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xi

A usual way to begin a scientific book is to present some quotations, and 
then excuses for choosing the given topic. I would not dare to break with this 
nice tradition. However, I would give my obligatory citations in-text in this 
preliminary chapter. While I will provide a brief and rough introduction to 
the concept of measurement relying on the thoughts of renowned scientists, I 
will also explain myself by revealing my motives. I believe this will provide 
the needed preliminaries for outlining my argumentation, the logical structure 
of the book, and advancing my results.

Texts on measurement tend to begin with something like this: “measure-
ment is of crucial importance in sciences.” Indeed, it would be hard to deny, 
let alone that scientists usually highly esteem measurement themselves. 
William Thomson, also known as Lord Kelvin, put once: “if you cannot 
measure, your knowledge is meager and unsatisfactory” (Kuhn 1961, 161). 
Galileo Galilei allegedly advised that “measure what is measurable, and make 
measurable what is not so.” This brings us to really important questions for 
which answers are sought in this book: what is measurable, what is it to make 
something measurable, and what is it to be able to measure at all?

What this book will not provide is a strict definition, it will not announce a 
verdict on what measurement is. It is still worth noting that while many theo-
rists and practitioners regard the issues of measurement by and large trivial 
or well understood, others cannot reach an agreement on the very concept of 
it. What few would question is that measurement is a kind of “interface” or 
“mediator” between theories and direct sensual experience (Margenau 1959). 
But beyond this point measurement concepts diverge. Some define it as the 
estimation of a ratio of a magnitude of a given quantity and an arbitrary unit 
of the same quantity (Maxwell 1890, Michell 2007). Others maintain that 
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xii Introduction

when we measure we assign numbers to objects according to rules (Campbell 
1920, Stevens 1946, Narens 2007). Some claim that measurement is intersub-
jective and objective evaluation (Mari 2003). Some define measurement “as 
a comparison to a generally accepted standard” (Scientific American 2004). 
Some even venture that “measurement is an operation that locates an item in a 
logical space” (van Fraassen 1980, 164). Still others insist that we do not need 
a stiff definition. One recognizes measurement once she got acquainted with 
the large family of representations which qualify as such (Krantz et al. 1971).

Though below I will provide a detailed conceptual analysis of measure-
ment, as said, I do not devote myself to a dedicated definition either. None-
theless, it is worth making one thing clear at the beginning: even if I place 
measurement on the front line of empirical experience, along with Thomas 
Kuhn I would refrain from calling “any unambiguous scientific experiment or 
observation” a measurement (Kuhn 1961, 162). We gain nothing by so dis-
solving the notion. To say the least, measurement involves relations, ratios, 
numbers, or structures. Thus, to my view, to detect foaming in a test tube 
after mixing hydrogen peroxide with yeast or to observe frog legs to jerk in a 
circuit is not what we should essentially call measurement. But let it: trivially, 
we can order the number one for a jerking leg and zero for a non-jerking one, 
and now we have arrived at something like a scale.1

Putting aside these moderately fruitful terminological speculations, let us 
observe what is at stake. Measurement can be perceived as a procedure for 
exhibiting structures in empirical data. It is an old philosophical issue how 
structures are given for us in our experience. Roughly, some say they are 
“there,” while others insist they are projected onto it by “ourselves.” Thus by 
exhibition someone can mean revealing some given feature, but she likewise 
can refer to a creative procedure. I think the problem is quite complex and 
I do not give my bets at the start. Indeed, measurement can be regarded as 
the instrumental approach to epistemology, where what is given and what is 
achieved both have major words. The concept likewise encompasses the the-
oretical grounding of procedures for quantification, the actual experimental 
aptitude for showing up quantities, the institutional-instrumental endeavors 
for calibration, and the individual measuring acts of engineering or social 
data collections.

Before giving the reader more hints on what she may expect in the follow-
ing pages, a few words on my motives to write this book are in order. Having 
been trained in logic and philosophy of science, I have long been occupied 
by the general problems of epistemology and semantics. In particular, I have 
long been wondering what is it to hold a realist (or antirealist) stance about 
empirical statements. This query traces out the main axis of the study. Every 
historical or conceptual episode is meant to further the reader toward my 
semantic conclusions. But there is another side of my interest, stemming 
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from my past (and rather limited) experiences as a practicing researcher in 
sociology. Muddled methodology and incoherent implications that featured 
some—by no means all—research projects I met along the way often came 
to me as stunning.

This book, of course, is not meant as a catalog of measurement methods. 
My approach is rather a generalist one in that I will focus on some common 
issues of primal philosophical interest, while trying not to drift far from an 
everyday understanding of measurement. Thus I will mention particle phys-
ics measurement, quantum physical measurement, factor or big data analysis 
only in passing if at all. Rather, I will provide an introduction to the so-called 
measurement theories, that is, the foundation projects for measurement and 
a hopefully deep enough conceptual analysis thereof. Still, whenever needed 
I will underpin my argumentation with minor case studies of practical 
procedures.

My aim is to end this book with a plausible semantic interpretation for 
a special class of assertions with empirical content: statements of mea-
surement results. On the way, some of my observations and results are 
negative. I will show that the classical, empiricist grounding of measure-
ment is untenable since it is burdened by circularities. I will also argue 
that the practice of measurement in social sciences is often opportunistic 
and lacks cogent conceptual grounding. Further, I will insist that holding 
a realist view on quantities is awkward. In particular, given a quantitative  
property  p, a conventional unit and a real number x, holding that “p is 
x units” is true or false independently of our knowing which is likewise 
uncomfortable and unnecessary.

Nevertheless, there will be a positive side for each of these points. I will 
argue that—along with possible theoretical, instrumental, and institutional 
machinery—the operational exhibition of congruent phenomena may provide 
the needed foundations for measurement. Despite idiosyncrasies, searching 
for these patterns is also open in social sciences. All in all I will argue for 
a constructivist approach to measurement,2 and suggest that researchers can 
take care of meaningful and cogent measurement operations.

On the other hand, I will insist that measurement procedures cannot exhaust 
the meaning of concepts of quantities. Meaning cannot be equated with truth 
conditions either. It may well happen that we cannot state the exact condi-
tions for entirely meaningful statements. After looking into some accounts of 
errors and uncertainties, I will show that both consistent realism and plausibly 
interpreted operationalism gets in trouble when it comes to truth: statements 
of measurement always comes out as false for the first and true for the latter. 
A way out from this muddle is to take a constructivist approach. Instead of the 
realist credo, and drawing somewhat on operationalism, I will hold that given 
a quantitative property p, a conventional unit and a real number x, we may 
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assert that “p is x units” is true or false in virtue of our valid measurement 
procedures. Note that this means that the principle of bivalence, that is, that 
every well-formed statement is true or false independently of our knowing 
which, cannot be held anymore.3

The text is structured as follows. Chapter 1 gives an overview of the early 
representationalist theories of measurement. Far beyond mere historical 
interest, this part presents an introduction to the main measurement theoreti-
cal problems, and also to their conceptual background. It also introduces a 
closely related still rival (at times insurgent) approach: operationalism. It will 
be revealed that operationalism cannot be regarded as a monolithic view as 
it exists in different flavors, and it is even troublesome to unfold it as a sys-
tematic standpoint.

Chapter 2 pursues the issues introduced earlier into deeper philosophical 
analysis. I will take up the problems of rules and concatenation and investi-
gate the role of conventions and phenomenal congruence in quantification. I 
will also dive into the muddy waters of realism. After investigating what is 
to hold a realist stance, I will argue for a constructive approach instead. Most 
importantly, I will promote the intuitionist mathematics (and logic) as more 
apt for describing empirical data than the classical one.

Chapters 3 and 4 delve into the issues of physicalism and measurement in 
social sciences. Also, they introduce the axiomatic approach and the prob-
lems of invariance and meaningfulness. The axiomatic theory, a monumental 
foundationalist project, develops a clear and sophisticated notion of represen-
tation, and it is also keen on structures featuring the different measurement 
operations. In spite of its significant intellectual achievements, axiomatic 
representational theories never made the historic breakthrough that they 
should have—it is widely held. Some of the reasons are observed in chapter 
4 along with some typical conceptual problems of operationalization. I will 
also provide illustrative minor case studies. These sections add quite a lot to 
the whole picture but the main argument of the book can be followed without 
them. So readers uninterested in social science issues and axiomatic methods 
may even skip them. But only on their own responsibility. I would not advise 
to deprive themselves of a pleasant experience.

After a detailed analysis of an error theory of a realist nature, and a criti-
cal survey of what I call constructionism, chapter 5 draws the conclusions of 
these investigations. In particular, I will argue that we must take a construc-
tivist approach when it comes to the truth of measurement result statements. 
These statements are not true or false by themselves, but only in virtue of 
our valid procedures. Apart from certain institutional conditions, establishing 
validity always contains operational elements. Exhibiting congruent phenom-
ena often lies at the heart of validity.
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NOTES

1.	 It is not at all to say that I would by default dismiss other than numerical struc-
tures when talking about measurement. Not the least, as we will see, it is entirely 
unclear how to interpret numerical at all.

2.	 Since constructivism or constructionism has a glittering career as a keyword in 
the recent decades, there is a clear need for setting my viewpoint apart from some 
popular trends, and I will do so accordingly toward the end of this book. Still, it is 
worth noting in the beginning that my constructivism has little to do with the soci-
ology of scientific knowledge. Rather, it has its roots in intuitionism and construc-
tive mathematics and in their subsequently induced movements in semantics and 
metaphysics.

3.	 What validity lies in is, of course, an important question, and I will not claim to 
have a full-fledged answer. I will indicate, however, that further analysis of phenom-
enal congruence may prove to be a fruitful direction.
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It is widely agreed upon that quantitative concepts are essential to sciences. 
Other types of concepts, though also useful (or even indispensable), have 
fewer merits. Qualitative concepts, for one, assign properties to objects, or 
more precisely, assign objects to classes, but remain silent about everything 
else; in other words, they cannot tell anything about the degree of part-taking. 
Debbie is a witch, Debbie belongs to the class of witches. Comparative con-
cepts get farther: they can grab some relations between certain objects with 
regard to certain properties. Debbie is more wicked than me, Debbie’s nose 
is harder (and more magnetizable) than mine. But they do not provide room 
for the degree of differences.

Quantitative concepts allow for the description of the properties or rela-
tions of objects in numerical terms. One can measure the length of Debbie’s 
nose, the length of my nose and she can even compare the two values and 
determine their difference. Quantitative concepts have a “higher status” 
than those of classifying or relating concepts in that they make a sharper 
description of the world possible. In fact, they are the ones of real interest for 
scientific inquiry, and a major goal of every scientific theory is to define the 
qualitative concepts sufficient for empirical confirmation.1

The appropriate empirical observations are realized, to a large extent, via 
measurement. The purpose of measurement is to provide the quantitative con-
cepts, that is, certain magnitudes, with numerical values. Generally speaking 
and according to a wide consensus, measurement assigns numbers to proper-
ties of objects or subjects of study.2 In addition, it is also widely held that this 
assignment should not be arbitrary, ordering numbers to quantitative concepts 
requires certain rules—and may require different set of rules depending on 
the given measurement procedures.

Chapter 1

Empiricism
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From a reverse point of view, one can say that by measurement objec-
tive properties, or (more cautiously put) empirical data are numerically 
represented. This is why theories stemming from this sentiment are called 
representational measurement theories. I will refer to an early breed of these 
theories as empiricist. These theories, which lay stress on the empirical rules 
of measurement, are the subject of this chapter. By contrast, axiomatic rep-
resentational theories focus on structures, and I will deal with them later in 
this book.

Again, also in this chapter, I introduce the extremely empiricist standpoint 
of operationalism. Untenable though as a theory of meaning, its contributions 
to the modern accounts of measurement, and science in general, are of utmost 
importance.

1.1 COUNTING

Though many of us may refrain from calling counting measurement in an 
everyday sense, we have good reasons to do so still. Counting usually fits in 
well with the theoretical accounts of measurement—and practice, too. Also, 
more complex measurement operations usually rely heavily on counting. We 
may even venture that counting lies at the heart of every kind of measurement.

Gottlob Frege was the one to first realize that a “statement of number” is 
an assertion about a concept (Frege 1884).3 Numbers are not abstractions 
from things nor properties of them like shape or color. Instead, when I say, 
“There are five witches flying around in the hall on their brooms,” I assign 
the number five to the concept “witch flying around in the hall on her broom.” 
Frege arrived at this thought by observing that the same phenomenon can be 
numerized in different ways depending on its conceptualization. I can talk of 
five witches, a pack of witches, five brooms, two crooked brooms and three 
straight ones, and so on in the very same perceived situation.

In other words, given a C concept, we can ask: “How many Cs are there?” 
We can answer such a question by applying numbers in our response. Num-
bers so conceived are called cardinal numbers, as they determine the cardinal-
ity of the class of objects falling under C.

When are we justified in saying that the numbers for two distinct concepts 
are equal? The answer is that they are equal whenever there is a one-to-one 
correspondence between them. That is, C and D are equinumerous (have the 
same cardinality) iff4 there is an R relation so that it relates every c in C to one 
and only d in D, and for every d in D there is one and only one c in C which 
is R-related to it. Actually, Frege used the principle that the number of C and 
the number of D is equal iff C and D are equinumerous in the very definition 
of number, and called it Hume’s principle.5
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3Empiricism

From a measurement point of view, counting is the assignment of integers 
to (the concepts of) objects, or, to be more precise, the assignment of non-
negative integers. It may not be trivial for everyone that we can count zero of 
something, but this assumption is rather fruitful, and anyway, it is indeed a 
fact that we are able and willing to express thoughts like “there are no witches 
in the hall.” There is of course a relation which uniquely relates each element 
of the empty class to the elements of class of witches in the hall (if there is 
none): the empty relation. (We can also put it this way: given a class A so that 
a is in A iff a is a witch and a is in the hall, A is empty.)

Carnap argues that event series are at the very foundation of counting pro-
cedure, namely, the series of pointing events (even if adult human counters 
do not need pointing in most of the cases anymore) (Carnap 1966). When we 
count, we establish one-to-one correspondence between the pointing events 
and the counted objects, that is, a bijection between a class of events and a 
class of objects.

Other series of events different from pointing acts are also suitable, of 
course. Finger counting, sometimes regarded as the very base of human num-
ber concept (Csatári 2008), establishes correspondence between objects and 
displayed fingers. Enumerating the number names, either aloud or silently, 
also suits as a class of events to correspond to another given class of objects 
or events. Automatized counting mechanisms in computer systems, aptly 
called counters, also relate one event class (the increment of the counter) to 
another (the realized instance of the observed event type, e.g., the transfer of 
a specific package).

But at this point we may faintly smell a bit of circularity. If we measure 
by events (e.g., pointing gestures), how are we to assess the numerical differ-
ences between the groups of pointing gestures? By further rounds of pointing 
gestures? At the end of the day, the problem comes down to this: how do we 
have access to numbers, how are they given to us. No easy answer can be 
given here. Indeed, Frege’s whole project was after showing that numbers 
(and arithmetic) can be derived from basic logical principles.6 Others insist 
that relying on some kind of intuition is inevitable. It is definitely not the 
place to settle this issue.

What is sure, simply telling what numbers are does not directly bring us 
to the solution of this philosophical problem. Still, getting on with a clear 
definition, say, according to which (natural) numbers are sets containing 
each lesser number, has benefits for us. It clearly reveals that by counting we 
measure by sets.

A final note. For reasons yet to become clear, it is important to stress again: 
with counting we do not assign numbers (sets) to objects, but we assign them 
to sets of objects (where a set may even happen to contain one or none of the 
objects, of course). When counting a soccer team we do not give number one 
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4 Chapter 1

to the goalkeeper, number two to the first back and so on up to the eleventh 
team member, however, it is one possible one-to-one correspondence relation 
(setting apart the fact that eleven as a set does not contain eleven, but does 
zero). Instead we assign the number eleven to the whole team, that is, to the 
class of all teammates on field. Independently of this, we may assign num-
bers to the team members and write them on their jerseys, but this procedure 
clearly does not count as counting. We may possibly call it tagging. Though 
it may sound trivial, this is a crucial issue in the use of numbers as we will 
see when discussing the theory of measurement levels.

1.2 ORDERS, SYMBOLS, MAGNITUDES

A next step toward a more elaborated measurement concept is the establish-
ment of orders. Our past counting acts (as series of events) do exhibit an 
ordering, namely, they can be ordered by the numbers of the occurrences of 
pointing gestures. Human memory is not the most reliable tool to compare 
these past acts, we need some more permanent representation of them. To 
record the different “rounds” of pointing acts, we can use, say, tally marks, 
streaks made on a paper or on a beam in the local pub. If we compare these 
rows of tally marks, we find that their different groups can be linearly ordered 
naturally by their cardinality. Formally speaking, there is a relation R so that 
if a and b are tally mark groups, the following applies:

	(i)	 aRb or bRa,
	(ii)	 If aRb and bRa then a = b,
	(iii)	If aRb and bRc then aRc.

In other words, the relation R is (i) total, (ii) antisymmetric, and (iii) transitive.
Tally mark groups can be regarded as genuine numerals. In turn, numer-

als are nothing else that the physical representation of numbers (and let us 
stick to the integers for the time being), by convention. In turn, numbers, 
as we agreed, are sets constructed by specific rules. One may find that tally 
marks, as conventional symbols, still bear some strains likewise related to the 
empirical process of counting as to the formal procedure of the construction 
of numbers. But as we arrive to more abstract graphical representations, so 
will the conventional character of these symbols become obvious.

The British physicist and philosopher, Norman Robert Campbell, one of 
the most prominent figures of the early representational measurement theo-
ries, usually talks about numerals in the context of measurement; according 
to him measurement is “the assignment of numerals to represent properties” 
(Campbell 1920, 267).7 The order of numerals is an “artificial” order, since 
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the order of the graphical symbols for representing numbers is based on mere 
convention (the systematic rules for creating new numerals from the symbol 
kit are also conventional). But natural orders are abundant wherever we look, 
and, what is more, underlie conventional orders: “order may also arise, not 
from an arbitrary convention, but from real properties of the things ordered; 
and it is of course the existence of this real order which has led to the inven-
tion of arbitrary orders to denote the things characterised by it” (ibid., 270). 
For instance, the row of the houses in my street, a train’s progress from A 
to B, the vertical change in the density of the atmosphere all exhibit natural 
orders. According to Campbell, the order of numbers (or as he sometimes 
puts: “Numbers”), conceived as classes of classes (in particular: sets of sets), 
is also natural, not in the least because they are to be regarded as a genuine 
physical quantity: “number, the physical property, is represented by numerals 
in just the same definite way as weight is represented” (ibid., 296). Tradition-
ally, such orders are often denoted by numerals, however, numerals are also 
often given roles where no relevant order is involved: for example, in the 
case of football players, registration numbers, the lottery, or washing machine 
programs.

Now what is the order these natural phenomena exhibit? Campbell main-
tains that they are ordered by a transitive and asymmetrical relation (ibid., 
270). For such a relation we should take our above transitivity rule (iii) 
together with the following:

	(iv)	If aRb then not bRa.

Now, it is clear that the above order of numerals is of a different kind. The 
reason is that equality is not yet accounted for in this setup. This immediately 
brings us to the question: how should we, then, assign numerals to objects 
(properties)?

We can go the following way. We can assign different numerals to the 
same entity, iff the following holds for numerals a and b: aRb and bRa. It 
is intuitively clear that we can assign numerals which are different physical 
representations of the same number to the same thing. To put it another way, 
we can define a partition on the class of numerals through its equivalence 
classes. The so-gained class has an ordering analogue to Campbell’s natural 
order, plus the totality requirement, (i). A possible “ideology” behind adding 
totality is to restrict the class of natural orders to a given quantity. However, 
whether these structures will be analogue in every essential respect is an 
important question. It will be discussed at length later accordingly.

The above characterization of a quantity is not universally held. For 
instance, according to Russell the definitive difference between quantity and 
magnitude can be seen as follows:
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There are a certain pair of indefinable relations, called greater and less; these 
relations are asymmetrical and transitive, and are inconsistent the one with the 
other. Each is the converse of the other, in the sense that, whenever the one 
holds between A and B, the other holds between B and A. The terms which 
are capable of these relations are magnitudes. Every magnitude has a certain 
peculiar relation to some concept, expressed by saying that it is a magnitude 
of that concept. Two magnitudes which have this relation to the same concept 
are said to be of the same kind; to be of the same kind is the necessary and suf-
ficient condition for the relations of greater and less. When a magnitude can be 
particularized by temporal, spatial, or spatio-temporal position, or when, being 
a relation, it can be particularized by taking into a consideration a pair of terms 
between which it holds, then the magnitude so particularized is called a quantity. 
Two magnitudes of the same kind can never be particularized by exactly the 
same specifications. Two quantities which result from particularizing the same 
magnitude are said to be equal. (Russell 1903, 167)

It follows that two magnitudes can never be equal; what can be equal 
is their particularization, quantity. That makes the discussion on measure-
ment a bit circuitous. That is why I am rather adopting Michell’s approach 
(Michell 2007): a quantity is a class of all magnitudes of a certain kind, that 
is, a magnitude is an instance of a quantity. Nevertheless, we can still regard 
magnitudes as unique (as some ideal entities) if we like by saying that two 
individual properties are of the same magnitude when we measure equality. 
Contrarily, we can likewise say that two magnitudes are equal. As it is just a 
matter of ways of speaking basically, I will only be strict in this respect where 
it is really necessary.

According to Campbell, natural order features all that is measurable. By 
systematically putting objects in the two pans of a balance scale, we can 
determine their natural order with respect to their weights. On the other hand, 
the shape of the measured objects are not a property exhibiting natural order 
(we cannot say seriously that a box is more of a sphere than a pyramid), thus 
cannot be an object for measurement. Campbell gives the example of color as 
an immeasurable property (Campbell 1920, 272). True, colors can be traced 
back to the frequency, intensity, and combination of light waves, that is, to 
measurable quantities. Though this strong theoretical armature results in 
(some esoteric combinations of) numbers, they do not exhibit a natural order. 
We may talk about things that are redder than others, but on the one hand we 
are not ready to assess whether a green or a blue shirt is “redder,” and, on the 
other, we may also be perplexed to decide which of two red shirts is redder. 
According to Russell here we are not dealing with the relation of greater or 
less, but that of resemblance (Russell 1903, 171).

A borderline case often mentioned by Campbell is hardness. Mohs’ scale 
of hardness exhibits an order of minerals by the possibilities of scratching 
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one with the other. If mineral a scratches mineral b then mineral a is harder 
then mineral b. When finding that in the above case b cannot scratch a, and, 
further, having a mineral c so that if it scratches a then it also scratches b, 
then we have standard scale for the hardness of minerals.8 Now the problem 
is that this empirical requirement does not hold in each case. Further, if it 
held, we would have an order only without any units to determine differences 
(or distances) in hardness—a clear expectation for a measurable quantity as 
described in the next section.

1.3 EXTENSIVE AND INTENSIVE MEASUREMENT

The distinction of extensive and intensive quantities is a historical one, it can 
be traced back to Leibniz and Kant. A large scale of quantities is tradition-
ally described as extensive, such as length, mass, or speed. To characterize 
them, let us take a look at the rules for their measuring procedures. According 
to Carnap (1966, 63), the first rule for extensive magnitudes concerns with 
equality, a concept we missed so far (Carnap 1966, 63):9

	(i)	 If E a bM ( , )  then M a M b( ) = ( ) .

This rule suggests that whenever we have an empirical procedure E by which 
we can establish equality between two object a and b in respect of some of 
their properties, then the value of the respective magnitude M will be the 
same for both objects. Putting two weights in the different pans of the balance 
scale, if we cannot realize any bias, the two objects have the same weight.

The second rule introduces additivity. Whenever two objects are combined 
in a specific way, their values in a given quantity is summed up, that is, the 
resulting value of the given magnitude is the arithmetical sum of the values 
of the two original magnitudes. Given a rod a with a length l(a), and given 
another rod b with the length l(b), if we put them together end to end by a 
straight line, the length of the “new” object, l(c) will be the sum of the fist 
two: l c l a l b( ) = ( ) ( )+ . Similarly, if we measure objects d and e on a spring 
scale resulting in weights w(e) and w(d) respectively, when putting them 
together on the scale we will get a value w f w d w e( ) = ( ) ( )+ . (We also have 
a procedure for the a balance scale, but it requires a bit more tinkering and 
the third rule, see below.)

The above examples suggest that the legitimate ways of combination is 
highly different for the different measured magnitudes of objects. In case of 
weights, we require the objects of measurement to hold a specific spatial posi-
tion, in particular, to be in the same pan of the same scale when combined. In 
the case of length, we need a straight line (a geodesic) to talk about a proper 
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combination. Of course, it is easy to see that having two adjoining line seg-
ments (a, b) and (b,c) with an angle other than 180 degrees at their meeting 
point b, we will have a triangle (a,b,c) and thus the hypotenuse will be shorter 
than the two legs taken together.

The appropriate way of combining objects to abide the rule of additivity 
regarding a given quantity is called concatenation. In the literature, the sym-
bol “  ” is often used for denoting the empirical procedure of concatenation, 
and I will follow this convention here.

Thus, our second rule can be stated formally as:

	(ii)	 M a b M a M b( ) = ( ) ( ) + .

The third rule is the unit rule. The rule states that in case of an extensive 
quantity it is assured that any two (finite) differences of the given magnitudes 
can be compared. For this, it is enough to specify the empirical conditions ED 
for regarding two differences of a given quantity M as equal:

	(iii)	If ED a b c dM ( , , , )  then M a M b M c M d( ) ( ) = ( ) ( )- - .

The rule can be aligned with by establishing a unit. Having a large set of 
weights, we may chose one of them as a unit. It is worth calculating with the 
typical “size” of the differences we are about to measure, and choose the unit 
so to be significantly smaller than that. Then, laying the measurable weights 
(a and b) in the two pans of a balance scale, we can count how many copies 
of the unit weight have to be placed in the upper pan (thus we use the relevant 
concatenation operation) to reach a balance between the pans again. Then we 
can take other measurable pairs (c and d) and so on. Finding, then, that we 
place equally as many copies of the unit weight in different cases, we can 
regard the empirical condition (iii) fulfilled.

The establishment of a unit is done in practice either by a standard pro-
totype, or by reducing it to some known phenomena of stable behavior usu-
ally described by already established measurement procedures of different 
kinds. For instance, the unit of mass10 is specified by a standard prototype, a 
platinum-iridium cylinder stored at the International Bureau of Weights and 
Measures in Paris. Some decades ago, the unit of length was also specified 
by a similar object stored at the same place: a platinum-iridium bar, whose 
length was regarded as 1 meter at the melting point of ice. But nowadays, 
the definition goes like this: “The metre is the length of the path travelled by 
light in vacuum during a time interval of 1/299 792 458 of a second” (“SI 
brochure” 2006, 112). In turn, the recent definition of a second is the fol-
lowing: “the duration of 9192631770 periods of the radiation corresponding 
to the transition between the two hyperfine levels of the ground state of the 
caesium 133 atom” (ibid., 113).11
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The examples above suggest that defining a unit is not a trivial task. When 
using prototypes, the following problems arise. The étalon object’s proper-
ties may change in different circumstances. For this reason, it is regarded as 
standard only in specific conditions, for example, the meter bar is regarded 
“calibrated” at 0°C. Nevertheless it is hard to be sure that one can take all 
of the relevant factors into account, even just in principle. That is why we 
do not even state that various electromagnetic forces or natural background 
radiation do not have their effect, we only regard them as negligible in normal 
circumstances.

Another problem is the portability of the prototype unit. Of course, it is 
not possible to move along the prototype object from one measurement site 
to another. We must make replicas. But these copies cannot be identical with 
the prototype in every respect, and, equally important, the standard conditions 
cannot be maintained anymore outside isolation.

The method of measuring stable phenomena (as the propagation of light 
in vacuum, or the behavior of caesium 133) seems to solve the problem of 
portability. Unit defining procedures can always be performed at any place, 
at least in principle. In reality, these are highly sophisticated measurements 
themselves, requiring a good deal of well-calibrated equipment—and at this 
point we are back at something very similar to the problem of portability of 
prototypes. Worse, with account for relativistic effects, further issues arise. 
More to be said on this in the next chapter.

What is to be seen here is that unit definitions often involve the use of 
already established units of different kinds, thus export the load of standard-
ization to the realm of other quantities. Indeed, in the modern standard metric 
system (SI) the definitions of the seven base units are strongly interwoven. 
As we have seen, the definition of meter relies on that of second. Ampere and 
candela (the unit of of luminous intensity) are defined through time, length, 
and mass. Mol (the unit for the amount of substance) refers mass in its defini-
tion. In turn, mass has a unit prototype (ibid.). Eventually all but one of the 
units are based either on the standard prototype of mass, or on the standard 
unit of second. What is left is kelvin, the unit for the archetypal intensive 
quantity: temperature.12

Traditionally, those quantities are regarded as intensive, which exhibit 
order, but lack additivity. If “an intensive magnitude can be perceived in 
an object as greater than, less than, or equal to the magnitude of the same 
property in another object, yet we cannot assign a ratio to two unequal mag-
nitudes” (Castellano 2007), then we can say that extensive magnitudes are 
those for which we can assign that ratio. In practice, though, we are prone to 
presuppose much more of intensive quantities than mere order. In the spirit 
of what is said above we could better say that intensive quantities are those, 
on which no (meaningful or natural) concatenation operation can be applied. 
While, as we have seen above, length and time can be regarded as extensive 
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quantities, intensive ones are exemplified by temperature or beauty—though 
the latter is not regarded as measurable in the society of morose scientists 
nowadays. A further feature often attached to these quantities is that, typi-
cally, they are measured indirectly. But as we will see, by this property we 
cannot really set them apart from extensive magnitudes.

The measurement rules for intensive magnitudes are somewhat different 
from those of the extensive ones. Let us turn now to these rules through the 
example of temperature (Carnap 1966, 62–69). Our first rule for measuring 
temperature is similar to the first rule of extensive measurement we have seen 
above:

	(i)	 If E a bT ( , )  then T a T b( ) = ( ) .

That is, we must have an empirical operation for establishing equality 
between the temperatures of two given bodies. In the most simple case we can 
touch them, but it can be rather painful sometimes. It may be more comfort-
able to establish equality between their infrared radiance visually.

But now we must introduce a new rule for the one-way difference. We 
did not need this step in case of the extensive magnitudes, since concatena-
tion took care of it by guaranteeing the growth when putting two magnitudes 
properly together. Our new rule, introducing the concept of “larger than,” 
goes like this:

	(ii)	 If L a bT ( , )  then T a T b( ) > ( ) .

It is a modest requirement that when we cannot establish equality by the 
above empirical operation, we should be able to establish not mere difference, 
but also tell which of the bodies is hotter.

Let us see now the remaining three rules:

	(iii)	If D aT0 0( )  then T a( ) = 00 .
	(iv)	If D aT1 1( )  then T a( ) = 11 .
	(v)	 If ED a b c dT ( , , , )  then T a T b T c T d( ) ( ) = ( ) ( )- - .

The last one, rule (v) may be familiar, and also a surprise to see it here. It 
postulates an empirical operation for establishing equal differences for the 
given magnitude. But in order to be able to talk about these differences in 
numerical terms, we must have a unit concept. Setting up one for tempera-
ture seems to be a bit trickier than for the extensive magnitudes even at a 
first glance: we cannot simply take our favorite rod or pendulum. Instead, 
we are obliged to pick some stable, temperature dependent phenomena in the 
world, and characterize them with dedicated magnitudes. Traditionally, in the 
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Celsius scale we order to the freezing point of water (or the melting point of 
ice) the zero value, in line with rule (iii). Then, on the same scale, we assign 
another number to the boiling point of water (on the sea level), according 
to rule (iv). Thus, we are in possession of an interval, a unit, which we can 
divide into equal parts just as we like—in our case we divide by 100. Techni-
cally, we can lead these procedures the following way. Take any material that 
changes its volume depending on temperature. Of course, it is worth choosing 
one with relatively large volume differences for the sake of the ease of detec-
tion, we can also use some tricks to enlarge them, for example, we often put 
some mercury in a narrow glass tube. Now just mark the level of mercury 
first at the freezing point then at the boiling point of water, then divide the 
so gained length into 100 equal parts, and we are immediately at something 
like the Celsius scale.

It seems more or less simple. It is to be noted however, that establishing 
fix points and keep them fixed is not a trivial task at all. The “boiling point” 
of water may differ by pressure, matter of container, solute impurities. And 
“boiling” itself is also a vague concept.13 Apart from this, two other serious 
problems arise here. First, we may ask, are we really free in choosing our 
material with which we establish temperature scales? Do different materials 
behave the same way in that we can produce similar scales with them—where 
similar means that they can be linearly transformed into each other, just like 
the Celsius and Fahrenheit scales? Second, clearly not independently of the 
first problem, how can we legitimately extend our scales beyond the interval 
defined by the two dedicated temperature points? All these problems will be 
addressed in the upcoming sections.

In addition to setting apart extensive and intensive magnitudes, let us 
observe another traditional distinction, made first by Campbell, namely 
that of fundamental and derived quantities (Campbell 1920). Magnitudes of 
fundamental (or basic) quantities, like length, mass, or time can be accessed 
directly by a so-called standard series where a standard unit is taken n 
times.14 Putting this series against some fundamentally measurable magnitude 
in the appropriate way its measure can be estimated. At the same time the so-
called derived quantities, such as constant acceleration or density, can be cal-
culated only if they can be based on the measurement of basic magnitudes by 
discovering the concerning scientific laws. Thus, acceleration is obtained as 
the change of velocity in a given time interval, while density as the quotient 
of weight (mass) and volume (i.e., eventually length). Campbell also calls the 
two types A- and B-magnitudes respectively, and sometime refers the latter 
as qualities (Campbell 1928)—I will not follow him into this terminological 
muddle on these pages.

Campbell’s main point is that derived magnitudes do not possess the 
required numerical properties when measured directly. For instance, density 
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can be measured by observing how different solid bodies behave in differ-
ent liquids. If we have a body that sinks in liquid a but floats in liquid b, we 
conclude that b is denser than a. Having another body that sinks in b but 
floats in c we can conclude that c is denser that b and it also denser that a. 
Thus the observed liquids are ordered according to their density, and we can 
even assign numbers to them preserving this order. But it must be seen that 
with this, hardly more is achieved than in the case of Mohs’ hardness scale. 
Of course, density (of liquids) are often measured with floats with scales on 
which the submerge of the float in different liquids can be measured. It can 
be argued that by this method a measurement similar to that of temperature 
is accomplished (see below).

But after all, density is traced back to genuine, additive extensive magni-
tudes. Thus, eventually, we can order numbers to different densities which 
are not entirely arbitrary but bear the properties of the underlying extensive 
scales. In these terms we can meaningfully assert that mercury is thirteen 
times denser than water. Campbell insists that this reduction is of purely 
empirical nature; scientists had to verify the fact by experimental methods 
that when we double the weight of some material, volume will also be 
doubled.

In contrast to this, I am inclined to think that this reduction is of purely 
definitive nature. Not in the least, the above “law” is not even true. Taking any 
gas on earth, when we double their weight, we may realize a volume growth 
lesser than double. At the same time we may declare a growth in the density 
of the observed gas. And for this we can hold responsible only the very fact 
that density is defined by the quotient of weight and volume by scientific 
consent. Yes, we can save the results of our experiments by applying different 
theories in our explanation. Some considerations on gravity will explain our 
unexpected volume growth. But this is more than raw observation.15

In addition, as Ellis holds, many quantities are “derived” in the sense that 
they are measured indirectly, through the measurement of another quantity 
(Ellis 1966). Thus temperature is often measured via measuring the level of 
mercury in a tube, in other words, measuring length; velocity is often mea-
sured by gauges based on potential differences (in cars) or by Doppler-effect, 
in other words, wavelength shift (in case of cosmic objects). Practically 
speaking, quantities are rarely if ever measured directly and probably every 
quantity can be measured through measuring one or more other quantities. As 
we have seen, many of the basic quantities in modern physics are not even 
basic in Campbell’s sense because they are defined by others. This leaves us 
with only three fundamental quantities where direct measurement could play 
the peremptory role. And even less after the proposed SI redefinition in 2019.

At the end of the day, it is entirely not clear how “direct” is to be under-
stood. Could reading a gauge be counted as direct measurement? How about 
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some optical laws and theories of perception? Or let us take the example 
of concatenation by a standard rod (if length, as defined by time, is ever to 
measured directly). Cannot determining a straight line or measuring angles 
at the joint points of the standard unit instances be regarded as measurement 
themselves? All in all, it seems to me that the distinction of fundamental and 
derived kinds of measurement is not so sharp as it may seem at first. Indeed, 
it is a perplexing one. Rather than helping conceptual clarity, these categories 
bring some fundamental problems to surface.

1.4 OPERATIONALISM

We cannot go on without introducing “an important footnote” (Bergmann 
1956, 41), a view or bunch of views, which was, at least initially, regarded by 
the logical positivists as the practitioner scientist’s version of their doctrine 
(Hempel 1956): operationalism. All the more so, as this sentiment likewise 
plays an immense role in later proceedings and the original findings of this 
study.

This “ism” has its origins in Percy Williams Bridgman’s book, The Logic 
of Modern Physics (Bridgman 1927). Bridgman, a Nobel-winning physicist 
studying high-pressure processes, maintained that the only way for us to 
know the meaning of a concept is to have a way for measuring it. As Chang 
notes, this view is deeply rooted in his own experiences as an experimental 
physicist: by reaching higher and higher pressures the so far applied mea-
suring equipment crashed, thus newer and newer ones had to be made up 
(Chang 2009). He also payed particular attention to Einstein’s special relativ-
ity theory with its explicitly established method for ascertaining simultaneity 
between events far away in space by sending light beams. Thus we arrive at 
a new concept of simultaneity essentially different from our usual ways of 
ascertaining simultaneity between events happening in the same place (i.e., 
“very close”).

Bridgman draws the example of length to show that we must face serious 
difficulties concerning even such prosaic concepts. His point is that we can 
meaningfully talk about different orders of length only with respect to their 
measurement procedures. Thus, measuring a wall with a measuring tape, 
microscopic objects by an eyepiece reticle, interstellar distances in light-years 
by some sophisticated speculations on spectrum shift all constitute different 
length concepts. Bridgman allows the possibility to call all of these quantita-
tive concepts by a common name, length that is, if the different procedures 
are congruent on the overlapping ranges, that is, they provide similar results. 
But it is only a shorthand; we must always be aware of the different concepts 
based on the different measurement methods, otherwise we may easily run 
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into pitfalls. For instance, extending the concept of length to the atomic or 
subatomic range without having an appropriate procedure of measurement 
would be simply meaningless. It is not clear what we should mean by the 
“inside” of an electron, or by the distance of two particles; after all it is not 
clear what do we mean by length in this realm.

What Bridgman highly appreciated in the spirit of special relativity was the 
insight that we must reinvent our basic concepts in the light of the respective 
empirical operations. Likewise, he was broadly content with the development 
of quantum mechanics, where reflections on measurement procedures play 
a central role in the theory. On the other hand, remaining sternly faithful to 
his own convictions, he criticized general relativity for its “uncritical, pre-
Einsteinian point of view” (ibid.), dealing with concepts without immediate 
operational interpretation.

It is indeed spectacular that Bridgman’s operationalism has a spirit akin 
to logical positivism. According to the latter, aside from the analytic state-
ments of logic and mathematics conceived as mere tautologies, only those 
statements can be regarded as meaningful, which are available for empirical 
confirmation—at least, in theory. For the empiricist, meaning is constituted 
by the state of affairs where the given statement is true. For the operationalist, 
meaning is determined by the actual procedures of measurement. Moreover, 
it seems Bridgman also walks hand in hand with logical positivism when it 
comes to the demarcation problem. He writes: “many of the questions asked 
about social and philosophical subjects will be found to be meaningless when 
examined from the point of operations. It would doubtless conduce greatly 
to clarity of thought if the operational mode of thinking were adopted in all 
fields of inquiry as well as in the physical” (Bridgman 1927, 30–32). In a 
sense, this approach is stricter than that of logical positivism. For the latter in 
principle verifiability is a sufficient criterion for meaningfulness, but Bridg-
man presses for concrete procedures.16

Now it is clear that this narrow and strict version of operationalism,17 as 
it became increasingly clear for the logical positivists themselves, is hardly 
tenable for several reasons. First, many authors in the philosophy of science 
teach us that scientific theories are full of unoperationalizable (theoretical) 
concepts, and our observations themselves are theory-laden.18 That is, not 
every useful concept is operationalizable and theories cannot be avoided 
when measuring. In fact, Bridgman did not deny the use of theoretical con-
cepts, he required only from a theoretical system to touch empirical opera-
tions somewhere. However, his insistence on the operational foundations of 
concepts and skepticism about closing up operationally different concepts 
were trivially at odds with a need for conceptual unity. Hempel insisted that 
an operational proliferation of concepts is not only practically problematic 
but leads to the fragmentation of science (Hempel 1966, 91–97). According 
to him, concepts constitutes the knots in the network of scientific knowledge 

 EBSCOhost - printed on 2/12/2023 9:16 AM via . All use subject to https://www.ebsco.com/terms-of-use



15Empiricism

linked together by the threads of theories. Scientific progress often requires 
the reconsideration of theories, which goes hand in hand with that of con-
cepts. The inflexibility and plurality of operationally defined concepts thus 
are against the very nature of science (Chang 2009).

Second, not unrelated to the problem above, it also seems to be rightful 
to insist that operational procedures cannot exhaust the meaning of a con-
cept. To begin with, they fail to give meaning for theoretical concepts and 
substances: only the properties of electron have meaning, not the concept 
of electron itself.19 Not in the least, were there no more to the meaning than 
measurement operations, it would be non-sense to talk about the validity 
of these procedures. We would have to take them as they are, and regard 
them as mere tautologies (Gillies 1972, 6–7). What is more, we must face 
an awkward issue with semantic values also: what is it for a statement on 
measurement results to be false? If a quantity is no more than the way we 
measure it, how can we regard a measurement result faulty?20 This suggests 
that no definition whatsoever is able to fix the meaning of a concept. All 
they can do is constrain it in specific contexts. As Chang puts: “measure-
ment operations provide only one specific context in which a concept is 
used, operational definitions can only cover one particular aspect of mean-
ing” (Chang 2009). But the meaning constrained by operational definitions 
seems to be too narrow for even in scientific discourses: hardly any lan-
guage users will agree that the definitions length

1
, length

2
, length

3
, and so 

forth, i.e. the definitions based on the currently available procedures will 
exhaust the meaning of length. In fact, operational definitions are neither 
necessary nor sufficient for meaning.

In addition, one can also raise issues about the exact nature and the public-
ity of the operations themselves. One may rightfully ask what qualifies as an 
operation and what not. And why? Bridgman himself sketched a classifica-
tion, where mental and “paper-and-pencil” operations also count. But this 
account encompasses so much that it flirts with triviality. On the other hand, 
qualifying laboratory measurements only is way too restrictive (Margenau 
1956, 39). As Chang notes, a much more fine-grained analysis of operations 
would be needed (Chang 2009).

Not unrelated, we may ask how to understand a result of measurement. 
Can it be verified or checked? As it turned out, long after his major work 
had became seminal (Bridgman 1927), he was a desperate methodological 
individualist (many even accused him of solipsism). He maintained that 
in “checking and judging,” as part of the operations constituting meaning 
and knowledge, a scientist cannot rely on anyone else but himself. Bridg-
man in his pressure experiments can only rely on Bridgman: the operations 
are private. With this he seriously deviated from logical positivism with its 
relentless quest for the ideal of protocol sentences, conveying personal obser-
vations to the highest possible objective availability.21
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However justified are the above critical observations, operationism “fertil-
ized” and “liberated” measurement in psychology, as chapter 3 will show. 
Nevertheless, I would be reluctant to call it a success story. On the other hand, 
operationalism has strong points when it comes to laying down valid concepts 
and procedures of measurement, as it will become clear on the following pages.

NOTES

1.	 This classification of concepts, which follows Carnap, is not at all pertinent or 
black and white (Carnap 1950, Carnap 1966). For instance, one can make the nagging 
note that by judging that this rod is one meter long one is just saying that this rod 
belongs to the class of one-meter-long objects (Kyburg 1984). Still I think it fits for 
setting up an initial scene.

2.	 One may find this definition too narrow, and insist that we should not exclude 
mathematical objects other than numbers. What is more, to take a more extreme 
view, any symbol may go. Likewise, somebody else could say that this throwaway 
definition is too wide, as we are prone to assign numbers to, say, washing machine 
programs, which hardly qualifies as measurement. I will address these points later.

3.	 For Frege, concept is a strict, well-defined concept, but we need not go into 
details here.

4.	 Following the ubiquitous practice, I use “iff” as an abbreviation of “if and only 
if” here and in what follows.

5.	 For an introductory text on Frege’s work on the foundations of arithmetic and 
on the role of Hume’s principle, see Zalta’s article in the Stanford Encyclopedia of 
Philosophy (Zalta 2017).

6.	 As known, in this he did not succeed, nevertheless the merits of his work can 
hardly be overestimated.

7.	 Campbell defined measurement several ways. Karel Berka compiled the fol-
lowing further definitions of him (Berka 1983, 21): (measurement is) “the process of 
assigning numbers to represent qualities,” “the assignment of numerals to represent 
properties according to scientific laws,” “the assignment of numerals to things so as 
to represent facts or conventions about them.”

8.	 Another method for measuring hardness is Brinell’s test. Here we measure the 
penetration of ball of given diameter made of a given material, pushed with a given 
mass. It can be argued, that this method measures a different property than does 
Mohs’.

9.	 These rules have been living in many forms and wordings. Here I will follow 
Carnap because of his explicit treatment of empirical procedures as markedly distinct 
from mathematical manipulations. Even if his lecture-based book is a late-runner in 
its genre (Carnap 1966).

10.	 I have not mentioned the measurement of mass yet, I have always been talking 
about weights. But, of course, under given circumstances, measuring weight can be 
the base of that of mass.

 EBSCOhost - printed on 2/12/2023 9:16 AM via . All use subject to https://www.ebsco.com/terms-of-use



17Empiricism

11.	 New definitions are agreed to be introduced in 2019 based on the 2017 propos-
als of the International Committee for Weights and Measures (CIPM 2017).

12.	 It is to be noted that the prospective implementation of the new definitions 
changes the picture radically. One of the most interesting developments is that the 
definition of kelvin will depend on meter, second, and kilogram (ibid.).

13.	 For a detailed story of fix points and, in general, temperature measurement see 
Chang’s book (Chang 2004).

14.	 To be fair I admit that my narrative here fails to account for some of Camp-
bell’s considerable contributions. Most importantly, in his Elements he develops an 
error theory as a prerequisite for establishing standard series in necessarily noisy, in 
particular, intransitive data (Campbell 1920). My only excuse is that a similar theory 
will be analyzed in the final chapter.

15.	 This is not to say that I am about to downplay the importance of “raw” obser-
vations. Quite the contrary, as it will be clear in these pages.

16.	 Interestingly, Bridgman also has something common with Michael Dummett’s 
view on the difficulties around getting rid of our metaphysical habits. Bridgman held 
that to adopt the operationalist point of view requires immense change in our think-
ing and thus brings around major difficulties. Moreover, practicing this approach so 
diverged from the mainstream may result in social inconveniences even in a simple 
discussion on the state of affairs with a friend—well, it may indeed be annoying to 
demand an operationally firm meaning for every term—and may finally lead to isola-
tion and misunderstanding. As Chang implies, he sort of foresaw his own fate in his 
later career as isolated and misunderstood in his thoughts (Chang 2009).

17.	 When one takes on the task of assessing Bridgman’s operationalism, she has to 
face a special problem: it is not easy to tell what does it consist of exactly. Bridgman 
was not entirely systematic in his thoughts, maintaining somewhat incoherent claims 
at times. For some authors on operationalism a basic task is to reconstruct his achieve-
ments as a forceful system (Gillies 1972, 6–8, Chang 2004, 148–152, Chang 2009). 
Here I omit this issue, and give only a brief summary of the main objections against 
his views without assessing the soundness of the understanding they are based on.

18.	 We can mention Hanson just for one example (Hanson 1958).
19.	 “[The operationalist] fails to impart meaning to substantive concepts that is, 

concepts related to entities that are regarded as the carriers of operationally determin-
able qualities or quantities. To illustrate this latter point: it is possible to define, in 
terms of instrumental procedures, the charge, the mass, and the spin of an electron, 
but hardly the electron itself” (Margenau 1956).

20.	 See more on this in chapter 5.
21.	 Neurath’s article is a graphic example (Neurath 1932).
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The previous chapter was intended to provide a conceptual, rather than his-
torical, introduction to the main issues this book is concerned with. This one 
pursues the problems to further depths and intends to make some original 
points, as well. I will address here questions like: how do we bring about units 
and how do we justify our ways? Is setting apart different kinds of quantities 
justified? Are the rules of their measurement genuine scientific laws? If yes, 
why? What is the role of conventions in what we call measurement?

Again, I will address the problem of realism regarding quantities. I will 
show that rational numbers are in every case enough to represent measure-
ment data and that talking about continuous quantities (at least, in the wide-
spread, classical sense of continuum) raises serious problems. After stating 
these preliminary results, I will take up the topic of realism again in the 
closing chapter.

2.1 TAMING TIME AND TEMPERATURE

Let us now recall the established rules of extensive measurement and see how 
they can be applied to length, one of the most mundane basic quantities. In 
line with the first rule, we are to have an empirical process to pick out equal 
lengths. We can lay any straight edges (for instance, rigid rods) side by side 
and judge whether they are equal or not. For now, forget about the problems 
of uncertainty by the limited sharp-sight or of the margins between which our 
assessments can be regarded reliable. If we lay two rods end by end along a 
straight line, the length so gained will be the sum of those of the two original 
rods—exactly as the second rule requires. Finally, we can pick a rod with a 

Chapter 2

Rules, Procedures, Reality
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certain length, or can mark out an arbitrary distance on a straight edge, and 
regard it as the standard unit.

Having a straight wall of a certain length to measure, we can just begin 
measuring by first laying the unit rod by the wall so that the one end of the 
rod fits to one end of the wall. We mark the position of the other end, then 
move the rod by the wall so that the first end fits to the mark, and so on. When 
reaching the end of the wall so that the rod’s end more or less fits the end of 
the wall, we count the times whenever the rod was in a new position by the 
wall, and then conclude that the length of the wall is n units.

Putting aside many suspicious presuppositions present in the above 
account, let us apply these rules now for time, another fundamental extensive 
quantity. This is a bit trickier. We may record an event e, and then record an 
event f, but how could we be sure that the so defined time interval equals to 
another one defined by events g and h, or not? Moreover, how can we assure 
additivity for these intervals?

The answer is that we can establish equality between time intervals 
spanned by simultaneous event pairs (Carnap 1966, 78–85). Similarly, addi-
tivity can be taken for any two adjoining time interval pairs, that is for any 
two intervals specified by events e and f, and events f and g respectively. 
Clearly, these concepts are much weaker than those of length in that we can 
establish equality or account for additivity only in naturally occurring, readily 
found situations. We have no ways for manipulation, we cannot carry over a 
time interval to compare it to others. Worse, we should also be clear on what 
is meant by simultaneity, which is not trivial in case of faraway events.

Anyhow, to make any use of it, the notion of time measurement must be 
strengthened, and this can be done by exploiting periodic phenomena. Tradi-
tionally, the cycle of seasons, the variation of days and nights, the apparent 
trajectory of the sun provided natural base for measuring time. Later this role 
was taken over by human artifacts with cyclic motion: pendulums and clocks. 
But no cyclic phenomenon is enough in itself. It is worth making explicit at 
this point that the procedure of time measurement consists of two compo-
nents. For one, we need a dedicated periodical phenomenon. For the other, we 
need the “linear” process of counting. That is, we not only need to distinguish 
between individual cycles, but also to establish a consecutive order for them. 
This shows nicely how counting is integrated in more complex measurement 
procedures.

But how can we be sure that the chosen reference periods are really stable? 
We know that there are notoriously unreliable reoccurring events, such as the 
first snow in the year, my arriving at the office in the morning, or even my 
heartbeat. The Earth’s motion or a pendulum are widely regarded as more 
reliable, but usually with some caution. We know that in practice the pen-
dulum is slowed down by friction, and strictly speaking the Earth’s periods 
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around the sun or around her own axis are also not constant. Now, these con-
victions rely on some complex theoretical machinery of science, thus go far 
beyond the immediate empirical task of taming time. Worse, they presuppose 
an already established concept of time. The same is true about some periodic 
processes on the atomic level widely considered to have the most reliability, 
which nowadays serve not only as bases for modern chronometers, but also 
as conceptual foundations for theoretic issues of measurement. A commit-
ment for a “right” concept of time is already there when we talk about their 
reliability.

What justifies the establishment of relative reliability between different 
periodic phenomena? Consider two pendulums, one with “normal” periods, 
the other with a “hectic” motion. We would, of course, take the pendulum 
with even periods as more reliable than the other. That is, the one we regard 
more stable intuitively. Unfortunately, intuition itself is often a quite unreli-
able tool—according to Poincaré it is in fact an illusion that we have any 
intuition on time spans (Poincaré 1905, 35–36). It can easily be imagined that 
the two pendulums are moving so that we have no clue which is the one with 
the “hectic” motion, we can lay down only that they are moving differently. It 
might be tempting to say that let us measure which pendulum is the one with 
the “hectic” motion, but it is easy to see that now we are in a bad cycle. For, 
in order to measure this, we already should be in possession of a “reliable” 
pendulum, and so forth. What is more, there is not much difference between 
the cases of length and time. Just as we may only suppose or stipulate that 
the duration of one swing of a “stable” pendulum is the same as the other, so 
can we only assume that our standard unit rod remains the same when being 
carried over in space (and time).

If we cannot have any clue on a “stable” unit, or even on relative reliability, 
we can take any periodic phenomenon we like as standard, any rod or any 
swing of any pendulum. There is no compelling reason to choose a specific 
one, logically any choice is equally justified. Moreover, we may arrive at a 
consistent description of the world based on any choice. As Poincaré main-
tained, we may choose Euclidean geometry or some of the non-Euclidean 
geometries in our descriptions of the world, just as we like, we can as well 
arrive at consistent theories, only the laws in our theories will be different 
(Poincaré 1902). For instance, we may describe relativistic phenomena by 
insisting that space is Euclidean. In this case we must conclude that our mea-
suring rods expand and contract, and also our clocks run faster and slower. 
On the other hand, we may regard our readings of our chronometer as time 
and the unit rod as the unit length, and in this case we must conclude that 
space-time is non-Euclidean. Which one of these options is actually chosen is 
a matter of convention. There is no empirical test to decide which way to go, 
as both of the ways can be equally consistent with our observations. But after 
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all scientists place their bets, and they prefer a choice resulting in less compli-
cated laws, neater theories. The applied rules are chosen not because of their 
truth, but because they are convenient. They are “the fruit of an unconscious 
opportunism” of the scientist (Poincaré 1902, 36).1

Opportunistic or not, Carnap suggests a possible reason for preferring a 
periodical phenomenon over the other when measuring time (Carnap 1966). 
He insists that we can establish relatively stable behavior for a large class 
of phenomena and not for others. By relatively I mean that their behavior is 
stable relative to each other. My pendulum executes roughly equally many 
swings during each period the Earth turns around. What is more, I have a lot 
of other gadgets exhibiting the same stability: the hands of my clock takes 
more or less exactly as many turns each time my pendulum takes one thou-
sand periods, and so on. It is not that we would assume some divine harmony 
here, we regard these coincidences as contingent facts, but we can bet on this 
large class, because we do not have such an extent class for other behaviors 
at hand.

Let me remark that the fact that other such large classes are not rightly 
available for us does not guarantee that they do not exist, meaning that they 
cannot be in principle established. But what is more important, the concept 
of relative stability is relative itself, in particular, it is relative to a degree of 
exactness or resolution. If we are just “zooming in,” jumping a magnitude 
order, we will find that many phenomena are now dropped out of our favored 
class: in face of the new standards of exactness their behavior will not be 
found stable relative to the others in the remaining class. And going along this 
way our large class dissolves into smaller and smaller classes until we end 
up with some class with one (type of) element, for example, the class with 
the behavior of cesium-133.2 Still, at a reasonable level of “accuracy,” we 
can build our standards on phenomena exhibiting congruent behavior. This 
observation will be of great importance below.

At this point it is already clear how we can carry over time intervals as 
units in line with our established rules. We can take any periodic phenomenon 
as standard, for instance, the motion of our favorite pendulum. Take our third 
rule. At an arbitrary moment t(e

0
) we begin to count the swings of the pen-

dulum. To any event e we can assign the (approximate) number of swings up 
to that moment t(e). Now if t(e) and t(f) differ in n swings, and t(g) and t(h) 
also differ in n swings (be the two event pairs however remote), we regard the 
two differences equal. Still, we may have some doubts whether this account 
is satisfactory, and I will come back to the issue.

But before that, let us try to answer two questions brought up in the previ-
ous chapter. The first asked whether we are free in choosing our reference 
material which we base temperature measurement on. The second asked 
whether the scales produced by different materials are similar in the sense 
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that they can be linearly transformed into each other. Now, the short respec-
tive answers are: yes, in principle, we are entirely free in choosing our mate-
rial for temperature measurement; and no, different materials do not behave 
the same way and do not produce similar scales.

Consider figure 2.1. In the first scenario we choose material a as reference, 
whose expansion between our two dedicated temperature points is l(a). For 
the sake of simplicity, let us divide our unit into ten parts. Observing then, 
with the help of our established scale, material b with the expansion l(b) 
between the dedicated temperature points, so that we mark the respective 
degree marks as it expands when heated (say, we heat liquid thermometers 
in the same pot of water, and we are registering the liquid level on the glass 
with a marker), we may well find that the correspondence is far not linear. 
Similarly, in the second scenario, when choosing b as standard, we will find 
that material a seriously deviates from a linear expansion when heated.3

Now do we have any reason to prefer any of the possible scales? One may 
insist that there must be certain theoretical considerations and scientific laws 
determining the “right” interpretation of temperature. For instance, she could 
mention that the pressure of a certain gas in a closed vessel is proportional 
to the temperature. Postulating that it is linearly proportional, we can use 
this phenomenon to calibrate temperature scale. But if we use the so gained 
scale to observe another phenomenon, we may well find now temperature is 
not related in a linear mode to another magnitude (e.g., to the volume expan-
sion of another material). How should we choose the “right” phenomenon to 
calibrate with?

Figure 2.1  Relative Temperature Scales by Different Materials.
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One may also say that the modern concept of temperature is based on the 
kinetic energy of particles. Cannot these energy levels define the “right” 
scale? The thing is, here temperature is simply defined as the kinetic energy 
of particles, that is, energy is just another way of talking about the same thing, 
but cannot help us solve the question of calibration. If we could measure and 
consistently relate the amplitudes of the oscillation of the particles in differ-
ent materials to a common additive scale, and we could derive the procedure 
of temperature measurement from that of kinetic energy, we could say we 
have “extensified” the quantity of temperature. But this is not the case. The 
theories of statistical mechanics do not bring us closer to the operalization 
of temperature.

Serious problems arise also when trying to extend the scale we had based 
on a given phenomenon, such as the expansion of some material. First, there 
is no guarantee whatsoever that the behavior of the given material will (in 
any relevant sense) be similar to the one observed between the dedicated 
points beyond the boundaries of the interval. Second, every phenomenon is 
apt for measurement within narrow limits only, in other words, every material 
exhibits certain not so preferable behavior around its phase changing points.

This latter consideration does provide some reason for choosing an apt 
phenomenon as a base. Kelvin, the modern standard unit for temperature, is 
defined, roughly, as follows. Theoretical results of thermodynamics indicate 
an ideal, absolute zero point (in the terms of statistical mechanics, the one 
where no microscopic motion of particles is detectable). Take this one as the 
first dedicated point according to rule (iii). Take the so-called triple point4 
(very roughly the freezing point) of water as the second dedicated point. 
Then divide the interval so gained into 273.16 equal parts, this guarantees 
that our new unit will be equal to the one of the Celsius scale—there are 
many advantages in respecting traditions. But now, how to extend the scale 
upward? There are several ways, but it worth choosing a phenomenon that 
sweeps an immense interval. Take for example the ideal three-dimensional 
black body and take the characteristic frequency of black-body radiation as 
directly proportional to the temperature. It maybe a good choice because of 
the stable wide-range behavior, but it is still an arbitrary choice without any 
logical constraint. Moreover, it is surely unpleasant that we can never directly 
observe an ideal black body.5

Few would question that the measurement of temperature (similar to other 
quantities) is conventional in the sense that units and divisions of scales are 
determined by the consent of scientific community. Now it is clear that con-
vention plays a greater role here: the characteristics of the whole scale may 
be determined by the choice of the defining phenomenon. But if the choice is 
entirely arbitrary and unmotivated, it raises serious questions of validity and 
uniformity, and after all, on the very meaning of temperature. Sticking to an 
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arbitrary convention may justify assertions relating measured temperatures at 
different locations in the terms of colder and warmer, but it does not enable 
relating, for example, diurnal temperature variations. One could, of course, 
bite the bullet and arrive at the conclusion that, in spite of our ubiquitous 
practice, it is simply meaningless to talk about equal differences in different 
ranges of a temperature scale. Without a clear, valid procedure, rule (v) is 
idle and useless.

A way out from this frustrating situation may come into view by observing 
that the issue of temperature show some spectacular similarity to the case of 
time. We have seen that commenting on Poincaré, Carnap proposed to base 
our standard choice on phenomena which exhibit mutually stable behavior. 
Even if this commitment will not downright validate our ways, it will provide 
them with some empirical weight. This authority may be enough for building 
up procedures to align with the rule for equal differences. And if we have 
calibrated clocks by this principle, cannot the same be done with thermom-
eters? It can, and it was, indeed.

2.2 RULES AND LAWS

But first, let us tarry for a while with the role and status of measurement rules. 
What kind of formulas are they? It is telling that Campbell prefers the term 
laws (of measurement) instead of rules, however, he usually seems to be quite 
cautious with verdicts on the nature of these laws. At some place though, 
Campbell explicitly defends his choice by emphasizing that the operative 
rules for measurement are genuine scientific laws. “They certainly are laws 
in their application to . . . properties such as weight or length. The fact that 
the rules are true can be, and must be, determined by experiment, in the same 
way as the fact that any other rules are true” (Campbell 1921, 119).

We may observe that, typically, a scientific law has the following form: 
Q R S T= ( , )F  , where Q, R, S, T, and so on are for different quantities, 
and Φ is some mathematical formula with quantity symbols as variables. 

For example, Ohm’s law is usually put in the following form: I
V

R
= ; and 

states roughly that the current on a given conductor equals to the quotient 
of the potential difference and resistance. True, certain other kinds of sci-
entific statements are also often traded as laws, but the example sketched 
here is characteristic to physics—the discipline Campbell surely had in mind 
above all.

Even at first glance, the rules for extensive measurement are different in 
(at least) two respects. First, two of the three are naturally expressed as con-
ditionals rather than equations. Of course, we can force ourselves to reword 
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laws as Ohm’s as conditionals. But their natural equational form suggest that 
they hold, or at least are supposed to hold, universally,6 whereas it seems 
that the rules of measurement may hold under one set of circumstances, but 
not under the other. Sure, not all qualities are measurable. True, one could 
object: all right, but when they are measurable, they are universally measur-
able. But this amounts to saying that once we have an empirical procedure 
for measuring a quantity we will always have it (or have one) under whatever 
circumstances. It is rather doubtful, I suppose. Just consider the case of mass 
measurement by a balance scale through weights. Our rules would probably 
be useless on the International Space Station.

Second, while laws of physics usually involve a great deal of quantities, the 
very rules of measurement remain entirely silent on them. These rules do not 
say anything about single quantities, but provide some empirical principles 
for rightfully establishing a large class of them. Thus, they may be regarded 
as methodological guidelines, or test requirements—that is, some kind of 
meta-laws.

Nevertheless, I can easily agree with Campbell that the empirical proce-
dures satisfying these rules of measurement involve experiments. Thus, they 
involve a great deal of sophisticated equipment and operations. Sadly enough, 
our rules remain utterly silent on these details. It is to be noted that having 

Figure 2.2  A Good Start toward Empirical Equality no. 1.
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the “right” tools for a given experiment is not unproblematic in general. But 
while I am aware that in case of an electric experiment I will have to begin 
with some voltage sources, resistors, capacitors, and other stuff of this fam-
ily, I have no clue whatsoever how to deal with extensive quantities as such. 
What is clear is that no unified toolkit exists for them.

Anyhow, Campbell seems to suggest that once we found the appropriate 
equipment, any difficulties can be overcome by the experimental method 
itself:7

[F]or instance, [a rule] is only true if the balance is a good one, and has arms 
of equal length and pans of equal weight. If the arms were unequal, the rule 
would not be found to be true unless it were carefully prescribed in which pan 
the bodies were placed during the judgment of equality. Again, the rules would 
not be true of the property length, unless the rods were straight and were rigid. 
In implying that the balance is good, and the rods straight and rigid, we have 
implied definite laws which must be true if the properties are to be measurable, 
namely that it is possible to make a perfect balance, and that there are rods 
which are straight and rigid. These are experimental laws; they could not be 
known apart from definite experiment and observation of the external world; 
they are not self-evident. (ibid., 119)

Figure 2.3  A Good Start toward Empirical Equality no. 2.
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But how do we know that we have a (near) “perfect” balance scale? Surely, 
it is not only stipulated that a good balance scale exists, since it could not be 
known apart from “observation of the external world.” One must, then, have 
the experimental means for determining that the balance scale which we use 
for combining weights is a “right” one. But to determine this, it seems, one 
must already have the concept of equality for weight, the very concept one 
approaches through the rules for weight measurement. Since the appropriate 
experiment would be nothing else than measuring that the scale is unbiased 
by equal weight in its pans.

In fact, it is not even enough to conclude that the scale is a good one. 
Suppose we have two weights of which we, let us allow it, do not know 
whether they are equal in mass, but we suppose so, because apparently they 
are. Having them in different pans and observing balance is a good start. But 
when exchanging the two weights we observe a bias, we can rightly conclude 
that something is wrong. When observing balance, we need one more piece 
of experiment: we must put the two weights in the same pan. Finding that 
the very pan has sunk provides some reason for believing in our scale, and 
repeating this piece of experiment in the other pan with the same result pro-
vide further grounds. (Strictly speaking, it is still not enough to know that we 
have a good scale. It may well be that it is only insensitive to the difference 
between the two masses.) But we can arrive to this conclusion only because 
we presuppose that mass is measurable (or more exactly, that individual 
weights are totally ordered).

Notice further that one and the very same procedure applies for the cases 
where the masses are apparently different, or the scale is apparently biased 
or both. If we observe equality for the weights in different pans in both 

Figure 2.4  A Good Start toward Empirical Equality no. 3.
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possibilities, and we observe the sinking of a pan when both of the weights 
are placed in, and we have some pairs of weights of which we cannot estab-
lish equality this way, we must conclude that we have an empirical operation 
for equality independently of our impressions of appearances.

I will not examine the case for the other rules. It is enough to see that their 
test requires identical (or “very, very similar”) copies of a unit weight, which 
can be arrived at by equality tests also.

All in all, do we have an operation also to pick the “right” balance scales 
without the measurability presumption? It remains to be seen that we cannot 
claim, for example, the equality of the balance arms. We may say that we will 
find that a “right” scale has equal arms in most of the cases, but this assertion 
relies on some vague theoretical assumptions on torque, rather than on actual 
observations. We may as well assume some peculiar distributions of friction, 
or even complex spring mechanisms inside the tool.

As stated above, the rules of measurement differ from physical laws in 
important respects. I am inclined to say that they are methodological con-
siderations on the empirical operations underlying measurement procedures. 
Roughly, they suggest we should have such and such empirical procedures 
in some way similar to mathematical operations in order to assert that we 
are dealing with a measurable quantity. Whether we are smart enough to 
find such operations by carefully assembling our gadgets is a contingent fact 
which neither confirms nor disconfirms the rules by itself. By that fact either 
we can assert the given property’s measurability or not. But honestly, when 
we are in trouble with measuring, say, a faraway star’s core temperature, the 
last thing we would conclude that temperature there is not measurable. For 
sure, we will have some theories.

Figure 2.5  A Good Start toward Empirical Equality no. 4.
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One of the clearest empiricist accounts on the status of measurement 
rules I found is given by Arthur Pap, who seemed to build a footbridge from 
Carnap to Quine (Pap 1959). To him (and Carnap), these rules belong to a 
larger class called rules of correspondence. As the name suggests, these rules 
provide links from laws and theories to observational data. As such, they are 
outright incapable for confirmation or falsification, whereas genuine scientific 
laws might be falsified—in theory. But this is not the whole story. Quantities 
obtain their meanings from the laws and theories in which they are present 
on the one hand, and from the rules of correspondence on the other. Properly 
described procedures work as operational definitions, and as such partial 
interpretations for quantities. None of the interdependent quantities present 
in a law is fully interpreted, consequently there are only partially interpreted 
systems.

According to Pap, this entails that “it is hopeless to try to reconstruct a 
quantitative scientific theory dualistically as a system of statements some of 
which are analytic . . . and some of which have factual content” (ibid., 187). 
The analytic-synthetic distinction fails. Being so, no observation is ever able 
to confirm or falsify a single statement, only the system as a whole can be the 
subject of revision under sufficient reasons. Not in the least, this way the rules 
of measurement are neatly “hidden” in the theoretical system.

2.3 CONCATENATION

One may still insist that there must be certain requirements warranting the 
validity of a chosen measurement procedure. Talking about extensive quanti-
ties, some authors (most notably Campbell) suggest that such a requirement is 
additivity: empirical addition of two magnitudes must yield a number which 
is the result of the arithmetic addition of their respective measured values. 
By contrast, Carnap argues that it is better to speak of an extensive quantity 
when we can think of a natural concatenation operation for it (Carnap 1966). 
Thus we are able to speak of extensive, non-additive quantities. Let us take 
the addition of velocities in special relativity theory. Here, concatenated 
velocities are not summed up by the addition operation of arithmetic, but by 
an equation given by Lorenz-transformation:
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Likewise, to give a less intricate example, we may like to see the measure-
ment of angles as extensive. But angular addition differs from the arithmetical 

 EBSCOhost - printed on 2/12/2023 9:16 AM via . All use subject to https://www.ebsco.com/terms-of-use



31Rules, Procedures, Reality

one in that we do not have a value greater than 360. Thus, when measuring 
angles, 270 + 120 = 30. So, with Carnap, we can embrace the following 
strategy: while insisting on a “natural” concatenation concept for extensive 
magnitudes, we go beyond the notion of additivity to encompass other opera-
tions beyond mere arithmetical addition.

If we were already puzzled in choosing a proper concatenation operation 
by rules, now we may be more perplexed. Take length, where we supposed to 
lay rods end by and along a straight line. Not only that defining a straight line 
or geodesic before framing the concept of distance is a bit problematic, but 
the very nature of the operation is unconstrained by the extensive measure-
ment rules, let alone when we drop arithmetic additivity. Thus, so to say, any 
consistent operation goes. We may as well take laying the rods by the legs of 
a right angle as the proper concatenation operation. Of course, “addition” in 
this case will be a “right angle addition” (Ellis 1966, 80), one following the 
Pythagorean theorem. The point is that the operation so defined will satisfy 
all of our rules of extensive, fundamental measurement. The choice of the 
proper concatenation seems to be, to a large extent, conventional. Still we 
can say that as long as we have a meaningful and “natural” concatenation at 
hand linked to a consistent manipulation of numbers, we can legitimately talk 
about extensive measurement.

But what is to be “natural” enough to qualify as concatenation? A skep-
tic about a meaningful demarcation, Kyburg argues that the existence of a 
proper concatenation operation is a question of taste (Kyburg 1984). Take 
the archetypal example of intensive (non-extensive) quantities, temperature. 
Temperature is widely held not to be additive: having a body with a tempera-
ture T

1
, and another one with a temperature T

2
, there is no way to combine 

them so to have a body with T
3
 = T

1
 + T

2
. Worse, we have no concatenation 

operation for temperature of any kind, it is often said.8 Well, we do have, says 
Kyburg, just take “putting the two bodies in an oven and heating them until 
T

3
” as the proper concatenation operation (ibid., 17). One may say that this 

notion is unnatural, but no one can insist that there is a strict, a priori border 
between natural and unnatural, so the distinction of extensive and intensive 
magnitudes is a matter of degree and taste, Kyburg concludes.

I willingly let it. But I would not stop at this point, a closer analysis of this 
construction bears more important morals: the unattractive peculiarities of 
the above example turn out to be essential features of a general concatenation 
concept. To see this, let us try to image how one would argue against regard-
ing Kyburg’s example as genuine concatenation.

First, he could exhibit a clear circularity in Kyburg’s “temperature 
concatenation”: the operation requires an already established temperature 
concept. In order to heat the oven to a given temperature, we must have a 
temperature scale at hand. But the main thing to do with concatenation is 
to establish the unit and thus the scale. If we are free to heat the oven as we 
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like, the concatenation of T
1
 and T

2
 would yield any temperature. To sum up: 

Kyburg’s notion of concatenation for temperature is either void or circular.
Second, one could make a case on the persistence of prototypes. When 

heating the two bodies in the story up to T
3
, we will not have two bodies with 

the respective temperatures of T
1
 and T

2
 anymore, but we will have them with 

the temperatures of T
3
 and T

3
 (respectively). So their concatenation should 

result in a body with a temperature of T
4
 = T

3
 + T

3
, but for this we should 

again use the oven-based concatenation operation—and so on infinitely. That 
is, we can never have our initial magnitudes and their “concatenation” at hand 
simultaneously.

Big deal, Kyburg could shrug, this is just some time index jugglery, and 
anyhow, where is it stated that concatenated magnitudes should be available 
after concatenation? Further, it may easily happen that relying on these indi-
ces the disputant can build a definition of a “proper” concatenation matching 
his own taste. One that, for instance, gives account for the availability or 
unavailability of intitial magnitudes or prototypes. Again, no rational rea-
son can be given for disqualifying such cases of concatenation, unless we 
embrace some ad-hoc monster-barring strategy (Lakatos 1976).

Monster or not, the above concatenation concept seems to encapsulate 
the essence of all concatenation concepts. True, when one establishes 
scales through concatenation, it is usually presupposed that a prototype is 
always there for the next step in the procedure. The standard measuring rod 
of length L, or one of its identical copies, can always be laid end-to-end 
to the last copy or last mark by the straight line on which the procedure 
is being carried out (along with the rules). But the only reason for using 
standards (or prototypes) is that it is taken for granted that they remain the 
same from one moment to the other, or taken over in space from one place 
to another. Otherwise we could make any choice, we could just take any 
rod of whatever length. But is there any reason to believe that the length of 
the measuring rod stays constant the whole afternoon? More generally, is 
it justified to suppose that L Lt t1 2

= ?9 I would not say so at all. In order to 
empirically justify it, we should carry out measurements on its length at dif-
ferent times. But our concept of length is based on this very concatenation 
concept. Recall, further, that classically length measurement is conceived as 
a manipulation of a standard rod along a straight line. Now, what is meant 
by a straight line? Without a doubt, an obvious choice is to conceive it as 
picking the shortest path between two points. But, alas, we are about to 
establish the very concept of length.

Historically, non-monster concepts of concatenation feature an important 
class of measurement procedures. The importance of this class lies in the 
belief that the numerical representation of the quantities at issue is immedi-
ately (and intuitively) justified by the procedure itself. Now we can see that 
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wholesale concatenation concepts suffer from the defect of circularities, and 
this fact casts doubts on their fundamental role in measurement theories. 
Neither they are able to set apart basic concepts of quantities, nor they are 
lucid and robust enough to provide empirical foundations for measurement.10

2.4 CONVENTIONS AND CONGRUENCE

With the traditional importance of concatenation in the conceptual develop-
ment of measurement in mind, abandoning it is disheartening: what remains 
to build on? In this section, touching on some recent studies in the topic, I 
roughly indicate the direction of a possible way out. Further details will be 
given later in this book.

To begin with, we need to get rid of all of our tacit presuppositions as 
potential sources of circularities and clearly identify the conventional ele-
ments in a potential candidate for a cogent account. László E. Szabó provides 
an operational approach to space-time along these lines (Szabó 2009). He 
gives an empirical definition for space-time tags in a single inertia frame, 
relying on a single standard clock. We do not presume much of the etalon 
clock: neither that it reads some “proper” time, nor that it ticks evenly. We 
require only to have the clock’s readings whenever we need them. But a lone-
some clock floating alone in the universe is not enough for tagging, let alone 
coordination. We also need further gadgets: the so-called markers. Our 
expectations toward them are less modest: they must be able to be triggered 
by physical events, and to receive, cast, and recast light (or radio) signals. We 
stipulate a marker at the standard clock, continuously broadcasting the clock 
readings. Each marker must have a unique ID, and whenever a radio signal 
leaves a marker it must contain the ID and the clock reading. We suppose to 
have as many markers as we need.

With this machinery at hand, we define the time tag of an event e as 
follows:

	 t e( ) = ( ),1 2 1e t t tdf + - 	  

where t
1
 is the clock reading at the departure of a signal from the standard 

clock, and t
2
 is the reading at the arrival of the signal reflected by a marker 

at event e.
Let us sum up the conventional elements of this setup at this point. No 

doubt, we chose our standard clock by mere convention, but it also must be 
clear that to rely on radio signals is also conventional: to explain our choice 
in spatio-temporal terms would be circular. Also, the “direction of time,” or 
the order of the clock readings, and even causal order—by the “sending” 
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and “receiving” event types—conventionally given. Finally, in the equation 

above, e =
1
2

 by convention.

We can define distance from the standard clock by 
1
2

( )2 1t t c- , where (by 

convention) we can give c the value traditionally assigned by the scientific 
community to the velocity of light—whatever this latter notion means. But 
this is not enough to set up a system of unique space-tags: we have to define 
absolute distance as well. In order to do this, we need the concept of rest time 
sequence: a unique time sequence tied to a given locus. I will not go into the 
technical details here. What is important to stress is that it is an empirical 
question whether rest time sequences exist or not. If we are lucky enough, 
we will find that there is a unique rest time sequence for every event, picking 
out a “world line” of a possible object which is at rest relative to the standard 
clock. (What this “fortune” means for us will become clear in a moment.)

Again, with this approach, the whole system of Euclidean geometry is 
stipulated as a class of empirical facts! And with these facts in hand, we can 
provide a spatial coordination in a three-dimension frame. (Technical details 
are again omitted.) Now that we are justified to use spatio-temporal terms, we 
are able to talk about inertial motion, which will be a time-like straight line in 
the usual four-dimensional Minkowski-space.11

Now for the dessert: Szabó provides two interesting results, each given as 
an output of computer calculations:

	(i)	 There is no rest time sequence if the standard clock moves non-inertially.

	(ii)	 There is no rest time sequence for every event if e ¹
1
2

.

Practically and sloppily put, this means that the predictions of our usual 
theory on space-time can be true only if we have an evenly ticking, non-
accelerating standard clock and our conventional choice on a given constant 
is appropriate. That is, we have a complex theory which implies the existence 
of an instrument with such and such properties. Conversely, given such an 
instrument, our incumbent theory on space-time can be tested, at least, in 
principle:

Whether these statements are true or not is, therefore, an empirical question, 
and it is far from obvious whether they would be completely confirmed if the 
corresponding experiments were performed with higher precision, similar to the 
recent GPS measurements, especially for larger distances. (ibid.)

Let us not meddle now with the problem of complete or sufficient confir-
mation, we have another issue here which is, though not entirely unrelated, 
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more important for our recent concerns. Namely: how to understand “with 
higher precision”? To take it to mean “more exactly” is hardly a wise choice: 
not the least, circularity is creeping back through the backdoor. For we can 
regard our equipment exact iff the predictions of our theory are true. To 
assess how exact our gadget is is nothing else than to measure how much its 
readings deviate from the “real” values. Let it: we have to live with approxi-
mations, yet the question remains, how to measure our approximations so to 
order them?

No doubt, the above interpretation flirts with metaphysical realism: it sets 
“the world as it is” against our relentless trials in more and more approaching 
its truths. Szabó would hardly be happy with such an account (nor would I, as 
it matters). It would be much better to talk about (something like) precision 
without giving any inkling of such metaphysical commitments.

In fact, our conventional standard clock is not just there floating around 
without any means to address its reliability: its stable behavior is brought 
about by tiresome human activity. In a previous section with a passing men-
tion I incriminated cesium-133 as the final base of our contemporary time 
standardization. Now, as Eran Tal witnesses (Tal 2016), there is much more 
to this story: timekeeping is a highly complex human endeavor. Let us see it 
in some detail. Indeed, a handful of cesium fountains12 provide what is called 
primary standard, which is used for adjusting atomic clocks exhibiting sec-
ondary standard (a somewhat more populous class). These latter gadgets are 
running continuously, and are very stable in the short run, but sooner or later 
diverge from each other and need to be adjusted by primary standards, such as 
by the “readings” of the cesium fountains, which are in work for short terms 
and only several occasions a year.

At this point a good deal of theoretical and institutional machinery enters 
the story. To approach the ideal of clock readings all around the rotating sur-
face of the Earth (called terrestrial time), an operationally manageable mea-
sure is introduced. This is called Coordinated Universal Time, or UTC. As 
a first step, the readings of a few hundred atomic clocks realizing secondary 
standard all around the world are to be aggregated into a scale known as free-
running time, or EAL after the French phrase. The method of aggregation 
is of great interest for our resent investigations; here I quote Tal’s account 
verbatim:

EAL is an average of clock indications weighted by frequency stability. Finding 
out which clocks are more stable than others requires some higher standard of 
stability against which clocks would be compared, but arriving at such a stan-
dard is the very goal of the calculation. For this reason EAL itself is used as the 
standard of stability for the clocks contributing to it. Every month, the BIPM 
[Bureau International des Poids et Mesures (International Bureau of Weights 
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and Measures in Paris)] rates the weight of each clock depending on how well 
it predicted the weighted average of the EAL clock ensemble in the past twelve 
months. The updated weight is then used to average clock data in the next cycle 
of calculation. This method promotes clocks that are stable relative to each 
other, while clocks whose stability relative to the overall average falls below a 
fixed threshold are given a weight of zero, i.e. removed from that month’s cal-
culation. The average is then recalculated based on the remaining clocks. (ibid.)

To have the whole picture, we have to mention some further facts. Practi-
cally all of the participating atomic clocks are built by one manufacturer, 
and shown to be quite stable relative to each other. On the other hand, the 
worldwide list of participating national laboratories are highly affected by 
contingent issues of diplomacy. Again, comparison of the remote clocks is 
realized by the GPS system, thus signal transfer is exposed to atmospheric 
conditions, and possible discrepancies in GPS time (also derived from UTC), 
time transfer noise. Apart from theses contingencies and sources of uncer-
tainty, we need elaborated algorithms to cope with other factors too. We need 
a weighting algorithm for aggregating the readings of free-running clocks 
which excludes overly influential clocks and cushions frequency jumps. 
Further, we need some “steering” measures, because secondary standard has 
an observed tendency to drift away from the primary standard, the first being 
slightly “faster.” These algorithms are fairly unconstrained and run with 
largely arbitrary parameters—they are given by convention.

This is definitely an abridged edition of the story, still worthy of some 
crucial observations. We should, of course, address the apparent circularities 
and the role of ad hoc commitments. We should, again, examine the social, 
institutional, and perhaps even the instrumental aspects of timekeeping 
activity. Indeed, I will come back to some of these questions later. For the 
time being, a few more words on observational regularities, uniformities or, 
as I call it, phenomenal congruence are in place. It is clear that the current 
practice of timekeeping shows, extracts, squeezes out, or lives on empirical 
regularities, without relying on the problematic concepts of concatenation or 
exactness. And this is the way we may be able to find the “precise enough” 
clock for Szabó to test the prevailing space-time theories: with relentless and 
active quest for congruence.

To be sure, this sentiment is not without antecedent examples in the history 
of science. Take again the case of temperature: Hasok Chang vividly covers 
the story of the calibration of thermometers in his book (Chang 2004, 74–83). 
Regnault, a meticulous experimenter, did a heroic work in picking out the 
“best” thermometer possible. His approach was largely anti-theoretical, as 
based on the notion of comparability only. He managed to sort out a set of 
gas thermometers which was comparable, that is, provided similar enough 
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readings under the same circumstances. In my wording: he managed to sort 
out a set of congruent phenomena. Note that he restrained himself from 
asserting that he established the “real” scale of temperature, and it would not 
have been justified to do so at all—even if his achievements later got some 
theoretical confirmation (ibid., 192–196).

To what extent was his approach really theory-independent and what tacit 
presuppositions he really maintained are interesting questions, which I will 
not address at this point. For now there is one important moral: even when 
having no explicit theories with successful operalizations at hand, we still 
have a choice to establish a firm quantitative concept with sophisticated 
manipulation or, so to say, empirical brute force. To put it in other words, 
through epistemic iteration (ibid.), we are justified in establishing phenom-
enal congruence. I will pursue this issue further in the last chapter of this 
book, when talking about the construction of valid procedures.

2.5 CONTINUUM AND REALISM

One may maintain a view that exhibiting standards is one thing, flesh and 
blood measurement is another, the two do not necessarily go hand in hand. 
The latter is traditionally seen as a class procedures manipulating standard 
units with which some quantitative properties of the objects of interest are 
estimated or approximated. Above we have seen that to establish these units 
is far not trivial. So let us now address the estimation part.

Approximations seem to be essential to measurement. To improve our 
ways, we divide our standard unit into sub-units, as meter is divided to 1,000 
millimeters, and minute is divided into 60 seconds. But it is easy to see that 
doing so we only export the problem of exactness one level lower. We can 
measure the length of a piece of metal with our measuring rod with a milli-
meter scale on, the ends of it will match those lines on the scale only roughly. 
Of course, we can still make our scales and tools more precise (take a vernier) 
and we can jump another order—and so on and so forth.

As we improve by dividing our scales into more fine-grain scales, one 
could suspect that measurement can never arrive at anything else than ratio-
nal numbers, in other words, we can never assign irrationals to measured 
features—even if we could refine our means infinitely. Irrationals are results 
of theoretical considerations and calculations, in practice, we can never arrive 
at π when measuring the ratio of the perimeter and the diameter of a piece 
of land of a circle shape. Of course, here we are not after the point that no 
perfect circles exist in reality. Rather, the aim is to inquire into a discrep-
ancy between intuition and observation. While we maintain that most of the 
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quantities are continuous, the very nature of our measurement procedures 
seems to be such that we can only exhibit rationals with them, ever.

In fact, in a trivial sense irrationals can be results of measurement: one can 
report them as such. Maybe we could reword and sharpen our supposition as: 
no relative irrationals can be justly reported as results of a given measurement 
procedure. But having a measuring rod with markings like, for example, 2,  

3 , and 5 , nothing prevents me to report measured distances as 2m, 
5m, ( 5 3)- m , and so forth justly, or according to my best knowledge. 

Thus, in what follows, I endorse a weaker assertion: rationals are enough to 
represent any measurement results. Below I will defend this thesis against 
some possible objections, then I explore some of its consequences with 
regard to the problem of realism. This opens the door to further important 
considerations exposed in later chapters of this book.

Let us begin with the following situation. Consider a clock with only one 
hand for the indication of hours, motored by any of our cherished periodic 
event types. The hand is extended as a straight line, like by a laser light beam. 
This way, besides the ones on the clock face, we will have readings also on 
the floor—on a plane perpendicular to the clock face. These readings will, of 
course, fall in a straight line on the plane. Let us denote the floor readings at 
four, five, six, seven, and eight o’clock as a, b, c, d, and e respectively; see 
figure 2.6.13

Now, most of us would agree that we are able to measure the time elapsed 
from four to five by the length the hand took on the edge of the clock face 
(or by the change in the angle between the hand and the six-twelve axis). But 
then we may also hold that we measured the laser beam’s way on the floor, 
that is, the distance between a and b at the same time, whose value is up to 
the unit choice and the length of the perpendicular beam from the clock (the 
one at c), but it is very likely to be an irrational number with respect to the 
given unit. For instance, if we take the length covered by the beam at the 

Figure 2.6  Clock Readings and Projections.
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edge of the clock face by one hour, r p
6  (where r is the radius of the clock), 

and the distance l
0
 between c and the center of the clock is 2r (i.e., 2 / 6

p , i.e., 
approximately 3.81971863427 .  .  . units), then by trigonometrical methods 
we can calculate that the progress of the laser beam from six to seven, l

1
 is 

tan30 = 1

0

l
l , approximately 2.20531558172 . .  . units. Now we can state that 

we have measured the distance between c and d, and it is an irrational num-
ber. The strength of this argument lies in the observation that these numbers 
coincide not with some arbitrary measurement results, but with the limits of 
our standard units.

But let us take a closer look. What we have here is an idea of a function 
mapping all of our readings to some point on a straight line. It will map all 
of the readings from nine to three o’clock to infinity, but why not? It is not 
a one-to-one mapping, then. But let us now disregard the upper part of the 
clock.14 One may assert that we have co-measured the laser beam’s progress 
with time, but what we see here is a bunch of calculations. Are we to insist 
that we have also co-measured the actual length of the beam (e.g. l

0
), just 

because we expressed it in the given units? For me it seems that these are 
trigonometrical calculations independent of any measurement. This is not at 
all to say that no measurement procedure should involve calculations. What 
I am up to is to indicate that here we have an issue of mere renaming. As 
measurement data is reported as numbers, I could take any function I like to 
rename pieces of data. Consider just replacing the readings on the clock face 
by the square roots of primes respectively, as: 1 to 2 , 2 to 3 , and so on. 
Are we really ready to accept that now we are “co-measuring” rationals and 
irrationals?15

Further, suppose there is an ideal point on the edge of the clock which, by 
the motion of the beam, exactly coincides with seven o’clock, or with one of 
the endpoints of the time span between six and seven. Now, however we are 
trying to make our readings more and more precise, there will always be some 
uncertainty as to when exactly we are at the required point (expressed in some 
tinier and tinier sub-units), that is, at seven. Now whatever irrational number 
is calculated at the floor-end of the laser beam, we can never ascertain that we 
have arrived at it. That is, our empirical methods will not be sharpened simply 
by renaming a rational to a given irrational number. In a realist wording: our 
reports on measurement results are always to be understood as complex state-
ments on intervals (and probability).

In a different setting, we could redefine any of our unit x as 2x  from 
tomorrow. That would cause much confusion, but change nothing essen-
tial. Of course, our unit choice is conventional, and even every unit can be 
regarded as irrational in face of another unit. If I would measure the weight 
of the standard prototype of kilogram against a piece of clay I just nipped 
at random, almost surely I would find that by endlessly improving my 
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measurement methods, I could only approach it with my “measurement gen-
erated rationals” (accepting the generous help of the robust armature of sub-
units and identical copies in the measurement operations), and this process 
never ends. This means that even if we are to devote ourselves to a view that 
mutual irrationals (in some sense) belong to reality, we can be sure that our 
operations can only approximate them.

Again, one may wonder much depends on how reporting a result is con-
ceived. But this is not so. We can regard reporting as an error-prone act of 
reading instruments scaled with whatever symbols, or we can simply equate 
reporting with establishing a result of measurement. In any event, for any set 
of reports (any body of data) I can always offer a consistent renaming using 
only rationals—where by consistent I surely mean that the order of the values 
is preserved. But there is more to it. It is clear that the difference of two rela-
tive irrationals cannot be bridged exactly by rationals. But I can always offer 
values bridging this difference with an exactness well beyond the reliability 
of our measuring tools. Indeed, I can exceed it in arbitrarily many orders.

Note further the fact that a series of reporting, being finite, cannot even be 
dense.16 This suggests that we do not even need the whole armature of ratio-
nals for measuring. In fact, finite decimals are well enough.

Interlude. To further exploit our thought experiment for the sake of an 
illustration to the problems sketched in the previous chapter, observe that the 
path of the beam on the floor is suitable for time measurement even if we are 
agnostic to the clock face far up in the sky. Of course, we know that the beam 
first passes a, and later it passes c. What is more, we know that meanwhile 
it passes b. Thus, we can measure the order of moments, and we can even 
set up a daily (or a twice a day) meeting by referring to a point on the floor.

What we do not know is that b is at “half-way” in time between a and c. 
At this point we cannot be sure what reading corresponds to the middle of 
the time span between a and c, but nothing prevents us to take bʹ as the corre-
sponding point so that bʹ lies exactly in the middle of the straight line section 
between a and c. Of course, bʹ will not coincide with b. Still, we are free to 
take the (a, bʹ) (or (bʹ,c)) section as our standard unit for time measurement. 
Thus, adjusting the right end of this unit section to some arbitrary x point 
on the path of the beam we will arrive to the notion of one hour later. And 
it will be a neat, operationally defined concept. Until we do not calibrate 
our system with other time measuring tools based on periodic phenomena 
regarded as standard by consent, we can rely on it as our favorite, best and 
only equipment.

Now, it is time to address the realist stance: what is the reason to believe 
that there are reals “out there?” Why should we regard most of the quantities 
as continuous? And why would abandoning this belief be a “revolutionary 
change” (Carnap 1966, 89)? We might even find this sentiment strange, since 
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the assumption that space or time has a structure analogous to that of real 
numbers cannot be confirmed by direct observation, not even in principle—it 
is clear from the fact that rationals are well enough to represent any set of 
measurement data. So, is it not possible that all of the quantities are discrete 
after all?17 Physical theories already exhibited several phenomena of discrete 
nature, for instance electromagnetic radiation carries energy in quanta, or 
charge also has a smallest possible magnitude. Not in the least, even to inter-
pret length on an atomic level is problematic in itself. (There would be no 
problem in geometrically describing discrete space and time: we can consider 
points x and y as neighboring if no events could take place between them.)18

But to comment on the discrete space-time problem is not my issue here. 
My concern is why do we see quantities as continuous? One may mention our 
deep, instinctual realist convictions as a reason. We can venture it is some-
what “natural” to regard present as a continuously moving frontier between 
future and past—anyhow it is a widespread way of looking at time; as it has 
also been a popular stance in the history of philosophy to regard time intu-
ition as the very base of the real number concept. Again, our intuition tells us 
that the bullet fired from a gun, having a 10-meter-long trajectory toward its 
target will pass the point at 2  meter. Through the realist’s glasses (suppose 
her to be realist in a semantic sense),19 the sentence asserting the above state 
of affairs will be true independently of our knowing it (by observation), and 
what is more, independently of our outright inability to verify it.20 Moreover, 
a realist may insist that as the bullet touches every point on its trajectory, it 
makes sense to say that the bullet (or an infinitesimally small part of it) is 
at a rational (or an irrational) number away from its starting point taken in 
meters at a given time. In other words, she may insist that the assertion that 
the bullet (or an infinitesimally small part of it) is at a rational at t

x
 is true 

or false independently of our knowing which, and independently of our not 
being able to know it ever in principle. This situation can be nicely described 
by the notorious nowhere continuous Dirichlet function defined as φ(x) = 1 if 
x is a rational, φ(x) = 0 if x is an irrational, by naturally representing “true” as 
1 and “false” as 0 (Davis and Hersh 1981, 264).

True, continuum is usually associated with much prettier functions. 
Another possible reason for sticking to a model of continuous quantities may 
be the essential role, which mathematical analysis plays in scientific theories. 
The presupposition of continuous change allows us to talk about not only 
function values at certain points but also about their arbitrarily small environ-
ments as well, so not only about state of affairs but also about trends. Thus 
we can derive a velocity function from a position function, an acceleration 
function from a velocity function. As a consequence, whole scientific theories 
are presented as a bunch of differential equations, as equations relating basic 
functions to their derivatives. So the scientists’ adherence to the continuum 
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is somewhat understandable. But the everywhere continuous and derivable 
functions we used to use in our physical descriptions of the world are not 
conceptually necessary at all. Neither the classical realist approach to the con-
tinuum nor the applied mathematics constrain this. We can easily imagine, 
or mathematically describe cases where a body is at x

1
, y

1
, z

1
 at a moment, 

but it is at x
2
, y

2
, z

2
 at once, “in no time.” In this case, our motion function is 

“broken,” or not continuous.
In order to show that our classical realist model even leads to outright 

conceptual impossibilities, Dummett introduces other, more sophisticated 
examples of discontinuity (Dummett 2000). At some point, for instance, he 
presents a version of Thomson’s lamp.21 Instead of a lamp and a switch, con-
sider a pendulum with an accelerating motion between its endpoints a and b 
lying equally far from the center of the pendulum’s path c. Now the pendulum 
swings first from c to a in 1

3  minutes. Then from a to c in 1
6  and then from c 

to b in 1
10  minutes. We can calculate the nth quarter swing as

	 S
n n

n =
2

( 1)( 2)
.

+ +
	  

Now, what position will the pendulum hold after one minute? We cannot 
tell, of course, since the sequence converges to 1, thus the pendulum must 
take infinitely many swings by then. The mere fact, that such thought experi-
ments can be worded makes the classical model more than suspicious, at least 
according to Dummett:

The classical model is to be rejected, because it fails to provide any explana-
tion of why what appears to intuition to be impossible should be impossible. It 
allows as possibilities what reason rules out, and leaves it to the contingent laws 
of physics to rule out what a good model of physical reality would not even be 
able to describe. (ibid., 505)

I would reconstruct Dummett’s argument as follows. Scientific theories 
used to live on continuous, differentiable functions. In particular, scientific 
laws generally establish relationship between continuous quantities. Now, 
these properties are constrained by contingent “facts,” not our inner “model 
of physical reality.” Worse, the latter is fatally incriminated once caught 
red-handed in showing conceptual impossibilities possible. So let us choose 
a new model which excludes these conceptual calamities (e.g., by rendering 
all the functions continuous and derivable—see below). As for me, I cannot 
really see what should shape our “model of reality” if not contingent proceed-
ings of physics. Nevertheless, if it is the case that we are somewhat free to 
choose our model, I agree to choose the more streamlined one with less inner 
discrepancies.22
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After so setting the stage, Dummett offers an alternative to the classical 
view, so to get rid of the problematic metaphysical stance while trying to 
preserve the strength of our scientific theories (ibid.). He suggests to apply the 
principles of constructivism for our reflections on the physical world so to get 
rid of the conceptual discrepancies of the classical approach. The construc-
tive mathematical practice is largely based on the ideas of intuitionism,23 a 
school that originates in the work of the Dutch mathematician Jan Brouwer. 
The advocates of it maintain that the objects of mathematics neither are real 
entities in some Platonic realm, as the rival school of logicists often holds, 
nor are mere figures of ink on a sheet of paper manipulated by the rules of the 
game, as the so-called formalists insist, but constructions in the mathemati-
cian’s mind (or better, in an ideal mathematical mind). In order to justly assert 
a mathematical statement p one must have a (finite) construction procedure 
for p, in other words, one must have a proof of p. Thus, for the intuitionist, p 
is true iff it is proven. On the other hand, p is false iff it is incompatible with 
one of our constructions established earlier. That leaves room for statements 
which are neither true nor false. Goldbach’s conjecture, stating that every 
even integer can be expressed as the sum of two primes, is such a statement. 
As neither has it a proof, nor has it a disproof it cannot be regarded either 
as true or as false. At least, not at the current state of affairs, it may not be 
truth-valueless eternally. (According to the so-called problem interpretation 
of Kolmogorov p is true if we have a solution of p [Kolmogorov 1932].)

It is clear that the principle of bivalence, suggesting that a well-formed 
statement is either true or false, cannot be maintained by the intuitionist. 
Moreover, it follows that the law of excluded middle ( p pÚ Ø ) also fails—
just consider p to be the Goldbach’s conjecture: nor the conjecture p nor its 
negation Øp  can be asserted.24 Generally speaking, the intuitionist abandons 
all the principles and methods he finds to be “non-constructive,” that is, all 
the ones leading to general statements about our universe of discourse with-
out the load of exhibiting concrete instances—thus such mascots like the 
law of excluded middle, the method of reductio ad absurdum, the axiom of 
choice, and so on. Nevertheless, on the positive side, he tries to “re-construct” 
as much of the universe (of mathematics) as possible with more rigor, more 
strict methods, less presuppositions.25

As no infinity can be built up by finite constructive methods, the intuitionist 
maintains quite different concepts of numbers, and an entirely different set 
theory. Individual natural numbers are taken for granted, but their totality is 
not: infinite sets are regarded as potential only. On the other hand, there is no 
problem with induction: each and every natural number can be reached by 
a finite, effective process. Thus each and every natural number is part of the 
constructive universe, even if there are no actual constructions of all of them, 
the demonstration of the possibility of those is enough.
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It is by no way surprising that the intuitionist maintains a real number 
concept quite different from the classical one. An individual real number is 
often handled as a limit of a Cauchy sequence, a sequence x

1
,x

2
,x

3
 . . . , so that 

the elements the sequence get arbitrarily close to each other as the sequence 
proceeds: |x

m
–x

n
|<ε (where ε is an arbitrarily small number). Clearly, a given 

real number cannot be identified with its generating sequence by the con-
structivist, simply because one cannot bear an infinite construction. Indeed, 
he regards these sequences as infinitely proceeding sequences, which cannot 
be exhibited in their totality, but one can always observe some initial, finite 
part of them.

Again, one can also assume that the first element of the other, not yet 
explored part of the sequence is given by free choice. It does not mean that 
the next element might be any rational number whatsoever; some restrictions 
may well be applied. For instance, one may restrict free choice to numbers 
satisfying the Cauchy property. This way at every point a dense host of 
potential free choice sequences is at hand, or as the intuitionist would put, a 
spread of them (of course, the classic set theoretical notions cannot be applied 
here). These choice sequences provide the base for the intuitionist concept of 
real numbers and the overlapping spreads for that of continuum. (I omit the 
technical details here.)

It follows that the intuitionist concept of equivalence also differs from 
the classical notion. To say the least, there are two ways for things not to be 
equal. If a and b are unequal, a ≠ b, we can demonstrate a contradiction in 
supposing their equality. When a and b are apart, a b¹¹ , we do possess an 

integer k so that | |>
1

a b
k

- .

A continuum, as conceived by the intuitionist, bears with some peculiar 
properties related to the classical one. It is clear that in a classical setup we 
can assert the following law (usually traded as the law of trichotomy):

If a b, Î  then ( < ) ( = ) ( > )a b a b a bÚ Ú .

In contrast, the intuitionist can make a weaker statement only:

If a b c, , Î  and (b < c) then ( ) ( )a b a c¹¹ Ú ¹¹ .

Probably the most striking feature of the intuitionist real number concept 
is that, because reals are exhibited as overlapping, ever becoming spreads, 
every function ϕ(x) from   to   defined on a continuous interval of reals 
is always continuous at every point. Thus, disturbing discontinuity examples, 
as the one described above, cannot be built on the constructive notion of real 
numbers.

 EBSCOhost - printed on 2/12/2023 9:16 AM via . All use subject to https://www.ebsco.com/terms-of-use



45Rules, Procedures, Reality

Now, Dummett’s offer is simply to regard those things as real, which can 
be accessed or constructed and regard properties real inasmuch they can be 
exhibited. We do not have to jettison real numbers from our scientific theo-
ries, all we have to do is to replace their classical concept with an intuitionist 
one. To make it short, Dummett calls for changing our account of reals, so 
to arrive to a less problematic description of the world which is more in har-
mony with our epistemiological ways. Nor would we have to miss analysis, 
a further good news, for Errett Bishop invented a constructive version of it 
(Bishop 1967). But the price to pay is not meager: we have to get rid of some 
of our deep, natural metaphysical convictions.26

This constructivist approach rhymes well with our concept of measurement 
procedures. When trying to exhibit some property of an object via measure-
ment, we always arrive at some rational at a given point—or more exactly, to 
a result that can justly be represented by a rational number in any case. In a 
realist sentiment we will say that this result is just piece of data falling in what 
we really measure: an interval bounded by rationals, or our margins of error. 
Anyhow, we can always make our equipment more accurate and arrive at a 
number of another order, and so forth endlessly. This intuitive picture of our 
progress in accuracy is in line with the concept of free choice sequences: our 
steps toward precision are by no way lead by some necessity, our next limits 
in accuracy are entirely arbitrary.

In addition, we have now a way to lay down the theoretical burden of errors 
and margins. All we have is what we have access to. It is worth bearing in 
mind, when we ask nature these are her immediate and “unrepaired” answers.

Let us now get back to the thesis I began this chapter with: rationals are 
enough for measurement. After analyzing a thought experiment as a potential 
counter-argument, I concluded that for whatever difference (or system of dif-
ferences) expressed by relative irrationals there is always a consistent renam-
ing with rationals, preserving the relations arbitrarily beyond our exactness 
of our measuring equipment. When I talked about exactness, I relied on our 
realist intuitions: there is a real value somewhere out there which is approxi-
mated by our measurement operations. Now, after sketching the constructive 
scene, it is high time to get rid of these realist flavors and abandon the implicit 
commitment. Fortunately, it is not so hard to reword the conclusion without 
it. Say: I can always offer a renaming so that the differences of differences are 
well beyond the reach of our actual empirical (operational) means—whatever 
they might be. That is, I cannot construct any meaningful measurement for 
differences between the intervals picked out by irrationals and the intervals 
picked out by rationals as a result of my renaming. At least, not at the current 
state of art.

But so much for a general grounding of a constructive approach to mea-
surement at this point. I will pursue the topic further toward the end of this 
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book, in chapter 5. Now we will carry on with taking a glance on some further 
historical developments in measurement theories.

NOTES

1.	 Deciding which theory is streamlined enough is not a clear and straightforward 
task, as simplification at some point may result in more complex descriptions at oth-
ers. Poincaré predicted that no scientist would ever choose non-Euclidean geometries 
for the model of space-time because of the resulting complexities (Poincaré 1902). 
As we know, he was not right in this respect. At this point, it can also be argued that 
we have no choice at all. The theories of Poincaré are identical (Szabó 2002, 26–37).

2.	 The practical implementations of these frequency standards are called fountain 
clocks (Scientific American 2004, Tal 2016). See some further details below.

3.	 Materials traditionally used for temperature measurement indeed show wide 
variety in thermal expansion (Chang 2004, 58, 109). Water, for instance, even 
expands when it is cooled from 4 to 1°C.

4.	 Triple point is a constellation of temperature and pressure where all the three 
phases of a material is present in equilibrium. An arbitrarily small change in the con-
ditions would result in one of the phases of the material. The triple point of water is 
at 611.73 pascals and 0.01 °C.

5.	 In fact Campbell hoped to account for temperature as derived from genuine 
extensive quantities. Now with the expected inauguration of the new metric defini-
tions in 2019 (CIPM 2017), his hopes may be fulfilled eventually.

6.	 It might not be entirely clear how to understand this, but here I omit the inves-
tigation, as it is not a major point in my argument.

7.	 Well, strictly speaking we may also need Campbell’s error theory to “smooth 
out” data, but let us keep things simple.

8.	 Sometimes concatenation for temperature is conceived as a kind of averaging, 
which may be intuitive if one has the mixing of liquids in mind. However, mixing 
as a practical endeavor had never been successful as a base for a standard unit for 
temperature (Chang 2004, 60–68).

9.	 Indeed, sometimes we may have clear and cogent doubts about . Take the case 
of thermal expansion.

10.	 It is to be admitted that the whole empirical justification project is haunted 
by circularity. But “it is in the context of quantitative measurement, where .  .  . the 
problem of circularity emerges with utmost and unequivocal clarity” (Chang 2004, 
221). (A bonus quote from Kyburg for the sake of interest: “In fact it is not clear what 
is error. There has to be some indication that the law of linear thermal expansion is 
reasonably close to being true before we can construct a thermometer as a way of 
measuring temperature” (Kyburg 1991, 85). (Emphases original.)

11.	 Observe that our theory encompasses the theory real numbers. Although Szabó 
would probably insist that we could tag with any kind of symbols we like, these sym-
bols must align with an axiom system with high resemblance to the one for reals, not 
the least because we would like to tell stories on, e.g., acceleration in this framework. 
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(As it happens, he regards formal systems as genuine physical ones [Szabó 2003]. I 
addressed this view elsewhere [Csatári 2012].)

12.	 The name reflects that in these highly complex instruments particles are tossed 
up in vacuum tubes.

13.	 The idea of this thought experiment was put forward by András Jánossy in 
personal discussions.

14.	 We could, of course, also set up this thought experiment in a room with walls 
and ceiling, thus ensuring the one-to-one correspondence.

15.	 The chosen function preserves order, but it is not invariant under certain 
important operations. See more on this in the next chapter.

16.	 Roughly saying, by dense we mean that between any two values (however 
close to each other) there is a third value. The set of rationals is dense.

17.	 There may even be theoretical considerations pointing to this conclusion. Take 
Planck time, a natural unit stemming from an operational approach to space-time 
(Williams 2016).

18.	 Peter Forrest, one of the authors defending a discrete space-time thesis insists 
that there may be empirical means to support our choice (Forrest 1995). At least, in 
theory. His idea is based on a concept of systematic (i.e., theory-based) measurement 
and our ability to detect systematic errors in the data gathered by appropriately precise 
instruments (see chapter 5 for more on this). He admits, though, that the issue is open 
and may remain so for good.

19.	 The terminology used here reflects that of the papers of Michael Dummett 
(Dummett 1993 and Dummett 1995).

20.	 The empiricist may regard the statement in question analytically true, i.e., fol-
lowing from the mere logic and mathematics applied in the respective theory. But it 
only makes explicit that we do apply the theory of reals in our theory.

21.	 Though he does not explicitly mention Thomson (Thomson 1954), the essence 
of Dummett’s modification is to bring continuous motion in the picture, while Thom-
son’s lamp deals with two switch states.

22.	 To give a comprehensive account on Dummett’s motives for a constructive 
model or language (discussed at length in his The Logical Basis of Metaphysics 
[Dummett 1991]) is far out of the scope of this text. For a concise summary see e.g., 
Kapsner’s text (Kapsner 2014, 11–29).

23.	 For the purposes of this study, there is no need for a subtle distinction between 
intuitionism and mathematical contructivism in conceptual and historical terms, so 
here I use the two words as somewhat interchangeable.

24.	 For an intuitionist logical calculus, and also for an essential text on intuition-
ism, see Heyting’s book (Heyting 1956).

25.	 For a concise account of the merits of constructive mathematics, see Bauer’s 
paper (Bauer 2017).

26.	 It is worth noting, that Carnap also offers a choice between a language with 
classical features and one of a finitistic, constructive kind, as a matter of, so to say, 
free will (Carnap 1937).
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So far, while discussing measurement, we dealt with physical quantities. But 
what about social (or human, or special) sciences?1 We may insist that hav-
ing their own specific subjects, they must have their own specific quantitative 
concepts, if they ever want to measure. An alternative is opening toward the 
physicalist’s way—and this could be a very popular direction nowadays had 
Papineau been right in that “we are all physicalists now” (Papineau 2009, 
103)—with the admission that there are no non-physical processes. It is also 
often added that every concept of human sciences is reducible to ones of 
physics. And, having then the quantitative concepts of physics, why would 
we need new ones to measure? No doubt, one reason could be that such a 
reduction is hardly ever viable actually.

It may easily happen that the quantitative concepts of physics do not prove 
to be applicable in special sciences for whatever reason. Still, the vital need 
for keeping the precious tool of measurement remains in these disciplines. 
Thus, the practitioner of a special science is left with two choices. For one, 
she can verify that the received theoretical machinery of measurement is 
applicable for the given qualities of her discipline. That is, it is to be shown 
that they are quantitative concepts. Or, having failed with this, one can go for 
“liberalizing” the concept of measurement. But simply labeling things not 
labeled so before is not enough. It is much more apt to offer an alternative 
theory for measurement so to encompass new fields. That is exactly what the 
psychometrist S. S. Stevens offered. Among behaviorists “perhaps the most 
aggressive promoter of operationism” (Chang 2009) was Stevens. Social sci-
entists and especially psychologists of the time found the spirit of Stevens’ 
operationalism liberating2 and it still has a major impact on these disciplines 
today.3 It is somewhat understandable. For the behaviorists, building strict 
quantifiable concepts instead of the pre-existing sloppy ones accounted for 

Chapter 3

Scales and Structures
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by uncertain introspection was vital, and finding the proper philosophical 
grounds for this was a blessing.

To be sure, with Stevens, social scientists endorsed a version of opera-
tionalism more radical than that of Bridgman in many respects. Building 
his experimental work on auditory sensations on appropriate methodologi-
cal grounds, he argued that discriminative, observable reactions to physical 
stimuli can be regarded as the measurable indicators of private experience. 
According to him, “to experience is, for the purpose of science, to react 
discriminatively” (Stevens 1935, 521). Interestingly, behaviorists’ shipping 
away from individual experience was not after Bridgman’s own heart. This 
fact may shed some light on why he “washed his hands of” Stevens (Chang 
2009). Nevertheless, we can suspect that this was by no means his only 
reason.

As to his theory of measurement, Stevens’ positivist-operationalist incli-
nation is spectacular. First, he generously “liberated” Campbell’s definition 
of measurement—measurement is the assignment of numerals to objects or 
events according to scientific laws—from all of its “fripperies.” For him, any 
rule fits for the assignment, since, along with the logical positivists, he held 
that no mathematics is included in our observations, formal rules, as human 
inventions, constitute the framework of experience. Thus, our assignment 
conveys no natural structures, it is structure generating itself. It means that 
when we talk about the empirical operations of determining equality, more 
or less, equal differences and so on, as required by the establishment of the 
representational rules described above, we do not determine (exhibit) the 
specific relations between objects or events pre-existing out there, but we 
determine (stipulate) them ourselves (Michell 2007, 84–87). In other words, 
the specifics of a certain scale lie in the particular measurement operations we 
apply. This approach immediately cuts short the worries about the measur-
ability of certain concepts of psychology. Concepts are defined by the very 
measurement operations. Hence the meaning of psychical qualities (i.e., their 
scientifically meaningful concept) lies in the way we measure them.

Surely, Stevens’ work is justly criticized in many respects. But it undeni-
ably opened (or let it, provoked) new vistas for measurement theories. In par-
ticular, his theory on measurement levels or scale types gave a rough nudge 
for the subsequent axiomatic foundation project.

3.1 PHYSICALISM AND THE PROSPECT OF 
MEASUREMENT IN SOCIAL SCIENCES

In his classical account of physicalism, Hempel takes psychology as a para-
digmatic representative of the “sciences of mind and culture” (Hempel [1949 
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(1935)], 165). His main point is that every statement of psychology (unless it 
is a mere pseudo-statement lacking any content) has to have a translation into 
physical test sentences. These sentences contain only physical concepts, and 
are, of course, immediately ready for empirical verification. “The statements 
of psychology are consequently physicalistic statements. Psychology is an 
integral part of physics,” just as every other empirical discipline (ibid., 168).

This philosophy, and it is not a typical fate for philosophies, found its 
massive support in the practice of science. It seems that behaviorism, as a 
movement inside psychology, is deeply engaged with the spirit of the physi-
calist view maintaining that the psychologist should turn her attention to the 
observable, bodily behavior instead of scouring about the secrets of mind 
through introspection.4 All there is to be observed is physical behavior, and 
there is nothing to do with hypothetical concepts as mind, temper, or fear 
unless they can be reduced to observables.

But taking a closer look reveals some serious problems. According to 
Hempel’s early, translationalist view just sketched, one can verify a state-
ment of some special science by “translating” it first into physical sentences. 
Note that not only the actual verification is at stake here, since, according 
to the neo-positivist, verifiability is the very criterion of the meaningfulness 
of a sentence. (We may thus call Hempel’s physicalism a semantic one.) 
The translation goes like this: “Paul has a toothache,” a sentence involving 
a psychological concept, can be rewritten as different “test sentences,” like, 
“Paul weeps and makes gestures of such and such kinds,” “Closer examina-
tion reveals a decayed tooth with pulp,” “Paul’s blood pressure, digestive 
processes, the speed of his reactions, show such and such changes,” “Such 
and such processes occur in Paul’s central nervous system,” or even, “At the 
question ‘What is the matter?’, Paul utters the words ‘I have a toothache’” 
(ibid., 167). As Hempel himself observes, the list could be extended “consid-
erably,” which I would readily interpret as “without end.” Hempel hastens to 
assure us that we do not have to verify all of these sentences, “some of them” 
is enough, and then we can infer the verification to others by induction.

That leaves us with a good deal of questions. How extensive should our 
always amendable list be? How many of the test sentences should be veri-
fied in order to say that we have verified the original statement? And to what 
extent should they be verified? Is it the same to take any of the sentences to 
verify? For instance, does the one on Paul’s weeping count exactly as much 
as the one on Paul’s nervous system?5

One may also wonder: do we justly talk about translation when trying 
to turn a sentence into an indefinite set of potential sentences? No wonder 
that later Hempel himself had given up the strict translationalist view and 
accepted a more liberal reductionist one instead, still maintaining that the 
concepts of special sciences must be reduced to physical ones. Everything 
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that is psychical or social is realized in observable physical processes, even 
if the exact translation from the psychical-social realm to the physical one 
cannot be ensured. And at this point it is important to note that one can also 
be a physicalist while being anti-reductionist. That is, he can maintain that 
every law of social sciences is realized in physical processes, but deny at the 
same time, that these laws could be rewritten using only physical concepts 
(Fodor 1974).

I would like to make it clear here that the different directions of physical-
ism may have ontological, epistemological, semantic, or methodological fla-
vors. Of course, usually these concerns overlap, but it is not without morals 
to see which feature is stressed in a given account. For instance, a physicalist 
may lay stress on one of the followings:

	(a)	 Everything is physical (or supervenes on the physical).
	(b)	 What can be known about nature can only be observed in physical 

processes.
	(c)	 Every statement of the special sciences can be reduced to those of 

physics.
	(d)	 (Therefore) every scientific method can be derived from the methods of 

physics.

Now it is interesting to see a major, historical debate on measurement as 
a debate among physicalists. The story also serves as a prequel to Stevens, 
introducing the context for his theory of measurement levels. The debate took 
place in the thirties in Britain. The British Association for the Advancement 
of Science appointed a committee in 1932, to “consider and report upon the 
possibility of Quantitative Estimates of Sensory Events” under the chairman-
ship of the physicist A. Ferguson. The members were noted physicists and 
psychologists of the time, Campbell was one of them. Joel Michell provides 
a remarkable account of the activity of the committee, the debate, its reports, 
and their context. I will rely on his texts in what follows (Michell 1999 and 
Michell 2007).

The starting scene of this debate was drawn by Campbell’s account of 
measurement; in particular, as it was rethought and popularized Nagel and 
Cohen (Nagel 1931, Cohen and Nagel 1934). True, their stance was a bit 
more liberal than that of Campbell. Cohen and Nagel identify three uses of 
numbers: first, they can function as mere identification tags, second, they can 
mark a position on a degree scale, and third, they can represent quantitative 
relations of qualities (ibid., 294). The latter use, of course, characterizes what 
is traditionally called as fundamental and derived measurement. The second 
use, where one represents the relation of more or less by numbers, was also 
regarded as measurement by the authors. But they stressed that one must be 
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aware of these different uses, since the different roles played by those num-
bers determine what can be meaningfully said about the measured qualities. 
For instance, as Russell put once, “to say that one degree corresponds to 
the same increase of temperature at any point of the scale, would be simply 
meaningless” (had he been right or not) (Michell 2007).

Likewise, it would be meaningless to say that a man with an IQ 150 is 
twice as intelligent than the one with a score 75 (Cohen and Nagel 1934, 
298). All we can say that he stands higher in a specific performance scale. 
Worse, whether this scale represents a mere order structure is also a question 
of evidence. That is, it should be investigated whether intelligence as an attri-
bute has an order structure at all.6 It is at least questionable. And the situation 
has not been much rosier for other attributes of concern for psychology, but 
few arrived to the conclusion at the time that genuine measurement is not 
possible in the discipline.7

The physicists in the Ferguson committee had a strong opinion from the 
beginning to the end on the status of measurement: all there is to be measured 
are A and B magnitudes, that is, fundamental and derived ones—exactly as 
Campbell proposed. That means that alleged quantities like IQ or a sense 
intensity of a kind are not measurable, not even if they had been shown to 
exhibit orders. Reducing them to provenly measurable quantities would also 
be needed in order to talk about measurement.

By contrast, the psychologists of the committee insisted that this measure-
ment concept is too narrow and it should be retailored so to fit the needs of 
special sciences. It seems that they ignored the fact that the measurement 
concept maintained by the physicists was based on theory. So instead of 
trying to work out an alternative, they rather regarded the whole issue as a 
question of mere convention. To put it unfairly simply, they argued that the 
committee should accept a wider concept of measurement, because psychol-
ogy measures, and measures differently than physics. Of course, we could 
even agree with the claim that concepts are conventional. But conventions are 
hard to change, and the Ferguson psychologists failed to convince the major-
ity by appealing argumentation. However, I think they would have had a way 
to show that the concept maintained by the physicists is too narrow even by 
the standards of physics. There would have been an opportunity to address 
the problem of the measurement of intensive magnitudes that could not be 
reconstructed as derived measurement. In particular, they could have played 
around with the problems of measuring temperature.

According to Michell’s account of the events, physicist themselves did 
raise the issue of temperature, and tried to present it as a B-magnitude 
(Michell 1999, 147–148). First, J. Guild made a not so fortunate observa-
tion that temperature is measurable “in a board sense” on the basis of some 
“arbitrarily postulated relations.” But Campbell corrected his claim by saying 
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measuring temperature is a genuine, simple derived measurement based on 
the Boyle-Mariotte law, which states that, in a closed system, the pressure of 
a gas is inversely proportional the volume if the amount and the temperature 
are held constant. Thus, the product of pressure and volume results a constant: 
PV = NkT (where N stands for the number of molecules and T is temperature). 
Now, the order of this constant determines the order of temperature. But this 
constant encompasses to much. Temperature is thus not only dependent on 
pressure and volume, but the kind and amount of material as well. If we are 
not stuck to the celestial world of ideal gases, we must discover that the dif-
ferent values for this constant for different materials and amounts exhibit the 
favored structure. It is not easy, but the main point that it is to be shown. That 
could have been one card in the hand of the psychologists of the committee. 
Insisting that temperature measurement, vital to physics, is not convincingly 
proven to exhibit more than mere order would have been a good start. All 
would have been left is to show that sensation intensities did also exhibit 
orders. As we have seen, our empirically sound reason to maintain a tempera-
ture concept beyond mere order is based on congruent phenomenal behavior 
shown by the relentless non-theoretical experimental work of Regnault. Such 
operative-iterative ways are also open for social sciences, constituting a pos-
sible second step toward their quantitative concepts.

Michell shows that the psychologists in the committee missed another 
point, namely the problem of differences of differences (or second order of 
differences) in sensation intensities (ibid., 149–153). It is clear that once we 
are able to compare differences, we have a much more sophisticated structure 
than mere order, which bears the promise to be shown additive eventually. 
To put it concisely, psychologist failed to defend a suitable measurement 
concept, and physicists had easily won the battle.

Relying on my four physicalist theses above, I would give the following 
diagnosis. As implicit physicalists, the psychologists probably accepted (or 
would have accepted) (a) and surely (would have) accepted (b) of the above 
statements. But they probably failed to maintain the reducability of state-
ments or concepts, (c), and therefore were reluctant to defend a strong opin-
ion on methodological problems, to decide about (d). Michell even ventures 
that they exhibited a “curious indifference to methodological issues” (ibid.).

But social scientists’ “reservations” about theorizing on science was hardly 
only a curiosity of the time. In a recent debate, Papineau admits: “the abstract 
metaphysics of physicalism may seem unlikely to have any concrete implica-
tions for the practitioners of the human sciences” (Papineau 2009, 122). Not 
in the least because even for the “hard” part of a special science, any reduc-
tion to physics would be so complex that it is hardly viable in practice. But in 
most cases, even the reducing theories are missing.
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Even worse, special sciences may not only find certain methodological 
theories (of reduction, of measurement, etc.) futile, but also they often find 
them “inimical” (Shulman and Shapiro 2009, 127). They are instrumentalists, 
living on “middle-level generalizations,” (Merton 1949) and do not like to see 
their disciplines constrained by inelastic theories. The best is to see reductive 
theories and other “games of the philosopher” as having nothing to do with 
the practice of special sciences. Science is living and let it live. As Shulman 
and Shapiro put it in a poetical note: “the idea that the certainty that accom-
panies theorems is the only hallmark of science is an obsolete hangover of 
the early Enlightenment” (Shulman and Shapiro 2009, 128). This is straight 
talk: we are really happy with the ways and tools of our playing around in our 
disciplines, please, do not even try to disturb.

Psychologists of the Ferguson committee had not yet had this self-confi-
dence. Due to their physicalist inclinations, they were even hesitant to admit 
their tacit denial of methodological reduction. They just bitterly swallowed 
the conclusion of the committee: there is no sign of the measurability of sense 
intensities. Nevertheless, it was not the final word in the story: the stage was 
set for Stanley Smith Stevens.

3.2 INVARIANCE AND MEANINGFULNESS

To appropriately assess Stevens’ contributions, it is worth taking a look on 
their ideological context. No doubt, logical positivism had a major impact on 
his views, and also, by no means independently of the former, operationalism 
(or operationism, in the psychologist’s terminology). Stevens, as an advocate 
of logical positivism, often attended discussions and conferences featured by 
prominents of the Vienna Circle. He had high opinion about Carnap’s book 
The Logical Syntax of Language (Carnap 1937); and he especially cherished 
the thought that mathematics as encompassing nothing but tautologies (i.e., 
analytic statements) cannot be caught in act in observations, but rather shapes 
the framework of experience (Michell 2007, 84). Building on this general 
background, in his work as a practicing scientist he relied heavily on the 
operationalist principles.

Stevens directly addressed and challenged the conclusions of Ferguson’s 
committee and Campbell’s measurement theory (Stevens 1946 and Stevens 
1959). No surprise: their declarations explicitly denied the possibility of 
genuine measurement in psychology, and Stevens himself had worked out 
a scale for measuring the perception of sound intensity (the so-called sone 
scale). In his answer, he offers a new definition for measurement and as well 
a theory on the “levels” of the scales used in measurement.
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According to a survey by Michell, many of the definitions of measurement 
circling around nowadays in the social scientific literature are closely related 
to the one of Stanley Smith Stevens from more than a half a century ago 
(Michell 2007). In Stevens’ view measurement is assignment of numerals to 
objects or events according to rules (Stevens 1946, 677). No doubt, though 
the definition is paraphrasing Campbell’s, this concept diverges from the 
empiricist one and seems to be rather “permissive.”

First, it may sound rather strange, that measurement is applied to objects 
and events and not to their properties (or attributes). As Michell puts (a bit 
more sharply), it “makes no sense” to talk about measuring objects unless 
their attributes are measured (Michell 2007, 74).8 Second, while Campbell 
requires the alignment with scientific laws, according to Stevens’ wording, 
any rule fits. That sounds odd. We may be reluctant to esteem as measure-
ment such a scenario, for instance, when one assigns the number six to the 
democratic countries, the number seventeen to the favorite pair of rubber 
boots of the Hungarian prime minister, and the primes to the factual mistakes 
of the commentators on the evening news in a respective order.9

Be the rules of the assignment however arbitrary, the applied rule affects 
the properties of the scale so gained, determines the “level” of measurement. 
Stevens specifies the following scale types: nominal, ordinal, interval, and 
ratio (see table 3.1) (Stevens 1946 and Stevens 1959). He shows for each 
level the respective empirical operation, mathematical structure, permissible 
statistical operations, and provides some examples. His main point is that 
there are different structures we can arrive at by measurement (as opposed to 
the Campbellian monotypic theory), thus numerals may have different mean-
ings, among them ones seriously diverging from their usual understanding. 
We must always be aware of these meanings when dealing with them.

When creating nominal scales, one simply links a number to an object. We 
can arrive to such scales by establishing equality between certain objects, or 
by simply numbering the players on the football field. Note, however, that in 
this latter case it is not clear what the “equality” of player 7 in a team and 
player 7 in b team lies in. Along the same lines, my example above is a mea-
surement by definition, though the common number of the prime minister’s 
boots and one of the newscasters’ mistake is not a product of our observing 
equality between them but of mere chance. No problem with it, may the oper-
ationalist reply, only we may find that these uses of numerals convey little 
information. According to Stevens, this kind of scale has scientific relevance 
in examples like giving numbers for occurrences of an event type or classes 
of objects because of some practical considerations. To bring an example 
from the practice of sociology, we use a nominal scale when assigning num-
bers to personal entries, such as codes for nationalities—even if I would be 
inclined rather to call it administrative coding than measurement.
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The mathematical structure of scales are to be characterized by the per-
mitted transformations. In case of a nominal scale, this structure is given by  
xʹ = ϕ(x), where ϕ is one-to-one correspondence. This means that labels 
(which are numerals in this case) can be replaced, provided that things having 
the same label so far get identical labels, things having different labels before 
get different ones. The only statistic middle that can be applied to this kind of 
scale is mode; that is, we can pick the most frequent element.

Ordinal scales exhibit an a ≤ b relation on their values. The Mohs scale 
for the hardness of minerals, mentioned in section 1.2 (chapter 1), is often 
referred to as a typical example. According to this, m and n minerals are 
standing in m ≤ n relation, iff m can be scratched by n.10 Many psychological 
measurements are said to belong here, like the ones dealing with the strength 
of sensations. Likewise, this kind of scale characterizes the grades in school 
and data sets as the one arrived at by asking interviewees to mark their con-
tentment with the achievements of the government on a ten-degree scale.11 
The allowed transformation is xʹ = ϕ(x), where ϕ is any monotonic increasing 
function. Here, median can also be applied as a statistical tool, in other words, 
we are allowed to pick out the middle element from a finite data set, the one 
dividing it into two equal parts, upper and lower.

We talk about an interval scale when we have units, that is, when we can 
establish the equality of intervals or differences. This level is already con-
sidered as quantitative in an everyday approach as well. Temperature scales, 
Celsius or Fahrenheit, are usually mentioned here as examples, however, as 
we have seen, it is not at all trivial from the start that we can meaningfully 
talk about the equality of the intervals on these scales. Some say that the 
measurement of intelligence also exhibits an interval scale (or a near interval 
scale), but this sentiment is hard to defend.12 I would rather offer the example 
of dates (measured from an arbitrary point in time), or direction in degrees on 
a compass. The characteristic mathematical transformation here is xʹ = ax + b, 
so that a > 0. The formula for the conversation between Celsius and Fahren-
heit scales provides a good illustration: F = 1,8C + 32, where F stands for the 
given temperature on Fahrenheit and C on Celsius scale. At this level many 
statistical tools can be applied, but not those presupposing an absolute null.

The scale type just described is only one case for an interval scale, call it 
linear interval scale. But one can also specify so-called logarithmic interval 
scales, where the differences between certain ratios of attributes are quanti-
fied. Here, the allowed mathematical transformation is xʹ = axb, where a > 0 
and b > 0. We could bring here the example of such derived magnitudes as 
density, or fuel-efficiency as dependent on the ratio of fuel-consumption (vol-
ume) and the covered distance (length).

The ratio scale is stronger than interval scale by the above mentioned 
absolute zero. Many of physical measurements are on this level, thus the 
measurement of length, mass, or even temperature on Kelvin scale (if we are 
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convinced of the potential equivalence of differences). As for an example 
from the social sciences, measuring how many hours a worker may have to 
work to earn enough for a Big Mac in different countries could be mentioned 
here, though one may complain that the conceptual clarity of this example 
is far less than that of the ones from physics—not to mention the technical 
questions of measuring. Since the units of measurement are conventional, the 
allowed transformation is multiplication with a constant, xʹ = ax. At this level 
we already have the full range of statistical tools at hand.

It is common to supplement this list with the so-called absolute scale, 
where the unit of measurement is not arbitrarily chosen. Think of examples 
where pieces of something are measured eventually, such as in the case of 
measuring probability (as relative frequency), or the amount of Pirese13 citi-
zens in certain administrative datasets. On this level only the identity function 
is applicable as a mathematical transformation.14

One does not have to endorse Stevens’ dubious definition of measurement 
in order to see that his theory of scale types is an important step in the right 
direction. Overlooking now the terminological question of what can be right-
fully regarded as measurement and what not, an analysis of the structure of 
data acquired by our empirical procedures is of great importance. It is vital to 
see what is the conveyable meaning of the symbols used during measurement 
as assignment, and also to understand what is implied by the results. That 
is, our understanding of scales has immense methodological consequences, 
independently of whether the peculiarities of the scale types lie in our abilities 
(or inabilities) of setting up the proper procedures, or in the “real” nature of 
the observed qualities.

Stevens’ taxonomy of scale types suggests the following considerations:

	(a)	 Invariant properties clearly determine a given scale type.
	(b)	 A given scale type clearly determines what can be meaningfully said 

based on the measurement data, what statistical tools can be legitimately 
used on it.

Let me begin with clarifying the first point. In the axiomatic tradition (dis-
cussed below in detail), by a scale we mean a function from a data structure 
to a numerical structure. Scales fall into different types according to their 
invariant properties. That means that invariant properties present necessary 
conditions for a type membership. Taking the above defined meaning of the 
scales with their intended properties (say, they have specific domains, namely 
empirically established structures), invariance is also sufficient for setting up 
a scale type.

By invariance we mean a system’s staying constant in some of its proper-
ties under a given set of transformations. A square reserves its shape when 
mirrored by an axis running through one of its opposite angle pairs; the 
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cardinality of an infinite set remains unchanged when a natural number is 
added; the patterns on a magic carpet stay the same as it’s flying around over 
Baghdad; and the structure of data gained from some series of temperature 
measurement is the same be the values recorded in Fahrenheit or in Celsius. 
The figure is invariant under an appropriate mirroring, the size of the infinite 
set under finite addition, the carpet pattern under transport, the temperature 
scale under unit choice.

This latter observation is well in line with our intuitive understanding of 
measurement. May there be hot disputes on the conventional elements in our 
measurement procedures, no one questions that our unit choice is arbitrary. 
It is thus comforting to see that the outright conventional traits disappear in 
a definition of a scale type. Of course, not all of the scales involve units. So, 
it is interesting to see what invariance lies in, what are the preserved proper-
ties, and what are the eliminated contingencies for the elements of the above 
taxonomy of scales.

As mentioned above, nominal or classificatory scales are invariant under 
every one-to-one transformation. Here, to put it in a figurative way, class 
labels are preserved as essential to the scale type, but any constraints on the 
concrete titles on the labels are dropped, save that they must be different.

An ordinal or order scale is invariant up to every monotonic transformation. 
We do not even have to stipulate that these transformations are monotonic 
increasing, as Stevens did. Monotonic decreasing functions also do well. 
Consider a finite order with the assignment of natural numbers, and a func-
tion so that f f f(0) = 2, (1) = 3, (2) = 5, , that is, the function assigns the nth 
prime to the nth element. But observe that f f f(0) = 2, (1) = 3, (2) = 5,- - -  , 
that is, ordering the negative primes respectively to the elements of the origi-
nal scale does the job equally well, in the sense that, for example, f(n) will 
always be between f(n − 1) and f(n + 1). In general:

f x f y( ) ( )R  iff x y¢R .

It follows trivially that the transitivity, irreflexivity, and totality properties 
of the original order scale are preserved:

If f x f y( ) ( )R  and f y f z( ) ( )R  then f x f z( ) ( )R ;
If f x f y( ) ( )R  then not f y f x( ) ( )R ;
For every x and y on the scale S, f x f y( ) ( )R  or f y f x( ) ( )R .

This reveals an important fact. Not only are the actual distances between 
the numbers used on an order scale arbitrary, but the “direction” of the 
scale, too.

A similar note is in order in regard to interval and ratio scales. According 
to Stevens, a characteristic transformation for an interval scale has the form 
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f(x) = ax + b, and the form f(x) = ax for a ratio scale, since here we have a 
fixed zero point which cannot be modified. It is also assumed that a > 0. But 
we do not need this latter restriction, equal intervals are preserved even if 
we are “mirroring” these scales. However, we may wish to avoid zero length 
intervals, and insist that a ≠ 0. But the moral is the same as before: in theory 
nothing prevents us from assigning lower and lower numbers to higher and 
higher temperatures; the “direction” of the scales is arbitrary. Despite all of 
these observations, we will stick to increasing functions in what follows, in 
line with the mainstream literature.

Finally, we have not yet accounted for measurement on the absolute level. 
Absolute scales are invariant up to identity, every other transformation 
“ruins” them. When we measure (count) how many votes are devoted for 
the different parties in a ballot box, our assignment of numbers is by no way 
arbitrary (though the numerals to represent them may well be).

As I indicated above, these transformations are not only characteristic in 
regard to a scale type, but also definitive. A scale type can be regarded as a 
class of certain individual finite scales arrived at by the appropriate measure-
ment procedures. Now we can say with Patrick Suppes that scale types can 
be informally defined “as a class of measurement procedures having the same 
transformation properties” (Suppes 2002, 114–115).

Being so, invariant properties may also be suitable for identifying the 
given type of a given scale at hand. And it immediately leads us to our next 
challenge: meaningfulness. Let me reconstruct Suppes’ example here (ibid., 
110–111) with some modification. Suppose a psychologist who maintains 
that people’s obtained scores on a test, S(a), gives an ordinal ranking of their 
intellectual abilities, ia

a
. Suppose further that the psychologist also records 

the age of each person tested, A(a). Now, his hypothesis is that scale gained 
by dividing score with age, iq S a A aa = ( ) / ( ) also gives an ordinal (but age-
compensated) measure of abilities, that is, whenever ia iaa bR  then iq iqa bR , 
and, of course if iq iqa bR  then f iq f iqa b( ) ( )R , for every monotonic transforma-
tion. Let us have the following data: S a( ) = 3, A a( ) = 7, S b( ) = 7, A b( ) = 12, 
S c( ) = 7, A c( ) = 7. Thus we have:

	 iqa =
3
7

	

	 iqb =
7

12
	

	 iqc =
7
7

; 	
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that is: iq iqa bR , iq iqb cR , and iq iqa cR . Now consider a monotonic increas-
ing function j , running on the denominators, which carries 3 to 6 and 7 to 8. 
This is a quite legitimate transformation, since the numbers as denominators 
represent data on the order scale. Now we have:

	 j( ) =
6
7

iqa 	

	 j( ) =
8

12
iqb 	

	 j( ) =
8
7

;iqc 	

that is: j j( ) ( )iq iqb aR , j j( ) ( )iq iqb cR , and j j( ) ( )iq iqa cR . It is easy to see 
that the original structure is not preserved by j , in other words, the truth 
value of the hypothesis is not invariant under this transformation.15 But an 
empirical statement involving quantities can be regarded as meaningful only 
if its truth value is invariant under the appropriate transformations character-
izing the respective scale type.16

Realizing the methodological significance of meaningfulness, Stevens 
clearly warns against the “illegitimate” use of statistical tools. As we have seen 
above, he not only utters a clear warning, but also tries to identify those tools 
which can be meaningfully used on a given level of measurement. For instance, 
when a social scientist measures some preference in a given population on a 
ten-degree scale, usually she has no reason whatsoever to presuppose that the 
differences between the pairs of neighboring degrees instantiate equal intervals. 
Therefore, it is not legitimate for her to conclude, say, that the interviewees like 
custard pie at a 5.36 points average—meaning the mean of the data by average. 
She can conclude, nevertheless, that they like it at 6 points average, meaning by 
this the mode of the data (6 was the most popular choice); or she can conclude 
that they like it at a 5 points, meaning by this the median of the data, or the 
middle point of the individual pieces of data ordered in a series.

It sounds nice. But unfortunately enough, when statisticians face a bunch 
of numerals, they are inclined to regard them as genuine numbers and they 
are ready to use all the methods generally used on numbers. They tend to be 
regrettably agnostic about the origins of their data, and thus the very meaning 
of the number-like symbols populating their database. Even when faced with 
this fact, they may shrug: “the numbers don’t know where they came from” 
(Lord 1953).

Psychologists, social scientists, and statisticians likewise never liked the 
idea of statistical temperance. Despite all of these methodological minutes, 
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the statistical armature produce results, they would say. We are not fools to 
tie our hands because all of these abstract theoretical reasoning (Velleman 
and Wilkinson 1993). This attitude may well sound familiar. It refaces again 
and again wherever critiques of prevailing scientific practices are presented 
on theoretical or methodological grounds. Spearman’s theoretical consider-
ations on mental abilities were received adversely by mental test practitioners 
(Gould 1996). Social scientists, though often uncertain in their methods, usu-
ally firmly reject any theoretical observations endangering their free exploita-
tion of their usual ways (Shulman and Shapiro 2009).

Psychologists also brought complaints against Stevens’ very typology: 
they said it was not exhaustive. They found that the theory of scales has an 
imperfect connection to the real world, for real measurement scales rarely 
exhibit the properties of a certain scale type perfectly—one often has to work 
with “intermediary” scales in some sense. In particular, some of them insisted 
that the most psychological data lay “somewhere between” order and interval 
scale. (Though, sadly enough, they usually failed to bring the evidence.)

Indeed, by a closer examination it becomes clear that the taxonomy is not 
exhausting. Consider, again, Mohs’ scale of the hardness of minerals we met 
at the end of section 1.2 (chapter 1). It is not a hazy purple fiction at all to 
suppose a collection of minerals C with pairs of samples so that they do not 
scratch each other; that is:

There exist x and y in C so that not xRy and not yRx.

Supposing, naturally, that there are also pairs in relation we have arrived 
to a partial order.17

This is a clear example for a scale missing from Stevens’ list, but there are 
a good deal more. Louis Narens gives a formal account of scales and scale 
types, and tries to unearth the inherent causes why only certain scale types 
are favored by science despite the endless possibilities (Narens, 1981b). Also, 
our next section on the axiomatic approach reveals that the potential universe 
of measurement is stunningly immense, and only a tiny part of it is explored. 
But it will also be clear that purely a more comprehensive, more carefully 
built theory would hardly be the medicine to the social scientist’s pains on 
measurement.

3.3 EXTENSIVE STRUCTURES

Axiomatic measurement theories have a long history. Their origins go back 
to Hölder or maybe even to Helmholtz (Hölder 1901, Helmholtz 1887). All 
the more surprising, the approach gathered real ground only after the water-
shed volumes of Foundations of Measurement (Krantz et  al. 1971, Suppes 
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et  al. 1989, Luce et  al. 1990) in the 1970s and 1980s.18 Without a doubt, 
these results are of immense importance, some downright describe them as 
revolutionary (Cliff 1992, Michell 2007). Nevertheless, the high hopes “to 
inject these ideas into the mainstream of the behavioral and social sciences, 
just as was done with statistics” (Luce and Narens 1981, 214), cherished by 
the pioneering scholars—mostly behavioral and social scientist themselves—
eventually failed to come true. The reasons are complex and will be explored 
in the upcoming sections in some detail.

Empiricist theories aim to provide the link between empirical procedures 
and abstract numerical structures through the rules of measurement. These 
theories fail, however, in providing any ready receipts for these procedures—
not the least because they may differ considerably from case to case. Further-
more, the empiricist concept of measurement is uncomfortably narrow. By 
contrast, the axiomatic approach reveals a stunningly wide perspective for 
measurement, but, as a trade-off, it moves its focus from immediate empirical 
operations to the structures.

Students of axioms of measurement willingly endorse the claim that we 
assign numbers to the attributes of objects and events when measuring so to 
represent the relations of this attributes properly with the numerical proper-
ties. These relations can be exactly described by the language of mathemat-
ics, the measurement structures can be represented by axiomatic method. 
However, in reality, the order of things is reverse. First, axiom systems are 
worked out with an eye on the typical or not so typical measurement situa-
tions. Then the measurement theorist proves certain theorems, which reveal 
the relations of the possible models for a given axiomatic theory to familiar 
mathematical structures. Finally, it is up to the practicing scientist to relate 
her data to the available axiom systems, and, finding a match, to draw the 
allowed consequences. Nevertheless, fitting in data with structures is by far 
not a trivial task, as we may suspect and will see.

One of the first axiom systems for extensive measurement was given by the 
German mathematician, Otto Hölder (Hölder 1901). He provides a theory for 
an abstract, continuous, unbounded quantity, naturally instantiated by length. 
His concepts of magnitude and quantity is, unlike Russell’s (Russell 1903), 
similar to the one adopted in this study. Hölder’s system is characterized as 
follows.19 For a given quantity Q, its magnitudes a,b,c,d, . . . , and the classes 
of magnitudes A,B; and if for any three magnitudes a,b,c in Q, a + b = c iff c 
is entirely composed of two discrete parts a and b, then the following axioms 
cover the system of extensive magnitudes:

(H1) For every a and b in Q one of the following is true:
	(i)	 a = b (or equivalently b = a),
	(ii)	 a > b (or equivalently b < a),
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	(iii)	 b > a (or equivalently a < b).
(H2) For every a in Q there exists a b in Q so that b < a.
(H3) For every a and b in Q there exists a c in Q so that a + b = c.
(H4) For every a and b in Q, a + b > a and a + b > b.
(H5) For every a and b in Q, if a < b, then there exist c and d in Q so that 

a + c = b and d + a = b.
(H6) For every a, b and c in Q, (a + b) + c = a + (b + c).
(H7) For every non-empty A and B classes of magnitudes of Q and every a 

in Q, so that
	(i)	 for each a, a is in A and not in B or a is in B and not in A,
	(ii)	 for every c in A and every d in B, c < d; there exists a magnitude x in 

Q so that for every magnitude xʹ in Q, if xʹ < x then xʹ is in A, if xʹ > x 
then xʹ is in B.

The intuitive meaning of these axioms can be given as follows. (H1) states 
that two magnitudes are either the same or different in that one is less than 
the other. (H2) ensures that there is no least magnitude. (H3) is that every 
magnitude is additive, so that the addition of them always results in a third 
magnitude. (H4) says that all the magnitudes are positive. (H5) assures us that 
that there is always a magnitude so to bridge the difference between a lesser 
and a larger magnitude; and there is always a magnitude with a difference to 
the larger magnitude so that exactly the lesser magnitude is needed to bridge. 
(H6) is that the addition of magnitudes is associative. Finally, (H7) ensures 
continuity by stating that no subclass of magnitudes with an upper bound has 
a least upper bound.20

Hölder proved that every magnitude in his system is measurable relative 
to any magnitude of the same continuous quantity, and eventually, that the 
realizations (i.e., models) of his axioms are isomorphic to the additive semi-
group of reals. Inarguably, this is a strong result. Too strong, indeed. From a 
mathematical point of view it may describe an ideal structure for a magnitude, 
like a length, but not a structure for measurement operations. The theory can 
never be tested. Neither can we have a measuring rod arbitrarily small, nor 
can we have a set of rods so to always have a magnitude between any two 
magnitudes, however close. Not to mention satisfying the continuity property.

Again, as Patrick Suppes points out (Suppes 1951), Hölder’s system has 
a property too demanding for a theory suitable for empirical test in itself, 
namely, it is categorical. It means that every two models of it are isomorphic; 
and, as we have seen, also isomorphic to a very strong structure. Suppes men-
tions another defect: Hölder treats ‘=‘ as the symbol of logical identity instead 
of using it for an equivalence relation properly axiomatized. Even when 
finding by measurement that the length of a whale is the same as the height 
of the national opera, we would be reluctant to regard the two properties as 
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identical. And with good reason: they are properties of different objects dis-
tinct in space, we may be aware of the limits of “exactness” of our operations, 
“errors” in data, and so on.

These problems led Suppes to set up a new axiom system for extensive 
measurement (ibid.). It goes as follows. Let S = , ,á ñA    be a structure so 
that A is a set with the elements a b c, ,  ,   is a partial order on the elements, 
and   is an operation (which can be called concatenation). We can define the 
following by the   relation:

	(i)	 a b»  iff a b  and b a ,
and

	(ii)	 a b  iff a b  and b ≉ a.

These bi-conditionals immediately make clear that equality is not treated 
as a logical constant, but defined by the only operation of the system. Now, 
the axioms of extensive measurement are the following:

(S1)	 If a,b and c are in A and a b  and b c  then a c .
(S2)	 If a and b are in A then a b  is in A.
(S3)	 If a,b and c are in A then ( ) ( )a b c a b c   » .
(S4)	 If a,b and c are in A and a b  then a c c b  .
(S5)	 If a and b are in A then not a b a  .
(S6)	 If a,b and c are in A and not a b  then there is a c so that a b c   

and b c a  .
(S7)	 If a and b are in A and a b  then there is a number n so that b na .

For the axiom (S7) we need to define what is meant by na. The definition 
goes like this:

	(iii)	1 =a adf  and na n a adf= ( 1)-  .

Intuitively, (S1) claims for transitivity, (S2) guarantees that we always 
produces measurables by concatenation, (S3) asserts the associativity, (S4) 
the monotonicity, and (S5) the positivity of concatenation. (S6) stands for 
solvability, that is, it claims that there is always a concatenation for making 
unequals equal. Finally, (S7) along with its definition part guarantees that 
there is an arbitrary unit for the measurement, and stipulates the Archimedean 
property at the same time. The latter holds that there are no unmeasurably 
small magnitudes.

Suppes made important contributions in settling a couple of terminologi-
cal issues. First, he introduced unique symbols for empirical relations and 
operations as clearly distinct from mathematical ones. Obviously, empirical 
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and set theoretical structures are entirely different, and the very purpose of 
measurement theory is to show their possible relationships. Second, he gave 
some formal meanings to the terms quantity and magnitude. He called the 
above system the system of quantities. Magnitudes, according to him, are the 
equivalence classes defined by ‘≈’, which is thus a partition on A. He showed 
that while the system of quantities shows only homomorphy, the system of 
extensive magnitudes is “isomorphic to an additive semi-group of real num-
bers, closed under subtraction of smaller numbers from larger ones” (ibid., 
169). He also proved that any such isomorphic semi-groups are connected 
through a similarity relation.

But Suppes was not reluctant to take notice of some weak points of his own 
system. His rather respectable conviction is that a good theory of measure-
ment must reflect a structure recognized in flesh and blood empirical opera-
tions. Now, hardly any set of measures could be actually infinite in practice, 
as A certainly is. Moreover, general transitivity likewise cannot be enforced 
in real procedures, since, and here we might recall Bridgman’s sentiments, all 
of our instruments are limited in sensitivity, precision, and scope.

The foundational project, initiated by Suppes himself among others, which 
resulted in the volumes of the Foundations of Measurement, embraces a 
general, comprehensive approach. The possible number of measurement 
systems is indefinite, still only three procedures of measurement lie behind 
them (Krantz et al. 1971). Generally they will be quite familiar, still I describe 
them here to indicate clearly the train of thoughts leading to an adequate 
axiomatization.

The first one can be called as ordinal measurement. When measuring ordi-
nally, we apply some empirical procedure for matching certain attributes to 
each other, lengths of rods, for instance. Concatenation, that is, placing rods end 
to end by a straight line, has no role in this setup yet, all we require is a φ func-
tion assigning numbers the attributes so that a b  iff j j( ) > ( )a b , where    
is the relation obtained by empirical matching, and > is an ordering on the 
assigned numbers. The φ function guarantees, that if measuring c we find 
that a c b  , then the number assigned to c will fall between the numbers 
assigned to a and b: j j j( ) > ( ) > ( )a c b . In Stevens’ terminology, with this 
procedure we can realize a measurement on an ordinal scale—well, if every-
thing turns out right. For it can easily happen that we measure that a ≈ b and 
b ≈ c, but a c  (where ≈ denotes the relation that we did not ascertained dif-
ference while matching x and y), but this would imply according to the above 
lines that j j( ) = ( )a b  and j j( ) = ( )b c  but j j( ) > ( )a c  (where = denotes the 
equality of the assigned numbers, of course), and this is clearly impossible.

Notice that here we are faced with the question of the infinite refinabil-
ity of measurement. All right, we can offer a good advice for these cases: 
always take care of an accuracy for the measurement exceeding the order 
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of differences between the pairs of attributes. But to be in line with this, we 
would have to obsess some preliminary knowledge about the order of magni-
tude of these differences, which we could gain by some measurement, in all 
conscience. We may assume further that (at least some of the) magnitudes are 
continuous, a fact triggering further questions—many of them were already 
addressed in earlier pages of this book.

The second procedure is solving inequalities—here concatenation enters 
the picture (which is again bad news in the face of our earlier investiga-
tions). It may happen that we have a relatively small set of data and find it 
impractical to apply standard sequences (to be explained in a minute). Then 
we can set up a couple of inequalities by matching the rods and their different 
concatenations against each other. By solving them we can acquire numerical 
approximations on the relative lengths of the rods.

For the third procedure type, let us make a quite strong assumption: 
there exist perfect copies (of rods in this case). Let us regard those rods as 
perfect copies of each other of which we cannot establish any difference. 
This assumption gives grounding for the procedure of counting units. If 
¢ ¢¢ ¢¢¢a a a, , ,  are perfect copies, then we would like to assert the follow-

ing: j j( ) = 2 ( )¢ ¢¢a a a , j j( ) = 3 ( )¢ ¢¢ ¢¢¢a a a a   and so forth, where   
stands for the concatenation operation. The authors (and Campbell) call the 
a a a a a a a a a,2 = ,3 = (2 ) ,4 ,5� � …¢  sequence a standard sequence. Thus we 
have a really strong tool: for any measurable b it can be asserted that for 
some n ( 1) ( ) > ( ) > ( )n a b n a+ j j j . That is, be our standard sequence how-
ever chosen, there is always an interval between the unit’s multiplication by 
an integer and its multiplication by the subsequent of the integer where b is 
found. In other words, any magnitude can be approached by an appropriately 
chosen unit. Moreover, as units are conventional and arbitrarily chosen, it 
also means that measurement can be infinitely precizified. (At least in theory. 
There may well be physical contingencies that pick out a shortest possible 
rod.)

The axiomatic approach aims to make explicit the assumptions we need on 
the empirical relation   and on the empirical operation   in order to be able 
to accomplish with the standard sequence procedure without contradictions, 
in other words, to construct the additive and order preserving φ homomor-
phism to the structure of reals. Thus, φ homomorphism is a mapping from 
the structure á ñA, ,� �  to the structure á +ñR,>, , where R is a subset of the set 
of reals,  . A representation theorem for a given axiom system states that 
there exists mapping from a given relational structure of measurement to a 
such and such numerical relational structure. Hölder’s theorem states that 
the ratios of a continuous quantity is isomorphic to the additive semi-group 
of reals; the theorem proved by Suppes (usually honored also as Hölder’s 
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theorem) asserts the same for Archimedean property, which is weaker than 
continuity.

In addition there is another theorem to be proved from the axioms: unique-
ness theorem in the Foundations’ terminology. This is to deal with invari-
ance; it gives the permitted transformation φ→φʹ, which characterizes the 
measurement procedure type (or if you like, the given level of measurement 
in Stevens’ terms).

We should stop for a moment and reckon with the fact that while I dis-
missed the concept of concatenation as seriously flawed in the previous chap-
ter, here we find it again alive and in good mood. The authors of Foundations, 
as their account on the procedures above suggests, indeed show some inclina-
tion toward a Campbellian sentiment. However, if we are ready to look over 
these paragraphs, a more liberal reading is possible. The exhibited structures 
never place constraints on the exact form of concatenation involved, nor do 
they regard it constitutive for the meaning of a given quantity. As I implied, 
there may be compelling non-circular ways of establishing units, and we 
might interpret concatenation here as an agreed way of unit manipulation 
so to arrive to an analyzable empirical structure, not as constitutive concept 
lying at the very heart of our measurement concept. Not in the least, as we 
will witness soon, the authors also describe structures with no direct reference 
on concatenation.

But let us now stay for a little while longer with the extensive structures. 
It is not without morals to see a refinement of the concept of extensiveness 
through formal analysis. The systems for extensive measurement were further 
advanced by several scholars, here I present a version of Luce and Narens 
(Luce and Narens 1981). Let X = , ,á ñA    be a structure, where A is a non-
empty set,   is binary relation and   a partial operation on A. X  is an 
extensive structure iff the following axioms hold for every a, b, c, and d in A:

(X1)	   is a total ordering.
(X2)	 There exist a and b in A so that a b .
(X3)	 If a b  is defined, a c  and b d , then c d  is defined.
(X4)	 If a c  and b c  are defined, then a b  iff a c b c  ; and if c a  

and c b  are defined, then a b  iff c a c b  .
(X5)	 If a b  then there exists c so that a b c� � .
(X6)	 If a b  is defined, then a b a� �  and a b b� � .
(X7)	 There exists a natural number n so that either na is not defined or 

na b , where nx is inductively defined as by 1a = a, and if ( )na a  is 
defined then ( 1) = ( )n a na a+  .

(X8)	 If a b c ( )  and ( )a b c   are defined, then a b c a b c   ( ) = ( ) .
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A definition is missing: a b  iff a b  but not b a . Now, the first two 
axioms make sure that while the relation is total, there are different mag-
nitudes. The third axiom is an interesting one, because it implicitly reveals 
that the operation is not necessarily defined for all of the element pairs of A. 
However, once it is defined for a pair, it is likewise defined for the pairs of the 
elements equal to or smaller than the original ones. (X4) claims for the mono-
tonicity of concatenation. (X5) stands for restricted solvability. It is restricted, 
because instead of saying that there is always a magnitude by which unequals 
can be made equal, it says something like: every magnitude can be arbitrarily 
approached by the concatenation operation. (X6) is positivity: a magnitude 
gained by concatenation is always bigger than any of the elements in concat-
enation. (X7) brings the Archimedean condition and the definition of unit in 
one stroke. Finally, (X8) guarantees associativity.

In addition, if   is a closed operation, that is:

(X9)	 whenever a b  is defined, there is a c also in A so that a b c   and 
c a b  ,

then X  is a closed extensive structure. Such structures may be more in line 
with our intuitions on real measurement procedures: we are inclined to regard 
something gained by a concatenation of magnitudes a magnitude.

The other feature, by which this system is weaker than that of Suppes is 
more important:   is not defined everywhere on A × A, that is, not every pair 
of magnitudes is concatenable. This solution takes account of the operation-
alist concerns while preserving the conceptual unity of a quantity with what 
we might even call causal elegance. We cannot really measure either the 
diameter of a molecule or the diameter of the sun by concatenating our same 
old set of rods, still we can regard the quantity length as one and unique. Dif-
ferent measurement procedures define concatenation on different elements, 
still we are working with the same set of magnitudes.

A few more words are in place on representation and uniqueness theorems. 
I will omit here the lengthy and detailed proofs for (any of) the extensive 
system(s) described above, these proofs are provided for a broad family of 
measurement systems in the volumes of Foundations (Krantz et  al. 1971, 
Suppes et al. 1989, and Luce et al. 1990). Below I only state these theorems 
and outline their proofs for a really simple system: finite weak order (Krantz 
et  al. 1971, 14–17). This will do as an illustration how things work in the 
formal realm of measurement theories.

Weak orders are immanent in a wide range of measurement systems, 
though not in all. For a weak ordered system it is enough to suppose that 
we have a relation   on a set A for which transitivity and connectedness 
hold. (This implies that the relation is reflexive also.) These are really basic 
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properties which are fundamental for physical measurement. But in mea-
surements in social sciences they are often violated. For instance one can 
prefer b over a and c over b (e.g., because of quality considerations), still 
she may choose a over c (e.g., because of the too-large price difference). 
Preference is also not prone to be articulated for each and every pair of 
objects at issue.

We have two more requirements for our system to comply with: finiteness 
and non-triviality. It seems to be a natural and realistic presupposition that 
no dataset resulting from any measurement process could ever be infinite. 
So finiteness is really an integral part of any realistic measurement theory. 
However, infinite systems may be worth studying for theoretical interest. For 
one may suppose, say, that real systems’ behavior tends to resemble to the 
ideal ones in the long run. As for non-triviality, we simply assume that our 
dataset is not empty.

Now, having our simple finite weak order system of measurement at hand 
we can state our two theorems.

(Th1) If A is a finite, non-empty set and   is a weak order on it, then there 
is a representation function φ (also called as measurement procedure, or 
scale) to a subset of reals with their usual order á ³ñR, , so that a b  iff 
j j( ) ( )a b³ .

(Th2) φ and φʹ are both representation functions for the system á ñA, , iff 
there exists a strictly increasing function f so that f a b( ( )) = ( )j j ¢ .

When considering the usual relation ≥ of reals, one can realize that it 
has (at least) another property beyond the ones listed for our weak empiri-
cal relation: it is anti-symmetric, so if a ≥ b and b ≥ a then a = b. A similar 
assumption is by far not trivial for empirical data: two records of the same 
value do not have to be regarded as identical. Fortunately, every weak order 
can naturally be linked to a total ordering. For this, we need to introduce two 
new relations by definition as the symmetric and asymmetric parts of   (just 
as we have seen above):

	(i)	 a b»  iff a b  and b a .
	(ii)	 a b  iff a b  and b ≉ a.

Now it is to be seen that the relation ≈ is an equivalence relation, that is, 
it is reflexive, symmetric, and transitive. As such, it determines equivalence 
classes: let us call a the equivalence class determined by a: a = { | }df b b a» .  
The so determined equivalence classes create a partition on the set A; split 
it into mutually disjoint subsets. The class of these equivalence classes is 
denoted as A/ ≈.
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If it is the case that a ≈ b, then, by the very nature of our representation 
function to be constructed, it follows that j j( ) ( )a b³  and j j( ) ( )b a³ . 
Hence, by the antisymmetric property it follows that j j( ) = ( )a b . That is, 
every a and b in the same equivalence class must have the same scale value.

Now let us introduce a new relation p  on the elements of A/ ≈. What is 
left is to construct a function ψ so that a bp  iff y y( ) ( )a b³ . Here, as our 
partition is countable, and what is more, finite, we can create our function 
simply by counting. So let us choose ψ(a) so to pick the number of bs (where  
a, b ∈ A/ ≈) so that ap b. If it is the case that a bp , and there is a c so 
that b cp , than also a cp  by transitivity, that is, c is counted for both b 
and a. It, then, follows that y y( ) ( )a b³ . On the other hand, if not a bp ,  
then b ap  and b a ; so there is a c counted for b but not a. Hence 
y y( ) > ( )b a . By this, (Th1) is proved.

Our uniqueness theorem—which would be more apt to be called invariance 
theorem—states that our system is invariant up to every strictly increasing 
function. It is easy to see that if it is the case that y y( ) ( )a b³  it is also true 
that ¢ ³ ¢y y( ) ( )a b , if ¢y y( ) = ( ( ))a af , where f is any strictly monotonic, 
increasing function. If it is not the case that y y( ) ( )a b³ , then y y( ) ( )b a³ ,  
and then also ¢ ³ ¢y y( ) ( )b a  by the pattern above. We can observe that tran-
sitivity is preserved, and it is somewhat trivial to realize without going into 
formal details that no different values will be “concurred” by f, since the strict 
property guarantees that all distinct elements in the domain will have differ-
ent images. What is left to show is that no weaker constraints on f are enough 
to suffice as a uniqueness function.

We can weaken the constraints on f by presupposing that it is mono-
tonic, though, but not strict. In this case different ψ(a) and ψ(b) on the 
domain may have the same image: f f( ( )) = ( ( ))y ya b . It then follows that 
f f( ( )) ( ( ))y ya b³  and f f( ( )) ( ( ))y yb a³ . But the latter should not be the 

case. We supposed that a b , so a function with the image ¢ ¢y y( ) = ( )a b  is 
unacceptable. Hence our rough proof for (Th2) is concluded.

Of course, weak and total orders are among the most simple structures. 
Proofs for the respective representation and invariance theorems can be much 
more sophisticated for finer systems. And, as it happens, we have quite a lot 
of them.

3.4 VARIATIONS ON AXIOMS AND REPRESENTATION

A wide scale of structures of extensive or partial extensive features has been 
studied over time. Changing the properties or even the number of operations 
and relations involved may reveal new systems of empirical interest, but 
could provide new insights even into the previously well-known structures. 
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Thus, it can be shown that the generally supposed condition of total ordering 
can be weakened to a reflexive transitive relation, and the representation for 
additive reals can still be shown under some circumstances. What is more, 
even an equivalence relation will do if the Archimedean axiom is strength-
ened (Luce and Narens 1981).

It is also of interest to see what happens when the Archimedean axiom is 
abandoned. It is a necessary axiom, meaning that systems lacking it have no 
additive representation on the reals. However, they have on different mathe-
matical structures, for example, on non-standard reals. One may wonder how 
justly these representations could be called numerical, and hence, whether 
there is a natural class of representations to be called as measurement. I will 
address this point below.

An important class of theories is constituted by the systems where the 
conditions on the concatenation operation is weakened. Abandoning (X8), 
associativity, we arrive at the class of positive concatenation structures. It is 
shown that these systems exhibit really strong invariance properties: when-
ever φ and ψ are representations and have the same range, and there is a func-
tion f so that ψ = f(φ) has a fixed point, then φ = ψ.

Weakening the properties of the operation further, we arrive at the inten-
sive structures. Here the main point is dropping (X6), positivity. (X7), the 
Archimedean axiom must also be replaced by a variant. For some important 
intensive structure (consider, e.g., the measurement of temperature), the posi-
tivity axiom can be replaced by the following:

(Int) if a b  then a a b b� � � .

Empirical operations like this can be conceived intuitively as a kind of 
averaging.21

It remains to be seen that measurement data are not necessarily one dimen-
sional. If this is the case, the underlying set is a Cartesian product of two or 
more sets. It is natural to maintain that the relations and operation belonging 
to different dimensions are different in nature. This train of thought leads to 
a realm of structures of wide variety, many of them with useful morals espe-
cially for measurement in behavior and social sciences. Below a relatively 
simple system is considered.

Let C = , ,á ´ ñA P xy  be a structure. It is a conjoint structure solvable with 
respect to the element xy iff xy is in A × P and the following axioms hold:

(C1)	   is a weak ordering on A × P.
(C2)	 There exists ap in A × P so that ap xy .
(C3)	 For each ap and bp in A × P, if ap bp  then there is a c in A so that 

ap cp bp  .
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(C4)	 For each ap in A × P there exist b and q so that ap ≈ bq and ay ≈ xq.
(C5)	 For each a and b in A so that ay xy  there exists a positive integer n 

so that ( )na y by ; where na is defined inductively as follows: 1a = a 
and na is defined and s is such that ay ≈ xs then (n + 1)a is some u so 
that uy ≈ (na)s.

(C6)	 For each a and b in A and p an q in P;
	 (i)	 if as bs  for some s, then ap bp ,
	 (ii)	 if wp wq  for some w, then ap aq .

(C7)	 A  and P  are total ordering on A and P respectively, where
	 (i)	 a bA  iff for some s, as bs ;
	 (ii)	 p qP  iff for some w, wp wq .

An intuitive reading of the axioms can be given as follows. (C1) is, of 
course, weak ordering as it rightfully asserts of itself. (C2) is non-triviality, 
there are different elements in A × P, which are not equivalent. (C3) states 
that the asymmetric part of the relation is dense. (C4) asserts solvability with 
respect to xy and (C5) is the Archimedean axiom. (C6) is independence, 
stating that a relation between two elements with one common component 
remains however we choose that component. Restricting this way the relation 
to one or the other component, (C7) guarantees that these derived relations 
are total orders on the respective component sets.22

What conjoint structures are supposed to show is that we can measure qual-
ities or properties indirectly by the assessment of two (or more) component 
the wanted quality depends on. But up to this point, it is no stunning news. 
Of course, we can measure velocity by measuring its (definitive) components: 
time and distance. The point is that in these systems we can verify that the 
required property or the components are quantities in the sense that they bear 
a meaningful unit concept, simply by certain relational constellations, with-
out relying on the concept of concatenation. Again, conjoint systems show 
that quantifying certain non-physical qualities is logically possible. It is easy 
to interpret them to suggest that whether a quality can be quantified is an 
empirical question.

Practically, this certainly means that the axioms must be verified on the 
data. The independence axiom, (C6), also called as single cancellation is one 
of crucial importance. Suppose that we are to measure thermal comfort, sup-
posing it to be dependent on the two components: heat and humidity.23 Now 
if we found that higher temperature is always accompanied by higher comfort 
however we choose humidity, and also, lower humidity is always accompa-
nied by higher comfort wherever we fix temperature, then we could conclude 
that single cancellation axiom is satisfied by the measurement data.24 If so, 
our system fulfilled a necessary condition for calling it measurement (beyond 
mere order).
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But this condition is not enough, axiom (C7) must also be fulfilled. A ver-
sion of it, more apt for empirical tests on real data, is called double cancella-
tion axiom. It provides a means to identify relations across different levels of 
the components, and would eventually require—not so surprisingly—for the 
components to turn out to be quantities themselves. Only this could guarantee 
the quantification of the conjoint quality in question. However, coping with 
this axiom is still not sufficient, all the other axioms are needed with special 
concern on (C4), the solvability and (C5) the Archimedean criterion.25

Here we have an immediate moral for our present investigations. In my 
terminology, the method of conjoint measurement exhibits phenomenal 
congruence in a body of data. It follows that Chang’s epistemic iteration 
is not the only valid way to operationally introduce a unit. The concept of 
phenomenal congruence goes beyond the primarily perceived events and 
their instrumental manipulation. Having realized this, one might suppose 
that the axiomatic method should have had a global fertilizing effect on sci-
entific practice. This was not the case, and some of the reasons are explored 
below. But before that, some more words on axioms and justification are 
in place.

3.5 THEORY AND TESTING

Presenting scientific theories as axiom systems is a widespread practice 
nowadays. Formal treatment helps make clear what is and what is not entailed 
by a theory, and thus, not the least, it provides more room for empirical 
confirmation (or falsification). At the same time, it offers no remedy for the 
well-known problems of justification, some of which will be briefly sketched 
in this section.

After Carnap, Szabó describes a theory as an (L, S) pair, where L is a for-
mal system and S is a semantics, tying the consequences (theorems) of the 
system to the empirical facts of the world—also called as correspondence 
rules in the pristine terminology (Szabó 2013). Let us first examine how a 
formal system is built up. L consists of a language, some rules of derivation 
and the axioms. Axioms come in different groups, at least as long as their 
origin is concerned. Let L be a part of a physical theory. The first group 
of axioms is formed by those of logic. Usually classical first order logic is 
concerned, and these axioms are often not made explicit.26 A second group 
of axioms encompasses the mathematical ones. This group may vary depend-
ing on the mathematics applied in the given theory. Only after this can we 
construct the physical axioms, which (together with the previous ones) grab 
(hopefully) every intended aspects of the given physical theory. But finding 
the appropriate axioms, especially the “empirical” ones, is not a trivial task at 
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all. No strict method exists, we can mostly rely on intuition and the “method” 
of trial and error.

Szabó (2013) denies the essential differences between the axiom groups 
above. Differences in their heuristics is also not a really convincing reason 
for the grouping: the underlying logic and mathematics may well be revised 
while shaping a theory. All in all, one may insist that sorting the axioms like 
above is entirely arbitrary. Certainly, all of the axioms could be merged into 
one by concatenating them with conjunction. So the number and style of 
axioms is matter of taste, and serves only conceptual clarity. For instance, as 
we have seen, (X1) simply calls for a total order in words, but, of course, can 
easily be split into more elementary, more formal axioms, as total ordering 
requires the transitivity, antisymmetry, and totality properties ((X1a), (X1b), 
(X1c) respectively):

(X1a)	 If a b  and b c  then a c .
(X1b)	 If a b  and b a  then a c» .
(X1c)	 For every a and b, a b  or a b .

Surely, less trivial examples could be drawn by making the hidden axi-
oms of logic explicit and combining them with the “high level” axioms. But 
anyhow, even if Szabó is right about the equal epistemiological status of the 
axioms (of which I am not convinced [Csatári 2012]), a properly structured 
axiom system is inevitable for transparency and understanding.

I would like to stress here that not all of our underlying presuppositions and 
inclinations are necessarily tracked even after the most elaborated axiomatic 
utterance. Take Chang’s example of an ubiquitous ontological commitment in 
context of measurement, the principle of single value: “a real physical prop-
erty can have no more than one definite value in a given situation” (Chang 
2004, 90). Neither it can be squeezed from an axiom system for measurement, 
nor it is stated as theorem. Interestingly, this metaphysical principle is still 
present in the system: the very notion of function takes care of it.

While many of the axioms are products of tiresome scrutiny after the 
intended strains of a theory, some of them are readily given. As we are in 
any case after a representations theorem when talking about measurement, a 
homomorphism into a subset of reals, some of the axioms are constrained by 
the very nature of reals. Axioms (X1a), (X1b), and (X1c) are all necessary in 
this sense. Natural ordering on reals has these properties. (Reflexivity is also 
a necessary axiom, but it is implied by the total order, so there is no need to 
state it separately.)

By contrast, other axioms are not necessary in this sense, but serve to 
exclude trivial cases, limit the extent of the system, or guarantee a fine-
grained structure for the empirical theory. Thus (X2) ensures that there are at 
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least two elements in relation. Again, the requirement of finiteness is a quite 
strict bounding of a given theory, but clearly a typical feature of measurement 
data. Finiteness is not always stated as an axiom, it may also be given in the 
respective Hölder-style theorems, but it is just a question of taste.

Existential axioms, like the solvability axiom (X5), provide example for 
structural non-necessary axioms. Clearly, nothing guarantees that for any two 
elements in an arbitrary subset of reals we will always have a third element 
exactly bridging the difference between them. However, it is true for some 
“natural” subsets such as integers.

In most of the cases Archimedean property (X7) is also presupposed. It is 
clear that this property holds for the additive field of reals, thus this axiom is 
necessary for the systems homomorphic to it. What is strange that it needs to 
be stated, it seems to be independent of the other axioms (Krantz et al. 1971, 
25–26). All the more sad, this axiom has some quite unpleasant properties. To 
see this, notice that the property can be reworded in the realm of measurement 
structures as follows: every strictly bounded standard sequence is finite. It is 
trivially true for finite structures, that is why it is a bit surprising the axiom is 
needed. On the other hand, there is no way to falsify it for infinite structures, 
because no one ever generated an infinite standard sequence.

At this point I feel a need to expose briefly some of the notorious philo-
sophical issues that concern justification. Nothing new is intended to be said 
at this point, I only want to foster a deeper grasp of the problems of theory 
and testing.

Rudolf Carnap made an important conceptual distinction by differentiat-
ing between statistical and logical probability (Carnap 1945, Carnap 1966, 
19–39). By the first he meant the so-called frequentist interpretation worked 
out by von Mises and Reichenbach (Mises 1939, Reichenbach 1949 [1935]). 
To this view probability is nothing else than the relative frequency of the 
favorable events in a given event series; or rather, the limit of this frequency 
in the long run. This approach gets rid of the vicious circle intrinsic in the so-
called classical approach. According to the latter, the probability of a favored 
event is determined by the number of the equipossible cases. But the obvious 
interpretation of equipossible is equally probable, which is circular. Gamblers 
might not welcome the frequentist view as they needed prompt estimations 
instead of time-consuming experiments, but Carnap found this concept quite 
apt for scientific purposes, and indispensable in the description of phenomena 
of statistical nature.

Entirely distinct from this, based on the works of Keynes and Jeffreys 
(Keynes 1921, Jeffreys 1939), Carnap argues for a different but equally 
legitimate notion: logical probability. This latter accounts for the degree of 
confirmation. So while statistical probability is an empirical concept describ-
ing states of affairs in the world, logical probability describes the relation 
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between linguistic entities: a hypothesis and a confirming (or disconfirming) 
statement of evidence.

Carnap began to develop a formal system for handling this kind of prob-
ability in his 1950, and worked out a solution for simple languages (Carnap 
1950). New puzzles and paradoxes of induction, however, like Goodman’s 
or Hempel’s fatally weakened the position of his approach. Let me briefly 
summarize these latter two.

Goodman’s famous riddle is the following (Goodman 1955, 72–81). Let 
us call something “grue” if it is examined before a certain time t and is green 
or not examined until a certain time t and is blue. Now how would empiri-
cal data on some green emeralds observed before t confirm the following 
hypotheses?

Every emerald is green.
Every emerald is grue.

Goodman identifies projectible predicates and non-projectible ones and 
also law-like statements and non-law-like statements. The main problem is 
how to distinguish them. Anyhow, what can be seen for sure is that the con-
firmation of a hypothesis “depends heavily upon features of the hypothesis 
other than its syntactical form” (ibid., 72–73).

Hempel’s paradox (or the raven paradox) was first worded by the Pol-
ish mathematician Janina Hosiasson-Lindenbaum (Hosiasson-Lindenbaum 
1940).27 The paradox goes like this. Consider any law-like generalization, for 
instance:

All ravens are black.

Formally:

" Éx Rx Bx( ) .

Now, this hypothesis is confirmed by each black raven. The problem is, 
that the above expression is logically equivalent with the following:

Everything that is not black is not a raven.

∀x(¬Bx ⊃ ¬Rx).

But this is confirmed by all non-black non-ravens, for example, by all 
snowmen—a result, though not really a paradox, stunningly counterintuitive.
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In the wake of these disheartening results it became clear that inductive 
logic cannot be formalized the way deductive logic can be, simply because 
the validity of the inductive inference cannot be judged by its mere form. All 
in all, confirmation can only based on the symbiosis of our ever changing, 
ever interacting “practices and standards.”28

While trying to confirm our axiom systems, regarding individual axioms as 
hypotheses, we must face the fact that we do not have strict, formal, let alone 
automatic methods at hand, we must rely on our experiences, common sense, 
and practical considerations. In the particular case of confirmation of axiom 
systems as theories of measurement, many of the difficulties are related to 
the fact that existing datasets are always imperfect in the sense that they lack 
some of the ideal models’ features. To begin with, they are always finite, 
whereas axioms systems usually have infinite models.29 Of course, we can 
guarantee finiteness by the axioms. But even having finite systems, some of 
their interesting properties may hardly be confirmed.

Consider measurement on cyclic scales, such as time measurement on a 
twelve-grade dial. Suppose naturally that our units can always be divided 
into subunits. As it happens, it will be derivable from our axioms that for our 
any two readings, however close to each other, there is a (potential) reading 
between them. It is definitely not against our intuition about the progress of 
the clock hands. This property, though, can never be satisfactorily confirmed, 
be our dataset of actual readings however rich.

A major problem is that while certain axioms are quite easy to confirm or 
disconfirm, others may well resist to trying (Krantz et al. 1971, 28–30). Take 
an axiom granting transitivity, for the sake of simplicity (S1):

(S1) If a,b, and c are in A and a b  and b c  then a c .

Now suppose we have a rich record of measurements on some relative prop-
erty of a bunch of objects, among them x,y, and z. According to the records, 
we found that y is, say, brighter than x, and z is brighter than y, still, x is 
brighter than z. Suppose we found similar results for other triples also. In this 
case we can conclude that a measurement theory involving transitivity is (to 
a great extent, to a high probability, etc.) disconfirmed by the available data.

Now take the Archimedean axiom:

(S7) If a and b are in A and a b  then there is a number n so that b na .

Disconfirming this axiom is much more problematic. For not finding the 
proper n for a given pair does not mean that such an n cannot be exhibited at 
all by the measurement procedure instantiated by the data.
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One might say that finding no refuting objects provides a kind of confirma-
tion for the hypothesis (and thus for the theory),30 and many are inclined to 
follow this principle in practice, indeed. Not to mention that we may not be 
better off with “positive” confirmation either. Take, for example, the axiom 
for solvability:

(S6) If a,b, and c are in A and not a b  then there is a c so that a b c   
and b c a  .

It is clear, that confirming this axiom can be hard even on not too large 
datasets. First, simply there are too many cases which cannot be checked 
within reasonable time. Second, even finding unresolvable cases does not 
automatically mean a refutation for the axiom, we may simply blame or 
“chosen” data (set of objects) for a given measurement procedure. To put it 
in another way, a set of data may be large enough to have a check on it for a 
property in reasonable time. On the other hand, a set of data is almost always 
too small to include a “solution” for every pairs, for instance.

In practice, as Krantz et al. (ibid., 30–31) note, scientists—those who hap-
pen to dive into such activities at all—tend to be generous while verifying 
axioms. Non-necessary axioms, for instance, are rarely tested. By necessary 
axioms, as explained above, we mean those simply entailed by a homomor-
phism to the required mathematical structure—most commonly to some sub-
structure of reals. Non-necessary axioms account for more subtle, contingent 
features as finiteness, or even solvability. No doubt, the problem of the confir-
mation of the solvability axiom is easily circumvented by not testing it at all.

It may even happen that while all of the axioms (hypotheses) are confirmed 
(to an acceptable degree), there is still a consequence of them which fails to 
agree with the data—a further knotty problem. How could it happen? The 
thing is that all of our confirmations are partial, at best they can be asserted 
with a rather high probability. But we can never reach the certainty of deduc-
tive inference. What is a consequence of an axiom system is a deductive 
consequence of it and it can easily be imagined that imperfect data violates 
some inferred feature on the long run.

Despite this, it could be a good feedback to test some consequences of 
axiom systems. But how to choose from the infinite many implications? 
Sure, complexity is a living criterion: we will choose from the simplest ones 
and not from the ones of immense complexity. For which we have no reason 
whatever beside mere practical ones.

All that is too familiar, one might say. It is well known that perfect verifica-
tion is never viable, we must do with confirmations of different degree, but 
here we are just facing with the same old questions: how do we know that an 
axiom is “confirmed enough?” Let alone: how do we know to what extent is 
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an axiom confirmed? Neither in numerical terms, nor for sure can we tell this. 
All we can rely on is our practical ways aided by some sober considerations 
on theories and instruments. But that does not mean that the task of verifica-
tion can be taken lightly; on the contrary, it needs tiresome and careful work 
to give our best guesses.31

NOTES

1.	 In general, in this chapter I will talk about social sciences in a broad sense. In 
particular, I will include psychology by default. A debatable choice though, it makes 
sense as long as similarities exceed peculiarities. I will, of course, be specific when-
ever needed.

2.	 Indeed, the word “operationalism” (or “operationism” in its original form) 
itself was coined by the renowned experimental psychologist, Edwin Boring (Chang 
2009).

3.	 There is no consensus on the assessment of this fact in the contemporary lit-
erature. For instance Bickhard (Bickhard 2001) (in his reflections on Grace [Grace 
2001]) regards it as a curse for the methodology of psychology, while Feest (2005) 
argues that the operationism of the practicing scientist is misinterpreted as a theory of 
meaning or knowledge, thus the arguments that it fails as such and such a theory miss 
the mark (Feest 2005).

4.	 For one with an apt historical rigor, it may sound anachronistic to use the word 
“physicalism” in the context of behaviorism, which has its roots in the late nineteenth 
or early twentieth century, while physicalism as a philosophical commitment origins 
in the work of some members of the Vienna Circle in the thirties. By the same token, 
it is likewise anachronistic to use the word in context with Campbell. I will be conse-
quently anachronistic in this respect.

5.	 Note that this is just mirroring a general problem of verification: is it equally 
reasonable to verify any prediction of a theory? Surely, we well may have arguments 
that not.

6.	 However, one may insist that intelligence is nothing more than the ability of 
dealing with IQ tests. Then, the least we can say that this ability is higher for one who 
scores more on the test and lower for the one scoring less. (More to be said on the 
operationalist approach below.)

7.	 Michell mentions the psychologist H. M. Johnson as one exception, and also 
notes that his work was widely ignored. (Michell 1999, 142 and Michell 2007, 82)

8.	 On a more abstract level, it is not nonsense to insist that measurement is 
“about” objects. For instance, Kyburg defends this view. He suggests to conceive 
quantities as functions such that their domains are sets of things and their ranges are 
the real numbers (Kyburg 1984, 17).

9.	 Michell mentions two more problems with this definition, but both of the issues 
are already present in Campbell’s concept (Michell 2007, 74–75). For one, according 
to Michell, measurement is concerned with numbers as relations or ratios between the 
magnitudes of attributes, numerals are needed only as words, they are not essential. 
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True, it is not self-evident to establish ratios among spoken number words, tin plate 
street numbers, playing cards, and digits on seven-segment scoreboard displays. But, 
of course, we regularly use numerals while measuring, and there is no problem with 
it, as long as we use them systematically.

What is more, there is also a reason to defend Campbell’s numerals as subjects 
of assignment beyond his own considerations on the status of numbers. We can regard 
numerals as arbitrary symbols by which we represent some datasets compiled as 
results of our measurement procedures. Now we can never take as granted that these 
datasets or even their idealized infinite expansions will bear the same structure as, say, 
the field of rationals. That is, numerals have different meaning when we assign them 
for measurables, than when we use them as symbols for mathematical objects. This is 
one of the main morals of this and the upcoming sections.

Michell’s other point is that measurement is about discovery and knowledge, 
and cannot be simply regarded as the assignment of symbols. But generally, nothing 
prevents us from trying to convey this knowledge by the act of assignment.

10.	 The example would be really apt only if we could guarantee the transitivity and 
connectedness of the scale, which we cannot.

11.	 Though, as we will see, further problems arise with the preference or sensation 
scales.

12.	 For a vivid and rather controversialist history of IQ measurement, see Gould’s 
book (Gould 1996).

13.	 A fictional nationality made up for surveys on xenophobia in Hungary.
14.	 It is worth a mention that Stevens’ system was extended or modified several 

times by several authors over time. For instance, Mosteller and Tukey offer an 
improved system of levels with better fit for some scales used in scientific practice, 
such as probability or percentage (Mosteller and Tukey 1977). Chrisman presents a 
taxonomy more in line with the practice of cartography. As these systems carry little 
additional philosophical interest, I do not address them in this text (Chrisman 1998).

15.	 Suppes’ example is snappy because it reflects a highly debated issue of psy-
chometrics with long history. Indeed, S(a) / A(a) meant the very definition of intel-
ligence quotient, IQ, given by the German psychologist William Stern at the dawn of 
the twentieth century (Gould 1996, 180). Though modern approaches diverge from 
this definition considerably, the characteristics of IQ scales still remained controver-
sial. I diverged a bit from Suppes’ account, however, not the least because I find his 
using the term “IQ” for intellectual ability as distinct from S(a) / A(a), in other words, 
the very definition of IQ, confusing.

16.	 It is worth observing that order scale for the iqa = S(a) / A(a) quotients could 
have been provided by a stronger premise. Namely, if we stipulate that S for the 
scores instantiates an interval scale. Indeed, it is generally stipulated by the students 
of intelligence (e.g., the common “calibration” of an IQ scale requires standard 
deviation—a statistical maneuver without any meaning on an order scale—despite 
the lack of any empirical evidence that any kinds of data on abilities would exhibit an 
interval scale).

17.	 In fact, Mohs’ scale renders samples not scratching each other into the same 
hardness class. In this setup we may well find that some samples will belong to dif-
ferent classes at the same time—again a tricky traverse in front of linearity.
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18.	 Other major works on the topic were written, e.g., by Pfanzagl, Roberts, and 
Narens (Pfanzagl 1971, Roberts 1985, Narens 2007).

19.	 After the testimony of Michell (Michell 2007).
20.	 Note that this axiom, hardly by chance, highly resembles the so-called Dede-

kind cut, a method for constructing real numbers (Dedekind 1901).
21.	 As mentioned before, the endeavor of building temperature scales on mixing 

did not prove to be fruitful in practice (Chang 2004, 60–64).
22.	 It comes as no surprise that the range of representation for these structures 

contains ordered pairs.
23.	 Humidity can be understood in different ways: as a relative quantity related 

to the dew point of the air on a given temperature expressed in percentage or as an 
absolute quantity expressed in, e.g., gram/liter. I am not concerned with this differ-
ence here.

24.	 Ignore the issue that the scale of temperature (and maybe even that of humid-
ity) must be bounded in some natural way in this measurement situation.

25.	 I will not go into technical details here. A nice description of the practical 
applicability of the principle of conjoint measurement with many examples from 
behavior sciences can be found in Michell (Michell 1990).

26.	 The underlying logic for some theories may go well beyond the classical one. 
For instance, though Andréka, Madarász, and Németi strongly argue for first order 
logic, they use a many sorted version, and even Henkin-style second order logic 
(Andréka, Madarász, and Németi 2002). Hannan, Pólos, and Carroll developed a 
sophisticated multi-modal logic for handling theories in sociology (Hannan, Pólos, 
and Carroll 2007). (Indeed, my arguments in this book on the constructive nature of 
truth also enforce a non-classic, i.e., intuitionist logic.)

27.	 Thus Hempel’s paradox, later indeed popularized by Hempel, is a nice example 
of Stigler’s law: nothing is named after its inventor. It worth noting that according to 
Stigler’s testimony, Stigler’s law is also an example of Stigler’s law, being invented 
by the sociologist Robert K. Merton (Stigler 1980).

28.	 See Hilary Putnam’s foreword for Goodman’s book (Goodman 1955, vii–xvi).
29.	 This is what Laudan calls deductive underdetermination (Laudan 1990a).
30.	 Just as Popper famously insisted (Popper 1935).
31.	 To be sure, there may be reasonable considerations what to choose from the 

consequences of a theory to test. See, e.g., Laudan’s book on this (Laudan 1990b).
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If we are to sum up the accomplishments of the axiomatic project, we can 
say that the approach likewise encompasses good insights from the classical 
and the operational accounts. There is a broad family of scales rightly to be 
called measurement, but the given structure is to be empirically exhibited. It 
is a task of the practicing scientist to find out what is the case for a specific 
attribute. The issue is not logically necessary in any case, we work only with 
hypotheses always subject to empirical test. The axiomatic results also pro-
vide the scientist with clear methods to accomplish her task: for example, she 
can examine if a quality satisfies the conditions to be regarded as an additive 
quantity or not by the application of conjoint measurement.

This sounds like a success story. All the more surprising, there seems to 
be a consensus on the fact that axiomatic measurement theory never fulfilled 
its promises, never took the place in the practice of science which it would 
deserve. In particular, it never induced the hoped comprehensive changes 
in the methodology of social sciences, the “revolution” did not occur (Cliff 
1992). It is not to say that the approach left science totally intact. Roberts 
devotes a whole book for the applications of additive structures only (Rob-
erts 1985). Kahneman and Tversky fruitfully applied the axiomatic approach 
in decision theory (Kahneman and Tversky 1979). It had major impact on 
several projects in psychometrics, such as color theory or magnitude estima-
tions, and also on some issues in sociology such as merge of ratings (Narens 
and Luce 1993). True, these latter studies do not necessarily live on detailed 
axiomatic analysis. But, for sure, they are keen on apt methodology and 
meaningfulness. Still, the least we can say that the success is partial, the 
expected breakthrough failed to come. Today social sciences still tend to 
follow somewhat opportunistic practices when it comes to measurement, and 
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their living on the textbook-invigorated Stevensian sentiments is rather the 
rule than the exception.

In this chapter we will go through some of the explanations of how such 
a vast intellectual contribution could have passed almost unrecognized. We 
will take a glance at the practice of sociology, and we will tarry a bit with 
conceptualization and operationalization as key issues. Again, we will look 
into some aspects of preference measurement as a kind of minor case study. 
Theses observations will suggest that the exhibition of congruent phenomena 
may be the motor for well-grounded measurement procedures in social sci-
ences—just like in physics.

4.1 ANATOMY OF A NON-REVOLUTION

It may be no exaggeration to say that Joel Michell (Michell 1999, Michell 
2007) drafts a bill against the methodological practice of psychology (and 
in particular psychometrics) when it comes to measurement, describing it as 
“pathological” (Trendler 2009, 579).1 He finds that not only the quantitative-
ness of a psychological concept is almost never tested, but also this negli-
gence is disguised by a misguided measurement concept—the Stevensian 
one. The way out would be to use the results of the axiomatic approach (e.g., 
conjoint measurement) to show the quantitativeness of the observed quality at 
hand. However, psychologists (and, in general, social scientists) have failed 
to realize the revolutionary significance of these theoretical developments for 
their practice—at least so far.

As we have seen, the axiomatic approach—built on solid mathematical 
grounds—suggests that Stevens’ initiations on the problem of measurement 
are valid. Nevertheless, his definition dissolves the concept of measurement, 
and is quite apt for veiling methodological negligence. According to Michell, 
it is more than problematic that a Stevensian measurement concept is still rul-
ing in the realm of psychology and social sciences despite the fact that a solid 
conceptual foundation was offered since that, and we already have tools for 
deciding on the quantitativeness of certain qualities.2 In itself, it is not an error 
to stipulate that certain qualities are quantitative, but forgetting the need for 
the verification of the hypothesis definitely is. A sorrowful fact: this error has 
already been integrated into the methodology of social sciences. Sure, errors 
are frequent in the history of science, but such a great carrier for an erroneous 
methodological approach may not be common.

The explanation for the spectacular failure of the error correction function 
of science, says Michell, is that the representatives of social sciences—let it, 
unconsciously—added a new error to the original one: did everything to veil 
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it. Instead of facing the unjustified hypotheses, they advertise their quantita-
tive discipline under the shields of the Stevensian definition.

It is not the case, however, that Stevens’ theory on the levels of measure-
ment and his definition of measurement are bound together for good and all 
by some logical constraints. The first does not infer the latter. But those who 
accept these as a two-in-one solution will not bother about justifying the 
quantitativeness of a certain attribute anymore. Often they simply stipulate 
that a given body of data is on, say, an interval or a ratio scale, and finding 
that this stipulation leads to more or less reliable predictions, they immedi-
ately assume that their ways are justified. True, Stevens’ definition is rarely 
interpreted so that really any assignment of numbers can be regarded as mea-
surement (e.g., random assignment is often excluded), but many insist that 
once somehow one got in possession of a rule, she does measure.

Though we have seen that Stevens definitely draws the lines for the permit-
ted statistical tools for a given level of measurement, he is seemingly rather 
permissive with “illegal statistizing.” He maintains that it is indeed not so 
nice to use disputable tools, still, these methodological frivolities may lead 
to fruitful findings, thus they can surely be forgiven (Stevens 1946). He was 
self-consistent in his inconsistencies: in line with his methodological credo, 
he would show some “liberality” in his research himself. It seems today many 
social scientists regard their trespasses so venial that they do not even see 
them as trespasses at all.

According to Michell, the Stevensian definition not only cuts the connec-
tion between measurement concept of quantitative sciences and mainstream 
psychology, but blindfolds those who accept it. These scientists ignore the 
need for the justification of quantitativeness. The Stevensian concept with its 
inconsistencies blurs the methodological problem of measurement and so to 
say “rationalizes scientific negligence” (Michell 1999, 20).

Michell has a point when bringing the charge of negligence against the 
practicing psychologists and social scientists: it is really widespread to regard 
measurable whatever object, attribute, phenomenon at hand, simply by main-
taining that measurement is nothing more than the assignment of numbers. 
And once we have the numbers, we can add, divide, average them however 
we like. True, there are efforts being made on the verification of the quantita-
tiveness of the attributes in many projects, but it is by no means widespread. 
All in all, few are keen on the tiring methodological issues of measurement 
in the ever-growing society of behavior and social scientists.3

While mainstream psychology (and, as it matters, other social sciences—if 
are prone to accept a liberal classification) have been living with the definition 
of Stevens for more than a half of a century now, a “revolution” occurred: 
the development of axiomatic theory for measurement. What is the reason, 
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we could ask along with Michell, that the social sciences are still reluctant to 
acknowledge this revolution?

Several answers are possible. Some say that the applied mathematical 
language (the language of set theory) is unfamiliar to the psychologist or that 
representatives of mainstream psychology apply entirely different methods in 
their fields as the originators and supporters of axiomatic measure theory on 
their owns (Cliff 1992, 188). It is sometimes also mentioned that the useful 
applications of the theory have little relevance for other fields or that even this 
approach does not offer remedy for a major theoretical problem: measure-
ment errors (ibid., 188–189).4

As for me, I think that the reasons for the durability and hegemony of the 
Stevensian views lie, at least partly, in their productivity. Clear, it is easier to 
arrive at results (or maybe “results”) with a less strict methodology, provided 
that this less strict methodology is standard on the given field of study, and 
thus the results are accepted by the scientific community. Methodological 
scrutiny is time consuming, and eventually not rewarding, for the knowledge 
gained by hard work is though more well-founded, it is surely less “extent” 
than the knowledge gained by a sloppier methodology. Though it is a valu-
able asset to have research projects on solid grounds, this tiring activity may 
often result in weakening theories, may bring non-sequiturs or meaning-
lessness to the surface. In short, measurement theories may often turn out 
to have destructive rather than fertilizing effects on research projects, in 
contrast to, for example, statistics. As there is a competition among research 
projects for resources as in productivity, the situation does not motivate 
embracing stricter methodological principles. It is not an easy mission to 
persuade someone to change her comfortable ways to a tiresome track with 
less promise for fruits.5

Still, Michell insists, social sciences should change their ways. Social 
scientists must abandon scientism, that is, they should not try to prove all 
the time that they are able to provide quantitative result just the same as 
physics. They should admit that the applicability of a measurement concept 
like the one of physics is limited in social disciplines. In return, they should 
be proud of their many non-quantitative methods, where the applicability of 
the quantitative ones cannot be shown. The world is complicated, there are 
many complex attributes and it is not hard-coded anywhere that quantitative 
methods should always be relied on.

Michell goes so far as to ask for intellectual righteousness. He finds that 
the institutionalized practice of social sciences stands in the way of critical 
methodological investigations—a fact undermining their mere claim for a 
title as intellectual enterprise. Social factors drove social sciences to a point 
where critical methodological questions cannot be addressed anymore. Sci-
entific practice should rely on empirical testing of hypotheses, we should not 
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do with simply regarding those hypotheses true without question in which 
our interest lies.

Though I would say Michell is by and large right, we should take his ver-
dict with a bit of skepticism. Social scientists devote considerable time for 
methodological speculations. What if it is really not clear how to integrate 
measurement theories in their methodological ways? It is hardly a surprising 
statement that when it comes to quantitativeness, social sciences readily turn 
to the vast and rich armor of statistics. It is also well-know, however, at least 
since Huff (Huff 1954), that these weapons are often blunt or even much 
too sharp but awkwardly manageable, easily misusable and sometimes self-
dangerous. We can see an urge even in Stevens’ work, however halfhearted, 
for taming statistics with proper considerations on scale types.

Nevertheless, the relationship between measurement theories and statistics 
is a bit complicated. Narens and Luce describe their affair by the following 
contrast (for the sake of simplicity): while “statistics focuses mostly on ran-
domness, largely taking structure among variables for granted; [axiomatic 
measurement theory] focuses almost exclusively on structure, largely ignor-
ing randomness” (Narens and Luce 1993, 129). Thus statistics and measure-
ment theory represent two different approaches to the same problem: the 
challenge of uncovering “structure among variables in the presence of inher-
ent randomness” (ibid., 129).

Social scientists willingly use highly sophisticated statistical methods to 
find some order in vast and inherently random data. Factor analysis,6 as an 
example, is a popular tool for exhibiting patterns in huge, messy datasets. But 
once the proper factors are found, it is often stipulated that they instantiate 
an interval scale, without any real investigation on the possible structure. It is 
“taken for granted.” Generally, this assumption is simply untenable.7

On the other hand, the measurement theorist assumes that the data “satisfy 
in one or more empirical interpretations” (ibid., 129), and tries to find some 
kind of numerical structure by which data can be represented. The axiomatic 
description does not take notice of randomness and errors, rather it seems to 
reflect some ideal state of affairs. But real data are seldom ideal. One could 
ask for the help of a possible error theory, but as we have seen, the axiomatic 
approach is not so ardent in this regard. In addition it is to be noted that a 
given bunch of raw data has an epistemologically superior status than pro-
cessed data; it is “what is there,” it is our first foothold providing a more or 
less direct link to nature (however we understand the notion). That is why one 
should be very careful in “taming” data.

Bridges, as Cliff puts, are hard to build for many reasons (Cliff 1992). 
Such is the “language” of the applied mathematics, the diverse methodology 
of social research projects, and the restrictive effect of methodological strict-
ness on productivity. But even if major linking works existed today, it would 
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take a long time to see their effects in the methods of a new generation of 
social scientists.

But there may be even more cloudy outlooks. Some say that measurement, 
properly understood, is simply impossible in social sciences. According to 
Trendler, an attribute is measurable if it satisfies the conditions for being a 
quantity, exactly as the paradigmatic physical attributes, length, weight and 
so on do (Trendler 2009). The only question we can meaningfully ask about 
psychological (or other) attributes whether they can be measured in this 
sense. For Trendler, this sense is certainly stronger than that of axiomatic 
measurement theory, since it brings back the concept of quantity of the empir-
icist approach. However, as I hope to have shown, finding a solid foundation 
for these “classical” quantities is neither self-evident nor unproblematic at all.

Trendler recites Michell and his warning that to decide whether an attribute 
has a quantitative structure is an empirical question—it is never logically 
necessary (Michell 1999). The scientific task of verifying a quantitative struc-
ture is rarely trivial, because the observable relations between objects (e.g., 
one piece of marble balances the other) and the relation between magnitudes 
(their equal weight) are logically distinct (ibid., 70). That is why, “we can-
not take for granted that equal levels of some manifest variable necessarily 
correspond to equal levels of some latent variable, but we must ascertain by 
experiment that this really is the case” (Trendler 2009, 584, emphasis mine).

As Trendler rightly emphasizes, there is also an instrumental task: to 
develop measuring instruments—and according to him this is always sec-
ondary to the scientific task (ibid). I would inclined to say that the two tasks 
should go hand in hand: how would one establish data on relations without 
the appropriate instruments? Trendler writes, quoting Michell, “The first and 
therefore most basic condition of quantity structure demands that ‘any two 
magnitudes of the same quantity are either identical or different’” (Michell 
1999, 52, quoted in Trendler 2009, 582). Now, simply identifying equal lev-
els of an attribute in different objects may require sophisticated instruments 
(often, but not necessarily based on sophisticated scientific theories).

Of course, establishing equality is just a first step. We also have to verify 
equal differences and possibly a meaningful concatenation concept (being 
there any), exactly as the empiricist account of measurement requires via its 
rules of measurement. And all there is at hand for all this work is experiment, 
nothing else, Trendler would say.

There are two major tasks an experiment must deal with. First, in an 
experiment we must independently manipulate agents to see the manipula-
tion’s effect on the observed phenomenon. Second, the experiment must hold 
disturbances, that is, agents and phenomena that are not objects of the given 
observation, under its control.8 For all this we need a (most probably artifi-
cial) apparatus, which allows for independent manipulation and isolation. 
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The view that science should progress by actively intervening into natural 
processes (through experiments) rather than passive observation is called the 
Galilean revolution by Trendler (ibid., 587).

It comes as no surprise: “if psychological phenomena are not dependent 
or cannot be made to depend on a manageable set of conditions, then they 
are not measurable” (ibid., 590). No doubt, it is true that psychological (and 
social) phenomena are responsive to certain kinds of manipulation. It is also a 
fact that psychology does conduct experiments. But this all is hardly enough 
to show quantitativeness. Generally, it is already a problem to establish equal 
levels of a psychological quality.

Trendler concludes:

[P]sychological phenomena are not sufficiently manageable. That is, they are 
neither manipulable nor are they controllable to the extent necessary for an 
empirically meaningful application of measurement theory. Hence they are not 
measurable. In my view no substantial progress will be reached in psychology 
until we accept psychological phenomena as they really are, namely in their 
natural “muddled” state. It might be cold comfort, but physicists would find 
themselves in the same hopeless situation if they were not to be allowed to 
construct apparatus. (ibid., 592) (Emphasis original.)

The (Galilean) revolution never happened, and cannot happen in psychol-
ogy. Psychologists (and in general social scientists) must find other, non-
quantitative methods to achieve progress in their fields.

It is no wonder if this conclusion sounds somewhat familiar. Indeed, it 
is very similar to that of the Ferguson committee in the thirties (see section 
3.1). The committee’s manifestation triggered Stevens’ operationalist answer 
thereafter. Then, it remained to the axiomatic theorists to make good use of 
Stevens’ ideas in building a strong theory with mathematical rigor. Ferguson 
psychologists and also Stevens were accused of dissolving the meaning of 
measurement by using new and sloppy concepts of it. This criticism was, to a 
great extent, legitimate. But axiomatic theorists did a lot for clarity and con-
ceptual soundness. Reverting to an eighty-year conclusion after their work 
does not seem to be right.

Moreover, we well may have reason to not be content with Trendler’s 
concept of experiment. In particular, what is sufficiently manageable is not 
clear-cut. It is to be observed that natural science experiments are also full of 
unmanageable elements and tacit presuppositions. What guarantees, anyway, 
that the standard prototype unit or the behavior of my measuring instruments 
stays sufficiently similar between t

1
 and t

2
? What is sufficiently similar? On 

the other hand, as we have seen, Regnault sufficiently managed his ther-
mometers without any elaborated theoretical background. Such reliance on 
congruent phenomena is open for social sciences, too.
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What we see here is the same old story of different concepts. Trendler 
regards the empiricist measurement concept as the only legitimate one. 
According to this, the rules of measurement are genuine scientific laws as 
conceived by natural sciences. I intended to show that this view is not easily 
tenable. The measurement concept of the axiomatic approach departs from 
this, no doubt. But why not? Concepts are not fixed for good and all. Tran-
scending them is sometimes called progress.

Talking about the limited success of axiomatic theories, I would add some 
further points to the list above. First, we could ask what does exactly the 
axiomatic measurement concept encompass? Where are its boundaries; what 
“counts as” measurement and what not? Second, how “telling” a representa-
tion is, what is its real added value to know the exact structure of data?

The notion of measurement is, of course, vague—just as almost every 
concept.9 It is vague even under an axiomatic account. Here, the concept of 
measurement is characterized by a theory (an axiom system using a formal lan-
guage) and its model’s homomorphisms. Having feasible empirical interpreta-
tions of the primitives in our language, the models instantiating our system are 
homomorphic to some numerical structure. But what do we mean by numeri-
cal (an epitheton ornans in the axiomatic literature), and why do we need this 
restriction at all (if it is a restriction)? Do we regard partial ordered sets as 
“numerical”? Hence, is establishing some partial empirical relation or possibly 
some quite weak operation a measurement? Again, derived and conjoint struc-
tures involve models with ordered pairs (or n-tuples). Are they “numerical”?

Assume that we can drop the attribute “numerical,” and we can freely talk 
about simply “mathematical” structures instead, in other words, abstract set 
theoretical structures—which may well be in line with the intention of the 
students of axiomatic theory.10 Suppose further that we have some dataset 
with complex, but axiomatically describable features. Now, the models of our 
theory will not be homomorphic to any of the structures usually associated 
with numbers. Will the involved empirical procedures count as measurement?

Consider the theory of complex networks as worked out by Albert and 
Barabási (Albert and Barabási 2002). The authors analyzed many different 
networks from the World Wide Web through cellular and phone call networks 
to citations and Hollywood actor collaborations. Through examining large 
datasets they had to “measure” these networks, that is, account for “nodes” 
and connection between nodes to exhibit their topological features. That is 
how they found some interesting common features of them: for instance, they 
are all small worlds (in the sense that there is always a relatively short path 
between node pairs), scale-free (i.e., follow power-law distribution, which in 
practice means that they exhibit relatively few but rather heavily connected 
“hubs”), and so forth.
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Now it is tempting to set up an axiom system with proper empirical inter-
pretations on these datasets. It might not come as a surprise to us that the 
models of our system will show homomorphisms to certain graph-theoretical 
models. But we may acknowledge this fact with a tiny bit of discomfort. The 
thing is that graph-theoretical considerations are deeply involved in the very 
theory; all of its major findings are graph-theoretical assertions.

To make it clear, I would willingly admit the above situation as measure-
ment. But now the question is, what would we gain with an axiom system 
for this kind of measurement? One could readily answer that we will have 
a warrant that we made no mistake and our empirical procedures are really 
reflecting the intended structure. But honestly, we would be a bit surprised if 
it did not, and we might even be prone to blame the axiom system.

While axiomatic measurement theory may be immensely useful and fer-
tile in certain cases, it may be dumb and annoying in others, just like some 
customs officer claiming for a third copy of each certificate. No wonder that 
some scholars find the whole project inefficient. As Zoltan Domotor put 
sarcastically: axiomatic measurement theory is “the enterprise of poliferating 
boring corollaries to Hölder’s theorem” (Michell 1999, 198).

This verdict is without doubt excessive and unjust. Nevertheless, even 
occasional impressions of triviality may make the axiomatic theory unappeal-
ing and may well add to reasons of its lack of real success.

4.2 CONCEPTS AND DEFINITIONS

Standard textbooks in sociology often claim that the measurement of social 
phenomena is essentially the same as those of physics, only the results are 
less exact because of the very nature of the attributes measured (Steele and 
Price 2007). Sometimes they go as far as to say, “researchers can measure 
anything that exists” (Babbie 2007, 121). There is often a warning that the 
reliability of our measuring instruments should be tested and measurement 
procedures should be verified as valid, but after all it is simply presupposed 
that certain attributes can be quantified. Everyone, however, taking a closer 
look on some quantitative results of sociology must come to the conclusion 
that the discipline is immensely affected by cruxes set forth against psychol-
ogy by Michell. Stevensian sentiments are alive and well in sociology, undis-
turbed by the enormous developments in measurement theory. The textbooks 
mentioned often quote the theory of measurement levels uncritically and 
without further comments on the subsequent developments (ibid., 136–140). 
Every now and then we bump into definitions which make clear that measur-
ing is simply an assignment without the obligation of empirical verification: 
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“[m]easurement is any process by which a value is assigned to the level or 
state of some quality of an object of study” (Bulmer 2001, 455).

Clearly, sociologists often deal with concepts, such as contentment, the 
quantitativeness of which is at least rather doubtful (but could be tested). But 
many social research projects rely entirely on data where only counting is 
involved: a measurement determines how many people belong to a set such 
and such. Data so gained are on an absolute scale in Stevensian terms, hence 
there is free way for meaningful statistics. What is more, the notion of unit 
is even clearer than what a physicist may ever dream of! But the thing is that 
sociologists are rarely after pure numbers, they tend to measure complex 
(allegedly) quantitative concepts through the data. Concepts which are poorly 
defined or even yet to be understood.

It would be unjust, however, to maintain that sociologists deliberately and 
assertively neglect the rules of scientific integrity and ignores the need for 
critical inquiries. It is often the case that they spend a lot of time on constru-
ing proper methods, and even on bewailing the contingency, imperfection, 
deceptiveness of them. They often tend to be rather critical and doubtful 
regarding their ways, this is well indicated by the many research projects 
devoted to methodological pluralism, that is, the parallel application of dif-
ferent methods for approaching the goal of a scientific project.

On the other hand, social research often looks for complex, multidimen-
sional patterns of correlations and identifies underlying factors. While using 
factor analysis and its broad kinship of methods, sociologists often arrive 
at scales with stipulated properties (such as equal intervals) and draw bold 
consequences. Adding to this, they too often reify (Gould 1996): they regard 
the derived factors as they were real, existing entities in the world. Of course, 
picked out factors say little without interpretation. This is by no means to say 
that these methods of analysis do not convey any information whatsoever, 
only that one should be much more careful with inferences. Of course, this 
precaution would lead to more modest results. As I pointed out above, this 
feature in itself is a significant drive for loose methodology.

Now, to dive into the main concerns of measuring the social, let us take an 
everyday measurement situation as sketched by Taylor (Taylor 1997, 3–4): 
a carpenter plans to install a door, and to do this, first he needs to know the 
height of the doorway. While improving his methods from pure-eye estima-
tion to using a measuring tape and finally a laser interferometer he gradually 
boosts his precision, or reduces the margin of error—eventually to the order 
of the length of the light wave. But however he would improve his precision, 
measurement errors would remain. Their order might be practically neglectful 
related to the observed magnitudes, but their nature would remain the same.

But this is not our main concern now. There is also a serious conceptual 
problem: what do we mean by the height of the doorway? One may say that 
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the perpendicular distance between the floor and the ceiling. But perpendicu-
lar to what? Measuring perpendicular to the floor may well result in different 
values than measuring perpendicular to the ceiling. And what do we mean by 
perpendicular on a by all means imperfect surface? One might answer, ok, 
let us measure vertically! But now our problem is to precisely measure the 
direction of the center of the Earth. Moreover, removing a thin layer of dust 
our measurements may well yield different results than before (with a tool 
of appropriate sensitivity). Even more importantly, we may yield different 
results by measuring the height in different points. One might answer this 
time that we can specify exact points for our measurement by their distances 
from the walls. But what do we mean by the distance from a wall? That is, all 
that we do now is reducing the conceptual issues of a given measuring task to 
a different but likewise vague measuring tasks. We can call this the problem 
of definitions, or the problem of fuzzy concepts.

In formal studies, “well-behaving” concepts introduced by sharp defini-
tions are abundant. The set-theoretical definition of ordered pair, for example, 
is clear and unambiguous: we can always decide whether a given set is an 
ordered pair or not by its mere form:

	 ( , ) = {{ },{ , }}.a b a a bdf 	

All right, one might say, but it is just one definition of the pair, known as 
Kuratowski definition. There are several others. Here is Robert Wiener’s, for 
instance:

	 ( , ) = {{{ }, },{{ }}}.a b a bdf Æ 	

Is it not just the case, then, that there is no strict and generally accepted defini-
tion for an ordered pair, so the notion is as vague as any other? By no means. 
It can be admitted that the different definitions characterize different ordered 
pair concepts, and the so defined pairs show diverge properties, which may 
have serious consequences on the whole formal system we work in. The con-
cept of ordered pair can be said to be ambiguous until the point we swore on 
one construction. Once a definition is chosen in a given context, the notion is 
fixed for good, there is no way for switching to an other notion. Also, there 
are no borderline cases: what an ordered pair is and what is not is clear-cut.

Outside formal systems, definitions tend to go less tame. What is length? 
We may have several suggestions: length is the most extended dimension of 
an object; length is any quantity with a dimension distance; length is the mea-
sured dimension of an object; length is the linear extent of an object in space 
from end to end, and so on. Now we might insist that the concept of length 
is just as ambiguous as that of the ordered pair, but fixing an appropriate 
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definition for our context will provide a strict notion. This is not so, these 
definitions are vague, too. Some difficulties stemming from using likewise 
vague concepts in the definitions (“dimension,” “distance”) may be overcome 
by giving sharp definitions for those ideas. But, of course, the danger of other 
vague notions occurring in those very definitions still lingers on. Moreover, 
some concepts cannot be sharpened out, even in theory. In order to know 
what is the most extended dimension of an object, we should measure it. But 
the difference of the observed magnitudes may well lie beyond our margins 
of precision. Of course, this concept is particularly unfortunate, because it 
involves the very notion of length measurement. But similar consideration 
are in place with regard to the end of an object or even to its linear extent.

Again, suppose we settled on a notion of length, which seems to be apt and 
strict beyond all possibilities. Now we face further issues when dealing with 
concepts like a rod which is one meter long. If we are asked to sort out from 
a given set of rods the one-meter-long ones, we are able to do this task with 
some approximations. But be our margins of precision in whatever order, 
there will always be borderline cases—rods that are almost-one-meter-long 
or a-tiny-bit-more-than-one-meter-long, but they can as well be considered as 
one meter long with regard to our margins of precision or practical purposes. 
This uncertainty is immanent and inevitable: there is no way whatsoever to 
sort out the rods which are exactly one meter long.

A widespread strategy for sharpening theoretical concepts is the deploy-
ment of operational definitions. In general, this way we can define entities by 
describing how to exhibit, produce, or create them. In science, by an opera-
tional definition we usually and broadly mean a description of a measurement 
procedure—as we have seen, for operationalism measurement is a central 
notion (see section 1.4). Operational definitions can well serve science and 
practice by making blurred concepts sharp and meaningful. Thus, quantum 
mechanics defines field properties by the measurable properties of observable 
particles. Relativity theory defines distance and simultaneity by their respec-
tive procedures of establishing them. And IQ can also be, and often is, defined 
by the score achieved on this and that mental test.

In social sciences, operational definitions are abundant in their trying to 
make their concepts quantifiable. Properties of living standards, corruption, 
migration are hard to measure from the start. When finding a viable way for 
a quantitative account, the original meaning11 of the concept narrows. It is 
clear that meaning cannot be fully determined even in natural sciences. The 
situation seems to be less chaotic there still, because there is much more room 
for law-based, systematic measurement (Kyburg 1984), or measurement in 
experimental setup (Trendler 2009). These conditions put constraints on the 
possible measurement operations.

Let us take the relatively simple example of transport safety. In the table 
on figure 4.1, I made up some possible operational definitions for transport 
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safety, TS, where, of course, the safer ways of transportation score lower. 
This list is by no means complete: it is enough to consider what is to be 
counted as injury. It can be any harm more sever than a bruise, or any harm 
more severe than a broken leg. But this simplified picture is enough for mak-
ing some observations.

First it is worth making clear that these definitions do not exhaust the 
meaning of transport safety—where by meaning, I mean how this phrase is 
used by experts on a conference dedicated to the topic. And there is a good 
reason to maintain that we cannot even cover it in theory would we be able 
to create as many operational definition as we like. (And we can easily create 
infinitely many, as figure 4.2 shows.) Not the least because these are certain 
aspects of this use, which escape from a quantitative approach.

A social scientist with naturalist inclination, by which I mean she is keen 
on applying the methods of natural sciences as the only legitimate ones, may 

Figure 4.1  Definitions for Transport Safety.

Figure 4.2  Some More Definitions for Transport Safety.
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insist that the meaning of a concept can only be given by an appropriate 
quantitative definition. Anything beyond it does not constitute any mean-
ing at all, it is just empty chatter. So far so good, but now she must take the 
inconvenient task of choosing one of the possible definitions. The problem is 
that all of the definitions are equally legitimate, there is no theoretical reason 
to choose one above the others (though there may be practical reasons: e.g., 
a choice could be motivated by the available datasets). To be sure, measuring 
along different operational definitions may yield quite different results for 
such simple (true, not really exact or well-formed) questions as: “what is the 
safest way of transport?”

A possible way for giving the issue a better outlook is to say that, though 
operational definitions cannot exhaust the meaning of a concept, they can 
fix it in a given context. Another context may involve different but equally 
legitimate notions. What ties these concepts together more strongly that any 
two random concepts is a common umbrella concept. But these umbrellas, 
constituted by all the legitimate operationalizations, are not strict scientific 
concepts, would the (soft-hearted) naturalist say. Nevertheless they are part of 
the scientific practice: as catchphrases in the sloppy metalanguage of science.

4.3 CONCEPTS AND VARIABLES

It might be to the sociologist’s delight that there is a vast number of numeri-
cal or trivially numerizable databases (or datasets) available. On these “hard 
data” we can measure simply by counting the number of occurrences, add-
ing up (extracting, averaging, etc.) entries representing time (say, working 
hours), amounts or individuals.12 Since these measurements are, so to say, on 
the absolute scale, their statistical treatment is not really problematic. As a 
trade-off, they raise other serious methodological problems.

Sociologists call the entries of these datasets variables. Some of these vari-
ables provide a pretty good base for carrying out measurements. However, in 
sociology even the simplest ones of these measurements are indirect. Say one 
can measure (estimate) the number of foreign citizens working in the country 
based on the data on citizenship in the database of the national health insur-
ance system. Here is an immediate methodological issue: the exploitability 
of administrative data sources.13 Data stored in, say, registers14 are not for 
scientific purposes at the first place, they are not collected the way to provide 
with immediate information for the sociologist on her questions of interest. 
Measurement on them is not only indirect, but also based on more or less 
stern presuppositions on the idiosyncrasies of data collections. In the example 
above, we would like to know the number of the foreign citizen, but what we 
measure is the number of those foreigners who were registered and were not 
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unregistered by their domestic employer up to a given date. Thus not only 
unregistered employment is hidden entirely, but we cannot even be sure how 
the our results are related to the “real” situation. Often, the data lack com-
prehensiveness and are not up to date—datasets exhibit wide variance in this 
regard. And, of course, talking about administrative data sources, the access 
to them for scientific purposes could also be highly problematic. Governmen-
tal data is often withheld in the name of personal data protection, but the real 
obstacle are rather maleficent routines and ignorance. It is not impossible to 
maintain data systems where the access for anonymous governmental data 
is unobstructed—Scandinavia is pioneering on this field (“Out of the Box” 
2015). Nevertheless, secondary use of existing data is of crucial importance 
for social sciences. It is not by chance that recently several initiatives aim 
at the development of this important methodological tool (“PROMINSTAT 
Project” 2010, Csatári and Juhász 2009).

Beyond hard data, variables tend to become more awkward from a mea-
surement point of view. Set now apart the entries of anecdotal nature one 
often comes across in surveys, they are part of the “soft,” qualitative side of 
social sciences—by no means less valuable than the quantitative side, only 
we are concerned with the latter in this study. No measurement, no prob-
lem—at least from our perspective. Binary variables, like answer selection 
(yes/no), or (traditionally) gender can easily and legitimately be “statisti-
cized” with, even though one may wonder how much dealing with these data 
fall in the usual sense of measurement. But other entries, such as ones coding 
preferences, should not (though usually are) regarded as quantitative, at least, 
not by default.

Say, we are to examine the contentment with the work of government on 
a ten-grade scale by asking respondents via phone. According to the practi-
tioner’s advice (Steele and Price 2007), if we received a “7” as an answer 
from John Johnson and we call him again the next day and he gives a “3,” 
we should suspect that our “measuring instrument” is unreliable. Likewise, if 
we found on a large enough sample that the mean of the result was 9.8, the 
validity of our measurement should be questioned. Nevertheless, the main 
problem with preferences is not even touched in these warnings. Namely, we 
do not have any reason to suppose that John Johnson is more content with the 
work of the government than Kate Kenneth, who happened to give it a “5.” 
And from the start: why to think that we will get the same answer from Louis 
Lark before and after lunch? This is not to say that a preference scale cannot 
be meaningful. Only it should be verified, possibly by some of the methods 
set forward by measurement theories or by successful iteration.

In any event, the least to say is that their variables provide the effective 
means for sociologists to approach the concepts in scope. Variables are gener-
ally conceived as operationalizations of concepts, which are in turn regarded 
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as crucial in confirming causal theories by a traditional physicalist point of 
view.15 It is important to see that variables as constituents for a procedure of 
measurement, in the view of practitioners, do not usually define a concept, as 
the old school of operationalism would suggest. Rather they may make up for 
some operational definitions at best, ones that more or less grab a blurry mov-
ing target, and which are not exclusive, only by chance chosen ones from the 
infinitely many possible. Of course, the exact way of operationalization often 
depends on the contingency of available data. As Bulmer puts, characterizing, 
for example, the health of a population or crime in a locality can be realized 
through a vast set of possible measures (Bulmer 2001).

But the proliferation of variables by no means helps conceptual clarity. 
Sartori writes:

[M]uch of what is currently labelled social science “methodology” actually 
deals with research techniques and statistical processing. In moving from the 
qualitative to the quantitative science, concepts have been hastily resolved and 
dissolved into variables . . . [C]oncept formation is one thing and the construc-
tion of variables is another; and the better the concepts, the better the variables 
that can be derived from them. Conversely, the more the variable swallows the 
concept, the poorer our conceiving. (Sartori 1984a, 9–10)

Indeed, contemporary “research techniques and statistical processing” 
include multidimensional data-processing (factor analysis and its kinship), 
where even the variables (factors) are somewhat wanton. The analyst is “free” 
to choose what resultant factors she defines from the original ones (at the 
expense of losing information). Also, several equally justified mathematical 
solution may exist for the same problem.16 Interpretation, conceptualization 
comes last, as if we placed the target where the arrow landed. By and large, 
practicioners even with a healthy methodological incline are not keen on con-
ceptual tidiness, though there are laudable exceptions (Sartori 1970, Sartori 
1984b, Gerring 1999, Collier and Mahon 1993, Brons 2005).

“Stable concepts and a shared understanding of categories” (Collier and 
Mahon 1993, 845) are of utmost importance for each scientific enterprise, 
and it is clear that sociology, or generally, social sciences lack this kind of 
accordance. Interestingly, as Sartori observes (Sartori 1970, Sartori 1984b), 
not only the restrictive nature of operalization is to be blamed. Applying con-
cepts of old theoretical frames in new fields often results in the unconscious 
departure from the notions: conceptual traveling. This is often followed by 
conceptual stretching, the concept is “distorted” so to fit in.

At this point the reader ought to recall Bridgman’s motives for his opera-
tionalist approach (Bridgman 1927). His main point was that we have no rea-
son to apply the same concept for properties measured different ways. Length 
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measured by a measuring tape is not the same concept as length measured 
by a laser distance meter. We can see his attitude as the most cautious one to 
prevent any unconscious and unjustified conceptual traveling. Chang took on 
these thoughts to a less restrictive, positive reading. In his view operational-
ist considerations may lead to legitimate and coherent extensions of concepts 
(Chang 2004). To this end, two conditions must be satisfied, Chang writes:

Conformity. If the concept possesses any pre-existing meaning in the new 
domain, the new standard should conform to that meaning.

Overlap. If the original standard and the new standard have an overlapping 
domain of application, they should yield measurement results that are consis-
tent with each other. (ibid., 152)

All this is to mean that once we have well-founded standards on different 
domains (which, as we have seen, can be reached by picking out phenomena 
of congruent behavior), a unified quantitative concept could be established. 
Unquestionably, this is a practice in natural sciences. For instance, the theo-
retical concept of temperature still has little role in its measurement. Instead, 
the practical temperature scale exhibited as a patchwork of overlapping 
operational procedures (“International Temperature Scale of 1990” 1990). In 
principle, one might feel, this way is also open for social sciences to follow. 
And there may indeed be such areas. It is really hard to see, though, how 
these principles could be applied for concepts like transport safety. Divergent 
concepts with non-overlapping, what is more incomparable operalizations are 
the rule rather than the exception in these disciplines.

4.4 THE CASE OF PREFERENCES

Below I will analyze a popular genre of data production in social research 
practice. It will come as no surprise to see that par excellence social sciences 
have a common fate with psychology in that the axiomatic principles have 
not gained real ground. By and large measurement theoretical considerations 
play little role in their practice, and it is stunning that while some practitioners 
blame social sciences themselves for not having formally embedded strict 
concepts, they completely overlook the vast developments in the field of 
theorizing on measurement.17 Instead, they insist that we arrive to measure-
ment whenever we classify a set of units by quantitative variables. Indeed, as 
a peculiarity for social research, sometimes we can do this in all conscience. 
As stated above, in many cases social research possess data, which do not 
face serious problems from a scaling point of view. For instance, doing with 
counting after all, measuring on administrative datasets allows a good start. 
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But often at this point, the relation of the concept and its operationalization 
is problematic. Concepts tend to be “under-defined,” or in other cases suf-
fer proliferation, stretching, traveling by the very way of operalization. In 
many cases the relation between the concept as an object of inquiry and its 
operalization is entirely unclear and unexplained—or explained only by its 
presumed effectiveness or success.

Elsewhere I analyzed a prestigious reoccurring public opinion survey and 
found it painfully weak in conceptual clarity and in conclusiveness (Csatári 
2016, 133–136). I was not after some destructive writing off then, my inten-
tion was to show that laying stress on methodological issues does make a 
difference. Below I take a somewhat more general approach while analyzing 
the practice of preference measurement in different attires.18 Once again, if 
I happen to have strongly critical insights, my intention is just to clear the 
brushwood to find a viable path ahead, and, of course, to yield some more 
fuel for the final conclusions of this book.

We may suspect preferences everywhere in our daily acts. Preference, of 
course, is not a unitary concept rather a type, which may reveal itself in vari-
ous guises and contexts. Some of them might possibly be approached through 
quantitative methods others surely not. For instance, I would hardly esteem 
Debbie’s morning preferences for her daily dress measurable. In other cases 
it may be easier to identify certain factors lying behind choices or intentions. 
My shoe preferences might well depend on (conceived) durability and price. 
In this latter case the method of conjoint measurement might in principle help 
decide on its measurability. But below I will take a more clear-cut case of 
one-dimensional measures, where no underlying numerical factors are pre-
supposed and the data is gained simply by collecting the answers to a single 
question.

Such is the rather popular and widespread method of Net Promoter Score 
(NPS), which is, professedly and roughly, supposed to measure the content-
ment or loyalty of employees or customers—by every means an instance 
of preference. NPS was introduced by the business strategist Frederick 
Reichheld (Reichheld 2003), and, not entirely trivially among social science 
methods, also honored as a registered trademark associated with a couple 
of commercial products. The method collects answer to the question: “How 
likely is it that you would recommend x to a friend or colleague?” The inter-
viewee is supposed to pick an integer between 0 and 10 as an answer. Those 
who choose 9 or 10 are labeled as promoters, those who take 6 or below are 
called detractors and those, who bet on the two numbers between are the 
passives. The score is calculated as the difference of the percentage of the 
promoters and the percentage of the detractors, thus represented on a scale 
running from −100 to 100.
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At first glance it is not so easy to tell what these numbers mean—nor at 
the second, actually. As probability is represented by a number on the closed 
interval of 0 and 1, the set of integers given as possible answers with a trivial 
projection to this latter seems to be a wise choice. Only no probability is any-
where on the horizon. On the most plausible interpretation, the interviewees 
confess some presumed probability of a potential act, which is some vague 
counterfactual at best. Moreover, there is no cogent reason whatsoever to 
numerically relate Debbie’s choice with mine, let alone when coming close to 
each other. I see no independent ways to confirm the original “measurement,” 
not the least because the very concept considerably lacks clarity. Only due 
distance may provide some weak reason to order the results. To put it in the 
language of levels of measurement, after aggregation we gain something less 
than data on an ordinal scale.

After all this, transforming data to the scale from −100 to 100 further blurs 
the picture. The chosen categories are entirely arbitrary, and probably the 
only motive for the idiosyncratic calculating procedure is the need for a nice-
looking data distribution. But okay, we can suspect marketing considerations 
at work here instead of scientific ones. Understandably, it may be of real 
fancy to project red and green gauges to the audience.

But there is more to this. As the common wisdom goes, while natural sci-
ences have the opportunity to ask nature by experiments, the social scientist 
is left with asking people on what she is after. Here is an archetypal example 
where nothing akin happens. The researcher is meant to measure loyalty 
(whatever it might be), but asks, mildly put, a not trivially related question.19 
According to Reichheld, operalization with the given question is motivated. It 
was chosen from a bunch of similar questions as the best predictor of actual 
customer behavior, measured by other methods. Lack of data, we may only 
believe it, and also that it is properly clarified what we mean by prediction. At 
the same time, the same indicator is regarded as a good measure of company 
growth (in most of the cases). But at this point I stop, unwilling to go into 
further proliferation of hazy concepts around NPS.

One can object that dissecting a popular tool in business management is 
unfair and bears little moral for social sciences proper. But this is not so. I 
chose this example because it is a simple, widely accepted and used standard. 
The method is meant to measure. It represents the main features of the wide 
family of similar data collection, such indicators are abundant in research 
with social science methodology. Our example also nicely shows their com-
mon weaknesses: the lack of empirical meaning and conceptual mess.

But all right, I will turn to an example of perhaps a tiny bit more scien-
tific prestige in a minute. Before that, some more words on what it means to 
be a standard are in place. Bulmer rightfully observes that the well-known 
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conceptual problems with measurement in social sciences constitute the main 
obstacles to the constructions of unified indicators (Bulmer 2001). Never-
theless, it seems that standard indicators often brought about, so to speak, 
spontaneously. But what is the warrant that such a standard is a cogent, valid 
operationalization? There is of course the presumed success in prediction. 
But the belief in predictive force is prone to be highly unjustified, let alone 
when we are able to identify the nature of the preferred (or not preferred) 
outcome rather vaguely, if at all. But a clear lack of flames does not prevent 
one feeling the heat if she really wants to. Nevertheless, apart from any 
arbitrariness and conceptual mess, the fact that a wanton operationalization 
becomes a standard could be regarded as good news. By producing reoccur-
ring comparable data on longer run an indicator may provide basis for weaker 
or stronger implications. On the other hand, it may also turn out to be a pet-
rifaction giving no way for other approaches.

As for such a petrifaction, let us consider party preference measurement, 
where one applying non-canonical methods is immediately suspected of hid-
ing something with making her data incomparable—a surmise not always 
unjustified. The standard procedure of party preference measurement is origi-
nated from a polling method of George Gallup. It is probably the most simple, 
most popular operalization of the concept. Gallup introduced it in 1935, and, 
like NPS above, also supposed to quantify a preference concept by asking a 
simple, and by now classical question: “If the election were held today, who 
would get your vote?” Slightly modified versions of the questions are also 
used, such as in Hungary where it goes: “If the election were held next Sun-
day, who would get your vote?”

Practically speaking, the survey has a double role. First, it serves as the 
assessment of the actual popularity of certain parties (generally it is not com-
prehensive with regard to the existing political organizations in a country—at 
least on the evaluation level minor ones are cast up). Second, especially when 
there is indeed an election around the corner, it serves as prediction. A histori-
cal fact is that this method had become popular and, so to speak, a standard 
among pollsters because of its success in predicting certain elections results. 
Its reliability is far from being uniform or unquestionable, though. Not only 
has it gone astray many times with such predictions, but also its credibility 
may differ widely between different societies. For instance, in the recent 
past it tended to give quite accurate predictions in Germany, but was really 
untrustworthy in Hungary. Again, it is prone to give biased results in the hand 
of certain pollsters with different political inclinations.20

As above, and contrary to the sociologist’s credo, pollsters (and their poli-
cymaker clients) do not ask what they are curious about. Why would they 
need to know the population’s feelings about a counterfactual? Let alone 
that we have every reason to raise doubts about the clear and immediate 
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connection between someone’s wishes, plans, intentions, and actual behavior. 
Indeed of course, pollsters are after public political mood, and this is opera-
tionalized through a survey method with a question chosen from a host of 
possible ones. According to Bulmer, variables for a given concept can only be 
justified in pragmatic terms and common sense (ibid.). So far so good. But he 
also adds: the concerning concept is operationally defined by the mere words 
used in setting up variables. What words? It seems that the wording of the 
question in question does not define any meaningful or interesting concepts, 
or if it possibly does, it is not what is meant by the researcher. Rather, as far as 
I can see, the only viable interpretation of Bulmer is that an exact wording of 
the surveying method is the one which could bring us to the concept of party 
preference. Without it, having no direct relation to the concept in scope, the 
actual question might operationalize anything.

At this point we should stop to notice what makes the standard of party 
preference much more sound than NPS. First, the former has much stronger 
privileges from the start to qualify as a quantity by being trivially and mean-
ingfully numeralizable. Both of the surveys are based on counting the votes 
for different answers, of course. Still, differences are crucial. NPS applies 
abstract entries without definite meaning—still presupposing that the inter-
viewees have a common understanding of them—which are in some stipu-
lated relation associated with the usual meaning of numerals. On the other 
hand, party choices are definite, meaningful and clear-cut, each possibility 
is discrete and logically independent from the other. The so yielded data are 
absolute, and are eventually turned into percentage quite legitimately.

Second, party preference measurement is based on a sophisticated sam-
pling method. The sample, the group of people who are actually asked, are 
chosen so to exhibit a distribution which shows similarity to the whole popu-
lation of voters in important respects, such as level of education, age, urban 
conditions. That is, the measurement procedure involves a theory, according 
to which different social groups have different propensities to vote for a 
given party. This theory may provide an important adjustment to the method, 
and greatly contribute to the soundness of the procedure. As, of course, it is 
empirically testable.

But are we not again in a bad circle? Since in order to measure the party 
preferences in the different cohorts, we need an established method for it. 
But alas, we are about to establish the very method at this point. The worry 
is deeply justified, and the consolation I can offer is similar to the one I pro-
posed above in regard to some physical quantities: we can turn to phenomenal 
congruence to be our guide.21

I see two—not unrelated—roles for congruence. First, it is the empirical 
anchor in calibration, when the same quantity is supposed to be approached 
by an armature of different instruments. Having a procedure at hand, we 
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can relate it to other procedures aiming at the same concept if we are lucky 
enough to find such. This comparison may either be non-theoretical (or rely-
ing on a minimal theory) as in the case of Regnault’s thermometers, or may 
contain sophisticated theoretical speculations as in the case of timekeeping.

Second, congruence can be a judge for the validity of a given procedure, 
either by iterative application or by giving identical “instruments” in different 
“hands.” Thus, the standard method for party preference could validate itself 
if it showed similar enough results in the hand of different pollsters (or if it 
could be conducted frequently enough with cogent results). Of course, we 
can measure only once at a given point in space and time (so to speak), but 
it is legitimate to expect reasonably close results in case of reasonably close 
measurement instances.

All in all, though trying to make advances through sophisticated calibra-
tion, the immense discrepancies of results in practice undermine the classi-
fication of the Gallup method as a valid way of measuring party preference. 
The approach is promising, but its inertia may block further development. 
All the more sad, because the way forward could only lead through adamant 
quest for promising patterns. Lacking law-based measurement in general, 
social sciences should still systematically look into ways of justified standard-
ization through congruence and meaningful treatment of concepts.

NOTES

1.	 Michell is a psychologist himself, but it is not a surprise to see a scholar to be 
highly critic, or even inimical to the methodological practice of his own discipline. A 
resounding example is Andreski (Andreski 1972).

2.	 Despite his appreciation for the axiomatic project, to Michell measurability 
and quantitativeness are characterized by the classical notion of Maxwell: measure-
ment is the estimation of a magnitude by an arbitrary unit of the given quantity (Max-
well 1890).

3.	 As Andreski put it sarcastically decades ago: “To judge by quantity, the social 
sciences are going through a period of unprecedented progress: with congresses and 
conferences mushrooming, printed matter piling up, the number of professionals 
increasing at such a rate that, unless arrested, it would overtake the population of the 
globe within a few hundred years” (Andreski 1972, 11).

4.	 Indeed, the question of errors is not a central topic for the measurement theo-
rist—and this is an admitted weakness of the project. However, error theories exist, 
e.g., one is outlined by Kyburg (Kyburg 1984), his theory will be discussed in the next 
chapter.

5.	 How much is the matter different in natural sciences or engineering and why—
these are legitimate questions. Of course, a more thorough analysis would be in place 
to cover the board scale of cases in different disciplines from pure science to policy-
driven (and founded) surveys. But this is not in the scope of the present text.
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6.	 For an introduction to factor analysis, see the works of Gould or Kootstra 
(Gould 1996, Kootstra 2004).

7.	 Without going into technical details, it is to be required for a main factor to be 
on an interval scale that all of the great bunch of correlations involved in the analy-
sis are linear. Ask yourself: what are the chances for one single manifestly linear 
correlation?

8.	 Trendler follows Maxwell (Maxwell 1890) in his account of experiments 
(Trendler 2009, 585).

9.	 Possible exceptions may be concepts fixed for the sake of a given “formal 
game.”

10.	 A clear indication is that the second volume of Foundations (Suppes et  al. 
1989) is largely devoted to geometrical representations.

11.	 By meaning here, I mean informally the scope a given notion has in expert 
discussions.

12.	 It is not always trivial to maintain a “counting science.” Consider biology. 
When assessing the extent of a population we may ask: how many individual corals 
are there on the reef? And it is not easy to find any meaningful answer (Godfrey-
Smith 2014, 67). I see counting in sociology unproblematic, at least, in this regard.

13.	 The use of existing datasets for an unforeseen purpose is not without example 
in natural sciences. For instance, a recent study calculates ocean temperatures through 
data on atmospheric oxygen and carbon-dioxide levels of a more than two-decade 
collection (Resplandy et al. 2018).

14.	 One possible grouping of datasets is by their purpose, another by their method 
of collection. By the first dimension we can broadly distinguish between administra-
tive and primarily scientific data collections. Not unrelated, by the second dimension, 
an apt choice is to talk about registers, counts, and surveys. (A taxonomy used in, e.g., 
PROMINSTAT, an endeavor for summoning migration-relevant databases in Europe 
[“PROMINSTAT Project” 2010].)

Administrative databases are maintained by the state or some local authorities 
for, no surprise, bureaucratic, or sometimes policy purposes. While other data are 
collected mainly of scientific interest, we cannot draw sharp margins, not in the least 
because scientific projects often serve policy purposes.

Registers are administrative databases encompassing information linked to 
individuals, which are regularly updated to reflect the current status. Counts can be 
described as datasets containing the numbers of events linked to individuals, popula-
tions; or the number of persons, linked to an event, location, etc., in a given time or 
reference time period. By surveys we mean (usually sample-based) data collections 
realized by interviews with respondents.

Censuses constitute a special case. They can be regarded as special as special 
counts, since the data collection is clearly tied to a time period (and repeated usually 
in ten years). Often they also involve surveys, realized on a whole population instead 
of certain samples. And, to make a full round, censuses are increasingly based on 
registers—at least in countries with highly developed administrative data collection 
systems.

15.	 A sentiment represented in Stinchcombe’s book, for instance (Stinchcombe 
2005). This view maintains that the laws of social sciences are essentially the same 
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as those of natural sciences. Some argue, however, that the former can live on only 
ceteris paribus laws, ones that assert causality if every other factors stay the same 
(Fodor 1974). This is not the place to dig deeper in this issue, however.

16.	 See Kootstra for a discussion of factor analysis, or Gould apropos of intel-
ligence measurement (Kootstra 2004, Gould 1996).

17.	 Bulmer is an almost recent example (Bulmer 2001).
18.	 Not all attires though, I will not address such sophisticated research projects 

here as, e.g., Falk conducted with his colleagues (Falk et al. 2018). Instead, with my 
two examples I try to keep thing as simple as possible, while indicating some typical 
features of these data collections.

19.	 Loyalty to a mustache brush brand, say, is not an easy case. It is quite a plausi-
ble presupposition that many of my friends and colleagues have no mustache, thus the 
probability of my recommending should be relatively low even I am highly devoted 
to the product. On the other hand, having no mustache does not prevent me or Debbie 
to recommend the very same brand, e.g., after hearsay, even though, understandably, 
we have no loyalty toward it whatsoever.

20.	 An analysis of this bias would be a quite interesting topic in itself, but lies 
beyond the scope of this study.

21.	 Observe that the party preference measured in a cohort is slightly different 
from party preference in the whole population. The difference lies in the very fact that 
the first is “non-adjusted.” The situation resembles contemporary timekeeping with its 
different time concepts.
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One could observe with a bit of oversimplification that everything said so far 
in this book can be viewed as flirting with one general question: what can be 
meaningfully said about nature by reading our gadgets? In this last chapter, I 
will also explicitly address what can be truly said about her. By investigating 
a proposal for a theory of measurement errors, we will find ourselves right 
in the middle of a dispute on (semantical) realism. It might not come as a 
surprise that I will defend a constructivist thesis. However, as talking about 
constructions—without being an architect—it will be immediately needed to 
set myself apart from some popular movements marching under flags with 
similar catchphrases. Having set the stage, I will draw my conclusions con-
cerning the validity of our ways of measurement.

5.1 MEASUREMENT ERRORS

The problem of measurement errors is by no means independent of the gen-
eral problems of empirical confirmation. It is commonplace that errors cannot 
be avoided; they are immanent in every kind of empirical data. When dealing 
with errors, one tries to make estimations on the reliability of data, and know-
ing how apt the data are is inevitable for valid inferences. Not in the least, an 
appropriate account for errors may be vital for choosing between theories—
even if one’s taste draws her away from talking about confirmation. In spite 
of the importance of this question, the literature for measurement errors is 
relatively poor.1

Let us begin with Thomas Kuhn’s visual illustration on what he calls the 
textbook account of measurement (figure 5.1) (Kuhn 1961). I reworked the 
picture a bit so to fit in better with the recent trends in fashion.2 The essence 
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is the same: according to the textbook story, the data describing the initial 
conditions are digested by the theoretical machinery, which produces numeri-
cal output in the end. These numbers are then placed against other numbers 
flowing from empirical procedures (measurement, that is). A reasonable 
agreement is a positive test for the theory of question. No one is after a per-
fect agreement, because nature is messy and a theory can never take account 
of all factors, and because our instruments are imperfect. Indeed, too-perfect 
agreement is often regarded as a sign of scientific fraud. But according to 
Kuhn, measurement rarely if ever play the above confirmatory role in journal 
science (which is more reliably reflects what scientists do). Rather, it has 
major role in the infrequent events called scientific revolutions by indicating 
the anomalies in the prevailing theories. But generally, during the normal 
course of science, measurement serves as a major tool of “mopping-up,” the 
theoretical consolidation after revolutions.

Though he refrains from dealing with the more mundane functions of 
measurement (consider, say, that the initial conditions can also be produced 
by measurement), Kuhn’s sentiment seems to echo well in the theories 
of measurement errors. What I reconstruct here is a theory of Henry Ely 
Kyburg (Kyburg 1984), but there seem to be a wider consent in the literature 
on sharply distinguishing between two kinds of errors.3 Systematic errors 
reflect discrepancies in theory choice; in the face of these errors more fit-
ting language (axioms system) can be found for the empirical data. When 
measuring distance with a laser beam with nearby objects of immense mass, 
a theory taking account of gravitational force is more in place. Systematic 
measurement errors indicate anomalies better than anything else, thus play 
an immense role in swapping theories, hence in scientific discoveries. By 
contrast, random errors can be seen as a kind of noise in the data stemming 

Figure 5.1  Kuhn’s Textbook Model of Measurement.
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mostly from our (necessarily) imperfect measuring methods and instruments, 
and possibly also from the vagueness of the concepts describing measurables. 
But how to identify the nature and source of errors, and thus, how to bet on 
a proper theory is not an easy question to answer, and involves some well-
known philosophical issues. Some of them will be touched upon in the next 
section.

We have already seen how the systems of measurement procedures can be 
accounted for as formal theories, and how their numerical representations can 
be established. Sure, when taking account of errors, things get more compli-
cated. According to Kyburg, for every given relation in a theory we should 
stipulate a distinct, corresponding relation on the empirical data (ibid.). Thus 
we have:

	(a)	 R, a relation instantiated in the models of our axiomatic theory.
	(b)	 R*, a relation instantiated in the empirical data.
	(c)	 Rm, a relation on a mathematical structure homomorphic to the models of 

the given axiomatic theory.

The issue gets even more complex when trying to give account of indirect 
measurement—and most of our measurement procedures are indirect. In this 
case we must introduce a further relation for the quantity measured indirectly. 
Systematic measurement, that is, measurement based on scientific laws—the 
most noble of measurements in Kyburg’s hierarchy—requires even more 
corresponding relations depending on the number of the involved quantities 
in the theory.

Let us go on with the simplest case. It is clear that R and Rm are linked 
by their structures being homomorphic. By what links R* to R? The latter is 
taken to be a relation imposed by the axioms, which, as such, can never ever 
be observed directly (not even in principle). The observable relation is R*. 
But homomorphism, of course, cannot be guaranteed for their corresponding 
structures. As an example, take R to be equality (in the sense that magnitudes 
in relation cannot be differentiated by the relevant procedure). Equality is 
taken to be transitive in most of the measurement systems. But in real, large 
enough datasets transitivity is often violated. It is a typical feature where 
errors are to blame.

How to reckon with this situation? As for a less dramatic approach, the 
authors of Foundations try to handle the issue by offering several legitimate 
ways to live with the crux of intransitive empirical data (Suppes et al. 1989, 
300–301). First, and this looks like a really easy road in any event, one might 
say that the inference leading from observational data to theories is surely 
an interesting problem, but a practical one, out of the scope of the theorist. 
Another approach—a bit more hardworking one—is to develop a statistical 
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tool to handle discrepancies in empirical data. One can work out, for example, 
a theory where parameters are introduced for denoting the relative frequency 
of x being greater than y in consecutive measurements: P(x,y). These param-
eters may be well used to “adjust” empirical data to the model. According 
to a third temper, discrepancies could well serve as nice information sources 
in many cases: as “errors” may be interpreted as insensibility for nuances. 
The Foundations works in the spirit of all these possibilities: among the neat 
formal systems for relative frequency parameters and insensibility it largely 
ignores the untidy staff of practical error handling.

Kyburg, on the other hand, as an advocate of the second approach, also 
keeps an eye on practice, and tries to give an account of error handling which 
is theoretically sound but, at the same time, calculates with the arbitrariness 
of practice. Regarding that he deals with philosophy rather than applied 
mathematics, he is right: practical issues indeed seem to be an integral part 
of the story.

Kyburg introduces a language, L, for the “ur-metacorpus” of quantitative 
observational reports (Kyburg 1984, 186–187). The corpus consists of infal-
lible and unrevisable records—or protocol sentences in the vocabulary of a 
long-ago bygone age:4

The fifth measurement of the magnitude x yielded ru;

where by r we mean a real number,5 and by u we mean a unit for the given 
quantity. The one above is not the sharpest form of a protocol record, but I 
will not discuss here (and I do not really have a strong opinion on) how such 
a sentence should look like.

From this it follows with zero probability that:

The value of magnitude x is ru;

which is bad news. However, goes Kyburg’s consolation, we can also infer 
from the record with a probability close to 1 that:

The value of magnitude x is between pu and qu;

where the p and q are also reals and r is an element of the interval [p,q]; and 
p and q are chosen aptly. What is more! It also follows (at least so Kyburg 
says) that:

The value of magnitude x is rʹu;

where rʹ is real number in the interval of [p,q] different from r.
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Clearly, the arguments for R* consist of r-s and the arguments for R con-
sist of rʹ-s; but now the problem is, instead of relating relations, how to have a 
clue on the relation between rʹ and r, at least, in statistical terms. Or, in other 
words, how to determine the [p,q] interval. To do this, Kyburg says, we need 
to accept some principles of statistical, practical, and moral nature (however 
surprising is the latter).

As an actual dataset is always limited relative to a model of an axiom 
system, we cannot, for instance, make infinitely many measurements, we 
need to accept a principle, which we can call the principle of similarity or 
the principle of statistical inference or the distribution principle (ibid.). This 
guarantees that a sample will always be similar to the whole population in 
important respects. In particular:

	(i)	 The relative frequency of a given type of error E is basically the same in 
the sample and in the whole population.

This is a rather strong principle, I think, and we have some reasons to 
distrust it. I am not after the very uncertainty lying at the heart of the whole 
“inductive statistical inference” issue. Rather, consider the particular and 
practical problems of measurement in different conditions, or in different 
orders. Reading equipment in various light conditions, or even before lunch 
or after lunch, or measuring very little or very large magnitudes may well 
yield diverse error distributions. It is rather bold to presuppose that our 
sample will take care of all these departures in distribution. As we have seen 
above in the case of party preference measurement—for this is a point where 
social science methodology has something to tell—it is indeed a hard work 
to exhibit a sample with aligning patterns to a whole. It is not there, it is not 
readily given, it must be produced with a help of a sophisticated theoretical 
and instrumental machinery.6 But all right, let us now go on with the simpli-
fied picture.

We need another principle to guarantee that we do not choose the margin 
of error (interval) too wide. That is why we have to state our practical mini-
mum rejection principle (ibid.):

	(ii)	 We should not admit more errors in our data than what we are obliged to 
admit.

This principle is not what we expect in a methodological context. It relies 
heavily on our moral convictions—or to be exact, more heavily than the pre-
vious principle does. At this point I cannot escape to ask: whence this obliga-
tion comes? One might think it must have its origins at a leading authority 
if along with it someone is bold enough to revise what is readily given by 
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nature. Second, in itself the principle sounds rather vague. Kyburg may also 
feel this, as he goes on to sharpen it. With regard to measuring length, he 
states:

[A]ll the judgments in the set might be in error. But to assume this would be 
gratuitous. So let us take the frequency of error to be the least we must assume 
in order to reconcile the set of judgments with the axioms for an extensive 
structure. (Emphases original.)

In the context of length, this principle may sound somewhat plausible. 
Now consider it for an arbitrary structure of magnitudes: when assessing 
data, we must have a forehand conviction about the underlying measurement 
theory. Without this we cannot take account of the errors, since our bet on the 
margins of error depends on how much should we “adjust” the data to be in 
line with the axioms of the very theory. When we are tired of consequently 
failing with the adjusting project, then we can drop the theory and start look-
ing for ones with a better fit.

No doubt, Kyburg’s account nicely ties a theory of error handling to theory 
choice, or, if you like, scientific discoveries. And also leaves us with a good 
deal of questions. For instance: how would I presuppose any theory in a more 
complex measurement situation? When facing with a large dataset of psy-
chometric research, how would I choose my theory? In these cases, often the 
very question is, what is our scale like? Or, what if there are many theories 
within the reach of basically the same effort in data adjustment? How should 
I choose one?

There is a regrettably popular answer for these questions on offer: once a 
scientist has a theory in mind, she almost never lets it go. Once she does still, 
the reasons for theory swap are outside of logic and scientific methodology, 
in particular, it has social nature. The undeniable fact that theories are always 
underdetermined by data led many philosophers to relativistic conclusions in 
different flavors, which, in turn, produced massive reverberations far beyond 
the realm of philosophy of science.

5.2 CONSTRUCTIONS

While it is commonsense that the account of philosopher, sociologist, or 
historian on the affairs in science tend to be quite different from that of the 
scientist himself, many practitioners are quite aware that much more is at play 
in theory choice than pure observational data. As an example, this is how the 
physicist James Bjorken put it:
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But whatever the pros and cons for accepting the orthodoxy [i.e., the incumbent 
set of theories], there are the attendant dangers common to any orthodoxy. With 
the risk of being banal, I feel compelled to express what I see as the biggest dan-
ger, which is that experiments become too sharply focused. While searches for 
what is predicted by the orthodoxy will proceed, searches for phenomena out-
side the orthodoxy will suffer. Even more important, marginally significant data 
which support the orthodoxy will tend to be presented to—and accepted by—the 
community, while data of comparable or even superior quality which disagrees 
with the orthodoxy will tend to be suppressed within an experimental group—
and even if presented, will not be taken as seriously. (Pickering 1984, 236)

This account leads straight into the contemporary debates on the miseries 
of scientific practice. What is and what is not under research, which research 
is rewarded by the academic system and which is not, what are the resulting 
distortions, and so forth (“Trouble at the Lab” 2013). But let us begin a bit 
farther out. Hume was the first to raise serious doubts about the principles 
of inductive reasoning and several philosophers followed him on this road 
in the twentieth century, as I already indicated in section 3.5 (chapter 3). By 
the other side of the same coin, Pierre Duhem showed, long before logical 
positivism got momentum, that logic is not enough for discarding physical 
theories, because arbitrarily many explanations can be held against the same 
body of evidence (Duhem 1906). Furthermore, theories are not “alone,” but 
they are always part of a bigger system containing auxiliary physical hypoth-
eses, for instance on the functioning of the applied equipment, thus it is never 
straightforward what to revise in face of recalcitrant empirical data. What 
he did not seem to intend to say is that we can never have rational reason 
to choose between theories. This is where Quine took up the issue, already 
in the fifties but most straightforwardly in the seventies (Quine 1951, Quine 
1975). According to him, theories are so seriously underdetermined that one 
can hold any theory in the face of any evidence, and one can revise any (not 
just the physical) part of the body of knowledge when needed.

At this point relativistic ideas broke loose. If there are no rational ways to 
choose between theories, each of them is equally valid, science cannot pro-
vide ways to tell which theory is better. Temporary prominence of theories 
is the product of contingent social and historical proceedings and events. 
As for one well-known example, Thomas Kuhn (Kuhn 1962) argued so. He 
attacked the view that old theories are often limiting cases for their succes-
sors, in the sense that explanations and predictions of the old theory are a 
subset those of the new one. In other words, he denied the cumulative nature 
of scientific knowledge. He observed that in any given period of what he calls 
normal science, the machinery of scientific research is driven by incumbent 
paradigms, which regulate the whole practice from valid research problems 
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through criteria for solutions to acceptable experiment protocols. Paradigms 
are considerably resistant to anomalies, but all of a sudden they may change 
in revolutionary ways. Now the resulting new paradigm is incommensurable 
with the previous one. There is no way for rational comparison, since all of 
concepts and methodology are strictly tied to a given paradigm frame.

In another famous book of which several updated editions were issued over 
the decades, Paul Feyerabend devotes himself to the task of “liberating” sci-
entific method (Feyerabend 2010 [1975]). He rightfully emphasizes that sci-
ence cannot and should not be built on methodological rules that are universal 
and fixed for good. From this he reaches the dubious anarchistic conclusion: 
“anything goes”—meaning that anything goes as scientific methodology. If 
this is taken to mean that there are no golden rules, one always have to rely on 
her intuition, creativity, and insights, we may even live with it. But as we read 
it as instead of accelerating, colliding, and measuring particles, it is equally 
fine to turn to an oracle, it is simply untenable. Unfortunately, Feyerabend 
provides reason for this latter reading, as he explicitly compares scientific 
knowledge to myths. It is to be noted, however, that interpreting Feyerabend 
is not easy, as he deliberately and admittedly plays around and brings his 
conclusions to the extreme, just to distance himself from them at other places.

Then came the movement of sociology of scientific knowledge in the 
works of, for example, David Bloor, Barry Barnes, Henry Collins, and Bruno 
Latour. They took the task of investigating the social, cultural, institutional, 
economical aspects of science upon themselves—which I would deem a nice 
and apt choice. Meanwhile, though, they have been spreading the word of 
relativism, sometimes explicitly and proudly attaching the tag on themselves. 
Many arrived to the conclusion that world or “Nature” (Latour 1987) has no 
role in scientific knowledge at all, it “in no way constrains what is believed 
to be” (Collins 1981). To put it roughly, if there are no constrains of nature 
and anything goes, every thought on the world is equally legitimate, they are 
only classified by contingent social conditions, accidental cultural trends, and 
incumbent political power. These sentiments were predestined to gain ground 
quickly outside the esoteric circles of philosophy of science. The thought 
the “everything boils down to subjective perspective and interests” (Laudan, 
1990b, X) provided to be fertile in the post-modernist, post-structuralist 
milieu of the era, and led, on the one hand, into “science wars” waged first 
between academic circles of “hard” and “soft” sciences (Sokal and Bricmont 
1997). Nowadays these wars are also fought fiercely within social sciences 
themselves (Pluckrose, Lindsay, and Boghossian 2018). Outside the aca-
demic world, the battle rages on around the “post-truth” nature of common 
talk with far-reaching consequences on the politics in Western societies.7 
Being around now for several decades without any sign of a decline in its 
vitality, relativism is a stubborn symptom.
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This is, of course, not the place to discuss these developments in detail. 
This brief syllabus serves only to provide a context for my explaining myself 
about using the words: constructive, construction, constructivism. For in line 
with the developments sketched above, constructions are often meant noth-
ing more or less than as social construction. Ian Hacking wrote a book with 
the title, The Social Construction of What? (Hacking 1999). In it, he writes: 
“talk of social construction has become common coin, valuable for political 
activists and familiar to anyone who comes across current debates about race, 
gender, culture, or science” (ibid., 2).8

As the title of his book and the volume of the processed material suggests, 
Hacking is a real expert of social constructions. It is therefore an apt choice to 
try my constructivist views in the face of his theses. Of course, I will restrict 
myself to the context of science. Science as a human endeavor is necessar-
ily part of the social realm. Its constructions, such as its concepts, theories, 
institutions, and gadgets, do not go without social aspects. Who would deny 
that my most mundane construction of an apple pie contains social ingredi-
ents, anyway? But apples are not social, not even if their productions requires 
human activity. Nor is the fact socially construed that I can survive with the 
pie instead of deceasing in hunger. Hacking also draws to similar conclusion 
by insisting on a distinction between on the one hand science as assemblage 
of truths, which is not social, and on the other hand science as activity, which 
is trivially social (ibid., 76). Unfortunately, he does not let us know how truth 
to is be understood. It would be all the more interesting to know, because he 
maintains a dedicated purgatory for the suspicious “elevator words,” such as 
fact, knowledge, reality, and truth.

Hacking identifies three main areas where the realist and the construction-
ist are necessarily in disagreement, the “sticking points.” I am a bit puzzled 
whether it is meant as a dichotomy. Of course many philosophers are not con-
cerned with what is going on in science at all. As I may rely on Dummett’s 
analysis of realism (Dummett 1993), certainly I am not a realist concerning 
the statements of science—nor concerning the statements about science, as 
it matters. But I cannot fully buy Hacking’s constructionist points either, not 
the least because they are not always crystal clear, much depends on their 
reading. Maybe, in Hacking’s world I am just a “constructivist” not a “con-
structionist” if it makes any sense at all.

Now for the sticking points. Hacking’s first point is contingency: the 
constructionist holds that no scientific proceeding is necessary, there can 
always be alternative, equally successful programs. The second brings in the 
old question of nominalism as a problem of structures: there are no inherent 
structures of nature, they are to be established—so says the construction-
ist. Finally, the realist and the constructionist differ in their explanations of 
stability, the latter holds that canonical scientific beliefs always has social 
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elements. I will look at these points one by one, in a reversed order, finishing 
with the first point, which I find the most important.

Hacking summarizes the view on stability as this:

The constructionist holds that explanations for the stability of scientific belief 
involve, at least in part, elements that are external to the professed content of 
the science. These elements typically include social factors, interests, networks, 
or however they be described. Opponents hold that whatever be the context of 
discovery, the explanation of stability is internal to the science itself. (Hacking 
1999, 92)

Internal of what science? The science as observed or the science of observ-
ing science? Physics does not make statements of the stability of its theories 
(though physicists, of course, may). No such concept like endurance of evolu-
tion theory exists in the vocabulary of biology. If sociology makes such state-
ments, they are probably and unsurprisingly of social nature. And the stability 
of social statements is also explained by social factors, as the reflexivity 
principle of the strong program of sociology of scientific knowledge requires 
(Bloor 1991 [1976], 7). But normally, with probably further exceptions as 
meta-philosophy, reflective statements on scientific activity is not part of the 
corpus of the discipline in question. Surly not in natural sciences which are 
usually meant above all in similar discourses.

But all right, let us take up the challenge with trying to give a plausible 
interpretation to this point. For instance:

Someone, who looks at some tenacious scientific status quo and finds that it has 
to do only with the rightfulness of the given class of scientific statements, is a 
realist.

In this case, there are not so many realists among the ones who theorize over 
science. For hardly anyone denies that conventions, that is, petrified social 
agreements play a crucial role in the success of a discipline. Without them, 
we could not even make and understand statements. Okay, then let us put it 
this way:

Someone, who looks at some tenacious scientific status quo and finds that apart 
from conventions it has to do only with the rightfulness of the given class of 
scientific statements, is a realist.

Now consider someone who holds that had the library of Alexandria not 
burned down in the first century BC, we would have considerably different 
picture on the economy of ancient times. The burning down of the library is 
not part of the history of economics, nor is regarded as a statement of it, but as 
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an accidental event. Is the given economist-historian necessarily a construc-
tionist, then? I am not convinced. Not the least, she may well hold that each 
statement of the history of economics is true or false, independently of the 
fact that we do or do not know which. Probably Hacking has slightly differ-
ent senses of realism in mind. It is common to suppose that the realist holds 
things like theoretical concepts refer and the successful theories are approxi-
mately true. I cannot see it makes much difference. In any event, though I 
cannot see it as a real sticking point, I willingly admit that social factors play 
role in the hegemony of certain scientific discourses.

More interesting (or more sticky) is Hacking’s second point. Are the struc-
tures “out there” or are they added by the scientist? I do not “dislike distinc-
tions” (Hacking 1999, 67), so I would set two kinds of structures apart. There 
are structures which are entirely human-generated, and there are those which 
are reflected and coded by human activity. Note that none of these kinds are 
devoid of social elements.

The first type of structures consists of conventional systems and formal 
games, such as the Latin alphabet and graph theory. One could object that 
the elements of the alphabet represent dedicated phoneme types, but this is 
not exactly the case. Orthography has to be learned, in other words, the con-
ventional link has to be established. For instance, the symbol “k” stands for 
quite different (types of) sounds of speech even within one language, such as 
English or Swedish. Consider the words tick, knight, kirke. True, alphabet is 
used for recording speech, but the interrelation is conventional and sloppy.9 
As for my other example, it is not my intention to dive into long argumenta-
tion on the foundations and nature of mathematics. It enough here to state that 
mathematical “objects” are in no way in the reach of our empirical means.

Now for the second type of structures. Different kinds of thermometers 
merged in the same vessel of water on the stove provide similar enough 
behavior to state that they reflect a structure in nature. Individual trees in 
a lane shows an order which can be reflected by some of our mathematical 
means. It is to be made clear, however, that no structure in nature is directly 
accessible for us. Whenever we are to exhibit a structure, we need a rather 
more than less rich machinery of the first type of structures. For instance, 
both of the above mentioned structures, alphabet and graph theory, are of 
great help when we are to make statements about neural network topology. 
Without them we could not create any piece of codified scientific knowledge.

As for the context of measurement, I noted earlier that I cannot side with 
Stevens, who, rather openly than tacitly, held that we can stipulate scale types 
opportunistically and according to our research interest whenever needed. A 
common perception of measurement is that when measuring we relate empiri-
cal data structures to mathematical ones. The first is not entirely human made, 
even if we use conventional and formal structures to represent them, and even 
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if nature rarely tells us strictly what exactly to use. But the answers of nature 
may guide us in our choices, so, we can establish congruence by iterative 
tests. Were it not the case, the whole project of measurement theory (and even 
measuring!) would have little meaning.

Finally, back to my two distinct types—it is to be noted that there may even 
be borderline cases of structures not fitting well in either of the above classes. 
For instance, I would be reluctant to decide which of the two types certain 
taxonomies belong to. But my point is straightforward still: human activity 
is essential in establishing structures. It does not mean at the same time that 
they are entirely arbitrary. Nature has a word in them.

This leads us straight to the first sticking point, which has to say a lot about 
arbitrariness: at each phase of history for every achievement there can be 
an alternative, equally successful research program. Note the term research 
program, invoking Lakatos (Lakatos 1970). Indeed, Hacking explains the 
notion of success with his insights (Hacking 1999, 70). A research program 
is empirically and conceptually progressive if its new theories make new 
predictions a richer but simplifying conceptual armor, while keeping the most 
robust predictions of the previous theories intact. They are degenerative oth-
erwise. Hacking does not let us know whether progressiveness equals success 
or if it is only the most important part of it, but in any case we can take it as 
a differentia specifica.

To stress the point of the constructionist, he turns, with overt sympathy, to 
Andrew Pickering, who arrived to his own incommensurability thesis while 
historically analyzing a period in high-energy physics in his book (Pickering 
1984). Particle physics with its quarks as we know it today is a product of 
contingent social, historical, instrumental factors. It was not necessary at all 
for the quark model to rule, the development of physics could have followed 
a non-quarky way, “old physics” could have provided to be equally progres-
sive and led to the same success. It did not, and this fact steals a bit from the 
strength of the argument. Anyhow, according to Pickering, the two stages of 
particle physics is incommensurable. It does not mean that they are logically 
incompatible, rather that their conceptual, phenomenological,10 institutional, 
and instrumental embedding are so different that they speak entirely different 
language. There are no ways whatsoever to compare them, they live in quite 
different traditions.

That the course of history could have been different is not an overly stun-
ning thought, and, as I already argued in the case of stability, it is perfectly 
compatible with realism. The contingency of the present state of knowledge 
does not confront with the sentiment that every well-formed statement is true 
or false, independently of our knowing which. True, Pickering professedly 
does not care about truth. For me it seems rather that he is playing some 
yes, no, black, white game when trying to avoid the words true and false 
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(especially in his The Mangle of Practice [Pickering 1995])—in which game 
he is rather clever, it is surely to be admitted.

But back to comparing research programs. Are there actual examples for 
equally successful, incommensurable programs? If there are, how could we 
know at all that they are about the same “object,” and we are not just trying 
to compare apples and oranges? For progressive programs in ethnography, 
ornithology, and linguistics are incommensurable for sure (even if one may 
find their common origins in ancient philosophy). So what ties the incom-
mensurable comparables together? A ready answer to this that they rely 
on the same set of data. But relying on the same bundle of tapes recording 
interviews with forest-living natives, ethnography, linguistics, and ornithol-
ogy may reach entirely different conclusions verifying or falsifying their 
actual theories. If this is what is meant by incommensurability, I cannot 
see any sticking points around. But all right, let us be more serious. As the 
relativist claims that all the data, their interpretations (not to say institu-
tions equipment and stuff) are all products of arbitrary social constellations 
or traditions, how do we know what to compare to what?11 In particular, 
have any data produced after a tradition split anything to do with the old 
tradition?12

In zooming to my view, let me take an even more simplifying jump. We 
began with particle physics, let us arrive now to glasses and cups. Glasses and 
cups can be found all over the world, embedded in different traditions and 
reflect quite wide range of cultural and anthropological factors. Could they be 
more different? They are different in volume, shape, and ornaments on a wide 
range, they have different names, they are involved in different rituals. Still: 
are not they similar enough? For instance, under certain circumstances (they 
are held properly, they have no holes, etc.) all are able to hold back liquid.

I do not want to appear ignorant to Pickering’s great work in Constructing 
Quarks (Pickering 1984). I appreciate his thorough historical analysis and his 
trying to show that the “quarky way” was not necessary, that particle phys-
ics could have developed in a different way. But even after swallowing the 
counterfactual, and presuming clear and definite boundaries for a discipline, 
the point comes down to the realization that theories and their conceptual 
machinery are in many respects accidental. To invoke the aviatic example as 
obligatory in this context: I can imagine a stage of aerodynamics without the 
concept of turbulence where airplanes still fly.

In his later book, The Mangle of Practice, which is otherwise full of really 
amusing case studies, Pickering offers a picture, or rather a metaphor on the 
role of nature in scientific progress (Pickering 1995). He describe scientific 
activity as a dance of agencies. Human agency—the scientist—sets up her 
equipment and tests it against material agency. The human agency becomes 
passive at this point and just reads the gauges. Now material agency has a 
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turn, it becomes temporarily emergent and usually the test does not work out 
for some reason. Nature resists. Then the human agency accommodates the 
resistance, modifies the equipment and tests again, and so on. This “dialectic 
of resistance and accommodation” (ibid., 22) is what “mangles” the content 
of science until a stable phase, a robust fit.

Note that according to the view the emergence of material agency is some-
thing like blind chance, nothing is determined beforehand. Hacking writes:

The constructionist about (the idea of) quarks thus claims that the upshot of the 
process of accommodation and resistance is not fully predetermined. Laboratory 
work requires that we get a robust fit between apparatus, beliefs about the appa-
ratus, interpretations and analyses of data, and theories. Before a robust fit has 
been achieved, it is not determined what that fit will be. Not determined by how 
the world is, not determined by technology now in existence, not determined by 
the social practices of scientists, not determined by interests or networks, not 
determined by genius, not determined by anything. (Hacking 1999, 73)

I do not have strong opinion on determination. But if it was really all that 
the “upshot of the process” is not entirely “predetermined,” I would willingly 
agree. Rather it seems to me that Pickering and Hacking are playing around 
with offering something and then trying to get it back with the other hand. 
First they admit that there is a material part in the story on science—we can 
ask nature and she answers. Then they hastily add that it is not an occasion 
for celebration. Because nature’s answers are entirely random, and only tem-
porarily emergent. It does not make much sense for me. Does it mean that 
reproducible experiments and airplanes flying from time to time are no more 
than a random (however robustly random) fit in every case? What else robust-
ness could mean that—yes, by the help of traditions, institutions, machines, 
and all—a certain regularity was established?

As stated above, with his sticking points Hacking seems to suggest a 
dichotomy, as if the only way to realism would be the denial of all social 
aspects of science, and the only way for an antirealist would be to accept 
some kind of constructionism. I hope to have shown in this section that it will 
not do. As for me, I do not hold that every statement of science is true or false 
independently of our knowledge. Nor do I deny the social nature of science. 
What I deny is that it is exclusively social.

Consider a rake. We could never stop stressing how much a rake is a social 
construction. Its concept and name(s) are socially constructed. Its fabrication 
and use are culturally embedded. And so on. Right. It is still quite painful 
when that construction smashes to the forehead after an unwary step while 
sneaking home through the garden at night. Did nature resist? I even venture 
that the lump on the head is not socially construed at all.13

 EBSCOhost - printed on 2/12/2023 9:16 AM via . All use subject to https://www.ebsco.com/terms-of-use



123Construction and Truth

5.3 MEASUREMENT AND TRUTH

I am convinced that the problem of truth should be addressed instead of put-
ting it on a shelf like Hacking, or overlooking it with a blank face as Pickering 
does. I will not take up the ambitious task of building a meaning theory in this 
short section, of course. What I do here is just provide a semantical analysis 
of a narrow class of statements: the statements of measurement results. Cer-
tainly, it may have morals for a wider field.

With what already has been said on procedures, structures, errors, and real-
ism in mind, let us take again the banal case of length. Having a rod, which 
we can also honor by the name r, we can illustrate the realist stance with the 
following statement:

(Real) The sentence “The length of the rod r is x” is true or false; indepen-
dently of our knowing which (and of our inability to know it ever).14

It is now easy to see what is the most unfortunate feature of a consequent 
realism. As we have found, the realist presupposes that (at least some of the) 
quantities are continuous. Again, we have realized that every measurement is 
error-prone and can be deployed within certain margins of error only. And, 
what is more, we realized that we cannot ever arrive at an irrational part of 
a unit by measurement—not even in principle. In particular, this means that 
we can always consistently replace whatever body of measurement data by 
the elements of the set of rationals. We must, then, see that every sentence 
asserting a measurement result is, to very high level of probability, that is, 
practically, false.

By contrast, the operationalist—an outright antirealist—denies (Real), 
but holds dubious views on meaning and truth at the same time. For if we 
maintain that measurement is mere assignment of numbers to objects—as 
the Stevensian does—we must conclude that every sentence asserting a mea-
surement result is trivially true. Since measurement is only assignment, we 
measured a magnitude once we assigned a number according to an arbitrary 
rule. Even by the more modest, instrumentalist, Bridgmanian version of 
operationalism, the very concept of a quantity is brought about by the given 
procedure we use. Hence, a given magnitude is constituted by a given mea-
suring act, and nothing more.

In short, a statement like:

The length of rod r is 123.5 cm.

is always false for a realist and always true for the operationalist. What is 
more, the realist does not even require a measurement procedure involved for 
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this, apart from a conventional agreement on units. By contrast, the opera-
tionalist—either an instrumentalist or an advocate of mere assignment—
requires a measurement procedure for such a statement to be assertable. A 
further question what else he requires. Anyhow, both views are at odds with 
our intuitive or common sense perception of measurement.

What a realist would answer to this is the following. Sentences stating 
results for successful measuring acts can be regarded as approximately true. 
By this we mean that we can always assign an interval to a measurement 
result which covers the real value of a magnitude with extremely high prob-
ability. Practically that means that every sentence asserting a measurement 
result should be understood as if a “plus or minus x” would be amended to 
it. So far so good, but now the realist has to face with the problem of deter-
mining x for an appropriately high probability. That is, she has now the not 
so trivial task of translating every sentence of measurement to the “real” 
language of intervals.

The operationalist could object as follows. I, Bridgman, can easily lie 
about my measurement results to my assistants. In fact, I am a bit afraid that 
my assistants would (let it, inadvertently) lie about their measurement results. 
So a statement like the one above is not always true. And truth is a private 
experience anyway. Well, okay, but at this point, where measurement cannot 
legitimately made public, we can doubt that we are by any tiny a bit better off. 
Again, can Stevens say the same? No, as long as he is consequent. Measure-
ment is nothing more than numerical assignment. But what else is uttering the 
above sentence if not numerical assignment?15

Still, the modest (instrumentalist) operationalist approach and also the 
realist one have some morals to consider. First, there is no sense in talking 
about quantities and magnitudes without having an effective measurement 
procedure at hand. Second, the deviations in our actual measurement of a 
given magnitude often tend to fall into a given interval. As with technologi-
cal progress the precision of our equipment is increasing so gets this interval 
narrower, but, of course, never closes to zero, always remains an interval.

With this picture in mind we can endorse a constructive approach: the 
continuum of a quantity can be conceived—entirely not independently of the 
appropriate measurement procedure—as an ever-changing chain of overlap-
ping (fuzzy) intervals. Thus it is somewhat natural to search for homomor-
phisms for our measurement systems in the realm of intuitionist reals (or a 
substructure of them).

In a constructive setup, when establishing equality between two magni-
tudes by a measuring procedure, we can say they are equal within our current 
margins, that is, so to say, the initial segments of their “approaching” free 
choice sequences are identical—and that might not always be the case. What 
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we cannot do: we cannot say before any measurement that one magnitude is 
either less, either equal, either more that the other. We can say only that they 
are in a relationship analogue to one of the intuitionist reals. Two of the infi-
nitely proceeding sequences (as two elements of the same spread) are equal 
if their nth components are equal for every n (Heyting 1956, 36). Practically 
that means that when exhibiting the consecutive elements of two series, we 
find them equal as all of their elements are equal until n. Should we find that 
they differ in their (n + 1) th element, we would not regard them as equal 
from the very moment we exhibited those elements. Hence, when failing to 
meet the requirement of the transitivity of equal measures, so that a ≈ b and 
b ≈ c but a c , we do not have to give up our belief of measureability.16 For 
we just compared the nth element of our sequence of measuring a and b, the 
(n + 1)th of our measuring b and c and the (n + 2)th of our measuring a and 
c. The transitivity of equality is not necessarily violated. But it is when these 
sequences entirely depart from each other.

Now, how about errors? On might justly feel that there is no real room 
for an error concept in a constructive approach. But if we take a look at the 
discouraging complications that burden an error theory, we can deem it a 
virtue rather than a loss. Still, we cannot just stipulate sequences, we need 
some empirical anchors. Let us take again the notion of truth. Of course, the 
constructivist cannot hold (Real), in fact, explicitly denies it. Instead, he holds 
the following:

(Con) The sentence “The length of the rod r is x” is true or false in virtue of 
our valid measurement procedures.

The constructivist has to answer the question: how to assess the validity 
of our procedures? But first note how (Con) sets constructivism apart from 
operationalism. If the constructivist held that the meaning of quantity terms 
and the respective sentences are fixed by their measurement procedure, he 
would also hold by (Con) that the meaning of sentences is determined by 
their truth conditions. But this one he denies, as he maintains that truth and 
falsity can only be asserted in virtue of some knowledge, proof, procedure, 
or construction, and, at a given point, entirely meaningful sentences may be 
devoid of truth-value, possibly for good and all. Consider these examples:

	(i)	 Every even integer can be expressed as a sum of two primes.
	(ii)	 The number of the elementary mercury atoms enclosed in my favorite 

thermometer is even.
	(iii)	The radioisotope thermoelectric generators of Voyager 2 generate less 

than 260 watts at the moment.
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As for (i), the fact that no one has ever found an exception does not make 
the statement true. For it to be true, a proof would be needed which meets all 
the requirements placed against a proof by the community of mathematicians, 
and which is accepted by most of the experts. By contrast, for it to be false it 
would be enough if someone could exhibit an even number of which it can 
be shown that it cannot be reached by the addition of exactly two primes. As 
none of these conditions are fulfilled at this stage in the history of mathemat-
ics, (i) is neither true nor false.

As long as our atom model goes, and as long we exclude evaporation, 
ongoing chemical reactions, and other means of escape, (ii) is quite clear-cut. 
The number of atoms is countable and finite. Nevertheless, I am not aware of 
any viable means of counting atoms in significant amounts of material. Even 
if such exists, its application for a closed system would probably be more than 
troublesome. Fortunately, (ii) lacks any scientific interest. Still, the statement 
is meaningful, and we do not have any grounds to decide on its truth-value.

There may be more at stake around the truth of (iii). I am not sure whether 
Voyager 2 actually sends diagnostic information on the power of its gen-
erators or not. (I would not think it does.) But only suppose we can send a 
request for this information at t

1
, and Voyager 2 sends its fine-grain measure-

ments “immediately” upon receiving our message. It would take more than 
33 hours (NASA Jet Propulsion Laboratory 2018) to get the result at t

2
 (at 

the place we associate the clock readings with). Now, how to understand “at 
the moment?” One could argue that we in principle have no way to know 
what is the situation “now.” Someone else could (rightly) insist that we can 
cope with simultaneity in an operational way: all there is to be known is that 
the remote event happened (conventionally) half-time between t

1
 and t

2
. On 

the other hand, we have ample information on the buildup of the probe, the 
parameters of its supply system, and the half-life of the isotope applied in its 
generators. Based on this information we can make some calculations and 
estimate the sum power of the generators “around” t

1
. Although we may deem 

it a less fine-grained result, still we can conclude that in virtue of our more or 
less reliable information (iii) is true.17

So again, as shown, the constructivist cannot hold that statements are just 
true or false by themselves, nor that their meaning lies in codified measure-
ment methods. As for meaning, here we only tentatively suppose that the 
meaning of terms is given by how they are used by competent (expert) speak-
ers and the meaning of sentences is given—roughly and typically—by the 
meaning of terms and their way of composition. As for truth, we need some 
more work to show the place of empirical factors, at least in the small realm 
of evaluating statements of measurement results.

The above examples suggest that truth heavily depends on institutional and 
instrumental factors. This is so. A possible proof for (i) should be canonized 
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by the community of mathematicians, the truth (or falsity) of (ii) could only 
be established with an appropriate tool at hand. Measurement in cases like 
(iii) relies heavily on the actually existing theoretical background. From 
this, one could conclude that truth or falsity depends entirely on contingent 
social and historical factors. And this is not so. I can admit that much that 
measurement procedures has to be canonized in order to make them apt for 
determining which statement is true, which is false. Neither my measure-
ment of length by my steps, nor Bridgman’s subjective experiences provide 
enough grounds for a valid measurement procedure. At least in the context 
of science. The validity of a procedure is context-dependent, and the context 
of science and engineering requires reliability (reproducibility) and publicity 
in measurement.

Again, a bet on the validity of a procedure may contain complex theoretical 
considerations, but also pre-theoretical insights and anti-theoretical commit-
ments. These latter are our main concern here. Let us take again Regnault 
and his thermometers. When he identified a group of gases showing similar 
enough behavior under the same circumstances (i.e., expanded on the same or 
similar enough scale while heating), he bet on this group as the best materials 
for a thermometer. He did not supposed it to be “right” kind of thermometer, 
only that here we exhibited congruence (nature affirmed the approach), and 
this fact places the identified materials above the ones where we observed 
diverse behavior. Regnault’s approach can be said to be anti-theoretical in 
the sense that confessedly and deliberately avoided indulging in speculations 
around the reasons of the behavior of different materials and any law-like 
relations between physical quantities. Regnault meant to rely on his experi-
mental aptitude only.

Still, Regnault’s approach did not go without—and actually no experi-
ment can go without—some minimal theories, or tacit presuppositions. For 
one, he surely supposed he had got in possession of different gases from 
time to time, and this conviction could hardly be reached without theo-
retical elements. He possibly had theoretical grounds in believing that his 
vessels do not bring about some false regularity, as if some wizard would 
distort them to behave so. He also possibly surmised his own sharp-sight. 
And a good deal more. Of course, what he would have admitted to be theo-
retical and what he just tacitly relied on, we cannot tell. But even with his 
presuppositions, his accomplishments work as a fundamental finding on 
the ways of nature. The stage he arrived at shows considerable stability (as 
Hacking or Pickering would put, it reached a robust fit), his experiments are 
reproducible, his findings eventually provided to be apt for an embedding 
into a subsequent theoretical framework. But above all, his results provided 
grounds for a consistently applicable temperature scale independently of the 
latter theoretical support.
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In general, the exhibition of congruence may involve much more sophis-
ticated theoretical machinery and even delicate means of institutional 
coordination as we have seen in the case of timekeeping.18 But it should 
not necessarily work this way, and epistemic iteration always has some anti-
theoretical feats. The whole story of theorizing has to begin somewhere. For 
instance, when we establish some congruence by our iterative procedure, we 
do not and should not presuppose that there is a magnitude ascribed to some 
object of study M

r
 staying constant between t

1
 and t

2
. Not in the least, at 

first we do not have theories on simultaneity or time spans. (And generally, 
it is also rather doubtful if we should presuppose such thing in any case by 
default.)

In an ideal neverland, only after reaching a significant body of sensory 
data showing regularities in possibly several respects do we arrive to a point 
where we build our laws and theories. But we can identify quantities either 
by sophisticated theoretical machinery, or by naive insights, and then we can 
begin to deal with calibration. That is, we can begin to sharpen and canonize 
our procedures for measuring magnitudes of a given quantity with the help 
of congruent phenomena.

“This convergence provides a basis for a workable notion of accuracy. We 
can say that we have an accurate method of measurement, if we have good 
convergence,” Chang writes (Chang 2004, 217). I think we should be more 
cautious in talking about accuracy. I would rather prefer terms like reliability 
or resolution. But apart from this, he is right. As values, which interestingly 
(and misleadingly) can be both called “real” or “ideal” in this context can 
only be seen as blurred and non-accessible limits for iterative operations, 
by reliability or resolution we can mean some intuitive (even if technical) 
assessment of procedural aptitude. Chang says: “truth is a destination that is 
only created by the approach itself” (ibid., 217). No, truth is not a destination, 
but an intermediate station, though it is indeed created by, or better, can be 
ascribed in virtue of the approach. Iterative, canonical procedures by which 
we may track congruent phenomena provide our only grounds for the assess-
ment of truth or falsity of our statements of measurement. This way they 
are really important constituents of knowledge—may whatever be meant by 
this last concept. What is to be admitted anyhow: truth is neither future- nor 
past-proof.

A final note. To say that none of our individual pieces of measurement can 
be in error does not mean that the constructivist cannot have expectations 
on the outcomes or theoretical considerations for classifying the results. She 
may well have. Consider a circle drawn in the sand of the beach. The law on 
the ration of diameter and circumference will likewise be guide for the realist 
and the constructivist when making measurement on the properties of this 
circle. This ratio may provide grounds for explaining correlations. Now the 
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problem for the realist will be to account for the lack of correlation! For he 
surely insists that all of the measurements are in error, but he probably will 
be reluctant to give estimations on the error margins, despite the laws and 
theories applied in the procedure. Perhaps he would be tempted to say that 
this circle cannot even be measured properly.

5.4 CONCLUDING REMARKS

In one form or another, most of the problems raised in this book have been 
discussed many times during the course of history in analytic tradition. These 
issues, however attired, escaped permanent settlement from time to time, just 
as the concerning general rule for philosophical problems requires. Here, of 
course, I cannot hope to have solved all (or even any) of them for good and 
all. Still I hope I could (constructively) contribute to the ongoing debates in 
the philosophy or epistemology of science with my own insights. In particu-
lar, I did not dare to take a task like building a general meaning theory for 
scientific statements.19 My more modest aim was just to show a plausible 
semantic interpretation for an important subclass of them. And I do hope I 
succeeded in this humble task.

My train of thought went as follows. I observed that the conceptual armory 
of the early representationalists is flawed when it comes to measurement. For 
one, the status and aptitude of their rules are more than unclear. Again, con-
catenation, an empirical procedure type central in their theories, is unfeasible 
as a basis for a consistent, non-circular concept of quantity. In the light of all 
these, their classification of quantities also fails. The investigations lead to the 
conclusion that our equally conventional and operational ways for exhibiting 
congruent phenomena via empirical procedures could possibly serve with the 
needed grounds.

I analyzed some awkward peculiarities of a realist stance with regard to 
quantities and continuum. I showed that a bet on an “objective” continuum 
is not only metaphysically burdening, but also gratuitous. A fragment of the 
rational numbers are enough for representing any kind of empirical data as 
there always exists a consistent renaming. After taking notice of the vital 
need for continuous functions in sciences, I proposed to endorse the concept 
of real numbers and continuum in constructive mathematics (along with an 
intuitionistic logic).

After surveying some of the main points of the everlasting discussions 
and controversies on social science measurement, I arrived to the conclusion 
that—in addition to the datasets trivially measurable by counting—relying on 
congruent phenomena is, to an extent, open for these disciplines as well. One 
example was the application of conjoint measurement, and I indicated that 
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there may also be other ways. In a minor case study on the dubious practice 
in some ventures in preference measurement I implied the in-principle pos-
sibilities for improvement also.

Turning back to issues of realism and constructivism I tried to make clear 
what is and what is not implied by my constructivist approach in the light of 
a general constructionist sentiment. I cannot say I succeed. Constructionists 
incriminate some suspicious words, then they either still use them or replace 
them with likewise suspicious words or whole metaphors. Hence, it is not 
entirely clear what is implied by their stances. Anyhow, the least we can say 
that one can be an antirealist without embracing any radical social construc-
tionist view. In particular, one can deny that every well-formed statement 
is true or false independently of our exhibiting which, without holding that 
nothing is non-social.

I hoped to show that both the consequent realist and the pure operationalist 
must hold an awkward position in the face of the simplest sentence stating 
a measurement result. Namely, it is always false for the former and always 
true for the latter. A way out may be to embrace a constructivist view, where 
valid procedures indeed grounds truth or falsity, but do not determine mean-
ing (though may add to it). The assessment of validity is in most cases not a 
straightforward task, though, and here communities and institutions indeed 
enter the picture. Exhibiting congruence by a proper instrumentation may 
constitute procedures in virtue of which we may legitimately assess the truth 
values of relevant statements. There is surely a spectacular loss (if it is): we 
cannot name any errors around.

I would not deny that the results presented here leave several problems 
open. Here I just mention two major ones, one for methodology, one for 
semantics. They may also mark the way forward for further investigations.

As for the first, it is entirely not clear at this point how the search for pro-
cedures to exhibit congruent phenomena could be worded as a general meth-
odological principle. These procedures come in many forms, from applying 
conjoint structures to comparing atomic clocks. Sometimes they require only 
a minimal set of presuppositions plus experimental aptitude, in other cases 
they rely on deep theoretical background. It happens that they cannot go 
without a rich theoretical, instrumental, and institutional machinery, plus a 
large bag of ad hoc commitments. At the first approach, it is hard to see the 
common grounds. Probably the only principle mentioned in this study is epis-
temic iteration. Here we are likewise in need of further analysis, but at least 
it indeed sounds like a good candidate for the main concept in a principle for 
scientific research. It is to be seen, however, that on normal Sundays we are 
rather ambiguous with iteration. Consider a mother measuring the tempera-
ture of her child. She often repeats her measurement if it does not meet her 
expectations. Never if it does.
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Now for semantics. We played a bit around meaningfulness in this text, 
that is, around the criterion of sensible implications from measurement pro-
cedures. As we have seen, keeping an eye on invariant properties may help us 
to cogent inferences. It is still unanswered by my inquiries how the meaning 
of a concept is constituted, and what role truth plays in its constitution. Chang 
proposes that by conformity and overlap of procedures we can guarantee 
meaningful concept broadening or drift. But this possibility is rarely if ever 
available in practice. Concepts usually tend to behave in much more untamed 
and naughty ways. In a typical case it is really hard to tell what measurement, 
as a valid procedure for exhibiting truth, adds to their meaning.

Let us take a case which we can call the Norwegian shoreline problem. The 
concept of the length of Norwegian shoreline can be seen to be hopelessly 
vague, but if we are a bit touchy on vogue, we rather call this length a fractal. 
Fractals are mathematical objects with fractional dimensions, usually arrived 
at by some endless iterative operation. In the case of the length in question, 
the result of our measurement is highly sensitive to the density of the points 
between which distance is measured, that is, to the resolution of our data 
collection. The more point we have to work with so the shoreline is getting 
longer.20 One could arrive to the conclusion that this length concept has no 
meaning at all, unless we suppose that country limits may be of fractional 
dimension, which, I think, neither Norwegians fishermen nor border patrols 
do. As for me, I think the length of the Norwegian shoreline is a meaningful 
concept. I also think that we can make true statements on it—even though it 
remains a question as to what is the relation of truth and meaning in a non-
truth-conditional semantics. For instance, it is not of fractional dimensions, 
since it is not a mathematical object. It is also not pink. What is more! We 
can insist that the length of the Norwegian shoreline is n meters, in virtue of 
our recent and canonical measurement procedure. Nevertheless, is not clear 
how exactly the original concept is shaped by this.

NOTES

1.	 Interestingly, the authors make a false reference for a probably never written 
chapter of Foundations on errors (Krantz et al. 1971, 13). However, the opus does 
account for “errors”—as threshold representations (Suppes et  al. 1989, 299–383). 
Again, Campbell also proposed an error theory somewhat similar to the one discussed 
in this chapter (Campbell 1920). In the contemporary literature the issue is traded as 
the accuracy problem (Tal 2011, Teller 2013, Grégis 2019).

2.	 The original image in Kuhn’s paper features a hand mill (Kuhn 1961, 163)
3.	 See Berka as an example (Berka 1983, 196–198).
4.	 Interestingly, Kyburg denies the possibility of such infalligible sentences at 

another place (Kyburg 1984, 234)
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5.	 We rarely use others than rationals in measurement reports, but we should 
by no means exclude this possibility. We may easily let someone report a result as.  
(Even though, as I have proven in section 2.5, rationals are enough for reporting 
measurement reports.) Well, she may even use hyper-complex numbers, but let us 
keep things simple.

6.	 It is not entirely clear how to interpret the principle. Either it says we should 
always suppose the same error distribution in the sample than in the population, or 
that we must take care of such a distribution by all of our means.

7.	 If Laudan called American political campaigns the most “pernicious manifes-
tation of antiintellectualism” at the dawn of the nineties (Laudan, 1990b, X), I really 
wonder how he would adjust his words to the recent situation.

8.	 Most probably, the term became in fashion after Berger and Luckmann (Berger 
and Luckmann 1966).

9.	 Forget now the linguistic theories on this feature, I do not think they are rel-
evant in this context.

10.	 Phenomenology in this context means the first-line interpretation of 
accelerator data.

11.	 Not in the least, whence constructionists get the strength to peek out from one 
tradition and talk about incommensurability? Reference, truth, and other stuff are not 
on their agenda, still it is worth a question: what do they do when typing a sentence 
on social constructions on their socially constructed keyboard?

12.	 Let it that they have. Even in this case we can keep with Laudan’s realist: “You 
claim that because no one has shown that resurrection of Aristotle’s biology [claim-
ing that offspring entirely derive their traits from the father] is impossible, we should 
regard ‘the weight of reason’ . . . as equally balanced between that paradigm and its 
successors. I think that is crazy. . . . [It is] conceivable that Aristotle’s biology might 
be successfully revived. . . . But that is not the same thing as saying that, given current 
evidence, it’s as reasonable to believe that human beings reproduce in an Aristotelian 
fashion as it is to believe that they reproduce in the manner of modern embryology” 
(Laudan, 1990b, 83–84, emphasis original).

13.	 To be honest, I am not sure how much am I at odds with Hacking or Pickering 
by this. The first invokes reality and truth every now and then. The latter heavily relies 
on the elevator attribute: “material.”

14.	 A disclaimer is in place here. It is by no ways a self-evident task to describe 
a realist stance in the context of measurement (or anything else). My fictive realist 
opponent is my construction, of course. On the other hand, many theorists and prac-
titioners are self-confessed realists, who do not have the urge to clearly state what 
they exactly mean on their realism. It is often insisted, however, that uncertainties 
are essential part of the result, not an assessment of it. I will touch on this point in a 
minute.

15.	 There is still a possibility that not every numerical assignment is measurement. 
In this case one should tell why uttering the sentence does not qualify as measure-
ment. Anyhow, as no operationalist ever, to my knowledge, indulged in such specula-
tions, we have no tracks to follow here.

16.	 We are not inclined to abandon it anyway, rather we tend to point the unreli-
ability of our equipment.
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17.	 As of December 2018 the power of the generators is estimated to be around 
249 watts (NASA Jet Propulsion Laboratory 2018).

18.	 “In particular, the function of ad hoc corrections, rules of thumb and seemingly 
circular inferences prevalent in the production of UTC requires explanation. What 
role do these mechanisms play in stabilizing UTC, and is their use justified from an 
epistemic point of view? . . . I will consider two explanans that have been tradition-
ally proposed for the stability of networks of physical measurement standards: (i) 
The empirical regularities exhibited by the behaviour of measurement standards (ii) 
The social coordination of policies for regulating and interpreting the behaviour of 
measurement standards” (Tal 2016, 8).

19.	 Such a theory is not an easy meat anyhow. Michael Dummett, an eminent one 
in this field, spent much of his life in his efforts for just clearing the way for such 
theories. The monumental and representative volume of Auxier and Hahn on Dum-
mett’s intellectual achievements nicely witness this fact (Auxier and Hahn 2007). On 
the thousand pages only a fragment of the texts could be said to be independent of the 
problem.

20.	 There is no definite limit for this series, as it would align with a curve. The 
place of the subsequent measuring points are random. But randomness is not the key 
point. Consider the simplest fractal. Take an equilateral triangle, and take middle 
third of each edge. Draw on these edge fractions equilateral triangles, now you got 
hexagram. Now iterate the operation on each newly made edge, and so on infinitely. 
Now, try to estimate the perimeter of the resulting object.
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