors of these models. In this 
respect, there is an extensive literature on stability analysis of models. In this sense, 
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the stability of the systems without reaching their solutions can be examined in the 
light of Lyapunov-Razumikhin (1956) and Lyapunov-Krasovskii (1963) methods. 
While it is desired to approach the phenomenon of reality, the structures of the 
models become more complex. In this case, the usefulness of Lyapunov methods 
is obvious and noteworthy. Furthermore, the introduction of Lyapunov-Razumikhin 
method by Akhmet and Aruğaslan (2009) for EPCAG is noteworthy (Aruğaslan, 
2009). Because stability analysis with other methods for such equations brings 
about more intensive operations and calculations unlike Lyapunov-Razumikhin 
method for EPCAG.

As the subject of the present chapter, the model (1) is developed by EPCAG 
which is introduced by Akhmet (2007a, 2007b). Thus, under favour of the GPCA, 
the change between arguments can be arbitrarily chosen and so the model can 
be examined by a more natural approach. Basically, the authors aim to perform 
the stability examination for the developed model by GPCA. Then, the stability 
examinations with the help of Lyapunov-Razumikhin method for EPCAG (Akhmet 
& Aruğaslan, 2009) are performed for the epidemic model with GPCA. This method 
enables stability analysis to be performed more easily by requiring less operation.

MAIN FOCUS OF THE CHAPTER

Let R,N,N0 and R+ be sets of all real numbers, natural numbers, non-negative integers 
and non-negative real numbers, respectively, i.e., R=(-∞,∞), N0={1,2,…} and 
R+=[0,∞). Fix a real-valued sequence {θi}, i∈N0 such that 0=θ0<θ1<…<θi<… with 
θi→∞ as i→∞. In the present chapter, the authors address the SIS model with GPCA:

′( ) = ( )( ) − ( )  − ( )x t bx t x t cx tβ 1 . 	 (2)

Here, in the equation (2), x∈R, t∈R+, β(t)=θi if t i Ni i∈[ ) ∈+θ θ, , .1 0  For the 
sequence {θi}, i∈N0, let 0 1≤ < +θ θi i  for all i∈N0 and θi→∞ as i→∞. Let us assume 
without loss of generality that θ θi it< ≤ +0 1 .for some i∈N0. In the nonlinear epidemic 
model (2), b,c are positive and constant parameters corresponding to infection and 
recovery rates, respectively. Equation (2) has a representation of the proportion of 
infective individuals by considering the expressions and the assumptions (A)-(H) 
in Background above.

As the main goal, the authors investigate the stability of the trivial equilibrium and 
the positive equilibrium of (2). While investigating the stability, they take Lyapunov-
Razumikhin method developed by Akhmet and Aruğaslan (2009) for EPCAG into 
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consideration. For this aim, as the first step, the authors examine positive invariance 
region for the considered model. Then, the authors indicate an important auxiliary 
result given a relation between the values of solutions at the deviation argument β(t) 
and at any time t of the proposed model. This auxiliary result is useful in the proofs 
of the stability theory within the scope of Lyapunov-Razumikhin method. Next, the 
authors obtain sufficient conditions guaranteeing the existence and uniqueness of 
the solutions of the epidemic model with GPCA. By taking notice of the Lyapunov-
Razumikhin method for EPCAG (Akhmet & Aruğaslan, 2009), the authors investigate 
the the uniform stability of the trivial equilibrium and the positive equilibrium. 
During all these investigations, the nature of the solutions is evaluated within the 
biologically meaningful range [0,1] as required by the examination performed for 
the positive invariance region.

Note that the equation (2) has the trivial equilibrium x*=0 and the positive 

equilibrium x c
b
c b* ,= − <1 . If the positive equilibrium x c

b
c b* ,= − <1  of (2) 

is transformed into the trivial equilibrium, by y=x‑x* then the following equation is 
reached:

′( ) = − ( ) + ( )( )  + ( )( )y t by t y t cy t1 β β . 	 (3)

Now, let us describe crucial sets of functions:

 = ∈ ( ) ( ) ={ }+ +a R R aC , : ,strictly increasing and 0 0 .	

 = ∈ ( ) ( ) = ( ) > >{ }+ +d R R d d s sC , : , ,0 0 0 0  for .	

which will be used in the stability examinations.
The definitions related to solutions of the nonlinear epidemic models (2) and (3) 

are given by Definition 1 and Definiton 2, respectively.

Definiton 1 A function x(t) is a solution of (3) ((4)) on R+ if:
(i) 	 x(t) is continuous on R+.
(ii) 	 the derivative ′( )x t .exists for t∈R+ with the possible exception of the 

points θi, i∈N0, where one-sided derivatives exist;
(iii) 	 equation (3) ((4)) is satisfied by x(t).on each interval θ θi i i N, , ,+( ) ∈1 0 .and 

it holds for the right derivative of x(t).at the points θi, i∈N0.
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Definiton 2 A function y(t).is a solution of (5) ((6)) on R+ if:
(i) 	 y(t) is continuous on R+.
(ii) 	 the derivative ′( )y t .exists for t∈R+ with the possible exception of the 

points θi, i∈N0, where one-sided derivatives exist;
(iii) 	 equation (5) ((6)) is satisfied by y(t) on each interval θ θi i i N, , ,+( ) ∈1 0 .and 

it holds for the right derivative of y(t) at the points θi, i∈N0.

THE THEORETICAL RESULTS FOR (2)

The following assumptions will be needed throughout the chapter:

(C1) There exists a positive numbers θ θ, .such that θ θ θ θ≤ − ≤ ∈+i i i N1 0, ;

(C2) θ θ θb c b c b c e b c+ + +( ) + +( )( )( ) <+( )1 1;

(C3) 3 1θ θc b e c b+( ) <+( ) ;
(C4) b≤c;
(C5) c<b.

The Results Concerning the Positive Invariance

Now, the results concerning positive invariance for (2) are given by the lemma and 
theorems below. So, this results give an information about the invariance region of 
the solutions for (3). Take just solutions x(t) with 0≤x(θ0)=x0≤1.

Lemma 1 The equation (2) with x(θ0)=x0 is equivalent to the following integral 
equation

x t e x e bx s x s ds tc t
t

c t s( ) = + ( )( ) − ( )  ∈[ )− −( ) − −( )∫θ

θ

β θ α0

0

0 01 , , .. 	 (4)

Proof: Necessity. Let x(t).be the solution of (2) with x(θ0)=x0. Based on Definiton 
1, (4) satisfies the equation (2) on each interval θ θi i i N, ,[ ) ∈+1 0 . For t∈[θ0,θ1),.
the solution is

x t e x e bx s x s dsc t
t

c t s( ) = + ( )( ) − ( ) 
− −( ) − −( )∫θ

θ

β0

0

0 1 . .	
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Letting t→θ1, by the continuity of the solutions, it is obtained

x x e x e bx s x s dsc c s
1 1 0

1 0

0

1

1 1= ( ) = + ( )( ) − ( ) 
− −( ) − −( )∫θ βθ θ

θ

θ
θ . 	

Therefore, (4) holds on [θ0,θ1]. Assume that (4) is valid on the interval [θ0,θk] 
for some k≥1. Then, for t k k∈[ )+θ θ, ,1 .it is true that

x t e x e bx s x s ds

e

c t
k

t
c t s

c t

k

k

( ) = + ( )( ) − ( ) 

=

− −( ) − −( )

− −(

∫θ

θ

θ

β 1

0 )) − −( )+ ( )( ) − ( ) ∫x e bx s x s ds
t

c t s
0

0

1
θ

β .
	

Letting t k→ +θ 1 . it can be seen that

x x e x e bx s x sk k
c c sk

k

k
+ +

− −( ) − −( )= ( ) = + ( )( ) −+

+

+∫1 1 0
1 0

0

1

1 1θ βθ θ

θ

θ
θ (( )  ds. 	

Thus, (4) holds on θ θ0 1, .k+[ ]  Based on induction method, it can be observed 
for all t≥θ0.

Sufficiency. Let x(t) be the solution of (2). Fix i∈N0 and consider the interval 
θ θi i,[ )+1 . Differentiating (4), it can be seen that x(t) holds (2). Letting t→θi+ and 

considering that x(β(t)).is right continuous function, it is seen that x(t) satisfies (2) 
on θ θi i,[ )+1 . 

Theorem 1 If x:[θ0,α)→R is a solution of (2) for θ θ α0 1< < ≤+t i .atisfying the 
initial condition 0≤x(θ0)=x0≤1 and b≤c holds, then the set Ω={x∈R: 0≤x≤1} 
is positively invariant for (2). Moreover, if 0<x0≤1 then 0<x(t)≤1. If 0<x0<1 
then 0<x(t)<1.

Proof: Let us assume without loss of generality that θ θi it< ≤ +0 1 .for some i∈N0. 
Let x(t):[θ0,α)→R.be a solution of (2) throught the initial condition 
x(θ0)=x0 satisfying 0≤x0≤1. Then, the solution of (3) is equivalent to the 
following integral equation
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x t e x e bx s x s ds tc t
t

c t s( ) = + ( )( ) − ( )  ∈[ )− −( ) − −( )∫θ

θ

β θ α0

0

0 01 , , .. 	

Now, suppose that x(t) does not satisfy the inequality 0≤x(t)≤1 for 
0 0 1≤ ≤ < ≤ ∈+θ θ αt i Ni , . By continuity of x(t), there exists a largest number μ. 
0 0 1≤ ≤ < ≤+θ µ θ αi ,  i∈N such that 0≤x(t)≤1 for 0≤t≤μ and either

(i) 	 x(μ)=0 and x(t)<0 on (μ,μ+ε) for some ε>0; or
(ii) 	 x(μ)=1 and x(t)>1 on (μ,μ+ε) for some ε>0.

First, consider the case (i). This situation shows that bx0[1‑x(t)]≥0 and -cx(t)>0. 
Thus, while 0≤θ0≤t≤μ<θ1 it is seen that 

′( ) = − ( )  − ( ) ≥ − ( ) >x t bx x t cx t cx t0 1 0, .	

and then x(t) is non-decreasing on (μ,μ+ε) which is a contradiction. In detail, it can 
be seen that

x t e x e bx x s ds e xc t
t

c t s c( ) = + − ( )  ≥ ≥− −( ) − −( ) −∫θ

θ

θ0

0

0 0 01 0 .	

on [θ0,θ1). For t=θ1,

x x e x e bx x s ds e xc c s cθ θ θ

θ

θ
θ θ

1 1 0 0 0
1 0

0

1

1 1( ) = = + − ( )  ≥− −( ) − −( ) −∫ ≥≥ 0. .	

Therefore, the inequality 0≤x(t) holds on [θ0,θ1] when 0≤x(θ0)=x0≤1. Moreover, 
by performing the operation on each interval θ θi i, ,[ )+1  i=1,2,3,…, in a similiar 
manner, it can be proved that x(t) satisfies 0≤x(t) for all t in [θ0,α) while 0≤x(θ0)=x0≤1.

Second, consider the case (ii). This case implies that -cx(t)<-c, x0[1‑x(t)]≤0. 
Thus, while 0≤θ0≤t≤μ<θ1 it is seen that

′( ) = − ( )  − ( ) < − <x t bx x t cx t c0 1 0 0 .	
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and then x(t) is non-increasing on (μ,μ+ε) which is a contradiction. In detail, it can 
be seen on [θ0,θ1) that

x t e x e bx x s ds e x ec t
t

c t s c t( ) = + − ( )  ≤ ≤− −( ) − −( ) − −( )∫θ

θ

θ0

0

0
0 0 01 −− ≤c xθ 0 1, .	

which is a contradiction. For t=θ1,

x x e x e bx x s ds ec c s cθ θ θ

θ

θ
θ θ

1 1 0 0
1 0

0

1

1 11( ) = = + − ( )  ≤− −( ) − −( ) − −∫ θθ θ0
0 0 1( ) −≤ ≤x e xc . .	

Therefore, the inequality x(t)≤1 holds on [θ0,θ1] when 0≤x(θ0)=x0≤1. Moreover, 
by performing the operations on each interval θ θi i, ,[ )+1  i=1,2,3,…, in a similiar 
manner, it can be proved that x(t) satisfies x(t)≤1 for all t in [θ0,α) while 0≤x(θ0)=x0≤1.

Thus, performing the operation on each interval θ θi i, ,[ )+1  i=1,2,3,…, in a 
similiar manner, proves that x(t) satisfies 0≤x(t)≤1 for all t in [θ0,α) while 
0≤x(θ0)=x0≤1.

Moreover, suppose that 0<x0≤1. By the above conclusion, it is known that x(t) 
satisfy the inequality 0≤x(t)≤1.for θ0≤t<α. From now on, it is shown that x(t) 
remains strictly positive. In the contrary, let t  be the first point where x t( ) = 0  
on [θ0,θ1). Then, it is obvious that

′( ) = − ( )  − ( ) = >x t bx x t cx t bx0 01 0, .	

which is a contradiction. Besides, it can be seen that x(t) remains strictly positive:

x t e x e bx x s ds e xc t
t

c t s c( ) = + − ( )  ≥ >− −( ) − −( ) −∫θ

θ

θ0

0

0 0 01 0 .	

on [θ0,θ1). For t=θ1, it can be easily seen that x1>0. Therefore, the inequality 0<x(t)≤1 
holds on [θ0,θ1] when 0<x0≤1. Moreover, by performing the operations on each 
interval θ θi i, ,[ )+1  i=1,2,3,…, in a similiar manner, it can be proved that x(t) satisfies 
0<x(t)≤1 for all t in [θ0,α) while 0<x(θ0)=x0≤1.
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Next, suppose that 0<x0<1. In this situation, it is shown that x(t) remains strictly 
less than one. On the contrary, let t .be the first point where x t( ) =1 .on [θ0,θ1).
Hence, for t∈[θ0,θ1).

′( ) = − ( )  − ( ) = − <x t bx x t cx t c0 1 0, .	

which means that x(t) does not exceed the value x=1, and it can be seen that x(t) 
remains strictly less than one:

x t e x e bx x s ds e xc t
t

c t s c t( ) = + − ( )  < +− −( ) − −( ) − −( )∫θ

θ

θ

θ

0

0

0
0 0 01

00

0

0

0
0 0 0

t
c t s

c t
t

c t s c t

e bds

e x e cds e x x

∫

∫

− −( )

− −( ) − −( ) − −( )≤ + = +θ

θ

θ −− <− −( )e xc t θ0
0 1,

	

and so x(t)<1 on [θ0,θ1). For t=θ1, it can be easily seen that x1<1. Therefore, the 
inequality 0<x(t)<1 holds on [θ0,θ1]. Moreover, by performing the operation on 
each interval θ θi i, ,[ )+1  i=1,2,3,…, in a similiar manner, it can be proved that x(t) 
satisfies 0<x(t)<1 for all t in [θ0,α) while 0<x(θ0)=x0<1. 

Besides, for (3), it is obvious that the invariance region Ω changes as 

Ω* := ∈ − + ≤ ≤







y R c
b

y c
b

1  while transforming the positive equilibrium into 

trivial equilibrium.

The Auxiliary Results for the Solutions of (2)

Now, for (2), the lemmas containing an auxiliary result which is noteworthy for the 
proof of stability analysis in the sense of Lyapunov-Razumikhin method will be given.

Lemma 3 Let the assumptions (C1) and (C2) be satisfied. Then, the following 
inequality

x t x tβ ( )( ) ≤ ( )h1 .	 (5)

holds for all t≥0 x∈Ω and (2) where h1
1

1 1= − + +( ) +( )( ){ }+( )
−

θ θ θb b c b e b c .
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Proof: Let us fix t∈R+. Then there exists k∈N0 such that t k k∈[ )+θ θ, 1 . By integral 
equation, the solution x(t) of (2) can be written as

x t x bx bx x s cx s ds tk

t

k k k k

k

( ) = ( ) + ( ) − ( ) ( ) − ( )( ) ∈[ )∫ +θ θ θ θ θ
θ

, , ,1 	

and thus it is true that

x t x b x b x x s c x s dsk

t

k k

k

( ) ≤ ( ) + ( ) + ( ) ( ) + ( )( )∫θ θ θ
θ

. 	

By x∈Ω and then based on the Gronwall-Bellman Lemma,

x t x bx b c x s ds b x ek k

t

k
b c

k

( ) ≤ ( ) + ( ) + +( ) ( ) ≤ +( ) ( )∫ +( )θ θ θ θ θ
θ

θ1 	 (6)

is obtained. Besides, for t k k∈[ )+θ θ, 1 . it can be written

x x t bx bx x s cx s dsk

t

k k

k

θ θ θ
θ

( ) = ( ) − ( ) − ( ) ( ) − ( )( )∫ . 	

The last equality gives

x x x t bx bx x s cx s dsk k

t

k k

k

θ θ θ θ
θ

( ) = ( ) = ( ) + ( ) + ( ) ( ) + ( )( )∫ , 	

and then since x∈Ω.

x x t bx b c x s dsk k

t

k

θ θ θ
θ

( ) ≤ ( ) + ( ) + +( ) ( )∫ 	

is obtained. The inequality (6) gives that

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



248

The Stability of an Epidemic Model With Piecewise Constant Argument

x x t bx b c b x e ds

x t b b

k k

t

k
b c

k

θ θ θ θ θ

θ

θ

θ( ) ≤ ( ) + ( ) + +( ) +( ) ( )

= ( ) + +

∫ +( )1

++( ) +( )( ) ( )+( )c b e xb c
k1 θ θθ .

	

Then, the following inequality

x b b c b e x tk
b cθ θ θ θ( ) ≤ − + +( ) +( )( ){ } ( )+( )

−

1 1
1

	

is reached. It follows from the condition (C2) that the inequality (5) for t k k∈[ )+θ θ, .1  
Hence, (5) holds for all t≥0.

Similiar result for (3) can be shown by the following lemma.

Lemma 4 Let the assumptions (C1) and (C2) be satisfied. Then, the following 
inequality

y t y tβ ( )( ) ≤ ( )h2 	 (7)

holds for all t≥0 y∈Ω* and (3), where h2

1
1 1= − + +( ) +( )( ){ }+( )

−

θ θ θc b c c e b c .

The Existence and Uniqueness of the Solutions of (2)

Now, sufficient conditions for the existence and uniqueness of the solutions of (2) 
with GPCA shall be given.

Firstly, note that g(u,v):= bv[1‑u]‑cu=bv‑u(bv+c) is a continuous function and 
has continuous partial derivatives for u,v∈Ω. First partial derivatives of the function 
g(u,v).give that

∂
∂

= − +( ) ≤ + ≤ +
∂
∂

= − = − ≤
g
u

bv c b v c b c g
v

b ub b u b, , 1 	

for u,v∈Ω he Lipschitz constant can be chosen as � = +b c .by assuming that � .is 
sufficiently small.
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Lemma 5 Let (C1)-(C3) be satisfied and i∈N0 be fixed. Then for every 
ξ θ θ, , ,x i i0 1( )∈[ ]×+ Ω .there exists a unique solution x t x t x( ) = ( ), ,ξ 0 .of 

(2) on θ θi i, .[ ]+1 .
Proof: Existence. Fix i∈N0 and assume without loss of generality that 

θ ξ θi i≤ ≤ +1. .Define a norm x t x t
i

( ) = ( )
[ ]0
max

,θ ξ
. Take x0(t)=x0 and define 

a sequence

x t x bx bx x s cx s ds p tp
t

p
i

p
i

p p
i i

+ ( ) = + ( ) − ( ) ( ) − ( )( ) ≥ ∈[∫1 0 0
ξ

θ θ θ θ, , , ++ )1 . 	

Or consider g(u,v)= bv[1‑u]‑cu=bv‑u(bv+c) and, by taking g(xp(s),xp(θi)) = 
bxp(θi) ‑ bxp(θi)x

p(s) ‑ cxp(s) define a sequence

x t x g x s x ds p tp
t

p p
i i i

+
+( ) = + ( ) ( )( ) ≥ ∈[ )∫1 0

10
ξ

θ θ θ, , , , .  	

Then, for p=0 it is true that

x t x t x t x t x t x t
i

i

t

1 0 1 0 1 0

0
( ) − ( ) ≤ ( ) − ( ) = ( ) − ( )

≤

[ ]

[ ] ∫

max
,

,

θ ξ

θ ξ
ξ

max bb x x s c x s ds

b c x b c x

i
0 0 0

0 0

1

2

θ

θ θ

( ) − ( ) + ( )( )
≤ +( ) ≤ +( ) .

.	 (8)

Second, for p=0 and p=1 it can be written

x t x t g x s x g x s x ds
i

t

i i
2 1

0

1 1 0 0( ) − ( ) = ( ) ( )( ) − ( ) ( )( )
[ ] ∫max
θ ξ

ξ

θ θ
,

, ,

≤≤ +( ) ( ) − ( ) + ( ) − ( )( )

≤ +( )

[ ] ∫max
θ ξ

ξ

θ θ

θ θ

i

b c x x x s x s ds

b c x

t

i i,

1 0 1 0

1
ii i

t

x b c x s x s ds
i

( ) − ( ) + +( ) ( ) − ( )
[ ] ∫0 1 0θ
θ ξ

ξ

max
,

.
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Using (8), for t=θ1, the inequality x x b c xi i
1 0

0

02θ θ θ( ) − ( ) ≤ +( ) .is reached 

and then

x s x s b c x b c x ds b c
i

t
2 1

0

2 2 0 2 0 2 22 2 2( ) − ( ) ≤ +( ) + +( ) ≤ +( )
[ ] ∫θ θ
θ ξ

ξ

max
,

θθ 2 0x 	

is obtained. Next, x t x tp p+ ( ) − ( )1

0
.can be evaluated for the value p=2,3,… 

similiarly. Then, the induction method result in

x t x t b c xp p p+ +( ) − ( ) ≤ +( )( )1

0

1 02 θ . 	

Then, (C3) implies that the sequence xp(t) is convergent and its limit x(t) satisfies

x t x bx bx x s cx s ds
t

i i( ) = + ( ) − ( ) ( ) − ( )( )∫0

ξ

θ θ 	

on t∈[θi,ξ]. The existence is proved.
Uniqueness: Let x t x t x x x jj j j j( ) = ( ) ( ) = =, , , , , ,ξ ξ0 0 1 2 .denote the solutions 

of (3) where θ ξ θi i≤ ≤ +1 . Now, it will be shown that x1(t)≠x2(t) while x x1
0

2
0≠ .for 

every t i i∈[ ]+θ θ, .1 .For all t i i∈[ ]+θ θ, 1 . let define g(u,v)= bv[1‑u]‑cu=bv‑u(bv+c), 
and so the solutions x1(t) and x2(t) satisfy the following integral equations

x t x g x s x ds x t x g x s x
t

i

t

1 1
0

1 1 2 2
0

2( ) = + ( ) ( )( ) ( ) = + ( )∫ ∫
ξ ξ

θ, ,  and  22 θi ds( )( ) , 	

respectively. It is true that
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x t x t x x g x s x g x s x ds

x

t

i i1 2 1
0

2
0

1 1 2 2( ) − ( ) ≤ − + ( ) ( )( ) − ( ) ( )( )

≤

∫
ξ

θ θ, ,

11
0

2
0

1 2 1 2

1
0

2
0

− + +( ) ( ) − ( ) + ( ) − ( )( )

≤ − + +(

∫x b c x s x s x x ds

x x b c

t

i i
ξ

θ θ

)) ( ) − ( ) + +( ) ( ) − ( )∫θ θ θ
ξ

x x b c x s x s dsi i

t

1 2 1 2 .

	

Then, the Gronwall-Bellman inequality gives

x t x t x x b c x x ei i
b c

1 2 1
0

2
0

1 2( ) − ( ) ≤ − + +( ) ( ) − ( ){ } +( )θ θ θ θ . 	 (9)

For t=θi, it is obvious that

x x x x b c x x ei i i i
b c

1 2 1
0

2
0

1 2θ θ θ θ θ θ( ) − ( ) ≤ − + +( ) ( ) − ( ){ } +( ) 	

and so

x x b c e x x ei i
b c b c

1 2

1

1
0

2
01θ θ θ θ θ( ) − ( ) ≤ − +( ){ } −+( ) − +( ) . 	 (10)

Substituting (10) into (9), the following inequality is reached:

x t x t b c b c e e x x eb c b c b
1 2

1

1
0

2
01 1( ) − ( ) ≤ + +( ) − +( ){ }{ } −+( ) − +( ) +θ θ θ θ cc

b c b cb c e e x x

( )

+( ) − +( )= − +( ){ } −

θ

θ θθ1
1

1
0

2
0 .

	

(11)

Now, on the contrary, assume that there exists t i i
* ,∈[ ]+θ θ 1 .such that x1(t

*)=x2(t
*). 

Then,

x x g x s x g x s x ds
t

i i1
0

2
0

1 1 2 2− = − ( ) ( )( ) − ( ) ( )( )( )∫
ξ

θ θ
*

, , , 	
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so

x x b c x s x s x x ds
t

i i1
0

2
0

1 2 1 2− ≤ +( ) ( ) − ( ) + ( ) − ( )( )∫
ξ

θ θ
*

. 	

By the last inequality and then (11)

x x b c b c e e x x ds

b

t
b c b c

1
0

2
0

1

1
0

2
02 1

2

− ≤ +( ) − +( ){ } −

≤ +

∫ +( ) − +( )

ξ

θ θθ

θ

*

cc b c e e x x x xb c b c( ) − +( ){ } − < −+( ) − +( )1
1

1
0

2
0

1
0

2
0θ θ θ .

	

Then, based on the assumption (C3), a contradiction is obtained. The uniqueness 
is proved..

Thus, the following theorem gives sufficient conditions that guarantee the 
existence and uniqueness of the solutions for (2) based on the paper (Akhmet & 
Aruğaslan, 2009).

Theorem 4 Assume that the conditions (C1)-(C3) hold true. Then for every 
(t0,x0)∈R+×Ω, there exists a unique solution x(t)=x(t,t0,x0) of (2) on R+ in the 
sense of Definition 1 such that x(t0)=x0. Second, note that g*(u,v):= ‑bu[1+v]+cv 
is a continuous function and has continuous partial derivatives for u,v∈Ω*. 
First partial derivatives of the function g*(u,v) give that

∂
∂

= − +( ) ≤ +
∂
∂

= − ≤
g
u

b v c b g
v

c ub b
* *

, ,1  	

for u,v∈Ω*. The Lipschitz constant can be chosen as �* = +c b  by assuming that 
�*  is sufficiently small. Thus, the following lemma and theorem give sufficient 
conditions that guarantee the existence and uniqueness of the solutions for (3) based 
on the paper (Akhmet & Aruğaslan, 2009).

Lemma 6 Let (C1)-(C3) be satisfied and i∈N0 be fixed. Then for every 
ξ θ θ, , ,*y i i0 1( )∈[ ]×+ Ω  there exists a unique solution y(t=y(t,ξ,y0) of (3) on 
θ θi i, .[ ]+1
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Theorem 5 Assume that the conditions (C1)-(C3) hold true. Then for every 
(t0,y0)∈R+×Ω*, there exists a unique solution y(t)=y(t,t0,y0) of (3) on R+ in the 
sense of Definition 2 such that y(t0)=y0.

The Stability Analysis of the Solutions for (2)

From now on, sufficient conditions guaranteeing the uniform stability for the trivial 
equilibirum of (2) and of (3) (i.e., for the positive equilibrium of (2)) will be presented. 
While investigating these conditions, Lyapunov-Razumikhin method developed by 
Akhmet and Aruğaslan (2009) will be taken into consideration.

Theorem 6 Assume that the conditions (C1)-(C4) are satisfied. Then, the trivial 
equilibrium of (2) is uniformly stable in Ω.

Proof: Based on Definition 1.4 in paper which contains Lyapunov-Razumikhin 
method developed by Akhmet and Aruğaslan (2009), construct the following 
positive definite Lyapunov function

V(x(t))=x2(t)	 (12)

which is positive definite. Functions u v, ∈  can be found such that u(|x|)≤V(x)≤v(|x|). 
The evaluation for the derivative of (12) for t≠θi, i∈N0, results in

′ ( ) ( )( )( ) = ( ) ( )( ) − ( )  − ( )V x t x t x t bx t x t cx t, .β β2 1 2 2 	

Then, for x∈Ω, it can be obtained the following inequality

′ ( ) ( )( )( ) ≤ ( ) ( )( ) − ( ) ≤ ( ) − ( )V x t x t x t bx t cx t bx t cx t, β β2 2 2 22 2 2 	

whenever x(β(t))≤x(t). So, the conclusion

′ ( ) ( )( )( ) ≤ − −( ) ( )V x t x t c b x t, β 2 2 	

is reached. Thus, based on the results given in Theorem 2.4 established by Akhmet 
and Aruğaslan (2009), it follows from the condition (C4) that the trivial equilibrium 
of (2) is uniformly stable. 
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Theorem 7 Assume that the conditions (C1)-(C3), (C5) are satisfied. Then, the 
trivial equilibrium of (3) (i.e., the positive equilibrium of (2)) is uniformly 
stable in Ω*.

Proof: Based on Definition 1.4 in paper which contains Lyapunov-Razumikhin 
method (Aruğaslan, 2009), let us construct the following positive definite 
Lyapunov function

V(y(t))=y2(t)	 (13)

It can be found functions u v, ∈  such that u(|y|)≤V(y)≤v(|y|). Now, let us 
evaluate the derivative of (13) for t≠θi, i∈N0.

′ ( ) ( )( )( ) = − ( ) ( ) + ( )( )  + ( ) ( )( )V y t y t by t y t y t cy t y t, β β β2 1 2 .	

Then, for y∈Ω*,

′ ( ) ( )( )( ) ≤ − ( ) + ( ) ( )( ) ≤ − ( ) + ( )V y t y t cy t c y t y t cy t cy t, β β2 2 2 22 2 2 	

whenever |y(β(t))|≤|y(t)|. Thus, it is seen that ′ ( ) ( )( )( ) ≤V y t y t, .β 0
So, by Theorem 2.4 in (Akhmet & Aruğaslan, 2009), it is seen that the trivial 

equilibrium of (3) is uniformly stable which it means the positive equilibrium of 
(2) is uniformly stable. 

FUTURE RESEARCH DIRECTIONS

In this chapter, the model is developed by the piecewise function β(t) as deviating 
argument. As a subject of future research, this model can be developed by DEPCAG 
taking the piecewise function γ(t) as deviating argument, or by functional differential 
equations. Alternatively, different models from the model studied in the present 
chapter may be subjected to similar analysis by developing the models with the help 
of DEPCAG or of functional differential equations.
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CONCLUSION

The present chapter addresses a nonlinear epidemic equation modeled by differential 
equations with GPCA. It is obvious that the model studied in the present chapter are 
a remarkable model in the scope of population dynamics. Modeling this epidemic 
equation by a generalized piecewise constant argument that makes it possible to 
have knowledge of effects of its past behaviors on the present behaviour is a sign of 
the value of the results achieved in the chapter. Because, the effect of a past value of 
real life problems on current behavior can be very serious. Even, the past situation of 
systems can change their current situation seriously. Therefore, the argument chosen 
when building models are very important. In this respect, the deviation argument 
considered in model in the chapter is remarkable and it is obvious that it contributes 
to the development of model. In the chapter, the fact that model contains such an 
argument makes it difficult to attain an explicit equation for its behavior. Therefore, 
analyzing it without reaching a explicit form of solution has a facilitating effect. 
In this direction, the analysis of the relevant equation is performed with the help 
of Lyapunov-Razumikhin method without the need to reach its exact solution. It is 
seen that this method developed by Akhmet and Aruğaslan (2009) for EPCAG is 
very useful. Because, for the analysis of the nonlinear epidemic model with GPCA, 
computations and operations performed in the sense of this method can be preferred 
convenience according to other methods in the literature.
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KEY TERMS AND DEFINITIONS

Epidemic: The occurrence of more cases of disease, injury or other health 
condition than expected in a given area or among a specific group of persons during 
a particular period. Usually, the cases are presumed to have a common cause or to 
be related to one another in some way.

GPCA: Generalized piecewise constant argument is a deviation argument which 
is a piecewise function considered in differential equations with piecewise constant 
argument of generalized type.

Outbreak: Sometimes distinguished from an epidemic as more localized, or the 
term less likely to evoke public panic.

Population Dynamics: Population dynamics is the branch of life sciences that 
studies the size and age composition of populations as dynamical systems, and the 
biological and environmental processes driving them (such as birth and death rates, 
and by immigration and emigration). Example scenarios are ageing populations, 
population growth, or population decline.

SIS: A model is a simple mathematical model of epidemics.

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Abazari, R., & Abazari, M. (2012). Numerical simulation of generalized Hirota–Satsuma coupled 
KdV equation by RDTM and comparison with DTM. Communications in Nonlinear Science and 
Numerical Simulation, 17(2), 619–629. doi:10.1016/j.cnsns.2011.05.022

Ablowitz, M. J., & Clarkson, P. A. (1990). Nonlinear evolution equations and inverse scattering 
transform. Cambridge University Press.

Abu-Omar, A., & Kittaneh, F. (2015). Notes on some spectral radius and numerical radius 
inequalities. Studia Mathematica, 272(2), 97–109. doi:10.4064m227-2-1

Acemoglu, D., & Verdier, T. (2000). The choice between market failures and corruption. The 
American Economic Review, 90(1), 194–211. doi:10.1257/aer.90.1.194 doi:10.1257/aer.90.1.194

Agamaliyev, A., & Nabiyev, A. (2005). On eigenvalues of some boundary value problems for 
a polynomial pencil of Sturm-Liouville equation. J. Applied Math. and Computations, 165(3), 
503–515. doi:10.1016/j.amc.2004.04.116

Agarwal, R., Echambadi, R., Franco, A. M., & Sarkar, M. B. (2004). Knowledge transfer through 
inheritance: Spin-out generation, development, and survival. Academy of Management Journal, 
47(4), 501–522.

Akhmet, M. U. (2007a). Integral manifolds of differential equations with piecewise constant 
argument of generalized type. Nonlinear Analysis: Theory, Methods and Applications, 66, 367–383.

Akhmet, M. U. (2007b). On the reduction principle for differential equations with piecewise 
constant argument of generalized type. Journal of Mathematical Analysis and Applications, 
336(1), 646–663. doi:10.1016/j.jmaa.2007.03.010

Akhmet, M. U. (2008a). Asymptotic behavior of solutions of differential equations with piecewise 
constant arguments. Applied Mathematics Letters, 21(9), 951–956. doi:10.1016/j.aml.2007.10.008

Akhmet, M. U. (2008b). Stability of differential equations with piecewise constant arguments of 
generalized type. Nonlinear Analysis, 68(4), 794–803. doi:10.1016/j.na.2006.11.037

Akhmet, M. U. (2010). Principles of Discontinuous Dynamical Systems. New York: Springer. 
doi:10.1007/978-1-4419-6581-3

260

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Akhmet, M. U. (2011). Nonlinear Hybrid Continuous Discrete-Time Models. Amsterdam: Atlantis 
Press. doi:10.2991/978-94-91216-03-9

Akhmet, M. U. (2014). Quasilinear retarded differential equations with functional dependence on 
piecewise constant argument. Communications on Pure and Applied Analysis, 13(2), 929–947. 
doi:10.3934/cpaa.2014.13.929

Akhmet, M. U., & Aruğaslan, D. (2009). Lyapunov-Razumikhin method for differential equations 
with piecewise constant argument. Discrete and Continuous Dynamical Systems. Series A, 25(2), 
457–466. doi:10.3934/dcds.2009.25.457

Akhmet, M. U., Aruğaslan, D., & Yılmaz, E. (2010a). Stability analysis of recurrent neural 
networks with piecewise constant argument of generalized type. Neural Networks, 23(7), 805–811. 
doi:10.1016/j.neunet.2010.05.006 PMID:20605400

Akhmet, M. U., Aruğaslan, D., & Yılmaz, E. (2010b). Stability in cellular neural networks with 
piecewise constant argument. Journal of Computational and Applied Mathematics, 233(9), 
2365–2373. doi:10.1016/j.cam.2009.10.021

Aktosun, T., Klaus, M., & van der Mee, C. (1998). Wave scattering in one dimension with 
absorption. Journal of Mathematical Physics, 39(4), 1957–1992. doi:10.1063/1.532271

Aldwoah, K. A. (2009). Generalized time scales and associated difference equations (Ph.D. 
Thesis). Cairo University.

Ali, A. R. (2008). Does auditor industry specialization matter? Evidence from the bond market. 
Journal of Audit Practice, 5(3), 44–72.

Allahverdiev B. P. & Tuna H. (2018b). Spectral expansion for the singular Dirac system with 
impulsive conditions. Turk J Math. 42.2527 – 2545. 

Allahverdiev B. P. & Tuna H. (2019a). Eigenfunction expansion for singular Sturm-Liouville 
problems with transmission conditions, Electron. J. Differential Equations, Vol. 2019. No. 03. 
pp. 1-10. 

Allahverdiev B. P. & Tuna H. (2019c). On Expansion in Eigenfunction for q-Dirac Systems on 
the Whole Line, Mathematical Reports. Vol. 21(71), No. 3/2019. 

Allahverdiev B. P. & Tuna H. (2019d). Eigenfunction Expansion in the Singular Case for Dirac 
Systems on Time Scales . Konuralp Journal of Mathematics, 7 (1).128-135. 

Allahverdiev, B. P., Eryılmaz, A., & Tuna, H. (2017). Dissipative Sturm-Liouville operators with 
a spectral parameter in the boundary condition on bounded time scales. Electronic Journal of 
Differential Equations, 95, 1–13.

Allahverdiev, B. P., & Tuna, H. (2018a). An expansion theorem for q-Sturm-Liouville operators 
on the whole line. Turkish Journal of Mathematics, 42, 1060–1071.

261

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Allahverdiev, B. P., & Tuna, H. (2019b). The spectral expansion for the Hahn–Dirac system on 
the whole line. Turkish Journal of Mathematics, 43, 1668–1687.

Allahverdiev, B. P., & Tuna, H. (2019e). Eigenfunction expansion in the singular case for 
q-SturmLiouville operators. Caspian Journal of Mathematical Sciences., 8(2), 91–102.

Alonso, M. (1980). Schrödinger spectral problems with energy-dependent potentials as sources of 
nonlinear Hamiltonian evolution equations. Journal of Mathematical Physics, 21(9), 2342–2349. 
doi:10.1063/1.524690

Alparslan Gök, S. (2011). Set-valued solution concepts using interval-type payoffs for interval 
games. Journal of Mathematical Economics, 47(4-5), 621-626.

Alparslan Gök, S. Z., Branzei, R., & Tijs, S. (2008). Cores and Stable Sets for Interval-Valued 
Games. CentER Discussion Paper; Vol. 2008-17. Tilburg: Operations Research.

Alparslan Gök, S. Z., Branzei, R., & Tijs, S. (2009a). Convex interval games. Journal of Applied 
Mathematics and Decision Sciences, 2009, 342089. doi:10.1155/2009/342089

Alparslan Gök, S. Z., Miquel, S., & Tijs, S. (2009b). Cooperative under interval uncertainty. 
Mathematical Methods of Operations Research, 69(1), 99–109. doi:10.100700186-008-0211-3

Alvarez-Nodarse, R. (2003). Polinomios hipergemétricos y q-polinomios. Monografías del 
Seminario Matemático “García de Galdeano” Número 26. Spain: Prensas Universitarias de 
Zaragoza.

Alvarez-Nodarse, R. (2006). On characterizations of classical polynomials. Journal of 
Computational and Applied Mathematics, 196(1), 320–337. doi:10.1016/j.cam.2005.06.046

Amrein, W. O., Hinz, A. M., & Pearson, D. B. (2005). Sturm-Liouville theory, past and present. 
Basel. Boston: Birkhauser Verlag. doi:10.1007/3-7643-7359-8

Andrews, G. E., Askey, R., & Roy, R. (1999). Special functions, Encyclopedia of Mathematics 
and Its Applications. Cambridge, UK: The University Press.

Annaby, M. H., Hamza, A. E., & Makharesh, S. D. (2018). A Sturm-Liouville theory for Hahn 
difference operator. In X. Li & Z. Nashed (Eds.), Frontiers of Orthogonal Polynomials and Series 
(pp. 35–84). Singapore: World Scientific. doi:10.1142/9789813228887_0004

Annaby, M. H., Hamza, A. E., & Aldwoah, K. A. (2012). Hahn difference operator and associated 
Jackson--Nörlund integrals. Journal of Optimization Theory and Applications, 154(1), 133–153. 
doi:10.100710957-012-9987-7

Aparicio, J. (2010). Cooperative logistics games. In SCIYO (p. 129). COM.

Applebaum, D. (2009). Lévy Processes and Stochastic Calculus (2nd ed.). Cambridge, UK: 
Cambridge University Press.

262

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Arafa, A. A. M., Rida, S. Z., & Mohamed, H. (2011). Homotopy analysis method for solving 
biological population model. Communications in Theoretical Physics, 56(5), 797–800. 
doi:10.1088/0253-6102/56/5/01

Arnold, L., & Schmalfuss, B. (2001). Lyapunov’s second method for random dynamical systems. 
Journal of Differential Equations, 177(1), 235–265. doi:10.1006/jdeq.2000.3991

Aronzajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical 
Society, 68(3), 337–404. doi:10.1090/S0002-9947-1950-0051437-7

Aruğaslan, D., & Güzel, L. (2015). Stability of the logistic population model with generalized 
piecewise constant delays. Adv. Difference Equ., 2015(173).

Aruğaslan, D. (2009). Süreksizlikleri Olan Diferansiyel Denklemler ve Populasyon Dinamiği. 
Ankara, Turkey: Orta Doğu Teknik Üniversitesi.

Aruğaslan, D., & Cengiz, N. (2017). Green’s Function and Periodic Solutions of a Spring-Mass 
System in which the Forces are Functionally Dependent on Piecewise Constant Argument. 
Süleyman Demirel University Journal of Natural and Applied Sciences, 21(1), 266–278.

Aruğaslan, D., & Cengiz, N. (2018). Existence of periodic solutions for a mechanical system 
with piecewise constant forces. Hacettepe Journal of Mathematics and Statistics, 47(3), 521–538.

Askey, R. A., Atakishiyev, N. M., & Suslov, S. K. (1993). An analog of the Fourier transformation 
for a q-harmonic oscillator. Symmetries in Science, VI, 57–63. doi:10.1007/978-1-4899-1219-0_5

Askey, R. A., & Suslov, S. K. (1993). The q-harmonic oscillator and an analogue of the 
Charlier polynomials. Journal of Physics. A, Mathematical and General, 26(15), L693–L698. 
doi:10.1088/0305-4470/26/15/014

Askey, R. A., & Suslov, S. K. (1993). The q-harmonic oscillator and the Al-Salam and Carlitz 
polynomials. Letters in Mathematical Physics, 29(2), 123–132. doi:10.1007/BF00749728

Atakishiyev, N. M., & Suslov, S. K. (1991). Difference analogs of the harmonic oscillator. 
Theoretical and Mathematical Physics, 85, 442–444.

Atakishiyev, N. M., & Suslov, S. K. (1991). Realization of the q-harmonic oscillator. Theoretical 
and Mathematical Physics, 87, 1055–1062.

Aydemir, K., & Mukhtarov, O. S. (2017). Class of Sturm.Liouville Problems with Eigenparameter 
Dependent Transmission Conditions. Numerical Functional Analysis and Optimization, 38(10), 
1260-1275.

Aydemir, K., Olgar, H., Mukhtarov, O. S., & Muhtarov, F. (2018). Differential operator equations 
with interface conditions in modifed direct sum spaces. Filomat, 32(3), 921–931. doi:10.2298/
FIL1803921A

263

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Aziz, H., Cahan, C., Gretton, C., Kilby, P., Mattei, N., & Walsh, T. (2016). A study of proxies for 
shapley allocations of transport costs. Journal of Artificial Intelligence Research, 56, 573–611. 
doi:10.1613/jair.5021

Bai, G., Mao, J., & Lu, G. (2004). Grey transportation problem. Kybernetes, 33(2), 219–224. 
doi:10.1108/03684920410514148

Bakherad, M. (2018). Some Berezin Number Inequalities for Operator Matrices. Czechoslovak 
Mathematical Journal, 68(143), 997–1009. doi:10.21136/CMJ.2018.0048-17

Bakherad, M., & Garayev, M. T. (2019). Berezin number inequalities for operators. Concr. Oper., 
6(1), 33–43. doi:10.1515/conop-2019-0003

Bannai, E. (1990). Orthogonal polynomials in coding theory and algebraic combinatorics. In 
Theory and Practice (pp. 25–54). NATO, ASI Series.

Bayracı, S., & Ünal, G. (2014). Stochastic interest rate volatility modeling with a continuous-
time GARCH(1, 1) model. Journal of Computational and Applied Mathematics, 259, 464–473. 
doi:10.1016/j.cam.2013.10.017

Behme, A., Klüppelberg, C., & Mayr, K. (2014). Asymmetric COGARCH processes. Journal 
of Applied Probability, 51A(ASpec.), 161–173. doi:10.1239/jap/1417528473

Beltrametti, E. G., & Bugajski, S. (1995). A classical extensions of quantum mechanics. Journal 
of Physics. A, Mathematical and General, 28(:12), 3329–3343. doi:10.1088/0305-4470/28/12/007

Berezanskii, J. M. (1968). Expansions in Eigenfunctions of Selfadjoint Operators. Providence, 
RI: Amer. Math. Soc.

Berezin, F. A. (1972). Covariant and contravariant symbols for operators, Math. USSR-Izv., 6(5), 
1117–1151. doi:10.1070/IM1972v006n05ABEH001913

Berezin, F. A. (1974). Quantization. Math. USSR Izvestija, 8(5), 1109–1165. doi:10.1070/
IM1974v008n05ABEH002140

Berg, C., & Ismail, M. E. H. (1996). Q-Hermite polynomials and classical orthogonal Polynomials. 
Can. J. Math., 48(1), 43–63. doi:10.4153/CJM-1996-002-4

Bergelson, V., Blass, A., & Hindman, N. (1994). Partition theorems for spaces of variable words. 
Proceedings of the London Mathematical Society, 68(3), 449–476. doi:10.1112/plms3-68.3.449

Berger, C. A., & Coburn, L. A. (1987). Toeplitz operators on the Segal-Bargmann space. 
Transactions of the American Mathematical Society, 301(2), 813–829. doi:10.1090/S0002-
9947-1987-0882716-4

Bergman, S. (1922). Über die Entwicklung der harmischen Funktionen der Ebene und des Rümes 
nach Orthogonal Functionen. Mathematische Annalen, 86(3-4), 238–271. doi:10.1007/BF01457987

Black, F. (1976). Studies of Stock Price Volatility Changes. Proceedings from the American 
Statistical Association, Business and Economic Statistics Section, 177-181.

264

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Bochner, S. (1929). Über sturm-liouvilleesche polynomsysteme. Mathematische Zeitschrift, 
29(1), 730–736. doi:10.1007/BF01180560

Bonner, S. E., Palmrose, Z.-V., & Young, S. M. (1998). Fraud type and auditor litigation: An 
analysis of SEC accounting and auditing enforcement releases. The Accounting Review, 503–532.

Borm, Hamers, & Hendrickx. (2001). Operations research games: A survey. Top, 9(2), 139.

Borzov, V. V., & Damaskinsky, E. V. (2006). Generalized coherent states for q-oscillator 
connected with q-Hermite polynomials. Journal of Mathematical Sciences, 132(1), 26–36. 
doi:10.100710958-005-0472-9

Brandt, W. (1926). Über eine Verallgemeinerung des Gruppengriffes. Mathematische Annalen, 
96(1), 360–366. doi:10.1007/BF01209171

Branzei, R., Branzei, O., Gök, S. Z. A., & Tijs, S. (2010a). Cooperative interval games: A survey. 
Central European Journal of Operations Research, 18(3), 397–411. doi:10.100710100-009-0116-0

Branzei, R., Gök, S. Z. A., & Branzei, O. (2011). SZ Alparslan Gök, and O. Branzei. Cooperative 
games under interval uncertainty: On the convexity of the interval undominated cores. Central 
European Journal of Operations Research, 19(4), 523–532. doi:10.100710100-010-0141-z

Branzei, R., Tijs, S., & Alparslan Gök, S. Z. (2010b). How to handle interval solutions for 
cooperative interval games. International Journal of Uncertainty, Fuzziness and Knowledge-
based Systems, 18(2), 123–132. doi:10.1142/S0218488510006441

Brickey, K. F. (2003). From Enron to WorldCom and beyond: Life and crime after Sarbanes-
Oxley. Wash. ULQ, 81, 357.

Brown, R. (1987). From groups to groupoids: A brief survey. Bulletin of the London Mathematical 
Society, 19(2), 113–134. doi:10.1112/blms/19.2.113

Bugajski, S. (1996). Fundamentals of fuzzy probability theory. International Journal of Theoretical 
Physics, 35(11), 2229–2244. doi:10.1007/BF02302443

Busenberg, S., & Cooke, K. L. (1980). The effect of integral conditions in certain equations 
modelling epidemics and population growth. Journal of Mathematical Biology, 10(1), 13–32. 
doi:10.1007/BF00276393 PMID:7205075

Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent—II. 
Geophysical Journal International, 13(5), 529–539. doi:10.1111/j.1365-246X.1967.tb02303.x

Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular 
kernel. Progress in Fractional Differentiation and Applications, 1(2), 73–85.

Carruth, P. J. (2011). Earnings Management: The Role Of Accounting Professionals. Academic 
Press.

265

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Challamel, N., & Gilles, G. (2007). Stability and dynamics of a harmonically excited elastic-
perfectly plastic oscillator. Journal of Sound and Vibration, 301(3-5), 608–634. doi:10.1016/j.
jsv.2006.10.014

Chevalley, C. (1956). Fundemental Concepts of Algebra. New York: Academic Press, Inc.

Chihara, T. S. (1978). An Introduction to orthogonal polynomials. New York: Gordon and Breach.

Coburn, L. A. (2004). A Lipschitz estimate for Berezin’s operator calculus. Proceedings of the 
American Mathematical Society, 133(01), 127–131. doi:10.1090/S0002-9939-04-07476-3

Cooke, K. L. (1979). Stability analysis for a vector disease model. The Rocky Mountain Journal 
of Mathematics, 7, 253–263.

Cooke, K. L., & Wiener, J. (1984). Retarded differential equations with piecewise constant 
delays. Journal of Mathematical Analysis and Applications, 99(1), 265–297. doi:10.1016/0022-
247X(84)90248-8

Cryer, C. W. (1970). Rodrigues formula and the classical orthogonal polynomials. Bol. Un. Mat. 
Ital., 25(3), 1–11.

Çule, M., & Fulton, M. (2009). Business culture and tax evasion: Why corruption and the 
unofficial economy can persist. Journal of Economic Behavior & Organization, 72(3), 811–822. 
doi:10.1016/j.jebo.2009.08.005 doi:10.1016/j.jebo.2009.08.005

Demiray, H. (2004). A travelling wave solution to the KdV–Burgers equation. Applied Mathematics 
and Computation, 154(3), 665–670. doi:10.1016/S0096-3003(03)00741-0

Deng, J. (1988). Grey Forecasting and Decision-Making. Wuhan, China: Huazhong University 
of Science and Technology Press.

Deng, J.-L. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. 
doi:10.1016/S0167-6911(82)80025-X

Deng, J.-L. (1990). Grey system theory tutorial. Wuhan: Huazhong University of Science and 
Technology Press.

 Dobrogowska, A., & Odzijewicz, A. (2006). Second order q −  difference equations solvable 
by factorization method. J. Comput. Appl. Math., 193(1), 319-346.

Dokuchaev, M., Exel, R., & Piccione, P. (2000). Partial Representations and Partial Group 
Algebras. Journal of Algebra, 226, 505–532. doi: 10.1006/jabr.1999.8204

Dollery, B. E., & Wallis, J. L. (1997). Market failure, government failure, leadership and public 
policy. Journal of Interdisciplinary Economics, 8(2), 113–126. doi:10.1177/02601079X9700800202 
doi:10.1177/02601079X9700800202

Doty, J. (2013). The Role of the Audit in the Global Economy. at the ICAS Aileen Beattie 
Memorial Lecture, London, UK.

266

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Dragomir, S.S. (2008a). Grüss’ type inequalities for functions of selfadjoint operators in Hilbert 
spaces. Preprint. RGMIA Res. Rep. Coll., 11(e), Art. 11.

Dragomir, S.S. (2008b). Some new Grüss’ type Inequalities for functions of selfadjoint operators 
in Hilbert spaces. Preprint. RGMIA Res. Rep. Coll., 11(e), Art. 12.

Dragomir, S. S. (2004). Discrete Inequalities of the Cauchy-Bunyakovsky-Schwarz Type. NY: 
Nova Science Publishers.

Dragomir, S. S. (2006). Reverse inequalities for the numerical radius of linear operators in 
Hilbert spaces. Bulletin of the Australian Mathematical Society, 73(2), 255–262. doi:10.1017/
S0004972700038831

Dragomir, S. S. (2007). A survey of some recent inequalities for the norm and numerical radius 
of operators in Hilbert spaces. Banach Journal of Mathematical Analysis, 1(2), 154–175. 
doi:10.15352/bjma/1240336213

Dragomir, S. S. (2007). Inequalities for the norm and the numerical radius of linear operators in 
Hilbert spaces. Demonstratio Math., 40(2), 411–417.

Dragomir, S. S. (2011). Some Slater type inequalities for convex functions of selfadjoint operators 
in Hilbert spaces. Revista de la Unión Matemática Argentina, 52(1), 109–120.

El-Sayed, A. M. A., Behiry, S. H., & Raslan, W. E. (2010). Adomian’s decomposition method 
for solving an intermediate fractional advection–dispersion equation. Computers & Mathematics 
with Applications (Oxford, England), 59(5), 1759–1765. doi:10.1016/j.camwa.2009.08.065

El-Sayed, A. M. A., & Gaber, M. (2006). The Adomian decomposition method for solving 
partial differential equations of fractal order in finite domains. Physics Letters. [Part A], 359(3), 
175–182. doi:10.1016/j.physleta.2006.06.024

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance 
of United Kingdom inflation. Econometrica, 50(4), 987–1007. doi:10.2307/1912773

Engliš, M. (1994). Functions invariant under the Berezin transform. Journal of Functional 
Analysis, 121(1), 233–254. doi:10.1006/jfan.1994.1048

Engliš, M. (1995). Toeplitz operators and the Berezin transform on H2. Linear Algebra and Its 
Applications, 223/224, 171–204. doi:10.1016/0024-3795(94)00056-J

Engliš, M. (1999). Compact Toeplitz operators via the Berezin transform on bounded symmetric 
domains. Integral Equations and Operator Theory, 33(4), 426–455. doi:10.1007/BF01291836

Erbe, L., Goodrich, C. S., Jia, B., & Peterson, A. (2016). Survey of the qualitative properties of 
fractional difference operators: Monotonicity, convexity, and asymptotic behavior of solutions. 
Advances in Difference Equations, 2016(1), 43. doi:10.118613662-016-0760-3

Fairchild, R. (2008). Does audit tenure lead to more fraud? A game theoretic approach. Available 
at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=993400

267

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Fan, E. (2000). Extended tanh-function method and its applications to nonlinear equations. Physics 
Letters. [Part A], 277(4), 212–218. doi:10.1016/S0375-9601(00)00725-8

Fine, N. J. (1988). Basic hypergeometric series and applications. American Mathematical Society.

Foulis, D., & Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. Foundations 
of Physics, 24(10), 1331–1352. doi:10.1007/BF02283036

Frisk, M., Göthe-Lundgren, M., Jörnsten, K., & Rönnqvist, M. (2010). Cost allocation in 
collaborative forest transportation. European Journal of Operational Research, 205(2), 448–458. 
doi:10.1016/j.ejor.2010.01.015

Fuchs, L. (1970). Infinite Abelian Groupd. New York: Academic Press, Inc.

Furuta, T., Mićić Hot, J., Pečarić, J., & Seo, Y. (2005). Mond-Pečarić Method in Operator 
Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Zagreb: Element.

Garayev, M. T., Gürdal, M., & Okudan, A. (2016). Hardy-Hilbert’s inequality and a power 
inequality for Berezin numbers for operators. Mathematical Inequalities & Applications, 3(3), 
883–891. doi:10.7153/mia-19-64

Garayev, M. T., Gürdal, M., & Saltan, S. (2017). Hardy Type Inequality For Reproducing Kernel 
Hilbert Space Operators and Related Problems. Positivity, 21(4), 1615–1623. doi:10.100711117-
017-0489-6

Garayev, M., Saltan, S., & Gundogdu, D. (2018). On the Inverse Power Inequality for the Berezin 
Number of Operators. J. Math. Inequal., 12(4), 997–1003. doi:10.7153/jmi-2018-12-76

Gasymov, M. G., & Guseinov, G. Sh. (1981). Determining the diffusion operator from spectral 
data [Russian]. Akad. Nauk Azerbaijan SSR Dokl., 37(2), 19–23.

Gasymow, M.G., Gasymow. (1982). On the spectral theory of differential operators polnomially 
depending on a parameter [Russian]. Uspekhi Matematicheskhi Nauk, 37(4), 99.

Goktas, U., & Hereman, W. (1997). Symbolic computation of conserved densities for systems of 
nonlinear evolution equations. Journal of Symbolic Computation, 24(5), 591–622. doi:10.1006/
jsco.1997.0154

Goldhaber, J. (1970). And Ehrlich, G., Algebra. New York: The Macmillan Company.

Gopalsamy, K., & Liu, P. (1998). Persistence and global stability in a population model. Journal 
of Mathematical Analysis and Applications, 224(1), 59–80. doi:10.1006/jmaa.1998.5984

Gorenflo, R., & Mainardi, F. (2000). Essentials of fractional calculus. Academic Press.

Gorenstein, D. (1968). Finite Groups. New York: Harper and Row, Publishers.

Greenberg, M. D. (1978). Foundation of Applied Mathematics. Prentice–Hall Inc.

Greenspan, H. P. (1976). On the growth and stability of cell cultures and solid tumors. Journal 
of Theoretical Biology, 56(1), 229–242. doi:10.1016/S0022-5193(76)80054-9 PMID:1263527

268

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Gul, F. A., Zhou, G., & Zhu, X. (2013). Investor protection, firm informational problems, big 
N auditors, and cost of debt around the world. Auditing, 32(3), 1–30. doi:10.2308/ajpt-50462 
doi:10.2308/ajpt-50462

Guo, S., Mei, L., Li, Y., & Sun, Y. (2012). The improved fractional sub-equation method and 
its applications to the space–time fractional differential equations in fluid mechanics. Physics 
Letters. [Part A], 376(4), 407–411. doi:10.1016/j.physleta.2011.10.056

Guseinov, G. S. (1985). On spectral analysis of a quadratic pencil of Stırm-Liouville operators. 
Soviet Math. Dokl., 32(3), 859–862.

Guseinov, G. S. (2007). Eigenfunction expansions for a Sturm-Liouville problem on time scales. 
International Journal of Differential Equations, 2(1), 93–104.

Guseinov, G. S. (2008). An expansion theorem for a Sturm-Liouville operator on semi-unbounded 
time scales. Adv. Dyn. Syst. Appl., 3(1), 147–160.

Guseinov, I. M. (1997). On a transformation operatör. J. Mat. Notes, 62(2), 172–180. doi:10.1007/
BF02355905

Guseinov, I. M., Nabiev, A. A., & Pashayev, R. T. (2000). Transformation operators and asymptotic 
formulas for the eigenvalues of a polynomial pencil of Sturm-Liouville operators. Sib. Math. J., 
41(3), 453–464. doi:10.1007/BF02674102

Gustafson, K. E., & Rao, D. K. M. (1997). Numerical Range. Springer-Verlag.

Hahn, W. (1935). Über die jacobischen polynome und zwei verwandte polynomklassen. 
Mathematische Zeitschrift, 39(1), 634–638. doi:10.1007/BF01201380

Hahn, W. (1949). Über orthogonalpolynome, die q − . Mathematische Nachrichten, 2(1-2), 4–34. 
doi:10.1002/mana.19490020103

Hahn, W. (1967). Stability of Motion. Berlin: Springer-Verlag. doi:10.1007/978-3-642-50085-5

Hahn, W. (1983). Ein beitrag zur theorie der orthogonalpolynome. Monatshefte für Mathematik, 
95(1), 19–24. doi:10.1007/BF01301144

Hajmohamadi, M., Lashkaripour, R., & Bakherad, M. (n.d.). Improvements of Berezin number 
inequalities. Linear and Multilinear Algebra. doi: 10.1080/03081087.2018.1538310

Hall, M. (1970). The Theory of Groups. New York: Academic Press, Inc.

Hamza, A. E., & Ahmed, S. A. (2013). Theory of linear Hahn difference equations. J. Adv. 
Math., 4(2), 440–460.

Hamza, A. E., & Ahmed, S. A. (2013a). Existence and uniqueness of solutions of Hahn difference 
equations. Adv. Difference Equations, 316, 1–15.

Hamza, A. E., & Makharesh, S. D. (2016). Leibniz’ rule and Fubinis theorem associated with 
Hahn difference operator. Journal of Advanced Mathematical, 12(6), 6335–6345.

269

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Haug, S. (2006). Exponential COGARCH and other continuous time models with applications 
to high frequency data (Dissertation). Technische Universitat München.

Haug, S., Klüppelberg, C., Lindner, A., & Zapp, M. (2007). Moment Estimating the COGARCH 
(1,1) model - a first go. The Econometrics Journal, 10(2), 320–341. doi:10.1111/j.1368-
423X.2007.00210.x

Hazewinkel, M. (1994). Groupoid. In Encyclopedia of Mathematics. Kluwer Academic Publishers.

He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave equations. Chaos, 
Solitons, and Fractals, 30(3), 700–708. doi:10.1016/j.chaos.2006.03.020

Herstein, I. (1965). Topics in Algebra. Waltham, MA: Addison-Wesley, Publishing Company, Inc.

Hettich, R., & Kortanek, K. O. (1993). Semi-infinite programming: Theory, methods, and 
applications. SIAM Review, 35(3), 380–429. doi:10.1137/1035089

Hilfer, R. (2000). Applications of Fractional Calculus in Physics (Vol. 128). Singapore: World 
Scientific Publishing. doi:10.1142/3779

Hira, F. (2018). Dirac systems associated with Hahn difference operator. arXiv:1806.00710v1

Hosking, J. R. (1981). Fractional Differencing. Biometrika, 68(1), 165–176. doi:10.1093/
biomet/68.1.165

Huang, G., Liu, A., & Fory’s, U. (2016). Global Stability Analysis of Some Nonlinear Delay 
Differential Equations in Population Dynamics. Journal of Nonlinear Science, 26(1), 27–41. 
doi:10.100700332-015-9267-4

Huebel, L. (2005). Analysis of solid tumor growth models: Mechanisms of volume loss and slowed 
growth rate. B.S. Texas State University.

Hungerford, T. W. (1974). Algebra. Springer-Verlag.

Iacus, S. M., Mercuri, L., & Rroji, E. (2015a). Discrete time approximation of a COGARCH(p,q) 
model and its estimation. arXiv preprint arXiv:1511.00253

Iacus, S. M., Mercuri, L., & Rroji, E. (2015b). Estimation and Simulation of a COGARCH(p,q) 
model in the YUIMA project. arXiv preprint arXiv:1505.03914

Infante, D., & Smirnova, J. (2009). Rent-seeking under a weak institutional environment. Economics 
Letters, 104(3), 118–121. doi:10.1016/j.econlet.2009.04.022 doi:10.1016/j.econlet.2009.04.022

Jackson, F. H. (1910). Difference equations. American Journal of Mathematics, 32(4), 305–314. 
doi:10.2307/2370183

James, K. S. (1989). Linear programming and its applications. Springer-Verlag World Publishing 
Corp.

270

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Jarad, F., Abdeljawad, T., & Baleanu, D. (2012). Caputo-type modification of the Hadamard 
fractional derivatives. Advances in Difference Equations, 2012(1), 142. doi:10.1186/1687-1847-
2012-142

Jaulent, M., Jean, C. (1976). The inverse scattering problem for the one dimensional Schrödinger 
equation with an energy-dependent potential I, II. Ann. Inst. Henri Poincare, 25, 105-137.

Jaulent, M. (1972). On an inverse scattering problem with an energy dependent potential. Ann. 
Inst. Henri Poincare, 27(4), 363–378.

Jaulent, M., & Jean, C. (1982). Solution of a Schrödinger inverse scattering problem with a 
polynomial spectral dependence in the potential. Journal of Mathematical Physics, 23(2), 
258–266. doi:10.1063/1.525347

Jekel, S. (2013). Partial Groups. Northeastern University. Doi: 10.13140/2.1.1409.3127

Jordanov, R. (1984). About some spectral properties of the Schrödinger equation with an energy 
dependent potential generating fully integrable Hamiltonian systems. Ann. de L’universite de 
Sofia ‘Kliment Ohridski’, 78, 1–29.

Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of 
nondifferentiable functions further results. Computers & Mathematics with Applications (Oxford, 
England), 51(9-10), 1367–1376. doi:10.1016/j.camwa.2006.02.001

Kamimura, Y. (2007). An inversion formula in energy dependent scattering. Journal of Integral 
Equations and Applications, 19(4), 473–512. doi:10.1216/jiea/1192628620

Karaev, M. T. (2006). Berezin symbol and invertibility of operators on the functional Hilbert 
spaces. Journal of Functional Analysis, 238(1), 181–192. doi:10.1016/j.jfa.2006.04.030

Karaev, M. T. (2013). Reproducing Kernels and Berezin symbols Techniques in Various Questions 
of Operator Theory. Complex Analysis and Operator Theory, 7(4), 983–1018. doi:10.100711785-
012-0232-z

Karaev, M. T., Gürdal, M., & Yamancı, U. (2013). Special operator classes and their properties. 
Banach Journal of Mathematical Analysis, 7(2), 74–85. doi:10.15352/bjma/1363784224

Karaev, M. T., Gürdal, M., & Yamancı, U. (2014). Some results related with Berezin symbols and 
Toeplitz operators. Mathematical Inequalities & Applications, 17(3), 1031–1045. doi:10.7153/
mia-17-76

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory of appliciations of fractional 
differential equations. Academic Press.

Kittaneh, F. (2005). Numerical radius inequalities for Hilbert space operators. Studia Mathematica, 
168(1), 73–80. doi:10.4064m168-1-5

Kittaneh, F., Moslehian, M. S., & Yamazaki, T. (2015). Cartesian decomposition and numerical 
radius inequalities. Linear Algebra and Its Applications, 471, 46–53. doi:10.1016/j.laa.2014.12.016

271

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Klüppelberg, C., Maller, R., & Szimayer, A. (2011). The COGARCH: A Review, with News on 
Option Pricing and Statistical Inference. In Surveys in Stochastic Processes. Proc. Of the 33rd 
SPA Conference in Berlin (pp. 29–58). EMS Publishing House.

Klüppelberg, C., Lindner, A., & Maller, R. A. (2004). Continous time GARCH process driven by 
a Lévy process: Stationarity and second order behavior. Journal of Applied Probability, 41(3), 
601–622. doi:10.1239/jap/1091543413

Koekoek, R., Lesky, P. A., & Swarttouw, R. F. (2010). Hypergeometric orthogonal polynomials 
and their q-analogues. Springer Monographs in Mathematics. Berlin: Springer-Verlag. 
doi:10.1007/978-3-642-05014-5

Kolmogorov, A. N., & Fomin, S. V. (1970). Introductory Real Analysis (R. A. Silverman, Trans.). 
New York: Dover Publications.

Koornwinder, T. H. (1994). Compact quantum groups and q-special functions. Representations 
of lie groups and quantum groups, 46–128.

Koornwinder, T. H. (1995). Orthogonal polynomials in connection with quantum groups. 
Orthogonal polynomials, theory and practice, 257–292.

Korobeinikov, A. (2006). Lyapunov functions and global stability for SIR and SIRS epidemiological 
models with non-linear transmission. Bulletin of Mathematical Biology, 68(3), 615–626. 
doi:10.100711538-005-9037-9 PMID:16794947

Krasovskii, N. N. (1963). Stability of Motion: Application of Lyapunov’s Second Method to 
Differential Systems and Equations with Time-Delay. Stanford, CA: SU Press.

Kudryashov, N. A. (1990). Exact solutions of the generalized Kuramoto-Sivashinsky equation. 
Physics Letters. [Part A], 147(5-6), 287–291. doi:10.1016/0375-9601(90)90449-X

Kurosh, A. G. (1960). The Theory of Groups (Vols. 1–2). New York: Chelsea Publishing Company.

Kwon, K. H., Lee, D. W., Park, S. B., & Yoo, B. H. (1998). Hahn class orthogonal polynomials. 
Kyungpook Math. J., 38, 259–281.

Kyoto. (1997a). Kyoto contract. Retrieved from http://www.unfccc.org/resource/convkp.html

Kyoto. (1997c). Kyoto protocol. Retrieved from http://vitalgraphics.grida.no/kyoto

Lang, S. (1965). Algebra. Reading, MA: Addison-Wesley, Publishing Company, Inc.

Lesky, P. A. (2005). Eine Charakterisierung der klassischen kontinuierlichen, diskretenund 
Orthgonalpolynome. Aachen: Shaker.

Levinson, N. (1951). A simplified proof of the expansion theorem for singular second order 
linear differential equations. Duke Math. J., 18, 57-71.

Levitan, B. M., & Sargsjan, I. S. (1991). Sturm-Liouville and Dirac Operators. Dordrecht, The 
Netherlands: Kluwer Academic Publishers Group.

272

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.unfccc.org/resource/convkp.html
http://vitalgraphics.grida.no/kyoto


Compilation of References

Liu, C., & Dai, Z. (2008). Exact soliton solutions for the fifth-order Sawada–Kotera equation. 
Applied Mathematics and Computation, 206(1), 272–275. doi:10.1016/j.amc.2008.08.028

Liu, S., Fu, Z., Liu, S., & Zhao, Q. (2001). Jacobi elliptic function expansion method and 
periodic wave solutions of nonlinear wave equations. Physics Letters. [Part A], 289(1), 69–74. 
doi:10.1016/S0375-9601(01)00580-1

Li, Z. B., & He, J. H. (2010). Fractional complex transform for fractional differential equations. 
Mathematical and Computational Applications, 15(5), 970–973. doi:10.3390/mca15050970

Llorca, N (2004). On the Owen set of transportation situations. In Essays in Cooperative Games 
(pp. 215–228). Boston, MA: Springer. doi:10.1007/978-1-4020-2936-3_17

Lu, B. (2012). Bäcklund transformation of fractional Riccati equation and its applications to 
nonlinear fractional partial differential equations. Physics Letters. [Part A], 376(28-29), 2045–2048. 
doi:10.1016/j.physleta.2012.05.013

Lyapunov, A. M. (1949). Probl´eme G´en´eral de la Stabilit´e du Mouvement. Ann. Math. Studies, 17.

Macfarlane, A. J. (1989). On q-analogues of the quantum harmonic oscillator and the quantum 
group SUq . Journal of Physics. A, Mathematical and General, 22(21), 4581–4588. 
doi:10.1088/0305-4470/22/21/020

Maksudov, F. G., & Guseinov, G. Sh. (1986). On the solution of the inverse scattering problem 
for the quadratic pencil of the Schrödinger equation on the full-line. Dokl. Akad. Nauk USSR, 
289(1), 42–46.

Maller, R. A., Mueller, G., & Szimayer, A. (2008). GARCH modelling in continuous time for 
irregularly spaced time series data. Bernoulli, 14(2), 519–542. doi:10.3150/07-BEJ6189

Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 
36(4), 394–419. doi:10.1086/294632

Marcellan, F., Branquinho, A., & Petronilho, J. (1994). Classical orthogonal polynomials: A 
functional approach. Acta Applicandae Mathematicae, 34, 283–303. doi:10.1007/BF00998681

Marchenko, V. A. (1997). Sturm-Liouville’s operators and their applications. Kiev: Naukova 
Dumko.

Marín, J. M., Rodríguez-Bernal, M. T., & Romero, E. (2016). ABC and Hamiltonian Monte-Carlo 
methods in COGARCH models. UC3M Working Papers, Statistics and Econometrics, 16-01.

Marín, J. M., Rodríguez-Bernal, M. T., & Romero, E. (2015). Data cloning estimation of GARCH 
and COGARCH models. Journal of Statistical Computation and Simulation, 85(9), 1818–1831. 
doi:10.1080/00949655.2014.903948

Marriage, M. (2019). Auditors promote ‘mythology’ on fraud detection, claims regulator. Financial 
Times. Retrieved from https://www.ft.com/content/43ab3668-2959-11e9-88a4-c32129756dd8

273

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

McCarthy, C. A. (1967). Cp. Israel Journal of Mathematics, 5(4), 249–271. doi:10.1007/
BF02771613

Medem, J. C., Álvarez-Nodarse, R., & Marcellán, F. (2001). On the q-polynomials: A distributional 
study. Journal of Computational and Applied Mathematics, 135(2), 157–196. doi:10.1016/
S0377-0427(00)00584-7

Medio, A., & Lines, M. (2001). Nonlinear dynamics: A primer. Cambridge University Press. 
doi:10.1017/CBO9780511754050 doi:10.1017/CBO9780511754050

Michel, A. N., & Hu, B. (2000). Stability analysis of discontinuous dynamical systems using 
vector Lyapunov functions. Circuits, Systems, and Signal Processing, 19(3), 221–243. doi:10.1007/
BF01204576

Miller, G. S. (2006). The press as a watchdog for accounting fraud. Journal of Accounting 
Research, 44(5), 1001–1033. doi:10.1111/j.1475-679X.2006.00224.x doi:10.1111/j.1475-
679X.2006.00224.x

Miller, R. K., & Michel, A. (1982). Ordinary Differential Equations. New York: Academic Press.

Mond, B., & Pečarić, J. (1993). Convex inequalities in Hilbert space. Houston Journal of 
Mathematics, 19, 405–420.

Moore, D. A., Tetlock, P. E., Tanlu, L., & Bazerman, M. H. (2006). Conflicts of interest and the 
case of auditor independence: Moral seduction and strategic issue cycling. Academy of Management 
Review, 31(1), 10–29. doi:10.5465/amr.2006.19379621 doi:10.5465/amr.2006.19379621

Mukhtarov, O. S., & Aydemir, K. (2018). Basis properties of the eigenfunctions of two-interval 
Sturm.Liouville problems. Analysis and Mathematical Physics, 1-20.

Müller, G. (2010). MCMC estimation of the COGARCH (1, 1) model. Journal of Financial 
Econometrics, 8(4), 481–510. doi:10.1093/jjfinec/nbq029

Nabiev, A. A. (2006). Inverse scattering problem for the Schrödinger-type equation with a 
polynomial energy-dependent potential. Inverse Problems, 22(6), 2055–2068. doi:10.1088/0266-
5611/22/6/009

Nabiev, A. A., & Guseinov, I. M. (2005). On the Jost solutions of the Schrödinger-type equations 
with a polynomial energy-dependent potential. Inverse Problems, 22(1), 55–67. doi:10.1088/0266-
5611/22/1/004

Nabiev, I. M. (2004). The inverse spectral problem for the diffusion operator on an interval 
[Russian]. Mat. Fiz.Anal. Geom., 11(3), 302–313.

Naimark, M. A. (1969). Linear Differential Operators (2nd ed.). Frederick Ungar Publishing.

Nikiforov, A., Suslov, S. K., & Uvarov, V. (1991). Classical orthogonal polynomials of a discrete 
variable. Berlin: Springer-Verlag. doi:10.1007/978-3-642-74748-9

274

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Nikiforov, A., & Uvarov, V. (1986). Classical orthogonal polynomials of a discrete variable on 
nonuniform lattices. Letters in Mathematical Physics, 11(1), 27–34. doi:10.1007/BF00417461

Nikiforov, A., & Uvarov, V. (1988). Special functions of mathematical physics. Basel: Birkhäuser. 
doi:10.1007/978-1-4757-1595-8

Nordgren, E., & Rosenthal, P. (1994). Boundary values of Berezin symbols, Nonselfadjoint 
operators and related topics. Oper. Theory Adv. Appl., 73.

Odibat, Z., & Momani, S. (2008). A generalized differential transform method for linear 
partial differential equations of fractional order. Applied Mathematics Letters, 21(2), 194–199. 
doi:10.1016/j.aml.2007.02.022

Olgar, H., Mukhtarov, O. S., & Aydemir, K. (2018). Some properties of eigenvalues and generalized 
eigenvectors of one boundary value problem. Filomat, 32(3), 911-920.

Owen, G. (1975). On the core of linear production games. Mathematical Programming, 9(1), 
358–370. doi:10.1007/BF01681356

Özener, O. Ö., & Ergun, Ö. (2008). Allocating costs in a collaborative transportation procurement 
network. Transportation Science, 42(2), 146–165. doi:10.1287/trsc.1070.0219

Palancı, O., Alparslan Gök, S. Z., Ergün, S., & Weber, G. W. (2015). Cooperative grey games and 
the grey Shapley value. Optimization, 64(8), 1657–1668. doi:10.1080/02331934.2014.956743

Palancı, O., Alparslan Gök, S. Z., Olgun, M. O., & Weber, G.-W. (2016). Transportation interval 
situations and related games. OR-Spektrum, 38(1), 119–136. doi:10.100700291-015-0422-y

Petronilho, J. (2007). Generic formulas for the values at the singular points of some special monic 
classical Hq,� � . Journal of Computational and Applied Mathematics, 205(1), 314–324. 
doi:10.1016/j.cam.2006.05.005

Pickl, S. W., & Gerhard-W., W. (2002). On Optimal Control of Heating Processes. In Operations 
Research Proceedings 2001. Berlin: Springer.

Pickl, St., & Weber, G. W. (2000). An algorithmic approach by linear programming problems in 
generalized semi-infinite optimization, J. Computing Techniques, 5(3), 62–82.

Platen, E., & Bruti-Liberati, N. (2010). Numerical Solution of Stochastic Differential Equations 
with Jumps in Finance. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-13694-8

Podlubny, I. (1999).. . Fractional Differential Equations, Academic Press, 198, 10–200.

Potter, M. J. A. (2000). Berezin symbols and operator theory. Thesis.

Puerto, J., Fernández, F. R., & Hinojosa, Y. (2008). Partially ordered cooperative games: Extended 
core and Shapley value. Annals of Operations Research, 158(1), 143–159. doi:10.100710479-
007-0242-9

275

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Pulido, Sánchez-Soriano, & Llorca. (2002). Game theory techniques for university management: 
an extended bankruptcy model. Annals of Operations Research, 109(1-4), 129-142.

Pulido, M., Borm, P., Hendrickx, R., Llorca, N., & Sánchez-Soriano, J. (2008). Compromise 
solutions for bankruptcy situations with references. Annals of Operations Research, 158(1), 
133–141. doi:10.100710479-007-0241-x

Razumikhin, B. S. (1956). Stability of delay systems. Прикладня математика и механика, 
20, 500–512.

Rotman, J. (1973). The Theory of Groups (2nd ed.). Boston: Allyn and Bacon, Inc.

Routh, R. J. (1885). On some properties of certain solutions of a differential equation of the 
second order. Proceedings of the London Mathematical Society, 16, 245–261.

Saitoh, S. (1988). Theory of reproducing kernels and its applications. Pitman Research Notes 
in Mathematics Series 189.

Saitoh, S., & Sawano, Y. (2016). Theory of reproducing kernels and applications. Springer. 
doi:10.1007/978-981-10-0530-5

Samko, S. G., Kilbas, A. A., & Marichev, O. M. (1987). Integral and derifatives of fractional 
order and its applications. Minsk: Nauka and Tekhnika.

Sánchez-Soriano, J. (2003). The pairwise egalitarian solution. European Journal of Operational 
Research, 150(1), 220–231. doi:10.1016/S0377-2217(02)00503-9

Sánchez-Soriano, J. (2006). Pairwise solutions and the core of transportation situations. European 
Journal of Operational Research, 175(1), 101–110. doi:10.1016/j.ejor.2005.04.033

Sánchez-Soriano, J., Llorca, N., Meca, A., Molina, E., & Pulido, M. (2002). An integrated 
transport system for Alacant’s students. Annals of Operations Research, 109(1-4), 41–60. 
doi:10.1023/A:1016387715917

Sánchez-Soriano, J., López, M. A., & Garc. (2001). On the core of transportation games. 
Mathematical Social Sciences, 41(2), 215–225. doi:10.1016/S0165-4896(00)00057-3

Sandholm, W. H. (2010). Population games and evolutionary dynamics. MIT Press.

Sattari, M., Moslehian, M. S., & Yamazaki, T. (2015). Some generalized numerical radius 
inequalities for Hilbert space operators. Linear Algebra and Its Applications, 470, 216–227. 
doi:10.1016/j.laa.2014.08.003

Sattinger, D. H., & Szmigielski, J. (1995). Energy dependent scattering theory. Differential and 
Integral Equations, 8, 945–959.

Schrijver, A. (1986). Theory of Linear and Integer Programming. Chichester, UK: John Wiley 
and Sons.

276

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Schwartz, L. (1964). Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux 
associés (noyaux reproduisants). Journal d’Analyse Mathématique, 13(1), 115–256. doi:10.1007/
BF02786620

Scott, W. R. (1964). Group Theory. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Sitthiwirattham, T. (2016). On a nonlocal boundary value problem for nonlinear second-order Hahn 
difference equation with two different derivatives. Advances in Difference Equations, 2016(1).

Slater, M. S. (1981). A companion inequality to Jensen’s inequality. Journal of Approximation 
Theory, 32(2), 160–166. doi:10.1016/0021-9045(81)90112-X

Soons, D. E., Slikker, M., & Fransoo, J. C. (2011). The determination and division of benefits 
among partners of a horizontal cooperation in transportation. Technische Universiteit Eindhoven.

Stone, M. H. (1932). Linear Transformations in Hilbert Space and Their Application to Analysis. 
Providence, RI: Amer. Math. Soc.

Stone, M. H. (1926). A comparison of the series of Fourier and Birkhoff. Transactions of the 
American Mathematical Society, 28(4), 695–761. doi:10.1090/S0002-9947-1926-1501372-6

Sturm, C., & Liouville, J. (1837). Extrait d.un M’emoire sur le d’eveloppement des fonctions en 
s’eries dont les di¤erents termes sont assujettis. a satisfaire. a une meme equation differentielle 
lineaire, contenant un parametre variable. Journal de Mathématiques Pures et Appliquées, 2, 
220–223.

Szegö, G. (1939). Orthogonal polynomials. American Mathematical Society Colloquium 
Publication Volume XXIII.

Szegö, S. (1921). Über orthogonale Polynome, die zu einer gegebenen Kurve der Komplexen 
Ebenegehören. Mathematische Zeitschrift, 9(3-4), 218–270. doi:10.1007/BF01279030

Thaller, B. (1992). The Dirac Equation, Berlin. Heidelberg, Germany: Springer. doi:10.1007/978-
3-662-02753-0

Theys, C., Dullaert, W., & Notteboom, T. (2008). Analyzing cooperative networks in intermodal 
transportation: a game-theoretic approach. In Nectar Logistics and Freight Cluster Meeting, 
Delft, The Netherlands.

Titchmarsh, E. C. (1962). Eigenfunction Expansions Associated with Second-Order Differential 
Equations. Part I (2nd ed.). Oxford, UK: Clarendon Press. doi:10.1063/1.3058324

Tricomi F. (1955). Vorlesungenüber orthogonalreihen. Grundlehren der mathematischen 
wissenschafen, 76.

Tsay, R. S. (2012). Analysis of Financial Time Series. Wiley and Sons.

Tsutsmi, M. (1981). On the inverse scattering problem for the one -dimensional Schrödinger 
equation with an energy dependent potential. Journal of Mathematical Analysis and Applications, 
83(1), 316–350. doi:10.1016/0022-247X(81)90266-3

277

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Tuna, H. (2014). Completeness of the rootvectors of a dissipative Sturm–Liouville operators on 
time scales. Appl Math Comput., 228, 108–115.

Tuna, H. (2016). Completeness Theorem for the Dissipative Sturm-Liouville Operator on 
Bounded Time Scales. Indian Journal of Pure and Applied Mathematics, 47(3), 535–544. 
doi:10.100713226-016-0196-1

Tuna, H., & Eryılmaz, A. (2013). Dissipative Sturm-Liouville Operators with Transmission 
Conditions. Abstract and Applied Analysis, 2013, 1–7. doi:10.1155/2013/248740

Tuna, H., & Özek, M. A. (2017). The one-dimensional Schrödinger operator on bounded time 
scales. Mathematical Methods in the Applied Sciences, 40(1), 78–83. doi:10.1002/mma.3966

Turner, L. E. (2001). Quality, transparency, accountability. Paper presented at the Speech to the 
Financial Executives Institute-AICPA’s “Benchmarking the Quality of Earnings” Conference, 
New York, NY.

Van der Mee, C., & Pivovarchik, V. (2001). Inverse scattering for a Schrödinger equation with energy 
dependent potential. Journal of Mathematical Physics, 42(1), 158–181. doi:10.1063/1.1326921

Van der Waerden, B. L. (n.d.). Algebra (7th ed.; 2 vols.). New York: Frederick Ungar Publishing Co.

Van Rijckeghem, C., & Weder di Mauro, B. (2001). Bureaucratic corruption and the rate of 
temptation: Do wages in the civil service affect corruption, and by how much? Journal of 
Development Economics, 65(2), 307–331. doi:10.1016/S0304-3878(01)00139-0 doi:10.1016/
S0304-3878(01)00139-0

Vilenkin, N. J., & Klimyk, A. U. (1998). Representations of lie groups and special functions. 
Bulletin of the American Mathematical Society, 35(3), 265–270.

Wang, M. (1995). Solitary wave solutions for variant Boussinesq equations. Physics Letters. 
[Part A], 199(3-4), 169–172. doi:10.1016/0375-9601(95)00092-H

Wang, M. (1996). Exact solutions for a compound KdV-Burgers equation. Physics Letters. [Part 
A], 213(5-6), 279–287. doi:10.1016/0375-9601(96)00103-X

Wang, M., Li, X., & Zhang, J. (2007). Various exact solutions of nonlinear Schrödinger equation 
with two nonlinear terms. Chaos, Solitons, and Fractals, 31(3), 594–601. doi:10.1016/j.
chaos.2005.10.009

Wang, M., Zhou, Y., & Li, Z. (1996). Application of a homogeneous balance method to exact 
solutions of nonlinear equations in mathematical physics. Physics Letters. [Part A], 216(1-5), 
67–75. doi:10.1016/0375-9601(96)00283-6

Wazwaz, A. M. (2010). Partial differential equations and solitary waves theory. Springer Science 
& Business Media.

Weidmann, J. (1987). Spectral Theory of Ordinary Di¤erential Operators. Lecture Notes in 
Mathematics 1258. Berlin: Springer.

278

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Weyl, H. (1910). Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen 
Entwicklungen willkürlicher Funktionen. Mathematische Annalen, 68(2), 220–269. doi:10.1007/
BF01474161

Wu, Y., Geng, X., Hu, X., & Zhu, S. (1999). A generalized Hirota–Satsuma coupled Korteweg–
de Vries equation and Miura transformations. Physics Letters. [Part A], 255(4-6), 259–264. 
doi:10.1016/S0375-9601(99)00163-2

Xu, G. (1999). Handbook of Operations Research Fundamentals. Beijing, China: Science Press.

Xu, T., Li, J., Zhang, H. Q., Zhang, Y. X., Yao, Z. Z., & Tian, B. (2007). New extension of the tanh-
function method and application to the Whitham–Broer–Kaup shallow water model with symbolic 
computation. Physics Letters. [Part A], 369(5-6), 458–463. doi:10.1016/j.physleta.2007.05.047

Yamancı, U., Garayev, M. T., & Çelik, C. (2019). Hardy-Hilbert type inequality in reproducing 
kernel Hilbert space: Its applications and related results. Linear and Multilinear Algebra, 67(4), 
830–842. doi:10.1080/03081087.2018.1490688

Yamancı, U., & Gürdal, M. (2017). On numerical radius and Berezin number inequalities for 
reproducing kernel Hilbert space. New York Journal of Mathematics, 23, 1531–1537.

Yamancı, U., Gürdal, M., & Garayev, M. T. (2017). Berezin Number Inequality for Convex Function 
in Reproducing Kernel Hilbert Space. Filomat, 31(18), 5711–5717. doi:10.2298/FIL1718711Y

Ye, M., & Simunic, D. A. (2016). The impact of PCAOB-type regulations on auditors under 
different legal systems. Rotman School of Management Working Paper (2697268).

Yosida, K. (1950). On Titchmarsh-Kodaira formula concerning Weyl-Stone eingenfunction 
expansion. Nagoya Math. J., 1, 49-58.

Yosida, K. (1960). Lectures on Differential and Integral Equations. New York: Springer.

Yurko, V. A. (2000). An inverse problem for differential operator pencils, Mat. Sb., 
191(10), 137-160; English transl. Sbornik Mathematics, 191(10), 1561–1586. doi:10.1070/
SM2000v191n10ABEH000520

Yusufoğlu, E., & Bekir, A. (2007). A travelling wave solution to the Ostrovsky equation. Applied 
Mathematics and Computation, 186(1), 256–260. doi:10.1016/j.amc.2006.07.099

Zaremba, S. (1907). L’equation biharminique et une class remarquable de fonctions foundamentals 
harmoniques. Bull. Int. de l’Academie des Sci. de Cracovie, 39, 147–196.

Zassenhaus, H. (1958). The Theory of Groups. New York: Chelsea Publishing Company.

Zettl, A. (2005). Sturm.Liouville Theory. In Mathematical Surveys and Mono-graphs (Vol. 121). 
American Mathematical Society.

Zhang, J. L., Wang, M. L., & Li, X. Z. (2006). The subsidiary ordinary differential equations 
and the exact solutions of the higher order dispersive nonlinear Schrödinger equation. Physics 
Letters. [Part A], 357(3), 188–195. doi:10.1016/j.physleta.2006.03.081

279

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Compilation of References

Zhang, S., Tong, J. L., & Wang, W. (2008). A generalized-expansion method for the mKdV 
equation with variable coefficients. Physics Letters. [Part A], 372(13), 2254–2257. doi:10.1016/j.
physleta.2007.11.026

Zhang, S., & Zhang, H. Q. (2011). Fractional sub-equation method and its applications to nonlinear 
fractional PDEs. Physics Letters. [Part A], 375(7), 1069–1073. doi:10.1016/j.physleta.2011.01.029

Zimmerman, J. L. (2015). The role of accounting in the twenty-first century firm. Accounting 
and Business Research, 45(4), 485–509. doi:10.1080/00014788.2015.1035549 doi:10.1080/00
014788.2015.1035549

280

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



About the Contributors

Bilender P. Allahverdiev is a Professor at Department of Mathematics in Süley-
man Demirel University (Turkey), he obtained the PhD Degree in Baku (Azarbaijan).

Sakina Alwhishi is an instructor at El Mergib University, Libya. She has re-
ceived her B.S. in Mathematics at El Mergib University, in 2006. She completed 
her Master of Science at Atilim University, Turkey, in 2017 under the supervision 
of Assoc. Prof. Dr. Rezan Sevinik Adıgüzel. Her research areas include the discrete 
q-orthogonal polynomials.

Yakup Arı is an Assistant Professor in the Department of Economics and Fi-
nance at Alanya Alaaddin Keykubat University. Having graduated with a bachelor’s 
degree in Mathematics, he pursued an MBA degree in Finance and a PhD degree in 
Financial Economics – all of which at Yeditepe University with full scholarships. 
He worked as a statistical consultant at several private consultancy firms in Istan-
bul. He teaches courses in mathematical economics, technical analysis, probability 
and statistics, biostatistics and econometrics. His primary research interest lies in 
the area of time series analysis, stochastic models driven by Lévy processes, the 
Bayesian approach in statistics and econometrics, in addition to statistical methods 
in Engineering and Social Sciences.

Mustafa Ekici works as a lecturer at Department of Mathematics and Science 
Education of Usak University in Usak-Turkey. He holds his PhD at Applied math-
ematics in Gazi University (Ankara- Turkey) and BSc (Gazi University, Turkey) in 
Mathematics. His research interests are Fractional differential equations, Solitons and 
Nonlinear wave equations. He has co-authored research papers at various journals 
and conference proceedings.

281

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



About the Contributors

Mert Erinç is a PhD Candidate at Bocconi University, Department of Account-
ing. Received his BA from Marmara University in Business Administration and 
Management, and his MAs from Bogazici University and Galatasaray University in 
Economics. Held a visiting position at George Washington University. His primary 
areas of research are audit market regulation and audit transparency.

Rezan Sevinik Adıgüzel completed her Ph.D. in mathematics in 2010 at Middle 
East Technical University (METU) in Turkey. She receieved her B. S. Degree in 
mathematics at Ankara University in 2002. Her primary research interest is classical 
ortghogonal polynomials of discrete variable.

Hüseyin Tuna is an Associated Professor at Department of Mathematics in 
Mehmet Akif Ersoy University (Turkey), he obtained the PhD Degree in Isparta 
(Turkey). His research interest lies in differential/difference equations.

Mehmet Turan is an Assoc. Prof. Dr. of the Mathematics Department at Atilim 
University. He has received his B.S. in Mathematics at Middle East Technical Uni-
versity in 2002 and his Ph.D. from the same university in 2009. His research areas 
include differential equations and approximation theory.

282

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index

B
Berezin number 55, 58-59
Berezin symbol 57
boundary value problem 163-164, 166, 

169-170, 174, 177, 210
Brownian motion 81-82, 84-86, 93-94

C
classical orthogonal polynomials 136
COGARCH 79-81, 84, 88-96
Compound Poisson 79, 81, 84, 86, 89, 96
convex functions 55, 68-70
cooperative grey games 98, 100, 104-105, 

123-124
core 56, 98-100, 116, 118, 120, 127-131

D
detection 36-37, 39-40, 44
discrete q-Hermite I polynomials 135, 159
dishonest behavior 36, 39-40, 44

E
effect algebra 2-3
eigenfunction 163, 166, 169, 211
eigenfunction expansion 211
eigenvalue 48, 166, 168-170, 176-179, 219
epidemic 182-183, 186-188, 190, 194, 196, 

200, 203-204, 207, 236, 238, 240-241, 
255, 259

epidemic model 182-183, 187, 194, 196, 
203-204, 236, 238, 240-241, 255

exponential rational function method 13, 
17, 19, 22, 24, 28

F
financial reporting 33, 36, 38-42, 44, 47-52
fractional Whitham-Broer-Kaup equations 

13, 21, 28

G
GARCH 79-84, 87-89, 91
General Methods of Moments 79
generalized piecewise constant argument 

182, 184, 186, 203-204, 207, 236, 
238, 255, 259

GPCA 182-185, 187-191, 196, 200, 203-
204, 207, 236-237, 240-241, 248, 
255, 259

grey core 98, 127-128, 130-131
grey numbers 98, 100-101
grey Shapley value 98, 100, 106-108, 123, 

125-126, 131
groupoid 1-3

H
Hahn-Dirac system 209, 212, 217
Hermite polynomials 135-137, 157, 159

283

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index

I
imitation dynamics 44-45
information asymmetry 34, 36
inspection 40-41, 47, 49, 51

L
Lévy Processes 84-85
Lyapunov-Razumikhin method 182-183, 

185, 188, 190-191, 194, 200, 202, 
204, 236-237, 240-241, 246, 253, 255

M
multiple completeness 166

O
orthogonality relation 135, 155, 157, 159
Outbreak 207, 259

P
Parseval equality 209, 212, 222, 224-225, 

230
partial group 1, 3-9, 11
population dynamics 42, 47, 183, 186-188, 

208, 238, 255, 259
population game 33, 35, 44, 51
Pseudo Maximum Likelihood 79

R
rent seeking 37, 47, 50, 52

S
selfadjoint operators 55, 68-69
spectral function 209, 212, 221, 225
spectral theory 212
stability 33, 47-52, 182-183, 185-191, 194, 

200, 202, 236-237, 239-241, 246, 253
stochastic differential equation 79, 82, 88
Sturm-Liouville equation 164-165

T
transportation situations 98-100, 131

U
uncertainty 87, 98, 100-101, 103, 115, 131
uniform asymptotic stability 182-183, 188-

189, 191, 202, 237
uniform stability 182-183, 188-189, 191, 

200, 236-237, 241, 253
uniqueness of the solutions 182-183, 189, 

191, 196, 200, 211, 236-237, 241, 
248, 252

V
Variance Gamma 79, 81, 84, 86, 96
verification 33

284

 EBSCOhost - printed on 2/10/2023 3:55 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Cover
	Title Page
	Copyright Page
	Book Series
	Table of Contents
	Detailed Table of Contents
	Preface
	Chapter 1: A Generalization of Groups
	Chapter 2: Application of the Exponential Rational Function Method to Some Fractional Soliton Equations
	Chapter 3: Auditors in the Economy and the Impact of Rent-Seeking Behaviour and Penalties
	Chapter 4: Berezin Number Inequalities of an Invertible Operator and Some Slater Type Inequalities in Reproducing Kernel Hilbert Spaces
	Chapter 5: COGARCH Models
	Chapter 6: Cooperative Grey Games
	Chapter 7: On the Orthogonality of the q-Derivatives of the Discrete q-Hermite I Polynomials
	Chapter 8: Spectral Problem for a Polynomial Pencil of the Sturm-Liouville Equations
	Chapter 9: Stability Analysis of a Nonlinear Epidemic Model With Generalized Piecewise Constant Argument
	Chapter 10: The Parseval Equality and Expansion Formula for Singular Hahn-Dirac System
	Chapter 11: The Stability of an Epidemic Model With Piecewise Constant Argument by Lyapunov-Razumikhin Method
	Compilation of References
	About the Contributors
	Index

