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Table of Symbols
In the Leontief system, economic variables are measured in physical terms or inmon-
etary terms, as explained throughout the text. In the Sraffa system the economic vari-
ables are usually measured in physical terms. Some variables are dimensionless. We
define the following variables1:
aij: the input-output coefficient aij is the quotient of the value zij of the bundle of

commodities i (Input) and the value of the total outlays xj, produced during a
considered previous period (year). The amount of commodities i of value aij
is required for the production of one value unit of commodities j (Output). It is
also called technical coefficient, coefficient of production, or direct input-output
coefficient, and defined as aij = zij/xj, i, j ∈ {1, . . . , n};

A: the input-output coefficientsmatrix (technical coefficients matrix, direct input-
outputmatrix or coefficientsmatrix) inmonetary terms, is defined asA = (aij) =
Zx̂−1, which is the definition going on from the matrix element: aij = zij/xj;

B: the model generation matrix (in an interindustrial market), e.g., Bp = p, here
the matrix B generates the price vector p;

cij: the input-output coefficient; in the context of the Leontief Input-Output econ-
omy, cij indicates the amount of a bundle of commodities i (Input) of sector Si
in physical terms, required for the production of one unit of a bundle of com-
modities j of sector Sj (Output) in physical terms, and defined as cij = sij/qj,
i, j ∈ {1, . . . , n}. The coefficients sij, qj come from the considered previous period
(year) and are measured in {physical unit i/physical unit j}; in the context of
the Sraffa price model, each bundle of commodities i contains one and only
one commodity i;

C: the input-output coefficients matrix in physical terms of single product indus-
tries, noted and defined as C = (cij) = Sq̂−1;

CT : the input-output coefficients matrix of joint production, noted and defined as
CT = SF−1;

di: in the context of the Leontief Input-Output Tables, di is the final demand (con-
sumption) of a bundle of commodities i in physical terms; in the context of the
Sraffa pricemodel, di is the produced surplus or net product of exactly one com-
modity i, measured in physical terms;

d: in the context of the Leontief Input-Output economy, d is the vector of final de-
mand; in the context of the Sraffa production system, d is the vector of surplus,
also called the vector of net product. In both cases the vector coefficients are
expressed in physical terms;

dij: the distribution coefficient is, in the context of the Leontief Input-Output econ-
omy, the value of a bundle of commodities i (Input) of sector Si per unit of value

1 The French word numéraire is spelled in English as numeraire. Both spellings are used.
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VIII | Table of Symbols

of commodities i, distributed to sector Sj for the production of a unit of that bun-
dle of commodities j (Output). It is defined as dij = zij/xi = sij/qi , i, j ∈ {1, . . . , n}
(monetary of physical units). The coefficients zij, sij, xi, qi come from the con-
sidered previous period (year); in the context of the Sraffa price model, each
bundle of commodities i contains one and only one commodity i;

D: the distribution coefficientsmatrix is defined as D = (dij) = x̂−1Z = q̂−1S; it is a
stochastic matrix, if there is no surplus, i.e., x = xI or q = qI (no final demand
or no surplus);

D: the total final demand of the economy, given a price vector p = [p1, . . . , pn],
expressed in a chosen currency, D = d ⋅ p;

e: the summation vector, defined as e = [1, 1, . . . , 1];
fi: the coefficient of total final demand (consumption) of sector i inmonetary terms,

also called total final use, e. g., in the Swiss IOT;
f: the vector of the coefficients fi of total final demand (use) for sector i, f =
[f1, . . . , fn], components inmonetary terms;

F: the output matrix, called also by Schefold ([103], p. 49) the matrix of outputs
F = (fij);

F: the total final demand (consumption) of the economy, the sum of final demands
fi inmonetary terms, F = e ⋅ f;

H: the direct and indirect capital matrix or Pasinetti matrix;
I: the identity matrix of any dimension n ∈ ℕ, with explicit notation of the di-

mension: In
I − A: the matrix (I − A) is usually called the Leontief matrix, the matrix (I − A)−1 is

referred to as the Leontief Inverse;
k: usually notes an arbitrary coefficient, i. e., k ∈ ℝ+;
K: the total operating capital, i. e., the value of the total means of production, mea-

sured in numeraire or inmonetary terms;
Lj: the annual quantity of labour or required working time, employed in industry

Sj, j ∈ {1, . . . , n}, to produce the annual quantity qj of commodity j, usually mea-
sured inman-years, component of vector L;

L: the vector of labour L = [L1, . . . , Ln], or vector of the quantity of labour;
L: the total quantity of labour (i. e., number of workers) of an economy, L = ∑ni=1 Li;
λC: the Frobenius number, in connectionwith the Perron–Frobenius theorem for an

irreducible and non-negative or positive matrix C;
m: the number of sectors in a subsystem of the actual n-sector economy, m ≤ n,

i. e.,mmay note the number of non-basic commodities;
M: Manara’s transformation matrix;
n: the number of sectors of the actual economy; this economy may be imbedded

in a larger one whose dimension is unknown;
P: the total profits of one year,measured innumeraire or inmonetary terms; profits

are usually non-negative, P = ̃r ⋅ Y ≥ 0;
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pi: in the context of the Leontief Input-Output economy, it is the price pi of the
bundle of commodities i ∈ {1, . . . , n} of sector Si per unit of production; in the
context of the Sraffa price model, each bundle of commodities i contains one
andonly one commodity; the pricepi ismeasured either in units of a numeraire,
selected among one of the produced commodities or, alternatively, measured
in a unit of a usualmonetary currency;

p0: a chosen price unit, acting as an exogenous variable in a price model; if a com-
modity i ∈ {1, . . . , n} has been selected as a numeraire, pi = p0 sets its price;

p: the vector of prices pi, i = 1, . . . , n, p = [p1, p2, . . . , pn];
p̃: the vector of price indices p̃i, i = 1, . . . , n, p̃ = [p̃1, p̃2, . . . , p̃n];
πi: in the context of the Sraffa price model, πi is the labour per unit of produced

total output qi, i.e., πi = Li/qi. Then, π−1i = (Li/qi)−1 = qi/Li is the productivity
of labour in industry Si;

π: one forms the vector π containing the labour components πi per unit of pro-
duced quantity of commodity i, π = [π1, . . . ,πn]. It is called the vector π of
labour per unit of commodities;

qi: the total output of commodity i in physical terms, produced by sector Si;
q: the vector of total outputs qi in physical terms, produced by all the sectors Si

together with the final demand di;
qI : the vector of total outputs in physical terms of the interindustrial part, produced

by all the sectors Si, without final demand di;
R̃: share of national income to circulating capital or surplus ratio, R̃ = Y/K;
̃r: the share of total profits (profit share of total income), ̃r = P/Y ;
r: the rate of profits, r = P/K;
R: the productiveness of an economy R = (1/λC) − 1, in Sraffa’s terminology R is

called themaximal rate of profits, Sraffa [108] Par. 30;
R: in a Standard system R := dj/(qj − dj), j = 1, . . . , n is the ratio of surplus dj to

the total means of production (qj − dj) of commodity j; in a Standard system
R = R̃ = Y/K, Sraffa noted R the Standard ratio, [108] Par. 29;

r0: a fixed value chosen for the rate of profits r = r0, 0 ≤ r ≤ R, acting as an
exogenous variable in a Sraffa price model;

sij: in the case of Input-Output Tables (IOT) the commodity flow coefficient sij rep-
resents the bundle of commodities (Input) of sector Si in physical terms, re-
quired for the production of the bundle of commodities (Output) by sector Sj. It
presents the transaction in physical terms from sector Si to sector Sj (see Miller
and Blair [65], p. 11); in the case of the Sraffa price models, the commodity flow
coefficient sij represents the quantity (Input) of one commodity i in physical
terms, required by industry (branch) Sj for the production (Output) of either
one commodity in single product mode or one ormore commodities in joint pro-
duction mode;

S: the commodity flowmatrix of the transactions sij (intermediate input) between
pairs of sectors (from each sector Si to each sector Sj), i, j ∈ {1, 2, .., n}, expressed
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in physical terms; In the context of Sraffa it is the matrix of the means of pro-
duction in physical terms and represents the technology;

Sj: denotes the sector j of industry or of production, j = 1, . . . , n;
T: total tax revenue: totality of collected taxes during a year on the various levels

of the administration (local, district, state);
T: Schefold’s transformationmatrix, (basic andnon-basic commodities), encoun-

tered in Chapter 6;
T: the price coefficientsmatrix (in an interindustrial market): Te = p; every com-

ponent tij of matrix T is the part of the price pi, attributed to the sector Sj,
j ∈ {1, . . . , n}, for the effort of production of commodity i, encountered in Chap-
ter 9;

U: the (average) national income per unit of quantity of labour, U = Y/L;
υj: the total value added of sector Sj;
υ: the vector of total value added, set up by coefficients υj, of the buying sectors

Sj, υ = [υ1, . . . , υn], evaluated inmonetary terms;
V : the total value added of the economy; the sum of the value added υj evaluated

inmonetary terms, V = e ⋅ υ;
V: the n×n adjacencymatrixV = (υij), i, j = 1, . . . , n, associatedwith the commodity

flow matrix S = (sij);
υc: the vector of total value added of each sector per value unit of produced com-

modities inmonetary terms, υc = [υc1, . . . , υcn] = [υ1/x1, υ2/x2, . . . , υn/xn];
νc: the vector of the labour costs of each sector per unit of physical output, mea-

sured in physical terms, νc = [νc1, . . . , νcn]=[w ⋅ L1/q1,w ⋅ L2/q2, . . . ,w ⋅ Ln/qn] =
[W1/q1,W2/q2, . . . ,Wn/qn];

W : the total wages of one year, Sraffa measures it in numeraire,W = L ⋅ w; sum of
all the wages paid for the workers; wages are assumed throughout to be always
non-negativeW ≥ 0;

W: the general n × n adjacency matrixW = (wij), i, j = 1, . . . , n;
w: in a joint production economy (S,L,F), Chapter 6, the vector w collects the

sectorial wageswj paid in all the sector Sj, j = 1, . . . , n; in an extension of Sraffa’s
pricemodel, Chapter 8; the vectorw collects the individual sectorial wage rates
wj;

w: Sraffa ([108], Par. 11) introduces the wage per unit of labour, w = W/L; it is
usually called the wage rate. It is the (mean) annual wage of labour for one
worker;

w̃: the share of total wages to the national income (wage share of total income),
w̃ = W/Y . In fact, Sraffa ([108], Par. 30) denotes “the proportion of net product
that goes to wages”;

X: the total output of the production of the economy,measured in numeraire, when
accounting is realised in physical terms, but when accounting is performed in
monetary terms, it measures the value of the total output of the production in
the actual currency, X = K + Y ;
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xi: the value of the total output of commodity i of sector Si together with the con-
sumption demand fi, called total output, inmonetary terms;

yj: the value of total outlays or purchases of sector Sj togetherwith the value added
υi (called the total expenditure or also total input), inmonetary terms, there is:
xj = yj;

x: the vector of the total output of all sectors Si, i ∈ {1, 2, .., n}, in monetary terms,
also called the vector of values;

y: the vector of the total outlays of the sectors Sj, j ∈ {1, 2, .., n}, inmonetary terms,
there is: x = y;

Y : the net income or the national income; Sraffa treats the structure of entire
national economies. Coming in PCMC, Par. 12, to the question to determine
the value of the surplus, Sraffa therefore terms Y the national income. In this
book we treat many examples of subsystems of national economies. Then, it is
more appropriated to understand Y simply as the net income of such subsys-
tems, which are just a part of a national income. We will use either one or the
other term, but we remain close to Sraffa’s terminology. Sraffa generally uses a
numéraire as basic standard to express values, like income. Using a numéraire,
relative prices appear and Y is measured in this numéraire. Sraffa alternatively
also normalizes national income, Y = P +W = 1. One definesW = w̃ ⋅ Y ;

Y0: an exogenous value set for the national income within a price model;
zij: the value of the bundle of commodities in sector Si (Input), inmonetary terms,

required for theproductionof the totality of thebundle of commodities in sector
Sj (Output). It is also called a transaction (intermediate input) from each sector
Si to each sector Sj;

Z: the commodity flowmatrix of the transactions zij (intermediate input) between
pairs of sectors (fromeach sector Si to each sector Sj), i, j ∈ {1, 2, . . ., n}, evaluated
inmonetary terms, also called the matrix of intermediate sales to all sectors Sj.
The matrix Z refers to the interindustrial market. We denote the value zij ≥ 0 of
a bundle of commodities i in sector Si necessary for the production of a bundle
of commodities j in sector Sj asmeans of production.
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Abbreviations
EBITDA Earnings Before Interest Taxes Depreciations and Amortization
GDP Gross Domestic Product
IOT Input–Output Table
PCMC Production of Commodities by Means of Commodities
MPK Marginal Product of Capital
MPL Marginal Product of Labour
TAL Total Amount of Labour is an artificial physical unit that measures the total

amount of labour within a period. We say that one TAL is this total amount of
work for one period necessary to realise the production. Other usual physical
units for measuring labour areman-years, working days, and working hours

WPF Wage–Profit Frontier
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Notations
We present the usual conventions for the matrix and vector inequalities, see Bertram
Schefold [103], p. 45 and Kurz & Salvadori [100], p. 506.
o denotes the null vector (zero vector), o = [0, . . . ,0];
x > o the vector x = [x1, . . . , xn] is positive, i. e., all its elements are positive, xi > 0,

i ∈ {1, . . . , n};
x ≥ o the vector x = [x1, . . . , xn] is semi-positive, i. e., there is at least one positive

element xi > 0, , i ∈ {1, . . . , n}, the other elements are non-negative⇔ (x ≧ o
and x ̸= o);

x ≧ o the vector x = [x1, . . . , xn] is non-negative, i. e. all elements are non-negative,
xi ≧ 0, i ∈ {1, . . . , n};

0 denotes the zero matrix (null matrix), i. e., all its elements are 0;
A > 0 the matrix A = (aij) is positive, i. e., all its elements are positive, aij > 0, i, j ∈

{1, . . . , n};
A ≧ 0 thematrixA = (aij) is non-negative, i. e., all elements arenon-negative,aij ≧ 0,

i, j ∈ {1, . . . , n}.
A ≥ 0 the matrix A = (aij) is semi-positive, i. e., there is at least one positive element

aij > 0, i, j ∈ {1, . . . , n};, the other elements are non-negative ⇔ (A ≧ 0 and
A ̸= 0);

[p] denotes themeasurementunits of variablep. Example: Setting 1 kg= 1 kilogram,
consider the price p = 3 CHF/kg, then [p] = CHF/kg.

https://doi.org/10.1515/9783110635096-204
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Preface
Economics2 is a decision-based, word-based and number-based science. “Currency andMarket De-
cisions in a Decision-Based Economy” [73]

Piero Sraffa (1898–1983), a classical economist, reformulated in his book Production
of Commodities by Means of Commodities (PCMC) “the theory of value and distribu-
tion”.3 Wassili Leontief (1906–1999) made early contributions to input-output analysis
and earned the Nobel Prize in Economics in 1973. Sraffa and Leontief were concerned
with the structure of production, considered in its totality as a cyclic process. The ex-
change between branches of the economy is described quantitatively. On fewer than
100 pages, Sraffa used in PCMC mathematical concepts and theorems which remain
mainly hidden. He just presented calculus and numerical results. The main purpose
of the present book is to reveal, elucidate and illustrate themathematical background
of Sraffa’s theory didactically in detail by means of modern matrix algebra and the
corresponding fundamental theorems. A substantial portion is devoted to computed
examples.

Our book is also a contribution to the increasing call for alternative approaches to
the understanding of the realities of today’s economic activity. To write this book, we
have stood on the shoulders of eminent Sraffa connoisseurs: P. Newman [71] (1962); B.
Schefold [109] (1976), [103] (1989); L. L. Pasinetti [80] (1977), [83] (1980), [84] (1986),
[81], [82]; H. D. Kurz and N. Salvadori [52] (2007); and A. Roncaglia [97] (2009).

Wassili Leontief (1906–1999) modeled economic activity within the context of a
circular economy of production and exchange, today expressed in Input-Output Ta-
bles in monetary terms. Leontief proposed to divide the economy into sectors, each
one producing a group of products. There is a highly technical process to achieve this
partition described by the NACE Rev. 2 report [16], and the CAP nomenclature, leading
to Input-Output Tables and Input-Output Analysis, which are developed today in nearly
all countries and state communities of the world (see for example the European Union
[72]).

Independently of Leontief, Sraffa in PCMC [108], linearlymodeled the English pro-
duction of single commodities, like wheat, iron or pigs, considering the circularity
of these production processes expressed in physical terms. He solved the distribution
problem of David Ricardo (1772–1823), calculating ‘costs of production’ (PCMC, Par. 7),
which he terms as ‘values’ or ‘prices’, fulfilling the conditions of production. Sraffa’s
and Leontief’s approach both needmatrix algebra and a group of theorems belonging
to this fundamental mathematical discipline.

2 The Webster New Collegiate Dictionary, p. 260, defines the term “Economics” as follows: “The sci-
ence that investigates the conditions and laws affecting the production, distribution and consumption of
wealth, or material means of satisfying human desires; political economy.”
3 https://static.uni-graz.at/fileadmin/_Persönliche_Webseite/kurz_heinz
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Sraffa has termed the ‘costs of production’ as ‘prices’. These ‘prices’ are for him
near to the labour values. In the case that the total surplus (net product) goes towages,
Sraffa’s prices are proportional to the labour values. When the total surplus is needed
for wages and profits then the above proportionality property disappears. The labour
value of a commodity represents the total amount of labour which has been incorpo-
rated into it over all precedent production periods.

With emphasis on Sraffa and Leontief, we address in this book:
– young researchers wishing to explore the foundations of circular economy and

possible applications to sustainable economy;
– practitioners wishing to examine the potential of Sraffa’s model in connection to

Leontief’s input-output analysis;
– advancedundergraduate, graduate andPhD students and their instructors in eco-

nomics, political science, applied mathematics and informatics who seek to un-
derstand and master the basic technicalities underlying Sraffian economics and
input-output analysis.

Applications requiring numerical calculations are the ultimate aim. The mathematics
involved is limited to a fairly basic level of matrix algebra, and occasionally calcu-
lus, corresponding to the level attained in Chiang andWainwright’s [19] Fundamental
Methods of Mathematical Economics.

The required basic graph theory methods are developed as we go along. Our un-
dertaking is set on an operational level. The solution of the numerous examples re-
quires some dexterity to make calculations by hand or using computer facilities,4 set-
ting a basis for the interpretation of the economic relevance of the obtained numerical
results. There are also new results mentioned in the Introduction and in the Conclu-
sions.

There is an important question to be answered at the beginning of this book: “Why
one uses mathematics for this modelling”. The answer can be structured as follows:
Economics is a decision-based, word-based and number-based science.

Every sector—as a buyer/consumer as well as a seller/producer—has 4 degrees of
freedom to decide for: the value x, the price p, the quantity q and the objects (items)
e. Every purchase begins with a decision and achieves a result through a number, see
[73], “Currency and Market Decisions in a Decision-Based Economy”.

There is also the necessity to verify the consistency of the word-based approach
of economics, see Steenge [110]—we put the question again!

4 For all extended calculations undertaken in this book (basically examples involving equationswith
more than two unknowns), we have resorted to the software package MATHEMATICA [123]. A part of
the computations for Chapter 9 and 10 have been realised with MATLAB (mathworks.com), thanks to
the support of the “MathWorks Book Program”. Clearly, many other software packages are of course
available nowadays to perform these calculations.
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“Why are mathematical models being necessary?”
(a) Mathematical models are the most suitable “Knowledge-Base” for number-based

decisions.
(b) Decision processes are principally composed of two phases:

(b1)Word-Based Decision Phase:
(1) Motivation Phase.
(2) Goal-Formulation Phase. Decisions of these phases are undertaken in de-

pendence on word-based knowledge. There are principally four sources
of deficiency:
– Word-based knowledge should be always updated and corrected.
– Word-based definitions and rules should always be updated and

proved to be without contradictions.
– The Inference system for verification should be linguistically power-

ful in order to decide whether a sentence is true or false (Judicial-
system, Judges).

– Word-based pairwise-comparison is limited to ’less than’, ’equal to’
or ’larger than’.

(b2)Number-Based Decision Phase:
(1) Pairwise-Comparison Phase (objects/quantities/prices/values).
(2) Market-Activity Phase(object/value transactions).

A mathematical model-base is algebraically as well as numerically a powerful tool for
modelling the market behaviour. Linear algebra and especially the algebra of non-
negative matrices, together with the computations of eigenvalues and eigenvectors,
are predestinated to describe and establish the relations between values, quantities
and prices. We use in this book the notational conventions applied by the “Interna-
tional Input-Output Association” [90] to write the formulas of matrix algebra.

The book is the result of 24 years of work, research and contacts. The authors have
the honour to express their gratitude and to acknowledge the following meritorious
persons. This book would not exist, if Tamara Bardadym, Kiev, Elena Pervukhina (†),
Sevastopol, and Jean-François Emmenegger, Fribourg, hadnotmet in 1995 at the Inter-
national Conference on Applied and Industrial Mathematics, Hamburg. One year later,
HeinrichBortis, Fribourg,met the group. Fromhimcame the important impulse to dis-
till this subject in the framework of KeynesianPolitical Economy.Other impulses came
from the group around academician, Prof. Dr. Naum Zuselevich Shor (†), later Petro
Stetsyuk, Kiev, V. M. Glushkov Institute of Cybernetics at the National Academy of Sci-
ences of Ukraine, concerning the Leontief models and their mathematical properties.
Our thanks go to Prof. Dr. Sergio Rossi [93], [94], University of Fribourg, for his guid-
ance during the early stages of this work, and also to Peter Scrivener, Nestlé, Vevey,
for his stimulating contribution to cost management in production processes.

The authors thank the organizers of the stimulating Input-Output Workshops or-
ganized for many years by a group around Prof. Dr. Udo Ludwig, Prof. Dr. Reiner
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Stäglin and Dr. Hans-Ulrich Brautzsch [59] at the Institut für Wirtschaftsforschung
Halle, Germany. In 2014, the organisation of the Input-Output Workshops was taken
over by the Gesellschaft für Wirtschaftliche Strukturforschung mbH, GWS, Osnabrück,
Germany, now managed by the dynamic group around Prof. Dr. Tobias Kronenberg,
Hochschule Bochum, Prof. Dr. Jutta Günther, University of Bremen, andAnkeMönnig,
GWS Osnabrück, held from 2014 to 2017 in Osnabrück, in 2018 in Bremen and in 2019
in Bochum (see Emmenegger [26], [27], [28], [29], [30]). Thesemeetings suppliedmany
impulses for our book. We are indebted to the fruitful contacts and discussions with
Prof. Dr. Utz-Peter Reich, Hochschule Mainz, and Prof. Dr. Bert Steenge, University
of Groningen. Of course, deep thanks go to the SNSF (Swiss National Science Foun-
dation) for granting this research for many years through the SCOPES programme,
project Nr. 127’962 andNr. 147’586, under the responsibility of Dr. Eveline Glättli. SNSF
also granted the meetings hold in Fribourg in 2011 and 2012.

In 2011, a team made out of J.-F. Emmenegger, D. Chable (†) and H. Knolle began
to work on the present book. In 2012, H. A. Nour Eldin joined the team concentrating
his efforts on Chapters 9 and 10, revealing the strong connection existing between the
systems of Leontief and Sraffa. Together, J.-F. Emmenegger and D. Chable contributed
to the book as a whole. From 2014 to 2015, H. Knolle wrote Chapter 7 and also elab-
orated his own book [51] which could be published thanks to an SNSF grant. Daniel
Chable died in July 2018.

Without the competent organizational work of Tamara Bardadym, as well as her
encouragement and the animation of colleagues of the Kiev-group, our book could not
have been written. She also contributed to the work with competent proofreading.

The authors are indebted to their wives for supporting this period of intense work
by their husbands. Special thanks go to Françoise, constantly supporting her hus-
band Jean-François Emmenegger, who conducted the book project and also realized
the manuscript in LaTeX.

Acknowledgments go to the publishing house de Gruyter-Oldenbourg and Mrs.
Kristin Berber-Nerlinger, lecturer, for her encouraging and professional support, to
Mrs. Nadja Schedensack andMrs. Ina Talandienė, technical support, then to the artist
KarimNoureldin, who offered us his splendid artwork for the cover of the book, finally
to the reviewers of the manuscript for their numerous useful comments.

Fribourg, Switzerland, October 2019
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1 Introduction
1.1 Preliminary comments
This book focuses mainly on Sraffa’s theoretical models presented in Production of
Commodities by Means of Commodities ([108], PCMC, 1960). The questions of cyclicity
and production are at the centre of Sraffa’s work. Our book interprets and extends
PCMC in the footsteps of Newman, Pasinetti and especially Schefold in the German
version of PCMC [109]. Matrix algebra is used to apply the mathematical and nota-
tional standards, which were established by Miller and Blair [65] and by EUROSTAT
[72]. The decisive importance of the Perron–Frobenius theorem, ensuring the exis-
tence of a solution to Sraffa’s model of production, reformulated as an eigenvalue
problem, is stressed, together with the important result contained in Ashmanov’s
book ([2], the Theorem 1.5, p. 3) concerning the Frobenius number of Leontief models
and productive Leontief models. These results are supplemented by elements of graph
theory.

The development of an up-to-date, sophisticated mathematical approach has
been absolutely necessary. Newman ([71], p. 58) judged Sraffa’s book “compressed
and mathematically incomplete”. In fact, Sraffa wrote in the preface to PCMC:

“My greatest debt is to Prof. A. S. Besicovitch for invaluable mathematical help over many years.1

I amalso indebted for similar help at different periods to the lateMr. F. Ramsey and toMr. A.Watson.
It will be only too obvious that I have not always followed the expert advice that was given to me,
particularly to the notations adopted, which I have insisted on retaining (although admittedly open
to objection in some respects) as being easy to follow for the non-mathematical reader”.

According to Sraffa’s comments in that preface, he started to write PCMC in the late
1920s, taking more than 30 years to reach completion. The general economic back-
ground in Great Britain during the late 19th and early 20th centuries (Hobson [41])
clearly influenced Sraffa’s presentation. Furthermore, he is quite clear: his original
basic model is a simplification, a first step in the representation of the real situation.
He focuses on short periods, monthly to annual, by today’s standards. As the title of
his book and the logic of his text indicate, he only considers commodities in the strict
sense as goods (inGerman:Waren; in French:marchandises), andmeasurement units,
prices, values and even wages are supposed to be expressed in terms of a physical
good, the numéraire. In this text, we have loosened these restrictions, thus showing
how Sraffa’s model is flexible enough to be extended to cope with new situations (see
in particular Chapter 7, and Chapter 8). A glossary, together with comments, has been
added.

As for the numerical examples, the reader should not be upset by their apparent
triviality in the various chapters. They have been chosen to highlight the exact mean-

1 For a complete account of the collaboration of Sraffa and Besicovitch, the reader may consult. Kurz
and Salvadori [53], Chapter 9.

https://doi.org/10.1515/9783110635096-001
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ing of the numerous formulas encountered. Some of them have been taken directly
from PCMC without modification and from Pasinetti’s original works [80].

Finally, a remark concerning the restriction to n industries (sectors) producing ex-
actly n commodities: In practice, at the microeconomic level, there are usually more
commodities produced than existing industries (or in certain circumstances fewer, see
the end of Chapter 6, regarding land and agricultural production). This may com-
plicate significantly the mathematical treatment of such situations. Luckily, at the
macroeconomic level, dividing the economy into n separate sectors, each producing
similar sets of goods, and appropriate bundling of certain goods into composite com-
modities, enables one to consider n×n production processes without loss of economic
significance. This is the procedure applied andpursued in this text, permitting the sys-
tematic use of square matrices and their algebra.

We have deliberately focused our discussion and analysis of Sraffa’s PCMC on the
introductory chapters directly concerned with modeling the production process, i. e.,
Chapters I–V of Part I: Single-Product Industries and Circulating Capital, Chapters VII–
IX, of Part II: Multiple-Product Industries and Fixed Capital concerning Joint Produc-
tion, and Chapter XI: Land with a view to applications.

We have thus not addressed the problems related toDated Quantities of Labour in
Chapter VI and Fixed Capital in Chapter X (to avoid the complexities involved, which
are unsuitable for an introductory text), as well as Chapter XII: Switch in Methods
of Production, at the centre of the heated Cambridge capital controversy debates (see
Birner [5], pp. 6–69).

1.2 Summaries of the chapters
Chapter 2 gives a rigorous, detailed and ahead presentation of the set of matrices
and vectors used in Input-Output Analysis. The notations and matrix algebra in-
volved permit an advanced presentation of the material. The elements of the Leontief
Input-Output Tables (IOT) are then presented. The principles of the system of Clas-
sification of products by activities (CAP), respectively the Nomenclature des activités
économiques dans la communauté européenne (NACE), are explained. They are at
the basis of the determination of the homogenous branches,2 constituting the IOTs.
A selection of Leontief Input-Output models is presented. They are commonly labeled
as Leontief quantity models, Leontief price models, or briefly Leontief models, either
working in monetary or in physical terms, in regards to quantities, to price indices
and to prices. The notion of interindustrial economy is introduced as the core of a
production economy. The relation of Input-Output Tables to the basic framework of
national accounting is described. Finally, special attention is given to the question of
a numéraire as a measurement unit.

2 Also designated as “industries” or “products”, see EurostatManual of Supply, Use and Input-Output
Tables, [72].
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Chapter 3 is a complete discussion of the three elementary examples that ap-
pear at the beginning of PCMC, now described in terms of matrix algebra, and intro-
duces the Perron–Frobenius theorem as the centre piece of the algebraic structure
of Sraffa’s models.

Novelty: The extension of Sraffa’s single commodity examples is developed, re-
placing numbers by variables with an analysis of loci (curves or planes) generated
by the simultaneous variation of the variables involved. For a given technology, the
maximal rate of profits is presented as a locus plane of the surplus. As such, it is the
productiveness of this economy. This is exemplified for Sraffa’s elementary examples
in PCMC, Par. 5.

Chapter 4 develops the complete theory of Sraffa’s price model for single-com-
modity production processes, examining in particular the distinction between basic
and non-basic commodities. Examples in which all involved economic variables and
economic ratios are determined and are calculated.

Sraffa’s price model brings within a cyclic production process of n sectors and n
commodities, measured in physical terms, the ‘costs of production’ of every commod-
ity, termed as ‘prices’, with positive wages for workers and with positive profits for
entrepreneurs into an equilibrium. The Sraffa price model defines a dynamic system,
because when the interindustrial market adopts Sraffa’s prices, then the production
technology, described by the means of production of the actual period, is recreated
for the next period, and this process is going on from period to period.

Essentially, Sraffa’s price equations express specific accounting balances which
can be aggregated to one equation which has to be considered as a complement to the
Balance of National Accounts contained in the Input-Output Tables.

Important novelties: the general relationship between the rate of profits, the sur-
plus ratio and the ratio of total wages to national income (4.36), valid for all Sraffa
systems; the introduction of directed graphs and bipartite networks as tools for the
analysis of all types of Sraffa production processes; the notion of the calibration of
a system; the technology matrix with and without subsistence wages; a formal de-
termination of positive prices in entire single-product industries (single-commodity
processes).

Chapter 5 presents the complete theory of the Standard system of production for
single-commodity processes, including the famous relationship between the rate of
profits, the Standard ratio and the share of total wages to national income (5.54), valid
for all Standard systems.

Novelties: an explicit formulation of the fundamental relations at the basis of the
Standard system (5.7); the introduction of the notion of the commodity space and of
the orthogonal Euler mapping (Euler affinity), a central piece in the transformation of
an actual non-standard System into a Standard system.

Chapter 6 is an introduction to joint production systems, where the same com-
modities may be produced by more than one industry.
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Novelties: output polyhedrons; a compact algebraic methodology for the distinc-
tion between basic and non-basic commodities, which completes the approaches of
Manara–Pasinetti–Schefold to this problem; a matrix introduced by Pasinetti [83]
shown to be pertinent to determine the number of basics in joint production; an up-
dated presentation of Manara’s conditions for the positivity of prices; an extended
model accounting for land and natural resources showing how land rents form a part
of national income in addition to profits and wages.

Chapter 7. This chapter has been proposed and developed by H. Knolle. A first
part (Section 7.1 and Section 7.2) considers joint production industries. This means that
the present industries produce in parallel several of the n commodities, a typical situ-
ation that has ecological consequences. A second part (Section 7.3–Section 7.8) intro-
duces step by step new approaches and examples treating waste problems and pre-
senting situations involving ecological economics and taxation. The main goal is to
show that Sraffa’s price model offers an approach to treat ecological problems, con-
sideringwaste in thewhole economic system. The consequences on theprices are then
studied.

Chapter 8 is entirely concentrated on novel extensions of Sraffa’s price models as
indicated in the corresponding item of the Table of Contents.

Chapter 9 is a complete formal, algebraic analysis of the interindustrial economy,
developed by H. A. Nour Eldin. Tables of matrices presenting synoptically the aspect
of value, quantities, prices and objects of Leontief’s and Sraffa’s concepts. It culmi-
nates in the statement that the Interindustrial Market, together with the Consumption
Market, are unified within the Leontief–Sraffa economy, Figure 9.9. Each one of these
three entities is described by a proper set of matrices and vectors. A central novelty
is the connection found between the IOTs inmonetary terms and the Sraffa system in
physical terms. Indeed, the productiveness R of the Sraffa system, described by the flow
commodity matrix S in physical terms, is present and calculable from the initial IOT
flow commodity matrix Z in monetary terms.

Chapter 10 goes beyond simplified textbook examples and gives a presentation
of how Sraffa’s approach, together with the IOT apparatus, can be applied to offi-
cial IOTs. In this case, we apply the developed methodology to the official Swiss IOTs
2008 and 2014 and the German IOT 2013.We also compute the productiveness of these
economies. We perform some aggregations of the official IOTs and show the limits of
these calculations.

Chapter 11 summarises the results obtained in this book and indicates further
avenues of research in an extended Sraffa context.

Appendix A contains all the necessary mathematical tools required for a com-
plete understanding of the present text.

Appendix B is a summary of Schefold’s historical contribution to the under-
standing of Sraffa’s PCMC.

Appendix C presents a glossary of terms as they are used in this book.
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2 Elements of Input-Output Analysis
The Eurostat Manual of Supply, Use and Input-Output Tables (IOT) ([72], p. 479) men-
tions: “Input-Output Analysis was founded byWassily Leontief [56] in the thirties of the
20th century, he received the Nobel Prize in Economics in 1973 and is the founding fa-
ther of a new field for empirical research at the border between microeconomics and
macroeconomics.” Generally, the purpose of IOTs is to describe the sale and purchase
relationships between producers and consumers within the national economy of an
entire country. The OECD tends to harmonise those national IOTs, developed in a first
line essentially for national economies.

Input-Output Analysis is, as a first approach, essentially an equilibrium analysis,
because the time variable does not appear explicitly. Nevertheless, it has to be kept
in mind that the entries of IOTs are quantities used or produced during one period
(mainly one year as for the Swiss IOT 2008). This means that all these quantities have
to be understood as quantities/period. The technology does not change within a pe-
riod. Official IOTs of countries will be explored in Chapter 10.

It is fascinating to understand that Input-Output Analysis is based exclusively on
quantities that are directly observable and that can bemeasuredusing the ordinary in-
struments for measurements in economics. This objectivist concern is already present
in Leontief’s PhD thesis: ‘Die Wirtschaft als Kreislauf’ [55].

In Section 2.1 the system of classification of products by activities (CAP) based
on the European standard classification of productive economic activities (NACE) is
sketched. A complete description of this classification process lies outside the scope of
this text. The knowledge of these concepts are necessary to understand the construc-
tion of IOTs. Classification of products leads to the branches (or sectors) that constitute
the IOTs. In Section 2.2 we enter the subject of economic assumptions to be fulfilled by
matrices and vectors, issuing from the creation of IOTs. In Section 2.3 we address the
subject of the just-mentioned matrices which are often non-negative. In matrix alge-
bra, there is the domain of non-negativematrices and themathematical theorems gov-
erning this sphere. We will learn of the existence of the group of Lemmas around the
Perron–Frobenius theorem. In Section 2.4 we introduce the first models. We present
the Leontiefmodel, which dates back to Leontief [56], [57], also called Leontief quantity
model (see Oosterhaven [77], p. 750). The Leontief model will be treated in monetary
and physical terms. In Section 2.5 we finally come to treat two variants of the Leontief
price model, issued from Leontief’s Input-Output Analysis. The Leontief price model
will as usual be presented inmonetary terms and in physical terms.

2.1 Classification of products, production processes, matrices
We start with a typical description of the economic activity, see NACE Rev. 2 [16], p. 27.
“An economic activity takes place when resources such as capital goods, labour, manu-

https://doi.org/10.1515/9783110635096-002
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6 | 2 Elements of Input-Output Analysis

facturing techniques or intermediary products are combined to produce specific goods
or services. Thus, an economic activity is characterised by an input of resources, a pro-
duction process and an output of products (goods or services).”

NACE,a the European standard classification of productive economic activities, is a classification hier-
archy comprising five levels. The first level comprises 21 sections, designed by the capital letter form A
to U, and the second level comprises 99 divisions, numbered from 1 to 99. The construction of input-
output tables (IOT), originally developed by Leontief, requires the first two levels.
The headings of the divisions, the second level of NACE, lead practically to a one-to-one correspon-
dence of the branch headings of the IOTs, describing palettes of products, giving as such the CPA =
European Classification of Products by Activities system.
In other words, the CPA is a classification of products, whose headings are practically identical to
those of the divisions of NACE, and result in the terms of the sectors or the economic branches of the
IOTs.

a NACE = Nomenclature des activités économiques dans la communauté européenne.

Originally, Leontief developed the IOT in physical terms. In this sense, the sectorswere
generally composed only of one sort of product, for example, wheat or iron, see Miller
and Blair ([65], pp. 41–45). When there is more than one product in a sector an ap-
propriated physical measure must be found, e. g., bushels, tons or kcal. In an IOT in
physical terms, one considers therefore the sector Sj’s demand for the input of prod-
ucts from the sector Si in physical terms for one period (generally the period is a year).

At present, following the lines and recommendations of the Eurostat Manual [72],
input-output data are carried out inmonetary terms. The countries of the EU, Switzer-
land andother countries operate in thisway, see the Swiss IOT 2008 [68]. The complete
palette (bundle) of products of a CPA economic branch, and respectively its value, is
presented in monetary terms, as sector Nr. 1, e. g., products of agriculture, forestry and
fishing in the SIOT 2014. See also Chapter 10.

It is necessary to understand the relationships andmathematical transformations
between an IOT in physical terms (all the products of a sector aremeasured in the same
physical unit) and an IOT inmonetary terms (all the products aremeasured in the same
currency). There will be new applications, as in Chapter 9 and Chapter 10 in which
environmental economics appears (see Miller and Blair [65]). Indeed: “With the emer-
gence of energy and environmental concerns, mixed-unit models have been developed,
where economic transactions are recorded in monetary terms and ecological and/or en-
ergy transactions are recorded in physical terms”, see Miller and Blair [65], p. 41.

For this reason, we clearly distinguish input-output data presented in physical
terms from their presentation inmonetary terms.

2.1.1 Notations for transactions in monetary terms

The Eurostat Manual ([72], p. 479) says: “The core of input-output analysis is the input-
output table. It describes the flow of goods and services between all sectors of an econ-
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2.1 Classification of products, production processes, matrices | 7

omy over a period of time”, describing, briefly speaking, Leontief economies. The time
period is generally a year. Input-output analysis can be applied to observed economic
data from regions, nations or countries,Miller andBlair [65], pp. 2–3. For a good survey
see also Holub [42].

Leontief economies have to be considered in general as open economies, where
there are interactions with other economies (import, export). Leontief economies
produce various commodities whose prices are expressed in monetary-value terms
or, briefly speaking, in value terms. There are n homogenous economic branches (also
called sectors) and n groups of similar products (called palette or bundle of products),
each one issuing from one homogenous economic branch.

Textbooks describe the production process of a Leontief economy by resorting to
the following variables: thematrix component zij expresses the value of a homogenous
bundle of commodities of the sector (branch) Si (Input) required for the production of
the homogenous bundle of commodities of sector Sj (Output). The result with value
added υj1 leads to total outlays xj of sector Sj, see Figure 2.1.

Figure 2.1: Input-output scheme of sector j in value terms.

A Leontief economy can be represented in a first attempt by a simplified Input-Output
Table (IOT), as illustrated in Table 2.1.

Note that a branch Si sells its commodities to other branches Sj that use these
commodities in the production process. Here we have the interindustry demand. The
sale of products to final consumers (households, private investors, government), cor-
responds to what is termed the final demand or final use. Every branch is therefore a
purchaser of input and a seller of output in terms of commodities. Further in the pro-
duction process, value added items (such as wages, gross profits,2 rents, dividends)
are generated. Human resources are required to materialize the production.

More specifically, such a simplified IOT is constructed, comprising three parts:
the central production process (zij), i, j = 1, . . . , n, the final demand (use) and the value
added:

1 Value added “accounts for the other (non-industrial) inputs to production, such as labour, depreciation
of capital, indirect business taxes, and imports”, see Miller and Blair ([65], p. 3).
2 Also termed EBITDA (earnings before interest, taxes, depreciation and amortisation) in business
parlance.
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8 | 2 Elements of Input-Output Analysis

Table 2.1: Input-output table of n producing sectors and a sector of final demand.

Selling sectors Buying sectors Final demand Total output
S1 S2 … Sj … Sn

S1 z11 z12 … z1j … z1n f1 x1
S2 z21 z22 … z2j … z2n f2 x2
...

...
... …

... …
...

...
...

Si zi1 zi2 … zij … zin fi xi
...

...
... …

... …
...

...
...

Sn zn1 zn2 … znj … znn fn xn
value added υ1 υ2 … υj … υn V = F

total outlays x1 x2 … xj … xn X

(a) A sub-table of interindustry transactions, constitutes the core of the system of pro-
duction: Each sector occupies one row as the selling economic branch of the com-
modities produced by itself. The same sector occupies a column as the purchasing
(demanding) economic branch to acquire commodities.

(b) An additional column contains the final exogenous demand (use) for the various
commodities, i. e., demand by purchasers outside of interindustry production.
The single column of final (exogenous) demand is replaced in a general IOT by a
table of final use, mainly composed of household-consumption expenditures, gross
private-domestic investment, government purchases of goods and services and net
exports of goods and services, see Miller and Blair ([65], p. 3).

(c) An additional row contains the value-added components per producing sector, in-
dicating further inputs to production.
The single rowof valueadded is replaced in ageneral IOTbya table of valueadded,
also called primary inputs. The rows of value added may “account for the other
(non-industrial) inputs of production, such as labour, depreciation of capital, in-
direct business taxes, and imports”, see Miller and Blair ([65], p. 3). By labour, we
understandwages inmoney terms. The table of value added together with imports
of goods is “often lumped together as purchases from what is called the payment
sector” ([65], p. 13). (Someauthorsunderstandprimary inputsas a table tobemade
up of value added, services and imports of goods.) We will treat the Swiss input-
output tables in detail, see Tables 10.1 and 10.2, in Chapter 10 as an example of a
generalized IOT.

(d) An intermediate accounting identity obtained by summation: total value added =
total final demand, see Swiss IOT 2014, Table 10.2.

(e) A final column comprising total output per industry and a right-hand row indicat-
ing total outlays per industry.
In some vocabularies on IOT’s, the term outlays correspond to inputs, comprising
all the accounting items that enter the purchase value of the commodities.
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2.1 Classification of products, production processes, matrices | 9

(f) A final accounting identity also obtained by summation: total output = total out-
lays.

We are dealing here with double-entry bookkeeping applied at the level of a whole
economy. The corresponding national accounting identities will be introduced in fur-
ther detail in Section 2.7 hereafter.

It is essential to understand the construction and the logic of the IOT, which is the
basis of all the following developments of most of the rest of the book.

In this presentation, we will use, according to Miller and Blair ([65], pp. 10–21),3

the subsequent notations.4 The epresentation is based on any previous period or to
the reporting period (year):
zij: the value of a bundle of commodities in sector Si (Input), in monetary terms, re-

quired for the production of the bundle of commodities in sector Sj (Output), i. e.,
transactions (intermediate inputs) from sector Si to sector Sj;

fi: total final demand of sector Si for sales (exogenous) inmonetary terms;
υj: total value added (labour, depreciation of capital, indirect business taxes, im-

ports) of the buying sector Sj, realised for expenditures;
xi: total output of commodity i in monetary terms, produced by sector Si, together

with the total final consumption fi;
yj: total outlays of sector Sj in monetary terms to produce commodity j (total expen-

ditures), together with the total value added υj, yj = xj;
X: total output of the production inmonetary terms, X = ∑ni=1 xi;
F: total final demand of the economy, the sum of final demands fi, is, in the case of

no import,M = 0, also the national income Y = F −M = F;
V : total value added of the economy, the sum of the value added υj, is equal to F = V ,

see Swiss IOT 2014, e. g., Table 10.3.

Again, briefly stated, reading horizontally the rows of Table 2.1 indicate intermediate
output, sales of each industry Si, i = 1, . . . , n to the buying sectors Sj, j = 1, . . . , n, and
then the final demand. Reading vertically, the columns indicate intermediate inputs,
required by the sectors Sj, j = 1, . . . , n, for the production in the sectors Si, i = 1, . . . , n,
and the value added, accounting for the other inputs to production, such as labour,
depreciation of capital, individual business taxes and imports, Miller and Blair ([65],
p. 3).

We are now in a position to write down the two accounting equations referred to
above.5 By definition, we now use the simplified case for the income approach, sum-

3 Miller and Blair use the variable X for the total output of the production of the economy.
4 The quantities zij are measured in monetary values of the transactions between pairs of sectors or
industries (e. g., from each sector Si to each sector Sj), see Miller and Blair ([65], p. 11) and the EURO-
STAT Manual of Supply, Use and Input-Output Tables, where the zij are presented in ‘currency units of
an economy’ ([72], p. 479).
5 The Eurostat Manual of Supply, Use and Input-Output Tables ([72], p. 479) speaks of “input-output
tables in the currency of an economy”. This means that the zij of Table 2.1 are expressed in monetary
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10 | 2 Elements of Input-Output Analysis

ming up the value-added components υj, and the expenditure approach, summing up
the final demands fi representing the surplus of the production. For the algebraic pre-
sentation, consider the (n × 1) vector of ones, e = [1, . . . , 1], Appendix A, (A.9) the
vector of total final demand (use) f = [f1, f2, . . . , fn] ≧ o and the vector of total value-
added υ = [υ1, υ2, . . . , υn] ≧ o.6 When there is no final use, fi = 0, then sector Si
produces only interindustrial demand, and when there is υj = 0, then sector Sj ob-
tains no value-added. These limit cases are not to be excluded. We have therefore the
scalar product,

V = eυ =
n
∑
j=1

υj, F =
n
∑
i=1

fi = e
f, F = V .7 (2.1)

The first accounting condition, which sums up the elements of each row, gives the
total sales xi of sector Si composed of the sum of all the intermediate outputs zij of
the commodities j, j = 1, . . . , n, needed to produce the quantity of sector Si, together
with the final demand fi. We obtain, row by row, the total output xi of each commodity
sector Si,

xi =
n
∑
j=1

zij + fi, i = 1, . . . , n. (2.2)

The second accounting condition, summing up the columns, over zij, the value of all
the intermediate inputs, also called interindustrial purchases of the commodities i =
1, . . . , n, and the value added υj, generated by sector Sj. We obtain, column by column,
the total outlays yj to sector Sj,

yj =: xj =
n
∑
i=1

zij + υj, j = 1, . . . , n. (2.3)

Let us nowwrite the 2n equations (2.2) and (2.3) inmore compact form, usingnotations
from linear algebra. Consider the commodity flow matrix Z = (zij), composed of the
principal coefficients of interindustrial sales zij by sector Si to all sectors Sj, see Miller
and Blair ([65], p. 12) and Eurostat ([72], p. 484). We will later establish that Z is semi-
positive, Assumption 2.2.2.,

terms or in the currency of the country from the very beginning. On the other hand, Leontief had sug-
gested that the coefficients of the input-output table are presented in physical terms like qr. of wheat,
t. of iron. These two differentways of presenting input-output tables need to be distinguished. They re-
quire a notational differentiationmastered by Miller and Blair [65]. This is one reason why the present
text relies on Miller and Blair [65], and we are making this differentiation throughout the text.
6 We exclude negative final use fi < 0 and negative total-value added υj < 0, i, j ∈ {1, . . . , n}.
7 See German IOT 2013 and Swiss IOT 2014, Chapter 10.
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Z = (zij) =

[[[[[[[[[

[

z11 z12 . . . z1j . . . z1n
z21 z22 . . . z2j . . . z2n
. . . . . . . . . . . . . . . . . .
zi1 zi2 . . . zij . . . zin
. . . . . . . . . . . . . . . . . .
zn1 zn2 . . . znj . . . znn

]]]]]]]]]

]

. (2.4)

From (2.3)with the n total demand components xj of products j, issued from the sectors
Sj, j = 1, . . . , n, we set up the vector of total demandof industrial production or the vector
of total output x = [x1, x2, . . . , xn]. We will also need the vector of total interindustrial
production, xI = [xI1, xI2, . . . , xIn] > o, resulting from the interindustry sales of each of
the n sectors.

With the vector of interindustrial production xI and the non-negative vector of final
demand f ≧ o, the set of the n equations (2.2) becomes

xI = Ze > o, x = Ze + f = xI + f > o. (2.5)

The component xj of the vector x in (2.5) equals the total sales of sector Sj to all sectors
Si, i ∈ {1, . . . , n}, comprising also the final exogenous demand fi. It is an accounting
identity from which the total output X is obtained by summation.

The commodity-flow matrix Z describes the monetary flow of interindustrial production. Each coeffi-
cient zij represents the value of the bundle of commodities i required for the production of a bundle of
commodities j, evaluated inmonetary terms, i. e., the transaction (intermediate input) from sector Si
to sector Sj . As a whole, matrix Z represents themeans of production in monetary terms.

The set of the n equations (2.3) can nowbewritten, using the transposedmatrix Z and
the vector of total value added υ ≧ o. At this time we also define the total production
yI8 of sector Sj that will only be used in Chapter 10. At present we obtain,

yI = Z
e > o, y = x = Ze + υ = yI + υ > o, (2.6)

and the vector x contains components xi, reflecting the values of thepurchase of each
bundle of commodities i, i ∈ {1, . . . , n}, covering also the expenses of the value added υj
required for the production. The components xi are accounting identities for the total
outlays, xi = yi.

8 Without loss of generality, we can state that every component of the vectors xI and yI is greater than
zero. If an element of xI is zero, then there is no output at all of the corresponding commodities k.
The commodities k can be deleted from that economy. If an element of yI is zero, then there is no
outlay at all of the corresponding sector Sk , and the sector Sk can be deleted from that economy. These
conditions will be formulated later as an economic assumption used in the sequel.
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12 | 2 Elements of Input-Output Analysis

We thus obtain an accounting identity relating total outlays to total inputs,

x = Ze + f = Ze + υ > o. (2.7)

In the column [z1j, z2j, . . . , znj] of the quantities required by sector Sj, j = 1, . . . , n, one is
interested in the quantity of the commodities i, i = 1, 2, . . . , n, that are necessary to pro-
duce one physical unit of the commodities j. This gives the definition of the coefficient
of production or the technical coefficient9 aij, see Miller and Blair ([65], p. 16)10:
aij: the input-output coefficient aij is the quotient of the value zij of the amount of

commodities i (Input) and the value of the total outlays xj, produced during
the present period (year). This amount aij of commodities i is required for the
production of one value unit of commodities j (Output). It is also called direct
input-output coefficient, defined as aij = zij/xj, i, j ∈ {1, . . . , n}. It is dimensionless,
[currency/currency] = 1.

aij =
zij
xj
, i, j = 1, . . . , n; i : Input index

j : Output index or11 A = Zx̂−1. (2.8)

With the coefficients aij we then set up the semi-positive n × n matrix of the techni-
cal coefficients, the input-output coefficientsmatrix or the input matrix (for short), see
Chiang ([19], p. 117), A = (aij), Assumption 2.2.2,

A = (aij) = Zx̂
−1 =
[[[

[

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

]]]

]

. (2.9)

Lemma 2.1.1. The vector of final use f ≧ o and the vector of value added υ ≧ o are non-
negative. Then, the coefficients aij have dimension [aij] =

currency
currency = 1, i, j = 1, . . . n. The

components of the semi-positive input-output coefficients matrix A ≥ 0 are comprised
in the interval [0, 1], 0 ≤ aij ≤ 1, i, j ∈ {1, . . . , n}, as well as 0 ≤ ∑

n
i=1 aij ≤ 1.

Proof. With (2.6) there is, υ ≧ o, yI = Ze, obtaining x = yI +υ ≧ yI . We have therefore
xj ≥ yIj, i, j = 1, . . . , n, then as 0 ≤ aij, we get with (A.39),

0 ≤
n
∑
i=1

aij =
n
∑
i=1

zij
xj
=

1
xj

n
∑
i=1

zij =
yIj
xj
≤ 1⇒ 0 ≤ aij ≤ 1

x = Ze + υ⇒ x̂−1x = x̂−1Ze + x̂−1υ = Ae + x̂−1υ = e ≥ Ae. (2.10)

9 Some authors use the term technological coefficient instead of technical coefficient.
10 Because the flows zij of domestic commodities of sectors Si to sectors Sj are expressed in the same
monetary value, all the elements aij, i ̸= j are measured in unit 1. That means, all the coefficients aij
are dimensionless. In principle, labour is incorporated in the wage item entering the value added.
11 The diagonal operator corresponding to a vector x leads to a diagonal matrix x̂, see (A.17). The
diagonal matrix x̂−1 contains the reciprocals (1/xi) in its main diagonal.
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The input-output coefficientsmatrixA describes the technology inmonetary terms. Each coefficient of
the column [a1j , a2j , . . . , anj] gives the share in value termsof thebundle of commodities i, i ∈ {1, . . . , n}
necessary to produce a bundle of commodities j of the value of one unit of the used currency. Thus,
expressed in currency CHF, a12 = 0.2 means that one uses a bundle of the commodities 1 of value
0.20 CHF to produce a bundle of the commodities 2 of value 1 CHF .

By analogy, we define a further matrix with the element:
dij: the distribution coefficient is the value of a bundle of commodities i (Input) of sec-

tor Si per unit of value of commodities i, distributed to sector Sj for the production
of a unit of commodities j (Output). It is defined as dij = zij/xi; i, j ∈ {1, . . . , n}which
is dimensionless, dij = [currency/currency] = 1:

dij =
zij
xi
; i, j = 1, . . . , n; i : Input index

j : Output index or D = x̂−1Z. (2.11)

With dij we then set up the n × n distribution coefficientsmatrix D = (dij) in monetary
terms:

D = (dij) = x̂
−1Z =
[[[

[

d11 d12 . . . d1n
d21 d22 . . . d2n
. . . . . . . . . . . .
dn1 dn2 . . . dnn

]]]

]

. (2.12)

Thedistribution coefficientsmatrixDdescribes the logistics. Each coefficientdij of the row [di1,di2, . . . ,
din] presents the share in value terms of commodities i to be distributed to the sectors Sj , j ∈ {1, . . . , n}
per value unit of produced commodities i. Thus, say that the currency CHF is used, then the number
d32 = 0.2, e. g., means that sector S3 distributes for the production of sector S2, (1/5) = 0.2 of its own
production of commodities 3.

ThematrixDwill be used later. For themoment, becauseweworkmainlywith the
matrix of the technical coefficients A, we will establish some key equations of input-
output analysis after the next subsection.

2.1.2 Notations for transactions in physical terms

As already mentioned, Leontief originally developed the IOT in appropriated physical
terms, supposed to exist, like bushels, tons or joules. Therefore, it is necessary to treat
the notations for IOTs in physical terms, meaning that all values are expressed in a
chosen physical numéraire (explained in Section 2.8 hereafter) to be able to carry out
all summations.

Presented in physical terms, the production process for the bundle of commodities
j ∈ {1, . . . , n} of sector Sj requires inputs as intermediate commodities from the other
sectors Si, i = 1, . . . , n. The total output qi of Sector Si results from the sum of the partial
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14 | 2 Elements of Input-Output Analysis

demands for all the commodities j as intermediate products and from thefinal demand
di of end consumers, the government and investors.

In analogy to the earlier Table 2.1 we shall just adopt the notations, where all the
quantities are presented in physical terms, as will be done in Table 2.2:
sij: the bundle of commodities (Input) of sector Si in appropriated physical terms, re-

quired for the production of the bundle of commodities (Output) by sector Sj. It
presents the transaction in physical terms from sector Si to sector Sj (see Miller
and Blair [65], p. 11);

Lj: annual quantity of labour of sector Sj, as a component of value added,
di: the final demand of sector Si,
qi: the total output of sector Si.

Table 2.2: Flows in physical terms, see Table 2.17 in Miller and Blair [65].

Selling sectors Buying sectors Final demand Total output
S1 … Sj … Sn

S1 s11 … s1j … s1n d1 q1
S2 s21 … s2j … s2n d2 q2
...

...
...

...
...

...
...

Si si1 … sij … sin di qi
...

...
...

...
...

...
...

Sn sn1 … … … snn dn qn
value added … … … … …
Labour [working time/period] L1 … Lj … Ln L/D

The n × nmatrix S = (sij) is called the commodity flow matrix in physical terms,

S =

[[[[[[[[

[

s11 s12 . . . s1j . . . s1n
s21 s22 . . . s2j . . . s2n
. . . . . . . . . . . . . . . . . .
si1 si2 . . . sij . . . sin
. . . . . . . . . . . . . . . . . .
sn1 sn2 . . . snj . . . snn

]]]]]]]]

]

. (2.13)

The basic accounting relationships, expressedwith the vector q = [q1, . . . , qn] and the
vector d = [d1, . . . , dn], see Miller and Blair ([65], pp. 47–48), are:

qi =
n
∑
j=1

sij + di; i = 1, . . . , n. (2.14)

In matrix form, in analogy with (2.5) one gets equations in physical terms relating the
vector of industrial output qI and the vector of total output q together with the vector
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of final demand d ≧ o,

qI = Se > o, q = Se + d = qI + d > o; S = (sij); i, j = 1, . . . , n. (2.15)

This is a fundamental relationship that we will again use later.12

The commodity flow matrix S describes the flow of commodities of interindustrial production. Each
coefficient sij represents the bundle of commodities i required for the production of a bundle of com-
modities j, expressed in physical terms, also called the transaction (intermediate input) from sector
Si to sector Sj . As a whole, matrix S represents themeans of production in physical terms.

The direct input-output coefficients in physical terms are now defined:
cij: the input-output coefficient indicates the amount of a bundle of commodities i (In-

put) of sector Si in physical terms, required for the production of one unit of the
bundle of commodities j of sector Sj (Output) in physical terms, and defined as
cij = sij/qj, i, j ∈ {1, . . . , n}. Their units are: [physical term of Sector Si/physical term
of Sector Sj]:

cij =
sij
qj
; i, j = 1, . . . , n; i : Input index

j : Output index
or C = Sq̂−1. (2.16)

The n×nmatrixC = (cij) is called the input-output coefficientsmatrix in physical terms,

C = Sq̂−1 =
[[[[

[

c11 c12 . . . c1n
c21 c22 . . . c2n
. . . . . . . . . . . .
cn1 cn2 . . . cnn

]]]]

]

. (2.17)

By definition, the units of the input-output coefficients cij are: [cij] =
term of commodities i
term of commodities j ,

i, j = 1, . . . , n. Thus, the input-output coefficientsmatrix is a non-negativematrix of num-
bers with a dimension in physical units, cij ≧ 0.

The input-output coefficientsmatrix C describes the technology in physical terms. Each coefficient of
the column [c1j , c2j , . . . , cnj] gives the bundle of the commodities i ∈ {1, . . . , n} necessary to produce
one bundle unit of commodities j. Thus, the coefficient c12 = 0.4 means that one needs (2/5) of a
bundle unit of commodities 1 inphysical terms to produce onebundle unit of commodities 2,measured
in an appropriate physical term.

12 In this context it is useful to diagonalize Se and d for certain purposes, using the definition (A.17):
Se ⇒ Ŝe, the matrix Ŝe has the row-sums of vector Se as diagonal elements. Further, d ⇒ d̂, the
matrix d̂ has the components di of vector d as its diagonal elements.
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In an “… ideal statistical world, integral information on values; quantities, and prices of
transactions would be available.”, see Eurostat Manual [72], p. 239.

We suppose that we know the values xi and, from the statistics, the positive prices
pi of the commodities i, i = 1, . . . , n, put into a price vector p = [p1, . . . , pn] > o. Under
these assumptions,we can convert the entries frommonetary terms into physical terms
and vice versa, see also Miller and Blair ([65], pp. 47–48):

{{
{{
{

xi = piqi,
zij = pisij,
fi = pidi,

⇔
{{
{{
{

x = p̂q = q̂p; x̂ = p̂q̂,
Z = p̂S⇔ S = p̂−1Z
f = p̂d⇔ d = p̂−1f.

(2.18)

Starting with the definition of the distribution coefficientsmatrix D (2.12), we get:

q̂−1S = q̂−1(p̂−1p̂)S = q̂−1p̂−1(p̂S) = (q̂−1p̂−1)Z
= x̂−1Z =: D⇒ D = q̂−1S = x̂−1Z. (2.19)

In analogy to the distribution coefficients dij in monetary terms, we have then shown
that they are equal to the distribution coefficients in physical terms.
dij: the distribution coefficient is the value of a bundle of commodities i (Input) per

unit of value of a bundle of commodities i, produced during the reporting period
(year), distributed to sector Sj for the production of that bundle of commodities j
(Output). It is defined as dij = (sij/qi); i, j ∈ {1, . . . , n}. Having all the prices pi of
commodities i; then we also get dij = zij/xi = (pisij)/(piqi) = sij/qi; i, j ∈ {1, . . . , n}.
Its unit is [physical term of i/physical term of i] = 1.

dij =
sij
qi
=
zij
xi
; i, j = 1, . . . , n; i : Input index

j : Output index or D = q̂−1S. (2.20)

The fully developed n × nmatrix D = (dij) is:

D = x̂−1Z := q̂−1S =
[[[

[

d11 d12 . . . d1n
d21 d22 . . . d2n
. . . . . . . . . . . .
dn1 dn2 . . . dnn

]]]

]

. (2.21)

By definition, the distribution coefficients dij, i, j = 1, . . . n are dimensionless. Thus,
the distribution coefficients matrix is a non-negative matrix of pure numbers dij, 1 ≧
dij ≧ 0.

The distribution coefficients matrix D describes the logistics. Each coefficient of the row [di1,di2, . . . ,
din] represents the bundle of commodities i to be distributed to the sectors j ∈ {1, . . . , n} per unit of
produced bundle of commodities i. Thus, the coefficient d32 = 0.2 means that sector 3 distributes the
part (0.2 = 1/5) of the own production precisely for the production of sector 2.

The matrix D will be extensively used later. For the moment, we use the matrix of the
technical coefficients C, and we will treat later some key relationships between the
variables inmonetary terms and the variables in physical terms.
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2.2 Economic assumptions on matrices and vectors, viability

After the presentation of matrices and vectors describing economic processes, we will
formulate intrinsic assumptions, corresponding to real-world economic situations.
Then we start the discussion on criteria of the viability of an economy.

There is the requirement of a positive vector x = Ze + f = Ze + υ > o (2.5) (2.6)
with non-negative vectors f ≧ o, υ ≧ o and the requirement of a positive vector q =
Se + d > o (2.15) with a non-negative vector d ≧ o, in order to be able to calculate
the inverse diagonal matrices x̂−1 and q̂−1 and to compute the input-output coefficients
matrices A, C, D. For this reason, the inequalities xj > 0, qj > 0, j ∈ {1, . . . , n} must
hold. We will see that these algebraic facilities relate to properties of countries’ offi-
cial input-output tables, e. g., Germany, Example 2.2.1 or the SWISS IOT 2008, and are
therefore elevated by some authors, see Schefold [103], to conditions to be fulfilled by
the models, fitting therefore to real economies.

Associated to official input-output tables, the commodity flowmatrixZ inmonetary
terms, or if there is a price vector p, the commodity flow matrix S in physical terms, is
considered as the primary available matrix, describing the structure of an economy,
from which the input-output coefficients matrices A = Zx̂−1 (2.8), C = Sq̂−1 (2.16) are
then derived.

For example. Kurz and Salvadori [100] used the term viability of an economy,
and Bertram Schefold ([103], p. 49) formulated economic assumptions conceived as
necessary conditions to be fulfilled by some of the just-defined matrices and vectors,
in order to obtain production economies, corresponding to reality. These notions are
presented here:

Assumption 2.2.1 (Economic assumptions on the positivity of output vectors). Every branch of a
production economy in single product industrieswith or without a surplus has to produce at least a
positive amount of a palette of commodities,a otherwise this branch does not exist. Consequently,
every branch j has its positive value of output xj > 0 or its positive quantity of output qj > 0.

Summarizing, the vectors x > o, xI > o and q > o, qI > o are positive.
Consequently, the inverse diagonalmatrices x̂−1, x̂−1I and q̂−1, q̂−1I exist, so that:A = Zx̂−1 (2.8),

C = Sq̂−1 (2.16), D = q̂−1S ≡ x̂−1Z (2.21).

a Schefold ([103], p. 49) was seemingly the first economist to express this claim clearly and con-
cisely. He said: …(every process has an input besides labour and an output).

Accordingly, we can formulate the following

Proposition 2.2.1. According to Assumption 2.2.1 the vectors x > o and q > o are pos-
itive; consequently, the transformation (2.18) ensures the existence of a positive price
vector p > o. The matrix transformations with the diagonal matrices x̂, q̂, p̂ and their
inverses also exist (2.19).

Schefold’s further assumptions ([103], p. 49) also imply properties fulfilled by the
commodity flow matrices Z, S.
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We apply Definition A.4.3 to the commodity flow matrix Z = (zij), i, j = 1, . . . , n,
expressing the quantities in monetary terms, as well as to the commodity flow matrix
S = (sij), i, j = 1, . . . , n, expressing the quantities in physical terms.

Consider the column vectors z⋅j = [z1j, z2j, . . . , znj], s⋅j = [s1j, s2j, . . . , snj], j =
1, . . . , n, respectively the corresponding row vectors zi⋅ = [zi1, zi2, . . . , zin], s


i⋅ = [si1, si2,

. . . , sin], i = 1, . . . , n. Then thematricesZ, S can bewritten asmatrices of columnvectors
or of row vectors as follows:

Z =
[[[[[[

[

z11 z12 . . . . . . z1n
z21 z22 . . . . . . z2n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
zn1 zn2 . . . . . . znn

]]]]]]

]

= [z⋅1, z⋅2, . . . , . . . , z⋅n] =
[[[[[[

[

z1⋅
z2⋅
. . .
. . .
zn⋅

]]]]]]

]

, (2.22)

S =
[[[[[[

[

s11 s12 . . . . . . s1n
s21 s22 . . . . . . s2n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
sn1 sn2 . . . . . . snn

]]]]]]

]

= [s⋅1, s⋅2, . . . , . . . , s⋅n] =
[[[[[[

[

s1⋅
s2⋅
. . .
. . .
sn⋅

]]]]]]

]

. (2.23)

Assumption 2.2.2 (Assumption on the commodity flow matrices). Every branch of the production
process has to treat at least one palette of commodities i as a means of production to produce
output, otherwise this branch does not exist. Consequently, every branch j must have at least an
input, so that each column vector is semi-positive, z⋅j ≥ o, s⋅j ≥ o, j ∈ {1, . . . , n}.a

For this reason, the matrices Z ≥ 0, S ≥ 0, A ≥ 0, C ≥ 0 are semi-positive.

a The condition that each row vector of a flowmatrix is semi-positive, zi⋅ ≥ o, si⋅ ≥ o, i, j ∈ {1, . . . , n}
obviously does not holdwhenwe thinkof an economywhere gold is produced, butwhere gold does
not figure as ameans of production.

Example 2.2.1 (Exception to Assumption 2.2.2). The Federal Statistical Office of Ger-
many published the input-output table 2013 of the domestic production at basic
prices, revised in 2014 and updated to August 2016,13 website: www.destatis.de. This
IOT contains n = 98 groups of commodities and the same number of branches of
production in terms of ‘CAP = Classification of products by Activity’ (valid for the
‘European Community (EU)’, website: http://ec.europa.eu/eurostat/ramon/). There
are three tables (use, supply and input-output tables) of the European System of
Accounts (ESA 1995), the use table at basic acquisition prices.14 In this use table,
corresponding to matrix Z, there is a so-called double-branch,15 designed by one suf-

13 Statistisches Bundesamt, Fachserie 18, Reihe 2, Volkswirtschaftliche Gesamtrechnung, Input-
Output-Rechnung, 2013 (Revision 2014, Stand: August: 2016), date of publication: March 7, 2017.
14 In German: “Verwendungstabelle 2013 zu Anschaffungspreisen”.
15 The divisions (NACE) 97 and 98 are grouped into one branch, designated by 97–98.
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fix i = 97–98, called ‘Services of private households’,16 with elements zi,97–98 = 0,
i = 1, . . . , 98 [divisions, (NACE)] and z97–98,j = 0, i = 1, . . . , 98, but the final consump-
tion is d97–98 = 7,247 > 0, equal to a corresponding value added υ97–98 = 7,247 > 0. So
there is a null column vector z⋅97–98 = o and a null row vector z97–98⋅ = o. This is not
in accordance with Assumption 2.2.2. In the German IOT 2013, the sector “Services of
private households” is a special sector. It does not produce any product nor request
any product, but it corresponds to a consumption demand. We will later learn how to
treat such exceptions. 

Nevertheless, fromnowon,Assumption 2.2.1 andAssumption 2.2.2will be adopted
for the treated economies. We start a discussion on sufficient conditions of reproduc-
tion.

At first, we present the notion of a profitable economy, which means that the pro-
duction process produces a surplus. Louis de Mesnard [25] introduces the notion of
profitable economies and presents it in monetary terms (f ≧ o), and Bertram Schefold
introduces the same notion but presents it in physical terms (d ≧ o). Bertram Schefold
argues ([109], 6. Anhang, p. 219) that an economy is profitable, if the inequality
De ≦ e holds.

As by Assumption 2.2.1, the vector of total output is positive, x > o, so with
(2.5) and the input-output coefficients matrix A = Zx̂−1 (2.8) we write x = Ze + f =
(Ax̂)e + f = A(x̂e) + f = Ax + f, and we obtain

monetary terms: x ≧ Ax⇔ f := x − Ax = (I − A)x ≧ o,
physical terms: ∃d ≧ o : (q = Se + d ∧ D = q̂−1S⇔
q = q̂De + d ≧ q̂De⇔ (q̂−1q) ≧ (q̂−1q̂)De⇔ e ≧ De.) (2.24)

Thus Schefold’s equivalence is shown: d ≧ o ⇔ e ≧ De. Second, we present the
notion of the viability of an economy (see Kurz and Salvadori, ([52], pp. 96–97)).

Definition 2.2.1. An economy in physical or monetary terms is said to be viable,
– if the technology at its disposal enables it to reproduce itself (assuming subsis-

tence wages for accomplished labour or labour at no cost [52], p. 96);
– when for vectors x > o and f ≧ o, the equation (I − A)x = f⇔ x ≧ Ax holds.

An economy is just viable, if f = o. In this case, there are only interindustrial transac-
tions and there is no surplus (no national income). We see that notions are set so that
“just viability” is a limiting case of “viability”.

From Definition 2.2.1 and equation (2.24), it is immediately obvious that the no-
tions profitable economy and viability of an economy are equivalent, applied either to
economies inmonetary terms or to economies in physical terms. Matrix (I−A) is named
the Leontief matrix and its inverse (I − A)−1 the Leontief Inverse, see Miller and Blair
([65], pp. 21, 44) and Oosterhaven ([77], p. 751).

16 In German: “Waren und Dienstleistungen privater Haushalte ohne ausgeprägten Schwerpunkt”.
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For further modelling purposes, we introduce now the mathematical theory of
positive or non-negative matrices, including semi-positive matrices, leading us to the
Perron–Frobenius Theorems A.9.3.

2.3 Positive matrices and non-negative matrices
The mathematical theory of non-negative, positive or even irreducible matrices, see
DefinitionA.8.3, is crucial for Input-OutputAnalysis, as Schefold, [103], [109], pp. 216–
225, Pasinetti [80], Kurz & Salvadori [54], Duchin [23] or Ashmanov [2] and other
authors have revealed. Non-negativity is less restrictive than the economic Assump-
tion 2.2.1 and Assumption 2.2.2 which hold for the entries of the commodity flow ma-
trices Z and S. But the non-negativity and irreducibility of matrices are the properties
required by the Perron–Frobenius theoremA.9.3which guarantees the existence of
positive eigenvectors, associated with the positive Frobenius number, and needed to
model prices and quantities.

Moreover, there is a weakened version of the seminal Perron–Frobenius theorem.
It is Theorem A.10.1 for which only non-negativematrices are required, stating the ex-
istence of non-negative eigenvectors, associatedwith a unique non-negative Frobenius
number.

To be safe, we proceed with an example. Consider a futuristic border case econ-
omy, where a new product such as a robotic car does not appear in the means of pro-
duction of the Leontief commodity flow matrix. Even here, Table 2.3, the economic
Assumption 2.2.1 and Assumption 2.2.2 being fulfilled, thematrix Z is semi-positive. In
this example, one uses the notions developed in Subsection A.12.

Table 2.3: Transactions, final demand and total output.

Commodities Processing sectors
(in Mio CHF)

Final demand
(in Mio. CHF)

Total output
(in Mio. CHF)

i = 1, 2, 3 S1 S2 S3 fi xi
S1: hardware 280 180 115 0 575
S2: software 240 240 120 0 600
S3: robotic car 0 0 0 250 250
value added 55 180 15 V = F = 250
total outlays 575 600 250 X = 1425

Example 2.3.1. Inspired by theGeneva InternationalMotor Show2017,we consider
a partial economy with sectors S1: hardware, S2: software, S3: robotic car. There is a
final demandonly for robotic cars. All the other production is outside this partial econ-
omy. We are in presence of a productive economy.

Given Table 2.3 with transaction entries and final demand of the base year and
final demand of the current year in monetary terms,
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Identify from the Table 2.3 the commodity flow matrix Z and the vector of final
demand f both in monetary terms.

Compute the vector of total output x, and the input-output coefficients matrixA =
Zx̂−1, the Frobenius number λA, and the Leontief matrix (I − A). Verify the inequality
Ae ≤ e. Argue on the basis of Theorem A.12.1 and Lemma 2.4.1 (b) about the existence
of the Leontief Inverse (I −A)−1. Compute the vector (I −A)−1f and interpret the result.

Compute the left eigenvectors pA and the right eigenvectors xA of the matrix A.
Formulate your observations (all the calculations can be done by hand).

Solution of Example 2.3.1:
The transactionmatrix Z and the vector of final demand f are identified from Table 2.3.
MatrixZ is non-negative. Then one computes the vector of total demandx, according to

Z = [
[

280 180 115
240 240 120
0 0 0

]

]
, f = [
[

0
0
250
]

]
, x = Ze + f = [

[

575
600
250
]

]
> o. (2.25)

Compute the non-negative input-output coefficientsmatrix A = Zx̂−1 (2.8),

A = [
[

280 180 115
240 240 120
0 0 0

]

]

[[[

[

1
575 0 0
0 1

600 0
0 0 1

250

]]]

]

= [[

[

56
115

3
10

23
50

48
115

2
5

12
25

0 0 0

]]

]

≥ 0. (2.26)

Lemma 2.1.1 holds because the vector of value-added is positive, υ = [55, 180, 15].
There is Ae = [104/115, 7/10, 47/50] ≤ e. The characteristic polynomial of the input-
output coefficientsmatrix is

f3(λ) = det(A − λI) = −λ(λ
2 −

102
115

λ + 8
115
) = −λ(λ − 2

23
)(λ − 4

5
). (2.27)

As the vector of final demand f ≥ o is semi-positive, consequently the Frobenius
number is λA = 4/5 < 1, i. e., less than one. Compute the Leontief matrix,

I − A =
[[[

[

59
115 −

3
10 −

23
50

− 48115
3
5 −

12
25

0 0 1

]]]

]

; (2.28)

The economy is productive, applying Theorem A.12.1 the Leontief Inverse exists. A
computation yields,

(I −A)−1 =
[[[

[

23
7

23
14

23
10

16
7

59
21

12
5

0 0 1

]]]

]

≥ 0, (I −A)−1f =
[[[

[

23
7

23
14

23
10

16
7

59
21

12
5

0 0 1

]]]

]

[[

[

0
0
250

]]

]

= [[

[

575
600
250

]]

]

. (2.29)

We have found x = (I − A)−1f, see also Lemma 2.4.1, as the Frobenius number
is λA = 4/5 < 1. Then we find for the non-negative matrix A ≥ 0, the positive right
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eigenvector xA = [40/41, 30/41, 1] > o, and finally one obtains the semi-positive left
eigenvector pA = [23/24, 1,0] ≥ o. 

Observation. TheoremA.12.1 applies to Example 2.3.1, becausewe are in presence of a
productive Leontief model, as the vector of final demand is semi-positive, f ≥ o. More-
over, the input-output coefficientsmatrix is semi-positive, A ≥ 0, all column vectors of
A being semi-positive, the economic Assumption 2.2.2 applies. The Frobnius number
is smaller than 1, λA = 4/5 < 1, as we have calculated. The Definition A.12.1 is also con-
firmed: The vector x = Ze + f = Ax̂e + f = Ax + f = [575, 600, 250] > o is even positive,
because Assumption 2.2.1 is fulfilled by construction of the example. The right eigen-
vectors are positive, xA > o. This is a limit case, where the third row vector a3⋅ = o of
the matrix A is a zero vector, the left eigenvectors are semi-positive, pA ≥ o.17

The Perron–Frobenius theorem A.9 dominates the field of the Input-Output anal-
ysis of Leontief.18

2.4 The Leontief quantity model
We assume throughout this section economies with or without final demand. Fur-
thermore, we assume that the restrictive Assumption 2.2.1, respectively, Assump-
tion 2.2.2 hold. Thus, we are in the presence of a semi-positive commodity flow matrix
Z ≥ 0, a semi-positive input-output coefficients matrix A ≥ 0 in monetary terms, a
non-negative vector of final demand, f ≧ o and a positive vector of total output, x > o.
For the notations, we rely on Input-Output data representation as in Table 2.1.

In other word, we consider Leontief models, also termed Leontief quantity models
or, demand-driven input-output quantity model, see Oosterhaven ([77], p. 751) (in mon-
etary terms), or classically, the Leontiefmodel inmonetary terms, seeDefinitionA.12.1,

x = Ax + f⇔ f = (I − A)x, x > o. (2.30)

Quantities of commodities are here analysed. Prices do not appear, but they will come
later. The Leontief model (2.30) goes back to Leontief’s Input-Output Analysis [56].
The following question has to be solved: What are the conditions that the Leontief
model (2.30) has as a solution a positive vector of total output x > o? The issues will
be illustrated by elementary examples.19

17 The idea to use singular vectors and singular value decomposition at the positive rectangular subma-
trices of a matrix A, as they occur in Example 2.3.1, has been realised (see Stetsyuk and Emmenegger
[113]).
18 We will see in Chapter 4 that the Perron–Frobenius theorem A.9.3 also dominates the field of
Sraffa’s single product industries for the determination of price vectors.
19 The reader should not be put off by the examples. Some are kept in this text in their original sim-
plicity to help the reader to focus on the algebraic and computational aspects. In particular, “wheat”,
“iron”, “turkeys” should be read sectorially as “agriculture”, “manufacturing”, “food production”.
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As a key result, we first present the conditions of existence of the Leontief Inverse.
It has to do with the presence of final demand, expressed by the semi-positive vector
f ≥ o. We will also obtain the criterion for the unique positive solution, x > o, of the
Leontief quantity model. We formulate

Lemma 2.4.1. For the output vectors, the inequalities x > o and xI > o hold:
(a) If f = o and Z ≥ 0, then the matrix A = Zx̂−1 ≥ 0 has a maximal eigenvalue λA = 1,

the Leontief Inverse (I − A)−1 does not exist and the Leontief quantity model (2.30)
has no solution.

(b) If f ≥ o and Z ≥ 0, then the matrix A = Zx̂−1 ≥ 0 has Frobenius number less than 1,
λA < 1. The Leontief Inverse (I − A)−1 exists and the Leontief quantity model (2.30)
is productive and has a unique positive solution vector,

x = (I − A)−1f > o. (2.31)

Proof. (a) If f = o and Z ≥ 0, the vector xI = Ze > o and A = Zx̂−1I ≥ 0,
D = x̂−1I Z ≥ 0. Then x̂−1I (Ze) = (x̂

−1
I Z)e = De = x̂−1I xI = e (2.12). Then, matrix D

is stochastic with eigenvector e and maximal eigenvalue λD = 1 (see Lemma A.11.1).
Matrices D and A are similar, λD = λA = 1, Lemma A.6.1. Consequently, det(A − λAI) =
det(I − A) = 0 and the Leontief Inverse (I − A)−1 does not exist. Then, considering the
ranks n− rank(A− I) = dim(𝕌) > 0, the solution space𝕌 of (2.30) contains an infinity
of solution vectors x (see Kowalsky [48], p. 75), and the Leontief quantity model (2.30)
has no solution.

(b) If f ≥ o and Z ≥ 0, then x = Ze + f > 0, and the matrix is also semi-positive,
A = Zx̂−1 ≥ 0; then, with x = Ax̂e+f = Ax+f > o, the Leontief quantity model becomes
a productive Leontief model. With Theorem A.12.1 the Frobenius number is less than
one, λA < 1. Therefore the Leontief Inverse exists, (I − A)−1, and equation f = (I − A)x
(2.30) has the unique solution x = (I − A)−1f > o.

2.4.1 The Leontief quantity model in monetary terms

We begin with a Leontief model inmonetary terms, where the vector of final demand is
null, f = o.20 Leontief models will later lead to the discussion of productive economies,
whose performance will be measured by productiveness.

Example 2.4.1. Consider the positive 2 × 2 commodity flow matrix Z = [ 20 30
30 40 ] > 0.

Compute the input-output coefficientsmatrix A and its eigenvalues. Compute the rank
of the matrix I−A. Compute the dimension of the solution space𝕌 of the correspond-
ing Leontief quantity model (2.30). What do you conclude?

20 For this case there is Theorem A.12.1 which states that a Leontief model is productive if and only if
the Frobenius number λA < 1. In the present case of f = o, there is λA = 1 (see also Ashmanov [2], p. 24
and p. 39, and Stetsyuk [111], [112]).
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Solution of Example 2.4.1:
We compute the positive output vector x = Ze + f > o (2.7) and diagonalize it. Then,
the input-output coefficientsmatrix A = Zx̂−1 > 0 (2.8) is positive,

x = Ze = Ze = [ 20 30
30 40

] [
1
1
] = [

50
70
] , x̂−1 = [

1
50 0
0 1

70
] , (2.32)

concluding that in this case there is V = F = 0. Then, we continue with the input-
output coefficientsmatrix,

A = Zx̂−1 = [ 20 30
30 40

] [
1
50 0
0 1

70
] = [

2
5

3
7

3
5

4
7
] > 0, (2.33)

and the characteristic polynomial,

P2(λ) = det(I − λA) = −
1
35
−
34
35

λ + λ2 = (λ − 1)(λ + 1
35
), (2.34)

before determining the rank of matrix I − A,

rank(I − A) = rank([
3
5 −

3
7

− 35
3
7

]) = 1. (2.35)

As the Frobenius number is λA = 1 because there is no demand, f=o, the Leontief In-
verse does not exist, and the Leontief quantity model (2.30) has no solution vector. 

Wewill now carry out some comparative-static analysiswith the Leontief quan-
tity model (2.30), implicitly introducing the notion of time in order to compare the
states of the system at two different points in time. That means, we analyse the evolu-
tion of the economy and the variables, during a considered period, extending from a
base year “0” to a current year “1”.21 For this purpose, it is necessary to indicate what
property of the economic system is carried forward from the base year to the current
year.

Assumption 2.4.1 (No change in technology). Unless otherwise stated, we assume that the technol-
ogy of the economy is time-invariant. This assumption has to do with the common observation that
the technology of an economy needs generally more time to change than the variability due to busi-
ness cycles, as the “long term” versus the “short andmedium terms”. Thismeans that the commodity
flowmatrices Z, respectivelyS, and the distribution coefficientsmatrixD describing the logistics, vary
from period to period, whereas the input-output coefficientsmatrices A = Zx̂−1, respectively C = Sq̂−1,
remain constant.

21 The base year could be 2008 and the current year 2015, thus we would have the period from 2008
to 2015, {2008,2015}.
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Now, one sets a positive final demand for the base year, f0 > o. The final demand
changes from f0 to become the new positive final demand f1 > o of the current year,
giving the difference vector Δf := f1 − f0. The question is, how has the total output
x0 changed from the base year to the total output x1 of the current year, giving the
difference vector Δx := x1 − x0.

Moreover, what happens with the commodity flow matrix Z > 0 and the input-
output coefficients matrix A = Zx̂−1 > 0? Do both change or are they invariant, inde-
pendently?

Thus, we assume an invariant technology in what follows. We also know that the
positive matrix A > 0 has a Frobenius number λA < 1, Lemma 2.4.1 (b). Then, we get
for the Leontief quantity model (2.30) a unique solution (2.31) in the difference vector:

Δx = (I − A)−1Δf. (2.36)

We are interested in the variations of the entries of the commodity flowmatrix, Z = Ax̂
(2.8) and find the following equations to calculate the variation and the new level of
matrix Z:

Z1 = Ax̂1 and Z0 = Ax̂0 or ΔZ := Z1 − Z0 = A(x̂1 − x̂0) = AΔx̂. (2.37)

Example 2.4.2. Consider an economy with sectors S1: wheat, S2: iron, S3: wood, with
corresponding entries and final demands.

Given Table 2.4 with transaction entries and final demand of the base year and fi-
nal demand of the current year inmonetary terms in any currency (all the calculations
can be done by hand):

Table 2.4: Transactions and vectors of total demand in monetary terms.

Commodities Base year
processing sectors

Base year
final demand

Current year
final demand

i = 1, 2, 3 S1 S2 S3 f0i f1i

S1: wheat 20 30 40 10 20
S2: iron 20 30 40 60 100
S3: wood 20 30 40 110 200

Extract the commodity flowmatrix Z0 of the base year from Table 2.4 and both vectors
of final demand f0 and f1.

Compute the vector of total output x0 > o for the base year, the vector of inter-
industrial production xI and the total output of the economy X0. Compute the vector
of total value added υ0 of the base year and the total value added V0. Compute the
input-output coefficients matrix A = Z0x̂−10 , the matrix I − A and the Leontief Inverse
(I − A)−1.
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Considering the Leontief quantity model (or the demand-driven input-output
model) (2.30), compute the unique solution vector of total output, x0 > o, for the
current year (2.31), using the previously obtained Leontief Inverse. Compute the total
production for the current year x1 > o.

Compute the difference vector Δx (2.36) showing the change of total output be-
tween the base year and the current year.

Compute the commodity flow matrix Z1 (2.37) of the current year. Compute the
vector of total value added υ1 of the current year and the total value added V1, the
total final demand F1 and the total output X1.

Compute the distribution coefficients matrix D0 = x̂−10 Z0.
Check the identity D0e + x̂−10 f0 = e.
Check also the identity D1e + x̂−11 f1 = e.
Explain the variability of the matrices Zi and Di, i = 0, 1, during this period from

the base year to the current year.

Solution of Example 2.4.2:
The entries of the transaction matrix Z0, and the vectors of final demand f0, f1 and
Δf = f1 − f0 are taken from Table 2.4,

Z0 =
[[

[

20 30 40
20 30 40
20 30 40

]]

]

, f0 =
[[

[

10
60
110

]]

]

, f1 =
[[

[

20
100
200

]]

]

, Δf = [[
[

10
40
90

]]

]

. (2.38)

We calculate the vector of interindustrial production xI and the vector of total demand
of industrial production, i. e., the vector of total output x0,

xI : = Z0e =
[[

[

20 30 40
20 30 40
20 30 40

]]

]

[[

[

1
1
1

]]

]

= [[

[

90
90
90

]]

]

,

x0 : = xI + f0 =
[[

[

x1
x2
x3

]]

]

= [[

[

90
90
90

]]

]

+ [[

[

10
60
110

]]

]

= [[

[

100
150
200

]]

]

. (2.39)

We now compute the vector of total value added for the base year,

υ0 = x0 − Z

0.e =
[[

[

100
150
200

]]

]

− [[

[

20 20 20
30 30 30
40 40 40

]]

]

[[

[

1
1
1

]]

]

= [[

[

40
60
80

]]

]

, (2.40)

and compute the total final demand and the total value added of the base year,

F0 = e
f0 = [1, 1, 1]

[[

[

10
60
110

]]

]

= [1, 1, 1][[
[

40
60
80

]]

]

= eυ0 = V0 = 180. (2.41)
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The total production output of the economy during the base year is X0 = ex0 = 100 +
150 + 200 = 450, presented in Table 2.5.

Table 2.5: Final demand and value added, total output and outlays in the base year.

Processing sectors Final demand Total
outputS1 S2 S3 f0i

S1: wheat 20 30 40 10 100
S2: iron 20 30 40 60 150
S3: wood 20 30 40 110 200
value added υj 40 60 80 V0 = F0 = 180
total outlays 100 150 200 X0 = 450

Then the input-output coefficientsmatrix A = (aij) is computed with equation (2.8),

A = Z0x̂
−1
0 =
[[

[

20 30 40
20 30 40
20 30 40

]]

]

[[[

[

1
100 0 0

0 1
150 0

0 0 1
200

]]]

]

= [[

[

0.2 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2

]]

]

, (2.42)

indicating that in the base year the constant input-output coefficients aij = 0.2 are the
values of the amounts of each commodity i, required for the production of one value
unit of each commodity j. The Frobenius number is λA = 0.6.

Now the Leontief matrix I − A and its determinant are computed,

I − A = [[
[

0.8 −0.2 −0.2
−0.2 0.8 −0.2
−0.2 −0.2 0.8

]]

]

, det(I − A) = 0.4, (2.43)

giving the positive Leontief Inverse (I −A)−1 = adj(I −A)/det(I −A), (A.29) because the
matrix A is irreducible,

(I − A)−1 = [[
[

1.5 0.5 0.5
0.5 1.5 0.5
0.5 0.5 1.5

]]

]

> 0, (2.44)

and we calculate the positive vectors of total output using the above Leontief Inverse,

x0 = (I − A)
−1f0 =
[[

[

1.5 0.5 0.5
0.5 1.5 0.5
0.5 0.5 1.5

]]

]

[[

[

10
60
110

]]

]

= [[

[

100
150
200

]]

]

,

x1 = (I − A)
−1f1 =
[[

[

1.5 0.5 0.5
0.5 1.5 0.5
0.5 0.5 1.5

]]

]

[[

[

20
100
200

]]

]

= [[

[

180
260
360

]]

]

. (2.45)
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Then we compute the difference vector

Δx = (I − A)−1Δf = [[
[

1.5 0.5 0.5
0.5 1.5 0.5
0.5 0.5 1.5

]]

]

[[

[

10
40
90

]]

]

= [[

[

80
110
160

]]

]

, (2.46)

and the commodity flow matrix Z1 of the current year is given through the invariant
input-output coefficients matrix A, Assumption 2.4.1,

Z1 = Ax̂1 =
[[

[

0.2 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2

]]

]

[[

[

180 0 0
0 260 0
0 0 360

]]

]

= [[

[

36 52 72
36 52 72
36 52 72

]]

]

, (2.47)

the equations (2.46) and (2.47) justify the term demand-driven input-output model. In-
deed, the vectors of final demand for the base year and current year determine the dif-
ference vector Δf and the difference vector Δx upgrading the total output of the econ-
omy and the commodity flow matrix Z1. This is a typical issue in a comparative-static
analysis.

We compute the vector of total value added for the current year,

υ1 = x1 − Z

1.e =
[[

[

180
260
360

]]

]

− [[

[

36 36 36
52 52 52
72 72 72

]]

]

[[

[

1
1
1

]]

]

= [[

[

72
104
144

]]

]

, (2.48)

and the total final demand and the total value added of the current year,

F1 = e
f1 = [1, 1, 1]

[[

[

20
100
200

]]

]

= [1, 1, 1][[
[

72
104
144

]]

]

= eυ1 = V1 = 320. (2.49)

The total production output of the economy during the base year is X1 = ex0 = 180 +
260 + 360 = 800, presented in Table 2.6.

Table 2.6: Current year—final demand, value added, total output and outlays.

Processing sectors Final demand Total
outputS1 S2 S3 f1i

S1: wheat 36 52 72 20 180
S2: iron 36 52 72 100 260
S3: wood 36 52 72 200 360

value added υj 72 104 144 V1 = F1 = 320

total outlays 180 260 360 X1 = 800
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Finally, we calculate the distribution coefficientsmatrix (2.12) in the base year,

D0 = x̂
−1
0 Z0 =
[[

[

1
100 0 0
0 1

150 0
0 0 1

200

]]

]

[[

[

20 30 40
20 30 40
20 30 40

]]

]

=
[[[

[

1
5

3
10

2
5

2
15

1
5

4
15

1
10

3
20

1
5

]]]

]

. (2.50)

The distribution coefficients dij indicate in the base year the amounts of the palette of
commodities i, from either the wheat, iron or wood sectors, distributed per value unit
of the production of the palette of commodities i to sector j.22 For instance, d13 = (2/5)
means that thequantity ofwheat commodities 1 of value0.4CHF is required toproduce
a unit of wood commodities 3 of value 1 CHF.

At the moment, we also mention the important identity,

D0e + x̂
−1
0 f0 =
[[

[

0.9
0.6
0.45

]]

]

+ [[

[

0.1
0.4
0.55

]]

]

= [[

[

1
1
1

]]

]

= e. (2.51)

Finally, we calculate the distribution coefficientsmatrix (2.12) in the current year,

D1 = x̂
−1
1 Z1 =
[[

[

1
180 0 0
0 1

260 0
0 0 1

360

]]

]

[[

[

36 52 72
36 52 72
36 52 72

]]

]

=
[[[

[

1
5

13
45

2
5

9
65

1
5

18
65

1
10

13
90

1
5

]]]

]

(2.52)

and recognize that D0 ̸= D1. This means, even if the technology matrix A remains in-
variant for this period, that the increase of final demand, climbing from f0 to f1, gen-
erates a change of the distributionmatrix from D0 to D1.

For the current year, we also verify the requested identity,

D1e + x̂
−1
1 f1 =
[[[

[

8
9
8
13
4
9

]]]

]

+
[[[

[

1
9
5
13
5
9

]]]

]

= [[

[

1
1
1

]]

]

= e. (2.53)

Summary. According to Assumption 2.4.1 the technology remains invariant. For this
reason, the input-output coefficients matrix A is constant. The two other matrices
change from base year to current year: Z0 ̸= Z1, D0 ̸= D1. The increase in final demand
Δf > 0 corresponds to an upswing of a business cycle. The processing sectors have to
increase their production in order to cover this additional demand, the total output
climbs from X0 = 450 to X1 = 800, as seen through the increase of the entries of the
commodity flowmatrix Z1 > Z0. Even if the technology remains constant, the logistic

22 The matrix D0 is also used to describe supply-driven input-output models (see Oosterhaven, [77]).

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



30 | 2 Elements of Input-Output Analysis

changes, D0 ̸= D1, here visible through the variability of the distribution coefficients
matrix.23 Such variabilities are observed in real economies: when there is an up-swing
or down-swing in a business cycle, transport activity on the roads changes. 

We now continue with the Leontief quantity model based on physical terms.

2.4.2 The Leontief quantity model in physical terms

Here we again rely on the Leontief model, Definition A.12.1. From Duchin and Steenge
[23], we know that this model is also applied to data in physical terms. The Assump-
tion 2.2.1 and Assumption 2.2.2 continue to hold. The presentation follows Table 2.2.
Consider a semi-positive commodity flow matrix S ≥ 0 in physical terms and a non-
negative vector d ≧ o of final demand as given, describing a production process. From
equation (2.16) and (2.15), one obtains

q = Se + d > o⇒ q = (Cq̂)e + d = C(q̂e) + d = Cq + d > o. (2.54)

Consider now the semi-positive input-output coefficients matrix C = Sq̂−1 ≥ 0 and
the vector of demand d ≧ o describing the underlying production process. We seek a
unique positive vector of total output q > o, as a solution of the following equation:

q = Cq + d⇔ d = (I − C)q, q > o. (2.55)

Here, the model (2.55) is referred to as the demand-driven input-output quantity model
in physical terms, see Oosterhaven ([77], p. 751), or in short the Leontief model in phys-
ical terms.

We now discuss some further comparative-static applications of the demand-
driven Leontief quantity model in physical terms. We again assume an invariant tech-
nology, Assumption 2.4.1 the input-output coefficientsmatrixC remaining unchanged,
whereas the demand is subject to change during the period from the base year to the
current year.

We illustrate the Leontief quantity model (2.55) with data, presented by Pasinetti
([80], pp. 36–37) and start with a static analysis of one equilibrium. Analogue data will
be used subsequently to develop further examples.

Example 2.4.3. Consider an economywith n = 3 sectors, each sector distinct from the
others, producing wheat (w), iron (i), turkeys (t), respectively. During one year, the
production is as follows: The wheat sector needs 240 tons of wheat, 12 tons of iron

23 Remark: If the final demand F is composed of consumption C, investment I and government expen-
diture G, F = C + I + G, and if there is no import and no export, E = M = 0, then the national income
is Y = F = V , see Section 2.7.
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and 18 dozens of turkeys to attain the total production of 450 tons of wheat. The iron
sector needs 90 tons of wheat, 6 tons of iron and 12 dozens of turkeys to attain the total
production of 21 tons of iron. The turkey sector needs 120 tons of wheat, 3 tons of iron
and 30 dozens of turkeys to attain the production of 60 dozens of turkeys.

Determine the commodity flow matrix S, the vector of total output q, and the
input-output coefficients matrix C and apply Lemma 2.4.1. Calculate the distribution
coefficients matrix D and verify the identity De = e.

Solution to Example 2.4.3:
We set up the commodity flow matrix and the vector of total output and then present
the issues in the following Table 2.7:

S = [[
[

240 90 120
12 6 3
18 12 30

]]

]

, q = Se = [[
[

240 90 120
12 6 3
18 12 30

]]

]

[[

[

1
1
1

]]

]

= [[

[

450
21
60

]]

]

> o.

(2.56)

Table 2.7: Flow of commodities in physical terms, total output, no final demand.

Selling sectors Buying sectors Total production
wheat iron turkeys

S1: wheat 240 90 120 450 tons of wheat
S2: iron 12 6 3 21 tons of iron
S3: turkeys 18 12 30 60 dozens turkeys

We can now calculate the input-output coefficientsmatrix

C = Sq̂−1 = [[
[

240 90 120
12 6 3
18 12 30

]]

]

[[[

[

1
450 0 0

0 1
21 0

0 0 1
60

]]]

]

=
[[[

[

8
15

30
7 2

2
75

2
7

1
20

1
25

4
7

1
2

]]]

]

. (2.57)

Its characteristic polynomial is

f3(λ) = det(C − λI) = −λ
3 +

277
210

λ2 − 178
525

λ + 1
50
= −(λ − 1)(λ − 3

35
)(λ − 7

30
). (2.58)

The input-output coefficientsmatrixC is positive and there is exclusively interindustrial
production and no final demand, d = o, therefore the Frobenius number is λC = 1.
Consequently, the Leontief Inverse does not exist, see Lemma 2.4.1.

Finally, we calculate the distribution coefficients matrix D and verify the identity
De = e. We obtain
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D = q̂−1S =
[[[

[

1
450 0 0

0 1
21 0

0 0 1
60

]]]

]

[[

[

240 90 120
12 6 3
18 12 30

]]

]

=
[[[

[

8
15

1
5

4
15

4
7

2
7

1
7

3
10

1
5

1
2

]]]

]

,

De =
[[[

[

8
15

1
5

4
15

4
7

2
7

1
7

3
10

1
5

1
2

]]]

]

[[

[

1
1
1

]]

]

= [[

[

1
1
1

]]

]

= e.  (2.59)

In the next example, the final demand is introduced, defining a productive Leontief
model. Thus, the vector of final demand changes from d0 ≥ o in the base year to d1 ≥ o
in the current year, giving the difference vector Δd := d1 −d0. The Leontief matrix I−C
and the Leontief Inverse (I − C)−1 exist and are termed in analogy to the matrices used
in Subsection 2.4.1. The matrices Z, A and the vectors x, f just have to be replaced by
the matrices S, C and the vectors q, d in that order.

The question is: How does the vector of total output q0 of the base year change to
become the vector of total output q1 of the current year, giving the difference vector
Δq := q1 − q0. We get frommodel (2.55), since the Leontief Inverse exists, because evi-
dently Lemma 2.4.1 (b) applies to the model (2.55) in physical terms, d0 > o, obtaining
the Frobenius number λC < 1, the equation,

Δq = (I − C)−1Δd. (2.60)

We are further interested in the variations of the entries of the commodity flowmatrix
S = Cq̂ (2.16). We find the following equation to calculate the new levels of matrix S1
from matrix S0, given C = constant,

S1 = Cq̂1 and S0 = Cq̂0 or ΔS := S1 − S0 = C(q̂1 − q̂0) = CΔq̂. (2.61)

We consider a first base year vector of final demand d0 and then a second current year
vector of final demand d1. We suppose an invariant technology, Assumption 2.4.1 the
input-output coefficientsmatrix C remaining time-invariant.

The entries of the illustrating example are taken from a problem treated by
Pasinetti ([80], pp. 38–40, Table II.2).

Example 2.4.4. The means of production and the vectors of final demand of the base
year and of the current year are presented in Table 2.8. Determine the commodity
flow matrix S0 and the vector of final demand d0, the vector of total output q0, the
input-output coefficients matrix C = S0q̂−10 of the base year. Determine the vector of
final demand d1 of the current year. Compute the Leontief Inverse (for data based in
physical terms), and apply (2.55) to calculate the total output vectors q0 and q1. Apply
Lemma 2.4.1.

Compute the commodity flow matrix S1 (2.61) of the current year.
Give an interpretation of the results obtained with the Leontief quantity model.
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Table 2.8: Flow of commodities in physical terms with final demands.

Commodity Processing sectors Base year
final demand

Base year
total output

Current year,
final demand

wheat iron turkeys d1i d2i

wheat 186 54 30 180 450 tons of wheat 228
iron 12 6 3 – 21 tons of iron 25
turkeys 9 6 15 30 60 doz. turkeys 45

Calculate the distribution coefficients matrices D0 = q̂−11 S0 and D1 = q̂−11 S1.
Compute the difference vector Δq (2.60), which shows the change of total output

between the base year and the current year.
Verify the identitiesD0e+q̂−10 d0 = e andD1e+q̂−11 d1 = e and explain the variability

of the matrices S and D.

Solution to Example 2.4.4:
We can again set up the commodity flow matrix, the vector of final demand and the
vector of total output,

S0 =
[[

[

186 54 30
12 6 3
9 6 15

]]

]

, d0 =
[[

[

180
0
30

]]

]

, d1 =
[[

[

228
25
45

]]

]

, Δd = [[
[

48
25
15

]]

]

,

q0 = S0e + d0 =
[[

[

186 54 30
12 6 3
9 6 15

]]

]

[[

[

1
1
1

]]

]

+ [[

[

180
0
30

]]

]

= [[

[

450
21
60

]]

]

> o, (2.62)

from which we can calculate the input-output coefficientsmatrix, assumed to be time
invariant,

C = S0q̂
−1
0 =
[[

[

186 54 30
12 6 3
9 6 15

]]

]

[[

[

1
450 0 0
0 1

21 0
0 0 1

60

]]

]

=
[[[

[

31
75

18
7

1
2

2
75

2
7

1
20

1
50

2
7

1
4

]]]

]

, (2.63)

with the characteristic polynomial

f3(λ) = det(C − λI) = −λ
3 +

1,993
2,100

λ2 − 1
5
λ + 1

100

= −(λ − 0.675)(λ − 0.201)(λ − 0.079). (2.64)

The input-output coefficients matrix C > 0 is positive, the Perron–Frobenius theo-
rem A.9.2 therefore applies, the Frobenius number is λC = 0.675 < 1 and the Leontief
Inverse (I − C)−1 exists, according to Lemma 2.4.1 (b).
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Now, the matrix I − C is computed

I − C =
[[[[

[

44
75 −

18
7 −

1
2

− 275
5
7 −

1
20

− 1
50 −

2
7

3
3

]]]]

]

, (2.65)

giving the positive Leontief Inverse in physical terms (I − C)−1, as stated by Theo-
rem A.10.2,

(I − C)−1 =
[[[[

[

1,095
506

2,175
253

510
253

441
5,060

903
506

224
1,265

1
11

10
11

16
11

]]]]

]

= [[

[

2.16 8.60 2.02
0.0872 1.78 0.177
0.0909 0.909 1.45

]]

]

> 0. (2.66)

We then calculate the positive vectors of total output using the Leontief Inverse (2.66)
with dk, k = 0, 1 (the figures are rounded off).

q0 = (I − C)
−1d0 =
[[

[

2.16 8.60 2.02
0.0872 1.78 0.177
0.0909 0.909 1.45

]]

]

[[

[

180
0
30

]]

]

= [[

[

450
21
60

]]

]

,

q1 = (I − C)
−1d1 =
[[

[

2.16 8.60 2.02
0.0872 1.78 0.177
0.0909 0.909 1.45

]]

]

[[

[

228
25
45

]]

]

= [[

[

799
72.5
109

]]

]

. (2.67)

Then, we compute the diagonal matrix q̂1 and the difference vector

q̂1 =
[[

[

799 0 0
0 72.5 0
0 0 109

]]

]

, Δq = q1 − q0 =
[[

[

799
72.5
109

]]

]

− [[

[

450
21
60

]]

]

= [[

[

349
51.5
49

]]

]
(2.68)

and the commodity flow matrix of the current year, see Table 2.9,

S1 = Cq̂1 =
[[[

[

31
75

18
7

1
2

2
75

2
7

1
20

1
50

2
7

1
4

]]]

]

[[

[

799 0 0
0 72.5 0
0 0 109

]]

]

= [[

[

330.266 186.311 54.455
21.308 20.701 5.445
15.981 20.701 27.227

]]

]

> [[

[

186 54 30
12 6 3
9 6 15

]]

]

= S0. (2.69)

The calculations (2.68), (2.69) justify the designation demand-driven input-output
model. Indeed, the two given vectors of final demand for the base year and current year
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Table 2.9: Sector outputs, total final demand and output in the current year.

Current
year

Processing sectors Final demand Total
outputS1 S2 S3 d1i

S1: wheat 330.266 186.311 54.455 228 799.032
S2: iron 21.308 20.701 5.445 25 72.526
S3: wood 15.981 20.701 27.227 45 108.909

determine the difference vector Δd, and then the vector Δq, the growing total output
of the economy and the commodity flowmatrix S1. This is a typical comparative-statics
analysis.

Then, we compute the distribution coefficientsmatrix for the base year,

D0 = q̂
−1
0 S0

= [[

[

1
450 0 0
0 1

21 0
0 0 1

60

]]

]

[[

[

186 54 30
12 6 3
9 6 15

]]

]

= [[

[

0.41 0.12 0.07
0.57 0.29 0.14
0.15 0.10 0.25

]]

]

= (dij0), (2.70)

each distribution coefficient dij0 indicates in the base year the part of the total amount
of commodity i (Input) required for the production of oneunit of commodity j (Output).
Finally, we calculate for the current year, the components of matrix S1 presented as
common fractions, like 417,787/1,265 = 330.266,

D1 = q̂
−1
1 S1 =
[[

[

253
202,155 0 0
0 2,530

183,309 0
0 0 11

1,198

]]

]

[[[[

[

417,787
1,265

235,683
1,265

599
11

26,954
1,265

26,187
1,265

599
110

40,431
2,530

26,187
1,265

599
22

]]]]

]

=
[[[[

[

31
75

78,561
336,925

13,777
202,155

53,908
183,309

2
7

13,777
183,309

40,431
275,540

26,187
137,770

1
4

]]]]

]

= [[

[

0.41 0.23 0.07
0.29 0.29 0.08
0.15 0.19 0.25

]]

]

. (2.71)

Because the matrices D0 and D1 are different, the logistic has changed between the
current year and the base year, even if the technology remained unchanged during
this period.

We finish the example noting the property:

D0e + q̂
−1
0 d0 =
[[

[

0.6
1
0.5

]]

]

+ [[

[

0.4
0
0.5

]]

]

= [[

[

1
1
1

]]

]

= e, (2.72)

D1e + q̂
−1
1 d1 =
[[

[

0.715
0.655
0.587

]]

]

+ [[

[

0.285
0.345
0.413

]]

]

= [[

[

1
1
1

]]

]

= e.  (2.73)
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The distribution coefficientsmatrix is used to describe supply-driven input-output mod-
els, the so-called Ghosh models (see Oosterhaven [77], pp. 753–755).

Final observation for Section 2.4:
1 The coefficients of every n × n input coefficients matrix in physical terms C (inde-

pendently of base year or current year) are non-negative: 0 ≤ cij.
2 The coefficients of every n × n input coefficients matrix A in monetary terms lie

between 0 and 1: 0 ≤ aij ≤ 1, according to Lemma 2.1.1.

2.5 The Leontief cost-push input-output price models*

This section focuses on a variant of Leontief price models, leading to the calculation of
price indices and prices. Comparative-static analysis over a reporting period between
a base year to a current year is performed for the obtained price indices and prices.

There are two types of specific models. On the one hand, the Leontief cost-push
input-output price models in monetary terms, which are in fact specific price-index
models, comparing a value added of a current year to a value added of a base year.
The obtained price indices are presented in vector form. On the other hand, the Leon-
tief cost-push input-output price models in physical terms are price models for all the
commodities of the investigated production economy (see for the price index andprice
models Oosterhaven [77]). Miller and Blair [65], pp. 41–51, explicitly use the notion in-
dex price in relation with the results of the price models based onmonetary data!

The cost-push input-output price models have been developed and applied by
Schumann [104],24 Oosterhaven [77] and Dietzenbacher [22].

2.5.1 The Leontief cost-push input-output price model in monetary terms

Throughout this subsection, we posit a productive Leontief model, Definition A.12.1,
meaning f ≥ o. Therefore the Frobenius number is smaller than one, λA < 1,
Lemma 2.4.1 (b). Both economic prerequisites hold, Assumption 2.2.1 for the vec-
tor of total output, x > o, and Assumption 2.2.2 for the matrix Z ≥ 0. Therefore, we
can define A = Zx̂−1. Consequently and necessarily, the value-added vector is semi-
positive, υ = [υ1, . . . , υn] ≥ o, see Miller and Blair [65], pp. 43–47,25 indicating the

24 Schumann uses the term “Schattenpreis” (shadow price) for the prices having the characteristic of
price indices and writes that these shadow prices have clearly to be distinguished frommarket prices,
obtained from the intersection of the supply- and demand-curves.
25 For didactic reasons, Miller and Blair [65] restrict value added to labour. We shall first follow this
procedure where no ambiguities arise, in particular, in the introductory steps of this text.
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monetary value of total value added. For the notations, we rely on the IOT represen-
tation as in Table 2.1. The semi-positive matrix Z ≥ 0 represents interindustrial sales
and purchases in value (monetary) terms.

We rely on the equality between total output and total outlays and start from equa-
tion (2.7) which relates to the accounting identity, bringing together the vector of total
final demand and the vector of value added,

x = Ze + f = Ze + υ > o. (2.74)

Then, as we shall see, the identity x = Ze+υwill lead to specific price indices. Taking
A = Zx̂−1 gives the identity x = Ze + υ = (Ax̂)e + υ = x̂Ae + υ; after multiplying the
obtained equation by x̂−1 from the left side, with υc := x̂−1υ ≥ o, we get

x̂−1x = x̂−1(x̂Ae) + x̂−1υ = (x̂−1x̂)Ae + υc, (2.75)

giving, with x̂−1x = e from (A.39) observing under the stated conditions the inequality
equivalence x > o⇔ e > o,

e = Ae + υc. (2.76)

Analysing the peculiar equation (2.76), we see that it leads to the concept of the
Laspeyres price index, and we make this interlude to explain the concept.

The Laspeyres price index is used to measure the price evolution of a basket of consumption goods.
Consider a basket ℬ of k goods and services in a given region, during a given period spanning the
base year to the current year. Let the prices and quantities of the goods i ∈ {1, . . . , k} be pi|0 and qi|0 in
the base year, respectively pi|1 and qi|1 in the current year. The Laspeyres price indexes from the base
year to the current year and for the base year are defined as follows:

PL,0|1 =
∑ki=1 pi|1 ⋅ qi|0
∑ki=1 pi|0 ⋅ qi|0

; PL,0|0 =
∑ki=1 pi|0 ⋅ qi|0
∑ki=1 pi|0 ⋅ qi|0

= 1. (2.77)

We see that the Laspeyres price index is a weighted average of prices for the given basket ℬ of goods
or services. Indeed, the Laspeyres price index of the base year is always PL,0|0 = 1. Today, the concept
of the Laspeyres price index is applied by most national economies to develop their consumer price
index (CPI).

After this interlude, we return to equation (2.76) and start with the case where the cur-
rent year and base year are identical. Consequently, the cost of production of each
commodity is referred to itself. With this idea in mind, we go on and interpret the
three terms of identity (2.76).

The j-th component of the first vector Ae, j ∈ {1, . . . , n}, is the sum ∑ni=1 aij, 0 ≤
∑ni=1 aij ≤ 0, Lemma 2.1.1 each term aij of which represents the monetary value of the
amount of the palette of commodities i ∈ {1, . . . , n} required for the production of one
value unit of the palette of commodities j ∈ {1, . . . , n} of sector Sj.
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The components υj/xj of the vector υc := x̂−1υ = [υ1/x1, . . . , υn/xn] represent the
total value added, respectively, the total labour, necessary to produce one value unit
of the palette of commodities j, j ∈ {1, . . . , n}, see Miller and Blair ([65], pp. 43–44). The
vector υc is called the vector of the total value added of every sector Sj, per value unit
of produced commodities in monetary terms.

The right-hand side of (2.76) gives the sum of the requirements for a produced
unit of every sector Sj, composed of the sum of the costs of production, represented
by vector Ae, together with the costs of value added (labour) υj/xj for each produced
unit of every sector Sj, together placed within the vector υc.

The left hand side of (2.76) is the dimensionless summation vector e. The unit
coefficients are the unit costs of production of output xj per unit costs of production of
output xj in sector Sj, meaning xj/xj = 1. They are also designated as “(index) prices
standardized to one” (see Oosterhaven [77], p. 751).

The expression between the brackets, such as [υj/xj], containing only one alge-
braic term, means a dimension of fraction υj/xj. Clearly, the vector υc = [υ1/x1, . . . ,
υn/xn] has dimensionless components, [υj/xj] = 1. The vector Ae is also dimen-
sionless. Then, the sum of Ae and υc gives the summation vector e of unit weights
(2.76).

Summarizing, the identity (2.76) contains on the left hand-side the costs of pro-
duction of sector Sj for the total output xj of the palette of commodities j per unit of
total output, meaning the unit weights xj/xj = 1. On the right-hand side, the term Ae
gives the costs for interindustrial production per value unit of produced commodities;
the vector υc represents the total value added of each sector per value unit of produced
commodities (called the vector of total labour per value unit of produced commodities),
summedup anddesignated as “weights for each industry equal one” (seeOosterhaven
[77], p. 752).

Wenowpresent the value-basedLeontief cost-push input-output pricemodelwhich
is an index-price model, see Oosterhaven [77]. Schumann [104], Dietzenbacher [22].
Miller and Blair ([65], p. 44, (2.33)) term it the input-output price model.

We start transforming (2.76), using the identity υc = υ̂ce ≥ o. We obtain

e = Ae+υc ⇒ (I − A
)e = (I − A)e = υc = υ̂ce. (2.78)

Because, by the previously statedmodel assumptions, the Frobenius number is λA < 1,
by Lemma 2.4.1 the transposed Leontief Inverse exists and we get

e = (I − A)−1(υ̂ce) = ((I − A)
−1)(υ̂ce). (2.79)

We mention here that Miller and Blair ([65], pp. 43–44) comment on the identity
(2.76) as follows:

“This [equation (2.76)] illustrates the unique measurement units in the base year table – amounts
that can be purchased for 1.00 USD”.
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In the second equation of (2.78) the summation, vector e = [1, . . . , 1] is interpreted as a
vector of index prices relative to the base year; this means the current year is identical
with the base year, see Miller and Blair [65] or Oosterhaven [77].26

We now take up the specific price indexmodel (2.79) and continue explaining the
ideas of Oosterhaven ([77], p. 752) and Miller and Blair ([65], p. 44).

Consider the value added (labour costs) υj1 of sector Sj in the current year, respec-
tively, the value added (labour costs) υj0 in the base year “0”. Then p̃υj,0|1 := υ1j/υ0j
is the dimensionless index price of value added (labour costs) of sector Sj. Set up the
vector p̃υ,0|1 = [p̃υ1,0|1, . . . , p̃υn,0|1] of index prices of value added.

We replace the vector e on the right-hand side of (2.79) by the vector p̃υ,0|1.
When the current year is identical to the base year, p̃υ,0|0 = e, we fall back on the

identity (2.76). Now we continue, assuming that the current year is different from the
base year.

We continue applying the notations defined for the Laspeyres price index (2.77).
Consequently, p0i, respectively p1i, determine the price of commodity i in the base year
“0”, respectively in the current year “1”. We define for the palette of commodities i the
index price of the base year “0” relative to the base year “0” by p̃i,0|0 = p0i/p0i = 1
and set the vector p̃0|0 = [p̃1,0|0, . . . , p̃n,0|0] := e = [1, 1, . . . , 1]. By analogy, we then
define for the palette of commodities i the index price of the current year “1” relative
to the base year “0” by p̃i,0|1 = p1i/p0i and set the vector of the index prices of all the
commodities of the current year relative to the base year as p̃0|1 = [p̃1,0|1, . . . , p̃n,0|1].

On the left-hand side of (2.79), we replace e by the unknown vector of the index
prices of the n commodities p̃0|1 = [p̃1,0|1, . . . , p̃n,0|1]. This means, considering the pe-
riod from the base year to the current year, both vectors e on both right-hand sides of
(2.79) are replaced by the vector p̃υ,0|1. The vector υ̂c from now on is denoted as vector
υ̂c,0, emphasizing that we are in presence of a base year, giving

υc,1 := υ̂c,0p̃υ,0|1, (2.80)

the vector of value added in units of the current year. We thus obtain the vector of the
index prices of all the commodities of the current year27 with respect to the base year

26 Remark: Both authors, Oosterhaven ([77], p. 752) and Miller and Blair ([65], p. 44) use the designa-
tion “index price” or “(index) price”. Oosterhaven uses also the term “unit price-indices of the base-
year. Hence, for this base-year: p̃0|0 = e

 = p̃υ,0|0” ([77], p. 752), for the signification of the variables,
see (2.81) hereafter. The common understanding of these terms is that both authors consider dimen-
sionless price indices of a base year relative to itself with value 1. Following up on this concept, there
are price indices of a current year relative to a base year that are also dimensionless but can have values
different than 1. Empirically, the term “(index) price” may be understood as an estimation of a price
index.
27 We thus observe the appearance of a formalism in the multiplication of a matrix of “quantities” or
“relative quantities”, like υ̂c,0, by a vector of price indices, resulting in another vector of price indices.
Two subsequent “0”, “0” give one “0”, like in (2.81) {“0”}, {“0|1”}→ {“0|1”}. This is the transformation
of a base year to current-year price indices within the same period.
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by the Leontief cost-push input-output price model inmonetary terms:

p̃0|1 = ((I − A)
−1) ⋅ υ̂c,0 ⋅ p̃υ,0|1. (2.81)

The economic interpretation of the index pricemodel (2.81) is a topic of its own. Oosterhaven [77] and
Miller and Blair ([65], p. 44, (2.33)) present it as the value-based cost-push input-output price model
because it can be interpreted for a given period as the transformation from the base year to the current
year of the index prices of value-added into the index prices of the sectors of the economy.

Miller and Blair comment:

“This model is generally used to measure the impact on prices through the economy of new-primary
input costs (or a change in those costs) in one or more sectors” (cited fromMiller & Blair [65], p. 45).

Oosterhaven ([77], p. 752) commented: It is used to “simulate the cost-push inflatory
processes”.28

This model construction gives rise to comparative-static analysis, summarized
hereafter before tackling an example. We show how to calculate the levels of value
added, whose variations in the period (base year = 0, current year = 1) is described by
aprice index vector p̃υ,0|1. Then, theprice index vector p̃0|1 of thewhole economycanbe
calculated for the current year (2.81). Finally, the levels of all entries can be upgraded
from the base year to the current year with corresponding diagonalized vectors, in
such a way that all the levels are multiplied by the corresponding sector price index.
We compute the commodity flowmatrix for the current year, where the index price p̃j,0|1
acts on industry Sj, as zij,1 = p̃i,0|1 ⋅ zij,0, i, j = 1, . . . , n. By analogy, we have for the
upgraded final consumption fi,1 = p̃i,0|1 ⋅ fi,0 and for the upgraded total value added
υj,1 = p̃υj,0|1 ⋅ υj,0. Setting for the levels of total value added υ0 = x̂0 ⋅ υc,0, we get

Z1 = ̂p̃0|1Z0; f1 = ̂p̃0|1f0; υ1 = υ̂0p̃υ,0|1 = (x̂0 ⋅ υ̂c,0)p̃υ,0|1. (2.82)

Here is a further justification of the current economic interpretation of p̃0|1 and
p̃υ,0|1 as vectors of index prices. We observe that the units of measurement, i. e., the
currency used in matrix Z0 and matrix Z1 are the same, as, e. g., [Z0] = [Z1] = [f0] =
[f1] = [υ0] = [υ1] = CHF; consequently [p̃0|1] = [p̃υ,0|1] = 1. This fact confirms that with
p̃0|1, p̃υ,0|1 we do not have prices, but ratios of prices in the same units of measurement,
resulting in price indices, or specifically index prices.

28 As an example, consider in a three-sector economy the vector of index prices p̃υ,0|1 = [1.2, 1.1, 1.05],
stating that from the base year period to the current year period the growth rate of the labour costs are
20% for commodity 1, 10% for commodity 2 and 5% for commodity 3. The notations with the tilde-
sign is introduced by Miller and Blair ([65], p. 44), and the index υ of the index prices is proposed by
Oosterhaven ([77], p. 752). Moreover, Oosterhaven ([77], p. 752) considers only index-price vectors of
constant growth rate, like p̃υ,0|1 = [1.2, 1.2, 1.2].

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.5 The Leontief cost-push input-output price models* | 41

Starting with the identity pυ,0|0 := e, we now present the following introductory
problem, applying the cost-push input-output model (2.81) to calculate the vector of
index prices of commodities p̃0|1, given the vector p̃υ,0|1 of index prices of value added
(labour costs). Finally, we will calculate the levels of all the entries in the current year
(2.82).

Example 2.5.1. Given the following table of entries relative to a base year “0”: The
Input-Output Table 2.10 represents an economy with sectors S1: wheat, S2: iron, S3:
wood, and a commodity flow matrix Z0 with entries zij, i, j = 1, . . . , 3 and final de-
mand f0i.

Table 2.10: Transactions and final demand for the base year.

Commodities Processing sectors Final demand
base year entries S1 S2 S3 f0i

S1: wheat 40 30 20 10
S2: iron 30 30 30 60
S3: wood 25 30 35 110

Consider separately the positive commodity flow matrix Z0 > 0 of Table 2.10 and the
positive vector of final demand f0 > o.

Compute the total production vector x0, the vector ofmonetary value of total value
added (labour costs) υ0, the input-output coefficients matrix A0 = Z0x̂−10 , the Frobe-
nius number λA, the transposed Leontief matrix (I − A0)

 and the transposed Leontief
Inverse ((I − A0)

−1).
Compute the vector of value added per value unit of produced commodities, υc =

x̂−1υ = [υ1/x1, . . . , υ3/x3], expressing the value added per unit of a produced commod-
ity, and confirm the identity (2.76). Examine two cases of index prices:
(a) (Osterhaven) Consider in the period from the base year to the current year a total

increase of value added (labour costs) of 20% and calculate the index prices p̃0|1
of the whole economy, and for the current year matrix and vector entries.

(b) (Miller and Blair) Consider in the period from the base year to the current year the
sectorial growth of the value added (labour costs), in sector S1 of 30%, in sector
S2 of 20% and in sector S3 of 10% and calculate the index prices p̃0|1 of the whole
economy, and for the current year the matrix and vector entries.

We also make a comparative-static analysis, and we will discuss the question of the
invariance of the technology.

Solution to Example 2.5.1:
We rely on the base-year data. The entries of the positive transaction matrix Z0 and
the positive vector of final demand f0 are taken from Table 2.10,
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Z0 =
[[

[

40 30 20
30 30 30
25 30 35

]]

]

> 0, f0 =
[[

[

10
60
110

]]

]

> o. (2.83)

We calculate the positive vector of total output,

x0 : = Z0e + f0 =
[[

[

40 30 20
30 30 30
25 30 35

]]

]

[[

[

1
1
1

]]

]

+ [[

[

10
60
110

]]

]

= [[

[

100
150
200

]]

]

> o. (2.84)

The vector of total value added inmonetary terms (2.6) is

υ0 = x0 − Z

0e =
[[

[

100
150
200

]]

]

− [[

[

40 30 25
30 30 30
20 30 35

]]

]

[[

[

1
1
1

]]

]

= [[

[

5
60
115

]]

]

> o. (2.85)

Then we compute the diagonal matrix x̂−10 and then the vector of value added of each
sector per value unit of produced commodities,

υc,0 = x̂
−1
0 υ0 =
[[[

[

1
100 0 0

0 1
150 0

0 0 1
200

]]]

]

[[

[

5
60
115

]]

]

= [[

[

0.05
0.4
0.575

]]

]

. (2.86)

The positive input-output coefficientsmatrix A0 = (aij) is computed along (2.8), speci-
fied here for the base year “0”:

A0 = Z0x̂
−1
0

= [[

[

40 30 20
30 30 30
25 30 35

]]

]

[[[

[

1
100 0 0

0 1
150 0

0 0 1
200

]]]

]

= [[

[

0.4 0.2 0.1
0.3 0.2 0.15
0.25 0.2 0.175

]]

]

, (2.87)

which gives the quantity of the commodities i, required for the production of the quan-
tity of one value unit each of the commodities j.

Then we confirm the identity (2.76):

A0e + υc,0 =
[[

[

0.4 0.3 0.25
0.2 0.2 0.2
0.1 0.15 0.175

]]

]

[[

[

1
1
1

]]

]

+ [[

[

0.05
0.4
0.575

]]

]

= [[

[

1
1
1

]]

]

= e. (2.88)

The transposed Leontief matrix (I − A0) = (I − A0)
 is

(I − A0)
 = [[

[

0.6 −0.3 −0.25
−0.2 0.8 −0.2
−0.1 −0.15 0.825

]]

]

. (2.89)
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We calculate the characteristic polynomial

f3(λ) = det(A0 − λI) = det(A0
 − λI)

= −
1

200
λ(200λ2 − 155λ + 14) = −λ(λ − 0.6706)(λ − 0.1044). (2.90)

The input-output coefficients matrix A0 > 0 is positive, the Perron–Frobenius theo-
rem A.9.2 applies, the Frobenius number is λA = 0.6706 < 1 and the transposed Leon-
tief Inverse ((I − A0)

−1) exists, Lemma 2.4.1 and is positive, see Theorem A.10.2,

((I − A0)
−1) = (I − A0)

−1 =
1
59
⋅ [[

[

126 57 52
37 94 34
22 24 84

]]

]

> 0. (2.91)

(a) (Oosterhaven) Consider now the uniform 20% increase of value added (labour
costs) from the base year to the current year, resulting in the vector of index prices
of value added pυ,0|1 = [1.2, 1.2, 1.2]. Compute the vector of value added per value unit
of produced commodities for the current year (2.80),

υc,1 := υ̂c,0p̃υ,0|1 =
[[

[

0.05 0 0
0 0.4 0
0 0 0.575

]]

]

[[

[

1.2
1.2
1.2

]]

]

= [[

[

0.06
0.48
0.69

]]

]

> o. (2.92)

Then, we compute with (2.92) and (2.91) the vector of index prices for all the commodi-
ties (2.81),

p̃0|1 = ((I − A0)
−1)υc,1 =

1
59
⋅ [[

[

126 57 52
37 94 34
22 24 84

]]

]

[[

[

0.06
0.48
0.69

]]

]

= [[

[

1.2
1.2
1.2

]]

]

> o. (2.93)

This result is not a fluke. It can be shown that if the growth rate ρ > 0 of the value
added (labour cost) is constant in all the sectors, then the growth rate of the prices of
all the commodities i, i = 1, . . . , n is the same and vice versa:

p̃υ,0|1 = [1 + ρ, . . . , 1 + ρ]
 ⇔ p̃0|1 = [1 + ρ, . . . , 1 + ρ]

. (2.94)

Finally, we compute the commodity flow matrix for the current year with (2.82) as

Z1 = ̂p̃0|1Z0 =
[[

[

1.2 0 0
0 1.2 0
0 0 1.2

]]

]

[[

[

40 30 20
30 30 30
25 30 35

]]

]

= [[

[

48 36 24
36 36 36
30 36 42

]]

]

> 0, (2.95)
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aswell as final consumer demand and the vector of total value added inmonetary terms
in the current year with (2.82),

f1 = ̂p̃0|1f0 =
[[

[

1.2 0 0
0 1.2 0
0 0 1.2

]]

]

[[

[

10
60
110

]]

]

= [[

[

12
72
132

]]

]

> o,

υ1 = υ̂0p̃υ,0|1 =
[[

[

5 0 0
0 60 0
0 0 115

]]

]

[[

[

1.2
1.2
1.2

]]

]

= [[

[

6
72
138

]]

]

> o. (2.96)

This gives Table 2.11. As expected, with V = υ1 ⋅ e = 216 and F = f1 ⋅ e = 216 we obtain.
We also find

x1 = ̂p̃0|1x0 =
[[

[

1.2 0 0
0 1.2 0
0 0 1.2

]]

]

[[

[

100
150
200

]]

]

= [[

[

120
180
240

]]

]

⇒ x̂1 = ̂p̃0|1x̂0, (2.97)

Table 2.11: Example 2.5.1—entries for the current year (Oosterhaven).

Commodities Processing sectors Final demand Total output
current year S1 S2 S3 f1i

S1: wheat 48 36 24 12 120
S2: iron 36 36 36 72 180
S3: wood 30 36 42 132 240

total value added per sector, υ1j 6 72 138 V = 216/F = 216

total Outlays 120 180 240 X = 540

We observe that in this example the vector of index prices p̃0|1 = [1.2, 1.2, 1.2] of this
economy is identical to the given vector of the index prices of the value added p̃υ,0|1 =
[1.2, 1.2, 1.2] because we are in presence of a constant homogeneous increase of all the
value added labour costs.

We invite the reader to carry out the following control operations:
1. Δp̃υ,0|1 = p̃υ,0|1 − p̃υ,0|0 = [0.2,0.2,0.2].
2. Δp̃0|1 = p̃0|1 − p̃0|0 = [0.2,0.2,0.2].
3. Δυc,0|1 := υ̂c,0 ⋅ Δp̃υ,0|1 = υc,1 − υc,0 = [0.01,0.08,0.115].
4. Δp̃0|1 = ((I − A0)

−1) ⋅ Δυc,0|1 = [0.2,0.2,0.2].
5. x0 = (I − A0)

−1f0 = [100, 150, 200].
6. x0 = Z0e + f0 = [100, 150, 200] and x1 = Z1e + f1 = [120, 180, 240].
7. e := p̃0|0 = ((I − A0)

−1) ⋅ υ̂c,0 ⋅ p̃υ,0|0 = [1, 1, 1].
8. Check the invariance of technology, respectively, of the input-output coefficients

matrix A1. We have here ̂p̃0|1Z0 = Z0 ̂p̃0|1 and with (2.97), (2.94) the equality
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A1 = Z1x̂
−1
1 := ( ̂p̃0|1Z0)( ̂p̃0|1x̂0)

−1 = (Z0 ̂p̃0|1)(x̂0 ̂p̃0|1)
−1

= (Z0 ̂p̃0|1)( ̂p̃
−1
0|1x̂
−1
0 ) = Z0( ̂p̃0|1 ̂p̃

−1
0|1)x̂
−1
0 = Z0x̂

−1
0 = A0. (2.98)

We now continue with the generalized model.
(b) (Miller and Blair) Consider now the index prices of value added (labour costs)

from the base year to the current year, given by the vector p̃υ,0|1 = [1.1, 1.2, 1.3]. We
compute the vector of the value added of each sector per value unit of produced com-
modities for the current year (2.80),

υc,1 := υ̂c,0p̃υ,0|1 =
[[

[

0.05 0 0
0 0.4 0
0 0 0.575

]]

]

[[

[

1.1
1.2
1.3

]]

]

= [[

[

0.055
0.48
0.7475

]]

]

> o. (2.99)

The vector of index prices of the whole economy, i. e., (2.81) with (2.99), (2.91), includ-
ing the consumer market (final demand), then is

p̃0|1 = (I − A0)
−1υc,1

=
1
59
[[

[

126 57 52
37 94 34
22 24 84

]]

]

[[

[

0.055
0.48
0.7475

]]

]

= [[

[

1.24
1.23
1.28

]]

]

> o. (2.100)

Finally, we compute the diagonal matrix ̂p̃0|1, taking matrix Z0 (2.83), we compute the
commodity flow matrix for the current year, do

Z1 = ̂p̃0|1Z0

= [[

[

1.24 0 0
0 1.23 0
0 0 1.28

]]

]

[[

[

40 30 20
30 30 30
25 30 35

]]

]

= [[

[

49.6 37.2 24.8
36.9 36.9 36.9
32 38.4 44.8

]]

]

> 0, (2.101)

as well as the final consumer demand and the vector of total value added in monetary
terms (here total labour costs) for the current year:

f1 = ̂p̃0|1f0 =
[[

[

1.24 0 0
0 1.23 0
0 0 1.28

]]

]

[[

[

10
60
110

]]

]

= [[

[

12.4
73.8
140.8

]]

]

> o,

υ1 = υ̂0p̃υ,0|1 =
[[

[

5 0 0
0 60 0
0 0 115

]]

]

[[

[

1.1
1.2
1.3

]]

]

= [[

[

5.5
72

149.5

]]

]

> o. (2.102)

We also find, as given at the bottom of Table 2.12,

x1 = ̂p̃0|1x0 =
[[

[

1.24 0 0
0 1.23 0
0 0 1.28

]]

]

[[

[

100
150
200

]]

]

= [[

[

124
184.5
256

]]

]

> o. (2.103)
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Table 2.12: Example 2.5.1—entries of the current year (Miller and Blair) .

Processing sectors Final demand Total
outputS1 S2 S3 f1i

S1: wheat 49.6 37.2 24.8 12.4 124
S2: iron 36.9 36.9 36.9 73.8 184.5
S3: wood 32 38.4 44.8 140.8 256

total value added per sector, υ1j 5.5 72 149.5 V = 227/F = 227

total Outlays 124 184.5 256 X = 564.5

Therefore we have x̂1 = x̂0 ̂p̃0|1. We observe that in the case (b) (Miller and Blair) the
vector of index prices of thewhole economy p̃0|1 = [1.24, 1.23, 1.28] is different from the
given vector of index price of value added p̃υ,0|1 = [1.1, 1.2, 1.3] because we are in the
presence of different sectorial increases of the labour costs. Therefore, the input-output
coefficients matrix A1 = Z1x̂−11 ̸= A0 is no longer invariant:

A0 ̸= A1 := Z1x̂
−1
1

= [[

[

49.6 37.2 24.8
36.9 36.9 36.9
32 38.4 44.8

]]

]

[[

[

1
124 0 0
0 2

369 0
0 0 1

256

]]

]

= [[

[

0.4 0.202 0.097
0.298 0.2 0.144
0.258 0.208 0.175

]]

]

.

(2.104)

We enter here the subject of dynamic Input-Output Analysis that is not treated any fur-
ther this book. We again invite the reader to carry out the following eight control op-
erations:
1. Δp̃υ,0|1 = p̃υ,0|1 − p̃υ,0|0 = [0.1,0.2,0.3].
2. Δp̃0|1 = p̃0|1 − p̃0|0 = [0.24,0.23,0.28].
3. Δυc,1 := υ̂c,0 ⋅ Δp̃υ,0|1 = [0.005,0.08,0.1725].
4. Δp̃0|1 = ((I − A0)

−1) ⋅ Δυc,1 = [0.24,0.23,0.28].
5. e := p̃0|0 = ((I − A0)

−1) ⋅ υ̂c,0 ⋅ p̃υ,0|0 = [1, 1, 1].
6. x1 = Z1e + f1 = [124, 184.5, 256].
7. Check the variability of the input-output coefficients matrix A0 ̸= A1 := Z1x̂−11 .
8. x1 = (I − A1)

−1f1 = [124, 184.5, 256]. 

2.5.2 The Leontief cost-push input-output price model in physical terms

In this subsection, we present a further Leontief price model, the Leontief cost-push
input-output pricemodel in physical terms .We propose the evident economicAssump-
tion 2.5.1 of positive amounts ofworking time in every sector. The limiting case of purely
robotic production sectors are here excluded.
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Assumption 2.5.1 (Assumption on labour forces). Every sector employs a certain number of work-
ers, Lj > 0, j = 1, . . . , n, comprising labour for the sector. No sector employs only industrial robots
for manufacturing. The unit of Lj is man-years.

For the notations, we rely on the Input-Output data representation as on Tables 2.1
and 2.2. The semi-positivematrices Z ≥ 0, respectively S ≥ 0 represent interindustrial
sales and purchases in monetary, respectively, in physical terms. The economic As-
sumption 2.2.1 and 2.2.2 hold.We need ameasurement unit, a currency or a numéraire,
to define prices for all commodities. Here we choose as the currency the Swiss franc
(CHF) and present the entries in thousands of Swiss francs (kCHF). Then we need for
each industry Sj the quantity of annual labour, expressed here in man-years. So we
have the number of workers Lj > 0, Assumption 2.5.1 holds, leading to a positive vec-
tor of labour L = [L1, . . . , Ln] > o. All sectors have workers. We also need the row of
total labour costs (total wages), Wj := υj > 0, identical to value added in monetary
terms, and finally we can express the wage rates wj = Wj/Lj > 0, j = 1, . . . , n.

A consequence of the condition: x > o, q > o, is that Proposition 2.2.1 on price
vectors holds, so there is a positive price vector p > o. The conversion of the entries
frommonetary terms into physical terms and vice versa, see also Miller and Blair ([65],
p. 48), exists. We come back to (2.18),

{{
{{
{

x = p̂q = q̂p; x̂ = p̂q̂,
Z = p̂S, ⇔ S = p̂−1Z,
f = p̂d, ⇔ d = p̂−1f,

(2.105)

and write separately, setting up the vector of wage ratesw = [w1, . . . ,wn]
 > o,

υj := Wj = wj ⋅ Lj ⇔ υ = ŵL > o. (2.106)

We again rely on the identity between total output and total outlays and start from
equation (2.7),

x = Ze + υ = Ze + f = Ax + f > o. (2.107)

We use the definitions S = p̂−1Z and q̂ = p̂−1x̂, which leads to C = Sq̂−1 (2.16), A =
Zx̂−1 (2.8). Throughout this subsection, we again posit thatmodel (2.107) is productive,
Definition A.12.1 as f ≥ o. Therefore, the Frobenius number λA < 1 (see Lemma 2.4.1).
We then have the Frobenius number of the matrix C, λC = λA < 1, Lemma A.6.1 and
obtain with (2.107) and (2.105),

x = q̂p = Ze + υ = (p̂S)e + ŵL = Sp̂e + ŵL = q̂Cp̂e + ŵL > o. (2.108)

We pre-multiply (2.108) from the left with the vector q̂−1 and get

p = Cp + q̂−1(ŵL). (2.109)
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For each industry Sj, the parts of total labour costs Wj = wj ⋅ Lj per unit of physical
output qj, identified as νcj := (wj ⋅ Lj)/qj, is now written as a vector, called the vector of
labour costs of each sector per unit of physical output, νc = [νc1, . . . , νcn] := q̂−1(ŵL).29

Taking (2.109),weget theLeontief cost-push input-output pricemodel inphysical terms:

p := Cp + νc ⇒ (I − C
)p = νc. (2.110)

As the Frobenius number of C is less than 1, λC < 1, its transposed Leontief Inverse
exists, and we have a unique solution for the price vector p = [p1, p2, . . . , pn],

p = ((I − C)−1)νc = (I − C
)−1νc, (2.111)

by analogy with the price indices of the Leontief cost-push input-output price model in
monetary terms (2.81) see also Miller and Blair ([65], p. 49, (2.52)).

Observing that the transformation between variables inmonetary terms and vari-
ables in physical terms exists, we now concentrate on the relationships between A
from (2.9) and C from (2.16). From (2.8) and (2.105) we obtain

aij =
zij
xj
=
pisij
pjqj
= cij(

pi
pj
), i, j = 1, . . . , n. (2.112)

Expressed in matrix terms, this gives:

A := Zx̂−1 = (p̂S)(p̂q̂)−1 ⇒

A = p̂S(q̂−1p̂−1) = p̂(Cq̂)(q̂−1p̂−1) = p̂C(q̂q̂−1)p̂−1 = p̂Cp̂−1 ⇒

A = p̂Cp̂−1. (2.113)

We continue with the transformation equations (2.105) and find with x̂ = p̂q̂,

A = p̂Cp̂−1 = (x̂q̂−1)C(q̂x̂−1) = x̂q̂−1(Cq̂)x̂−1 = x̂q̂−1Sx̂−1

= x̂(q̂−1S)x̂−1 = x̂Dx̂−1 ⇒ A = x̂Dx̂−1. (2.114)

This means that the three matrices of input-output coefficients A, C and D are similar.
The crossing between the transaction matrices Z and S is obtained through the use of
the diagonal price matrix p̂ > o and its inverse p̂−1 > o.

We continue with the elementary input-output example presented in L. L. Pasi-
netti ([80], pp. 35–47), also used in Example 2.4.4.

Example 2.5.2. Consider the economydescribed by Table 2.8where there is a sector of
final demand. The activity of theworkers is explicitly described. The economy employs

29 Here value added includes only labour costs.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.5 The Leontief cost-push input-output price models* | 49

60 workers, 18 to produce wheat, 12 to produce iron and 30 to produce turkeys. Each
worker consumes three tons of wheat a year and half a dozen turkeys.

Identify the commodity flow matrix S, the vector of total output q and the
input-output coefficients matrix C and discuss the applicability of the Perron theo-
rem A.9.1. Why is it not possible to calculate prices at this stage?

Table 2.8 is extended to Table 2.13.

Table 2.13: Closed flow of commodities in physical terms with labour included.

Commodity
sectors

Processing sectors Final demand
of consumers

Total output
wheat iron turkeys

wheat 186 54 30 180 450 tons of wheat
iron 12 6 3 – 21 tons of iron
turkeys 9 6 15 30 60 dozen turkeys

workers (man-years) 18 12 30 L = 60/D = 210

Solution to Example 2.5.2:
The positive commodity flow matrix S, the vector of final demand d and the positive
vector of total output q are identified:

S = [[
[

186 54 30
12 6 3
9 6 15

]]

]

, d = [[
[

180
0
30

]]

]

,

q = Se + d = [[
[

186 54 30
12 6 3
9 6 15

]]

]

[[

[

1
1
1

]]

]

+ [[

[

180
0
30

]]

]

= [[

[

450
21
60

]]

]

> o. (2.115)

Consequently, we compute the diagonal matrix q̂−1 and then calculate the positive
input-output coefficientsmatrix

C = Sq̂−1 = [[
[

186 54 30
12 6 3
9 6 15

]]

]

[[

[

1
450 0 0
0 1

21 0
0 0 1

60

]]

]

=
[[[

[

31
75

18
7

1
2

2
75

2
7

1
20

1
50

2
7

1
4

]]]

]

= [[

[

0.413 2.571 0.500
0.027 0.286 0.050
0.020 0.286 0.250

]]

]

> 0, (2.116)

and the characteristic polynomial of the input-output coefficientsmatrix

f3(λ) = det(C − λI) = −λ
3 +

1,993
2,100

λ2 − 1
5
λ − 1

100
= (λ − 0.675)(λ − 0.201)(λ − 0.079). (2.117)
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Because the input-output coefficients matrix C is positive, the Perron theorem A.9.1
applies, the Frobenius number is λC = 0.675 < 1 and the transposed Leontief Inverse
((I − C)−1) = (I − C)−1 exists, see Lemma 2.4.1.

As long as there is no defined numéraire or currency, the vector of wage rates w
and consequently the vector labour costs of each sector per unit of physical output νc =
q̂−1(ŵL) cannot be defined. 

We go on with a comparative-static analysis, for a period from a base year “0”
to a current year “1”. We analyse the evolution of the matrices and vectors, from the
base year “0” to the current year “1”.

For this purpose,weagainadapt L. L. Pasinetti’s ([80], pp. 35–47) Example 2.5.2 in-
troducing the currency CHF in units of 1,000 CHF = 1 kCHF, in order to be able to
calculate prices and wages.30

Example 2.5.3. For the economypresentedbyExample 2.5.2, Table 2.13, adopt the cur-
rency CHF.

The following indications are given for the prices: 20/11 man-years of labour have
the value of 1 kCHF. This means that there is a constant wage rate, expressed as w0 =
(11/20) kCHF

man-years .
Establish then for the base year “0” the vector of wage rates w0. Compute the

transposed Leontief Inverse, using the matrix C0 := C (2.116).
Compute the vector υ0 of labour costs (total wages). Compute the vector νc,0 of

labour costs per unit of produced quantity and indicate the units of measurements of
all its components.

Compute the vector of the absolute prices31 p0 = ((I − C0)−1)νc,0, set up in kCHF,
the commodity flow matrix Z0, the vector of final consumer demand f0 and the vector
of total output x0.

Compute the input-output coefficientsmatrixA0 = Z0x̂−10 and confirm the identity
A0 = p̂0C0p̂−10 .

Consider then an increase of the uniform wage rate from w0 = 0.55
kCHF

man-years (base
year “0”) to w1 = 0.65

kCHF
man-years (current year “1”).

Repeat all the above calculations, compute especially the vectorsυ1, νc,1,p1, f1,x1,
the matrices Z1, A1, S1 and C1 and confirm finally the equalities between the matrices
S0 = S1, C0 = C1, A0 = A1 and the vectors d0 = d1 and q0 = q1.

Show why the labour vector L, as well as the input coefficients matrices S0, d0,
q0, A0 and C0, remain invariant in this problem within this period.

30 In L. L. Pasinetti’s presentation, the prices are indicated on the basis of the numéraire, i. e., tons
of iron. In our presentation, the prices are calculatedwithLeontief’s cost-push input-output pricemodel
in physical terms (2.111), using the currency CHF with the unit kCHF. The quantity of labour (working
time) and a currency are needed.
31 An absolute price gives the price in currency per unit of commodity.
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Solution to Example 2.5.3:
Weuse,wherever necessary to enhance understanding, the index “0” for the base year
and “1” for the current year and start with the vectors of wage rates, respectively, the
constant wage rate

w0 = [0.55,0.55,0.55]
; w0 = 0.55. (2.118)

We also have to transform the labour vector L = [18, 12, 30], [L] = man-years into the
vector of labour costs. We calculate with the diagonalised vector of wage ratesw0 the
vector of total labour costs for the basic year, with themeasurement unit [υ0] = kCHF.
We calculate

υ0 = ŵ0L := w0L

= [[

[

0.55 0 0
0 0.55 0
0 0 0.55

]]

]

[[

[

18
12
30

]]

]

= 0.55 ⋅ [[
[

18
12
30

]]

]

= [[

[

9.9
6.6
16.5

]]

]

(2.119)

The total labour costs (value added) areW0 = υ0e = 33 kCHF (closed economy), and
equal to the total final demand, i. e., D0 = f0e = 33 kCHF.

We then calculate with the diagonalised vector of total output q0 and the vector
of labour costs υ0 = w0L = [9.9, 6.6, 16.5] the labour costs of each sector per unit of
produced quantities, defined as:

νc,0 = q̂
−1
0 υ0 =
[[[

[

1
450 0 0

0 1
21 0

0 0 1
60

]]]

]

[[

[

9.9
6.6
16.5

]]

]

= [[

[

0.022
0.314
0.275

]]

]

, (2.120)

with units of measurements:

νc,01 = 0.22
kCHF

tons of wheat
, νc,02 = 0.314

kCHF
tons of iron

, νc,03 = 0.275
kCHF

dozen of turkeys
.

Then, we can compute the transposed Leontief InversewithmatrixC0 := C from (2.116)
because the Frobenius number is λC = 0.675 < 1,

((I − C0)
−1) =
[[[[

[

1,095
506

441
5,060

1
11

2,175
253

903
506

10
11

510
253

224
1,265

16
11

]]]]

]

= [[

[

2.16 0.0872 0.0909
8.60 1.78 0.909
2.02 0.177 1.45

]]

]

> 0, (2.121)

andwe calculatewith the Leontief cost-push input-output pricemodel in physical terms
(2.111) the vector of prices

p0 = ((I − C0)
−1) ⋅ νc,0 =

[[

[

2.16 0.0872 0.0909
8.60 1.78 0.909
2.02 1.77 1.45

]]

]

[[

[

0.022
0.314
0.275

]]

]

= [[

[

0.1
1
0.5

]]

]

. (2.122)
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So the absolute prices are:

p10 = 0.1
kCHF

tons of wheat
, p20 = 1

kCHF
tons of iron

, p30 = 0.5
kCHF

dozen turkeys
.

We apply the diagonal operator to p0, getting diag(p0) = p̂0, and calculate the com-
modity flow matrix Z0 in numéraire by the matrix transformation (2.113):

Z0 = p̂0S0 =
[[

[

0.1 0 0
0 1 0
0 0 0.5

]]

]

[[

[

186 54 30
12 6 3
9 6 15

]]

]

= [[

[

18.6 5.4 3
12 6 3
4.5 3 7.5

]]

]

. (2.123)

Then the vectors of final demand and total output in monetary terms (2.105) are com-
puted,

f0 = p̂0d0 =
[[

[

0.1 0 0
0 1 0
0 0 0.5

]]

]

[[

[

180
0
30

]]

]

= [[

[

18
0
15

]]

]

≥ o, (2.124)

x0 = p̂0q0 =
[[

[

0.1 0 0
0 1 0
0 0 0.5

]]

]

[[

[

450
21
60

]]

]

= [[

[

45
21
30

]]

]

> o. (2.125)

This gives for the base year “0” Table 2.14,where the three sectors S1, S2, S3 replace
“wheat”, “iron”, “turkeys”. It is a sommaire national accounting system.

Table 2.14: Flow of commodities in physical terms in the base year.

Commodity sectors Processing sectors Final demand Total
(kCHF )S1 S2 S3 f0i

S1 18.6 5.4 3 18 x01 = 45
S2 12 6 3 – x02 = 21
S3 4.5 3 7.5 15 x03 = 30

total (partial) 35.1 14.4 13.5 –

labour costsW0j (total wages) 9.9 6.6 16.5 W0 = D0 = 33

total outlays (kCHF ) x01 = 45 x02 = 21 x03 = 30 X0 = 129

Table 2.14 contains the entries of the interindustrial sectors, the sector of final con-
sumer demand, the value added generated by labour and the total output of the econ-
omy. The table comprises the essence of the supply-and-use tables in accordance with
Eurostat ([72], p. 21).

Then we calculate the input-output coefficients matrix A0 in monetary terms for
the base year “0”:
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A0 = Z0x̂
−1
0

= [[

[

18.6 5.4 3
12 6 3
4.5 3 7.5

]]

]

[[

[

1
45 0 0
0 1

21 0
0 0 1

30

]]

]

= [[

[

0.413 0.257 0.100
0.270 0.286 0.1
0.1 0.143 0.25

]]

]

, (2.126)

and use the identity (2.113) to recalculate

A0 = p̂0C0p̂
−1
0

= [

[

0.1 0 0
0 1 0
0 0 0.5

]

]

[

[

0.413 2.571 0.500
0.027 0.286 0.050
0.020 0.286 0.250

]

]

[

[

10 0 0
0 1 0
0 0 2

]

]

= [

[

0.413 0.257 0.100
0.270 0.286 0.1
0.1 0.143 0.25

]

]
, (2.127)

recognizing that A0 and C0 have the same diagonal elements. Now we perform the
comparative-static analysis.

Within the considered period, the constant wage rate is increased to attain in the
current year w1 = 0.65

kCHF
man-years , giving naturally w1 = [0.65,0.65,0.65], the vector of

wage rateswhich we diagonalise. We come back to the labour vector of Example 2.5.2,
L = [18, 12, 30], with units [L] = man-year.

From here on, we transform data from the base year to the current year. We signal
this operation by a “0” index on the left-hand side and a “1” on the right-hand side of
the equations. So, we restart, calculating the labour costswith the unchanged labour
vector L,

υ1 = ŵ1L := w1L =
[[

[

0.65 0 0
0 0.65 0
0 0 0.65

]]

]

[[

[

18
12
30

]]

]

= [[

[

11.7
7.8
19.5

]]

]

, (2.128)

withmeasurement unit [υ1] = kCHF. Then,we calculate the labour costs of each sector
per unit of produced quantity for the current year on the basis of the output vector
(2.115) of the base year.

υc,1 = q̂
−1
0 .υ1 =
[[

[

1
450 0 0
0 1

21 0
0 0 1

60

]]

]

[[

[

11.7
7.8
19.5

]]

]

= [[

[

0.026
0.371
0.325

]]

]

, (2.129)

and again calculate the vector of prices (2.111),

p1 = ((I − C0)
−1) ⋅ υc,1 =

[[

[

2.16 0.0872 0.0909
8.60 1.78 0.909
2.02 1.77 1.45

]]

]

[[

[

0.026
0.371
0.325

]]

]

= [[

[

0.118
1.182
0.591

]]

]

.

(2.130)
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Wedetermine the physical units of [p1] = [υc,1] = kCHF
unit of commodity ; the physical units

of the elements of the transposed Leontief Inverse are neutral, [((I − C)−1)] = 1.
Now we calculate the updated matrix with the diagonalised price vector p1,

Z1 = p̂1S0

= [[

[

0.118 0 0
0 1.182 0
0 0 0.591

]]

]

[[

[

186 54 30
12 6 3
9 6 15

]]

]

= [[

[

21.98 6.38 3.55
14.18 7.09 3.55
5.32 3.55 8.86

]]

]

,

(2.131)

and proceed to calculate the vectors of total output and of final demand (2.115),

x1 = p̂1q0 =
[[

[

0.118 0 0
0 1.182 0
0 0 0.591

]]

]

[[

[

450
21
60

]]

]

= [[

[

53.18
24.81
35.45

]]

]

> o,

f1 = p̂1d0 =
[[

[

0.118 0 0
0 1.182 0
0 0 0.591

]]

]

[[

[

180
0
30

]]

]

= [[

[

21.27
0

17.73

]]

]

≥ o. (2.132)

This gives in a first step the following Table 2.15. Then, the total labour costs areW1 =
υ1e = 39 kCHF (a closed economy).

Table 2.15: Flow of commodities in physical terms in the current year.

Commodity
sectors

Processing sectors Final demand Total
(kCHF )S1 S2 S3 f1i

S1 21.98 6.38 3.55 21.27 x11 = 53.18
S2 14.8 7.09 3.55 – x12 = 24.82
S3 5.32 3.55 8.86 17.73 x13 = 35.45

total (partial) 42.48 17.02 15.95 –

labour costsW1j
(value added)

11.7 7.8 19.5 W1 = D1 = 39

total outlays
(kCHF )

x11 = 53.18 x12 = 24.82 x13 = 35.45 X1 = 152.46

The total consumer demand is D1 = f1e = 39 kCHF. The total output of the economy is
X1 = x11 + x12 + x13 +W1 = x11 + x12 + x13 + D1 = 152.46 kCHF.

Thenwe continue to update thematrices and vectors in physical terms to the level
of the current year, using the initial definitions, starting with (2.131); it shows clearly
that there is no change in interindustrial production,

S1 := p̂
−1
1 Z1 = p̂

−1
1 (p̂1S0) = (p̂

−1
1 p̂1)S0 = S0. (2.133)
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We continue with the surplus and total output,

d1 = p̂
−1
1 f1 =
[[

[

1
0.118 0 0
0 1

1.182 0
0 0 1

0.591

]]

]

[[

[

21.275
0

17.73

]]

]

= [[

[

180
0
30

]]

]

= d0,

q1 = S1e + d1 = [
[

186 54 30
12 6 3
9 6 15

]

]

[

[

1
1
1
]

]
+ [

[

180
0
30
]

]
= [

[

450
21
60
]

]
= q0. (2.134)

Nowwe can calculate the input-output coefficients matrix in physical terms for the cur-
rent year,

C1 = S1q̂
−1
1 = S0q̂

−1
0 =
[[

[

186 54 30
12 6 3
9 6 15

]]

]

[[

[

1
450 0 0
0 1

21 0
0 0 1

60

]]

]

=
[[[

[

31
75

18
7

1
2

2
75

2
7

1
20

1
50

2
7

1
4

]]]

]

= [[

[

0.413 2.571 0.500
0.027 0.286 0.050
0.020 0.286 0.250

]]

]

= C0. (2.135)

Finally, we discover that the input-output coefficients matrix A1, where quantities are
expressed inmonetary units, is invariant in the period from the base year to the current
year (2.127),

A1 = Z1x̂
−1
1 = [

[

21.98 6.38 3.55
14.8 7.09 3.55
45.32 3.55 8.86

]

]

[[

[

1
53.18 0 0
0 1

24.82 0
0 0 1

35.45

]]

]

= [

[

0.413 0.257 0.100
0.267 0.286 0.1
0.1 0.143 0.25

]

]
= A0. (2.136)

The identity (2.113) and the equations (2.116), (2.122) are used to recalculate the equal-
ity

A1 = p̂1C0p̂
−1
1 = [

[

0.118 0 0
0 1.182 0
0 0 0.591

]

]

[

[

0.413 2.571 0.500
0.027 0.286 0.050
0.020 0.286 0.250

]

]

⋅ [

[

8.46 0 0
0 0.846 0
0 0 1.692

]

]
= [

[

0.413 0.257 0.100
0.267 0.286 0.1
0.1 0.143 0.25

]

]
= A0, (2.137)

recognizing that A0 and A1 are identical as well in this case.
We recognize that the increase of the wage rate from w0 to w1 has only an effect

on the prices. The quantities produced, the input-output coefficients and the number
of workers necessary to realize the production remain unchanged during this period
from “0” to “1”.
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This example shows how to navigate with matrix algebra and how to realize all
the necessary calculations.

Note that some coefficients ofmatrixC0 can be larger than one: for instancewe get
with (2.112) c21 = (p2/p1)a21 = (1/0.1)0.257 = 2.571 > 1. This happens because the ratio
of the prices pi > 0, pj > 0 in different physical units, pi/pj, determines the magnitude
of the coefficients cij ≥ 0, which may exceed 1. This is not the case for the elements of
A0 = Z0x̂−10 , Lemma 2.1.1. 

Example 2.5.4 (Left to the reader). Additional questions to Example 2.5.3
– What happens, when the increase of the wage rate starts from w0 = [0.55,0.55,

0.55] with specific sectorial increases according tow1 = [0.65,0.75,0.60]?
– What happens if in the whole Example 2.5.3 the currency kCHF is replaced by a

numéraire, like iron?

Table 2.16 compares the results obtainedwith comparative-static analyses of the Leon-
tief index pricemodels based onmonetary terms and of the Leontief pricemodels based
on physical terms.

2.6 The interindustrial and the final consumption markets
It is time toprovide anoverviewof the variouspricemodels encountered in Section 2.5.
For this purpose, we present a synoptic table. As usual, the index “0” is for the base
year and the index “1” is for the current year, see Table 2.15.

In this section, we introduce some notions that we will develop in Chapter 9. In
the considered production economies, there is on one hand the market of interindus-
trial production, consisting of the interchange of the intermediate products among the
n production sectors, and on the other hand there is the final demand of all the con-
sumers on the final consumption market.32

Consider a Leontief quantity model in monetary terms or in physical terms. Then,
themarket of interindustrial production is characterizedby the industrial output,which
is measured in value terms, xI = Ze, or in physical terms, qI = Se. The final consumer
demand on the final consumption market is measured by the vector of final demand f
in value terms (2.5), or by the vector of final demand d in physical terms (2.15).

In Chapter 9 we will investigate in particular the market of interindustrial produc-
tion. That means, we will set the quantities of the final consumption market equal to
zero. There will be no produced surplus nor final demand. We have to set f = d = o.
The production cycle of the economy can be represented twofold, by the matrix Z, giv-
ing the presentation in monetary value terms of the means of production, or by the
matrix S, giving the presentation in physical terms of themeans of production.

32 In IOTs, the final consumption market comprises: the consumption of households, government
expenditures, investment and export.
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Table 2.16: Overview on the Leontief index prices and prices.

Comparative-static analysis with the cost-push input output price models
Leontief index prices based on
monetary terms

Leontief prices based on physical
terms

references Miller and Blair ([65], pp. 45–46) Oosterhaven ([77], p. 752)

initial Table 2.1 (general) Table 2.2 (general)

base year p̃ ,0|0 = [1,1,1]

(Subsection 2.5.1)
w0 = [0.55,0.55,0.55] (2.118)

current year p̃ ,0|1 = [1.1,1.2,1.3]

(Subsection 2.5.1)
w1 = [0.65,0.65,0.65]

(Subsection 2.5.2)

value added υc = e − Ae (2.76) υ0 = ŵ0L (2.119)
base year υc,1 := υ̂c,0p̃ ,0|1 (2.80) νc,0 = q̂−10 υ0 (2.120)

price models (2.81)
index prices p̃0|1 = ((I − A)−1) ⋅ υc,1 (2.111)

prices – p0 = ((I − C)−1) ⋅ νc,0
effect on index
prices
base year p̃0|0 = [1,1,1] (Subsection 2.5.1)
current year p̃0|1 = [1.24,1.23,1.28] (2.100)

effect on prices
base year p0 = [0.1,1,0.5] (2.122)
current year p1 = [0.118,1.182,0.591] (2.130)
measurement units [p̃0|0] = [p̃0|1] = 1 [p0] = [p0] = kCHF

units of commodity

This gives the complete production cycle as illustrated by Figure 2.2 in a twofold man-
ner: as a cycle in physical terms and as a cycle in (monetary) value terms with the in-
terindustrial market and the final consumption market. The interindustrial market has
to generate the quantity qI = Se, necessary to replace the means of production used
by the technology in the present period, described by the commodity flow matrix S.
The samemeans of production are presented by the cycle in value terms and have the
monetary value xI = Ze. In the case of self-replacement, the interindustrial economy
produces the quantity q = qI + d ≧ qI , whose value is x = xI + f ≧ xI . So, there can
be described at a second stage the final consumption market, where the non-negative
surplus quantity vector d = q − Se ≧ o appears. Presented in value terms, this vector
becomes the non-negative vector of final demand f = x − Ze ≧ o.

The commodities are produced in different sectors. At the end of the production
process apart of them is exchanged in the interindustrialmarket at the costs of produc-
tion, clearing thismarket. The surplus becomes consumption goods for the consumers
and is treated at the costs of production in the final consumption market.

All the material necessary for production comes from the environment. After hav-
ing been used, it goes back into the environment. Thus, the production cycle is closed,
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Figure 2.2: Production cycle in monetary and physical terms.

because there are no other sources of material for the production. The same cycle has
the second presentation in value terms, generating the circulating capital K.33

Note in passing that using money is not mandatory. The Input-Output framework
can be usefully extended by employing a physical numéraire for models based exclu-
sively on physical units. In such areas as in industrial ecology or in ecological econ-
omy, and as Sraffa did it extensively in PCMC (see the next Chapter 4), a physical
numéraire is used.

Summarizing, Input-Output Analysis presents the sectorial structure of an econ-
omy and is primarily interested in calculating the total output of an economy based
on the interindustrial demand of a sectorial industrial production. It also presents the
final demand of the consumers.

Finally, if one aims at operating within the framework of national accounts, or
more generally social accounting, one must resort to values expressed in numerical
monetary units calibrated to the corresponding currency. In short, Input-Output Anal-
ysis in monetary values is a model of national accounting. This is the subject of the
next section.

2.7 The Input-Output framework and National Accounting
The national accounting identities in macroeconomics are fundamental mathematical
relationships expressing the symmetry of double-entry bookkeeping which registers
incomes and expenditures at given conventional calender dates (usually quarterly or
annually) in an ongoing economic process. National accounts are thus a by-product

33 Remark: In every modern economy, the money-flow cycle goes in the inverse direction of the pro-
duction cycle in value terms. Themoney-flow cycle is not treated in this text.
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of the economic process. To make sense, macroeconomic models of production and
exchange must be consistent with these identities.

Input-Output Tables (IOT) provide the data required to set up the national ac-
counts in the first place. In fact, the IOT model represents the most detailed analy-
sis of an ongoing economic process of production and exchange in value terms, i. e.,
the production and use of commodities and the income generated in that process.
The compilation of IOT tables is a complex statistical exercise, and one must bear in
mind that the numerical results finally published in the official national accounts are
approximations of what has happened in the economic process during the reporting
period. For expository reasons, we limit ourselves here to presenting the essentials
for a conceptual understanding. In practice, IOT and national accounts are far more
elaborated, as we shall see later in Chapter 10, with the Swiss IOT 2008.

So by construction, the IOTmodel is consistent with the national accounting iden-
tities and in the subsequent chapters we shall see that, for a closed economy, this is
also the case for Sraffa’s model presented in PCMC. It is therefore essential to present
these identities that are implicit in all the following developments.

Three vector entities, expressed here in value terms, i. e., quantities multiplied
by a price, and their numerical aggregates which we have already encountered, inter-
vene here (see Table 2.1): Consider the vector υ of value added, defined by the adopted
model, the vector f of final demand and the vector x of total output.34

These vectors can be aggregated, giving V = total value added, F = total final de-
mand and X = total output;35

υ; aggregate to V = eυ,
f = d̂p; aggregate to F = ef,
x = q̂p; aggregate to X = ex. (2.138)

As already mentioned, Subsection 2.1.1, the value added components υj comprise
such essential items as36:
W : wages and pensions;
P: gross entrepreneurial profits or, more precisely, EBITDA;
RL: rental incomes, in particular land rents;
M: imports (in open economies).

34 Depending on what circumstances in which these entities are considered, we deal ex ante for ex-
ample with either expected, projected or planned values for forecasting, ex post with statistical values
collected for reporting purposes.
35 We are dealing here with single product industries. In joint production, see Chapter 6, f is replaced
by a matrix, unless final demand per industry is defined as the combined output (commodity mix) of
that industry.
36 One distinguishes between competitive imports (imports of commodities in competition with the
same commodities produced domestically) and non-competitive imports (forwhich there is no domes-
tic source). In this book, we shall consider exclusively the latter in Section 8.1.
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By aggregation, passing by sub-summation over these various items, one obtains total
value added

V = W + P + RL +M. (2.139)

From macroeconomics, we know that final demand may be split into essential sales
components external to interindustry sales:
C: private consumption;
I: private investments;
G: government expenditures;
E: exports.

Again by aggregation and sub-summation, one obtains total final demand

F = C + I + G + E. (2.140)

Now as may be seen from Table 2.1 we have for total output,

X =
n
∑
i=1

xi + F, (2.141)

and for total outlays,

X =
n
∑
j=1

xj + V . (2.142)

Finally from equations (2.2) and (2.3) the identity V = F, written out, gives

P +W + RL +M = C + I + G + E. (2.143)

Introducing by definition a new important entity Y , and setting RL = 0 for the time
being, we have,

Y ≡ P +W = C + I + G + (E −M) = GDP. (2.144)

The Gross Domestic Product (GDP) measures the total income produced domestically,
see Mankiw ([63], p. 27). The equation GDP = C + I + G + (E −M) is the “expenditure
method” to obtain GDP, whereas the equation Y = P + W comes from the “National
Income Account” and is equal to Gross National Income Y .37 In the present text, Y is a
proxy for GDP.38

37 A further identity (not used in the sequel) is Y = C + S + TR, where S designates savings and TR tax
revenues. Equated to the right-hand side of (2.143), this gives S + TR = I + G or S = I + (G − TR), i. e.,
total investments. In a strictly balanced government budget, G = TR and therefore I = S, an identity
of historical fame.
38 The national accounting identity can be refined. For our purposes we shall however retain this
presentation.
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For a closed economy (as expressed in Table 2.1), no activity is conducted with
outside economies. A closed economy is self-sufficient: No imports are brought in, no
exports are sent out. We have: E = M = 0, so

Y = W + P = C + I + G. (2.145)

In other words, Y is the social surplus which will be referred to in Chapter 10 in more
elaborate IOTs, especially the SWISS IOT 2008.

In conclusion, by examining IOTs in connection with national accounting, four
fundamental entities appear in the periodicmacroeconomic description of amonetary
economic production and exchange process, which until further noticewe consider as
closed:
1. National Income;
2. Gross Domestic Product (GDP);
3. Final Demand;
4. Total Value Added.

The points 1. and 2. are national accounting items and constitute the basic national
accounting identity established ex post for each accounting period:

national income = GDP. (2.146)

The points 3 and 4 represent national accounting identities which govern the produc-
tion process during the period under consideration and in fine determine prices.39 For
a given period, Table 2.1 can accordingly be interpreted in two ways:
A. As a dynamic table describing the ongoing economic process, in which prices ad-

just to demand and value added items, in particular wages (labour).
B. As an accounting table, established ex post, covering values registered over a

complete period.

2.8 Measuring value: the numéraire
The reader has undoubtedly realised that measurement issues are central to the con-
struction of an IOT and reporting for national accounting. In fact, we live in a world of
measurements, a translation of our observations (here about the economicworld) into
numerical form for calculation.We aremapping the observedworld to an artificial one
in which we can apply mathematical tools such as those presented in this text.

39 A word of caution: In a closed economy with E = M = 0, aggregate final demand F is equal to
national income Y . This is usually not the case in an open economy: aggregate exports will of course
be included in F and Y . But as aggregate imports M are regarded, they will figure in the aggregate
value added V . Then, simplifying V = P +W +M = F, one obtains Y = P +W = F −M (M > 0) in an
open economy. Note thatM will usually be split into a partMI entering inter industry production and
a partMF going to final consumer demand, both catered to by import activities.
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Measurements are also conventions, as we have seen in this section. For deeper
understanding, we invite the reader to become thoroughly familiar withmeasurement
issues, such as those superbly presented by D. J. Hand [40].

This being said, we have seen that the quantities entering an IOT are measured in
various units depending on the commodity involved. For example: quarters of wheat,
tons of iron, litres of water, barrels of petrol, kWh of electricity, heads of cattle, man-
hours of labour, etc. Note that in the context under consideration commodities include
products (or goods) and services.

Obviously, it is possible to construct vectors q = [q1, q2, . . . , qn], the components
qi ofwhich represent quantities of commodities, eachwith its specific unit ofmeasure-
ment. But it is as obvious that it is logically impossible to define an aggregate “bundle”
of such commodities by simply adding the quantities expressed in their specific units.
This type of aggregation or summation, involving linear equations, is only meaning-
fully possible by expressing each quantity in a common unit of measurement provid-
ing a uniform measure of value to each commodity. This is a basic tenant of dimen-
sional analysis, see Chable [13], or de Jong [24]. All linear equations used in economic
analysis must be tested according to this criterion.

We refer to a particular good as the numéraire, typically wheat. One then says that
all other prices are normalized by the price of that good. For example, set as a unit of
wheat: “1 quarter of wheat”. This unit is then themonetary unit, amonetary numéraire
or an appropriate physical unit (physical numéraire). The latter expression is not in
the commodity as such, but in the measurement unit of that commodity (see Schmitt
in Gnos and Rossi [95], pp. 36–37, [38]), e. g., not in wheat, but in quarters of wheat.

A monetary accounting unit is usually expressed in a specific currency: USD,
EURO, CHF, etc. or, even more exotically, in bitcoins. Such accounting units do not
constitute money, rather they are just a numerical counter. If money is taken as the
numéraire, one implicitly assumes a sophisticated banking system underlying the
monetary economy of production and exchange. Money becomes then a twofold in-
separable entity formed of money as such (the numerical form) and bank deposits
(the economic substance).40

The price of a commodity is then defined as an equivalence relation of the type:
“1 quantity unit of commodity x is equivalent to ny units of numéraire y”.

Example 2.8.1. The quantity of 1 ton of iron equals 10 quarters of wheat. The relative
price of iron is piron = 10

qr. of wheat
tons of iron and for wheat pwheat = 1

qr. of wheat
qr. of wheat = 1, in this latter

case a dimensionless entity. 

40 This highlights the increasing rift between the “real” production economy reflected in the national
accounts expressed in money as numéraire and the surging “virtual” world of financial markets and
commodity trading, where transactions and accounts are expressed in numerical accounting units,
an accounting numéraire accepted at face value, see Chesney [18].
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Formally, the value of a given quantity of a commodity is then the quantity of that
commodity multiplied by its price, expressed in terms of the chosen numéraire, and
is usually designated as the cost of that specific quantity.

Example 2.8.2. The price of a barrel of petrol is, say pbarrel = 40 USD
barrel , the quantity

M = 10 barrels of petrol costs C = pbarrel ×M = 10 × 40 = 400USD, the currency USD
taken as accounting numéraire. 

In input-output analysis, the link with the national accounting identities is ob-
tained by expressing all transactions in value terms expressed in the currency related
to the corresponding national economy, i. e., in terms of money as the numéraire.

As for Sraffa, and as mentioned already, his prices are expressed in a physical
numéraire, but he goes on to adopt in PCMC, Par. 12 and Par. 34, as the numéraire a
composite commodity: national income expressed in physical terms normalized to 1,
taken as unit of measurement, i. e., the National Income Unit (NIU), to express wages
and prices. The reason of such a choice will appear in Chapter 5 below.
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3 Sraffa’s first examples of single- product
industries

Wefirst concentrate our attention onSraffa’s subject of PCMCand summarize themain
results. Sraffa’s pricemodel brings, within a cyclic production process of n sectors and
n commodities, the ‘costs of production’ of every commodity, termed as ‘prices’, with
positive wages for workers and with positive profits of entrepreneurs into an equilib-
rium. If the interindustrial market accepts the ‘costs of production’, then the means of
production are exchanged at the end of the period and the production cycle contin-
ues. If there is no surplus, then there is no consumption market. If there is a surplus,
then Sraffa’s prices apply to the commodities, which are used as consumption goods
in the adjacent consumption market, according to the existing demand. In this sense
Sraffa brings together the interindustrial market and the consumption market. This
theme will now be developed from the very beginning, presenting at first Sraffa’s ele-
mentary examples. We will also learn that Sraffa’s models are accountable balanced.
This is a reason why the treatment of market prices, resulting from an intersection of
a demand and a supply curve is out of scope of Sraffa’s model. Indeed, Sraffa does not
treat market prices.

3.1 Production for subsistence and production with surplus
Sraffa starts in the first and second chapters of PCMC (Par. 1, Par. 2, Par. 5)with elemen-
tary production economies of single-product industries1 for partial production systems
of extremely simple societies, contrary to IOTs which are developed for whole coun-
tries; the aim is to determine production prices. Oosterhaven [77] calls such a system a
price model; we specify it as a Sraffa price model. As every one of the n industries (or
branches) produces exactly one of the n commodities, Bertram Schefold ([103], p. 13)
specifies a single-product Sraffa system. Sraffa ultimately solved with his price model
the economically important question of the transformation problem, i. e., transforma-
tion of labour values (4.184), a notion going back to Adam Smith [106], into prices (see
Bortis [6], pp. 67–68, [7] and Pasinetti [80], pp. 122–150).

We treat now the elementary examples of PCMC (Par. 1, Par. 2, Par. 5) the first in-
dustry producingonlywheat, the secondonly iron and the third only pigs. Onlywheat,
iron and pigs are used as means of production. In addition, sustenance for workers is
provided as a certain amount of wheat, and, at the end of each production period
(say one year), some amounts of goods are interchanged between the producers. Pro-
duction appears as a social and circular process. Hence the concept of social surplus
or, more concisely, a surplus emerges, which was important in classical theory (from

1 We repeat that the terms “product” and “commodity” are used synonymously in this text.

https://doi.org/10.1515/9783110635096-003
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William Petty to David Ricardo). There is a social surplus if some of the quantities pro-
ducedare greater than the quantities usedup in theprocess of production. The surplus
is conceived by Sraffa as a semi-positive vector of surplus d ≥ o. Sraffa however begins
with a simplified situation, where the quantities produced and the quantities used
are exactly equal, d = o. He calls such processes production for subsistence. There is
accordingly no surplus.2

Formally, Sraffa’s production technology is described by the semi-positive com-
modity flowmatrix S ≥ 0 (2.13) and the vector of total output q = Se + d > o. Through-
out this chapter, Assumption 2.2.1, Assumption 2.2.2 hold.

Bertram Schefold ([109], pp. 216–225) published, in the German translation of
PCMC, a short description of the mathematical background of the single-product
Sraffa system, revealing that its solution leads to eigenvalue–eigenvector problems
in connection with the theorem of Perron–Frobenius (1907, 1912), as is the case for
various Leontief models, treated in Chapter 2. In this text, we will often refer to the
theorem of Perron–Frobenius and usematrix algebra to solve the numerical problems
arising in the framework of single-product Sraffa systems.

In fact, PCMC evokes four distribution scenarios, which will be examined in detail
in this and the following chapters:
(1) Garden of Eden economy. There is no economic surplus. Entrepreneurs and work-

ers form one and only one group of households living on a bundle of subsistence
commodities produced by the economy. The quantities of commodities are fully
absorbed by households who work to produce the amounts required in the next
production period, thus attaining the goal of sustainability of the economy,which
is thus self-replacing, see Schefold [103], p. 49.

(2) Exploitation of a labour economy. There is an economic surplus. Entrepreneurs
hoard the surplus generated by the economy at the expense of workers, leaving
them justwith thebundle of commodities required for survival (subsistencewages
paid in kind), which is, in fact, a slave economy.

(3) Domination of a labour economy. There is an economic surplus. All the surplus
goes to workers who act in regard to producers in the same way as producers
in scenario (2). The means of production are fully in the hands of workers. En-
trepreneurs can contribute to the economy through the proceeds of their private
estates.

(4) Uniform distributive economy. There is an economic surplus. The surplus is dis-
tributed between producers and workers, but there is no specification of the rules
applicable for such distribution. The wage rates w of the workers are the same in
all the sectors of production, as well as the rates of profits r are the same for all
entrepreneurs. Themeans of production remain in the hands of producers, which
grants them leverage in bargaining situations with workers.

2 Sraffa’s first examples contain no surplus and no labour in man-years.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.1 Production for subsistence and production with surplus | 67

3.1.1 Sraffa’s first example: conditions of production

Let’s present Sraffa’s first example of a production economy limited towheat and iron.
We will go through Sraffa’s first example, giving detailed comments.

Example 3.1.1 ((PCMC, Par. 1)). Suppose at first that only two commodities are pro-
duced, wheat and iron. Both are used, in part as sustenance for those who work, and
for the rest as means of production—wheat as seed, and iron in the form of tools. Sup-
pose that, all in all, and including the necessaries for the workers, 280 quarters of
wheat and 12 tons of iron are used to produce 400 quarters of wheat, while 120 quar-
ters of wheat and 8 tons of iron are used to produce 20 tons of iron. The production
process3 (indicated by arrows) is symbolised as follows: the first line representing the
wheat production, the second line representing the iron production:

(280 qr. wheat, 12 t. iron)→ (400 qr. wheat,0),
(120 qr. wheat, 8 t. iron)→ (0, 20 t. iron). (3.1)

Nothing is added by the production4 to thewealth of society as awhole. Four hun-
dred qr. of wheat and 20 t. of iron have been used (during an annual period), and the
same quantities are produced (during this same period). In one year, the entire input
into each industry for that year is used for production requirements, and the initial
amount for each industry is reproduced as output of that year. There is no surplus.
Solution to Example 3.1.1:
Sraffa (PCMC, Par. 1) notes, without presenting the calculations, that

“there is a unique set of exchange-values which if adopted by the market5 restores the original dis-
tribution of the products and makes it possible for the process to be repeated. In the particular
example the required exchange value is 10 qr. of wheat for 1 t. of iron.”

This text is absolutely essential for the understanding of Sraffa’s price model. In addi-
tion a comment: In Chapter 9 we will describe the concept of the interindustrial mar-
ket, especially the algebraic properties in thebackground. Indeed, if the interindustrial
market adopts these prices, then the production technology, described by the means

3 To be more precise, this represents an Input-Output process of production, inputs on the left-hand
side, outputs on the right-hand side. Schefold’s notation ([102], p. 7) has been adopted to describe the
production process.
4 Sraffa’s representation (3.1) of the production process must be read from left to right. It is a repre-
sentation of a scheme of production, a production process. The numbers that appear in this scheme
will be subject to calculations and mathematics, essentially linear algebra. In the present text, the
mathematics for the calculation of all the amounts that enter Sraffa’s production processes will be
fully developed.
5 Sraffa evokes here the interindustrial market which has to adopt ‘exchange-values’ or ‘prices’. In
PCMC, Par. 7, he will give different possible terms for these prices. He says: “Such classical terms as
‘necessary prices’, ‘natural price’ or ‘price of production’ would meet the case, but value and price have
been preferred as being shorter and in the present context (which contains no reference tomarket prices)
no more ambiguous.” Throughout this text we will apply and use the term ‘price’, adopted by Sraffa.
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of production of the actual or present period, is recreated for the next period, ensur-
ing the same technology, and this from period to period. Obviously, these “exchange
values”, “prices” or “production costs” do not depend on subjective preferences, but
only on the technology of production.

It becomes evident that we may have to distinguish between different equilib-
rium processes: here, the technological adaption process for the determination of the
Sraffa ‘prices’, also called ‘costs of production’, and other equilibrium processes, as
the behavioural demand-supply adaption process for the determination of the Walras
‘prices’, often assimilated to ‘market prices’, see also Section 8.8. In this text we ex-
clusively treat Sraffa ‘prices’.

Now, we return to our example. Considering a quarter of wheat as the measure
of exchange (numéraire), i. e., a measure expressed in physical terms,6 the exchange
value corresponds to the relative price for wheat as p1 = 1(

qr. wheat
qr. wheat ) = 1 (dimension-

less) and the relative price for iron as p2 = 10(
qr. wheat
t. iron ), which we will use to write the

production equations.
It is now easily verified that these prices set both processes in equilibrium, satis-

fying the following first two equations. In the third and the fourth equations the prices
have been introduced and the equilibrium values calculated in “qr. wheat”:

280 (qr. wheat)p1(
qr. wheat
qr. wheat

) + 12 (t. iron)p2(
qr. wheat
t. iron

)

= 400 (qr. wheat)p1(
qr. wheat
qr. wheat

),

120 (qr. wheat)p1(
qr. wheat
qr. wheat

) + 8 (t. iron)p2(
qr. wheat
t. iron

)

= 20 (t. iron)p2(
qr. wheat
t. iron

) ⇒

280 ⋅ 1 qr. wheat + 12 ⋅ 10 qr. wheat = 400 ⋅ 1 qr. wheat,
120 ⋅ 1 qr. wheat + 8 ⋅ 10 qr. wheat = 20 ⋅ 10 qr. wheat. (3.2)

We now analyse the steps to the next period. Sector 1 acquires 12 t. iron and pays for it
with 120 qr.wheat to Sector 2. On the other hand, Sector 2 sells 12 t. iron retaining the
needed 120 qr. wheat, and 8 t. iron remain in Sector 2. These transactions are possible
because we have equilibrium prices with relation p2/p1 = 10.

Here Sraffa ends the explanation of his first numerical example. We intend to un-
ravel the matrix algebra behind this example. Matrix algebra is much more powerful
than only numerics to explain and set the structure of a problem.Wewill then be able
to generalize and define a class of problems to be solved with the presented mathe-
matical methods.

6 The numéraire is here the unit “qr. wheat”, which is then multiplied by a number. Only after intro-
duction of this common measure of exchange, i. e., the numéraire, can the process be expressed in
terms of equations.
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At first, we complete Sraffa’s indications in PCMC, Par. 1, and use elementary ma-
trix algebra to calculate the relative prices p1, p2.

Let us identify the matrices. From the given data, one finds the commodity flow
matrix as in (2.13),

S = [ s11 s12
s21 s22

] = [ 280 120
12 8 ] , (3.3)

in physical terms. Then we calculate the total output vector,

q = [ q1q2
] = Se = [ 280 + 12012 + 8 ] = [

400
20 ] > o, (3.4)

in physical terms. The price vector p = [p1, p2] has to be determined.
Sraffa’s price model (3.2) can then be written as follows: first, the left side, then

the right side, giving useful matrix equations,

[ 280p1 + 12p2120p1 + 8p2
] = [ s11 s21

s12 s22
] [ p1p2

] = [ 280 12
120 8 ] [

p1
p2
] = Sp

= [ 400p120p2
] = [ p1 0

0 p2
] [ 40020 ]

= [ p1 0
0 p2

] [ 280 120
12 8 ] [

1
1 ] = p̂Se,

⇒ Sp = p̂Se = p̂q. (3.5)

Wenowhave Sraffa’s pricemodel (3.2) in condensedmatrix form,where every industry
produces exactly one commodity. Later, this Sraffa price model will be called a single-
product Sraffa system. Remember that Sraffa’s first example (PCMC, Par. 3) contains no
surplus. The vector of final demand vanishes, d = o. We then refer to equation (2.15)
q = Se + d. Therefore, for the vector of total output of a production economy with no
surplus,7 we have,

q = Se > o.8  (3.6)

Here we make a formal link to the presentation of the values in monetary terms. We
can establish the following equality:

p̂Se = p̂(Se) = p̂q = [ q1p1
q2p2
] = [

x1
x2
] = x, (3.7)

which define the total output x in value terms.

7 We are dealing here with a closed economic process in a self-replacing state, embedded in a natural
environment and operating over the short and medium terms. Such processes are viable, contrary to
closed self-replacingprocesses in thermodynamics that contradict the Second Law and cannot subsist.
Note that we are not dealing here with the very long-term perspective adopted by Georgescu-Roegen
[35].
8 If we want to emphasize that there is no surplus, we write qI = Se (the Index I means an interindus-
trial economy).
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As there is no final demand in physical terms, i. e., d = o, there is with fi = pidi
(2.105) also no final demand in value terms, i. e., f = o. One then derives, with equa-
tions (3.5) and (2.18),

Z = p̂S⇒ p̂Se = p̂q = Ze = x, (3.8)

giving here a link between presentations of the data in physical terms and in value
terms. This gives also the link between the monetary circle and the production cir-
cle of the economic process, visualized in Figure 2.2. This subject will be treated alge-
braically in Chapter 9. Note that at this stage Sraffa’s construction operates onlywithin
the price model based on physical terms.

With elementary rules of matrix algebra using (3.5), one finds

Sp = p̂q = q̂p = x. (3.9)

Alternatively, taking the transposed equation on the left of (3.9):

Sp = q̂p = x or pS = pq̂ = x. (3.10)

Sraffa (PCMC, Par. 3) termed the left equation (3.10) the conditions of production, which
we formulate here in two steps:

Definition 3.1.1. In order to guarantee sustainability of a production process (a self-
replacing process), the following equation must hold in terms of quantities: Se = q,9

more explicitly written as

(q̂ − S)e = o = d, no surplus.  (3.11)

We will analyse some implications of Definition 3.1.1.
Equation (3.11) represents a homogeneous system of linear equations in a n-dimen-

sional vector space. The n× 1 summation vector e = [1, . . . , 1] spans a vector subspace
with dim(e) = 1. Therefore, the matrix q̂ − S has rank n − 1 because of the property
n − rank(q̂ − S) = dim(e) = 1 (see Nef [69], Theorem 1, p. 121). In other words, we have,

(q̂ − S)e = o⇒ rank(q̂ − S) = n − 1⇒ det(q̂ − S) = 0. (3.12)

This obviously means that the n equations (3.11) are not linearly independent.
Now we come to the conditions of production expressed in value terms:

Definition 3.1.2. The conditions of production in value terms mean that, given the
vector of total output q = Se > o, the price vector p is determined by the equation
pS = pq̂ (or transposed Sp = q̂p). 

9 This is nothing other than “Say’s Law” for this type of productive economic activity. Jean-Baptiste
Say (1767–1832) formulated the lawofmarkets found in classical economics,which states that aggregate
production necessarily creates an equal quantity of aggregate demand.
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We see that the expressions “An economy fulfills Sraffa’s conditions of production”
and an “economy is just viable” (Definition 2.2.1) are equivalent statements.

Starting from (3.11), we distinguish three subsequent cases of self-replacement, in
analogy to Schefold ([103], p. 49). We calculate the vector of surplus d = (q̂ − S)e, also
termed vector of net product, and we have

d = o : no surplus,
d ≥ o : self-replacement,
d > o : positive self-replacement. (3.13)

Clearly, the case of no surplus is equivalent to a just-viable economy, Definition 2.2.1,
the cases of self-replacement and positive self-replacement are equivalent to a viable
economy.

We shall now proceed with the formal development of further implications of
Sraffa’s conditions of production, expressed by equation (3.10), leading to a first ver-
sion of the seminal Sraffa price model. Matrix algebra is applied.10

We have to multiply the equation on the right side of (3.10) by the diagonal matrix
q̂−1. Using elementary rules ofmatrix algebra, especially about diagonalmatrices, and
using the input coefficients matrix in physical terms given in (2.16), i. e., C = Sq̂−1 ≥ 0,
one finds,

(pS)q̂−1 = p(Sq̂−1) = pC = (pq̂)q̂−1 = p(q̂q̂−1) = p

pC = p ⇔ Cp = p, (3.14)

which is therefore equivalent to the left eigenvector equation,

pC = p, (3.15)

with left eigenvector p for the matrix C associated to the Frobenius number
λC = 1.11

In the first numerical example (PCMC, Par. 1), Sraffa has hidden the calculation
of the prices as a solution to a specific left eigenvector equation.

The question arises under what conditions does this eigenvector problem (3.15)
have the desired solution of a positive price vector p > o. The answer is of fundamen-
tal importance, constituting the core of the various representations of the economic
process of production examined in this text: the Leontiefmodels, the Sraffapricemodel
and the Weintraub model, see Section 8.4.

To our knowledge, in the year 1976, Bertram Schefold seemingly was the first
economist to justify the occurrence of positive prices in Sraffa price models by the

10 Nowhere does Sraffa treat in PCMC the mathematics operating on the background of his price
model pS = pq̂ which guarantees the existence of strictly positive price vectors p > o.
11 For calculation purposes, we will however in general take the equivalent equation for right eigen-
vectors Cp = p obtained in (3.14).
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Perron–Frobenius theorem A.9.3, a fundamental theorem that governs this field, (see
his comments in the German edition of PCMC ([109], pp. 216–225)).12

After these explanations, we concentrate again on the calculation of the prices of
Sraffa’s first example, using the positive input-output coefficients matrix S (3.3) and
the positive vector of total output q (3.4).

(1) Prices. Taking as numéraire a quarter of wheat, following Sraffa, the price p1 of
wheat and the price p2 of iron are expressed in this numéraire, the units being [p1] =
(qr. wheat/qr. wheat) = 1 and [p2] = (qr. wheat/t. iron).

Then, let us calculate the positive input coefficients matrix in physical terms,

C = Sq̂−1 = [ 280 120
12 8

] [
1

400 0
0 1

20
] = [

0.7 6
0.03 0.4

] > 0. (3.16)

As the conditions of the Perron–Frobenius theorem A.9.3 are fulfilled, we calculate
the eigenvalues λ in order to get the left positive price eigenvector p > o. We set the
usual eigenvector equation for any eigenvalue λ,

pC = λp. (3.17)

Now, transpose equation (3.17) and introduce the numerical entries of matrix C (3.16)
and the price variables p1 and p2,

Cp = λp⇒ [ 0.7 0.03
6 0.4

] [
p1
p2
] = λ [ p1

p2
] . (3.18)

Taking the vector of prices p = [p1, p2] and the identity matrix I2 = [ 1 0
0 1 ], we compute

the eigenvalues of matrix C (the same as those of the transposed matrix C), as the
roots of the characteristic polynomial,

P2(λ) = det(C − λI2) =


0.7 − λ 6
0.03 0.4 − λ


= (0.7 − λ)(0.4 − λ) − 0.03 ⋅ 6

= λ2 − 1.1λ + 0.1 = (λ − 1)(λ − 0.1). (3.19)

The quadratic equation P2(λ) = 0 confirms that one of the eigenvalues is the Frobenius
number, λ1 := λC = 1, the other one is λ2 = 0.1.

12 It is interesting to note that Sraffa in PCMC never mentions the theorem of Perron (1907) nor the
theorem of Frobenius (1912), later known in a modern formulation as the Perron–Frobenius theorem.
Historians of economics, like Kurz and Salvadori [52] mention that Sraffa did not know the work of
Perron and Frobenius. As already pointed out, Bertram Schefold [109] published his seminal work
initially as a short Appendix in the German translation of PCMC; he was seemingly the first economist
to discover and treat profoundly the significance and importance of the Perron–Frobenius theorem
for Sraffa’s work. It is assumed that Ladislaus von Bortkewicz (1868–1931) [9], a Russian economist,
was the first scientist to discover the role of eigenvalues and eigenvectors in the context of classical
production economics and models, see Knolle [50]. See also Parys [79]..
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With these two eigenvalues λ1, λ2, one starts with the left eigenvectors of (3.17),
setting specifically

Cp = λip, i = 1, 2, (3.20)

and transposing, we obtain the system of equations to determine the eigenvectors:

Cp = λip⇒ Cp − λip = (C
 − λiI2)p = o. (3.21)

As the Frobenius number is λC = 1, we plug it into the eigenvalue equations (3.20), and
can set p12 = 1 and compute p11,13 which is necessarily positive,

0.7p11 + 0.03p12 = p11
6p11 + 0.4p12 = p12

⇒
−0.3p11 + 0.03p12 = 0

6p11 − 0.6p12 = 0
→ p11 = 0.1. (3.22)

Both prices are positive, according to the Perron–Frobenius theorem.
Basis vectors of the eigenspace14 of λC = 1 for any k ∈ ℝ are thus described by

p1 = [
p11
p12 ] = k[

0.1
1 ]. With k = 10 the prices are p1 = [

p11
p12 ] = [

1
10 ].

The relationship between the prices is p11 = 0.1 ⋅ p12.
To satisfy curiosity, let’s now continue with the second eigenvalue λ2. Plugging

λ2 = 0.1 into (3.20) and taking the numerical values of the matrix coefficients, setting
p21 = 1, one gets here a negative value of the solution,

0.7p21 + 0.03p22 = 0.1p21
6p21 + 0.4p22 = 0.1p22

⇒
0.6p21 + 0.03p22 = 0

6p21 + 0.3p22 = 0
→ p22 = −20. (3.23)

Only the first eigenvector, associated with the Frobenius number λC = 1, has an eco-
nomic meaning, i. e., necessarily positive prices. This is not the case for the second
eigenvalue λ2 = 0.1: No theorem guarantees both prices to be positive.

Concluding, we summarize that for the Frobenius number λC = 1, we obtain the
price relationship 1:10, p11 = 0.1 ⋅ p12, between wheat and iron (PCMC, Par. 1).

With p12 = 10, one gets Sraffa’s price vector p1 = [p11 = 1, p12 = 10]; quoting Sraffa
(PCMC, Par. 1): “In the particular example we have taken, the exchange-value required
is 10 qr. of wheat for 1 t. of iron.”

Written out in physical terms, starting from 1 t. iron and its pricep12 is 10 qr. wheat,
the equality mentioned by Sraffa reads:

1 t. iron ⋅ p12(
qr. wheat
t. iron

) = 1 t. iron ⋅ 10(qr. wheat
t. iron

) = 10 qr. wheat (3.24)

Let’s now formally analyse the quantities.

13 We can choose one vector component arbitrarily because p is an eigenvector of the eigenvalue
equation (3.21). The vector k ⋅ p, k ∈ ℝ, is also a solution of the system (3.21). This means we are
dealing here with relative prices.
14 The n×n squarematrix C has the Frobenius number λC = 1, and the associated eigenvector p1 then
generates a subspace in ℝn known as the eigenspace of λC = 1.
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(2) Quantities. To calculate the quantities, wewill rely by analogy on Sraffa’s con-
ditions of production (Definition 3.1.2) that indicate that the production process (3.1)
reproduces the same quantities of wheat and iron every year.

Consider the positive input-output coefficients matrix C (3.16) of Sraffa’s example
as given. The eigenvalues of C and C are the same and have been calculated as λC = 1,
λ2 = 0.1. Then, remembering that here final demand vanishes, d = o, one immediately
gets from equation (2.54),

Cq = q. (3.25)

Equation (3.25) is the right eigenvector equation for the Frobenius number λC = 1. To
describe the general right eigenvector problem for both eigenvalues λC = 1 and λ2 = 0.1
with matrix C (3.16), we again write a general eigenvalue equation,

Cq = λq, (3.26)

and proceed as follows:
For the Frobenius number λC = 1, calculate the right eigenvector q1 = [q11, q12]

0.7q11 + 6q12 = q11
0.03q11 + 0.4q12 = q12

⇒
6q12 = 0.3q11

0.03q11 = 0.6q12

⇒ q11 =
6
0.3

q12 =
0.6
0.03

q12 = 20q12. (3.27)

The right eigenvector associated to the Frobenius number λC = 1 is a basis vector of the
eigenspace for any k ∈ ℝ,q1 = [

q11
q12 ] = k[

20
1 ]⇒ q11 = 20 ⋅q12. For the second eigenvalue

λ2 = 0.1, we also calculate the right eigenvector q2 = [q21, q22]

0.7q21 + 6q22 = 0.1q21
0.03q21 + 0.4q22 = 0.1q22

⇒
0.6q21 = −6q22,

0.03q21 = −0.3q22,

⇒ q21 =
−6
0.6

q22 =
−0.3
0.03

q22 = −10q22. (3.28)

The eigenvector, belonging to the second eigenvalue λ2 = 0.1, is also a basis vector
of the eigenspace for any k ∈ ℝ, q2 = [

q21
q22 ] = k[

−10
1 ]⇒ q21 = −10 ⋅ q22.

Only the right eigenvector associated to the Frobenius number λC = 1 has an eco-
nomic meaning because both components represent positive produced quantities, in
accordance with the Perron–Frobenius theorem. This is not the case for the eigenvec-
tor associated with the second eigenvalue λ2 = 0.1, where no mathematical theorem
assures all components to be positive.

Concluding, we summarize that, for the Frobenius number λC = 1, we obtain the
quantity relation 1:20, q11 = 20 ⋅ q12, between wheat and iron, where q11 is the quantity
of wheat and q12 is the quantity of iron that have to be produced.
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With these numerical values, (3.26) becomes

C ⋅ q1 = [
0.7 6
0.03 0.4 ] [

20q12
q12
] = λ1q1 = 1 ⋅ [

20q12
q12
] , (3.29)

giving with q12 = 20 (t. iron) the values implicitly postulated by Sraffa (PCMC, Par. 1).
We now obtain:

280 (qr. wheat) + 120 (qr. wheat) = 400 (qr. wheat),
12 (t. iron) + 8 (t. iron) = 20 (t. iron) (3.30)

These equations can be presented as Input-Output Table 3.1. 

Table 3.1: Sraffa’s first numerical example as a flow of commodities in physical terms.

Processing sectors (3.2) Total
outputwheat iron

wheat (in qr. wheat) s11 = 280 s12 = 120 q1 = 400
iron (in t. iron) s21 = 12 s21 = 8 q2 = 20

We have at this stage achieved the eigenvalue-eigenvector analysis of Sraffa’s first nu-
merical example, based on the Perron–Frobenius theorem A.9.3.

We have found the following result:

Proposition 3.1.1. In a sustainable system of production, with no surplus, which fulfills
the formal conditions of production (Definition 3.1.2), we observe that for a positive com-
modity flow matrix S, one obtains the positive vector of total output q = Se > o, and
one calculates the input-output coefficients matrix C = Sq̂−1. The Frobenius number
λC = 1,
(a) associated to the left positive price eigenvector, p > o, solves equation (3.15),

pC = p, which is an eigenvector of constant sign;
(b) associated to the right positive quantity eigenvector, q > o, solves equation (3.25),

Cq = q, which is an eigenvector of constant sign.

The uniqueness of the price or quantity vectors is obtained as usual by initially imposing
additional information on prices and quantities.

3.1.2 Sraffa’s second example

In the present subsection, we show how the foregoing methodology, using matrix al-
gebra, and summarized in Proposition 3.1.1, is further applicable to Sraffa’s second
example with three commodities. There is no surplus.
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Example 3.1.2 (PCMC, Par. 2). Now three commodities (wheat, iron, pigs) are consid-
ered, one industry for each commodity. In fact, any number n of commodities and the
same number of single industry processes can be set up. The production scheme is
described as follows, each line corresponding to an industry:

(240 qr. wheat, 12 t. iron, 18 pigs)→ (450 qr. wheat,0,0),
(90 qr. wheat, 6 t. iron, 12 pigs)→ (0, 21 t. iron,0),
(120 qr. wheat, 3 t. iron, 30 pigs)→ (0,0, 60 pigs). (3.31)

Compute the price vector p and the quantity vector q, in analogy to the method of
solution used for Example 3.1.1. Compute det(q̂ − S) and rank([S, q̂]).

Solution to Example 3.1.2:
One first identifies the positive commodity flowmatrix S > 0 (2.13). Here, the surplus in
physical terms vanishes, d = o. Then the positive total output per sector is calculated,
giving the positive vector of total output q = Se > o in (2.15).

S = [[
[

s11 s12 s13
s21 s22 s23
s31 s32 s33

]]

]

= [[

[

240 90 120
12 6 3
18 12 30

]]

]

, q = Se = [[
[

450
21
60

]]

]

> o. (3.32)

Then, we compute the positive input-output coefficientsmatrix C = Sq̂−1 (2.16):

C = [[
[

240 90 120
12 6 3
18 12 30

]]

]

[[

[

1
450 0 0
0 1

21 0
0 0 1

60

]]

]

=
[[[

[

8
15

30
7 2

4
150

2
7

1
20

1
25

4
7

1
2

]]]

]

> 0. (3.33)

As matrix C is positive and there is no surplus, Lemma 4.1.1 (a) applies.
(1) Prices. One again writes the left eigenvector equation (3.17) to calculate the

eigenvalues of matrix C:

pC = λp. (3.34)

For this purpose, we set the characteristic function

P3(λ) = det(C − λI) = −λ
3 +

277
210

λ2 − 178
525

λ + 1
50
. (3.35)

The characteristic polynomial P3(λ) is factorized, as P3(λ) = −(λ − 1)(λ −
3
35 )(λ −

7
30 ).

We identify the Frobenius number λC = 1 and have now associated positive price vec-
tors p > o. We calculate p = k ⋅ [ 15 , 2, 1]. With k = 5, the price vector is p = [p1 = 1,
p2 = 10, p3 = 5], corresponding to Sraffa’s exchange-values (production costs), formu-
lated in PCMC, Par. 2, as: “The exchange-values which ensure replacement all around
are 10 qr. wheat = 1 t. iron = 2 pigs.”
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(2) Quantities. Then, we write again the right eigenvector equation (3.26).

C ⋅ q = λq. (3.36)

The eigenvalues are known. The positive matrix C > 0 has the Frobenius number
λC = 1, associated to the positive right quantity eigenvector, q > 0.

We calculate q = m ⋅ [ 152 ,
7
20 , 1]. Thus, these positive eigenvectors have an eco-

nomic meaning.15 With m = 60, one gets then exactly Sraffa’s quantity vector q =
[450, 21, 60], see PCMC, Par. 2.

Summarizing, Sraffa states the equality expressed in physical terms, written out,
as:

10 qr. wheat ⋅ p1(
qr. wheat
qr. wheat

) = 1 t. iron ⋅ p2(
qr. wheat
t. iron

) = 2 pigs ⋅ p3(
qr. wheat
pigs
),

10 qr. wheat ⋅ 1(qr. wheat
qr. wheat

) = 1 t. iron ⋅ 10(qr. wheat
t. iron

) = 2 pigs ⋅ 5(qr. wheat
pigs
)

= 10 qr. wheat. (3.37)

The quantities may again be presented in an Input-Output Table 3.2:

Table 3.2: Sraffa’s example (PCMC, Par. 2), a flow of commodities.

Processing sectors (3.32) Total
outputwheat iron pigs

wheat (in qr. wheat) s11 = 240 s12 = 90 s13 = 120 q1 = 450
iron (in t. iron) s21 = 12 s21 = 6 s23 = 3 q2 = 21
pigs (in numbers) s31 = 18 s32 = 12 s33 = 30 q3 = 60

Finally, we compute

det(q̂ − S) = det([
[

210 −12 −18
−90 15 −12
−120 −3 30

]

]
) = 0, (3.38)

reflecting a singular matrix, and the rank of the composed matrix [S, q̂],

rank([S, q̂]) = rank([
[

240 12 8 450 0 0
90 6 12 0 21 0
120 3 30 0 0 60

]

]
) = 3, (3.39)

showing linear independence of the n = 3 production processes. 

15 The other eigenvectors are indeed not positive. The two other price vectors are p2 = [− 109 ,−
7
18 , 1]


and p3 = [ 152 ,−
5
4 , 1]
. The two other quantity vectors are q2 = [− 2

15 ,0, 1]
 and q3 = [− 1965 ,

310
91 , 1]
.
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We have now to explain the two last results, starting with the singularity of the
matrix q̂−S in (3.38). By Assumption 2.2.1 the vector of total output is positive, q > o,
consequently, the determinant of the diagonal matrix is different from 0, det(q̂) > 0.
Then, as there is no surplus in the economy presented in Example 3.1.1, Sraffa’s condi-
tions of production hold, Definition 3.1.1 and with (3.11) and (3.12) we obtain:

(q̂ − S)e = o⇒ rank(q̂ − S) ≤ n − 1⇒ det(q̂ − S) = 0
= det(q̂ − S) = det(q̂ − q̂C) = det(q̂(I − C))
= det(q̂) ⋅ det(I − C) = 0⇔ det(I − C) = 0⇔ ∃ eigenυalue λ = 1. (3.40)

This calculation shows that an economy without surplus has an input-output coeffi-
cients matrix C with an eigenvalue λ = 1. We generalize this result in Lemma 4.1.1,
Chapter 4.

Now we explain the rank of matrix [S, q̂] in (3.39). For this purpose we need the
notion of column and row vectors of matrices, Definition A.4.3.

The row vectors si⋅ = [si1, si2, . . . , sin], i = 1, . . . , n, of S (the column vectors of S)
are set up of the quantities sij of commodity i, necessary as inputs for the production
in each sector Sj, j ∈ {1, . . . , n}. For this reason these row vectors si⋅ are called i-th com-
modity vectors. The column vectors s⋅j = [s1j, s2j, . . . , snj] of S (the row vectors of S)
indicate the quantities sij of each commodity i ∈ {1, . . . , n} entering the production of
sector Sj. For this reason, these column vectors s⋅j are called input vectors to the j-th
production process, corresponding to the output qj of that production process.

Consider then the column vectors s⋅j = [s1j, s2j, . . . , snj], q̂⋅j = [0, . . . ,0, qj,0, . . . ,0]

of matrices S and q̂ to describe production processes.

Notation 3.1.1. The j-th productionprocess is representedby the (1×2n) vector [s⋅j, q̂⋅j],
j ∈ {1, . . . , n}, where the vector s⋅j represents the quantities of input necessary to pro-
duce the quantity of output qj of commodity j, represented in the vector q̂⋅j.

Schefold ([103], p. 50) has postulated the linear independence of the production
processes for joint production, see Chapter 6. We apply this notion for single-product
industries. For the notion of rank, see Definition A.2.4.

Lemma 3.1.1. If the n production processes [s⋅j, q̂⋅j], collected in the matrix [S, q̂], are
linearly independent, then rank([S, q̂]) = n.

Proof. As the output vector is positive, q > o, the n × n diagonal matrix q̂ is regular
and is a submatrix of [S, q̂]. Thus, rank([S, q̂]) = n and the n production processes
[s⋅j, q̂⋅j] are linearly independent.

We can now summarize the solution procedure to obtain prices and quantities in
the case of no surplus, applying the Perron–Frobenius theorem A.9.3.

Proposition 3.1.2. Solution procedure for the right eigenvector equation Cq = λq and
the left eigenvector equation pC = λp:
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(a) Check that the matrix C is positive;
(b) check that the Frobenius number is λC = 1;
(c) calculate the associated, necessarily positive, left price eigenvector p > o and the

positive right quantity eigenvector q > o of matrix C;
(d) determine the eigenvectors from the initially given price and quantity informa-

tion. 

3.1.3 Sraffa’s third example and productiveness

In this subsection, we extend the construction to economies with positive surplus. In
the present production economies, we assume subsistence wages and equal rate of
profits in all branches.16

Example 3.1.3. Sraffa (PCMC, Par. 5) considers the samemodel as presented in Exam-
ple 3.1.1, but now the output of farmers is 575 qr. instead of 400 qr. of wheat, with
the same inputs as before. Hence, there is a surplus and the possibility of profit. The
process of production is symbolized by the well-known scheme:

(280 qr. wheat, 12 t. iron)→ (575 qr. wheat,0),
(120 qr. wheat, 8 t. iron)→ (0, 20 t. iron). (3.41)

Compute the price vector p and the quantity vector q in applying matrix algebra, as it
has been realised for the Example 3.1.2. Compute det(q̂−S) and rank([q̂, S]). Compute
the vector of values x.

Solution to Example 3.1.3:
The uniform rate of profits r (see PCMC, Par. 4) is maximal because there is a positive
surplus and only subsistence wages. The rate of profits is written as r = R > 0 (PCMC,
Par. 22), and the prices satisfy the following equations,

(280p1 + 12p2)(1 + R) = 575p1 = x1 (qr. wheat),
(120p1 + 8p2)(1 + R) = 20p2 = x2 (qr. wheat). (3.42)

Again, in (3.42) the physical term “qr. wheat” is considered as the measure of ex-
change, i. e., is the numéraire.17

16 In fact, we mean that the total output exceeds the means of production, that is, d = q − Se ≥ o,
producing a surplus or anet product for thepresent partial economies of Sraffa’s elementary examples.
In PCMC, Par. 12, Sraffa early introduced the term “national income” in relation with the term surplus
or net product. Indeed, at this moment Sraffa has in mind the complete production scheme of an econ-
omy, as presented by an input-output table (IOT) in physical terms. Then the net product is the “gross
national income” and can be associated to the accounting balance (2.145) Y = W + P = C + I + G, see
also Chapter 10. The national income is then a proxy of Gross Domestic product (GDP).
17 One may ask how we now may obtain a surplus without changing the inputs. Economically, this
would correspond to the following types of situation: Either rationalization measures have been un-
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(1) Prices. The system (3.42), Sraffa’s price model, is now transcribed to matrix
form as

Sp(1 + R) = q̂p = x. (3.43)

Then equation (3.43) is multiplied by 1/(1 + R) and the diagonal matrix q̂−1, giving the
eigenvector equation with matrix C for the right eigenvectors,18

q̂−1(Sp) = (q̂−1S)p = Cp = 1
1 + R
(q̂−1q̂)p = λCp⇒ Cp = λCp. (3.44)

As in Example 3.1.1 we get an eigenvector equation to calculate the price vector p, but
here the eigenvector equation (3.44) exhibits the Frobenius number λC = 1/(1 + R) < 1
of economies with positive surplus, different from eigenvector equation (3.14)Cp = p,
revealing the Frobenius number λC = 1 of economies without surplus.

Now, we treat the numerical solutions:

We identify again the positive commodity flow matrix S > 0 (3.42). We know that the
semi-positive vector of surplus in physical terms is d = q − Se ≥ o. We use the same
physical units as in Example 3.1.1. Then, the detailed calculations are as follows,

S = [ s11 s12
s21 s22

] = [ 280 120
12 8 ] , Se = [ 280 120

12 8 ] [
1
1 ] = [

400
20 ] ,

q = [ q1q2
] = [ 57520 ] , d = q − Se = [ 57520 ] − [

400
20 ] = [

175
0 ] . (3.45)

Then, we compute the positive matrix C = Sq̂−1 > 0 (2.16):

C = [ 280 120
12 8

] [
1
575 0
0 1

20
] = [

56
115 6
12
575

2
5
] > 0. (3.46)

The matrix C and the vector of surplus are positive. The Perron–Frobenius theo-
rem A.9.3 applies. The eigenvalues are computed, along with

P2(λ) = det(C − λI) = λ
2 −

102
115

λ + 8
115
= (λ − 4

5
)(λ − 2

23
). (3.47)

The Frobenius number λC = 1/(1 + R) = 4/5 < 1, associated with the positive price eigenvector p =
k[1, 15], is calculated. The productiveness R = (1/λC )−1, the notion has been proposed by Knolle [49],
is calculated as R = 0.25.

Indeed, the value R characterizes the overall productivity of an economy in the sense of Krugman
[47]. Sraffa called R the maximal rate of profit.

dertaken tomake the existing process more efficient, or there is additional production capacity left af-
ter fulfillment of the conditions of production. The benefits revert solely to the producers in the present
case.
18 This equation is equivalent to equation pC = λp for a left eigenvector.
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Finally, with k = 1, one gets the price vector p = [p1, p2] = [1, 15], corresponding to
Sraffa’s exchange-values19:

“The exchange-ratio which enables the advances to be replaced and the profits to be distributed to
both industries in proportion to their advances is 15 qr. of wheat for 1 t. of iron; and the correspond-
ing rates of profits in each industry is 25%.” (PCMC, Par. 5).20

Sraffa has shown that with a surplus the price model generates a profit. As there are
no explicit wages, the profits are consequently maximal. The productiveness R, called
by Sraffa the maximal rate of profits, is in the present case R = (5/4) − 1 = 0.25. The
vector of values is x = q̂p = [575, 300] in qr. wheat.

(2) Quantities. In analogy with the realised calculations, we set the right eigen-
vector equation (3.26) Cq = λq. Taking the matrix C from (3.46), we compute the right
eigenvector, to obtain the quantities

Cq = [
56
115 6
12
575

2
5

]q = λ1q =
4
5
q. (3.48)

We get q = k ⋅ [115, 6]. The proportion 115 : 6 is neither the initial quantity proportion,
400 : 20 = 20 : 1 accordingly to (3.25), nor the proportion 575 : 20 after the surplus has
been introduced!.21

Finally, we compute

det(q̂ − S) = det([ 295 −12
−120 12 ]) = 2,100, (3.49)

which shows that the matrix is regular. With Lemma 3.1.1 we confirm that the rank of
matrix [S, q̂] is equal to n = 2,

rank([S, q̂]) = rank([ 280 12 575 0
120 8 0 20 ]) = 2, (3.50)

certifying the linear independence of both production processes .

The task remains to give an explanation of the regularity of matrix q̂−S in (3.49).
Considering det(q̂) > 0, we have the following equivalence:

0 ̸= det(q̂ − S) = det(q̂ − q̂C) = det(q̂(I − C)) = det(q̂) ⋅ det(I − C)
⇔ det(I − C) ̸= 0⇔ λ = 1 is no eigenvalue of C. (3.51)

19 The other vectors p1 = k[−6, 115] actually have no economic meaning.
20 “Advances” means in Sraffa’s quotation that each industry sets up and finances the means of pro-
duction at the beginning of each reference period. It will be shown that 0 < λC < 1 occurs when there
is a semi-positive surplus d ≥ o and that then, consequently for that positive commodity flow matrix
S = Cq̂ > 0, the price vector is positive, p > o, see Lemma 4.1.1 (b).
21 We will later see that the proportion 115 : 6 represents the proportion between the means of pro-
duction of a Standard system based on the matrix C, see equation (5.96).
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This calculation shows that an economy with surplus, described by the input-output
coefficientsmatrix C, has no eigenvalue λ = 1. This preliminary result is fully worked
out in Lemma 4.1.1, Chapter 4.

Proposition 3.1.2 will now be extended to production economieswith a surplus. We
get the following preliminary result, applying the Perron–Frobenius theorem A.9.3.

Proposition 3.1.3. Solution procedure for the Sraffa price model (3.43):
(a) Check that the matrix C is positive;
(b) compute the Frobenius number λC := 1/(1 + R) < 1 of the matrix C, which is neces-

sarily smaller than 1;
(c) determine the positive left eigenvector (price vector p > 0) of the matrix C with

initially given price information;
(d) compute the necessarily positive productiveness R = (1/λC) − 1 > 0. 

We have thus largely described the way to solve Sraffa’s first three numerical ex-
amples (PCMC, Par. 1, Par. 2, Par.5). We made systematic use of the Perron–Frobenius
theorem A.9.3.

By analogy with a productive Leontief model (see Definition A.12.1) defined by Ashmanov [2] and
treated later, we define a productive Sraffa model for semi-positive vectors of surplus d ≥ o and
positive vectors of output q > o with a semi-positive input-output coefficients matrix C ≥ 0, Assump-
tions 2.2.1 and 2.2.2 hold,

q = Se + d = Cq̂e + d = Cq + d > o. (3.52)

The notion of productive Sraffa model is applied in the proof of Lemma 4.1.1.

We conclude this section with a further proposition that summarizes the obtained for-
mal mathematical properties of production economieswith surplus. For this purpose,
we consider at the moment a positive n × n commodity flow matrix22 S > 0 and the
diagonal matrix q̂, with q > o, which are both split into columns and row vectors,
applying Definition A.4.3.

Proposition 3.1.4. The n production processes [s⋅j , q̂⋅j], j ∈ {1, . . . , n}, represented by the n × 2n
matrix [S, q̂] are linearly independent (see Schefold [103], p. 50). The matrix (q̂ − S) represents in
the columns the difference between produced and industrially used commodities. The condition for
a surplus is

det(q̂ − S) = det(q̂(I − C)) ̸= 0⇔ det(I − C) ̸= 0
⇔ has no eigenvalue λ = 1. (3.53)

All the output being concentrated in the diagonal matrix q̂, we get rank([S, q̂]) = n.

22 Subsequently, matrix S will be assumed to be semi-positive and irreducible or only semi-positive.
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In this section, we have gained a milestone, because we have identified the pro-
ductiveness R = (1/λC) − 1, derived from the Frobenius number 0 < λC < 1 of the
positivematrix C = Sq̂−1 > 0 as a measure of productivity of a production economy of
type (3.41). Productiveness will accompany us throughout this text with the purpose
of deeply questioning the measurement of the productivity of a circular economic pro-
duction process.

In the next section, we develop the concept of the production schemes.

3.2 Symbolic representation of the production scheme

We continue to treat single-product industries and consider the previously discussed
way to write the commodity flow matrix S

S =

[[[[[[[[

[

s11 s12 . . . . . . s1n
s21 s22 . . . . . . s2n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
sn1 sn2 . . . . . . snn

]]]]]]]]

]

= [s⋅1, s⋅2, . . . , . . . , s⋅n] =

[[[[[[[[

[

s1.
s2.
. . .
. . .
sn.

]]]]]]]]

]

. (3.54)

As Assumption 2.2.1 holds, q = Se+d > o, and according to Schefold ([103], p. 7),
the representation of the production scheme takes the following form:

(s11, s21, s31, . . . , sn1)→ (q1,0,0, . . . ,0),

(s12, s22, s32, . . . , sn2)→ (0, q2,0, . . . ,0),

(s13, s23, s33, . . . , sn3)→ (0,0, q3, . . . ,0),

(. . . , . . . , . . . , . . . , . . .)→ (0,0,0, . . . ,0),

(s1n, s2n, s3n, . . . , snn)→ (0,0,0, . . . , qn),

(S)→ (q̂). (3.55)

As the Assumption 2.2.2 holds, the column vectors s⋅j ≥ o, j ∈ {1, . . . , n}, and the
commodity flow matrix S ≥ 0 are semi-positive.

3.3 A generalization of Sraffa’s first example*

We shall now proceed to a generalization of two of the treated elementary Sraffamod-
els (PCMC, Par. 1, Par. 2, Par. 5). This generalization is done in several steps. We take
first a positive commodity flow matrix Swith n = 2 sectors, where the coefficients, rep-
resented by numerical values are now replaced by any literal values, permitting to ad-
vance the numerical analysis towards an algebraic analysis. Then, wewill be prepared
to increase the number n ∈ {3, 4, . . . , } of the sectors.
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3.3.1 A global economy

But before proceeding, we will have another look at Sraffa’s first example (PCMC,
Par. 1), see Example 3.1.1. This example is not that trivial; let’s apply it by analogy
to an elementary model of a fully globalized world economy, which by definition is
closed.

Replace “wheat” by a composite commodity of goods and services required for
interindustry demands (and ultimately consumer consumption), let’s call it here “In-
dustrial Necessities”. We restrict ourselves here to interindustry transactions, in other
words, to the conditions of production. “Iron” will then be replaced by “Crude Oil”,
assumed to be the sole source covering energy requirements.

The components of the flowmatrix S for “Industrial Necessities” will be assumed
to remain unchanged, but the composition of the commodity “Industrial Necessities”
can change (not addressed here). The price of that commodity will however also be
assumed to remain constant.

Industrial necessities and “Crude Oil” will be expressed in appropriate measure-
ment units (which we will not go into here): say, “Necessity Units” and “Crude Oil
Units”. As for the components of the flowmatrix for Crude Oil, they will now be made
to increase twofold, indicating a vast increase in the supply of that commodity (pol-
lution issues set aside), which can have multiple causes not analysed here. The eco-
nomic process then reads

No: 1, before changes in oil production

(280 Necessity Units, 12 Crude Oil Units)→ (400 Necessity Units,0),
(120 Necessity Units, 8 Crude Oil Units)→ (0, 20 Crude Oil Units). (3.56)

No: 2, after changes in oil production

(280 Necessity Units, 24 Crude Oil Units)→ (400 Necessity Units,0),
(120 Necessity Units, 16 Crude Oil Units)→ (0, 40 Crude Oil Units). (3.57)

Setting the price for “Industrial Necessities” p11 = 1, we already know that for
No: 1 process the price of “Crude Oil” will be: p12 = 10. ForNo: 2 process, Sraffa’s price
model will now read:

280p11 + 24p12 = 400p11,

120p11 + 16p12 = 40p12, (3.58)

and here, with p11 = 1, we obtain p12 = 5. The increase in “Crude Oil” supply thus
reflects a change in technology, represented by the new S matrix, and a significant
drop in oil price (ceteris paribus).

This elementary example shows how Sraffa’s model is complementary to the neo-
classical view. Marshall’s scissors for supply-and-demand analysis would only give
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tendencies at the macroeconomic level; here we obtain precise numerical values, and
the following Subsection 3.3.2 shows how these values change with variable compo-
nents of the commodity flow matrix.

3.3.2 Variables replace numbers in the commodity flow matrix

Let’s start with the following exercise. Its aim is to find the rules of construction for a
general economy where there is no surplus, given the positive commodity flow matrix
S > 0with n = 2 sectors. Let us simplify the notations of the elements of the commodity
flow matrix throughout Sections 3.3, 3.4 and 3.5.

We set up matrix S > 0 in physical terms and compute the vector of total output

S = [ a b
c d
] := [

s11 s12
s21 s22

] , q = [
q1
q2
] = Se = [ a + b

c + d
] . (3.59)

Example 3.3.1 (First generalization of PCMC, Par. 1). Suppose at first that only two
commodities are produced, wheat and iron. Both are used, in part, as sustenance for
those who work, and for the rest as means of production—wheat as seed and iron
in the form of tools. Suppose that, all in all, and including the necessaries for the
workers, there is a positive commodity flow matrix S > 0. Here we have set a > 0
quarters of wheat and c > 0 tons of iron are used to produce a + b quarters of wheat,
while b > 0 quarters of wheat and d > 0 tons of iron are used to produce c + d tons
of iron. The process of production (indicated by arrows) is symbolised as follows, the
first line represents the wheat production, the second line the iron production (note
the transpose S on the left side):

(a qr. wheat, c t. iron)→ ((a + b) qr. wheat,0),

(b qr. wheat, d t. iron)→ (0, (c + d) t. iron). (3.60)

Determine the eigenvalues and the left and right eigenvectors of the input coefficient
matrix.

Solution to Example 3.3.1:
Using again elementary rules of matrix algebra, especially those concerning diagonal
matrices and the definition (2.16) of the input-output coefficients matrix in physical
terms C = Sq̂−1, one finds the matrix,

C = Sq̂−1 = [ a b
c d
][

1
a+b 0

0 1
c+d

] = [
a

a+b
b
c+d

c
a+b

d
c+d

] > o. (3.61)

The eigenvalues of matrix C (3.61) (the same as those of the transposed matrix C) are
computed. One finds
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det(C − λI2) =


a
a+b − λ

b
c+d

c
a+b

d
c+d − λ



= (
a

a + b
− λ)( d

c + d
− λ) − b

c + d
⋅

c
a + b

= λ2 − ( a
a + b
+

d
c + d
)λ + ad − bc
(a + b)(c + d)

= (λ − 1)(λ − ad − bc
(a + b)(c + d)

) = 0, (3.62)

giving the eigenvalues, see Proposition 3.1.2,

λ1 = 1; λ2 =
ad − bc
(a + b)(c + d)

. (3.63)

Now we have the general price vectors p = [p1, p2] and quantity vectors q = [q1, q2].
We then compute the right eigenvectors of the transposed input coefficients matrix in
physical terms C (3.61)

Cp = λip⇒ Cp − λip = o⇒ (C
 − λiI2)p = o. (3.64)

The matrix C (3.61) is positive for positive coefficients a > 0, b > 0, c > 0,
d > 0. Later we will see that these conditions guarantee the existence of a positive
price eigenvector p > o, associated for the existing Frobenius number λC = 1 (see
Lemma 4.1.1 (a)). One finds:

p = [p1, p2]
 = [p1, p1(

b
c
)]


= p1 ⋅ [1,
b
c
]


,
b
c
∈ ℝ+. (3.65)

Thenwe compute the right eigenvectors of the input coefficientsmatrix C (3.61) in phys-
ical terms,

Cq = λiq⇒ Cq − λiq = o⇒ (C − λiI2)q = o. (3.66)

By analogy, there exists a positive quantity vector for λC = 1. One finds

q = [q1, q2]
 = [q2(

a + b
c + d
), q2]



= q2 ⋅ [
a + b
c + d
, 1]


,
a + b
c + d
∈ ℝ+. (3.67)

Summarizing:
(1) As there is no surplus, the positive input coefficients matrix C (3.61) has Frobenius

number λC = 1, guaranteedbyLemma4.1.1 (a). The second eigenvalue λ2 is smaller
than λC,23 Perron theorem A.9.1.

23 The second eigenvalue λ2 can even be a negative real number.
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(2) As the matrix C (3.61) is positive, its right and left eigenvectors, associated to the
Frobeniusnumber λC = 1, are positive. They represent the quantity vectors and the
price vectors. They are entirely determined by the coefficients of matrix C (3.61),
equations (3.65) and (3.67).
The proportions of the prices and quantities are:

p2 = p1(
b
c
), q1 = q2(

a + b
c + d
). (3.68)

Formally, this means that the proportions of prices and quantities are constants,

p1
p2
=
c
a
,

q1
q2
=
a + b
c + b
. (3.69)

Applying this to Example 3.1.1 we can formulate the following result:
Given the coefficients of the commodity flow matrix,

S = [ a b
c d
] = [

280 120
12 8

] : (3.70)

(1) The price proportions are, see Sraffa ([108], Par. 1):

p1
p2
=
c
b
=

12
120
=

1
10
. (3.71)

Setting for the numéraire wheat p1 = 1
qr. wheat
qr. wheat = 1, p2 = 10

qr. wheat
t. iron .

(2) The quantity of b = 120 qr. wheat is used by the iron sector to produce the quantity
of (c + d) = 20 t. iron. The quantity of c = 12 t. iron is used by the wheat sector to
produce (a + b) = 400 qr. wheat. With the price proportion (3.71) one has: b ⋅ p1 =
120 ⋅ 1 qr. wheat = c ⋅ p2 = 12 ⋅ 10 qr. wheat = 120 qr. wheat.

(3) In this production economy with no surplus, the quantity relationship between
the total amount of wheat and the total amount of iron produced every period is
given by the proportion of the components of the quantity vector q (3.67), namely

q1
q2
=
a + b
c + d
=
280 + 120
12 + 8

=
400
20
= 20.  (3.72)

3.3.3 Fixing rules to construct the commodity flow matrix

A further exercise consists in fixing sufficient conditions, like the price and quantity
proportions, for an n = 2 sector economy, where there is no surplus as in PCMC, Par. 1.
We assume a positive commodity flow matrix S > 0.

Example 3.3.2 (Second generalization of PCMC, Par. 1). Two industries produce two
commodities, wheat and iron. Both are used, in part as sustenance for those who
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work and for the rest as means of production—wheat as seed and iron in the form of
tools. Suppose that, all in all, and including the necessaries for the workers, there are
four positive quantities, represented by the real numbers a > 0, b > 0, c > 0, d > 0,
namely a quarters of wheat and c tons of iron are used to produce a + b quarters of
wheat; while b quarters of wheat and d tons of iron are used to produce c + d tons of
iron. The process of production (indicated by arrows) is again symbolised as follows
by a production scheme:

(a qr. wheat, c t. iron)→ ((a + b) qr. wheat,0),
(b qr. wheat, d t. iron)→ (0, (c + d) t. iron). (3.73)

As there is no surplus, verify that the Frobenius number of the input-output coef-
ficients matrix C = Sq̂−1 (3.61) is equal to one, λC = 1.

The numéraire is again wheat. This means: p1 = 1
qr. wheat
qr. wheat = 1.

Consider as exogenously given:
– one of the matrix coefficients, let’s work here with given a = A > 0;
– the price relationshipm = p1

p2
;

– the quantity relationship between wheat and iron k = q1
q2
;

– and the smaller eigenvalue 0 < λ2 < 1 of the input coefficient matrix C;

Determine then the other positive coefficients b, c, d of the commodity flow matrix S
and discuss the smaller eigenvalue λ2 of matrix C.

Solution to Example 3.3.2:
Consider the positive commodity flow matrix S = [ a b

c d ] > 0 and the positive vector of
total output with no surplus, q = [ q1q2 ] = Se = [

a+b
c+d ] > o, both in physical terms.

Then the positive input-output coefficients matrix (3.61) in physical terms is com-
puted, C = Sq̂−1 > o, followed by the eigenvalues of that matrix. One finds:

det(C − λI2) =


a
a+b − λ

b
c+d

c
a+b

d
c+d − λ



= (
a

a + b
− λ)( d

c + d
− λ) − b

c + d
⋅

c
a + b

= λ2 − ( a
a + b
+

d
c + d
)λ + ad − bc
(a + b)(c + d)

= (λ − 1)(λ − ad − bc
(a + b)(c + d)

) = 0, (3.74)

giving the eigenvalues, see Proposition 3.1.2,

λ1 := λC = 1, λ2 =
ad − bc
(a + b)(c + d)

. (3.75)

Now we set the general vector of prices p = [p1, p2] and the general vector of total
output q = [q1, q2] in physical terms.We compute the right eigenvectors of the positive
transposed input coefficient matrix C > 0 (3.61),
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Cp = λip⇒ Cp − λip = o⇒ (C
 − λiI2)p = o. (3.76)

As the coefficients a > 0, b > 0, c > 0, d > 0 are positive, the matrix C (3.61) is
positive.24 Settingm = b/c, one finds25

p = [p1, p2]
 = [p1, p2 = m ⋅ p1]

 = p1 ⋅ [1,m]
, m ∈ ℝ+. (3.77)

Then we compute the right eigenvectors of the input-output coefficients matrix C
(3.61) in physical terms,

Cq = λiq⇒ Cq − λiq = o⇒ (C − λiI2)q = o. (3.78)

For positive coefficients a > 0, b > 0, c > 0, d > 0, the matrix C (3.61) is positive.
By analogy, there is a positive quantity vector associated to λC = 1. Setting by analogy
k = (a + b)/(c + d), one finds,

q = [q1, q2]
 = [q1 = k ⋅ q2, q2]

 = q2 ⋅ [k, 1]
, k ∈ ℝ+. (3.79)

Knowing the coefficients A > 0,m > 0, k > 0 and λ2 < 1 (3.75), four equations and
inequalities can be set with equations (3.72), (3.77) and (3.79). We get:

{{{{{{{
{{{{{{{
{

k = q1
q2
= a+b

c+d > 0,

m = p2
p1
= b

c > 0,

λ2 =
ad−bc
(a+b)(c+d) < 1,

A = a > 0.

(3.80)

The system (3.80) then gives the following positive solutions for a, b, c, d, as can easily
be verified:

a = A > 0, b = Am(1 − λ2)
k +mλ2

> 0,

c = A(1 − λ2)
k +mλ2

> 0, d = A(m + kλ2)
k(k +mλ2)

> 0. (3.81)

Summarizing:
The numéraire is again wheat. This means: p1 = 1

qr. wheat
qr. wheat = 1.

(1) Any positive commodity flow matrix S = [ a b
c d ] > 0 can be taken to calculate an

input-output coefficients matrix C = Sq̂−1 (3.61) in physical terms.

24 Lemma 4.1.1 (a) guarantees positive price vectors p for λC = 1, as will be shown later.
25 The price p1 calibrates themeasurement of the numéraire, herewheat. Therefore Sraffa sets as unit
p1 = 1

qr. wheat
qr. wheat = 1. There would be other possibilities, like p1 = 100

kg. wheat
qr. wheat .
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(2) Given the coefficient a = A > 0, the price relationship m = p2/p1, the quantity
relationship between wheat and iron k = q1/q2, the smaller eigenvalue λ2 < 1 of
the input-output coefficientsmatrix C, the coefficients of the commodity flowmatrix
S are

a = A > 0, b = Am(1 − λ2)
k +mλ2

, c = A(1 − λ2)
k +mλ2

, d = A(m + kλ2)
k(k +mλ2)

.  (3.82)

3.3.4 Numerical examples

Let’s illustrate these results with two numerical examples. The numéraire is again
wheat. This means: p1 = 1

qr. wheat
qr. wheat = 1. By analogy to price calibration, we calibrate

the quantities: q2 = c + d.

Example 3.3.3 (Once again PCMC, Par. 1). Based on Example 3.3.2, we set values for
the variables A, k,m and λ2:
– the coefficient A = 280;
– the price proportion fixing the slope of the price eigenvector, m = p2/p1 = 10;
– the quantity proportion between wheat and iron, giving the slope of the quantity

eigenvector, q2/q1 = 1/k = 0.05;
– the smaller eigenvalue λ2 = 0.1 of the input-output coefficients matrix C.

Compute the coefficients a, b, c, d of the commodity flow matrix S. For an illustration
of the fixed valuesm and k, see Figure 3.1.

Figure 3.1: Price and quantity eigenspaces of Example 3.3.3 and Example 3.3.4.

Solution to Example 3.3.3:
We obtain, as expected, exactly Sraffa’s commodity flowmatrix S of his first numerical
example ([108], Par. 1),

b = 280 ⋅ 10(1 − 0.1)
20 + 10 ⋅ 0.1

= 120, c = 280(1 − 0.1)
20 + 10 ⋅ 0.1

= 12,

d = 280(10 + 20 ⋅ 0.1)
20(20 + 10 ⋅ 0.1)

= 8, a = 280.  (3.83)
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Example 3.3.4 (Further generalization of PCMC, Par. 1). Based on Example 3.3.2, we
set values for the variablesm and k:
– the price relationship fixing the slope of the price eigenspace m = p2/p1 = 1;
– the quantity relationship between wheat and iron, i. e., the slope of the quantity

eigenspace 1/k = q2/q1 = 1.

Compute the coefficients a, b, c, d of the commodity flow matrix S. Express them by
the unknown variables A and λ2 only. For an illustration of the fixed values m and k,
see Figure 3.1.

Solution to Example 3.3.4:
The commodity flow matrix S is symmetric because the price and quantity relation-
ships arem = k = 1.

a = A, b = A(1 − λ2)
1 + λ2
, c = A(1 − λ2)

1 + λ2
, d = A.  (3.84)

3.4 A generalization of Sraffa’s second example*

This generalization shows how we can replace in Example 3.1.2, see PCMC, Par. 2, the
numerical values of the positive 3×3 commodity flowmatrix S by any literal values and
then compute the characteristic polynomial of the input-output coefficients matrix C.
We also verify that for an economy without surplus the maximal eigenvalue is λC = 1,
as will be stated later by Lemma 4.1.1 (a).

Example 3.4.1 (Generalization of PCMC, Par. 2). Consider three commodities: wheat,
iron, pigs, and any positive numbers a > 0, b > 0, c > 0, d > 0, e > 0, f > 0, g > 0,
h > 0, i > 0 indicating quantities, describing the subsequent production process:

(a qr. wheat, d t. iron, g pigs)→ ((a + b + c) qr. wheat,0,0),
(b qr. wheat, e t. iron, h pigs)→ (0, (d + e + f ) t. iron,0),
(c qr. wheat, f t. iron, i pigs)→ (0,0, (g + h + i) pigs). (3.85)

Set up the positive commodity flow matrix S, the positive vector of total output q = Se
(2.15), thepositive input-output coefficientsmatrix C = Sq̂−1 (2.16) and verify thatmatrix
C has Frobenius number λC = 1.

Solution of Example 3.4.1:
One first sets up the positive commodity flow matrix S > 0. Here, also the surplus van-
ishes, d = 0. Then the total output per sector is calculated, giving the vector of total
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output q = Se > o (2.15).

S = [
[

a b c
d e f
g h i

]

]
:= [

[

s11 s12 s13
s21 s22 s23
s31 s32 s33

]

]
> 0,

q = Se = [
[

q1
q2
q3
]

]
= [

[

a + b + c
d + e + f
g + h + i

]

]
> o. (3.86)

Then, compute the positivematrix C = Sq̂−1 (2.16):

C =[[
[

a b c
d e f
g h i

]]

]

[[

[

1
a+b+c 0 0
0 1

d+e+f 0
0 0 1

g+h+i

]]

]

=
[[[

[

a
a+b+c

b
d+e+f

c
g+h+i

d
a+b+c

e
d+e+f

f
g+h+i

g
a+b+c

h
d+e+f

i
g+h+i

]]]

]

> 0.

(3.87)

Matrix C is positive, because Matrix S is positive.26

It is not cumbersome to verify that λC = 1 is a root of the characteristic polynomial
P3(λ) = 0. You just need to attain the same numerator everywhere in the fractions of
(3.88), namely (a + b + c)(d + e + f )(g + h + i).27 The left eigenvector is a positive price
vector p > o, and respectively the right eigenvector is a positive quantity vector q > o.
The eigenvectors associated with the Frobenius number have an economic meaning:
they are price and quantity vectors. 

3.5 A generalization of Sraffa’s third example*

Let’s generalise Example 3.1.3. The idea is to take for the surplus of wheat not just
a number, as in PCMC, Par. 5, but to vary the surplus of wheat, and to replace the

26 The eigenvalues of matrix C are computed by setting up the characteristic polynomial

P3(λ) = det(C − λI3) = −λ
3 +

a
a + b + c

λ2 + e
d + e + f

λ2 + i
g + h + i

λ2

+
bd

(a + b + c)(d + e + f )
λ − ae
(a + b + c)(d + e + f )

λ + cg
(a + b + c)(g + h + i)

λ

+
fh

(d + e + f )(g + h + i)
λ − ai
(a + b + c)(g + h + i)

λ − ei
(d + e + f )(g + h + i)

λ

−
ceg

(a + b + c)(d + e + f )(g + h + i)
+

bfg
(a + b + c)(d + e + f )(g + h + i)

+
cdh

(a + b + c)(d + e + f )(g + h + i)
−

afh
(a + b + c)(d + e + f )(g + h + i)

−
bdi

(a + b + c)(d + e + f )(g + h + i)
+

aei
(a + b + c)(d + e + f )(g + h + i)

. (3.88)

27 As the surplus vector vanishes, the Frobenius number λC is equal to 1, Lemma 4.1.1 (a).
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quantity of 175 qr. of wheat by the variable x ∈ ℝ+. We consider also the surplus of iron
no longer only as a number, but replace it by the variable y ∈ ℝ+. The profit rate r ∈ ℝ
is the third variable. Thus, we see that we are in presence of a new type of question.
We are confronted namely with the analysis of geometric locus curves and planes, of
the three variables x, y, r. These curves can be implicitly or explicitly presented as a
function of one or more variables, for the notations see Chiang ([19], p. 174). Usually,
the following cases occur, using explicit functions:

r = F(x, y), r = f (x), r = g(y), y = h(x). (3.89)

The interest of a geometric locus is that it tells how a variable r varies when other vari-
ables x, y, . . . vary.28 Actually, there are only the three variables x, y, r in our problem.
But, if we consider an economy with n ∈ ℕ sectors, the question is generalised to a
problem of more variables. At the moment, we analyse the geometric locus for at most
three variables x, y, r. We present some examples with only two of the three variables
x, y, r to represent functions in the plane.

3.5.1 Variation of the wheat surplus

In a first example, we vary the surplus of wheat production. Where Sraffa fixed in Ex-
ample 3.1.3, this surplus at 175 qr. wheat, we introduce a positive surplus variable for
wheat, x ∈ ℝ+0, keeping a zero surplus of iron production, setting y = 0. We will study
the influence of thewheat surplus x on the rate of profit, whichwill depend on x as the
first variable and on y = 0 as the second variable; we then set r = f (x) > 0, necessarily
positive, because x = 0 is excluded. The function r = f (x) is now a geometric locus
curve.

Example 3.5.1. Consider a similar model to that presented in Example 3.1.3, but now
the output of farmers is (400 + x) qr. wheat, x > 0, instead of 400 qr. wheat, with the
same entries as before. Hence there is a surplus and the possibility of profit. The iron
production is kept at 20 t. iron without surplus, y = 0. In analogy to equation (3.1), the
production process is symbolized as:

(280 qr. wheat, 12 t. iron)→ ((400 + x) qr. wheat,0),
(120 qr. wheat, 8 t. iron)→ (0, 20 t. iron). (3.90)

In this economy, in which the wage at this stage enters the means of production, cal-
culate the rate of profit r = f (x) > 0, depending of the surplus of wheat x, then analyse
the prices.

28 The most famous geometric locus curves are surely the orbits of the planets around the Sun.
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Solution to Example 3.5.1:
We keep the production of iron at 20 t. iron and set for the wheat production the
amount of (400 + x) qr. wheat. This gives the vector of surplus d = [x,0]. Then, we
compute the vector of total output (2.15), q = [400 + x, 20], and the input-output coef-
ficients matrix C = Sq̂−1 (2.16), becoming a function of the wheat surplus x:

C(x) = [ 280 120
12 8

] [
1

400+x 0
0 1

20
] = [

280
400+x 6
12

400+x
2
5

] > 0. (3.91)

Again, because there is a positive surplus, we can apply Lemma 4.1.1 (b) after verifying
that the matrix C(x) is positive. This is the case, because for x ≥ 0 all its elements are
strictly positive. Then, the eigenvalues of matrix C(x) (3.91) are computed.

The characteristic polynomial, now dependent of the variable x, reads:

P2(λ, x) = det(C(x) − λI) = λ
2 −

280λ
400 + x

−
2λ
5
+

40
400 + x

. (3.92)

The polynomial P2(λ, x) is then factorised, obtaining,

P2(λ, x) = (λ − λ1(x))(λ − λ2(x))

= (λ − 1,100 + x −
√810,000 + 1,200x + x2
5(400 + x)

)

× (λ − 1,100 + x +
√810,000 + 1,200x + x2
5(400 + x)

). (3.93)

Remember that the eigenvalue is related to the profit rate r = f (x) > 0 and is now a
function of the surplus x, giving the function λ(x) = 1/(1+f (x)) < 1 for the existing pos-
itive Frobenius number of the positive matrix C(x) (3.91), corresponding to a positive
left price eigenvector. Referring to (3.93), one sets for the Frobenius number,

λC(x) =
1

1 + f (x)
=
1,100 + x +√810,000 + 1,200x + x2

5(400 + x)
< 1, (3.94)

obtaining the locus for the rate of profit with respect to the wheat surplus x > 0,

r = f (x) = 900 + 4x −
√810,000 + 1,200x + x2

1,100 + x +√810,000 + 1,200x + x2
. (3.95)

We easily verify the values r1 = f (0) = 0, r2 = f (175) = 0.25, as it has to be, due to
Example 3.1.3.

One also calculates the limits,

lim
x→∞

f (x) = lim
x→∞

900 + 4x −√810,000 + 1,200x + x2

1,100 + x +√810,000 + 1,200x + x2
=
3
2
,

lim
x→0

f (x) = lim
x→0

900 + 4x −√810,000 + 1,200x + x2

1,100 + x +√810,000 + 1,200x + x2
= 0. (3.96)
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The limits (3.96) are positive rates of profit, r = f (x) > 0. The function of the wheat
surplus x > 0 with no iron surplus, y = 0, has an upper bound of 150% and a lower
bound of 0%. Sraffa’s r = 25% is just a special case for x = 175 and y = 0.

The limits (3.96) of the rate of profits r = f (x) > 0 also determine the limits of the
Frobenius numbers of the input coefficients matrix in physical termsC(x) (3.91). We get
indeed:

lim
x→∞

λ1(x) = lim
x→∞

1,100 + x +√810,000 + 1,200x + x2
5(400 + x)

=
2
5
,

lim
x→0

λ1(x) = limx→0
1,100 + x +√810,000 + 1,200x + x2

5(400 + x)
= 1. (3.97)

Sraffa’s rate of profits r = 1/4 is just a special case for the wheat surplus x = 175 and
the corresponding Frobenius number λ = 1/(1 + 1

4 ) = 4/5 that is of course within the
calculated open interval ]0.4, 1[.

We now proceed to the left eigenvector equation for matrix C(x), (3.91), and calcu-
late for the Frobenius number λC(x) the positive price vector p > o, at present also a
function of the wheat surplus x, therefore noted as p(x) > o,

p(x)C(x) = p(x) [
280

400+x 6
12

400+x
2
5

] = p(x)λ1(x) =
1

1 + f (x)
p(x). (3.98)

With the calibration p1(x) = 1, we compute the price component p2(x) as a function
of the wheat surplus x, thus making it a relative price. We obtain for the positive price
vector p(x) = [1, p2(x)] explicitly,

p(x) = [
1

30(400+x)
72,000+1,800x (−300 + x +√810,000 + 1,200x + x

2)
] . (3.99)

Only the relative price p2(x) varies in function of the wheat surplus x,

p2(x) =
30(400 + x)

72,000 + 1,800x
(−300 + x +√810,000 + 1,200x + x2), (3.100)

which has the asymptote:

a(x) = 1
30

x + 5. (3.101)

Calculating the relative price p2(x) (3.100) and the rate of profits r = f (x) (3.95) for two
specific values of x, namely x = 0 and x = 175 and the zero surplus of iron y = 0,
gives the triplets: (p1(0) = 1, p2(0) = 10, r1 = f (0) = 0), (p1(175) = 1, p2(175) = 15,
r2 = f (175) = 0.25), as it has to be, according to Example 3.1.1 and Example 3.1.3. Then
we can go on and find round numbers for the wheat surplus x = 825: (p1(825) = 1,
p2(825) = 35, r3 = f (825) = 0.75).

In Example 3.1.3 (PCMC, Par. 5), the wheat surplus is 175 qr. of wheat and there is
no iron surplus, y = 0. Sraffa presents numerical values for the exchange-values of
that example as follows:
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“The exchange-ratio which enables the advances to be replaced and the profits to be distributed
to both industries in proportion to their advances, namely 15 qr. of wheat for 1 t. of iron; and the
corresponding rates of profits in each industry is 25%”.

We have attained a generalization, where the numbers are replaced by variables. It
works as follows: the surplus 175 qr. of wheat is replaced by a general surplus of x qr.
of wheat. There is still no iron surplus. We have been able to calculate the exchange-
ratio as (3.100) p2(x) qr. of wheat to 1 t. of iron, depending on the variable surplus
of wheat x, instead Sraffa’s constant proportion: 15 qr. of wheat to 1 t. of iron for his
constant surplus of 175 qr. of wheat.

Consequently, Sraffa’s fixed rate of profits of 25% in each industry is replaced by a
calculable rate of profits, namely by the geometric locus curve r = f (x) (3.95), a function
of the wheat surplus x, see Figure 3.2 (left). 

Figure 3.2: Locus curves—the rate of profits r = f (x) (3.95) (left), the price p2(x) (3.100) and its
asymptote a(x) (3.101) (right).

3.5.2 Variation of the iron surplus

In a second attempt, we vary the surplus of iron production and keep the wheat pro-
duction at 400 qr. wheat without surplus, x = 0. We introduce a surplus y of iron,
measured in tons, y > 0. We will study the influence of the iron surplus on the rate of
profit, and we set for this purpose r = g(y), giving a geometric locus.

Example 3.5.2. Consider a similar model to that presented in Example 3.5.1, but now
the output of farmers is 400 qr. wheat. It is kept constant, whereas the surplus of iron
varies. It is (20 + y) t. iron, with the same entries as in Example 3.1.1. Hence there is a
surplus and the possibility of profit.

In analogy to equation (3.41), the production process is symbolised as follows:

(280 qr. wheat, 12 t. iron)→ (400 qr. wheat,0),
(120 qr. wheat, 8 t. iron)→ (0, (20 + y) t. iron). (3.102)
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In this economy, exhibiting again subsistence wages, calculate the rate of profit
r = g(y), depending of the surplus of iron y, and analyse the prices.

Solution to Example 3.5.2:
We keep the production of wheat at 400 qr. wheat and set for the iron production the
amount (20+y) t. iron. This gives the vector of surplusd = [0, y]. We then compute the
vector of total output (2.15), q = [400, 20 + y], and the input-output coefficients matrix
C = Sq̂−1 (2.16), making it a function of the iron surplus y:

C(y) = [ 280 120
12 8

] [
1

400 0
0 1

20+y
] = [

[

280
400

120
20+y

12
400

8
20+y

]

]
> 0. (3.103)

As there is a positive surplus, Lemma 4.1.1 (b) applies, and as the elements of matrix
C(y) (3.103) are with y > 0 strictly positive, thematrix itself is positive. Then, the eigen-
values ofmatrixC(y) (3.103) are computed, using the characteristic polynomial, where
y is now the second variable,

P2(λ, y) = det(C(y) − λI) = λ
2 −

8λ
20 + y
−
7λ
10
+

2
20 + y
. (3.104)

The polynomial P2(λ, y) is factorised, obtaining,

P2(λ, y) = (λ − λ1(y))(λ − λ2(y))

= (λ −
220 + 7y −√32,400 + 2,280y + 49y2

20(20 + y)
)

× (λ −
220 + 7y +√32,400 + 2,280y + 49y2

20(20 + y)
). (3.105)

Wenow relate the eigenvalues to the profit rate r = g(y) > 0 as a function of the surplus
y, giving the locus equation 0 < λ(y) = 1/(1 + g(y)) < 1. We choose the maximal eigen-
value of matrix C(y) (3.103), easily recognizable in the factorised polynomial P2(λ, y)
(3.105), setting thus the Frobenius number,

λC(y) =
1

1 + g(y)
=
220 + 7y +√32,400 + 2,280y + 49y2

20(20 + y)
< 1. (3.106)

The locus curve for the rate of profits depending on the iron surplus y is,

r = g(y) =
180 + 13y −√32,400 + 2,280y + 49y2

220 + 7y +√32,400 + 2,280y + 49y2
> 0. (3.107)

Then, one also calculates the limits,
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lim
y→∞

g(y) = lim
y→∞

180 + 13y −√32,400 + 2,280y + 49y2

220 + 7y +√32,400 + 2,280y + 49y2
=
3
7
,

lim
y→0

g(y) = lim
y→0

180 + 13y −√32,400 + 2,280y + 49y2

220 + 7y +√32,400 + 2,280y + 49y2
= 0. (3.108)

The limits (3.108) mean that the rate of profits r = g(y), a function of the iron surplus
y without wheat surplus x = 0, has the lower bound rmin = 0 and the upper bound
rmax = 3/7 = 42.857%, corresponding to the Frobenius numbers λC = 1 and the second
eigenvalue λ2 = 1/(1+

3
7 ) = 7/10 = 0.7. Remember that ifwehavenowheat surplus x = 0

and an absence of iron surplus y = 0, we easily verify the rate of profits r = g(0) = 0,
giving the Frobenius number (3.104) λC = 1/(1 + g(0)) = 1, as expected. We also verify
that, for an iron surplus of y = 35, we get r = g(35) = 0.25 with Frobenius number
λC = 1/(1 +

1
4 ) = (4/5) ∈ ](3/7), 1[.

Now we consider the left eigenvector equation for matrix C(y) (3.103), associated
to the Frobenius number λC(y), and the positive price vector, expressed as a function
of the iron surplus y. We set up for this price vector:

p(y)C(y) = [
[

280
400

120
20+y

12
400

8
20+y

]

]
= λC(y)p(y)



= p(y)λC(y) =
1

1 + r(y)
p(y). (3.109)

We have explicitly the positive price vectors,

p(y) = [p1(y), p2(y)]
 = [

60 + 7y +√32,400 + 2,280y + 49y2

2,400
, 1]


, (3.110)

calibrating with p2(y) = 1 (iron is the numéraire), we get the relative price of wheat
p1(y) as a function of the iron surplus y,

p = p1(y) =
60 + 7y +√32,400 + 2,280y + 49y2

2,400
. (3.111)

The asymptote of the function p1(y) calculated, giving:

a(y) = 7
1,200

y + 13
140
. (3.112)

Computing the relative price p1(y) (3.111) and the rate of profits r = g(y) (3.107) for one
specific value of y, namely y = 0, and also no surplus of wheat, x = 0, we obtain the
triplet: (p1(0) = 0.1, p2(0) = 1, r = g(0) = 0), as it has to be according to Example 3.1.1.
Then we can go on and find for the arbitrary chosen iron surpluses y = 35 and y = 58
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two other triplets: (p1(35) = 1, p2(35) = 1, r = g(35) = 0.25), respectively (p1(58) =
39/90, p2(58) = 1, r = g(58) = 0.3), giving in both cases relative prices p1(35) = 1,
respectively, p1(58) = 39/90 and rates of profits r = g(y = 35) = 0.25, respectively,
r = g(y = 58) = 0.3.

The rate of profits is the geometric locus curve r = g(y) (3.107), Figure 3.3 (left).
The relative price of iron is the geometric locus curve p = p1(y) (3.111), Figure 3.3
(right). 

Figure 3.3: Locus curves—the rate of profits r = g(y) (3.107) (left), the price p = p1(y) (3.111) and its
asymptote a(y) (3.112) (right).

3.5.3 Simultaneous variation of the wheat and iron surplus

Here, we examine a further generalization of PCMC, Par. 5, in connection with the sur-
plus. We vary the surplus production of wheat and iron, considering both a surplus x
of wheat and a surplus y of iron, x > 0, y > 0. We study the influence of the simultane-
ous wheat and iron surplus on the rate of profit r. We will specially treat the geometric
locus planes for a constant profit rate, r = F(x, y) = constant, being now a geometric
locus of both surplus variables x and y.

We will then analyse the prices in dependence of the surpluses x of wheat and y
iron.

Example 3.5.3. Let’s start with the model as presented in Example 3.1.1, but now the
output of farmers is (400 + x) qr. wheat instead of 400 qr. wheat, the output of iron
production is (20 + y) t. iron instead of 20 t. iron, for x > 0, y > 0. The left entries are
unchanged.

By analogy to equation (3.1) the production process presents as follows:

(280 qr. wheat, 12 t. iron)→ ((400 + x) qr. wheat,0),
(120 qr. wheat, 8 t. iron)→ (0, (20 + y) t. iron). (3.113)

We assume again that the rate of profits r is equal in all branches and the prices satisfy
the equations and compute the vector of values x:
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(280p1 + 12p2)(1 + r) = (400 + x)p1 = x1 (qr. wheat),
(120p1 + 8p2)(1 + r) = (20 + y)p2 = x2 (qr. wheat). (3.114)

Solution to Example 3.5.3:
In (3.114), “qr. wheat” is again the (numéraire). The prices p1, p2 are accordingly mea-
sured in the same physical units as in equation (3.2).

By analogy, the positive commodity flow matrix S is unchanged relative to Exam-
ple 3.1.3. Here, again the vector of surplus in physical terms is set up, d = [x, y],
x meaning qr. wheat surplus and y meaning t. iron surplus. Then the vector of total
output per sector is calculated,

S = [ s11 s12
s21 s22

] = [
280 120
12 8

] > 0,

q = q(x, y) = Se + d = [ 280 120
12 8

] [
1
1
] + [

x
y
] = [

400 + x
20 + y

] > o, (3.115)

the vector of total output becoming dependent of the variables x, y, and conse-
quently also the input-output coefficients matrix C(x, y) = Sq̂(x, y)−1 (2.16) in physical
terms:

C(x, y) = [ 280 120
12 8

][
1

400+x 0
0 1

20+y
] = [

280
400+x

120
20+y

12
400+x

8
20+y
] > 0. (3.116)

As there is a positive surplus,we resort to Lemma4.1.1 (b) andknow that the Frobe-
nius number is smaller than one, λC < 1. We have just to verify that matrix C(x, y) is
positive. This is the case with x > 0, y > 0.

The eigenvalues of matrix C(x, y) are then computed. Setting up the characteristic
polynomial, P2(λ) = det(C(x, y)−λI) gives the eigenvalues, depending on the variables
x, y,

λ1,2(x, y) =
4(1,100 + x + 35y ±√810,000 + 1,200x + x2 + 57,000y + 20xy + 1,225y2)

8,000 + 20x + 400y + xy
.

(3.117)

The polynomial P2(λ) is factorised, obtaining P2(λ) = (λ − λ1)(λ − λ2). We choose the
Frobenius number 0 < λC = 1/(1 + r) < 1 and relate it immediately to the rate of profits
r > 0.

(1) Setting r = 1/4, following Sraffa (PCMC, Par. 5), gives for the Frobenius number

λC(x, y) =
1

1 + 0.25
= 0.8 = H(x, y)

=
4(1,100 + x + 35y +√810,000 + 1,200x + x2 + 57,000y + 20xy + 1,225y2)

8,000 + 20x + 400y + xy
,

(3.118)
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which is the geometric locus in implicit form that we are looking for. Solving the equa-
tion (3.118) for y, one gets a hyperbolic function as locus curve for the constant rate of
profits r = 1/4, see Figure 3.4 (left).

y = h(x) = 1,750 − 10x
50 + x

. (3.119)

(2) We repeat the operation with the constant rate of profits r = 3/7, obtaining

λC(x, y) =
1

1 + r
=

1
1 + 3

7
= 0.7 = J(x, y)

=
4(1,100 + x + 35y +√810,000 + 1,200x + x2 + 57,000y + 20xy + 1,225y2)

8,000 + 20x + 400y + xy
,

(3.120)

solving again (3.120) for the variable y, one gets another hyperbolic function as locus
curve for the constant rate of profits r = 3/7, see Figure 3.4 (right),

y = h(x) = 2,938.7755 − 8.57143x
x

. (3.121)

Figure 3.4: Geometric locus curves (PCMC, Par. 5) with constant rates of profit (3.119) and (3.121).

Obviously, every constant profit rate r generates its owngeometric locus curve, y = h(x)
(3.119) for r = 1/4, and (3.121) for r = 3/7.

Examples of points, measured in the units [qr. of wheat], [t. of iron] are P1(175,0),
P2(0, 35), P3(25, 20) situated on the locus curve (3.119) of Figure 3.4 (left).

Now consider the constant rate of profits r = 0.25 for which wewill investigate the
price vector p. The left eigenvector equation with the input-output coefficients matrix
C(x, y) (3.116), now depending on the variables x, y, is set up to calculate this price vec-
torp = p(x, y). As we are on the locus curve (3.119), we immediately set λ(x, y)p(x, y) =
1/(1 + r) = 1/(1 + 0.25) = 0.8, following (3.118), getting

p(x, y)C(x, y) = p(x, y) [
[

280
400+x

120
20+y

12
400+x

8
20+y

]

]
= λ(x, y)p(x, y) = 0.8p(x, y). (3.122)
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We now calculate the positive price vector p(x, y) = [p1(x, y), p2(x, y)] on the lo-
cus curve (3.119). We calibrate p1(x, y) = 1 (wheat is the numéraire) and calculate the
proportion:

p2(x, y) : p1(x, y) = p2(x, y) : 1 = p2(x, y),

being the price, specific to any chosen point P(x, y) on that locus (3.119).
We get for the reciprocal of the relative price p2(x, y)

1
p2(x, y)

= −
1
30
(2 −

1,100+ x + 35x +√810,000+ 1,200x + x2 + 57,000y + 20xy + 1,225y2

400+ x
).

(3.123)

We have then solved the following problem:
For a given rate of profits r, say r = 1/4, and any arbitrary surplus x of wheat

production, compute the locus curve y = h(x) (3.119), giving the surplus of iron pro-
duction. Then, setting 1 qr. of wheat again as the numéraire, we calculate the relative
price p1 = 1 (qr. of wheat)/(qr. of wheat) = 1 with respect to its physical unit (dimen-
sionless) and compute the relative price of ironp2(x, y) (3.123). This relative price is also
the value of the price proportion p2(x, y) : p1(x, y) = p2(x, y). The economicmeaning is:
For a fixed rate of profits r and one of the surpluses, say the wheat surplus x, the locus
curve y = h(x) is determined and therefore also the price proportion p2(x, y) : p1(x, y)
between iron and wheat. With (3.117), you may also control that you have obtained
the correct Frobenius number, which is λC = 0.8 = 1/(1 + r), giving again the max-
imal profit rate R = r = 1/4. The vector of values is x = q̂p = [(400 + x)p1(x, y),
(20 + y)p2(x, y)]. 

Wenow see that, in the context of PCMC, Par. 5, there are four variables, operating
to determine profit rate r: the wheat surplus x, the iron surplus y and the prices p1 and
p2. Considering x, y, p1, p2 as independent, we have a four-dimensional locus problem
which is difficult to treat. As we have decided to present locus curves in the plane,
we accordingly select two of these four variables in order to define a two-dimensional
locus curve problem.

Example 3.5.4. We investigate the dependence of the rate of profits r on the wheat
surplus x, given a constant iron surplus y = y0 and consider the surface r = I(x, y).
We carry out three cuts through the surface r = I(x, y). We realize three cuts for the
specific values y1 = 0, y2 = 10, y3 = 20 parallel to the r-axis and x-axis through the
curved surface r = I(x, y) and obtain locus curves.
– Compute then the limits limx→∞ I(x, yi) for i = 1, 2, 3.
– Represent the curves r = f (x) := I(x, y = y1), r = g(x) := I(x, y = y2), r = h(x) :=

I(x, y = y3) in the (r, x)-plane. Compute R = I(x = 175, y = 0).
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Solution to Example 3.5.4:
Setting the relation between the Frobenius number λC = λC(x, y) and the rate of prof-
its r, λC = 1/(1 + r) = 1/(1 + I(x, y)), we get with equation (3.117),

λ(x, y) = 1
1 + I(x, y)

=
4(1,100 + x + 35y ±√810,000 + 1,200x + x2 + 57,000y + 20xy + 1,225y2)

8,000 + 20x + 400y + xy
.

(3.124)

Then, we consider the different iron surplus productions:
(a) y1 = 0 and find:

r = f (x) = I(x, y = y1 = 0) =
(900 + x −√810,000 + 1,200x + x2)

200
; (3.125)

(b) y2 = 10 and find:

r = g(x) = I(x, y = y2 = 10) =
(1,250 + x −√1,502,500 + 1,400x + x2)

200
; (3.126)

(c) y3 = 20 and find:

r = h(x) = I(x, y = y3 = 20) =
(1,600 + x −√2,440,000 + 1,600x + x2)

200
. (3.127)

For the limits, we obtain

lim
x→∞

f (x) = 3
2
= 1.5, lim

x→∞
g(x) = 11

4
= 2.75, lim

x→∞
h(x) = 4. (3.128)

The three locus curves r = f (x), r = g(x) and r = h(x) are horizontal cuts along the
vertical y-axis andparallel to the (r, x)-plane through the curved surface r = I(x, y).
They are visualized in the (r, x)-plane, see Figure 3.5. The valueR = I(175,0) = 0.25
is exactly the profit rate of PCMC, Par. 5, indicated by Sraffa. 

Concluding, the locus plane I(x, y) represents the rate of profits of the Sraffa example PCMC, Par. 5,
and as such it is the productiveness of this economy with given technology. We recognize that the
productiveness is a function of the surplus, given a technology of a production system.

3.6 Subsistence wages and wages as a part of the surplus

Up to now, no separate vector of labour has been used, although labour is the essen-
tial ingredient required for the generation of value added. Resorting to labour means
paying wages and the explicit inclusion of a wage element in Sraffa’s model is the

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



104 | 3 Sraffa’s first examples of single- product industries

Figure 3.5: Geometric locus curves (3.140) f (x), (3.126) g(x) and (3.127) h(x).

next important step to be undertaken. Up to now labour, paid at “subsistence wages”,
has been assumed as being a constituent of the commodity flow matrix S (respec-
tively S), included in parts of some of the means of production. Sraffa (PCMC, Par. 8)
writes:

“…In view of the double character of wages it would be appropriate, when we come to consider
the division of the surplus between producers and workers, to separate the two component part of
wages and regard only the surplus part as variable; whereas the goods necessary for the subsistence
of the workers would continue to appear with the fuel, etc,…. among the means of production. We
shall nevertheless, …, follow the usual practice of treating the whole of wages as variable”.

By the double character of wages, Sraffa refers to the concept of wages as consisting
of a basic constant income in the form of goods, initially required for survival, and of a
variable part as income participation in the surplus. “Wage as a variable” means here
that the wage participates in the creation of the surplus and is in principle considered
as a variable in the same sense as the prices or the rate of profits entering his model29

Initially, the subsistence part of wages does not contribute to any added value.30

A straightforward way of operating the separation of wages from the means of
production is to proceed as follows. Assume that in single-product industry Sj, “subsis-
tence wages” are paid out in kind with commodity i = j produced by that industry Sj,
say as quantity σj, which then has value σjpj. Historical examples are payments in
“salt” or “corn”. This approach implies that there exists a market where commodities
are exchanged or sold, a market that by the way must exist if the surplus introduced
in the complete single-product Sraffa system is to be absorbed in order for producers

29 Note that in Leontief’s framework labour is incorporated in the input matrixA (see (2.8) and (2.9)).
30 The classic example is agriculture: labour and wages paid to workers just to produce the harvest
required for sustainability of production in the next season do not contribute to the production of a
surplus and thus do not create value added.
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to see their profits effectively materialize. Sraffa alludes to this in PCMC, Par. 1. The
payment of a subsistence wage, say σj, j = 1, . . . , n, is therefore included as a part of
the diagonal components of the matrix S which then, with the price vector p, takes
the following form:

[[[[[[[[[

[

̇s11 + σ1 s21 . . . s(n−1)1 sn1
s12 ̇s22 + σ2 . . . s(n−1)2 sn2
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

s1(n−1) s2(n−1) . . . ̇s(n−1)(n−1) + σn−1 sn(n−1)
sn1 sn2 . . . s(n−1)n ̇snn + σn

]]]]]]]]]

]

,

[[[[[[[[[

[

p1
p2
. . .
. . .
pn−1
pn

]]]]]]]]]

]

. (3.129)

The component sjj has now been split into two parts: sjj = ̇sjj + σj, j ∈ {1, . . . , n}. We can
now split S into a square residual matrix Ṡ and a diagonal matrix σ̂:

S = Ṡ + σ̂, (3.130)

and multiplication of the diagonal matrix σ̂ by the price vector p gives a column vec-
tor σ̂p = [σ1p1, . . . , σjpj, . . . , σnpn] on the left-hand side of the system of equations
defining the conditions of production.

Now, σjpj has as a counter-value the expression wsL̇j,31 representing the labour
employed in industry Sj, at subsistencewage ratews, required to realise the conditions
of production for each industry (see PCMC, Par. 3). These expressions are gathered to
form the vector wsL̇ = [wsL̇1, . . . ,wsL̇n].

The situation changes radically with the production of a surplus d = [d1, . . . , dn]
bringing added value, which will then entail for each industry: either described for
each industry,
– an increase in wageswa ̇Lj paid to the labour force, realising labour L̇j, which now

is recognised as contributing to producing a surplus, i. e., value added, at wage
rate wa, and possibly;

– an additional increase in the labour force, measured by ΔL̇j, at the total wage rate
w = wa + ws incurring additional wages wΔL̇j = (wa + ws)ΔL̇j required by the
production process.

We will accordingly have then as total wagesWj payable in industry j:

Wj = wsL̇j + waL̇j + (wa + ws)ΔL̇j
= w(L̇j + ΔL̇j) = wLj. (3.131)

If ΔL̇j = 0 then L̇ = L.

31 We follow Sraffa by assuming uniform wage rates throughout the industries. Remember in this
connection that themeasurement unit in Sraffa is in principle a physical numéraire, so this also applies
to wages. We shall introduce amonetary numéraire later on.
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In vector form:

wL = [ (ws + wa)(L̇ + ΔL̇), ΔL̇ > o,
(ws + wa)L, ΔL̇ = o.

(3.132)

But in Subsection 3.1.3 we have seen that a surplus is assumed, without participa-
tion of labour in value added.

The “subsistence wage” approach raises therefore a number of problems and in
addition complicates the task of addressing the question of the split of the surplus be-
tween producers and workers when a surplus has been generated. So, as Sraffa pro-
poses (PCMC, Par. 8), and subsequently materialises by introducing profits andwages
in his model construction, a qualitative change in outlook is undertaken and labour
and wages are regrouped de facto in a separate vector wL (also expressible as a diag-
onal matrix wL̂), both w and L assumed known.

The uniform rate of profits r allotted to producers is then obtained from Sraffa’s
price model, which we shall analyse in the following Chapter 4,

Ṡp(1 + r) = q̂p − wL̂. (3.133)

These equations restrict the matrix S to the technical means of production excluding
labour (in fact now S should become Ṡ).32 This means that the profit rate, r = R,
is the productiveness obtained here by setting w = 0 and is actually not the same as
the profit rate R obtained above on the matrix S including subsistence labour. Sraffa
did not point out explicitly this fact. To determine Ṡ, we must calculate the diagonal
elements σj of σ̂. Referring to the general form (3.42), setting r = R,

Sp(1 + R) = q̂p = x, (3.134)

we resort to the following sequence of equations, having set L̇ = L,

q̂p = S(1 + R)p = [Ṡ + σ̂](1 + R)p

= Ṡ(1 + R)p + (1 + R)σ̂p

= Ṡ(1 + R)p + wsL, (3.135)

because it is assumed thatwsL has now produced (1+R)σ̂p instead of σ̂p, i. e., partic-
ipates here in creating a surplus without benefitting from value added at that stage.

32 By convention however, the notation S is usually retained for (3.133) as is the case in PCMC, Chap-
ter II, although this S no longer contains labour elements for the period under consideration. One
must keep this in mind that, for numerical calculations, the structure of S remains and only the val-
ues of the diagonal coefficients change. Of course, the non-labour commodities include indirectly the
labour fromproceedingperiods. One can gobackby induction overmanyperiods to account for “dated
quantities of labour”. This is the cycle presented in PCMC, Chap. VI. We shall not pursue this refine-
ment in order to avoid overloading our text.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.6 Subsistence wages and wages as a part of the surplus | 107

Now R and p are known from (3.134) above, and ws, L are exogenous parameters, so
we can then calculate σj from

σj(1 + R)pj = wsLj ⇒ σj =
wsLj
(1 + R)pj

. (3.136)

Example 3.6.1. Example 3.1.3 presents commodity flow matrix S = [ 280 120
12 8 ] and the

vector of total output q = [ 57520 ]. The productiveness is equal to the maximal rate of
profits r = R = 0.25 and the price vector p = [ 115 ] have been calculated. We assume
ws = 0.2, L = [L1, L2] = [100, 20]. Calculate Ṡ with equations (3.130) and σj, j = 1, 2
with (3.136).

Solution to Example 3.6.1:
We start with the single-product Sraffa system (3.134), establishing numerically the
following identity

Sp(1 + r) = q̂p = [ 280 12
120 8

] (1 + 0.25) [ 1
15
] = [

575 0
0 20

] [
1
15
] , (3.137)

then we obtain with (3.136)

σ1 =
wsL1
(1 + R)p1

=
0.2 ⋅ 100
(1 + 0.25) ⋅ 1

= 16,

σ2 =
wsL2
(1 + R)p2

=
0.2 ⋅ 20
(1 + 0.25) ⋅ 15

= 0.2133, (3.138)

giving with equation (3.130),

S = [ 280 12
120 8

] = Ṡ + σ̂ = Ṡ + [ 16
0.2133
]

= [
̇s11 + 16 12
120 ̇s22 + 0.2133

]⇒ Ṡ = [ 264 12
120 7.7867

] .  (3.139)

Sraffa’s formulation (3.133) is a novel extension of Leontief’s Input-Output Tables. It
opens up the discussion of the allocation of surplus and is the object of Chapter 4
hereafter.

Now, keeping the total quantity of labour L fixed and regrouping total wages W
of one year into an initial partWs corresponding to subsistence wages contributing to
the surplus, but not benefitting initially from that surplus, and a second part, corre-
sponding to total wages Wa of one year also contributing to the surplus, recognized
as benefitting from value added, the natural accounting relations can be written, sim-
plifying (2.144). The term “national income” is used in relation with complete produc-
tion schemes, like input-output tables (IOT) in physical terms, associated to national
economies, see also footnote 16 of this chapter,

national income: Y = P +W ,
total output: X = Y + K, (3.140)
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with K as the total value of themeans of production, designated in this text as circulat-
ing capital, obtained from Sraffa’s conditions of production.W regroupsWs andWa,

W = Ws +Wa = (ws + wa)L = w ⋅ L. (3.141)

So, Sraffa correctly incorporates subsistence wages into “national income” because,
based on (3.134) and (3.135), they contribute in fact to value added in the case, where
all the surplus goes into profits without paid wages (wa = 0) and therefore should
participate in thefinal allocationof surplus toworkers.Weaddress thismatter indetail
in Chapter 4.

We have examined this issue for the sake of completeness. Bearing in mind this
caveat, we shall in the sequel assume (3.141) and use by convention, to avoid compli-
cations, the notation S instead of Ṡ. Wage rates will accordingly be designated by w,
and both w and L are assumed to fully contribute to the surplus.

Subsistence wages not contributing to value added, if the term is ever used at
present, play a secondary role in modern economies of production and exchange.33

One must be aware that this is however not the case in many emerging economies
around the world.

33 With the rampant pauperization ofWestern societies in thewake of ultra-liberal economic policies,
discussions are however emerging in certain countries (France, Finland and Switzerland, for example)
concerning the introduction of a generalized “minimal income”, which would replace unemployment
benefits and the like, guaranteeing a subsistence income to all citizens.
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4 Sraffa’s single-product industries with wages and
profits

In this chapter, we analyse in more formal details the Sraffa price model (3.5), also
called the single-product Sraffa system, where every industry or branch produces ex-
actly one commodity.

The Sraffa price model results in the calculation of ‘values’ or ‘prices’ (PCMC,
Par. 7), “rather than, as might be thought ‘costs of production’ ”. Later in (PCMC, Par. 7)
Sraffa gives his reasons to avoid the term ‘cost of production’ and justifies his choice:
“Such classical terms as ‘necessary price’, ‘natural price’ or ‘price of production’ would
meet the case, but value and price have been preferred as being shorter and in the con-
text (which contains no reference to market prices) no more ambiguous”.

The economic Assumptions 2.2.1,, 2.2.2, and 2.4.1 hold for the whole chapter, even
if this is not explicitly mentioned in every specific model. The economic Assump-
tion 2.5.1 on existing labour forces in each industrial sector also holds, except if the
contrary is formulated. These economic assumptions have to be clearly distinguished
from the mathematical conditions, like positivity, semi-positivity, non-negativity, irre-
ducibility and reducibility. Some of them have to be fulfilled in situations, where one
of the Theorems around the group of the Perron–Frobenius theorem is applied.

4.1 The surplus as the sum of profits and wages
Sraffa followed the idea of David Ricardo considering the surplus of an economy as
the sum of profits for entrepreneurs and ofwages for workers. We have first to treat the
situation, where all the human beings in an economy live only on subsistence wages,
then comes the case of wages paid by means of a numéraire or a currency.

4.1.1 Economies delivering only subsistence wages

Calibration of quantities of produced commodities to annual production units
In economics, one generallymeasures quantities of products in physical units, such as
wheat in quarters of wheat or iron in tons of iron and working timemay be measured
in hours, in days or man-years. Then currencies are used as the means of payment,
like USD or CHF. But as wewant to elaborate the essence of themeans of payment, the
simplest possible unit is chosen, calibrating themeasurements as entities normalized
to 1. Sraffa used this technique, e. g., in the case of total labour (PCMC, Par. 10), for the
national income (PCMC, Par. 12) and for Standard systems (PCMC, Par. 26) exhibiting
Standard commodities, and especially a Standard net product, where the total labour
is equal to that used by the initial system of production, Section 5.3. Later, Schefold
([109], p. 217) introduced this technique to simplify the argumentation of mathemati-

https://doi.org/10.1515/9783110635096-004
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cal statements, linked to the Perron–Frobenius theorem. He introduced units of an-
nual production for products, e. g., the total annual production of wheat, measured in
annualwheat crops (AWC) or the total annual production of iron, measured in annual
iron production (AIP). We will follow this technique to simplify proofs of Lemmas.

Sraffa’s elementary examples
(a) Garden of Eden economy

Sraffa begins PCMCwith an example of an elementary production process of only
two branches. There are no wages and no profits. We call this economy a Garden of
Eden economy. It was presented in Example 3.1.1 (PCMC, Par. 1). We further develop
this example here together with appropriate comments.We begin with the production
scheme,

(280 qr. wheat, 12 t. iron)→ (400 qr. wheat,0),
(120 qr. wheat, 8 t. iron)→ (0, 20 t. iron). (4.1)

We identify the positive commodity flow matrix. The positive vector of total output qI
is equal to the totalmeans of production Se,

S = [ 280 120
12 8 ] , qI = Se = [

280 120
12 8 ] [

1
1 ] = [

400
20 ] . (4.2)

Now we introduce a different calibration which measures both commodities in units
of one annual output, that means, q1 = 400 qr. of wheat = 1 annual wheat crop (AWC)
and q2 = 20 tons of iron = 1 annual iron production (AIP). This operation is realized by
calculating the distribution coefficients matrix D = q̂−1I S (2.20). We multiply the right
equation of (4.2) by q̂−1I and get

q̂−1I (Se) = (q̂
−1
I S)e = De = q̂−1I qI = e⇒ De = e⇒ eDe = ee = n. (4.3)

Summarising, we get an eigenvalue equation and a quadratic form

De = e⇒ eDe = n, (4.4)

meaning that therefore matrix D is a stochastic matrix (see Section A.11).
Let us now introduce as a measurement unit, the annual output of a commodity

i ∈ {1, . . . , n}. As amatter of fact, this is another calibration. In doing so, every commod-
ity has as output i per year an entity 1 which appears as one object of that commodity i
(see Section 9.2.2). For this reason, the summation vector e represents the vector of
total output in this mode of calibration. Consequently, vector e is also called the vec-
tor of objects. Further, the vector e is also the positive right eigenvector of matrix D,
associated to the Frobenius number λD = 1. Equation De = e (4.3) is the object rep-
resentation of the Interindustrial Economy. Algebraic properties of stochastic matrices
in Sraffa–Leontief-Interindustrial economies are treated in Chapter 9.

Besides Sraffa’s initial production scheme in initial physical units (4.5) (1), we ob-
tain a second production scheme in annual production units (4.5) (2), presented in
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parallel. Both schemes are written without wages (3.55) in matrix form, ê = I.

(1) (S,o)→ (q̂I ),
(2) (D,o)→ (I). (4.5)

Remember that the balances of both sectors, wheat and iron are in equilibrium.
We start from Sraffa’s conditions of production, Definition 3.1.2, a single-product

Sraffa system without surplus, the Sraffa price model, Sp = q̂Ip. We need the matrix
C = Sq̂−1I .

We set then the left eigenvector equation xD = x in analogy to the right eigen-
vector equation De = e, associated with the Frobenius number λC = λD = 1 and put
both eigenvector equations together,

(1) Sp = q̂Ip = x⇔ Cp = p,
(2) Dx = x. (4.6)

The question arises: What is the meaning of vector x? The answer is given in the fol-
lowing

Proposition 4.1.1. We apply the single-product Sraffa system to determine the prices of commodities
(4.6) (1), setting the equation x := q̂Ip (2.18) between the corresponding price vectors p and vector x
with a positive vector of outputs qI > o. The circle is closed, passing from matrix C over matrix S to
matrix D,

x := q̂Ip = q̂I(Cp) = q̂Iq̂−1I Sp = Sp = S(q̂−1I q̂I)p = (Sq̂−1I )q̂Ip

= D(q̂Ip) = Dx = x⇔ p = q̂−1I x⇔ x = q̂Ip. (4.7)

The vector x := q̂Ip is the vector of values!

The Perron theorem A.9.1 guarantees for matrix C the existence of a real, positive,
unique, maximal eigenvalue λC, the Frobenius number, associated with a positive
eigenvector.1 We discover that an economic meaning can be attributed to the eigen-
vectors of C, associated with the Frobenius number, namely the right eigenvector of
matrix C gives the quantities, the left eigenvector the prices and the left eigenvector
of matrix D gives the values. We shall illustrate this finding on the basis of Sraffa’s
elementary Example 3.1.1 (PCMC, Par. 1).

Example 4.1.1. Consider the production scheme (4.5) (1). The numéraire is wheat.
Identify the positive matrix S > 0, and the positive vector of output qI = Se > o (4.2).
Compute the positive matrices C = Sq̂−1I and D = q̂−1I S, the Frobenius numbers λC
and λD, the positive left eigenvector p of matrix C and the positive left eigenvector x

1 Eigenvectors are determined up to a scalar factor.
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of matrix D, associated with the Frobenius numbers λC and λD. Verify that matrix D is
stochastic, namely, e = De (4.3).

Confirm here the transformation equation, x = q̂Ip (2.18).

Solution to Example 4.1.1:
We first present and compute the matrices. We identify matrix S and vector qI (4.2),

C = Sq̂−1I = [
280 120
12 8

][
1

400 0

0 1
20

] = [
7
10 6
3
100

2
5

] > 0,

D = q̂−1I S = [
1

400 0

0 1
20

][
280 120
12 8

] = [
7
10

3
10

3
5

2
5

] > 0. (4.8)

Then we compute the characteristic polynomials based on the equality between the
determinants:

P2(λ) = det[C − λI] := det[D − λI] =
1
10
−
11
10
⋅ λ + λ2 = (λ − 1)(λ − 1

10
), (4.9)

confirming that matrices C and D have the same eigenvalues, see Lemma A.6.1. As
matrices C and D are positive, in application of the Perron theorem A.9.1 we obtain,
setting P2(λ) = 0, the Frobenius number λC = λD = 1. The corresponding positive left
eigenvectors up to the scalar factors a, b ∈ ℝ are vectors of prices and of values,

Cp = [ 0.7 0.03
6 0.4

]p = p⇒ p = a ⋅ [ 1
10
] ,

Dx = [ 0.7 0.6
0.3 0.4

]x = x⇒ x = b ⋅ [ 2
1
] . (4.10)

We identify
– the prices, in the case of physical units, where the numéraire is wheat, a = 1:

– p1 = 1 qr. wheat/qr. wheat = 1;
– p2 = 10 qr. wheat/t. iron;

– the values, in the case of annual production units (AWC) and (AIP), b = 200:
– x1 = q1 ⋅ p1 = 400 ⋅ 1 = 400 qr. wheat,
– x2 = q2 ⋅ p2 = 20 ⋅ 10 = 200 qr. wheat.

Then, we confirm the stochastic matrix property (4.3)

De = [ 0.7 0.3
0.6 0.4

] [
1
1
] = [

1
1
] = e. (4.11)

Finally, we analyse the transformation of the price vector by the diagonal matrix q̂I
into the vector of values x, we get

x = q̂Ip = [
400 0
0 20

] [
1
10
] = [

400
200
] .  (4.12)
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Remark: We get the presentation of the prices in physical units, p = [1, 10] and
the vector x = [400, 200] of values, expressed by the numéraire wheat.

(b) Exploitation of labour economy
Sraffa continues (PCMC, Par. 5) to develop the previous example, presented in this

text as Example 3.1.3.We remember that the output of farmers is increased from 400
qr. wheat to 575 qr. wheat, while the output of iron remains unchanged. The technol-
ogy is again described by the matrix S of Example 4.1.1. Consequently, there is a sur-
plus. We take this example again and reproduce in a first step the production scheme
(3.41) expressed in the initial physical units. We apply the analytical tools with the aim
to become familiar with it and to render it transparent,

(280 qr. wheat, 12 t. iron)→ (575 qr. wheat,0),
(120 qr. wheat, 8 t. iron)→ (0, 20 t. iron). (4.13)

We then identify the positive vector of total output and the positive commodity flow
matrix

q = [ 575
20
] > o, S = [ 280 120

12 8
] > 0, d = q − Se = [ 175

0
] ≥ o. (4.14)

We remember at present the important identity to compute the vector of total output
q > o, using either the commodity flowmatrix S or the input-output coefficientsmatrix
C = Sq̂−1,

q = Se + d = Cq + d. (4.15)

We then return to the calibration where both commodities are measured in units
of one annual output, that means, q1 = 575 qr. wheat = 1 annual wheat crop (AWC)
and q2 = 20 tons iron = 1 annual iron production (AIP). As the vector of total output
is positive, q > o, we compute the distribution coefficients matrix D = q̂−1S (2.20).
We have the case of self-replacement with the semi-positive vector of surplus d ≥ o
containing at least one component greater than 0.Wemultiply the equationq = Se+d
from the right by q̂−1 > o and get with (A.11) a further inequality, in analogy to (4.3),

q = Se + d⇒ q̂−1q = e = q̂−1(Se) + q̂−1d = (q̂−1S)e + q̂−1d

= De + q̂−1d⇒ De ≤ e⇒ eDe < ee = n. (4.16)

In the exploitation of labour economy, all the surplus goes intoprofits of entrepreneurs.
Thewages are exclusively subsistence wages and are included in themeans of produc-
tion. We continue in this line, assuming furthermore that the rate of profits r is equal
in both sectors, so we have consequently a “maximal rate of profits” R > 0. The pro-
duction scheme in initial physical units (4.17) (1) is presented by analogy to (4.5) in
parallel to the production scheme in annual production units (4.17) (2) of produced
commodities, both in matrix form, giving
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(1) (S,o)→ (q̂),
(2) (D,o)→ (I). (4.17)

We now start from the single-product Sraffa system with surplus (3.43) in initial phys-
ical units (1), and state also a model to determine the vector of value x in analogy to
(4.5) together with (2.18),

(1) Sp(1 + R) = q̂p = x⇔ Cp(1 + R) = p.
(2) Dx(1 + R) = x. (4.18)

In analogy to Proposition 4.1.1 one obtains

Proposition 4.1.2. We start from the single-product Sraffa system to determine the prices of commodi-
ties (4.18) (1), setting the equation x := q̂p (2.18) between the corresponding price vector p and the
vector of value x with a positive vector of output q > o. The circle is closed, passing from matrix S to
matrix D,

x := q̂p = Sp(1 + R) = S(q̂−1q̂)p(1 + R) = (Sq̂−1)q̂p(1 + R)

= D(q̂p)(1 + R) = Dx(1 + R) = x⇔ Dx(1 + R) = x. (4.19)

The vector x := q̂p is the vector of values!

p = q̂−1x⇔ x = q̂p. (4.20)

Setting λC = λD = 1/(1 + R), we summarize (4.18) and (4.19), the single-product Sraffa
system with a surplus rewritten under both calibration aspects as

(1) Cp = λCp,
(2) Dx = λDx.

(4.21)

We can now present a further version of Sraffa’s example PCMC, Par. 5, in our text
it is Example 3.1.3, to illustrate the foregoing presentations.

Example 4.1.2. The numéraire is 1 qr. wheat. Consider the production scheme (1)
(4.17). Identify the positive matrix S > 0 and the positive vector of total output
q = Se + d > o (4.15).

Compute the positive matrices C = Sq̂−1 > 0 and D = q̂−1S > 0, the Frobenius
numbers λC and λD, and the positive left eigenvector p of matrix C, associated with λC,
and the positive left eigenvector x of matrix D associated with λD.

Confirm here the transformation equation, x = q̂p (2.18). Confirm the inequality
De ≤ e. Compute the productiveness R.

Solution to Example 4.1.2:
Consider the production scheme (4.13) and identify and compute the matrices. We al-
ready know matrix S and vector q (4.14),
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C = Sq̂−1 = [ 280 120
12 8

][
1
575 0

0 1
20

] = [
56
115 6
12
575

2
5

] > 0,

D = q̂−1S = [
1
575 0

0 1
20

][
280 120
12 8

] = [
56
115

24
115

3
5

2
5

] > 0. (4.22)

Then, we compute the characteristic polynomial, of matrices C, respectively D,

P2(λ) = det(C − λI) = det(D − λI) =
8
115
−
102
115
⋅ λ + λ2 = (λ − 4

5
)(λ − 2

23
). (4.23)

Setting P2(λ) = 0, we get the common Frobenius number λC = λD = 4/5. Because
matrices C and D are positive, this gives in application of the Perron theorem A.9.1,
the corresponding positive eigenvector p of the single-product Sraffa system and the
value vector x (4.21) up to factors a, b ∈ ℝ.

(1) Cp = [
56
115

12
575

6 2
5

]p = 4
5
p⇒ p = a ⋅ [ 1

15
] ,

(2) Dx = [
56
115

3
5

24
115

2
5

]x = 4
5
x⇒ x = b ⋅ [ 575

300
] . (4.24)

One gets with a = 1 the vector of relative prices p = [1, 15], expressed in units of
the numéraire per commodity, corresponding to Sraffa’s exchange-values:

Sraffa writes: “The exchange-ratio which enables the advances to be replaced and
the profits to be distributed to both industries in proportion to their advances is 15
qr. wheat for 1 t. iron; and the corresponding rate of profits in each industry is R = 25%.”
(PCMC, Par. 5, p. 7).

On the other hand, setting b = 1 and keeping the numéraire wheat, we compute
now the vector of values, expressed by the numéraire wheat.

x = q̂p = [ 575 0
0 20

] [
1
15
] = [

575
300
] . (4.25)

Equation (4.25) performs the transformation from the price vector p = [1, 15] of the
commodities, into the vector of values x = [575, 300].

We now come to the inequality De ≤ e (4.16) and we get indeed,

De = [
56
115

24
115

3
5

2
5

][
1
1
] = [

16
23

1
] ≤ [

1
1
] = e, De ≤ e. (4.26)

Then we compute the right eigenvector r of matrix C, with k ∈ ℝ,

Cr = λr = Cr = [
56
115 6
12
575

2
5

] r = 4
5
r⇒ r = k ⋅ [ 575

30
] . (4.27)
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This eigenvector equation gives as solution the positive right eigenvector r = [575, 30],
associated with the Frobenius number λC = 0.8.

Finally, we compute themaximal rate of profits R = (1/λD)− 1 = (5/4)− 1 = (1/4). 

After the calculation of these two examples, we compare both obtained right
eigenvectors of matrix C with the corresponding vector of total output q and answer
the question:

What is the meaning of this right eigenvector of C?
When there is no surplus, as in the numerical Example 4.1.1, the right eigenvector

of C, Cq = q (3.25), gives the vector of total output q = [400, 20] > o. We observe
that the initial quantity proportion of production 400:20 = 20:1 between the quantity
of wheat and the quantity of iron is equal to the proportion between the components
of the computed right eigenvector.

When there is a surplus, as in the numerical Example 4.1.2, the right eigenvector r
ofC,Cr = λr (4.27), is no longer parallel to the vector of total output, r = [575, 30] ∦ q =
[575, 20] > o. The proportion of production 575 : 30 = 19.166 is no longer respected
by the components of q (575:20). Why? We will elucidate this question in Chapter 5,
dealing with Sraffa’s Standard systems.

For the moment, we just note that the vectors q, Se, d and p of Example 4.1.2 are
pairwise not parallel, see Figure 4.1.

Figure 4.1: Representation of the vectors q, d, Se and p.

Generalizations to n dimensions2

The calculations carried out in the previous subsection can be generalized to an econ-
omywith n ∈ ℕ single product industries, each sector producing only one commodity.3

Later, we will treatmulti-product industries or joint production, where one sector pro-
duces more than one of the n commodities, see Chapter 6.

2 This subsection is inspired by the “Nachwort” of Schefold in Sraffa’s German edition of PCMC ([109],
pp. 216–225).
3 Algorithms to calculate eigenvalues and eigenvectors of n×nmatrices are available inmany software
packages, likeMathematica, fromWolfram Research, Inc., Champaign, IL (2016).

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 The surplus as the sum of profits and wages | 117

So, in the sequel we consider either a semi-positive and irreducible (Defini-
tion A.8.3) or a positive n × n commodity flow matrix S, see Table 2.2 and equation
(2.13).

Having computed the input-output coefficients matrix C = Sq̂−1 and the distribu-
tion coefficients matrix D = q̂−1S, both either non-negative and irreducible or posi-
tive, consider the corresponding production scheme, where there are only subsistence
wages and no explicit wages paid via a numéraire or a currency:

(1) (S,o)→ (q̂),
(2) (D,o)→ (I). (4.28)

If the produced commodities are measured in usual physical units, like the
qr. wheat or t. iron, then the technology is described by (4.28) (1).

If the produced commodities are measured in units of annual production, like the
annual wheat crop (AWC) or the annual iron production (AIP), then the technology is
described by (4.28) (2), choosing the numéraire as (AWC).

The economymay produce a surplus or no surplus at all. Remember that according
to (4.3), matrixD in the case of no surplus has the summation vector e as positive right
eigenvector, associated with the Frobenius number λD = 1. In the case of production
of a surplus, Example 4.1.2, illustrated that matrixD has Frobenius number λD < 1. We
will now show here that this result is general.

The Frobenius numbers of matrices C and D coincide, λC = λD, see Lemma A.6.1.
Single-product Sraffa systems, only with subsistence wages and no paid wages, with
surplusorwithout surplusarepresented. The transformation equations (4.20), (4.7) be-
tween the price vector p and the vector of values x, were justified previously.

(1) Sp = λCq̂p = λCx⇔ Cp = λCp,
(2) Dx = λDx. p = q̂−1x, λC = λD.

(4.29)

We formulate the obtained results concerning the Frobenius numbers.

Lemma 4.1.1. Assumption 2.2.1 and Assumption 2.2.2 hold. Consider the single-product
Sraffa price model, (4.29) (1), only with subsistence wages and a given numéraire.
(a) A just-viable economy, an economy without surplus, Definition 2.2.1.

Consider the production scheme (4.5), described by the semi-positivematricesS ≥ 0
and C = Sq̂−1I ≥ 0 with vector of output qI = Se > o and the stochastic matrix
D = q̂−1I S ≥ o. Then themaximal eigenvalues of C andD coincide and are equal to 1,
λC = λD = 1.

(b) A viable economy with surplus, Definition 2.2.1.
Consider the production scheme (4.28), described by the semi-positive matrices
S ≥ 0 and C = Sq̂−1 ≥ 0, a semi-positive vector of surplus d ≥ o, the vector of out-
put q = Se + d > o and the matrix D = q̂−1S ≥ o. Then the real, positive, maximal
eigenvalues of C and D coincide and are less than 1, 0 < λC = λD < 1.
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Proof. (a) Starting with qI = Se > o, one gets the stochastic matrix D = q̂−1I S, with
eigenvector e, De = e (4.3) and associated maximal eigenvalue λD = 1, Lemma A.11.1.
Matrices C and D are similar with identical eigenvalues, Lemma A.6.1. Thus, the max-
imal eigenvalue of C, coincides with the maximal eigenvalue λD = 1 of D. There is
λC = λD = 1.

(b) Starting with the input-output coefficients matrix C = Sq̂−1 ≥ 0, we are in
the presence of a productive Sraffa model, d ≥ o, according to Definition A.12.1,
q = Se + d = Cq + d > o (3.52). The Theorem A.12.1 states that the Frobenius number
is less than 1, λC < 1. The matrices C and D are similar with identical eigenvalues,
Lemma A.6.1. Thus, the real, maximal, eigenvalues coincide, λC = λD < 1. With
Lemma A.10.3, the real, maximal eigenvalue of the semi-positive input-output coeffi-
cientsmatrix C is positive, λC > 0.

The next subsection presents Sraffa price models with wages paid in numéraire.

4.1.2 Economies with wages paid in numéraire

Up to now, the wages for the labour of the workers were covered by themeans of pro-
duction as “subsistencewages”, described by the input-outputmatrix S. If on the other
hand wages are covered by the surplus, then the initial “subsistence wages” become
a part of the surplus. So with Sraffa (PCMC, Par. 8), we “follow the practice of treating
the whole of the wage as variable” and do not enter the discussion of wage forma-
tion.

Human labour in Sraffa’s model
Economically speaking, by Assumption 2.5.1, the quantity of human labour necessary
for the production of a commodity j is positive in all sectors Sj, Lj > 0, j ∈ {1, . . . , n}.
But here, we only need aweaker condition, namely, the semi-positivity of the vector of
labour, L ≥ o,4 to obtain the goal of a positive quantity of labour L = eL > 0. If Lj = 0,
for a specific sector Sj, then thismeans economically that nowages are paid in relation
with anannualworking time. Thismayoccur in the casewhenall theproductionof that
sector Sj is generated by robots controlled by another sector.

How is labour measured? We have among various measures the possibility of
choosing as unit of labour, the work one man realizes in one hour, a so-called man-
hour, or the work one man realizes in one year, a so-calledman-year.

We may also consider the annual output of economic variables, like total labour,
as a unit. We have already encountered this technique (Subsection 4.1.1), in relation
with matrix D (4.3). Such normalisation is a process of calibration. Sraffa speaks of

4 There exists at least one j ∈ {1, . . . , n}, such that Lj > 0.
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“annual quantities of labour” (PCMC, Par. 10) and calls the resulting total entity “the
standard in terms of which the wage and the …prices are expressed” (PCMC, Par. 12).
He thus considers the total quantity of labour L as the “total annual labour of soci-
ety”. We denote this physical unit as 1 TAL (= Total Amount of Labour) which becomes
the standard. Accordingly, the annual quantities of labour Lj, employed respectively in
the various industries j, are fractions of 1 TAL. Therefore, taking the vector of labour
L = [L1, . . . , Ln] ≥ 0 (required working-time per industrial sector), its non-negative
components Lj ≥ 0, j ∈ {1, . . . , n}, usually measured in a unit like man-hours, are now
fractions of the TAL.5 This normalization gives:

L = eL = L1 + L2 + ⋅ ⋅ ⋅ + Ln = 1 TAL. (4.30)

We continue with the presentation of economic variables, which will appear in the
complete single-product Sraffa system, Section 4.1.3.

National accounting and other economic variables, ratios
We consider as solutions positive price vectors p = [p1, . . . , pn] > o, containing the
prices pi conceived as the quantity of the numéraire per unit of produced quantity of
commodity i, measuring the value of a unit of commodity i.

Then, we consider the single-product Sraffa system (4.18) (1), consisting of three
parts:
(a) the vector Sp of components giving the value of the means of production of each

sector;
(b) the vector RSp of components, giving the surplus produced by each sector;
(c) the vector q̂p of components, giving the total production of each sector.

All the vector components have as a physical unit the chosen numéraire. In order to get
the key economic variables, we multiply the right equation (4.18) (1) by the vector e,
summing up all the sectorial parts, getting the circulating capital K, e. g., the value of
the totalmeans of the production or the total value of the interindustrial economy, the
amount of total output X, the national income Y , i. e., the total value of the surplus. All
three variables are measured in numéraire quantities. We have obtained:

K = e(Sp) = (Se)p,
X = e(q̂p) = ex = (eq̂)p = qp = e(Sp)(1 + R) = K(1 + R). (4.31)

5 The measurement unit man-hour is replaced here by the new measurement unit Total Amount of
Labour = TAL, giving, e. g., the equivalence: 1 TAL ≃ 96,000 man-hours for 50 workers, working 48
weeks a year, 40 hours a week (96,000 = 50 ⋅ 48 ⋅ 40).
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Then, there is the national income which is the difference between total output X and
circulating capital K,

Y = X − K = R ⋅ K = Re(Sp) = e(q̂p) − e(S)p
= qp − (Se)p = (q − (Se))p = dp. (4.32)

One of the aims of Ricardo’s and Sraffa’s work is to solve the problem of distribu-
tion. Kaldor [45] describes this as follows:

“According to the Preface of Ricardo’s Principles, the discovery of the laws which regulate distribu-
tive shares is the ‘principal problem in Political Economy’ ”.

Thus, Sraffa’s idea is to divide the whole surplus Y into two parts: the profits P for
entrepreneurs and the wages W for workers;6 Y is here Sraffa’s national income. In
Sraffa (PCMC, Chapters III–IV), all salary components are part of the surplus, giving
Y = P +W . Here, again according to Ricardo and Sraffa, a uniform rate of profits r =
P/K, 0 ≤ r ≤ R, for all the sectors is introduced, meaning that every sector has the
same profit rate for the various amounts of capital engaged in the production process.
We shall relax this constraint in Chapter 8.

When r < R is chosen, the total profit is defined as P = r ⋅ e(Sp) = r ⋅ K. It
follows that the total wages are equal toW = Y − P > 0. According to what has been
developed just above, the components of the vector r ⋅ (Sp) represent the parts of
profit generated by each sector. Sraffa also considers a uniform rate of wages w = W/L
applicable to all sectors, meaning that every worker has the same wage per unit of
working time.7 Introducing also the share of total wages to national income w̃ = W/Y ,
considering further that Lj ≥ 0 is the annual quantity of labour required in sector Sj,
j ∈ {1, . . . , n}, then w ⋅ Lj is the total amount of wages necessary to pay the workers
of sector Sj. Thus, we can formulate both vectors, describing the distribution of total
profits and total wages, as follows

total profits : r ⋅ (Sp), total wages : w ⋅ L = W
L
⋅ L = w̃ ⋅ Y

L
⋅ L. (4.33)

The vectors r ⋅ (Sp) and [(w̃ ⋅ Y)/L] ⋅ L have components, describing the surplus dis-
tributed to the branches, of the complete single-product Sraffa system which will be
treated below, Section 4.1.3. We conclude this subsection, presenting some important

6 Remember that Sraffa’s total wagesW is the sum of subsistence wagesWs and the wages part of the
surplusWa,W = Ws +Wa, withWs extracted from the production coefficients. Thus, initially (PCMC,
Par. 1–8)Ws is part of K and P = Y if there is a surplus. Later (PCMC, Par. 9), Ws becomes part of Y ,
together withWa, so we getW = Ws +Wa and P is also a part of the surplus, giving Y = W + P. This
yields finally X = Y + K = W + P + K = Ws +Wa + P + K.
7 In this case, the physical unit of total wagesW is again easily verified as [W] = [L] ⋅ [w] = numeraire

TAL ⋅
TAL
1 = numéraire. The unit of wagesW is the numéraire. Note that the constraint of uniformwagesmay

also be relaxed.
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relations, existing between the treated economic variables and ratios (see the Table
of Symbols). Consider especially the pair constituted by the share of total wages to na-
tional income w̃ and the share of total profits8 ̃r:

W = w̃ ⋅ Y ⇔ w̃ = W
Y
, P = ̃r ⋅ Y ⇔ ̃r = P

Y
,

Y = P +W ⇒ P
Y
+
W
Y
= ̃r + w̃ = 1. (4.34)

From the definitions, we can also immediately write down the following relations:

w =: W
L
, w̃ := W

Y
, R̃ := Y

K
, r := P

K
, U := Y

L
,

w = w̃ ⋅ L
Y
=
W
Y
Y
L
= w̃U , r = P

Y
Y
K
= ̃rR̃ and trivially

P = rK = ̃rY , W = wL = w̃Y . (4.35)

We now state a key result, based on the foregoing definitions and ratios, which will be
used soon:

R̃(1 − w̃) = Y
K
(1 − W

Y
) =

Y
K
⋅
Y −W
Y
=
Y
K
⋅
P
Y
=
P
K
= r. (4.36)

The national income Y is occasionally measured by a physical unit chosen as the
numéraire. Sraffa normalized the national income Y , also called “composite commod-
ity” (PCMC, Par. 12). The national income Y appears then as the numéraire. The term
“GPD = Gross National Product” is chosen. Therefore one sets,

Y = 1 GPD. (4.37)

The relationships between the variables L,w,W , L, Y , w̃ and the average national
income U = Y/L appear in equation (4.35). The labour vector L = [L1, . . . , Ln] ≥ o gives
the distribution of the wages w ⋅ Lj ≥ 0 paid to all the workers of the sectors j of this
production economy, and we have9:

L ⋅ w = L ⋅ W
L
= L ⋅ w̃ ⋅ Y

L
= L ⋅ w̃ ⋅ U ⇒ w = w̃ ⋅ Y

L
= w̃ ⋅ U . (4.38)

Then, the total wagesW are calculated by summing up the components (4.33) of
the vector of labour times the wage per unit of labour w, L ⋅ w, giving

W = e(L ⋅ w) = e L
L
⋅ (L ⋅ w) = eL ⋅ W

L
. (4.39)

In the next subsection, we present the complete single-product Sraffa system, includ-
ing labour as a part of surplus.

8 The identity for GDP ∼ Y = P +W coincides with Sraffa’s concept of dividing the value of wagesW
for workers and profit P for producers by the total surplus (or national income).
9 The physical unit of vector components in (4.38) is [L ⋅w] = [TAL ⋅ numeraire

TAL ] = numéraire, as is easily
verified.
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4.1.3 The complete single-product Sraffa system

Having discussed labour, and in order to guarantee a positive surplus, we consider
a semi-positive vector of surplus d ≥ o, together with either a semi-positive and irre-
ducible or a positive commodity flowmatrix S, and the vector of total output q = Se+d
(4.14). We are now able to describe the corresponding Sraffa production scheme, com-
pleted by the semi-positive vector of labour L ≥ o, as an extension of the initial pro-
duction scheme (3.55). We compute the input-output coefficientsmatrix C = Sq̂−1 and
the distribution coefficients matrix D = q̂−1S, both consequently either semi-positive
and irreducible or positive, the economy now producing a positive surplus.

If the produced commodities are measured in initial physical units, then the tech-
nology is described by (4.40) (1). If the produced commodities are measured in units
of annual production, then the technology is described by (4.40) (2). We get

(1) (S,L)→ (q̂),
(2) (D,L)→ (I). (4.40)

We now present the complete single-product Sraffa system.10 Starting from the single-
product Sraffa system Sp(1 + R) = q̂p (3.43), the productiveness R > 0 is replaced by
the smaller profit rate r, 0 < r < R, and the vector SpR is replaced by the vectors Spr
(4.33) and w ⋅ L (4.38) respectively, realising the distribution of the surplus between
profits and wages.

We need thewage rate w in the developed form (4.33),w = (w̃ ⋅ Y)/L together with
an equation to calculate the national income Y , as mentioned by Kurz and Salvadori
([52], p. 98).11 The commodities are measured in initial physical units, respectively in
units of annual production, if wewant to point out the object character of the produced
goods (see for this purpose Chapter 9).

We recognize that the complete Sraffa price model (4.41) expresses the produced
value with x = q̂p (2.18). One undertakes the following transformation,

10 Pasinetti ([80], p. 72) called Sraffa’s equations (PCMC, Par. 11) the Sraffa system or the price system.
11 Sraffa (PCMC, Par. 11) presents this equation with normalised national income Y = 1 and nor-
malised labour L = 1, consequently, withW = w ⋅ L = w = |w̃| (We have to pay attention to the units of
measurements) (4.46), it becomes

Sp(1 + r) + L ⋅ w = q̂p. (4.41)

We have introduced the unit of physical measure GDP, in order to obtain the normalised national in-
come Y = 1 GDP. The physical measure GDP acts as a numéraire, therefore the prices are presented in
the units [pi] = (GDP/quantity of commodity i), i = 1, . . . , n. It is important to note that independently
of the measurement unit of labour, either [TAL] or [man-years] or another unit, the vector (L ⋅ W)/L
represents the distribution of the total wagesW among all the branches. Sraffa discussed the required
number of equations and variables constituting a solvable linear system of equations for the calcula-
tion of the prices.
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Sp(1 + r) + L ⋅ w̃ ⋅ Y
L
= q̂p = x = S(q̂−1q̂)p(1 + r) + L ⋅ w̃ ⋅ Y

L

= (Sq̂−1)(q̂p)(1 + r) + L ⋅ w̃ ⋅ Y
L
= Dx(1 + r) + L ⋅ w̃ ⋅ Y

L
. (4.42)

We obtain the Sraffa price model to compute the price vector p and an equation to
compute the vector of values x:

(1) Sp(1 + r) + w̃ ⋅ Y
L
⋅ L = q̂p = x, Y = dp, L = eL,

(2) Dx(1 + r) + w̃ ⋅ Y
L
⋅ L = x.

(4.43)

We can further easily compute the values of the five economic variables K, X, (4.31) Y
(4.32), P (4.35),W (4.34),

X = e(q̂p) = ex, K = eSp, Y = X − K, P = r ⋅ K, W = Y − P. (4.44)

It is now easy to show that Sraffa’s complete price model (4.43) hides an accountable
identity. Reminding w̃ = W

L , we just have to multiply it from the left by vector e,

eSp(1 + r) + e w̃ ⋅ Y
L
⋅ L = e(q̂p) = (Se)p(1 + r) + w̃ ⋅ Y

L
⋅ eL = e(q̂p)

= K + P + L( w̃ ⋅ Y
L
) = K + P + w̃Y = K + P +W = K + Y = X.

(4.45)

We now develop Sraffa’s Example 4.1.2 (PCMC, Par. 5). As the Frobenius number is
λC = 4/5, the productiveness is R = 0.25. The profit rate is set to r = 0.05. We introduce
further a vector of labour L.12

We illustrate equations (4.43) by the following example.

Example 4.1.3. Consider the production scheme (4.13) with matrix S > 0, the output
vector q = Se + d > o and D = q̂−1S > 0 (4.22). Set up the complete single-product

12 The physical unit of wage per unit of labour w is [w] = (numeraire/man-years), if labour L is mea-
sured in man-years. The physical unit of total wages W is: [W] = [L] ⋅ [w] = man-years ⋅ numeraire

man-years =
numeraire. In that case, the total wages are expressed by equation

W = L ⋅ w. (4.46)

If labour L is measured in TAL, then the total quantity of labour is L = 1 TAL and the physical unit
of wage per unit of labour w is [w] = numeraire

TAL = numeraire. The physical unit of total wages W is:
[W] = [L] ⋅ [w] = TAL ⋅ numeraireTAL = numeraire, the total wages are then

W = L ⋅ w = 1 TAL ⋅ w or |W | = |w|. (4.47)

This latter numerical equality (4.47) is used by Sraffa (PCMC, Par. 11).
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Sraffa price model (4.43) with the rate of profits r = 0.05 and the positive vector of
labour L = [50, 100] > o in man-years. The numéraire is wheat. Calculate the price
vector p and the vector of values x. Calculate the national income Y , the total wages
W and the total profit P.

Solution to Example 4.1.3:
We identify matrix S (4.14), and vector q (4.16), as well as matrix D (4.22) and the rate
of profits r = 0.05.

S = [ 280 120
12 8

] , q = [ 575
20
] , D = [

56
115

24
115

3
5

2
5

] .  (4.48)

Thus, we set up the complete single-product Sraffa price model (4.43) (1) with the un-
known price vector p = [p1, p2],

(1) Sp(1 + 0.05) + w̃ ⋅ Y
L
⋅ L = q̂p = x, Y = dp, L = eL. (4.49)

We have in (4.49) four equations and five unknown variables p1, p2, w̃, Y and L. There
are two commodities, wheat and iron; wheat is measured in qr. wheat and iron ismea-
sured in t. iron. As is the case in this economy, the prices have to be expressed in the
chosen numéraire wheat. For this reason, the price of the chosen unit of wheat is de-
termined, setting p1 = 1 qr. wheat/qr. wheat = 1 (dimensionless). The physical units of
the price of iron is [p2] = qr. wheat/t. iron. This gives the complete single-product Sraffa
price model. The corresponding equations are with the vector of surplus d = [175,0]

and Y = dp:

(280 ⋅ 1 + 12p2)(1 + 0.05) + 50 ⋅
w̃ ⋅ Y
L
= 575 ⋅ 1,

(120 ⋅ 1 + 8p2)(1 + 0.05) + 100 ⋅
w̃ ⋅ Y
L
= 20p2,

Y = 175 ⋅ 1 + 0 ⋅ p2,
L = 50 + 100. (4.50)

The solutions are: the price of iron is p2 = 18.6957 qr. wheat/t. iron, the quantity of
labour is L = 150man-years and the national income is Y1 = 175 qr. wheat. The dimen-
sionless share of total wages to national income w̃ = W/Y = 0.778882 is an invariant,
as wages and national income are both measured in the same physical units, and the
ratioW/Y is by construction a constant in a single-product Sraffa system. Then the to-
tal wages are W = w̃ ⋅ Y = 136.304 qr. wheat and the total profits are P = Y − W =
38.694 qr. wheat.

We now move on to the value model (4.43) (2) to determine the vector of values
x = [x1, x2],

(2) Dx(1 + 0.05) + w̃ ⋅ Y
L
⋅ L = x, Y = 175, L = eL. (4.51)
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Again, (4.51) has four equations and five unknown variables x1, x2, w̃, Y and L. In this
case, we set x1 = 575 qr. of wheat as the unit measure of the numéraire. This gives the
explicitly written system, determining the vector of values,

(
56
115
⋅ 575 + 3

5
x2)(1 + 0.05) +

w̃ ⋅ Y
L
⋅ 50 = 575,

(
24
115
⋅ 575 + 2

5
x2)(1 + 0.05) +

w̃ ⋅ Y2
L
⋅ 100 = x2,

Y = 175,
L = 50 + 100. (4.52)

We obtain the following solutions: the value x2 = 373.913 qr. of wheat, the share of
total wages w̃ = 0.778882 and the quantity of labour L = 150 man-years. We further
calculate the total output X = ex = [1, 1].[575, 373.913] = 948.913 qr. wheat, the
circulating capital K = X − Y = 773.913 qr. of wheat, the total profit P = r ⋅ K =
0.05 ⋅ 773.913 = 38.696 qr. wheat and the total wagesW = Y −P = 136.304 qr. of wheat.

We can state now an important result:

Proposition 4.1.3. We start from the single-product Sraffa price model to determine the prices of com-
modities (4.41), w = w̃⋅Y

L , setting the equation x := q̂p (2.18) between the corresponding price vector
p and the vector of values x with a positive vector of output q > o. The circle is closed, passing from
matrix S to matrix D,

Sp(1 + r) + L ⋅ w̃ ⋅ Y
L
= q̂p = x = S(q̂−1q̂)p(1 + r) + L ⋅ w̃ ⋅ Y

L

= (Sq̂−1)(q̂p)(1 + r) + L ⋅ w̃ ⋅ Y
L
= Dx(1 + r) + L ⋅ w̃ ⋅ Y

L
. (4.53)

The vector x := q̂p is the vector of values!

p = q̂−1x⇔ x = q̂p. (4.54)

Wewill now show that the complete single Sraffa price model (4.43) (1), formulated on
the basis of the commodity flow matrix S, can also be expressed on the basis of the
input-output coefficients matrix C. We start writing down the Sraffa price model with
the wage rate per unit of labour w = (w̃ ⋅ Y)/L,

Sp(1 + r) + L ⋅ w = q̂p = x. (4.55)

The demonstration of this result is obtained as follows:
Wemultiply equation (4.55) from the leftwith the diagonalmatrix q̂−1. Using again

elementary rules ofmatrix algebra, especially those concerningdiagonalmatrices and
the product rule (A.39). We take the input coefficients matrix C = Sq̂−1 (2.16), respec-
tively the transpose C = q̂−1S, and find

q̂−1(Sp)(1 + r) + q̂−1(L ⋅ w) = (q̂−1S)p(1 + r) + (q̂−1L)w

= Cp(1 + r) + (q̂−1L)w = q̂−1(q̂p) = (q̂−1q̂)p = p, (4.56)
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resulting in,

Cp(1 + r) + (q̂−1L)w = p. (4.57)

In the presentation (4.55) of the complete single-product Sraffa system, the entities are
commodity flows, whereas in the presentation (4.57) the entities are technical coeffi-
cients. In future developments, we will refer to one or the other of the equivalent rep-
resentations (4.55) and (4.57) of the complete single-product Sraffa system.

We continue defining the vector π of labour per unit of commodity,

π = q̂−1L =
[[[[

[

π1
π2
. . .
πn

]]]]

]

=

[[[[[[

[

1
q1
. . . . . . 0

0 1
q2
. . . 0

. . . . . . . . . . . .
0 . . . . . . 1

qn

]]]]]]

]

[[[[

[

L1
L2
. . .
Ln

]]]]

]

=

[[[[[[

[

L1
q1
L2
q2
. . .
Ln
qn

]]]]]]

]

. (4.58)

The ratio πi = (Li/qi), i = 1, . . . , n, is the labour required for the production of one unit
of each commodity i, including replacements to satisfy the conditions of production.
After reverting to vector representations, π for the labour per unit of commodity and
p for the prices, we obtain with equations (4.56), (4.58) the complete single-product
Sraffa system expressed in quantities per commodity units cij = sij/qj,

Cp(1 + r) + π ⋅ w = p or (I − (1 + r)C)p = π ⋅ w. (4.59)

We arrive at an extension of Lemma 4.1.1.
We treat stability conditions to guarantee the existence of positive price vectors

p > o in the case of complete single-product Sraffa system. Such stability conditions
are sufficient but not necessary conditions. We come to

Lemma 4.1.2. Assumption 2.2.1 and Assumption 2.2.2 hold.
Consider a commodity flow matrix S ≥ 0, a vector of surplus d ≥ o both semi-

positive and a vector of labour L ≥ o, at least semi-positive. There is therefore a positive
quantity of labour L = eL. Compute the vector of output q = Se + d > o, leading
to the production scheme (S,L) → (q̂), the input-output coefficients matrix C = Sq̂−1

(2.16) and the complete single-product Sraffa system (4.55) or (4.57). The positive surplus
is split into profits with an appropriate positive rate of profits r > 0 and into wages with
a positive wage rate w > 0.
(a) When the matrices S (4.55) and, equivalently, C are either semi-positive and irre-

ducible or positive and the vector of labour is semi-positive, L ≥ o, then the price
vector of the model is positive, p > o.

(b) Additionally, Assumption 2.5.1 holds, here L > o and so positive. When the matrix
S ≥ 0 and therefore C ≥ 0 are only semi-positive, then the price vector of the model
is positive, p > o.
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Proof. In the cases (a) and (b), the matrices S (4.55) and C are both semi-positive, so
that Lemma 4.1.1 (a) applies and ensures for matrix C the existence of a Frobenius
number greater than 0, λC > 0. Moreover, Lemma 4.1.1 (b) applies, and we also have
an upper bounded Frobenius number, λC < 1.

One sets λC =
1

1+R < 1 getting the productiveness R > 0. A rate of profits r, 0 < r < R
is chosen. Define λ := 1

1+r ≤ 1 and get 1 ≥ λ > λC > 0,
(a) The Theorem A.10.2 applies because matrix S is irreducible. Take the just de-

fined number λ, 1 ≥ λ > λC, and get with (A.103),

(λI − C)−1 := ( 1
1 + r

I − C)
−1
> 0⇒ (I − (1 + r)C)−1 > 0. (4.60)

As there is the inequality 0 < r < R, a part of the surplus consists of the wages to pay
the realized quantity of labour L > 0, applying the positive wage rate w > 0. As the
vector of labour is by assumption semi-positive, L ≥ o, the vector π ≥ o (4.58), is also
semi-positive. We obtain with the positive matrices (4.60) a positive price vector13:

p = (I − (1 + r)C)−1π ⋅ w > o. (4.61)

(b) The TheoremA.10.2 applies, as thematrixC ≥ 0 is semi-positive and the Frobe-
nius number is positive with Lemma 4.1.1, λC > 0. Choose λ, 1 ≥ λ > λC > 0, and get
with Theorem A.10.2, (A.100) the matrices of full rank n, where every row of matric C,
see Assumption 2.2.2, has at least one positive entry, see footnote 13, one gets,

(λI − C)−1 :=
∞

∑
j=0

C j

λj+1
= (

1
1 + r

I − C)
−1
≥ 0⇒ (I − (1 + r)C)−1 ≥ 0. (4.62)

Given the inequality 0 < r < R, a part of the surplus consists of the wages to pay
the positive quantity of labour L > 0 with positive wage rate w > 0. As the vector of
labour is positive by assumption, L > o, this property prevails also for the vectorπ > o
(4.58) and we obtain the positive price vector (4.61).

Let’s comment on these results, at first by illustrating Theorem A.10.2.

Example 4.1.4. Given the 4 × 4 semi-positive and irreducible commodity flow matrix S
and a positive vector of total output q (4.63),

S =
[[[[

[

280 120 150 250
50 0 0 0
0 30 20 50
20 0 0 30

]]]]

]

≥ 0, q =
[[[[

[

1000
100
200
100

]]]]

]

> o. (4.63)

13 A positive n×nmatrix [a semi-positive n×nmatrix, where every row has at least one positive entry]
times a semi-positive [positive] n × 1 vector yields a positive n × 1 vector.
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Calculate the input-output coefficientsmatrix C = Sq̂−1, the Frobenius number λC and
the productiveness R = (1/λC) − 1, and choose any rate of profits r, 0 ≤ r < R and
confirm that the inverse matrix [I − (1 + r)C]−1 is positive.

Solution of Example 4.1.4:
Compute

(I + S)3 =
[[[[

[

28,906,041 12,192,660 14,445,450 27,405,750
4,512,150 1,923,001 2,272,500 4,287,500
787,500 313,890 384,262 727,650
1,992,660 841,200 999,000 1,894,791

]]]]

]

> 0, (4.64)

verifying that (S + I)3 is positive. Then S is irreducible (Lemma A.8.2). We continue
computing

C = Sq̂−1 =
[[[[[[

[

7
25

6
5

3
4

5
2

1
20 0 0 0

0 3
10

1
10

1
2

1
50 0 0 3

10

]]]]]]

]

≥ 0. (4.65)

The Frobenius number of C is smaller than one, λC = 0.616506 < 1, and the produc-
tiveness is positive, R = (1/0.61650) − 1 = 0.622045 > 0. We choose the rate of profits
r = 0.5 < R. We conclude with a positive inverse matrix,

(I − (1 + 0.5)C)−1 =
[[[[

[

7.0601 0.5295 0.6201 0.3851
16.9131 2.2685 2.0150 0.9225
9.3446 0.7008 1.9972 0.5097
60.8792 4.5660 6.9516 5.1389

]]]]

]

> 0, (4.66)

in accordance with Theorem A.10.2, equation (A.103). 

We now present an illustration of Lemma 4.1.2 (a). For an economy composed of
two sectors we investigate – ceteris paribus – the relationship between the profit rate
r and the wage rate w.

Example 4.1.5. An economy is composed of a sector of wheat (physical unit: “qr. of
wheat”) where labour is measured in [L] = man-years, and a sector of wood (physical
unit: “cubicmeter of wood”), based on subsistencewages. There is the positivematrix
S and the positive vector of surplus,d > o, together with the vectors L and q = Se+d >
o, leading to the production scheme (S,L)→ (q̂).

S = [ 500 500
500 500

] > 0, L = [ 200
0
] ≥ o, q = [ 1,500

1,500
] , d = [ 500

500
] > o.

(4.67)
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Compute the input-output coefficients matrix C = Sq̂−1 > 0, the Frobenius num-
ber λC of matrix C, and the productiveness R = (1/λC) − 1.

The price vector is p = [p1, p2]. Choose as the numéraire the commodity wheat,
so that p1 = 1 (qr. wheat/qr. wheat) = 1. Compute the matrix (I − (1 + r)C)−1 and the
vector π = q̂−1L. Set up (4.61)

p = [ 1
p2
] = (I − (1 + r)C)−1π ⋅ w. (4.68)

(a) Choose r = 0.1 and determine p2 and w from the system (4.68).
(b) Determine the relationship between r and w from the first equation of (4.68).

Compute then the national income Y , the total output X, the circulating capital K, the
total profit P, the total wagesW and the total quantity of labour L, as well as the ratios:
share of total wages to national income w̃, share of total profits to national income ̃r,
average national income per unit of total quantity of labour U, and surplus ratio R̃.

Solution to Example 4.1.5:
Let us calculate the matrix

C = Sq̂−1 = [ 500 500
500 500

][
1

1,500 0

0 1
1,500

] = [
1
3

1
3

1
3

1
3

] > 0. (4.69)

The Frobenius number of matrix C is λC = 2/3 and the maximal rate of profits is R =
(3/2) − 1 = 1/2. If the rate of profits r ∈ [0,R], then all the coefficients of the inverse
matrix (I − (1 + r)C)−1 are positive (see Theorem A.10.2, equation (A.103)):

π = q̂−1L = [
2
15

0
] ≥ o; (I − (1 + r)C)−1 = [

−2+r
−1+2r

1+r
1−2r

1+r
1−2r

−2+r
−1+2r

] > 0⇒

p = (I − (1 + r)C)−1π ⋅ w = [ p1 = 1
p2
] = [

−2+r
−1+2r

1+r
1−2r

1+r
1−2r

−2+r
−1+2r

][
2
15
0
]w > o. (4.70)

Setting r = 0.1, we solve the second matrix equation of the system (4.70) and get then
p2 = 0.578947 or p = [1,0.575947] > o and w = 3.15789. Then we consider its first
equation for p1 = 1 and get a relationship between r and w

p1 = 1 =
2(2 − r)w
15(1 − 2r)

⇒ 3.75 ≥ w = 15(1 − 2r)
2(2 − r)

≥ 0, 0 ≤ r < 0.5. (4.71)

Now we list the economic variables dependent on r = 0.1 and get
– the national income Y = dp = [500, 500][1,0.5789] = 789.47 qr. wheat;
– the circulating capital K = (Se)p = 1,578.95 qr. wheat;
– the total quantity of labour L = eL = 200 man-year;
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– the total output X = qp = [1,500, 1,500][1,0.5789] = 2,368.42 qr. wheat;
– thenational incomeper unit of quantity of labour U = Y/L = 3.9474 qr.wheat/man-

years;
– the surplus ratio R̃ = Y/K = 789.47/1,578.95 = 0.5 is equal to R in this case.14 We

can compute: Y = R ⋅ K = 0.5 ⋅ 1,578.95 = 789.47.

Then we list the economic variables dependent on r in general and obtain
– the total profit P = K ⋅ r = 1,578.95 ⋅ r = 157.90 qr. wheat;
– the total wages W = Y −P = (789.47− 1,578.95 ⋅0.1) qr. wheat = Y ⋅ (1− 2r) = 631.58

qr. wheat;
– the share of total profits to national income ̃r = P/Y = (K ⋅r)/Y = 1,578.85⋅r/789.47 =

2r = 0.2;
– the share of total wages to national income w̃ = W/Y = Y ⋅ (1− 2r)/Y = 1− 2r = 0.8,

so we have correctly ̃r + w̃ = 1.

Finally, we confirm R̃(1 − w̃) = 0.5(1 − 0.8) = 0.1 = r and get for this example the
relationship:

w = f (r) = 15(1 − 2r)
2(2 − r)

> 0, 0 ≤ r < R = 1
2
, 0 < w ≤ 15

4
,

Y = P +W , 0 < P, 0 < W .
(4.72)

The function w = f (r) to calculate the wage rate, dependent on the rate of profit r, is
specific to each production scheme. In the present case, the wage rate w is limited by
the interval,w ∈ ]0, 3.75], when r ∈ [0,0.5[. The national incomeY = dp is determined
by the vector of prices and the vector of surplus and is always the sum of total wages
W plus total profits P. 

We continue illustrating Lemma 4.1.2 (b). The next example shows that we can get
positive prices without needing the Perron–Frobenius theorem A.9.3 just requiring
additional economic conditions to be fulfilled by some vectors and matrices of the
Sraffa price model.

Example 4.1.6. Consider a partial economy producing iron andwheat bothmeasured
in tons (t.) and goldmeasured in kilograms (kg). There is a total number of L = 25work-
ers in the three sectors, working thewhole year. Labour ismeasured inman-years. The
vector of labour L = [5,10, 10] > o in man-years shows the repartition of the work-
ers among the sectors. The value is measured by the currency CHF. The production

14 The result R̃ = R is a special case. We are in the presence of a Standard system that will be treated
in Chapter 5, namely, d ‖ q.
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scheme is as follows:
(30 t. wheat, 30 t. iron, 5 MJ)→ (400 qr. wheat,0,0),

(15 t. wheat, 90 t. iron, 10 MJ)→ (0, 300 t. iron,0),

(5 t. wheat, 30 t. iron, 10 MJ)→ (0,0, 6 kg gold). (4.73)

Identify the matrix S and the vector q = Se + d. Calculate the vector of surplus d
and the input-output matrix C = Sq̂−1. Verify Proposition 3.1.4 (3.53). Set up the Sraffa
pricemodel in the form (4.61). Compute the productivenessR, choose the rate of profits
r = R/2. Finally, calculate thewage ratew, using the exogenously given price ofwheat:
p1 = 500 (CHF/tons of wheat), and then the vectors of absolute prices p.

Solution to Example 4.1.6:
Identify now the semi-positive matrix S, and compute the vector of output q and the
vector of surplus d,

S = [[
[

30 15 5
30 90 30
0 0 0

]]

]

, q = Se + d = [[
[

30 15 5
30 90 30
0 0 0

]]

]

[[

[

1
1
1

]]

]

+ d

= [[

[

50
150
0

]]

]

+ d = [[
[

400
300
6

]]

]

⇒ d = [[
[

350
150
6

]]

]

> o. (4.74)

Compute the semi-positive input-output matrix, C = Sq̂−1,

C = [[
[

30 15 5
30 90 30
0 0 0

]]

]

[[[

[

1
400 0 0

0 1
300 0

0 0 1
6

]]]

]

=
[[[

[

3
40

1
20

5
6

3
40

3
10 5

0 0 0

]]]

]

≥ 0. (4.75)

With the regularity, det(I − C) = 103/160, Proposition 3.1.4 is verified. There is no
eigenvalue λ = 1 of matric C. Computing the semi-positivity of matrix,

(I + C)2 =
[[[

[

371
320

19
160

95
48

57
320

271
160

185
16

0 0 1

]]]

]

≥ 0, (4.76)

confirms that matrix C is reducible (see Lemma A.8.2). Continuing with Lemma 4.1.1
(b) we now know that matrix C has a Frobenius number λC smaller than 1, which is
positive (see LemmaA.10.3). One gets the Frobeniusnumber λC, 0 < λC < 1, calculating
the characteristic polynomial of matrix C,

P2(λ) = det(C − λI) =
−1
160

λ(160λ2 − 60λ + 3) = −1
160

λ(λ − 0.0594)(λ − 0.3156). (4.77)

One obtains λC = 0.3156, themaximal profit rate R = (1/λC) − 1 = 2.1687 and the profit
rate r = R/2 = 1.0844, λ := 1

1+r > λC. With Theorem A.10.2 one gets the semi-positive
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matrix:

(I − (1 + r)C)−1 =
∞

∑
j=0

C j

λj
= [[

[

1.250 0.521 0
0.348 2.814 0
5.793 30.231 1

]]

]

≥ 0. (4.78)

One computes the vector π of labour per unit of commodity expressed in the units
[π] = (MJ/unit of commodity),

π := q̂−1L =
[[[

[

1
400 0 0

0 1
300 0

0 0 1
6

]]]

]

[[

[

5
10
10

]]

]

=
[[[

[

1
80
1
30
5
3

]]]

]

> o, (4.79)

and finally, considering the price p1 = 500 CHF/t. of wheat, one gets with Lemma 4.1.2
(b) thepositiveprice vectorp = [500, p2, p3] andcomputeswith the systemof equation

p = (I − (1 + r)C)−1πw = [[
[

1.250 0.521 0
0.348 2.814 0
5.793 30.231 1

]]

]

[[[

[

1
80
1
30
5
3

]]]

]

w = [[
[

500
p2
p3

]]

]

> o. (4.80)

the variables p2, p3, w, obtaining w = 15,151 CHF/MJ, p2 = 1,487 CHF/t. of iron and
p3 = 41,617 CHF/ kg of gold. 

Example 4.1.6 is of central importance in this Chapter 4 because it shows that a
complete Sraffa price model with positive surplus, distributed between the workers
as wages and the sectors as profits, generate positive prices for all commodities, if
suitable additional economic assumptions are fulfilled by the matrices and vectors of
the Sraffa price model under discussion. The Lemmas belonging to the group of the
Perron-Frobenius theorem can be applied. We see that there is an inter connecetion
between economic conditions and matrix theorems to obtain such positive prices.

4.1.4 Variables of national accounting in Sraffa’s price model

Let us now go back to the Subsection 4.1.2, where the various variables in connec-
tion with national income are defined and to the complete single-product Sraffa system
(PCMC, Par. 11, 12), i. e., (4.55) with the vector of labour L ≥ o. The quantity of labour
is measured inman-years.15 The wage rate w = w̃ ⋅ Y/L > 0 is usually positive, as well
as the national income Y > 0 (4.32), measuring the surplus, and the total quantity of
labour L = eL > 0. Again, matrix S is either non-negative and irreducible or positive,

15 The total quantity of labour L > 0 may also be presented as the total amount of labour (TAL).
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the input-output coefficientsmatrixC = Sq̂−1 is computed, the vector of surplus is semi-
positive, d ≥ o, the vector of total output is positive, q = Se+d > o and the production
scheme is described with matrix S or matrix C by

(S,L)→ (q̂)⇔ (C, q̂−1L)→ (I). (4.81)

The Frobenius number of matrix C is in the known limiting interval, 0 < λC < 1 (see
Lemma 4.1.1 (b)).16 The positive productiveness R = (1/λC)− 1 > 0 is computed, and we
get the complete single-product Sraffa system, where the rate of profits r can freely be
chosen within the range, 0 ≤ r < R, here again w is replaced by w = (w̃ ⋅ Y)/L > 0,

Sp(1 + r) + L ⋅ w̃ ⋅ Y
L
= q̂p = x,

Y = (q − Se)p,
L = eL.

(4.82)

Finally, we write down the explicit equations of system (4.82):

s11(1 + r)p1 + s21(1 + r)p2 + ⋅ ⋅ ⋅ + sn1(1 + r)pn + wL1 = q1p1,
s12(1 + r)p1 + s22(1 + r)p2 + ⋅ ⋅ ⋅ + sn2(1 + r)pn + wL2 = q2p2,

. . . = ⋅ ⋅ ⋅ ,

s1n(1 + r)p1 + s2n(1 + r)p2 + ⋅ ⋅ ⋅ + snn(1 + r)pn + wLn = qnpn,
d1p1 + d2p2 + ⋅ ⋅ ⋅ + dnpn = Y ,

L1 + L2 + ⋅ ⋅ ⋅ . + Ln = L,

w = w̃ ⋅ Y
L
.

(4.83)

In the sequel, we shall concentrate on computational aspects. The Sraffa price model
(4.82) has n + 2 equations and n + 4 unknown variables, the n absolute prices pi,
i ∈ {1, . . . , n}, the share of total wages to national income w̃, the total quantity of labour
L, the rate of profits r and the national income Y .17 Lemma 4.1.2 gives the necessary
conditions to obtain positive price vectors for the complete single-product Sraffa sys-
tem (4.82), p = [p1, . . . , pn] > o. These conditions are fulfilled for the following Exam-
ple 4.1.7 because matrix S and vector L are both positive.

16 Remark: The required semi-positiveness of vector d ≥ o and positivity of vector q = Se + d are
sufficient for the Frobenius number of matrix C = Sq̂−1 to be smaller that 1, λC < 1. One verifies that
the splitting of Y in profits P and wagesW , Y = P +W has no influence on this property, even ifW = 0
or P = 0.
17 The solution of (4.82) is usually performed by the following method: The rate of profits r is exoge-
nously given, 0 ≤ r ≤ R. Then, either a measurement unit of commodity i is taken as the numéraire
and pi = p0 is exogenous and given, the n + 2 remaining variables pj, (j ̸= i), Y , w̃, L are endoge-
nous, or national income Y = Y0 is taken as exogenous and given and the remaining n + 2 variables
p1, . . . , pn, w̃, L are endogenous. The remaining system (4.82) of n + 2 equations and the same number
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Example 4.1.7. Consider Sraffa’s two sector micro-economy (PCMC, Par. 5), an exten-
sion of the Example 3.1.3. In accordance with the production scheme (4.81), a vector
of labour L = [152, 152], measured in working hours, is introduced, see Table 4.1. The
workers get their salary at the end of the year.

Table 4.1: Input-Output Table in physical terms, Sraffa’s example PCMC, Par. 5.

Commodities Buying sectors Surplus Total
outputwheat iron

wheat (qr. wheat) s11 = 280 s12 = 120 d1 = 175 q1 = 575
iron (t. iron) s21 = 12 s21 = 8 d2 = 0 q2 = 20
labour (hours) L1 = 152 L2 = 152 L = 304

↓ ↓
production q1 = 575 q2 = 20

The wage per unit of labour is w = (w̃ ⋅ Y)/L (4.38). Then we obtain the single prod-
uct Sraffa system (4.82) together with the national income Y and the total quantity of
labour L.18 The working time is adapted in a way to get contemporary wages.

The productiveness R = 0.25 of this system is known from the calculation of the
Frobenuis number (3.47). We choose as profit rate r = r0 = 0.05, 0 ≤ r ≤ R.

Calibrate the system according to the following possibilities: Either we set the na-
tional income Y = Y0, where Y0 acts as the freely chosen exogenous variable (see
PCMC, Par. 11), or, we choose a numéraire and set the corresponding price pi = p0,
i ∈ {1, 2}, where p0 acts as a freely chosen exogenous variable (PCMC, Par. 3).

We summarise the entries (4.14) of the complete single-product Sraffa system (4.82)
for the present case.

S = [ 280 120
12 8

] , q = [ 575
20
] , d = [ 175

0
] , L = [ 152

152
] . (4.84)

Present a table with the economic variables X, K, Y , P,W , U = Y/L and the ratios r,
w, ̃r, w̃, R̃ (4.32), (4.33), (4.34), (4.35).

of endogenous variables is comfortably solved as a system of simultaneous equations with software
packages, likeMATHEMATICA orMATLAB. Note that fixing again a measurement unit of commodity
i as the numéraire, the price pi = p0 and the rate of profits r are exogenous and given; further setting
the wage rate w = (w̃ ⋅ Y)/L as a variable, the system becomes linear and we can determine the n − 1
variables pj, (j ̸= i), together with the n-th variable w in (4.55).
18 For calculation purposes we have taken here the same commodity flow matrix S as previously,
although to be quite consistent this matrix should be modified to account for the fact that all labour is
now regrouped in the second left-hands terms (see PCMC Par. 8).
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Solution to Example 4.1.7:
Webegin, settingup the complete single-product Sraffa system (Sraffapricemodel)with
the matrix and vectors (4.84). We are now ready for computational illustrations. We
treat three cases of parametrisation, keeping in mind that these examples are not ex-
haustive.

[
280 12
120 8

] [
p1
p2
] (1 + r) + w̃ ⋅ Y

L
[

152

152
] = [

575 ⋅ p1
20 ⋅ p2

] ,

Y = [175,0] [ p1
p2
] ,

L = [152, 152] [ 1
1
] .

(4.85)

Case 1. We set Sraffa’s normalisation of the national income (4.37), Y = 1 GDP, and
Sraffa’s normalisation of the total quantity of labour (4.30), L = 1 TAL. Compute p1, p2,
w̃. Wewill now start to solve the complete single-product Sraffa system (4.85).19 Having
set Y = 1 GDP and the “artificial numéraire” is GDP = currency/year, we calculate the
prices p1, p2 and the share of total wages to national income w̃.20 See Table 4.2.

{{{
{{{
{

(280p1 + 12p2)(1.05) +
1
2 ⋅ w̃ = 575p1,

(120p1 + 8p2)(1.05) +
1
2 ⋅ w̃ = 20p2,

(575 − 280 − 120)p1 + (20 − 12 − 8)p2 = 1.

(4.89)

19 It is also possible to compute the complete single-product Sraffa system based on the entities per
unit of commodity (4.58). Using here labour, measured in working hours, we have to determine the
vector π of labour per unit of commodity (4.58) giving,

π = q̂−1L = [ w1
w2
] = [

1
575 0

0 1
20

][
152
152
] = [

152
575
152
20

] , (4.86)

the units in physical terms being: [w1] = hour/qr. of wheat, [w2] = hour/t. of iron. Continuing with
the computation of the matrix of input coefficients C (2.16) in physical terms

C = Sq̂−1 = [ 280 120
12 8

][
1
575 0

0 1
20

] = [
56
115 6
12
575

2
5

] , C = [
56
115

12
575

6 2
5

] (4.87)

Sraffa’s price model (4.82) is then expressed in commodity units as:

[
56
115

12
575

6 0.4
][

p1
p2
] (1 + r) + [

152
575
152
20

] ⋅
w̃ ⋅ Y
304
= [

p1
p2
] , Y = [175,0] [ p1

p2
] . (4.88)

20 This is exactly Sraffa’s price model with normalised labour L = 1 TAL and normalised national
income Y = 1 GDP giving w̃ = |w| = |W |.
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Solving the system (4.89), we obtain the relative prices p1 = (1/175) GDP/qr. wheat,
p2 = (37/385) GDP/t. iron and directly the share of total wages to national income w̃ =
(304/385) = 0.7896.

We use the obtained values of p1, p2 and w̃ to calculate the economic variables
(4.31), (4.32) and ratios (4.34), (4.35),

X = qp = [575, 20][
1
175
37
385

] =
401
77

GDP,

K = (Se)p = [400, 20][
1
175
37
385

] =
324
77

GDP,

P = (Se)p ⋅ r = K ⋅ r = [400, 20][
1
175
37
385

] ⋅ 0.05 = 81
385

GDP,

Y = dp = X − K = 401
77
−
324
77
= 1 GDP, (4.90)

W = Y − P = 1 − 81
385
=
304
385

GDP,

w = w̃ ⋅ Y
L
=
304
385
⋅
1
1
=
304
385

GDP
TAL
,

U = Y
L
=
1
1
= 1 GDP

TAL
. (4.91)

Then we compute the rates and shares

̃r = P
Y
=

81
385 ⋅ 1
=

81
385
= 0.2104,

w̃ = W
Y
=

304
385 ⋅ 1
=
304
385
= 0.7896,

R̃ = Y
K
=
1 ⋅ 77
324
=

77
324
= 0.2377,

r = R̃(1 − w̃) = (Y
K
)(1 − w̃) = 1 ⋅ ( 77

324
)(1 − 304

385
) = 0.05. (4.92)

The rate of profits r = P/K = 81
385 /

324
77 = 0.05, the economic identity for the national

income Y = W + P = L ⋅ w + P = 1 ⋅ (304/385) + (81/385) = 1 GDP and the economic
identity for the total output X = Y + K = 1 + (324/77) = (401/77), as well as Y = R̃ ⋅ K =
(77/324)(324/77) = 1 GDP are confirmed.

We confirm the identity |w| = |w̃| = |W | = 0.7896. Sraffa uses variable w in his
price model ([108], Par. 11), and we also see that R = 0.25 ̸= R̃ = 0.2377. This will be
discussed later. The numerical equality of wage per unit of labour and the share of
total wages is here confirmed, w̃ = W/Y = W/L = w = (304/385), but the units are
different, as mentioned.

Note that the relative prices are given in the physical units:

[p1] = (GDP/qr. wheat) and [p2] = (GDP/t. iron).
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Table 4.2: Calculated variants and invariants of Case 1.

Variable terms Invariant terms
notion value notion value

total output X = 5.2078 GDP productiveness R = 0.25
circulating capital K = 4.2078 GDP rate of profits r = 0.05
total profits P = 0.2104 GDP share of t. profits ̃r = 0.2104
total wages W = 0.7896 GDP surplus ratio R̃ = 0.2377
national income (NI) Y = 1 GDP share of t. wages w̃ = 0.7896

average NI per labour U = 1 GDP
TAL

wage per unit of labour w = 0.7896 GDP
TAL

Case 2. The “numéraire” is 1 qr. wheat and the price of wheat is set up. and we obtain
p1 = 1 (qr. wheat/qr. wheat) = 1 and the rate of profit is r = 0.05. Sraffa’s normalisation
of the total quantity of labour (4.30), L = 1 TAL, is applied. This being done, we cal-
culate the complete single-product Sraffa system (4.85) with normalised labour L = 1
TAL, getting p2, Y , w̃. See Table 4.3.

{{{
{{{
{

(280 ⋅ 1 + 12p2)(1.05) +
1
2 ⋅ w̃ ⋅ Y = 575 ⋅ 1,

(120 ⋅ 1 + 8p2)(1.05) +
1
2 ⋅ w̃ ⋅ Y = 20p2,

(575 − 280 − 120) ⋅ 1 + (20 − 12 − 8)p2 = Y .

(4.93)

We thus obtain by solving (4.93) the national income Y = 175 qr. wheat, the relative
price p2 = (185/11) = 16.8182 qr. wheat/t. iron and the share of total wages to national
income w̃ = (304/385) = 0.7896.

We introduce the obtained variables p1, p2 and w̃ to calculate the economic vari-
ables (4.31), (4.32) and ratios (4.34), (4.35),

X = qp = [575, 20] [ 1
185
11
] =

10,025
11

qr. wheat,

K = (Se)p = [400, 20] [ 1
185
11
] =

8,100
11

qr. wheat,

P = (Se)p ⋅ r = K ⋅ r = [400, 20] [ 1
185
11
] ⋅ 0.05 = 405

11
qr. wheat,

Y = dp = X − K = 10,025
11
−
8,100
11
= 175 qr. wheat, (4.94)

W = Y − P = w̃ ⋅ Y = 175 − 405
11
=
304
385
⋅ 175 = 1,520

11
qr. wheat,

w = w̃ ⋅ Y
L
=
304
385
⋅
175
1
=
1,520
11

qr. wheat
TAL
,

U = Y
L
=
175
1
= 175 qr. wheat

TAL
, (4.95)
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Table 4.3: Calculated variants and invariants of Case 2.

Variable terms Invariant terms
notion value notion value

total output X = 911.36 qr. wheat productiveness R = 0.25
circulating capital K = 736.36 qr. wheat rate of profits r = 0.05
total profits P = 36.82 qr. wheat share of t. profits ̃r = 0.2104
total wages W = 138.18 qr. wheat surplus ratio R̃ = 0.2377
national income (NI) Y = 175 qr. wheat share of t. wages w̃ = 0.7896

average NI per labour U = 175 qr. wheat
TAL

wage p. unit of labour w = 138.18 qr. wheat
TAL

and the rates and shares

̃r = P
Y
=

405
11 ⋅ 175

=
81
385
= 0.2104,

w̃ = W
Y
=

1,520
11 ⋅ 175

=
304
385
= 0.7896,

R̃ = Y
K
=
175 ⋅ 11
8,100
=

77
324
= 0.2377,

r = R̃(1 − w̃) = (Y
K
)(1 − w̃) = ( 77

324
)(1 − 304

385
) = 0.05. (4.96)

The rate of profit r = P/K = ( 40511 )/(
8,100
11 ) = 0.05, the economic identities for the na-

tional income Y = W + P = L ⋅ w + P = 1 ⋅ (1,520/11) + (405/11) = 175 qr. wheat and
for the total output X = Y + K = 175 + 736.36 = 911.36 qr. wheat are confirmed. Here,
we have |w| = 138.18 ̸= |w̃| = 0.7896 and also R = 0.25 ̸= R̃ = 0.2377 and finally
Y = R̃ ⋅ K = (77/324)(8,100/11) = 7 ⋅ 25 = 175 qr. wheat.

Case 3. Themonetary numéraire is 1 CHF. Consequently, we estimate the price ofwheat
to p1 = 55 (CHF/qr. wheat). We abandon the idea of the normalised labour, and we es-
timate that in this micro-economy (PCMC, Par. 5) the needed total quantity of labour
is L = 304 working hours to produce with modern technology the relatively small
amounts of wheat and iron. This being said, taking the complete single-product Sraffa
system (4.85), we then calculate p2, Y , w̃. See Table 4.4.

{{{
{{{
{

(280 ⋅ 55 + 12p2)(1.05) + 152 ⋅
w̃⋅Y
304 = 575 ⋅ 55,

(120 ⋅ 55 + 8p2)(1.05) + 152 ⋅
w̃⋅Y
304 = 20p2,

(575 − 280 − 120) ⋅ 55 + (20 − 12 − 8)p2 = Y .

(4.97)

We thus obtain the relative price p2 = 925 CHF, the national income Y = 9,625 CHF and
the share of total wages to national income w̃ = (304/385) = 0.7896.
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Table 4.4: Calculated variants and invariants of Case 3.

Variable terms Invariant terms
notion value notion value

total output X = 50,125 CHF productiveness R = 0.25
circulating capital K = 40,500 CHF rate of profits r = 0.05
total profits P = 2,025 CHF share of t. profits ̃r = 0.2104
total wages W = 7,600 CHF surplus ratio R̃ = 0.2377
national income (NI) Y = 9,625 CHF share of t. wages w̃ = 0.7896

average NI per labour U = 31.66 CHF
hour

wage/unit of labour w = 25 CHF
hour

We use all the available variables p1, p2 and w̃ to calculate the remainder of the
economic variables (4.31), (4.32) and ratios (4.34), (4.35),

X = qp = [575, 20] [ 55
925
] = 50,125 CHF,

K = (Se)p = [400, 20] [ 55
925
] = 40,500 CHF,

P = (Se)p ⋅ r = K ⋅ r = [400, 20] [ 55
925
] = 2,025 CHF,

Y = dp = X − K = 50,125 − 40,500 = 9,625 CHF,

W = Y − P = 9,625 − 2,025 = 7,600 CHF,

w = w̃ ⋅ Y
L
= w̃ Y

L
=
304
385
⋅
9,625
304
= 25 CHF

hour
,

U = Y
L
=
9,625
304
= 31.66 CHF

hour
, (4.98)

then the rates and shares,

̃r = P
Y
=
2,025
9,625
=

81
385
= 0.2104,

w̃ = W
Y
=
7,600
9,625
=
304
385
= 0.7896,

R̃ = Y
K
=

9,625
40,500

=
77
324
= 0.2377,

r = R̃(1 − w̃) = (Y
K
)(1 − w̃) = ( 77

324
)(1 − 304

385
) = 0.05. (4.99)

The rate of profit r = (P/K) = (2,025/40,500) = 0.05, the economic identity for the
national income Y = W + P = L ⋅ w + P = 304 ⋅ (7,600/304) + 2,025 = 9,625 CHF and
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the economic identity for the total output X = Y + K = 7,600 + 2,025 = 9,625 CHF are
confirmed.

In this example, we found: |w| = 25 ̸= |w̃| = 0.7896 and R = 0.25 ̸= R̃ = 0.2377 and
Y = R̃ ⋅ K = (77/324)(40,500) = 77 ⋅ 125 = 9,625 qr. wheat.

Conclusion: We observe that in the three cases the productiveness R = 0.25 depends on the Frobenius
number λC = 0.8 = 1/(1+R) of the positive input-output coefficients matrix C (4.87). The rate of profits
being set equal to r = 0.05, the share of total profits ̃r = P/Y = 0.2104, the share of total wages
w̃ = W/Y = 0.7896 also remain unchanged, confirming the rule ̃r + w̃ = 1 (4.34).

Finally, the share of national income to circulating capital R̃ = Y/K = 0.2377 (dimensionless) also
remains unchanged, whereas the average national income per unit of quantity of labour U = Y/L, and
the wage per unit of labour w = W/L depend on the measurement unit of labour L.

Example 4.1.7 illustrates the important general relation (4.36),

R̃(1 − w̃) = r = (77/324)(1 − (304/385)) = 0.05.

Moreover, if there are no wages, then r = R = 0.25⇒ w̃ = 0⇒ R = R̃.

4.2 From a productive Sraffa model to a productive Leontief model

In this subsection, we investigate the productive Sraffamodel, as defined in (3.52), and
transform it in a productive Leontief model, Definition A.12.1, (A.110) .

For this purpose, we start from the Sraffa price model (4.82), i. e., the complete
single-product Sraffa system. With the extension of Sraffa’s example (PCMC, Par. 5),
Example 4.1.7, Case 3, including now the calculation of the economic variables X, K,
W , P, W , having absolute positive prices in the CHF currency, we have prepared the
foundations for what follows.

We transform all the entries of Sraffa’s example (PCMC, Par. 5), which are in phys-
ical terms, into value terms, using appropriated prices. Then, we pour the obtained
values into a Leontief Input-Output Table. Moreover, we are in presence of the com-
fortable positivity of the commodity flowmatrix S > 0 and semi-positivity of the vector
of surplus d ≥ o, giving the vector of total output q = Se + d > o, Table 4.1. With the
vector of labour L > o, we formulate the production scheme (S,L)→ (q̂).

Example 4.2.1. The currency is CHF. Take the entries of Example 4.1.7, (PCMC, Par. 5),
namely matrix S > 0, vectors q > o, d ≥ o, L > o (4.84), and from the third case
(4.97) the price vector p = [55, 925], obtained with the rate of profits r = 0.05, w = 25.

Compute the positive commodity flowmatrix Z = p̂S in monetary terms, the posi-
tive vector of total output x = q̂p and the semi-positive vector of final demand f = d̂p.
Establish the input-output coefficientsmatrixA = Zx̂−1. Show that the Frobenius num-
ber λA ofmatrixA is in the range, 0 < λA < 1. Compute theproductivenessR = (1/λA)−1.
Calculate the Leontief Inverse (I−A)−1 and the solution x = Ax+ f (2.30). Compute the
values of the economic variables X, K, Y , P andW in CHF.
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Solution of Example 4.2.1:
We begin by computing the commodity flow matrix Z = p̂S (2.113), the vector of
labour L, the vectors of total output x and final demand f, all in monetary terms (CHF):

Z = [ z11 z12
z21 z22

] = p̂S = [ p1 0
0 p2

] [
s11 s12
s21 s22

]

= [
55 0
0 925

] [
280 120
12 8

] = [
15,400 6,600
11,100 7,400

] > 0, L = [ 152
152
] . (4.100)

We determine with equations (2.105) the elements xi = piqi, zij = pisij, fi = pidi. The
calculation can be presented in condensed matrix equations as follows,

x = [ x1
x2
] = q̂p = [ q1p1

q2p2
] = [

575 ⋅ 55
20 ⋅ 925

] = [
31,625
18,500

] > o, (4.101)

f = [ f1
f2
] = d̂p = [d1 0

0 d2
] [

p1
p2
] = [

175 0
0 0
] [

55
925
] = [

9,625
0
] ≥ o. (4.102)

Then we compute the input-output coefficientsmatrix, which is consequently positive:

A = Zx̂−1 = [ 15,400 6,600
11,100 7,400

][
1

31,625 0

0 1
18,500

] = [
56
115

66
185

444
1,265

2
5

] > 0. (4.103)

We calculate the characteristic polynomial

P2(λ) = det(A − λI) =
8
115
−
102
115

λ + λ2 = (λ − 2
23
)(λ − 4

5
). (4.104)

As there is a surplus, due to Lemma 4.1.1 (b), the Frobenius number of matrix C = Sq̂−1

is smaller than 1, λC < 1. Moreover with Lemma A.6.1, there is equality between the
Frobenius numbers, λA = λC = 4/5 < 1. The productiveness is R = (5/4) − 1 = 0.25,
identical to the valueobtained from the input-output coefficientsmatrixC (3.47) (PCMC,
Par.5). The Leontief Inverse exists because λA < 1. Due to Theorem A.10.2, the Leontief
Inverse is positive,

(I − A)−1 = [
23
7

506
259

148
77

59
21

] > 0. (4.105)

Consequently, we obtain a positive productive solution:

x = (I − A)−1f = [
23
7

506
259

148
77

59
21

][
9,625
0
] = [

31,625
18,500

] > o,

x = Ax + f = [
56
115

66
185

444
1,265

2
5

][
31,625
18,500

] + [
9,625
0
] = [

31,625
18,500

] > o. (4.106)

Now, we compute the values of the economic variables X, K, Y , P and W , based on
matrix Z and vectors x and f in monetary terms.
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X = ex = [1, 1] [ 31,625
18,500 ] = 50,125 CHF,

K = eZe = [1, 1] [ 15,400 6,600
11,100 7,400 ] [

1
1 ] = 40,500 CHF,

Y = ef = [1, 1] [ 9,6250 ] = 9,625 CHF,

P = K ⋅ r = 40,500 ⋅ 0.05 = 2,025 CHF,
W = Y − P = 9,625 − 2,025 = 7,600 CHF. (4.107)

Taking the single-product Sraffa system (4.97) with positive commodity flow, an input-
output vector and labour, we obtain positive prices, obtain the Input-Output Table 4.5,
set up on the basis of Table 2.2 in Miller and Blair ([65], p. 14), then the value-added
υ = x − Ze = [5,125, 4,500], the wages li = w ⋅ Li = 25 ⋅ 152 = 3,800, i = 1, 2, resulting in
the vector of wagesW = [3,800, 3,800] and further the vector of profits P = υ −W =
[n1, n2] = [1,325, 700]. There are the identities li +ni = υi, i ∈ {1, 2},W = l1 + l2 = 7,600,
P = n1 + n2 = 2,025, Y = W + P = 7,600 + 2,025 = 9,625, L = 304. Remember the wage
rate w = w̃(Y/L) = (W/Y)(Y/L) = (W/L) = (7,600/304) = 25 CHF/hour. 

Table 4.5: Input-Output Table in monetary terms for Sraffa’s model with r = 0.05.

Currency = CHF Buying sectors Final demand Total output
wheat iron

wheat z11 = 15,400 z12 = 6,600 f1 = 9,625 x1 = 31,625
iron z21 = 11,100 z21 = 7,400 f2 = 0 x2 = 18,500
wages l1 = L1w = 3,800 l2 = L2w = 3,800 W = 7,600
profits n1 = 1,325 n2 = 700 P = 2,025
value-added 1 = 5,125 2 = 4,500 Y = 9,625
production x1 = 31,625 x2 = 18,500 X = 50,125

This result is generalised.
(A) We exclude the cases of no surplus or no final demand, d = f = o because we are

in the presence of productivemodels.
(B) We consider a semi-positive n×n commodity flowmatrix S ≥ 0, a n×1 semi-positive

vector of surplus d ≥ o in physical units.

We compute the vector of total output q = Se+d. The matrix C = Sq̂−1 and the produc-
tive Sraffa model, q = (Cq̂)e + d = Cq + d > o, correspond to the production scheme
(S,L)⇒ (q̂). We have chosen an appropriate currency or numéraire.

In the case of requested additional irreducibility ofmatrices S and C and of a semi-
positive vector of labour, L ≥ o, the n × 1 price vector of the complete single-product
Sraffa system (4.82), p > o, is positive due to Lemma 4.1.2 (a). In the case of semi-
positivity only ofmatrices S andC and the presence of a positive vector of labour L > o,
the Lemma 4.1.2 (b) guarantees the existence of a positive price vector p > o.
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With the established productive Sraffa model q = Cq + d > o and the obtained
positive price vector p > o,we then consequently get a semi-positive n × n commodity
flow matrix Z = p̂S ≥ 0, a semi-positive n × 1 vector of final demand f = p̂d ≥ o
and a positive n × 1 vector of total output x = p̂q > o in monetary terms. Finally, we
calculate the semi-positive input-output coefficients matrix A = Zx̂−1 ≥ 0 and set up
the productive Leontief model x = Ax + f.

Lemma 4.2.1. The productive Sraffa model q = Cq + d, for matrices in physical terms
and the productive Leontief model (A.110), Definition A.12.1, x = Ax + f, for matrices in
monetary terms are equivalentwith the transformation equations (2.18),x = p̂q,Z = p̂S,
f = p̂d for a positive price vector p > o and the equalities S = Cq̂, Z = Ax̂.

Proof. Equivalence has to be proved, for this reason we show both, the sufficient and
the necessary conditions.
⇒ (sufficiency): We start with q = Cq + d and multiply this identity from the left

with the diagonal matrix p̂, in order to get,

q = Cq + d = (Cq̂)e + d = Se + d⇒ p̂q = x = (p̂S)e + p̂d
= Ze + f = (Ax̂)e + f = Ax + f > o⇔ f = (I − A)x. (4.108)

⇐ (necessity): We start now from the other side, taking x = Ax + f and multiply
this identity from the left with the inverse diagonal matrix p̂−1, and we get,

x = Ax + f = (Ax̂)e + f = Ze + f = p̂q = (p̂S)e + p̂d = p̂(Se + d)

⇒ p̂−1(p̂q) = p̂−1(p̂(Se + d)) = ((Cq̂)e + d) = q = Cq + d
⇔ d = (I − C)q. (4.109)

Complement: (Assumption 2.2.1 and Assumption 2.2.2 hold.) We assume that ma-
trices A and C are irreducible. Furthermore, they are similar and have therefore the
same Frobenius number λC = λA < 1, according to Lemma A.6.1. The Leontief Inverses
(I−A)−1, (I−C)−1 exist, because λA < 1, according to Lemma4.1.1 (b). Furthermore, they
are positive (I − A)−1 > 0, (I − C)−1 > 0, according to Theorem A.10.2 equation (A.103).
Thus, the productive Leontief model x = Ax+ f has with f ≥ o the unique positive solu-
tion vector of total output inmonetary terms, x = (I − A)−1f > o. The productive Sraffa
model q = Cq + d has with d ≥ o the unique positive solution vector of total output in
physical terms, q = (I − C)−1d > o.

4.3 The complete single-product Sraffa system and national
accounting

The single-product Sraffa system (PCMC, Par. 11) (4.41) is again reproduced here:

Sp(1 + r) + Lw = q̂p, (4.110)
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and is now correlated with the national accounting identities. National income Y , here
approximately assimilated to GDP, is either expressed in its components of factor pay-
ments, having been simplified to Y = W + P, or in components of expenditure, i. e.,
total consumption C plus total investment I plus total government purchases G and
net exports (E − M), in short: Y = C + I + G + (E − M), see also Miller and Blair [65],
p. 15, and Mankiw [63], pp. 24–26,

Y = P +W = C + I + G + (E −M). (4.111)

We summarise the variables we will use in this context:
Y : national income (∼ GDP) = surplus in value terms;
P: total gross profits;
W : total wages;
̃r: share of total profits (profit share of total (factor) income), ̃r = P/Y ;
w̃: share of total wages (wage share of total (factor) income), w̃ = W/Y ;
R̃: share of national income to circulating capital, R̃ = Y/K.

In normalised form, we obtain with (4.111)

P
Y
+
W
Y
= ̃r + w̃ = 1, (4.112)

̃r again representing the share of total profits P and w̃ the share of wagesW to national
income Y .

One should note here in passing that Sraffa (PCMC, Par. 12) makes no reference
to effective demand, or to any demand function for that matter: the total surplus d is
implicitly supposed to be consumed and then split intowages and profits.Wenowpro-
ceed with a left-multiplication of the single-product Sraffa system (4.110) by the sum-
mation vector e to finally attain the circulating capital K, plus the value of the surplus,
the national income Y , the sum of the totalwagesW and the total profits P, forming all
three constituents of total output X. We obtain:

eSp(1 + r) + eLw = eSp + eSpr + eLw = eq̂p,

X = K + (P +W) = K + Y . (4.113)

As an illustration, we present the national accounting entities of the foregoing Exam-
ple 4.2.1, Case 3.

Example 4.3.1. From Table 4.5 we obtain the following national accounting entities,
economic variables and ratios. We have total wages W = 7,600, total profits P = 2,025,
the national income Y = 9,625 and circulating capital K = 40,500, so there is ̃r = P/Y =
2,025/9,625 = 0.21104, w̃ = W/Y = 7,600/9,625 = 0.7896, R̃ = Y/K = 9,625/40,500 =
0.2377 and r = R̃ ⋅ (1 − w̃) = 0.2377 ⋅ (1 − 0.7896) = 0.05. 
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Then, the national income Y (or gross national income, see Miller and Blair [65],
p. 15), is aggregated and normalised (PCMC, Par. 12, p. 11), see also Kurz and Salvadory
[52], p. 98, (4.5b). Together with relationship (4.37) we get, normalising,

Y := dp = (q − Se)p = 9,625 CHF := 1 GDP. (4.114)

Applying (4.111) and (4.114), considering the total circulating capitalK, the part of prof-
its P and the part of wagesW , as well as the national income Y , we find the identities

K = (Se)p, P = ((Se)p)r = K ⋅ r, W = (eL)w = L ⋅ w
Y = P +W = r(Se)p + eLw = dp = 1 GDP. (4.115)

Sraffa proceeded with the normalisation of national income and of the total amount
of labour. Following these lines, we study now the resulting algebraic simplifications.
Let us start with the normalisation of labour by Sraffa (PCMC, Par. 10),

L := eL = 1 TAL. (4.116)

Now with the normalisation (4.116), L = 1, and (4.114), Y = 1, skipping the new
physical units, some expressions are greatly simplified. We consider equation (4.46)
W = w ⋅ L = w, the rate of profits r = P/K, the share of total wages, w̃ = W/Y = W ,
the share of total profits, ̃r = P/Y = P and the ratio of national income to total capital,
R̃ = Y/K = 1/K. We further have without measurement units:

w̃ = W
Y
= W = wL

Y
= w ⋅ 1

U
= w, U = Y

L
= 1, (4.117)

the average national income per unit of quantity of labour, and we keep

r = P
K
=
P
Y
⋅
Y
K
= ̃r ⋅ R̃. (4.118)

We also keep from (4.36),

r = R̃ ⋅ P
Y
= R̃ ⋅ Y −W

Y
= R̃ ⋅ (1 − W

Y
) = R̃ ⋅ (1 − w̃), (4.119)

and find again

w = W
L
=
W
Y
⋅
Y
L
= w̃ ⋅ U = w̃. (4.120)

The foregoing enables us quite trivially to write the relationship between r and ̃r, and
w and w̃,

rK = ̃rY = ̃r, W = wL = w̃Y . (4.121)

Closing this section, we remark that normalisation of Y and L induces identities such
as |w| = |W | and |w| = |(w̃ ⋅ Y)/L| = |w̃| in the single-product Sraffa system (4.110).
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4.4 Basic commodities and non-basic commodities

In this section, we introduce the notions of basic commodities and non-basic com-
modities (PCMC, Par. 6, 7,) for single-product industries along the lines of Sraffa’s defi-
nitions, e. g., every industry or branch producing exactly one commodity.

(PCMC, Par. 6) “The criterion is whether a commodity enters (no matter whether directly or indi-
rectly) into the production of all commodities. Those that do so we shall call basic, and those that
do not, non-basic commodity.
We shall assume throughout that any system contains at least one basic commodity.”

Earlier on, Sraffa characterises rather quaintly non-basic commodities also as luxury
products. He provides examples of racehorses, ostriches or ostrich eggs.21 As usual,
we will use the terms basic products and basic commodities, respectively non-basic
products and non-basic commodities synonymously, as do many authors.

Sraffa then introduces the notion of basic industries (PCMC, Par. 25) and of non-
basic industries (PCMC, Par. 35). In the context of single-product industries, each basic
commodity is produced by exactly one basic industry and each non-basic commodity
is produced by exactly one non-basic industry. Consequently, as the correspondence
is one to one, commodities may be formally identified with the industry producing
them. We shall use this possibility in the developments presented next.

Roncaglia ([97], p. 60) has reformulated more precisely the definition of basic
products and non-basic products and defines:

Basic products are “commodities that enter directly or indirectly as means of production in every
and each sector of production”, and on the contrary, non-basic commodity are “commodities which
donot serve asmeans of production orwhichare used, directly or indirectly, only in a limited number
of processes”.22

Until further notice, we deal with single-product industries and their representation
by the adjacency matrix and the associated digraph. We will see that it is necessary
to have strict criteria to determine if products in a given process of production are ba-
sic, entering directly or indirectly into the various industries constituting the process
or if, on the contrary, they are non-basic. Fortunately, all these criteria exist. They
have been precisely established since the publication of Sraffa’s book PCMC ([109],
1960).

At present, we introduce the mathematical notions, Lemmas, Theorems and cri-
teria that serve as the basis to determine whether the products entering directly or

21 The example is of course exotic: even in Sraffa’s original model based on the production of goods
only in a closed economy, beer and other alcoholic beverages are non-basic, but they are certainly not
luxury products.
22 This definition will be later illustrated by Sraffa Networks (Section 4.6, respectively Defini-
tion A.14.11), e. g., Example 6.4.2 and Figure 6.5.
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indirectly into a process are basic or are non-basic. They are systematically presented
in Appendix A.

The ongoing presentation of basics and non-basics in relation with the notion of
reducible and irreducible matrices has been developed by Pasinetti [80], Steedman
[114] and brought to maturity by Schefold [103]. We start by presenting this concept
and corresponding ideas.

Consider aprocess of production, presented in termsofn single-product industries,
and described by the entries sij of the n × n commodity flow matrix S = (sij), i, j =
1, . . . , n. This means, economically speaking, commodity i enters into the production
of commodity j.

The matrix S is semi-positive, containing eventually some zero elements. From
Sraffa’s description of basic commodities and non-basic commodities, it is immedi-
ately evident that an appropriate commodity flow matrix S of an economy has to be
brought in the following form, called the “canonical form”, after eventually reorder-
ing the industries and products,

S = [
S11 0

S12 S22
] , (4.122)

where S11 is a square matrix that refers to basic commodities entering the production
of other basics only. S22 is also a square matrix that refers to non-basic commodities
only, in the same sense. S12 refers to basic commodities entering the production of
non-basics. If S12 = 0, then the economy is split into two independent economies that
have no connection with one another.

But generally, the basic commodities and the non-basic commodities of an econ-
omy are mixed in the process of production. Then it cannot be expected for the com-
modity flow matrix S to have the aspect shown in equation (4.122). The mixture of the
basic and non-basic commodities will entail the zero elements of the matrix S to be
disseminated over the whole matrix. See as an example the matrix, called Z1, in Exer-
cise A.8.1, and its transformation into “canonical form”.

This suggests the idea to formally separate in a given economy the basic com-
modities from the non-basic commodities, thus forming two categories, in order to
get the basic commodities in some set, separated from the non-basic commodities in
another set. But various non-basics are however dependent for their production on
basics. See hereafter for the characterisation of the two categories and their represen-
tative sets.

Fortunately, there exists a procedure, described by Definition A.8.3 which details
how to transform the given commodity flowmatrix S, by multiplication with a permu-
tation matrix P, Definition A.8.2 into a “canonical form” (4.122), realising the separa-
tion of basics from non-basics. If this is possible, the initialmatrix S is called reducible.
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A permutation matrix P exists, so that the submatrix S̃11 is irreducible.23 We obtain,

S = [
S11 S12
S21 S22

]⇒ P−1SP := S̃ = [
S̃11 0

S̃12 S̃22
] . (4.123)

The distinction between basic and non-basic commodities can be described by the
properties of irreducible matrices and reducible matrices of the corresponding produc-
tion process. Indeed, if matrix S is an irreduciblematrix, then “all the commodities in
the economic system are basic commodities”, see Pasinetti ([80], p. 104), and he adds:
“…on the other hand if the matrix is reducible, some of the commodities are basic com-
modities, while others are non-basic commodities”.

The relationship between the property basics and irreducibility, respectively non-
basics, and reducibility is treated in Lemma A.15.1 and Lemma A.15.2.

Remark. If matrix S > 0 is positive, then this matrix is irreducible and all the com-
modities represented by S are basic and enter directly as means of production into the
production process.24

We continue to present and develop some essential notions that are needed for
that purpose, such as the adjacency matrix and the digraph.

We represent the n×n commodity flowmatrix S = (sij), by an n×n adjacencymatrix
V = (υij), i, j = 1, . . . , n, υij = 1 ⇔ sij > 0 and entry υij = 0 ⇔ sij = 0, Definition A.14.8.
The directed digraph, associated with the adjacency matrix V, is called the commodity
digraph G(V).

Let’s illustrate the newly presented notions by the following example.

Example 4.4.1. Considerhere the four commodity flowmatricesSl = (slij), i, j = 1, . . . , n,
l = 1, . . . , 4 of four different processes of production.
(1) Establish the adjacency matrices and the corresponding commodity digraphs.
(2) Determine the processes of production containing non-basic commodities.

S1 =
[[

[

90 50 40
120 125 40
60 150 200

]]

]

, S2 =
[[

[

280 180 115
240 240 120
0 0 0

]]

]

,

S3 =
[[

[

90 0 40
50 125 0
0 60 200

]]

]

, S4 =
[[

[

90 50 0
120 125 0
0 0 200

]]

]

. (4.124)

Solution to Example 4.4.1:
First of all, we determine the adjacency matricesVi, i = 1, . . . , 4 of these four processes
of production.

23 A matrix is irreducible if it is not reducible.
24 The question of the construction of the permutation matrix P is not treated in this text.
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V1 =
[[

[

1 1 1
1 1 1
1 1 1

]]

]

, V2 =
[[

[

1 1 1
1 1 1
0 0 0

]]

]

,

V3 =
[[

[

1 0 1
1 1 0
0 1 1

]]

]

, V4 =
[[

[

1 1 0
1 1 0
0 0 1

]]

]

. (4.125)

Now we present the commodity digraphs of the adjacency matrices V1, V2, V3, V4 of
these production economies.

Theorem A.14.1 (see Varga [118], p. 20), says that a matrix Vi is irreducible, if and
only if its corresponding commodity digraphs G(Vi) is strongly connected, according
to Definition A.14.9.

The commodity digraph G(V1), see Figure 4.2 (left), is a node-complete digraph, ac-
cording to Definition A.14.3. It is also a strongly connected digraph, according to Def-
inition A.14.9. Therefore V1, respectively S1, are irreducible (see Lemma A.15.3). This
economy contains accordingly only basic commodities.

Figure 4.2: (Left) Commodity digraph G(V1); (right) commodity digraph G(V2).

The commodity digraph G(V2), see Figure 4.2 (right), is only a weakly connected
digraph (see Definition A.14.10). Therefore V2, respectively S2, are reducible (see
Lemma A.15.2) and this economy thus contains therefore some non-basic commodi-
ties. In fact in this case, commodity 3 is non-basic.

The commodity digraph G(V3), Figure 4.3 (left), is also a strongly connected di-
graph, because it contains a directed circle,25 covering the whole set of the digraph,
see also Skiena [105]. The matrix V3 is irreducible and the corresponding production
economy contains only basic commodities (see Lemma A.15.3).

25 A directed cycle in a digraph may be defined either as a closed walk with no repetitions of vertices
and edges allowed, other than the repetition of the starting and ending vertices, and possibly some
intermediate vertices, or as the set of edges in such a walk.
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Figure 4.3: (Left) commodity digraph G(V3); (right) commodity digraph G(V4).

The commodity digraph G(V4), Figure 4.3 (right), is disconnected, according to Defini-
tion A.14.10 and has two components.26 It is only a weakly connected digraph. There-
fore V4, respectively S4, are reducible (see Lemma A.15.2) fact, even completely re-
ducible, and this economy contains therefore some non-basic commodities. As ex-
pected, we can even say more.

The processes of production, represented by the positive matrix S1 has exclu-
sively basic commodities because all matrix elements are positive and matrix S1 is
irreducible, according to Definition A.8.3.

In the process of production, represented by the non-negative matrices S2 and S4,
which are in “canonical form” (4.122), commodity 3 is non-basic.

The commodity digraph G(S4), according to Definition A.14.7 is separated in two
disjoint components. 

Now, we will deal with some algebraic properties of matrices, enabling us to de-
cide whether we are in presence of basic commodities, entering directly or indirectly
into the process of production, or enabling us to decide whether we are in presence of
non-basic commodities entering the process of production.

Appendix A, Section A.15 presents Lemma A.15.1 and Lemma A.15.3, containing
algebraic criteria, applicable to matrices, enabling determination of the nature of
the commodities (basic or non-basic), entering directly or indirectly into an indus-
try.

Applying Lemma A.15.1 and Lemma A.15.3 to the extended Example 4.4.1 just
treated, we want to show that we can answer precise questions as to whether a given
commodity is a basic commodity, entering either directly or indirectly into the pro-
ducing industries. But before proceeding, let us solve an example.

26 In graph theory, a connected component (or just component) of an undirected graph is a subgraph
in which any two vertices are connected to each other by paths, and which is not connected to any
additional vertices in the supergraph. A graph that is connected to itself has exactly one connected
component, consisting of the whole graph.
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Example 4.4.2 (Refer to Example 4.4.1).
(1) Show that all commodities of the production economy, described by the commod-

ity flowmatrix S1, enter directly into the production of all commodities and all the
commodities, are thus basic.

(2) Decide if commodity 3 of the economy, described by the commodity flow matrix
S2, enters indirectly into the production of commodities 1 and 2. Argue that com-
modity 3 is non-basic. Show that matrix S2 is reducible.

(3) Show that all commodities of the economy, described by the commodity flowma-
trix S3, are basic.

(4) Analyse the nature of the economy described by matrix S4.

Solution to Example 4.4.2:
(1) All the elements sij > 0ofmatrixS1 arepositive.WithLemmaA.15.1 (1), all the com-

modities of this economy enter directly into the production and are therefore all
basic commodities.Moreover, the commodity digraphG(V1) is a node-complete di-
graphand therefore also strongly connected, DefinitionA.14.9.With LemmaA.15.3,
matrix S1 is irreducible, confirming that all commodities are basic.

(2) Note thematrix power notation, e. g.,V2
2 = V2 ⋅V2,V3

2 = V2 ⋅V2 ⋅V2, etc. One applies
Lemma A.15.1 (2) to the quadratic forms,

e1V2e3 = [1,0,0]
[[

[

1 1 1
1 1 1
0 0 0

]]

]

[[

[

0
0
1

]]

]

= 1 > 0,

e1(V2
2 + V3

2)e3 = [1,0,0]
[[

[

6 6 6
6 6 6
0 0 0

]]

]

[[

[

0
0
1

]]

]

= 6 > 0.. (4.126)

Both quadratic forms are positive. This means that the commodity 3 of the econ-
omy, described by the commodity flow matrix S2, does not enter indirectly into
the production of commodity 1 (see Lemma A.15.1 (2)). Thus, commodity 3 is non-
basic.
Then one applies Lemma A.15.1 (5),

(V2 + V
2
2 + V

3
2) =
[[

[

7 7 7
7 7 7
0 0 0

]]

]

≥ 0. (4.127)

This matrix is not positive, therefore matrix S2 is reducible.
(3) One applies Lemma A.15.1 (5),

(V3 + V
2
3 + V

3
3) =
[[

[

4 4 6
6 4 4
4 6 4

]]

]

> 0. (4.128)
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This matrix is positive, therefore all commodities of the economy, described by
the commodity flow matrix S3, are basic commodities.

(4) Matrix S4 represents two separated economies, described by the two positive sub-
matrices S11 and S22, because the digraph G(S4) is separated into two components.

S11 = [
90 50
120 125

] > 0, S22 = [ 200 ] > 0. (4.129)

By applying Lemma A.15.1 (5), separately to both economies, we find that only
basic commodities are represented by both sub-matrices. 

The solution to Example 4.4.2, presented here, shows that we have the tools to deter-
mine the nature of the commodities of an economy, basics or non-basics, which enter
directly or indirectly into the process of production.We take one of the transactionma-
trices, the commodity flow matrix S or the adjacency matrix V, consider its irreducible
or reducible properties, associatedwith the digraphsG(S) orG(V), and then arguewith
the algebraic criteria stated in the Lemmas A.15.1–A.15.3.

To further illustrate the type of relation that exists between the category of basic
commodities and the category of non-basic commodities, let us consider the following
specific production process composed of n single-product industries.

For any n ∈ ℕ, there are i = 1, . . . n − 1 basic commodities, the n-th commodity is a
non-basic commodity. Moreover the commodity n is not used in any of the industries
j ∈ {1, 2, . . . , n − 1}. The matrix S ≥ 0 is semi-positive. The means of production of the
n-th non-basic industry are composed of basic commodities provided by the entire
initial surplus of each of these commodities. The net surplus of each basic industry is
accordingly equal to 0. Only the n-th industry produces an effective output dn > 0 that
is the unique surplus generated by the entire process. The surplus vector is therefore,
d = [0, . . . .,0, dn], dn = qn, and the economy is self-reproducing, q = Se + d ≥ Se > 0.
The vector of labour is noted as L ≧ o and can even be the null vector. The production
scheme is, in detail, as follows:

(S,L)→ (q̂), (4.130)

where S is the transpose of the commodity flow matrix S (4.123) (right, without tilde-
sign):

S =
[[[[[[

[

s11 s12 . . . s1(n−1) s1n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

s(n−1)1 s(n−1)2 . . . s(n−1)n−1 s(n−1)n
0 . . . . . . 0 0

]]]]]]

]

. (4.131)

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.4 Basic commodities and non-basic commodities | 153

Written out, we have the production scheme:

(s11, . . . . . . , s(n−1)1, sn1 = 0, L1)→ (q1 =
n−1
∑
j=1

s1j, 0, . . . . . . ,0),

(s12, . . . . . . , s(n−1)2, sn2 = 0, L2)→ (0, q2 =
n−1
∑
j=1

s2j,0, . . . . . . ,0),

(. . . , . . . , . . . , . . .)→ (0, . . . . . . ,0),

(s1(n−1), . . . . . . , sn(n−1) = 0, Ln−1)→ (0, . . . . . . ,0, qn−1 =
n−1
∑
j=1

s(n−1)j,0),

(s1n, . . . . . . , s(n−1)n, snn = 0, Ln)→ (0, . . . . . . ,0, qn).
(4.132)

Now we continue to consider the special case of an exploitation of labour econ-
omy, only with subsistence wages, L = o, giving the production scheme (S,o)→ (q̂).
In consequence, the resulting specific production scheme (4.132) gives in fact four dif-
ferent calculationmethods to determine the national income. Starting from the defini-
tion, giving Y = dp (a), we get the term Y = qn ⋅pn (b) and then the total sum e(RSp)
of the vectorial surplus part RSp of the Sraffa price model (3.43), or below (4.175) (c),
that is therefore equal to R ⋅ K (d). We have:

Y = dp = R(Se)p = R
n
∑
i=1
(

n
∑
j=1

sij)pi = R ⋅ K = qn ⋅ pn. (4.133)

We adapt Sraffa’s third example (PCMC, Par. 5), Example 3.1.3, modifying the quanti-
ties of commodities to produce a non-basic commodity, namely gold.

Example 4.4.3. The three single-product industries produce corn (agricultural pro-
duction), iron (manufacturing) as basic commodities and gold (gold extraction in-
stead of Sraffa’s racehorses, PCMC, Par. 6) as a non-basic commodity. This process
produces an amount of q3 kg of gold. First, gold is chosen as means of payment, set-
ting it as numéraire “1 kg of gold”. We get relative prices. Second, we choose then the
currency CHF, setting the price of gold equal to p3 = 33,000 CHF/kg and generate
absolute prices.

There are no wages, w = 0. The production scheme is established as follows:

(2,800 qr. wheat, 240 t. iron,0,0)→ (5750 qr. wheat,0,0),
(1,800 qr. wheat, 240 t. iron,0,0)→ (0, 600 t. iron,0),

(1,150 qr. wheat, 120 t. iron,0,0)→ (0,0, q3 kg gold). (4.134)

Identify matrix S and vector q. Calculate the input-output matrix C, set up the Sraffa
pricemodel and calculate the vectors of absolute and relative pricesp and the national
income Y using the four ways of calculation (4.133). Set later q3 = 3/2.
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Calculate the total output X and the circulating capital K, expressing Y , X, K in
monetary values.

Solution to Example 4.4.3:
We can now identify with q3 =

3
2 , p3 = 33,000,

S = [[
[

2,800 1,800 1,150
240 240 120
0 0 0

]]

]

,

qI = Se =
[[

[

2,800 1,800 1,150
240 240 120
0 0 0

]]

]

[[

[

1
1
1

]]

]

=[[

[

5,750
600
0

]]

]

,

q = [[
[

5,750
600
q3

]]

]

> o, d = q − qI =
[[

[

0
0
q3

]]

]

≥ o. (4.135)

Calculate the input-output matrix C = Sq̂−1,

C = [[
[

2,800 1,800 1,150
240 240 120
0 0 0

]]

]

[[[[

[

1
5,750 0 0

0 1
600 0

0 0 1
q3

]]]]

]

=
[[[[

[

56
115 3 1,150

q3
24
575

2
5

120
q3

0 0 0

]]]]

]

≥ 0, (4.136)

and its characteristic polynomial, which is independent of q3,

P3(λ) = det(C − λI) = λ
3 −

102
115

λ2 + 8
115

λ = λ(λ − 2
23
)(λ − 4

5
). (4.137)

Thus, the Frobenius number is λC = 0.8. We establish the Sraffa price model, leading
to the eigenvalue equation,

Sp(1 + R) = q̂p⇒ Cp = 1
1 + R

p = 4
5
p, (4.138)

and to the price eigenvector of the transposed matrix C, associated to the Frobenius
number λC = 0.8,

p = [ p1, p2, p3 ] = p3 [
2q3
5,125
,

3q3
1,025
, 1 ] , p2

p1
=
15
2
. (4.139)

The ratio p2/p2 = 7.5 is independent of q3. The productiveness is here equal to the
maximal rate of profit r = R = (1/λC) − 1] = (1/0.8) − 1 = 0.25, as there is no wage rate
w = 0 and a null vector of labour, L = o.

Note that the eigenvalue equation (4.138) leads to relative prices, when “1 kg of
gold” is set as nuḿméraire, giving p3 = 1. On the other hand, when we introduce a
currency, like CHF, setting p3 = 33,000 CHF/kg, we obtain absolute prices,
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[[

[

2,800 240 0
1,800 240 0
1,150 120 0

]]

]

[[

[

p1
p2
p3

]]

]

5
4

= [[

[

5,750 0 0
0 600 0
0 0 3

2

]]

]

[[

[

p1
p2
p3

]]

]

= [[

[

111,073
86,927
49,500

]]

]

, p3 = 33,000 CHF/kg.

(4.140)

Indeed, one obtains the vector of absolute prices, the positive (left) eigenvector of ma-
trix C,

[p] = [19.32 CHF/qr. wheat, 144.88 CHF/t. iron, 33,000 CHF/kg gold].27

Having got the vector p of absolute prices, we are able to compute the national
income Y (4.133), using definition (a), then, calculating the product of q3 and p3 (b),
one obtains:

Y = dp = [0,0, 3
2
][[

[

19.32
144.88

33,000.00

]]

]

= q3 ⋅ p3 = 49,500 CHF. (4.141)

We then confirm the calculations by the total sum (c) and the product (d):

Y = R(Se)p = R
3
∑
i=1
(

3
∑
j=1

sij)pi = 0.25(575
7,920
41
+ 6005,940

41
)

= R ⋅ K = 0.25 ⋅ 198,000 = 49,500 CHF. (4.142)

Finally, we compute the total output X = qp = 247,500 CHF and the circulating capital
K = (Se)p = 198,000 CHF. Again, the national income can be calculated. It is the
difference Y = X − K = 49,500 CHF.

The commodity digraph of the process is given by G(V2) of Figure 4.2 (right) with
the adjacency matrix V2 (4.125). The node C1 depicts wheat, the node depicts C2 iron
and the node C3 represents gold. The digraph clearly shows that gold is a non-basic
commodity. 

This instructive example calls for a number of important comments.
(1) The non-basic commodity gold has been chosen here as means of payment and

“1 kg of gold” as the numéraire, p3 = 1. The ratio p2/p1 (4.139) of the prices of wheat
an iron is independent of q3. Relative and absolute prices can be determined.

(2) If one considers an open economy (see Section 8.3 hereafter), assuming in this ex-
ample that gold is exported, the export market fixing the price of gold, the export
industry, j = 3, may also vary the quantity produced q3. It is easily shown that the

27 The vector of relative prices is p0 = [6/1,025, 9/2,050, 1] is based on gold as themeans of payment.
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characteristic polynomial P3(λ) (4.137) remains independent of q3. For this rea-
son, the Frobenius number and the productiveness remain unchanged, R = 0.25.
In this case, the quantity of the non-basic gold will determine the absolute prices
of wheat and iron. Changes in the gold parameters p3, q3 will determine the rise
and fall of the absolute prices of wheat and iron, the ratio p1/p2 remaining con-
stant (4.139).

(3) We see that non-basic commodities participate in national income (Y = p3 ⋅ q3) and
can influence the prices of other commodities (4.139), including basic commodi-
ties.28 Then, the national income Y is directly proportional to the quantity of gold
produced! But gold does here not determine the technology. This is not a one-way
street as Sraffa implies in PCMC (Par. 6) when commenting on non-basics:

“These products have no part in the determination of the system. Their role is purely passive”.
In fact, to the extent that basics enter the means of production of non-basics, the
latter can have an impact on the absolute prices of basics, but not on the relative
prices of basics (4.139).

(4) The foregoing examples illustrate the peculiar status of non-basic commodities
and, as mentioned, the characteristic: not entering into the production of other
commodities, directly or indirectly,must be analysed in each specific situation. In-
deed, in the foregoing situations if gold is produced, there must be a demand:
for jewelery, for certain industries, for exports, for payments, etc, unless gold is
considered as waste. Commodities which are considered non-basic may turn out
to become basic on further examination. We revert to these matters in the next
Chapter 6 in relation with joint production analyses.
The cases must be examined from the economic point of view. Consider Exam-
ple 4.4.3.
(a) Closed economy. The surplus of commodity n accumulates period after pe-

riod if the basic commodities do not generate an additional surplus (beyond
that required for the production of commodity n) to absorb the gold produc-
tion.

(b) Open economy (with exports only). The gold surplus generated by the n-th
non-basic industry can be exported, export revenue constituting the entire
national income, if no additional surpluses are generated by the basic indus-
tries and provides foreign exogenous demand for gold, sufficient to absorb
the gold production.

(5) A fundamental result, easily proved, follows fromExample 4.4.3: In a closed econ-
omy of single-product processes, the economic existence of non-basic commodi-
ties depends on the surplus generated by the basic commodities. If the latter gen-
erate no surplus, no non-basics can be produced.29

28 This was, for example, confirmed by Steedman [114].
29 This characteristic of non-basic commodities seems to have been overlooked by Sraffa.
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(6) Let us state once again that non-basic commodities which contains no basics in
theirmeans of production are then completely separated from thebasic commodi-
ties and form an autonomous system. The corresponding economy considered as
awhole is then composed of separate sub-systems of production for which in gen-
eral no uniform rate of profit can be defined.30

In the next section, we introduce directed digraphs to represent Sraffa production pro-
cesses composed of basic and non-basic commodities.

4.5 Representation of production processes by bipartite directed
graphs

There is a great tradition in economics to represent production processes by directed
graphs. The most famous historical example indirectly embodying a directed graph,
are the “Tableaux Economiques” of François Quesnay (1694–1774) [88]. We shall
present this model in detail in Section 4.11.

We now introduce the useful tool of directed graphs or digraphs already encoun-
tered in Section 4.4 to represent commodity flowmatrices of single-product industries.31

Formal definitions and properties of directed graphs are presented in Section A.14.
Simply stated, a digraph (Definition A.14.1) is a set of nodes, linked by arrows, the
direction of the arrows indicating causal links between the nodes.

The digraphs envisaged here to represent Sraffa’s production schemes are bipar-
tite digraph G = (𝒩 ,𝒜). Its node set𝒩 are partitioned into two disjoint subsets, ℱ for
the n industries and 𝒞 for the n commodities, |ℱ | = n and |𝒞| = n,ℱ ∪𝒞 = 𝒩 ,ℱ ∩𝒞 = 0,
and |𝒩 | = 2n, such that each arrow of G = (𝒩 ,𝒜) is exclusively directed either from a
node of ℱ to a node of 𝒞 or vice versa. The arrows of the bipartite digraph G are in the
set𝒜 ⊆ ℱ × 𝒞 (Definition A.14.5). A digraph G may be imbedded in a larger digraph G,
G ≺ G, representing a larger economy.

At the moment, we need two types of nodes and two types of arrows (also called
arcs).

Definition 4.5.1. Description of nodes and arcs of bipartite digraphs to represent
Sraffa’s economies.
– Each productive entity or industry Sj is represented by one round yellow node.

These nodes are numbered j = 1, . . . , n, and all of them are elements of the node
set ℱ .

30 Sraffa in PCMC, Par. 35, seems to have had this scenario in mind.
31 Subsequent bipartite digraphs will also be used to represent Sraffa’s production scheme of joint
production, also called joint production economies ormulti-product industries.
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– Each commodity i is represented by one square green node.32 The nodes are
numbered bold i = 1, . . . ,n or identified by a letter to designate the corresponding
commodity i. All nodes designing a commodity are elements of the node set 𝒞.

– An arrow (j ← i) of digraph G, pointing from a commodity i to an industry Sj,
shows that commodity i is required by industry Sj. The arrow (j ← i) canbe labeled
by the quantity sij.

– An arrow (j → j) of digraph G, pointing from an industry Sj to a commodity j,
shows in the case of single product industries that industry Sj produces commod-
ity j. The arrow (j → j) can be labeled by the quantity qj.

– An arrow (j → i), pointing from an industry Sj to a commodity i, shows in the case
of joint production that industry Sj produces commodity i. The arrow (j → i) can
be labeled by the quantity fji.

– The dashed arrow (j ← i), pointing from a node i ∈ G to a node j ∈ G, G ⪯ G, or
vice versa, shows that only a part of the economy is represented by G. Clearly, G

is imbedded in a greater economy, represented by digraph G.

For a good understanding of this visualization, consider the following mnemo-
technical presentation: (a) the round nodes correspond to the wheels of machines in
a productive entity of an industry, (b) the square nodes correspond to a storage depot,
where the commodities are temporarily stored,33 (c) the arrows (j ← i) correspond to
the required commodity i driven to industry Sj, (d) the arrows (j → i) correspond to
a productive entity of industry Sj having produced commodity i that is driven to the
warehouse storing commodity i (see Figure 4.4).

Figure 4.4: Elements of construction of the bipartite digraph.

Laterwewill also need the notions of degrees of nodes on a digraph, respectively inde-
gree and outdegree of nodes of a digraph (see Definition A.14.6 and alsoWagner [119],
p. 68), in order to describe some economic properties.

For a node of a digraph G, the number of head endpoints of arrows pointing to
that node is called the indegree of the node. The number of tail endpoints of arrows
pointing out of that node is its outdegree.

32 Only the numbers of commodities are written as bold signs. The variable i will not be bolded.
33 The only exceptions are places for permanent disposal of certain products such as waste that can-
not be recycled, or, more subtly, dissipated energy.
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For a node υ ∈ 𝒩 , G = (𝒩 ,𝒜), the indegree is denoted γ−(υ) and its outdegree as
γ+(υ). A node with γ−(υ) = 0 is called a source because it is the origin of each of its
incident arcs. Similarly, a node with γ+(υ) = 0 is called a sink. The sum γ+(υ)+ γ−(υ) =
γ(υ) is called the degree of the node.

Before going on, let’s look at the following illustration for a single-product indus-
try, where both commodities are basic:

Example 4.5.1. We represent Sraffa’s third numerical example in PCMC, Par. 5 (see
Example 3.1.3, equation (3.41)) by a bipartite digraph characterising this process of
production.

The bipartite digraph (Fig. 4.5) reveals that:
(1) The productive entities 1 and 2 are single-product industries, 1 producing the

commodity wheat W (generic for agricultural products), represented by arrow
(1→ W), and 2 producing the productive entities commodity iron I (generic for
manufactural goods) as outputs, represented by arrow (2→ I);

(2) The productive entities 1 and 2 both require the commodity wheat and commod-
ity iron as inputs for production (interindustrial market), represented by arrows
(W→ 1) and (I→ 1), respectively (W→ 2) and (I→ 2).

(3) The surplus is clearly visualised. The output quantitiesminus the input quantities
of both commodities yield the surplus per commodity. Indeed, for wheat, we have
q1− (s11+s12) = 575− (280+ 120) = 175 and for iron q2− (s21+s22) = 20− (8+ 12) = 0.

Figure 4.5: Bipartite digraph of Sraffa’s example (PCMC, Par. 5), (3.41).

In principle, the bipartite digraph G = (𝒩 ,𝒜) can be constructed with node setsℱ and
𝒞 of different cardinality, |ℱ | = m ̸= |𝒞| = n, ℱ ∪ 𝒞 = 𝒩 , ℱ ∩ 𝒞 = 0. In the present
context, we only consider the case n = m34:

34 This is a vital prerequisite to be in accordance with PCMC: In single-product industries, each in-
dustry produces exactly one commodity (PCMC, Par. 1–3), and in joint production (Chapter 6), some of
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The basic assumption throughout the single-product Sraffa systems and joint production Sraffa
systems (see Chapter 6) is that the total number of commodities equals the total number of indus-
tries.

Sraffa Network: Figure 4.5 shows the bipartite digraphG = (𝒩 ,𝒜) of the production economy figuring
in PCMC, Par. 5, and Example 3.1.3. Such a bipartite digraph is called a Sraffa Network for short (see
Definition A.14.11).

There is the same number n of industries as there are commodities, but, of course, a
given industry will usually not require all commodities for production; accordingly
for some commodities, there may be fewer arrows outgoing from the corresponding
commodity node than there are industries.

In thenext section,we further illustrate theproperties of SraffaNetworks of single-
product industries for single-commodity industries, which are quite simple, as an in-
troduction to the use of this tool that will also be used in the more complicated situa-
tions of joint production treated in Chapter 6.

4.6 The Sraffa Network: a bipartite directed graph

SraffaNetworks are furthermore constructed on theprinciple of production, formulated
byAssumption 2.2.1 andAssumption 2.2.2. A formal presentation of the SraffaNetwork
is given in Section A.14:

Every industry produces a positive output quantity of at least one commodity (exactly one concerns
only single-commodity processes) and has to use at least one positive quantity of the n commodities
as means of production, otherwise this industry does not exist and is eliminated from the production
economy.

With a view to subsequent developments the term “industry”35 should be considered
in a large sense as an organised entity encompassing notably a productive entity, i. e.,
a center of production regrouping the “means of production”, to use Sraffa’s termi-
nology, such as raw materials, tools, machinery, factories etc., productive land and

the industries j = 1, . . . , nmay produce more than one of the commodities i = 1, . . . ., n, so a commodity
may be produced by more than one industry, but the total number of industries is always equal the
total number n of commodities (PCMC, Par. 51).
35 Even simple commodities such as wild fruit for consumption require a primitive industry for out-
put: gathering or harvesting. Land providing raw materials is productive industrial land and requires
intensive human and technological input. To our knowledge, there exists only one commodity which
does not depend in any way on an industry for production, transformation and distribution until fur-
ther notice: the air we all breath, under the condition that it is not polluted, so that it does no require
treatment.
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human resources.36 Commodities will be understood to include goods, including for
example composite goods such as machinery (whether depreciated or not) and ser-
vices and, depending on the economic process, equipped land (e. g., providing indis-
pensable infrastructures for all types of buildings).

In single-product industries, some commodities will enter, directly or indirectly,
the production of all commodities, including themselves. They will be linked to all
other commodities by one or more uninterrupted sequences of arrows passing one
way or another through all the productive entities. As we know, such commodities
are called basic commodities. Commodities for which this does not apply are called
non-basic commodities, which we have already encountered in Section 4.4.

Example 4.6.1. This example shows themode of construction of a Sraffa Network.We
have chosen here n = 4 productive entities 1, 2, 3, 4. The number of commodities,
tagged a, b, c, d is also n = 4.

The dependencies show up as follows:

a→ 2→ b→ 1→ a→ 3→ c→ 4 .Basic, indirect

b→ 1, 2, 3, 4 .Basic, direct (4x)

c→ 1→ a→ 2→ b→ 3→ c→ 4 .Basic, indirect

d→ 4→ d .Non-basic (4.143)

So, following the traced paths in the bipartite digraph of Figure 4.6, the SraffaNet-
work, commodities a, b, c are basic, and d is non-basic. The indegrees of the nodes
υ ∈ 𝒞 = {a, b, c,d} are all γ−(υ) = 1. We are dealing with single-product industries,
(LemmaA.14.1). Indeed, from roundnodes to square nodes, there is exactly one unique
arrow because each industry, represented by a round yellow node, produces exactly
one commodity, represented by a square green node. 

Figure 4.6: Sraffa Network of Example 4.6.1.

36 In the sequel, where no confusion should arise, we shall, abusing language, use indifferently the
terms industry, industrial sector or productive entity, to avoid pedantry.
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We continue by giving examples of basic commodities in today’s economies, be-
fore starting to look more closely at the nature of non-basic commodities.

Example 4.6.2. Examples of basic commodities: steel, water prepared by humans as
drinkingwater or to produce electricity, electric power, food, land, computer facilities,
education, health care and credit services for production firms. Such commodities en-
ter one way or another, directly or indirectly, into the production of all commodities
in the real economies of any country.

The nature of basic and non-basic commodities will be illustrated soon by some
elementary examples and partial digraphs as preparation for the understanding of
a complete example with the Sraffa Network G, see Figure 4.14 which is a subgraph
embedded in a wider digraph G of a larger economy. Note the clear cut separation
between both categories of basic and non-basic products.

Sraffa mentions three types of non-basic commodities37 We exemplify these three
types in today’s economies (PCMC, Par. 35 and Par. 58):
(i) Non-basics completely excluded from the means of production (sinks):

Example 4.6.3. Unrecycled waste W from industries 1 and 2, left over as toxic
products and radioactive nuclear deposits, Figure 4.7. 

Figure 4.7: Non-basics completely excluded.

(ii) Non-basics which only enter their own production:

Example 4.6.4. Racehorseswhichonly involve their ownproduction for breeding
and racing (Sraffa’s example, PCMC, Par. 6). 

Figure 4.8: Non-basics entering only their own production.

37 Sraffa’s comments in PCMC, Par. 35 and 58, must be reconsidered bearing in mind the following
presentation that also illustrates Roncaglia’s definition of basic and non-basic products ([97], p. 60)
given in Section 4.4.
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(iii) Non-basics used in the production of one or more other non-basics:

Example 4.6.5. Consider in a modern economy the commodity of stored data S:
The commodity of stored data S used by data-processing productive entity 2○ re-
leasing thermal energy E and used by specialised services L required by another
productive entity 1○ which creates wasteW . See Figure 4.9. 

Figure 4.9: Non-basics L, S in the production of other non-basics E,W and S itself.

Incoming, respectively outgoing dashed arrows in Figure 4.7, Figure 4.8 and Figure 4.9
indicate input and output of commodities from or to other sources.

Basic commodities are important insofar as no production economy can operate
without them. Remember that they are the only commodities on which sustainable
closed economies may operate. In fact the whole present day discussions on global
sustainable growth, circular economics and overcoming excessive consumerism, im-
plicitly rely on giving priority to basic commodities. This is the main reason behind
the important distinction between basic and non-basic commodities.

Example 4.6.6. Set up a list of basic commodities entering the economy of your coun-
try, containing (a) 10 items, (b) 20 items, (c) 30 items, (d) more? Is there a limit? Then
drawup a list of important non-basics in your economy.Do someof themhave cultural
significance?

We will now introduce a known tool to represent Sraffa production schemes. It
is the adjacency matrix. We will later learn how to visualize with Sraffa Networks the
presence of basic and non-basic commodities in an economy.

4.7 The adjacency matrix in the case of single-product industries

Consider an economy of n single-product industries. Set up Sraffa’s corresponding pro-
duction scheme (S,L)→ (q̂) and the single product Sraffa system (4.82),

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



164 | 4 Sraffa’s single-product industries with wages and profits

Sp(1 + r) + L w̃Y
L
= q̂p = x,

Y = (q − Se)p,

L = eL.

(4.144)

We take the commodity flowmatrixS, describing the technology, and the vector of total
output q of this single-product industry.

We set up the following square (2n × 2n) matrix, comprising matrices S and q̂ in
one matrix,

Σ = (σkl) = [
0 q̂

S 0
] , k, l = 1, . . . , 2n. (4.145)

Then for matrix Σ, we set up the (2n× 2n) adjacency matrix, where the diagonal matrix
q̂ is replaced by the identitymatrix I, andmatrix S is replaced by its Boolean represen-
tation, matrix P = (pij), consisting only of ‘0’ and ‘1’, in accordance to Definition A.8.5,
getting

wn+i,j := pij = {
1 if sij > 0,

0 if sij = 0,
i, j ∈ {1, . . . , n}. (4.146)

We have now defined the (2n × 2n) adjacency matrix

W = (wkl) = [
0 I

P 0
] ; k, l = 1, . . . , 2n, (4.147)

corresponding to matrix Σ, directly composed of matrices S and q̂, issued from the
production scheme (S,L) → (q̂), describing the Sraffa production system. Now we
show the corresponding Sraffa Network.

Commodity flows
Clearly, the directions of the arrows in the Sraffa Networks show the commodity flow
of the production process of the represented economy. We illustrate this with the fol-
lowing Sraffa Network:

Example 4.7.1. Consider n = 4 virtual single-product industries, represented by the
Sraffa Network of Figure 4.10. Set up the corresponding adjacency matrix, applying
Definition A.8.5.
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Figure 4.10: Sraffa Network of Example 4.6.1, p. 161: commodity flows.

Solution to Example 4.7.1:
The specific form of the (2n × 2n) adjacency matrixW of this Sraffa Network is repro-
duced here.38

1 2 3 4 a b c d

W =

Industry

Commodity

1
2
3
4
a
b
c
d

[[[[[[[[[[[[[[

[

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

]]]]]]]]]]]]]]

]

I

P (4.148)

Note that the arrows in the Sraffa Network, pointing from green square nodes, repre-
senting commodities, to yellow circle nodes, representing industries, are pictured by
‘1’ in the lower left submatrix P of the adjacency matrixW (4.148).

For industries, there is a one-to-one correspondence between the coefficients of P
and the incoming arrows of the Sraffa Network of Figure 4.10, e. g., arrows entering the
yellow circle nodes. We can define: wij = 1↔ ∃(i → j), respectively wij = 0↔ ∄(i → j),
i ∈ {a, . . . , d}, j = 1, . . . , 4.39

For single-product industries, the upper right square submatrix is the identity ma-
trix I. Again for yellownodes, representing industries, there is a one-to-one correspon-
dence between the coefficients of I and the outgoing arrows of the Sraffa Network of

38 The adjacency matrixW can be of help in understanding Pasinetti’s concept of “vertical integra-
tion” (Pasinetti [80], Chapter 5, p. 123), an algebraic artefact.
39 The sign ∃means “there exists at least one”, this operator indicates existential quantification, the
sign ∄means “there is no”, the negation of ∃. The Boolean matrix reflects this.
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Figure 4.10, e. g., arrows entering the green square nodes. We can therefore define:
wij = 1↔ ∃(i → j), respectively wij = 0↔ ∄(i → j), i = 1, . . . , 4, and j ∈ {a, . . . , d}. 

We have presented the commodity flow in the Sraffa Network and its adjacency
matrixW. We again specify in practical terms the meaning of the directed arrows in
such a network:
– outgoing arrows fromproduction entity Sj, j ∈ {1, . . . , 4} (yellow circle node)mean:

entity Sj produces commodity i ∈ {a, . . . , d} (represented by a green square node)
(outdegree of j: γ+(j) = 1) (single-product industries!);

– incoming arrows to a production entity Sj, j ∈ {1, . . . , 4}, (yellow circle node)mean:
entity Sj requires (purchases) commodities i ∈ {a, . . . , d} for production (from a
green square node) (indegree of j: γ−(j) ≥ 1).

Each directed arrow is uniquely represented in the adjacency matrix by a coefficient
equal to one.

Payment flows
Now, to be complete in economic terms, one considers the payment flow which is in-
verse to the commodity flow. This means: that to each commodity flow, represented by
a Sraffa Network, there corresponds the inverse Sraffa Network where all arrows show
in the opposite direction. See Figure 4.11.

Referring to Figure 4.10, the payment flow is represented by the corresponding
inverse Sraffa Network:

Figure 4.11: Sraffa Network of Example 4.6.1: payment (outlays) flows.

In practical terms, the meaning of the inverse directed arrows in the inverse Sraffa
Network is:
– outgoing arrows mean that the industry Sj, j ∈ {1, . . . , 4}, has outlays (payments)

for purchases of commodities i ∈ {a, . . . , d}, entering into its production (outdegree
of j: γ−(j) ≥ 1);40

40 Internal industry payments also exist, and industrial accounting includes internal transfer prices.
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– incoming arrows mean that the industry Sj, j ∈ {1, . . . , 4} receives payments for
sales from the commodities i ∈ {a, . . . , d} that it has produced. For this reason,
there is an indegree of j: γ+(j) = 1, in the case of single-product industries!

The adjacency matrix of the payment flow Sraffa Network is the transpose of the adja-
cency matrixW (4.148) of the corresponding Sraffa Network of the initial commodity
flow.

1 2 3 4 a b c d

W =

Industry
(outlays)

Commodity
(income)

1
2
3
4
a
b
c
d

[[[[[[[[[[[[[[

[

0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

]]]]]]]]]]]]]]

]

P

I (4.149)

After this intermezzo,we continuewith our discussionof commodity flows represented
by Sraffa Networks and also commodity digraphs, explained in Section A.14, which are
associated to adjacency matrices (4.146).

Example 4.7.2. Consider Sraffa’s third example (PCMC, Par. 5), Example 3.1.3, equa-
tion (3.41), and its Sraffa Network, Figure 4.5. Set up the adjacency matrix W (4.147)
and establish the associated commodity digraph G(P), see Figure 4.12.

Solution to Example 4.7.2:
In this example, there are n = 2 economic sectors, one producing wheat (W) and the
other iron (I). There is consequently the production scheme (S,o) → (q̂). Consider
matrix Σ (4.145), composed of S and q̂ and set up the Boolean matrix P,

q = [ 575
20
] , S = [ 280 120

12 8
]⇒ P = [ 1 1

1 1
] . (4.150)

Then we establish the adjacency matrix (4.147),

1 2 W I

W = (wkl) =

1
2
W
I

[[[[

[

0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0

]]]]

]

, k, l = 1, . . . , 4. (4.151)

We set up the associated commodity digraphG(P) corresponding to the SraffaNetwork,
Figure 4.5. 
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Figure 4.12: Associated digraph G(P) of Example 4.7.2, (4.150).

The associated commodity digraph G(P) (explanations in Section A.14) is a comple-
ment to the Sraffa Network. Notice that the upper right hand matrix, I (4.147), indi-
cates the one to one relationship between an industry and the unique commodity it
produces. In fact, G(P) is a compression of the Sraffa Network, indicating admissible
interconnections commodities.

In joint production processes, we shall see that the situation is not as simple, and
the commodity digraph associated to a Sraffa Networkwill be generated by the product
of two adjacency matrices, see Example A.14.6.

We continue now to illustrate the foregoing explanations by the following Sraffa
Network of single-product industries with labelled arrows.

Example 4.7.3. Consider the Sraffa Network, Figure 4.13, of n = 5 commodities and
sectors. Numbers attached to arrows indicate commodity flows. The flow in brackets
of the commodity No.8 produced by industry No. 3 is the flow restricted to the system
constituted by the first three commodities, after removal of the non-basic industries
No.4 andNo. 5 togetherwith their commodities No.9 andNo. 10. Set up the adjacency
matrixW and analyse the subgraphs G, G.

Adjacency matrixW
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9
10

[[[[[[[[[[[[[[[[[

[

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

]]]]]]]]]]]]]]]]]

]
(4.152)

Figure 4.13: Sraffa Network of single-product industries.

Solution to Example 4.7.3:
We set up the adjacency matrixW of the Sraffa Network G, which thus has to be con-
sidered as generated bymatrixW, G = G(W). Now, one analyses its subgraphs G, G,
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Figure 4.13.
G: is the complete not fully connected network,
G: is the network restricted to the commodities Nos: 6, 7, 8, including the link of

commodity No.8 to the non-basic industry No.4;
G: is the fully connected network comprising the basic structure; but note that in

G the flow changes for the industry No. 3 producing commodity 8 in order to
fulfill, for this “miniature system”, the conditions of production inquantity terms
presented in the following scheme.

We present the commodity flows of the “miniature system”, represented by G.

Entries of the flow matrix for G

1 2 3 Output
6 3 2 0 5
7 2 0 2 4
8 0 2 0 2

Input 5 4 2 11

(4.153)

Figure 4.14: Conditions of production for the “miniature system” G.

The adjacencymatrixW, corresponding to the “miniature system”, is imbedded as a
submatrix in the adjacency matrixW,

1 2 3 6 7 8

W =

1
2
3
6
7
8

[[[[[[[[[

[

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 0

]]]]]]]]]

]

. (4.154)

The “miniature system” (4.153) represented here has no surplus. Inclusion of a sur-
plus modifies the output vector (assuming means of production unchanged), see Sec-
tion 3.1.3. 

Consider the production scheme (S,L) → (q̂), describing the Sraffa production
system, as presented in the foregoing chapters. The entries of the matrices S and q̂
are represented on the Sraffa Network, acting as a graphic representation of matrices41

41 In fact, we will see later that algebraically the k basic commodities form the basis of a
k-dimensional vector space of commodities (k ≤ n).
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for the system and fixes the constraints to which Sraffa’s price model will comply. The
submatrix P of the adjacency matrixW (4.147) will define the matrix structure of the
left-hand side of the corresponding Sraffa price model (4.144) and the submatrix I the
right-hand side.

A commodity flow Sraffa Network is associated with a production economy, represented by the log-
ical structure of the production scheme (S, L) → (q̂). It is built on the basis of the adjacency ma-
trix W. Its dual, the payment flow Sraffa Network, is built on the basis of the transposed adjacency
matrix W.

Finally, let us mention that the adjacency matrix will be suited for the determination
of basic and non-basic commodities by algebraic means, whereas the corresponding
Sraffa Network acts as a graphic representation suited to visualize basic and non-basic
commodities.

4.8 Distinction between basic and non-basic commodities

In this section, we will learn how to distinguish basic from non-basic commodities
in economies, given by a production scheme (S,L) → (q̂) and composed strictly of
single-product industries. We will use two pairs of tools:
(a) the (2n × 2n) adjacency matrix W (4.147), corresponding to the (2n × 2n)matrix Σ

(4.145), associated to the Sraffa Network, presented in Section 4.7;
(b) the n×n adjacencymatrix P (4.150), corresponding to the n×nmatrix S, associated

with the digraph G(P) (Definition A.14.7).

Assumptions 2.2.1, and Assumptions 2.2.2 apply to matrix S. Consequently, the n × n
transaction matrix S is semi-positive.

If, furthermore, matrix S is irreducible, then (I + S)(n−1) > 0 (see Lemma A.8.2).
Lemma A.8.2 also applies to the corresponding adjacency matrix (Definition A.8.5).

Here we have two possibilities: We consider either the n × n adjacency matrix P
(4.150), and the associated digraph G(P) (Definition A.14.7), or the (2n × 2n) adjacency
matrixW and the corresponding Sraffa Network (Definition A.14.11).

Varga’s Theorem A.14.1 states that the adjacency matrix W is irreducible if and
only if the associated digraph G(W) is strongly connected.

When the digraph is strongly connected, then every node can be linked to all the
other nodes, including itself, by at least one connected sequence of arrows all of the
same direction. Such nodes may be termed basic nodes because they correspond to
basic commodities and industries.

When the adjacency matrix is irreducible, then all the production centres and all
the commodities are basic, Lemma A.15.3 (v).

We will now illustrate these properties by a Sraffa example (PCMP, Par. 5).
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Example 4.8.1. We consider Sraffa’s third numerical example (PCMC, Par.5̃); equation
(3.41) and the adjacency matrix P (4.150) of the semi-positive commodity flow ma-
trix S. Show that this production economy consists only of basics. Show that the as-
sociated commodity digraph G(P) and the corresponding Sraffa Network are strongly
connected.

Solution to Example 4.8.1:
We consider the commodity flow matrix and its adjacency matrix

S = [ 280 120
12 8

]⇒ P = [ 1 1
1 1
] , I = [ 1 0

0 1
] , (4.155)

then we set up the adjacency matrixW (4.147), according to the Sraffa Network,

W = (wkl) = [
0 I
P 0
] =
[[[[

[

0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0

]]]]

]

, k, l = 1, . . . , 4. (4.156)

We apply Lemma A.8.2 on the non-negativematrixW and find,

(W + I)3 =
[[[[

[

4 3 4 1
3 4 1 4
5 5 4 3
5 5 3 4

]]]]

]

> 0, (4.157)

matrixW is irreducible, as is matrix P, because it is positive. With Theorem A.14.1 we
conclude that the Sraffa Network and the associated digraph G(P) are strongly con-
nected as indicates Figure 4.15. We conclude with Lemma A.15.3 (i) and (v) that all the
products are basic. 

Figure 4.15: Sraffa Network of PCMC, Par. 5, (3.41) and associated digraph G(P).
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When the matrix S is reducible, the production economy is depicted, e. g., by one of
the adjacency matrices including basic and non-basic commodities. In this case, we
apply Lemma A.15.2 and accordingly realise the permutation to bring the commodity
flow matrix S into “canonical form”, to separate the basics from the non-basics.

This is the subject of the next illustration with the Sraffa Network and the corre-
sponding digraph G(S).

Example 4.8.2. We consider Example 4.7.3, presented by the Sraffa Network, Fig-
ure 4.13. Identify the commodity flowmatrix S, transform it into “canonical form” and
calculate the corresponding adjacency matrix P.

Determine the basics and non-basics and determine the connectivity of the Sraffa
Network and the associated commodity digraph G(P).

Solution to Example 4.8.2:
We identify the commodity flow matrix, its adjacency matrix and the vector of total
output,

S =
[[[[[[

[

3 2 0 0 0
2 0 2 0 0
0 2 0 4 0
0 0 0 1 1
0 0 0 0 0

]]]]]]

]

⇒ P =
[[[[[[

[

1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 0 1 1
0 0 0 0 0

]]]]]]

]

, q =
[[[[[[

[

5
4
6
2
2

]]]]]]

]

⇒ I. (4.158)

Assumption 2.2.1 and Assumption 2.2.2 are fulfilled, but commodity 5 does not belong
to the means of production. We set up the associated digraph G(P), Figure 4.16.42

Figure 4.16: Sraffa Network (left) and associated commodity digraph (right).

42 A check confirms that the number of arcs on the associated digraph corresponds to the number of
outgoing connections from the square commodity nodes in the Sraffa Network, namely 8. Note further
that node 5 in the digraph contains no outgoing arc, and so it is a sink (e. g., consumed commodities,
waste, etc).
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Matrix S is in “canonical form”, so we identify the (3 × 3) the sub-matrices S11, respec-
tively the (3 × 3)matrix P11 and apply Lemma A.8.2,

S11 =
[[

[

3 2 0
2 0 2
0 2 0

]]

]

⇒ P11 =
[[

[

1 1 0
1 0 1
0 1 0

]]

]

,

(P11 + I)
2 = [[

[

5 3 1
3 3 2
1 2 2

]]

]

> 0. (4.159)

We continue with matrix P and find,

(P + I)4 =

[[[[[[[[

[

35 26 13 6 1
26 22 13 13 5
13 13 9 20 12
0 0 0 16 15
0 0 0 0 1

]]]]]]]]

]

≥ 0. (4.160)

Thus, matrix P is reducible, whereas submatrix P11 is irreducible. With Theorem A.14.1
we conclude that the sub-network G, respectively G(P11) in Figure 4.16 (right) is
strongly connected, whereas the whole digraph G, respectively G(P) are only weakly
connected.

(a) See Figure 4.16 (left): In the Sraffa Network there is exactly one path from an industry j to the
corresponding commodity i = j + 5, i ∈ {1, . . . , 5}, thus we are in presence of single-product
industries.

(b) See Figure 4.16 (left): In the Sraffa Network, there is no directed path from the industries 4 and
5 to the industries 1, 2 and 3, consequently industries 4 and 5 are non-basic, whereas there are
directed pathes form any of the three industries 1, 2 and 3 to industries 1, 2, 3, 4 and 5. For this
reason industries 1, 2 and 3 are basics.

(c) See Figure 4.16 (right): In the digraph G(P), there is no directed path from the commodities 4
and 5 to the commodities 1, 2 and 3, consequently commodities 4 and 5 are non-basic, whereas
there are directed paths from any of the three commodities 1, 2 and 3 to commodities 1, 2,
3, 4 and 5, so 1, 2 and 3 are basics. There is no distinction between industries and commodi-
ties.

Then, we conclude with Lemma A.15.2 (i)–(iii) that the commodities 6, 7, 8 are basic,
whereas 9, 10 are non-basic. Indeed, matrix S is reducible with the upper left (3 × 3)
submatrix S11, Lemma A.15.2 (i). We have just shownwith (4.159) that the (3× 3) upper
left submatrix S11 is irreducible and therefore refers to basics, LemmaA.15.2 (ii). Finally
the remaining commodities 9, 10 are non-basic, Lemma A.15.2 (iii). Indeed, matrix S
is reducible by (i); S11 is irreducible by (ii) and thus refers to basics (upper left (3 × 3)
submatrix) and (iii) confirms that 9 and 10 are non-basics. 
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Proposition 4.8.1. Consider a production scheme (S, L) → (q̂) with a semi-positive completely re-
ducible n × n commodity flow matrix S in canonical form, Definition A.8.4, q ≥ Se > o, L ≥ o. The
upper-left submatrix S11 (noted as S̃11 (A.74)) is irreducible by construction. Compute for m = n − 1 the
matrix power Sm, which then is moreover completely reducible. The economy is thus decomposed into
separate economies.

We illustrate Proposition 4.8.1 with an example:

Example 4.8.3. Consider the (5×5) semi-positive and not completely reduciblematrix
S of the production scheme (S,L)→ (q̂) in Example 4.8.2 and compute,

S4 =
[[[[[

[

3 2 0 0 0
2 0 2 0 0
0 2 0 4 0
0 0 0 1 1
0 0 0 0 0

]]]]]

]

4

=
[[[[[

[

221 126 68 64 16
126 100 24 72 8
68 24 32 20 20
0 0 0 1 1
0 0 0 0 0

]]]]]

]

. (4.161)

The present economy of n = 5 commodities has k = 3 basics and (n−k) = 2 non-basics.
Consider now a slightly modifiedmatrix S in which one element is changed, s34 =

4 becoming s34 = 0. This means that the technology of process 4 is modified, indeed
commodity 8 is no longer used by process 4. The effect is that the present economy
is separated into two distinct independent economies, which is immediately visible
in the corresponding Sraffa Network Figure 4.16 (left), where arc (8 → 4) has to be
skipped to describe the new production process. We compute

S4 =
[[[[[

[

3 2 0 0 0
2 0 2 0 0
0 2 0 0 0
0 0 0 1 1
0 0 0 0 0

]]]]]

]

4

=
[[[[[

[

221 126 68 0 0
126 100 24 0 0
68 24 32 0 0
0 0 0 1 1
0 0 0 0 0

]]]]]

]

. (4.162)

The present economy of n = 5 commodities is decomposed into an economy of k = 3
basic economies and a second economy containing (n − k) = 2 commodities. In this
second economy, the commodity No.9 is basic, and the commodity No. 10 is non-basic
because it does not belong to the means of production, see Figure 4.16 (left). 

We accordingly have devised the followingmethod to distinguish the set of basic
commodities from the set of non-basic commodities:

(i) When the semi-positive n × n commodity flow matrix S is in “canonical form”, the order k of the
upper leftmatrixS11 gives thenumber ofbasics,and (n−k) is the number ofnon-basics, according
to Lemma A.15.2.

(ii) Consider the non-negative and not completely reducible n×n commodity flowmatrixS in “canon-
ical form”. Settingm = n− 1, compute Sm to check the rows of the iteratedmatrix. A strictly posi-
tive row of Sm corresponds to a basic commodity. A row of matrix Sm corresponds to a non-basic
commodity if it is not strictly positive, as illustrated by Example 4.8.3.
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4.9 Recapitulation of Sraffa’s price calculations, the labour value

It is now time to sumup the foregoing developments. PCMC, Par. 10, treats single prod-
uct industries and uses a particular notation for the semi-positive and irreducible or
positive n × n commodity flow matrix S in physical units, which we transcribe in this
text to the notations of Miller and Blair [65]:

S =
[[[[

[

Aa Ab . . . Ak
Ba Bb . . . Bk
. . . . . . . . . . . .
Ka Kb . . . Kk

]]]]

]

:=
[[[[

[

s11 s12 . . . s1n
s21 s22 . . . s2n
. . . . . . . . . . . .
sn1 sn2 . . . snn

]]]]

]

= (sij). (4.163)

Remember Sraffa’s notation for the annual amounts of labour is {La, Lb, . . . , Lk}; our
notation is: Li, i = 1, . . . , n, presented as a vector L = [L1, L2, . . . , Ln] ≧ o. We have the
vector of surplus d ≧ o. The total outputs qj of each industry Sj are collected in the
output vector q = Se + d > o. So we write the production scheme, also described for
each industry Sj with the row vectors s⋅j (Definition A.4.3), in the form:

(S,L)→ (q̂),
(s⋅j, Lj)→ (0, . . . , qj, . . . ,0), j = 1, . . . , n. (4.164)

The Sraffa price model, also called the single-product Sraffa system (4.82), primarily
aimed at fixing prices, expressed in some given numéraire, is set up in four steps. The
matrixS represents the level of technology attainedby the economic system. The econ-
omy is driven by:
– the conditions of production fixing the required means of production designated

here as circulating capital, and
– final demand, which initiates the production of a surplus [national income fol-

lowing the national accounting identities].

Step I (Sraffa, PCMC, Par. 3). No surplusmeansnoprofit andnowages paid by surplus,
w = 0, only subsistence wages, see Section 3.6.

Setting up the conditions of production in a self-replacement process (production
for subsistence), there is no surplus produced, i. e., d := q − Se = o. This phase rep-
resents the constitution of themeans of production, which are used up and have to be
replaced after each reference period. Start with the commodity flow matrix S in physi-
cal terms, assuming at this stage that S indirectly incorporates labour in the means of
production sij (see PCMC, Par. 8) with the prices pi, i = 1, . . . , n, constituting the vector
p = [p1.p2, . . . , pn],

We have the identity, a reduced Sraffa price model, which figures in PCMC, Par. 3;
presented in matrix form

Sp = q̂p = x, (4.165)
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representing the required circulating capital in each sector. Also, we may aggregate
circulating capital sector by sector and constitute its total amount as,

K := eSp = (Se)p = qp = ex =: X, (4.166)

which is here equal to the total output because there is no surplus.
Due to Lemma 4.1.1 (a) the Frobenius number of the semi-positive and irreducible

or positive matrix C = Sq̂−1 is λC = 1, and there is no productiveness, R = (1/λC) −
1 = 0. The rate of profits r and the share of national income to circulating capital R̃
also vanishes. With (4.36) we have the expected triple equalities R̃ = r = R = 0 and
consequently Y = P = W = 0.

We return now to Sraffa’s Example 3.1.1 completing the calculations.

Example 4.9.1. Consider equation (3.5),

Sp = [ 280p1 + 12p2
120p1 + 8p2

] = [
400p1
20p2

] = q̂p, (4.167)

with solutions p1 = 1, p2 = 10. The value of the circulating capital K is obtained by
taking these relative prices, giving p1 = 1 and p2 = 10, producing then the capital
K = eSp = 400p1 + 20p2 = 400 ⋅ 1 + 20 ⋅ 10 = 600 = X, and the national income (the
term is introduced in PCMC, Par. 12, but it is more convenient to call Y net income),
giving Y = (q − Se)p = op = 0. 

Step II (PCMC, Par. 4). All the surplus goes into profits, no wages are paid out of the
surplus, i. e., w = 0, only subsistence wages.

Sraffa introduced production with a surplus in addition to the required means of
production. Either d := q − Se > o, called positive self-replacement, where there is a
positive surplus produced by each industry, ord := q−Se ≥ o, called self-replacement,
where it is admitted that some industries produce no surplus.

Here, the totality of the surplus goes to entrepreneurs, withmaximal rate of prof-
its R, assumed uniform for all industries.43 The corresponding new equations to de-
termine p are extended with respect to (4.165),

Sp(1 + R) = q̂p = x. (4.168)

Aggregating (4.168), we obtain the equation, relating total output X to the circu-
lating capital K = (Se)p (4.31) and to national income Y (4.32):

43 Sraffa indeed assumes here, and in Step III below that the profit rate r is equal in all industries
j = 1, 2, . . . , n so that r = P1

K1
= ⋅ ⋅ ⋅ =

Pj
Kj
= ⋅ ⋅ ⋅ = Pn

Kn
= P

K and he designates r as the “uniform rate
of profits”. In other words, the surplus is distributed in proportion to the capital value of the means
of production (PCMC, Par. 4). This uniformity assumption renders the Sraffa model mathematically
more tractable for largen. In factmathematically, the subsequent(4.171) canbehandled evenassuming
profit rates rj and wage rates wj, differing for each industry j = 1, . . . , n (see Section 8.3 hereafter).
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X := eq̂p = qp = eSp(1 + R) = (Se)p + (Se)p ⋅ R

= K(1 + R) = (Se)p + dp = K + Y ⇒ Y = R ⋅ K ⇒ R = Y
K
. (4.169)

With w̃ = 0 and (4.36), R̃(1 − w̃) = R̃ = r, having in this case r = R, we get R = R̃ =
Y/K.

The determination of the prices of the Sraffa production scheme (S,L)→ (L̂) does
not require an explicit presentation of the surplus d ≥ o (or d > o).44 However, in the
logic of single-product industries, presented in Sraffa (PCMC, Part I), an identification
of d is useful to calculate the national income:
(a) The scalar product of the surplus vector d with the price vector p gives national

income Y = dp.
(b) Sraffa’s price model: There are relative prices, where the value of each commodity

ismeasured by a physical numéraire (i. e., a quantity of a commodity, like a quarter
of wheat), expressed in a physical unit of that commodity. But there are absolute
prices, where the value of each commodity is expressed by a freely chosen cur-
rency (like CHF) per physical unit of that commodity.

(c) The reference to a separate surplus vectord is systematically used in the construc-
tion of the Standard system (PCMC, Chapters IV–V) presented in Chapter 5.

And finally, the surplus vector d in Sraffa’s price model provides the link with the vec-
tor of final demand f in the Leontief models.

According to Lemma 4.1.1 (b), the Frobenius number of the irreducible non-
negative matrix C is λC < 1, and the productiveness is R = (1/λC) − 1 > 0 for λC > 0.
With (4.36) we have the expected triple equalities R̃ = r = R > 0, Y = P > 0, for this
system without wages, i. e.,W = 0.

Example 4.9.2. We continue with Sraffa’s Example 3.1.3 (PCMC, Par. 5) (3.42) and
(3.45), a system of production (3.43) with surplus and no wages, W = 0. Taking
Sraffa’s solutions p1 = 1, p2 = 15, we obtain with equations (4.33) and (4.31) and
equation (4.34) and calculate the following values for the economic variables X, K, Y
and P.

Solution to Example 4.9.2:

K = 400p1 + 20p2 = 400 ⋅ 1 + 20 ⋅ 15 = 700,

X = 575p1 + 20p2 = 575 ⋅ 1 + 20 ⋅ 15 = 875,

Y = (575 − 400)p1 + (20 − 20)p2 = 175,

W = 0⇒ Y = P +W = 175⇒ P = 175. (4.170)

44 Thiswill appear quite clear later in connectionwith joint production, Chapter 6,where q̂ is replaced
by an non-diagonal matrix F, the surplus d being replaced by (F − S).
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Then we calculate R̃ = Y/K = 175/700 = 0.25, r = P/K = 175/700 = 0.25 and from
the Frobenius number of the input-output coefficientsmatrixC (3.46), λC = 0.8, we also
get R = (1/λC) − 1 = (1/0.8) − 1 = 0.25, leading to the triple equality r = R = R̃ = 0.25.
Finally we confirm: Y = R ⋅ K = 0.25 ⋅ 700 = 175. 

Step III (PCMC, Par. 10–12) (profits andwages). Inclusion of wages and labour directly
in the production process leads to sharing, the surplus (national income) Y > 0 be-
tween profits and wages.

Step I and Step II include labour asmeans of production in the semi-positive and
irreducible or positive commodity flow matrix S (at the so-called subsistence level). In
Step III, one now introduces a semi-positive vector of labour L ≥ o,45 representing the
annual amount of labour, e. g.,man-hours per annumper industry, which then enables
us to regroup separately total wages, i. e., subsistence wages plus wages contributing
to value added (see PCMC, Par. 8 and 9). That means from here on, that the commod-
ity flow matrix S no longer contains any labour component, as was the case earlier,
specially in equations (4.165), (4.168).

We set up the complete single-product Sraffa system (4.55) which then reads:

Sp(1 + r) + L w̃ ⋅ Y
L
= q̂p = x. (4.171)

In (4.171) r, 0 < r < R, is still the rate of profits, and w̃ is designated as the ratio of
total wages to national income. We then consider the semi-positive vectorπ = q̂−1L ≥ o
(4.58) and apply Lemma 4.1.2 (a) obtaining a positive price vector (4.61) reproduced
here for the complete single-product Sraffa system,

p = [I − (1 + r)C]−1π ⋅ w̃ ⋅ Y
L
> o. (4.172)

This leaves us with a vector of prices to be determined.

Step IV (PCMC, Par. 12) (Sraffa’s price model). In a final step, national income Y , or
equivalently GDP,46 is explicitly as

Y = (q − (Se))p =: dp > 0. (4.173)

We keep Assumption 2.2.1 and Assumption 2.2.2 and consider now the commodity flow
matrix S to be only semi-positive and eventually reducible. We consequently retain As-
sumption 2.5.1 for the vector of labour, whichmust be positive, L = [L1, L2, . . . , Ln] > o;
all workers get their salary at the endof the period. Lemma4.1.2 (b), applies, the Frobe-
nius number λC = 1/(1+R) < 1 giving a positive productiveness R > 0.We consider two
cases.

45 Assumption 2.5.1 is again here not necessary.
46 Recall that national income = total sum of added values = profits + wages.
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(a) At first, we recall that Sraffa normalized the quantity of labour, to be mea-
sured as L = 1 TAL. This is done, calculating from the given vector of labour
L = [L1, L2, . . . , Ln] > o the sum L = eL > 0 and then normalising to a new labour
vector [L1/L, L2/L, . . . , Ln/L], whose sum is 1 = e(L/L).

(b) Then, ifwe calculate labour in the physical unitman-years, we also start by setting
the vector of labour L = [L1, L2, . . . , Ln]. Thenwe just calculate the total quantity of
labour L = eL (4.34), measured in the unitman-years and introduce these results.

We describe the complete single-product Sraffa system (4.171) and replace Sraffa’swage
per unit of labour w, referring to equation (4.38), by w = (w̃ ⋅ Y)/L, entering explicitly
the national income Y (4.173), the total quantity of labour L (4.34), the share of total
wages to national income w̃.

There are n + 2 equations and n + 4 variables r, w̃, L, p1, p2, …, pn and Y .47

Sp(1 + r) + L w̃ ⋅ Y
L
= q̂p = x,

Y = (q − (Se))p =: dp,

L = eL.

(4.174)

As usual, the exogenous rate of profits r has to be chosen arbitrarily in the range
0 ≤ r < R, r = R being excluded, because L ≥ o, requiring w ≥ 0.

Then, we have to calibrate the system.
There are two possibilities.
Either we choose a numéraire i ∈ {1, 2, . . . , n} and set the corresponding price pi =

p0, where p0 is a given exogenous variable (see PCMC, Par. 3), orwe set for the national
income Y = Y0, as a given exogenous variable Y0 (see PCMC, Par. 11).

So now, the Sraffa price model (4.174) has n + 2 equations and n + 2 variables and
is solvable under the usual conditions of linear algebra. We further calculate

X = qp = ex,

K = eSp = (Se)p,

P = K ⋅ r = (Se)p ⋅ r,

w = w̃ ⋅ Y
L
,

̃r = P
Y
,

W = Y − P = dp − (Se)p ⋅ r = (d − (Se)r)p. (4.175)

47 For calculation purposes, we have taken here the same commodity flow matrix S as above, al-
though to be quite consistent this matrix should be modified to account for the fact that all labour is
now regrouped within the second left hands terms (see Sraffa ([108], Par. 8, p. 10)).
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Aggregating the first equation of (4.174) by leftmultiplicationwith the summation vec-
tor e, we immediately obtain as expected the economic variables and identities:

e(Sp(1 + r) + L w̃ ⋅ Y
L
) = (eS)p(1 + r) + (eL) w̃ ⋅ Y

L
) = eq̂p,

X = (Se)p(1 + r) + (L) w̃ ⋅ Y
L
) = K + Kr + w̃Y = qp, (4.176)

and accordingly,

X = K + Kr + w̃Y = K + (P +W) = K + Y . (4.177)

As an illustration, see again Example 4.1.7.
Now we convert the single-product Sraffa system (4.171) into units per commodi-

ties,multiplying equation (4.171) from the left by the diagonalmatrix q̂−1, obtaining, in
analogy to equations (4.56)with the vectorπ of labor per unit of commodities (4.58) the
complete single-product Sraffa system, expressed in commodity units, together with
equations for national income Y and labour L. We get again n + 2 equations for the
n + 4 variables r, w̃, L, p1, p2, …, pn and Y ,

Cp(1 + r) + π ⋅ w̃ ⋅ Y
L
= p,

Y = (q − (Se))p =: dp,

L = eL.

(4.178)

We conclude this section with the calculation of the Sraffa prices in the case of basic
and non-basic commodities, entering the economy.

Example 4.9.3. Consider the (5 × 5) semi-positive and not completely reducible ma-
trix S, the vector of labour L = [10, 8, 5, 4, 8] > o, measured in appropriated units
of labour, the vector of total output q = [5, 4, 6, 2, 2] > o, constituting the produc-
tion scheme (S,L) → (q̂) of Example 4.8.3. Calculate the input-output coefficients
matrix C = Sq̂−1, the Frobenius number λC, 0 < λC < 1, the productiveness R > 0,
choose an appropriate rate of profits r, 0 < r < R. Calculate the vector of relative
prices p0 = [p1, . . . , p5], setting p1 = 1, and show that p0 > o.

Solution to Example 4.9.3:

S =

[[[[[[[[

[

3 2 0 0 0
2 0 2 0 0
0 2 0 4 0
0 0 0 1 1
0 0 0 0 0

]]]]]]]]

]

, C = Sq̂−1 =

[[[[[[[[[[

[

3
5

1
2 0 0 0

2
5 0 1

3 0 0

0 1
2 0 2 0

0 0 0 1
2

1
2

0 0 0 0 0

]]]]]]]]]]

]

. (4.179)
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The (3 × 3) submatrix in the upper-left corner of matrix C is irreducible,

C11 =
[[[[

[

3
5

1
2 0

2
5 0 1

3

0 1
2 0

]]]]

]

, (I3 + C11)
2 =
[[[[

[

69
25

13
10

1
6

26
25

41
30

2
3

1
5 1 7

6

]]]]

]

> 0. (4.180)

The characteristic polynomial is

P5(λ) = −
1

600
λ(−30 + 170λ − 40λ2 − 660λ3 + 600λ4)

= λ(λ − 0.88639)(λ − 0.5)(λ − 22194)(λ + 0.50832). (4.181)

There exists a real, maximal, non-negative, eigenvalue λC = 0.88639 < 1 of the re-
ducible matrix C (see Theorem A.10.1), which is equal to the Frobenius number of the
irreducible (3×3)upper-left submatrixC11 (4.180) ofmatrixC (see LemmaA.10.1), λC11 =
0.88639 < 1. One then computes the productiveness R = (1/0.88639)−1 = 0.128176.We
choose as the rate of profits r = 0.1 < R. The Leontief Inverse exists, Lemma 2.4.1 and
we calculate the inverse matrix, which also exists with λ = 1/(1 + r) = 10/11 > λC =
0.88639, Theorem A.10.2 and is morewover indeed a semi-positivematrix,

[I − 1
λ
C]
−1
=

[[[[[[[[

[

27.123 14.494 8.222 0 0
18.686 11.552 6.353 0 0
6.852 4.236 3.330 0 0
33.497 20.707 16.278 2.222 0
18.423 11.389 8.953 1.222 1

]]]]]]]]

]

≥ 0. (4.182)

We calculate the vector of prices p and the wage per unit of labour w with the
complete single-product Sraffa system (4.57). With the positive vector of labour L > o,
and the positive vector of labour per units of produced commodities, π = q̂−1L > o.
Then due to Lemma 4.1.2 (b), the vector of prices p also is positive. Indeed,

Cp(1 + r) + π ⋅ w = p⇒ p = [I − (1 + 0.1)C]−1π ⋅ w > o. (4.183)

We setp0 = [1, p2, p3, p4, p5]. Consequently, there are fiυe equations and fiυe variables
p2, p3, p4, p5,w in (4.183). We then obtainw = 0.01099 and the vector of relative prices
p0 = [1,0.7228,0.2742, 1.3893,0.8080]. 

Throughout this section, we have recognised that positive price vectors for the
complete single-product Sraffa system are guaranteed with semi-positive reducible or
irreducible input-output coefficientsmatrices C under Lemma 4.1.2.
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The labour value
See also Kurz and Salvadori [52], pp. 110–111, Adam Smith [106] and Schefold [102],
p. 75. This is the right place to remember the historical notion of labour value. By
labour value, one understands generally the “quantity of labour” embodied in a com-
modity. Let u be the vector of the quantities of labour embodied in the different units
of commodities of the production economy. Consider the labour π of the present pe-
riod, the labour Cπ of the period before, the labour C 2π of the preceding period and
so on. As the Frobenius number is smaller than 1, λC < 1 because there is a surplus,
there is convergence of the series,

u = π + Cπ+C 2π + ⋅ ⋅ ⋅ = (I − C)−1π ⇒ u = (I − C)−1π. (4.184)

The notion labour value involves the idea that all the surplus goes to labour, therefore
one sets r = 0 in (4.183) and compares the vectors p = (I − C)−1π and u (4.184). We
obtain the parallelism p ‖ u⇔ p = w ⋅u. This is the solution of Sraffa’s transformation
problem, see Bortis [7], pp. 67–68, namely the transformation of the vector of labour
values u into the vector of prices p, precisely valid for the case that all the surplus
goes into labour.

For the Example 4.9.3 we then get the vector of labour values (4.184) in units of
labour per unit of produced commodities, u = [19.95, 14.75, 5.75, 27, 17.5], where there
is no rate of profits. There is actually non-parallelism, u ∦ p0, with the price vector
p0 because we have computed the price vector po, using in (4.183) the positive rate of
profits r = 0.1 > 0, instead of r = 0 as would have been required to get (4.184).

4.10 A digression on growth, constant rate of growth

In this section, we are dealing with an extension of Sraffa’s approach which assumes
no change over time in the structure of the means of production, however with the
possibility of a uniform change in scale over themedium term. The growth of an econ-
omy is not mentioned in PCMC. As we have seen, on the one hand, PCMC concerns
one reporting period. On the other hand, the centre piece of Sraffa’s price model are
the conditions of production (Definition 3.1.1, presented in Subsection 3.1.1). Produc-
tion systems subject to those conditions are in a self-replacing state, having produced
a surplus absorbed by demand on the interindustrial market. At the end of the period,
the systemhas all available commodities required for interindustry transactions in the
next following period. This opens the way to consider successive production periods
evolving over time with the possibility of envisaging growth in economic output.

Growth is either understood in the present context as an increase in total output q
(including GDP or national income) sector by sector, or, growth operates through a
uniform rate of growth, acting on the means of production, the surplus, the output
and the national income, but keeping the whole structure unchanged.
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We assume that labour is incorporated in the matrix S with subsistence wages,
w = 0. Thus, the two growth situations can then be envisaged in this context:

(a)Consider the total outputqj per industry Sj and surplusdj expressed inquantity
terms. The sectorial surplus ratios are defined as follows:

Rj =
dj
(qj − dj)

, g = min
j
{Rj, j = 1, . . . , n} ≥ 0. (4.185)

In general, the sectorial surplus ratios vary from industry to industry, but over the
medium term there exists the minimum g with the result that for ΔRj = Rj − g at least
one ΔRj will be equal to 0.

(b) Now, we consider the obtained term g ≥ 0 (4.185) as the maximal uniform
medium-term rate of growth of the production process from one period to the next.
The rate g has to increase the means of production, meaning that the components of
the matrix S are multiplied by the same factor,

S → (1 + g)S, (4.186)

the surplus, the national income Y and some other economic variables (K, X, …). The
structure of the technology is unchanged. The commodity flow matrix S is just mul-
tiplied by a factor, and the proportions remain unchanged. The operating uniform
medium term rate of growthmay be smaller than g.

In the case of growth, a uniform proportion of surplus, up to a maximum g, is
allotted to the means of production for increased production in the following periods,
and the rest of current surplus corresponding to residuals ΔRj is going to exogenous
demand. The following examples illustrate this concept, considering at first closed
economies.

Example 4.10.1. Assume an economy composed of n = 3 industries with following
sectorial rates of growth: R1 = 16%, R2 = 12%, R3 = 20%. Compute the maximal
rate of growth g. Compute the contribution of the sectors to the growth, relative to the
sectorial rate of growth.

Solution to Example 4.10.1:
We obtain: g = min{R1,R2,R3} = 0.12. Moreover: ΔR1 = R1 − g = 0.04, ΔR2 = R2 − g = 0,
ΔR3 = R3 − g = 0.08, and further, g1 = (R1 − ΔR1)/R1 = 0.75, g2 = (R2 − ΔR2)/R2 = 1,
g3 = (R3 − ΔR3)/R3 = 0.6. 

Example 4.10.2. Medium term rate of growth. Consider Sraffa’s third example (PCMC,
Par. 5), Example 3.1.3, (3.41), with two industrial sectors, modified by an additional
production of 2t of iron, only with subsistence wages, w = 0:

The numéraire is wheat, so its price is p1 = 1. Compute the input-output coeffi-
cients matrix C = Sq̂−1, its Frobenius number λC and the productiveness R = (1/λC)− 1.
Establish the production scheme of the economy.
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Compute the price vectorp, the sectorial surplus ratios (4.185)R1 andR2. Establish
the maximal rate of growth g. Compute the vector of additional surplus Δd = d(1 +
g) − d = gd, as well as the national incomes Y1 = Y , Y2 = Y1(1 + g) and the additional
national income ΔY = Y2−Y1 = g ⋅Y1. Analyse the sequences (1+g)(k−1)S, (1+g)(k−1)Se,
(1 + g)(k−1)d and (1 + g)(k−1)q, k ∈ ℕ.

Solution to Example 4.10.2:
We can now identify

S = [ 280 120
12 8 ] , Se = [ 280 120

12 8 ] [
1
1 ] = [

400
20 ] ,

q = [ 57522 ] , d = q − Se = [ 57522 ] − [
400
20 ] = [

175
2 ] . (4.187)

As there is no explicit labour, which is at subsistence level included in S, the pro-
duction scheme is as follows: (S,o) → (q̂). We calculate the input-output coefficients
matrix,

C = Sq̂−1 = [ 280 120
12 8

][
1
575 0

0 1
22

] = [
56
115

60
11

12
575

4
11

] , (4.188)

and calculate the characteristic polynomial,

P2(λ) = det(C − λI) = λ
2 −

1076
1265

λ + 16
253
= (λ − 0.082316)(λ − 0.768277). (4.189)

Thus, the Frobenius number is λC = 0.768277 =: 1/(1 + R) < 1, and the productive-
ness R = (1/λC) − 1 = (1/0.768277) − 1 = 0.3016 > 0. The Sraffa price model is set up,
leading to an eigenvalue equation, as all the surplus goes to profits and there are no
wages, w = 0. Wheat is the numéraire, giving the price vector p = [1, p2],

Sp(1 + R) = q̂p⇒ Cp = 1
1 + R

p = λCp,

[
56
115

60
11

12
575

4
11

][
1
p2
] = 0.768277 [ 1

p2
] .

(4.190)

We get the vector of relative prices p = [1, 13.48]. With the vector of surplus d =
[175, 2], we obtain the national income of period 1,

Y1 := Y = d
p = [175, 2] [ 1

13.48
] = 201.96. (4.191)

The sectorial surplus ratios (4.185) are: R1 = d1/(q1 − d1) = 175/400 = 0.4375 and
R2 = d2/(q2 − d2) = 2/20 = 0.1, so the over all maximal rate of growth is here g =
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min{R1,R2} = 0.1, giving the opportunity of a uniformly growing production system.
We present therefore the model of a growing economy with the corresponding maxi-
mal multiplier (1 + g) = 1.1, starting from the actual period, getting number 1,

((1 + g)(k−1)S,o)→ ((1 + g)(k−1)kq̂), k ∈ ℕ,

S(1 + g)(k−1)p(1 + R) = q̂(1 + g)(k−1)p⇒ Cp = λCp. (4.192)

For this uniformly growing system, we get exactly the upper eigenvalue equation
(4.190), leading to the same price vector p = [1, 13.48]. We present just the national
income Y1 of the second period,

Y2 = (1 + g) ⋅ Y1 = 1.1 ⋅ 201.96 = 222.15. (4.193)

We are here in presence of a closed economy, the factors (1 + g)(k−1) being the uniform
dilatation factors leading from period 1 to the k-th period, all sectors growing at the
same rate (1+g) fromone period to the next.We remember, all profits going to increase
themeans of production, the national incomeY , the circulating capitalK, salaries kept
at subsistence level.

We compute for the next period the surplus difference Δd = d(1 + g) − d = gd, the
national incomes Y2 and the national income difference ΔY = Y2 − Y1,

Δd = d(1 + 0.1) − d = [ 192.5
2.2
] − [

175
2
] = [

17.5
0.2
] ,

ΔY = g ⋅ 201.96 = 0.1 ⋅ Y1 = 20.196. (4.194)

Finally, we have an outlook on the development over the sequence of the periods with
the rate of growth g = 0.1, startingwith the actual period 1. Let’s for illustration present
the commodity flow matrices for the periods k = 0, 1, 2,

S = [ 280 120
12 8

] , 1.1S = [ 308 132
13.2 8.8

] , (1.1)2S = [ 338.8 145.2
14.52 9.68

] . (4.195)

Then, the total amount of the commodities, necessary as themeans of production also
augment,

Se = [ 400
20
] , 1.1Se = [ 440

22
] , (1.1)2Se = [ 484

24.2
] , (4.196)

as well as the surplus of each period k and the vectors of total output,

d = [ 175
2
] , 1.1d = [ 192.5

2.2
] , (1.1)2d = [ 221.75

2.42
] ,

q = [ 575
22
] , 1.1q = [ 632.5

24.2
] , (1.1)2q = [ 695.75

26.62
] . (4.197)
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Of course, there are the sums, remaining,

(1.1)(k−1)q = (1.1)(k−1)Se + (1.1)(k−1)d, k ∈ N.  (4.198)

We have up to now considered a closed economic. We now consider an open sys-
temwith exports, in this casenamely gold,where the surplus is exclusively constituted
by the exports. We then analyse the possible rates of growth.

Example 4.10.3. Consider the three sector economydescribed by Table 4.6, producing
wheat, iron and gold. There is a semi-positive commodity flow matrix S ≥ 0. The sur-
plus is generated by the third gold-producing sector. Therefore the vector of surplus is
d = [0,0, 50]. Wheat is the numéraire.

Table 4.6: An economy with surplus exclusively in exports.

An open economy
sectors 1 2 3 total output

wheat in tons 280 180 115 575
iron in tons 12 12 6 30
gold in kg 0 0 0 50

Compute thepositive input-output coefficientsmatrixC = Sq̂−1, the Frobeniusnumber
λC and the vector of prices p and the productiveness R = (1/λC) − 1. Determine the
possible rates of growth and discuss productiveness and growth.

Solution to Example 4.10.3:
We identify the matrix S ≥ 0 and compute the vector of total output q = Se + d:

S = [[
[

280 180 115
12 12 6
0 0 0

]]

]

, q = [[
[

280 180 115
12 12 6
0 0 0

]]

]

[[

[

1
1
1

]]

]

+ [[

[

0
0
50

]]

]

= [[

[

575
30
50

]]

]

.

(4.199)

We start calculating the input-output coefficientsmatrix C = Sq̂−1:

C = [[
[

280 180 115
12 12 6
0 0 0

]]

]

[[[

[

1
575 0 0

0 1
30 0

0 0 1
50

]]]

]

=
[[[

[

56
115 6 23

10
12
575

2
5

3
25

0 0 0

]]]

]

, (4.200)

giving the characteristic equation,

P2(λ) = det(C − λI) = λ
3 −

102
115

λ2 + 8
115

λ = λ(λ − 2
23
)(λ − 4

5
). (4.201)
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Thus, the Frobenius number is λC = 0.8. We derive then the following Sraffa price
model,

S(1 + R)p = q̂p⇒ q̂−1S(1 + R)p⇒ Cp = 1
1 + R

p = λCp. (4.202)

The productiveness is R = (1/0.8) − 1 = 0.25. The price vector is p = [1, 15, 4.125]. The
prices are expressed in tons of wheat per unit of commodities. The sectorial surplus
ratios R1 = 0/(575 − 0) = 0, R2 = 0/(30 − 0) = 0, R3 = 50/(50 − 50) =∞ are computed.
There is g = min{R1,R2,R3} = 0. As the only possible rate of growth is g = 0, we are in
presence of a productive sustainable economy without growth.

We observe that both first sectors of wheat and iron production do not contribute
to surplus, only the export sector 3 contributes to the production of surplus and gen-
erates the productiveness R = 0.25, which benefits all the three sectors. Nevertheless,
no positive uniform rate of growth is possible. There is g = R1 = R2 = 0. 

Finally, we have been considering single-product industries. The foregoing ap-
proach may be extended to joint production Sraffa systems, Chapter 6.

Some growth properties of the Sraffa price model.
In general, the sectorial surplus ratios Rj = dj/(qj −dj) ≥ 0, j = 1, . . . , n, are different one from each
other. If there is a positive minimum g = min{R1, . . . , Rn} > 0, it is possible to formulate a Sraffa
model with economic growth. Its effective rate of growth lies in the interval [0,g].

4.11 The ancestor: Quesnay and the economy as a circular
process

An item not considered up to now appears in this historical construct: land. We ask
the reader to take land as it is presented here, while it will be examined in more detail
in Section 6.7. Contrary to Sraffa’s assertion, productive land is considered as an in-
dispensable constituent for agriculture and as such directly attached, like the labour
force, to every production entity. It does not normally belong to the category of com-
modities, and thus cannot be classified as non-basic in this context and obviously
in what follows in connection with Quesnay’s economic model. The physician and
economist F. Quesnay (1694–1774) already clearly understood in the 18th century that
no economy of production can exist without these two basic pillars of production.48

(1) Historical aspects. Figure 4.17 presents one of the various Tableaux Economiques
elaborated by F. Quesnay.49 Here the tableau presents agricultural production and is
called “Tableau de la Philosophie Rurale”.

48 Productive land for food and energy and equipped land as prerequisites for building purposes and
industrial infrastructures.
49 Source: https://www.google.ch/search?q=tableaux+économiques+Quesnay&biw
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Figure 4.17: One of Quesnay’s Tables on agricultural production.

(2) Sraffa Network. The following example is inspired by the foregoing “Tableau de
la Philosophie Rurale”, where we start by considering commodity flows, because we
want to construct a Sraffa Network. Contrary to the introductory remarks, land, in the
hands of landowners, is considered in Quesnay’s scheme as a separate commodity
put at the disposal of farmers by these landowners against the rent paid. Land thus
figures here exceptionally as a commodity in the corresponding Sraffa Network. This
reflects prevailing social structures in the 18th century.

The idea behind Quesnay’s tableau is twofold:
(a) A circular economic process involving farmers (ℱ), manufacturers andmerchants

(ℳ) and landowners (ℒ).
(b) A cumulative growth process in total output fuelled by successive autonomous

expenditures by landowners.

We shall start by treating (a).
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Before proceeding, let us summarise what Quesnay’s Tableau illustrates using his
figures which are expressed in value terms. Landowners are supposed to enter the ini-
tial accounting period with an agricultural income of 2,000 built up in previous peri-
ods (say years) which they use to purchase goods from manufactures and merchants
(1,000) and to purchase goods from farmers (1,000).

In thenewaccountingperiod, farmershave a total output of 5,000usedas follows:
– 2,000 retained in their sector to ensure sustainability;
– 1,000 spent on purchases from manufactures and merchants;
– 2,000 paid as rents due to landowners.

Landowners have autonomous incomes, part of which are constituted by these agri-
cultural rents. To boost agricultural production, considered at the time as the driving
component of production, they can decide to distribute part of their total income to
the two other sectors, expressed here as 50% of their initial agricultural income, i. e.,
1,000 (see paragraph (6) Innovations of the Quesnay model below), thus increasing
output. They continue similarly with their incremental agricultural incomes in suc-
cessive periods.

Example 4.11.1. Quesnay’s economic model involving farmers ℱ , manufacturers ℳ
and landowners ℒ, may be represented as follows by a Sraffa Network, representing
the structure of the commodity flows: The causal links should be read as follows:

Farmers ℱ : produce corn “C” which is required by
– the farmers themselves for agricultural purposes
– manufacturers for their living
– landowners for various uses

Manufacturers and merchantsℳ: produce goods and services “m” required by
– farmers for their activities
– landowners for various uses (buildings, gardens, weapons, works of art, …)

Landowners ℒ: provide land “l” for farmers

By simplification, asℱ ,ℳ,ℒ provide only one type of commodity each, the Sraffa
Network, Figure 4.18, can be visually compressed into a simpler connected digraph,
Figure 4.19, with the corresponding adjacency matrix W3. Identifying node-pairs of
the Sraffa Network with one node as follows: (C,ℱ) → ℱ , (m,ℳ) → ℳ, (l,ℒ) → ℒ,
the three arrows (ℱ → C), (ℳ→ m), (ℒ→ l) disappear by compression, maintaining
the sameconnectivity, giving thedigraph, representing the structure of the commodity
flows.

Quesnay was a physiocrat, and in his view agriculture was the motor of the econ-
omy: landowners (in his time mainly the aristocracy and the clergy), accumulating
land and playing a distributive role, manufacturers just providing the necessaries for
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Figure 4.18: Quesnay’s economic model (logical structure).

F M L

W3 =
F
M
L

[[

[

1 1 1
1 0 1
1 0 0

]]

]

. (4.203)

Figure 4.19: Associated digraph of the commodity connection Sraffa Network, Figure 4.18, and the
adjacency matrixW3 of Quesnay’s model 4.11.1.

agriculture and other non-manufacturing activities. This changed radically with the
industrial revolution and free trade, the manufacturing and mercantile class becom-
ing themotor of the economy, hence the dashed arrow in Figure 4.20 is not considered
by Quesnay.

Now starting from the above representation (4.203) and Figure 4.19, Quesnay’s
original circular process of commodity flow is converted into a new directed graph,
depicting payment flows in relative terms, involving the three sectors: farmers,
landowners and manufacturers, Figure 4.20, in a closed economy, starting with an
initial accounting period. The matrix of the payment flows is the transpose of the
commodity flow matrix in monetary terms Z3 = (zij), i, j = 1, . . . , 3, composed of the in-
tersectorial transfers zij by sector Si to sector Sj, using Quesnay’s values. Its adjacency
matrix appears here, represented byW3 (4.203). Matrix Z3 = (zji) then represents the
payment flows by sector Sj to sector Si in Figure 4.20.50

The understanding of Figure 4.17 is not as trivial as that. We follow the interpre-
tation given by G. Gilibert [36]. Quesnay51 thus defined a sustainable reallocation pro-
cess, represented here by the flow commodity matrix Z3, Figure 4.20.

Sector 1: Farmers (ℱ) reallocate part of their production of corn “C” to sustain
the productive capacities (z11 = 2,000, in value terms) of their sector, thus generating

50 This digraph and the numbers indicated are taken formGilibert [36]. Quesnay’s original figures for
the initial period of activity, Figure 4.17, are expressed in thousands of units. In Figure 4.20, the fig-
ures have been scaled down by 10−3 in order to avoid overloading the presentation; the initial relative
proportions are maintained.
51 The economy’s initial accounting relationships read as follows, noted in k = 1,000:
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F M L

Z3 =
F
M
L

[[

[

2,000 1,000 2,000
2,000 0 0
1,000 1,000 0

]]

]

(4.204)

Figure 4.20: Digraph of the payment flows in Figure 4.19, and payments flow matrix of Exam-
ple 4.11.1.

inner-sectorial payments and incomes. The remaining production, in value terms, is
used to pay rents due to landowners (ℒ) (z13 = 2,000) and to pay for purchases of
manufactured goods “m” from manufacturers (ℳ) (z12 = 1,000). The total production
of the “productive” sector is thus valued at (z11 + z12 + z13 = 5,000).

Sector 2: Manufacturers (ℳ) of the “idle” sector use their proceeds from pay-
ments by farmers (ℱ) (z21 = 1,000) and landowners (ℒ) (z23 = 1,000) to pay for agricul-
tural products (z12 = 2,000) for their living. The total production of this sector is thus
valued at (z21 + z23 = 2,000).

Sector 3: Landowners (ℒ) of the “distributive” sector use all their income, from
rents due for providing land “l” to farmers (z31 = 2,000), to pay for the purchase of
agricultural commodities, corn “C” (z13 = 1,000) and to pay for manufactured goods
“m” (z23 = 1,000) to ensure their standard of living. The total value of disposable cap-
ital of this sector is thus equal to (z13 = 2,000) to cover those payments.

Z3 =
[[

[

2,000 2,000 1,000
1,000 0 1,000
2,000 0 0

]]

]

, Z3e =
[[

[

5,000
2,000
2,000

]]

]

. (4.205)

Thus we get the digraph, Figure 4.20, the arrows indicating the payment flow, and the
transposed commodity matrix Z3 = (zji), also indicating the payment from sector Sj to
sector Si.

(3) TheQuesnaymodel following Sraffa. Let us nowproceed to represent Quesnay’s
model following Sraffa’s approach, using the payments flow matrix Z3 = (zji), where

Total Output (ℱ) = 5k total income (ℱ) = 5k; (ℱ ) requires 2k for stainability; Surplus = 3k
Total Output (ℳ) = 2k total income (ℳ) = 2k; No surplus
Total Output (ℒ) = 2k total income (ℒ) = 2k; No surplus, but redistribution of income

9k 9k
Landowners play the role of redistribution of income that governments are supposed to play today.
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the coefficients zji indicate the value of payments by sector Sj for the obtention of com-
modities from sector Si.

For example, z11 = 2,000 are inner sectorial payments/incomes received in the
“productive” agricultural sector to ensure sustainability of that sector; z32 are pay-
ments received by the “idle” class of manufacturers from the “distributive” sector of
landowners for purchases of manufactured commodities. Now, the coefficients zij are
composite entities: zij = pisij (2.18) where pi > 0 is the normally positive price of com-
modity i (expressed in a given numéraire not specified here) and sij the quantity of
commodity i delivered to sector Sj.

A further example: z13 = 2,000 is the value of the commodities received by the
“distributive” sector of landowners as rent from the “productive” agricultural sector
for providing land to the latter, with quantity and price unspecified, the two only sub-
ject to the constraint that their product equals 2,000.

(4) Sraffa’s conditions of production. As the Quesnay model works in monetary
terms and Sraffa in physical terms, we introduce an artificial vector of prices p = e,
to enable the passage to a Sraffa system. Now it can be shown that Quesnay’s model
fulfills Sraffa’s conditions of production, Definition 3.1.2. There is no surplus and the
Frobenius number is λC = 1. We resort to the known matrix relations (2.113) for matrix
Z3 (4.204), using here p̂ = ê = I,

Z3 = p̂S = êS = S; q = Se; C = Sq̂−1, (4.206)

and proceed to

Example 4.11.2. Compute matrix C (4.206) and show that Sraffa’s conditions of pro-
duction are fulfilled. (All the entries of the matrix S are noted in k = 1,000!)

Solution to Example 4.11.2:
Matrix S is semi-positive and irreducible, in application of Lemma A.8.2,

S = [[
[

2 2 1
1 0 1
2 0 0

]]

]

; (I + S)2 = [[
[

13 8 6
6 3 3
8 4 3

]]

]

> 0.

q = Se = [[
[

2 2 1
1 0 1
2 0 0

]]

]

[[

[

1
1
1

]]

]

= [[

[

5
2
2

]]

]

> o. (4.207)

Then, we compute matrix C

C = Sq̂−1 = [[
[

2 2 1
1 0 1
2 1 0

]]

]

[[[

[

1
5 0 0

0 1
2 0

0 0 1
2

]]]

]

=
[[[

[

2
5 1 1

2
1
5 0 1

2
2
5 0 0

]]]

]

≥ 0, (4.208)

its characteristic polynomial and the Frobenius number,

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.11 The ancestor: Quesnay and the economy as a circular process | 193

P3(λ) = det(C − λI) =
1
5
+
2
5
λ + 2

5
λ2 − λ3 = (λ − 1)(λ − λ2)(λ − λ3). (4.209)

The Frobenius number is λC = 1. This means that the Sraffa conditions of production,
Definition 3.1.2, are fulfilled, as may also be seen by summation of the columns com-
ponents of S. 

(5) The Quesnay economic model contains only basic commodities. The com-
modities corn “C”,manufactured goods “m” and land “l” are basics because the corre-
sponding Sraffa Network, Figure 4.18, is strongly connected, Definition A.14.9, respec-
tively matrix S is irreducible, Lemma A.15.3.

This establishes a historical bridge between Quesnay and Sraffa.

(6) Innovations of the Quesnay model.
(a) Quesnay’s first innovation. The system is, in a first reference period, in a self-

replacing state with constant levels of production and a fixed value of required
means of production, set in this example at 2. In the original “Tableau”, the cor-
responding number is 2,000, see Figure 4.17 and Quesnay [88].

(b) Quesnay’s second innovation is to incorporate the effect of growth. His reason-
ing in our modern notation can be summarised as follows, based on his original
figures:

The landowner sector starts at some chosen point of time with income valued at G =
2,000 built up in the past, and farmers with an endowment, also built up in the past,
which also ensures the sustainability of their agricultural production. This endow-
ment also equals G = 2,000. Now landowners have autonomous incomes including
their land rents. They reallocate an additional part g ⋅ G of these incomes to the other
sectors which then operate in the next period with means of production valued at
G + G ⋅ g. Landowners then reallocate in the following period (G ⋅ g)g = G ⋅ g2 and the
sectors operate in the next period with cumulativemeans of production, increasing to
the level at G + G ⋅ g + G ⋅ g2, etc.

Period after period, the total means of production of the “Agriculture and Manu-
facture/Merchandise” sector will in fact accordingly increase proportionally accord-
ing to the following scheme of cumulative autonomous expenditures by landowners:

Period 1 : G,
Period 2 : G + G ⋅ g,

Period 3 : G + G ⋅ g + G ⋅ g2,
. . .

Period n : G + G ⋅ g + G ⋅ g2 + ⋅ ⋅ ⋅→ 1
(1 − g)
⋅ G, (4.210)

the whole economy following in the same proportions.
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We have here a geometric series which converges to G
(1−g) , 0 ≤ g < 1.

S = G + G ⋅ g + G ⋅ g2 + ⋅ ⋅ ⋅ = G ⋅ 1
1 − g
= 2,000 ⋅ 1

1 − 0.5
= 4,000. (4.211)

As we observe, Quesnay in his “Tableau Economique”, Figure 4.17, having set G =
2,000 and g = 0.5, obtains the series, 2,000 + 1,000 + 500 + 250 + 125 + ⋅ ⋅ ⋅ converging
to 4,000, for landowners and farmers, respectively to 2,000 for the idle class. So in the
end total agricultural output, measured in payment terms, rises from 5,000 (2,000 +
1,000 + 2,000) to 10,000.

(7) Completing the Quesnay economicmodel. With the manufacturing classM be-
coming the center piece of the economy, involving interindustry requirements, a new
positive term in the diagonal would then enter the adjacencymatrix completing Ques-
nay’s scheme:M→ M (dashed arrow) in Figure 4.20. The resulting adjacency matrix

W3 =
[[

[

1 1 1
1 1 1
1 0 0

]]

]

(4.212)

is an extension of the adjacency matrixW3 (4.203) and represents therefore also only
basic commodities.

Finally, in this connection one also observes by modern standards that in the
event landowners donot reinvest in the real productive economyor are not themselves
entrepreneurs, they then constitute, contrary to what Quesnay stated in the 18th cen-
tury context, an idle class living on the land. Economically their land provides their
basic income, without labour on their part, and they invest for example in building
works of art and the financial markets (remember John Law de Lauriston (1671–1729)!).
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5 Sraffa’s Standard system and the Standard
commodity

What are the Standard system and Standard commodity all about?
Sraffa explains in PCMC, Chapter IV, Par. 23 and 24, the reasons for seeking a so-

called Standard commodity and subsequently shows how to devise a system of pro-
duction resulting in such a commodity for single-product industries. He introduces
this chapter by observing:

“The necessity of having to express the price of one commodity in terms of another which is arbi-
trarily chosen as standard, complicates the study of price movements which accompany a change
in distribution. It is impossible to tell of any particular price fluctuation whether it arises from
the peculiarities of the commodity which is being measured or from those of the measuring stan-
dard”.

By “distribution”, Sraffa refers to the distribution of surplus between wages and prof-
its based on a given technology, i. e., in the parlance of PCMC, for a given set of means
of production. One seeks therefore ameasuring standard for which one knows for cer-
tain that price fluctuations would originate exclusively in the peculiarities of produc-
tion of the commodities under scrutiny.1 Sraffa then continues to explain in PCMC,
Par. 24:

“It is not likely that an individual commodity could be found which possesses even approximately
the necessary requisites. A mixture of commodities, however, or a “composite commodity”, would
do equally well; …”.

Such a composite commodity is called a Standard commodity, and Sraffa then devises
a system of production, the Standard system, from which he constructs that Standard
commodity. The algebraic procedure to obtain a Standard system from a non Standard
system is presented hereafter.

In this chapter, we undertake a complete analysis of the mathematical properties
of Sraffa’s construct for Standard systems of production composed of single-product
industries, extending by far the 16 pages he himself devoted to this subject. Kurz and
Salvadori ([52], p. 121) argue that Sraffa considered primarily the Standard commodity
as a useful, although not a necessary, tool of analysis. For our part, we limit ourselves
to the technical aspects of the model and leave the economic application to future
work.

1 This is Ricardo’s problem of “an invariable or standard measure of value”, assuming no change in
technology. See Roncaglia ([96], p. 36) and also Kurz and Salvadori ([52], p. 121), for comments.

https://doi.org/10.1515/9783110635096-005
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5.1 Sraffa’s Standard system and the Standard commodity

5.1.1 The general idea and the definitions

Consider a closed economic system of production consisting of single-product indus-
tries.

In PCMC, Par. 25–26, Sraffa defines the notion of Standard system. He starts by
considering a system of production, called by him the actual economic system, repre-
sented by a production scheme, including basic and non-basic commodities.

Within the actual economic system, he determines all the basic commodities and
considers only equations that link exclusively the basic commodities together, dis-
carding non-basics. These equations form a “miniature” system embedded in the ac-
tual economic system. In this chapter, we consider only the case where the actual eco-
nomic system produces initially only basic commodities.

Using algebraicmethods, the obtainedminiature production scheme is then trans-
formed in a way that ensures that the various commodities, represented in its aggre-
gate means of production, are in the same numerical proportions as they are in the
totals produced industry by industry. It is called a Standard system.

We shall now proceed to develop the concepts mentioned and their properties
in full detail. Sraffa’s original description of a Standard system will be presented in
Example 5.1.2 (see also Emmenegger [27]).

The output obtained in a Standard system is called a Standard composite commod-
ity, or Standard commodity for short (PCMC, Par. 26). Consider an ‘actual economic
system’, an initial system of production, represented by a production scheme that in-
cludes basic and non-basic commodities, fromwhich aminiature system of only basic
industries, called a ‘Standard system’, is segregated in such segments as will together
form a complete miniature system of equations, endowed with the property that the
various commodities are represented among themeans of production in the same pro-
portions as they are in its outputs. This leads to the formulation of the following defi-
nition, using the notion of parallel vectors2:

Definition 5.1.1 (The Standard commodity). The vector of ‘aggregatemeans of produc-
tion’Se, the vector of total outputq, and the vector of surplusd are parallel,Se ‖ q ‖ d,
in a Standard system. A set of all basic commodities, issued from such as ‘Standard
system’, constituting a basket of commodities, where the proportions between the
quantities of the commodities are the same as those between the components of the
three parallel vectors, is called for short a “Standard commodity”.

2 The condition for two vectors to be parallel to each other is that if one is a scalarmultiple of another,
i. e., a = [a1, . . . , an], b = [b1, . . . , bn] be the two vectors, then they are parallel to each other if and
only if: ∃k ∈ ℝ, b = k ⋅ a⇔ k = bi/ai, i ∈ {1, . . . , n}, noted as a ‖ b.
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We are familiar with the notion that represents the surplus or the net product pro-
duced in an economy, collected together in the vector of surplus d. As by Assump-
tion 2.2.1, the vector of total output is positive, q > o, according to the required pro-
portionalities between the quantities of commodities of a Standard commodity, if the
vector of surplus is either positive, d > o, or a null vector,3 d = o. We consider here
only Standard systems with positive surplus vectors.

Sraffa’s aim is to consider the Standard commodity, an aggregate of commodi-
ties, as a calibrated measurement unit. Sraffa proposes further a calibrated unit. He
calls a peculiar Standard commodity, where the aggregate employed labour is equal
to the labour employed in the initial actual economic system, a Standard net product
(PCMC, Par. 26). We will see later that the proportions of quantities of commodities in
a Standard commodity also indicate the proportions of their values. This means that
wewill be able to compare values of commodities by their quantitieswithout resorting
to prices, see (5.7), hereafter.

Summing up the rows of matrix S, we get the total amount of commodities∑nj=1 sij,
the aggregate means of production, necessary for the production of each industry j ∈{1, . . . , n}. The vector qI = Se contains these sums.

A Standard system, composed by definition only of basic commodities produced by basic industries,
is represented by a production scheme (S, L) → (q̂). For this reason, the commodity flow matrices S
of Standard systems are semi-positive and necessarily irreducible, Lemma A.15.3 (i), (v).

Now, according to Definition 5.1.1, we have parallel vectors q ‖ d. We set q = k ⋅ d,
k ∈ ℝ. We write down the proportions of the components of the vectors q and d:

q1
d1
= q2
d2
= ⋅ ⋅ ⋅ = qn

dn
. (5.1)

For the moment, we do not know the numerical value of the proportionality factor
equal of the ratio of the net product dj to the means of production qj − dj > 0, j =
1, . . . , n, a dimensionless constant R, designated as Standard ratio.4 Remember that
in a Standard system a semi-positive vector of surplus d ≥ o is not possible,

dj
qj − dj = R > 0, ⇔ dj

qj
= R

1 + R j = 1, . . . , n. (5.2)

Sraffa’s intention in setting up a Standard system of production is to create a system in
which any change in the proportions of the total quantities of commodities entering

3 The conditions of production, presented by Definition 3.1.1 and Definition 3.1.2, define a special type
of a Standard system, where the vector of surplus disappears, d = o.
4 There is: dj/(qj − dj) = R ⇔ dj = Rqj − Rdj ⇔ dj(1 + R) = Rqj ⇔ dj/qj = R/(1 + R).
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the production process automatically entails an identical change of proportions in the
total outputs of the commodities produced, independent of prices.

Then, the proportionality (5.2) in a Standard system leads to

Lemma 5.1.1. The positive vectors q > o, d > o, q − d > o, representing a Standard
system, being parallel to each other, q ‖ q − d ‖ d, the proportionalities between these
vectors are given by:

d = RSe = R(q − d) = R

1 + Rq⇔ q = (1 + R)Se, R > 0. (5.3)

Proof. One applies the definition of parallelism to the vectors d and q − d, taking the
proportionalitiesdj/(qj−dj) = R > 0, j ∈ {1, . . . , n}, equation (5.2),wegetwithSe = q−d
(2.15), d = R(q − d) = RSe, leading to d ‖ q − d. One then has the proportionalities
dj/qj = R/(1 + R), giving d = (R/(1 + R))q = RSe and d ‖ q. Then one concludes,
finding q = (1 + R)Se.

Now, we have to determine what value the factor R takes on. We find

Lemma 5.1.2. Consider a production scheme (S,L)→ (q̂) representing a Standard sys-
tem with semi-positive and irreducible or positive commodity flow matrix S ≥ 0. Then,
for every sector j ∈ {1, . . . , n}, the Standard ratio R of the net product dj to the means of
production (qj − dj) is equal to the productiveness R,

R = dj
qj − dj = djpj(qj − dj)pj = R = 1

λC
− 1, j = 1, . . . , n, (5.4)

where λC is the Frobenius number of C = Sq̂−1 ≥ 0. One obtains,
d = RSe = R

1 + Rq > o⇔ q = (1 + R)Se > 0; R > 0, (5.5)

djpj = R(qj − dj)pj ⇒ n∑
j=1

djpj = R n∑
j=1
(qj − dj)pj ⇒

dp := Y = R(q − d)p := R ⋅ (X − Y)⇔ R = Y
X − Y = YK =: R̃. (5.6)

Proof. Having excluded d = o, there remains d > o (5.2) for a Standard system. As the
input-output coefficientsmatrix C is semi-positive and irreducible or positive, we solve
the eigenvalue equation Cq = λq. Lemma 4.1.1 (b) applies with Frobenius number
λC, 0 < λC < 1. We set λC = 1/(1 + R) and get Cq = Sq̂−1q = Se = λCq = (1/(1 + R))q.
Therefore we have q = Se(1+R). With (5.3) we getR = R > 0. The proportions between
components of parallel vectors (5.6) lead to R = R̃.
Remark. Consider any prices pj > 0, j = 1, . . . , n, expressed in any freely chosen
numéraire which need not be in monetary terms. Then from (5.4) follows immediately
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that the proportions of the value pjdj to the value pj(qj−dj) are equal to the net product
dj to themeans of production (qj−dj) for any of the sectors. The proportion is evidently
equal to the productiveness R:

R = pjdj
pjqj − pjdj = pjdj

pj(qj − dj) = dj(qj − dj) = R = YK = R̃, j = 1, . . . , n. (5.7)

The limit case of no surplus
A semi-positive and irreducible or positive input coefficients matrix C and a null vec-
tor of surplus d = 0 determine a particular Standard system with Frobenius number
λC = 1 and no productiveness R = 0, (PCMC, Par. 1), so we fall back to interindustrial
economies and stochastic matrices, see Lemma 4.1.1 (a).

The case of surplus
The Standard ratio R of net product dj to the means of production (qj − dj) expresses
the part of the surpluswith respect to one unit ofmeans of production of commodity j.
In this sense, the Standard ratio R > 0 is a productivity rate. It is the productiveness,
R = R, as we have shown.5 As mentioned earlier, Sraffa’s intention (PCMC, Par. 28)
in setting up a Standard system, respectively a Standard commodity, Definition 5.1.1,
is to obtain a composition of basic commodities, as a homogenous physical measure of
value independent of prices.6

The Standard system is a valuable theoretical tool in a Ricardian perspective. In
addition, it automatically fulfills Sraffa’s required assumption for obtention of a uni-
form rate of profits mentioned in PCMC, Par. 4.

Example 5.1.1. Given the productiveness R = Y/(X − Y) (5.6) of a Standard system,
determine the corresponding Frobenius number.

5 Seemingly, Sraffa did not apply the theorem of Perron–Frobenius A.9.3. He wrote the equation R =
r(1−w̃) (4.36) notedR as Standard ratio (PCMC, Par. 29, Par. 30), and said that it is equal to themaximal
profit rate R. This means that Sraffa postulated correctly the equality R = R for Standard systems.
6 Roncaglia ([96], p. 36) says: “Sraffa also constructs a particular analytical tool, namely the ‘standard
commodity’, thanks to which he is able to solve (part of) the Ricardian problem of an invariable measure
of value. Ricardo had in fact attributed two meanings to the notion of a ‘standard measure of value’,
which must not be confused: that of having invariable value (…) when changes occur in the distribution
of income between wages and profits, the technology remaining unaltered; and that of having invariable
value in relation to the changes the technology goes through in the course of time …Sraffa goes on to
show how the former can only be solved in terms of a particular analytic construction, the ‘standard
commodity’. This is a composite commodity (…) so determined that the aggregate means of production
also correspond to a certain quantity of ‘standard commodity’”.
And indeed “unaltered technology” is the case with equation (5.1), Lemma 5.1.1 and Lemma 5.1.2.
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Solution to Example 5.1.1:
We obtain for the Frobenius number

λC = 1
1 + R = 1

1 + Y
X−Y

= X − Y
X
.  (5.8)

5.1.2 The notion of the non-Standard actual economic system

Sraffa starts with a non-Standard actual economic system, (PCMC, Par. 25): “The prob-
lem is one that concerns industries rather than commodities and is best approached
from that angle.” He continues:

Example 5.1.2. “(PCMC, Par. 25) Suppose we segregate from the actual economic sys-
tem such fractions of the individual basic industries as will together form a complete
miniature system endowed with the property that the various commodities are repre-
sented among its aggregate means of production in the same proportions as they are
among its products. As an example, let us assume that the actual system from which
we start includes only basic industries and that these produce respectively iron, coal
and wheat in the following way:”(90 t. iron, 120 t. coal, 60 qr. wheat, 3

16
labour)→ (180 t. iron,0,0),

(50 t. iron, 125 t. coal, 150 qr. wheat, 5
16

labour)→ (0, 450 t. coal,0),
(40 t. iron, 40 t. coal, 200 qr. wheat, 8

16
labour)→ (0,0, 480 t. wheat). (5.9)

Solution to Example 5.1.2:
The process of production is presented as a production scheme, including the parts of
necessary labour, in analogy to the scheme (3.41).

The node-complete digraph of the production scheme just presented, with iron
(commodity: C1), coal (commodity: C2) and wheat (commodity: C3) assumes the fol-
lowing aspect, see Figure 5.1.

We apply the matrix algebra developed until now and note that Sraffa uses the
normalised vector of labour. The commodity flowmatrix S and the semi-positive vector
of surplus d are easily recognized:

S = [[[[
s11 s12 s13
s21 s22 s23
s31 s32 s33

]]]] = [[[
90 50 40
120 125 40
60 150 200

]]] , d = [[[[
d1
d2
d3

]]]] = [[[
0
165
70

]]] . (5.10)
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Figure 5.1: Node-complete digraph of Sraffa’s Example 5.1.2 (PCMC, Par. 25).

Then, we calculate themeans of production Se and the vector of total output q,

Se = [[[ 90 50 40
120 125 40
60 150 200

]]][[[ 1
1
1

]]] = [[[ 180
285
410

]]] ,
q = Se + d = [[[ 90 50 40

120 125 40
60 150 200

]]][[[ 1
1
1

]]] + [[[ 0
165
70

]]] = [[[ 180
450
480

]]] . (5.11)

One has the normalised vector of labour and the normalised total quantity of labour:

L = [[[ L1
L2
L3

]]] = [[[[
3
16
5
16
8
16

]]]] , L = L ⋅ e = [ 3
16
, 5
16
, 8
16
] ⋅ [[[ 1

1
1

]]] = 1. (5.12)

Clearly, the vectors Se, d, q, (5.10) (5.11) are not parallel: Se ∦ d ∦ q. So Exam-
ple 5.1.2 describes a non-Standard system, an actual economic system from which a
Standard system, in accordance with Lemma 5.1.1 and Sraffa’s description, must be
constructed. 
5.2 Application of an orthogonal Euler map to a non-Standard

system*

In this section, we develop a geometric interpretation of Sraffa’s Standard systems.
We will use familiar notions as “parallelism of vectors” and a specific “linear map” of
the Euclidean space ℝn → ℝn onto itself. Thus, we will be able to tell how a non-
Standard system is transformed into a Standard system!
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5.2.1 Setting the problem and preliminaries

We introduce at first the notion of the top-front-right octant 𝒞n ⊂ ℝn, called the com-
modity space, because it is used to represent the quantities of produced commodities
or products.

Definition 5.2.1 (The commodity space or product space). Consider an n − dim top-
front-right octant7 𝒞n, called the commodity space (or product space), a subset of the
Euclidean space ℝn. Consider further in this commodity space 𝒞n the unit vectors
e⃗i = [0, . . . , 1, . . . ,0] (a 1 on the i-th place), corresponding uniquely to commodities
i ∈ {1, . . . , n}, giving an orthonormal basis ℐn = {e⃗1, . . . , e⃗i, . . . , e⃗n}.
We start here the geometric interpretation of Sraffa’s Standard system.Sraffa’s construction of the
Standard system (Definition 5.1.1), consists in finding a set of n suitable multipliers γ1, γ2, . . . , γn,
forming the diagonal of a matrix γ̂, constituting the transformation matrix of an orthogonal Euler
map.

We consider now such an orthogonal Euler map, also called an orthogonal Euler
affinity (see Definition A.7.1), of the Euclidean spaceℝn → ℝn onto itself.8 The vectors
are supposed to be given relative to the orthonormal basis ℐn.

Express now the transposed n × n commodity flow matrix S as a row vector of
column vectors (Definition A.4.3). We get S = [s1., . . . , sn.]. The column vectors si⋅ =[si1, . . . sin] are composed of the quantities sij of commodity i, necessary as inputs for
the production in each sector j ∈ {1, . . . , n}. For this reason the column vectors si⋅ are
called i-th commodity vectors, i ∈ {1, . . . , n}.

The orthogonal Euler map transforms all the vectors si., i ∈ {1, . . . , n}. All the Euler
mapped vectors are noted from now on with a tilde-sign, becoming, e. g., s̃i⋅ for com-
modity i and q̃ for the total output:

s̃i⋅ := γ̂si⋅; q̃ = γ̂q. (5.13)

This leads to the transposed mapped commodity flow matrix S̃ = [s̃1⋅, . . . , s̃n⋅] by
application of Definition A.4.3. In this context, let us not forget the crucial question of
dimensionality. Indeed, for an economic systemwith surplus, one always has (q̂−S)e ≥
o and det(q̂ − S) ̸= 0, according to Proposition 3.1.4 meaning the linear independence
of the n production processes (s⋅j, qj), implying a full rank: rank(q̂ − S) = n.
7 Any commodity i enters a production process only as a positive quantity, therefore only positive axes
need to be considered.
8 The term is translated from the German notion Orthogonale Eulersche Affinität. The Swiss mathe-
matician and physicist Leonard Euler (1707–1783) introduced in 1748 the term affine (Latin affinis, “re-
lated”) in his book Introductio in analysin in infinitorum, source: http://en.wikipedia.org/wiki/Affine_
geometry, 5.12.2013. See also Appendix A.
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We then calculate the mapped commodity flow matrix S̃, starting from the trans-
posed matrix S and using the elementary identity for the transposed product of ma-
trices, (AB) = BA, fully explained for this special case with a diagonal matrix in
Appendix A, equation (A.36).

S̃ := γ̂S ⇔ S̃ = Sγ̂. (5.14)

Note also the rule of symmetry (A.37), for the mapped vector of total output

q̃ := γ̂q = q̂γ. (5.15)

Then we can calculate the mappedmeans of production, exemplified for n = 3,
S̃e = [[[[

s11γ1 s12γ2 s13γ3
s21γ1 s22γ2 s23γ3
s31γ1 s32γ2 s33γ3

]]]][[[[
1
1
1

]]]] = [[[[
s11γ1 + s12γ2 + s13γ3
s21γ1 + s22γ2 + s23γ3
s31γ1 + s32γ2 + s33γ3 ]]]]

= [[[[
s11 s12 s13
s21 s22 s23
s31 s32 s33

]]]][[[[
γ1
γ2
γ3

]]]] = Sγ ⇒ S̃e = Sγ, (5.16)

which leads us to the following:

Definition 5.2.2 (Euler transformation of a Sraffa systemof production). We recall the
required matrix and vectors in ℝn,

S = [s1⋅, . . . , sn⋅] = [[[[[[[
s11 s21 . . . sn1
s12 s22 . . . sn2. . . . . . . . . . . .
s1n s2n . . . snn

]]]]]]] , L = [[[[[[[
L1
L2. . .
Ln

]]]]]]] , q = [[[[[[[
q1
q2. . .
qn

]]]]]]] . (5.17)

The terminal points of the n vectors si⋅, i = 1, . . . , n generate a polygon Pn of n vertices
in ℝn. Now the orthogonal Euler affinity matrix,

γ̂ = [[[[[[[
γ1 0 . . . 0
0 γ2 . . . 0. . . . . . . . . . . .
0 0 . . . γn

]]]]]]] , (5.18)

transforms the vectors s1⋅, . . . , sn⋅, q, L, generating mapped vectors and the matrix S̃

s̃i⋅ = γ̂si⋅, i = 1, . . . , n, L̃ = γ̂L,
S̃ = [s̃1⋅, . . . , s̃n⋅] = Sγ̂, q̃ = γ̂q. (5.19)

The terminal points of the n vectors s̃i⋅, i = 1, . . . , n generate the mapped polygon P̃n of
n vertices in ℝn.
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Notation 5.2.1. In the case of single-product industries, a Sraffa system of production’,
described by the production scheme (S,L)→ (q̂), is concisely described as the triple(S,q,L) of matrices and vectors.

Geometrically speaking, the multipliers (5.18) in the most general form define an
orthogonal Euler map of the Euclidean space ℝn → ℝn, onto itself, operating on the
vectors si⋅ = [si1, . . . , sin], i = 1, . . . , n, q and L. In Sraffian terms, an orthogonal Euler
map is applied to the actual economic system of production (S,q,L) resorting to a
transformationmatrix γ̂ generating an Euler class ℰ of systems of production denoted
by (S̃, q̃, L̃) in application of the transformation (5.19) see Definition 5.2.3.

These systems are in general not Standard systems. The specific transformation
guaranteeing the parallelism required to obtain a Standard system, termed (S̆, q̆, L̆),
will be determined later. The breve-sign (q̆) is used to note an element (q), a vector or
a matrix, of a Standard system. The system (S̆, q̆, L̆) constitute a subclass of the Euler
class ℰ . We shall not apply the breve-sign to the scalars, like national income Y or total
quantity of labour L of that Standard system. We can now introduce

Notation 5.2.2. The ‘Standard system’, a special system of production, is presented
concisely as a triple (S̆, q̆, L̆), giving parallel vectors S̆e ‖ q̆ ‖ d̆. These three vectors
thus have components mutually in constant proportions and constitute examples of
Standard composite commodities, or Standard commodities for short (PCMC, Par. 26).
The corresponding production scheme is noted (S̆, L̆)→ ( ̂q̆), Definition 5.1.1.

Now, we present the numerical procedures to get a Standard system from a non-
standard actual economic system. For this purpose, we further extend Example 5.1.2,
treating it as Sraffa did, multiplying the lines of the production scheme (5.9) with ap-
propriate numbers:

Example 5.2.1. Sraffa (PCMC, Par. 25) multiplies the production scheme (5.9) of the
non-standard actual economic system, in the following way: the iron row with γ1 = 1,
the coal row with γ2 = 3

5 , the wheat row with γ3 = 3
4 , giving the production scheme of

a Standard system:(90 t. iron, 120 t. coal, 60 qr. wheat, 3
16

labour)→ (180 t. iron,0,0),(30 t. iron, 75 t. coal, 90 qr. wheat, 3
16

labour)→ (0, 270 t. coal,0),(30 t. iron, 30 t. coal, 150 qr. wheat, 6
16

labour)→ (0,0, 360 t. wheat). (5.20)

We must now develop a general procedure to obtain a Standard system from a non-
Standard system!

Solution to Example 5.2.1:
In the present case, the orthogonal Eulermapwith n = 3 is described by a 3×3 diagonal
matrix and the corresponding mapping equation for each point x,
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γ̂ = [[[ γ1 0 0
0 γ2 0
0 0 γ3

]]] = [[[[
1 0 0

0 3
5 0

0 0 3
4

]]]] ; x̃ = γ̂x. (5.21)

This defines the orthogonal Euler map (orthogonal Euler affinity) of the Euclidean
space ℝ3 → ℝ3 into itself. The vectors are given relative to the orthonormal basis ℐ3
of the vector space ℝ3.

The multiplication of the equations of the production scheme (5.9) proposed by
Sraffa are reproduced here geometrically by the application of that orthogonal Euler
map on the matrix S and the vector of total output q,9 giving a Standard system:

S̆ = Sγ̂ = [[[ 90 50 40
120 125 40
60 150 200

]]][[[[
1 0 0
0 3

5 0

0 0 3
4

]]]] = [[[
90 30 30
120 75 30
60 90 150

]]] ,
S̆e = [[[ 90 30 30

120 75 30
60 90 150

]]][[[ 1
1
1

]]] = [[[ 150
225
300

]]] ,
q̆ = γ̂q = [[[[

1 0 0
0 3

5 0

0 0 3
4

]]]][[[
180
450
480

]]] = [[[ 180
270
360

]]] . (5.22)

Then we calculate the mapped vector of the new surplus and present the obtained
results in Figure 5.2:

d̆ = q̆ − S̆e = [[[ 180
270
360

]]] − [[[ 150
225
300

]]] = [[[ 30
45
60

]]] . (5.23)

With Lemma 5.1.1 and Lemma 5.1.2, we obtain the productiveness R, e. g., with i = 1,
giving

R = d̆1
q̆1 − d̆1 = 30

180 − 30 = 0.2 = 20%. (5.24)

With the productiveness R and equation (5.5), and also (2.15), we get the important
dilatation equations:

q̆ = S̆e + d̆ = S̆e(1 + R) = S̆e + RS̆e, d̆ = RS̆e. (5.25)

One finds themapped vector of labour, applying the rule of symmetry (A.37). The
total quantity of labour is no longer normalized as we are at present in a reduced sys-
tem:

9 The orthogonal Euler mapwith the diagonal matrix γ̂ is also applied on the labour vector L, further
in the present Example (5.26).
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L̆ = γ̂L = [[[ L1
L2
L3

]]] = [[[ γ1 0 0
0 γ2 0
0 0 γ3

]]] = [[[ γ1L1
γ2L2
γ3L3

]]] ,
L̆ = [[[[

1 ⋅ 316
3
5 ⋅ 516
3
4 ⋅ 816 ]]]] = [[[[

3
16
3
16
6
16

]]]] , L = L̆ ⋅ e = [ 3
16
, 3
16
, 6
16
] ⋅ [[[ 1

1
1

]]] = 1216 .  (5.26)

Recapitulation 5.2.1. There exist orthogonal Euler maps, transforming the non-
parallel vectors d, q, Se (5.9) of a non-standard actual economic system (S,q,L)
into parallel vectors d̆, q̆, S̆e of a Standard system (S̆, q̆, L̆). Each vector ă parallel to
one of the vectors d̆ ‖ q̆ ‖ S̆e, visualized in Figure 5.2 (right), constitutes a Standard
(composite) commodity or, shortly speaking, a Standard commodity, Definition 5.1.1.

Figure 5.2: Actual economic system (left (5.9)) and Standard system (right (5.20)).

In the next step, we shall show that an eigenvalue equation is hidden behind the
constitution of a Standard system, and we will develop the algebra required to calcu-
late Sraffa’s multipliers from this perspective.

5.2.2 Calculation of the standard multipliers

At present, we have no general method showing how to compute the multipliers of
the diagonal matrix γ̂ (5.21), giving in the present case the Standard system of Exam-
ple 5.2.1, generated by the non-standard actual economic system of Example 5.1.2.

But preparatoryworkhas beendone.Weare now ready to propose amathematical
method to compute themultipliers; for this purpose, we establish, as those presented
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by Sraffa in PCMC, Par. 25, Example 5.1.2, a general equation, at first without taking
into account the part of labour L (PCMC, Par. 33).

Let’s start with the fundamental equation for the vector of total output (2.54),
q = Se + d. We use the identities q̃ = q̂γ and S̃ = Sγ̂, S̃e = Sγ, d̃ = S̃e − q̃, estab-
lishing the Euler mapped total output and the Euler mapped total means of produc-
tion. But then, we are finally only interested in the orthogonal Euler map, leading to
the constituting elements S̆ and q̆ of a Standard system (PCMC, Par. 33). We then apply
the dilatation equation (5.25) to these elements, here now using the breve-sign for the
Standard system, see Notation 5.2.2, and we obtain:

S̆e + d̆ = S̆e(1 + R) = Sγ(1 + R) = q̆ = q̂γ. (5.27)

Wewill then be able to transform (5.27) into an eigenvalue equation enabling us to
calculate the multipliers γ1, γ2, . . . , γn, components of vector γ and diagonal elements
of the transformation matrix γ̂ (A.36).

We continue to have a look at the set of all Euler mapped actual economic sys-
tems (S,q,L) and will discover some of its properties. Consider the case of n sectors,
producing exclusively basic products with a surplus. Then, the n × n commodity flow
matrix S is irreducible, with LemmaA.15.3 and the corresponding Standard system has
dimension n (see Section 5.1.1). The vector of surplus is semi-positive, d ≥ o, and the
vector of total output is positive, q = Se + d > o. We also have a vector of labour L.

S = [[[[[
s11 s12 . . . s1n
s21 s22 . . . s2n. . . . . . . . . . . .
sn1 sn2 . . . snn

]]]]] , q = [[[[[
q1
q2. . .
qn

]]]]] , L = [[[[[
L1
L2. . .
Ln

]]]]] . (5.28)

Definition 5.2.3. Take the actual economic system (S,q,L) andmultiply its three con-
stituents by a diagonal n×nmatrix γ̂, whose diagonal elements are the positive multi-
pliers, γi > 0, (5.18) as described above, constituting themself the positive real vector
γ > o.10 One obtains a mapped system of production (S̃, q̃, L̃) that is an element of the
Euler class of systems of production ℰ = {(S,q,L) | γ̂}.

The actual economic system, a system of production (S,q,L), (5.28) is called a
generator of the Euler class of systems of production ℰ .

Proposition 5.2.1 (Properties of the Euler class of systems of production).
(1) The actual economic system (S,q,L) belongs to the Euler class of systems of pro-

duction with the identity matrix γ = I, (S,q,L) ∈ ℰ .
(2) There is a unique input-output coefficients matrix C = Sq̂−1 for the whole Euler class

of systems of production ℰ , as we shall now show.

10 For economic purposes, setting γi > 0 is necessary because the signs of the matrix and vector
elements have to remain the same. There are no zero equations.
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Indeed, applying an orthogonal Euler map on the input-output coefficients matrix
C = Sq̂−1 (2.16), one defines C̃ := S̃ ̂q̃−1, leading to:
C̃ := S̃ ̂q̃−1 = [[[[[

s11γ1 s12γ2 . . . s1nγn
s21γ1 s22γ2 . . . s2nγn. . . . . . . . . . . .
sn1γ1 sn2γ2 . . . snnγn

]]]]]
[[[[[[[

1
q1γ1

0 . . . 0

0 1
q2γ2
. . . 0. . . . . . . . . . . .

0 0 . . . 1
qnγn

]]]]]]]
= [[[[[

s11 s12 . . . s1n
s21 s22 . . . s2n. . . . . . . . . . . .
sn1 sn2 . . . snn

]]]]]
[[[[[[[

1
q1

0 . . . 0

0 1
q2
. . . 0. . . . . . . . . . . .

0 0 . . . 1
qn

]]]]]]] = Sq̂
−1 = C. (5.29)

We recognize that with each generator (S,q,L) is associated a unique input-output
coefficients matrix C̃ = C = Sq̂−1.

(3) A similar reduction for the distribution coefficients matrix D = q̂−1S (2.20) is ob-
tained as follows:

D̃ := ̂q̃−1S̃ = [[[[[[[
1

q1γ1
0 . . . 0

0 1
q2γ2
. . . 0. . . . . . . . . . . .

0 0 . . . 1
qnγn

]]]]]]]
[[[[[

s11γ1 s12γ2 . . . s13γ3
s21γ1 s22γ2 . . . s2nγn. . . . . . . . . . . .
sn1γ1 sn2γ2 . . . snnγk

]]]]]
= [[[[[[[

1
q1

0 . . . 0

0 1
q2
. . . 0. . . . . . . . . . . .

0 0 . . . 1
qn

]]]]]]]
[[[[[

s11 s12 . . . s13
s21 s22 . . . s23. . . . . . . . . . . .
sn1 sn2 . . . snn

]]]]] = q̂−1S = D. (5.30)

We recognize that to each generator (S,q,L) is associated a unique distribution coef-
ficients matrix D̃ = q̂−1S = D. Clearly, like matrix S, matrices C and D are positive or
semi-positive and irreducible.

Returning to Expression (5.27), we can now determine the sought-for eigenvalue
equation. We calculate the distribution coefficientsmatrix D = q̂−1S (5.30), common to
all elements of the Euler class ℰ = {(S,q,L) | γ̂} and to the Standard system (S̆, q̆, L̆)
we are looking for. We multiply (5.27) from the left by q̂−1, obtaining:

q̂−1(Sγ)(1 + R) = (q̂−1S)γ(1 + R) = Dγ(1 + R)= q̂−1(q̂γ) = (q̂−1q̂)γ = γ, (5.31)

i. e., the right eigenvector equation of matrix D,

Dγ(1 + R) = γ ⇒ Dγ = 1
1 + Rγ := λDγ. (5.32)
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The vector of multipliers γ is a positive right eigenvector of the right eigenvector
equation (5.32).

Continuingwith the general explicit calculation of thedistribution coefficientsma-
trix D, taking equation (2.20), we set up,

D = q̂−1S = [[[[
1
q1

0 0

0 1
q2

0

0 0 1
q3

]]]][[[
s11 s12 s13
s21 s22 s23
s31 s32 s33

]]] = [[[[
s11
q1

s12
q1

s13
q1

s21
q2

s22
q2

s23
q2

s31
q3

s32
q3

s33
q3

]]]] , (5.33)

and redefine the distribution coefficients, treating the general case,

dij = sijqi ; i, j = 1, . . . , n; i : Input index
j : Output index. (5.34)

We recall their economic meaning:
dij: The distribution coefficient determines the fraction (part) of commodity i (Input)

required for the production of one unit of commodity j (Output).

Each row [di1, . . . , dij, . . . , din] of the distribution coefficientsmatrix D gives accordingly
the part of commodity i, necessary for the production of a part of a unit of each com-
modity j ∈ {1, . . . , n}.

Now let us undertake the numerical work for Example 5.1.2.

Example 5.2.2. Consider the following entries, the positive matrix S (5.10), the semi-
positive vector of surplus d ≥ o (5.10), and the positive vector of total output q =
Se + d > o (5.11) of Example 5.1.2.

Compute the distribution coefficients matrix D = q̂−1S and interpret each of its
rows. Compute the characteristic polynomial of matrix D, its Frobenius number λD
and the associated right eigenvectors. Find the calibration to obtain the multipliers of
PCMC, Par. 25.

Solution to Example 5.2.2:
Start with matrix S (5.10) and vector q (5.11) and compute the matrix,

D = q̂−1S = [[[[
1

180 0 0
0 1

450 0
0 0 1

480

]]]][[[
90 50 40
120 125 40
60 150 200

]]] = [[[[
1
2

5
18

2
9

4
15

5
18

4
45

1
8

5
16

5
12

]]]] . (5.35)

The numerator and denominator of the fraction dij represent quantities of the same
commodity in physical terms, like tons of iron. For this reason, all distribution coeffi-
cients are dimensionless, [dij] = 1, i, j = 1, . . . , n, varying: 0 < dij < 1. In equation (5.35),
for example, the ratio d12 = 50/180 = 5/18 determines that 5/18 of commodity 1 (iron)
is used in the production of a part of a unit of commodity 2 (coal).

Referring to (5.10), we note:
In the first row of D (5.35), we have [ 90180 , 50180 , 40180 ], the sum of these fractions gives

90
180 + 50

180 + 40
180 = 1, because there is no surplus of iron production, d1 = 0.
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The second row of D (5.35) is [ 120450 , 125450 , 40450 ]. The sum of these fractions gives 120
450 +

125
450 + 40

450 = 285
450 , indicating that the surplus represents here

165
450 of one unit of coal

production, d2 = 165.
For the third row of D (5.35), we have [ 60480 , 150480 , 200480 ]. The sum of these fractions

gives 60
480 + 150

480 + 200480 = 410
480 , indicating that the surplus represents here

70
480 of one unit

of wheat production, d3 = 70.
As the vector of surplusd (5.10) is semi-positive,weget for the rowsums∑nj=1dij ≤ 1,

i = 1, . . . , n. If the i-th row sum is smaller than 1, the production process generates a
net product (surplus) for commodity i.

The eigenvalues of matrix D are then computed. Set up the characteristic polyno-
mial,

P3(λ) = det(D − λI) = −λ3 + 4336λ2 + − 13λ + 35
1296
. (5.36)

The polynomial P3(λ) is then factorised, obtaining,
P3(λ) = (λ − 56)(λ − 16)(λ − 7

36
). (5.37)

Remember that the present Standard system has a positive surplus. Consequently
Lemma 4.1.1 (b) applies and the Frobenius number of matrix D = q̂−1S is smaller
than 1, 0 < λD = 5/6 = 1/(1 + R) < 1.

We then get the positive productiveness R = 0.2.
Finally, we obtain the positive eigenvectors γ = k[ 43 , 45 , 1] > 0, k ∈ ℝ+ from the

eigenvalue equation,Dγ = λDγ (5.32). Setting k = 3/4, Sraffa’s multipliers γ = [1, 35 , 34 ]
(PCMC, Par. 25) appear. 
Recapitulation 5.2.2. Considering the actual economic system (5.9), which is not
a Standard system, the multipliers from the range of Example 5.1.2 generate the
Standard system (5.20). Multipliers are the multitude of the positive eigenvectors
γ = k[ 43 , 45 , 1], k > 0, of the positive distribution coefficients matrix D > 0, associated
with the Frobenius number less than 1, λ = 5/6 < 1, as this economy produces a sur-
plus. With the calibration value k = 3/4, we get the multipliers γ1 = 1, γ2 = 3

5 , γ3 = 3/4
of Sraffa (PCMC, Par. 25). The productiveness is positive, R = 0.2 > 0, (5.24).
5.2.3 Classes of Standard systems and their Standard commodities

In the preceding Subsection 5.2.2, we have shown that Sraffa’s multipliers (PCMC,
Par. 25) are essentially the components of eigenvectors of the semi-positive and ir-
reducible or positive distribution coefficients matrix D, associated with its Frobenius
number.

In the present subsection, we shall discover a second eigenvalue equation. We
continue to consider n sectors and return to the question of generating a Standard
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system. Having a semi-positive and irreducible or positive commodity flow matrix S
(5.28), consider a generally non-standard actual economic system (S,q,L). Compute
the Euler mapped transposed matrix S̃ = γS, equivalent to S̃ = Sγ. The orthogonal
Euler map is also applied to the vectors q and L, giving the mapped vector q̃ = γq and
the mapped vector L̃ = γL.

We are aiming at a Standard system; we accordingly have to calculate S̃e, a vector
that has to be parallel to the vector of total output q̃. We apply the dilatation equation
(5.25), which we reproduce here now using the breve-sign for a Standard system, see
Notation 5.2.2:

S̆e(1 + R) = q̆. (5.38)

Then, we apply the rule (A.35),

̂q̆−1q̆ = [[[[[[[
1

q̆1γ1
0 . . . 0

0 1
q̆2γ2
. . . 0. . . . . . . . . . . .

0 0 . . . 1
q̆nγn

]]]]]]]
[[[[[

γ1q̆1
γ2q̆2. . .
γnq̆n

]]]]] =
[[[[[

1
1. . .
1

]]]]] = e, (5.39)

to replace vector e in (5.38). We then find with the reduction equation (5.29), valid for
Standard systems, i. e., C = S̃ ̂q̃−1 = S̆ ̂q̆−1 the eigenvalue equation:

S̆e(1 + R) = S̆( ̂q̆−1q̆)(1 + R) = (S̆ ̂q̆−1)q̆(1 + R)= C(1 + R)q̆ = q̆= Cq̆ = 1
1 + R q̆ = λCq̆. (5.40)

The mapped vector of total output q̆ is a right eigenvector of matrix C, associated
with the Frobenius number λC = 1/(1 + R). These observations lead to
Lemma 5.2.1. For a semi-positive and irreducible or positive commodity flow matrix S,
a semi-positive vector of surplus d ≥ o, the vector of total output q = Se + d > o
and the vector of labour L, the Euler class of systems of production ℰ = {(S,q,L) |
γ̂} is associated with a unique input-output coefficients matrix C = Sq̂−1, respectively
a unique similar distribution coefficients matrix D = q̂−1S, both are semi-positive and
irreducible or positive, with equal Frobenius numbers λD = λC = 1/(1 + R) < 1 and equal
positive productiveness R > 0. 

Lemma 5.2.1 states an invariance property of the elements of the Euler class of
systems of production ℰ under orthogonal Euler maps and is based on a property of
similar matrices, described by Lemma A.6.2. All the elements of ℰ resort to analogous
technologies in putting to use the available commodities. They have in common an
invariant input-output coefficientsmatrix C and an invariant similar distribution coef-
ficientsmatrix D.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



212 | 5 Sraffa’s Standard system and the Standard commodity

In the next example,we illustrate the generation of a generalEulermapped system
of production (S̃, q̃, L̃) ∈ ℰ, which will lead to the required Standard system. We take
the entries of the non-standard actual system of production (S,q,L) of Example 5.1.2,
(PCMC, Par. 25).

Example 5.2.3. Consider the Euler class of systems of production ℰ = {(S,q,L) | γ̂},
constituted with the matrix S (5.10), the vectors q (5.11) and L, (5.12), generated by(S,q,L). Take the general diagonalmatrix γ̂ (5.21) of positive diagonal elements γi > 0,
i = 1, . . . , 3. Write down the general system of production (S̃, q̃, L̃) ∈ ℰ .
Solution to Example 5.2.3:
Set up the matrix S (5.10) and vectors q (5.11), L (5.12) and a general diagonal matrix γ̂:

S = [[[ 90 50 40
120 125 40
60 150 200

]]] , q = [[[ 180
450
480

]]] , L = [[[
3
16
5
16
8
16

]]] , γ̂ = [[[ γ1 0 0
0 γ2 0
0 0 γ3

]]] .
(5.41)

Determine the elements S̃, q̃, L̃ of the Euler class ℰ = {(S,q,L) | γ̂}:
S̃ = Sγ̂ = [[ 90 50 40

120 125 40
60 150 200

]][[ γ1 0 0
0 γ2 0
0 0 γ3

]] = [[ 90γ1 50γ2 40γ3
120γ1 125γ2 40γ3
60γ1 90γ2 150γ3

]] , (5.42)
q̃ = γ̂q = [[ γ1 0 0

0 γ2 0
0 0 γ3

]][[ 180
450
480
]] = [[ γ1180

γ2450
γ3480
]] ,

L̃ = γ̂L = [[ γ1 0 0
0 γ2 0
0 0 γ3

]][[[
3
16
5
16
8
16

]]] = [[[
γ1

3
16

γ2
5
16

γ3
8
16

]]] . (5.43)

We have now calculated the general systems of production (S̃, q̃, L̃) (5.20) belong-
ing to the Euler class of systems of production ℰ = {(S,q,L) | γ̂}. 

Now we go on, extracting the Standard systems and the corresponding Standard
commodities (Definition 5.1.1) from ℰ . We then also calculate the proportions between
the elements of the Standard commodities.

Consider for this purpose again the generator (S,q,L) ∈ ℰ . Due to Lemma 5.2.1,
the input-output coefficients matrix C = Sq̂−1 and the distribution coefficients matrix
D = q̂−1S are common to all systems of production of ℰ . We set up the eigenvalue equa-
tions (5.40) and (5.32),11 with λC = λD:
11 This means that the determination of a Standard system (S̆, q̆, L̆) ∈ ℰ, obtained by an orthogo-
nal Euler map from the actual economic system (S,q, L) ∈ ℰ, the generator, requires the solution of
both eigenvalue equations (5.44). From this Standard system one then may further generate Standard
commodities.
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Cq̆ = λCq̆ = 1
1 + R q̆, Dγ = λDγ = 1

1 + Rγ. (5.44)

Themultipliers of the orthogonal Euler map are the components of a right eigenvector
γ of the matrix D, corresponding to the Frobenius number λD, obtained by an appro-
priated calibration. They generate the vector of total output q̆ (5.22), respectively the
vector representing themeans of production (5.22) S̆e and the vector of surplus d̆ (5.23),
see Example 5.2.1. These three vectors are parallel to the right eigenvectors q̆ of thema-
trix C, corresponding to the Frobenius number λC. They are the elements constituting
the Standard systems and the corresponding Standard commodities.

The next example illustrates the relationships between the chosen total output
eigenvector q̆ and the resulting total quantity of labour L in detail:

Example 5.2.4. Start againwith the entries of Example 5.1.2. Compute the input-output
coefficients matrix C = Sq̂−1 (5.29) and the distribution coefficients matrix D = q̂−1S
(5.30), common to all systems of production of ℰ, Lemma 5.2.1.

Compute the characteristic polynomial ofmatricesCandD, its commonFrobenius
numbers λC = λD = 1/(1 + R) (Lemma A.6.1) and the common productiveness R.

Compute the right eigenvectors k ⋅ γ of the positive matrix D, associated with the
Frobenius number λD. Choose the right eigenvector k ⋅ γ, so that the total output of
iron becomes q̃1 = 1080. Compute the dilatation coefficient k and the corresponding
eigenvector k ⋅ γ of multipliers. Compute the remaining elements of the Standard sys-
tem. Show the parallelism of the three elements S̆1e, q̆1, d̆1 of the obtained Standard
system (S̆1, q̆1, L̆1), described in Recapitulation 5.2.1. Choose the vector of total output
q̆1 as Standard commodity. Compute the total quantity of labour L1.

Compute the right eigenvectors k ⋅ q̆ of the positive matrix C, associated to the
Frobenius number λC. First, calibrate the right eigenvectors k ⋅ q̆ to obtain the above
vector of total output q̆1. Second, calibrate the right eigenvectors k ⋅ q̆ to get the Stan-
dard system of Example 5.2.1, equation (5.22), (PCMC, Par. 26). Show again the paral-
lelism of the vectors of the obtained Standard system. Compute Sraffa’s multipliers of
PCMC, Par. 25.

Solution to Example 5.2.4:
Start with matrix S (5.10),12 and vectors q (5.11), L (5.12) of Example 5.1.2,

S = [[[ 90 50 40
120 125 40
60 150 200

]]] , q = [[[ 180
450
480

]]] , L = [[[
3
16
5
16
8
16

]]] , γ̂ = [[[ γ1 0 0
0 γ2 0
0 0 γ3

]]] .
(5.45)

We compute the input-output coefficients matrix C = Sq̂−1 (5.29) and the distri-
bution coefficients matrix D = q̂−1S (5.35), common to all systems of production of ℰ

12 Positivity ofmatrices is more restrictive than semi-positivity and irreducibility ofmatrices, see Gant-
macher ([34], Theorem 1 (Perron) and Theorem 2 (Frobenius), p. 398).
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(Lemma 5.2.1) giving

C = [[[ 90 50 40
120 125 40
60 150 200

]]][[[[
1

180 0 0
0 1

450 0
0 0 1

480

]]]] = [[[[
1
2

1
9

1
12

2
3

5
18

1
12

1
3

1
3

5
12

]]]] > 0,
D = [[[[

1
180 0 0
0 1

450 0
0 0 1

480

]]]][[[
90 50 40
120 125 40
60 150 200

]]] = [[[[
1
2

5
18

2
9

4
15

5
18

4
45

1
8

5
16

5
12

]]]] > 0. (5.46)

Compute the characteristic polynomial of matrices C and D

P3(λ) = det(D − λI3) = det(C − λI3) = −λ3 + 4336λ2 + − 13λ + 35
1296
. (5.47)

Factorise the polynomial, obtaining P3(λ) = (λ − 5
6 )(λ − 1

6 )(λ − 7
36 ). As the matrices

D and C are positive and there is a surplus, Lemma 4.1.1 (b) applies and the Frobenius
number is 0 < λC = 1/(1+R) = 5/6 = 1/(1+ 15 ) < 1, corresponding to the productiveness
R = 0.2 > 0.

(1). The right eigenvectors of the positivematrix D, associated with the Frobenius
number λC = 5/6, are calculated, resulting in γ = k[4/3, 4/5, 1] > 0, k ∈ ℝ+ (see equa-
tion (5.32)). Then determine the diagonal matrix of the orthogonal Euler map, which
will lead to the targeted Standard system and Standard commodity:

γ̂ = k [[[[
4
3 0 0
0 4

5 0
0 0 1

]]]] . (5.48)

The Euler mapped matrix and Euler mapped vectors are determined in analogy to
equations (5.22) and (5.26) in, in order to give the required quantity of iron output:

S̆ = Sγ̂, q̆ = γ̂q = k[[[
4
3 0 0
0 4

5 0
0 0 1

]]][[[ 180
450
480

]]] = [[[ 1,080
q̆12
q̆13

]]] , L̆ = γ̂L. (5.49)

Weget from (5.49) the linear equation 1,080 = k⋅ 43 ⋅180 todetermine k, and immediately
find k = 4.5. This gives the required Standard commodity, described by the following
matrix and vectors:

γ̂1 = 4.5[[[[
4
3 0 0

0 4
5 0

0 0 1

]]]] = [[[
6 0 0
0 3.6 0
0 0 4.5 ]]] ,

S̆1 = Sγ̂1 = [[[ 90 50 40
120 125 40
60 150 200

]]][[[ 6 0 0
0 3.6 0
0 0 4.5 ]]] = [[[ 540 180 180

720 450 180
360 540 900

]]] ,
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q̆1 = γ̂1q = [[[ 6 0 0
0 3.6 0
0 0 4.5 ]]][[[ 180

450
480

]]] = [[[ 1,080
1,620
2,160 ]]] ,

L̆1 = γ̂1L = [[[ 6 0 0
0 3.6 0
0 0 4.5 ]]][[[[

3
16
5
16
8
16

]]]] = [[[[
18
16
18
16
36
16

]]]] ,
S̆1e = [[[ 900

1,350
1,800 ]]] ; d̆1 = q̆1 − S̆1e = [[[ 1,080

1,620
2,160 ]]] − [[[ 900

1,350
1,800 ]]] = [[[ 180

270
360

]]] . (5.50)
We clearly recognize the required parallelism of the vectors d̆1 ‖ q̆1 ‖ S̆1e. For the
productiveness R = 0.2, the dilatation equation of Recapitulation 5.2.1 (5.25) gives

q̆1 = (1 + R)S̆1e = 1.2 ⋅ [[[ 900
1,350
1,800 ]]] = [[[ 1,080

1,620
2,160 ]]] . (5.51)

Wehave set up the Standard commodity {1,080, 1,620, 2,160}with q1 = 1,080.Moreover,
in this example, the total quantity of labour L expressed in initial TAL’s is:

L1 = L̆1e = [ 18
16

18
16

36
16 ] [[[ 1

1
1

]]] = 4.5 TAL. (5.52)

(2). The right eigenvectors of the positivematrix C, associated with the Frobenius
number λC = 5/6, are calculated (see (5.44)) giving q̆ = k[1/2, 3/4, 1] > 0, k ∈ ℝ+.
To obtain the vector of total output of Example 5.2.4, (5.51), we calibrate and set k =
2,160, giving q̆1 = k[1/2, 3/4, 1] = [1,080, 1,620, 2,160], again the required Standard
commodity.

In conclusion, the right eigenvectors k[ 12 , 34 , 1] of matrix C, equation (5.44), ex-
pressed in quantity terms are of course parallel to the mapped vector ofmeans of pro-
duction S̆e = [150, 225, 300], to the mapped vector of total output q̆ = [180, 270, 360]
(5.22) and to the mapped vector of surplus d̆ = S̆e − q̆ = [30, 45, 60], (5.23) expressed
in quantity terms. They represent Standard commodities (PCMC, Par. 25).

We also have L̆ = γ̂L = [3/16, 3/16, 6/16]. The obtained system of production(S̆, q̆, L̆) ∈ ℰ is the Standard system of Example 5.2.1 (second part of PCMC Par. 25).
Setting k = 3/4 in the diagonal matrix γ̂ (5.48), we get exactly Sraffa’s multipliers

(PCMC, Par. 25), i. e., γ = [1, 35 , 34 ] of the Standard system! 
We note that we are generalizing the procedure of PCMC, Par. 25, generating Stan-

dard systems and Standard commodities. To this effect, we have had to solve two dif-
ferent eigenvalue problems, giving
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(1) the right eigenvectors γ of the semi-positive and irreducible matrix D, associated
with its Frobenius number λD, for the determination of themultipliers;

(2) the right eigenvectors q̆ of the semi-positive and irreducible matrix C, associated
with its Frobenius number λC = λD, for the determination of parallel vectors fixing
Standard commodities.

Let us summarise from different angles the results obtained from this example. The
first treats the process of generation of ℰ and its subsystem composed of Standard
systems.

Recapitulation 5.2.3. Consider a semi-positive and irreducible or positive commodity
flow matrix S ≥ 0, a semi-positive vector of surplus d ≥ o and a vector of quantities of
labour L. Then the non-standard system of production, called the actual economic sys-
tem, (S,q,L), and the diagonal matrix γ̂ (5.18) of positive multipliers γi > 0 generate
the Euler class ℰ = {(S,q,L) | γ̂} of systems of production.

In PCMC, Par. 25, a construction of a Standard system (S̆, q̆, L̆) ∈ ℰ is generated.(S̆, q̆, L̆) ∈ ℰ . The proportions of the components of the vectors S̆e, q̆, (5.22), and d̆,
(5.23) are determined by the components of the (right) eigenvectors q̆ of matrix C =
S̆ ̂q̆−1 = Sq̂−1, (5.46) and (5.42) associated with the Frobenius number λC:

a : b : c = 1
2
: 3
4
: 1 = 180 : 270 : 360 = 150 : 225 : 300 = 30 : 45 : 60.

The three vectors are parallel: S̆e ‖ q̆ ‖ d̆. Each one represents therefore a Stan-
dard commodity, and each one is a (right) eigenvector ă of matrix C, associated to the
Frobenius number λC, in this case ă = k[ 12 , 34 , 1] > 0, k ∈ ℝ+.

The second recapitulation treats properties of the Euler class ℰ .

Recapitulation 5.2.4. The input-output coefficients matrix C = Sq̂−1 and the distribu-
tion coefficients matrix D = q̂−1S, both semi-positive and irreducible or positive, are
associated with the Euler class ℰ = {(S,q,L) | γ̂} of systems of production, common
to each Standard system (S̆, q̆, L̆) ∈ ℰ .

The components of the positive right eigenvectors γ, associated with the Frobe-
nius number λD = λC = 1/(1 + R) of matrix D determine the positive multipliers, gener-
ating the Standard systems in ℰ .

The diagonalization of the eigenvectors γ gives the matrices γ̂.
Thematrix S̆ = Sγ̂, the vectors q̆ = γ̂q, L̆ = γ̂L and d̆ = γ̂d determine three parallel

vectors S̆e ‖ q̆ ‖ d̆ and the resulting Standard systems (S̆, q̆, L̆).
The proportions between the components of the right eigenvectors q̆ of matrix

C = Sq̂−1 are also the proportions between the elements of any chosen Standard com-
modity, associated with the generated Standard system.

The vectors S̆e ‖ q̆ ‖ d̆ are parallel and the components of each one of these
vectors taken as a set constitute a Standard commodity, Definition 5.1.1.
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These recapitulations finalize the results. In thenext section,we treat the question
of a Standard commodity belonging to a Standard system where the total quantity of
labour is dilated to L1 = 1 TAL.
5.3 Constitution of a Standard net product*

In this section, we concentrate our presentation on the concept of the Standard net product. Sraffa
writes (PCMC, Par. 26):

“We shall as a rule find it convenient to take as unit of a Standard commodity the quantity of it
that would form the net product of a Standard system employing the whole annual labour of the
actual [economic] system.”

“ …Such a unit we shall call the Standard net product or Standard national income.13”

This means, a Standard net product is a Standard commodity, where the amount of
labour is equal to the unit of 1 TAL. We have seen in Example 5.1.2 that the quantity
of labour of the actual economic system is L = 1 TAL (5.12). Then, in Example 5.2.1 an
orthogonal Euler map is applied to the corresponding actual economic system, gener-
ating the Standard system (S̆, q̆, L̆), contained in the Euler class ℰ with the quantity of
labour L̆e = 3/4 TAL (5.26). The result is presented in Recapitulation 5.2.1. Later on, a
dilatation by factor γ = 4/3 will be applied to all the elements of the above Standard
system (S̆, q̆, L̆) in order to attain a Standard net product with the quantity of labour
L1 = 1 TAL (see below (5.55)).

Sraffa continues (PCMC, Par. 29), indicating a proportion:

“Now suppose the Standard net product to be divided between wages and profits, taking care that
the share of each consists always, as the whole does, of a Standard commodity: the resulting rate of
profits r would be in the same proportion to the productiveness R of the system as the share allotted
to profits was to the whole of the Standard net product.”

How do we express this proportion? Sraffa says that the proportion of the value of the
profits, represented by a Standard commodity, i. e., a basket of commodities, to the
value of the Standard net product as a whole is equal to r/R. The rate of profits is r,
situated as usual in the interval, r ∈ [0,R]. Both cited values only make sense and can
be calculated, if a price vector p is introduced (see next section). If the Standard net
product is represented by the surplus vector d, then its value is the national income:
Y = dp (4.32). LetP designate total profits andW totalwages. Then, Sraffa’s statement
reads:

Y = P +W , r
R
= P
Y
⇒ P = r

R
⋅ Y . (5.53)

13 We abstain here in using the term Standard national income (a scalar) whereas Sraffa’s term Stan-
dard net product is a basket of commodities (represented by a vector).
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Sraffa (PCMC, Par 30) also resorts to the notion of the share of total wages w̃ =
W/Y , 0 ≤ w̃ ≤ 1 (our notations, see Chapter 4) in order to distinguish this variable
from w inW ,W = w ⋅ L with w ≥ 0). Finally we get14

Y = P +W = r
R
⋅ Y + w̃ ⋅ Y ⇒ r

R
+ w̃ = 1⇒ r = R(1 − w̃). (5.54)

Now we concentrate on Sraffa’s Standard system, presented in PCMC, Par. 25, from
which Sraffa gets by dilatation a Standard system with a Standard net product. In
PCMC, Par. 33, Sraffa sets equation (5.27) to calculate the multipliers and then gives
the clue for normalization of labour:

“…and since we wish the quantity of labour employed in the Standard system to be
the same as in the actual system (PCMC, Par. 26) (namely normalized: the authors), we
define the unit by an additional equation which embodies that condition, namely:

S̆γ(1 + R) = ̂q̆γ, L1 = L̆1e = γL̆e = γγ̂Le = 1 TAL.”15 (5.55)

Then, from thefirst equationof (5.55), the eigenvalue equationD(1+R)γ = γ is obtained
to get the multipliers γ, using the distribution coefficients matrix D = ̂q̆−1S̆ = q̂−1S of
the Euler class ℰ (see Lemma 5.2.1). With the second equation of (5.55) the dilatation
coefficient γ is calculated. We continue with an illustration of this dilatation process.

Example 5.3.1. Consider the Standard system obtained in Example 5.2.1, (S̆, q̆, L̆)
(PCMC, Par. 25) and proceed with a dilatation (5.55) on (S̆, q̆, L̆) to obtain the Standard
net product with an amount of labour of L1 = 1 TAL (PCMC, Par. 26).
Solution to Example 5.3.1:
We begin with the vector of labour L̆ (5.26). We set γ = 4/3 and calculate with a dilata-
tion the unit of L1 = 1 TAL:

L1 = L̆1e = γL̆e = 43 ⋅ [ 316 , 316 , 616] ⋅ [[[ 1
1
1

]]] = 1 TAL, (5.56)

so the coefficient of dilatation is γ = 4/3. We accordingly get the vector of labour,

L̆1 = [ 4
16

4
16

8
16 ] = [ 1

4
1
4

1
2 ] . (5.57)

14 Sraffa normalises throughout his analysis labour L = 1 TAL and national income Y = 1 GDP. For
this reason, he getsW = w ⋅1 TAL = w̃ ⋅1 GDP⇒ |w| = |w̃| = |W |. Therefore Sraffa presents the equation
r = R(1 − w) (see Sraffa (PCMC, Par. 30)). Note also that P = ̃rY , so r = ̃rR̃ and of course ̃r + w̃ = 1.
15 Equation (5.55) is written in our notation and not in Srafa’s notation of PCMC, Par. 33.
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Then we proceed to determine the Standard net product, resorting to the diagonal ma-
trix γ̂d, generated by the dilatation vector γd = [γ γ γ] = [ 43 4

3
4
3 ]:

γ̂d = [[[ γ 0 0
0 γ 0
0 0 γ

]]] = [[[[
4
3 0 0

0 4
3 0

0 0 4
3

]]]] . (5.58)

We apply the dilatationmatrix (5.58) to the vector of labour L̆ (5.26), to the commodity
flow matrix S̃ (5.22) and to the vector of total output q̃ (5.22). This gives in detail:

L̆1 = γ̂dL̆ = [[[ γ 0 0
0 γ 0
0 0 γ

]]][[[ L̆1
L̆2
L̆3

]]] = [[[[
4
3 0 0

0 4
3 0

0 0 4
3

]]]][[[[
3
16
3
16
6
16

]]]] = [[[[
1
4
1
4
1
2

]]]] , (5.59)

S̆1 = S̆γ̂d = [[[ 90 30 30
120 75 30
60 90 150

]]][[[[
4
3 0 0

0 4
3 0

0 0 4
3

]]]] = [[[
120 40 40
160 100 40
80 120 200

]]] ,
q̆1 = γ̂dq̆ = [[[[

4
3 0 0

0 4
3 0

0 0 4
3

]]]][[[
180
270
360

]]] = [[[ 240
360
480

]]] . (5.60)

And thus we arrive at the production scheme:(120 t. iron, 160 t. coal, 80 qr. wheat, 1
4
labour)→ (240 t. iron,0,0),(40 t. iron, 100 t. coal, 120 qr. wheat, 1

4
labour)→ (0, 360 t. coal,0),(40 t. iron, 40 t. coal, 200 qr. wheat, 1

2
labour)→ (0,0, 480 t. wheat), (5.61)

with the total means of production

S̆1e = [[[ 120 40 40
160 100 40
80 120 200

]]][[[ 1
1
1

]]] = [[[ 200
300
400

]]] . (5.62)

The vector of surplus d̆1 = q̆1 − S̆1e = [40, 60, 80], Figure 5.3 (right), (5.60), (5.62),
representing the Standard net product {40 t. of iron, 60 t. of coal, 80 qr. of wheat} is
illustrated in Figure 5.3 (right). 
Recapitulation 5.3.1. Theproportions 40 : 60 : 80 = 200 : 300 : 400 = 240 : 360 : 480
follow from the parallelism d̆1 ‖ q̆1 ‖ S̆1e. Aggregate labour is dilated to L1 = L̆1e = 1,
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Figure 5.3: Standard system (5.20), with total labour 12
16 , with Standard net product (5.61), and total

labour L1 =
16
16 = 1.

and theStandard system (S̆1, q̆1, L̆1), obtainedbydilatationwith thediagonalmatrix γ̂d
(5.58), leads to Standard commodities, represented by each of the vectors d̆1, q̆1, S̆1e.
The Standard net product {40 t. of iron, 60 t. of coal, 80 qr. of wheat} is represented by
the vector of surplus d̆1 = q̆1 − S̆1e = [40, 60, 80], see Notation 5.2.2.
Example 5.3.2. Compute directly the Standard system (S̆1, q̆1, L̆1) (5.59), (5.60), (5.61)
out of the constituting elements of the non-standard actual economic system (5.9),
(PCMC,Par. 25), using thediagonalmatrix γ̂ (5.21) of themultipliers, obtained inExam-
ple 5.2.4 by equation (5.48) and the dilatation parameter γ = 4/3. Confirm the quantity
of labour L1 = 1 corresponding to the obtained Standard net product represented by
the resulting surplus.

Solution to Example 5.3.2:
Consider the matrices of the non-standard actual economic system (S,q,L) ∈ ℰ, Ex-
ample 5.1.2, (5.9). Apply at first the orthogonal Euler map, represented by the diagonal
matrix γ̂ (5.21) multiplied by the diagonal dilatation matrix γ̂d (5.58), to the matrix S
and vectors q, L. This will generate directly the Standard system (S̆1, q̆1, L̆1). We calcu-
late the transformation matrix,

γ̂dγ̂ = [[[[
4
3 0 0

0 4
3 0

0 0 4
3

]]]][[[[
1 0 0
0 3

5 0

0 0 3
4

]]]] = [[[[
4
3 0 0

0 4
5 0

0 0 1

]]]] , (5.63)

of the composed orthogonal Euler map. Then, calculate the matrix S̆1 and the vector
q̆1 of this Standard system, described by the equations (5.9), (5.49) S̆ = Sγ̂ and (5.60)
S̆1 = S̆γ̂d, giving S̆1 = (Sγ̂)γ̂d = S(γ̂γ̂d) = S(γ̂dγ̂), and q̆1 = (γ̂dγ̂)q so,
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S̆1 = S(γ̂dγ̂) = [[[ 90 50 40
120 125 40
60 150 200

]]][[[[
4
3 0 0

0 4
5 0

0 0 1

]]]] = [[[
120 40 40
160 100 40
80 120 200

]]] , (5.64)
q̆1 = (γ̂dγ̂)q = [[[[

4
3 0 0

0 4
5 0

0 0 1

]]]][[[
180
450
480

]]] = [[[ 240
360
480

]]] . (5.65)

Of course, we can also compute the mapped Labour vector L̆1 out of the initial Labour
vector L with the composed diagonal matrix γ̂dγ. Indeed,

L̆1 = (γ̂dγ̂)L = [[[[
4
3 0 0

0 4
5 0

0 0 1

]]]][[[[
3
16
5
16
8
16

]]]] = [[[[
4
16
4
16
8
16

]]]] = [[[[
1
4
1
4
1
2

]]]] . (5.66)

Geometrically this means that the Standard system (S̆1, q̆1, L̆1) has been constructed
from the initialactual economic system (5.9) by compositionof anorthogonal Eulermap
and a dilatation, giving again an orthogonal Euler map, represented by the diagonal
matrix γ̂dγ̂ (5.63).

Figure 5.4 presents the scheme to generate a particular Standard system from a
non-standard actual economic system, consisting only of basic products, followed by
its transformation to a first Standard system, then by dilatation to a further Standard
system exhibiting a Standard net product. As has been shown, the triangle of vectors(Se,d,q) characterises a non-standard system of production, whereas the systems of
parallel vectors, S̆e ‖ d̆ ‖ q̆ and S̆1e ‖ d̆1 ‖ q̆1 characterise Standard systems. The
vector d̆1 = [d̆11, d̆12, d̆13] = q̆1−S̆1e represents the Standard net product corresponding
to L1 = eL̆1 = 1 TAL. 

Figure 5.4: Generation of a Standard system with a Standard net product produced from a non-
standard actual economic system in two stages, with the resulting total quantity of labour.

In the next section, we present the construction of a Standard system with prices and
the associated economic variables.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



222 | 5 Sraffa’s Standard system and the Standard commodity

5.4 Construction of a Standard system with prices*

As we have seen, Sraffa starts from a non-standard actual economic system with sur-
plus, calculating multipliers to attain a Standard system, characterised by a positive
productiveness R, attains by dilatation a further Standard system, called a Standard
net product (PCMC, Par. 26), exhibiting the total quantity of labour L = 1. Then he in-
troduces a constant rate of profits r, fromwhich depends the constant wage w per unit
of labour (PCMC, Par. 10). He then calculates the prices and thus presents in PCMC,
Par. 33, 34, the complete construction of the price model, cumulating in the Standard
national income (PCMC, Par. 34).

5.4.1 From a non-Standard system to a Standard system

Let’s now review indetail the various steps of the construction of the Sraffapricemodel
for Standard systems:
(1) Setting up a non-standard system. We start with a semi-positive and irreducible or

positive n × n commodity flowmatrix S and a semi-positive vector of surplus d ≥ o,
together with a normalized vector of labour L, eL = 1, and the vector of total
output, q = Se + d > 0. The non-standard system of production (S,q,L) ∈ ℰ,
see Lemma 5.2.1 is constituted. The quantity vectors Se, d, q are not parallel,
Se ∦ d ∦ q.

(2) Construction of a Standard system. Take matrix S and vector q of the aforemen-
tioned system of production (S,q,L) ∈ ℰ and compute the unique non-negative
and irreducible or positive distribution coefficients matrix D = q̂−1S, appearing in
the right eigenvector equation (5.32) reproduced here,

Dγ(1 + R) = γ. (5.67)

Compute the Frobenius number 0 < λD = 1/(1 + R) < 1, Lemma 4.1.1 (b), getting
the positive productiveness R = (1/λD) − 1 > 0. Now we can compute the positive
right eigenvector vectors determining themultipliers γ, with positive components
are γ1, γ2, . . . , γn, associated with the Frobenius number λD. From vector γ is set up
the diagonal matrix γ̂ (A.60), generating an orthogonal Euler map applied to the
vector of aggregate means of production Se, the vector of surplus d and the vector
of total output q.
Generally, one chooses by anappropriated calibration aunique eigenvector γ from
the calculated eigenspace of the (right) eigenvectors of matrix D (5.67). Consider
that this is now done.
At this stage, we set up the elements of a Standard system, themapped commodity
flow matrix S̆ = Sγ̂ (5.14), the mapped total output vector q̆ = γ̂q, the mapped
aggregate means of production S̆e (5.22), the positivemapped vector of surplus d̆ =
q̆ − S̆e > o (5.23) and the mapped vector of labour L̆ = γ̂L, no longer normalised.
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This obtained system of production (S̆, q̆, L̆) with S̆e ‖ q̆ ‖ d̆ ∦ L̆ is a Standard
system, see Recapitulation 5.2.3.

(3) Calculation of the input-output coefficients matrix C. Consider again the actual
economic system and the above eigenvector γ. Constitute the Euler class ℰ ={S,q,L|γ} and compute the right eigenvectors q̆ of the unique input coefficients
matrix C = Sq̂−1 (5.29), (Lemma 5.2.1) of the present Euler class ℰ .
One canaccordingly concentrate on the eigenvalue equation (5.44), left side, of the
semi-positive and irreducible or positive input-output coefficients matrix C which
we also reproduce here, knowing that there are equal Frobenius numbers λC = λD,

Cq̆ = λCq̆ = 1
1 + R q̆. (5.68)

This means that the determination of the vector of total output q̆ in the Standard
system (S̆, q̆, L̆) is an eigenvector problemwith Frobenius number λC of the above
input-output coefficientsmatrix C.
The non-negative and irreducible or positivematrices C = Sq̂−1 and D = q̂−1S have
identical eigenvalues λ, see Lemma A.6.1. The Frobenius number 0 < λC = λD =
1(/1 + R) < 1, see Lemma 4.1.1 (b), then determines the productiveness R > 0.

(4) Construction of the Standard net product. Only at this stage of the calculations does
Sraffa discuss the role of the initial vector of labour L = [L1, L2, . . . , Ln] (PCMC, Par.
25, 26). The components Li, i = 1, . . . , n of the vector of labour indicate the part of
the labour that is used to produce the quantity qi, relative to the total amount of
labour that is normalised to L = 1 TAL and used as such by the actual economic
system (S,q,L). In general, having determined the Standard system, the vector of
labour L̆ = γ̂L is no longer normalized, L̆e ̸= 1. For this reason, at this stage, the
vector of labour L̆ is calibrated to the unity of 1 TAL, with a dilatation factor γ, gen-
erating the dilatation vector γd = [γ1, γ2, ..., γn], resulting in the diagonal matrix
γ̂d, operating the dilatation on the Standard system (S̆, q̆, L̆), see Example 5.3.2,

L̆1 = (γ̂dγ̂)L, L1 = L̆1e = (γ̂dγ̂)Le = γ̂d(γ̂L)e = 1,
S̆1 = S(γ̂dγ̂), q̆1 = (γ̂dγ̂)q, (5.69)

in order to obtain a further Standard system (S̆1, q̆1, L̆1)with the Standard net prod-
uct d̆1 = S̆1e − q̆1.

Sraffa then introduces relative prices for the commodities and a wage ratewith a view
to defining a price model and to determine the national income Y . The means of pay-
ment for commodities and wages is a numéraire, i. e., any physical unit of a produced
commodity (like qr. of wheat) for wheat, contained in the present Standard system(S̆, q̆, L̆).16
16 In the present analysis, we will consider enlarging the means of payment. The numéraire can be
replaced by any currency (CHF, EURO, USD, …) as themeans of payment. The ongoing considerations
remain valid.
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(5) Transformation of the Sraffa price model (4.55) from the non-standard actual eco-
nomic system onto a Standard system.
To realize this step, we have to go back to item (1) of this review.We have to choose
a rate of profits r, 0 ≤ r ≤ R. Sraffa (PCMC, Par. 25) starts from the non-standard ac-
tual economic system (S,q,L) ∈ ℰ . Then Sraffa (PCMC, Par. 33, Par. 34) considers
the positive vector γ ofmultipliers, γ1 > 0, . . . , γn > 0, which are computed as com-
ponents of the right eigenvectors of the semi-positive and irreducible or positive
distribution coefficientsmatrix D (5.67). Vector γ is diagonalised to get the matrix
γ̂ (A.60), Definition A.7.1.
The Sraffa price model (4.55), which determines the prices of the non-standard
system of production (S,q,L) ∈ ℰ are multiplied from the left by the diagonal
matrix of multipliers γ̂ (5.41),

γ̂(Sp(1 + r) + L ⋅ w̃ ⋅ Y
L
) = γ̂(q̂p) = (γ̂q̂)p, (5.70)

operating an orthogonal Euler affinity onvectorq,matrixS and the labour vectorL.
We find with equations (5.70) and (A.38),(γ̂S)p(1 + r) + (γ̂L) ⋅ w̃ ⋅ Y

L
= (̂̂γq)p. (5.71)

Remember that we have set S̆ = Sγ̂ (5.22), q̆ = γ̂q (5.22) and L̆ = γ̂L (5.26) for the
matrices and vectors, resulting from this orthogonal Euler map. The system of pro-
duction (S̆, q̆, L̆) with S̆e ‖ q̆ ‖ d̆ now constitutes a Standard system (see Recapitu-
lation 5.2.3).
(6) Determination of the ratio of national income to circulating capital. Now we con-

sider the obtained Standard system (S̆, q̆, L̆), together with the positive vector p =[p1, . . . , pn] of relative prices.17 Taking Lemma 5.1.2, we have for a Standard sys-
tem the equation d̆ = R ⋅ S̆e (here written with the breve-sign) and the ratio R̃ of
national income to circulating capital is equal to the productiveness R. We get

Y = R ⋅ (S̆e)p, R̃ = Y
K
= d̆p(S̆e)p = R ⋅ (S̆e)p(S̆e)p = R⇒ Y = R ⋅ K, (5.72)

where Y is the national income.18 National income is the R-th part of the circu-
lating capital K. Then the general equation (4.36), connecting R̃, r and w̃, valid

17 The physical units of the prices have to be understood as in (3.2). Consider a system of production
with n = 2 commodities, wheat and iron, where the arbitrary chosen numéraire is quarters of wheat.
The physical units are quarters of wheat and tons of iron. Then the price p1 of wheat and the price p2
of iron are expressed in this numéraire, the units being [p1] = (

qr. wheat
qr. wheat ) = 1 and [p2] = (

qr. wheat
t. iron ).

18 Sraffa (PCMC, Par. 12, Par. 34) normalises national income, Y = 1. He calls it the Standard national
income.
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for general systems of production, becomes for Standard systems specifically with
R̃ = R,

r = R(1 − w̃). (5.73)

– Replacing S by S̆ = Sγ̂ (5.14), q by q̆ = γ̂q (5.15) and L by L̃ = γ̂L (5.26) in
Sraffa’s price model for a non-standard system of production (4.55) gives the
price model for a Standard system

S̆p(1 + r) + L̆ ⋅ ( w̃ ⋅ Y
L
) = ̂q̆p. (5.74)

– In Section 4.9 we presented Sraffa’s complete price model for non-standard
systems of production (4.174). We now want to obtain Sraffa’s complete price
model for Standard systemswith the calculation of the total quantity of labour
L. The former expression for the national income is replaced by equation
(5.72), Y = R ⋅ (S̆e)p.

We then have n + 2 equations with n + 3 variables p1, p2, . . . , pn, w̃, L, Y and the
known positive parameter R > 0, calculated from the Frobenius number 0 < λD =(1/(1 + R)) < 1 of matrix D (point 2) and the chosen rate of profits r ∈ [0,R], thus

S̆p(1 + r) + L̆ w̃ ⋅ Y
L
= ̂q̆p,

L = eL̆,
Y = R ⋅ (S̆e)p. (5.75)

(7) Normalisation of labour. Sraffa (PCMC, Par. 33) normalises labour, setting the
physical unit, so results L = 1 TAL, giving for (5.75) the price system

S̆p(1 + r) + L̆(w̃ ⋅ Y) = ̂q̆p,
Y = R ⋅ (S̆e)p. (5.76)

There are now n + 1 equations and n + 2 variables p1, p2, . . . , pn, w̃, Y and both
parameters R, r, just explained above.

(8) Standard system with normalised national income. Following Sraffa and normal-
izing Standard national income to Y = 1, one then writes, bearing in mind that in
this case there is the equality w̃ = w,

S̆p(1 + r) + L̆w̃ = ̂q̆p,
Y = R ⋅ (S̆e)p = 1. (5.77)

Sraffa proposes to use this normalised national income, which he calls the Stan-
dard national income, PCMC, Par. 34, as measuring unit for the numéraire.
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Now, we work with Sraffa’s price model (5.76), where the total labour is normalised,
L = 1 TAL. We have to choose a variable, working out the calibration.

Either we choose a commodity i ∈ {1, 2, . . . , n} and set the corresponding price pi =
p0, where p0 is a given exogenous variable, setting as numéraire the price for one unit
of that commodity (see PCMC, Par. 3) or we set for the national income Y = Y0, a given
exogenous variable Y0 (see PCMC, Par. 11).

So now, Sraffa’s price model (5.76) has n + 1 equations and n + 1 endogenous vari-
ables, namely either Y , w̃, p1, . . . , pi−1, pi+1, . . . , pn or w̃, p1, . . . , pn and is solvable under
the usual conditions known from linear algebra. We have therefore all the elements
to calculate the further economic variables, the total output X, the total circulating
capital K, the total profit P and the total wages W :

X = q̆p, K = (S̆e)p, P = (S̆e)p ⋅ r = K ⋅ r,
W = Y − P = (S̆e)p ⋅ R − (S̆e)p ⋅ r = K ⋅ (R − r). (5.78)

We recognise that it is easy to calculate or to verify the different ratios, just from the
definitions and with (5.72)

r = P
K
; R = R̃ = Y

K
; w̃ = W

Y
; w = W

L
. (5.79)

In contrast, we proceeded, in addition to the normalisation of labour, to normalise
national income;19 we shall for our further calculations keep the non-normalisation of
national income.

5.4.2 Sraffa’s price equations expressed in commodity units

Equation (5.74) can be expressed in terms of commodity units in analogy to equation
(4.59). This is carried out by passing from the commodity flow matrix S to the input-
output coefficientsmatrix C in Sraffa’s price equations.

Wemultiply equation (5.74) from the left with the diagonal matrix ̂q̆−1. With (5.29)
C̆ := S̆ ̂q̆−1 = Sq̂−1 = C ⇒ C = q̂−1S = ̂q̆−1S̆, using elementary rules of matrix
algebra, like the rule of multiplication of transposed matrices (A.36) and especially
the properties for transposed diagonal matrices, one findŝq̆−1(S̆p)(1 + r) + ̂q̆−1(L̆ ⋅ w̃ ⋅ Y

L
) = ( ̂q̆−1S̆)p(1 + r) + ( ̂q̆−1L̆) ⋅ ( w̃ ⋅ Y

L
)= ̂q̆−1( ̂q̆p) = ( ̂q̆−1 ̂q̆)p = p= Cp(1 + r) + ( ̂q̆−1L̆) ⋅ ( w̃ ⋅ Y

L
) = p. (5.80)

19 According to Sraffa, setting L = 1 TAL, Y = 1 NI (national income), gives for the share of total wages
w̃ = |w⋅LY | = |w|, the wage per unit of labour (this is a numerical identity only) and (5.73) becomes
r = R(1 − |w|), Sraffa’s famous linear relationship (PCMC, Par. 30).
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Now, by applying equation (4.58), we obtain by comparison a unique vector of labour
π̆ per unit of commodities with the definitions (5.22) of q̆ and (5.26) of L̆, respectively
the definitions of q̆1 (5.65) and of L̆1 (5.66),

̂q̆−1L̆ = [[[[[[[
1

q̆1γ1
. . . . . . 0

0 1
q̆2γ2
. . . 0. . . . . . . . . . . .

0 . . . . . . 1
q̆nγn

]]]]]]]
[[[[[

γ1L̆1
γ2L̆2. . .
γnL̆n

]]]]] =
[[[[[[[[

L̆1
q̆1
L̆2
q̆2. . .
L̆n
q̆n

]]]]]]]]
=: [[[[[
̆π1̆π2. . .̆πn
]]]]] = π̆. (5.81)

The ratio ̆πi = L̆i/q̆i, i = 1, . . . , n is the labour required for the production of one unit
of each commodity, including replacements to satisfy the conditions of production, π̆i
and π̆ are explicitely written with breve-sign.

̂q̆−11 L̆1 = [[[[[[[
1

q̆1γγ1
. . . . . . 0

0 1
q̆2γγ2
. . . 0. . . . . . . . . . . .

0 . . . . . . 1
q̆nγγn

]]]]]]]
[[[[[

γγ1L̆1
γγ2L̆2. . .
γγnL̆n

]]]]] =
[[[[[[[[

L̆1
q̆1
L̆2
q̆2. . .
L̆n
q̆n

]]]]]]]]
=: [[[[[
̆π1̆π2. . .̆πn
]]]]] = π̆. (5.82)

Referring to the Sraffa model (5.74), of relative prices, we have now the normalized
Sraffa model for relative prices, expressed for the vector of labour π̆ per unit of com-
modities:

Cp(1 + r) + π̆ ⋅ ( w̃ ⋅ Y
L
) = p or [I − (1 + r)C]p = π̆ ⋅ ( w̃ ⋅ Y

L
), (5.83)

by analogy to (4.59). The following Lemma highlights an interesting property of Stan-
dard systems.

Lemma 5.4.1. Consider a vector γ∗ of multipliers belonging to an arbitrary orthogonal
Euler map and constitute the diagonal matrix γ̂∗. Let (S̆, q̆, L̆) be a Standard system,
then compute by analogy S̆∗

 = γ̂∗S̆ (5.14), q̆∗ = γ̂∗q̆ (5.14), d̆∗ = γ̂∗d̆ and L̆∗ = γ̂∗L̆
(5.26). As (S̆, q̆, L̆) is a Standard system, the process of production (S̆∗ , q̆∗, L̆∗) is also a
Standard system with q̆∗ ‖ d̆∗ ‖ S̆∗e.
Proof. Multiply the parallel vectors q̆ ‖ d̆ ‖ S̆e by the diagonal matrix γ̂∗ getting with
γ̂∗(S̆e) = (γ̂∗S̆)e = S̆∗e the parallel vectors q̆∗ = γ̂∗q̆ ‖ d̆∗ = γ̂∗d̆ ‖ S̆∗e.

Returning to the pricemodel (5.75), we accordingly can also write thematrix equa-
tions in developed form with a system of n + 2 equations, (PCMC, Par. 33, 34):
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γ1[( ̆s11p1 + ⋅ ⋅ ⋅ + ̆sn1pn)(1 + r) + L1( w̃ ⋅ YL )] = γ1q̆1p1,
γ2[( ̆s12p1 + ⋅ ⋅ ⋅ + ̆sn2pn)(1 + r) + L2( w̃ ⋅ YL )] = γ2q̆2p2,. . . ,. . . ,
γn[( ̆s1np1 + ⋅ ⋅ ⋅ + ̆snnpn)(1 + r) + Ln( w̃ ⋅ YL )] = γnq̆npn
L = n∑

i=1
Li,

Y = R ⋅ (∑
i=1
(∑
j=1
̆sij)pi).

(5.84)

Then, aswe have seen, we have to calibrate the price system equation (5.84) which
has actually n+3 variables, namelyY , L, w̃, p1, . . . , pn, n+2 equations and 2 parameters
R, r. The positive productiveness R > 0, being determined by the Frobenius number of
matrix D, and the chosen rate of profits r ∈ [0,R].

Again, either we choose a commodity i ∈ {1, 2, . . . , n} and set the corresponding
price pi = p0, where p0 is a given exogenous variable, setting as numéraire the price
for one unit of that commodity (Sraffa PCMC, Par. 3), or we set for the national income
Y = Y0, a given exogenous variable Y0 (PCMC, Par. 11).

So now, Sraffa’s price model (5.84) has n+ 2 equations and n+ 2 endogenous vari-
ables, namely either Y , L, w̃, p1, . . . , pi−1, pi+1, . . . , pn or w̃, L, p1, . . . , pn and is solvable
under the usual conditions known from linear algebra.

We have at present all the elements to calculate total output X, the circulating cap-
ital K, total profit P, and total wages W .

X = Y ⋅ 1 + R
R
; K = Y

R
; P = r

R
⋅ Y ; W = Y − P = Y

R
⋅ (R − r). (5.85)

It is also easy to calculate or to verify the different ratios,

r = P
K
; R̃ = R = Y

K
; w̃ = W

Y
; w = W

L
. (5.86)

5.4.3 Complete calculation of a Standard system with prices and wages based on
Sraffa’s elementary example (PCMC, Par. 5, 11)

The aim of this section is to transform Example 4.1.7, (PCMC, Par. 5) into a Standard
system and to calculate the Standard net product and Sraffa prices.

Example 5.4.1. We take the same labour vector L = [152, 152] as in Example 4.1.7
(4.85) with the total quantity of labour L = 304. We already know the Frobenius eigen-
value λ = 4/5 of the non-negative, irreducible input coefficientsmatrix C of the process
of production in this example, giving the productiveness R = 0.25.
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We take the complete single product Sraffa system, presented as equation (5.84).20

Before solving it, we identify all matrices of Example 4.1.7 (4.85).
– The commodity flowmatrixS = [ 280 120

12 8 ] inphysical terms ismeasured inqr.wheat;
the second row is measured in t. iron.

– The vector of labour L = [152 152] is normalised and measured in TAL.
– The vector of surplus d = [d1 d2] = [175 0] in physical terms has themixed units:[d1] = qr. wheat, [d2] = t. iron.
– The vector of total output q = Se+d = [575 20] in physical terms, where the units

are mixed: [q1] = qr. wheat, [q2] = t. iron.
Perform an orthogonal Euler map, computing the right eigenvectors γ of the distribu-
tion coefficients matrix D = q̂−1S, to obtain the Standard system, leading by dilatation
to the Standard net product. Verify that vector q̂γ is an eigenvector of the input-output
coefficients matrix C = Sq̂−1, see Lemma A.6.2.

Finally, choosing as rate of profits r = 0.15 < R = 0.25, calculate the Sraffa price
model for that Standard system with the three following calibrations: (a) national in-
come Y = 1 NI (NI stands for an arbitrary unit of national income), (b) the price of
wheat is set p1 = 1 as numéraire, (c) the price of wheat is set p1 = 24.60 CHF/qr. of
wheat.

Solution to Example 5.4.1:
We compute the vector of total output in physical terms, as

q = Se + d = [ q1
q2
] = [ 280 120

12 8
] [ 1

1
] + [ 175

0
] = [ 575

20
] > o, (5.87)

and normalise the vector of labour L, presenting labour in the physical unit of total
amount of labour (TAL),

L = Le = [ L1 L2 ] [ 11 ] = [ 152
304

152
304 ] [ 11 ] = 1 TAL. (5.88)

These preliminaries are summarised in Table 5.1.

The multipliers and the orthogonal Euler map
We determine the distribution coefficientsmatrix:

D = q̂−1S = [ 1
575 0

0 1
20

][ 280 120
12 8

] = [ 56
115

24
115

3
5

2
5

] . (5.89)

Next, the right eigenvector equation (5.67) is solved, Dγ = λγ. The eigenvalues of the
characteristic polynomial P2(λ) = det(D − λI2) = λ2 − 102

115 λ + 8
115 = 0 are already

20 It was then treated with normalised labour (4.85) as a non-standard system of production.
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Table 5.1: Input-Output Table of Sraffa’s model in PCMC, Par. 5, (with labour).

Buying sectors Final
demand

Total
outputwheat iron

wheat (qr. wheat) s11 = 280 s12 = 120 d1 = 175 q1 = 575
iron (t. iron) s21 = 12 s21 = 8 d2 = 0 q2 = 20
labour (TAL) L1 =

1
2 L2 =

1
2 L = 1

↓ ↓

production (unit) q1 = 575 q2 = 20

known; the Frobenius number is λD = 4/5, associated with the positive eigenvectors
γ = [ 23k, k] with k ∈ ℝ+, giving the productiveness R = 0.25.

With factor k = 1 we get a vector of arbitrarymultipliers γ = [ 23 , 1]. We diagonalise
this vector, defining the diagonal matrix of an orthogonal Euler map:

γ̂ = [ γ1 0
0 γ2
] = [ 2

3 0
0 1
] . (5.90)

Then, we get a Standard system by computing the mapped vector of labour and the
total labour,

L̆ = γ̂L = [ 2
3 0
0 1
][ 1

2
1
2

] = [ 1
3
1
2

] , L = L̆e = [ 1
3
, 1
2
] [ 1

1
] = 5

6
, (5.91)

the mapped commodity flow matrix S̆ (5.14),̆S = γ̂S = [ 2
3 0
0 1
] [ 280 12

120 8
] = [ 560

3 8
120 8

] , (5.92)

the mapped vector of total output,

q̆ = γ̂q = [ 2
3 0
0 1
] [ 575

20
] = [ 1150

3
20
] , (5.93)

together with the mappedmeans of production S̆e and the mapped vector of surplus d̆
(5.23),

S̆e = [ 560
3 120
8 8

] [ 1
1
] = [ 920

3
16
] ,

d̆ = q̆ − S̆e = [ 1150
3
20
] − [ 920

3
16
] = [ 230

3
4
] , (5.94)

and we verify the parallelism,

S̆e = [ 920
3
16
] ‖ q̆ = [ 1150

3
20
] ‖ d̆ = [ 230

3
4
] . (5.95)

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.4 Construction of a Standard system with prices* | 231

Based onRecapitulation 5.2.1, thismeans that the present systemof production (S̆, q̆, L̆)
(5.91), (5.92), (5.94) constitutes a Standard system, see Figure 5.5.

Eigenvectors of C as elements of the Standard system
We use the property (5.29) C̆ := S̆ ̂q̆−1 = Sq̂−1 = C to calculate the input-output coeffi-
cientsmatrix C of the mapped system and we find:

C = Sq̂−1 = [ 280 120
12 8

][ 1
575 0

0 1
20

] = [ 56
115 6
12
575

2
5

] . (5.96)

The characteristic polynomial is P2(λ) = det(C− λI2) = λ2 − 102115 λ+ 8
115 = 0. We com-

pute the positive right eigenvectors of matrix C, associated with the Frobenius number
λC = 4/5, and find k[115/6, 1], k ∈ ℝ+. We then verify that these eigenvectors can also
be obtained by calculating,

q̂γ = [ 575 0
0 20

] [ 2
3
1
] = [ 1,150

3
20
] = q̆ = 20 [ 115

6
1
] , (5.97)

according to LemmaA.6.2, giving directly the vector of total output of the Standard sys-
tem (5.95), parallel to the vector ofmeans of production S̆e and the vector of surplus d̆.

From the Standard system to the Standard net product
With a view to obtain finally the Standard national income corresponding to the Stan-
dard net product, onehas to start by restoring the original quantity of labour, by setting
L̆1 = γL̃ (5.91), operating a dilatation by the factor γ on the above obtained Standard
system:

L̆1 = γL̆ = γ [ 1
3
1
2

] , L1 = L̆1e = γL̆ ⋅ e = γ [ 1
3

1
2 ] ⋅ [ 11 ] = γ 56 = 1⇒ γ = 6

5
,

(5.98)

giving the normalised vector of labour L1 = [2/5, 3/5]. Then, the dilated commodity
flow matrix S̆1 (5.69) and the dilated total output vector q1 (5.69) are calculated:

S̆1 = γS̆ = 65 [ 560
3 120
8 8

] = [ 224 144
48
5

48
5
] = [ 224 144

9.6 9.6 ] ,
q̆1 = γq̆ = 65 [ 1150

3
20
] = [ 460

24
] ; L̆1 = [ 2

5
3
5

] , (5.99)

with themeans of production of the dilated system,

S̆1e = [ 224 144
9.6 9.6 ] [ 11 ] = [ 36819.2 ] , (5.100)
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and also the surplus of the dilated system,

d1 = q1 − S1e = [ 46024 ] − [ 36819.2 ] = [ 92
4.8 ] . (5.101)

We confirm the parallelism:

S̆1e = [ 36819.2 ] ‖ q̆1 = [ 46024 ] ‖ d̆1 = [ 92
4.8 ] . (5.102)

Finally, with the coefficient of dilatation and the productiveness R = 0.25, together
with Lemma 5.1.2, we confirm: q̆1 = 1+R

R ⋅ d̆1 = (1 + R) ⋅ S̆1e.
We then get the production scheme of the Standard system, giving the Standard

net product: (224 t. wheat, 9.6 t. iron, 2
5
labour)→ (460 t. wheat,0),(144 t. wheat, 9.6 t. iron, 3

5
labour)→ (0, 24 t. iron) (5.103)

The components of the vector of surplus d̆1 = [92, 4.8] form the actual Standard
net product {92, 4.8}, presented as a set.
Calculation of prices, wages, the Standard national income and other economic
variables
We establish finally the Sraffa price model of the obtained Standard system, corre-
sponding to equation (5.84), exhibiting the Standard net product calculated above,
using matrices (5.99). Remember that the productiveness is R = 0.25 from the Frobe-
nius eigenvalue λ = 4/5 of the input-output coefficients matrix C (5.29), and that we
have set r = 0.15. The labour is normalised, L = 1, and the share of total wages to na-
tional income (5.73) is w̃ = 1− r/R = 1− (0.15/0.25) = 0.4, so that the factor of the labour
parts, which are also the total wages, in (5.104) isW = (w̃ ⋅ Y)/L = w̃ ⋅ Y = 0.4 ⋅ Y . We
get the price model,(224p1 + 9.6p2)(1 + 0.15) + 25 (w̃ ⋅ Y) = 460p1,(144p1 + 9.6p2)(1 + 0.15) + 35 (w̃ ⋅ Y) = 24p2,

Y = 0.25 ⋅ (368p1 + 19.2p2). (5.104)

We set either
(a) as exogenous variable the national income Y = Y0 and as endogenous variables

the relative prices p1, p2, w̃ or;
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Figure 5.5: Parallelism of the vectors S̆e ‖ q̆ ‖ d̆ (5.95) is similar to that of the vectors S̆1e ‖ q̆1 ‖ d̆1
(5.102); the price vector p is shown.

(b) as exogenous variable one of the relative price pi = p0 and as endogenous vari-
ables the other relative price pj, w̃ and the national income Y .

We will treat three cases of price calculations in relation to the remark following
Lemma 5.1.2. Indeed, we can freely choose any physical unit, appearing within this
Standard system, as a numéraire. Or, we choose any monetary unit to express the
prices within the Standard system. Clearly, the chosen payment units have no effect
on the proportions (5.7) between surplus and circulating capital, equal to the produc-
tiveness R.
(1) Sraffa’s normalization of the national income: the Standard national income. (The

measurement unit isnational income=NI).We setY = Y0 = 1NI andalsohavenor-
malised labour size, L1 = 1 TAL. Solving the system (5.104) we have to find the val-
ues for p1 and p2 and w̃. The physical units are qr.wheat and t. iron. Then the price
p1 ofwheat and the price p2 of iron are expressed by the units [p1] = (NI/qr. wheat)
and [p2] = (NI/t. iron). We know the vector of surplus d1 = [92, 4.8]. We then set,

Y = Y0 = d1p = [92, 4.8] [ p1p2 ] = 1 NI, (5.105)

having obtained the prices p1 = (41/6,900) NI
qr. wheat , p2 = (17/180) NI

t. iron , and the
wage share of total income w̃ = 0.4, one calculates the total wages,

W = w ⋅ Y0 = 0.4 ⋅ 1 NI = 0.4 NI. (5.106)

The total profit is

P = Y0 −W = 0.6 NI, (5.107)

and the circulating capital is

K = eS̆1p = [1, 1] [ 224 9.6
144 9.6 ][ 41

6,900
17
180

] = 4 NI. (5.108)
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Table 5.2: Calculated variables and invariant terms of Case (1).

Variable terms Invariant terms
notion value notion value

total output X = 5 NI productiveness R = 0.25
total capital K = 4 NI rate of profits r = 0.15
total profit P = 0.6 NI share of total profits ̃r = 0.6
total wages W = 0.4 NI surplus ratio R̃ = 0.25
national income Y = 1 NI share of total wages w̃ = 0.4

average NI per labour U = 1 NI
TAL

wage per unit of labour w = 0.4 NI
TAL

Total output is

X = q̆1p = [460, 24][ 41
6,900
17
180
] = K + Y = 5 NI. (5.109)

The various ratios are calculated, NI may appear, Lemma 5.1.2 is applied, R̃ = R,
r = P

K
= 0.6

4
= 0.15, R = R̃ = Y

K
= 1
4
= 0.25,

w̃ = |w| = W
Y
= WL1  = 0.4, ̃r = PY = 0.61 = 0.6,

U = Y
L
= 1
1
= 1 NI

TAL
. (5.110)

We also confirm the proportionality (4.36) with the share of total wages to national
income w̃ = 0.4 and the wage rate w = 0.4, see Table 5.2:

r = R̃(1 − w̃) = R(1 − w) = 0.25 ⋅ (1 − 0.4) = 0.15. (5.111)

(2) We choose as numéraire the unit qr. wheat and set p1 = 1 qr. NI
qr. wheat . We have the

endogenous variables Y , p2, w̃ in the linear system (5.104). The physical units
are qr. wheat and t. iron. Then the price p2 of iron and the national income Y
are expressed in the units [p2] = qr. wheat

t. iron and [Y] = qr. wheat. We get the price

p2 = 1,955/123 qr. wheat
t. iron = 15.89 qr. wheat

t. iron . We then obtain for national income Y ,
total wagesW and total profits P,

Y = 6,900/41 qr. wheat = 168.29 qr. wheat,
W = w ⋅ Y = 0.4 ⋅ 168.29 qr. wheat = 67.32 qr. wheat,
P = Y −W = 100.97 qr. wheat. (5.112)

The circulating capital is

K = eS̆1p = [ 1 1 ] [ 224 9.6
144 9.6 ] [ 1

1,955
123
] = 673.17 qr. wheat, (5.113)
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Table 5.3: Calculated variables and invariant terms of Case (2).

Variable terms Invariant terms
notion value notion value

total output X = 841.46 qr. wheat productiveness R = 0.25
total capital K = 673.17 qr. wheat rate of profits r = 0.15
total profit P = 100.97 qr. wheat share of total profits ̃r = 0.6
total wages W = 67.32 qr. wheat surplus ratio R̃ = 0.25
national income Y = 168.29 qr. wheat share of total wages w̃ = 0.4

average NI per labour U = 168.29 qr. wheat
TAL

wage per unit of labour w = 67.32 qr. wheat
TAL

the total output,

X = K + Y = q̆1p = [460, 24] [ 1
1,955
123
] = 841.46 qr. wheat. (5.114)

The various ratios of entities, expressed in qr. wheat are computed, Lemma 5.1.2 is
applied, R̃ = R,

r = R(1 − w̃) = P
K
= 4,140/41
27,600/41 = 0.15,

R = R̃ = Y
K
= 6,900/41
27.600/41 = 0.25, |w| = WL  = 2,760/411

= 67.32,̃r = P
Y
= 4,140/41
6,900/41 = 0.6, U = Y

L
= 6,900/41

1
= 168.29 qr. wheat

TAL
. (5.115)

We also confirm the key result (4.36), and the share of total wages to national
income, see Table 5.3,

r = R̃(1 − w̃) = 0.25 ⋅ (1 − 0.4) = 0.15, w̃ = W
Y
= 2,760/41
6,900/41 = 0.4. (5.116)

(3) We choose as monetary unit the Swiss franc CHF, setting the arbitrary price
p1 = 24.60 CHF

qr. wheat . We have then the endogenous variables Y , p2, w̃ in the
linear system (5.104). The physical units are qr. wheat and t. iron. The price p2
of iron and the national income Y are expressed in the units [p2] = CHF

t. iron and[Y] = CHF. We obtain the price p2 = 391 CHF for iron. For the national income,we
get Y = 4,140 CHF, while for the total wages and for the total profit we get

W = w ⋅ Y = 0.4 ⋅ 4,140 CHF = 1,656 CHF,
P = Y −W = 4,140 − 1,656 = 2,484 CHF. (5.117)
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Table 5.4: Calculated variable and invariant terms of Case (3).

Variable terms Invariant terms
notion value notion value

total output X = 20,700 CHF productiveness R = 0.25
total capital K = 16,560 CHF rate of profits r = 0.15
total profit P = 2,484 CHF share of total profits ̃r = 0.6
total wages W = 1,656 CHF surplus ratio R̃ = 0.25
national income Y = 4,140 CHF share of total wages w̃ = 0.4

average NI per labour U = 4,140 CHF
TAL

wage per unit of labour w = 1,656 CHF
TAL

For the circulating capital and total output, we get

K = eS̆1p = [1, 1] [ 224 9.6
144 9.6 ] [ 24.6391

] = 16,560 CHF,
X = K + Y = q̆1p = [460, 24] [ 24.6391

] = 20,700 CHF. (5.118)

To summarize, the various ratios of financial entities calculated in CHF computed,
Lemma 5.1.2 is applied, R̃ = R,

r = P
K
= 2,484
16,560 = 0.15, R = R̃ = Y

K
= 4,140
16,560 = 0.25,|w| = WY  = 1,6561 = 1,656, ̃r = PY = 2,4844,140 = 0.6,

U = Y
L
= 4,140

1
= 4,140 CHF

TAL
. (5.119)

We again confirm the key result (4.36) and the calculation of the share to total
wages to national income, see Table 5.4:

r = R(1 − w̃) = R̃(1 − w̃) = 0.25 ⋅ (1 − 0.4) = 0.15,
w̃ = W

Y
= 1,656
4,140 = 0.4 (5.120)

Concluding we see that in all the cases r = 0.15, R̃ = R = 0.25, w̃ = 0.4 and ̃r = 0.6 are
invariants with ̃r + w̃ = 1. 
5.5 Price fluctuations and the Standard systems*

Wecontinue to dealwith single product industries.Weanalyse herewhat Sraffameans
by stating that price fluctuations are independent of the distribution of surplus be-
tween profits and wages if an appropriate composite commodity, i. e., the Standard
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commodity, respectively the Standard net product (PCMC, Par. 23 and Par. 34) is con-
stituted. This analysis requires examining in what context this assertion is valid, i. e.,
by looking at the nature of prices in Standard systems.

We continue to consider for this purpose n industries and as system of production
a Standard system (S̆, q̆, L̆) ∈ ℰ . The n × n matrix S̆ is of course semi-positive and ir-
reducible or positive. The starting points are the proportions (5.7) characterising Stan-
dard systems, reproduced here (with breve-sign):

pid̆i
piq̆i − pid̆i = pid̆i

pi(q̆i − d̆i) = d̆i(q̆i − d̆i) = R, i = 1, . . . , n, (5.121)

where R > 0 is the productiveness that governs this proportion. Now the explicit
knowledge of the positive vector of surplus d̆ > o is no longer needed to express the
vector of total output (5.25); we only need the productiveness R and calculate (see also
Assumption 2.2.1):

q̆ = S̆e + d̆ = S̆e(1 + R) > o. (5.122)

The crucial point is then to analyse Sraffa’s pricemodel (4.55) setting r = R. Thismeans
there are only profits, without wages. We use directly the defining property (5.122) of
a Standard system:

S̆p(1 + R) = ̂q̆p = ̂̆Se(1 + R)p⇒ S̆p = (̂̆Se)p = ̂q̆Ip⇒ q̆I = S̆e > o, (5.123)

giving the knownnotation (2.15), againwithAssumption 2.2.1,where there is no longer
a vector of surplus. We are in presence of the conditions of production, Definition 3.1.2,
(PCMC, Par. 3). The vector of surplus has disappeared, and we just have the means
of production of the Standard system (S̆, q̆, L̆) ∈ ℰ . But clearly, if we have a produc-
tiveness R = (1/λC) − 1 > 0, determined by the Frobenius number λC, 0 < λC < 1, of
matrix C = S̆ ̂q̆−1 = Sq̂−1(see Lemma 5.2.1) and (5.29), the surplus vector d̆ is itself fully
determined by R in

q̆ = S̆e(1 + R) = q̆I (1 + R) = q̆I + d̆ > o⇒ d̆ = R(S̆e). (5.124)

We multiply the concluding equation (without productiveness R!) (5.123) by the diag-
onal matrix ̂q̆−1I from the left and get, setting C := S̆ ̂q̆−1I an eigenvalue equation,̂q̆−1I (S̆p) = ( ̂q̆−1I S̆)p = (S̆ ̂q̆−1I )p = CIp = ̂q̆−1I ( ̂q̆Ip)= ( ̂q̆−1I ̂q̆I)p = p⇒ CIp = p. (5.125)

So, the semi-positive and irreducible or positive transposed matrix CI = (S̆ ̂q̆−1I )
has, due to Lema 4.1.1 (a) positive price eigenvectors p > 0, associated with the Frobe-
nius number λCI = 1.
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Taking the Standard system (S̆, q̆, L̆) ∈ ℰ, we now show that the obtained positive
eigenvectors p of matrix CI are also positive eigenvectors of matrix C = S̆ ̂q̆−1, associ-
ated with the Frobenius number λC = 1/(1 + R).

In fact, from equation (5.124), we get the expression q̆I = λCq, and then find easily
the equation ̂q̆−1I = (1 + R) ̂q̆−1, which summarising we can accordingly write:

CIp = (S̆ ̂q̆−1I )p = (S̆(1 + R) ̂q̆−1)p= (1 + R)(S̆ ̂q̆−1)p = (1 + R)Cp = p⇒ CIp = p⇒ Cp = 1
1 + Rp = λCp. (5.126)

Proposition 5.5.1. Assume a Standard system (S̆, q̆, L̆) ∈ ℰ , with a semi-positive and
irreducible or positive n × n matrix S̆. First consider the aggregate means of production
q̆I = S̆e > o without surplus. Matrix CI = S̆ ̂q̆−1I (5.29) has then the Frobenius number
λCI = 1. Second, consider the case with surplus d̆ = Rq̆I > o, implying q̆ = q̆I (1 + R) > o,
where C = S̆ ̂q̆−1 (5.29) has Frobenius number λC = 1/(1+R) < 1 (see further Lemma 4.1.1
(a), (b)).

The positive eigenvectors p > o of the transposed matrix CI , associated with the
Frobenius number λCI = 1, are also positive eigenvectors of the transposed matrix C,
associated with the Frobenius number λC = 1/(1 + R) (5.126). 

If there is no surplus, then the vector of total output is q̆I = S̆e > o. There is no
national income, Y = 0. Consequently, circulating capital and total output are equal,
K = X = q̆Ip.

If there is a surplus d̆ = Rq̆I > o, q̆ = q̆I (1 + R) > o, then matrix C = S̆ ̂q̆−1 has
Frobenius number λC = 1/(1 +R) < 1 with productiveness R > 0. We then calculate the
total output, the circulating capital and the national income, as follows:

X = q̆p = (1 + R)(S̆e)p = K + Y , K = (S̆e)p, Y = R ⋅ K. (5.127)

Returning to the complete Sraffa price model (5.75) formulated for a Standard sys-
tem, we present that Sraffa price model expressed in commodity units (5.83), using
matrix C and vector π̆ (now with breve-sign).

Cp(1 + r) + π̆ ⋅ ( w̃ ⋅ Y
L
) = p,
L = L̆e,
Y = R ⋅ (S̆e)p. (5.128)

We recognise at this stage that the semi-positive and irreducible or positive commodity
flow matrix S̆ of that Standard system and the vector of labour L̆ determine the condi-
tions of production. Consequently, the prices and all the other economic variables and
ratios are determined by the Sraffa price model (5.128).
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What is the influence of the vector of labour L̆ on the prices?We focus on the special case of a Standard
system, where there is the parallelism S̆p ‖ L̆ ‖ ̂q̆por equivalentlyCp ‖ π̆ ‖ p. In this case, there exists
a factor a ∈ ℝ, such that

L̆ ‖= ̂q̆p⇔ ̂q̆−1L̆ =: π̆ ‖ p⇔ π̆ = a ⋅ p. (5.129)

Setting w = (w̃ ⋅ Y )/L in equation (5.128) and further using the equality π̆ = a ⋅ p (5.81), we determine
the factor a:

Cp(1 + r) + ( w̃ ⋅ Y
L
)π̆ = Cp(1 + r) + w(a ⋅ p) = p⇔

Cp(1 + r) = (1 − a ⋅ w)p⇔ Cp = 1 − a ⋅ w
1 + r

p =: 1
1 + R

p⇔

a = R − r
w(1 + R)

=
L ⋅ (R − r)

w̃ ⋅ Y ⋅ (1 + R)
=
L ⋅ (R − r)
w̃ ⋅ Y

λC ⇔ Cp = λCp. (5.130)

We can therefore state:

Proposition 5.5.2. Set the variable a = (L ⋅ (R − r))/(w̃ ⋅ Y ⋅ (1 + R)), determined by the
given parameters r, R and the calculated values of w̃, L, Y, obtained from the complete
Sraffa price model (5.128), expressed for a standard system. Consider the parallelism
Cp ‖ π̆ ‖ p, then the price vector p is an eigenvector of matrix C, associated with the
Frobenius number λC = 1/(1+R) < 1. That eigenvector p solves the complete Sraffa price
model (5.128) for any profit rate r, 0 ≤ r ≤ R, including the borderline cases r = 0 and
r = R.

Let us illustrate this subsection by the two following numerical examples:

Example 5.5.1. There are n = 2 sectors. Consider the matrices

S̆ = [ 250 110
30 60

] , q̆I = S̆e = [ 36090 ] ‖ q̆ = [ 432108
] , L̆ = [ 72

66
] , (5.131)

constituting a Standard system (S̆, q̆, L̆).
(1) Compute the total amount of the means of production q̆I = S̆e, the input-output

coefficients matrix CI = S̆ ̂q̆−1I and its Frobenius number λCI , the input-output coeffi-
cients matrix C = S̆ ̂q̆−1, its Frobenius number λC and the productiveness R. Verify
that the price (left) eigenvectors p > 0 of matrices C and CI , associated with the
respective Frobenius numbers, are equal.

(2) Choose as numéraire commodity 1 and set p1 = p0 = 1. Choose the rate of profits
r = 0.1, 0 ≤ r ≤ R, the given vector of labour π̆ per units of commodities, set up
Sraffa’s pricemodel (5.128) and solve it. Compute thewage ratew, the relativeprice
p2, the factor a (5.130). Confirm that the solution price vector is an eigenvector of
matrix C, associated with the Frobenius number λC.
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(3) Continuewith the samemodel (2). Compute the circulating capitalK, the national
income Y = R ⋅ K (5.127), the total output X, the total profits P = r ⋅ K and the total
wagesW = w ⋅L. Compute the share of total wages to national income w̃ = w ⋅(L/Y)
and the share of total profits to national income ̃r = P/Y .

(4) Repeat step (2) with r = 0, keeping all the other entries of the given economy
unchanged.

Solution to Example 5.5.1:
(1) Consider the vector q̆I = S̆e = [360, 90] and compute matrix

CI = S̆ ̂q̆−1I = [ 250 110
30 60

][ 1
360 0

0 1
90

] = [ 25
36

11
9

1
12

2
3

] . (5.132)

Then compute the characteristic polynomial,

P2(λ) = det(CI − λ ⋅ I) = λ2 − 4936 λ + 1336 = (λ − 1)(λ − 1336). (5.133)

The Frobenius number is as expected λCI = 1, and we solve the corresponding eigen-
value equation associated with λCI to find the positive price eigenvectors p,

CIp = p⇔ { 25
36p1 + 1

12p2 = p1
11
9 p1 + 2

3p2 = p2. (5.134)

We had fixed p1 = p0 = 1, so p2 = 11/3 = 3.667 and we get the price (left) eigenvector
p = [1, 11/3] of matrix CI . Then compute the matrix

C = Sq̂−1 = [ 250 110
30 60

][ 1
432 0

0 1
108

] = [ 125
216

55
54

5
72

5
9

] , (5.135)

and determine the characteristic polynomial

P2(λ) = det(C − λ ⋅ I) = λ2 − 245216
λ + 315

1,296 = (λ − 56)(λ − 65
216
), (5.136)

giving the Frobenius number λC = 5/6 and the productiveness R = (1/λC)−1 = 0.2. Hav-
ing fixed p1 = p0 = 1, the (left) eigenvector of matrix C, associated with the Frobenius
number λC = 5/6 are p = [1, 11/3], equal to the eigenvector of matrix CI , associated
with the Frobenius number λCI = 1. This means that for the borderline case r = R of
(5.128) without labour vector L, the solution price vector is as stated the eigenvector of
matrix C and of matrix CI .

(2) We treat now the case of an intermediate rate of profits r0 = 0.1 ∈ [0,0.2].
For this purpose, we compute π̆ = ̂q̆−1L̆ = [(72/432), (66/108)] = (1/6)[1, (11/3)], the
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vector of labour per units of commodities. Accordingly, with the price p0 = 1 for the
numéraire, we set up the Sraffa price model (5.128) for the given entries,

Cp(1 + 0.1) + ( w̃ ⋅ Y
L
)π̆ = p, p1 = 1, L = L̆e, Y = 0.2 ⋅ q̆p. (5.137)

We get with the known values R = 0.2, r = 0.1 four equations for the four variables w̃,
p2, L, Y , {{{{{{{{{{{{{

(1 + 0.1)( 125216 ⋅ 1 + 5
72 ⋅ p2) + ( w̃⋅YL ) ⋅ 16 = 1,(1 + 0.1)( 5554 ⋅ 1 + 5
9 ⋅ p2) + ( w̃⋅YL ) ⋅ 1118 = p2,

Y = 0.2 ⋅ (360 ⋅ 1 + 90 ⋅ p2),
L = 72 + 66, (5.138)

and we obtain p2 = (11/3), L = 138, Y = 138 and w̃ = 0.5. We verify the proportionality
r = R(1− w̃) = 0.2(1−0.5) = 0.1. The price vector solving the present Sraffa price model
(5.138) is p = [1, 11/3] ‖ π̆ = [1/6, 11/18].

(3) We now compute the circulating capital K = qIp = 360 ⋅ 1 + 90 ⋅ (11/3) = 690,
the total profits P = r ⋅ K = 0.1 ⋅ 690 = 69, the total wagesW = Y − P = 138 − 69 = 69,
the ratio of total wages to national income w̃ = w ⋅ (L/Y) = 0.5 ⋅ (138/138) = 0.5 and
also the ratio of total profits to national income ̃r = (P/Y) = 69/138 = 0.5, and the share
of national income to circulating capital R̃ = Y/K = 138/690 = 0.2. We confirm the
equality R = R̃ = 0.2.

(4) Then we establish the Sraffa price model (5.128), namely with the rate of profits
r = 0 for the other borderline case.With r = R(1−w̃) = 0, the proportionality, the share
of total wages to national income and w̃ = w = 1, we obtain the model

Cp + π̆ = p. (5.139)

We get as solution the price vectorp = [1, (11/3)]. It is easily seen that the three vectors
that we set up are parallel:

Cp = [ 125
216

5
72

55
54

5
9

][ 1
11
3

] = [ 5
6
55
18

] ‖ π̆ = [ 1
6
11
18

] ‖ p = [ 1
11
3
] , (5.140)

as presented in Fig. 5.6 (left). For this borderline case r = 0, we have obtained as solu-
tion the same price vector p = [1, (11/3)], as eigenvector of matrix C. 
Example 5.5.2. Take the matrices S̆ and the vector q̆ of the Standard system in Exam-
ple 5.5.1 and replace the vector for labour, by the vector L̆ = [66, 33]. Set p1 = 1 for the
numéraire. Solve the complete Sraffa price model (5.128). 
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Figure 5.6: Parallelism (left) of the vectors C̆p ‖ p ‖ π̆, see Example 5.5.1, and non-parallelism (right)
of the vectors C̆p ∦ p ∦ π̆.
Solution to Example 5.5.2:
We compute π̆ = ̂q̆−1L̆ = [(66/432), (33/108)] = [(11/72), (11/36)], the vector of labour
per units of commodities. Accordingly, with the price p0 = 1 for the numéraire, we
solve the following Sraffa price model (5.128),{{{{{{{{{{{

(1 + 0.1)( 125216 ⋅ 1 + 5
72 ⋅ p2) + ( w̃⋅YL ) ⋅ 1172 = 1,(1 + 0.1)( 5554 ⋅ 1 + 5
9 ⋅ p2) + ( w̃⋅YL ) ⋅ 1136 = p2,

Y = 0.2 ⋅ (360 ⋅ 1 + 90 ⋅ p2),
L = 72 + 66, (5.141)

and the price vector p = [1, (133/39)] ∦ π̆ = (11/72)[1, 2] which is not an eigenvector
of matrix C and therefore not parallel to the two vectors Cp and π̆ (see Figure 5.6,
right). 

We come to the conclusion.

Given a semi-positive and irreducible or positive commodity flow matrix S̆, a numéraire, and a vector
of labour L̆, constituting a Standard system (S̆, q̆, L̆) with surplus, consider the vector of labour per
unit of commodities π̆ = ̂q̆−1L̆, and the input-output coefficients matrix C = S̆ ̂q̆−1. Solve the eigenvalue
equation, Cp = λCp, computing the Frobenius number λC , the associated eigenvectors p and the
productiveness R = (1/λC ) − 1 > 0.

If the parallelism Cp ‖ π̆ ‖ p exists, then for any rate of profits r ∈ [0, R], there is exactly one
price vector p solving the complete Sraffa price model (5.128) and for this reason, Sraffa says that
there are no price fluctuations, what is confirmerd here. On the other hand, if p ∦ π̆, then there are
price variations.

Wehave here the quantitative explanation for Sraffa’s price fluctuations in a Standard
system (S̆, q̆, L̆)with a surplus. Summarising, price fluctuations depend on the distri-
bution of thewages among the industrial branches, determinedby the vector of labour
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L̆ andw. Price fluctuations occur if p ∦ π̆. Price fluctuations do not occur if p ‖ π̆. This
is the correct solution to Ricardo’s problem mentioned in footnote 1 and footnote 6.

For Sraffa (PCMC, Par. 43), the Standard system, endowed with a standard net
product, is a purely auxiliary construction. In fact, Standard systems can hardly be
realised within real economic contexts, unless one resorts to a rigorously centralised
planning system imposing the conditions (5.121) on all production sectors.

This being said, Sraffa maintains, having normalised labour, L = 1, and the na-
tional income, Y = 1, that the following reciprocity relation holds:

Standard national income  r = R(1 − w). (5.142)

“This proposition (→, our notation) is reversible, and if we make it a condition of the economic
system thatw and r should obey the proportionality rule in question, thewage and commodity prices
are then ipso facto expressed in Standard net product, without need of defining its composition,
since with no other unit can the proportionality rule be fulfilled” (PCMC, Par. 43).

This citation calls for an explanation. Indeed, (5.142) means that R̃ = R (where R the
productiveness of the present economy and R̃ = Y/K is the share of national income to
circulationg capital), but this as we know can only be the case if the underlying initial
Sraffa price system is already a Standard system.

On the background of our investigations, where the national income is no longer
normalized, our interpretation is as follows.

Given a Standard system, described by a semi-positive irreducible technology ma-
trix S ≥ 0 with a positive vector of surplus d > 0. One gets q = Se + d > o, then the
Frobenius number λC of the input-output coefficientsmatrix C = Sq̂−1 ≥ 0 is in the in-
terval, 0 < λC < 1. The productiveness is R = (1/λC) − 1 > 0 and the rate of profits r can
be chosen, r ∈]0,R[. Thus the wage rate is positivew > 0, as we assume here a positive
vector of labour L > o. The Sraffa price system is solved, obtaining a positive price vec-
tor p > o. We calculate the circulating capital K = (Se)p. Clearly the share of national
income Y to circulating capital K and the productiveness R are equal, R̃ := Y/K = R.

Then the national income is equal to the product of circulating capital and produc-
tiveness, i. e., Y = R ⋅ K.

This means, in the case of a Standard system, given by the described production
scheme (S,L)⇒ (q), the productiveness R determines the national income Y .

A last remark on Sraffa’s extravagant statement (PCMC, Par. 43):

“And it is curious that we should thus be enabled to use a standardwithout knowingwhat is consists
of.” — We may forget it. If Y0 = 1 GDP is used as the standard, we know what it consists of by
construction.
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6 A new look at joint production analysis

Up tonow,wehave treatedSraffa’s process of production for single-product industries,
one industry producing only one product or commodity, presented in the first part of
PCMC.1 In this chapter, wewill extend this analysis to the casewhere n branches or in-
dustries produce one ormore of an equal number of n commodities. This case is called
by Sraffa joint production of commodities (PCMC, Chap. VI–IX, XI, specially Par. 50–
53), also called economy of multi-product industries [23]. We will use throughout this
book the term joint production Sraffa System, in analogy to B. Schefold’s term single-
product Sraffa system ([103], p. 34). To our knowledge, the first mathematical analysis
of this part of PCMC was developed by Manara [61] (in Pasinetti, [83], p. 1–15). Manara
[62] published his work at first in Italian in 1968.

We have to mention here the seminal book of Bertram Schefold who treated “the
classical theory of prices, in its significance to the critique of economic theory, and…spe-
cial aspects of joint production” ([103], p. ix). He brought the mathematical analysis of
“joint production of commodities” to its completeness 21 years after Manara’s presen-
tation of a first mathematical analysis of the subject.2 We will rely on the algebraic
constructions of the present developments on his mathematical inspiration, regard-
ing joint production.

Schefold [103], Steedman [114] and Salvadori and Steedman [100] furthermore de-
veloped the mathematics to treat the distinction between basic and non-basic com-
modities in joint production analysis for the calculation of joint production Sraffa sys-

1 In order not to overload this introductory text, we shall not enter into the discussion of fixed cap-
ital considered as joint product (PCMC, Chap. X for further reference), see also Pasinetti (Ed.) ([83],
Chap. 1, pp. 1–15). We would just point out that Sraffa’s approach to joint production was largely mo-
tivated by considering fixed capital (e. g., machinery, data processing equipment, vehicles for trans-
portation) as a commodity entering the process of production. Whilst raw materials for example are
usually completely used up in the production process, durable means of production enter production
at the beginning of a period, say at the beginning of the year, are then partly worn out and emerge at
the end of the production period as a joint commodity with the period’s output.
This point of view implies that the same durable means of production, at different periods, should
be treated as so many different commodities, each with its own price. So, in order to determine
these prices, an equal number of additional equations (and therefore of processes) are required, to-
gether with explicit depreciation/amortization/replacement schedules. This complicates significantly
Sraffa’s model, and, besides land, we have accordingly restricted ourselves to considering joint pro-
duction in connection with ecological problems (treatment of waste, reduction of greenhouse gases),
which is the subject of Chapter 7, and in particular in extending Sraffa’s model to account for an open
economy, see Section 8.1.
2 Schefold discusses the position of Sraffa’s PCMC as a call for a fundamental critique of economic
theory and the fact that he ismainly ignored bymodern economists, see in [102], p. 315, “Der Gegensatz
zwischen Sraffa’s Anspruch, das Fundament für eine Kritik der ökonomischen Theorie schlechthin gelegt
zu haben, und seiner Ignorierung durch dieMehrzahl dermodernenÖkonomen scheint unüberbrückbar.”

https://doi.org/10.1515/9783110635096-006
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tems. Finally, the important contribution of Pasinetti ([83], pp. 36, 45), who introduced
the indirect capital matrix H, will receive due consideration.

We focus on the topics required to attain an operational level. We are inspired by
the brilliant analyses ofManara [61], Pasinetti [83], Steedman [114], Steedman and Sal-
vadori [100] and Schefold [103] which are in line with this aim. We continue present-
ing numerical examples, the complete calculations of their solutions and the resulting
economic outlook.

Our contribution consists in introducing some new notions, such as that of the
production space, which is a tool to better grasp by algebraic treatment the dimension-
ality of the process hidden in joint production. Following the lead of single-product
industries, we will also resort to Sraffa Networks with their associated adjacency ma-
trices to analyse connectivity.

6.1 The production scheme, assumptions and the production
space

Single-product industries of n commodities and n industries are enlarged to joint sys-
tems of production, where each of the n branches may produce more than one of the
n commodities.

Proceeding from self-replacement single product-industries to self-replacement
joint production, we observe that the output vector q > o, presented in the production
scheme by the diagonal matrix q̂, is replaced by a semi-positivematrix F = (Fij), called
the matrix of outputs (Schefold [103], p. 49). We will also call it the output matrix.
Indeed, Manara [61] (in Pasinetti [83], p. 2) called fij “the quantity of i-th commodity
produced by the j-th industry”, see Table 6.1.

Table 6.1: Output coefficients matrix F = (fij).

Industries j producing more than one commodity Row sums
1 2 3 … j … … n

1 f11 f12 f13 … f1j … … f1n
2 f21 f22 f23 … f2j … … f2n
… … … … … … … … …
commodities i fi1 fi2 fi3 … fij … … fin ∑nj=1 fij
… … … … … … … … …
… … … … … … … … …
n fn1 fn2 fn3 … fnj … … fnn

The coefficients of matrix F are:
fij: the quantity of commodity i produced by the industry j.
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(1) The production scheme. The production scheme of joint production needs the
semi-positivematrices S and F and the vector of labour L, in analogy to that of single-
product industries, (S,L) → (q̂) (4.132). Here the diagonal matrix q̂ is replaced by F,
giving a representation, where the commodities appear vertically and the industries
horizontally,

(s11, s21, s31, . . . , sn1, L1)→ (f11, f21, f31, . . . , fn1),

(s12, s22, s32, . . . , sn2, L2)→ (f12, f22, f32, . . . , fn2),

(s13, s23, s33, . . . , sn3, L3)→ (f13, f23, f33, . . . , fn3),

(. . . , . . . , . . . , . . . , . . . , . . .)→ (. . . , . . . , . . . , . . . , . . .),

(s1n, s2n, s3n, . . . , snn, Ln)→ (f1n, f2n, f3n, . . . , fnn),

(S,L)→ (F). (6.1)

Observe that each row presents the production of one industry that can no longer be
attributed to a sole commodity, as every industry may produce more than one com-
modity, so we have now a compactly written form of the production process with the
matrices S, F and the vector L.

(2) The assumptions.
(a) The first assumption: Following the same line of thought as in single-product in-
dustries, we treat at first the economic assumption of self-replacement in the case of
joint production. The case of no surplus corresponds to the conditions of production,
Definition 3.1.1, for single-product industries expressed by the null vector d = o. The
second case of self-replacement guarantees d = (F− S)e = Fe− Se ≥ o, a semi-positive
vector of net product. The produced output is only positive for some commodities. The
third case of positive self-replacement guarantees a positive vector of the net product
d = (F − S)e > o, a positive output for each product. The last two cases give a surplus,
which then is split up into a profit part and a wage part.

Assumption 6.1.1 (Assumption on surplus in joint production). In the case of joint production, the
conditions of self-replacement occur in the three different cases, as expressed by the vector of
surplus, also termed the vector of net product (see Schefold [103], p. 49):

d = (F − S)e = o, no surplus,

d = (F − S)e ≥ o, self-replacement,

d = (F − S)e > o, positive self-replacement. (6.2)

(b) The second assumption: We apply equation (6.2), using the transposed form for
the case of no surplus, d = e(F − S) = o, for which the following property applies:
n − rank(F − S) = dim(e) = 1 (see Nef [69], Theorem 1, p. 121), which has been used
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for single-product industries (3.12) and now reads for joint production:

e(F − S) = o⇒ rank(F − S) = n − 1⇒ det(F − S) = 0. (6.3)

This means: If there is no surplus, then matrix (F − S) is singular.
Treating then the case of a surplus, we have to describe the production processes.

For this purpose, we apply Definition A.4.3 to the commodity flow matrix S, respec-
tively to the output matrix F. Consider the n × n matrix S = (sij), i, j = 1, . . . , n, and
its column vectors s⋅j = [s1j, s2j, . . . , snj], j = 1, . . . , n, respectively its row vectors si⋅ =
[si1, si2, . . . , sin], i = 1, . . . , n. Thenmatrix S can be written as a matrix of column vectors
or of row vectors as follows

S =
[[[[[[

[

s11 s12 . . . . . . s1n
s21 s22 . . . . . . s2n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
sn1 sn2 . . . . . . snn

]]]]]]

]

= [s⋅1, s⋅2, . . . , . . . , s⋅n] =

[[[[[[[

[

s1⋅
s2⋅
. . .
. . .
sn⋅

]]]]]]]

]

. (6.4)

The row vectors si⋅ = [si1, si2, . . . , sin], i = 1, . . . , n are composed of the quantities sij of
commodity i, necessary as inputs for the production in each of the different sectors
j, j = 1, . . . , n. For this reason, the row vectors si⋅ are called output vectors of the i-th
commodity. The column vectors s⋅j = [s1j, s2j, . . . , snj], j = 1, . . . , n, are composed of the
quantities sij of each commodity i, i = 1, . . . , n, necessary as inputs for the production of
the specific sector j. The columnvectors s⋅j are called input vectors to the j-th production
process.

We set up the output matrix F and the column vectors f⋅j, which are called output
vectors of the j-th production process, obtaining the analogue decomposition,

F =
[[[[[[

[

f11 f12 . . . . . . f1n
f21 f22 . . . . . . f2n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
fn1 fn2 . . . . . . fnn

]]]]]]

]

= [f⋅1, f⋅2, . . . , . . . , f⋅n] =

[[[[[[[

[

f1⋅
f2⋅
. . .
. . .
fn⋅

]]]]]]]

]

. (6.5)

If there is a surplus, thenwehave at leastd = (F−S)e ≥ o.We also require, inspired
by observations in the real economy, that the production processes are different from
one another. In other words: The production processes are “defined to be different…if
they are linearly independent” (see Schefold [103], p. 50). The required linear indepen-
dence of the processes results in the regularity of matrix (F − S), and we obtain that
the rank3 of matrix [S,F] is equal to n. This is the mathematical expression that the
processes are different from each another.

3 With j ̸= k, consider two linear dependent processes (s⋅j , Lj)→ (f⋅j) and (s⋅k , Lk)→ (f⋅k), abbreviated
to the pairs (s⋅j , f⋅j) and (s⋅k , f⋅k), labour being irrelevant here.With the real numbers a, b ̸= 0, the linear
combination is equal to the null vector, a(s⋅j , f⋅j) + b(s⋅k , f⋅k) = o.
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Assumption 6.1.2 (Assumption on linear independence of the processes). In a joint production
economy with surplus, the n production processes (s⋅j , Lj) → (f⋅j), j = 1, . . . , n, (6.1) are defined to
be different if they are linearly independent. Consequently, the matrix (F − S) is regular,

det(F − S) ̸= 0⇔ det(F − S) ̸= 0. (6.6)

Furthermore, we obtain:
rank([S, F]) = rank([S, F − S]) = n. (6.7)

(c) The third assumption: Assumption 2.2.1 requires a positive vector of output q >
o ⇒ rank(q̂) = n in single-product industries. In joint production, there is a similar
requirement4:

Assumption 6.1.3 (Input-output assumption). Every production process must have at least an in-
put and at least an output besides labour, s⋅j ≥ o, f⋅j ≥ o (see Schefold ([103], p. 49)). For these
economic reasons, the matrices are semi-positive S ≥ 0, F ≥ 0a

a In the authors’ view, Schefold ([103], p. 49) was the first economist to express this claim clearly
and concisely. He said: …([E]very process has an input besides labour and an output)…. The con-
dition det(F) ̸= 0 is a sufficient but not necessary condition for the semi-positivity of the vectors
f⋅j ≥ o. But det(F) ≠ 0 is a necessary condition for systems, which are then called gross integrated
industries, see Schefold [103], p. 56, and see ensuing content.

Finally, if matrix F has full rank,

rank(F) = n⇔ det(F) ̸= 0, (6.8)

then one is in presence of a joint production processes (F−1S,F−1L) ⇒ (I), called
gross integrated industries, having been transformed into a process of the appearance
of a single-product system, see Schefold ([103], p. 56).
(3) The commodity space (or product space).

The regularity of matrix (F − S) entails the existence of n − dim subsets in the
Euclidean vector space ℝn. We use the commodity space (or product space) 𝒞n, Defi-
nition 5.2.1. This vector subset 𝒞n allows one to represent either the n means of pro-
duction, the produced commodities or the total output and to discuss the question of
dimensionality.

Consider now a joint production process (S,L) ⇒ (F). We can construct three
polyhedrons containedwithin the commodity space𝒞n, generated by the orthonormal
basis ℐn = {e⃗1, . . . , e⃗j, . . . , e⃗n}.

We get (s⋅j , f⋅j) = − ba (s⋅k , f⋅k), what is not possible in the case of independence of the processes! Conse-
quently, one process multiplied by factor − ba gives the other process. These both processes can then
be merged into one process so that the two processes become one process. There is one process less!
This reasoning belongs to linear algebra. Evidently, linear combinations can be set up for more than
two processes.
4 Schefold introduced the notion of gross integrated systems (CT = F

−1S,F−1L)⇒ (I) that can only
be defined if det(F) ̸= 0. See Proposition 6.2.1, and for an application look at Example 6.2.1.
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Definition 6.1.1 (Commodity, production process and output polyhedrons).
(1) The produced quantities of each commodities in the case of joint production are

contained in the vectorq = Fe = Se+d = [q1, . . . , qj, . . . qn], leading to thediagonal
matrix q̂. Let be q̂ = [q⋅1,q⋅2, ...,q⋅n]. The endpoints Cj of the geometric vectors
c⃗j :=
→OCj = [0, . . .0, qj,0, . . .0] ⇔ q⋅j = [0, . . .0, qj,0, . . . ,0]5 are points on the axis

j, generated by the unit vector e⃗j of the orthonormal basis ℐn = {e⃗1, . . . , e⃗j, . . . , e⃗n}
with a dilatation by factor qj. The set of points (vertices) 𝒫1 = {O,C1,C2, . . . ,Cn}
constitute the commodity polyhedron in𝒞n, representing the total productionwith
q as output vector.

(2) Consider further the production process column vectors s⋅j = [s1j, s2j, . . . , snj], j =
1, . . . , n, relative to the basisℐn of the commodity space𝒞n. The endpoint Sj of each
geometric vector ⃗sj :=

→OSj = [s1j, s2j, . . . , snj] ⇔ s⋅j belongs to a polyhedron with
n vertices Sj (corners) together with the origin O, the so-called production process
polyhedron 𝒫2 = {O, S1, S2, . . . , Sn} in 𝒞n, representing the n production processes
of the present production economy.

(3) Consider then the total output with the column vectors f⋅j = [f1j, f2j, . . . , fnj], j =
1, . . . , n, relative to the basis ℐn of the commodity space 𝒞n. The endpoint Fj of
each geometric vector ⃗fj :=

→OF j = [f1j, f2j, . . . , fnj] ⇔ f⋅j belongs to a polyhedron
with n vertices Fj (corners) together with the origin O, leading finally to the so-
called output polyhedron 𝒫3 = {O, F1, F2, . . . , Fn} in 𝒞n, representing the n outputs
of each industry of the present production economy.

We now present the vector sets of these three polyhedrons, see Figure 6.1:

𝒫1 :

[[[[[[

[

c⃗1
c⃗2
. . .
. . .
c⃗n

]]]]]]

]

= q̂
[[[[[[

[

e⃗1
e⃗2
. . .
. . .
e⃗n

]]]]]]

]

, 𝒫2 :

[[[[[[

[

⃗s1
⃗s2
. . .
. . .
⃗sn

]]]]]]

]

= S
[[[[[[

[

e⃗1
e⃗2
. . .
. . .
e⃗n

]]]]]]

]

, 𝒫3 :

[[[[[[[

[

⃗f1
⃗f2
. . .
. . .
⃗fn

]]]]]]]

]

= F
[[[[[[

[

e⃗1
e⃗2
. . .
. . .
e⃗n

]]]]]]

]

. (6.9)

Moreover, matrices S and F realise a change of basis in ℝn if they are regular. We also
recognise that the distribution coefficients matrixD = q̂−1S transforms the commodity
polyhedron 𝒫1 into the production process polyhedron 𝒫2:

𝒫2 :

[[[[[[

[

⃗s1
⃗s2
. . .
. . .
⃗sn

]]]]]]

]

= D
[[[[[[

[

c⃗1
c⃗2
. . .
. . .
c⃗n

]]]]]]

]

= Dq̂
[[[[[[

[

e⃗1
e⃗2
. . .
. . .
e⃗n

]]]]]]

]

= Sq̂−1q̂
[[[[[[

[

e⃗1
e⃗2
. . .
. . .
e⃗n

]]]]]]

]

= S
[[[[[[

[

e⃗1
e⃗2
. . .
. . .
e⃗n

]]]]]]

]

. (6.10)

5 A geometric vector ⃗cj in a vector space corresponds one to one to a column or a row of the diagonal
matrix q̂.
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Figure 6.1: Example 6.1.1, 𝒫1 polyhedron (left) and𝒫2 polyhedron (right).

Ifmatrix S is regular, thenmatrixD is also regular.Wewill now illustrate these notions
and refer to Sraffa’s second numerical Example 3.1.2, (PCMC, Par. 2), extending it to a
case of joint production.

Example 6.1.1. We take an arbitrary vector of labour L and set up the production
scheme (S,L)→ (F):

(240 qr. wheat, 12 t. iron, 18 pigs, L1)→ (300 qr. wheat, 10 t. iron,0),
(90 qr. wheat, 6 t. iron, 12 pigs, L2)→ (200 qr. wheat, 20 t. iron, 40 pigs),
(120 qr. wheat, 3 t. iron, 30 pigs, L3)→ (0,0, 40 pigs). (6.11)

Identify the matrices F, S. Calculate the total output q = Fe > o, the distribution co-
efficients matrix D and the determinants det(F − S), det(F), det(S), det(q̂). Verify the
linear independence of the processes, rank([S,F]) = rank([S,F − S]) = 3. Argue
over the three economic assumptions of Schefold. Calculate the vector of net product,
d = (F − S)e. Argue over following the three polyhedrons and their dimensions, Defi-
nition 6.1.1.

Solution to Example 6.1.1:
We first identify the matrices S and F and calculate q = Fe,

S = [[
[

240 90 120
12 6 3
18 12 30

]]

]

, F = [[
[

300 200 0
10 20 0
0 40 40

]]

]

, q = Fe = [[
[

500
30
80

]]

]

. (6.12)

Then, we calculate the distribution coefficients matrix:

D = q̂−1S =
[[[

[

1
500 0 0

0 1
30 0

0 0 1
80

]]]

]

[[

[

240 90 120
12 6 3
18 12 30

]]

]

=
[[[

[

12
25

9
50

6
25

2
5

1
5

1
10

9
40

3
20

3
8

]]]

]

. (6.13)
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Analysing the vectors s⋅j and f⋅j, we see that Assumption 6.1.3, is fulfilled. The col-
umn vectors of matrices S and F are semi-positive. The total output is q = Fe =
[500, 30, 80] > o. There is positive self − replacement, Assumption 6.1.1. We cal-
culate the determinants of the matrices: det(F − S) = −1,940, det(F) = 160,000,
det(S) = 11,340, det(q̂) = 1,200,000, Assumption 6.1.2, Assumption 6.1.3 and (6.8) are
fulfilled. We are in presence of gross integrated industries.

In this example, the dimension of the commodity polyhedron, the production process polyhedron, the
output polyhedron are all maximal with n = 3.

We then verify that rank([S,F]) = rank([S,F −S]) = 3. Consequently, the processes
(s⋅j, Lj) → (f⋅j), j = 1, . . . , 3 are linearly independent, as required by Assumption 6.1.2!
Then we determine the polyhedrons (6.9) and the net product vector

𝒫1 :
[[

[

c⃗1
c⃗2
c⃗3

]]

]

= [[

[

500 0 0
0 30 0
0 0 80

]]

]

[[

[

e⃗1
e⃗2
e⃗3

]]

]

, 𝒫2 :
[[

[

⃗s1
⃗s2
⃗s3

]]

]

= [[

[

240 12 18
90 6 12
120 3 30

]]

]

[[

[

e⃗1
e⃗2
e⃗3

]]

]

, (6.14)

𝒫3 :
[[[

[

⃗f1
⃗f2
⃗f3

]]]

]

= [[

[

300 10 0
200 20 40
0 0 40

]]

]

[[

[

e⃗1
e⃗2
e⃗3

]]

]

, d = (F − S)e = [[
[

50
9
20

]]

]

. (6.15)

The reader is invited to apply equation (6.10). We present the vertices of

the commodity polyhedron (the polyhedrons 𝒫1 and 𝒫2 are presented in Figure 6.1):

𝒫1 = {O(0,0,0),C1(500,0,0),C2(0, 30,0),C3(0,0, 80)}, rank(𝒫1) = 3,

the production process polyhedron:

𝒫2 = {O(0,0,0), S1(240, 12, 18), S2(90, 6, 12), S3(120, 3, 30)}, rank(𝒫2) = 3,

the output polyhedron (the polyhedrons 𝒫2 and 𝒫3 are presented in Figure 6.2):

𝒫3 = {O(0,0,0), F1(300, 10,0), F2(200, 20, 40), F3(0,0, 40)}, rank(𝒫3) = 3. 

Example 6.1.1 illustrates Assumption 6.1.2 on the regularity of matrix (F−S) (6.6)
and on linear independence of processes, as well as Assumption 6.1.3 on the existence
of at least one input and one output to each process and finally on gross integrated
industries, as matrix F has full rank.

Now, we transform the entries of Example 4.4.3 to get a joint production economy,
keeping the same three commodities: the first industry 1 producing wheat and iron,
the second industry 2 producing iron and the third industry 3 gold.
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Figure 6.2: Example 6.1.1, 𝒫3 polyhedron (left) and𝒫2 together with 𝒫3 polyhedron (right).

Example 6.1.2. With the matrices S and F and an arbitrary vector of labour L,

S = [[
[

280 180 115
240 240 120
0 0 0

]]

]

, F = [[
[

500 75 0
0 600 0
0 0 3

2

]]

]

, L = [[
[

L1
L2
L3

]]

]

, (6.16)

we consider the production scheme (S,L) → (F) of this joint production process.
Compute the vector of total output q = Fe > o, the vector of net product d = (F − S)e
and the determinants det(F − S), det(F), det(S). Verify the linear independence of
the processes, rank([S,F]) = rank([S,F − S]) = 3. Verify Schefold’s three economic
assumptions and analyse the dimensions of the three polyhedrons 𝒫1, 𝒫2, 𝒫3.

Solution to Example 6.1.2:
We determine the polyhedrons with (6.9) and the net product vector

𝒫1 :
[[

[

c⃗1
c⃗2
c⃗3

]]

]

= [[

[

500 0 0
0 30 0
0 0 80

]]

]

[[

[

e⃗1
e⃗2
e⃗3

]]

]

, 𝒫2 :
[[

[

⃗s1
⃗s2
⃗s3

]]

]

= [[

[

280 240 0
180 240 0
115 120 0

]]

]

[[

[

e⃗1
e⃗2
e⃗3

]]

]

, (6.17)

𝒫3 :
[[[

[

⃗f1
⃗f2
⃗f3

]]]

]

= [[

[

500 0 0
75 600 0
0 0 3

2

]]

]

[[

[

e⃗1
e⃗2
e⃗3

]]

]

, q = Fe = [[
[

575
600
3
2

]]

]

, d = (F − S)e = [[
[

0
0
3
2

]]

]

. (6.18)

The vertices are, for

the commodity polyhedron:

𝒫1 = {O(0,0,0),C1(500,0,0),C2(0, 30,0),C3(0,0, 80)},

the production process polyhedron:
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𝒫2 = {O(0,0,0), S1(280, 240,0), S2(180, 240,0), S3(115, 120,0)},

the output polyhedron:

𝒫3 = {O(0,0,0), F1(500,0,0), F2(75, 600,0), F3(0,0, 1.5)}.

We calculate the ranks of the transformation matrices (6.9), determining the di-
mension of the polyhedrons: dim(𝒫1) = rank(q̂) = 3, dim(𝒫2) = rank(S) = 2, dim(𝒫3) =
rank(F) = 3. It is not necessary for all of them to have dimension n = 3(!). We also ver-
ify Assumption 6.1.2: rank[S,F] = rank[S,F − S] = 3, and we have consequently
the linear independent processes (s⋅j, Lj)→ (f⋅j), j = 1, . . . , 3! 

6.2 The price model for joint production*
Sraffa’s construction of the price model for single-product industries was presented
in Section 4.9 in four steps. We apply the same methodology for joint production, de-
veloping Step I to Step IV. Assumption 6.1.1, to Assumption 6.1.3 hold in the present
section.

We will further treat specific joint production processes and the system of gross
integrated industries, where matrices F are regular, det(F) ̸= 0.

Step I (an economy with no surplus)
We ensure sustainability, meaning that the sum of quantities of commodity pro-

duced as output by the various industries j must equal the sum of quantities of com-
modity i required by each industry for production, PCMC, Par. 63, and Manara [61],
p. 2, so we must have therefore the equality for the total output

q = Fe = Se⇔
n
∑
j=1

fij =
n
∑
j=1

sij (non-diagonal). (6.19)

Equation (6.19) describes Sraffa’s conditions of joint production6 replacing the for-
mer formulation, Definition 3.1.1 for single-product industries.

In other words, we consider the entries of the column vectors s⋅j = [s1j, . . . , snj]

of all commodities i ∈ {1, . . . , n} as inputs, necessarily required for the production by
each industry Sj, j ∈ {1, . . . , n}, and the column vectors f⋅j = [f1j, . . . , fnj] as outputs of
commodities i ∈ {1, . . . , n}, produced by each of the industries Sj, j ∈ {1, . . . , n}.

6 This is the analogue to Sraffa’s conditions of production for single-product industries,Definition 3.1.1,
included in (6.19); we then return to:

Ŝe = q̂⇔
n
∑
j=1

sij = fjj =: qj (diagonal i = j), (6.20)

and F indeed reduces to the diagonal form q̂ = Ŝe, issued from equation (3.6).
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Sraffa’s conditions of production in value terms (PCMC, Par. 3), Definition 3.1.2,
Sp = q̂p, become in matrix form for joint production with a price vector p:

Sp = Fp. (6.21)

If we are in presence of a system of gross integrated industries of a joint production
process, matrix F is regular 6.8, det(F) ̸= 0, and we are able to define an input-output
coefficientsmatrix. This subject is summarised in

Proposition 6.2.1 (Sraffa’s conditions of joint production for gross integrated indus-
tries). There is no vector of labour. For gross integrated industries of a joint production
process, det(F) ̸= 0, an input-output coefficients matrix,

CT := SF
−1 ⇔ CT := F

−1S, (6.22)

is defined. Sraffa’s conditions of joint production, q = Fe = Se, hold for an economy
without surplus, and the inequality, q = Fe ≥ Se, holds for an economy with surplus. We
then obtain an eigenvalue equation for the price vector p, multiplying (6.21) from the left
by F−1, obtaining,

F−1(Sp) = (F−1S)p : = CTp = F
−1(Fp) = (F−1F)p = p⇒

CTp = p.  (6.23)

Matrix CT is not necessarily semi-positive and irreducible, and the Perron–
Frobenius theorem A.9.3, then does not hold. Consequently, negative prices may
appear in the price eigenvector p (6.23), as will be illustrated by Example 6.2.1.

The preliminary production scheme without labour, expressed by matrices S
and F, giving the quantities in physical terms, acquires further the aspect of a system
of single-product industries, presented by the input-output coefficients matrix CT and
the identity matrix I,

(S,o)→ (F)⇔ (CT = F
−1S,o)→ (I). (6.24)

The above explanations lead to the following:

Example 6.2.1. Consider a type of traditional farming in which the means of produc-
tion and the products are cattle and wheat. There is sustainability, workers are paid
with beef and wheat. There are two farms with different methods of production, and
the productive processes for one year are represented by the following production
scheme:

farm 1: (3 heads of cattle, 7 t. wheat,0)→ (5 heads of cattle, 8 t. wheat),

farm 2: (5 heads of cattle, 5 t. wheat,0)→ (3 heads of cattle, 4 t. wheat). (6.25)

Present the commodity flow matrix S and the output matrix F. Verify det(F) ̸= 0 and
Sraffa’s conditions of joint production, Definition 6.1.1. Compute the total output q,
the input-output coefficients matrix CT and the price eigenvectors p (6.23).
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Solution to Example 6.2.1:
We identify the commodity flow matrix S and the output matrix F and verify the first
part of Sraffa’s conditions of joint production.

S = [
3 5
7 5
] ; F = [

5 3
8 4
] , det(F) = −4,

q = Fe = [
5 3
8 4
][

1
1
] = Se = [

3 5
7 5
][

1
1
] = [

8
12
] . (6.26)

We compute the input-output coefficients matrix CT ,

F−1 = [
[

−1 3
4

2 − 54
]

]
, CT = SF

−1 = [
3 5
7 5
][

[

−1 3
4

2 − 54
]

]
= [

7 −4
3 −1
] , (6.27)

recognising that matrix CT is not semi-positive. Now we compute the eigenvalues of
matrix CT ,

P2(λ) = det(CT − λI) = λ
2 − 6λ + 5 = (λ − 1)(λ − 5) = 0, (6.28)

and obtain for the eigenvalue λ = 1 (no surplus) the eigenvectors p = k[−1 2] of (6.23).
Indeed, we have

CTp = [
7 3
−4 −1

][
−k
2k
] = [
−7k + 6k
4k − 2k

] = [
−k
2k
] . (6.29)

Concluding, the eigenvectors p = k[−1 2] are not positive. Thus, the question arises:
What conditions must be fulfilled to obtain positive prices? This question will be an-
swered later in Section 6.6. 

Step II (economy with a surplus going only into profits)
We now consider Sraffa’s production economy with a surplus and assume that all

the surplus goes into profits and that there are no direct wages paid by the surplus,
w = 0. There are only “subsistence wages”.7

In the case of single-product industries with a surplus, remember that the vector
of total output q = Se + d (2.15) leads to the diagonal matrix q̂. At present, the di-
agonal matrix q̂ in the Sraffa price model (4.168) is replaced by the output matrix F,

7 In fact, we may consider at this stage that wages are included in “gross profits”, i. e., earnings of
the productive entity before payment of wages. Wages having been paid out, the remaining profits
correspond, as mentioned elsewhere, to EBITDA (earnings before interest, taxes, depreciation and
amortization).
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containing now the surplus, in order to obtain a joint production. The newly consti-
tuted joint production Sraffa system then takes the form of a general eigenvalue prob-
lem,8

Sp = λCF
p, λC =

1
1 + R
. (6.30)

Accordingly, as in the initial price model of single-product industries, the maximal
rate of profits, respectively the productiveness R, is also present in the price model of
joint production analysis. The conditions for the existence of a positive productiveness
R > 0 are treated in Section 6.6. We continue multiplying equation (6.30) from the left
by matrix F−1, giving with CT = SF−1,

F−1Sp = F−1(λCF
p) =(F−1F)λCp = C


Tp = λCp. (6.31)

The price vector p, as in the foregoing remark for Step I, may contain negative prices,
because matrix CT may no longer be semi-positive and irreducible, as we illustrate in
the next

Example 6.2.2. Consider again a type of traditional farming in which the means of
productionand the commodities producedare cattle andwheat. There are two farming
sectors with different methods of production, and the production processes for one
year are now represented by the following production scheme:

f 1 : (30 heads of cattle, 70 t. wheat,0)→ (40 heads of cattle, 80 t. wheat)
f 2 : (50 heads of cattle, 50 t. wheat,0)→ (60 heads of cattle, 70 t. wheat) (6.32)

Write down the commodity flow matrix S and the output matrix F. Compute the
vector of surplus d. Compute det(F), the input-output coefficients matrix CT , their
eigenvalues λ and eigenvectors p. Discuss the question of the existence of productive-
ness R associated with an appropriate eigenvalue.

Discuss the applicability of the Perron–Frobenius theorem A.9.3.

Solution to Example 6.2.2:
There are no money wages because the workers are paid at “subsistence wages” in
beef and wheat. We identify first the commodity flow matrix S and the regular output
matrix F,

S = [ 30 50
70 50

] , F = [ 40 60
80 70

] , det(F) = −200, (6.33)

and compute the vector of surplus d, the inverse of the output matrix F and then the
input-output coefficientsmatrix CT ,

8 Steedman ([114], p. 326) also states the existence of this rate of profitsR. In Section 6.6 the conditions
to obtain positive prices will be discussed, subsuming also positive rates of profits R > 0. The case
including wages and profit will be discussed in Step III of the present section.
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d = (F − S)e = [ 20
30
] , q = Fe = [ 100

150
] , F−1 = [

− 7
200

3
100

1
25 −

1
50
] ,

CT = SF
−1 = [

30 50
70 70

] [
− 7
200

3
100

1
25 −

1
50
] = [

19
20 −

1
10

− 920
11
10
] . (6.34)

We observe that matrix CT is not semi-positive. The eigenvalues are obtained with the
characteristic polynomial,

P2(λ) = det(CT − λI) = λ
2 −

41
20

λ + 1 = (λ − 4
5
)(λ − 5

4
) = 0, (6.35)

getting λ1 = 4/5 < 1 and λ2 = 5/4 > 1. Both eigenvalues are positive real numbers.
Lemma A.9.3 (b) applies, as well as Lemma A.9.2. We choose h = 4, the matrix CT4 :=
4I − CT > 0 is positive and the Perron–Frobenius theorem applies. The transposed
matrix CT4 has with Lemma A.9.2 the same eigenvectors as matrix CT . We find positive
eigenvectors p = k ⋅ [3, 1], k ∈ ℝ+, of the matrix CT , corresponding to the smaller
eigenvalue λ1 = 4/5 of CT ,

CTp = [
19
20 −

9
20

− 1
10

11
10
] [

3k
k
] = [

48
20 k
8
10k
] =

4
5
[
3k
k
] = λ1p. (6.36)

Indeed, the vector p = k ⋅ [3, 1] > o is the positive price vector of matrix CT , associ-
ated with the eigenvalue λ1 = (4/5). The vector p = k ⋅ [3, 1] > o is also the positive
eigenvector of matrix CT4 associated to λC4 := 4−λ1 = 16/5 > 0, which is the Frobenius
number of matrix CT4, as one verifies. Therefore, the eigenvalue 0 < λ1 = (4/5) < 1
leads to the productiveness R = (1/λC) − 1 = (5/4) − 1 = 0.25. Clearly, the price vector
p = k ⋅ [3, 1] > o solves also model (6.30). 

For the further development, we continue to assume a positive price vector p > o.
We propose now another method to obtain the productiveness R > 0, givenw = 0.

One multiplies equation (6.30) from the left side with vector e, resulting in the total
output X = (Fe)p. We obtain with (5.78) the circulating capital K = (Se)p and then
the total output

X := eSp(1 + R) = eFp⇒ (Se)p(1 + R) = K(1 + R) = (Fe)p,

X = K + K ⋅ R⇒ K ⋅ R = X − K ⇒ R = X − K
K
, (6.37)

remembering that r = R in this case of a Standard system, d ‖ q, equation (6.34), and
as r = R̃ with w̃ = 0 (4.36) then there is the equality R = R̃ = (X − K)/K = Y/K.

We conclude Step II with following observation:
Changing from joint production to single-product industries, the right hand side

of the production scheme (6.1) contracts to i = j and fii = qi. The right hand side of
the production scheme mutes from the full matrix F to the diagonal matrix q̂ with
q := Se + d (2.15).
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(S,o)→ (F)⇒ (S,o)→ (q̂). (6.38)

Step III (economy with a surplus allotted to profits and wages)
Sraffa’s profound intention is to solve the question of the distribution of surplus,

which has to be used to pay profits to entrepreneurs and wages to workers. In this
section, the price model for single-product industries (4.171) is transformed into a price
model for joint production.

For this purpose,we take Sraffa’s pricemodel (4.171) and apply the procedure used
in Step II. We introduce a vector of total labour L, and directly replace the vector of
total output q = Se + d by the output matrix F. We get the price model of the joint-
production Sraffa system,

Sp(1 + r) + L w̃ ⋅ Y
L
= Fp = x. (6.39)

Then, we multiply (6.39) from the left by matrix F−1 and using CT = SF−1 and Λ =
F−1L we get

F−1Sp(1 + r) + F−1L w̃ ⋅ Y
L
= CTp(1 + r) + Λ

w̃ ⋅ Y
L
= F−1Fp = p. (6.40)

We get a new equation, where the entries of matrix CT and vector Λ are presented per
unit of commodities to determine the price vector p,

CTp(1 + r) + Λ
w̃ ⋅ Y
L
= p. (6.41)

As we now know, matrix CT may no longer be semi-positive and irreducible.
Under the condition that matrix G = (I − CT (1 + r)) is regular, setting also w =

(w̃ ⋅Y)/L, we conclude that the price vector p can be expressed by the other entities of
equation (6.41), as follows:

p = (I − CT (1 + r))
−1Λ w̃ ⋅ Y

L
= G−1Λw. (6.42)

The production scheme for joint production with a labour vector is now described in
analogy to that of single-product industries (4.81) resorting to the matrices S, F, the
vector Λ = F−1L and matrix CT = SF−1, by

(S,L)→ (F)⇔ (CT ,Λ)→ (I). (6.43)

We illustrate Step III with the following:

Example 6.2.3. We take Example 6.2.2 and its production scheme (6.32). We add the
vector of labour L = [L1, L2] = [124, 155], measured in an appropriate labour unit, and
the rate of profits r = 0.1. Compute the determinant of matrix G = (I − CT (1 + r)), its
inverse matrix G−1, the vector of total output q and the vector of surplus d.

Set up the price vector p = [p1, p2], (6.42), knowing that the price of one head of
cattle is fixed at p1 = 930 CHF. Compute then the wage rate w and price p2.
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Solution to Example 6.2.3:
We identify the commodity flowmatrix S, the outputmatrix F and the vector of labour
L and set up the price vector p,

S = [
30 50
70 50

] , F = [
40 60
80 70

] , L = [
124
155
] , p = [

930
p2
] . (6.44)

As matrix F is regular, we compute the inverse of the transposed output matrix F, the
vector Λ = F−1L, the input-output coefficientsmatrix CT ,

F−1 = [
[

− 7
200

1
25

3
100 −

1
50

]

]
, Λ = F−1L = [

[

− 7
200

1
25

3
100 −

1
50

]

]
[
124
155
] = [

[

93
50
31
50

]

]

CT = SF
−1 = [

30 50
70 70

][

[

− 7
200

3
100

1
25 −

1
50

]

]
= [

19
20 −

1
10

− 920
11
10

] . (6.45)

One recognises that matrix CT is not semi-positive, but in this case matrixG is regular.
The inverse of matrix G exists and is positive. We compute,

G := (I − CT (1 + r)) = ([
1 0
0 1
] − [

19
20 −

1
10

− 920
11
10

] (1 + 0.1)) ,

det(G) = − 9
200
, G−1 = [

[

14
3 11
22
9 1
]

]
> 0,

q = Fe = [
100
150
] ‖ d = (F − S)e = [

20
30
] ‖ Se = [

80
120
] . (6.46)

We observe that we are in presence of a Standard system, see Notation 5.2.2. Then, we
can compute the price vector with (6.42) and (6.46)

p = G−1Λw = [
[

14
3 11
22
9 1
]

]

[

[

93
50
31
50

]

]
w = [

930
p2
]⇒ w = 60, p2 = 310,

p = [
930
310
] ‖ Λ = 31

50
[
3
1
] ‖ Cp = [

744
248
] . (6.47)

Weobservemoreover that Proposition 5.5.2 applies. Therefore there are nofluctuations
of prices, the Sraffa price models gives for any rate of profits r ∈ [0,0.25] the unvariant
price vector p = [930, 310] in CHF/physical term. The wage rate is w = 60 CHF/labour
unit. We are in presence of a Standard systemwhere the prices are independent of the
chosen rate of profits r ∈ [0,R = 0.25]. The reader is invited to think of real economic
situations which could be modeled by this Standard system. We remind that Sraffa in
PCMC was not very explicit on this point. 
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In Example6.2.3, a two-sector joint production economy,wehave theproduction scheme (S, L)→ (F).
We also know the uniform rate of profits r and introduced the currency CHF, knowing the price p1 = 930
CHF for one head of cattle. Then the uniform wage rate w is determined, and the second price p2 can
also be computed.Without setting the currency, wewould only know the proportion of the prices p1/p2,
and we would have the wage rate w expressed by a factor of (p1/p2). The economic variables Y, X, K,
P, W would be expressed up to a proportionality factor.

Step IV (The economic variables in Sraffa’s joint production system)
Looking at Step IV, Section 4.9 of single-product industries, the equations fixing

the economic variables of national income Y and of total output X have to be modified
for joint production, using now the output matrix F.

The diagonal matrix q̂ is replaced on the right-hand side of (4.171) by the matrix
of output F, where every row j contains the quantities of commodities i ∈ {1, . . . , n},
produced by the sector j.9Weobtain the Sraffa pricemodel for joint production, which
is the centre piece of the resulting complete joint production Sraffa system,

Sp(1 + r) + L w̃ ⋅ Y
L
= Fp,

Y = (Fe − Se)p = dp,

L = eL.

(6.48)

The national income Y is obtained by calculating the difference between the summed-
up total output per commodity, the vector (Fe) and the vector of the summed-up to-
tal means of production (Se). This difference vector has to be multiplied with the
price vectorp, known from the first equation of Sraffa’s complete joint production price
model (6.48). By analogy, we deduce from (4.175) the expressions for the remaining
economic variables:

X = (Fe)p,

K = (Se)p,

P = (Se)p ⋅ r = K ⋅ r,

W = Y − P = w ⋅ eL = w ⋅ L,

w = w̃ ⋅ Y
L
. (6.49)

Again some of the components of the price vector pmay be negative in the context of
joint production.

With a positive surplus, the surplus ratio is R̃ = (X−K)/K = Y/K > 0. In a Standard
system, q ‖ d (6.46), it is equal to the productiveness, R = R̃ > 0. The exogenous rate of

9 The net product is characterised, as we know, by the surplus vector d = (F − S)e.
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profits r, 0 ≤ r ≤ R, or the share of total wages to national income w̃ = W/Y , 0 ≤ w̃ ≤ 1,
have to be chosen arbitrarily. The total labour L > 0 and the national income Y > 0
can then be calculated.

For further purposes, it is convenient to introduce the following compact notation,
suggested by Schefold ([103], p. 73):

Notation 6.2.1. The constituting elements of a Sraffa joint production economy are the
commodity flow matrix S, the output matrix F and the labour vector L, so Schefold
([103], p. 73) symbolised it by the system (S,F,L). In the case of single-product indus-
tries, the matrix F is replaced by the output vector q, so we have in analogy the system
(S,q,L), see Notation 5.2.1.

We illustrate Step IV by the following example.

Example 6.2.4. Take the entries of the Standard system presented in Example 6.2.3,
but change the vector of labour to L = [100, 100]. Keep the rate of profits r = 0.1
and the price p1 = 930 of one head of cattle. Solve the price model (6.48) for this
joint production system. Discuss the results, especially the productiveness R and the
surplus ratio R̃ = Y/K.

Compute then the remaining variables w̃, w, Y , L, X, K,W , P.

Solution to Example 6.2.4:
Take up the rate of profits r = 0.1, identify thematrices S andF and the vector of labour
L and solve the price model (6.48),

S = [ 30 50
70 50

] , F = [ 40 60
80 70

] , L = [ 100
100
] , d = (F − S)e = [ 20

30
] , (6.50)

Sp(1 + r) + L w̃ ⋅ Y
L
= Fp,

[
30 70
50 50

] [
930
p2
] (1 + 0.1) + w̃ ⋅ Y

L
[
100
100
] = [

40 80
60 70

] [
930
p2
] ,

Y = [20, 30] [ 930
p2
] ,

L = [1, 1] [ 100
100
] , (6.51)

obtaining: p2 = 155, L = 200, w̃ = 3/5, w = 69.75 and Y = 23,250, getting therefore the
price vector p = [930, 155]. Then we compute

X = (Fe)p = ([ 40 60
80 70

] [
1
1
])


[
930
155
] = 116,250,

K = (Se)p = ([ 30 50
70 50

] [
1
1
])


[
930
155
] = 93,000. (6.52)
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With the calculated values Y , K, X, we obtain the other economic variables:

P = (Se)p ⋅ r = K ⋅ r = 93,000 ⋅ 0.1 = 9,300,

W = Y − P = 23,230 − 9,300 = 13,950, w̃ = w ⋅ L
Y
=
69.75 ⋅ 200
23,250

=
3
5
. (6.53)

At last, we compute the surplus ratio R̃ = Y/K = 23, 250/93,000 = 0.25.
The numerical equality R̃ = R = 0.25 occurs because we are in presence of a Stan-

dard system, see Chapter 5, due to the parallelism d ‖ q (6.46). The reader is invited
to verify that there is no longer the second parallelism p = [930, 155] ∦ Λ = F−1L =
[0.5, 1]. Therefore the fluctuation of the priceswill reappear, dependent on the chosen
rate of profits r ∈ [0,0.25]. 

In Example 6.2.4 of a two-sector joint production economy, we observe that, knowing the flow com-
modity matrix S, the output matrix F, the vector of labour L, the rate of profits r and the price p1 for
one head of cattle, we get the second price p2, the wage rate w, the and the total quantity of labour L.
The national income Y of the economy is determined using the base model of a joint production Sraffa
system (6.48).

Then the remaining economic variables X, K, P, W, the productiveness R and the share of total
wages to national income w̃ are all computable from this kernel model.

Remark.
(i) In Sraffa’s joint productionmodels, the prices composing the price vector are sup-

posedly independent of the industry producing the commodity, and there is one
price per commodity irrespective of its provenance. This will be of special impor-
tance in the model incorporating land presented in Section 6.7.

(ii) There may appear negative components in the price vector unless certain condi-
tions are met with by the matrices entering the equations. Such negative compo-
nents have to be interpreted economically, as will be seen in the context of exam-
ples relating to ecological economics, presented in Chapter 7.

We have seen that in joint production analysis we drop the condition of one indus-
try, respectively one commodity, and we have treated a series of examples. Generally
speaking, two situations may arise:
(a) Several separate industries produce one and the same commodity using different

technologies and commodities, respectively labour requirements.

Example 6.2.5. Agricultural production. Many production entities, big or small,
will grow and sell agricultural products such as wheat, resorting to various tech-
nologies from basic to the most advanced, including genetically modified ingre-
dients, on different types of soil in different climates.
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1 2 3 a b c

W =

1
2
3
a
b
c

[[[[[[[

[

0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0

]]]]]]]

]

(6.54)

Figure 6.3: Elementary Sraffa Network and adjacency matrix.

(b) One and the same industry produces several separate commodities, and the com-
modities entering the productive entity may generate a set of several new com-
modities.

Example 6.2.6. The petroleum industry with various by-products and commodi-
ties, all derived from crude oil, spanning: gasoline to petrochemical derivatives.

Under joint production, Sraffa, Schefold, Pasinetti and other authors usually analyse
situation (b). We continue along this line.

6.3 Basics and non-basics in joint production*
Assumption 6.1.1 to Assumption 6.1.3 hold for this section. We will treat the impor-
tant question of identifying algebraically basic and non-basic commodities entering
the production process, and present the approaches of Schefold [102], Pasinetti [83],
Manara [61], Salvadori and Steedman [100].

Before continuing, let us pause to illustrate, by way of a very simple Sraffa Net-
work, why joint production requires a more elaborate approach than hitherto con-
cerning basic and non-basic commodities.

Example 6.3.1. Consider a three-sector economy (sector 1, 2, 3) producing three com-
modities (a, b, c) composed of a joint production sector 1 and two single-product sec-
tors 2 and 3. The following network and its adjacency matrixW represent this situa-
tion, see Figure 6.3.

Solution to Example 6.3.1:
The network is fully connected, and one would accordingly expect all commodities to
be basic as would be the case in a process of single-product industries. Now this does
not account for the fact that commodity b is produced in two sectors (1 and 2), and this
has an incidence on commodity flows not encountered in a process of single-product
industries where there is a one-to-one relationship between each sector and the com-
modity it produces. To be specific, assume just two scenarios chosen amongst others:

Case 1. The production of b in sector 2 is insufficient to ensure the viability of the
subsystem (2, 3; b, c) considered separately. Viability requires an input of b from sector
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1 which is in surplus. This means there must be a commodity flow from sector 1 to the
two other production sectors. Commodity b enters then directly into the production of
all the commodities;a and c enter into themdirectly or indirectly. All commodities and
sectors are therefore basic according to Sraffa’s original definition (see Section 4.4).
However, the status of commodity c is ambiguous because sector 1 does not really
require this commodity for production.

Case2. Sector 2 also generates a commodityb surplus. Then theflowofbproduced
by sector 1 is diverted to the overall surplus, to which sector 2 also contributes, and
does not enter into the production of b and c in the sectors 2 and 3. Commodity b
remains basic, and commodities a and c are non-basic. 

These are the type of situations commented upon by Sraffa in PCMC, Par. 57,
and this simple example shows that in joint production the linear dependence or
independence of the quantity flows in the underlying network representation must
be taken into account, in addition to connectivity. This was not necessary in single-
commodity networks due to the one to one correspondence between an industry and
its produced commodity. Furthermore, in joint production, contrary to single-product
industries, a sector producing a basic together with non-basics is not necessarily a
basic industry.

In the present situation, the problem of distinguishing between basics and non-
basics accordingly requires a new sophisticated algebraic approach, involving depen-
dencies in the levels of flows, which we will now proceed to present. Note that, eco-
nomically speaking, the distinction is of fundamental importance also in joint produc-
tion because, aswehave seen in single-product processes,when the basics donot gen-
erate a surplus, the sectors producing non-basics are not viable if their means of pro-
duction rely in part or totally, directly or indirectly, on the inputs of basic commodities.

As mentioned in PCMC, Par. 57, the “criterion previously adopted for distinguishing
between basic and non-basic products (namely whether they do, or do not, enter directly
or indirectly themeans of production of all commodities) now fails, since, each commod-
ity being produced by several industries, it would be uncertain whether a product which
entered the means of productions of one of the industries producing a given commodity
should or should not be regarded as entering directly the means of production of that
commodity.” This rather vague statement of Sraffa has been taken as a starting point
byManara [61], Pasinetti [83] and Schefold [103] to develop precisemathematical tools
to investigate the question of basics and non-basics in joint production analysis. In the
present section, we treat this question and will add new graphical tools to visualise
basics and non-basics.

This being said, Sraffa defines the notion of basic commodity and non-basic com-
modity for joint production as follows10:

10 In this citation, the designations of the variables are adapted to the notations used in this book, n
for the number of industries and commodities,m for the number of basics, 1 ≤ m < n.
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Definition 6.3.1. (PCMC, Par. 6011) “In a system of n productive processes and n com-
modities (no matter whether produced singly or jointly) we say that a commodity or
more generally a group ofm linked commodities (wheremmust be smaller than n and
may be equal to 1) are non-basic if of the n rows (formed by the 2m quantities in which
they appear in each process) not more thanm rows are independent, the others being
linear combinations of these.12”

The concept of basics and non-basics in joint production was later further devel-
oped and clarified by various economists. We start with Bertram Schefold’s [103] mas-
terpiece.

(1) Schefold’s definition of basic systems. As the starting point for the various pos-
sible characterisations of basics and non-basics in joint production analysis, we will
again use the algebraic concept of reducible and irreducible matrices, masterly pre-
sented by Schefold ([103], p. 58). The notions of permutation matrices are presented
in Section A.8. We define block partitions of the n × n matrices S and F, (1 ≤ m < n),
noting them ×mmatrices S22 and F22,

S = [
S11 S12
S21 S22

] ⇒ S = [
S11 S21
S12 S22

] , F = [
F11 F21
F12 F22

] , (6.55)

requiring the transposedmatrices S,F. Then the n×2mmatrix [S2 F

2] can be defined,

S2 := [
S21
S22
] , F2 := [

F21
F22
] ⇒ [ S2 F2 ] = [

S21 F21
S22 F22

] . (6.56)

Definition 6.3.2. (adapted essentially from Schefold ([103], p. 58) with our notations)
In analogy to the system of production for single-product industries (S,q,L), the sys-
temof joint production (S,F,L) is defined. Schefolduses the term“system” for thepair
(S,F). “A system (S,F) is called non-basic, if a permutation of the columns [column
permutation realised bymatricesQ, Definition A.8.3] and a numberm exist so that the
matrix [S2 F2] consisting of the lastm (1 ≤ m ≤ n− 1) columns of S and F has at most
rankm.”

“If the system (S,F) is non-basic, n−m rows of the n× 2mmatrix [S2 F

2]must by

definition be linearly dependent on at mostm others.”

11 This definition has his roots in notions developed by Lev Semyonovich Pontryagin (1908–1988) in
control theory, where optimal control and observability in control systems is investigated (see alsoNour
Eldin and Heister [74]).
12 Sraffa provided this Definition 6.3.1 in PCMC, Par. 58, 59, illustrated by an example that we repro-
duce in this text as Example 6.5.3.
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Proposition 6.3.1 (Matrix rank criterion). When in an economic system (S, F), 1 ≤ m ≤ n − 1, there is
a n×2msubsystem [S2 F2] defined previously and one gets for the rank of [S


2 F2], rank([S


2 F2]) ≤ m,

then there are m non-basics, and thematrix rank criterion for the non-basics is fulfilled.

We now illustrate how the number of non-basics within an economy can be deter-
mined, applying Definition 6.3.2.

Example 6.3.2. Show that the economy, presented in Example 6.2.4 by the pair
(S,F) is a basic system.

Solution to Example 6.3.2:
There are n = 2 sectors, and, evidently, m = 1 is the only possible value solving the
double inequality 1 ≤ m < 2. We make the corresponding block partition of matrices
S, F,

S = [
S11 S21
S12 S22

] = [
30 70
50 50

] , F = [
F11 F21
F12 F22

] = [
40 80
60 70

] . (6.57)

Then we directly constitute with (6.57) the 2m × nmatrix [S2 F2] (6.56),

S2 := [
70

50
] , F2 := [

80

70
]⇒ [ S2 F2 ] = [

70 80

50 70
] . (6.58)

We determine the rank([S2 F2]) = 2 > m and conclude that the system (S,F) is basic,
see Definition 6.3.2. Both rows are indeed linearly independent. 

We introduce the concept of the direct and indirect capital matrix H introduced
by Pasinetti ([83], pp. 20–23) and developed by Steedman ([114], p. 324). We callH the
Pasinetti matrix. We will see that the matrixHwill give us the algebraic tools to deter-
mine directly the numberm of non-basics in a given production system.

(2) The PasinettimatrixH. Pasinetti ([85], p. 20, and [83], p. 36) has proposed the
concept of matrix H:

H = (F − S)−1S, det(F − S) ̸= 0, (6.59)

where its “j-th row13 is the vector of capital stock required, directly or indirectly, for
the production of one unit of net output of commodity j” (see Steedman [114], p. 324).
Obviously, (F−S) is regular, in accordancewith the requirement of Assumption 6.1.2.
Thus, the inverse (F − S)−1 exists (see Steedman in Pasinetti (Ed.) [83], p. 45) and H
is defined.

13 Pasinetti said here ‘column’. Manara also adopted Pasinetti’s notation ([61], pp. 1-15). But, on the
contrary, we follow the notation of B. Schefold ([103], pp. 47–74) who set as matrixH Pasinetti’s trans-
posed. Therefore we have changed ‘column’ to ‘row’.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



268 | 6 A new look at joint production analysis

Suppose additionally regular matrices F, det(F) ̸= 0, (gross integrated industries)
and the case where all the surplus goes into profits. There are no wages (6.31). We
reproduce the corresponding equations here; the matrix H and CT = SF−1 are ob-
tained through algebraic transformations of the Sraffa price model for joint production
(6.48),

Sp(1 + R) = Fp⇒ F−1Sp = 1
1 + R

p⇒ CTp =
1

1 + R
p,

Sp ⋅ R = Fp − Sp = (F − S)p⇒ (F − S)−1Sp =: Hp = 1
R
⋅ p. (6.60)

There appear two eigenvalue equations (6.60) to compute the price vector p. The ma-
trix F is assumed to be regular, as Assumption 6.1.3 holds. As a consequence of the
fact that Assumption 6.1.2 holds, thematrix I−CT is regular, det(I−C


T ) ̸= 0.We obtain

therefore a second definition of matrix H:
Sp(1 + R) = Fp⇒

F−1(Sp(1 + R)) = (SF−1)p(1 + R) = CTp(1 + R) = (F
−1F)p = p⇒

R ⋅ CTp = Ip − C

Tp = (I − C


T)p,

R ⋅ (I − CT)
−1CTp = p⇒ H1 : = (I − C


T)
−1CT ⇒ H1p =

1
R
p. (6.61)

Comparing the eigenvalue equations of (6.60) and (6.61), we conclude that both ma-
trices H and H1 are identical, indeed,

H1 = (I − C

T)
−1CT = (I − (SF

−1))−1(SF−1)

= (I − (F−1

)S)−1(F−1


)S = ((F−1


)(F − S))−1(F−1


)S

= (F − S)−1((F)−1)
−1
(F)−1S = (F − S)−1S = H⇒ H1 ≡ H. (6.62)

We will later show, that matrix H determines algebraically the number of basics and
the number of non-basics.

(3) Steedman’s application of matrix H to single-product industries. Follow-
ing Steedman’s analysis [114],we treat at first the special case of a single-product indus-
try. Thematrix F is again replaced by the diagonal matrix q = Se+d. We set C = Sq̂−1.
We assume a semi-positive commodity flow matrix S and a semi-positive input-output
coefficientsmatrixC, which have been transformed into “canonical form” (4.122). They
are reproduced here,14

S = [
S11 0

S12 S22
] ≥ 0⇒ C = (Sq̂−1) = [

C11 0

C12 C22
] ≥ 0. (6.63)

14 We assume that this operation can be donemanually, easily feasible in elementary cases. No algo-
rithm to perform this operation on very large matrices is presented in this text.
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Steedman ([114], p. 324) then presents the matrix H = (I − C)−1C, developing it
into a convergent geometric series. Indeed, as there is an economywith surplus,d ≥ o,
the condition λC = ρ(C) < 1 for the Frobenius number is fulfilled (see Lemma 4.1.1 (b)),
where ρ(C) is the spectral radius of matrix C (Definition A.9.1). Setting λ = 1 > λC,
in Theorem A.10.2, equation (A.101), we get the development of (I − C)−1, and conse-
quently H, into a convergent geometric series

H ≡ (I − C)−1C ≡ C + C 2 + C 3 + ⋅ ⋅ ⋅ . (6.64)

Steedman then further argues that the following equations hold:

H11 = (I − C

11)
−1C11,

H22 = (I − C

22)
−1C22, (6.65)

and therefore gets a Pasinetti matrix in the form, analogously to (6.63),

H := [ H11 0
H21 H22

] = [
(I − C11)

−1C11 0
H21 (I − C22)

−1C22
] . (6.66)

We illustrate Steedman’s concept for single-product industries and compute the
Pasinetti matrix H, pointing out some of the above properties.

Example 6.3.3. We consider an economy without paid wages producing wheat W ,
iron I and gold G, described by the following production scheme:

1 : (300 qr. of wheat, 12 t. of iron,0)→ (600 qr. of wheat,0,0),
2 : (150 qr. of wheat, 9 t. of iron,0)→ (0, 28 t. of iron,0),
3 : (50 qr. of wheat, 4 t. of iron,0)→ (0,0, 5 kg of gold). (6.67)

Present the commodity flow matrix S and the output vector q. Present the input-
output coefficients matrix C and the Pasinetti matrix H. Compute also its represen-
tation (6.66). Apply Schefold’s concept (Definition 6.3.2) to determine the number of
non-basics.

Calculate the eigenvalues of matrix C and determine the development of H into a
geometric series, if such a development exists.

Using matrix H, determine the number n −m of basics andm of non-basics.

Solution to Example 6.3.3:
We identify the commodity flowmatrix S, the output vector q and the matrix q̂−1 of the
n = 3 sector economy,

S = [[
[

300 150 50
12 9 4
0 0 0

]]

]

, q = [[
[

600
28
5

]]

]

, q̂−1 =
[[[

[

1
600 0 0

0 1
28 0

0 0 1
5

]]]

]

, (6.68)
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and compute the input-output coefficients matrix C:

C = Sq̂−1 = [[
[

300 150 50
12 9 4
0 0 0

]]

]

[[[

[

1
600 0 0

0 1
28 0

0 0 1
5

]]]

]

=
[[[

[

1
2

75
14 10

1
50

9
28

4
5

0 0 0

]]]

]

. (6.69)

The matrix H is obtained by calculating,

H = (I − C)−1C

=
[[[

[

38
13

28
325 0

300
13

28
13 0

620
13

168
65 1

]]]

]

[[[

[

1
2

1
50 0

75
14

9
28 0

10 4
5 0

]]]

]

=
[[[

[

25
13

28
325 0

300
13

15
13 0

620
13

168
65 0

]]]

]

. (6.70)

We then set up the sub-matrices of matrix C, identifying four sub-matrices:

C11 = [
1
2

1
50

75
14

9
28

] , C21 = [
0
0
] , C12 = [ 10

4
5 ] , C22 = [ 0 ] . (6.71)

Now we compute the sub-matrices of H, using the identities (6.65)

(I − C11)
−1 = [

38
13

28
325

300
13

28
13

] , (I − C22)
−1 = [ 1 ] ,

H11 = (I − C

11)
−1C11 = [

38
13

28
325

300
13

15
13

][
1
2

1
50

75
14

9
28

] = [
25
13

28
325

300
13

15
13

] ,

H22 = (I − C

22)
−1C22 = [ 1 ] ⋅ [ 0 ] = [ 0 ] . (6.72)

We recognise thatH11,H22 (6.72) are sub-matrices ofH (6.70) and alsoH21 = [
620
13

168
65 ].

H = [ H11 0
H21 H22

] = [
(I − C11)

−1C11 0
H21 (I − C22)

−1C22
] =
[[[

[

25
13

28
325 0

300
13

15
13 0

620
13

168
65 0

]]]

]

. (6.73)

Determine the rank of Schefold’s (2 × 3)matrix [S2 F2], and we get,

S = [[
[

300 12 0
150 9 0
50 4 0

]]

]

, F := q = [[
[

600 0 0
0 28 0
0 0 5

]]

]

,

[ S2 F2 ] =
[[

[

0 0
0 0
0 5

]]

]

⇒ rank ([ S2 F2 ]) = m = 1, (6.74)
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with m = 1, a non-basic commodity, namely gold, and n − m = 2 basic commodities,
namely wheat and iron.

We next compute the eigenvalues of matrix C, obtaining with Definition A.9.1 and
the ensemble of the eigenvalues σ(C) = {0, 114 ,

3
4 }, and determine the spectral radius

as ρ(C) = 3
4 < 1. This means that the geometric series (6.64) is convergent,

H = (I − C)−1C =
∞

∑
i=1

C i

=
∞

∑
i=1

[[[[

[

1
2

1
50 0

75
14

9
28 0

10 4
5 0

]]]]

]

i

=
[[[[

[

25
13

28
325 0

300
13

15
13 0

620
13

168
65 0

]]]]

]

. (6.75)

Nowwedetermine the number of basics and non-basics in this economy, following the
explanations of Steedman ([114], p. 49). MatrixH is in “canonical form” and separates
the basics from the non-basics. We determine the rank of submatrix

H11 = [

[

25
13

28
325

300
13

15
13

]

]
⇒ rank(H11) = 2 = n −m. (6.76)

As H11 has full rank, there are n − m = 2 basic commodities, wheat and iron. The
non-basics are represented by H22 = 0 (Lemma A.15.2 (iii)). This confirms that here
there is only one non-basic commodity,m = 1, namely gold. 

The main feature and purpose in the use of the Pasinetti matrix H is to obtain
the “canonical form” and to determine the number of non-basics m, respectively the
number of basics n−m. Some invariant properties of matrix transformations will give
the solution.

(4) The Schefold transformation matrix T and the Manara transformation
matrix M. Remember that the Pasinetti matrix H appears re-ordered to a “canonical
form”, like in equation (6.66), where basics and non-basics are separated. The aim
of this subsection is precisely to show some invariant properties of matrix transfor-
mations, leading to the number m of non-basics present in the system. We rely on
Schefold’s presentation ([103], pp. 58–60), based on Manara’s ideas (in Pasinetti, Ed.
[83], pp. 1–15), as well as on Steedman’s ([114], p. 325) presentation. Let us come back
to the matrix partitions (6.55), (6.56),

S = [
S11 S21
S12 S22

] , F = [
F11 F21
F12 F22

] , [ S2 F2 ] := [
S21 F21
S22 F22

] , (6.77)

and return to the central statements of Definition 6.3.2:
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A system (S,F) is non-basic, if a permutation of the columns and a number m
exist, so that withm (1 ≤ m ≤ n− 1) the n×2mmatrix [S2 F


2] (6.56) has at most rankm.

In this case, the n − m rows of the n × 2m matrix [S2 F2] are non-basic and must, by
definition, be linearly dependent on at mostm others.

As the matrix rank criterion, Proposition 6.3.1 is fulfilled due to the linear de-
pendence between S21 and S22, and also between F21 and F22, Sraffa’s notion of non-
basics in joint production implies that there exists an (n − m) × n matrix T, realising
the corresponding transformation. We shall call it Schefold’s transformation matrix T,
according to Schefold’s presentation in ([103], p. 58), setting,

[ S21 F21 ] = T [ S

22 F22 ] , (6.78)

and the non-basics are a linear transformation of the lastm rows of [S22 F22] taken as
a basis.

We then construct a matrix, according to Manara, in Pasinetti [83], p. 12. We call
it theManara transformation matrix which reads in Schefhold’s representation:

M ≡ [
In−m −T

0 Im
] , det(M) = det(In−m)det(Im) = 1, (6.79)

transforming (S,F) into a pair of almost triangular matrices,

MS = [
S11 − TS


12 0

S12 S22
] , MF = [

F11 − TF

12 0

F12 F22
] . (6.80)

MatricesMS andMF are new ‘canonical forms’ of the present system (F, S), exploit-
ing the linear dependence between basics and non-basics. The initial system (F, S)
undergoes a transformation and we say:

Notation 6.3.1. When the system (F, S) is transformed by matrix M to the system
(MF,MS), it undergoes anM-transformation.

Schefold writes ([103], p. 59): “The smallest such system (with the largest m) [S11 − TS21 F11 − TF

21]

will be called the basic system. If it is identical with (S, F), (S, F) will be called basic.” Clearly, when
(S, F) is basic, thenm = 0 and S22 = F


22 = Ø, exhibiting empty matrices.

The smallest basic system [S11−TS21 F

11−TF


21] contains the n−mbasic commodities. Thematrix

S22, respectively F22, contain them non-basic commodities.

We then compute the Pasinetti matrix H for a system (MF,MS) that has undergone
an M-transformation. Since initially H ≡ (F − S)−1S, we further show that H ≡
(MF − MS)−1MS, which leads, using the regularity of matrix M, the block-matrix
inversion rules and Vij ≡ (Fij − Sij), i, j = 1, 2, easily to

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.3 Basics and non-basics in joint production* | 273

(MF −MS)−1MS = (M(F − S))−1MS

= (F − S)−1M−1MS = (F − S)−1S = H = [ H11 H12
H21 H22

]

= [
(V11 − TV


12)
−1(S11 − TS


12) 0

V22
−1[S12 − V


12(V

11 − TV


12)
−1(S11 − TS


12)] V22

−1S22
] .

(6.81)

It is immediately clear thatH is invariant under theM-transformation of the sys-
tem (F, S). This fact is proved by the development (6.81).

(5) Invariance properties of matrix H. The distinction of basic and non-basic com-
modities requires permutations of columns within Schefold’s system (F, S). We will
now investigate invariance properties of the Pasinetti matrix H subject to row- and
column-permutations. We set the following notions:

Notation 6.3.2. Themultiplication of thematrixAbyapermutationmatrixQ from the right,AQ, results
in a column-permutation of matrix A by matrix Q. The multiplication of the matrix A by a permutation
matrix P from the left, PA, results in a row-permutation of matrix A by matrix P.

We continue applying an M-transformation on a row-permutation of matrix S, re-
spectively F, by the same permutation matrix P, realising a permutation σ and com-
pute then the corresponding Pasinetti Hσ,

Hσ ≡ (M(PF
) −M(PS))−1M(PS) = ((MP)(F − S))−1(MP)S

= (F − S)−1(MP)−1(MP)S = (F − S)−1S = H. (6.82)

We apply a column-permutation to matrices S and F by the permutation matrix Q,
realising a permutation τ and compute then the Pasinetti matrix,

Hτ ≡ ((F
Q) − (SQ))−1(SQ) = ((F − S)Q)−1SQ

= Q−1((F − S)−1S)Q = Q−1HQ. (6.83)

Matrices Hτ and H are similar matrices and represent the same linear operator under
two bases, with Q being the change of basis matrix. We obtain:

Lemma 6.3.1 (Invariance properties of the Pasinetti matrix). The Pasinetti matrix H = (F − S)−1S is
invariant under the M-transformation. The Pasinetti matrix H is invariant under a row-permutation.
A column-permutation operated on matrices S and F, realised by the same permutation matrix Q,
results in matrix Q−1HQ, similar to the above Pasinetti matrix H.

The invariance property of the Pasinetti matrix H gives besides the “matrix rank crite-
rion” a further tool to determine the number of non-basics in a production economy.
We formulate it so:
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Proposition 6.3.2 (Determination of the number of non-basics). Given a system (F,S), if the
Pasinetti matrix H, or a matrix similar to it, appears in ‘canonical form’,

H = (F − S)
−1
S = [ H11 0

H21 H22
] , (6.84)

then the number of columns m > 0 of the (n −m) ×mmatrix H12 = 0 is the number of the non-basics.
The n−m commodities contained in the (n−m)× (n−m)matrix H11 are then the basic commodities. 

Wenow illustrate the key role played by the PasinettimatrixH and its invariance prop-
erty under theM-transformation. We also illustrate the fact that, under the action of
the permutation matrix Q, its similar matrix Q−1HQ represents the same linear opera-
tor, able to reveal the number of non-basics.

Example 6.3.4. We consider an economy producing wheat, iron and gold, described
by following production scheme:

1 : (300 qr. of wheat, 12 t.of iron,0)→ (600 qr. of wheat,0,0),

2 : (150 qr. of wheat, 9 t. iron,0)→ (0, 30 t. of iron, 6 kg ofgold),

3 : (50 qr. of wheat, 4 t. of iron,0)→ (0,0, 4 kg of gold). (6.85)

There are three products, n = 3. Present the commodity flow matrix S and the output
matrix F; calculate the Pasinetti matrix H (6.59) and determine the non-basics and
basics. Set up the Schefold transformation matrix T and the Manara transformation
matrixM.

Carry out the transformation, computingMS andMF, compute the transformed
matrix H = (MF −MS)−1MS (6.81), confirming its invariance under the transforma-
tion bymatrixM and determine directly the submatrixH11 = (V11 −TV


12)
−1(S11 −TS


12).

Solution to Example 6.3.4:
We identify the transposed commodity flow matrix S and the transposed output ma-
trix F,

S = [[
[

300 12 0
150 9 0
50 4 0

]]

]

, F = [[
[

600 0 0
0 30 6
0 0 4

]]

]

. (6.86)

The matrix (F − S) is generally not positive,

F − S = [[
[

300 −12 0
−150 21 6
−50 −4 4

]]

]

, (F − S)−1 =
[[[

[

3
800

1
600 −

1
400

1
96

1
24 − 116

11
192

1
16

5
32

]]]

]

. (6.87)
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Calculate now the Pasinetti matrix (6.59), appearing directly in “canonical form”,

H = (F − S)−1S

=
[[[

[

3
800

1
600 −

1
400

1
96

1
24 − 116

11
192

1
16

5
32

]]]

]

[[

[

300 12 0
150 9 0
50 4 0

]]

]

=
[[[[

[

5
4

1
20 0

25
4

1
4 0

275
8

15
8 0

]]]]

]

. (6.88)

We consider the (2 × 1) zero matrix H12 = [0 0] and are led to set m = 1, claiming
that gold is non-basic. Therefore, there are n − m = 2 basics, namely wheat and iron.
Accordingly, we identify now the sub-matrices of S and F (6.77)

S11 = [
300 12
150 9

] , S21 = [
0
0
] , S12 = [ 50 4 ] , S22 = [ 0 ] ,

F11 = [
600 0
0 30

] , F21 = [
0
6
] , F12 = [ 0 0 ] , F22 = [ 4 ] . (6.89)

With n = 3 andm = 1,we set up the ((n−m)×m) = (2×1) Schefold transformationmatrix
T = [t1, t2] and subsequently the (3× 3)Manara transformationmatrixM, computing,

S21 = TS

22 and F21 = TF


22 ⇔

[
0
0
] = [

t1
t2
] [0] and [ 0

6
] = [

t1
t2
] [4] obtaining t2 =

3
2
. (6.90)

We get the Schefold transformation matrix

T = [ 03
2
] , (6.91)

and conclude, setting up the Manara transformation matrix,

M ≡ [ In−m −T
0 Im

] = [[

[

1 0 0
0 1 − 32
0 0 1

]]

]

. (6.92)

We now compute the transformed commodity flow and output matrices,

MS = [ In−m −T
0 Im

] S = [[
[

1 0 0
0 1 − 32
0 0 1

]]

]

S = [[
[

300 12 0
75 3 0
50 4 0

]]

]

,

MF = [ In−m −T
0 Im

]F = [[
[

1 0 0
0 1 − 32
0 0 1

]]

]

F = [[
[

600 0 0
0 30 0
0 0 4

]]

]

. (6.93)
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Finally, one computes the transformed Pasinetti matrix H, illustrating again the in-
variance property of theM-transformation,

H ≡ (MF −MS)−1MS

=
[[[

[

3
800

1
600 0

1
96

1
24 0

11
192

1
16

1
4

]]]

]

[[

[

300 12 0
75 3 0
50 4 0

]]

]

=
[[[

[

5
4

1
20 0

25
4

1
4 0

275
8

15
8 0

]]]

]

. (6.94)

We recognise the sub-matrices Hij of matrix H (6.94) as:

H =
[[[[

[

5
4

1
20 0

25
4

1
4 0

275
8

15
8 0

]]]]

]

= [
H11 0
H21 H22

]⇒ H11 = [
5
4

1
20

25
4

1
4

] ,

H21 = [
275
8

15
8 ] , H22 = [ 0 ] , (6.95)

and can calculate all the sub-matricesHij, i, j = 1, 2, applying the equalities (6.81); let’s
do it for H11,

S11 − TS

12 = [

300 12
75 3

] , V11 = F

11 − S

11 = [

300 −12
−150 21

] ,

V12 = F

12 − S

12 = [ −50 −4 ] , (V


11 − TV


12)
−1 = [

3
800

1
600

1
96

1
24

] , (6.96)

getting finally,

H11 = (V

11 − TV


12)
−1(S11 − TS


12)

= [
3

800
1

600
1
96

1
24

][
300 −150
−12 21

] = [
5
4

1
20

25
4

1
4

] . (6.97)

We obtain again the above matrix H11 (6.95) and confirm its positiveness. Matrix
H11 is therefore irreducible, and we again conclude:

Matrix H11 represents n − m = 2 basics, namely the commodities wheat and iron,
and we have one non-basic commodity (m = 1), namely gold. We also calculate the
rank

rank ([ S2 F2 ]) = rank(
[[

[

0 0
0 6
0 4

]]

]

) = 1 ≤ m = 1, (6.98)

confirming Sraffa’s initial definition (PCMC, Par. 60) or thematrix rank criterionPropo-
sition 6.3.1, stating that “the rank is less than, or equal to, m.” 
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We consolidate now our understanding of the Pasinetti matrixHwith an illustra-
tion of theManara transformationmatrixM and the Schefold transformationmatrixT.
Consider the following

Example 6.3.5. Establish the system (S,F) of a joint production process with n = 5
commodities, represented by the following matrices,

S =
[[[[[[

[

30 0 15 45 25
30 35 10 95 45
10 20 10 90 50
10 0 0 40 30
0 0 5 50 20

]]]]]]

]

, F =
[[[[[[

[

30 20 30 55 60
40 40 20 115 100
30 30 10 110 120
10 10 0 50 80
10 10 10 60 40

]]]]]]

]

. (6.99)

Calculate the Pasinetti matrix H and determine the numbers n −m of basics andm of
non-basics. Compute the Manara transformation matrix T (6.78) and set up matrixM
(6.79) (6.79).

Compute the matrix products MS, respectively MF and compute the Pasinetti
matrix H (6.81) of thisM-transformation.

Solution to Example 6.3.5:
We start by computing the Pasinetti matrix (6.59), n = 5,

H = (F − S)−1S

=

[[[[[[[[[[[

[

5
16

13
16

17
16 0 0

− 54 −
9
4 −

1
4 0 0

25
8

17
8

13
8 0 0

− 6124 −
7
8 −

49
24

17
3

4
3

23
24

5
8

11
24 −

1
3

1
3

]]]]]]]]]]]

]

= [
H11 0
H21 H22

] . (6.100)

As there is a 3 × 2 zero matrix H12, we conclude with Lemma 6.3.1 that there arem = 2
non-basics and n −m = 3 basics. We extract the required sub-matrices from the given
matrices S and F (6.99),

S21 =
[[

[

45 25
95 45
90 50

]]

]

=: [ y1 y2 ] , S22 = [
40 30
50 20

] =: [ x1 x2 ] ,

F21 =
[[

[

55 60
115 100
110 120

]]

]

=: [ y3 y4 ] , F22 = [
50 80
60 40

] =: [ x3 x4 ] , (6.101)

and applying thematrix rank criterion, we find,

[ S2 F2 ] = [
S21 F21
S22 F22

]⇒ rank ([ S2 F2 ]) = 2 = m. (6.102)
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Then Manara’s transformation matrix T (6.78) can be calculated, either with the com-
modity flow or the output matrix, necessarily giving the same resulting matrix T,

S21 = T1S

22 ⇒ T1 = S


21(S22
)−1

F21 = T2F

22 ⇒ T2 = F


21(F22
)−1. (6.103)

Numerically, we obtain,

T1 =
[[

[

45 25
95 45
90 50

]]

]

[
− 1
35

3
70

1
14 −

2
35

] = [[

[

1
2

1
2

1
2

3
2

1 1

]]

]

,

T2 =
[[

[

55 60
115 100
110 120

]]

]

[
− 1
70

1
35

3
140 −

1
56

] = [[

[

1
2

1
2

1
2

3
2

1 1

]]

]

. (6.104)

The resulting identity of both Manara transformation matrices, T = T1 = T2 confirms
the fact that there are two non-basics, due to the linear dependency between the ma-
trices S21 and S


22, respectively matrices F21 and F


22.

For the commodity flowmatrix S, the Schefold transformationmatrixTmapswith
the application S21 = TS


22 the vector x1 = [40, 50]

 on the corresponding vector y1 =
[45, 95, 90] and the vector x2 = [30, 20] on the corresponding vector y2 = [25, 45, 50].
For the output matrix S, the Schefold transformation matrix Tmaps with the applica-
tion F21 = TF


22 the vector x3 = [50, 60]

 on the corresponding vector y3 = [55, 115, 110]

and the vector x4 = [80, 40] on the corresponding vector y4 = [60, 100, 120].
Using the Schefold transformationmatrixT, we define theManara transformation

matrixM,

M = [ In−m −T
0 Im

] =

[[[[[[[

[

1 0 0 − 12 −
1
2

0 1 0 − 12 −
3
2

0 0 1 −1 −1
0 0 0 1 0
0 0 0 0 1

]]]]]]]

]

, (6.105)

and calculate the matrix productsMS, respectivelyMF. In the right upper corner of
the matrix productMS, respectivelyMF, are generated as expected the zero matrix
S21 − TS


22, respectively the zero matrix F21 − TF


22, getting altogether,

MS =
[[[[[[

[

25 0 12.5 0 0
25 35 2.5 0 0
0 20 5 0 0
10 0 0 40 30
0 0 5 50 20

]]]]]]

]

, MF =
[[[[[[

[

20 10 25 0 0
20 20 5 0 0
10 10 0 0 0
10 10 0 50 80
10 10 10 60 40

]]]]]]

]

. (6.106)
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We now calculate the inverse matrix,

(MF −MS)−1 =

[[[[[[[[[

[

1
20 −

3
80

17
160 0 0

0 − 1
20 −

1
40 0 0

1
10

1
40

1
16 0 0

− 16
11
120 −

49
240 −

1
15

1
6

1
30 −

1
120

11
240

1
30 −

1
30

]]]]]]]]]

]

, (6.107)

and the Pasinetti matrix, according to (6.81),

H = (MF −MS)−1MS

=

[[[[[[[[[[[

[

5
16

13
16

17
16 0 0

− 54 −
9
4 −

1
4 0 0

25
8

17
8

13
8 0 0

− 6124 −
7
8 −

49
24

17
3

4
3

23
24

5
8

11
24 −

1
3

1
3

]]]]]]]]]]]

]

= [
H11 0
H21 H22

] . (6.108)

The computation confirms the invariance of matrix H under the M-transformation
of the economic system and the pertinence of determining the number of non-basics
from the Pasinetti matrix H in “canonical form”. 

These examples have shown the practical importance of the invariance property,
Lemma 6.3.1. We have also highlighted the similarity between the “canonical forms”
of matrix S in the case of single-product industries and matrix H in the case of joint
production.

The following example illustrates the row-permutation, meaning interchanging
the individual sectors of a production process.

Example 6.3.6. Based on Example 3.1.2, (PCMC, Par. 2), we set up the following joint
production economy with three sectors: wheat, iron, pigs. We present the system of
production with a dummy vector of labour L:

(240 qr. of wheat, 12 t. of iron, 18 pigs, L1)→ (400 qr. of wheat, 10 t. of iron, 0)
(90 qr. of wheat, 6 t. of iron, 12 pigs, L2)→ (100 qr. of wheat, 8 t. of iron, 40 pigs)
(120 qr. of wheat, 3 t. of iron, 30 pigs, L3)→ (0, 10 t. of iron, 40 pigs)

(6.109)

Consider the permutation matrix and its inverse,

P = [[
[

1 0 0
0 0 1
0 1 0

]]

]

, P−1 = [[
[

1 0 0
0 0 1
0 1 0

]]

]

. (6.110)
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Set up the commodity flow matrix S, the output matrix F and the dummy vector of
labour L. Realise a row-permutation of matrices S and F, computing the products
PS, PF and the vector PL. One establishes with these matrices the transformed sys-
tem of production (PS,PL) → (PF). Compute the corresponding Pasinetti matrix H.
Determine the number of basics and the number of non-basics.

Solution to Example 6.3.6:
Identify the commodity flow matrix S, the output matrix F and finally the vector of
labour L,

S = [[
[

240 12 18
90 6 12
120 3 30

]]

]

, F = [[
[

400 10 0
100 8 40
0 10 40

]]

]

L = [[
[

L1
L2
L3

]]

]

, (6.111)

and compute the matrix products,

PS = [[
[

240 12 18
120 3 30
90 6 12

]]

]

, PF = [[
[

400 10 0
0 10 40
100 8 40

]]

]

,

PL = [[
[

1 0 0
0 0 1
0 1 0

]]

]

[[

[

L1
L2
L3

]]

]

= [[

[

L1
L3
L2

]]

]

, (6.112)

obtaining the corresponding reordered system of production, corresponding to the
economic process:

(240 qr. of wheat, 12 t. of iron, 18 pigs, L1)→ (400 qr. of wheat, 10 t. of iron,0),

(120 qr. of wheat, 3 t. of iron, 30 pigs, L3)→ (0, 10 t. of iron, 40 pigs),

(90 qr. of wheat, 6 t. of iron, 12 pigs, L2)→ (100 qr. of wheat, 8 t. of iron, 40 pigs).
(6.113)

Then, compute matrix H = (PF − PS)−1(PS) = (F − S)−1S,

H = 1
149
[[

[

301 15.6 28
8,000 327 1,160
−200 3 −29

]]

]

, (6.114)

The Pasinetti matrix does not contain a zero component. Therefore, there is an empty
submatrix, H22 = 0. There is no non-basic commodity. We havem = 0.

We observe that the sectors appear re-ordered. The production is not altered in itself. The overall pro-
duction structure is unchanged. The Pasinetti matrix H is invariant under row permutation (6.82). 

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.4 Joint production, Sraffa Networks and adjacency matrices | 281

6.4 Joint production, Sraffa Networks and adjacency matrices

A formal presentation of the Sraffa Network is given in Section A.14. We go on, consid-
ering the structure of the Sraffa system for joint production industries (6.48),

Sp(1 + r) + L w̃ ⋅ Y
L
= Fp,

Y = e(F − S)p = dp,

L = eL.

(6.115)

We consider the commodity flow matrix S, describing the technology, and the output
matrix F of this joint production economy, describing the production during the con-
sidered period.

We construct the following square 2n × 2nmatrix

Σ = (σkl) = [
0 F

S 0
] ; k, l = 1, . . . , 2n. (6.116)

Then, for matrix Σ, we set up the adjacency matrix, where the output matrix F is re-
placed by thematrixQ = (qij) andmatrix S is replaced by amatrixV = (υij), consisting
both of ‘0’ and ‘1’, in accordance to Definition A.8.5 getting,

υij = wn+i,j = {
1 if sij ̸= 0

0 if sij = 0,
i, j ∈ {1, . . . , n},

qij = wi,n+j = {
1 if fij ̸= 0

0 if fij = 0,
i, j ∈ {1, . . . , n}. (6.117)

We have now got the adjacency matrix corresponding to matrix Σ:

W = (wkl) = [
0 Q

V 0
] ; k, l = 1, . . . , 2n, (6.118)

and we have a very useful

Lemma 6.4.1. The rank of matrix Σ in (6.116), respectively in (4.145) is equal to the sum:
rank of matrix S plus rank of matrix F, respectively rank of matrix q̂. Indeed, in the case
of (4.145), rank(F) is replaced by rank(q̂),

rank(Σ) = rank(S) + rank(F). (6.119)

Proof. Take a 2n × 2n permutation matrix R, whose rank is by definition equal to 2n,
rank(R) = 2n, by applying Lemma A.8.1 permuting the rows of matrix Σ in order to get
a block diagonalmatrix, in such away thatF and S are symmetrically interchanged as
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is shown by the next calculation (6.120). Then, apply the calculation rule for ranks of
block diagonal matrices, see Horn and Johnson [43], p. 31, and as matrix R is regular,
there is rank(R−1ΣR) = rank(Σ),

R−1ΣR = R−1 [ 0 F

S 0
]R = [ F

 0
0 S
]⇒

rank(R−1ΣR) =rank(Σ) = rank([ F
 0
0 S
]) = rank(F) + rank(S). (6.120)

Example 6.4.1. Consider the following example, inspired by PCMC, Par. 73, with the
industries: grazing, shearing,woolmanufacturing,manufacturingmeat,manufactur-
ing iron, service industries and the commodities: sheep, shorn sheep, mutton, wool,
iron, services. The connections are freely created. The Sraffa Network of this economy
is given. We seek the adjacency matrixW.

Solution to Example 6.4.1:
Limiting to mutton and wool, one sees that in a first approach the number of pro-
cesses is n and the number of commodities ism = n+1. If one seeks to havem = n, one
can define mutton and wool as a composite commodity, but this brings an artificial
constraint into the model. The correct approach is to analyse the production process
in more detail, and this entails distinguishing sheep and shorn sheep and introduc-
ing service industries providing services. Service industries will requiremutton, wool,
iron for their labour forces, in other words: food, clothing, manufactured goods.

1 2 3 4 5 6 S SS M W I SV

W =

1
2
3
4
5
6
S
SS
M
W
I
SV

[[[[[[[[[[[[[[[[[[[[[[[

[

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]

]

Q

V (6.121)

The corresponding Sraffa Network is presented in Figure 6.4. One of the industrial
nodes, namely 2 shearing, has an outdegree γ+(2) > 1. This digraph, Figure 6.4, there-
fore represents a joint production economy (Lemma A.14.1) with adjacency matrix
(6.121). The submatrix Q is no longer diagonal (6.121). 
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Figure 6.4: Joint production, Sraffa ([108], Chap. VI–IX,XI).

Example 6.4.2. Consider the following Sraffa Network, assumed reasonably realis-
tic for illustrative purposes, that is embedded in a larger network. This modest ex-
ample already shows the complexities of modern economies of production and ex-
change.

Dashed arrows indicate incoming flows from or outgoing flows of commodities to
the production entities of the larger network, designated hereafter as “other”.15

The reader should note the clear separation and the anti-symmetry between the
two categories of commodities in a production economy:
– Category 1: basic commodities

The input to basic industries is constituted exclusively of basic commodities and basic
commodities are composed of basic commodities only.

The interindustry output of basic industries is composed of basic and non-basic
commodities.
– Category 2: non-basic commodities

The input to non-basic industries can include basic and non-basic commodities.
Non-basic commodities can thus be composed of basic and/or non-basic commodi-
ties.

The interindustry output of non-basic industries however can only be composed
of non-basic commodities.

Solution to Example 6.4.2:
The following list indicates the meaning of the various production entities and com-
modities entering the network.

15 For example, outgoing water W in the network is again tapped and will in part reappear as input
for cooling in the nuclear power production 6○.
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Figure 6.5: Sraffa Network of basics and non-basics.

Round nodes:
1○ Water collection
2○ Hydroelectricity production
3○ Transport facilities | all activities assumed here
4○ Telecommunication facilities | restricted to the non-basic subsystem
5○ Data-processing facilities | under consideration
6○ Nuclear power production
7○ Horse breeding and racing

Square nodes:
W Water
E Electricity
TE Thermal Energy

S Specialised services

UW Unrecycled waste

D Stored data
R Race horses16

16 We have taken Sraffa’s exotic example, PCMC, Par. 6. Note that horse racing is a cultural and spec-
ulative activity. At our present time, we could just as well replace horse breeding and trading by finan-
cial markets and race horses by speculative financial products, both clearly non-basic by nature and
in many circumstances detrimental to sustainable economic growth.
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It has to be noted that the present Sraffa Network contains single-product industries
and joint production industries. Schefold’s Definition 6.3.2 is also used in such cases
to distinguish basic from non-basic commodities because such examples as a whole
are cases of joint production.

Referring to what Sraffa (PCMC, Par. 35 and Par. 58) had in mind, the non- basic
commodities of this example illustrate:
(i) UW , Non-basics excluded from the means of production

(ii) TE , S , D , Non-basics involved directly or indirectly in the production of one
or more other non-basics

(iii) R , Non-basics involved only directly in their own production

The production processes (incoming/outgoing arrows) associated with each industry
are as follows:

1○Water Collection:Water+Electricity+Other→Water+Thermal Energy+Other
2○ Hydroelectricity production: Water + Electricity + Other→ Electricity + Ther-

mal energy
3○ Transport facilities XXX: Electricity + Other→ Specialised Services + Thermal

Energy + Other +Waste
4○ Telecommunication facilities YYY: Electricity + Thermal Energy + Specialised

Services + Other→ Specialised Services + Other
5○ Data-processing facilities ZZZ: Electricity + Specialised Services + Stored Data

+ Other→ Specialised Services + Data Storage + Thermal Energy + Other
6○ Nuclear power production: Specialised Services + Other→ Thermal Energy +

Other +Waste
7○ Horse breeding: Racehorses + Electricity + Thermal energy + Other → Race-

horses

We invite the reader to devise corresponding approximate real world scenarios.
The reader must be aware that the distinction between basic and non-basic com-

modities is not clear-cut. This is a source of debate in connection with sustainable
economies.

Indeed, assumeaSraffamodel incorporating electric power as the energyprovider
entering directly or indirectly all industries and therefore corresponding to a basic
commodity.

Now if this model of a production economy is refined to more detail, i. e., is ex-
panded to include more commodities than the original model, electric power being
then earmarked according to the method of production used:
– nuclear generated electricity;
– hydroelectric power;
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– solar generated electricity;
– wind generated electricity;

these more detailed commodities are basic or non-basic, depending on their utilisa-
tion. This property is determined by application of the fundamental definitions pre-
sented in the case of single-product industries in Section 4.4 and in the case of joint
production in Section 6.3.

Furthermore, commodities entering a subsystem G embedded in a global system
of production Gmay be non-basic in G but basic in the restricted system G taken sep-
arately.

Accordingly, because the distinction between basic commodities and non-basic commodities is con-
ditional, it will be model-dependent.

This fact may be seen by considering the sub-digraph G, spanned by the nodes 4○, 5○,
S , D ofdigraphG, Figure 6.6,G ⪯ G,non-basics inG arebasic inG. The sub-digraph
G is composed only of basics because G is here indeed clearly strongly connected
(Lemma A.15.3).

Figure 6.6: Fully connected sub-digraph G of the Sraffa Network G, Figure 6.5.

The sub-digraph G, G ⪯ G, of the Sraffa Network G is here clearly strongly connected
(Definition A.14.9), and S , D are basics:

Finally, one should bear in mind that commodities may be composite commodi-
ties, like machinery, which enter into joint production, see Chapter 6 and that non-
basicsmay with time often become basic commodities. For example, it appears fairly
certain that with time portable smart phones, lap-tops and robots will become indis-
pensable basic commodities in all sectors of production. 

Non-basic commodities furthermore call for the following comments:
(1) Assuming that all non-basics have been identified and earmarked, the dashed in-

coming arrows illustrated in Figure 6.5 are necessarily carriers of mixes of basic
products entering the subsystems depicted. All commodities of the non-basic sub-
systems must then require linear combinations of quantities of basics for their
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production, and this explains PCMC (Par. 60) where the concept of non-basics is
outlined.

(2) If the non-basics are totally separated from a given set of basics (no incoming
dashed arrows), they fall out of the linear combinations, as their factors are equal
to 0. They then form a separate process.

(3) In this latter case, the price of non-basics has of course no impact on the prices of
basic commodities of the former process. But this is not the case for all non-basics,
as the discussion of Example 4.4.3 has shown.

6.5 National accounting and joint production

In the next example, variables used in the context of national economic accounts are
calculated.

Example 6.5.1. Consider three industries 1, 2, 3 and three groups of commodities: agri-
cultural products A, services B and finally housing accommodation C. These indus-
tries also produce a surplus which corresponds to national income Y .

Industry 1 produces primarily housing as output and also generates in the pro-
cess agricultural by-products and residual services, This industry requires agricultural
products, services and housing as inputs.

Industry 2 produces mainly agricultural products and provides certain services,
requiring as inputs a certain amount of agricultural products, specific services and
housing.

Industry 3 is a pure service industry requiring here only certain specific services
to operate.

Finally in the economic process national income is sustained here through the
surplus generated by agricultural products and housing facilities.

Consider 3 cases:
(a) National income Y is allotted exclusively to profits.
(b) National income Y is allotted completely to wages for the labour forces attached

to the industries. For this we assume that all surplus goes to labour, so r = 0, and
treat the special case, where there is no profit.17

(c) Assume a rate of profits r = 0.2, so the surplus then goes to profits and wages.

Now we assume that

17 Remark:We are in presence of the joint production Sraffa system (S,F, L)where all the profits goes
into labour. Schefold ([103], p. 75) computes the vector of prices p = (F −S)−1w ⋅L, using the vector of
labour L, which is here positive, and terms the vector u = p/w the vector of labour values (see further
also (7.5)), which is therefore necessarily positive for a semi-positve inverse matrix (F − S)−1.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



288 | 6 A new look at joint production analysis

Industry 1 proceeds with 300 units of commodity A plus 120 units of commodity
B plus 160 units of commodity C and 3

16 TAL (total amount of labour), resulting in 260
units of commodity A plus 20 units of commodity B plus 450 units of commodity C.

Industry 2 proceeds with 110 units of commodity A plus 40 units of commodity B
plus 125 units of commodity C and 5

16 TAL, resulting in 220 units of commodity A plus
100 units of product B.

Industry 3 proceedswith 20units of commodity Bplus 8
16 TAL, resulting in 60units

of commodity B, see Figure 6.7.
Commodity C operates as numéraire.
The underlying production process reads as follows:

(S,L)→ (F)

(300A, 120B, 160C, 3
16
w)→ (260A, 20B, 450C),

(110A, 40B, 125C, 5
16
w)→ (220A, 100B, 0),

(0, 20B, 0, 8
16
w)→ (0, 60B, 0). (6.122)

Identify the commodity flow matrix S, the output matrix F and the vector of labour L,
defining the system of production (S,F,L), using Notation 6.2.1. Establish the Sraffa
Network and the corresponding adjacency matrixW.

We follow the scheme of the three last steps considered in Section 4.9,
(a) Step II with surplus going exclusively into profits: Verify that matrix F is regu-

lar. Calculate the input-output coefficientsmatrix CT , the productiveness R and the
corresponding price vector p;

(b) Step IIIwith surplus going only into labour: Calculate the price vector, here called
“labour values”;

(c) Step IV with surplus going into profits and wages: Consider the rate of profits
r = 0.2. Calculate the price vector, the national income Y , the total output X, the
circulating capital K, the total profit P, the total wages W and the share of total
wages to national income w̃ (6.49).

Solution to Example 6.5.1:
We start identifying the commodity flow matrix S, describing the technology, and the
output matrix F of this joint production economy, giving the result of the production
during the considered period, and also the labour vector L,

S = [[
[

300 110 0
120 40 20
160 125 0

]]

]

, F = [[
[

260 220 0
20 100 60
450 0 0

]]

]

, L =
[[[[

[

3
16
5
16
8
16

]]]]

]

. (6.123)
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We set up the square (2n × 2n)matrix (6.116),

Σ = [ 0 F

S 0
] =

[[[[[[[[[[[

[

0 0 0 260 20 450
0 0 0 220 100 0
0 0 0 0 60 0
300 110 0 0 0 0
120 40 20 0 0 0
160 125 0 0 0 0

]]]]]]]]]]]

]

; k, l = 1, . . . , 2n. (6.124)

We can now set up the corresponding Sraffa Network and the adjacency matrix W
(6.118) on the basis of the definition (6.116) of matrix Σ,

1 2 3 A B C

W =

1
2
3
A
B
C

[[[[[[[[[

[

0 0 0 1 1 1
0 0 0 1 1 0
0 0 0 0 1 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 0 0 0 0

]]]]]]]]]

]

, (6.125)

Figure 6.7: Sraffa Network and adjacency matrix of Example 6.5.1.

calculating,

We =

[[[[[[[[[[[

[

0 0 0 1 1 1
0 0 0 1 1 0
0 0 0 0 1 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 0 0 0 0

]]]]]]]]]]]

]

[[[[[[[[[[[

[

1
1
1
1
1
1

]]]]]]]]]]]

]

=

[[[[[[[[[[[

[

3
2
1
2
3
2

]]]]]]]]]]]

]

=

[[[[[[[[[[[

[

γ+(1)
γ+(2)
γ+(3)
γ+(A)
γ+(B)
γ+(C)

]]]]]]]]]]]

]

, (6.126)

one obtains exactly the outdegrees of the nodes of the Sraffa Network.
The labour vector L = [3/16, 5/16, 8/16] does not figure in the SraffaNetwork of the

joint production process (S,F,L), Definition 6.3.2, because labour is directly attached
to each industry node.

Now we are ready to follow the three last steps of the proposed methodology
to calculate the joint production Sraffa system with different profit rates r and wage
rates w.

Starting from the structure of the joint production Sraffa system (6.48),
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Sp(1 + r) + L w̃ ⋅ Y
L
= Fp,

Y = (Fe − Se)p,
L = eL,

setting pC = 1,

(6.127)

clearly, the labour is normalised, L = eL = 3
16 +

5
16 +

8
16 = 1. Sraffa’s conditions of joint

production Se = Fe (6.19) are exceeded,

Se = [[
[

300 110 0
120 40 20
160 125 0

]]

]

[[

[

1
1
1

]]

]

= [[

[

410
180
285

]]

]

≤ Fe = [[
[

260 220 0
20 100 60
450 0 0

]]

]

[[

[

1
1
1

]]

]

= [[

[

480
180
450

]]

]

, (6.128)

indicating the existence of a semi-positive surplus d = (F − S)e = [70,0, 165] ≥ 0.
Therefore we directly apply to case (a)

(Step II) of the method presented in Section 4.9 (all the surplus goes into profits),
the share of total wages to national income reduces to w̃ = 0.

We verify det(F) = 5,940,000 and then start computing the inverse matrix of F
with (6.123), getting,

F−1 = [[
[

260 220 0
20 100 60
450 0 0

]]

]

−1

=
[[[

[

0 0 1
450

1
220 0 − 13

4,950

− 1
132

1
60

1
275

]]]

]

. (6.129)

Thenwe calculate the new input-output coefficientsmatrixCT = SF−1, using thematrix
S (6.123) with (6.129) and see that we obtain a semi-positivematrix,

CT = SF
−1

= [[

[

300 110 0
120 40 20
160 125 0

]]

]

[[[

[

0 0 1
450

1
220 0 − 13

4,950

− 1
132

1
60

1
275

]]]

]

=
[[[

[

1
2 0 17

45
1
33

1
3

116
495

25
44 0 3

110

]]]

]

≥ 0. (6.130)

The joint production Sraffa system (6.127) becomes:

Sp(1 + R) = Fp⇒ CTp(1 + R) = p. (6.131)

We multiply the above eigenvalue equation (6.131) with λC =
1

1+R and get for the price
vector,

CTp = λCp. (6.132)
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At present, consider the characteristic polynomial of matrix CT ,

P3(λ) = det(CT − λI3) = −λ
3 +

142
165

λ2 + 5
198

λ − 199
2,970

= (λ − 0.33333)(λ + 0.256473)(λ − 0.783746). (6.133)

We take matrix CT and compute,

(I + CT )
2 =
[[[[

[

244
99 0 2,363

2,475
53
242

16
9

46,117
81,675

695
484 0 34,574

27,225

]]]]

]

≥ 0, (6.134)

and conclude with Lemma A.8.2 that CT ≥ 0 is reducible. Lemma 4.1.1 (b) applies.
We get a positive Frobenius number less than one, 1 > λC = 1/(1 + R) = 0.7837 > 0,
1 > λC > 0, revealing the productiveness R = 27.59% > 0. Theorem A.10.1, guarantees
non-negative eigenvectors associated to the Frobenius number λC.

In fact, in this case, the right eigenvector equation (6.132) gives directly positive
eigenvectors p = k[1.332,0.610, 1] > 0. Finally, we compute the national income, us-
ing (6.128) and the fact that commodity C has been chosen as numéraire, pC = 1, thus,
we have k = 1, so:

Y = (Fe − Se) ⋅ p = [70,0, 165][[
[

1.332
0.610
1

]]

]

= 258.198, (6.135)

presented in units of commodity C.
Now we proceed to handle case (b)

(Step III) (Sraffa’s price equations with no profit: Labour values)
We consider Sraffa’s price equation with normalised labour and no profit, r = 0

and P = 0. As mentioned, the resulting prices are often called labour values (see
Schefold [103], p. 75). We get the system

Sp + L w̃ ⋅ Y
L
= Fp,

(Fe − Se)p = Y ,
L = eL = 1,

pC = 1,

(6.136)

then, computing the wage rate w = w̃⋅Y
L , we take the first matrix equation of (6.136)

and modify it algebraically,

Sp + Lw = Fp⇒ Sp − Fp + Lw = 0. (6.137)

So we get finally,
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p = w ⋅ [F − S]−1L, (6.138)

and numerically for the inverse,

(F − S)−1 = [[
[

−40 −100 290
110 60 −125
0 40 0

]]

]

−1

=
[[[

[

5
1,076

29
2,690 −

49
10,760

0 0 1
40

11
2,690

2
1,345

43
5,380

]]]

]

. (6.139)

We now calculate the vector p = [pA, pB, pC], and obtain from (6.138) and (6.139)

p = w ⋅
[[[

[

5
1,076

29
2,690 −

49
10,760

0 0 1
40

11
2,690

2
1,345

43
5,380

]]]

]

[[

[

3
16
5
16
8
16

]]

]

= w ⋅
[[[

[

169
86,080

1
80
45

8,608

]]]

]

= w ⋅ u = [[
[

pA
pB
1

]]

]

= [[

[

0.376
2.391
1

]]

]

, (6.140)

due to the fact that commodity C is the numéraire, we set pC = 1 = w ⋅
45

8,608 in (6.140).
This gives thewage ratew = 191.289.We computewith (6.140) pA = 0.376 an pB = 2.391
and get the national income with (6.128)

Y = (Fe − Se) ⋅ p = [70,0, 165][
[

0.376
2.391
1
]

]
= 191.289, (6.141)

presented in units of commodity C. Clearly, L = 1, the total wages areW = w ⋅ L = w
and Y = W + P = W , therefore Y = W = w = 191.289 and we also obtain the vector of
labour values u = [ 169

86,080 ,
1
80 ,

45
8,608 ]
 = [0.00196,0.01250,0.00522] in units of labour

per unit of produced commodities, each component representing the total “quantity
of labour” necessary over all preceding periods for the production of the units of each
of the commodities.

Finally, we treat case (c), (Step IV), and establish the joint production Sraffa sys-
tem with a profit rate r = 0.2 and the labour vector L = [ 316 ,

5
16 ,

8
16 ]
 and the same

numéraire C, pC = 1,

Sp(1 + 0.2) + L w̃ ⋅ Y
L
= Fp,

(Y = Fe − Se)p,
L = eL = 1,
pC = 1.

(6.142)

We have of course to compute w = w̃⋅Y
L .

(A) If matrix F is regular, we canmultiply the first equation of (6.142) by thematrix F−1

from the left, and we get a system of equations for the price vector p,
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Sp(1 + r) + Lw = Fp⇒ F−1Sp(1 + r) + w ⋅ F−1L = F−1Fp = p. (6.143)

We have now the joint production Sraffa system, using the input-output coefficients
matrix CT = SF−1 and the labour parts w ⋅ (F−1L) =: w ⋅Λ. So, we have an equation for
the prices pi, i ∈ {A,B,C} of each commodity i:

CTp(1 + r) + w ⋅ Λ = p. (6.144)

We know the numerical expression of matrix CT (6.130), and we now also need the
numerics of the product

Λ := F−1L =
[[[

[

0 1
220 − 1

132

0 0 1
60

1
450 −

13
4,950

1
275

]]]

]

[[[

[

3
16
5
16
8
16

]]]

]

=
[[[

[

− 5
2,112
1
120
7

4,950

]]]

]

. (6.145)

We thus obtain from (6.144) the price vector p = [1.422,0.842, 1] expressed in the
numéraire C. We observe that the vector Λ contains a negative value. This is an arte-
fact coming from the inverse matrix F−1, which is not non-negative. We observe that
in joint production analysis the vector Λ needs an extended interpretation of the term
“quantity of labour per unit of commodity”,which can be negative. This interpretation
needs further work not treated in this book.
(B) If matrix F is not regular, what is not the case here, we can take the price model
with the original commodity flow matrix and the matrix of outputs. We have in this
case

Sp(1 + 0.2) + w ⋅ L = Fp⇒

[[

[

300 120 160
110 40 125
0 20 0

]]

]

[[

[

p1
p2
1

]]

]

1.2 + w
[[[

[

3
16
5
16
8
16

]]]

]

= [[

[

260 20 450
220 100 0
0 60 0

]]

]

[[

[

p1
p2
1

]]

]

.

(6.146)

We then obtain, from this system (6.146) of unknown variables p1, p2 w, again the price
vectorp = [1.422,0.842, 1], expressed in the numéraire C, andwe observe thewage per
unit of labour w = 60.622 has changed with respect to Step III.

Finally, we compute the national income, using (6.128) and the requested eco-
nomic variables, according to (6.49).

Y = (Fe − Se) ⋅ p = [70,0, 165][[
[

1.422
0.842
1

]]

]

= 264.561,

X = (Fe)p = [480, 180, 450][[
[

1.422
0.842
1

]]

]

= 1,284.26,
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K = (Se)p = [410, 180, 285][
[

1.422
0.842
1
]

]
= 1,019.7, (6.147)

P = (Se)p ⋅ r = K ⋅ r = 1,284.26 ⋅ 0.2 = 203.939,

w̃ = w ⋅ L
Y
= 60.622 ⋅ 1

264.561
= 0.2291,

W = Y − P = 60.622 = w ⋅ L = 60.622 ⋅ 1 = 60.622, (6.148)

presented in units of commodity C.We can now easily derive the accountable balance,
multiplying the complete Sraffa price model (6.146) for joint production by vector e

eSp(1 + r) + ew ⋅ L = eFp = (Se)p(1 + r) + w ⋅ (eL) = (Fe)p
= K + P + w ⋅ L = K + (P +W) = K + Y = X. (6.149)

We have indeed the principal accountable identity of the National accounting system,
which even can be brought to X = K + P +W + (E − M) with Y = P +W + (E − M), if
Sraffa’s model is extended. 

Note that in joint production the conditions for the application of the Perron–
Frobenius theorem A.9.3 are in general not fulfilled, as in Example 6.5.1, even if by
chance all the price vectors here are positive.

So again, the question of the conditions required to obtain positive price vectors,
p > 0, has to be treated. This will be undertaken in Section 6.6.

We continue to apply Sraffa Networks to joint production processes and see how
they present a useful complement to the algebraic treatment of such processes. As a
further example of a Sraffa production system (S,F,L), Definition 6.3.2, let usmodify
the system of production handled in Example 6.5.1:

Example 6.5.2. Consider the production scheme

(S,L)→ (F)

(300A, 120B, 160C, 3
16
w)→ (260A, 20B, 450C),

(110A, 40B, 125C, 5
16
w)→ (220A, 100B,0),

(20A, 20B,0, 8
16
w)→ (0, 60B,0), (6.150)

derived fromExample 6.5.1, where the production process of Industry 3 has beenmod-
ified. Identify the commodity flow matrix S and the output matrix F. Determine the
Sraffa Network, the 2n× 2n adjacencymatrixW. Determine the basic products and the
non-basic products.

Solution to Example 6.5.2:
We start identifying the commodity flow matrix S, describing the technology, and the
output matrix F of this joint production economy, giving the result of the production
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during the considered period,

S = [[
[

300 110 20
120 40 20
160 125 0

]]

]

, F = [[
[

260 20 450
220 100 0
0 60 0

]]

]

, (6.151)

We set up the square (2n × 2n)matrix (6.116),

Σ = [ 0 F

S 0
] =

[[[[[[[[[

[

0 0 0 260 20 450
0 0 0 220 100 0
0 0 0 0 60 0
300 110 20 0 0 0
120 40 20 0 0 0
160 125 0 0 0 0

]]]]]]]]]

]

; k, l = 1, . . . , 2n. (6.152)

We can now get the adjacency matrixW (6.118) on the basis of the definition (6.117) of
its coefficients. The Sraffa Network, Figure 6.8, corresponding to the adjacency matrix
follows immediately,

1 2 3 A B C

W =

1
2
3
A
B
C

[[[[[[[[[

[

0 0 0 1 1 1
0 0 0 1 1 0
0 0 0 0 1 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 0 0 0 0

]]]]]]]]]

]

. (6.153)

Figure 6.8: Sraffa Network and adjacency matrix of Example 6.5.2.

We continue analysing the irreducibility of matrices S and F,

(S + I)2 = [[
[

301 110 20
120 41 20
160 125 1

]]

]

2

= [[

[

107,001 40,120 8,240
44,240 17,381 3,240
63,320 22,850 5,701

]]

]

> 0, (6.154)

(F + I)2 = [[
[

261 220 0
20 101 60
450 0 1

]]

]

2

= [[

[

72,521 79,640 13,200
34,240 14,601 6,120
117,900 99,000 1

]]

]

> 0. (6.155)
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We see that neither S nor F are reducible, Lemma A.8.2. So, we can take the next step
and compute the Pasinetti H, first computing the inverse matrix,

(F − S) = [[
[

−40 −110 290
110 60 −125
−20 40 0

]]

]

, (F − S)−1 =
[[[[

[

5
1,174

29
2,935

−49
11,740

5
2,348

29
5,870

269
11,740

14
2,935

9
2,935

43
5,870

]]]]

]

,

(6.156)

thus obtaining,

H = (F − S)−1S = [[
[

2.281 0.823 1.917
1.641 0.911 0.958
1.915 0.842 1.147

]]

]

> 0, (6.157)

which is positive and for this reason also irreducible. So we conclude that the three
commodities A, B, C are basic. 

We continue with a historical example where there are basics and non-basics. It
is the abstract example of Sraffa in PCMC, Par. 59. We start presenting the production
scheme, having in mind the structure (S,F,L). We differ from the original notation,
by designating the processes {1, 2, 3, 4} and the products {1, 2, 3, 4}:

Example 6.5.3. “Suppose that, in a system of four processes and four products, two
commodities, 2 and 3 are jointly produced by one process,18 and are produced by no
other; but while 2 does not enter the means of production of any process, 3 enters the
means of all four processes. Further suppose that the process producing 2 and 3 be
represented by equation

(s11p1 + s31p3 + s41p4)(1 + r) + w ⋅ L1 = f11p1 + f21p2 + f31p3 + f41p4.” (6.158)

The present production economy of four processes and products may be embedded
into a greater economy.

Sraffa’s original formulation of the example is in fact incomplete: there is no in-
dication of what the processes (i. e., industries) 2, 3 and 4 produce.

Nevertheless, we complete Sraffa’s production scheme by inserting into the corre-
sponding Sraffa Network inputs of commodities 1 and 4 by industries 2, 3, 4. Further-
more, we present a maximal scheme by adding quantities of labour. Being a system in
itself, necessarily the three Assumptions 6.1.1–6.1.3 hold.

The resulting production scheme then presents itself as follows:

18 Sraffa has chosen the process 1 in PCMC, Par. 59. The authors respect this choice and keep it.
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1 2 3 4 1 2 3 4
1 (s11, 0, s31, s41, L1) → (f11, f21, f31, f41)

2 (s12, 0, s32, s42, L2) → (f12, 0, 0, f42)

3 (s13, 0, s33, s43, L3) → (f13, 0, 0, f43)

4 (s14, 0, s34, s44, L4)→ (f14, 0, 0, f44)

(S,L) → (F). (6.159)

Determine the rank of matrix F.
Apply the matrix rank criterion, Proposition 6.3.1 to prove that the commodities 2

and 3 are non-basics.

Solution to Example 6.5.3:
We identify the commodity flow matrix S and the output matrix F,

1 2 3 4 1 2 3 4

S =

1
2
3
4

[[[[

[

s11 s12 s13 s14
0 0 0 0
s31 s32 s33 s34
s41 s42 s43 s44

]]]]

]

, F =

1
2
3
4

[[[[

[

f11 f12 f13 f14
f21 0 0 0
f31 0 0 0
f41 f42 f43 f44

]]]]

]

, (6.160)

and find rank(F) = 3. This means that matrix F is not regular and the input-output
coefficientsmatrix CT , (6.22), Proposition 6.2.1, does not exist.

Then we set up the rectangular matrix, according to Definition 6.3.1,

1 2 3 4 1 2 3 4

[S,F] =
[[[[

[

s11 0 s31 s41 f11 f21 f31 f41
s12 0 s32 s42 f12 0 0 f42
s13 0 s33 s43 f13 0 0 f43
s14 0 s34 s44 f14 0 0 f44

]]]]

]

, (6.161)

and extract the columns corresponding to commodities 2 and 3, calculating the rank
of the resulting submatrix of (6.161),

2 3 2 3

Rank(
[[[[

[

0 s31 f21 f31
0 s32 0 0
0 s33 0 0
0 s34 0 0

]]]]

]

) = 2. (6.162)

This means: commodities 2 and 3 are non-basics, consequently, one of the commod-
ities 1 or 4 is basic, the other is basic or non-basic, depending on the matrix coeffi-
cients. 

Now,wedevelopExample 6.5.3 to obtain anumerical versionof the Sraffaproblem
(PCMC, Par. 59) and to calculate the Manara transformation matrix T, matrix M and
the Pasinetti matrix H, to identify the number of non-basic commodities.
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Example 6.5.4. Consider Example 6.5.3 and replace all variables sij, fij by arbitrary
chosen non-negative numbers in order to create a numerical example. Apply Proposi-
tion 6.3.2 to determine the number of non-basic commodities.

Then compute the determinant det(F − S), the vector of surplus d = (F− S)e and
the rank(F).

Compute the Schefold transformationmatrix T (6.78), the Manara transformation
matrixM (6.79), and the Pasinetti matrix H (6.59).

The chosen production scheme is as follows:

1 2 3 4 1 2 3 4
1 (20, 0, 50, 30, L1) → (100, 150, 200, 100)
2 (10, 0, 50, 60, L2) → (200, 0, 0, 150)
3 (30, 0, 10, 10, L3) → (100, 0, 0, 200)
4 (40, 0, 40, 50, L4)→ (50, 0, 0, 100)

(S,L) → (F). (6.163)

Present the Sraffa Network of the present sub-system of n = 4 products and discuss
the aspects that become visible in it.

Solution to Example 6.5.4:
We identify the commodity flowmatrix S and the output matrix F of the just-described
economy, fulfilling the principle of production, described by Assumption 2.2.1 and by
Assumption 2.2.2,

1 2 3 4 1 2 3 4

S =

1
2
3
4

[[[[

[

20 10 30 40
0 0 0 0
50 50 10 40
30 60 10 50

]]]]

]

, F =

1
2
3
4

[[[[

[

100 200 100 50
150 0 0 0
200 0 0 0
100 150 200 100

]]]]

]

. (6.164)

We then compute the rank(F) = 2 and conclude that we are not in presence of a system
of gross integrated industries.

We compute det(F − S) = −177,900,000, confirming Assumption 6.1.2. We then
compute the vector of surplus d = (F − S)e = [350, 150, 50, 400] > 0. Now permute
the rows of matrices S and F, corresponding to the commodities, attaining a maximal
number of 0 in the lower parts of the matrices,

1 2 3 4 1 2 3 4

S̃ =

1
4
3
2

[[[[

[

20 10 30 40
30 60 10 50
50 50 10 40
0 0 0 0

]]]]

]

, F̃ =

1
4
3
2

[[[[

[

100 200 100 50
100 150 200 100
200 0 0 0
150 0 0 0

]]]]

]

. (6.165)
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One identifies the sub-matrices of S̃ and F̃, according to (6.77) as:

S̃11 = [
20 30
10 60

] , S̃12 = [
30 10
40 50

] , S̃21 = [
50 0
50 0
] , S̃22 = [

10 0
40 0

] ,

F̃11 = [
100 100
200 150

] , F̃12 = [
100 200
50 100

] , F̃21 = [
200 150
0 0

] ,

F̃22 = [
0 0
0 0
] . (6.166)

We have to confirm that the 2 × 2 Schefold transformation matrix T exists. Thus,
we can compute the 4 × 4 Manara transformation matrixM,

T = [
t11 t12
t21 t22

] , S̃21 = TS̃

22, F̃21 = TF̃


22, (6.167)

[
50 0
50 0
] = [

t11 t12
t21 t22

][
10 0
40 0

]⇒ Calculate matrix T,

[
200 150
0 0

] = [
t21 t21
t21 t22

][
0 0
0 0
]⇒ leading to any T. (6.168)

We obtain the Schefold transformation matrix T from the upper matrix equation of
(6.168), the second equation providing anymatrix T. Realising the correspondingma-
trix products, we come to parametric equations in the coefficients t11, t12, t21, t22 with
parameters a, b ∈ ℝ, chosen for any two of the four just mentioned variables tij. i, j =
1, 2, as here, i. e., t21 = a and t12 = b,

[[[[[

[

10t11 + 40t12 = 50
10t21 + 40t22 = 50

t21 = a
t12 = b

]]]]]

]

⇒
[[[[[

[

10 40 0 0
0 0 10 40
0 0 1 0
0 1 0 0

]]]]]

]

[[[[[

[

t11
t12
t21
t22

]]]]]

]

=
[[[[[

[

50
50
a
b

]]]]]

]

. (6.169)

T = [
t11 t12
t21 t22

] = [
5 − 4b b
a 5−a

4
] , rank(T) ≤ 2. (6.170)

With matrix T, we attain the Manara transformation matrixM and its determinant:

M ≡ [
I1 −T
0 I3

] =
[[[[[

[

1 0 −5 + 4b −b
0 1 −a −5+a

4
0 0 1 0
0 0 0 1

]]]]]

]

, det(M) = 1. (6.171)

We compute the Pasinetti matrixH, applying Lemma 6.3.1, observing that the result is
independent of the variables a, b ∈ ℝ,
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H = (MF −MS)−1MS

≡ (F − S)−1S = 1
593

[[[[[

[

−153 − 152 0 0
125 − 112 0 0
−475 −750 −593 0
1,732
3

5,251
6

2,372
3 0

]]]]]

]

. (6.172)

Concluding, with Proposition 6.3.2 we have shown that there are m = 2 non-basics
because there is a 2×2 zeromatrixH22 in theupper right corner of thePasinettimatrixH
(6.172).

1 4 3 2

WC =

1
4
3
2

[[[[

[

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

]]]]

]

(6.173)

Figure 6.9: Commodity digraph G(WC ) and corresponding adjacency matrixWC , Example 6.5.4.

Now we come back to the permuted matrices S̃ and F̃, for which we define the corre-
sponding adjacency matrices,

Ṽ =
[[[

[

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

]]]

]

, Q̃ =
[[[

[

1 1 1 1
1 1 0 0
1 1 0 0
1 1 0 0

]]]

]

, (6.174)

and compose with them the adjacency matrix W̃ of the Sraffa Network, Figure 6.10,

1 4 3 2 1 4 3 2

W̃ = [ 0 Q̃
Ṽ 0 ] =

1
4
3
2
1
4
3
2

[[[[[[[[[[[[

[

0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0

]]]]]]]]]]]]

]

. (6.175)

The associated Sraffa Network19 is weakly connected (Definition A.14.10).

19 Note that the number of connections of the Sraffa Network is correct: 12 arcs entering the four in-
dustries and ten arcs entering the four commodities, giving 10 + 12 = 22, the total number of entries
“1” of the adjacency matrix W̃.
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Figure 6.10: The Sraffa Network of Example 6.5.3.

We compute now the matrix product ṼQ̃ ∼ WC, presented in Figure 6.9. See also
Example A.14.6 for further illustrations.

ṼQ̃ =
[[[

[

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

]]]

]

[[[

[

1 1 1 1
1 1 0 0
1 1 0 0
1 1 0 0

]]]

]

=
[[[

[

4 4 1 1
4 4 1 1
4 4 1 1
0 0 0 0

]]]

]

∼WC , (6.176)

in order to define the associated adjacency matrix WC (6.173), which directly
leads to the commodity digraph G(WC) representing this production process, Defi-
nition A.14.8, Figure 6.9. 

6.6 Conditions for positive price vectors in viable economies
It is important to note that in present day economic systems positive price vectors are
no longer the only requested solution of joint production systems (6.115). It is known
that in ecological economy, zero prices or negative prices may appear for produced
waste, if such sectors are included in the investigated economic system. Indeed, to get
to grips, e. g., with the immense ‘Pacific garbage patch’, the contemporary accumula-
tion of plastic in the oceans, economicmodels, considering the economic recycling and
utilisation of waste, have to be developed. The joint production Sraffa system becomes
a useful tool in this problem area. We will develop such ideas later, see Chapter 7.

But for now, we are concerned with conditions for positive price vectors p > o.
Pasinetti (Ed.) [83] (Chap. II, p. 17) writes in the line of PCMC: “An economic system

will be considered in which all commodities are produced by means of commodities,
used as capital goods. Commodities enter the process of production at the beginning of
each ‘year’ as inputs, jointly with labour services, and commodities come out at the end
of the year as outputs. The economic system is supposed to be viable in the sense that it
is capable of producing larger quantities of commodities than those required to replace
used-up capital goods.” See Definition 2.2.1.

Manara investigated conditions to obtain positive prices, see Pasinetti (Ed.) [83]
(Chap. I, p. 4, original paper published in 1968). He states:
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“It is quite obvious that such prices must constitute the components of a positive vector.”

Then,Manaramakes the following overall condition, treating the simplified situation:

“Let us suppose for the sake of simplicity all the commodities under consideration are basic com-
modities …”

In a first step, we will present these sufficient but not necessary conditions. They are
stability conditions for the economic system. Manara stated his conditions about 50
years ago. We will incorporate them in an up-to-date strengthen form. We start con-
sidering the Sraffapricemodel of joint production, the first equation in (6.39) in itsmost
general form for semi-positivematrices S ≥ 0, F ≥ 0, w = w̃⋅Y

L ,

Sp(1 + r) + Lw = Fp, (6.177)

remaining on the level of the commodity flows. We do not go down to the input-output
coefficients anddonot require gross integrated industries, see Assumption 6.1.3. There-
fore we cannot require the regularity of matrix F, det(F) ̸= 0 (6.8). Consequently, we
will not obtain eigenvalue equations for non-negative and irreducible matrices, as is
illustrated in Example 6.2.2, equation (6.34). Therefore, the Perron–Frobenius theo-
rem A.9.3 is far out of reach.

We introduce at first the notion of convex polyhedral cones.

Definition 6.6.1 (Convex polyhedral cone).
(1) A subset 𝒞 of the vector space ℝn is a cone if, for every x ∈ 𝒞 and positive scalars

α > 0, the product αx is in 𝒞.
(2) A cone 𝒞 is convex if αx + βy ∈ 𝒞 for any possible positive scalars α, β and any

x, y ∈ 𝒞.
(3) A cone 𝒞 is called polyhedral if there is some square n × n matrix J such that

𝒞 = {x | Jx ≥ o}. This is the inequality description. There is a second description
by weighted sums of a polyhedral cone. The cone 𝒞 is given by a finite set of “gen-
erating vectors” υ1, . . . ,υk such that 𝒞 = {α1υ1 + ⋅ ⋅ ⋅ + αkυk | α1 ≥ 0, . . . , αk ≥ 0} is
theweighted sum of the vector set {υ1, . . . ,υk}, acting as a “generator” of the cone.

Notation 6.6.1. We also observe that the rank(J) = k is the dimension of the vector
space spanned by the vectors {υ1, . . . ,υk}. We say that the corresponding cone has di-
mension dim(𝒞) = k, in the way we speak of a 3–dim cube in the 3–dim Euclidian
space. If Jx > o, the vectors x are inside the cone; if Jx = o, the vectors x are on the
point set surface of the cone.

Manara transforms Sraffa’s joint production price model (6.177) to the following
form with r ≥ 0, w > 0, requiring positive vectors of sectorial wagesw > o and there-
fore also positive vectors of labour L > o:

w = L ⋅ w = [F − S(1 + r)]p > o. (6.178)
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We followwithManara’s assumptions on positive prices. He labeled themas ‘unstated
assumptions’, UA1 to UA4, see [61] (in Pasinetti (Ed.) [83], Chap. I).20 We will see that
some of the expressed conditions are covered by statements contained in Assump-
tion 6.1.1 and Assumption 6.1.2.
– (UA1) (The quantity produced exceeds the means of production). Manara [61] says:

“The overall quantity of every commodity used as means of production is less than
the total quantity of the same commodity produced in the whole economic system.”
This condition may be expressed by the positive vector of surplus:

d = (F − S)e > o. (6.179)

This self-replacement condition requests a positive surplus for every commodity
and is part of Assumption 6.1.1.

– (UA2) (Condition for the existence of positive price vectors). Manara postulates:
“There exists at least one positive vector p̄, such that the value of the commodities
used asmeans of production by every individual industry, evaluated at those prices,
is smaller than the value of the products, also evaluated at those prices.” The con-
dition is formulated as follows,

∃p̄ such that {p̄ > o ∧ (F − S)p̄ > o}. (6.180)

Then Manara sets up an octant of the vector space ℝn, made up of the ensemble
of the potential non-negative price vectors p, defined as21

𝒫 = {p | p ≧ o} ⊂ ℝn. (6.181)

The purpose is to define subsets of convex polyhedral cones, contained in the de-
fined octant (6.181), V(r) ⊆ 𝒫. The convex polyhedral cones V(r) will be made up
of positive price vectors p > o, when used in equation (6.178) will lead to positive
vectors of sectorial wagesw > o, as a result, i. e.,

V(r) = {p | p ∈ 𝒫 ∧w = (F − S(1 + r))p > o}. (6.182)

The non-empty convex polyhedral cones V(r) are defined for all admitted rate of
profits r. The Example 6.6.1 and Example 6.6.2 illustrate such polyhedral cones. At
first, a positive price vector p̄ ∈ 𝒫 has to be found, showing that V(0) is not an
empty set, V(0) ̸= 0 (6.182) for r = 0, i. e., p̄ ∈ V(0).

– (UA3) (The linear independence of the processes). This condition is identical to
Assumption 6.1.2 and is valid for all the joint production processes. Manara for-
mulates the assumption (in Pasinetti (Ed.) [83], p. 6) in the same way,

20 We do not treat UA5, which relates to Standard systems of joint production economies, leading to
the general eigenvalue equation S(1 + R)γ = Fγ.
21 We are especially interested in positve prices, p > o, i. e., the open set �̇� = {p | p > o} ⊂ ℝn.
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det(F − S) ̸= 0⇔ det(F − S) ̸= 0, (6.183)

and says: “This ensures, that for at least one value of r (the value r = 0), the vectors
forming the rows of the matrix (F − S(1 + r)) are linearly independent.”. Then the
real polynomial f (r) of the variable r is defined as

f (r) = det(F − S(1 + r)), (6.184)

which is evidently continuous. Manara further defines a subset on the half-line
[0,∞[, defined by non-negative rate of profits, r ≥ 0, such that,

Φ = {r | f (r) = det(F − S(1 + r)) ̸= 0}. (6.185)

The setΦ “is closedon the left-hand side, having r = 0as itsminimum”. Concluding,
wewill now refer to the intervalΦ ⊂ [0,∞[, forwhich the conesV(r) (6.182) are not
empty. Defining J(r) := F−S(1+r), we recognise that for r ∈ Φ the conesV(r)have
as dimension thenumber of sectors of the economic system (F, S), dim(V(r)) = n.

Manara considers again the positive vector of sectorial wagesw := w ⋅L > o, giving
the total wagesW = ew > 0, and he computes

w := w ⋅ L = (F − S(1 + r))p > o. (6.186)

He observes that (6.186) “does not possess as a solution a price vector p which is
positive for any positive vector L > o of the quantity of labour absorbed by the
industries of the system” (inPasinetti (Ed.) [83], p. 7). For this reason, it is necessary
to postulate a further condition (in Pasinetti (Ed.) [83], p. 8) yielding a positive
price vector p ∈ V(r) for r ∈ Φ. We calculate the vector w (6.186) of sectorial
wages, and according to Manara we define V (r) as the image of V(r) as follows,

V (r) = {w | {w = (F − S(1 + r))p > o} ∧ p ∈ V(r)}. (6.187)

The intention is that the non-empty set V(r) ̸= 0 of the positive price vectors p
has to guarantee that the vectors of sectorial wages w = (F − S(1 + r))p > o are
positive! By construction the matrix F − S(1 + r) is regular and its inverse matrix
exists. For this reason one obtains the equivalence relation

w = (F − S(1 + r))p > o⇔ p = (F − S(1 + r))−1w > o, (6.188)

leading to the condition22:
– (UA4) (Positive vectors of sectorial wages associated with positive price vectors).

We formulate this condition as an inclusion, a binary relation leading to an equiv-
alence relation:

r ∈ Φ⇒ (p ∈ V(r) ∧w = J(r)p⇔ w ∈ V (r) ∧ p = J−1(r)w). (6.189)

We give now two illustrations of Manara’s conditions:

22 Manara originally formulated it as follows: r ∈ Φ⇒ w ∈ V (r).
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Example 6.6.1. Given a joint production system (S,F) of n = 2 sectors, a general rate
of profits r ≥ 0, a specific rate of profits r1 = 0.5, the wage rate w = 9, the vector of
labour L, Assumption 2.5.1 holds,

S = [ 1 1
1 1
] , F = [ 0 3

5 1
] , L = [ 2

3
] . (6.190)

Verify the Assumption 6.1.1, to Assumption 6.1.2 and the conditions UA1 to UA4. Set
up the square matrix J(r) = F − S(1 + r), defining a convex polyhedral cone,

V(r) = {y | J(r)y ≥ o ∧ y ∈ P}, (6.191)

and transform it into the weighted-sum description. Choose r1 = 0.5 and present the
conesV(0.5) andV (0.5)geometrically in Euclideanplanes. Determine thepolynomial
f (r) = det(J(r)), the intervalΦ (6.185) anddiscuss thepositivity of theprice vectorp > o
and of the sectorial wage vectorw > o. Compute themaximal profit rate R and discuss
the solvability of the price model (6.177).

Solution to Example 6.6.1:
We verify condition UA1, previously Assumption 6.1.1, computing d = (F − S)e =
[1, 4] > o.

We determine then the validity of condition UA2, choosing the vector p = [1, 2]

and compute the image

w = (F − S)p = [ −1 4
2 0
] [

1
2
] = [

7
2
] > o⇒ p ∈ V(0). (6.192)

We verify condition UA3, previously Assumption 6.1.2, computing det(F − S) = −8.
For any positive vectorp > o, we set up the convex polyhedral coneV (r) andmatrices
J(r), J−1(r),

w = J(r)p := (F − S(1 + r))p = ([ 0 5
3 1
] − (1 + r) [ 1 1

1 1
]) [

p1
p2
]

= [
−1 − r 4 − r
2 − r −r

] [
p1
p2
] = {
(−1 − r)p1 + (4 − r)p2 ≥ 0
(2 − r)p1 − rp2 ≥ 0

} ,

J(r) = [ −1 − r 4 − r
2 − r −r

] , J−1(r) = [
r

8−7r
4−r
8−7r

2−r
8−7r

1+r
8−7r

] ≥ o. (6.193)

We choose now r = 0.5 and evaluate (6.193) for this rate of profits, in order to set up
the convex polyhedral V (0.5),

J(0.5)p = [
− 32

7
2

3
2 −

1
2

][
p1
p2
] = {
(− 32 )p1 +

7
2p2 ≥ 0

3
2p1 −

1
2p2 ≥ 0

} , (6.194)

and determine the straight lines −1.5p1 +3.5p2 = 0 and 1.5p1 −0.5p2 = 0, and the point-
set surface of the convex polyhedral cone, onwhichwe determine the direction vectors
which are, υ1(0.5) = [3.5, 1.5] and υ2(0.5) = [0.5, 1.5], generators of the cone V(0.5),
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V(0.5) = {p | p = α1 [
3.5
1.5
] + α2 [

0.5
1.5
] | α1 ≥ 0, α2 ≥ 0} . (6.195)

We present now the convex polyhedral cone V (0.5), image of V(0.5). For this pur-
pose, we determine the images of the generators υ1(0.5) and υ2(0.5) of the convex cone
V(0.5), which arewk = J(0.5)υk, k = 1, 2,

w1 = [
− 32

7
2

3
2 −

1
2

][
7
2
3
2

] = [
0
9
2
] , w2 = [

− 32
7
2

3
2 −

1
2

][
1
2
3
2

] = [
9
2
0
] . (6.196)

We now have obtained the system of generators {w1,w2} of the convex polyhedral cone
V (0.5) = {w | w = β1w1 +β2w2 | β1 ≥ 0, β2 ≥ 0}. The corresponding convex polyhedral
cones V(0.5) and V (0.5) are represented in Fig. 6.11.

Figure 6.11: Convex polyhedral cones V(0.5) (left) and V (0.5) (right), Example 6.6.1.

We continue exploringwhether there are positive price vectors within the convex poly-
hedral cone V(0.5). We choose the vectors p1 = [4, 1] and p2 = [1, 1], calculating the
images w1 = J(0.5)p1 = [−2.5, 5.5] ∉ V (0.5) and w2 = J(0.5)p2 = [2, 1] ∈ V (0.5). We
recognise finally that p2 ∈ V(0.5) ̸= 0, whereas p1 ∉ V(0.5).

Then, we verify condition23 UA4, determining the polynomial f (r) and its roots,
which is of order 1 in this example, see Figure 6.12

f (r) = det(F − S(1 + r)) = −8 + 7r = 0⇒ r1 =
8
7
> 0. (6.197)

Moreover, in this example we have gross integrated industries, det(F) = −15. We
compute the input-output coefficients matrix C = F−1S. We consider the vector of
labour L in the price model (6.177) and tend to the limit L ⇒ o, L = 0, we obtain the
eigenvalue equation, where the rate of profits r has to be replaced by themaximal rate
of profits (productiveness) R.

23 One shows that when for n × nmatrices S, F, there is det(S) = 0, and then the degree of the poly-
nomial f (r) = det(F − (1 + r)S) is smaller than n.
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Figure 6.12: The polynomial f (r) (6.197).

Cp(1 + R) = p⇒ Cp = 1
15
[ 4 4
3 3 ]p = λCp, λC =

1
1 + R

(6.198)

The Frobenius number of the positive matrix C is λC = 7/15 and the maximal rate of
profits is R = 8/7 = r1 equal the zero of the polynomial f (r) (6.197). We have now the
interval Φ = [0, 87 [. The upper limit R = 8/7 is excluded, because condition (6.185)
requests the existence of the inverse matrix J−1, i. e., the regularity of J (6.197).

As for r ∈ Φ, we have det(J(r)) ̸= 0, and this means, dim(V(r)) = dim(V (r)) = 2,
seeNotation 6.6.1.We need now to show that for all r ∈ Φ the price vectors are positive,
p > o, and the vectors of sectorial wages are semi-positive, w > o. We go back to
the general convex polyhedral (6.193) to determine the vectors of prices and sectorial
wages. We have

J(r)p = [ −1 − r 4 − r
2 − r −r ] [

p1
p2
] = { (−1 − r)p1 + (4 − r)p2 ≥ 0(2 − r)p1 − rp2 ≥ 0

} , (6.199)

and determine the straight lines (−1 − r)p1 + (4 − r)p2 = 0 and (2 − r)p1 − rp2 = 0, the
convex polyhedral cone point-set surface, on which we determine the direction vectors
which are, υ1(r) = [4 − r, 1 + r] and υ2(r) = [r, 2 − r], generators of the cone V(r). To
get positive price vectors in the first quadrant of the Euclidian planeℝ2, the condition
between tangents of elevation angles of the vectors υ1(r) (α) and υ2(r) (β) must be
fulfilled.

tan(α) = 1 + r
4 − r
≤ tan(β) = 2 − r

r
. (6.200)

In the limit, inequality (6.200) leads to equation 1+r
4−r =

2−r
r or to r1 =

8
7 . This is the third

way to compute the Frobenius number of matrix C. We now compute the generators
of the convex polyhedral cone V (r), which are:wk = J(r)υk, k = 1, 2,

w1 = [
−1 − r 4 − r
2 − r −r ] [

4 − r
1 + r ] = [

0
8 − 7r ] ,

w2 = [
−1 − r 4 − r
2 − r −r ] [

r
2 − r ] = [

8 − 7r
0 ] . (6.201)
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Thus, we have the inclusion (6.189). As the inverse matrix J−1(r) ≥ o (6.193) is semi-
positive and the vector of labour L > o is assumed positive by Assumption 2.5.1, one
only has to consider positive vectors of sectorial wagesw = w ⋅ L > o,

r ∈ Φ⇒ (p ∈ V(r) ∧w = J(r)p > o⇔ w ∈ V (r) ∧ p = J−1(r)w > o). (6.202)

We recognize that for every r ∈ Φ = [0, 8/7[ the economic condition for positive price
vectors p and positive vectors of sectorial wages w means that these vectors are ele-
ments of the open cone sets: p ∈ V̇(r),w ∈ V̇ (r).

The cone V̇(r) of positive prices p > o is a subset of the first quadrant, and the
cone V̇ (r) of sectorial wages w > o is in this case equal to the open first quadrant
of the Euclidean plane. It is easy to verify that for all r > 8/7 neither V(r) nor V (r)
contain only positive vectors, and for this reason admissible rates of profits r are only
in Φ, r ∈ Φ. The reader may verify that for r = 8/7 there are no wages.

How do we get in this example positive price vectors p > o as a solution of the
price model (6.177) for joint production? It is easy! Taking the given wage rate w = 9,
we have to choose a rate of profits r ∈ Φ and a vector of sectorial wages w = w ⋅ L =
9 ⋅ [2, 3] = [18, 27] ∈ V̇ (r), and then compute p = J−1(r)w = [ 9(12−r)8−7r ,

9(7+r)
8−7r ]
 ∈ V̇(r)

which is positive. For r = 0.5, we obtain a positive price vector p = [23, 15] ∈ V̇(0.5). 

From Example 6.6.1, we learn that for joint production Sraffa systems of the type
of gross integrated industries, where there is a positive input-output coefficientsmatrix
C = SF−1 > 0, obtaining the Frobenius number λC > 0, we compute the productiveness
R = (1/λC) − 1 and conclude for the rate of profits: r ∈ Φ = [0,R[ (6.202).

Example 6.6.2. Consider for n = 3 sectors a system (S,F) of joint production with
matrices,

S = [
[

3 2 1
2 3 1
1 1 2

]

]
, F = [
[

6 1 0
0 6 1
1 0 6

]

]
. (6.203)

Show that we are in presence of gross integrated industries and compute the input-
output coefficients matrix. If it is positive, compute the Frobenius number λC and the
maximal rate of profits R.

Show that all the three conditions UA1 to UA3 of Manara are fulfilled.
Compute the polynomial f (r) = det(F − S(1 + r)) and its roots and present the

graph. Determine the set Φ (6.185).
Present the inequality description J(r)p ≥ 0 of the convex polyhedral cone V(r)

(6.182), evaluate J(0.1)p and compute the generating vectors of V(0.1).
Set up the convex polyhedral cone V(0.1) in weighted-sum description, and com-

pute its image V (0.1). Argue over the positivity of the vector of labourw ∈ V (0.1) and
the price vector p ∈ V(0.1) as solutions of the Sraffa price model (6.177).

Compute for r ∈ Φ the matrices J(r) and J(r)−1, compute the spanning vectors of
V(r) and V (r) and show that the Manara’s condition UA4 is fulfilled.
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Solution to Example 6.6.2:
We start computing det(F) = 217 and are therefore in presence of a system of gross
integrated industries. We further compute

F−1 = 1
217
[

[

36 −6 1
1 36 −6
−6 1 36

]

]
, C = SF−1 = 1

217
[

[

104 55 27
69 97 20
25 32 67

]

]
> 0. (6.204)

As matrix C is positive, we compute the Frobenius number, getting λC = 0.8056 and
the maximal rate of profits R = (1/0.8056) − 1 = 0.2413. Then, we verify step by step
Manara’s four conditions:

(1) We note that the vector of surplus d = (F − S)e = [1, 1, 3] > o is positive.
Therefore condition UA1 is fulfilled.

(2) We now present the general matrix J(r) to obtain the convex polyhedral cone
V(r) (6.182) for r ∈ ℝ+0, as well as the specific matrix J(0),

J(r) = (F − S(1 + r))

= [

[

3 − 3r −2 − 2r −r
−1 − 2r 3 − 3r −1 − r
−1 − r −r 4 − 2r

]

]
, J(0) = [

[

3 −2 0
−1 3 −1
−1 0 4

]

]
. (6.205)

We set up the inequality description J(0.1)p ≥ o of the convex polyhedral cone V(0.1),
obtaining

J(0.1)p = 1
10
[

[

27 −22 −1
−12 27 −11
−11 −1 38

]

]

[

[

p1
p2
p3
]

]
=
{
{
{

27p1 − 22p2 − p3 ≥ 0
−12p1 + 27p2 − 11p3 ≥ 0
−11p1 − p2 + 38p3 ≥ 0

}
}
}
. (6.206)

Choosing the price vector p̄ = [1, 1, 1], one evaluates w̄ = J(0)p̄ = [1, 1, 3] > o. For this
reason, there is p̄ ∈ V(0) ̸= 0, a non empty set. The condition UA2 is fulfilled.

(3) We continue, calculating

f (0) = det(F − S) = 26 ̸= 0, (6.207)

and conclude with Assumption 6.1.2 that we have the requested linear independence
of the processes.

We compute now the three vectors spanning the convex polyhedral cone V(0.1).
For this purpose, we now need normal vectors n1 = [27,−22,−1], n2 = [−12, 27,−11],
n3 = [−11,−1, 38] of the planes describing the three inequalities (6.206), computing
the following cross product, giving

υ1 = n2 × n3 = [
[

1,015
577
309
]

]
, υ2 = n3 × n1 = [

[

837
1,015
269
]

]
,

υ3 = n1 × n2 = [
[

269
309
465
]

]
. (6.208)
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Finally, we compute the image V (0.1) of the polyhedral cone V(0.1). For this purpose
we have to establish w1 = J(0.1)υ1 = [1,440.2,0,0], w2 = J(0.1)υ2 = [0, 1,440.2,0],
w3 = J(0.1)υ3 = [0,0, 1,440.2], giving an orthogonal basis of the convex polyhedral
cone V(0.1), which is in this case identical to the first octant of ℝ3.

V (0.1) =
{
{
{
w|w = α1 [

[

1
0
0
]

]
+ α2 [
[

0
1
0
]

]
+ α3 [
[

0
0
1
]

]
| α1 ≥ 0, α2 ≥ 0α3 ≥ 0

}
}
}
. (6.209)

As we consider the specific case r = 0.1 > 0, one can choose any semi-positive vector
w ≥ o, one always gets a positive price vector p = J(0.1)−1w ∈ V(0.1), which then is
a solution of the price model (6.177). Consider for example: p = [837, 1,015, 269] =
J(0.1)−1[0, 1,440.2,0]. We go on extending the domain of rates of profits to get the gen-
eral solution. For this purpose, we consider the polynomial,

f (r) = det(F − S(1 + r)) = 26 − 122r + 61r2 − 8r3. (6.210)

The polynomial f (r) is presented in Fig. 6.13. We compute its roots, take the minimal
positive root r1 = 0.2413 and see that it corresponds to the Frobenius number λC =
0.8056 = 1/(1 + R) = 1/(1 + 0.2413), determining the above defined set Φ = [0,0.2413[.
As for r ∈ Φ, we have f (r) > 0, so the cone spanned by a maximal number of linearly
independent vectors ofmatrix (F−S(1+r))hasdimensions equal to dim(V(r)) = n = 3.
Therefore V(r) ̸= 0 for every r for which f (r) ̸= 0. Moreover f (r) is continuous. This
means that the condition UA3 is fulfilled.

Figure 6.13: The polynomial f (r) (6.210).

(4) Consequently, we compute again thematrix J(r) and also its inverse J(r)−1, existing
for all r ∈ Φ,

J(r) = [
[

3 − 3r −2 − 2r −r
−1 − 2r 3 − 3r −1 − r
−1 − r −r 4 − 2r

]

]
,
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J(r)−1 = 1
f (r)
[

[

12 − 19r + 5r2 8 + 4r − 3r2 2 + 7r − r2
5 + 8r − 3r2 12 − 19r + 5r2 3 + r − r2
3 + r − r2 2 + 7r − r2 7 − 24r + 5r2

]

]
> 0, r ∈ Φ. (6.211)

It is moreover easy to show that all the numerators of the entries of matrix J(r)−1 are
positive for r ∈ Φ, because their roots lie outside the set Φ = [0,0.2413[. One also
verifies that the numerators and the denominator f (r) are all positive for r ∈ Φ, f (r) >
0. For this reason, the existing inverse matrix J(r)−1 > 0 is positive.

The rows of matrix J(r) are normal vectors to the 3 planes edging the convex poly-
hedral cone V(r). They are: n1 = [3 − 3r,−2 − 2r,−r], n2 = [−1 − 2r, 3 − 3r,−1 − r],
n3 = [−1 − r,−r, 4 − 2r]. We then calculate the cross vectors (6.208), υ1 = n2 × n3 =
[12− 19r+5r2, 5+8r−3r2, 3+ r− r2] υ2 = n3 ×n1 = [8+4r−3r2, 12− 19r+5r2, 2+7r− r2],
υ3 = n1 ×n2 = [2+7r− r2, 3+ r− r2, 7−24r+5r2], spanning the convex polyhedral cone
V(r). Having set f (r) = 26 − 122r + 61r2 − 8r3, we calculate w1 = J(r)υ1 = [f (r),0,0],
w2 = J(r)υ2 = [0, f (r),0], w3 = J(r)υ3 = [0,0, f (r)], spanning the convex polyhedral
cone V (r) (6.209), which is the whole first octant of ℝ3. We conclude that Manara’s
condition UA4 (6.189) is fulfilled,

r ∈ Φ⇒ (w = J(r)−1p ∈ V (r)⇔ p = J(r)w ∈ V(r)).  (6.212)

The techniques proposed in this section for vector spaces of dimension n= 2 and n= 3
can be extended to dimensions n> 3, applying the methods of analytical geometry of
the vector space Rn.

6.7 Accounting for land and natural resources
We start this section by taking Example 3.1.2, which we shall require later on in the
extended Example 6.7.2 including land. Consider the Garden of Eden economy with
the system of production for wheat, iron and pigs:

(240 qr. wheat, 12 t. iron, 18 pigs)→ (450 qr. wheat,0,0),
(90 qr. wheat, 6 t. iron, 12 pigs)→ (0, 21 t. iron,0),
(120 qr. wheat, 3 t. iron, 30 pigs)→ (0,0, 60 pigs). (6.213)

There is no surplus. Computing the input-output coefficientsmatrix C = Sq̂−1 (3.33), we
obtain the left eigenvector equation (3.34), pC = λp and the price vector p = [1, 10, 5]

for thisGarden of Eden economy, giving Sraffa’s (PCMC, Par. 2), here with wheat as the
numéraire. The Frobenius number is λC = 1. The production scheme (6.213) gives us
also the vector of total output qI = [450, 21, 60]. We compute the circulating capital
K = qIp = 960 which is evidently equal to total output X.

From now on, we develop Example 3.1.2 adding a surplus of production and a
labour force (measured inman-years). This gives

Example 6.7.1. Extend the system of production (6.213) to an economy producing sur-
plus,
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(240 qr. wheat, 12 t. iron, 18 pigs, L1 = 84)→ (600 qr. wheat,0,0),
(90 qr. wheat, 6 t. iron, 12 pigs, L2 = 42)→ (0, 30 t. iron,0),
(120 qr. wheat, 3 t. iron, 30 pigs, L3 = 42)→ (0,0, 90 pigs). (6.214)

Then consider the three cases:
(a) Extreme case: “exploitation of labour economy”, where all the surplus goes to the

entrepreneurs and no wages are paid to the workers, the wage rate is w = 0.
(b) Extreme case: “domination of labour economy”, where all the surplus goes to the

workers and no profit is paid to the entrepreneurs, the rate of profits is r = 0.
(c) A Sraffa-type case of “uniform distributive economy”, all the workers have the

same wage rate w > 0 and all the entrepreneurs have the same rate of profits
r = 0.10.

Set up the single-product Sraffa system (4.174) with the numérairewheat and calculate
the price vector p = [p1 = 1, p2, p3], and calculate the total output X, the circulating
capital K, the national income Y , the total profit P, the total wagesW , the share of total
profits ̃r and the share of total wages w̃ (4.175).

Solution to Example 6.7.1:
We reproduce the Sraffa price model (4.174)

Sp(1 + r) + Lw = q̂p,
Y = (q − (Se))p =: dp,
L = eL,

w = w̃ ⋅ Y
L
,

(6.215)

and the definitions of the various economic variables (4.175)

X = qp, K = (Se)p,
P = (Se)p ⋅ r = K ⋅ r, W = Y − P,

w = w̃ ⋅ Y
L
, ̃r = P

Y
. (6.216)

At first, we have to identify the matrices and vectors

S = [[
[

240 90 120
12 6 3
18 12 30

]]

]

, q = [[
[

600
30
90

]]

]

, L = [[
[

84
42
42

]]

]

. (6.217)

(a) As the wage rate disappears, w = 0, the Sraffa price equation (6.215) becomes the
eigenvalue equation Cp(1 + R) = p. Therefore, we have to compute the matrices

q̂−1 =
[[[

[

1
600 0 0

0 1
30 0

0 0 1
90

]]]

]

, C = Sq̂−1 =
[[[

[

2
5 3 4

3
1
50

1
5

1
30

3
100

2
5

1
3

]]]

]

. (6.218)
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Then, we calculate the vector of prices p, using the left eigenvector of matrix C with
p1 = 1. We get p = [1, 9.203, 4.314]. Then, for this “exploitation of labour economy”,
we calculate total output X = 1,264.38, the circulating capital K = 902.12, and national
income Y = 362.26which is equal to total profits P = 362.26 because there are nowages
W = 0, only subsistence wages incorporated in the process of production. Clearly,
̃r = 1, w̃ = 0.

(b) As the rate of profits disappears, r = 0, the Sraffa price equations (6.215) be-
come

Sp + Lw = q̂p,
Y = (q − (Se))p,
L = eL,

w = w̃ ⋅ L
L
. (6.219)

With p1 = 1, we calculate the vector of prices p = [1, 9.394, 3.939]. Then we calculate
for this “domination of labour economy” the total output X = 1,236.36, the circulating
capital K = 883.64, and the national income Y = 352.73 which is equal to total wages
W = 352.73 because there is no profit P = 0. Clearly, ̃r = 0, w̃ = 1.

(c) Finally, we set r = 0.1 for the rate of profits and solve the Sraffa price equations
(6.215), again with p1 = 1. We calculate the vector of prices p = [1, 9.343, 4.024]. Then
we calculate for this “uniform distributive economy” total output X = 1,242.39, the
circulating capital K = 887.60, the national income Y = 354.79, the total profits P =
88.76, the total wages W = 266.03, the wage share of total income w̃ = 0.7498 and the
profit share of total income ̃r = 0.2502.

We observe that the variations in prices are very small between these three
regimes. 

Weare at present ready to introduce the use of land and natural resources, (PCMC,
Chap. XI). The two must be distinguished: natural resources such as sunlight, water,
minerals, crude oil and natural rubber (latex), must be exploited and conditioned to
become commodities entering into the means of production. As is obvious from the
few foregoing examples, some of these natural resources require land acting as the
carrier for the exploitation.

Now in PCMC, Par. 85, Sraffa writes:

“Natural resources which are used in production, such as land and mineral deposits, and which
being in short supply enable their owners to obtain a rent, can be said to occupy among means of
production a position equivalent to that of “non-basics” among products. Being employed in pro-
duction, but not themselves produced, they are the converse of commodities which, although pro-
duced, are not used in production. They are in fact already included under the wider definition of
non-basics given in Par 60.”

and adds a few lines later:
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“…(natural resources) only appear on one side of the production process.”

This apodeictic statement calls for a caveat lecture: the situation is far more subtle
than implied by Sraffa and depends in particular on how land and natural resources
are incorporated in the price model of a system of production.

Let us first consider land. Every productive entity is situated in one way or an-
other on a land site that is attached to it, just as a labour force24 is attached to each
productive entity, as already mentioned earlier in this text.

Either
(a) the land is owned by the productive entity and is part of its fixed capital (not ad-

dressed in this text), or
(b) the productive entity has obtained a concession to exploit the land and pays a

royalty to the landowner (terms defined case by case), or
(c) the land is rented and a rent is paid by the productive entity to the landowner.

In cases (b) and (c), the rents or royalties are then explicitly accounted for in the
price equations on the left-hand side of the price equations, like wages paid. Land
accounted for in this manner then does not have the status of a commodity, just as the
labour force is not a commodity. Here, to be specific, we follow the approach (c).

However this does not preclude land from being considered as a commodity in
certain processes. For example, a landowner of fallow land will invest in it, and then
offer equipped land as a commodity for real-estate building purposes, or sell forest
land to the lumber industry.

Sraffa considers in PCMC (Par. 86) a specific system of joint production of n pro-
cesses and n commodities where there is a single-product agricultural industry pro-
ducing “corn” on arable land. We will now develop the production scheme (6.1), cor-
responding to this economy, and we assume that the agricultural industry is labeled
as the first industry j = 1. We further assume that this industry does not produce any
other commodities. This gives for the agricultural industry j = 1 a production scheme
with a total “corn” production, i = 1, as output f11,

(s11, s21, s31, . . . , sn1, L1)→ (f11,0,0, . . . ,0). (6.220)

We then explicitly assume that the other remaining industries j ∈ {2, . . . , n} produce
the remaining n − 1 commodities i ∈ {2, . . . , n} but not “corn”. Therefore, the resulting
production scheme has 0 elements in the first column of F and looks as follows,

24 In present-day parlance, one speaks of human resources. This term is not harmless, one step fur-
ther in ultra-liberal economic theory, and human resources, for which there is a market with demand
and supply, and a price (wages), become a commodity. A commodity which in the future will be re-
placed by another commodity, robots, in many economic sectors.
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(s12, s22, s32, . . . , sn2, L2)→ (0, f22, f32, . . . , fn2),
(s13, s23, s33, . . . , sn3, L3)→ (0, f23, f33, . . . , fn3),
(. . . , . . . , . . . , . . . , . . . , . . .)→ (0, . . . , . . . , . . . , . . .),
(s1n, s2n, s3n, . . . , snn, Ln)→ (0, f2n, f3n, . . . , fnn). (6.221)

Ricardo analysed the question of the land rent, and considered an economic situation
where the production of “corn”, commodity i = 1, had to be increased and new land be
explored. He considered that the profitability of the new land is lower than that of the
old land and that the new land neededmore labour. Sraffa took up Ricardo’s idea and
considered that the initial “corn” industry is developed inm agricultural sectors, each
sector working on different qualities and quantities of land. As there is an extension
of the initial single agricultural industry, it is assumed that them new sectors together
produce a greater amount of “corn” than the initial agricultural industry (6.220). Thus,
each of the m sectors produces “corn” on a area of Gk, k = 1, . . . ,m, acres of arable
land. The input quantities si1 are replaced by m non-negative parts uik ≥ 0, as also
the output quantity f11 by m υ1k ≥ 0 and the total labour L1 of the initial agricultural
industry j = 1 by m lk ≥ 0. According to the problem set by Ricardo, we obtain the
inequalities ∑mk=1 uik ≥ si1, i = 1, . . . , n for the inputs, the inequalities ∑

m
k=1 υ1k ≥ f11 for

the output and the inequality∑mk=1 lk ≥ L1 for the total labour. Them sector-subsystem
thus obtained presents itself now as follows.25 The areas of arable land Gk are newly
introduced in the production scheme:

(u11, u21, u31, . . . , un1, l1, G1)→ (υ11, 0, 0, 0, 0),
(. . . , . . . , . . . , . . . , . . . , . . . , . . . . . .)→ (. . . , 0, 0, 0, 0),
(u1m, u2m, u3m, . . . , umn, lm, Gm)→ (υ1m, 0, 0, 0, 0). (6.222)

On the basis of the present production scheme constituted by multi-product indus-
tries26 (6.221) and the set of single-product industry sectors (6.222),we are able to define
the elements of production of this specific production process. On the right side, there
is a (m + n − 1) × nmatrix reflecting the fact that the price of “corn” is the same for all
m agricultural sectors:

(u11, u21, u31, . . . , un1, l1, G1)→ (υ11, 0, 0, 0, 0),
(. . . , . . . , . . . , . . . , . . . , . . . , . . .)→ (. . . , 0, 0, 0, 0),
(u1m, u2m, u3m, . . . , umn, lm, Gm)→ (υ1m, 0, 0, 0, 0),
(s12, s22, s32, . . . , sn2, L2, 0)→ (0, f22, f32, . . . , fn2),
(s13, s23, s33, . . . , sn3, L3, 0)→ (0, f23, f33, . . . , fn3),
(. . . , . . . , . . . , . . . , . . . , . . . , 0)→ (0, . . . , . . . , . . . , . . .),
(s1n, s2n, s3n, . . . , snn, Ln, 0)→ (0, f2n, f3n, . . . , fnn). (6.223)

25 Further investigations on this topic are treated by Kurz and Salvadori ([52], Chap. 10).
26 The terms joint production and multi-product industries are used synonymously by F. Duchin and
A. E. Stenge [23].
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We can identify following matrices:
– U = Un×m = (uij) is the commodity flow n ×m submatrix limited to the agricultural

sectors, the extension of the initial agricultural industry j = 1;
– S = Sn×(n−1) = (sij), i = 1, . . . , n, is the technological n × (n − 1) submatrix of the

initial commodity flow n × nmatrix S, containing the n − 1 industries j j = 2, . . . , n;
– l = lm×1 = [l1, l2, . . . , lm] is the labour vector attached to each of them agricultural

sectors (6.222). lk is the labour needed to work for agricultural activities on land k,
k = 1, . . . ,m;

– L = L(n−1)×1 = [L2, L3, . . . , Ln]
 is the vector of labour attached to the n−1 remaining

industries j, j = 2, . . . , n (6.221);
– G = G(m+n−1)×1 = [G1,G2, . . . ,Gm,0,0, . . . ,0] is the vector of m productive lands

based on an appropriate surface measure, such as m2 or acres, attached to each
agricultural sector k, k = 1, . . .m, extended with 0 to a n + m − 1 vector. Then we
define the corresponding diagonal matrix Ĝ = diag(G) (A.17);

– in each agricultural sector k, the landowner gets a land rent, Rk = Gkρk, where
ρk expresses the land-based profit rate per m2 or acres, k = 1, . . . ,m. Without lim-
itation of generality, we assume that the rents Rk are arranged in descending or-
der. According to the concept and assumption of Sraffa, the land of lowest arable
quality gives no profit. The corresponding land-based profit (land rent) vanishes,
ρm = 0.
The vector of land based profit rates is

ρ = ρ(n+m−1)×1 = [ρ1, ρ2, . . . , ρm−1,0,0, . . . ,0]
;

– then, we define the n ×m output matrix of the m agricultural sectors, the output
coefficients matrix V, and the n × (n − 1) output matrix of the n − 1 initial industry
sectors, the output coefficients matrix F,

V =

[[[[[[[[[

[

υ11 υ12 . . . υ1m
0 0 0 0
0 0 0 0
. . . . . . . . . . . .

0 0 0 0

]]]]]]]]]

]

; F =

[[[[[[[[[

[

0 0 0 0
f22 f23 . . . f2n
f32 f33 . . . f3n
. . . . . . . . . . . .

fn2 fn3 . . . fnn

]]]]]]]]]

]

; (6.224)

– w is the wage per unit of labour;
– r is the uniform rate of profits defined by the global system of production in which

the subsystem is imbedded;
– with all these items, pC = p1 is the price of the numéraire corn, we calculate the

n × 1 price vector: p = [pC , p2, . . . , pn], the vector of n prices of the n commodi-
ties. The price pC of corn is assumed the same for everyone of the m considered
agricultural sectors.
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The production scheme (6.223) can now be written with the just-defined matrices and
vectors as follows:

([
U

S
] , [

l
L
] , Ĝ)→ ([ V



F
]) . (6.225)

Now,we establish the Sraffa pricemodel in analogy to (6.48).We adapt the calculation
of the national income Y by including land revenue. We have to add the total land
rent RL = ∑

m
k=1 Rk . This total land rent is the summed up product of amounts of acres

multiplied by the land-based profit rate per acre,RL = e(Ĝρ).We also include the total
labour L, necessary to calculate the wage rate w = w̃⋅Y

L (4.175),

[
U

S
]p(1 + r)+ [ l

L
]
w̃ ⋅ Y
L
+ Ĝρ = [ V



F
]p,

Y = e [ V
 − U

F − S
]p,

L = e [ l
L
] .

(6.226)

Having obtained the prices, we then have to adapt the expressions to calculate total
output X, the circulating capital K, total profits P, total wagesW and the wage rate w
of the system, as in equation (6.49). We get:

X = (e [ V


F
])p, K = (e [ U



S
])p, RL = e

(Ĝρ),

P = (e [ U


S
])p ⋅ r = K ⋅ r, W = (e [ l

L
]) ⋅ w,

w = w̃ ⋅ Y
L
, Y = X − K = P +W + RL. (6.227)

As has been mentioned, Sraffa sets arbitrarily the land-based profit rate of the least
productive land number m equal to zero, ρm = 0. The other k − 1 land rents must be
strictly positive. This just indicates that the landowner of the least productive land
receives no rent, but the entrepreneur exploiting this land, employing labour andma-
chinery, can still make a profit at the common rate r.

Some of the components of the price vector pmay be negative in the present con-
text of joint production.

A further assumption is that them agricultural sectors of land of different quality
all produce “corn” at the same price pC. This additional assumption is expressed on
the right side of equation (6.226) by the product Vp.

Let us now count the number of variables that have to be calculated in the equa-
tions (6.226). There are the n prices pC, p2, …,pn of price vector p, the rate of profits r,

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



318 | 6 A new look at joint production analysis

them− 1 land profit rates ρ1, ρ2, . . . , ρm−1, the national income Y and the total labour L.
This gives n + m + 2 unknown variables in a system of n + m + 1 equations. If all the
equations are linearly independent, then we have to determine exogenously one of
the variables.

Here, the rate of profits r0 = r is exogenously determined.
We now illustrate this land rent system starting from Example 6.7.1.
We follow the approach of Ricardo and Sraffa. In a first step, we replace the agri-

cultural industry by m = 2 agricultural sectors, such that both sectors need the same
amounts of commodities as means of production and produce together the same
amount of wheat as the initial agricultural industry. The first sector farms G1 = 3,000
acres of land with a quantity of labour of l1 = 56 man-year; the second sector farms
G2 = 1,000 acres of new arable land of lower quality with a quantity of labour of
l2 = 28man-years. The second and the third industries remain unchanged. The capac-
ity of the entire economy remains unchanged. This leads us to

Example 6.7.2. Without specifying theunits of thequantity of labour andof the arable
land in the present production scheme:

(140, 7, 10, l1 = 56,G1 = 3,000,0,0,0)→ (400,0,0),
(100, 5, 8, l2 = 28,0,G2 = 1,000,0,0)→ (200,0,0),

(90, 6, 12, L2 = 42,0,0,0,0)→ (0, 30,0),
(120, 3, 30, L3 = 42,0,0,0,0)→ (0,0, 90). (6.228)

– The profit rate is r = 0.1. The prices of both “corn” qualities are equal, pC = pC1 =
pC2 .

– The land profit rate (land rent of the second agricultural sector) is G2p2 = 0, in
accordance with the views of Ricardo and Sraffa on this point.

Set up the single product Sraffa system (6.226) with the numérairewheat and calculate
the price vector p = [pC = 1, p2, p3], the total output X, the circulating capital K, the
national income Y , the total profits P, the total wages W , the total land rent RL, the
share of total profits ̃r, the share of total wages w̃ (6.227) and the wage rate w.

Solution to Example 6.7.2:
We start by identifying the matrices of the system (6.228)

U = [[
[

140 100
7 5
10 8

]]

]

, S = [[
[

90 120
6 3
12 30

]]

]

, V = [[
[

400 200
0 0
0 0

]]

]

,

F = [[
[

0 0
30 0
0 90

]]

]

, l = [ 56
28
] , L = [ 42

42
] , G =

[[[[

[

3,000
1,000
0
0

]]]]

]

. (6.229)

With r = 0.1 and pC = 1 we solve the Sraffa price equations (6.226),
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[[[[[

[

140 7 10
100 5 8
90 6 12
120 3 30

]]]]]

]

[[

[

pC
p2
p3

]]

]

(1 + r) + w̃ ⋅ Y
L

[[[[[

[

56
28
42
42

]]]]]

]

+
[[[[[

[

3,000 0 0 0
0 1,000 0 0
0 0 0 0
0 0 0 0

]]]]]

]

[[[[[

[

ρ1
ρ2
0
0

]]]]]

]

=
[[[[[

[

400 0 0
200 0 0
0 30 0
0 0 90

]]]]]

]

[[

[

pC
p2
p3

]]

]

,

Y = [1, 1, 1, 1]
[[[[[

[

260 −7 −10
100 −5 −8
−90 24 −12
−120 −3 60

]]]]]

]

[[

[

pC
p2
p3

]]

]

,

L = [1, 1, 1, 1] ⋅ [56, 28, 42, 42] = 168.

(6.230)

We obtain the vector of prices p = [1, 7.39, 3.28] and the land-based profit rates ρ =
[0.03735,0,0,0]. Then, we calculate for the present “uniform distributive economy”
with a split-up agricultural industry the total output X = 1,117.19, the circulating capital
K = 802.19, the national income Y = 315.00, the total profits P = 80.22, the total wages
W = 122.73, the total land rent RL = 112.06, the wage share of total income w̃ = 0.3896,
the profit share of total income ̃r = 0.2547, the rent share to total income ̃s = 0.3557,
verifying the sum ̃r + w̃ + ̃s = 1, and finally the wage rate w = 0.7305.

The total surplus is nowdistributed (see Bortis ([8], p. 144) or Lipsey ([58], p. 494)).
The national income Y = P +W + RL = 80.22 + 122.73 + 112.06 = 315.00 is distributed
as indicated in the proceeding explanations. 

We now proceed to analyse how a variation of the arable area acts on the prices
and the various economic variables. For this purpose, we take Example 6.7.2 and dou-
ble the capacity of the second agricultural sector of arable land of lower quality.

Example 6.7.3. Consider the production scheme (6.228) and replace the second agri-
cultural sector by:

(200, 10, 16, l2 = 56,G2 = 2,000)→ (400,0,0) (6.231)

The rate of profits remains r = 0.1. The prices of both “corn” qualities are equal, pC =
pC1 = pC2 .

Set up the single-product Sraffa system (6.226) with the numérairewheat and cal-
culate the price vector p = [pC = 1, p2, p3], the total output X, the circulating capital K,
the national income Y , the total profit P, the total wages W , the total land rent RL, the
share of total profits ̃r, the share of total wages w̃ (6.227) and finally the wage rate w.
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Solution to Example 6.7.3:
We have to identify the modified matrices of the system (6.228), getting

U = [[
[

140 200
7 10
10 16

]]

]

, V = [[
[

400 400
0 0
0 0

]]

]

, [
l
L
] =
[[[[

[

56
56
42
42

]]]]

]

, G =
[[[[

[

3,000
2,000
0
0

]]]]

]

.

(6.232)

We set for the rate of profits r = 0.1 and solve the Sraffa price equations (6.226) with
pC = 1, because wheat remains the numéraire. We obtain the vector of positive prices
p = [1, 7.39, 3.28] and the land-based profit rates ρ = [0.03735,0,0,0]. Then, we cal-
culate for this “uniform distributive economy” with a split-up agricultural industry
the total output X = 1,317.19, the circulating capital K = 965.41, the national income
Y = 351.78, the total profits P = 96.54, the total wages W = 143.18, the total land rent
RL = 112.06, thewage share of total income w̃ = 0.4070, the profit share of total income
̃r = 0.2744, the rent share to total income ̃s = 0.3186, verifying ̃r + w̃ + ̃s = 1, and the
wage of profit w = 0.7305.

As before, the total surplus is now distributed between three players.27 The work-
ers and entrepreneurs having foregone a potential further participation in surplus to
the advantage of the landowner, and this will accordingly also appear in the national
accounts for the whole economy, i. e., in addition to profits and wages, (land) rents
enter the national accounts. 

We now analyse the evolution of the (relative) prices and the economic processes
issuing from Example 6.7.1 to 6.7.3.

Interpreting the results summarised in Table 6.2, taking into account that wheat
is the numéraire and therefore the variables are measured in one unit of wheat, we
observe:

Table 6.2: Comparison of the calculated examples (rounded numbers).

Examples Relative prices Economic variables
wheat iron pigs X K Y P W RL

3.1.2 1 10 5 960 960 0 0 0 0
6.7.1(a) 1 9.20 4.31 1,264 902 362 362 0 0
6.7.1(b) 1 9.39 3.40 1,236 884 353 0 353 0
6.7.1(c) 1 9.34 4.02 1,242 888 355 89 266 0
6.7.2 1 7.39 3.28 1,117 802 315 80 123 112
6.7.3 1 7.39 3.28 1,317 965 352 97 143 112

27 This example nicely illustrates the “Three Rents” process in an agricultural economy, first de-
scribed by Richard Cantillon (1680–1734) in the early 18th century, see Murphy ([67], Chap. 4).
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(a) The introduction of land rents and different qualities of land makes the price of
wheat increase with respect to iron and pigs. On the other hand, one needs more
wheat in Examples 6.7.1 (a), (b) (c), Example 6.7.2 and Example 6.7.3 than in the
preceding Example 3.1.2, represented by the system of production (6.213).

(b) In Example 6.7.3 we just have doubled the capacity of the agricultural sector 2,
compared to Example 6.7.3. This did not alter the structure of agricultural sector 2.
Therefore the relative prices remained unchanged, as well as the land rent RL is-
sued form the agricultural sector 1.
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7 Sraffa’s theory of joint production as a tool in
ecological economics

7.1 Introduction
Up to now, we have abundantly treated single-product industries and joint production
processes and have developed algebraic and graphical methods of analysis. We come
back to this important characterisation of production processes and will apply the
model of joint production processes to ecological economics.1

Sraffa’s book PCMCwas written at a time when ecological problems received little
attention. But in 1983, when the ecological crisis had become evident, Schefold ([102],
p. 323) proposed to apply Sraffa’s theory of joint production. He evokes here the ques-
tion of the “stability of the world climate” that can be increased if the carbon dioxide
(CO2) in Earth’s atmosphere can be reduced. For this reason, the use of fossil fuels
must be reduced. This implies: (1). Enhancement of the energy production efficiency
(like compound gas-steam power stations), (2). The use of natural gas and wind en-
ergy, (3). Electro drives for transportation. In fact, Schefold says ([103], p. 30): “This is
‘the problem of environment’, but it is also ‘the problem of joint production’. Whereas all
materials are recycled in the biosphere, so that the excretions of one species are food to
others, human production results in both goods to be sold as commodities and wastes”.

Section 7.6 to 7.5 of the present chapter are specifically devoted to this subject. But
before proceeding, we will begin with four sections concerning fundamental techni-
cal aspects, some of them already addressed in previous chapters, which repeatedly
appear when analysing ecological and related topics.

7.2 From Sraffa to ecological economics: technical preliminaries
We shall illustrate this by looking at Sraffa’s approach: He considers (PCMC, Par. 58) a
system of n processes and a group ofm = 3 commodities (n > m), labelled i ∈ {1, . . . , 3}.
For each process, he arranges the “quantities in which these commodities enter any
one process, as means of production, and as products, in a row.” He thus obtains the
following matrix with n rows and 2m = 6 columns

[ S F ] = [[[
[

s11 s21 s31 f11 f21 f31
s12 s22 s32 f12 f22 f32
. . . . . . . . . . . . . . . . . .
s1n s2n s3n f1n f2n f3n

]]]

]

. (7.1)

Then, if basic and non-basic commodities are present, Definition 6.3.1 can be applied
to determine the numberm, (1 ≤ m ≤ n − 1) of non-basics.

1 This chapter with the examples is principally due to H. Knolle.

https://doi.org/10.1515/9783110635096-007
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Example 7.2.1. As an illustration of this definition for the case n = 3, m = 1, let us
consider the following example, an extension of the wheat–iron model (4.1) with the
breeding of race horses added to the production of wheat and iron:

(S,0)→ (F),
(280 qr. wheat, 12 t. iron,0)→ (575 qr. wheat,0,0),

(120 qr. wheat, 8 t. iron,0)→ (0, 20 t. iron,0),

(175 qr. wheat,0, 9 horses)→ (0,0, 10 horses). (7.2)

Solution to Example 7.2.1:
In order to decide whether horses are basic or non-basic,we have to computematrices
S2 and F2 (6.56) as well as the rank of the following matrix:

rank ([ S2 F2 ]) = rank([[
[

0 0
0 0
9 10

]]

]

) = 1 = m. (7.3)

So, horses2 are non-basic. We confirm this statement with the calculation of the
Pasinetti matrix, see also Lemma 6.3.1,

H = (F − S)−1S = [[[[
[

16
7

4
35 0

230
7

38
21 0

575 20 9

]]]]

]

= [
H11 0
H21 H22

] . (7.4)

Indeed, we have found the 2 × 1 zero matrix H12 = [0,0], wherein the number m = 1
of columns is the number of non-basics. 

In this chapter, we assume linear independence of the n production processes,
det(F − S) ̸= 0, and in some cases also to be in presence of gross integrated industries
(6.8), det(F) ̸= 0, see Proposition 6.2.1. As we have here linear independence, one can
transform the Sraffa price model of joint production with labour and without profits
(6.138) as follows:

2 The inclusion of racehorses, a non-basic luxury product mentioned in PCMC, may seem somewhat
out of place here. In fact, they could be replaced by the semi-aquatic rodent nutria, or coypus (French:
ragondin; German: Wasserratte). This animal used to be in high demand because of its fur being in-
cluded in fashion wear. In the early 1930s, nutrias were imported from Argentina, in particular to the
USA, for breading purposes to cover increasing demand for this fur. By the end of the 1930s and early
1940s, the fashion faded and demand for nutria fur decreased sharply. Various breeders let loose
their stocks of this rodent. With a very high reproduction rate, nutrias proliferated out of control in
some southeastern parts of the USA, becoming actually a very acute ecological problem, especially
in Louisiana, wreaking havoc in wetlands and road networks due to their herbivorous feeding habits
and extensive burrowing activities.
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u = [u1, . . . , un]
 := p

w
= (F − S)−1L. (7.5)

The vector u is called the vector of labour values (see Schefold [103], p. 75).3

Consider the inversematrix (hij) = (F−S)−1.We then constitute the n vectorshi⋅ =
ei(F−S)−1, using the unit vectors ei, i ∈ {1, . . . , n}, SectionA.2, point (2), one vector for
every commodity i. The coefficients hij represent the values per unit of labour allotted
by commodity i to each commodity j, j ∈ {1, . . . ., n} during the production process,
leading to the labour value ui. Thus the quadratic form

ui = ei(F
 − S)−1L = n

∑
j=1 hij ⋅ Lj = hi⋅L (7.6)

is a scalar product, summing up the contributions hij ⋅ Lj, resulting in the labour value
ui of commodity i.

Definition 7.2.1. (waste good) The commodity i is called a waste good, if at least one
of the components of the corresponding row vector hi⋅ = ei(F − S)−1 is negative. It is
used with the vector of labour L to compute its labour value ui = hi⋅L.

In this connection one should distinguish between
– waste as such that it must be eliminated, e. g., nuclear wastes;
– recycledwaste that enters as a commodity into themeans of production of certain

industries, e. g., paper, certain plastics, aluminium cans, etc. The classic example
is (or was) dung used as fertilizer in agriculture.

Example 7.2.2. Consider Example 6.5.4. We suppose a given vector of labour L =
[100, 200, 300, 100], a wage rate w = 593/100. Determine the waste goods of this
economy and the vector u of labour values.

Solution to Example 7.2.2:
We present the commodity flowmatrix S and the outputmatrix F (6.164) of the present
economy

S =
[[[[[

[

20 10 30 40
0 0 0 0
50 50 10 40
30 60 10 50

]]]]]

]

, F =
[[[[[

[

100 200 100 50
150 0 0 0
200 0 0 0
100 150 200 100

]]]]]

]

, (7.7)

3 The vector of labour values u is a mathematical expression belonging to a much wider concept of
labour theory of value (LTV). The notion value is used by earlier liberal economists such as Adam Smith
and David Ricardo. The earlier liberal economists argued that the economic value of a good or service
is determined by the total amount of socially necessary labour required to produce it. The vector of
labour valuesu here defined is away to express this value in the framework of Sraffa’s joint production
economies.
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and then compute

F − S=[[[[
[

80 150 150 70
190 0 −50 90
70 0 −10 190
10 0 −40 50

]]]]

]

,

(F − S)−1 = [[[[[[[
[

0 71
11,860 −11

11,860 −43
5,930

1
150

−139
177,900 −1,699

177,900 841
29,650

0 −4
2,965 43

5,930 −149
5,930

0 −27
11,860 71

11,860 −4
2,965
]]]]]]]

]

. (7.8)

We recognise that all the commodities are waste goods, as every row of the matrix
(F−S)−1 has at least onenegative componenent.We then compute the vector of labour
values, taking the wage rate w = 593/100,

u = 1
w
(F − S)−1L = 100

593
(F − S)−1 [[[[

[

100
200
300
100

]]]]

]

=

[[[[[[[

[

115
593
857
1,779
− 360593
875
593

]]]]]]]

]

, (7.9)

where positivity of the labour value are not guaranteed because matrix (F − S)−1 is
not semi-positive. We see with (7.9) thatwaste goods can induce negative labour values
and therefore negative prices with p = w ⋅ u = [ 2320 ,

857
300 ,−

18
5 ,

35
4 ]
. 

Itmakes sense to study the economics of release and abatement or recycling of un-
desired by-products within the framework of a theory of joint production. So, far from
finding Sraffa’s development (PCMC, Chapter VII) on joint production “too abstract”,
see Definition 6.3.1, we are going to apply it to very concrete problems. For example,
wewill extend Sraffa’swheat–ironmodel to include the recycling of scrap, andwewill
consider an alternative CO2-emissions trading scheme.

As we know, the theory of joint production becomes difficult because new prob-
lems arise:
(a) negative prices may occur;
(b) basics and non-basics must be defined in another way than in the case of single

product industries, as explained by Sraffa (PCMC, Par. 60) and in the present text
by Definition 6.3.1.

In Section 4.4, we presented Sraffa’s (PCMC, Par. 6) definition of basic and non-basic
products for single-product industries.

Non-basic products are the generalisation of what AdamSmith andDavid Ricardo
called luxuries. A classic example is gold. This case is illustrated by an extension of
Sraffa’s wheat–iron model (PCMC, Par. 7), see Example 4.4.3.
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We cite here again Sraffa’s abstract definition of basics and non-basics for the case
of joint production:

“In a system of n productive processes and n commodities (no matter whether produced singly or
jointly) we say that a commodity or more generally a group of m linked commodities (where mmust
be smaller than n andmay be equal to 1) are non-basic if of the n rows (formed by the 2mquantities
inwhich they appear in each process) notmore thanm rowsare independent, the others being linear
combinations of these.”

Inspired by Schefold ([103], p. 58), we have reformulated this definition in Proposi-
tion 6.3.1 as amatrix rank criterion for non-basic systems (S,F).

It is not easy to understand why Sraffa’s definition (PCMC, Par 60) of basics and
non-basics in joint production is a generalisation of Sraffa’s definition (Sraffa, Par. 6)
for the corresponding notion for single-product industries. We will therefore proceed
step by step following the developments presented by Pasinetti [83], Steedman [114]
and especially Schefold [103].

7.3 Two commodities and two industries

The comparison of parallel industries using and producing the same commodities has
its importance in ecological economics because such industries, differing in themeth-
ods of production, may produce differing pollution rates and may thus incur different
penalties.

In this section, we consider an economy generating a surplus with two processes
of different technologies, each of which produces jointly two commodities A and B.
Sraffa explains why it is not unreasonable to assume the availability of two different
methods of production, capable of being employed side by side. Against the possible
objection that the less productive method would not be employed at all, he argues:
“No such condition as to equal productiveness is implied, nor would it have a definite
meaning before the prices were determined; and, with different proportions of products,
a set of prices can generally be found at which different methods are equally profitable”
(PCMC,Par. 50). Inwhat follows, itwill be shown that oneof thepricesmaybenegative
(Example 7.7.1 below).

In Schefold’s terminology [103] the production scheme is presented as follows
with the labour vector L = [L1, L2] in scalar or matrix form,

process 1 (s11, s12, L1)→ (f11, f12),

process 2 (s21, s22, L2)→ (f21, f22),

(S,L)→ (F). (7.10)
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If we define the semi-positivematrices,

S = [ s11 s12
s21 s22

] and F = [ f11 f12
f21 f22

] , (7.11)

then the positive, maximal rate of profits R > 0, and the pertinent price vector p
satisfy the price system (1 + R)Sp = Fp. Then, we assume gross integrated indus-
tries, i. e., rank(F) = 2, (6.8). Therefore, the transposed input-output coefficientsmatrix
CT = F−1S must be calculated. We obtain,

det(F)CT = det(F)F−1S = [ s11f22 − s12f21 s21f22 − f21s22
s12f11 − s11f22 s22f11 − s21f12

] . (7.12)

A more practical way of calculating this matrix works as follows. Define the rectangu-
lar matrix,

M = [ S F ] = [ s11 s21 f11 f21
s12 s22 f12 f22

] . (7.13)

As matrix F is assumed to be regular, det(F) = 2, matrix M has rank 2 and the two
processes are really different. If we denote the columns of M with 1, 2, 3, 4 and the
determinant of the matrix with columns i, k with det(i, k), then we have,

det(F)F−1S = [ det(1, 4) det(2, 4)
−det(1, 3) −det(2, 3)

] . (7.14)

Although this matrix may have one or more negative elements, Frobenius’ theory can
still be applied in certain cases. These cases are:
– negative elements occur only in the main diagonal;
– both elements in the upper-right and the lower-left corner are negative.

This follows from Lemma A.9.2 as will be seen in the proof of the next theorem.
In what follows, we will use the concept of “partial productivity”.

Definition 7.3.1. Consider processes with n = 2 sectors. The partial productivity of
process i with respect to product 1 resp. 2 is the quotient f1i/s1i resp. f2i/s2i.

Theorem 7.3.1. The productive system (7.10) admits a uniform profit rate and positive
prices if process 1 has greater partial productivity than process 2 with respect to one
product and process 2 has greater partial productivity with respect to the other product.

Proof. Assume at first the inequalities f11/s11 > f12/s12 and f21/s21 < f22/s22. Then
det(2, 4) > 0 and det(1, 3) < 0. Therefore both elements in the upper-right and the
lower-left corner of F−1S are positive, and for some positive h the matrix F−1S + hI
is positive and irreducible. In the opposite case, both elements in the upper-right
and the lower-left corner of F−1S are negative. Therefore, the matrix hI − F−1S
is positive for some positive h. In both cases, the Lemma A.9.2 and the theorem of
Perron–Frobenius, Theorem A.9.3, complete the proof.
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Example 7.3.1. We consider two farms that produce cattle and wheat, described by
the following production scheme (without labour L):

(S,0)→ (F),
farm 1: (3 heads of cattle, 7 t. wheat,0)→ (4 heads of cattle, 8 t. wheat),
farm 2: (5 heads of cattle, 5 t. wheat,0)→ (6 heads of cattle, 7 t. wheat). (7.15)

Identify the matrices S, F, compute the vector of surplus d, the matrix CT (or CT ) and
its eigenvalues and the eigenvectors of matrix CT and interpret the results.
Solution to Example 7.3.1:
There are no money wages because the workers are paid at “subsistence wages” in
beef and wheat. In this case, we have:

S = [ 3 5
7 5
] , F = [ 4 6

8 7
] , d = (F − S)e = [ 1 1

1 2
] [

1
1
] = [

2
3
] . (7.16)

The (2 × 4) rectangular matrix [S,F] is therefore,
[ S F ] = [ 3 7 4 8

5 5 6 7
] , (7.17)

with determinants: det(F) = −20, det(1, 4) − 19, det(2, 4) = 9, det(1, 3) = −2, det(2, 3) =
22. With equation (7.12), one obtains:

det(F)CT = (−20)CT = [ −19 9
2 −22

]⇒ CT = [ 0.95 −0.45−0.1 1.1
] . (7.18)

Computing the rank([S,F]), we recognise that the matrix rank criterion, Proposi-
tion 6.3.1 is fulfilled. Therefore, we conclude that both commodities, wheat and cattle,
are basic.

One verifies that matrices S and F (7.16) satisfy the conditions of Theorem 7.3.1,

det(2, 4) =


s21 f21
s22 f22


= s21f22 − f21s22 > 0⇔

f22
s22
=
7
5
>
f21
s21
=
8
7
,

det(1, 3) =


s11 f11
s12 f12


= s11f12 − f11s12 < 0⇔

f12
s12
=
6
5
<
f11
s11
=
4
3
. (7.19)

The characteristic polynomial is then calculated to obtain the eigenvalues:

P2(λ) = det(CT − λI) = λ
2 −

41
20

λ + 1 = (λ − 4
5
)(λ − 5

4
) = 0. (7.20)

The eigenvalues are λ1 = 4/5 < 1 and λ2 = 5/4 > 1 with associated eigenvectors
p1 = k[3, 1], k ∈ ℝ+ and p2 = k[−1.5, 1], k ∈ ℝ+. In application of Theorem 7.3.1

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



330 | 7 Sraffa’s theory of joint production as a tool in ecological economics

or its generalisation, Lemma A.9.3, the obtained minimal eigenvalue is the Frobenius
number λ1 := λmin = (4/5) < 1 associated with the positive eigenvector p1 = [3, 1] of
matrix CT .

CTp = [ 19
20 −

9
20

− 1
10

11
10

][
3k
k
] = [

48
20 k
8
10k
] =

4
5
[
3k
k
] = λ1p. (7.21)

For this reason, we obtain themaximal rate of profits or, equivalently, the productive-
ness R = (1/λmin) − 1 = (1/0.8) − 1 = 0.25. We can further choose any uniform positive
rate of profits r ∈ [0,0.25] and any vector of labor L ≥ o to solve a complete Sraffa price
model for joint production. 

We continue with the following example:

Example 7.3.2. This is a modification of Example 7.2.1. Consider the model (again
without labour L):

(S,0)→ (F),
farm 1: (3 heads of cattle, 5 t. wheat,0)→ (4 heads of cattle, 6 t. wheat,0)

farm 2: (5 heads of cattle, 10 t. wheat,0,0)→ (7 heads of cattle, 12 t. wheat,0).
(7.22)

Identify the matrices S, F, and compute matrix CT and its eigenvalues and eigen-
vectors.

Solution to Example 7.3.2:
So we have:

S = [ 3 5
5 10
] and F = [ 4 7

6 12
] , (7.23)

and, following Schefold, establish the block partitions of matrices S and F, in appli-
cation of PCMC (Par. 60) and Definition 6.3.1,

S = [ S11 S21
S12 S22 ] = [ 3 5

5 10
] , F = [ F11 F21

F12 F22 ] = [ 4 6
7 12
] . (7.24)

Then we directly constitute with (7.24) the (2m × n)matrix [S2 F2] (6.56),
S2 := [ 5

10
] , F2 := [ 6

12
]⇒ [ S2 F2 ] = [ 5 6

10 12
]⇒ rank ([ S2 F2 ]) = 1,

(7.25)

concluding that commodity 2 (wheat) is non-basic, Proposition 6.3.1. So the classifica-
tion of non-basics as luxuries only is no longer acceptable. We have

CT = 16 [ 6 0
−1 5
]⇒ f (λ) = λ2 − 11

6
λ + 5

6
= (λ − 1)(λ − 5

6
). (7.26)
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This matrix is reducible. It has the eigenvalues λ1 = 1 with eigenvector of prices p1 =
[1,−1] and λ2 =

5
6 with eigenvector of prices p2 = [0, 1]. The eigenvalue λ2 = 5

6
would imply themaximal profit rate R = (6/5)− 1 = 0.2, which can be attained by both
industries selling product 2 (wheat) alone.

This result is strange because, with a positive price of 1 for cattle, both industries
could attain profit rates r that are different, but in any case higher than R = 0.2. This
suggests that the assumption of equal profit rates may be inadequate in the presence
of joint production. See also Section 8.3.

It is not knownwhether the condition of Theorem 7.3.1 for positive prices is neces-
sary. Therefore, a different approach to this issue is given.

Taking the joint production Sraffa system (6.30), we set with r = [r1, r2] in analogy
to (8.16),

Sp(1 + R) = Fp⇒ Sp(1 + r) = Fp, (7.27)

separating both obtained equations leads to the following proportions

1 + rj =
f1jp1 + f2jp2
s1jp1 + s2jp2

, j = 1, 2. (7.28)

We divide numerator and denominator by p1 and set x =
p1
p2
. This gives us:

1 + rj =
f1j + f2jx
s1j + s2jx

= hj(x), j = 1, 2. (7.29)

When both prices are positive, then x is positive. This is assumed here. By calculating
derivativeswe see that for positive x eachof these rational functions aremonotonically
decreasing.

This means that we have the maxima f1j/s1j for x = 0 and the minima f2j/s2j for
x = ∞. Therefore, with positive prices, the equality of profit rates is possible if and
only if the intervals I1 = [f21/s21, f11/s11] and I1 = [f22/s22, f12/s12] have a non-empty
intersection. In our example, the profit rates r1, r2 are in the intersection [1.2, 1.3333] =
[1.2, 1.3333] ∩ [1.2, 1.4]. The rate of profits R = 0.2 found here is in fact minimal in the
present case.

Now,we consider a case inwhich positive prices are incompatible with a common
profit rate. 

Example 7.3.3. Consider a model with the matrices S, F, and compute CT and its
eigenvalues and eigenvectors.

S = [ 5 3
7 5
] and F = [ 6 4

8 7
] . (7.30)

Discuss the obtained prices.
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Solution to Example 7.3.3:
The intervals [f21/s21 = 8/7, f11/s11 = 6/5] and [f12/s12 = 4/3, f22/s22 = 7/5] of real num-
bers have no common points. Therefore, for arbitrary positive prices the profit rates
must be different. We have with (7.14) and Det(F) = 10:

CT = F−1S = 1
10
[

11 9
−2 2
] . (7.31)

The elements in the upper-right and the lower-left corners have opposite signs, there-
fore Theorem 7.3.1 cannot be applied. The matrix has eigenvalue λ = 0.8 with eigen-
vector p = [3,−1]. There are negative prices. 

These three examples cover the whole range of relevant cases of systems with 2
industries and 2 commodities.

7.4 Three commodities and three industries

This is also a preparatory section concerning profits and prices. It can be modified to
incorporate recycled waste and its effects on profits, as will be shown in Section 7.7.
Wecontinue thediscussion, now for simplified systemswith three industries and three
commodities, illustrated by two examples. Their general form without labour is:

(S, 0)→ (F),
(s11, s21, s31, 0)→ (f11, f21, f31),
(s12, s22, s32, 0)→ (f12, f22, f32),
(s13, s23, s33, 0)→ (f13, f23, f33). (7.32)

We consider the special case s31 = f31 = 0. In the sense of Sraffa’s definition, Defini-
tion 6.3.1, product 3 is non-basic, if the matrix

[[

[

0 0
s32 f32
s33 f33

]]

]

(7.33)

has rank 1. This condition can be written as s32f33 = s33f32. We will show that the profit
rate and the prices of 1 and 2 are independent of f32 and f33 if 3 is non-basic. The equa-
tions for the profit rate and prices are,

(1 + r)(s11p1 + s21p2) = f11p1 + f21p2,
(1 + r)(s12p1 + s22p2 + s32p3) = f12p1 + f22p2 + f32p3,
(1 + r)(s13p1 + s23p2 + s33p3) = f13p1 + f23p2 + f33p3. (7.34)

After multiplying the second equation of (7.34) with s33 and the third equation of (7.34)
with s32 and subtracting, we obtain, since s32f33 − s33f32 = 0,
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(1 + r)[(s12s33 − f13s32)p1 + (s22s33 − f23s32)p2]
= (f12s33 − f13s32)p1 + (f22s33 − f23s32)p2 (7.35)

Now, we have two equations, the first equation of (7.34) and equation (7.35) for the
profit rate and the prices of products 1 and 2, in which the coefficients f32 and f33 are
eliminated. Furthermore, if s32 and s33 are multiplied by the same factor, the whole
equation (7.35) is multiplied by this factor. This implies that the partial productivity
with respect to 3 has no influence on the profit rate and the prices of 1 and 2.

Example 7.4.1. We start again with Sraffa’s wheat–iron model, but now we add a
branch that produces diamonds. If diamonds were used only as luxuries, we would
have the samemodel as with gold. But diamonds have, due to their extreme hardness,
a number of important industrial applications. Therefore, we may assume that dia-
monds are used in the mining of iron, as well as of diamonds, and that they are not
consumed in the process of mining.We consider the production system again without
the labour vector L,

(S,0)→ (F),
(280 qr. wheat, 12 t. iron,0,0)→ (575 qr. wheat,0,0),

(120 qr. wheat, 8 t. iron, 2 kg diamonds,0)→ (0, 30 t. iron, 2 kg diamonds),
(60 qr. wheat, 4 t. iron, 2 kg diamonds,0)→ (0,0, 3 kg diamonds). (7.36)

Identify thematricesS,F, and computematrixCT and its eigenvalues and eigenvectors
and the rate of profits r.

Solution to Example 7.4.1:
We have the following input and output matrices:

S = [[
[

280 120 60
12 8 4
0 2 2

]]

]

and F = [[
[

575 0 0
0 30 0
0 2 3

]]

]

. (7.37)

As in the proceeding sections, we combine all inputs and outputs in the rectangular
matrix

[ S F ] = [[
[

280 12 0 575 0 0
120 8 2 0 30 2
60 4 2 0 0 3

]]

]

, det(F) = 51,750 ̸= 0. (7.38)

According to Sraffa’s definition, diamonds are a basic product in this model because
the matrix consisting of the 3rd and 6th column of [S F] has

rank([[
[

0 0
2 2
2 3

]]

]

) = 2. (7.39)
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For prices and the rate of profits, we have the equations

(1 + R)(280p1 + 12p2) = 575p1,

(1 + R)(120p1 + 8p2 + 2p3) = 30p2 + 2p3,

(1 + R)(60p1 + 4p2 + 2p3) = 3p3. (7.40)

Therefore (with rounded numbers):

CT = (SF−1) = [[[
[

0.487 0.021 0

2.667 0.178 0.022

20 1.333 0.667

]]]

]

. (7.41)

Here again, Frobenius’ theorem applies, and we have the eigenvalue λ = 0.8 with
eigenvector p = [1, 15, 300]. So the profit rate is R = 0.25, and one kg of diamonds
costs as much as 300 quarters of wheat or 20 tons of iron. If the technology of mining
diamonds is improved, the profit rate must rise, and the price of iron is also affected
because diamonds are a basic product. For example, if the output of the third industry
is four kg of diamonds instead of three kg, the profit rate becomes R = 0.343, and the
price of iron falls to p2 = 12.35 quarters of wheat and that of diamonds to p3 = 111.8
quarters of wheat. 

Example 7.4.2. In thepreceding example, thediamondsused in the iron industry play
the role of fixed capital which leaves the production process in the same quantity as it
has entered it. Nowwe assume that themines of the iron industry produce, in addition
to iron, alsonewdiamonds. Ifwe replace in the iron industry the f32 = 2 kg of diamonds
on the right hand of (7.36) by a quantity greater than two kg, but different from three
kg,wehave again a systemwith three basic products. But diamonds become non-basic
if the iron industry produces exactly three kg of them, resulting in a surplus of one kg.
In Example 7.4.1, the price of one kg of diamonds is equal to the price of 20 t. of iron.
Therefore, the productivity of the iron industry, measured in the same prices, does not
change, if we go to the following system:

(S,0)→ (F),
(280 qr. wheat, 12 t. iron,0,0)→ (575 qr. wheat,0,0),

(120 qr. wheat, 8 t. iron, 2 kg diamonds,0)→ (0, 10 t. iron, 3 kg diamonds),

(60 qr. wheat, 4 t. iron, 2 kg diamonds,0)→ (0,0, 3 kg diamonds). (7.42)

Identify the matrices S, F, establish the matrix pair [S F], determine the number
of non-basics and calculate the prices of the Sraffa price model without labour vec-
tor.
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Solution to Example 7.4.2:
We have the following input and output matrices:

S = [[
[

280 120 60
12 8 4
0 2 2

]]

]

and F = [[
[

575 0 0
0 10 0
0 3 3

]]

]

. (7.43)

As before, we combine all inputs and outputs in the rectangular matrix

[ S F ] = [[
[

280 12 0 575 0 0
120 8 2 0 10 3
60 4 2 0 0 3

]]

]

. (7.44)

According to Sraffa’s definition, applying the matrix rank criterion, Proposition 6.3.1,
diamonds are a non-basic product in this model because the matrix consisting of the
3rd and 6th column of [S F] has

rank([[
[

0 0
2 3
2 3

]]

]

) = 1. (7.45)

The usual equations in the present case are

(1 + R)(280p1 + 12p2) = 575p1,
(1 + R)(120p1 + 8p2 + 2p3) = 10p2 + 3p3,
(1 + R)(60p1 + 4p2 + 2p3) = 3p3. (7.46)

Following Sraffa, non-basics can be eliminated from a system of equations of joint pro-
ductionbya suitable linear transformationPCMC (Par. 61). In thepresent case,wehave
to subtract the third equation of (7.46) from the second equation. The result is

(1 + R)(60p1 + 4p2) = 10p2. (7.47)

The system of equations composed of the first equation of (7.46) and equation (7.47) is
essentially the same as the system (4.13) (see also equations (3.42)). We know already
the solution R = 0.25, p1 = 1, p2 = 15; inserting these values into the third equation of
(7.46) and solving for p3 gives p3 = 300. 

Now we can check the general law that a technological change in the production
of a non-basic good does not change the profit rate and the prices of basics. Indeed, if
the coefficients of p3 on the right-hand side of the second and third equation of (7.46)
are changed to the same extent, the same algebraic procedure as before leads again to
equation (7.47), which together with the first equation of (7.46) determines the rate of
profits and the prices of wheat and iron.
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7.5 The impact of taxation and technological innovations

The application of penalties by way of specific taxes on polluting products is a central
theme in ecological economics. This section, following the approach of the preceding
sections, is devoted to illustrating algebraically the incidence of taxation on profits
and prices within Sraffa’s models.

Taxes on specific commodities are a tool of economic policies that aim at the re-
duction of environmental damages. In some cases, such taxes have an impact on the
whole economy, while in other cases they have not. Taxation of fossil energy or of
tourist helicopter flights are examples for the first and the second type of taxes, re-
spectively. Sraffa considers the impact of taxes in PCMC, Par 65. He writes: “A tax on a
basic product then will affect all prices and cause a fall in the rate of profits that corre-
sponds to a given wage, while if imposed on a non-basic it will have no effect beyond the
price of the taxed commodity and those of such other non-basics as may be linked with
it.” In the following, we will consider examples that confirm Sraffa’s statement about
the impact of taxes. But it is also shown that a tax on non-basics that are jointly pro-
ducedwith basicsmay affect the rate of profits, contrary to Sraffa’s statement in PCMC,
Par 6. Following the same line of argument, we will consider the impact of technical
innovations.

A cornerstone of the following considerations is:

Theorem 7.5.1. The Frobenius eigenvalue of a non-negative, irreducible matrix is a
strictly monotone increasing function of each of its elements.

Proof. Pasinetti [80], Theorem 3, p. 272.
We illustrate these concepts with two examples:

Example 7.5.1. Again we consider Sraffa’s simplified wheat–iron model, without the
labour vector L. If taxes must be paid for the production of both wheat and iron, and
the corresponding tax ratios are t1 (0 ≤ t1 < 1) and t2 (0 ≤ t2 < 1), then the equations
(3.42) become:

(1 + R)(280p1 + 12p2) = 575p1(1 − t1),
(1 + R)(120p1 + 8p2) = 20p2(1 − t2). (7.48)

Solution to Example 7.5.1:
In this example, the impact of taxes is very clear. Asweknow, see Section 3.1.3,without
taxes and if wages are included in the means of production, the Frobenius number is
λC = 0.8, the profit rate is R = (1/λC) − 1 = (1/0.8) − 1 = 0.25, and the ratio of prices is
1:15.

If only wheat is taxed and t1 = 0.181, then R = 0.111 and the price ratio is 1:12. If
only iron is taxed and t2 = 0.225, then R = 0.106 and the price ratio is 1:20. If both
products are taxed and t1 = t2 = t, then the price ratio remains unchanged, and the
Frobenius eigenvalue is divided by 1−t, with a corresponding change of the profit rate.
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For example, if t = 0.1, then R = ((1 − t)/λC) − 1 = (0.9/0.8) − 1 = 0.125. In this
special case, a tax of 10% on both products reduces the profit rate from R = 0.25 to
R = 0.125.

Example 7.5.2. In the following, gold is an example of an arbitrary non-basic prod-
uct. We extend the model considered before to the case in which gold is produced in
two different ways: as a single commodity like in Example 6.3.3 and as a joint product
in connection with the extraction of iron, as in Example 6.3.4. We may consider the
following system:

(S,0)→ (F),
(300 qr. wheat, 12 t. iron,0)→ (600 qr. wheat,0,0),
(150 qr. wheat, 9 t. iron,0)→ (0, 30 t. iron, 6 kg gold),
(50 qr. wheat, 4 t. iron,0)→ (0,0, 4 kg gold). (7.49)

Solution to Example 7.5.2:
The sum of all inputs is 500 qr. wheat and 25 t. iron. Therefore, if all the surplus of
wheat and iron is reinvested, the rate of growth is ρ = 20%.4 Since gold is not used
as a means of production, the rate of growth is not affected by the abundance of gold.
So, the maximum rate of growth of the system is ρ = 20%.

Now we consider the case in which gold is taxed with ratio t. Then the equations
for prices and the profit rate are:

(1 + R)(300p1 + 12p2) = 600p1,
(1 + R)(150p1 + 9p2) = 30p2 + 6p3(1 − t),
(1 + R)(50p1 + 4p2) = 4p3(1 − t). (7.50)

This system is equivalent to the following:

(1 + R)(0.5p1 + 0.02p2) = p1,
(1 + R)(5p1 + 0.3p2) = p2 + 0.2p3(1 − t),

(1 + R)( 12.5
1 − t

p1 +
1

1 − t
p2) = p3, (7.51)

and may be written in the form

(1 + R)Sp = Fp, (7.52)

where p = [p1, p2, p3] is the price vector and S = (sij), F = (fij), i, j = 1, . . . , 3, are
matrices of the general transposed form

S = [[
[

s11 s21 0
s12 s22 0
s13 s23 0

]]

]

, F = [[
[

1 0 0
0 1 f32
0 0 1

]]

]

. (7.53)

4 Calculation of the rate of growth: ρ = (600 − 500)/500 = (30 − 25)/25 = 0.2.
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Note that, in our example,

f32 = 0.2(1 − t), s13 =
12.5
1 − t

s23 =
1

1 − t
. (7.54)

Themaximal rate of profitR is related to theFrobeniusnumber of thematrixCT = SF−1.
In this case,

CT = [[
[

s11 s21 0
s12 − f32s13 s22 − f32s23 0

s13 s23 0

]]

]

. (7.55)

The nontrivial eigenvalues of this matrix are the two eigenvalues of the 2 × 2 matrix in
the upper left corner. Only the elements in the second roware related to the production
of gold via the parameters s13, s23 and f32, but the taxation factor 1 − t cancels out.
Therefore taxation of gold does not affect the rate of profits in this case.

However, it is evident that the technology of extraction of gold, accounted for by
the parameters f32, s13 and s23, has an impact on the eigenvalues of CT = SF−1 and
hence on the maximal rate of profits. An improvement in the technology of joint pro-
duction of gold, i. e., greater f32, leads to a smaller Frobenius eigenvalue, and there-
fore to a greater profit rate (this follows from the fact that the Frobenius eigenvalue is
a monotone increasing function of every element of the matrix). But an improvement
in the single-production of gold, i. e., smaller s13 and s23, leads to a smaller profit rate,
a counter-intuitive result! If gold is classified as non-basic, both results differ from
Sraffa’s statement made for the case of single-product industries.

With the numerical values of our example and t = 0, we have:

S = [[
[

0.5 0.02 0
5 0.3 0
12.5 1 0

]]

]

, F = [[
[

1 0 0
0 1 0.2
0 0 1

]]

]

, CT = [[
[

0.5 0.02 0
2.5 0.1 0
12.5 1 0

]]

]

,

(7.56)
With these matrices, we can calculate p and λC from the equation

Sp = λFp⇒ CTp = λp. (7.57)

We obtain the Frobenius number λC = 0.6. Then we compute the productiveness R1 =
(10/6) − 1 = 0.6667 and the prices p1 = 1, p2 = 5.0, p3 = 29.2. If the output of gold in
the second sector of the joint production of gold is doubled by technological improve-
ment, without increasing the inputs (f32 = 0.4), the profit rate rises to R2 = 1. If this
technological improvement is obtained in the single production of gold (s13 and s23 are
halved), then the profit rate falls to R3 = 0.51.

Nowwe look at the definition of basics and non-basics given by Sraffa for the case
of joint production. First we consider the “group of two linked commodities” wheat
and iron. This is the case n = 3,m = 2 in Sraffa’s definition, Definition 6.3.1 and Propo-
sition 6.3.1. 

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.6 A model with recycling of iron scrap | 339

From the 3×6matrix (S,F), we select the four columns that correspond to wheat
and iron. This gives the matrix,

[ S2 F2 ] = [[
[

s11 s21 1 0
s12 s22 0 1
s13 s23 0 0

]]

]

⇒ [[

[

0.5 0.02 1 0
2.5 0.15 0 1
12.5 1 0 0

]]

]

. (7.58)

Since the determinant of the matrix formed by the first three columns is,

det([[
[

0.5 0.02 1
2.5 0.15 0
12.5 1 0

]]

]

) = 1 × 2.5 − 0.15 × 12.5 = 0.625 > 0, (7.59)

we get rank([S2 F2]) = 3. Therefore wheat and iron are basics.
Then, with respect to gold, we consider the case n = 3,m = 1, and get,

rank ([ S1 F1 ]) = rank([[
[

0 0
0 f32
0 1

]]

]

) = 1. (7.60)

Since this matrix has rank 1, gold is non-basic. 

An important observation from this example is that the joint production of basics
(here iron andwheat) and non-basics (here gold) may lead to a situation, in which the
rate of profits (R1 = 66.7%) ismuchhigher than themaximal rate of growth (ρ = 20%).

The next three sections are devoted to specific environmental issues: treatment of
waste, pollution and CO2 emission.

7.6 A model with recycling of iron scrap

Today, the economic system produces immense quantities of waste and harmful or
toxic by-products. It makes sense to consider these by-products as commodities with a
negative price. Thiswould be an interesting alternative to the concept of “internalizing
external costs”, which is the cornerstone of neoclassical environmental economics.
Sraffa himself was uncomfortable in the presence of negative prices; in PCMC, Par. 50,
he wrote: “…, only those methods of production are practicable which …do not involve
other than positive prices”. However the great advantage of his theory of joint produc-
tion is precisely that negative prices may occur in a quite natural way. The price of
certain by-products may change from negative to positive if an efficient technology of
recycling becomes available.

A Sraffamodel is justified,when its construction is in relation to any official Input-
Output Table (IOT). In Section 2.1 we have presented the European standard classifi-
cation of productive economic activities (NACE [16]) and the European Classification
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of Products by Activities (CAP) which classifies all the products, appearing in an IOT,
and are used in an economy asmeans of production or consumption goods. The prod-
ucts are ordered into the sectors of the IOT according to the nomenclature of CAP. As
we will extend the historical iron-wheat model, we rely on the products classified by
CAP, relying on the NACE report [16], because the headings of the divisions in NACE
lead directly to the branch headings of the IOTs, decribing the palettes of the products.
In the extended “wheat-iron” model we will indicate the number of the divisions of
the Detailed Structure of the products, which will be used in the extended wheat-iron
model.

We continue to use “wheat” which appears in division 1 (NACE, p. 61), treated in
the sector of agriculture, forestry and fishing and “iron” in division 24 (NACE, p. 66),
typically treated in a sector of manufacture of basic metals. As a new mean of pro-
duction wewill introducemetallic “scrap” which appears in division 46 (NACE, p. 74),
treated typically in a sector of wholesale and retail.

Let us outline that waste recycling can be modelled as:
(1). Outlays for by-product waste like “scrap” (Iron/Steel sector).
(2). The recycling industry can be represented as a recycling sector/branch within

the input-output table (IOT). The sector recycles different items/objects with different
technologies of recycling and with different efficiency. Such joint production can be
treated within the input-output tables, see Section 9.2.1.

We do not describe the technological process of production of iron, which lies out-
side the scope of this book. We will only study in this simplifying model the occurring
prices relative to the efficieny η of a theoretical recycling production process.

It could be objected that the economy described by Sraffa’s wheat-iron model is
not sustainable, because it produces scrap and needs iron, a non-renewable resource.
In a green economy scrapwould be partly recycled. Therefore, let usmodify themodel
in the following way. We enter now a recycling industry. We assume that all the “iron
tools” of the agricultural sector turns to scrap after a period. We assume that the iron
industry is divided into a branch which uses iron and a branch which collects and
recycles scrap. We denote with η the efficiency of recycling (η < 1). This means that a
ton of scrap yields a fraction η of a ton of iron. We consider the following

Example 7.6.1. The labour force gets wages in kind distributed 1 : 1 among the
branches of iron industry. Then we set up the following model, taking the quanti-
ties of PCMC, Par. 2, where the first sector is just copied and the quantities of the iron
sector are distributed on two sectors, one using iron and the other using scrap as
means of production, again abstracting from a separate labour vector L:

(S,0)→ (F),
(280 qr. wheat, 12 t. iron,0)→ (575 qr. wheat,0, 12 t. scrap),
(60 qr. wheat, 4 t. iron,0)→ (0, 10 t. iron,0),
(60 qr. wheat, 12 t. scrap,0)→ (0, 12η t. iron,0). (7.61)
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Solution to Example 7.6.1:
We note the following input and output matrices, and the price vector p = [p1, p2, p3],

S = (sij) =
[[

[

280 60 60
12 4 0
0 0 12

]]

]

, F = (fij) =
[[

[

575 0 0
0 10 12η
12 0 0

]]

]

, i, j = 1, . . . , 3.

(7.62)
When the trade between the three branches is fair, each branch must have the same
profit rate. Ifwedenotewithp3 the price of 1 t.of scrap andwithR theuniformmaximal
profit rate, then the prices and R satisfy the equations:

(1 + R)(280p1 + 12p2) = 575p1 + 12p3,
(1 + R)(60p1 + 4p2) = 10p2,
(1 + R)(60p1 + 12p3) = 12ηp2. (7.63)

In order to have four equations for the four unknowns p1(η), p2(η), p3(η),R(η), wemay
add the convention p1(η) = 1. The price system (7.63) can be written in matrix form,
with the price vector p = [1, p2, p3], as a general eigenvalue problem in physical terms,

Sp = λCFp, λC =
1
(1 + R)
. (7.64)

The values of λ for which a non-zero price vector exists are the solutions of the char-
acteristic polynomial P3(λ) = det(S − λF) = 0. Here, due to the special form of S and
F, the characteristic polynomial is merely quadratic (coefficient: a3 = 0) in λ, namely,

P3(λ) = det(S − λF) = a2λ
2 + a1λ + a0 = (8,640η + 61,800)λ

2 − 58,320λ + 4,800. (7.65)

One verifies that the characteristic equation P3(λ) = 0 has two positive solutions
λ1 > 0, λ2 > 0 for the proposed η, see Table 7.1. The maximal positive eigenvalue
λC = max{λ1, λ2} > 0 is related to the productiveness, R = (1/λC) − 1, based on (7.64).
The Table 7.1 shows how the productiveness R and the price of scrap p3 in this model
depend on the efficiency η of recycling. If efficiency is very low, the price of scrap is
negative, p3 < 0; for η = (5/12), one finds p3 = 0, and it is positive, p3 > 0, for higher
efficiencies. In this case, wheat becomes cheaper in relation to iron, due to the fact
that farmers can sell scrap in addition to wheat, see Table 7.1. 

This example shows how Sraffa’s theory can be applied to determine the prices of
waste in an economic system with recycling.

7.7 An alternative CO2-emissions trading scheme

Every productive process by which CO2 is emitted can be considered as a process of
joint production with CO2 as by-product. On the other hand, CO2 is necessary for pho-
tosynthesis in plants, i. e., the conversion of solar energy into biomass. Therefore,
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Table 7.1: Recycling of scrap.

Efficiency of
recycling η

Profit rate R Price of iron p2 Price of scrap p3 Price of wheat
p1

0.25 0.219 14.3 −2.07 1
5
12 0.25 15.0 0 1

0.5 0.266 15.4 1.08 1
0.8 0.322 16.8 5.19 1

forestry and traditional agriculture that uses no fossil fuels are absorbers of CO2. This
leads to the idea to treat CO2 as a “commodity” that could be “traded” between emit-
ters and absorbers of CO2.

Neoclassical economists have already proposed market-based instruments for at-
taining a reduction of emissions of greenhouse gases in developed countries. A well-
known example is the Emissions Trading Scheme (ETS) of the European Union, oper-
ational since 2005. In this trading scheme, governments create emission permits as
artificial “commodities” that can be traded between EU-based firms. But the Stern
Review admits that “it has been difficult to ensure scarcity in the EU ETS market”
([115], p. 374). Therefore, the price of emission permits in the EU trading scheme was
very low, oscillating between 10 and 25 EURO per ton of CO2 ([115], p. 372), whereas in
Switzerland subsidies for CO2 reduction are between 56 and 70 CHF per ton CO2 (NZZ,
18.9.2013).

The EU ETS deals with greenhouse-gas emissions, but the role of forests in carbon
sequestration is not considered. The Kyoto Protocol failed to mention climate forestry
in its Article 12 on the CDM (clean development mechanism), but at the conference
held at Bonn in 2000, afforestation and reforestation were made eligible under the
CDM (see Michaelova [64]). Still later, the topic was addressed in a decision taken
by the Copenhagen Conference on Climate Change (2009), which highlights “the im-
portance of reducing emissions from deforestation and forest degradation, and the role
of conservation, sustainable management of forests and enhancement of forest carbon
stocks in developing countries” (see Bottazzi [10]). But hitherto, there is no economic
theory which links CO2 emission and absorption.

During the ten years of its operation, the ETS of the EU has had only a small im-
pact on prices, while it has triggered the appearance of many products with the label
“CO2-neutral”, but the meaning of this label is not clear. Therefore, the following def-
inition is proposed:

The products of a firm which emits CO2 are CO2 – neutral if the firm has made
a contract with one or more absorbers of CO2 to receive all CO2 emitted by the
firm. The payment for this service must entail equal profit rates for emitters and
absorbers.
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Such a trading scheme requires a framework of strong international institutions with
the task of measuring the quantities of CO2 emitted and absorbed and of controlling
the flow of payments from emitters to absorbers. This topic is not to be discussed
here. It is simply assumed that such a trading scheme does exist. It will be shown
that Sraffa’s theory of joint production can be applied in order to calculate a nega-
tive “price” of CO2 which would determine the money transfer per unit of CO2 from
emitters to absorbers, in such a way that an equal rate of profit can be obtained by
all parties. With an abstract example the influence of CO2 – trading on the choice of
technology and on prices will be demonstrated.

Example 7.7.1. Let us consider a circular system of production consisting of two com-
moditiesW1 andW2 and three processes with constant returns to scale. Process 1 ab-
sorbs CO2 and produces W1. This may be traditional agriculture or forestry. The pro-
cesses 2a and 2b produceW2, the first with a low-carbon, the other with a high-carbon
technology.W1 is a necessary consumption good whereasW2 can be used both in pro-
duction and in luxury consumption, as is the case of many products of modern tech-
nology. Wages are regarded as consisting of the necessary subsistence goods for the
workers, so they are not mentioned explicitly. It is assumed that a year’s operations
can be tabulated as follows, see Table 7.2:

Table 7.2: A model of emission and absorption of CO2.

process 1 (60W1, 30W2, 80 CO2)→ (100W1, 0, 0)
process 2a (15W1, 25W2, 0) → (0, 50W2, 30 CO2)
process 2b (10W1, 25W2, 0) → (0, 50W2, 50 CO2)

Solution to Example 7.7.1:
At these levels of activity, a final demand of 15W1 and 20W2 can be satisfied, and all
CO2 emitted is absorbed by process 1, soW2 is CO2 – neutral in the sense of our defini-
tion. But if CO2 is not regarded as a harmful by-product, then obviously process 2b is
more productive than process 2awhich would not be activated. In order to satisfy the
final demand forW2, the level of activity of process 2bwould be doubled and emission
of CO2 would increase to 100. The equations for the prices pi of Wi, (i = 1, 2) and the
uniform profit rate R would be:

(1 + R)(60p1 + 30p2) = 100p1,
(1 + R)(20p1 + 50p2) = 100p2. (7.66)

AsW1 is the numéraire, p1 = 1, the positive solutions are R = 0.25 and p2 = (2/3).
Nowwe assume that a trading scheme as described above has been installed. For-

mally, we treat CO2 in the same way as the commoditiesW1 andW2. Whether p3, the
“price” of CO2, will be positive or negative is not known in advance. We assume that
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the payments for CO2 are made at the beginning of each year. Then the equations for
prices and profit rate are:

(1 + R)(60p1 + 30p2 + 80p3) = 100p1,
(1 + R)(15p1 + 25p2) = 50p2 + 30p3,
(1 + R)(10p1 + 25p2) = 50p2 + 50p3. (7.67)

This system can be written in matrix form, after identifying the matrices,

S = [[
[

60 15 10
30 25 25
80 0 0

]]

]

, F = [[
[

100 0 0
0 50 50
0 30 50

]]

]

, det(F) = 100,000, (7.68)

giving,

(1 + R)Sp = Fp. (7.69)

In the present case, F has an inverse, and we have a gross integrated industries.
Therefore we calculate

F−1 = [[[
[

1
100 0 0

0 1
20 −

1
20

0 − 3
100

1
20

]]]

]

, CT = SF
−1 = [[[
[

3
5

9
20 −

1
4

3
10

1
2 0

4
5 0 0

]]]

]

. (7.70)

The calculation of R and the price vector amounts to finding an eigenvalue and an
eigenvector of the matrix CT = SF−1. The most appropriate method for doing this is
the method of successive approximations. With the choice p1 = 1, we find: R = 0.25,
p1 = 1, p2 = 1.5 and p3 = −0.3125. 

This result shows that an emissions trading scheme that includes CO2 absorbing
processes can make a low-carbon technology as profitable as a high-carbon technol-
ogy. But this requires a substantial change of the price system. Those commodities
that are produced with high CO2 emissions will be much more expensive than in an
economy without trading of emission permits.

7.8 Prelude for the Sraffian approach in ecological economics

The biosphere, which is the home of millions of animal and plant species and of
mankind, owes its stability to the cycles of water, carbon, nitrogen and other vital ma-
terial cycles. Most agrarian civilizations have taken advantage of these cycles without
interfering with them. Unless metals were used, all residues of production and con-
sumption could be recycled by humans or nature. The Industrial Revolution shifted
human activity to production processes that could not be integrated into a natural
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cycle. In the millennia before, the production of CO2 by human and animal respira-
tion and the combustion of wood was compensated for by the consumption of CO2 in
the metabolism of plants. But the combustion of fossil fuels releases more CO2 into
the atmosphere worldwide than can be absorbed globally, by vegetation only. And
the chemical industry produces large quantities of environmental toxins and plastics
that cannot be decomposed into harmless substances by any natural decomposition
process.

The characteristic expression of this mode of production is the neoclassical pro-
duction function that indicates the quantities of “production factors” labour (L) and
capital (K) used in the manufacture of a quantity Y of an undescribed product: Y =
f (L,K). Production is seen here as a one-way street from L and K to Y . What unwanted
by-products are produced, where the workforce and capital come from, whether and
how often the production process can be repeated—this is not asked. An ecological
economy in the true sense of the word cannot be content to include natural resources
as further production factors in the neoclassical production function, and otherwise
leave everything as it is. Rather, it must conceive of an ecological economy as a cycle
that repeats itself from year to year or at longer intervals and is capable of recycling
all undesirable by-products and waste.

Sraffa’s theory does just that. But the representatives of ecological economics do
not know this theory, and let Georgescu-Roegen [35] lure them onto the wrong track.
This is why they hardly distance themselves from neoclassicism and adopt its basic
assumptions without opposition. Just like Paul Samuelson [101] in the neoclassical
standard textbook, Herman Daly [21] begins his book “Ecological Economics” with
the sentence: “Economics is the study of the use of limited or scarce resources for
alternative, competing purposes”. But today, there are already many products whose
proper disposal is more expensive than their manufacture. Most ecological problems
in the industrialised countries do not arise from scarcity, but from abundance.

This also applies to global environmental problems. The combustion of coal, oil,
natural gas and their derivatives produces CO2, which is evenly distributed throughout
the Earth’s atmosphere. Consequently, the proportion of CO2 in the air has increased
continuously in recent decades, and the global climate is gettingwarmer. As a result of
advances in chemistry, it has become possible to produce all kinds of packaging, con-
tainers and other plastic objects extremely cheaply from the waste from oil refineries.
So plastic is no longer a scarce commodity, and, on the contrary, there is already far
toomuch of it. A large proportion of empty plastic bags and containers are discharged
into rivers and finally into the sea. One part breaks down into tiny toxic particles swal-
lowed by marine animals, while another part resists the ravages of time and pollutes
the beaches or forms huge floating carpets in the open sea. Where is the scarce com-
modity?

The series of examples could be extended atwill. They show that an economic the-
ory that concentrates on scarce goods cannot adequately represent global ecological
problems.
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8 Sraffa and extensions
This chapter follows from the work of Pasinetti’s [80] and Schefold’s [103] explana-
tions of the Sraffa production economy.1 In the first three sections, this chapter is de-
voted to illustrating the potential of Sraffa’s price model. It is not a rigid construction
limited to producing commodities bymeans of commodities in a closed economy. The
Sraffa price model for joint production is extended to imports and exports, and a dis-
cussion of the incidence of including services as commodities is included. The model
may even be extended to situations involving profit rates and wages which vary from
industry to industry. Section 8.4 reformulates Sraffa’s price model by incorporating
the notion of a mark-up k which replaces both the wage rate and the rate of profits.
The remaining sections position Sraffa’s conceptual approach with respect to other
economic approaches.

8.1 Sraffa and the open economy

We now develop the Sraffa system of joint production to an open economy including
imports and exports. For this purpose, we start from the production scheme (4.143),
(S,L)→ (F), and add an n×nmatrixE↑, involving the export volume of this economy,
and an (g × n)matrixM↓, representing the g ∈ ℕ imported goods.

(S,M↓

,L)→ (F,E↑


). (8.1)

We now define the non-negative square n × n export volume matrix E↑ = (eij), i, j =
1, . . . , n, and also the non-negative rectangular g × n import volumematrixM↓ = (mkj),
k = 1, . . . , g, j = 1, . . . , n as follows:
eij: is the total quantity of commodity i exported by the sector Sj to all foreign

economies that acquire this commodity i from the present economy. The coef-
ficient eij is called export coefficient, expressed in physical terms of commod-
ity i.

mkj: is the total quantity of the good k ∈ {1, . . . , g}, imported by the sector Sj,
j ∈ {1, . . . , n}. The coefficient mkj is called import coefficient of good k to sec-
tor Sj, expressed in physical terms of good k.

Now we describe the import and export prices of the various commodities.
pE,i: is the export price of commodity i. We assume a constant ratio to the pro-

duction price pi, expressed as pE,i = aipi, leading to the price vector pE =
[pE,1, . . . , pE,n] = [a1p1, . . . , anpn]. The coefficients a1, a2, . . . , an are exogenous
parameters fixed by the exporters.

1 This chapter with the examples is principally due to D. Chable and J.-F. Emmenegger.

https://doi.org/10.1515/9783110635096-008
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pM,k: is the import price of good k, acquired by any of the sectors Sj, j ∈ {1, . . . , n}. We
assume constant import prices for each imported good k ∈ {1, . . . , g}, leading
to the price vector pM = [pM,1, . . . , pM,g] = const. The import prices are also
exogenous parameters depending on external markets.

The matrices are now fully presented:

E↑ =
[[[[[

[

e11 e12 . . . e1n
e21 e22 . . . e2n
. . . . . . . . . . . .
en1 en2 . . . enn

]]]]]

]

, M↓ =

[[[[[[[

[

m11 m12 . . . m1n
m21 m22 . . . m2n
. . . . . . . . . . . .
. . . . . . . . . . . .
mg1 mg2 . . . mgn

]]]]]]]

]

. (8.2)

The equations of the joint production Sraffa price model for an open economy as an
extension of (6.48) supplemented by equations for total exports and total imports, are
now presented.We need the diagonalmatrix â, according to definition (A.17) obtained
from the vector a = [a1, . . . , a2] of the just-defined ratios aj, j = 1, . . . , n. We set up the
system:

Sp(1 + r) +M↓

pM + L

w̃ ⋅ Y
L
= (F + E↑


â)p,

EX = (E
↑e)pE ,

MI = (M
↓e)pM ,

Y = (Fe − Se)p + EX −MI ,

L = eL.

(8.3)

The system (8.3) has n + 4 equations. Setting r = r0 and p1 = p0 exogenously, there
are also n + 4 variables, of which two, MI and L, can immediately be calculated. The
remaining n+2 unknowns form a linear system and unique solutions for each variable
exist if the system satisfies conditions, similar toManara’s conditions, see Section 6.6,
which we will not treat in this text.

We will now present a simplified example for single-product industries with ex-
ports of two commodities and one commodity imported to all sectors.

Example 8.1.1. Consider an economy producing electric power (E) in GWh (standing
for energy), iron, measured in tons of iron, (standing for manufactured products) and
wheat, also measured in tons, (standing for agricultural products). Electric power (E)
and wheat are exported (↑). A fourth commodity, petroleum (P), measured in tons, is
imported (↓) (g = 1) and directly split between the three production sectors. There
furthermore exists a labour vector L = [L1, L2, L3]. The production scheme reads as
follows:
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(S,M↓

,L)→ (F,E↑


)

(120 GWh E, 50 t. iron, 10 t. wheat, 20 t. P, L1)→ (400 GWh E,0,0, 50 GWh E,0,0)
(100 GWh E, 100 t. iron, 10 t. wheat, 30 t. P, L2)→ (0, 250 t. iron,0,0,0,0)
(20 GWh E, 30 t. iron, 50 t. wheat, 30 t. P, L3)→ (0,0, 120 t. wheat,0,0, 30 t. wheat)

(8.4)

The vector of ratios a = [1.2,0.9,0.8] and the vector of the import price of petroleum
pM = [5] are given. Identify the five matrices, respectively vectors, involved in (8.4)
and the diagonal matrix â:

S = [[
[

120 100 20
50 100 30
10 10 50

]]

]

, F = [[
[

400 0 0
0 250 0
0 0 120

]]

]

, L = [[
[

40
80
50

]]

]

,

E↑ = [[
[

50 0 0
0 0 0
0 0 30

]]

]

, M↓ = [ 20 30 30 ] , â = [[
[

1.2 0 0
0 0.9 0
0 0 0.8

]]

]

. (8.5)

Compute the adapted vector of total output q = (F + âE↑X)e and the vector of surplus
d = q − Se. Compute then the adapted input-output coefficients matrix C = Sq̂−1, its
Frobenius number λC and the productiveness R = (1/λC) − 1. Verify that the rate of
profits r = 0.2 belongs to the interval [0,R] and solve the Sraffa price system (8.3) with
the numéraire E and pE = p1 = 1 (MWh/MWh) = 1. Compute the national income Y ,
the circulating capital K, the total export volume EX , the total import volumeMI , the
total output X, the total profit P, the total wagesW , the wage rate w and the share of
total wages to national income w̃. Establish then the Sraffa Network.

Solution to Example 8.1.1:
Compute the adapted vector of total output q and the vector of surplus d,

q = (F + âE↑X)e =
[[

[

400 0 0
0 250 0
0 0 120

]]

]

+ [[

[

60 0 0
0 0 0
0 0 24

]]

]

[[

[

1
1
1

]]

]

= [[

[

460
250
144

]]

]

,

d = q − Se = [[
[

460
250
144

]]

]

− [[

[

120 100 20
50 100 30
10 10 50

]]

]

[[

[

1
1
1

]]

]

= [[

[

220
70
74

]]

]

, (8.6)

as well as the adapted input-output coefficients matrix C = Sq̂−1,

C = [[
[

120 100 20
50 100 30
10 10 50

]]

]

[[[

[

1
460 0 0

0 1
250 0

0 0 1
144

]]]

]

=
[[[

[

6
23

2
5

5
36

5
46

2
5

5
24

1
46

1
25

25
72

]]]

]

, (8.7)

and calculate the characteristic polynomial, giving

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



350 | 8 Sraffa and extensions

P3(λ) = det(C − λI) = −λ
3 +

8,347
8,280

λ2 − 77
276

λ + 167
8,280

= (λ − 0.1138)(λ − 0.2964)(λ − 0.5979). (8.8)

Thus, the Frobenius number is λC = 1/(1 + R) = 0.5979 < 1, and we calculate the
maximal rate of profits R = (1/λC) − 1 = (1/0.5979) − 1 = 0.6725 > 0. The uniform rate
of profits belongs to the real interval [0,0.6725], r = 0.2 ∈ [0,0.6725]. Then we set up
the Sraffa price model (8.3) with price vector p = [1, p2, p3] and the adapted equation
for total output X and circulating capital K (6.147). There is the vector a = [a1, a2, a3] =
[1.2,0.9,0.8] and the electric power is the numéraire, giving:

[

[

120 50 10
100 100 10
20 30 50

]

]

[

[

1
p2
p3

]

]
(1 + 0.2) + [

[

20
30
30
]

]
[ 6 ] + [

[

40
80
50
]

]

w̃ ⋅ Y
L

= (F + E↑

â)p = ([

[

400 0 0
0 250 0
0 0 120

]

]
+ [

[

50 ⋅ 1.2 0 0
0 0 0
0 0 30 ⋅ 0.8

]

]
)[

[

1
p2
p3

]

]
,

EX = e
(E↑â)p = [ 1 1 1 ]

 [

[

60 0 0
0 0 0
0 0 24

]

]

[

[

1
p2
p3

]

]
,

MI = (M
↓e)pM = ([ 20 30 30 ] [

[

1
1
1
]

]
)[ 5 ] ,

X = (Fe)p + EX −MI

= ([

[

400 0 0
0 250 0
0 0 120

]

]

[

[

1
1
1
]

]
)



[

[

1
p2
p3

]

]
+ EX −MI ,

K = (Se)p

= ([

[

120 100 20
50 100 30
10 10 50

]

]

[

[

1
1
1
]

]
)



[

[

1
p2
p3

]

]
,

Y = X − K,

L = eL = [ 1 1 1 ] [
[

40
80
50
]

]
.

(8.9)

As a result we get the vector of relative prices p = [1, 2.6427, 3.4438], and we compute
the total output X = 1,216.58, the circulating capital K = 956.75, the national income
Y = 259.83, the value of exports EX = 142.65 and the value of imports MI = 400. The
wage rate w = 0.4028, the share of total wages to national income w̃ = 0.2636, the
total wagesW = 68.48, the total profits P = 191.35 and the quantity of labour L = 170.
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The corresponding SraffaNetwork, see Figure 8.1, with EL (not to be confusedwith
E for the product electric power) for the sector of electricity production, I for the sector
or iron production and W for the sector of wheat production is established with the
adjacency matrix depicting inland operations:

1 2 3 E I W

W =

1
2
3
E
I
W

[[[[[[[[[

[

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

]]]]]]]]]

]

(8.10)

Figure 8.1: An open economy.

The imported amount of petroleum (↓), i.e, refined oil, is split for internal use between
the three production entities involved and is represented by dashed arrows entering
the three sectors. The exports of the sector of wheat production and the sector of elec-
tric power production are represented by outgoing dashed arrows.

Exports are what Bortis [8], p. 146, terms an autonomous (exogenous) component
of GDP. Referring to the national income equation (2.144) with EX = E,MI = M, we see
how Sraffa’s model of an open economy fits in with:

Y = X − K = (Fe − Se)p + EX −MI = C + I + G + (E −M) = W + P,
C + G + I = Y − (E −M). (8.11)

The Sraffa Network also clearly establishes that we are in presence of a single-product
economy and that the inland (internal) production process forms a separate entity em-
bedded in an open economy. 

The system (8.3) can be used to describe a joint production system. But neither
for single-product industries nor for joint production can positive price vectors p be
guaranteedbecause, asmentioned, adaptedManara conditions,whichwedonot treat
in this text, must be fulfilled for this purpose. In Chapter 10 we present an example
taken from the real world, illustrating the Sraffa model for an open economy.

8.2 Extension of the Sraffa system to services

The present section is just an initial foray into a complex domainwhich requiresmuch
future research but which we have touched upon several times in foregoing chapters:
it is the question of Sraffa’s PCMC in relation to completemodernmonetary production
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economies, including services, like education, banking, health care, tourism, regional
and state administration and tourism.

Undoubtedly, Sraffa deliberately focussed his price system on a part of the econ-
omy, namely the production part, following the program presented in the preface to
PCMC. He writes in PCMC, Par. 44:

“The rate of profits, as a ratio, has a significance which is independent of any prices, and can be
‘given’ before the prices are fixed. It is accordingly susceptible of being determined from outside the
system of production, in particular by the level of the money rate of interest”.

This means in fact that Sraffa, well-versed in banking matters, considers that finance,
money and banking lie outside the production system he describes. This also entails
that the relevant prices obtained by his system are relative prices based on an arbi-
trarily chosen physical numéraire like wheat. As soon as we want absolute prices, see
Example 4.4.3 the currency adopted comes from outside Sraffa’s production economy.

A classical breakdown of economic activity distinguishes the primary sector, in-
volving the retrieval and production of raw materials, such as corn, wood, coal, iron
ore, and the secondary sector, involving the transformation of raw or intermediatema-
terials into goods, e. g.,manufacturing steel into cars. Then the tertiary sector, involves
the supply of services to consumers and businesses, such as banking, health care,
education, research. Obviously Sraffa treats in the practical examples of PCMC only
branches from the primary and secondary sectors.

One aim of this text is to embed the Sraffa production system in amonetary econ-
omy of production and exchange, comprising all three economic sectors, and therefore
also all essential service branches. For this purpose,wehave referred in Chapter 10 the
breakdown of the branches of Swiss Input-Output Tables (Swiss IOT 2008 and Swiss
IOT 2014), according to the NOGA system (French abbreviation for General Classifica-
tion of Economic Activities; see Nathani [68], p. 47). The branches of the primary and
secondary sectors are in the upper-left corner of the Swiss IOTs 2008 and 2014, as is
the case for the IOT of most countries. These up-to-date IOTs moreover are based on
the Input-Output Tables of Leontief, where the entries of the tables are expressed in
monetary terms.

We have described in Chapter 2 the connection between Sraffa’s input-output co-
efficientsmatrix S (2.13) and the Leontief IOTs. The branches chosen by Sraffa for his
examples of the production systems (S,L) ⇒ (q̂) (PCMC, Par. 1, Par. 2, Par. 5) are
all selected in the upper-left corner of present day national IOTs based on Leontief’s
concepts. In this connection, if we want to enlarge the Sraffa price system to services
(tertiary sector), we would have to generate the entries of an input-output matrix A in
monetary terms; and the performances of the services are then directly expressed in
money, even if they no longer correspond to products, like wheat or iron, but, e. g., to
education tasks and the like. Clearly, passing from Leontief’s IOT to Sraffa’s commod-
ity flow matrix S, each selling sector comprise then exactly one commodity. There are
alltogether n commodities and n industrial sectors.
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Returning back, we consider a Sraffa pricemodel with a physical numéraire, as in
Example 4.7.1. Then we set up the Sraffa Network, respectively the commodity flows,
see Figure 8.2 (left). At this stage, there is no flow of money. Payments are expressed
in relative prices that can be calculated with the Sraffa price model using the price
unit of a physical numéraire. If this Sraffa production system is embedded in a larger
monetary production economy with a tertiary sector comprising a Central Bank and a
banking system, then payments will be made in the corresponding national currency,
and there are payment flows, inverse to the commodity flows, see Figure 8.2 (right).

Figure 8.2: Commodity flow (left) and payment flow (right).

The various flows are governed by the following equations where the entries may be
easily converted frommonetary terms to physical terms and vice versa (see also Miller
and Blair [65], p. 48):

{{{
{{{
{

xi = piqi,
zij = pisij,
fi = pidi,

⇔
{{{
{{{
{

x = p̂q = q̂p; x̂ = p̂q̂,
Z = p̂S⇔ S = p̂−1Z,
f = p̂d⇔ d = p̂−1f.

(8.12)

These ideas are of course open to further developments.

8.3 Beyond the uniform rates of profits and wages

The assumption of a uniform rate of profits r and a uniform wage rate w for all indus-
tries is often considered amajor weakness of Sraffa’smodel by economists. As already
mentioned, it is not our intention to discuss the economic issues of this assumption in
this textbook.We present themathematics, the operational aspects and the numerical
applications.

Nevertheless, in order to illustrate the open-endedness of Sraffa’s approach, per-
mitting various extensions, we present here an extension of Sraffa’smodel which alle-
viates the critique leveled at the assumption of a uniform rate of profits and a uniform
wage rate, see also Emmenegger [28].
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Inspired by an input-output table (IOT) of a country, say the Swiss IOT 2008, con-
taining n = 44 sectors of industries and other economic activities, see Chapter 10, we
return to a Sraffa system of n industries, each one producing exactly one commodity.
Alltogether, there are again n commodities and n industries. Assume further individ-
ual rates of profit rj and wage rates wj, j = 1, . . . , n, for each of the sectors. This gives
two distributions, one for the rate of profits and one for the wage rates, which we re-
group separately in two vectors, the vector r = [r1, r2, . . . , rn] of the distribution of the
rate of profits and the vectorw = [w1,w2, . . . ,wn]

 of the distribution of the wage rates.
We specify again that the distribution r contains a profit rate rj for each sector and the
distribution w contains a wage rate wj for each sector. These sector profits and wage
rates can be considered as mean rates of the corresponding sectors, estimated on the
basis of available economic wage and profit statistics.

We diagonalise these vectors r andw and get n× nmatrices ̂r, called the diagonal
matrix of the distribution of the rate of profits and the matrix ŵ, called the diagonal
matrix of the distribution of the wage rates. We set

̂r =
[[[[[[

[

r1 0 . . . . . . 0
0 r2 . . . . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . . . . rn

]]]]]]

]

; ŵ =
[[[[[[

[

w1 0 . . . . . . 0
0 w2 . . . . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . . . . wn

]]]]]]

]

. (8.13)

Remember that in Section 4.9, with equation (4.174) we have presented Sraffa’s price
model of n+ 2 equations and n+ 4 variables, expressed by thewage rate w = (w̃ ⋅Y)/L,
containing the share of total wages to national income w̃. We set now the factor w into
the price model and can therefore drop the equations for national income Y and the
total amount of labour (required working time) L. We get

Sp(1 + r) + w ⋅ L = q̂p = x. (8.14)

The Sraffa price model has now n equations and n + 2 variables, namely r,w and the n
prices of the price vector p. We have to discuss the question of the choice of two vari-
ables to solve the system (8.14). Remember that, to get a solvable system of equations,
we selected the rate of profits r, determining the wage ratew, and we set the price of a
commodity, giving the link to a numéraire or to a currency coming from outside.

At this stage, we want to remind the reader that solving the Sraffa price model
(8.14), as described, we also formally solve the distribution problem of Ricardo in the
sense of Sraffa. Namely, given the production scheme (S,L) → (q̂) of an economy
producing a surplus, based on a semi-positive matrix S. The input-output coefficients
matrix C = Sq̂−1 has a positive Frobenius number less than one, 0 < λC < 1, and a
maximal profit rate R = (1/λC) − 1 > 0. The national income is calculated with Y =
R ⋅ (Se)p = R ⋅ K > 0, and is then split up into total profits P and total wages W ,
Y = P +W . A value for the rate of profits r is chosen, r ∈ ]0,R[, giving 0 < P = r ⋅ K < Y
andW = Y − P > 0. We define the positive wage to profit ratio, wp := W/P > 0, which
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expresses the repartition of wages and profits between entrepreneurs and workers.
Moreover, we recognise an analogy,

(R > 0,0 < r < R) ∼ wp =
W
P
> 0. (8.15)

Choosing a value for the rate of profits, r ∈ ]0,R[, in the case of constant rates of profits
and wages is analogue to the fact to set the wage to profit ratio wp = W/P in the case
of profit and wage distributions.

With this idea in mind, we at present abandon the concept of uniformity of the
rates of profits and of the wage rates. We switch to profit and wage distributions, given
by the diagonal matrices ̂r and ŵ (8.13), in order to extend Sraffa’s initial price system
(6.215), to a system, where each sector Sj has own profit rates rj and ownwage rates wj,
j ∈ {1, . . . , n}.

We have n unknown prices p1, p2, . . . , pn, as previously described, collected in the
vector p, and we have to choose a numéraire, setting the price of one unit of that com-
modity, in order to get relative prices. On the other hand, if we aim at absolute prices,
we have to choose a currency from outside the production economy.

Addressing the distribution problem of Ricardo requires necessarily an economy
producing a surplus, which is shared as profit and wages between the industrial sec-
tors and the workers. At this instant, there are no longer free parameters to regulate
the share of profits and wages. But we will benefit of the already developed equiva-
lence statement (8.15) and propose the choice of the positive wage to profit ratio wp =
wp0 > 0. It is an exogenous parameter to the system, replacing the initial rate of profits
r ∈ ]0,R[. Then, we need two calibrating factors np, nw, one for each distribution ̂r and
ŵ, and replace r and w in the proceeding system (8.14) of uniform rates. Finally, we
need the summation vector e = [1, . . . , 1]. Thus, we obtain

S(I + np ⋅ ̂r)p + nw ⋅ ŵL = q̂p,
pi = p0, i ∈ {1, . . . , n},
wp = wp0,

P = wp0 ⋅W ,
P = np ⋅ e

(S ̂r)p,
W = nw ⋅ e

(ŵL).

(8.16)

Finally, we have to select an exogenously given p0, the price pi = p0 of the numéraire i.
The extended Sraffa pricemodel (8.16) has the n+5 variables np, nw,W ,P,wp,p1, . . . , pn
and n + 5 equations. The n + 5 equations are apparently not linear, due to the prod-
uct ⋅ ⋅ ⋅ + np ⋅ ̂rp + ⋅ ⋅ ⋅ in the first n equations, but is solvable with advanced software
packages.2

2 MATHEMATICA, Wolfram Research, Inc., Champaign, IL (2016), or,MATLAB, MathWorks, Inc. Nat-
ick, Massachusetts, USA.
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With the calculated price vector p (8.16), the distribution matrices of the profit
rates ̂r and wage rates ŵ, one then obtains the three remaining economic variables:

Y = dp = np ⋅ e
S( ̂rp) + nw ⋅ e

(ŵL) = P +W ,
K = eSp = (Se)p,
X = qp = Y + K. (8.17)

To make things clear, we assume that the commodity flow matrix S is positive or
irreducible and semi-positive; then these properties are also transferred to the input-
output coefficients matrix C and the Perron–Frobenius theorem A.9.3 applies. The
Frobenius number of C is positive and less than one, 0 < λC := 1/(1 + R) < 1, with
maximal rate of profits R > 0, which is the productiveness.3

Under the described conditions the positive national income Y (8.17) of any Sraffa
price model (8.16) is approximately equal to the national income Y0 = R ⋅ (Se)p of
an economy only with subsistence wages (L = o) and uniform profit rate R, as many
calculations have illustrated.

The extended Sraffa price model (8.16) enables us to solve new problems, where
profit rates and wage rates are given by distributions ̂r and ŵ. For this purpose, we
extend Example 3.1.2 (PCMC, Par. 2) where we now introduce the production of a sur-
plus.

Example 8.3.1. Three commodities (wheat, iron, pigs) are produced in an economy of
single-product industries. The production process is symbolised as follows, each line
corresponding to an industry: The physical units are ‘quarter of wheat’, ‘tons of iron’,
‘number of pigs’ and the quantity of labour is measured in ‘man-years’ (MY),

(240 qr. wheat, 12 t. iron, 18 pigs, 42 MY)→ (600 qr. wheat,0,0),
(90 qr. wheat, 6 t. iron, 12 pigs, 84 MY)→ (0, 30 t. iron,0),
(120 qr. wheat, 3 t. iron, 30 pigs, 42 MY)→ (0,0, 90 pigs). (8.18)

Begin by identifying thematrices S, L, q of this economy. Set up the system of produc-
tion inmatrix form.Determine the input-output coefficientsmatrixC = Sq̂−1. Calculate
the productiveness R of matrix C.

Compute the national income Y0 of the corresponding economy that exhibits only
subsistence wages, where all the surplus goes into the profit of the sectors.

Then, set up the distribution of the wage rates in arbitrary units that is specified
in ‘monetary units/man-years’:w = [1.2, 1.5, 1.1]; set up the distribution of the rate of

3 The reader will notice that the condition can be relaxed to reducibility and semi-positivity of the
input-output coefficientsmatrixC. Suchmatrices can be brought by permutations into ‘canonical form’
(A.73) where at least the submatrix C̃11 is positive or irreducible and semi-positive, see Example A.10.3.
Then Theorem A.10.1 and Lemma A.10.1 apply and the Frobenius number is positive, λC > 0.
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profits by dimensionless components: r = [0.15,0.2,0.12]. Choose wp0 = W/P = 1 for
the wages to profit ratio and treat two cases:
(a) The commodity wheat is the numéraire; therefore its price is p1 = p0 = 1.
(b) The economy adopts the currency CHF. Thus, the production price of wheat is

given, say to p1 = p0 = 55 CHF.

Compute the prices p2, p3, the norm factors np and nw, the effective distributions np ⋅ r
and nw ⋅w and then the values of the economic variables P,W , Y , K and X.

Solution to Example 8.3.1:
We start by identifying the matrices

S = [[
[

240 90 120
12 6 3
18 12 30

]]

]

, q = [[
[

600
30
90

]]

]

, L = [[
[

42
84
42

]]

]

(8.19)

and set up the system of production

(S,L)→ (q). (8.20)

Then, we compute the matrix C = Sq̂−1 (2.16):

C = [[
[

240 90 120
12 6 3
18 12 30

]]

]

[[[

[

1
600 0 0

0 1
30 0

0 0 1
90

]]]

]

=
[[[

[

2
5 3 4

3
1
50

1
5

1
30

3
100

2
5

1
3

]]]

]

. (8.21)

The matrix C is irreducible and non-negative, see Definition A.8.3, so that the Perron–
Frobenius theorem A.9.3 applies.

We set up the characteristic function

P3(λ) = det(C − λI) = λ
3 −

14
15
λ2 + 1

6
λ − 7

1,000
. (8.22)

The polynomial is factorized, P3(λ) = (λ−0.7134)(λ−0.1576)(λ−0.0623), the Frobenius
number is calculated, λC = 0.7173, and the productiveness or maximal rate of profits is
then obtained, R = (1/0.7134) − 1 = 0.4017.

We first compute the price model with matrix C for an economy with subsistence
wages and maximal uniform rate of profits R,

C(1 + R)p = (1 + 0.4017)
[[[

[

2
5

1
50

3
100

3 1
5

2
5

4
5

1
30

1
3

]]]

]

[[

[

p1
p2
p3

]]

]

= [[

[

p1
p2
p3

]]

]

= p,

p1 = 1,

Y = R ⋅ (Se)p = 0.4017 ⋅([[
[

240 90 120
12 6 3
18 12 30

]]

]

[[

[

1
1
1

]]

]

)



[[

[

p1
p2
p3

]]

]

.

(8.23)
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We obtain the price vector p = [1, 9.2031, 4.3143], and then we can calculate the na-
tional income Y0 = 362.26.

Then, the extended single product Sraffa price model (8.16) with the arbitrary dis-
tributions of the profit rates ̂r and thewage rates ŵ is established. The exogenous price
p0 = 1 for wheat and the wages to profit ratio wp = 1 are chosen.

S(I + np ⋅ ̂r)p + nw ⋅ ŵL

= [

[

240 12 18
90 6 12
120 3 30

]

]
([

[

1 0 0
0 1 0
0 0 1

]

]
+ np [
[

0.15 0 0
0 0.2 0
0 0 0.12

]

]
)[

[

p1
p2
p3
]

]

+nw [
[

1.2 0 0
0 1.5 0
0 0 1.1

]

]

[

[

42
84
42
]

]
= q̂p = [

[

600 0 0
0 30 0
0 0 90

]

]

[

[

p1
p2
p3
]

]
,

p1 = p0,
W = P,

W = nq ⋅ e
(ŵL) = nq ⋅ [1, 1, 1][

[

1.2 0 0
0 1.5 0
0 0 1.1

]

]

[

[

42
84
42
]

]
,

P = np ⋅ e
(S ̂r)p

= np ⋅ [1, 1, 1][
[

240 12 18
90 6 12
120 3 30

]

]

[

[

0.15 0 0
0 0.2 0
0 0 0.12

]

]

[

[

p1
p2
p3
]

]
.

(8.24)

(a) We solve the extended Sraffa price model (8.24). We obtain the prices for iron
p2 = 12.1808 qr. wheat/t. iron and for pigs p3 = 4.1391 qr. wheat/pig, giving the
price vector p = [1, 12.1808, 4.1391]. Then, with the price vector we calculate the
total wages W = 191.9 qr. wheat and the total profits P = 191.9 qr. wheat, the na-
tional income Y = 383.8 qr. wheat ∼ Y0 = 362.26 qr. wheat and the norm factors
np = 1.2926 and nw = 0.8621. These factors lead to the equilibrated distributions npr =
[0.1939,0.2585,0.1551] and nww = [1.0345, 1.2931,0.9483] in qr. wheat/man-years.

Then, we calculate the economic variables in physical units qr. wheat:

Y = dp = [150, 9, 30][
[

1
12.1808
4.1391

]

]
= P +W = 383.8,

K = (Se)p = [450, 21, 60][
[

1
12.1808
4.1391

]

]
= 954.14,

X = qp = [600, 30, 90][
[

1
12.1808
4.1391

]

]
= K + Y = 1,337.94. (8.25)
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(b)We choose the currency CHF, setting the wheat price p0 = 55 CHF/qr. wheat, and
solve the Sraffa extended price model (8.24). We get the prices p2 = 669.95 CHF/t.
iron and p3 = 227.65 CHF/pig. Then, the norm factor np = 1.2926 gives the profit
rate distribution npr = [0.1939,0.2585,0.1551] and the norm factor nw = 47.4146
gives the wage rate distribution nww = [56.90, 71.12, 52.16] in CHF/man-years. We cal-
culate with the formulas (8.24), (8.25) the total profits P = 10,554.50 CHF, the total
wages W = 10,554.50 CHF, the national income Y = 21,109 CHF, the circulating capital
K = 52,477.80CHF and the total output X = 73,586.80CHF.4 

Example 8.3.2. Set up Sraffa’s extended price model (8.16) with specific rates of prof-
its and wage rates for each industrial sector. Show that with uniform rates r and a
uniform wage rate w that the extended model reduces to Sraffa’s initial price model
for single product industries.

Solution to Example 8.3.2:
For uniform rates apply the reduction:

̂r =
[[[[

[

r 0 . . . 0
0 r . . . 0
. . . . . . . . . . . .
0 . . . . . . r

]]]]

]

= rI; ŵ =
[[[[

[

w 0 . . . 0
0 w . . . 0
. . . . . . . . . . . .
0 0 . . . w

]]]]

]

= wI. (8.26)

Introduce the diagonal matrices ̂r and ŵ in (8.16) and write

S(I + ̂r)p + ŵL = q̂p = x. (8.27)

So we have (I + ̂r) = I + rI = I(1 + r), and the general equations reduce to

S(I + ̂r)p + ŵL = (SI)p(1 + r) + w(IL) = Sp(1 + r) + wL = q̂p = x, (8.28)

Sraffa’s equations (PCMC) for single product industries (8.14). 

Recapitulation. Consider an economy producing surplus with a known technology matrix S and given
vector of labour (required working time) L. There are further the distributions of the rates of profits r
and of the wage rates w.

David Ricardo [91] postulated that the determination of the laws that regulate the distribution of
what is produced by the Earth, all what is “derived from its surface by the united application of labour,
machinery, and capital” is “the principal problem in Political Economy”.

The Sraffa price model (8.16) is an extension of Sraffa’s formal solution of Ricardo’s distribution
problem with profit rates and wage rates distributions.

The share between profits andwages, set by thewage to profit ratio wp = W/P and the price pi for
a unit of a numéraire i have to be chosen. Then a factor np calibrating the distribution r of profit rates,

4 The prices and amounts are unrealistic for today economies because the entries are taken from the
example PCMC, Par. 2.
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a factor nw calibrating the distributionw ofwage rates and the price vector p of the n commodities are
calculated by the extended Sraffa price model (8.16). One obtains the profit and wage distributions
np ⋅ r and nw ⋅ w, which formally solve Ricardo’s distribution problem in an extended way.

8.4 The mark-up k and the Weintraub representation

In this section, we make use of the mark-up concept. Loosely speaking, in microeco-
nomics followinga frequent business practice, amark-up k is the relationshipbetween
the selling price Y of a given quantity of a commodity and the production cost PC of
that quantity, i.e, Y = k ⋅ PC. The exact definition of k may vary from one enterprise to
another depending on what one includes in “production costs”.

The mark-up concept has also been introduced in the more general context
of macroeconomics, notably by Kalecki ([46], Chapter 2), and the post-Keynesian
economist Sidney Weintraub (1914–1983) [120], pp. 44–47. Bortis [6], pp. 436–444,
uses this concept in his macroeconomic analysis.

Simply stated, inmacroeconomics, usingournotation and referring to aggregates:
– Kalecki considers the mark-up kK as defined by P + K +W = kK(K +W) = Y + K.

In this presentation, circulating capital K is considered as composed of ongoing
variable costs and fixed overheads.

– Weintraub, for his part, sets more simply P +W = kW ⋅W = Y , an identity fixing a
different numerical value for the mark-up.

So also at themacroeconomic level definitionswill differ; one readily finds in this case
that kW ≥ kK ≥ 1.

Here we shall followWeintraub,5 using now k instead of kW , and reformulate the
aggregate Y as,

Y = k ⋅W = k ⋅ (wL) = k ⋅ weL = dp or

(
W
Y
) ⋅ k = w̃ ⋅ k = 1. (8.29)

In this representation, using the wage rate w and wage W = w ⋅ L, entrepreneurial
profits no longer appear explicitly as in P+W = r ⋅K+w ⋅L = Y , where prices are related
to wagesW and circulating capital K both contributing to “production costs”. Profits
P now disappear as a separate term, they are tucked up indirectly in k, considered as
given, and the equations, replacing Sraffa’s price model, relate prices to wages only,
which here represent “production costs”, assuming given conditions of production.

The rate of profits r and themark-up k are then directly linked through the expres-
sion for the profit P = r ⋅ K = w ⋅ L(k − 1) = w ⋅ L ⋅ k −W expressed in physical units.

5 This multiplicative approach w̃ ⋅ k = 1 replaces the additive ̃r + w̃ = 1 with w̃ = 1
k , ̃r = 1 −

1
k .
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Wecomeback to theproduction scheme, containing apositiveor semi-positive and
irreducible commodity flow matrix S, representing the interindustrial economy means
of production. The total amount of each commodity of the means of production are
then accumulated, qI = Se. We assume for convenience a positive vector of surplus
d > o, which we add up to get the vector of total output q = Se + d > o, as well as
a positive vector of labour L > o. Introducing prices, the total value of the means of
production is represented by the circulating capital K:

(S,L)→ (q̂), qI = Se, K = (Se)p, q = Se + d. (8.30)

Weare nowable to present as counterpart to Sraffa’s representation (8.14). Throughout
this section, we assume positive rate of profits r > 0 and the positive wage rate w > 0,
i. e.:

Sp(1 + r) + wL = q̂p = x, (8.31)

the Weintraub representation depending on the wage rate w only and the constant
mark-up k6

Sp + wkL = q̂p = x. (8.34)

Note on notation: We will now have to distinguish the prices of the single-product
Sraffa system, whichwedenote in this sectionwithpS(r,w) instead ofp from the prices
of the Weintraub price model, which we denote hereafter with, pW (k) instead of p.7

(1) A first question arises:
Consider a Sraffa production scheme (S,L) → (q̂) with given means of production
(8.30), the vector of labour L, the wage rate w and then either the rate of profits r or
alternatively a given exogenous national income YK = Y0. One applies the Sraffa price

6 Bortis speaks of the Kalecki–Weintraub price equation, see ([6] (19.7), p. 440) also written in aggre-
gate form as national income

Y = PQ = w ⋅ k ⋅ L, orP = wk(Q
L
)

−1

, (8.32)

(QL ) being the aggregate productivity of labour, a pure numerical ratio. P is the average price level
and Q an index of the real value of final expenditures, i.e, of the total quantity of goods and services
purchased (see Mankiw ([63], pp. 82–83)).
We compute thenational incomes, according to a Sraffapricemodelwith (4.32) and toWeintraub (8.29)
or Bortis (8.32):

YW = d
pW (k) = k ⋅ we

L = k ⋅ w ⋅ L = k ⋅W ; Weintraub

YS = d
pS(r,w) = r ⋅ e

SpS(r,w) + w ⋅ e
L = r ⋅ K + w ⋅ L; Sraffa. (8.33)

7 The index S stands for Sraffa, the indexW for Weintraub.
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model (8.31) and theWeintraub pricemodel (8.33), and one calculates the price vectors
of bothmodels. Canwe expect that the obtainedprice vectors are equal, i. e.,pS(r,w) =
pW (k), except for the pair (k = 1, r = 0), where it is evident?

The answer is NO.
We illustrate this statement with an example.

Example 8.4.1. We consider a production scheme with the input-output matrix S and
vector of labour L, the vector of total output q, the rate of profits r0 = 0.1 and the wage
rate w0 = 1,

(250(W), 1,100(M), 80)→ 575(W),
(110(W), 720(M), 20)→ 2,000(M). (8.35)

(a) Set up the Sraffa price model (8.31), and compute the price vector pS(r,w), the
total profit PS, the total wages WS, the national income YS, the operating capital
KS and total output XS.

(b) Then set up the Weintraub price model (8.33), require equal national incomes,
YW = YS, and compute the price vector pW (k), the mark–up k the total profit PW
and the total wagesWW .

Compare the price vectors pS(r,w) and pW (k).

Solution to Example 8.4.1:
We identify the matrices:

S = [ 250 110
1,100 720

] , Se = [ 250 110
1,100 720

] [
1
1
] = [

360
1,820
] ,

L = [ 80
20
] , q = [ 575

2,000
] , (8.36)

and the surplus quantity vector is then calculated

d = q − Se = [ 575
2,000
] − [

360
1,820
] = [

215
180
] . (8.37)

(a) At first, we solve the Sraffa price model in (8.31) with the exogenous variables
r0 and w0 to get the price vector pS, here noted with index S. All the computed values
are rounded off. We get

[
250 1,100
110 720

] [
p1
p2
] (1 + r) + w ⋅ [ 80

20
] = [

575 0
0 2,000

] [
p1
p2
] ,

r = r0 = 0.1,
w = w0 = 1.

(8.38)
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This gives the vector of prices pS = [0.5595,0.0726] (two price variables, two exoge-
nous values and four equations).

We compute now the five essential economic variables PS,WS, YS, XS, KS,

PS = r ⋅ (Se)
p = 0.1 ⋅ [360, 1,820] [ 0.55947

0.07260
] = 33.353,

WS = w ⋅ e
L = 1 ⋅ [1, 1] [ 80

20
] = 100,

YS = d
p = [215, 180] [ 0.55947

0.07260
] = PS +WS = 133.353,

KS = (Se)
p = [360, 1,820] [ 0.55947

0.07260
] = 333.534,

XS = q
p = [575, 2,000] [ 0.55947

0.07260
] = KS + YS = 466.887. (8.39)

(b)Second,we compute theWeintraubpricemodel (8.33)with the exogenous vari-
ables w0 = 1, and YW = YS = 133.353, to get the price vector pW , here noted with
indexW . We get

[
250 1,100
110 720

] [
p1
p2
] + k ⋅ w [ 80

20
] = [

575 0
0 2,000

] [
p1
p2
] ,

w = w0 = 1, Y = YW = 133.353,

k = w ⋅ Y
L
, L = [1, 1] [ 80

20
] .

(8.40)

This gives here the vector of prices pW = [0.5623,0.0692], k = 1.3335, L = 100
(four variables, two exogenous values and six equations). Then, we compute the total
wagesWW = w ⋅ eL = 100 and the total profits PW = Y −W = 33.353. We get the same
values as in (a); the reason is that we had required equal national incomes YS = YW .

Clearly the resulting Sraffa prices are different from the Weintraub prices (8.33),
pW = [0.56234,0.06916] ̸= pS = [0.55947,0.07260]. 

(2) A second question arises:
Consider a Sraffa production scheme (S,L) → (q̂) with given means of production
(8.30), a given vector of labour L, a uniform rate of profits r and the wage rate w. The
single-product Sraffa system (8.31) is applied. The question arises how tomodify the
Weintraub price model (8.34), to obtain identical price vectors pS(r,w) = pW (.). We do
not note the dependent variable k, because the mark-up k will be modified!

The proposition is to replace the uniform mark-up k in (8.34) by the vector k =
[k1, . . . , kn] of specific industry mark-up coefficients kj varying from industry to indus-
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try, with which we form the diagonal matrix k̂:

k̂ =
[[[[[[

[

k1 0 0 . . . 0
0 k2 0 . . . 0
0 0 k3 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . kn

]]]]]]

]

, kj ≥ 1, j = 1, . . . , n, (8.41)

the diagonal matrix of industry specificmark-up coefficients.
We then get a further Weintraub price model depending on the wage rate w and

the diagonal matrix k̂ of industry specific mark-up coefficients kj,

Sp + w ⋅ k̂L = q̂p. (8.42)

Before developing further theoretical concepts, wewill illustrate the answer to the
question on equal price vectors with the next example.

Example 8.4.2. We refer to the production scheme (8.35) of Example 8.4.1 with the
same matrices and coefficient w0 = 1.

We require the equality pW (k) = pS(r,w) = [0.55947,0.072596]. Compute the
Weintraub price model (8.42), where k has been replaced by k,

k̂ = [ k1 0
0 k2
] . (8.43)

Then compute the coefficients of the diagonal matrix k̂ of industry specific mark-up
and compute the five principal economic variables PW ,WW , YW , KW , XW .

Solution to Example 8.4.2:
With the givenmatrices and elements, we set up theWeintraub pricemodel (8.42) and
compute k1, k2 (2 variables, 3 exogenous values and 5 equations),

[
250 1,100
110 720

] [
p1
p2
] + w ⋅ [ k1 0

0 k2
] [

80
20
] = [

575 0
0 2,000

] [
p1
p2
] ,

p1 = 0.55947,
p2 = 0.072596,

w = w0 = 1,
(8.44)

giving the industry mark-up coefficientsmatrix

k̂ = [ 1.2747 0
0 1.5691

] . (8.45)
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One observes that the values of the five essential economic variables PW , WW , YW ,
XW , KW are identical to those obtained in Example 8.4.1, revealing that required equal
Sraffa and Weintraub prices result in equal economic variables Y ,W , P, K and X.

PW = PS = e
(k̂ − w ⋅ I)L = [1, 1] [ 0.27465 0

0 0.56905
] [

80
20
] = 33.353,

WW = WS = w ⋅ e
L = 1 ⋅ [1, 1] [ 80

20
] = 100,

YW = YS = e
k̂L = [1, 1] [ 1.27465 0

0 1.56905
] [

80
20
] = PW +WW = 133.353

KW = KS = (Se)
p = [360, 1, 820] [ 0.55947

0.07260
] = 333.534,

XW = XS = q
p = [575, 2,000] [ 0.55947

0.07260
] = KS + YS = 466.887.  (8.46)

The mean macroeconomic mark-up k is then the weighted average obtained from the
definition of national income

YW = ke
L = kL = ek̂L⇒ k = YW

LW
, (8.47)

i. e., the mean macroeconomic mark-up k is the national income per unit of required
working time L.

Taking again Example 8.4.2, we indeed get

k = (1.27465 ⋅ 80 + 1.56905 ⋅ 20)/100 = 1.334. (8.48)

Summarising, the general Weintraub price system is given by (8.42). This alternative
approach is best analysed in connection with the extended single-product Sraffa sys-
tem introducing variable rates of profits and wages as presented in Section 8.3, open-
ing up new avenues of research, which we shall not pursue here.

The matrix S is assumed to be positive or irreducible and semi-positive. For this
reason, the Perron–Frobenius theorem A.9.3 applies and we get

Proposition 8.4.1. Given a Sraffa production scheme (S,L)→ (q̂), a mark-up k and the
wage rate w and a positive vector of total surplus, d > 0, one applies the Sraffa price
model (4.29) (I) and the Weintraub price models (8.34) and (8.42). Then, the Weintraub
price vectors are positive, pW (k) > 0 and pW (k) > 0.

Proof. (a) One computes the positive vector of total output, q = Se + d (2.15). The
productiveness R > 0 is positive because there is a positive vector of surplus d. The
productiveness is chosen as rate of profits. There are no wages. We then know that the
Sraffa price model,

S(1 + R)pS(R,0) = q̂pS(R,0), (8.49)
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leads to an eigenvalue problem. Therefore, we compute the input-output coefficients
matrix C = Sq̂−1, getting the Frobenius number λC = 1/(1 + R) < 1 and here the
productiveness R > 0. Now we set the left eigenvector equation of matrix C to ob-
tain the positive price eigenvector pS(R,0) := p, associated with the Frobenius num-
ber λC.

CpS(R,0) = λC ⋅ pS(R,0) =
1

1 + R
⋅ pS(R,0). (8.50)

We know that the vector pS(R,0) > 0 is positive. Its uniqueness is guaranteed by
the Perron–Frobenius theorem A.9.3 (iii), requiring the sum of the components to be
normalised, namely:∑ni=1 pi = 1.

(b) Consider now theWeintraub price model (8.34) and (8.42) with constant mark-
up k > 1, respectively vector k, a positive wage rate w > 0 and a positive vector of
required working time L > 0. Apply the input-output coefficients matrix S = Cq̂. One
obtains:

SpW (k) + wkL = q̂C
pW (k) + wkL = q̂pW (k),

SpW (k) + wkL = q̂C
pW (k) + wkL = q̂pW (k). (8.51)

As the Frobenius number is less than 1, λC < 1, the transposed Leontief Inverse exists,
and with π = q̂−1L we obtain,

pW (k) = (I − C
)
−1
⋅ wk ⋅ q̂−1L := (I − C)−1 ⋅ wk ⋅ π,

pW (k) = (I − C
)
−1
⋅ wk̂ ⋅ q̂−1L := (I − C)−1wk̂ ⋅ π. (8.52)

Thus, with Theorem A.10.2 the transposed Leontief Inverse is positive, (I − C)−1 > 0
and because the vector of labour is also positive, L > o, the Weintraub price vectors
are consequently positive, pW (k) > o and pW (k) > o.

Let us illustrate Proposition 8.4.1 by resorting to the following example

Example 8.4.3. We refer to the production scheme (8.35) of Example 8.4.1 with the
same matrices and vectors (8.36), (8.37), the wage rate w = 1, the mark-up k = 2 and
the industry mark-up coefficients matrix

k̂ = [ 2 0
0 1.5

] . (8.53)

Compute the positive input-output coefficientsmatrixC = Sq̂−1, the characteristic
polynomial of C, the Frobenius number λC < 1 and the productiveness R > 0.

Compute the transposed Leontief Inverse (I − C)−1, Weintraub price vector pK(k)
and pK(k), according to (8.52).
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Solution to Example 8.4.3:
We calculate the positive input-output matrix C

C = Sq̂−1 = [ 250 110
1,100 720

][

[

1
575 0

0 1
2,000

]

]
= [

[

10
23

11
200

44
23

9
25

]

]
> 0 (8.54)

and compute the characteristic polynomial

P2(λ) = det(C − λI) = det([
[

10
23 − λ

11
200

44
23

9
25 − λ
]

]
)

=
59
1,150
−
457
575
+ λ2 = (λ − 0.0709)(λ − 0.7329). (8.55)

The Perron–Frobenius theorem A.9.3 applies as matrix C > 0 is positive and the
Frobenius number is λC = 0.7329 < 1, giving directly the productiveness R = (1/λC)−1 =
0.38138 > 0. Compute now the transposed Leontief Inverse,

(I − C)−1 = [
[

736
295

440
59

253
1,180

130
59

]

]
> 0. (8.56)

Then, one computes the vector of labour components per units of produced commodi-
ties,

π = q̂−1L = [
[

1
575 0

0 1
2,000

]

]
[
80
20
] = [

[

16
115
1

100

]

]
> o. (8.57)

Finally, we compute both Weintraub price vectors (8.52),

pW (k) = (I − C
)
−1
⋅ wk ⋅ π

= [

[

736
295

440
59

253
1,180

130
59

]

]
⋅ 1 ⋅ 2 ⋅ [
[

16
115
1

100

]

]
= [

0.8434
0.1037

] ,

pW (k) = (I − C
)
−1wk̂ ⋅ π

= [

[

736
295

440
59

253
1,180

130
59

]

]
⋅ 1 ⋅ [ 2 0

0 1.5
][

[

16
115
1

100

]

]
= [

0.8061
0.0927

] . (8.58)

Here, we terminate this subsection, where we have discovered a further price model,
based upon the mark–up concept of Sidney Weintraub, called the Weintraub price
model.
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8.5 Where does Sraffa fit in the strain of economic theories?
8.5.1 Sraffa in context

Having previously examined some relationships between Input-Output Analysis and
Sraffa’s approach, we must understand the economic context in which the latter is to
be conceived. In fact, Sraffa’s initial model applies to one period of time, say period t,
embedded in an ongoing economic process over successive periods as mentioned in
PCMC, Par. 1. This may be illustrated as follows (we resort here to the notation stipu-
lated of our text):

One considers the short period in a closed economy:
– Wages are paid ex post at the end of the period.
– Commodities are produced during that period and are sold or exchanged on a

“market” (PCMC, Par. 1).
– If a surplus emerges by the end of the period, it is distributed as wagesW to work-

ers, the rest reverting to entrepreneurs as profits P.

If this is to make sense, it is implicitly assumed that:
– Industries pay for their operating expenses in period t to sustain production.
– The wage earners of period t − 1 spend their earningsW in period t (or even later).
– Entrepreneurs spend their profits P similarly.
– Accordingly, this will create a demand that exercises its effects in period t (and

possibly later).
– This effective demand drives production in excess of interindustry production re-

quired for sustainability (viability) and generates a surplus, i. e., drives total out-
put.

– Inperiod t, a total output, ensuring sustainability anda surplus, therefore emerges
to respond todemandgeneratedby earnings inperiod t−1 (andpossibly in preced-
ing periods) and in period t. At the end of period t, inter-industry purchases and
final demand f, in value terms, are registered. We have encountered these items
in the introduction to Input-Output Analysis, according to Miller and Blair [65]8

presented in Chapter 2.

The ongoing evolution of effective demand and total output from period to period is
graphically presented in Figure 8.3. Demand is presented by a green arrow and output
by a red arrow.9

8 Incidentally, the foregoing confirms Bailly’s result (Bailly [3], pp. 374–378):
During phases of static activity in a closed economy, i. e., Yt−1 = Yt ,Wt−1 = Wt = W . If demand from
Wt−1 absorbs all profits P in period t, then in the aggregate P

X ≤ 0.5 (X is total output in period t).
Indeed P

X =
P

(P+W+K) , so if W = P then W
(W+W+K) =

1
(1+1+ KW )

≤ 1
(2+c) ≤ 0.5, with

K
W = c ≥ 0 (K is the

value of circulating capital, i. e., the value of Sraffa’s means of production, in period t).
9 Sraffa’s basic conditions of production (see Subsection 3.1.1) in quantity terms, expressing in-
terindustry flows of commodities do not vary from period to period, i. e., by assumption, the coeffi-

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.5 Where does Sraffa fit in the strain of economic theories? | 369

Figure 8.3: Variation of demand and output from period to period.

We thus have a representative circular process of the type illustrated by Figure 2.2 (in
that case without surplus).

More generally, as J.W. Forrester, that forgotten pioneer, showed more than 40
years ago [32], the networks of economies of production and exchangewith theirmany
interwoven circuits (of the type addressed in Chapter 6 hereafter) represent circular
processes. As such, they generate over successive production periods economic cycles
such as the short-term business cycle, the intermediate Kuznets swing and the long-
term Kondratiev cycle.

Total output is the measurable response of the production process to effective de-
mand. If total output exceeds effective demand, inventories are allocated to future use;
if effective demand is higher, existing inventories are depleted (see Miller and Blair
[65], Section 4.5).10

As regards final demand, we have f = p̂d, equation (2.105) as outcome in period t,
and one considers the commodity surplus d as given, the stance adopted by Sraffa.

We cannot leave this subsection without a word about the central role played by
the uniform rate of profits r in Sraffa’s scheme. The rate of profits r is amacroeconomic
parameter concerning the ensemble of all industries, or sectors, entering a given econ-
omy of production and exchange: in fact we know that r = ̃rR̃ = (P/Y) ⋅ (Y/K). This
independent parameter is not a “long-term competitive equilibrium rate of profits” to
speak in mainstream terms, nor is it the discount rate of an expected future income
system.

In the Sraffa context, one considers a sustainable circular economic process obey-
ing the conditions of production, and if a surplus is generated, such surplus ensures
a positive national income of the corresponding productive economy.

cients of matrix S are constants. But expressed in value terms, interindustry transactions may vary
because of price fluctuations due for example to changes in the value-added components of the econ-
omy or, in other terms, due to changes in final demand.
10 The inner workings of the dynamics between supply and effective demand are essentially inacces-
sible to direct observation: only the effects are statistically measurable.
This situation is similar to that in quantum physics: atomic and subatomic processes are only mea-
surable via their effects (electromagnetic spectra, trajectories in wire chambers, etc.), see for example
Plotnitsky [87], Chapter 2.
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This production system furthermore remains stable over time as long as the tech-
nologymatrix S remains unchanged. It is in this sense that the expression “long-term
equilibrium”, in otherwords equilibriumover time,must be understood in the present
context.

Now, the desired stability can only be attained if all the industries involving at
least one basic commodity that participate in the functioning of the economy remain
over time in the production process regardless of their effective varying degrees of
profitability. This is realised by the redistribution of the surplus at the end of each ref-
erence period, as explained in PCMC, Par. 4. In practice, such a redistribution could
be realised through appropriate institutions or via taxation, in proportion to the cir-
culating capital (in monetary terms) K of each industry sector. This leads to a uniform
rate of profits r, indicating that the system is in stable “equilibrium” in the Sraffian
sense.

In a sustainable, viable and stable closed circular monetary economy of produc-
tion and exchange, creative adjustments are made on the basis of interindustrial soli-
darity. There is no Schumpeterian “creative competitive destruction”.

8.5.2 Leontief and Sraffa: basic aspects compared

The process illustrated in Figure 8.3 can be represented either by the Leontief model
or by Sraffa’s construct. So let us try to see how the two compare, assuming that S,
q, d, L, X and Y are the same in both models. We shall start by referring again to the
Leontief price equations (pL meaning here prices obtained from the Leontief model),
see Chapter 2.

Let us consider the cost-push input-output Leontief pricemodel (2.111) in physical
terms, to be in line with PCMC:

pL = C
pL + νc or pL = (I − C

)
−1νc. (8.59)

Remember that νc is a value-added vector, expressed directly as such in value terms,
where no distinction is made between profits and labour costs.

We know furthermore from (2.113) that A (2.9) and C (2.17) are similar matrices:
A = p̂LCp̂−1L .

For Sraffa (pS denoting Sraffa prices), we refer to equation (4.178)

pS = C
pS(1 + r) + w ⋅ π, (8.60)

with w = w̃ ⋅ YL , C
 = q̂−1S (2.16), and π = q̂−1L (4.58) or explicitly:

pS = [I − C
(1 + r)]−1w ⋅ π (8.61)
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Again referring to (2.17) and (4.61), setting uc := [rCpS +w ⋅π], the surplus part in the
prices, (8.60) can be rewritten as

pS = C
pS + [rC

pS + w ⋅ π] = C
pS + uc. (8.62)

We can explicitly calculate the Sraffa prices,

pS = (I − C
)
−1uc, (8.63)

and setting,

uc := q̂
−1(Π + Ω), Π := r ⋅ q̂CpS , Ω := w ⋅ q̂π, (8.64)

we finally get

Π := r ⋅ (q̂C)pS = r ⋅ S
pS , Ω := w ⋅ (q̂π) = w ⋅ L, (8.65)

whereΠ = r⋅SpS defines the vector of gross profitsper industry, andΩ = wL, the vector
of labour costs per industry. Realising the summation, we get total profits P = eΠ and
total wagesW = eΩ.

The vector uc is the total value added per unit of produced commodities in each
industry (sector).

Indeed: eq̂uc = er ⋅ (q̂C)pS + ew ⋅ (q̂π) = r ⋅ eSpS + w ⋅ eL = P +W = Y .
The first observation to be noted is that the Leontief price model (8.59) and the

single-product Sraffa system (8.63) have the same formal algebraic structure and the
same inverse intervenes in both systems.

But, the comparison ends here because the components of value added in Sraffa
are calculated differently than in Leontief. In fact, there still subsists the price vector
pS in the profit component of uc.

A direct relationshipbetweenpL andpSmaybeobtainedas follows:write νc = ν̂ce
and uc = ûce then

ν̂−1c pL = (I − C
)
−1e = u−1c pS , accordingly

pL = ν̂cû
−1
c pS (8.66)

Leontief and Sraffa prices are therefore not equal, except in the special case where
there are no profits and where the unit wage is equal in all industries. In that case,
νc = uc and so pL = pS.

We have just considered vectors; the price vectors pL and pS are not the same but
not completely independent. As we are dealing with the same economic process, both
models must fulfil the same national accounting identities. This means that the price
vectorsmust also fulfil the following conditions in the aggregate for a closed economy:

X = eSpL + e
d̂pL = q̂pL = q̂pS = e

SpS + e
d̂pS and

Y = ef = ed̂pL = e
d̂pS , (8.67)
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so as corollary for the value of the means of production11

K = eSpL = e
SpS . (8.68)

Other common characteristics are:
(1) The production process generates two types of output:

(a) Commodities covering interindustry demands (Sraffa’s conditions of produc-
tion);

(b) Commodities entering the surplus which corresponds to final demand, i. e.,
national income (GDP) in a closed economic system.

The addition of (a) and (b) gives in both models total output.
(2) National income is the total of value added for a closed economy in both models.
(3) In the absence of a surplus, respectively of final demand, the Leontief model is

identical to Sraffa’s model, if the samemonetary numéraire is adopted.
The main differences in this approach are:
1○ Loosley speaking, Leontief’s Input-Output model starts from the total output

of a production process which is then split between interindustry purchases
and a surplus element termed final demand.Whereas Sraffa’s starts by saying
let us consider a process, composed of means of production, which is self-
replacing and is then assumed to produce a surplus.

2○ The choice of the numéraire is left open in Sraffa. If money is chosen, his
model is consistent with the identity (simplified) P + W = Y . Note however
that Sraffa makes no reference to national accounting per se and implicitly
assumes a numéraire defined in physical terms.
Input-Output Analysis on the contrary resorts systematically to money as
numéraire or to index prices to fix the value of flows. National accounting
identities are central to this approach.

3○ Sraffa incorporates explicitly labour, wages and profits as separate entities in
his model.
In Input-Output Analysis wages and profits appear indirectly as one whole
value-added element. There is no split between profits andwages and no spe-
cific assumptions are made regarding these two items.

4○ In fact, referring to Table 2.1 which is the centrepiece of all that follows, Leon-
tief’s approach is horizonal, and his equations are based on the commodity
flow matrix Z in monetary terms. Whereas Sraffa’s approach is vertical, his
equations are based on the transposed commodity flow matrix S in physical
terms (the starting point of Pasinetti’s concept of “vertical integration”, see
Pasinetti [83], Chapter 2.)

5○ More precisely, the Leontief prices pL depend on an empirical distribution of
total value added throughout the various industries.

11 Geometrically, this justmeans that theprice vectors arenot the samebut lie in the samehyperplane.
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In Sraffa (PCMC) value added, i. e., the surplus, is assumed in fine to be dis-
tributed proportionally to the means of production (circulating capital). Fur-
thermore, in calculating the value added, it is assumed that the rate of profits
r and the unit wage rate w are the same in all industries.

6○ Leontief’s Input-Output model also incorporates imports and exports, so
it is immediately applicable to open economics, whereas Sraffa’s original
model refers to a closed economy. The open economy requires an extension
of Sraffa’s model, see Section 8.1.

7○ Finally, Leontief’s Input-Output methodology and Sraffa’s PCMC can both be
extended to joint production. This is an important aspect and brings these
model closer to applications, see A. E. Steenge [110] and T. L. Saaty [99].

This explains the apparent higher complexity of Sraffa’s model and the impor-
tance attributed to the allocation of surplus between wages and profits, an aspect
not addressed to in Input-Output Analysis.

8.6 Sraffa and neoclassical theory

Piero Sraffa’s PCMC opened a new route of economic research because his approach
was totally different from marginalism, the dominant paradigm of economic thought
in the West since about 1900. We shall comment on Sraffa and Walras in Section 8.8
and pursue here aspects of the discussion.

The preface of PCMC presents the economic concept of Sraffa’s book. His ideas
are then developed in a series of paragraphs, with numerical examples, some equa-
tions, but no linear algebra. In our text, we have concentrated on the mathematical
background of Sraffa’s work; let us now take a short look at the central assumptions
of neoclassical theory, which today is the current label for marginalism.

In neoclassical theory, production is seen as a one-way avenue that leads from
“factors of production” to consumption goods. A “production function” f links the
amounts of the factors “capital” (K) and “labour” (L) to the final output Q, i. e., Q =
f (K, L). Labour L can be measured in units of time, but it is not clear how K and Q
can be measured, unless prices of capital goods and consumption goods are known.
The function f must have certain strong mathematical properties: namely for positive
values of K and L it must have positive first derivatives and a negative definite Hes-
sianmatrix. This condition implies the existence of so-called ‘indifference curves’: any
small amount of labour can be replaced by a small amount of capital, without chang-
ing the output Q. The prices of goods depend on subjective factors such as the tastes
and preferences of individuals, and market clearing is attained by the mechanism of
supply and demand.

Sraffa does not resort to the marginal method because his approach centers on
objective laws of production rather than on the individual tastes of consumers and
ideological considerations. He writes in the Preface of PCMC:
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“The investigation is concerned exclusively with such properties of an economic system as do not
depend on changes in the scale of production or in the proportions of factors”.

Clearly, in Sraffa’s context the number of workers (working hours) L is a constant, as
also the total product Q is constant for each industry. Sraffa notes: The marginal cost,
or alternatively the marginal product ‘just would not be there to be found’, (PCMC,
page v). Indeed, the production–labor–capital space contains in the Sraffa case only
the point (Q,K, L), the three values being constant. There are no continuous functions
Q = f (K) or Q = f (K, L) and no applications of differential calculus.

So, the assumption of constant returns in all industries is not a necessary work-
ing hypothesis, as Sraffa says in his preface. In fact, this assumption is implicit in
his whole approach as mathematical formalisations have shown, in particular for the
construction of a Standard system and the corresponding standard commodity and in
questions concerning growth. In all the developments of PCMC, there are otherwise no
changes in the proportions in which the various means of production are used by an
industry, and this is the standpoint of classical economists from Adam Smith (1723–
1790) to David Ricardo (1772–1823) and others. The Cobb-Douglas production function
Q = f (K, L) belongs to neoclassical theory and is heavily criticised by Sraffa.

8.7 Sraffa versus the Cobb–Douglas production function
Roncaglia pointed out ([96], pp. 51–60) that Sraffa, following the classical economists,
versus themainstreamneoclassical economists, operates in a different representation
of an economy of production and exchange. We enter this discussion by the presenta-
tion of the Cobb–Douglas production function.

Mankiw ([63], p. 45) states, presenting theCobb–Douglas production function, that
the “available production technology determines how much output is produced from
given amounts of capital K and labour L. Neoclassical economists express the available
technology using a production function”.

Letting Q denote the amount of output, the strict Cobb–Douglas production func-
tion is then specified as follows ([63], p. 71):

Q = F(K, L) = AKαLβ where α + β = 1, (8.69)

the parameter α is the production elasticity of capital and β the production elasticity of
labour12 so they are both dimensionless. The narrative is: when there is full employ-
ment, unemployment is always voluntary in this approach, then all the production

12 The production elasticity of capital is α =
𝜕Y
𝜕K
Y
K

and the production elasticity of labour is β =
𝜕Y
𝜕L
Y
L

and are dimensionless numbers. D. G. Champernowne [14] in 1936 introduced the notion of elasticity
to get a dimensionless economic measure, circumventing the difficult problem of units in measuring
economic variables.
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is consumed. If Y is the measure of the consumed goods, say Gross Domestic Prod-
uct (GDP) or National Income (NI), then one sets Q = Y . The technology variable A
measures the productivity of the available technology and is a positive dimension-
less numerical parameter.13 The Cobb–Douglas production function is routinely used
by neoclassical econmists; it was reintroduced in 1927 in the USA by Paul Douglas
and Charles Cobb, based on earlier work by the Swedish economist K. Wicksell, 1851–
1926, see Mankiw [63], pp. 71–73. The condition α + β = 1 means constant returns to
scale.14

The marginalist economists searched for a production function incorporating the
property, which produces constant factor shares if the factors always earned their
marginal product. This property is realised by the notion ofMPK = marginal product
of capital: an extra amount of output obtained from an extra amount of capital and
the MPL = marginal product of labour, an extra amount of output obtained from an
extra amount of labour (see Mankiw ([63], p. 51)), as follows

𝜕F(K, L)
𝜕K
∼ F(K + 1, L) − F(K, L), 𝜕F(K, L)

𝜕L
∼ F(K, L + 1) − F(K, L). (8.72)

Paul Douglas and Charles Cobb proposed the strict production function with exactly
those properties,

Capital Income = 𝜕F(K, L)
𝜕K

K = αY , (8.73)

Labour Income = 𝜕F(K, L)
𝜕L

L = (1 − α)Y . (8.74)

This means in other words that the marginalists set the marginal physical product
of capital (MPK) equal to the rate of profits r, the profit per unit of capital, and the

13 That is, a parameter which is supposed to indicate the incidence of available technology on pro-
ductivity, whatever that means. In fact, various sources consulted (Mankiw [63], Branson [11], Chiang
andWainwright [19]) do not give clear definitions of this parameter involving capital, labour and tech-
nology. The latter references are even inconsistent in defining productivity and the variables involved.
Neither Kurz andSalvadori [52],Miller andBlair [65] nor Takayama [116]mention the technology factor.
So the important question is: How to measure the technology parameter A? Solow ([107], p. 312), for
example, considers the technology parameter as a function of time t and writes

Y = A(t) ⋅ F(K, L). (8.70)

Solow then calculates the total differential of (8.70) and gets

Ẏ
Y
=
Ȧ
A
+ A 𝜕F
𝜕K

K̇
Y
+ A𝜕F
𝜕L

L̇
Y
, (8.71)

where dots indicate the time derivative. Solow then is able to estimate the function A(t).
14 A production function has constant returns to scale if an increase of an equal percentage in the
factors of production K, L causes an increase in output Y of the same percentage, z ⋅ Y = F(zK, zL).
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marginal physical product of labour (MPL) equals the wage rate w, i. e., the wage per
unit of labour. The profound sense of this statement is that given the production func-
tion, the price of capital, namely the rate of profits r = P/K, and the price of labour,
namely the wage rate w = W/L, are detemined.15 We have here the fundamental ax-
iom of the theory of market economy: With Cobb-Douglas the price of capital r is de-
termined as themarginal product of capital, the price of labourw is determined as the
marginal product of labour. Here, the capital K and labour L are prior to both prices r
and w,

0 ≤ MPK = 𝜕F(K, L)
𝜕K
= r ≤ 1; 0 ≤ MPL = 𝜕F(K, L)

𝜕L
= w. (8.75)

The factors K and L are aggregate variables obtained from census data, so they give
no indication as to their composition and their valuation; they are determined inde-
pendently and thus in principle can be substituted for one another.

This methodology has been criticized by various authors. For example, Birner [5]
notes pointedly in the first passage of the preface: “One does not need a degree in eco-
nomics to know that in reality this is not the case. The economy consists of a bewildering
variety of buildings, machines, software, skills and ways of organizing production. And
as everyone who has filed a corporate tax declaration knows, it is not even possible to
give more than a rather inexact estimation of their value”.

In fact,more prominently, Joan Robinson [92] was one of the first to systematically
point out that the constitution of capital, in other words the way it is measured, an
indispensable step, is not indicated; furthermore, she noted that capital cannot be
a separate independent factor of production and that there is no such thing as the
substitution of labour by capital.

Concerning the theory of distribution, Cobb–Douglas ([20]. p. 163) reads: “The de-
gree of correspondence is however sufficient to give a considerable degree of corrob-
oration to the law of production which has been worked out and to indicate that the
process of distribution follows in large measure the process of production if sufficient
time is allowed”.

As Utz-Peter Reich writes [89]: “This kernel statement explicates the opposite
role which Cobb-Douglas concedes to “distribution” compared to Sraffa. With Cobb–
Douglas the prices of the commodities are given, as well as the capital K and the size
of labour employed L. Together with the process of production, described by the pro-
duction function Y = F(K, L), the rate of profits r and the wage rate w are determined
by the marginal product, defining ex post the distribution.

On the contrary, with Sraffa the structure of the means of production among the
production sectors is described ex ante by the commodity flow matrix S and the dis-
tribution of the surplus Y between entrepreneurs and workers by choosing the rate

15 Indeed, by definition, the propertyMPK ≥ 0,MPL ≥ 0 is always fulfilled.
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of profits r, 0 ≤ r ≤ R, which precedes the determination of the prices of the com-
modities fromwhich the value of capital K is computed. In other word, with Sraffa the
distribution is determined by the prior choice of the rate of profits r, the price of the
capital, which precedes logically the production. We present here again Sraffa’s mas-
terpiece of work for joint production (8.76), and summarize the procedure to attain the
solution,

Sp(1 + r) + L w̃ ⋅ Y
L
= F,p

Y = (Fe − Se)p,
L = eL = 1,

pC = 1.

(8.76)

The classical economists, such as Quesnay, Leontief, Sraffa, start from the structure of
the economy, aiming to present it by a tableau économique, an Input-Output Table of
a commodity flow matrix. Then Sraffa, given the labour inputs, solved principally the
question of distribution of the surplus between the workers and the entrepreneurs,
by choosing the rate of profits, contrary to the neoclassic economists Cobb and Dou-
glas, where the rate of profits is a result. Sraffa then sets up a complete price system,
leading to the calculation of the waged rate and wages and the prices for every com-
modity of the actual economy, bringing the system into equilibrium, and resulting in
the calculation of the capital K and the national income Y . We present here again this
masterpiece of work for joint production (8.76).

On the contrary, Cobb and Douglas start with capital K and labour L as “pro-
duction factors”, giving national income, leading to the prices of capital as marginal
physical product of capital and the price of labour, as marginal physical product of
labour.

This presentation shows that the approach of the classical economists like Ques-
nay, Leontief and Sraffa to the production economy, starting from the structure
of the economy is irremediably irreconcilable with the approach of the neoclassic
economists like Cobb and Douglas with their approach through a production func-
tion. In this sense, the seminal passage of Joan Robinson ([92], p. 81) gains a new
actuality: “Moreover, the production function has been a powerful instrument of mise-
ducation. The student of economic theory is taught to write Q = F(L,K) where L is a
quantity of labour, K a quantity of capital and Q a rate of output of commodities. He is
instructed to assume all workers alike, and to measure L in man-hours of labour; he is
told something about the index-number problem involved in choosing a unit of output;
and then he is hurried on to the next question, in the hope that he will forget to ask in
what units K is measured. Before ever he does ask, he has become a professor, and so
sloppy habits of thought are handed on from one generation to the next.”16

16 The variables in the production function have been adapted to the actual text.
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8.8 Sraffa andWalras

At this point, wemay also ask, regarding prices, what, if anything, have the prices ob-
tained in Sraffa’smodel in commonwith the equilibriumprices obtained in theWalras
model? Can the two representations of different economic realities, market prices and
production prices be reconciled in one way or another in technical terms?

LéonWalras (1834 – 1910)was a Frenchmathematical economist and taught polit-
ical economyat theUniversity of Lausanne.He developed the general equilibrium the-
ory and published in 1874 the first version of “Éléments d’économie politique pure”.
He proved that any individual market was necessarily in equilibrium if all other mar-
kets were also in equilibrium. This rule became known as Walras’s Law. Walras set
up the theory of general equilibrium by beginning with a few equations and then in-
creasing the complexity reaching a general system of n equations. There are many
assumptions inside the general equilibrium framework. There are a finite number of
goods and a finite number of agents. The notion of utility is introduced. Each agent
has a continuous and strictly concave utility function. There is a specified and limited
set of market prices for the goods in this theoretical economy, essentially determined
by the intersection of a supply and demand curve for various goods. General equilib-
rium analyses the economy as a whole, on the basis of single markets where there is
a partial equilibrium and it exists when supply and demand are balanced.

We must emphasise straightaway that, besides algebraic aspects “Sraffa’s model
is not a particular case of the Walrasian equilibriummodel”, as explained by Oetsch in
[78]. Sraffa, following Leontief, addresses a succession of short-term periods. Starting
from a theoretical analysis, we have shown clearly enough in this text that Sraffa’s
model can be put to use in the analysis of production problems, both for single-
product industries and joint production. TheWalrasian systemon the contrary treated
the notion of “utility” and initiated the “marginal revolution”, describing the equi-
librium and practical equilibrium in the market between demand and supply. He
considered a long-term general economic equilibrium.17

Consider Walras’s model in its simplest general form as presented in Takayama
([116], Chapter 2, Section E):

We suppose all entries given in monetary terms in this optimisation model,
x: the vector of commodities comprising total output of the economy;
p: the price vector of the corresponding commodities x, p = f (x), is a func-

tion expressing the price of each commodity as a function of the quantity
demanded;

17 Miller and Blair ([65], p. 730) comment on this as follows: “Some theorists characterise Leontief’s
model as an approximation of the Walrasian model but with several important simplifications, that
allow a theory of general equilibrium to be applied and implemented empirically.” We leave it up to
readers to each make up their mind on this.
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υ: the vector of maximum commodity amounts that can be produced, per in-
dustry (single product industries);

A = (aij) the productivity coefficients matrix, indicating the amount of, commodity i,
required for the production of one unit of commodity j. It is identical to the
input-output coefficientsmatrix.

Let be the feasible set X = {x : x ≥ o,Ax ≤ υ} where A = (aij). One easily shows
that X is not empty, but compact and convex. Then consider the linear programming
problem:

max
x
(px),

Ax ≤ υ, p ≥ 0, x ≥ 0, υ > 0. (8.77)

This is the problem of optimizing an objective function, here px, under linear
constraints described by matrix A, the final values of both p and x are to be de-
termined.

Chiang [19], p. 51, says: “This is essentially the way that Leon Walras approached
the problem of the existence of a general market equilibrium. In the modern litera-
ture, there can be found a number of sophisticated mathematical proofs of the exis-
tence of a competitive market equilibrium under cetain postulated economic conditions.
Takayama ([116], Chapter 2, Section E) also describes the solution of this linear pro-
gram.

We see again that no prerequisites, as the rate of profits r or the vector of labour L
of any industrial sector, have to be known in before.

As for Sraffa, let us again consider the complete price model for joint production,
with labour, and typically with the positive or semi-positive and irreducible commodity
flow matrix S and the output matrix F,

Sp(1 + r) + L w̃ ⋅ Y
L
= Fp,

Y = (Fe − Se)p,

L = eL = 1,

pC = 1.

(8.78)

Here, on the contrary, with Sraffa the structure of themeans of production among the
production sectors, is described ex ante by the commodity flow matrix S and the out-
put matrix F. The distribution of the surplus Y between entrepreneurs and workers,
by choosing the rate of profits r, 0 ≤ r ≤ R, precedes the determination of the prices of

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



380 | 8 Sraffa and extensions

the commodities from which the value of capital K is computed. The distribution pre-
cedes logically the production. The distribution precedes the determination of prices
through the Sraffa’s price model based on the constituent means of production.

Concluding, the Walras representation of market prices and Sraffa’s representa-
tion of production costs, termed ’prices’, cannot be reconciliated. They follow differ-
ent economic thoughts and theirmathematical bases have their roots in different deep
mathematical theorems, for Sraffa, it is the group around the Perron–Frobenius theo-
rem, belonging to matrix algebra, for Walras, it is the Brouwer fixed-point theorem,
belonging to topological algebra, see Takayama ([116], Chapter 2, Section E).

8.9 PCMC and cost management

Sraffa’s book is not a production-management tool, contrary towhat onemight expect
on reading the title of it: Production of Commodities byMeans of Commodities. Produc-
tion as a business activity, comprising the complete chain from purchasing, manu-
facturing, packaging, distribution onto sales, is an activity of the real economy at the
microeconomic level. An important element of such activity is costmanagement, from
the primary economic sector to the tertiary sector.

Now, as explained in the preface to PCMC, Sraffa’s model investigates at the
macroeconomic level such properties of an economic system that do not depend on
changes in the scale of production or in the proportions of the factors of production
during the reference period under consideration.

Is this approach compatible with the current business practice of cost manage-
ment, if we consider that the rows entering Sraffa’s price model reflect the means of
production of the corresponding productive entity, including labour, in other words,
the question is: Are these factors of production? Basically yes, with one caveat that
does not however basically put into question Sraffa’s approach.

Present day methodology in cost management considers effective costs as con-
stant over a short period, typically on a quarterly (three months) basis. Costs are then
recalculated at such regular intervals and constitute, e. g., the basis for:
– cataloging in detail the components entering into the means of production;
– the determination ex post of average production costs for reporting purposes;
– forecasting of costs for reporting, planning and sales purposes;
– optimising production costs by reallocations;
– assistance in establishing best practices in production;
– fixing pricing policy for targeted gross profits (EBITDA) etc.

The aforementioned caveat is based on the fact that production costs are of two types:
– fixed costs (administrative overheads, amortization, rents, local base taxes etc.)

and;
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– variable costs depending on quantities produced (raw products, energy, distribu-
tion and labour costs etc.).

The latter depend linearly (constant marginal cost) or step-wise on the quantities in-
volved; their effect will however normally be felt only in passing from one short period
to the next, and in that sense the numerical proportions of certain factorsmay change,
in particular with respect to fixed costs. This only concerns the numerical value of cer-
tain production coefficients entering the technology matrix S, not its intrinsic struc-
ture.

What is however quite clear is that marginalist methods of optimisation, such as
calculations of the marginal product of capital and of the marginal product of labour
(8.75), following neoclassical economic theory (see, for example, Mankiw [63], Chap-
ter 3.2), are not used as a practical tool in day-to-day production management, as
noted by Sraffa in his preface to PCMC.

So, the prices obtained by Sraffa’s price equations are not today production costs,
and they are not determined according to the corresponding microeconomic method-
ology. Sraffa’s prices, more precisely, Sraffa’s production costs, on the contrary, define
a general “normal” or equilibrium level of prices for a given technology at themacroe-
conomic level, given total output, i. e., interindustry transactions plus final exoge-
nous demand fuelled by household consumption, private investments, government
purchases and exports. These prices will however indirectly reflect accepted business
practice in cost management andmay serve economic policy makers ex ante for plan-
ning and forecasting purposes as well as ex post in analysing reasons of deviations of
prices from the norm.

There nevertheless arises the question of a possible relationship between abso-
lute Sraffa prices, expressed in monetary terms, and the pricing policies of individual
firms. PCMC is clearly a piece of pure economic theory showing how fundamental eco-
nomic processes, operating at the macroeconomic level work in principle within a so-
cial and circular interindustry framework governing theprices of production and regu-
lating, to a certain degree, the distribution of surplus between producers andworkers.

Based on the Markup Approach (see Section 8.4 and Bortis [8], p. 468), in which
mark-ups differ from industry to industry, are introduced in order to obtain prices that
are equal to the prices obtained in PCMC for the single-product industries pricemodel.
One can indeed consider the Sraffa prices as an approximation of industry production
prices that are based at the outset on standard (normal) costing (see Bortis op. cit.
and Bortis [7], pp. 66–67). The same statement is valid for the extended Sraffa price
model for single-product industries with profits and wages varying from industry to
industry (see Section 8.3). So, followingBortis, we are dealingwithwhat onemay refer
to as “normal” prices based on economic principles. The markets have then the role
to implement these “normal” prices with possible corrections depending on effective
demand.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



382 | 8 Sraffa and extensions

A better approximation is then to incorporate in the technology matrix S fixed
and variable components (following the logic applied by industries for the determi-
nation of fixed and variable costs), an avenue which we leave to further research. At
themicroeconomic level, industry production prices will nevertheless continue to dif-
fer, based on corporate pricing policies which will account for further considerations,
such as optimisation of marginal contributions and of course commercial aspects,
such as marketing costs.
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9 The algebraic structure behind the
“Leontief–Sraffa” interindustrial economy*

We have introduced several times in this text the fundamental importance of in-
terindustrial transactions and of the conditions of production in connection with the
Leontief and Sraffa models. This deserves special attention. Accordingly, this chapter
written by H. A. Nour Eldin presents a complete analysis of the algorithmic properties
of these topics for a closed economy of single-product industries, accompanied by
some illustrative examples.

This chapter exclusively treats the interindustrial market (Figure 9.1),which is just
the production process without surplus d. The interindustrial market just concerns
the quantity qI = Se produced in physical terms or also expressed as xI = Ze in value
terms (Figure 9.1).

Figure 9.1: Production cycle in monetary and physical terms.

9.1 The input-output matrix Z of an interindustrial economy

The Sraffa commodity flow matrix S (2.13) in PCMC and the state matrices A (2.9),
C (2.17), D (2.12) together with the Leontief Inverse (I − A)−1 (2.31) are derived in the
previous Chapter 2 using the total production value vector x = Ze + f, x = Ze + υ
(2.7). In this chapter, we concentrate the analysis on the interindustrial (intermediate)
market as the core of production and technology. Therefore, the existing vector of final
demand f is set to vanish and be replaced by (f ≡ 0). The interindustrial market alone
will be considered. Such treatment is known as an input-output economywithout sur-
plus or, an interindustrial economy.

https://doi.org/10.1515/9783110635096-009
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For the interindustrial economy, the vectors x, p, q are respectively the value vec-
tor x, the price vector p and the quantity vector q of the interindustrial production.

The Figures 9.2–9.3 and Figures 9.7–9.8 are three-dimensional representations of
the (n, n) Input-Outputmatrix and n is the number of lines of the corresponding square
matrices Z44, Z80, Z6, D6. The direction of the continuously numbered horizontal axis
represents the rows of the matrices. This means, at each line i, the quantities of com-
modities i, i ∈ {1, . . . , n} are represented vertically. The second horizontal axis, perpen-
dicular to the first axis, represents the columns j of the matrices or the industrial sec-
tors j, j ∈ {1, . . . , n}. The vertical axis represents the entries or components of thematrix.

Thus, in Figure 9.2 the first line with the peak at number 1, corresponding to the
component (z1,1 = 2, 568) million CHF, it is the input of the sector products of agri-
culture1 in itself. Then, at number 5, corresponding to the component (z1,5 = 9, 796)
million CHF, it is the highest input of the first sector to all the 44 sectors and goes
into 5th appearing group of activities, the sector food products, beverages and tobacco
products, see Figure 10.1. Then comes the sector product of forestry; then one after
the other to the last line, corresponding to the activities: other services; private house-
holds with employed persons, (z44,j) j ∈ {1, . . . , 44}, see Figure 10.2. The highest peak,
corresponding to the matrix component (z12,12 = 24, 878) million CHF, is the input of
the sector coke, refined petroleum products and nuclear fuel; chemicals and chemical
products by itself.

The Perron–Frobenius number λF expresses through the used currency the over-
all strength of the economy whose structure is captured by the initial Input-Output
matrix Z. For normalisation, we define the λF -normalised matrix Zλ,

Zλ = (
1
λF
)Z. (9.1)

As a result of this λF -normalization, other vectors, matrices and variables, e. g.,
the value vector x, are consequently also λF -normalised, xλ = (1/λF)x.

Thus, one presents the λF -normalised Input-Output commodity flow matrix Zλ of
interindustrial production, see Table 2.1 and Figures 9.2–9.3. We present in detail the
semi-positive λF -normalized Input-Output matrix, the output vector xλ and the circu-
lating capital Kλ,

Zλ =

[[[[[[[

[

zλ11 zλ12 . . . zλ1j . . . zλ1n
zλ21 zλ22 . . . zλ2j . . . zλ2n
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

zλ(n−1)1 zλ(n−1)2 . . . zλ(n−1)j . . . zλ(n−1)n
zλn1 zλn2 . . . zλnj . . . zλnn

]]]]]]]

]

, xλ =

[[[[[[[

[

xλ1
xλ2
. . .
. . .
xλn−1
xλn

]]]]]]]

]

xλ =
n
∑
j=1

zλij = Zλe (row–sum), (9.2)

1 The NOGA (Nomenclature Générale des Activités économiques) classification is used.
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Figure 9.2: The Input-Output matrix Z44 of the Swiss interindustrial production 2008 (510.79 Bil-
lion CHF).

Zλe = xλ, xλ = [xλ1, xλ2, . . . , xλn]
, xλi =

n
∑
j=1

zλij,
n
∑
k=1

xλk = Kλ =: K
∗. (9.3)

In the interindustrial economy, the variables are usually expressed in λF units,
e. g., the circulating capital, is expressed as, K∗ := Kλ.2 But we will not overcharge the
notation, rather we continue to write the matrices, vectors and economic variables
without index λ when they are λF -normalized, within Sections 9.2 to 9.4. Thus, e. g.,
matrix Zλ remains noted as Z, like other matrices, vectors and variables.

It is assumed that a sector (branch) i produces a total quantity qi = ∑
n
j=1 sij of a

single product (object) that is offered to sale at a certain single price pi to all sectors
(branches).

As a further illustration, we present the Input-Output Table of Japan 2011, com-
prising 80 sectors (Figure 9.3).

9.2 The interindustrial production matrices Z, S and D
9.2.1 The “Sraffa” commodity flow matrix S, no surplus

The above type of single-product–single-price industries (single product per sec-
tor/branch) leads to an interindustrial production vector q = [q1, q2, . . . , qn], where
qi is the product quantity produced by sector i. It is assumed further that qi is offered

2 In the examples, we use the asterisk ∗ to note the λF -normalized circulating capital: K∗ := Kλ.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



386 | 9 The algebraic structure behind the “Leontief–Sraffa” interindustrial economy*

Figure 9.3: The Input-Output matrix Z80 of the interindustrial production of Japan 2011,
K = 44,197,405Mio YEN (2010, at the exchange rate it gives 3,295.96Billion CHF).

Figure 9.4: The production cycles of the interindustrial economy: row–sum relationships.

for sale to all sectors/branches at a single price pi. For an economy without surplus,
the price vector p = [p1, p2, . . . , pn]; i = 1, . . . , n is the price vector of interindustrial
production.

S =
[[[[

[

s11 . . . . . . s1n
s21 . . . . . . s2n
. . . . . . . . . . . .
sn1 . . . . . . snn

]]]]

]

, q =
[[[[

[

q1
. . .
. . .
qn

]]]]

]

; (Table 2.2) (9.4)
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qi =
n
∑
j=1

sij, q = Se, (9.5)

Z = p̂S =

[[[[[[[[[

[

p1s11 p1s12 . . . . . . p1s1n
p2s21 p2s22 . . . . . . p2s2n
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

pnsn1 pnsn2 . . . . . . pnsnn

]]]]]]]]]

]

, p =

[[[[[[[[[

[

p1
p2
. . .

. . .

pn

]]]]]]]]]

]

. (9.6)

Thematrix S is Sraffa’s commodity flowmatrix in physical terms (branch product),
and the vectorq is the total branch-production quantity of its single-product industries
(object/item).

For multi-product industries or joint production, one can consult Chapters 6 and
Chapter 7. One can treat joint production in a similar way to the one presented here
by just including for every sector a certain number of representative sector products.
Ultimately, one can even include hundreds of products for each sector. Themethodol-
ogy introduced in this chapter is independent on the number of variables used. Deal-
ing with hundreds of sectors or thousands of products does not—principally—lead to
substantial difficulties. Some properties as the matrix sparseness or the irreducibility
problems of non-negative matrices may need to be adequately taken into considera-
tion.

In the interindustrial market, the single-product–single-price industries sell and
buy the quantity vectorq at a givenprice vectorp = [p1, . . . , pn], one can apply directly
the equation (9.6):

S = p̂−1Z, Z = p̂S. (9.7)

Since the interindustrial market satisfies the price-quantity-value relations, we get,
with equation (2.105),

pkqk = xk , p̂q̂ = x̂,
n
∑
k=1

xk = K, (9.8)

and one achieves directly: Se = p̂−1Ze = p̂−1x̂e = q̂e = q.
In summary, the interindustrial matrices Z and S (Sraffa-commodity flowmatrix in

physical terms) satisfy the interindustrial row–sum relationships, see Figure 9.4, with
equations (2.5) we have now set x := xI , and (3.6),

Ze = x, Se = q. (9.9)

One should mention here again the main difference between the value vector x, for-
merly written as xI , of the interindustrial market as the row sum of the normalised
matrix Z – whose component-sum is the circulating capital K (x = Ze; xe = K) – and
the vector x = Ze + f, equation (2.5), x = Ze + υ, equation (2.6).
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9.2.2 The stochastic production matrix D of the interindustrial economy

The stochastic row–sum product of Z and S
An arbitrary non-negative matrixM is representable by the matrix product

M : = (Mij) = α̂M
∗, M∗ = α̂−1M, Me = α, M∗e = e, where

α = [α1, α2, . . . , αn]
, αi =

n
∑
j=1

Mij = (Me)i, (row–sum). (9.10)

ThematrixM∗ is a stochasticmatrix (Gantmacher ([34], Section 13.6)), and the positive
vector α is the row–sum ofM.

By applying this stochastic row–sum product together with the market relation-
ships p̂q̂ = x̂ on the matrices Z and S, one obtains the value, quantity and object prod-
ucts of the Interindustrial Economy (Figure 9.6, Figure 9.7, Figure 9.8),

value x Z = x̂D, Ze = x̂De = x row–sum,

quantity q S = q̂D, Se = q̂De = q row–sum,

object e D = (I)D, De = e row–sum = 1,

D = x̂−1Z = q̂−1S. (9.11)

The stochastic production matrix D is also called the distribution coefficients matrix
of the interindustrial production. The distribution coefficients of D are defined in Sec-
tion 2.1.2, equations (2.20), (2.21) as:

D = (dij); D = q̂−1S; equations (2.20), (2.21)

dij =
sij
qi
; 0 < dij < 1;

n
∑
j=1

dij = 1

i, j = 1, . . . , n; i : input index; j : output index (9.12)

The economic significance of the distribution coefficients is that a coefficient dij
determines the fraction (part) of input-commodity i per unit of commodity i required
for the production of output-commodity j. All distribution coefficients dij are dimen-
sionless.

The definitions and equations here coincide exactly with the stochastic row–sum
product of the Sraffa commodity matrix S (equation (9.11)). Thus, the distribution co-
efficients matrix D of interindustrial economy is a stochastic production matrix D (Fig-
ure 9.7 and Figure 9.8).

De = e. (9.13)

This stochastic productionmatrixD represents a basic algebraic structurematrix of the
Sraffa–Leontief Interindustrial Economy.
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9.3 The value and environmental cycles of “Sraffa” interindustrial
economies

Themonetary value vector x of the interindustrial production satisfies the basic value
and quantity equations

value x Z = x̂D; Ze = x̂De = x; row–sum
quantity q S = q̂D; Se = q̂De = q; row–sum (9.14)

Themonetary value vector x and the quantity vectorq are respectively the row sums of
the Input-Outputmatrices Z and S. ThematrixD is a right stochastic productionmatrix.
Also, for the summation vector e, there is:

p̂Se = p̂q = x = Ze. (9.15)

The role of the vectors of valuex and quantityqwithin a “Sraffa”-Interindustrial Econ-
omy reflects the fact that the quantity vector q = Se is the distinct core variable of
production in Sraffa’s production of commodities (products/services) bymeans of com-
modities (products/services).

9.3.1 The Environmental Cycle of Sraffa’s Production of Commodities by Means of
Commodities (PCMC)

In Sraffa’s production of commodities (products/services) by means of commodities
(products/services), the quantity vector q is a function of all successive previous
products of the prior production stages in the cascaded processes of interindustrial
production during a given period, see Figure 9.5:

Se = q, q = q(q−1(. . . (qenvironment))). (9.16)

In this sense, the interpretationof the interindustrial productionas aSraffa-production
of commodities by means of commodities leads to a production of products that are
cascaded in the interindustrial production chain with the result that: “The almost pri-
mary quantity vector qenvironment is always extracted from the environment.” Further,
and due to the consumption processes (Figures 9.4–9.6): All interindustrial produc-
tion ultimately returns back to the environment. In a similar argumentation, the
circulating capital (Figures 9.4) of the interindustrial economy—as a value vector x
(value added)—is a function of the labor value vector of all the sub-product values
of the previous production stages—within every branch—in the cascaded process of
interindustrial production (Figure 9.5):

Ze = x, x = (xL(xL−1(. . . (xenvironment)))). (9.17)

The components of vectorxα,α = L, L−1, . . ., are the labor costsat production stageα. At
everymicro-production stage α, the corresponding value vector xα is a decision vector
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Figure 9.5: The environmental cycle of Sraffa’s Production of Commodities by Means of Commodities
(PCMC).

that allocates the currency value xα to the product vector according to the priority
weights of decisions taken within this stage of interindustrial production.
As Sraffa’s Production of Commodities by Means of Commodities (PCMC) is processed,
Figure 9.4 and Figure 9.5, the monetary value xα is generated and is added up (accu-
mulated) over the cascade of the value added out of the various production stages.

Ultimately, at the environmental stage of production, the final environment rela-
tion xenvironment = p̂environmentqenvironment holds, in analogy to x = p̂q.

9.3.2 Production recursions of Sraffa interindustrial economies

At every production stage s, the production recursions for the quantity vector q and its
corresponding value vector x are given by the interindustrial recursions (Figure 9.5):

qs+1 = qs+1(qs), q0 = qenvironment,
xs+1 = xs+1 + xs(qs).

(9.18)

The Interindustrial Economy is therefore governedby the following interindustrial pro-
duction relationchips (Figure 9.6),

Z = x̂D = Ax̂ = p̂S,
value x Z = x̂D, Ze = x row–sum,
quantity q S = q̂D, Se = q row–sum,

n
∑
k=1

xk =
n
∑
k=1

pkqk = K. (9.19)

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.3 The value and environmental cycles of “Sraffa” interindustrial economies | 391

Figure 9.6: The row–sum and the stochastic production matrix relationships of the environmental
cycle and of the interindustrial economy.

9.3.3 The input-output matrix Z6 and the stochastic production matrix D6

We consider the interindustrial economy of Switzerland, see Chapter 10.

Example 9.3.1. The (44×44) input-outputmatrix Z44 of the interindustrial production
of Switzerland 2008 (Figure 9.2) has 44 sectors with a circulating capital, without net
commodity taxes, of K44 = 510.79 Billion CHF.We define the (44× 1) sector production
value vector x44 = Z44e44 (Figure10.2) and extract the six largest sectors in descending
order, giving x̃6 = [62.467, 44.069, 42.515, 29.710, 26.178, 21.837].

Compute with e6 = [1, 1, 1, 1, 1, 1] the circulating capital K̃6 = e6x̃6 of these six
largest sectors. Establish the (6 × 6) (entries in Billion CHF) input-output matrix Z6
and the distribution coefficients matrix D6 and present them in appropriated graphs.
Verify that D6 is stochastic.

Solution to Example 9.3.1:
The circulating capital is K̃6 = e6x̃6 = 226.78 billion CHF (44.4 per cent of the in-
terindustrial production CH 2008). We calculate the (6 × 6) input-output matrix Z6
and the distribution coefficients matrix D6,

Z6 =

[[[[[[[[[[

[

12.499 2.0108 6.0905 5.1138 0.5045 1.1164
0.8490 24.878 0.0524 0.9406 0.4730 0.4628
1.9100 1.1924 16.241 2.3434 0.4207 0.8568
0.7710 1.8367 0.0603 4.6234 0.0201 0.7237
0.3951 1.1311 0.1988 0.6243 16.888 0.3582
0.1066 1.4884 0.0069 0.4554 0.0699 2.1435

]]]]]]]]]]

]

, x6 =

[[[[[[[[[[

[

27.335
27.655
22.964
8.036
19.596
4.271

]]]]]]]]]]

]

,

(9.20)
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D6 = x̂
−1
6 Z6 =

[[[[[[[[[[

[

0.4573 0.0736 0.2228 0.1871 0.0185 0.0408
0.0307 0.8996 0.0019 0.0340 0.0171 0.0167
0.0832 0.0519 0.7072 0.1020 0.0183 0.0373
0.0960 0.2286 0.0075 0.5754 0.0026 0.0901
0.0202 0.0577 0.0101 0.0319 0.8618 0.0183
0.0250 0.3485 0.0016 0.1066 0.0164 0.5019

]]]]]]]]]]

]

. (9.21)

Figure 9.7 shows the (6 × 6) Input-Output matrix Z6 of the first six largest sectors (in
billion CHF). The vector x̃6, representing the production of the six largest sectors com-
ing from all the 44 branches of the whole Swiss IOT 2008, is to distinguish from the
production vector x6, containing only the production of those selected six largest sec-
tors among themselves. The corresponding circulating capital for the (6× 6)market is
x6 = Z6e6 about K6 = e6x6 = 109.9 Billion CHF.

Figure 9.7: The input-output matrix Z6 of the six largest sectors of Switzerland 2008.

One easily verifies the equation D6e6 = e6. The Frobenius eigenvalue (Frobenius
number) of D6 is λD = 1 with corresponding eigenvector e6 because matrix D6 is
stochastic (Figure 9.8). 

Figure 9.8: The stochastic production matrix D6 of the six largest sectors of Switzerland CH 2008.
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9.4 Main result: the stochastic similarity table of an
interindustrial economy (GDP-Table)

Given the semi-positive Input-Outputmatrix Z of an interindustrial economy, thenwith
the Frobenius eigenvalue of the stochastic production matrix D, the matrices Z, S, A,
C, D satisfy the following matrix and vector relations:

Matrix Relationships:

(λFrobenius = 1) I/O matrices Stochastic Similarity
value x Z = x̂D A = x̂Dx̂−1

price p T = p̂D B = p̂Dp̂−1

quantity q S = q̂D C = q̂Dq̂−1

object e D = êD D = êDê−1 = D (9.22)

Vector Relationships: ex =K

(λFrobenius = 1) Row–sum FP–Eigenvector
value x Ze = x Ax = x
price p Te = p Bp = p
quantity q Se = q Cq = q
object e De = e De = e (9.23)

The interindustrial vector of value x, the price vector p, the quantity vector q and the
object (item) vector e are respectively the positive Perron–Frobenius eigenvectors of
the quadruple of state matrices (A, B, C, D). They are simultaneously the row–sums
of the quadruple of I/O matrices (Z, T, S, D). The stochastic production matrix D is
the stochastic similarity matrix of all state matrices with the similarity transformation
matrices of value x̂, of price p̂, of quantity q̂ and of object (item) ê = I. The matrix and
vector relationships here can be summed up in the

Stochastic similarity table of an interindustrial economy (GDP-Table)

(λFrobenius = 1) Row–sum PF-Eigenvector Stochastic similarity I/O matrices
value x Ze = x Ax = x A = x̂Dx̂−1 Z = x̂D
price p Te = p Bp = p B = p̂Dp̂−1 T = p̂D
quantity q Se = q Cq = q C = q̂Dq̂−1 S = q̂D
object e De = e De = e D = êDê−1 D = êD

(9.24)

Beside the GDP-table above with x = Ze (production/output table, summation of the
rows), there is an adjoint/dual table corresponding to y = Ze (purchase/input table,
summation of the columns). It has the same structure. The two tables are connected
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through the production–purchase equation y = Dx,3 kx = ex, ky = ey, kx ̸= ky, of
the interindustrial market.

The vectors x, p, q and the object vector e are the internal state vectors of the
interindustrial market model, responsible for the production within the market. The
matrices A, B, C and D are the corresponding state matrices of production. The mon-
etary state vector x is directly measurable through x = Ze. As the other internal state
vectorsp andq are not directlymeasurable through thematrix Z, these vectors should
be treated as computedmodel state vectors that can only be identified through model
computations. In our case, one refers to the Sraffa price model (4.29) exceptionally to
the Oosterhaven price model (2.109) and we are in presence of amodel-based system.

There is an inherent state identification/observation problem arising from the
value-price equation x = p̂q = q̂p, with units [x] = currency, [q] = quantity and
[p] = currency/quantity. Additional information/measurements are necessary to
ensure that the units—such as the price unit [p] = currency/quantity – come from
statistical market prices, generally through the statistical offices of the countries. So
long as such information is unavailable, the price vectors p and quantity vectors q of
the corresponding tables should be regarded as computed state vectors that are com-
patible with the realisation of row–sums, getting the total output, or column–sums,
getting the total outlays, Table 2.1. “Price” or “quantity” design the usual economic
notions and appear conventionally in the construction of IOTs. See also the citation
from the Eurostat Manual [72], p. 239, and equation (2.18).

The left eigenvector γ of the objectmatrixD, equationDγ = γ, determines the sta-
tionary solution for both total output and total outlays. For an accountably balanced
economy, the accounting identity relationship relating the total outlays to the total in-
puts (2.7) takes the form x = xI + f = yI + υ = y. The circulating capital of such an
economy is K = ex (see also Nour Eldin [73]).

9.4.1 The right and the left eigenvectors of the matrices A and Z

1. The internal exchange (state vectors) and the external (boundary) exchange (Input-
Output) processes of the interindustrial market are governed by the right and the left
eigenvectors of the matrices A and Z. The solution of the symmetrical boundary value
problem of the interindustrial market, described as

Boundary Value Problem

[ 0 Z
Z 0 ] [

e
e ] = [

x
y ] , σ = [ 0 I

I 0 ] , σ2 = I, (9.25)

is determined from the following symmetrical eigenvalue problem of exchange. We
are in the presence of the right and the left eigenvector problem.

3 Matrix D is stochastic. For this reason, there is: y = Ze = Dx = DZe ⇒ e = (Z)−1DZe =
(Z)−1(x̂−1Z)Ze = (Z)−1Zx̂−1Ze = x̂−1Ze = De = e.
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Symmetrical Eigenvalue Problem

State Eigenvector: [
0 A
A 0

] [
β
x
] = [

0 I
I 0
] [

β
x
] ,

Input-Output Eigenvector: [ 0 Z
Z 0
] [

s2
s1
] = [

0 I
I 0
] [

s2
s1
] . (9.26)

The matrix σ is the self-inverse matrix of exchange. For every solution {x,β, λF} with
λF , there exists an adjoint/dual solution {x,−β,−λF} (payments solution).

2. The eigenvectors s1 and s2 lead to the stochastic similarity matrices:

stochastic similarity matrix Z1 (right/Labour Market Boundary),

Z1 = ŝ−11 Zŝ1,

Zs1 = s1, Z = ŝ1Z1ŝ−11 , Z1e = e, Z1ŝ−11 = ŝ
−1
1 Z,

stochastic similarity matrix Z2 (left/Consumption Market Boundary),

Z2 = ŝ−12 Zŝ2,

Zs2 = s2, Z = ŝ2Z2ŝ−12 , Z2e = e, Z2ŝ−12 = ŝ
−1
2 Z. (9.27)

In the following sections, the aforementioned matrix and vector relationships will be
deduced.

9.4.2 The stochastic product family (Z, T, S, D)

The (Z, T, S, D)-family satisfies the row–sum and stochastic row–sum product rela-
tionships

Stochastic Product Family {Z,T, S,D}
row–sum stochastic product

value x Ze = x Z = x̂D
price p Te = p T = p̂D
quantity q Se = q S = q̂D
object e De = e D = êD (9.28)

The relationships of thismatrix family result from the basic interindustrial production
relations (2.8), (2.11), (2.17), (2.19).

value x Z = x̂D Ze = x row sum
quantity q S = q̂D Se = q row sum (9.29)

Introduction of the price coefficients matrix T
In combination with the matrix form of the interindustrial market x̂ = p̂q̂, one ob-
tains by substitution Z = x̂D = p̂q̂D = q̂(p̂D) := q̂T. The stochastic row–sum products
for the matrices Z,T, S are then:
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Z = x̂D, T = p̂D, S := q̂D,

Z = p̂S = q̂T = x̂D. (9.30)

The new price coefficients matrix T results as a consequence to the market-price re-
lationships x̂ = p̂q̂. Its row–sum is determined by the multiplication with the object
vector e,

Te = p̂De = p̂e = p⇒ Te = p (9.31)

The row–sum of the matrix T is therefore the price vector p. The row fractions of the
matrix T indicate how the prices pi = ∑

n
i=1 tij are composed, where each matrix entry

tij is the contribution of the commodities i in sector j to the price of commodity i.
Whenever the relative prices are required, the price vector p can be normalised

through the relation ep = 1. With this normalisation, the linear norm of the matrix T
(eTe = ep = 1) will be equal to one.

9.4.3 The stochastic similarity family (A, B, C, D)

Referring to equations (2.8) and (2.9) that define the matrix of technical coefficients of
the input-output coefficientsmatrixA: The coefficient of production aij, equation (2.8),
is the monetary value zij of commodity i (input), divided by the monetary value xj of
commodity j (output) produced, equation (2.8)

A = (aij), aij =
zij
xj
,

i : Input index, j : Output index. (9.32)

With this definition, the matrix relationships between themonetary input-output ma-
trix Z and input-output coefficient matrix A are given by

A = Zx̂−1, Z = Ax̂. (9.33)

(a) The Frobenius–Perron eigenvectors of the (A, B, C, D)-family
Applying the row–sum relationship (branch production value) Ze = x to equation
(9.33) results in

Ze = Ax̂e = Ax ≡ x or Ax = x. (9.34)

The value vector x is therefore the Perron–Frobenius eigenvector of matrix A at the
Frobenius eigenvalue λA = 1.

Introduction of the model-generation matrix B
By further application of the interindustrial market relationships x̂ = p̂q̂, the follow-
ing relationships are obtained:
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Ax = x⇒ (q̂−1Aq̂)p = q̂−1x = p ⇒ Bp = p

⇒ B := q̂−1Aq̂ A = q̂Bq̂−1

Ax = x⇒ (p̂−1Ap̂)q = p̂−1x = q ⇒ Cq = q

⇒ C := p̂−1Ap̂ A = p̂Cp̂−1

Ax = x⇒ (x̂−1Ax̂)e = x̂−1x = e ⇒ De = e

⇒ D := x̂−1Ax̂ (9.35)

The matrix C is the input coefficients matrix, see Section 2.4.2. The matrix B arises
due to the market price conditions. Its Perron–Frobenius eigenvector is the price vec-
tor p. Therefore, we term it the model-generation matrix B. The Perron–Frobenius
eigenvectors of the (A, B, C, D)-family are respectively the value vector x, the price
vector p, the quantity vector q and the object (item) vector e:

Ax = x value x,
Bp = p price p,
Cq = q quantity q,
De = e object e. (9.36)

(b) The stochastic similarity relationships for the (A, B, C, D)-family
In equation (9.35), there is a similarity between thematricesA,B,C,D. Such similarity
is due to a fundamental property of non-negativematrices (see Gantmacher [34]). Let
the vector β be the positive Perron–Frobenius eigenvector of the non-negative matrix
M with the Frobenius-eigenvalue λM , then, the matrix

MF =
1

λF(M)
β̂
−1
Mβ̂ (9.37)

is the stochastic similarity matrix ofM, (MFe = e). The matrix β̂ is the corresponding
similarity transformation matrix.

The similarity relationships in equation (9.35) and the Perron–Frobenius eigen-
vector relations (9.36) lead to the stochastic similarity relationships for the (A, B, C,
D)-family. Especially:

The right stochastic production matrix D, that is De = e, is the stochastic simi-
larity matrix of all the (A, B, C, D)-family matrices with the similarity transformation
matrices {x̂, p̂, q̂, I = ê} of value x, price p, quantity q and object (item) e.

A = x̂Dx̂−1 value x
B = p̂Dp̂−1 price p
C = q̂Dq̂−1 quantity q
D = êDê−1 object e

A = q̂Bq̂−1 = p̂Cp̂−1 = x̂Dx̂−1

D = q̂−1Cq̂ = p̂−1Bp̂ = x̂−1Ax̂ (9.38)
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In summary:
The matrices of the (A, B, C, D)-family are all similar and have the same Perron–

Frobenius eigenvalue λFrobenius = 1. Their positive Perron–Frobenius eigenvectors are
respectively the interindustrial market vectors of value x, price p, quantity q and ob-
ject (item) e.

(c) The stochastic similarity of the Leontief matrix L
The Leontief matrix L = (I − A), whose inverse is the Leontief Inverse (I − A)−1 (2.31),
satisfies the following similarity relations

L = (I − A) = q̂(I − B)q̂−1 = p̂(I − C)p̂−1 = x̂(I − D)x̂−1. (9.39)

As the value vector x is the row–sum of Z, it is interesting to build the product

Lx = (I − A)x = q̂(I − B)q̂−1x = p̂(I − C)p̂−1x = x̂(I − D)x̂−1x ≡ 0. (9.40)

One concludes from these identities the following geometrical relationship: The value
vector x is perpendicular to all rows of matrix L.

9.4.4 Relationships between the (Z, T, S, D)- and the (A, B, C, D)-families

Based on the equations (9.28) and (9.36), themain relationships between thematrices
of the two families are given by

value x Z = x̂D = Ax̂
price p T = p̂D = Bp̂
quantity q S = q̂D = Cq̂
object e D = êD = Dê (9.41)

9.4.5 The stochastic similarity table of an interindustrial economy (GDP-Table)

In summary, thematrix and vector relationships given in the last sections are grouped
in a Stochastic Similarity Table of an interindustrial economy (Table 9.1, Fig. 9.9):

Table 9.1: (GDP-Table).

λFrobenius = 1 Row sum FP Eigenvector Stochastic similarity I/O matrices

value x Ze = x Ax = x A = x̂Dx̂−1 Z = x̂D
price p Te = p Bp = p B = p̂Dp̂−1 T = p̂D
quantity q Se = q Cq = q C = q̂Dq̂−1 S = q̂D
object e De = e De = e D = êDê−1 D = êD
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Figure 9.9: The algebraic structure of the Sraffa–Leontief economy with the state matrices and
eigenvector relationships of the interindustrial and the consumption markets.

9.5 Productivity and interindustrial production*

Notation 9.5.1. See Figure 9.9. In the next Sections 9.5 and 9.6, the coefficients matri-
ces A, C, D, S and vectors x, y with regard to the interindustrial market are written
with an index I, that is as AI , CI , DI , SI , xI , yI if it is needed to distinguish them from
the corresponding complete economy, where surplus d, respectively final demand f
is included. The matrix S and the vector p of the Leontief–Sraffa economy are used
without indices.4

The state matrices of the interindustrial market have the identical FP–eigenvalue
λF(AI ) = λF(BI ) = λF(CI ) = λF(DI ) = 1. The state matrices A, B, C,D have also identical
FP–eigenvalues, but are different from the above FP–eigenvalues of the interindustrial
market. Courtesy of Nour Eldin [73], where the consumption market is treated.

In Summary: The right eigenvector s1 responsible for the value-added/labor market boundary (9.27)
together with the interindustrial purchase vector yI = Ze and the total input/output vector y = yI +
υ = Ze + f = x uniquely determine the FP–eigenvalue λF (C) = 1/(1 + R), as well as the factor of
productiveness R of the complete Leontief–Sraffa economy, including surplus or final demand (Figure
9.9, Figure 9.10, Figure 9.11).

The eigenvalue λF (C), as well as the productivity R, are analytically determined through either
the scaler product relations (Figure 9.10) or the hyperbolic relations (Figure 9.11).

4 The consumption market with matrices such as AC , BC , CC are treated in Nour Eldin [73].
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The price model of Oosterhaven (2.109) is equal to the Sraffa price model (3.15) in the
case of no surplus (physical units) or no final demand (monetary units). In this sec-
tion, we apply on the interindustrial market (9.22), (9.23), (9.24), (9.25), (9.26) the
just-mentioned Sraffa (Oosterhaven) price model. Figure 9.9 visualises on the left side
the state FP–eigenvector relationships AIxI = xI , BIpI = pI , CIqI = qI and DIe = e
of the interindustrial market. The FP–eigenvectors and the state matrices of the con-
sumption market are visualised on the right side and satisfy similar relations.

The principal equations of production and consumption
Independently of the scale of measurements used (physical numéraire, a currency,
gold) for measuring the entries of the input-output matrix Z or the normalised ma-
trix Zλ, the vectors of values, prices and quantities of the interindustrial production
are determined according to two principal sets of equations presented next. We now
introduce these two sets of equations.

Suppose that an interindustrial (intermediate) market is given. Ex ante, the prices
pi of the commodities i and the quantities of commodities qi are initially given through
statistical information, typically collected by national statistical offices. Through the
basic rule xi = piqi for one commodity i, the values xi are obtained and the IOT is con-
structed. This process is formalised in Part I, where the price vector p is supposed to
be known (statistical-based price determination) (see also the remark in the Eurostat
Manual [72] and equation (2.18)). Ex post, on the basis of available IOTs Z, the price
model-based approach is possible, which is presented in Part II with the Sraffa price
model (4.29) where the price vector is calculated through that model (model-based
price determination). Figure 9.9 presents an extension of the complete process of the
interindustrial and consumption market, which here is not treated in detail:

I. Here are summarised the accounting balance identity (2.7) the right eigenvec-
tor s1 of thematrix Z (9.26) describing the input-output exchange of the interindustrial
market and the basic value-price-quantity relationships (2.18), (2.19). Simultaneously
are satisfied, the interindustrial market relationships (9.22), (9.23), (9.24), (9.25), the
GDP-Table 9.1, the input-output relationships and the determinations of the quantity
vectors (2.15),

Accounting Identity: x = Ze + f = xI + f = yI + υ = Z
e + υ = y, (9.42)

Interindustrial Market: xI = p̂IqI , epI = 1,
Right eigenvector of exchange: Zs1 = s1 es1 = 1,
Sraffa’s PCMC: Z = p̂S, q = qI + d = Se + d. (9.43)

The normalised vector s1 (9.26) is the right eigenvector of the input-output ma-
trix Z. The vector q is the PCMC quantity vector with surplus (see Figures 9.1, 9.4, 9.6
and 9.9). We set the index I when the price vector normed to 1, i. e., epI = 1, but in the
Sraffa price model the price vector p has no index.
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II. The Perron–Frobenius eigenvalue λF(C) of the Sraffa input-output coefficients
matrixC (3.44) is uniquely determined by the interindustrial production output yI and
the total production output y through the scalar products with the eigenvector s1 (pro-
jection on s1). The normalisation es1 = 1 of s1 leads to the normalisation eyI = 1 of
the interindustrial outlay/purchase yI . We get,

Frobenius eigenvalue

Cp = λF(C)p,

FP–eigenvalue relationship λ−1F (C) = s

1y = (1 + R) > 1,

normalisation s1e = s

1yI = 1,

productiveness relationship s1y = s

1yI + s


1υ = (1 + R),

productiveness relationship R = s1υ (9.44)

α-parametrisation relations

FP–eigenvalue: λ−1F (C) = s

1y = cosh

2(αν),

productiveness : R = s1υI = sinh
2(αν),

eigenvalue relationship: λ−1F (C) = cosh
2(αν) = 1 + sinh

2(αν) = (1 + R),

productiveness relatioship: cosh2(αν) = 1 + sinh
2(αν) = (1 + R). (9.45)

The factor R is called the productiveness (see Knolle [49]). The value R char-
acterises the overall productivity of an economy in the sense of Krugman [47]
(see Section 3.1.3).

The proof of the principal equations is based on the Sraffa price model (see
Section 3.1.3, (3.43) and (3.44)).

I. The Sraffa price model

Sp = 1
1 + R

q̂p = 1
1 + R

y, Cp = λF(C)p, (9.46)

λF(C) =
1

1 + R
< 1, λ−1F (C) = 1 + R > 0. (9.47)

These eigenvalue equations can be transformed in terms of the monetary matrix Z
using the following identities:

II. Right eigenvector normalization
normalisation: Zs1 = s1 or s1 = s


1Z
, s1e = 1,

Z = Sp̂, C = q̂−1S, Z = q̂Cp̂,
Ze = xI , Ze = yI ,

normalised yI s1e = s

1Z
e = s1yI = 1. (9.48)
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The following accounting identity is a vector-addition relationship:

III. The accounting identity
x = (Ze + f) = (xI + f) = (yI + υ) = (Z

e + υ) = y. (9.49)

The Sraffa price system (I.) and the normalised eigenvector s1 leading to the normali-
sation of the interindustrial outlay vector yI (II.) should satisfy the accounting identity
(III.). The relationships (I.), (II.) and (III.) are only simultaneously valid when the in-
terindustrial input-output vectors (II.) and the total input-output vectors (I.) satisfy the
accounting identity (III.). This leads directly to the input-output relationships (9.50)
(see also Figure 9.10 and equation (9.44)).

Interindustrial boundary vector Interindustrial Input
s1 = s


1Z
, s1e = 1, yI = Z

e = Sp.
It follows a scalar addition relatioship: (2.18), x = y

s1yI = s

1S
p = 1

1 + R
(s1q̂p) =

1
1 + R
(s1y) =

1
1 + R

s1(yI + υ)

= λF(C)s

1x = λF(C)s


1y = 1,

FP–eigenvalue: λF(C) =
s1yI
s1y
=

1
s1y
=

1
s1x
=

1
1 + R

→ productiveness : R = s1υ (value-added). (9.50)

The FP–eigenvalue λF(C) is the ratio between the scalar products s1yI = 1 and s1y,
giving 1/(1 + R), where R is the productiveness of the present economy.

The hyperbolic parametrisation (α-parametrisation)
The parametrisation of the scalar products just treated, through the hyperbolic func-
tions s1υ = sinh

2(γν) = R, s1y = cosh
2(γν) and λ−1F (C) = s


1y = cosh

2(γν) uncovers
the hyperbolic behaviour of the markets and the economy as an algebraic exchange
process (see Figure 9.11). The parametrisation is the result of the scaler-product pro-
jection of the accounting relation x = (Ze+ f) = (xI + f) = (yI +υ) = (Ze+υ) = y on the
normalised interindustrial boundary vector s1. That scaler product projection leads di-
rectly to the productiveness factor R, as well as the hyperbolic function relationships
of the accounting conditions cosh2(γν) − sinh

2(γν) = 1 that parameterises the scaler-
product relationship s1y − s


1υ = s


1yI = 1. For these relationships, the normalisation

e1s1 = 1 of the interindustrial boundary vector s1 leads directly to the normalisation of
the interindustrial outlay e1s1 = (e

Z)s1 = yIe = 1, as well as to the determination of
the eigenvalue inverse λ−1F (C) = (1 + s


1υ) > 1. Both normalisations play a central role

on the derivation, as well as on the parametrisation.
Thus, the scalar-product relationship s1y = s


1yI+s


1υ is parameterised through the

α-variable, such that the scalar-product relationship is transferred to the hyperbolic
relationship cosh2(αν) = 1 + sinh

2(αν). The projection of the accounting equation is
always satisfied for every value of the variables αν and αf (see Figure 9.11).
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Figure 9.10: Geometrical illustration of the productiveness R with the corresponding scaler products
and projection on the right eigenvector, responsible for the external input-output exchange of the
interindustrial market (exchange with the value-added/Labor market). The productivity factor R
reaches a maximum when the vector of value added υ and the right eigenvector s1 of Z are parallel,
R = s1υ (same direction).

The accounting identity at the boundary
The accounting identity (2.7) relating the total outlays to total inputs has to be split
into two boundary (external) accounts. This is achieved by the right and the left eigen-
vectors of the matrix Z. Figures 9.10 and 9.11 illustrate the projection on s1. Similar
geometric illustrations are valid for s2. Optimum productivity is achieved when the
value-added vector is in the same direction (parallel) as s1. Similar argumentation is
valid at the boundary of the final product-consumption market.

Account identity
Right Boundary: x = Ze + f = xI + f final consumption market
Left Boundary: y = Ze + υ = yI + υ value-added/Labour market

Account identity at the boundary
Right Boundary: ⟨s2,x⟩ = ⟨s2,xI⟩ + ⟨s2, f⟩ final consumption market
Left Boundary: ⟨s1, y⟩ = ⟨s1, yI⟩ + ⟨s1,υ⟩ value-added/Labour market (9.51)

9.6 Computational examples

Wefinish this chapterwith twoexamples illustrating the interindustrialmarket,where
the Sraffa price model is used to compute the price vectors. In the first production sys-
tem, there is no surplus, in contrast to the second one that exhibits a vector of surplus.
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Figure 9.11: Graphical illustration of the locus of productiveness R as the function sinh2(αν ). The
independent variables αν and αf connect the productiveness R to the eigenvalue λ−1F (C) = pIy =
cosh2(αν ).

Example 9.6.1. Consider the interindustrial production of a partial production econ-
omy with two sectors, a = wheat and b = iron, represented for a given period of pro-
duction T. Wheat is the numéraire, p1 = 1. Every producer produces one single prod-
uct which is transferred to the other producer at a price to be determined through the
Sraffa price model (4.29),

(3 t. wheat, 1 t. iron)→ (7 t. wheat, 0),
(4 t. wheat, 2 t. iron)→ (0, 3 t. iron). (9.52)

Identify the flow commoditymatrix S. Compute the vector of total output q in physical
terms, the input-output coefficients matrix C, the Frobenius number λC and the price
vector p as the Perron–Frobenius right eigenvector of matrix C.

Compute then the matrices D, A, B, T (9.22). Compute the commodity flowmatrix
Z in monetary terms (here a numéraire) and the corresponding Frobenius number λF
of matrix Z, the vector of total output x, the right and left eigenvectors s1 and s2 of
matrix Z, Zs1 = s1, Zs2 = s2, the circulating capital K, the λF -normalised commodity
flow matrix Zλ, the λF -normalised circulating capital Kλ and the stochastic matrix Z0,
see Figure 9.12.

Verify that the vector of total output x = Ze is a left eigenvector of the distribution
coefficientsmatrixD, associatedwith the Frobenius number λD, according to equation
(4.21) (2). Apply (9.50) to compute the productiveness of this economy, and check the
obtained value with the Frobenius number λC.
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Figure 9.12: The directed graphs associated to the input-output matrix Z and the stochastic produc-
tion matrix D.

Solution to Example 9.6.1:
Identify the commodity flow matrix S, and compute the vector q = Se + d (with d = o
for the interindustrial market) and the input-output coefficients matrix C = Sq̂−1,

S = [ 3 4
1 2
] , q = Se = [ 7

3
] , C = [ 3 4

1 2
][

1
7 0

0 1
3

] = [
3
7

4
3

1
7

2
3

] . (9.53)

The characteristic polynomial

P2(λ) = det(C − λI2) = (λ − 1)(λ +
2
21
) (9.54)

is established. We identify the Frobenius number λC = 1. Having set p1 = 1 for the
numéraire, we calculate the requested price vector p = [1, 4] of the Sraffa price model
Cp = λCp (equation (4.21), (1)).

Then we compute the distribution coefficients matrix D (9.22) and check its
stochastic property,

D = q̂−1S = [
1
7 0

0 1
3

][
3 4
1 2
] = [

3
7

4
7

1
3

2
3

] , De = [ 1
1
] = e, (9.55)

where one verifies that A = D, the non stochastic price coefficientsmatrix,

T = p̂D = [ 1 0
0 4
][

3
7

4
7

1
3

2
3

] = [
3
7

4
7

4
3

8
3

] , Te = p = [ 1
4
] , (9.56)

themodel generation matrix, equal to the matrix C,

B = p̂Dp̂−1 = [ 1 0
0 4
][

3
7

4
7

1
3

2
3

][
1 0
0 1

4
] = [

3
7

1
7

4
3

2
3

] = C, (9.57)
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the flowcommoditymatrixZ inmonetary terms (herewith thenumérairewheat) using
equation (9.30),

Z = p̂S = [ 1 0
0 4
] [

3 4
1 2
] = [

3 4
4 8
] , x = Ze = [ 7

12
] . (9.58)

We obtain a symmetric matrix Z, which is positive and accountably balanced (x = y).
Its Frobenius-Eigenvalue λF is now computed,

P2(Z, λ) = det(Z − λI2) = λ
2 − 11λ + 8 = (λ − 10.217)(λ − 0.783),

λF = 10.217, λ2 = 0.783,

Zλ =
1
λF

Z = 1
10.217
[

3 4
4 8
] = [

0.2936 0.3915
0.3915 0.7830

] ,

K = ex = 19, xλ = Zλe = [
0.6851
1.1745
] ,

yI = Z
e = [

7
12
] = x, y = yI + υ = x⇒ υ = o,

normalised circulating capital: Kλ =
K
λF
=

19
10.217
= 1.8597. (9.59)

Then, we compute the stochastic similarity matrix Z0 = ŝ−11 Zλŝ1. We compute the right
and left eigenvectors of matrix Zλ: s1 = s2 = [0.5542, 1], with Zλs1 = s1 and Zλs2 = s2,
which in the present case are identical, because matrix Zλ is symmetric:

Z0 = [
1.8044 0

0 1
][

0.2936 0.3915
0.3915 0.7830

][
0.5542 0
0 1

] = [
0.2936 0.7064
0.2170 0.7830

] .

(9.60)

We verify that Z0e = e. Thus, Z0 is stochastic. Clearly the Frobenius number is λF0 = 1.
The eigenvector s1 is economically not interpreted, but it may be understood to indi-
cate a direction of the development of the present economy, weighting the commodi-
ties. Further work is necessary to obtain a precise interpretation.

Now, we check that the output vector x = [7, 12] is a left eigenvector of the distri-
bution coefficients matrix D. Indeed,

Dx = [
3
7

1
3

4
7

2
3

][
7
12
] = [

7
12
] = x. (9.61)

Finally, we calculate the productiveness of this economy, either with the Frobenius
number or with equation (9.50),
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R = 1
λC
− 1 = 1

1
− 1 = 0 or

λC =
s1 ⋅ yI
s1 ⋅ y
=
15.9897
15.8797

= 1 = 1
1 + R
⇒ R = 0.  (9.62)

Now we treat an economy with surplus, respectively with final demand.

Example 9.6.2. Consider the production scheme of the partial production economy
with two sectors a = wheat and b = iron for a given period of production of T,

(3 t. wheat, 1 t. iron)→ (9 t. wheat, 0),
(4 t. wheat, 2 t. iron)→ (0, 5 t. iron). (9.63)

Wheat is the numéraire, p1 = 1. Identify the flow commodity matrix S and the vector
of surplus d. Compute the vector of total output q in physical terms, the input-output
coefficientsmatrixC, the Frobeniusnumber λC and theprice vectorpof the Sraffaprice
model as Perron–Frobenius left eigenvector of matrix C. Compute the flow commodity
matrix Z = p̂S in monetary terms, the vector of final demand f = p̂d and the vector of
total output x = Ze + f.

Compute the total outlays yI = Ze, the vector of value added υ = x − yI . Apply
equation (9.44) to compute the productiveness R of this economy. Check R using its
relation to the Frobenius number λC.

Solution to Example 9.6.2:
We identify the commodity flowmatrix S and the vector of surplus d and compute the
vector q = Se + d and input-out coefficients matrix C = Sq̂−1,

S = [ 3 4
1 2
] , d = [ 2

2
] , q = Se + d = [ 9

5
] , C = [

1
3

1
9

4
5

2
5

] . (9.64)

The characteristic polynomial is

P2(λ) = det(C − λI2) = λ
2 −

11
15
λ + 2

45
= (λ − 2

3
)(λ − 1

15
) (9.65)

is established. We identify the Frobenius number λC = 2/3. Having set p1 = 1 for the
numéraire wheat, we calculate the price vector p = [1, 3] as left eigenvector of C, solv-
ing the Sraffa price model Cp = λCp in (4.21) (1). We then obtain the productiveness

R = 1
λC
− 1 = 3

2
− 1 = 1

2
(9.66)

of this economy. We compute the input-output commodity flow matrix Z in monetary
terms and the vector of final consumption f = p̂d in (2.105),

Z = p̂S = [ 1 0
0 3
] [

3 4
1 2
] = [

3 4
3 6
] f = p̂d = [ 1 0

0 3
] [

2
2
] = [

2
6
] .

(9.67)
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Then, we compute the vector of total output x = Ze + f in monetary terms, the vector
of total outlays yI = Ze and the vector of value added υ = x − yI ,

x = [ 3 4
3 6
] [

1
1
] + [

2
6
] = [

9
15
] ,

yI = Z
e = [ 3 3

4 6
] [

1
1
] = [

6
10
] , υ = x − yI = [

9
15
] − [

6
10
] = [

3
5
] .

(9.68)

Finally, we determine the Perron–Frobenius right eigenvector of matrix Z.

Zs1 = λFs1 ⇒ s1 = [
0.7583

1
] (9.69)

Then we verify that the above obtained productiveness R and the FP–eigenvalue λC
can further be calculated (9.44) using the right eigenvector s1 of matrix Z, the vector
of value added υ and the vector of total purchase yI ,

Ra =
s1 ⋅ υ
s1 ⋅ yI
=
[0.7783, 1][3, 5]

[0.7783, 1][6, 10]
=
1
2
= R, λC =

1
1 + R
=
2
3
.  (9.70)

This example illustrates that the FP–eigenvalue λC := λC(C) and the productiveness
R of the present economy are determined either by the matrix Z in monetary terms or
the matrix S of the Sraffa price model.
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10 Exploration of Input-Output Tables

10.1 The Swiss Input-Output Tables and the productiveness

This chapter examines the structure of the symmetric Swiss Input-Output Tables (IOT)
2008 and 2014. An IOT consists of three rectangular tables: the homogenous branches,
the final use and the part of the outlay including the value added (see Table 10.11).

Table 10.1: Structure of the Swiss IOTs 2008 and 2014 at basic prices.

Input homogenous branches Final use

pr
od
uc
ts

homogenous branches (CPA) to
ta
li
np

ut

co
ns
um

pt
io
n

go
ve
rn
m
en
t

in
ve
st
m
en
t

ex
po
rt

to
t.
fin

al
us
e

to
ta
lo
ut
pu
t

(CPA) S1 S2 … Sj … Sn

S1 z11 z12 … z1j … z1n ∑ z1j c1 g1 i1 e1 f1 x1
S2 z21 z22 … z2j … z2n ∑ z2j c2 g2 i2 e2 f2 x2
...

...
... …

... …
...

...
...

...
...

...
...

...
Si zi1 zi2 … zij … zin ∑ zij ci gi ii ei fi xi
...

...
... …

... …
...

...
...

...
...

...
...

...
...

Sn zn1 zn2 … znj … znn ∑ znj cn gn in en fn xn
TOT ∑ zi1 ∑ zi2 ∑ zij … ∑ zin K C G I E F X

NCT t1 t2 … tj … tn tZ tC tG tI tE tF tCT
TIC z1 z2 … zj … zn Kt Ct Gt It Et Ft Xt
VAP 1 2 … j … n VZ
OBP o1 o2 … oj … on OZ

IMP m1 m2 … mj … mn M

OBP x1 x2 … xj … xn X

The symmetric IOT are established on the basis of a supply and a use table. “A supply
table shows the supply of goods and services by product and by type of supplier, dis-
tinguishing supply by domestic industries and imports from those of other countries”,
according to the Eurostat Manual [72], p. 18, and further: “The use table is a product
by industry based table with products and components of value added in the rows and
industries, categories of final uses and imports in the columns. A use table shows the use

1 CPA = Classification of Products by Activities.

https://doi.org/10.1515/9783110635096-010
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of goods and services by product and by type of use, i. e., as intermediate consumption
by industry, final consumption, gross capital formation or exports.” The Swiss IOT 2014
comprises n = 49 branches or sectors, whose exact designations are given in the third
columns of Figure 10.1, Figure 10.2 and Figure 10.4 (see Nathani [68] and Carsten [17]).
The first columns contain the total input of the sectors, and the second columns con-
tain the sector numbers and in brackets the sector codes. The sector number results
from an aggregation of more detailing sector codes, numbered from 1 to 95, appearing
in world Input-Output Tables.

Figure 10.1: Designations of the sectors of the SWISS IOT 2008.

Figure 10.2: Designations of the sectors of the SWISS IOT 2008.
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In this section, the Swiss Input-Output Tables 2008 [68] and 2014 are explored. Their
productiveness is computed. The variables in use are explained2:
zij: quantity of commodity i (Input), required for the production of commodity j

(Output), expressed inmonetary terms at basic prices, also called intermediate
transactions from sector i to sector j;

ci: final consumption of sector i;
gi: final government expenditure of sector i;
ii: final investment of sector i;
ei: final export of sector i;
fi: final exogenous demand for sales of sector i equal to the total final use at basic

prices (TFUBP) per sector fi = ci + gi + ii + ei;
xi: the total demand of commodity i by sector Si (total Output) necessarily equal to

the total production xi = ∑
n
j=1 zij + fj;

∑ zij: total production of the sector j ∈ {1, . . . , n}, sum of zij over index i;
tj: net commodity taxes of sector j;
zj: total intermediate consumption of sector j;
υj: total value-added expenditures of sector j;
oj: output at basic prices of each sector j: oj = zj + υj;
mj: import of sector j;
xj: total expenditure of sector j (total Input): xj = mj + oj;
TOT: total interindustrial production at basic prices;
NCT: net commodity taxes;
TIC: total intermediate consumption/final use at purchasers’ prices.

Abbreviations used in the lower outlay part3 of the Swiss IOTs, Table 10.1:
VAP: value added at basic prices;
OBP: output at basic prices;
IMP: imports cif (cost, insurance and freight);
OBP: outlay at basic prices as total use (output) at basic prices.

Economic variables in use in the Swiss IOTs 2008 and 2014, Table 10.1:
K: total operating capital, K = ∑ni=1(∑

n
j=1 zij);

C: total private consumption;
G: total government purchases or expenditures;
I: total private investments;
E: total exports;

2 The term “basic price” is in German “Herstellungspreis”. The term “purchasers’ price” is “basic
price plus transport and trade margin”.
3 In the SIOTs 2008 and 2014, the term “supply at basic prices” is used instead of “outlay at basic
prices”, as it has been introduced in Chapter 2, Table 2.1.
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F: total final demand (use), F = C + G + I + E;
X: total output of the production of the economy, X = ∑ni=1 xi;
tZ : total net commodity taxes of all sectors tj, that is tZ = ∑

n
j=1 tj;

tC: net commodity taxes on total consumption;
tG: net commodity taxes on total government expenditure;
tI : net commodity taxes on total investment;
tE: net commodity taxes on total export;
tF : net commodity taxes on total final demand, tF = tC + tG + tI + tE;
tCT : total net commodity taxes on total output, tCT = tF + tZ ;
Kt: total of intermediate consumption, Kt = ∑

n
j=1 zj = K + tZ ;

Ct: total consumption with additionally net commodity taxes;
Gt: total government expenditure with additionally net commodity taxes;
It: total investment with additionally net commodity taxes;
Et: total export with additionally net commodity taxes;
Ft: total final demandwith additionally net commodity taxes, Ft = Ct +Gt + It +Et =

F + tF ;
X: sum of total outlay (output) xj at basic prices, X = ∑

n
j=1 xj = M + OZ ;

VZ : sum of total value added υj at basic prices, υZ = ∑
n
j=1 υj;

OZ : sum of total output oj at basic prices, OZ = ∑
n
j=1 oj = VZ + Kt;

M: sum of importsmj,M = ∑
n
j=1mj;

Xt: total output (outlay) of production, comprising total net commodity taxes, Xt =
X + tCT = Kt + Ft .

The irreducibility of the flow commodity matrix Z (or a submatrix of it) contained in
the explored annual Swiss or German IOTs gives the possibility to calculate the pro-
ductiveness R of the corresponding economies.4 As mentioned, the productiveness R
is an economic indicator of the production power of a national economy.

The national accounting equations Y = C + I +G + (E −M) together with the equa-
tions for the total final demand (the total final use) F = C + I + G + E, for the cir-
culating capital K = exI and for the total output (the total use) X = K + F can be
obtained by summation of the adequate columns of the IOTs. Thanks to a recent revi-
sion, the value of the economic variable Y , obtained from the Swiss IOT 2014, is equal
to the value of the Swiss GDP, obtained from the National Accounts and published by
the Official Federal Institutions (© SOFS 2017). The next two examples give illustra-
tions.

4 One needs from here on the complete Swiss IOT 2008 and Swiss IOT 2014 (calculation level of May
2018) from the Federal Statistical Office, Switzerland, containing the supply, the use-table and the
symmetric IOT (siot), https://www.bfs.admin.ch/bfs/en/home/statistics/. Then we analyse the Ger-
man IOT 2013, see: Statistisches Bundesamt Destatis, – Fachserie 18 Reihe 2 -Volkswirtschaftliche
Gesamtrechnungen des Bundes – Input-Output-Rechnung 2013 (Revision 2014, Stand: August 2017).
The calculations of the three following examples have been realised with MATLAB.
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The semi-positive (44 × 44) Swiss IOT 2008 Z contains 44 ⋅ 44 = 1,936 entries,
graphically presented in Figure 9.2. Hundreds of the entries are zero. Thus, one could
expect thatmatrixZ is reducible. Calculationswill show that this is not the case.Matrix
Z is irreducible.

Example 10.1.1. Consider the total intermediate consumption/final use at producers’s
prices (incl. net commodity taxes) of the Swiss IOT 2008. Compute the vector of output
xI = Ze, the circulating capital K = exI , the vector of final use f = c + i + g + ex
(the vector designations are chosen in analogy to C: household consumption, G: gov-
ernment expenditure [consumption of government], I: total gross capital formation
[investments], E: exports) and the vector of total output x = xI + f. Compute the input-
output coefficientsmatrixA = Zx̂−1with regard to the vector of total outputx. Compute
its Frobenius numbers λZ and λA, as well as the productiveness R = (1/λA) − 1 and the
ratio of national income to circulating capital R̃ = Y/K. Verify that the Swiss IOT 2008
Z ≥ 0 is irreducible.

Solution to Example 10.1.1:
One establishes the positive vector of interindustrial output xI = Ze > o, the vector of
final use at basic prices f > o, which is an aggregation of the columns of the final use
table the Swiss IOT 2008. Sub-aggregations of the total final use at basic prices fi are
consumption ci, government expenditure gi, investment ii and export ei (see Table 10.1).
Then, we compute the vector of total output (= vector of total use at basic prices) x =
xI + f > o and the input-output coefficients matrix A = Zx̂−1 with regard to the vector
of total output x.

Matrix A shows to be primitive: Indeed, one gets A2 > 0, Lemma A.9.1. Lem-
ma A.8.2, also applies, (A + I)43 > 0.5 For these reasons, Z and A are irreducible.
This means that the Perron–Frobenius theorem applies and the Frobenius numbers
are positive.

We obtain the Frobenius numbers λZ = 26,425 > 0, necessarily positive, and fur-
thermore, 0 < λA := λF(A) = 0.47779 < 1 within the interval ]0, 1[, according to
Lemma 4.1.1 (b).6 Consequently, the Leontief Inverse (I − A)−1 exists because all the
eigenvalues λ are smaller or equal to λA, λ ≤ λA < 1. We are in presence of a productive
Leontief model. We get the equality

x = (I − A)−1f. (10.1)

We compute the total final use at basic prices F = ef (2.1), obtaining exactly the table
value of the Swiss IOT 2008 F = C + I + G + E = 789,676. We also compute the total

5 There is a number of n = 44 sectors in the SWISS IOT; the exponent is (n − 1).
6 Choose as fictive positive price vector, the summation vector p = e > 0 to formally shift to the Sraffa
system in physical terms, obtaining with (2.18), the commodity flow matrix S = Z > 0, the quantity
output vector q = x and the input-output coefficients matrix C = Sq̂−1 and other necessary vectors.
Then apply Lemma 4.1.1.
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use at basic prices, obtaining exactly the table value X = F + K = 1,308,588. Then we
compute the productiveness R = (1/λA) − 1 = 1.093 of the input-output coefficients
matrix A. We compute from various columns of the Swiss IOT 2008 (all terms in mil-
lion CHF) the circulation capital K = exI = 518,913 and the imports M = 245,480.
In the following items, the net commodity taxes are included: the total final con-
sumption by households C = 298,029, the overall government expenditure G = 69,247,
the total investments I = 114,945, the exports E = 307,454, the circulating capital
K = 518,913. We then compute the Gross domestic product (GDP)7 Y = C + G + I +
(E − M) = 544,196. We compute the ratio of national income to circulating capital
R̃ = Y/K = 544,196/518,913 = 1.049 < R = 1.093, which is slightly smaller than the
productiveness. 

Figure 10.3: The sorted matrix D with the 30 largest sectors (Germany IOT 2011).

In analogy to Example 10.1.1, analyse the Swiss IOT 2014.

Example 10.1.2. Consider the total intermediate consumption/final use at producer’s
prices (incl. net commodity taxes) of the semi-positive symmetric (49 × 49) Swiss IOT
2014 table at basic prices Z (© SFSO 2017). The sector No. 49, called Activities of house-
holds as employers of domestic personnel is skiped, because it is a null vector. There
remain therefore 48 ⋅ 48 = 2,304 entries. One observes that hundreds of the entries
are zero. Verify that the obtained (48 × 48) submatrix which we also denote by Z is
irreducible.

7 The GDP (noted by the Federal Statistical Office (CH) as “Bruttoinlandprodukt”) is designed in our
text as Y , also called in PCMC national income, a notation we are using.
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Compute the vector of total output (= vector of total use at basic prices) x = Ze +
f > o, the matrix A = Zx̂−1 with regard to the vector of total output x, the Frobenius
numbers λZ and λA and the productivenessR = (1/λA)−1. Compute the GDPY , the total
final consumption of households, the government expendituresG, the total investment I,
the export E, the total output (total use at basic prices) X = ex, and the ratio ofnational
income to circulating capital R̃ = Y/K.

Table 10.2 represents the values of total outputs, called the total use at basic prices
on the left edge of the Swiss IOT 2014.

Table 10.2: Total use at basic prices in the Swiss IOT 2014 (in Mio. CHF).

No. xi No. xi No. xi No. xi

1 16,049.6 13 24,506.9 25 12,842.2 37 40,658.7
2 7,427.6 14 81,863.3 26 124,674.8 38 74,849.5
3 47,910.4 15 29,369.3 27 28,348.3 39 81,090.3
4 14,624.8 16 44,243.8 28 57,513.1 40 30,724.6
5 10,363.3 17 15,589.0 29 26,969.1 41 8,787.9
6 5,933.1 18 8,768.1 30 6,762.4 42 48,331.4
7 3,784.0 19 6,178.6 31 9,380.7 43 42,303.7
8 51,761.5 20 22,492.7 32 18,113.7 44 35,859.8
9 106,188.0 21 4,834.5 33 11,303.2 45 55,383.9

10 13,571.9 22 42,845.9 34 17,698.8 46 25,802.2
11 9,787.8 23 9,596.5 35 39,638.1 47 13,784.9
12 22,484.8 24 78,730.8 36 66,793.4 48 15,199.7

49 2,062.6

Solution to Example 10.1.2:
One obtains the input-output coefficients matrix A = Zx̂−1 with regard to the vector of
total output x. Matrix A is again primitive, A2 > 0, with Lemma A.9.1. For this reason,
Z and A are irreducible. The Perron–Frobenius theorems applies, and the Frobenius
numbers are positive.

We calculate the Frobenius numbers, obtaining λZ = 34,452 > 0, necessarily pos-
itive and 0 < λA := λF(A) = 0.4647 < 1, in the interval ]0, 1[, according to Lemma 4.1.1
(b). The justification is as in footnote 6. Consequently, the Leontief Inverse (I − A)−1

exists because all the eigenvalues λ are smaller or equal than λA, λ ≤ λA < 1, and we
are in presence of a productive Leontief model. Then we compute from the Swiss IOT
2014 the following items, where the net commodity taxes are included (all terms in
million CHF): we compute from various columns of the Swiss IOT 2014 the total final
consumption by households C = 345,035, the government expenditures G = 77,777, the
total investments I = 158,682, the exports E = 351,212, the total final use at basic prices
F = C+ I +G+E = ef = 932,706, which in this case is the exact table value of the Swiss
IOT. Then we compute the circulating capital K = 662,275, the imports M = 282,987
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and the total output (= total use at basic prices) X = F + K = 1,594,980, which is also
the exact table value in the Swiss IOT 2014.We then obtain theGross Domestic Product
(GDP) Y = C + G + I + (E −M) = F −M = 649,718, the official value of Swiss GDP 2014
published by the Swiss Federal Statistical Office (© SFSO 2019).

Finally, we compute the productiveness R = (1/λA) − 1 = 1.1518 of matrix A, and
the ratio of national income to circulating capital R̃ = Y/K = 649,718/662,275 = 0.9810,
smaller than the productiveness R = 1.1518. 

Example 10.1.3. Consider the semi-positive (71 × 71) German IOT 2013 (revision 2014:
state August 2017) Z without sector 72: activities of households as employers of do-
mestic personnel.8 We have therefore 71 ⋅ 71 = 5,041 entries. Hundreds of the entries
are zero. Verify that this submatrix is reducible.

Consider the vector x of total output (use)9 at basic prices. Compute the input-
output coefficients (71 × 71) matrix A = Zx̂−1 with regard to the vector x, then the
Frobenius numbers λZ and λA. Compute the GDP 2013, the ratio of national income to
circulating capital R̃ = Y/K. Compute the productiveness R = (1/λA) − 1 and compare
it with the ratio of national income to circulating capital R̃ = Y/K.

Solution to Example 10.1.3:
Wecompute the input-output coefficientsmatrixA = Zx̂−1 of theGerman IOT 2013with
regard to the vector of total usex. Becausematrix (A+I)70 ≥ 0 is semi-positive,matrices
Z and A are reducible according to Lemma A.8.2. This means that Theorem A.10.1 ap-
plies, and therefore the Frobenius numbers are non-negative. We consequently cal-
culate the Frobenius numbers, obtaining λF(Z) = 119,596 > 0, necessarily positive,
and 0 < λA := λF(A) = 0.596695 < 1, in the interval ]0, 1[. The justification is as in
footnote 6.

We compute the productiveness R = (1/λA) − 1 = 0.6771 of the input-output coeffi-
cientsmatrixA. In the following items of intermediate consumption the net commodity
taxes are included10 (all terms inmillion EURO):We compute from the various columns
of the German IOT 2013 the total final consumption by households C = 1,472,436, the
government expenditure G = 593,728, the total investments I = 551,462, the exports
E = 1,257,691 and the circulating capital K = 2,831,297. We then compute the Gross
Domestic Product (GDP), giving Y = C + G + I + (E −M) = 2,826,240, the official num-
ber of the German GDP 2013 published by the Federal Statistical Office of Germany
in 2018. We compute the ratio of national income to circulating capital. R̃ = Y/K =
2,826,240/2,831,297 = 0.9982 > R = 0.6771. 

8 The German designation is: Input-Output-Tabelle 2013 zu Herstellungspreisen – Inländische Pro-
duktion und Importe, in Mill. EURO, die n = 72 laufend numerierte Sektoren umfasst.
9 In German, the term total use of products is translated as: Gesamte Verwendung von Gütern.
10 The German notion for this items is: “Vorleistungen der Produktionsbereiche zu Anschaf-
fungspreisen”, Anschaffungspreisen = purchaser’s prices in English.
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Recapitulation. The productiveness R = (1/λA) − 1 is calculated for the analysed symmetric IOTs of
Switzerland and of Germany. The Frobenius number λA of the input-output coefficients matrix A is in
the range ]0, 1[, 0 < λA < 1. The productiveness R is ameasure of the production power of an economy.

We observe that R is near the national income to circulating capital ratio R̃, R ∼ R̃. We remember
that for Standard systems there is equality, R = R̃.

10.2 Analysis of an aggregated SWISS IOT 2014

In this section, we aggregate the n = 49 branches of the Swiss IOT 2014 to six group of
branches according to following scheme:
S1: Food products, grouping initial sectors: {1, 2, 3}
S2: Textiles, grouping initial sectors: {4, 5, 6, 7}
S3: Machinery, grouping initial sectors: {8, . . . , 23}
S4: Construction work, grouping initial sectors: {24}
S5: Services, grouping initial sectors: {25, . . . , 39}
S6: Social and education, grouping initial sectors: {38, . . . , 49}

The official IOTs of countries are too large to be presented in a book in their totalities.
For this reason, one uses extractions or aggregations of them.

We start with a reduced (6×6) commodity flowmatrix Z obtained by aggregation of
branches according to the given scheme of the Swiss IOT 2014 and the corresponding
(1 × 6) vector of final demand f, obtaining:

Z =

[[[[[[[[[

[

18,121 332 6,818 667 6,814 3,823
681 5,959 4,761 4,127 3,871 1,859
4,419 2,295 149,184 15,777 20,690 22,166
221 84 2,291 10,673 8,080 2,482
6,904 2,187 47,195 10,452 187,030 34,960
1,682 373 9,273 2,307 25,168 28,710

]]]]]]]]]

]

, f =

[[[[[[[[[

[

34,812
13,446
279,350
54,900
327,909
210,726

]]]]]]]]]

]

.

(10.2)

There are, in this reduced IOT 2014, Table 10.3, also aggregated values, that have not
beenmodified with regard to the initial IOT 2014. One verifies that following variables
are unchanged: total final consumption by households C = 345,035, the government
expenditure G = 77,777, the total investments I = 158,682, the exports E = 351,212 and
the circulating capital K = 662,275.We therefore can again compute theGrossDomestic
Product (GDP) Y = C + G + I + (E −M) = 649,718, getting the value published by the
Swiss Federal Statistical Office in 2018. Given these data, we formulate the following

Example 10.2.1 (Frobenius numbers and eigenvectors in relation to the reduced Swiss
IOT 2014, of six groups of sectors). Compute the vector of interindustrial production
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Figure 10.4: Designations of the sectors of the SWISS IOT 2014.
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xI = Ze and the vector of total use at basic prices, x = xI + f (2.5). Compute the input-
output coefficients matrix A = Zx̂−1 (2.8) with regard to vector x and the input-output
coefficientsmatrix of interindustrial production AI = Zx̂−1I with regard to vector xI .

Then compute the characteristic polynomials P6(λ) = det(A − λI6) and Q6(λ) =
det(AI − λI6). Compute the Frobenius numbers of matrices Z, A, AI . Interpret in an
economic context the obtained results.

Solution of Example 10.2.1:
We compute the vector of interindustrial production of the reduced Swiss IOT (6 × 6)
matrix: xI = Ze = [36,575; 21,258; 214,531; 23,831; 288,728; 67,513] and the vector x =
xI + f. Then we compute at first matrix

A = Zx̂−1 =

[[[[[[[

[

0.2538 0.0096 0.0138 0.0084 0.0111 0.0137
0.0095 0.1717 0.0096 0.0524 0.0063 0.0067
0.0619 0.0661 0.3021 0.2004 0.0336 0.0797
0.0031 0.0024 0.0046 0.1356 0.0131 0.0089
0.0967 0.0630 0.0956 0.1328 0.3033 0.1256
0.0237 0.0107 0.0188 0.0293 0.0408 0.1032

]]]]]]]

]

, (10.3)

followed by the matrix AI

AI = Zx̂
−1
I =

[[[[[[[

[

0.4954 0.0156 0.0318 0.0280 0.0236 0.0566
0.0186 0.2803 0.0222 0.1732 0.0134 0.0275
0.1208 0.1080 0.6954 0.6620 0.0717 0.3283
0.0060 0.0040 0.0107 0.4479 0.0280 0.0368
0.1888 0.1029 0.2200 0.4386 0.6478 0.5178
0.0460 0.0175 0.0432 0.0968 0.0872 0.4253

]]]]]]]

]

. (10.4)

Then, there are the characteristic polynomials of both matrices A and AI :

P6(λ) = det(A − λI6) = λ
6 − 1.26967λ5 + 0.63658λ4

− 0.16134λ3 + 0.02195λ2 − 0.00151λ + 0.00004 = (λ − 0.4175)P5(λ),
Q6(λ) = det(AI − λI6) = λ

6 − 2.9921λ5 + 3.5576λ4 − 2.1715λ3

+ 0.7214λ2 − 0.1241λ + 0.0087 = (λ − 1)Q5(λ). (10.5)

The Frobenius numbers are: λZ6 = 212,342, λA = λF(A) = 0.4175 and λAI
= 1; the

productiveness R6 = (1/λA) − 1 = (1/0.4175) − 1 = 1.3952 > R48 = 1.1518, slightly greater
than the productiveness found in Example 10.1.2.

The economical meaning of this result is that productiveness is sensitive to the
degree of aggregation of the sectors of an economy. Greater aggregation makes the
economy to appear stronger.

We treat the following extreme case of aggregation:

Example 10.2.2. Aggregate the Swiss IOT 2014 to one single sector and compute the
resulting matrices, Frobenius numbers and productiveness.
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Figure 10.5: IOT 2011 of Germany—the row–sum of the sorted 30 largest sectors.

Solution of Example 10.2.2:
We get the (1 × 1) commodity flow matrix Z1 = [662,275], the vectors f1 = [932,705],
xI1 = Z1e1 = [662,275], vector x1 = Z1e1 + f1 = [1,594,980]. We compute the input-
output coefficients matrix A1 = Z1 ̂x1

−1 = [0.415225]. The Frobnius numbers are λZ 1 =
662275 > λZ6 = 221,342 and λA1

= 0.415225 and the productiveness R1 = (1/λA1
) − 1 =,

(1/0.415225) − 1 = 1.40833 > R6 > R48. 

Recapitulation. We recognise that, in the three Examples 10.1.1, 10.1.2, 10.1.3, the commodity flow
matrices Z and A are semi-positive, and the Frobenius numbers are smaller than 1 and positive, λA < 1.

This means that for the German IOT 2013 and Swiss IOTs 2008, 2014 productive Leontief models
exist, Theorem A.12.1. One verifies that the inverse Leontief matrices (I−A)−1 exist and that in the five
cases for any positive vector of total final use (demand), f > o; the positive vector of total use (output)
x > o is computed as follows:

x = (I − A)−1f > o. (10.6)

This statement is also valid for the two further developed aggregated Swiss IOTs of Examples 10.2.1,
10.2.2.

There are several figures that we present here. The 30 largest sectors of the sorted
D-matrix (German IOT 2011) are presented in Figure 10.3. In Figure 10.5, we present the
row–sums of the sorted 30 largest sectors of the German IOT 2011. Figure 10.7 shows
the monthly operating capital K∗ (in λF-units) for the USA, GBR, DE (Germany) and
the Euro-Zone.

10.3 Exploration of interindustrial economies
In this section, we start exploring the interindustrial market of the economies.We con-
centrate on the n×nmatrix Z and do not consider the surplus or the GDP.Wewill apply
the algebraic structures and calculate the matrices, developed in Chapter 9, concern-
ing the interindustrial market. This will be presented by the next computations and
figures.
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Figure 10.6: The monthly operating capital K∗ in λF-units for the USA, the Euro-Zone, DE, GRC, PRT,
GBR (1995–2011).

Figure 10.7: The monthly operating capital K∗ in λF-units for the USA, GBR, DE (Germany) and the
Euro-Zone (1995–2011).

10.3.1 The monthly operating capital K∗(λF-units): USA, GBR, DE, Euro-Zone 1995
to 2011

In this subsection, we use the data for the input-output matrix Z from the “World
Input-Output Database” (see World Input-Output Database (WIOD), ([122], 2015)).
More than 40 national and regional Input-Output Tables together with the import-
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export are available. The analysis is applied on the Input-Output Tables for the USA,
GBR, DE (Germany), GRC, PRT and the world regional Input-Output Table for the EZ
(Euro-Zone). This database has the advantage that one can extend the analysis to
other nations or world regions.

Our exploration of the data (Figure 10.6) has yielded an interesting result: The
λF -normalized circulating capital unveils the disorder in GRC, already in the year
about 2004, where the Greek (GRC) peak appears. The beginning of the monetary
problems of Greece is obviously in the years 1998 and 1999 (Figure 10.8 and 10.9).
The GRC (Greece) performance differs remarkably from the USA, the Euro–Zone, DE
or PRT over the years 1995–2011. Current economy/finance indicators have obviously
failed to register. The calculations rely on the official available numbers.

Figure 10.8: The monthly operating capital K∗ in λF-units for the USA, DE (Germany), GRC and the
Euro-Zone (1995–2011).

Figure 10.9:We also compare the Euro-Zone, Portugal and Greece! The monthly operating capital K∗

in λF-units for the PRT, GRC and the Euro-Zone (1995–2011).

Considering the Frobenius number λF as an expression of the whole economic power
of an economy, the division of the Input-Output commodity flowmatrix Z by λF > 0 in-
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corporates reduction, called the λF -normalisation. We expect that this normalisation
makes the economies comparable through their normalised IOTs. We continue here
this exploration.

Observation. The monthly operating capital K∗ for DE and GBR lay intermediate to the Euro-Zone and
USA, with a GBR tendency to the USA. It is remarkable that over the years 1995–2011, the monthly
operating capital K∗ remained between the normalised range 1–2.

10.3.2 The monthly operating capital K∗ (λF-units) for Switzerland 1995–2011

For Switzerland (CH), only the Input-Output Tables for the years 2001, 2005, 2008,
2011 and 2014, the last one with n = 49 sectors, are available, see “Bundesamt für
Statistik” ([12], Schweiz, 2016).

Figure 10.10 shows the operating capital K, in monetary terms, and the monthly
operating capital of the interindustrial production for Switzerland (2001, 2005, 2008
and 2011). The Frobenius numbers for these years are used to normalise the monthly
operating capital and to determine the corresponding monthly operating capital K∗

in the λF-units.

Figure 10.10: The operating capital K without commodity taxes (billion CHF), the monthly operating
capital Km, the Frobenius number (in thousands) and the monthly operating capital K∗ in λF-units
(CH 2001–2011).

Observation. Figure 10.11 shows graphically the monthly operating capital K , in monetary terms, and
the corresponding Frobeniusnumber of theSwiss input-outputmatrices 2001–2011 (left). Themonthly
operating capitalK∗ over theyears2001–2011 is shown (right) in the λF-units. Thisnormalisedmonthly
operating capital remains, almost, within the range 1–2. In comparison with Figure 10.7 (USA, GBR,
DE, the Euro-Zone), there is a dip (K∗ = 1.388) in the year 2005 (CHF), see Figure 10.10. Otherwise, the
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Swiss K∗ remains higher than the value 1.6. This K∗ performance of CHF differs from the K∗ perfor-
mances of the USA, GBR, DE (Germany) or the Euro-Zone over the years 2001–2011.

Figure 10.11: The monthly operating capital K without net commodity taxes (billion CHF) and the
normalised operating capital K∗ for Switzerland 2001–2011.

10.3.3 Switzerland 2008: the six largest sectors of the interindustrial production

Figures 10.12–10.14 show the operating capital K without net commodity taxes, the
monthly operating capital, the Frobenius numbers and the monthly operating capi-
tal K∗ in λF-units for the year 2008. At first, the vector of interindustrial output x in
value terms is sorted in descending order. Then, the input-output matrix is accord-
ingly sorted by a similarity transformation (row-and-column permutations) so that its
Frobenius number remains unaffected.11

10.3.3.1 The model-order reduction using the x-sorting process
The operating capital of Switzerland 2008 without net commodity taxes is K44 =
510.789 Billion CHF (44 sectors). One by one, the upper-left corner of the sorted ma-
trix Z is extracted according to the descending dimensions 35, 30, . . . 8 and 6.

Figure 10.12 shows the table of the computed operating capitalK without net com-
modity taxes, the monthly operating capital, the corresponding Frobenius number
and the corresponding monthly operating capital K∗ in λF-units for the reduced mod-
els with the dimensions 44, 35, 30, . . . 8 and 6. Figure 10.13 illustrates graphically the
operating capital K and the Frobenius numbers for these reduced-order models. The
six largest sectors, corresponding to the 6× 6 matrix, have a production value of more
than 20% ((109.857/510.789) × 100% = 21.5%) of the interindustrial value of produc-
tion (Switzerland 2008).

One should notice in Figure 10.13 (right) that the Frobenius number is only re-
duced from λF = 26,424 to λF = 23,371 for a model-dimension reduction from n = 44
to n = 6. The Frobenius number has been reduced by about 12%, while the number of

11 It is known from matrix algebra that similar matrices have the same eigenvalues.
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Figure 10.12: The influence of model reduction (from n = 44 to n = 6) on the operating capital K
without net commodity taxes (Billion CHF), the Frobenius number (in thousands) and the normalised
operating capital K∗ (CH 2008).

Figure 10.13: The operating capital K without net commodity taxes (billion CHF) and Frobenius num-
ber (in thousands) as functions of the largest sectors (from n = 44 to n = 6, CH 2008).

sectors were reduced from 44 to six sectors. One can conclude therefore that the sort-
ing mechanism used does not affect the Frobenius number seriously whenever the
number of sectors is reduced. In comparison, the Frobenius number of the aggregated
6×6model, matrix (10.2) is λF = 173,483.8 (Figure 10.12, last line), while the Frobenius
numbers for the sorted Swiss IOT 2008, n = 44 and n = 6, are respectively λF = 26,424
and λF = 23,371.12

12 The Frobenius number of the n = 49 Swiss IOT 2014 is λF48 = 34,452. For the aggregated Swiss IOT
2014 with n = 6 aggregated sectors, Example 10.2.1, the Frobenius number is λF6 = 212,342.
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Observation. Figure 10.14 shows the monthly operating capital K∗ (in λF-units) as a function of the
reduced sectors. The number n refers to the largest sectors of the interindustrial market. The monthly
operating capital K∗ is monotonously reducing as the number of sectors is reduced. It remains be-
tween 1 to 2 for the largest 20 sectors. It is reduced linearly from 1.2 to 0.4 whenever the number of
sectors is reduced from 20 to six sectors.

Figure 10.13 (right) suggests that the Frobenius numbers of the Swiss IOT 2008 fluctuate around
a constant, whereas Figure 10.13 (left) and Figure 10.14 suggest that the operating capitals K or K∗

without net commodity taxes follow some linear functions.

Figure 10.14: The monthly operating capital (λF-units) as a function of the largest sectors (from n =
44 to n = 6, CH 2008).

10.3.3.2 The eigenvalue distribution of the matrices E, D and Z (CH 2008)
In an equal priority n×nmatrix E, all the entries are eij = 1, i, j = 1, . . . n. We continue to
explore the Swiss IOT 2008. Figure 10.15 shows the eigenvalues of the 44 × 44 matrix
(1/44)E (the equal priority 44 × 44 matrix E divided by 44), with the characteristic
polynomial P44(λ) = λn−1(λ − 1) (see also Nour Eldin [73]). There is a unique Perron–
Frobenius eigenvalue λ = 1, and all other eigenvalues are zero eigenvalues. The object
production matrix D changes such equal priority distribution of the eigenvalues to
the object production eigenvalue distribution in Figure 10.16. The distribution of these
eigenvalues reflects the priority weights of the producers in response to the desired
objects for production (market demand).

Example 10.3.1. Compute the eigenvalues of the 3 × 3 matrix (1/3)E, where E is the
equal priority matrix.

Solution of Example 10.3.1:
Set up the (3 × 3) equal priority matrix E and of the matrix (1/3)E,

E = [[
[

1 1 1
1 1 1
1 1 1

]]

]

,
1
3
E =
[[[

[

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

]]]

]

. (10.7)
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Figure 10.15: The eigenvalues of the equal priority matrix (1/44)E in polar form (CH 2008): One ob-
serves that with equal priorities the eigenvalues are totally bundled.

Figure 10.16: The eigenvalues of the production matrix D in polar form (CH 2008): One observes that
with the distribution matrix D the eigenvalues spread out.
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The characteristic polynomial of matrix (1/3)E is:

p3(λ) = λ
2(λ − 1) (10.8)

The Frobenius number is λ = 1 and the two other eigenvalues are λ2 = λ3 = 0. 

Again, this eigenvalue distribution of the object productionmatrixD is changed to
the eigenvalue distribution of thematrix Z, see Figure 10.17. Almost all the eigenvalues
of the matrix Z are now on the real axis in a descending order. This eigenvalue distri-
bution of the matrix Z reflects the priority weight assignments by the buyers (buyer
demand) to the object prices offered by the producers in the interindustrial market.

Figure 10.17: The eigenvalues of the input-output matrix Z in polar form (CH 2008): One observes
that the eigenvalues of the Swiss IOT 2008 matrix Z are nearly all real.
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11 Conclusions and outlook

What have we obtained in theory and practice after some 440 pages of explanations,
definitions, formulas and calculations, commenting on a 60-year-old opus of less than
100 pages?

We have analysed in detail Sraffa’s initial model centred on single-product indus-
tries, which is truly basic. It was presented by Sraffa in PCMC in a quaint, archaic style,
mixing examples, formulas and textual explanations with no reference to the mathe-
matical background.

We summarize in six points the essence of Sraffa’s price model!
(1) Sraffa‘s price model determines in a cyclic production process of n sectors and

n commodities, measured in physical terms, on the basis of structural economic data,
the ‘costs of production‘ of every commodity, termed as ‘prices‘, and brings themwith
positive wages for workers and with positive profits of entrepreneurs into an account-
ing balance, which is the proposed equilibrium to attain.

(2) Sraffa’s pricemodel establishes the accounting balance for each of the n indus-
trial sectors of the economy with respect to the production prices.

(3) Occurring accounting balance equations can be aggregated to the overall ac-
counting equations, i. e., X = K + (P + W) and Y = P + W , of the whole economy,
which are in analogy to the national accounting equation, Y = C + I + G + (E − X), also
obtainable from some column-sums of Leontief’s Input-Output Tables, e. g., the Swiss
IOT 2014.

(4) The Sraffa price model defines a dynamic system, under the condition that
the interindustrial market adopts Sraffa’s prices. Then, the production technology, de-
scribed by the means of production for the actually analysed period, is recreated for
the next period, ensuring the same technology, and this process is going on from pe-
riod to period.

(5) Changes in the technologymatrixmay be applied to reflect the evolution of the
technology and are possible at the start of every period.

(6) In a Sraffa production system which additionally has the properties of a Stan-
dard system, consisting exclusively of basic commmodities, the national income is de-
termined by the productiveness of the represented economy.

The link between Sraffa’s price model in physical terms, here represented again
for single-product industries,

Sp(1 + r) + w̃ ⋅ Y
L
⋅ L = q̂p = x⇒

e(Sp) + re(Sp) + w̃ ⋅ Y
L
⋅ (eL) = e(q̂p) = ex⇒

K + (P +W) = K + Y = X,

(11.1)

https://doi.org/10.1515/9783110635096-011
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and Leontief’s Input-Output Tables (IOT) in monetary terms becomes thereby
clearly visible, especially through the accounting balances, summarized above.

And now we come to more detailed considerations:
In Sraffa’s model, by assumption, each of the n industries produce separately one

commodity, thus providing a total number of n different commodities. In short, a sys-
tem of linear equations is constructed in four steps, based on the following approach,
enabling one to calculate the n prices of the commodities, thewage rate of theworkers
and the rate of profits of producers owning the industries:
– the concerned commodities are goods per se, ranging from raw materials to fin-

ished goods such as machines;
– industries are constituted of means of production, which are linear combinations

of goods completed by labour;
– prices are introduced, but the numéraire in which they are measured is not de-

fined; the prices are relative prices and purely numerical quantities. One unit of a
given commodity multiplied by its price gives its value;

– the production period considered is short term, typically one year. There are no
capacity constraints and no changes in themeans of production employed.Work-
ers are paid at the end of the period, and the wage rate is a fixed parameter and is
the same for all workers in all industries;

– having established the conditions required for a sustainable production from pe-
riod to period, the possibility of generating a production surplus is considered;
this surplus (tacitly assumedabsorbedbydemand) is distributedbetween thepro-
ducers and the workers;

– the part of the surplus allotted to producers constitutes their profits; it is as-
sumed that this part is distributed to producers in proportion to the value of their
means of production (operating capital), so that the rate of profit is uniform for
all industries;

– Sraffa introduces the term “national income” equal to the aggregate value of the
surplus obtained by summation, which he normalises by convention to one. The
quantity of total labour is also normalised to one.

– In fact, in PCMC, Par. 12, Sraffa early introduced the term “national income” in
relation with the term surplus or net product. Indeed, at this moment Sraffa has
in mind the complete production scheme of an economy, as presented by an input-
output table (IOT) in physical terms. Then the net product is the “gross national
income” and can be associated to the accounting balance X = K +W + P (2.145),
containing Y = K +W , inherent to the Sraffa price model, see Chapter 10.

– The national accounting identity Y = C + I + G + (E − M) is contained in the
IOTs.

Presented as such, together with various obscure passages in PCMC due to Sraffa’s
loathing to followamoremathematical approach, thismodel of aproduction economy
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appears to be as a theoretical curiosity and has indeed been treated as such, or even
ignored, by mainstream economists.

Wehave now reformulated Sraffa’s initial single-product industrymodel, his stan-
dard commodity model and his presentation of joint production in up-to-date nota-
tions and concepts based on the systematic use of matrix algebra and graph theory,
while working out the completemathematical properties and clarifyingwherever nec-
essary Sraffa’s definitions and terms, some of them implicitly implying a closed econ-
omy as a general condition of validity, and tidying up loose ends.

The methodology underlying our investigations follows a step-by-step approach
that may be summarised as follows, allowing of course for frequent moves backwards
and forwards:
– prepare a schematic description of the production processes under consideration;
– elaborate a network representation of those processes;
– formalise the foregoing steps by setting up mathematical models of the corre-

sponding systems of production;
– investigate the properties of the algebraic structures involved and clarification of

terms;
– proceed with systematic numerical examples of the models;
– explore practical applications of these models.

In this connection, we summarise some of ourmodest contributions to a better under-
standing of PCMC, which have been in the focus of intense research activities, such
as:
– analyse the price concepts used in Input-Output Analysis on the basis of a novel

systematic analysis, Chapter 2;
– emphasise the central role played by the Perron–Frobenius theorem (presented in

Appendix A) in the economic price models of Leontief and Sraffa and a Theorem
presented by Ashmanov ([2], Theorem 1.5, p. 39) for productive Leontief models;

– underline the importance of measurement units and the numéraire, Section 2.8;
– bring out the technology matrix S, with and without inclusion of “subsistence

wages”, Section 3.6, and more generally the fundamental importance of the con-
ditions of production and of the surplus ratio;

– calibrate the national income Y as usual by an appropriate currency inmonetary
units, typically in Section 4.9, i. e., no systematic normalization to Y = 1, as in
PCMC;

– prove formally that, in the general Sraffa price model of single-product industries,
the price vector is positive, p > o, Section 4.3;

– read the general relationships between profits and wages as r = R̃(1 − w̃), Sec-
tion 4.1.2, where R̃ = Y/K;

– establish the fundamental relationsR = di/(qi−di) (5.7), characterising a Standard
system, Definition 5.1.1 for single-product industries, Section 5.1, and show that,
in a Standard system the prices, but not labour, are independent of r and w;
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– introduce the orthogonal Euler affinity to work on the concept of the Standard
System, Section 5.2;

– propose the SraffaNetwork and its adjacencymatrix as a basic tool for the analysis
of linear production processes, Section 4.6;

– present the algebra required to understand PCMC, Par. 57–61, in a newly detailed
form in connection with the determination of non-basic commodities in joint pro-
duction;

– reformulate Manara’s sufficient conditions for positive prices in joint systems of
production, with single-product industries as a special case (Section 6.6);

– develop an explicit model of agricultural production based on Sraffa’s PCMC,
Chap. XI, Section 6.7;

– innovate with the whole Chapter 7 on ecological economy, contributed by H.
Knolle. The application of Sraffa’s theory of joint production to price models are
developed, including a recycling process for waste products, or price models in-
cluding alternative CO2-emissions trading, illustrated by numerical examples.
Negative prices may appear for waste products and the effect on the prices of the
other commodities is studied;

– extend Sraffa’s model to an open economy and a system of services, especially
developed in Sections 8.1–8.2;

– drop the assumption of a uniform rate of profit r and of a single basic wage unitw,
Section 8.3;

– use of the diagonal mark-up matrix k̂ to define an alternative representation of
Sraffa’s price equation, Section 8.4;

– set up the incompatibility between Sraffa’s price model and the marginalist
economists, like Cobb-Douglas, Section 8.7;

– innovate with the whole Chapter 9 on the interindustrial economy, contributed
by H. A. Nour Eldin. Here, the algebraic structure of such an economy is inves-
tigated, and Nour Eldin explores the relationships between the commodity flow
matrices Z in monetary terms, respectively S in physical terms. He continues to
investigate the relationships between input-output coefficientsmatricesA, respec-
tively C, together with those of the distribution coefficients matrix D, as well as the
price partition matrix T, whose components present the parts of the commodity
prices attributed to the production sectors;

– apply finally this algebra to the Swiss Input-Output Table (IOT) 2008 and to IOTs
of contemporaneous EURO-Zone Input-Output Table.

As mentioned, we have dropped conventions introduced by Sraffa, such as the sys-
tematic normalisation of national income and total labour to one, inadequate for the
practical calculation of effective prices. We make extensive use ofmatrix analysis, es-
pecially, matrix inversion, aggregation through the use of the summation vector, re-
placement of vectors by diagonal matrices and the left and right eigenvalue problems.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



11 Conclusions and outlook | 435

At the formal algebraic level, we have insisted on the attributes a) positive, b) semi-
positive c) non-negative on one hand, and d) reducible, e) irreducible on the other
hand, of matrices in the case of Leontief quantity models and single-product Sraffa
systems. The central role of the Perron–Frobenius theorem, see Perron [86], Frobenius
[31], Gantmacher [34], Varga [118], Young [125], Horn and Johnson [43] is developed,
as well as a theorem on productive Leontief models presented by Ashmanov ([2], p. 39)
for which we present a more general new proof.

The use of graphs, or networks if one aims at applications, greatly facilitates the
introduction to the conceptual structures of Sraffa’s model, its circular nature and its
close connections to Input-Output Analysis. Indeed, networks have become an indis-
pensable interdisciplinary tool of analysis and modeling in the social sciences (see,
in particular, Newman: Networks, An Introduction [70] and Ormerod: How Networks
Can Revolutionise the World [76]). They nicely highlight Sraffa’s presentation as a re-
finement of Leontief’s approach to a circular economy by the explicit introduction
of wages and labour, complementary to the usual presentation of the Input-Output
Tables where these items are normally tucked up in the value-added component. Fur-
thermore, hismodel is consistentwith the fundamental national accounting identities
once a monetary numéraire has been adequately put to use.

Finally, as clearly emerges from our various comments and footnotes with histori-
cal references, Sraffa’s conceptual framework sheds light on the types of practical eco-
nomic problems the early macroeconomists Petty, Law, Cantillon and Quesnay were
grappling with during the 17th and 18th centuries.

Sraffa’s breakthrough lies in the device of a model of a production economy con-
structed as follows. Given:
– a technology matrix S and the conditions of production for a sustainable produc-

tion economy;
– a vector of final demand d, defining the social surplus in quantity terms;
– a vector of employed labour L;
– two parameters: the rate of entrepreneurial profits r and the basic unit wage w,

which fix value added;

one defines a system of linear equations that completely determines prices which
should be compared with theWalrasian approach central to neo-classical economics.
That is the meaning of Sraffa’s subtitle for PCMC: Prelude to a Critique of Economic
Theory. We must however point out that the foregoing is in fact a prelude centered on
systems of production involving basic commodities, fulfilling the conditions of pro-
duction that ensure sustainability of the system. When non-basic commodities also
participate in production, further effects appear, and possiblemarket clearingmecha-
nisms enter the picture, but then sustainability becomes problematic. Other economic
approaches and Sraffa may then usefully complete each other.

With this behind us, making use of the extended definition of commodities going
beyond Sraffa’s original approach, we are now in presence of a structured mathemat-
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ical tool revealing the versatility of the Sraffian economic model. This instrument for
the investigation of circular processes, applying the powerful mathematical tool of
linear operators (in this context real n × nmatrices), are destined to be discovered by
economists as a creative complement to the mainstream marginalist approach for in-
vestigations in economics. In particular, we have already indicated how to start incor-
porating money as such in the model, how to cope with land (only outlined by Sraffa)
and how to extend the model to an open economy. And as regards applications, we
have mentioned possibilities in ecological economics, with examples, and presented
the numerical results of an application of Sraffa’s model to the Swiss economy.

Without exaggeration, we can accordingly say that Sraffa’s model has now been
brought up to the requiredmathematical standards indispensable for further research
in Sraffa studies, which are no idle pastime but have much to contribute in new ap-
proaches to political economy. Although still incomplete, as it does not integratemon-
etarymacroeconomics at present, themodel is sufficiently flexible for opening up new
avenues of research. In particular, a step towards the full potential of the model is fa-
cilitated by assuming variable rates of profit and variable wage units throughout the
concerned industries. In this connection, we must once again insist on the fact that
Sraffa’smodel is a short-term approach simulating the “market”, andmust not be con-
fused with an equilibrium model. His prices must not be confused with A. Smith’s
natural prices, which are a long-term equilibrium concept.

This being said and bearing in mind that Sraffa’s model is a particular version of
Input-Output Analysis, the following are some such avenues for theory and applica-
tions of Sraffa’s price model, without regard to the complexities involved. More elabo-
rate techniques and concepts such as those presented in Takayama [116], Chap. 1; 4–7
and Welsh [121], could also be efficiently put to use in this context following a reso-
lutely heuristic approach (see Taleb [117], Antifragile. Things that Gain from Disorder,
pp. 217–223):
– First of all, Chapters VI, IX, X, XII, and Appendices A–C of PCMC, which we have

not addressed, should be analysed using the Sraffa Network approach and the
algebraic and computational apparatus now available.
Then in a larger perspective:

– Pursue avenues described in Miller and Blair ([65] Chapter 13 and 14), and EURO-
STAT Manual ([72], Chapter 15), and, in particular:

– Elaborate detailed models of open economies with varying rates of profits for en-
trepreneurs and varying wage rates in accordance with the industry and, in the
case of joint production, prices of identical commodities depending on the indus-
try producing them;

– incorporate explicitly investment, savings, taxes and government spending and
the balance of payments into the single-product Sraffa system for an open pro-
duction economy;

– embed the model into a fully fledged monetary economy of production and ex-
change, meaning accounting for credit and debt and other monetary effects gener-
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ated by a sophisticated banking system (referring to PCMC Par. 56, this is a neces-
sary requirement if one intends to examine the detailed construction of the Stan-
dard system and the Standard Commodity in joint systems of production);

– investigate further basic and non-basic commodities. The central importance of
basic commodities lies in the fact that they satisfy Sraffa’s conditions of produc-
tion and thus ensure sustainability, favoring medium- to long-term growth. They
are essential for the viability of circular economic systems.
Non-basic commodities, beyond their possible role in subsystemswhere theymay
act more or less as basics, disrupt circularity and are usually detrimental to sus-
tainability. They characterise linear economic systems and, for example, provide
a fertile ground for marketing and short-term consumerism;

– introduce capacity constraints and institutional constraints into the Sraffa pro-
duction processes, with a new look at optimisation analysis;

– explore of other links with neoclassical models, in particular comparison of the
equilibrium concepts in Sraffian andWalrasianmodels and their practical utility;

– investigate further the practical significance of the Standard system and the Stan-
dard commodity;

– study further the mathematical properties of joint production processes, includ-
ing the effects of rapid depreciation and amortisation of technologies in the
present age of digitalisation;

– introduce variable prices for identical commodities produced in different joint-
production processes simultaneously producing the same commodity in their out-
put;

– include information, financial capital and patents as further species of commodi-
ties. In fact, consider everything which has a price, distinguishing between com-
modities generating;
– value added during the period under consideration;
– possible value added in future periods;
– no value added.

– As regards the latter, investigations into non-productive economic processes, us-
ing the Sraffian approachwithout surplus. For example, in the context of financial
markets: operations based on information and virtual commodities alone and de-
ficient conditions of production of financial techniques leading to Ponzi finance
and non-sustainable financial systems.

– Apply Sraffa’s model to analyse the globalised world economy considered as a
closed system;

– use this model, a factual representation of the economic production process de-
void of ideological preconceptions, as a tool in devising reindustrialisation poli-
cies;

– adapt Sraffa’ price model to possible changes in the notion of social surplus, re-
placing the present use of surplus equal to GDP.
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But entirely new issues are rapidly entering the scene. The world of digitalisation, al-
gorithms and Big Data is in the course of fundamentally modifying the technology
matrix S at the heart of Sraffa’s model of a production economy. The social conse-
quences are disturbing, to say the least. InWeapons of Math Destruction, Cathy O’Neil
[75], a former Wall Street quant, gives a vivid description of how all this is increasing
inequality and threatening the basis of our democratic societies. This is just an an-
tipasta; the looming consequences of successive surges in artificial intelligence (deep
learning), robotics and neurotechnologies will be even more dramatic, as systemat-
ically described by Laurent Alexandre [1], surgeon and neurobiologist, in La Guerre
des Intelligences. The changes for labour and employment in Sraffa’s model will be
drastic and far reaching. For the moment, nobody knows where we are heading: to-
wards the Garden of Eden, as optimistic technology pundits would have it, or as antic-
ipated decades ago following the darker sides of human nature, towards the world of
Fahrenheit 451 or that of Zardoz,1 the world of underdogs dominated by a technologi-
cal elite controlling basic commodities. Sraffa’s approach cannot provide ready-made
solutions, but it may help decision makers in analysing the economic consequences
of future developments.

In a certain sense, we have deconstructed and reconstructed, with emphasis on
numerical results, Sraffa’s Production of Commodities by Means of Commodities, start-
ing out from Leontief’s Input Output Analysis. We now have a sound mathematical
basis for a theory of value in economics and results can be expected from investiga-
tions along the avenues indicated here should thus open the way to a Constructive
Critique of Neoclassical Economic Theory. The central issue focuses on the creation
of value added and its equitable distribution as income between entrepreneurs, capi-
tal owners and wage earners, with the accompanying aim of overcoming present-day
trends in poverty and unemployment.

We conclude that Input-Output Analysis and Sraffian models have further theo-
retical and practical potential and can effectively participate in bringing new blood
and substance into the economic curricula of all institutions of higher academic and
professional learning. That is our final message.

When the facts change, I change my mind. What do you do, sir?
(quotation attributed to J.M. Keynes)

1 Film by John Boorman, 1974, starring Sean Connery and Charlotte Rampling.
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A.1 A short guide to algebraic concepts and techniques

The reader is encouraged to get comfortably acquainted with the following concepts
and techniques used again and again throughout our exposition (all the more elabo-
rate mathematical details are given below).

We draw the reader’s attention to the fact that the presentation of these concepts
may vary from one author to another, e. g., in Bortis, Kurz and Salvadori, Miller and
Blair, Pasinetti, Schefold, thus complicating understanding and comparisons:

Vectors
– column υ and row υ representations of a vector
– left and right multiplication of a matrix with a vector
– use of the summation vector to obtain sums of vector and matrix components
– normalized vectors, like υ, with component sum equal to 1, eυ = 1

Matrices
– a matrixM and its transposeM

– the inverse matrixM−1

– diagonal matrices and diagonalization
– the identity matrix
– left and right multiplication of a matrix with another matrix
– formulation of eigenvalue problems; eigenvalues and eigenvectors

Theorems
– the Perron–Frobenius theorem, ensuring positive prices for non-negative and ir-

reduciblematrices
– a theorem published by Ashmanov [2], ensuring that a Leontief model is produc-

tive

The reader should distinguish between formal algebraic manipulations of matrices
and vectors and numerical calculations with such entities. For the latter, calculations
by hand on 2 × 2 matrices are extremely helpful in checking formal results and to
become a trained user of numbers through numerical examples. Most results can
be applied directly to n × n matrices unless explicitly mentioned otherwise in the
text. By the way, 2 × 2 matrices are not as trivial as one may think. In fact they crop
up as fundamental tools for example in plane geometry, complex function theory
and in specialized areas of physics such as special relativity and quantum mechan-
ics!

https://doi.org/10.1515/9783110635096-012
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A.2 Some elementary matrix algebra

It is now necessary to present some elementarymatrix algebra, see also Miller & Blair
[65], Appendix A, and Kurz & Salvadori [52], Mathematical Appendix, as well as Gant-
macher [34] and Zurmühl [126]. Basic knowledge is indispensable to correctly manip-
ulate all the entities used in Input-Output Analysis.
(1) A vector x, consisting of m components, generally xi ∈ ℝ, i = 1, . . . ,m, is a column
vector. We note xm×1, if it is necessary to show the number of elements m. It is also a
m × 1 matrix. Its transpose x is a row vector,1 conversely the transpose of the trans-
pose (x) of a column vector is again the same column vector x. This operation is an
involution,

x =
[[[[

[

x1
x2
. . .
xm

]]]]

]

, x = [x1, x2, . . . , xm], (x
)

= x. (A.1)

(2)We need subsets of unit vectors, denoted by as ei = [0,0, . . . , 1, . . . ,0], where the
i-th component is equal to 1 and the others vanish. The set of vectors ℰ = {e1, . . . , en}
is a basis of the n-dimensional Euclidean vector space ℝn, i ∈ {1, 2, . . . , n}.

(3)Anm×nmatrixA = (aij) is presented as a table and consists ofmnmatrix elements
aij ∈ ℝ, i = 1, . . . ,m, j = 1, . . . , n, We note also Am×n, if it is necessary to emphasize the
number of rowsm and the number of columns n. The transpose of a matrix A, written
A = (aji), is obtained bymaking the rows to columns and the columns to rows. Notice
the rule (A) = A. The transposition of a matrix is an involution,

A =
[[[[

[

a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
. . . . . . . . . . . . . . .
am1 am2 . . . . . . amn

]]]]

]

, A =
[[[[[[

[

a11 a21 . . . am1
a12 a22 . . . am2
. . . . . . . . . . . .
. . . . . . . . . . . .
a1n a2n . . . amn

]]]]]]

]

. (A.2)

Matrices A with n = m are called square matrices. A matrix A with A = A is called
symmetric.

(4) There are important special matrices and vectors. Anm × n zero matrix, consisting
only of zeros. There further is the n × n unit or identity matrix:

0 = 0m×n =
[[[

[

0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

]]]

]

, In = I =
[[[

[

1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

]]]

]

.

(A.3)

1 The row vector x can also been written as x = [x1 x2 . . . xm], without separating commas between
its elements, if we want to emphasize the matrix nature of this vector, namely a 1 ×mmatrix.
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The m × n zero matrix is necessary when defining the addition of matrices. The
identity matrix is necessary in the context of multiplications of square matrices.

The zero vector is written here with a minor bold o. An other important vector is
the n × 1 summation vector e = [1, 1, . . . , 1], consisting of ‘1’:

o =
[[[

[

0
0
. . .
0

]]]

]

, e =
[[[

[

1
1
. . .
1

]]]

]

. (A.4)

(5) The addition of matrices is obtained by adding element by element.

Definition A.2.1 (Addition of two matrices). Consider the m × n matrices with m rows
and n columns,

A =
[[[

[

a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
. . . . . . . . . . . . . . .
am1 am2 . . . . . . amn

]]]

]

, B =
[[[

[

b11 b12 . . . . . . b1n
b21 b22 . . . . . . b2n
. . . . . . . . . . . . . . .
bm1 bm2 . . . . . . bmn

]]]

]

. (A.5)

The sum of matrices A and B is them × nmatrix,

C = A + B =
[[[

[

a11 + b11 a12 + b12 . . . . . . a1n + b1n
a21 + b21 a22 + b22 . . . . . . a2n + b2n
. . . . . . . . . . . . . . .

am1 + bm1 am2 + bm2 . . . . . . amn + bmn

]]]

]

. (A.6)

Example A.2.1. Consider the 3 × 3 matrices,

A = [
[

3 1.5 2
1 4 7
1 −2 5

]

]
, B = [
[

1 0 −2
1 2 −3
2 2 3

]

]
. (A.7)

Then the sum is

C = A + B = [
[

3 1.5 2
1 4 7
1 −2 5

]

]
+ [

[

1 0 −2
1 2 −3
2 2 3

]

]

= [

[

3 + 1 1.5 + 0 2 + (−2)
1 + 1 4 + 2 7 + (−3)
1 + 2 −2 + 2 5 + 3

]

]
= [

[

4 1.5 0
2 6 4
3 0 8

]

]
.  (A.8)

The following rules for the addition ofm × nmatrices A = (aij), B = (bij), C = (Cij),
i = 1, . . . ,m, j = 1, . . . , n apply.

Lemma A.2.1 (Rules for addition ofm × nmatrices).
(1) Associative law: (A + B) + C = A + (B + C);
(2) Null element: A + 0 = 0 + A = A;

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



442 | A Mathematical tools

(3) Inverse element -A: A + (−A) = (−A) + A = 0;
(4) Commutative law: A + B = B + A;
(5) For any k ∈ ℝ, one has k ⋅ (A + B) = k ⋅ B + k ⋅ A.

(6) The scalar product. Consider the 1 × n matrix A = [a11, a12, . . . , a1n] := u =
[u1, u2, . . . , un] and the n × 1 matrix B = [b11, b21, . . . , bn1] := υ = [υ1, υ2, . . . , υn] that
are also written as vectors. The scalar product of the vectors u and υ is the product,

uυ = u ⋅ υ = [u1, u2, . . . , un]
[[[[[

[

υ1
υ2
. . .
. . .
υn

]]]]]

]

:=
n
∑
k=1

ukυk . (A.9)

The scalar product of the summation vector e by itself is

e ⋅ e = [1, 1, . . . , 1]
[[[[[

[

1
1
. . .
. . .
1

]]]]]

]

= n. (A.10)

Consider the semi-positive vector d ≥ o.
By definition let dk > 0 be a positive component of d = [d1, . . . , dk > 0, . . . , dn].

The following implicationholds (the vector e > o canbe replaced by any other positive
vector p > o),

d ≥ o⇒ ed = [1, 1, . . . , 1]
[[[[[

[

d1
. . .
dk
. . .
dn

]]]]]

]

≥ 1 ⋅ dk = dk > 0. (A.11)

(7) Then, one defines the multiplication of matrices and the power operation.

Definition A.2.2 (Products of two matrices). Consider2 the case of an m × n matrix A
and an n × pmatrix B,

Am×n =
[[[

[

a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
. . . . . . . . . . . . . . .
am1 am2 . . . . . . amn

]]]

]

, Bn×p =
[[[[[

[

b11 b12 . . . b1p
b21 b22 . . . b2p
. . . . . . . . . . . .
. . . . . . . . . . . .
bn1 bn2 . . . bnp

]]]]]

]

. (A.12)

2 Note that it is convenient here to indicate the number of rows and column of a matrix as an index
symbol, when describing the multiplication of matrices.
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The scalar product of the i-th row of matrix A with the j-th column of matrix B gives
the (i, j)-element cij of a newm ×mmatrix C:

cij =
n
∑
k=1

aikbkj ⇒

Cm×p = Am×n ⋅ Bn×p =
[[[[[[

[

c11 c12 . . . . . . c1p
c21 c22 . . . . . . c2p
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
cm1 cm2 . . . . . . cmp

]]]]]]

]

. (A.13)

Note that for a multiplication of two matrices, the number of elements in the rows of
the first matrix, here A, must be equal to the number of elements in the columns of
the second matrix, here B.

Example A.2.2. Consider the 3 × 3 matrices,

A3×3 =
[[

[

3 1.5 2
1 4 7
1 −2 5

]]

]

; B3×3 =
[[

[

1 0 −2
1 2 −3
2 2 3

]]

]

. (A.14)

Then compute the product,

C3×3 = A3×3 ⋅ B3×3 =
[[

[

3 1.5 2
1 4 7
1 −2 5

]]

]

[[

[

1 0 −2
1 2 −3
2 2 3

]]

]

= [[

[

3 ⋅ 1 + 1.5 ⋅ 1 + 2 ⋅ 2 3 ⋅ 0 + 1.5 ⋅ 2 + 2 ⋅ 2 3 ⋅ (−2) + 1.5 ⋅ (−3) + 2 ⋅ 3
1 ⋅ 1 + 4 ⋅ 1 + 7 ⋅ 2 1 ⋅ 0 + 4 ⋅ 2 + 7 ⋅ 2 1 ⋅ (−2) + 4 ⋅ (−3) + 7 ⋅ 3

1 ⋅ 1 + (−2) ⋅ 1 + 5 ⋅ 2 1 ⋅ 0 + (−2) ⋅ 2 + 5 ⋅ 2 1 ⋅ (−2) + (−2) ⋅ (−3) + 5 ⋅ 3

]]

]

= [[

[

8.5 7 −4.5
19 22 7
9 6 19

]]

]

. (A.15)

We present the rules of multiplication only for square matrices. Here the first im-
portant rules with transposed matrices appears. Note again that the transpose of a
matrix A is another matrix, A’, created by writing the columns of A as the rows of A
(A.2).

Lemma A.2.2 (Rules for multiplication of n × nmatrices).
(1) Multiplication: With two n × n matrices A, B, the matrix A ⋅ B (also written AB) is

again an n × n matrix;
(2) Associative law: (A ⋅ B) ⋅ C = A ⋅ (B ⋅ C);
(3) Neutral element: A ⋅ I = I ⋅ A = A;
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(4) Distributive law: A ⋅ (B + C) = A ⋅ B + A ⋅ C;
(5) In general: A ⋅ B ̸= B ⋅ A;
(6) (A ⋅ B) = B ⋅ A;
(7) A ⋅ A and A ⋅ A define symmetric matrices.

Definition A.2.3 (Powers of a matrix). Consider nowa n×n squarematrixA and k ∈ ℕ.
Ak is the product of k copies of matrix A,

Ak = A ⋅ A ⋅ . . . ⋅ A⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k
. (A.16)

(8) The diagonal operator of a vector is an important tool. In the present application,
vectors may be represented in two equivalent ways:

Consider the vector x = [x1, x2, . . . , xn]. It can be converted into a diagonal matrix.
We denote diag(x) = x̂, a diagonal operator on a vector which delivers amatrix, where
the diagonal elements xii of matrix diag(x) are equal to the elements xi of vector x,
following the rule xii = xi, i = 1, . . . , n. Here, due to the notations of Miller & Blair [65],
the diagonal matrix is denoted by x̂, i. e.,

x̂ =
[[[[

[

x1 0 . . . 0
0 x2 . . . 0
. . . . . . . . . . . .
0 0 . . . xn

]]]]

]

. (A.17)

Note that x̂ = x̂.
8.1 In the contravariant form with x = [x1, x2, . . . , xn] as column vector, the transpo-

sition x is a row vector. We then have for 𝒳 = x1 + x2 + ⋅ ⋅ ⋅ + xn:

𝒳 = ex. (A.18)

8.2 In the covariant form, the vector elements xi become diagonal elements of the
diagonal matrix x̂ (A.17). We then have for summation in compact form:

𝒳 = ex̂e. (A.19)

8.3 With x̂ (A.17) there is the important rule

x̂e = x⇔ x = ex̂. (A.20)

8.4 Consider a positive vector p = [p1, . . . , pn] > o and build the diagonal matrices p̂
and p̂−1; then one has the identity

I = p̂p̂−1 = p̂−1p̂. (A.21)
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A square matrix is regular, respectively, singular, if its determinant is different from
zero, respectively, equal to zero, Definition A.4.2.

(9)We define the important notion of the rank of a matrix:

Definition A.2.4 (The rank of a matrix). The n ×mmatrix A ̸= 0 has rank rank(A) = ρ,
if it has at least a regular ρ− row submatrix and all its submatrices of more than ρ rows
are singular.

A.3 Determinant of a matrix

For this section, see Lütkepohl [60], pp. 451–452. The determinant of matrices are only
defined for square matrices. For a 1 × 1 matrix A = [a11] the determinant equals the
single element a11, written as det(A) = |A| = a11. For anm ×mmatrix the determinant
may be defined recursively. Supposem = 2; then the determinant is defined as follows:

A = [ a11 a12
a21 a22

]⇒ det(A) = |A| := a11a22 − a12a21. (A.22)

For instance,

A = [ 3 1.5
4 7

]⇒ det(A) = |A| = 3 ⋅ 7 − 1.5 ⋅ 4 = 15. (A.23)

To specify thedeterminant of am×mmatrixA = (aij), i, j = 1, . . . ,m,wedefine theminor
|Aij| corresponding to the indices pair (i, j) of thematrix element aij as the determinant
of the (m − 1) × (m − 1)matrix Aij = (akl), k, l = 1, . . . ,m − 1, k ̸= i, l ̸= j, that is obtained
by deleting the i-th row and the j-th column from A; there arem2 minors. The cofactor
of aij denoted by Aij, is the minor multiplied by (−1)i+j, i. e., Aij = (−1)(i+j) ⋅ |Aij|. Now by
defintion,

det(A) = |A| :=
m
∑
j=1

aij ⋅ Aij =
m
∑
i=1

aij ⋅ Aij, (A.24)

for any i or j, i, j ∈ {1, . . . ,m}. It can be shown that it does not matter which row or
column is chosen in (A.24) for the development, because the determinant of a matrix
is a unique number.

Example A.3.1. Consider the 3 × 3 matrix,

A = [[
[

1 1 −1
2 0 −1
1 −2 1

]]

]

. (A.25)
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We expand thematrixA, for example by taking the 2nd row, to obtain its determinant.
First, we determine the three cofactors,

A21 = (−1)
(2+1)

[

1 −1
−2 1

]

= (−1)(1 ⋅ 1 − (−1) ⋅ (−2)) = 1,

A22 = (−1)
(2+2)

[
1 −1
1 1
]

= (1 ⋅ 1 − (−1) ⋅ 1) = 2,

A23 = (−1)
(2+3)

[
1 1
1 −2
]

= (−1)(1 ⋅ (−2) − 1 ⋅ 1) = 3. (A.26)

Then the determinant is

det(A) = |A| = a21A21 + a22A22 + a23A23
= 2 ⋅ 1 + 0 ⋅ 2 + (−1) ⋅ 3 = −1.  (A.27)

Then, the following rules apply for the calculation of determinants of matrices
A = (aij), B = (bij), i, j = 1, . . . ,m.

Lemma A.3.1 (Rules for the calculation of determinants of matrices).
(1) The determinant of the identity matrix is 1, det(I) = det(Im) = 1.
(2) If A is a diagonal matrix, then det(A) = a11a22 ⋅ . . . ⋅ amm.
(3) det(cA) = cm det(A) for c ∈ ℝ.
(4) det(AB) = det(A)det(B).
(5) If A contains a row or a column of zeros, then det(A) = 0.

A.4 Inverse matrices and further elementary matrix algebra

(1) The inverse matrix of a square matrix has the role of the reciprocal 1/x of a real
number x ̸= 0.

Consider a general m × m matrix A = (akl), k, l = 1, . . . ,m. To define its inverse
matrix A−1 we need to return to the cofactors Aij = (−1)i+j|Aij| of a matrix A, defined in
the above Section A.3. With these cofactors we build the adjugate matrix as follows.

Definition A.4.1 (The adjugate or adjunct matrix).

A =
[[[[

[

a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . . . . . . . .
am1 am2 . . . amn

]]]]

]

⇒ adj(A) =
[[[[

[

A11 A12 . . . A1m
A21 A22 . . . A2m
. . . . . . . . . . . .
Am1 Am2 . . . Amm

]]]]

]



. (A.28)

An m × m matrix A = (aij), i, j = 1, . . . ,m is regular, if its determinant does not
vanish, det(A) ̸= 0. For regular matrices the inverse matrix can be defined.
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Definition A.4.2 (The inverse matrix of a regular matrix). The inverse matrix of a
square regular matrix A is the adj(A) divided by the determinant det(A) ̸= 0,

A−1 = 1
det(A)
⋅ adj(A). (A.29)

The following rules apply for calculating with inversematrices, determinants and
transpose of matrices. Consider again the m × m matrices A = (aij), B = (bij), i, j =
1, . . . ,m.

Lemma A.4.1 (Rules for calculation with inverse matrices).
(1) (A)−1 = (A−1);
(2) (cA)−1 = 1

cA
−1, c ∈ ℝ \ {0};

(3) If A is diagonal, then A−1 is also diagonal with diagonal elements 1
aii
.

Now we illustrate these notions with a concrete example

Example A.4.1. Consider the 3 × 3 matrix (A.25).
Compute all the cofactors of A, then construct adj(A) and calculate the inverse

matrix A−1.
The nine cofactors are:

A11 = (−1)
(1+1)

[

0 −1
−2 1

]

= (0 ⋅ 1 − (−1) ⋅ (−2)) = −2,

A12 = (−1)
(1+2)

[
2 −1
1 1
]

= (−1)(2 ⋅ 1 − (−1) ⋅ 1) = −3,

A13 = (−1)
(1+3)

[
2 0
1 −2
]

= (2 ⋅ (−2) − 0 ⋅ 1) = −4,

A21 = (−1)
(2+1)

[

1 −1
−2 1

]

= (−1)(1 ⋅ 1 − (−1) ⋅ (−2)) = 1,

A22 = (−1)
(2+2)

[
1 −1
1 1
]

= (1 ⋅ 1 − (−1) ⋅ 1) = 2, (A.30)

A23 = (−1)
(2+3)

[
1 1
1 −2
]

= (−1)(1 ⋅ (−2) − 1 ⋅ 1) = 3,

A31 = (−1)
(3+1)

[

1 −1
0 −1
]

= (1 ⋅ (−1) − (−1) ⋅ 0) = −1,

A32 = (−1)
(3+2)

[
1 −1
2 −1
]

= (−1)(1 ⋅ (−1) − (−1) ⋅ 2) = −1,

A33 = (−1)
(3+3)

[
1 1
2 0
]

= (1 ⋅ 0 − 1 ⋅ 2) = −2. (A.31)
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Aswe have calculated the determinant det(A) = −1 in Example A.3.1, we easily get
the adjunct matrix and the inverse matrix, as

adj(A) = [[
[

−2 1 −1
−3 2 −1
−4 3 −2

]]

]

⇒

A−1 = adj(A)
det(A)
=

1
−1
⋅ [[

[

−2 1 −1
−3 2 −1
−4 3 −2

]]

]

= [[

[

2 −1 1
3 −2 1
4 −3 2

]]

]

, (A.32)

and of course,

A ⋅ A−1 = [[
[

1 1 −1
2 0 −1
1 −2 1

]]

]

[[

[

2 −1 1
3 −2 1
4 −3 2

]]

]

= [[

[

1 0 0
0 1 0
0 0 1

]]

]

. (A.33)

(2) For the matrix x̂ the diagonal matrix x̂−1 is

x̂ =
[[[[

[

x1 0 . . . 0
0 x2 . . . 0
. . . . . . . . . . . .
0 0 . . . xn

]]]]

]

, x̂−1 =
[[[[[[

[

1
x1

0 . . . 0

0 1
x2
. . . 0

. . . . . . . . . . . .
0 0 . . . 1

xn

]]]]]]

]

, (A.34)

and as usual the matrix times its inverse yields the identity matrix,

x̂x̂−1 = x̂−1x̂ = In =
[[[[

[

1 0 . . . 0
0 1 . . . . . .
. . . . . . . . . . . .
0 0 . . . 1

]]]]

]

. (A.35)

When amatrix S is multiplied by amatrix T, then the resulting matrix S̃ = ST is called
the “matrixmapped by matrix T” or shortly the “mappedmatrix”.

(3)We now establish an anti-symmetry property for the transpose of commodity flow
matrix S̃, mapped by the diagonal matrix γ̂,

S̃ := γ̂S = [[
[

γ1 0 0
0 γ2 0
0 0 γ3

]]

]

[[

[

s11 s21 s31
s12 s22 s32
s13 s23 s33

]]

]

= [[

[

γ1s11 γ1s21 γ1s31
γ2s12 γ2s22 γ2s32
γ3s13 γ3s23 γ3s33

]]

]

⇒

S̃ = Sγ̂ =[[
[

s11 s12 s13
s21 s22 s23
s31 s32 s33

]]

]

[[

[

γ1 0 0
0 γ2 0
0 0 γ3

]]

]

= [[

[

s11γ1 s12γ2 s13γ3
s21γ1 s22γ2 s23γ3
s31γ1 s32γ2 s33γ3

]]

]

,

S̃ := γ̂S ⇔ S̃ = Sγ̂.
(A.36)
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(4) There is also a rule of symmetry for the mapped vector of total output,

q̃ := γ̂q = [[
[

γ1 0 0
0 γ2 0
0 0 γ3

]]

]

[[

[

q1
q2
q3

]]

]

= [[

[

γ1q1
γ2q2
γ3q3

]]

]

, and

q̂γ = [[
[

q1 0 0
0 q2 0
0 0 q3

]]

]

[[

[

γ1
γ2
γ3

]]

]

= [[

[

q1γ1
q2γ2
q3γ3

]]

]

= q̃, therefore

q̃ := γ̂q = q̂γ. (A.37)

(5) Diagonalizing the mapped vector of total output we get the useful identity q̃ =
γ̂q:

̂q̃ =
[[[[[

[

γ1q1 0 . . . 0
0 γ2q2 . . . 0
. . . . . . . . . . . .

0 0 . . . γnqn

]]]]]

]

=
[[[[[

[

γ1 0 . . . 0
0 γ2 . . . 0
. . . . . . . . . . . .

0 0 . . . γn

]]]]]

]

[[[[[

[

q1 0 . . . 0
0 q2 . . . 0
. . . . . . . . . . . .

0 0 . . . qn

]]]]]

]

= γ̂q̂⇔ ̂q̃ = ̂̂γq = γ̂q̂. (A.38)

(6) Another important identity is

x̂−1x =
[[[[[[

[

1
x1

0 . . . 0

0 1
x2
. . . 0

. . . . . . . . . . . .

0 0 . . . 1
xn

]]]]]]

]

[[[[[

[

x1
x2
. . .

xn

]]]]]

]

=
[[[[[

[

1
1
. . .

1

]]]]]

]

= e. (A.39)

One also uses the transpose of this identity: e = xx̂−1.

(7) The diagonal-operator applied to a vector x, getting x̂ (A.17), is important for the
representation of Sraffa’s price model (PCMC) in matrix form.

Consider for instance the n×1 vector of ones, e = [1, . . . , 1], and a n×1 price vector
p = [p1, . . . , pn], see Miller ([65], p. 12). The following identity is useful:

p̂e =
[[[[[

[

p1 0 . . . 0
0 p2 . . . 0
. . . . . . . . . . . .

0 0 . . . pn

]]]]]

]

[[[[[

[

1
1
. . .

1

]]]]]

]

=
[[[[[

[

p1
p2
. . .

pn

]]]]]

]

= p. (A.40)

Now let us summarize some results concerning the diagonal-operator.
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Lemma A.4.2 (Rules for calculation with the diagonal-operator).
(1) In = x̂x̂−1 = x̂−1x̂, as equation (A.35);
(2) e = xx̂−1, as equation (A.39);
(3) p = p̂e, as equation (A.40).

At this stage it will be useful to illustrate in connection with Leontief and Sraffa,
the transposition and left/right multiplications of matrices, which means the non-
commutativity of multiplication of matrices (see Lemma A.2.2 (5)).

Example A.4.2. Take a positive commodity flow matrix S = [ 1 2
3 4 ], compute the vector

of total output q = Se, build up the diagonal matrix q̂ and calculate,

Solution to Example A.4.2:

q = Se = [ 1 2
3 4
] [

1
1
] = [

3
7
] , q̂ = [ 3 0

0 7
] ⇒ q̂−1 = [

1
3 0

0 1
7

] , (A.41)

which gives four different results

Sq̂−1 = [ 1 2
3 4
][

1
3 0

0 1
7

] = [
1
3

2
7

1 4
7

] ,

q̂−1S = [
1
3 0

0 1
7

][
1 2
3 4
] = [

1
3

2
3

3
7

4
7

] ,

Sq̂−1 = [ 1 3
2 4
][

1
3 0

0 1
7

] = [
1
3

3
7

2
3

4
7

] ,

q̂−1S = [
1
3 0

0 1
7

][
1 3
2 4
] = [

1
3 1
2
7

4
7

] .  (A.42)

(8) Consider the n × n commodity flow matrix Z of all interindustry sales zij by sector i
to all sectors j, the input-output coefficientsmatrix A from (2.9) and the vector of total
production x = [x1, x2, . . . , xn]. From equation (2.8) we know that zij = aijxj, i, j =
1, . . . , n. We find an equation relating Z and A with the diagonal matrix x̂:

Z =
[[[[

[

z11 z12 . . . z1n
z21 z22 . . . z2n
. . . . . . . . . . . .
zn1 zn2 . . . znn

]]]]

]

=
[[[[

[

a11x1 a12x2 . . . a1nxn
a21x1 a22x2 . . . a2nxn
. . . . . . . . . . . .

an1x1 an2x2 . . . annxn

]]]]

]

=
[[[[

[

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

]]]]

]

[[[[

[

x1 0 . . . 0
0 x2 . . . 0
. . . . . . . . . . . .
0 0 . . . xn

]]]]

]

= Ax̂. (A.43)
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(9) Let us introduce (A.43) into equation x = Ze + f (2.5), to obtain

x = Ax̂e + f = A(x̂e) + f = Ax + f, (A.44)

which implies

x = Ix = Ax + f⇒ f = Ix − Ax = (I − A)x. (A.45)

Thematrix L := (I−A)−1 is called the Leontief Inverse (see Miller & Blair [65], p. 21) and
allows to calculate the vector of total supply x from the vector of total demand f,

x = (I − A)−1f = Lf. (A.46)

(10) Miller & Blair ([65], p. 188) discuss equation (A.45) and state that the exogenous
demand f is the driving force of supply x. The following development exists if there is
a non-negative matrix A ≧ 0 with Frobenius number λA < 1, see Theorem A.12.1:

L = (I − A)−1 = I + A + A2 + A3 + ⋅ ⋅ ⋅

Lf = (I − A)−1f = f + Af + A2f + ⋅ ⋅ ⋅ . (A.47)

One observes that this condition is analogous to the convergence condition of geo-
metric series in elementary analysis. The development (A.47) can be interpreted as
follows: f initiates a residual demand of the same type Af, which itself initiates A(Af)
etc., the producer must account for this in his production planning.

(11) Yang [124] and Schefold ([103], p. 44) describe matrices as column vectors of row
vectors, respectively row vectors of column vectors. This representation will be useful
in treating some matrix operations. For this reason we set the following definition:

Definition A.4.3 (Decomposition of a square matrix in column or row vectors). Con-
sider then×nmatrixX = (xij), i, j = 1, . . . , nand its columnvectorsx⋅j = [x1j, x2j, . . . , xnj],
j = 1, . . . , n, respectively its row vectors xi⋅ = [xi1, xi2, . . . , xin], i = 1, . . . , n. Then the ma-
trix Xmay be written as a matrix of column vectors or of row vectors as follows:

X =
[[[[[[

[

x11 x12 . . . . . . x1n
x21 x22 . . . . . . x2n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
xn1 xn2 . . . . . . xnn

]]]]]]

]

= [x⋅1,x⋅2, . . . , . . . ,x⋅n] =
[[[[[[

[

x1⋅
x2⋅
. . .
. . .
xn⋅

]]]]]]

]

. (A.48)

A.5 Eigenvalues and eigenvectors of matrices

This section treats the eigenvalues and eigenvectors of squarematrices, see Lütkepohl
[60], pp. 455–456. Them solutions of the equationPm(λ) = det(A−λI) = 0are called the
eigenvalues λ and Pm(λ) is called the characteristic polynomial of them ×mmatrix A.
Them roots are usually complex numbers.
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A vector υi associated with one of the eigenvalues λi of matrix A, unique up to a
multiplicative constant, is called an eigenvector corresponding to the eigenvalue λi, if
and only if

Aυi = λiυi. (A.49)

Example A.5.1. Consider the matrix

A = [ 3 1.25
4 7

]⇒ P2(λ) =
det(A − λI)



= [
3 − λ 1.5
4 7 − λ

] = λ2 − 10λ + 16 = (λ − 8)(λ − 2) = 0. (A.50)

Hence λ1 = 8 and λ2 = 2 are the eigenvalues of matrix A. Corresponding eigenvectors
are obtained by solving

[
3 1.25
4 7

] [
υ11
υ21
] = 8 ⋅ [ υ11

υ21
] , [

3 1.25
4 7

] [
υ12
υ22
] = 2 ⋅ [ υ12

υ22
] . (A.51)

Thus

[
υ11
υ21
] = [

1
4
] and [ υ12

υ22
] = [
−5
4
] (A.52)

are eigenvectors corresponding to λ1 = 8 and λ2 = 2, respectively. 

It may happen that we encounter triangularm ×mmatrices. They have one of the
following forms

[[[[

[

a11 0 . . . 0
a21 a22 . . . 0
. . . . . . . . . . . .
am1 am2 . . . amm

]]]]

]

,
[[[[

[

a11 a12 . . . a1m
0 a22 . . . a2m
. . . . . . . . . . . .
0 0 . . . amm

]]]]

]

. (A.53)

Thematrix on the left of equation (A.53) is a lower triangularmatrix, the matrix on the
right of equation (A.53) is a upper triangular matrix.

The following rules apply for the calculation of eigenvalues of m × m matrices
A = (aij), i, j = 1, . . . ,m.

Lemma A.5.1 (Rules for the calculation of eigenvalues).
(1) When matrix A is symmetric, then all its eigenvalues are real numbers.
(2) The eigenvalues of a diagonal matrix are its diagonal elements.
(3) The eigenvalues of a triangular matrix are diagonal elements.
(4) When λ1, λ2, . . . , λm are the eigenvalues of A, then the determinant is det(A) = λ1 ⋅

λ2 ⋅ . . . ⋅ λm.
(5) If λ is an eigenvalue of A, then λk is an eigenvalue of matrix Ak , Aυ = λυ ⇒ Akυ =

λkυ.
(6) Similar matrices have the same eigenvalues.
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A.6 Coefficients matrices with identical eigenvalues
Consider a semi-positive commodity flowmatrix S ≥ 0, a non-negative vector of surplus
d ≧ o, resulting in a positive vector of total output q = Se + d > o in physical terms
(Assumption 2.2.1). Consider the positive price vector p > o inmonetary terms, arising
from the solution of a complete single product Sraffa system (4.82). One chooses any
currency.

Lemma A.6.1 (Similar matrices). Given a matrix S and vectors q, p, as defined above,
consider

Z = p̂S, C = Sq̂−1, D = x̂−1Z = q̂−1S, A = Zx̂−1, x̂ = p̂q̂. (A.54)

The matrices A, C, D are similar3 and have identical eigenvalues.

Proof. Weset up the vector of total output in value termsx = Ze+f > o (2.7) the positive
price vector p > o, the matrices Z = p̂S and S = p̂−1Z (2.18) the vector of total output in
physical terms q = Se + d, the relation between vectors of output, x̂ = p̂q̂ (2.18).

Then we set up the equations Z = x̂D = Ax̂ (2.12) and (2.8) and the equations
S = q̂D = Cq̂ (2.19) and (2.17).

Finally we get A = x̂Dx̂−1 = p̂(q̂Dq̂−1)p̂−1 = p̂Cp̂−1.
This means that A = x̂Dx̂−1 and C = q̂Dq̂−1. Matrices A, C, D are similar and

therefore all have the same eigenvalues. Indeed, if two matrices are similar to a third
one all three are similar.

Lemma A.6.1 is also applied in the interindustrial economy (9.22).
We investigate now a further eigenvector property of similar matrices C and D,

fulfilling Lemma A.6.1. We also refer to vectors q, e, d and matrix S, mentioned in
Lemma A.6.1.

Lemma A.6.2. Let λ be an eigenvalue common to the matrices C andD. Consider a right
eigenvector γ of D, Dγ = λγ. Set up the diagonal matrix γ̂. Then, with the output vector
q = Se + d, the vector q̂γ is an eigenvector of the matrix C, C(q̂γ) = λ(q̂γ).

Proof. We have D = q̂−1S = q̂−1Cq̂ and Dγ = λγ. Then we find q̂−1Cq̂γ = λγ, leading to
C(q̂γ) = λ(q̂γ).

We now illustrate Lemma A.6.1 by an example.

Example A.6.1. Consider Example 5.1.2 with the positive commodity flowmatrix S, the
semi-positive vector of final demand d and the positive price vector p = [3, 4, 2].

Calculate the vector of total output q and the diagonal matrix q̂−1. Compute the
vector x = p̂q, the commodity flow matrix Z, the input-output coefficients matrices C
and A and the distribution coefficients matrix D.

3 Two square matrices A and B are similar, if there exists a regular n × n matrix P, so that equation
A = P−1BP holds.
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Compute the commoncharacteristic polynomialP3(λ)of thematricesA,C,D, their
eigenvalues and the Frobenius number. (For the definition of the Frobenius number,
see Section A.9.)

Solution to Example A.6.1:
Identify the matrix S, the vectors p, d and calculate vector q:

S = [[
[

90 50 40
120 125 40
60 150 200

]]

]

, p = [[
[

3
4
2

]]

]

, d = [[
[

0
165
70

]]

]

, q = Se + d = [[
[

180
450
480

]]

]

.

(A.55)

Then calculate the matrices q̂−1, x̂−1 and Z,

q̂−1 =
[[[

[

1
180 0 0

0 1
450 0

0 0 1
480

]]]

]

, x̂−1 = p̂−1q̂−1 =
[[[

[

1
540 0 0

0 1
1,800 0

0 0 1
960

]]]

]

,

Z = p̂S = [[
[

3 0 0
0 4 0
0 0 2

]]

]

[[

[

90 50 40
120 125 40
60 150 200

]]

]

= [[

[

270 150 120
480 500 160
120 300 400

]]

]

. (A.56)

Continue with calculating the matrices C and D,

C = Sq̂−1 = [[
[

90 50 40
120 125 40
60 150 200

]]

]

[[[

[

1
180 0 0

0 1
450 0

0 0 1
480

]]]

]

=
[[[

[

1
2

1
9

1
12

2
3

5
18

1
12

1
3

1
3

5
12

]]]

]

,

D = q̂−1S =
[[[

[

1
180 0 0

0 1
450 0

0 0 1
480

]]]

]

[[

[

90 50 40
120 125 40
60 150 200

]]

]

=
[[[

[

1
2

5
18

2
9

4
15

5
18

4
45

1
8

5
16

5
12

]]]

]

. (A.57)

Then compute the matrix A:

A = Zx̂−1 = [[
[

270 150 120
480 500 160
120 300 400

]]

]

[[[

[

1
540 0 0

0 1
1,800 0

0 0 1
960

]]]

]

=
[[[

[

1
2

1
12

1
8

8
9

5
18

1
6

2
9

1
6

5
12

]]]

]

. (A.58)

The characteristic polynomial of A, C and D is

P3(λ) = det(A − λI3) = det(C − λI3) = det (D − λI3)

=
35

1,296
−
1
3
λ + 43

36
λ2 − λ3 = −(λ − 5

6
)(λ − 1

6
)(λ − 7

36
) = 0. (A.59)

The eigenvalues of A, C and D are: λ1 =
5
6 , λ2 =

7
36 , λ3 =

1
6 . The Frobenius number is

λA = λC = λD =
5
6 . 
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A.7 The orthogonal Euler affinity and dilatation

Let there be k ∈ ℕ numbers γi, i = 1, . . . , k, setting up the vector γ = [γ1, γ2, . . . , γk].
Consider the k × k diagonal matrix,

γ̂ =
[[[[

[

γ1 0 0 0
0 γ2 0 0
. . . . . . . . . . . .
0 0 0 γk

]]]]

]

. (A.60)

Definition A.7.1 (Orthogonal Euler affinity). Themapping which associates to a vector
x ∈ ℝk the vector x̃ = γ̂x is called an orthogonal Euler affinity or orthogonal Eulermap.4

Let us consider the following example to illustrate the orthogonal Euler affinity.

Example A.7.1. Take dimension k = 2. Consider the squareA(0.5,0.5),B(2,0.5),C(2, 2),
D(0.5, 2) in the plane ℝ2 and the diagonal matrix

γ̂ = [ 3 0
0 2
] . (A.61)

Apply the corresponding orthogonal Euler affinity to the vertices of the square ABCD,
leading to the image rectangleA(1.5, 1),B(6, 1),C(6, 4),D(1.5, 4), see Figure A.1 (left).

Figure A.1: The orthogonal Euler affinity (left) and dilatation (right).

Definition A.7.2 (Dilatation of a vector space). If all the coefficients of the diagonal
matrix are equal, γi = γ, γ ∈ ℝ, i = 1, . . . , k, then the orthogonal Euler affinity is a
dilatation. We denote such a vector by γd and the associated diagonal matrix by γ̂d.
The defining equation becomes x̃ = γ̂dx = xγ̂d.

4 Consider a (k×k)matrixX = {xij}, i, j = 1, . . . , k, made of the k column-vectors x⋅j = [x1j , x2j , . . . , xkj],
X = {x⋅1, x⋅2, . . . , x⋅k}, then the images resulting from the orthogonal Euler map X̃ = γ̂X =
{x̃⋅1, x̃⋅2, . . . , x̃⋅k} are the k column-vectors x̃⋅j = γ̂x⋅j = [x̃1j , x̃2j , . . . , x̃kj] = [γ1x1j , γ2x2j , . . . , γkxkj].
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Thus the dilatation map is described by the diagonal matrix

γ̂d =
[[[[

[

γ 0 0 0
0 γ 0 0
. . . . . . . . . . . .
0 0 0 γ

]]]]

]

. (A.62)

Example A.7.2. Take the dimension k = 2. Consider the square A(0.5,0.5), B(2,0.5),
C(2, 2), D(0.5, 2) in the plane ℝ2 and the diagonal matrix

γ̂d = [
2 0
0 2
] . (A.63)

Compute the image of the given square under the dilatation γ̂d.

Solution of Example A.7.2:
Note that the multiplication with the diagonal matrix γ̂ can be replaced by a multipli-
cation with the scalar γ. One gets the rectangle A(1, 1), B(4, 1), C(4, 4), D(1, 4) in the
plane ℝ2, see Figure A.1 (right).

A.8 The theory of non-negative matrices

In this section, we focus on the theory of non-negative matrices5. We will also have
to pay attention to the aspect that these matrices are either reducible or irreducible.
Then a version of the theoremofGeorg Frobenius ([31], 1912) is presented. The theorem
of Frobenius is a generalization of the theorem of Oskar Perron ([86], 1907). For this
reason, today it is mostly called Perron–Frobenius theorem.

At present it is known that the work of Perron and Frobenius was anticipated by
other mathematicians and economists. Kenji Mori writes ([66], p. 1) “Georg von Cha-
rasoff (1877–1931) was one of the first economic theorists to recognize that the price of
production is an eigenvector of the input matrix, and to determine the rate of profit
using its eigenvalues.” Mori continues: “Since Georg von Charasoff, a Russian math-
ematician and economist from Tblissi, was rediscovered more than 70 years after his
main work, Das System des Marxismus, Darstellung und Kritik (1910), he has been ac-
knowledged in many articles on the history of economic thought as a pioneer in lin-
ear economic theory.6” Parys ([79], p. 4) says that Charasoff ([15]: preface, xii) claims

5 Kurz & Salvadori ([52], p. 104) give the definition of semi-positive matrices. Pasinetti ([80], p. 26)
makes the remark in parentheses: …a non-negative matrix in which at least one element is strictly
positive (and is also called a semi-positive matrix).
6 Linear production economics is a technical term, used in L. J. Bortkiewicz’s (1868–1931) and Dim-
itriev’s (1868–1913) concepts of production economics and described by linear equations or processes,
as it is the case in Input-Output Analysis, where typically matrix algebra is in use.
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to have presented a “definitive solution” to the main problems of the classical theory
of value, thanks to his theory of Urkapital (‘original capital’), a composite commodity
similar to Sraffa’s standard composite commodity in PCMC. In the language ofmodern
mathematical economics, Urkapital corresponds to an eigenvector of the augmented
(or closed) input matrix.

ThePerron–Frobenius theorem is today recognized as governing a part of linear
production economics, as Mori ([66], p. 1) has stated. This is the case for PCMC’s single
product industries.

We will start with a short review of the elementary notions on non-negative ma-
trices (see Gantmacher [34], Chap. 13, and Takayama [116], pp. 367–380). Usually such
an overview begins by setting a real or complex square matrix A = (aij), i, j = 1, . . . , n,
with n rows and n columns.

If necessary we shall also refer to positive matrices A, as those with only positive
elements, that is aij > 0 for all i, j = 1, . . . , n, compactly written, A > 0.

But we will specifically consider in this section square, non-negative real n×nma-
tricesA. One defines such amatrix as non-negative, if all its elements are not negative,
i. e., if for its elements one has aij ≥ 0 for all i, j = 1, . . . , n, compactly written A ≥ 0. If
there is at least one positive element aij > 0, the matrix A is called semi-positive.

(1) The notion of permutation. This paragraph covers the notion of permutation and
permutation matrix.

Definition A.8.1 (Takayama [116], p. 368). A permutation, is a one-to-one function
from the set {1, 2, 3, . . . , n} onto itself, denoted by

σ = ( 1 2 3 . . . n
j1 j2 j3 . . . jn

) , σ(i) = ji, i = 1, . . . , n. (A.64)

We give an illustration.

Example A.8.1. The permutation 1→ 1, 2→ 3, 3→ 2 is usually described by

σ = ( 1 2 3
1 3 2

) . (A.65)

A permutation matrix, usually denoted by P, is one which is obtained by permut-
ing the columns (or rows) of the identity matrix I. This means that a permutation
matrix has exactly one ‘1’ in each column and in each row. The other elements are
‘0’. 

Definition A.8.2 (Takayama [116], p. 368, or Horn & Johnson [43], p. 32). An n× nma-
trix P = (pij) is called a permutation matrix if pσ(j)j = 1, j = 1, . . . , n, respectively
piσ(i) = 1, i = 1, . . . , n, and if pij = 0 for all i ̸= σ(j), respectively pij = 0, for all j ̸= σ(i).

Example A.8.2. The matrix Pσ = [
1 0 0
0 0 1
0 1 0
] is the representation of the permutation σ in

(A.65).
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If σ is some permutation (A.64), we denote byPσ the permutationmatrix obtained
by permuting the columns of the identity matrix I by σ. Similarly, the transpose Pσ of
Pσ is obtained by permuting the rows of the identity matrix by σ, see Takayama [116],
p. 369. 

Lemma A.8.1 (Takayama [116], p. 369). Every permutation matrix Pσ is orthogonal,
which means that the transposed matrix Pσ is equal to the inverse matrix P

−1
σ , Pσ = P

−1
σ .

Note that the similar matrix

Ã = P−1σ APσ = P

σAPσ (A.66)

is the matrix obtained by permuting the rows and the columns of matrixA by the permu-
tation σ.

We now give an illustration of an application of a permutation matrix and an ex-
ercise to apply Lemma A.8.1.

Exercise A.8.1. Consider the matrix Z1 = [
1 0 2
0 5 0
3 0 4
] and the permutation described by

σ = ( 1 2 3
1 3 2 ). First, permute the rows of matrix Z1, then separately permute the columns

of matrix Z1 with the permutation σ. Then apply Lemma A.8.1.

Solution of Exercise A.8.1:
In the first three steps we apply the permutation σ on the matrix Z1, then we directly
use Lemma A.8.1 on Z1 to obtain the “canonical form” Z̃1.

(1) Applying the permutation σ on matrix Z1 = [
1 0 2
0 5 0
3 0 4
] to permute successively the

second and third rows, one gets [ 1 0 2
3 0 4
0 5 0
]. One obtains the same resulting matrix, by

computing

P−1σ Z1 =
[[

[

1 0 0
0 0 1
0 1 0

]]

]

[[

[

1 0 2
0 5 0
3 0 4

]]

]

= [[

[

1 0 2
3 0 4
0 5 0

]]

]

. (A.67)

In words: the product P−1σ Z1 gives the same result as the direct application of the per-
mutation σ on the rows and the columns of Z1.

(2) Applying the permutation σ on matrix Z1 = [
1 0 2
0 5 0
3 0 4
] to permute the 2nd and 3rd

columns, one gets [ 1 2 0
0 0 5
3 4 0
]. One obtains the same matrix, when one computes

Z1Pσ =
[[

[

1 0 2
0 5 0
3 0 4

]]

]

[[

[

1 0 0
0 0 1
0 1 0

]]

]

= [[

[

1 2 0
0 0 5
3 4 0

]]

]

. (A.68)

The multiplication Z1Pσ gives the same result as the direct application of the permu-
tation σ on the columns of matrix Z1.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



A.8 The theory of non-negative matrices | 459

(3) Applying the permutation σ on matrix Z1 = [
1 0 2
0 5 0
3 0 4
] to permute successively the

second and third columns and then the second and third rows (or inversely to permute
the second and third rows and then the second and third columns), one gets Z̃1 =
[
1 2 0
3 4 0
0 0 5
]. One obtains the same matrix, when one computes

Z̃1 = P
−1
σ Z1Pσ = [

[

1 0 0
0 0 1
0 1 0

]

]

[

[

1 0 2
0 5 0
3 0 4

]

]

[

[

1 0 0
0 0 1
0 1 0

]

]
= [

[

1 2 0
3 4 0
0 0 5

]

]
.

(A.69)

Themultiplication Z̃1 = P−1σ Z1Pσ results in the application of the permutation σ on the
rows and the columns of Z1, resulting in the matrix Z̃1 = [

1 2 0
3 4 0
0 0 5
]. On the other hand,

the matrix Pσ = [
1 0 0
0 0 1
0 1 0
] is the permutation matrix of Example A.8.2 corresponding to

the permutation σ (A.65).
Summarizing, the permutation σ (A.65) to apply to the rows and to the columns of

matrix Z1 one may compute Z̃1 = P−1σ Z1Pσ .

(4) Now we apply Lemma A.8.1. First we need P−1σ and check the orthogonality, P−1σ =
Pσ . We calculate for this purpose,

I = P−1σ Pσ = PσP

σ = [

[

1 0 0
0 0 1
0 1 0

]

]

[

[

1 0 0
0 0 1
0 1 0

]

]
= [

[

1 0 0
0 1 0
0 0 1

]

]
. (A.70)

Then we may compute

Z̃1 = P
−1
σ Z1Pσ = [

[

1 0 0
0 0 1
0 1 0

]

]

[

[

1 0 2
0 5 0
3 0 4

]

]

[

[

1 0 0
0 0 1
0 1 0

]

]
= [

[

1 2 0
3 4 0
0 0 5

]

]
.

(A.71)

This means that the permutation σ (A.65) applied on the rows and columns (or on the
columns and rows) of the matrix Z1 results in the similar matrix Z̃1 (A.66). 

(2) Reducible and irreducible matrices. We introduce the notion of irreducible ma-
trices. A matrix is reducible (or decomposable) if it is not irreducible. These notions
will be used to distinguish between basic and non-basic commodities in the case of
single product industries, as an alternative to Sraffa’s definition (PCMC, Par. 6) : “The
criterion is whether a commodity enters (no matter whether directly or indirectly) into
the production of all commodities. Those that do, we shall call basic, and those that do
not, non-basic products.”

Definition A.8.3 (Reducible and irreducible matrices). See Schefold [103], p. 54, Kurz
& Salvadori [52], p. 516, and Gantmacher [34], p. 417. A square matrix A is reducible if
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there exits a permutation matrix P with the result that

Ã = P−1AP = [ Ã11 0
Ã21 Ã22

] , (A.72)

where Ã11 and Ã22 are square submatrices, reducible or irreducible. The reduction pro-
cess may continue and a reduciblematrix Amay always be reduced to the form

Ã = P−1AP =
[[[[

[

Ã11 0 . . . 0
Ã21 Ã22 . . . 0
. . . . . . . . . . . .
Ãs1 Ãs2 . . . Ãss

]]]]

]

, (A.73)

where Ã11, Ã22, . . . , Ãss noware irreducible squarematrices, not necessarily of the same
order (note that the zero matrix of order 1 is irreducible). Form (A.73) of matrix A is
called the “canonical form” of A.

In the case of joint production processes, (A,L) ⇒ (B), the reducible matrices
A, B are brought into in “canonical form” with two permutation matrices P, Q, giving
Ã = P−1AQ and B̃ = P−1BQ as in (A.72), see Schefold [103], p. 54. The product P−1A
permutes the rows of A by a permutation described by P. The product AQ permutes
the columns of A by a permutation described by Q.

Observation: The transformation P−1α Z of matrix Z by the permutation matrix Pα interchanges the rows
by permutation α (A.64).

The transformation ZQβ of matrix Z by the permutation matrix Qβ interchanges the columns by
permutation β (A.64).

The resulting matrices Ã (A.72) and (A.73) are called triangular block matrices, issued
from a reduciblematrix A.

Remark. Definition A.8.3 is stated in this context for reducible and semi-positive ma-
trices describing production processes. Obviously, in this case, if the initial matrixA is
reducible and semi-positive, then the resulting matrices Ã11, Ã12 and Ã22 are also semi-
positive, because the transformation (A.72) only operates permutations on matrix A.

Definition A.8.4. An square matrix A is called completely reducible (or completely de-
composable) if there exits a permutation matrix P such that

Ã = P−1AP =
[[[[

[

Ã11 0 . . . 0
0 Ã22 . . . 0
. . . . . . . . . . . .
0 0 . . . Ãss

]]]]

]

, (A.74)

where the matrices A11, A22 and Ass are square (see Takayama, [116], p. 370). The re-
sulting matrix Ã (A.74) is called a block diagonal matrix, generated from a completely
reduciblematrix A (see Horn & Johnson [43], p. 30).
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We observe that the matrix Z̃1 (A.71) is the completely reducible matrix, resulting
from the permutation σ in (A.65), applied to matrix Z1, Example A.8.1 and gives rise to
a block diagonal matrix.

This result is of great importance in the field of linear production economics. It
however requires an algorithm to calculate a permutation matrix P and to transform
a reducible input-output coefficients matrixA in (A.66) or an input-output coefficients
matrixC into its canonical forms Ã, respectively C̃. If existent, such a procedure allows
to separate the basic commodities from the non-basic commodities in Input-Output
Tables, such as the Swiss IOT 2008 (see Chapter 10).

Example A.8.3. Explainwhy thematrixZ1, fromExercise A.8.1 is completely reducible.

Solution to Example A.8.3:
When a permutation matrix P is known, one can directly compute the similar matrix
Z̃1 to get a canonical form. In this case the resulting matrix Z̃1 (A.71) is a block diagonal
matrix, arising from the reduciblematrix Z1. Thus, in this case, the resulting triangular
block matrix has become a completely reduced form of the initial matrix. 

With Example A.8.3 we see that we need amathematical tool how to decide about
the reducibility of a matrix. The next Lemma gives a direct method for checking the
reducibility of a matrix.

Lemma A.8.2 (Horn & Johnson [43], p. 533). Let A be a non-negative n× n matrix and I
the identity matrix. A is irreducible if and only if [I + A]n−1 > 0.

We give an illustration of Lemma A.8.2.

Example A.8.4. Consider the positive matrix A = [ 2 1 2
1 6 1
3 1 5
], which obviously is irre-

ducible, because there are no vanishing elements. According to Lemma A.8.2, we
obtain

[I + A]3−1 = [[
[

3 1 2
1 7 1
3 1 6

]]

]

2

= [[

[

16 12 19
13 51 15
28 16 43

]]

]

> 0.  (A.75)

Example A.8.5. Answer the following questions by applying Lemma A.8.2.

(1) Given the non-negative matrix Z1 = [
1 0 2
0 5 0
3 0 4
] of Example A.8.1, show that Z1 is re-

ducible.
(2) Justify that the submatrix Z1(22) = [ 1 2

3 4 ], which results from an extraction of the
second row and the second column of matrix Z1 in Example A.8.1 is irreducible.

(3) What is about reducibility or irreducibility of matrix Z2 = [
1 0 2
1 5 0
3 1 4
]?
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Solution to Example A.8.5:
(1) One computes

[I + Z1]
3−1 = [[

[

2 0 2
0 6 0
3 0 5

]]

]

2

= [[

[

2 0 2
0 6 0
3 0 5

]]

]

[[

[

2 0 2
0 6 0
3 0 5

]]

]

= [[

[

10 0 14
0 36 0
21 0 31

]]

]

.

Obviously, [I + Z1]2 is not positive and therefore Z1 is reducible.
(2) Consider the submatrix Z1(22) = [ 1 2

3 4 ] of the matrix Z1 = [
1 0 2
0 5 0
3 0 4
] in Example A.8.1.

One computes [I + Z1(22)]2−1 = [ 2 2
3 5 ] > 0 which is positive. Therefore, the matrix Z1(22)

is irreducible. This was clear on the onset, since matrix Z1(22) contains no zeros.
(3) Finally compute the matrix,

[I + Z2]
3−1 = [[

[

2 0 2
1 6 0
3 1 5

]]

]

2

= [[

[

2 0 2
1 6 0
3 1 5

]]

]

[[

[

2 0 2
1 6 0
3 1 5

]]

]

= [[

[

10 2 14
8 36 2
22 11 31

]]

]

> 0, (A.76)

which is positive. Therefore Z2 is irreducible. This example shows that Lemma A.8.2 is
not trivial. Matrix Z2 has two zero elements, z12 = 0, z23 = 0. One would expect that
a permutation matrix P exists, giving Z̃2 = P−1Z2P, which puts these two zeros at the
places ̃z31 = 0, ̃z32 = 0, bringingZ2 into “normal form”.AsZ2 is irreducible, according to
LemmaA.8.2, such a permutationmatrixP does not exist and thesemoves of elements
cannot be obtained by a permutation matrix P! 

ExampleA.8.1 has shown that thematrixZ1 can be transformed into its “canonical
form”, if one knows a permutation matrix Pσ able to perform this transformation.

(3) The adjacency matrix. Within the Leontief Input-Output models and the Sraffa
modelswe are confronted to fivematrices: the commodity flowmatrix Z in (2.4) inmon-
etary terms, respectively the commodity flowmatrix S in (2.13) in physical terms. Then
we have derived the dimensionless input-output coefficientsmatricesA in (2.9) the dis-
tribution coefficientsmatrix D (2.12) defined twice, (2.20), both dimensionless, respec-
tively the input-output coefficients matrix C (2.14) in physical terms. Matrices Z and S
are called transactionmatrices, whereas A, C, D are called coefficientsmatrices.

Now, we will concentrate on a useful tool to visualize properties of matrices in
relation with the considered production processes, like commodity flows and payment
flows. For this purpose Miller & Blair ([65], p. 675) introduce the notion of binary or
Boolean adjacency matrices.

Definition A.8.5 (The adjacency matrix). Given any n× nmatrix T = {tij}, another n× n
matrix, frequently represented by the letterW = {wij}, called the (Boolean) adjacency
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matrix, is generated as wij := 1 in cells for which tij ̸= 0, and wij = 0 in cells for which
tij := 0, i, j ∈ {1, . . . , n}.

We shall in particularwork out adjacencymatrices for the aforementioned transaction
or coefficients matrices Z, S, A, C, D.

Example A.8.6. We present as an illustration the adjacency matrices of the matrices
Z1 and Z2, Example A.8.5.

Z1 =
[[

[

1 0 2
0 5 0
3 0 4

]]

]

⇒W1 =
[[

[

1 0 1
0 1 0
1 0 1

]]

]

,

Z2 =
[[

[

1 0 2
1 5 0
3 1 4

]]

]

⇒W2 =
[[

[

1 0 1
1 1 0
1 1 1

]]

]

. (A.77)

A.9 The Perron–Frobenius Theorems

Wenow consider the seminal theorem of Oskar Perron (1880–1975), published in 1907.
Ferdinand Georg Frobenius (1849–1917) generalized Perron’s results in 1912 (see Horn
& Johnson [43], p. 534, and Takayama [116], p. 364). These are results about positive
matrices and non-negative matrices. The theorems (for both versions see also Gant-
macher [34], p. 398) are today usually presented in one form as the so-called Perron–
Frobenius theorem.

Consider the distances of all the real or complex roots of a polynomial to the origin
of the complex plane ℂn. The maximum of all these distances is called the spectral
radius, more precisely:

Definition A.9.1 (The spectral radius). LetA be a n×nmatrix. The spectral radius ofA
is ρ(A) := max{|λ| : λ ∈ σ(A),where σ(A) is the set of all eigenvalues (real or complex)
of A} (see Horn and Johnson [43], p. 45 and p. 52).

(1) The Perron theorem. As noticed earlier, positive matrices are less general than
irreducible and non-negative matrices. We start with Perron’s theorem, the most ele-
mentary form of the three theorems of that type presented here.

Theorem A.9.1 (Perron theorem (Perron [86] and Gantmacher [34], p. 398)). A posi-
tive matrix A = (aij), i, j = 1, . . . , n, always has a unique real and positive character-
istic root (= eigenvalue) λA of the characteristic polynomial whose module exceeds
the module of all other eigenvalues of that polynomial, Figure A.2, left. This eigen-
value is called the Frobenius number of matrix A and is associated with an eigen-
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vector x = [x1, x2, . . . , xn] of matrix A, which has only positive components7 xi > 0,
i = 1, 2, . . . , n.

Figure A.2: Perron theorem (left), Frobenius theorem (right).

We note that the Perron theorem only works for positive matrices. We illustrate it
by the following example

Example A.9.1. Consider the positive matrix S = [ 1 1 2
2 5 6
7 1 4
]. It could be a hypothetical

transaction matrix in physical terms related to a just-viable economy, see Defini-
tion 2.2.1, consisting of three sectors with no surplus (Garden of Eden economy),
therefore d = o. The matrix S is evidently irreducible.

Compute the total output vector q = Se, the corresponding input coefficients ma-
trix C = Sq̂−1 and the distribution coefficients matrix D = q̂−1S.

Then compute the eigenvalues of matrices S, C, D. Analyse the Frobenius num-
bers λS, λC and λD. Verify: λC = λD = 1. Compute the left eigenvectors pS of matrix S
associated with λS, respectively, the left eigenvectors pC of matrix C associated to λC.

Solution to Example A.9.1:
We easily calculate q = Se = [4, 13, 12]. We then get

C = Sq̂−1 =
[[[

[

1
4

1
13

1
6

1
2

5
13

1
2

7
4

1
13

1
3

]]]

]

, D = q̂−1S =
[[[

[

1
4

1
4

1
2

2
13

5
13

6
13

7
12

1
12

1
3

]]]

]

, De = e. (A.78)

7 The eigenvector x is determined up to a scalar factor. This means that, if x is an eigenvector of A,
then, with k ∈ ℝ, k ⋅ x is also an eigenvector of A.
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Then we calculate the characteristic polynomials of the matrices S and C

Q3(λ) = det(S − λI) = −18 − 7λ + 10λ
2 − λ3 = (λ − 9)(λ − 2)(λ + 1),

P3(λ) = det(C − λI) = −
3
104
+

19
312

λ + 151
156

λ2 − λ3

= (λ − 1)(λ − 0.1546)(λ + 0.1866). (A.79)

The left eigenvector of the positive transaction matrix S > 0 corresponding to the
Frobenius number λS = 9 is positive, pS = [2, 1, 2] > 0. The left eigenvector of the
positive coefficients matrix C corresponding to the Frobenius number λC = 1 is also
positive, pC = [ 2911 ,

5
11 , 1]
 > 0.

Note that the Frobenius number of S is greater than 1, λS = 9 > 1 > 0! We realise
that λD = 1, since D is stochastic, see Lemma A.11.1. The eigenvalues of the matrices C
and D are identical, λC = λD = 1, according to Lemma A.6.1. There is no surplus and
the economy is just viable. 

(2) The Frobenius theorem generalises Perron’s theorem.

Theorem A.9.2. Frobenius theorem (Frobenius [31] and Gantmacher [34], p. 398) An ir-
reducible and non-negative matrix A = (aij), i, j = 1, . . . , n always has a real and positive
characteristic root (=eigenvalue) λA > 0, called the Frobenius number, that is a simple
root of the characteristic polynomial.

The modulus of all other characteristic roots does not exceed this number λA, Fig-
ure A.2, right.

To the Frobenius number, there corresponds an eigenvector x = [x1, x2, . . . , xn] with
only positive components xi > 0, i = 1, 2, . . . , n that is unique up to a scalar factor.

If A has altogether h roots λ0 = λA, λ1, . . . , λh−1 of modulus λA, the complex numbers
λ ∈ ℂ are all different from each other and are roots of the circle equation

λh − λhA = 0. (A.80)

Consider then all characteristic roots λ0, . . . , λi, . . . , λn−1, i = 0, 2, . . . , n − 1 of matrix
A = (aij), i, j = 1, . . . , n as points of the complex plane. These points extend to themselves
through a rotation of the plane with the center at the origin and angle 2π/h. For h > 1,
matrix A can be transformed in “cyclic” form via a permutation, i. e.,

A =

[[[[[[[[[[[

[

0 A12 0 . . . . . . 0
0 0 A23 . . . . . . 0
. . . . . . . . . . . . . . . . . .

0 0 . . . . . . Ah−2,h−1 0
0 0 . . . . . . . . . Ah−1,h

Ah1 0 0 . . . . . . 0

]]]]]]]]]]]

]

, (A.81)

where all the diagonal elements are square matrices.
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Proof. See Gantmacher ([34], p. 398).

We illustrate the Frobenius Theorem by the following example, focusing on its
numerical consequences.

Example A.9.2. Let the non-negative and irreducible matrix Z = [
1 0 1
1 1 0
1 1 1
] be given. It

could be a hypothetical transaction matrix in monetary terms related to an economy
consisting of three sectors with a final demand f = [18, 1, 1].

Compute the total output vectorx = Ze+f and the corresponding input coefficients
matrix A = Zx̂−1.

Then compute the eigenvalues and eigenvectors of both matrices Z and A and
analyse the Frobenius numbers λZ , λA and the associated eigenvectors xZ , xA.

Solution to Example A.9.2:

Applying Lemma A.8.2, (I + Z)2 = [
2 0 1
1 2 0
1 1 2
]
2
= [

5 1 4
4 4 1
5 4 5
] > 0, we conclude that the matrix

Z is irreducible. We then easily calculate x = Ze + f = [20, 3, 4] and get

x̂−1 =
[[[

[

1
20 0 0

0 1
3 0

0 0 1
4

]]]

]

, A = Zx̂−1 =
[[[

[

1
20 0 1

4
1
20

1
3 0

1
20

1
3

1
4

]]]

]

, (A.82)

whose zero elements are at the same place in matrix Z. Then we calculate the charac-
teristic polynomials of matrices Z and A,

Q3(λ) = det(Z − λI) = 1 − 2λ + 3λ
2 − λ3

= −(λ − 2.325)(λ − 0.338 − 0.562i)(λ − 0.338 + 0.562i),

P3(λ) = det(A − λI) =
1

240
−

1
10

λ + 19
30

λ2 − λ3

= (λ − 0.4179)(λ − 0.1482)(λ − 0.0673). (A.83)

We notice in this example that a pair of eigenvalues are conjugate complex,8 being the
roots of the real three-degree polynomial Q3(λ).

The eigenvector of the transaction matrix Z corresponding to the Frobenius num-
ber λZ = 2.325 is positive, xZ = [0.755,0.570, 1] > 0, as warranted by the Frobenius
theorem. The conjugate complex eigenvalues λ1/2 = −0.338 ± 0.562i are associated to
the eigenvectors, xZ1/2 = [−0.877 ∓ 0.745i,0.215 ± 1.307i, 1].

The eigenvector of the coefficients matrix A corresponding to the Frobenius num-
ber λA, 0 < λA = 0.4179 < 1, is positive, xA = [0.6795,0.4018, 1] > 0. The eigenvalue

8 A complex number is usually written as z = a + bi ∈ ℂ, with i = √−1. Its conjugate complex is
z = a − bi ∈ ℂ.
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λ1 = 0.1481 is associated with the eigenvector xA1 = [2.5479,−0.6878, 1]. The eigen-
value λ2 = 0.0673 is accordingly associated with a non-positive eigenvector, xA1 =
[14.4392,−2.7139, 1].

Note that forZ the Frobenius number is larger than 1, λZ = 2.325 > 1. The Frobenius
number of A is smaller than 1, λA = 0.4179 < 1, corresponding to a productive Leontief
model, as will be defined later (see Definition A.12.1). 

We conclude this part with a combined version of the above theorems.

(3) The Perron–Frobenius theorem. We formulate here a combined version of the
Perron theorem and the Frobenius theorem as it is presented in textbooks. This
theorem is required in order to handle transaction and coefficientsmatrices containing
also zero entries and presents in particular the key statement to treat Sraffa’s full price
model for single-product industries, expressed for irreducible and non-negative square
matrices.

Theorem A.9.3 (Perron–Frobenius theorem). Suppose n ≥ 2 and consider an n× n irre-
ducible and non-negative matrix A.
(1) ρ(A) > 0;
(2) ρ(A) is an algebraically simple eigenvalue of A;9

(3) There is a unique real vector x = [x1, x2, . . . , xn] such that Ax = ρ(A)x and x1 +
x2 + ⋅ ⋅ ⋅ + xn = 1. This vector is positive, i. e., all its components are positive, xi > 0,
i = 1, . . . , n;

(4) There is a unique real vector y = [y1, y2, . . . , yn] such that yA = ρ(A)y and x1y1 +
x2y2 + ⋅ ⋅ ⋅ + xnyn = 1. This vector is positive, which means all its components are
positive, yi > 0, i = 1, . . . , n. 

Proof. See Horn and Johnson ([43], p. 534) or Gantmacher ([34], p. 398).

Thus, there is also in this third formulation the Frobenius number correspond-
ing to a unique, real, maximal, positive eigenvalue of matrix A, denoted λA = ρ(A).
Thus, the right and left eigenspaces associated with the Frobenius number λA are
one-dimensional. The absolute values of all the other characteristic roots of the poly-
nomial Pn(λ) are less than or equal to λA. The matrix A has a left eigenvector y, corre-
sponding to the Frobenius number λA, whose components are all positive. In the same
way, A has a right eigenvector x, corresponding to the eigenvalue λA, whose compo-
nents are also all positive.

(4) Primitive matrices. We classify here irreducible matrices, separating them into
primitive and imprimitivematrices (see Gantmacher [34], p. 422).

9 This means, there is exactly one real, positive, maximal eigenvalue of modulus λA = ρ(A).
In this case, the spectral radius ρ(A) is called a simple root of the characteristic polynomial Pn(λ)
of A and corresponds to the Frobenius number (Frobenius eigenvalue) λA. Notations vary for the
Frobenius number, e. g., λA = λmax.
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Definition A.9.2 (The primitive matrix). Consider an irreducible andnon-negativen×n
matrix A ≥ 0 whose characteristic polynomial Pn(λ) has h ≤ n characteristic roots λ1,
λ2, . . . , λh of maximal modulus a, (|λ1| = |λ2| = ⋅ ⋅ ⋅ = |λh| = a), then we call the matrix
primitive, if h = 1 or imprimitive if h > 1.

Lemma A.9.1 (A property of primitive matrices). A non-negative n × n matrix A ≥ 0 is
primitive, if and only if there exists a certain power m ∈ ℕ, such that Am > 0 is posi-
tive.

Recall that the Perron theorem A.9.1 applies only to positive matrices A and en-
sures that there is a unique, real, maximal and positive eigenvalue λA, the Frobenius
number. On the other hand, the Frobenius theorem, formulated as Theorem A.9.2 or
Theorem A.9.3 is applied to non-negative and irreduciblematrices and ensures the ex-
istence of a simple, real, positive eigenvalue λA, the Frobenius number. In this case,
there usually are h ≤ n other complex eigenvalues of matrix A of the same modulus
λA. The uniqueness of the eigenvalue of modulus λA is guaranteed if the matrix A is
primitive.

(5) Uniqueness property: the Frobenius number and the subspace generated by the
associated positive eigenvectors. Given a constant vectorx, every family of vectors k ⋅x,
k ∈ ℝ, generates a unique one-dimensional subspace V(x). Clearly, for the Frobenius
number λC of matrix C, there is one and only one one-dimensional subspace V(p),
where p is a positive price vector associated to the Frobenius number λC, according to
the Perron–Frobenius theorems A.9.1–A.9.3.

The following examples deal with matrices that do not meet the conditions of the
Perron–Frobenius theorem to get a better grasp of the essence of this important re-
sult.

Example A.9.3. Consider the reducible matrix Z1 = [
1 0 2
0 5 0
3 0 4
], Example A.8.5. Compute

x = Z1e and the reducible coefficients matrix A1 = Z1x̂−1. Then compute the eigen-
values and eigenvectors of Z1 and A1 and describe in what sense the obtained results
differ from the statements of the Perron–Frobenius theorem.

Solution to Example A.9.3:
We easily calculate x = Z1e = [3, 5, 7]. We then get

x̂−1 =
[[[

[

1
3 0 0

0 1
5 0

0 0 1
7

]]]

]

, A1 = Z1x̂
−1 =
[[[

[

1
3 0 2

7

0 1 0

1 0 4
7

]]]

]

. (A.84)

The characteristic polynomials of the matrices Z1 and A1 are
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Q3(λ) = det(Z1 − λI) = −10 − 23λ + 10λ
2 − λ3

= (λ − 5)(λ − 5.372)(λ + 0.372),

P3(λ) = det(A1 − λI) = −
2
21
−
17
21
λ + 40

21
λ2 − λ3 = (λ − 1)2(λ + 2

21
). (A.85)

Consider the three eigenvalues λ1 = 5.372, λ2 = 5, λ3 = −0.372 of the transaction
matrix Z1. The positive eigenvalues λ1 = 5.372, and λ2 = 5, correspond to semi-positive
eigenvectors z1 = [0.429,0, 1], respectively z2 = [0, 1,0], i. e., Z1zi = λizi, i = 1, 2.

Consider the three eigenvalues λ1 = λ2 = 1, λ3 = −0.095 of the coefficients ma-
trix A1. The identical positive eigenvalues λ1 = λ2 = 1 correspond to the semi-positive
eigenvectors y1 = [1/3,0, 2/7], respectively y2 = [0, 1,0], i. e., A1yi = λiyi, i = 1, 2.

We conclude. For the semi-positivematrixZ1,wemay speakof aFrobenius number,
λ1 = 5.372.Here it corresponds to a semi-positive eigenvector. On the other hand,A1 has
two (non-unique) maximal eigenvalues corresponding to two different semi-positive
eigenvectors. Here we keep the termmaximal eigenvalues. There is no Frobenius num-
ber forA1. TheoremA.10.1, further treats this extension of the Frobenius theorem. 

The following example illustrates the properties (3) and (4) of the Perron–
Frobenius Theorem A.9.3.

Example A.9.4. Consider the semi-positive matrixA, which is irreducible, becauseA2

is positive,

A =
[[[

[

4
13

2
9

3
4

1
13

4
9

1
2

2
13 0 3

4

]]]

]

, A2 =
[[[[

[

691
3,042

176
1,053

1693
1,872

205
1,521

226
1,053

613
936

55
338

4
117

141
208

]]]]

]

> 0. (A.86)

Compute a positive right eigenvector x such that ∑3i=1 xi = 1. Then compute a right
eigenvector x and a left eigenvector y of A such that their scalar product is xy = 1.

Solution to Example A.9.4:
Because of (A.86), the matrix A is primitive (see Lemma A.9.1), confirming the irre-
ducibility.

There is one real, maximal eigenvalue λA = 0.9800, the Frobenius number, cor-
responding to right eigenvectors x = a[1.4951, 1.1483, 1] and to the left eigenvectors
y = b[0.2402,0.0997, 1]. The remaining eigenvalues are λ2 = 0.3681 and λ3 = 0.1540.

Setting for the sum of the components of the right eigenvectors: a ⋅∑3i=1 xi = 1, one
gets a = 0.2745, and the eigenvector x = [0.4104,0.3152,0.2745].

Setting then for the scalar product xy = 1, we get b = 2.4724 and the other specific
eigenvector y = [0.5995,0.2465, 2.4724].

Thus we have found an example satisfying the two properties (3) and (4) of Theo-
rem A.9.3. 

The following example further illustrates the properties of primitive matrices (see
Definition A.9.2).
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Example A.9.5. Consider the semi-positive matrices,

A =
[[[

[

1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1

]]]

]

, B =
[[[

[

1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1

]]]

]

. (A.87)

Verify that A is imprimitive and that B is a primitive matrix.

Solution to Example A.9.5:
We compute,

(A + I)3 =
[[[

[

14 13 0 0
13 14 0 0
27 27 14 13
27 27 13 14

]]]

]

≥ 0, B3 =
[[[

[

5 5 3 1
9 9 6 3
13 13 9 5
13 13 9 5

]]]

]

> 0. (A.88)

According to Lemma A.8.2, matrix A is reducible and therefore imprimitive; one com-
putes its eigenvalues as λ1 = λ2 = 2, λ3 = λ4 = 0.

Looking for the smallest m ∈ ℕ with Bm > 0, one finds B2 ≥ 0 and B3 > 0, and,
according to LemmaA.9.1 the non-negativematrixB is primitive and consequently irre-
ducible. Its eigenvalues are λ1 = 3, λ2 = 1, λ3 = λ4 = 0. Thus, there is a uniquemaximal,
real and positive eigenvalue, λ1 = 3, the Frobenius number.

The application of Lemma A.9.1 is an easy way to determine if non-negativematri-
ces are irreducible, especially in Input-Output analyses. 

Remember that the matrices describing Leontief quantity models and Sraffa
economies for single-product industries are semi-positive and fulfill Assumption 2.2.1,
and Assumption 2.2.2. Matrices describing Sraffa economies for joint production fulfill
Assumption 6.1.1 to Assumption 6.1.3 and are also semi-positive.

In the next example, we will analyse borderline cases of non-positivematrices, as
for example of the zero matrix.

Example A.9.6. Verify following statements:
(1) the n × n zero matrix O is the only non-negative matrix which is not semi-positive;
(2) the n × n zero matrix O is reducible for n > 1;
(3) the n × n identity matrix I is reducible;
(4) The matrices in “canonical form” or in “normal form” do not fulfill the conditions

of the Perron–Frobenius theorem A.9.3.

Solution to Example A.9.6:
(1) In a non-negative matrix A = (aij), aij ≧ 0,∀i, j ∈ {1, . . . , n}, all elements are non-

negative. But here as all elements are moreover non-positive, then, aij ≦ 0,∀i, j ∈
{1, . . . , n}, so aij = 0,∀i, j ∈ {1, . . . , n}, therefore A = 0.

(2) For n > 1 the matrix powers (I + O)n−1 = I are non-negative; therefore the non-
negativematrix O is reducible, according to Lemma A.8.2.
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(3) The matrix powers (I+ I)n−1 = (2n−1)I are non-negative; therefore the non-negative
matrix I is reducible, according to Lemma A.8.2.

(4) Consider a n×nmatrixA in “canonical form” or in “normal form”, then one shows
that (A + I)n−1 has the same “canonical form” as A, as is illustrated by Exam-
ple A.9.5, and matrix A is reducible, according to Lemma A.8.2. 

Recapitulation A.9.1.
– The Perron theorem requires a positivematrix, whereas the Frobenius theorem

requires that a matrix be irreducible and non-negative. In both cases, the condi-
tions for the existence of a real, positive, maximal and unique eigenvalue, called
the Frobenius number of that matrix, are fulfilled and ensure the existence of as-
sociated positive left and right eigenvectors.

– In the case of apositivematrix, the Frobenius number is also called a simple eigen-
value. In the case of an irreducible and non-negative matrix, there may exist, be-
sides the guaranteed Frobenius number, additional complex eigenvalues of mod-
ulus equal to that Frobenius number.

Lemma A.9.2. Let C be a square n × n matrix with eigenvalues λ and I the n × n identity
matrix. For any real h, the eigenvalues of hI + C, respectively hI − C, are the numbers
h+λ, respectively h−λ, and every eigenvector ofC is an eigenvector of hI+C, respectively
hI − C.

Proof. Let λ be an eigenvalue of matrix C with eigenvector x. Then, for every real h,
there holds: (a) (hI + C)x = hx + Cx = hx + λx = (h + λ)x. Hence, h + λ is an eigenvalue
of hI+C and x is an associated eigenvector; (b) (hI−C)x = hx−Cx = hx−λx = (h−λ)x.
Hence, h − λ is an eigenvalue of hI − C and x is an associated eigenvector.

Although the matrix C may have one or more negative elements, the Frobenius
theory of positive matrices can still be applied in certain cases.

Lemma A.9.3. The Frobenius theory applies to non-positive matrices C, if
(a) negative elements occur only in the main diagonal;
(b) all elements outside the main diagonal are negative.

Proof. With suitable h in case (a) thematrixC+hI is positive, and in case (b) thematrix
hI − C is positive. Thus, Lemma A.9.2 applies.

A.10 Theorems on non-negative matrices

There exist important theorems on non-negative matrices relaxing the conditions of
the Perron–Frobenius theorem A.9.3. Some spectral properties of non-negative and ir-
reduciblematrices proven in the preceding section are usually not valid for reducible
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matrices. As any non-negative matrix A ≧ 0 can be viewed as a limit of a sequence
(Am > 0) of positive and irreducible matrices (see Gantmacher [34], (42), p. 409), one
can write

A = lim
m→∞

Am, (Am > 0, m = 1, 2 . . .). (A.89)

Some spectral properties of irreducible matrices are retained in weakened form for
reduciblematrices.

We present here some important results valuable for any non-negativematrices.

Theorem A.10.1. Every non-negative matrix A = (aij) ≧ 0, i, j = 1, . . . , n, always has a
maximal, real, non-negative characteristic root or eigenvalue λA ≥ 0 that dominates the
moduli of all other characteristic roots of matrixA. Themaximal characteristic root λA is
then associated with a semi-positive eigenvector, xA ≥ o. (Remark: No eigenvector can
ever be the null vector.)

AxA = λAxA, (xA ≥ o, xA ̸= o). (A.90)

Proof. See Gantmacher ([34], p. 409).

The non-negative and reduciblematrixA of ExampleA.9.5 hasmaximal eigenvalue
λA = 2, according to Theorem A.10.1. A non-negative and reducible matrix A can be
brought with permutations of the rows and columns to “canonical form”, see Gant-
macher ([34], p. 411):

Ã = P−1AP = [ Ã11 0
Ã21 Ã22

] . (A.91)

Lemma A.10.1.
(a) The maximal eigenvalue λÃ of a non-negative reducible matrix Ã (A.91) is equal to

the maximal eigenvalue of one of the submatrices Ã11, Ã22.
(b) If the reduction process is terminated to attain the block diagonal form (A.73) then

the submatrices Ã11, . . . , Ãss are irreducible square matrices. Note that the zero ma-
trix consisting only of one element is irreducible (Kurz & Salvadori [52], p. 104). The
maximal eigenvalue λÃ of matrix Ã (A.73) is then equal to the maximal eigenvalue
of one of the submatrices Ã11, . . . , Ãss.

Proof. (a) For the equality λÃii
= λÃ, i ∈ {1, 2}, see Gantmacher ([34], pp. 411–412).

(b) There exists a non-negative irreducible submatrix Ãkk, k ∈ {1, . . . , s} for which
λÃ = λÃss

≥ 0, see Gantmacher ([34], pp. 411–412).

We illustrate that a permutation must be found and performed on matrix A (A.91)
to obtain Ã11 and Ã22. See the following example.
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Example A.10.1. Let a reducible matrixA and a permutationmatrix P be given. Estab-
lish the “canonical form”, Definition A.8.3, (A.73), themaximal eigenvalue λÃ of Ã and
the maximal eigenvalue λÃ11

of Ã11,

A =
[[[[

[

30 20 10 40
0 50 20 40
0 30 50 0
10 30 20 40

]]]]

]

, P =
[[[[

[

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

]]]]

]

. (A.92)

Solution to Example A.10.1:
We compute the inverse matrix P−1 and the product P−1AP:

P−1 =
[[[[

[

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

]]]]

]

, Ã = P−1AP =
[[[[

[

50 20 0 0
30 50 0 0
20 10 30 40
30 20 10 40

]]]]

]

. (A.93)

The submatrix Ã11 = [ 50 20
30 50 ] > 0 is irreducible. Moreover, the reduction process has

attained block diagonal form and submatrix Ã22 = [ 30 40
10 40 ] > 0 is also irreducible.

We now determine the characteristic polynomials of Ã and Ã11,

P4(λ) = det(Ã − λI4) = 1,520,000 − 213,000λ + 9,700λ
2 − 170λ3 + λ4,

P2(λ) = det( ̃A11 − λI2) = 1,900 − 100λ + λ
2. (A.94)

The maximal eigenvalue λÃ = 10(5 +√6) = 74.4949 of Ã is unique, equal to the Frobe-
nius number of Ã11, according to Lemma A.10.1, λÃ = λÃ11

> 0. The Frobenius number
λÃ22
= 5(7 +√17) is less than λÃ. 

Consider now a first limit case of a non-negativematrix, the zero matrix O.

Example A.10.2. Determine themaximal eigenvalues and the associated eigenvectors
of the zero matrix O. Comment on the results.

Solution to Example A.10.2:
We compute the maximal eigenvalues of the zero matrix O,

P3(λ) = det(O − λI) = det(
[[

[

0 0 0
0 0 0
0 0 0

]]

]

− λ[[
[

1 0 0
0 1 0
0 0 1

]]

]

) = −λ3. (A.95)

We set P3(λ) = 0 and get the maximal eigenvalue λ0 = 0. So we compute the (right)
eigenvectors, O ⋅ xO = λ0xO = o, where xO = [x1, x2, x3] ∈ ℝ3 \ {o}, because an eigen-
vector is never the zero vector.

In particular, the unit vectors [1,0,0], [0, 1,0], [0,0, 1] are eigenvectors of the
zero matrix and usually presented as such in the textbooks. 
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We recognise that the zero matrix 0 fulfills the assumptions of Theorem A.10.1.
But, as it is not semi-positive,0doesnot fulfill Assumption 2.2.2. So evidently,0 cannot
describe a Sraffa production system or an Input-Output Table (IOT)!

We contunue with a second limit case of a semi-positive and reduciblematrix in
“canonical form”, which also does not describe a Sraffa production system, because
Assumptions 2.2.1 and 2.2.2, are not fulfilled.

Example A.10.3. Let be given the following semi-positive reducible matrices Ã and B̃
in “canonical form”, b > 0, according toDefinitionA.8.3, (A.73). Compute themaximal
eigenvalues λÃ of Ã and λB̃ of B̃ and theFrobeniusnumber of the 1×1 positive submatrix
Ã11 > 0 of matrix Ã,

Ã =
[[[[[

[

20 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]]]]]

]

≥ 0, B̃ =
[[[[[

[

b b 0 0
b b 0 0
0 0 0 0
0 0 0 0

]]]]]

]

≥ 0, Ã11 = [20] > 0. (A.96)

Solution to Example A.10.3:
We directly determine the characteristic polynomials of matrices Ã, B̃ and Ã11,

f4(λ) = det(Ã − λI4) = −20λ
3 + λ4,

g4(λ) = det(B̃ − λI4) = λ
2(−2bλ + λ2),

f1(λ) = det(Ã11 − λI1) = 20 − λ. (A.97)

There are unique, maximal, real, positive eigenvalues λÃ = 20 and λB̃ = 2b > 0. The
Lemma A.10.1 applies and λÃ11

= 20 is the Frobenius number of the positive submatrix
Ã11, λÃ = λÃ11

= 20 > 0.
The following generalisation is found. Let be n ≥ m > 0. Consider further amatrix

D set up as matrix B, but with anm ×m submatrix exclusively of identical elements b
in the left-upper corner, whereas elsewhere all components are 0’s. Then the charac-
teristic polynomial of matrix D is

hn(λ) = det(D̃ − λIn) = λ
n−1(λ −mb). (A.98)

There is a unique, maximal, real and positive eigenvalue λD̃ = mb > 0. 

The next lemma is in Gantmacher [34], Theorem 6, p. 416.

Lemma A.10.2. If any component of a non-negative matrix A is increased, then its
Frobenius number cannot decrease. If matrix A is irreducible, then the Frobenius num-
ber increases effectively.
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Example A.10.4. Set b = 1. Ceteris paribus, replace the element b11 = b = 1 > 0 of the
semi-positivematrix B̃ by e11 = 1.1 leading tomatrix Ẽ. Compare themaximal eigenval-
ues of B̃ and Ẽ, respectively, the Frobenius numbers of the positive 2 × 2 submatrices
B̃11 and Ẽ11 in its upper left corners. Apply Lemma A.10.2.

0 ≤ B̃ =
[[[[[

[

b11 = 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

]]]]]

]

≤ Ẽ =
[[[[[

[

e11 = 1.1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

]]]]]

]

. (A.99)

Solution to Example A.10.4:
Matrices B̃ an Ẽ have the maximal eigenvalues λB̃ = 2 > 0 and λẼ = 2.05125 > 0. The
Frobenius numbers of matrices B̃11 = [ 1 11 1 ] > 0 and Ẽ11 = [ 1.1 11 1 ] > 0 are λB̃ = λB̃11 = 2
and λẼ = λẼ11 = 2.05125. This is exactly the statement of Lemma A.10.2 applied on the
semi-positive matrices B̃ ≤ Ẽ and the irreducible submatrices B̃11 ≤ Ẽ11, leading to
λB̃ = λB̃11 = 2 ≤ λẼ = λẼ11 = 2.05125. 

Relying now on Theorem A.10.1, we discuss the development of non-negative re-
ducible and also irreduciblematrices into convergent infinite series.10

Theorem A.10.2. Consider a non-negative matrix A ≧ 0 with maximal eigenvalue λA =
ρ(A) ≥ 0. For any λ > λA, there is

(λI − A)−1 ≧ 0 and d
dλ
(λI − A)−1 ≦ 0. (A.100)

Furthermore, for λ > λA ≥ 0, we have the development (A0 = I),

(λI − A)−1 =
∞

∑
j=0

Aj

λj+1
≧ 0, (A.101)

and also

d
dλ
(λI − A)−1 = −

∞

∑
j=0

(j + 1)Aj

λj+2
≦ 0. (A.102)

If A is non-negative and irreducible with maximal eigenvalue λA, then:

(λI − A)−1 > 0 and d
dλ
(λI − A)−1 < 0. (A.103)

Proof. See Gantmacher, [34], p. 410, Section: 13.3 Reducible matrices.

10 Note that positivematrices are non-negative and irreducible.
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Finally, Theorem A.10.1 can be sharpened for semi-positive matrices, describing
the Sraffa price models. More specifically, there is an important proposition for semi-
positive matrices, fulfilling Assumption 2.2.1 and Assumption 2.2.2 which will be used
to compute the productiveness R = (1/λC) − 1 and to ensure its existence by the state-
ment λC > 0.

Lemma A.10.3. Consider an n sector Sraffa production scheme (S, L)→ (q) with a semi-positive and
reducible commodity flow matrix S ≥ 0, fulfilling Assumption 2.2.1 and Assumption 2.2.2. Therefore,
there is a positive output vector q = Se + d > o. Assume a semi-positive vector of surplus d ≥ o. Then
the semi-positive and reducible input-output coefficients matrix C = Sq̂−1 ≥ 0 (2.17) has a positive,
maximal, real eigenvalue λC > 0.

Proof. The semi-positive reducible matrix C ≥ 0 can be brought by permutations in completely re-
duced block diagonal form (A.74) with now irreducible semi-positive matrices Ã11, . . . , Ãss. Note that
the zero matrix of order one is irreducible. Withm ≥ 1, the semi-positivity implies the existence of at
least one positive m × m submatrix Ãkk > 0, k ∈ {1, . . . , s}, exhibiting a positive Frobenius number
λÃkk > 0. With Lemma A.10.1 one concludes that one of these Frobenius numbers λÃkk = λC > 0 is the
requested maximal eigenvalue of the semi-positive matrix C.

A.11 Stochastic matrices

In this section, we treat a special category of non-negative matrices, the stochastic
matrices, on which all the properties encountered in Section A.10 apply. They play an
important role in the description of economies with no surplus or in the description
of interindustrial economies.

Definition A.11.1. An n × n matrix D = (dij) is stochastic if it is a non-negative matrix
and if the sum in each of its rows is equal to 1,

dij ≥ 0,
n
∑
j=1

dij = 1, i ∈ {1, . . . , n}, ⇒ De = e (A.104)

Stochastic matrices have the following properties that are important in our con-
text:
1 If D is stochastic, then form = 1, 2, . . . the matrices Dm are also stochastic.
2 For an n × n stochastic matrix D, there is eDe = n and eDme = n.

From equation (A.104), it follows that λD = 1 is an eigenvalue of matrix D to which the
n × 1 eigenvector e = [1, . . . , 1] is associated.

Lemma A.11.1. Anon-negative n×nmatrixD ≧ 0 is stochastic if andonly if its eigenvalue
λD = 1 is associated with the n × 1 eigenvector e = [1, . . . , 1]. The eigenvalue λD = 1 is a
maximal eigenvalue of the stochastic matrix D.

Proof. See Gantmacher [34], p. 427.
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In the present context, we observe that the distribution coefficientsmatrices of the
systems of production with no surplus are stochastic.

Example A.11.1. Consider Example 5.1.2 and set up the commodity flowmatrix S. Con-
sider that there is no surplus, thus the vector of final demand is therefore d = o and
the vector of total output is qI = Se. Calculate the inverse of the diagonal matrix q̂I ,

S = [[
[

90 50 40
120 125 40
60 150 200

]]

]

, qI = Se =
[[

[

180
285
410

]]

]

, q̂−1I =
[[[

[

1
180 0 0

0 1
285 0

0 0 1
410

]]]

]

,

(A.105)

and calculate the matrices C and D and their eigenvalues.

Solution to Example A.11.1:

C = Sq̂−1I =
[[[

[

90 50 40

120 125 40

60 150 200

]]]

]

[[[[

[

1
180 0 0

0 1
285 0

0 0 1
410

]]]]

]

=
[[[[

[

1
2

10
57

4
41

2
3

25
57

4
41

1
3

10
19

20
41

]]]]

]

, (A.106)

D = q̂−1I S =
[[[

[

1
180 0 0

0 1
285 0

0 0 1
410

]]]

]

[[

[

90 50 40
120 125 40
60 150 200

]]

]

=
[[[[

[

9
18

5
18

4
18

24
57

25
57

8
57

6
41

15
41

20
41

]]]]

]

. (A.107)

Establish the characteristic polynomial of matrices C and D,

P3(λ) = det(C − λI3) = det(D − λI3) = (1 − λ)(
350
7,011
−
1,993
4,674

λ + λ2). (A.108)

The eigenvalues are λ1 = λD = 1, λ2 = 0.2132 + 0.0668 ⋅ i, λ3 = 0.2132 − 0.0668 ⋅ i and we
have the property that e = [1, 1, 1] is the eigenvector corresponding to λD = 1,

De =
[[[[

[

9
18

5
18

4
18

24
57

25
57

8
57

6
41

15
41

20
41

]]]]

]

[[

[

1
1
1

]]

]

= [[

[

1
1
1

]]

]

= e⇒ De = e. (A.109)

We see thatD is stochastic, i. e., the sums of the three rows are all equal to one.We
conclude with the eigenvalue equation, De = e, that the eigenvector e is associated
with the eigenvalue λD = 1 of the distribution coefficientsmatrix D. 

A.12 The productive Leontief model

In this section, we treat the Leontief model and the productive Leontief model. We rely
therefore directly on the non-negative input-output coefficients matrix A ≧ 0, a non-
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negative vector of final demand f ≧ o and a non-negative vector of total output x ≧ o
(seeAshmanov [2], p. 24). In otherwords,we return to themost general assumptions of
non-negativeness. The restrictions of semi-positivity will be introduced when needed.
We do not refer to the commodity flow matrix Z.

It is necessary to comment on the terminology used in this text and used by vari-
ous authors. We adopt the term Leontief model for equation (2.30) expressing the vec-
tor of total output x ≧ o, given the matrix A ≧ 0 and the vector d ≧ o, representing
the initial input-output model of Leontief [55], [56]. It has also been called the Leon-
tief quantity model (see Oosterhaven [77], p. 750). The Leontief model (2.30) has to be
clearly distinguished from the various Leontief price models, as they are treated in
Section 2.5.

Finally, we define the notion of productive models (see Ashmanov [2], p. 24, and
Gale [33], p. 296). Considering matrix A = Zx̂−1, it is known that matrix Z is obtained
from prices and quantities in physical units (2.18) thus, what follows can also be ap-
plied to Leontief quantity models in physical terms.11

It is important to mention that the original version of the notion of the productive
Leontiefmodel, DefinitionA.12.1, and the correspondingTheoremA.12.1, the statement
concerning the Frobenius number, are presented here, requiring a non-negativematrix
A ≧ 0 and non-negative vectors f ≧ o, x ≧ o. Then, throughout the applications in this
text it is admitted that the economic Assumption 2.2.1 and Assumption 2.2.2 prevail,
where the matrix A ≥ 0 and the vector f ≥ o are semi-positve, respectively, the vector
x > o is positive, what is necessary because one generally starts from the commodity
flow matrix Z.

Definition A.12.1 (Leontief model, productive Leontief model). Let a non-negative
input-output coefficients matrix A ≧ 0 (2.9) and any non-negative vector of final
demand f ≧ o be given. If there exists a unique non-negative output vector x ≧ o, so
that the equation

x = Ax + f, x ≧ o, (A.110)

holds, then one calls (A.110) a Leontief model. In the case that the vector of final
demand is semi-positive, f ≥ o, theLeontiefmodel (A.110) is referred to as aproductive
Leontief model.12

Ashmanov ([2], Theorem 1.5, p. 39) formulated the condition for a productive Leon-
tief model. This theorem belongs to the group of theorems on non-negativematrices. It
is the basis for the understanding of the inner structure of productive Leontief models
and the related models.

11 This application is treated in Section 2.4.2.
12 Analogously, one defines a productive Sraffa model (3.52), for the case of measurement in physical
terms. In this case we admit that Assumption 2.2.1 and Assumtion 2.2.2 always prevail.
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Theorem A.12.1. (Condition for a productive Leontief model). A Leontief model (A.110)
is productive if and only if the Frobenius number λA of the non-negative coefficients ma-
trix A ≧ 0 (2.30) is less than one, λA < 1.13

Proof. Sufficient condition:
Because all themoduli of eigenvalues λa ofA are less than or equal to λA, |λa| ≤ λA < 1,
the equality det(λaI − A) = 0 holds only for the eigenvalues of A. Consequently, the
matrix A is regular, det(I − A) ̸= 0. With Theorem A.10.2 one substitutes λ = 1 into
equation (A.101). For non-negativematricesA ≧ 0, we obtain the non-negative Leontief
Inverse, expressed as a convergent geometric series,

(I − A)−1 =
∞

∑
k=0

Ak ≧ 0, (A.111)

withmatrix powers converging to 0, limk→∞ Ak = 0. Then, for any specific vector of fi-
nal demand f ≧ 0, one considers the product with the inversematrix (A.111), obtaining
the unique non-negative solution of the system (A.110),

x = (I − A)−1f ≧ o. (A.112)

Necessary condition:
There exists a unique non-negative solution x ≧ o to the productive Leontief model
(A.110). This means in terms of linear algebra14:

x = Ax + f⇔ x(I − A) − f = o⇔
rank(I − A, f) = rank(I − A) = n⇔ det(I − A) ̸= 0. (A.113)

Consequently, the Leontief Inverse (I − A)−1 exists. With Theorem A.10.2, equation
(A.101), one performs the development of the Leontief Inverse into the series (A.111)
having to set λ = 1. This excludes Frobenius numbers λA greater or equal than one, see
condition λ > λA of Theorem A.10.2, so the Frobenius number must be less than λ = 1,
λA < λ = 1.

We treat now a third limit case: semi-positive reduciblematrices describing jus-
viable economies (no surplus); Assumption 2.2.1 and Assumption 2.2.2 hold.

Example A.12.1. Given a semi-positive reducible commodity flow matrix S, compute
the output vector qI = Se, the input-output coefficientsmatrix C = Sq̂−1I and the distri-
bution coefficients matrix D = q̂−1I S. Compute the eigenvalues of C and D, choose the
maximal eigenvalues and compute the corresponding eigenvectors.

13 As there is here a non-negativematrix, the Theorem A.10.1 states the existence of a maximal eigen-
value. In the present case of TheoremA.12.1, also with a non-negativematrix, this maximal eigenvalue
is usually called the Frobenius number, as is the case for the Perron–Frobenius theorem A.9.3.
14 See Nef [69], pp. 122–123, Theorem 6, which states following equivalent propositions in al. 3: The
linear system (A.110) has exactly one solution: al. 4: det(A − I) ̸= 0⇔ rank(I − A, f) = rank(I − A) = n
(Theorem 3).
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S = [
[

20 10 0
0 0 10
0 30 0

]

]
, (I + S)2 = [

[

441 220 100
0 301 20
0 60 301

]

]
≥ 0. (A.114)

Solution to Example A.12.1:
We compute the output vector and the matrices:

qI =
[[

[

30
10
30

]]

]

, C = Sq̂−1I =
[[

[

2
3 1 0
0 0 1

3
0 3 0

]]

]

, D = q̂−1I S = [[
[

2
3

1
3 0

0 0 1
0 1 0

]]

]

. (A.115)

We now establish the characteristic polynomial of both matrices C and D,

f3(λ) = det(C − λI3) = det(D − λI3) =
1
3
(−2 + 3λ + 2λ2 − 3λ3). (A.116)

The eigenvalues of matrix C and the stochastic matrix D, De = e, are {1, 2/3,−1}. The
maximal eigenvalue of both matrices is λC = λD = 1, associated to the positive eigen-
vector c1 = [1, 1/3, 1] > o of C, respectively d1 = [1, 1, 1] > o of D. The eigenvalue
λC = λD = 1 is maximal (see Lemma A.10.1). 

It is necessary to establish the terminology. We say that an economy is productive if this economy
produces a surplus. In this case, we are in presence of “productive economies or surplus economies”
(see Hall [39], p. 78).

Further, an economy is just viable if it produces no surplus and viable if it produces either a sur-
plus or has no surplus; in other words, a viable economy is either productive or just viable (see Kurz
and Salvadori [52], pp. 96–97).

Consequently, a productive Leontief model or productive Sraffa model with Frobenius number
λ = 1/(1 + R) < 1 results in a productive economy and vice versa.

Helmut Knolle [49] proposed to term R = (1/λC ) − 1 > 0 as a measure of the productiveness of
an economy. The number R > 0, also called the maximal rate of profits, captures the productivity of
an economy, a notion dating back to Krugman [47], expressing the state of being in the presence of a
productive model.

There is accordingly another approach to get this result: theHawkins–Simon condition
(see Theorem A.12.2 hereafter).

Notation A.12.1 (Principal minors of a matrix). We define the notion of the n principal
minors of matrix (I−A). They are the determinants of them×m sub-matrices of matrix
(I − A), keeping the firstm rows and columns, 1 ≤ m ≤ n, after deleting the last n −m
rows and columns.

Takayama [116], p. 360, then formulates the following questions:
(1) (The existence problem) For any given f ≧ o, can we guarantee that there exists

an x ≧ o, such that (I − A)x = f? If so, is such an x unique?
(2) (The non-singularity problem) Is the matrix (I − A) non-singular? If so, is (I −

A)−1 ≥ 0?

Resorting to the notion of principal minors, these two questions can be answered af-
firmatively as follows:
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Theorem A.12.2 (The Hawkins–Simon condition for the viability of an economy). The
questions (1) and (2) receive an affirmative answer if the necessary and sufficient con-
dition is fulfilled that all the n principal minors of matrix (I − A) are positive.

We illustrate the Hawkins–Simon condition with the following example.

Example A.12.2. Given the semi-positive and reducible matrix in canonical form,

Ã =
[[[[[[

[

5
12

1
4 0 0

1
8

5
16 0 0

2
11

3
11

5
11

1
11

1
4

1
2

1
2

3
4

]]]]]]

]

≥ 0, I − Ã =
[[[[[[

[

7
12 −

1
4 0 0

− 18
11
16 0 0

− 211 −
3
11

6
11 −

1
11

− 14 −
1
2 −

1
2

1
4

]]]]]]

]

. (A.117)

Compute the n = 4 principalminors of (I−Ã)−1, the Leontief Inverse and the canonical
form Ã. Take the vector of final demand f = [20,0,0,0] and compute the correspond-
ing vector of total output x. Comment on the obtained results.

Solution to Example A.12.2:
The principal minors are:

det(



7
12 −

1
4 0

− 18
11
16 0

− 211 −
3
11

6
11



) =
71
352
> 0, det(



7
12 −

1
4

− 18
11
16


) =

71
192
> 0,

det(


7
12


) =

7
12
> 0, det(



7
12 −

1
4 0 0

− 18
11
16 0 0

− 211 −
3
11

6
11 −

1
11

− 14 −
1
2 −

1
2

1
4



) =
71
2,112
> 0. (A.118)

Then we compute the Leontief Inverse

(I − Ã)−1 =
[[[[[[

[

132
71

48
71 0 0

24
71

112
71 0 0

129
71

176
71

11
4 1

438
71

624
71

11
2 6

]]]]]]

]

≥ 0, x = (I − Ã)−1
[[[[

[

20
0
0
0

]]]]

]

=

[[[[[[

[

2,640
71
480
71

2,580
71

8,760
71

]]]]]]

]

> o.

(A.119)

The minors (A.118) are positive, the Hawkins–Simon condition is fulfilled. The
Leontief Inverse is semi-positive (I − Ã)−1 ≥ 0, and for any non-negative vector of final
demand, f ≧ o, there is a non-negative vector of total output, x ≧ o. We have taken
a semi-positive vector f ≥ o of final demand, and obtained a positive vector x > o of
total output. This economy is viable. 
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A.13 Power iteration algorithm of Mises–Geiringer

In 1929, Richard von Mises (1883–1953) and Hilda Geiringer (1893–1973) proposed an
eigenvalue power-iteration algorithm, called theMises–Geiringer Iteration. Given a di-
agonalisable matrix A, the algorithm will produce the greatest eigenvalue λ (in ab-
solute value) of matrix A and the corresponding eigenvector y, thus, Ay = λy (see
Rutishauser [98], p. 168).

The power-iteration algorithm starts with a random vector y(0) ̸= o. The algorithm
is presented as a recurrent algorithm.

Initialisation: matrix A, vector y(0), k = 0, ε > 0,
repeat

y(k+1) = Ay(k)

‖Ay(k)‖
, λ(k+1) = Ay

(k),

k := k + 1,

until (stop condition: ‖y(k+1) − y(k)‖ < ε). (A.120)

This power-iteration algorithm is appropriated to compute the Frobenius number λA ≈
‖y(k)‖ and the corresponding eigenvector y ≈ y(k+1) when the number n of the sectors
is relatively high. It converges rapidly. The experience is that the numerical evaluation
of the eigenvalues, using the characteristic equation, is not very accurate when n ≫ 1.
However with the modern software packages, like MATHEMATICA and MATLAB, this
statement is softened. In the examples of this book,wehavenot encountered theafore-
mentioned limits.

A.14 Directed graphs or digraphs

(1)Directedgraphs. Adirectedgraph (or adigraph) is a structure amounting to a set of
objects in which some pairs of objects are related in someway. The objects correspond
to mathematical abstractions called vertices (or nodes or points). Each of the related
pairs of vertices is called an edge (or arc). Typically, a graph is depicted by dots for
vertices and curves for edges or arrows for directed edges (see alsoWagner [119], p. 10).

Definition A.14.1 (Directed graphs or digraphs). A directed graph is formally defined
as G = (𝒩 ,𝒜), consisting of the set 𝒩 of nodes and the set 𝒜 of arrows also called
directed arcs which are ordered pairs of elements of set 𝒩 , i, j ∈ 𝒩 , designed as
(i → j) ∈ 𝒜.

We will also need the notion of a complete digraph (see Illik [44]), an extension of
the notion of a complete graph (see K. Wagner [119], p. 24). In a complete digraph, two
different nodes are connectedwith exactly two opposed arrows. In a complete digraph,
there are normally no arrows (i → i), i ∈ 𝒩 . But by also adding to the complete digraph
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arrows (i → i) for every node i ∈ 𝒩 , we obtain a new type of digraph: a node-complete
digraph.

Definition A.14.2 (Complete digraph). A directed graph G = (𝒩 ,𝒜) is called a com-
plete digraph, if there is an arrow (i → j), from every node i ∈ 𝒩 to any other node
j ∈ 𝒩 , i ̸= j, for all (i, j) ∈ 𝒜 ⊂ 𝒩 ×𝒩 .

Definition A.14.3 (Node-complete digraph). A directed graph G = (𝒩 ,𝒜) is called a
node-complete digraph, if there is an arrow (i → j) from every node i ∈ 𝒩 to every
node j ∈ 𝒩 , for all (i, j) ∈ 𝒜 = 𝒩 ×𝒩 .

Complete digraphs have a number of |𝒩 |(|𝒩 | − 1) arrows. Node-complete digraphs
have a total amount of |𝒩 |2 arrows, whereas complete graphs have (|𝒩 |−1)|𝒩 |2 undi-
rected arcs.

Digraphs are used to represent the processes of production of an economy. One
also needs to refer to parts of the whole given economy and therefore to parts of the
digraph representing it.We thus resort to the notion of subdigraph, i. e., a digraph con-
sisting of an arbitrary number of nodes of a given digraph and all the arrows between
them defined on that given digraph. Formally, subdigraphs are defined as follows (see
Wagner [119], p. 22):

Definition A.14.4 (Subdigraph). Let G = (𝒩 ,𝒜) be a digraph. Then a digraph G =
(𝒩 ,𝒜) is a subdigraph of G, if𝒩  ⊆𝒩 , and𝒜 =𝒜 ∩ (𝒩 ×𝒩 ), symbolically G ⊆ G.

We also resort to the notion of bidigraphs.

Definition A.14.5 (Bipartite digraph or bidigraph). A digraph G = (𝒩 ,𝒜) is a bipartite
digraph (bidigraph) if its node set 𝒩 can be partitioned into two disjoint subsets 𝒩1
and 𝒩2, 𝒩1 ∪ 𝒩2 = 𝒩 , 𝒩1 ∩ 𝒩2 = 0, with the result that each arrow of G = (𝒩 ,𝒜) is
strictly directed either from a node of𝒩1 to a node of𝒩2 or vice versa. This means that
the arrows of the bipartite digraph G are in a set 𝒜 ⊆ 𝒩1 × 𝒩2.15 In the present text,
one always sets |𝒩1| = |𝒩2|, a property generally not required for a bidigraph.

Nowwewill define the notions of indegree, outdegree and the degree of a digraph
(see Wagner [119], p. 68).

Definition A.14.6 (Indegree, outdegree and degree of a node). For a node of digraph
G = (𝒩 ,𝒜), the number of head endpoints of arcs pointing on that node is called the
indegree of the node. The number of tail endpoints of arcs pointing out of that node is
its outdegree.

For a node υ ∈ 𝒩 , the indegree is denoted γ−(υ) and the outdegree as γ+(υ). A node
with γ−(υ) = 0 is called a source because it is the origin of each of its incident arcs.

15 Not to be confused with the definition of a bipartite graph (see Skiena [105] 1990, p. 213) and also
http://primes.utm.edu/graph/glossary.html
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Similarly, a node with γ+(υ) = 0 is called a sink. γ+(υ) + γ−(υ) = γ(υ) is called the
degree of the node.

(2) Digraphs issued from adjacency matrices. In this subsection, the link between
adjacency matrices, Definition A.8.5, and the associated digraphs is established.

Definition A.14.7 (Adjacency matrixW and associated digraph G(W)). An adjacency
matrixW = (wij), i, j = 1, . . . , n, generates a digraph G(W)16 as follows: To every single
i ∈ {1, . . . , n} corresponds one and exactly one node of the digraph G(W), in this gen-
eral case noted as i. Then, every entrywij = 1 generates an arrow (arc) (i → j) in G(W),
pointing from the node i to the node j, see Figure 4.12.

If the adjacency matrix W generates digraph G(W), then W is associated with
G(W). When matrix T has generated the (Boolean) adjacency matrix W, Defini-
tion A.8.5, then we also note G(T) as its associated digraph.

(3) The commodity flow represented by a commodity digraph. In the context un-
der discussion, we want to represent the commodity flow of a Sraffa production econ-
omy by a digraph, called the commodity digraph.

Definition A.14.8 (Commodity flow and commodity digraph). Consider a commodity
flow matrix S = (sij), i, j ∈ {1, . . . , n}, of a production economy. Every commodity i is
now referred to as exactly one node Ci. The adjacency matrix V = (υij), i, j = 1, . . . , n, of
matrix S generates a digraph G(V), called the commodity diagraph. The nodes Ci are
visualised by a square node, which mnemotechnically we think of a storage depot for
commodities.

The arrow (j → i) of the commodity digraph G(V) indicates that commodity j is
used in the production of commodity i. The commodity j enters the production of i
directly if an arrow (j → i) links node Cj to node Ci. The commodity j enters the pro-
duction of i indirectly if a succession of equally oriented arrows, linking nodes, thus
forming a directed path, leads from node Cj to node Ci. In a commodity digraph, the
sectors of production do not appear. The commodity flow goes in direction of the ar-
rows (j → i), opposite to the direction of the payment flow or demand flow.

Example A.14.1. The commodity digraph of Figure A.3 represents the commodity flow
of four sectors: C1 and C2 directly purchase from C3 and indirectly from C4.

(4) Connectivity of digraphs. We return now to the more general concept of con-
nectivity. Connectivity is one of the basic concepts of graph theory. The purpose is to
determine the minimum number of elements (nodes or arcs) needed to be removed to
disconnect a digraph in one or more separate parts, called components.

16 The notation G(W) is proposed by Varga ([118], p. 49), see also Miller and Blair ([65], p. 675).
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Figure A.3: Commodity digraph representing commodity flow, Example A.14.1.

Thenotions of graph theory are presented anddefined in standard textbooks (con-
sult, e. g., Skiena [105]). There are a lot of intuitive notions in graph theory, starting
with the notions of a graph which is a digraph, where all the (directed) arcs are re-
placed by undirected edges. We now present the notion of the paths.

Anundirected path is a sequence of edges that begins at a node of a graphandgoes
from node to node along edges of the graph. An undirected graph is called connected
if there is a path between every pair of nodes. A component of an undirected graph is a
subgraph inwhich any twonodes are connected to each other by paths. A graph that is
not connected is said to be disconnected. Then, there exist twonodes in the graphwith
the result that no path in the graph has those nodes as endpoints. Note that a complete
graph has an edge between each pair of distinct nodes, and a connected graph has a
path between each pair of distinct nodes.

In a digraph, a directed path consists of arcs of the same direction (see Defini-
tion A.14.9). A digraph is called connected (or weakly connected) if replacing all of
its arcs with undirected edges produces a connected (undirected) graph. A digraph
is called strongly connected if there is a directed path between every pair of nodes.

We refer here to Varga ([118], Definition 1.6, p. 20) concerning the notions of di-
rected paths and of strongly connected digraphs, which we will reproduce here.

Definition A.14.9 (Strongly connected digraphs). A directed path from node ei to
node ej is a sequence of nodes e1, el1 , . . . , elr−1 , elr=j, with arcs of the same orienta-
tion from ei to ej written as P(→ei, ej) = {→eiel1 ,

→el1el2 ,
→el2el3 , . . . ,

→elr−1elr=j}, connecting ei to
ej. A directed graph G = (𝒩 ,𝒜) is strongly connected if for any ordered pair of nodes
ei, ej ∈ 𝒩 there exists a directed path P(→ei, ej) ⊂ 𝒜 from node ei to node ej.

Definition A.14.10 (Connected or weakly connected digraphs). A digraph is called
weakly connected (or just connected), if the undirected underlying graph, obtained
by replacing all arrows with undirected arcs, is a connected graph.

We now give some illustrations of digraphs G(W) of adjacency matricesW.

Example A.14.2. The digraph associated to the adjacencymatrixW1 corresponding to
matrix Z1 of Example A.8.6 is presented, see Figure A.4.

Example A.14.3. The associated digraphs G(W1) and G(W2) of the adjacency matrix
W1 related to the matrix Z1, respectively ofW2 related to Z2, Example A.8.5, are pre-
sented.
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Figure A.4: Associated digraph G(W1) of matrixW1, Example A.14.2.

In Figure A.5 the digraph G(W1) is disconnected because it contains two separate
components, whereas the digraph G(W2) is strongly connected. This one can verify
because G(W2) contains a directed circuit 1→ 3→ 2→ 1. 

Figure A.5: Associated digraphs G(W1) (left) and G(W2) (right), Example A.14.3.

(5) Basic and non-basic commodities, entering directly or indirectly the process
of production. In single-commodity processes, a commodity that enters directly or
indirectly into the production of all commodities is a basic commodity, otherwise it is
a non-basic commodity. We will study how the presence of basics and non-basics can
be visualised in the associated digraph or in the adjacencymatrix of such a production
process.
We introduce the subject with two production economies, the first contains only basic
commodities, the second contains non-basic commodities.

Example A.14.4. An economy that has only basic commodities:

C1 enters C2 directly and enters C3, C4 and itself indirectly,
C2 enters C1 and C3 directly and C4 and itself indirectly,
C3 enters itself and C4 directly and enters C2 and C1 indirectly,
C4 enters C2 directly and enters C1, C3 and itself indirectly.

All commodities C1, C2, C3, C4 enter directly or indirectly into all others. They are
all basic (see Figure A.6, left).
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Figure A.6: Example A.7.2 (left) G(V1), Example A.14.5 (right) G(V2).

We observe that the commodity digraphG(V1) is strongly connected (Definition A.14.9,
above). Its associated adjacency matrix is:

V1 = (υij)1 =
[[[[

[

0 1 0 0
1 0 1 0
0 0 1 1
0 1 0 0

]]]]

]

, i, j = 1, . . . , 4.  (A.121)

Example A.14.5. An economy that has one basic commodity C1 and three non-basic
commodities C2, C3, C4:

C1 enters into itself and C2 directly and enters into C3 and C4 indirectly,
C2 enters into C3 directly and enters into C4 and itself indirectly,
C3 enters into itself and C4 directly and enters into C2 indirectly,
C4 enters into C2 directly and enters into C3 and itself indirectly.

We observe that the commodity digraph G(V2) (Figure A.6, right), is weakly con-
nected (Definition A.14.10).

Its adjacency matrix is:

V2 = (υij)2 =
[[[[

[

1 1 0 0
0 0 1 0
0 0 1 1
0 1 0 0

]]]]

]

, i, j = 1, . . . , 4.  (A.122)

Note that the number of positive entries (ones) in the adjacency matrices (A.121),
(A.122) is equal to the number of directed arrows, constituting the commodity di-
graphs.

(6) Reducibility of matrices and connectivity of digraphs. There exists a theorem
relating irreducibility and connectedness of digraphs: If a digraph is strongly connected,
its adjacency matrixW is irreducible and vice versa, according to the following Theo-
rem (see also Varga ([118], p. 20)).

Theorem A.14.1. A real n× n matrix A is irreducible if and only if its associated digraph
G(A) is strongly connected.
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We illustrate the property of connectedness of digraphs, stated by TheoremA.14.1,
resorting to Lemma A.8.2 concerning irreducibility of matrices (see Horn and Johnson
[43], p. 533), taking Example A.14.4 and Example A.14.5.

Setting n = 4, the connection is described by the (4 × 4) adjacency matrices Vi
(A.121) and (A.122). We have to form the matrix I + Vi and check whether (I + Vi)

3 is
strictly positive. For Example A.14.4, one gets indeed,

I + V1 =
[[[[

[

1 1 0 0
1 1 1 0
0 0 2 1
0 1 0 1

]]]]

]

⇒ (I + V1)
3 =
[[[[

[

4 4 4 1
4 5 8 4
1 4 9 7
3 4 4 2

]]]]

]

> 0, (A.123)

being strictly positive and V1 is irreducible. The digraph G(V1), Figure A.6 (left), is in-
deed strongly connected, there are directed paths from each node to another node. For
Example A.14.5, one gets the matrices,

I + V2 =
[[[[

[

2 1 0 0
0 1 1 0
0 0 2 1
0 1 0 1

]]]]

]

⇒ (I + V2)
3 =
[[[[

[

8 7 5 1
0 2 7 4
0 4 9 7
0 3 4 2

]]]]

]

≥ 0, (A.124)

which is not strictly positive andV2 is reducible. The digraphG(V2), Figure A.6 (right),
is indeed only weakly connected because there are no directed paths from C2, C3, C4
to C1.

Matrix V1 represents an economy with only basic commodities and V2 represents
an economy with one basic commodity and three non-basic commodities.

(7) Sraffa Network. In Section 4.6, the Sraffa Network was used for the representation
of single-product industries. In Section 6.4 the Sraffa Network was used for the repre-
sentation of joint production processes. We will give now a more formal definition of
this bipartite digraph which we have called a Sraffa Network in the context of Sraffa
production economies. As an illustration, one may look at the Sraffa Network of Ex-
ample 6.5.1 (see Figure A.7).

Figure A.7: An example of a Sraffa Network.
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Definition A.14.11 (Sraffa Network). A Sraffa Network is a bipartite digraph G =
(𝒩 ,𝒜): its node set 𝒩 is partitioned into two disjoint subsets, ℱ for the n indus-
tries and 𝒞 for the n commodities, ℱ ∪ 𝒞 = 𝒩 , ℱ ∩ 𝒞 = 0. The digraph G may be a
sub-digraph, representing a part of the economy, whereas the digraph G represents
the whole economy, G ⊆ G. The construction rules are as follows:
– Each commodity i is designed by one square green node. (Mnemotechnically,

think of a storage depot for commodities.) The nodes may be numbered from n+ 1
to 2n or designed by letters to designate the commodities. All of them are elements
of the node set 𝒞.

– Each productive entity or industry Sj is designed by one round yellow node.
(Mnemotechnically, think of a wheel of a production machine.) These nodes may
be numbered from one to n, all of them are elements of the node set ℱ .

– An arrow (i → j) of digraph G, pointing from a commodity i ∈ 𝒞 to an industry Sj,
j ∈ ℱ , shows that industry Sj requires (purchases) commodity i. An arrow (j → i)
of digraph G, pointing from an industry Sj to a commodity i, shows that industry
Sj produces (sells) commodity i.

– Dashed arrows (i → j), pointing from a node i ∈ G to a node j ∈ G of the sub-
digraph G, show that only a part of the economy is considered and the present
model is imbedded in a greater economy.

Lemma A.14.1. A Sraffa Network represents a single-product economy if and only if for
all the commodity nodes υ ∈ 𝒞, the indegrees are γ−(υ) = 1. A Sraffa Network represents
a joint production economy if and only if, for at least one commodity node υ ∈ 𝒞, the
indegree is γ−(υ) > 1.

(8) A Sraffa Network and its associated commodity digraph. The idea is to com-
press the Sraffa Network, a bipartite digraph, into an associated digraph, indicating
for one cycle of the production process exclusively the interconnections of any com-
modity i ∈ {1, . . . , n}with other commodities j ∈ {1, . . . , n}. Any interconnection from i to
j is represented by one and only one directed arc i → j. The resulting digraph is then
called commodity digraph of that Sraffa Network. Considering a production scheme
(S,L)⇒ (F), we set up the adjacent matrix (6.116):

Σ = [ 0 F
S 0 ]⇒W = [ 0 Q

V 0 ] . (A.125)

In a single-product industry, a one-to-one relationship exists between the industry and
the single commodity produced by this industry, and the adjacency matrix V directly
leads to the requested associated commodity digraph, Definition A.14.8. In a joint pro-
duction processes, any industrymay producemore than one commodity. For this case,
consider commodities i, j ∈ {1, . . . , n}. An entry υil = 1 of matrix V indicates that com-
modity i is used for production in sector l, l ∈ {1, . . . , n}. Then, an entry qlj = 1 of matrix
Q indicates that the sector Sl produces commodity j. For this reason, the product υilqlj
indicates that in the present joint production process the commodity i is used in the
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(A.126)

Figure A.8: Sraffa Network and adjacency matrixW.

production of commodity j. Consequently, when the sum∑nl=1 υilqlj > 0 is positive, we
know that at least one of the intermediate sectors Sl, l ∈ {1, . . . , n} is joined to produce
commodity j, using commodity i during this cycle of the production process.

Describing this, we have now got the definition of the arrow i → j, an element
of the commodity digraph of this joint production process described by a Sraffa Net-
work. Continuing, we bring matrix VQ in Boolean formWC and set up the associated
digraph, which is the requested commodity digraph G(WC).

Example A.14.6. Given the SraffaNetwork FigureA.8 and its adjacencymatrix (A.126),
determine the corresponding associated commodity digraph and provides its eco-
nomic interpretation.

Solution to Example A.14.6:
We identify matrices V and Q and calculate the products VQ:

V = [
[

1 1 0
0 0 0
0 0 1

]

]
, Q = [

[

1 1 0
0 0 1
0 1 1

]

]
, VQ = [

[

1 1 1
0 0 0
0 1 1

]

]
. (A.127)

Then, we establish the digraph G(WC) Figure A.9 corresponding to the adjacency ma-
trixWC:

(A.128)

Figure A.9: Adjacency matrixWC and commodity digraphWC .

The Boolean matrix WC reveals that the commodity C1 is used for the production of
itself and both other commodities C2 and C3. The commodity C2 is not necessary for
the production of any of the three commodities, while the commodity C3 is used for
the production of itself and commodity C2. 
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A.15 Algebraic criteria determining the presence of basic
products

(1) Motivation.
Sraffa supplies a precise economic meaning to the notions of basic products and

non-basic products (PCMC, Par. 6, 7) in the case of single-product industries:

“The criterion is whether a commodity enters (no matter whether directly or indirectly) into the
production of all commodities. That do so we shall call basic, and those that do not, non-basic
commodity. We shall assume throughout that any system contains at least one basic commodity.”

Fortunately, since the publication of PCMC, precise algebraic criteria have been de-
veloped to determine if a product is basic or non-basic in single-product industries,
entering directly or indirectly into the production of the commodities. These criteria
use the commodity flow matrix S, its adjacency matrix V and its commodity digraph
G(V), Definition A.14.8.

(2) On basic and non-basic products.
We present here some Lemmas that identify efficient algebraic criteria concerning

the nature of the production processes (see Kurz and Salvadori [52], pp. 94–96, 104).
We use the unit vectors ei = [0,0, . . . , 1, . . . ,0], where the i-th component is equal

to 1. The vector set ℰ = {e1, . . . , en} is a basis of the n-dim Euclidean vector space Rn,
i ∈ {1, 2, . . . , n}.

Lemma A.15.1 (Basic and non-basic commodities). Thenext six statements (1)–(6) can
also be expressed using the adjacency matrix V instead of the commodity flow matrix
S because both non-negative matrices have the 0 entries at the same place. Then, the
calculated results are then generally shorter and easier to obtain. All the statements are
logical equivalences and therefore convenient to apply.
(1) Commodity i enters directly into the production of commodity j if and only if the

corresponding matrix element is positive

sij > 0. (A.129)

(2) We can assert that commodity j enters indirectly into the production of commodity
i if and only if the following relations apply

eiSej = 0; ei (S
2 + ⋅ ⋅ ⋅ + Sn)ej > 0. (A.130)

(3) Thus, commodity j enters directly or indirectly into the production of commodity i if
and only if the following matrix is positive,

ei (S + S
2 + ⋅ ⋅ ⋅ + Sn)ej > 0. (A.131)

(4) A basic commodity (or, for short, a basic) is a commodity that enters directly or
indirectly into the production of all commodities, that is, commodity j is basic if and
only if the following column vector is positive,
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(S + S2 + ⋅ ⋅ ⋅ + Sn)ej > 0. (A.132)

(5) All commodities are basic if and only if the following matrix is positive,

(S + S2 + ⋅ ⋅ ⋅ + Sn) > 0. (A.133)

(6) When a system exhibits both basics and some non-basics, the commodity flow ma-
trix S is reducible and can be transformed by a permutation matrix into the “canon-
ical form” (Definition A.8.3). 

(3) Separation of basic from non-basic commodities.
Now we present a useful Lemma of equivalent statements about reduciblematri-

ces (see Kurz and Salvadori [52], pp. 104–105;Horn and Johnson [43], p. 402; Takayama
[116], p. 370) and Definition A.8.3.

We are in presence of a complex situation. We treat methods to distinguish ba-
sics from non-basic commodities. This means that we try to identify the economic no-
tionofbasic commodity, respectivelynon-basic commodity, viamathematical notions.
Thismeans thatwe set up auniquemathematical correspondence betweenbasic com-
modities, respectively non-basic commodities, that are economic notions and abstract
mathematical representations of these notions.17

Lemma A.15.2 (Equivalent statements on non-basic commodities). Consider the ma-
trix order n ≥ k > 1 and the n × n square non-negative matrix S. Then the following
statements are equivalent.
(i) The matrix S is reducible.
(ii) There exists a permutation matrix P such that

S̃ = P−1SP = [ S̃

11 0

S̃12 S̃22
] , (A.134)

where the (k × k) submatrix S̃11 and the (n − k × n − k) submatrix S̃22 are square
matrices. Matrix S̃11 (A.134) is irreducible and represents the basics.

(iii) The remaining (n − k) commodities are non-basic and present in matrix S̃22.

Proof. For statements (i): Varga ([118], Definition 1.5, p. 18) states for a reduciblematrix
S the existence of a permutation matrix, performing the transformation of S into the
“canonical form” (A.134),

For statement (ii): Steedman ([114], p. 324) says that matrix “S̃11 refers to basics”.
Pasinetti ([80], p. 104) says that the (k×k)matrix “S̃11 is an irreducible square submatrix

17 This phenomenon occurs frequently in science. We now observe it in physics. In thermodynamics
we have the notion of ideal gas which is a mathematical model for the real gas.
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of order k”, and then he says that “the first k commodities on the rows of S̃ are basic
commodities”,

For statement (iii): Pasinetti ([80], p. 104) says “the remaining (n−k) are non-basic
commodities.”

It can be easily illustrated that the associated digraph G(S̃) is disconnected if
S̃12 = 0. In this case, S̃ is block diagonal, and there are no connections from G(S̃11)
to G(S̃22). If S̃12 > 0 and G(S̃22) is connected, then G(S̃) is also connected because
G(S̃11) and G(S̃22) are connected by arrows, represented by non-zero elements of S̃12.
Matrix S̃12 reflects the fact that basics enter directly or indirectly into the production
of non-basics.

(4) Equivalent statements on basic commodities.
We present now a useful Lemma of equivalent statements on irreduciblematrices

in relation to thenotionofbasic commodities (seeKurz andSalvadori [52], p. 122;Varga
[118], Theorem 1.6, p. 20).

This is the simple case because there are only basic products.

Lemma A.15.3 (Equivalent statements on basic products). Consider a matrix of order
n > 1, e. g., the n × n square non-negative matrix S. Then the following statements are
equivalent.
(i) The matrix S is irreducible.
(ii) I + S + ⋅ ⋅ ⋅ + Sn−1 > 0.
(iii) S + S2 + ⋅ ⋅ ⋅ + Sn > 0.
(iv) The associated digraph G(S) is strongly connected.
(v) All the products are basic.

Proof. For statements
(i), (ii), (iii) see Kurz and Salvadori [52], p. 122;
(iυ) see Varga [118], Theorem 1.6, p. 20;
(υ)⇒ If matrix S is irreducible, “then all the commodities in the economic system
are basic commodities”;18

⇐ Then, when all the products are basic, the matrix S is irreducible. Otherwise, if
some of the commodities are non-basics, then they are by definition in submatrix
S22 (A.134) and matrix S is not irreducible.

If matrix S is irreducible, then no zero matrix 0 can be extracted in the left-lower
corner of S and no non-basic commodities can be identified. For this reason, all the
commodities are basic in this case.

18 Pasinetti [80], p. 104, says explicitly: “If the matrix of technical interindustry coefficients is an irre-
ducible matrix, then the commodities in the economic systems are basic commodities.”
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B Bertram Schefold’s mathematical explanations to
PCMC*

In theGerman translationof PCMC in [109], pp. 216–225,Appendix6, ‘EinigeGrundthe-
sen,mathematisch formuliert’, Bertram Schefold formulates somemathematical con-
cepts that are at the basis of Sraffa’s book [108].1 His presentation is relatively short
at ten pages. He starts with the remark that “Sraffa considers closed systems, where
n commodities are produced by n production processes with the help of these com-
modities and labour.”

To our knowledge, Schefold revealed for the first time in this Appendix the con-
nection of Sraffa’s PCMC with the famous Perron–Frobenius theorem A.9.3 which
governs the theory of production of Leontief and Sraffa. This is the reason why we
present here Schefold’s work.

B.1 Schefold’s presentation
(1) Schefold defines the input coefficients matrix in physical terms, noting it with a
non-bold letter A = (aji). Instead of A, we continue to use Miller and Blair’s notations
([65], p. 47), C = Sq̂−1, (2.16) for the input coefficients matrix, C = (cij), i, j = 1, . . . , n.2

Then Schefold assumes three important properties of matrix C:
(1) C is non-negative. (We know that it is no problem to relax this condition to semi-

positivity, which is what we will continue to do.)
(2) When there is no surplus production, the sums of the columns of C are equal to

one.
(3) C is not completely reducible (Definition A.8.4), meaning that there is at least one

basic commodity in the production process.

Schefold discusses reducible and irreducible matrices (see Definition A.8.3) and clar-
ifies that Sraffa uses the notion basic commodity instead of irreducibility of matrices.
Schefold states that “it is intuitively plausible and it can be proven that a non-negative
matrix is irreducible if and only if thematrix corresponds to a systemof productionwhere
every commodity is a basic commodity”.

It has to be underlined again that the Perron–Frobenius theorem A.9.3 for non-
negative and irreducible matrices C, is fundamental to the Sraffa theory. Schefold dis-
cusses the property required to develop thematrices (I−C)−1 and then (I− (1+ r)C)−1,

1 Piero Sraffa,Warenproduktion mittels Waren, Edition Suhrkamp 780, Erste Auflage, 1976.
2 Then, Schefold presents the equations for the right and left eigenvectors, but he does not use the
transposition notation for the matrices and vectors. We draw attention to the fact that in this résumé
we use the accent () to design transposition of matrices and vectors. We therefore note the left and
right eigenvalue equations as follows (y is a left eigenvector, and x is a right eigenvector of matrix C):

Cy = λy; Cx = λx. (B.1)

https://doi.org/10.1515/9783110635096-013
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0 < r < R, where λC = 1/(1 + R) is the Frobenius number of C, into series (see Theo-
rem A.10.2).

(2) Then Schefold treats the first Sraffa model without a surplus (PCMC, Par. 1−3) and
the second Sraffa model (PCMC, Par. 6) with a surplus as an eigenvector problem. In
these cases, matrix C is positive and therefore irreducible, see Definition A.8.3.

Schefold in PCMC [109], p. 218–220, enlarges the view and treats the case where
matrix C is reducible (see again Definition A.8.3). He assumes that generally matrix C
is not completely reducible (see Definition A.8.4). This means, for the transformation
indicated below (B.2), that C̃12 ̸= O.

In this case where C is reducible (Definition A.8.3), using the notations of Horn
and Johnson [43], p. 402, and Takayama, [116], p. 370, we obtain,

C̃ = P−1CP = [ C̃

11 0

C̃12 C̃22
] , (B.2)

where P is a permutation matrix. The following equations hold after permutations of
rows and columns of matrix C,

(1 + R)C̃11p1 = p1
(1 + R)(C̃12p1 + C̃


22p2) = p2, (B.3)

where λC̃ = 1/(1+R) > 0 is the Frobenius number of matrix C and is also the Frobenius
number of one of the irreducible matrices C̃kk, k = 1, 2. Analyse with Lemma A.10.1
and A.10.3 the possibility of complete reduction. One finds with the second equation
of (B.3),

p2 = (I − (1 + R)C̃

22)
−1
(1 + R)C̃12p1. (B.4)

Then, Schefold argues. If and only if the Frobenius number λC̃22 > 0 of matrix C̃22 is
smaller than λC̃11 , i. e., λC̃11 > λC̃22 > 0, then the inverse matrix in (B.4) and the sec-
ond price vector exist and are positive, i. e., (I − (1 + R)C̃22)

−1 > 0, p2 > o. See also
Theorem A.10.2 for the existence of non-negative inverses of this type.

Schefold then goes on to describe the conditions for the production process to
generate a surplus (see also Bharadwaj [4], and Sraffa ([109], pp. 219–220)).

(3) Then Schefold gives the solution for the Sraffa price model, see PCMC [109],
pp. 220–221. Labour is explicitly introduced, and the question of distribution of the
net product as the profit P of entrepreneurs and wagesW of workers is treated.

Without restriction of generality, he assumes thatmatrixC is irreducible. Schefold
directly gives the normalised Sraffa price model (5.83) or (4.59) we have developed in
our text, using the labour vector per units of commodities π = q̂−1L = ̂q̆−1L̆, (4.58),
(4.86), (5.81), (5.82) with respect to total output ( ̂q̃ or q̂). As Sraffa also normalises na-
tional income (5.83), Y0 = 1, this gives,

(1 + r)Cp + wπ = p, (B.5)

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



B.1 Schefold’s presentation | 497

with the vector of labour π and the wage rate w. Equation (B.5) has two degrees of
freedom: one is the determination of the distribution between r and w, and the other
a dilatation factor determining the units of calculation.3 Equation (B.5) can be solved
for the price vector,

p = (I − (1 + r)C)−1wπ, (B.6)

or,

p
w
:= pc = (I − (1 + r)C

)
−1π, (B.7)

where pc = p/w is called ‘commanded labour’ because it is for every commodity i the
quantity of the numéraireper unit of commodity i producedby oneunit of labour. (This
notion stems from Adam Smith and is also the “wage unit” of Keynes).

(4) For the non-negative matrix C, the following development holds (see Theo-
rem A.10.2), the commanded labour pc is understood as a function of the actual
profit rate r, 0 ≤ r ≤ R and λ = 1/(1 + R) is the Frobenius eigenvalue of the irreducible
matrix C,

pc(r) = (I − (1 + r)C
)
−1π = (

∞

∑
j=0
(1 + r)jC j)π. (B.8)

It is immediately clear from (B.8) that the prices in the price vector p monotonously
increase with increasing profit rate r. For r = 0, the prices for ‘commanded labour’ are
the labour values u (7.5),

pc(r = 0) := u = (I − C
)
−1π = (

∞

∑
j=0

C j)π. (B.9)

Schefold discusses the following properties: One can easily see that the equation be-
low holds:

pc(0) = C
pc(0) + π. (B.10)

Then, there is the limit

lim
r→R

pc(r) = limr→R(I − (1 + r)C
)
−1π = lim

r→R
(
∞

∑
j=0
(1 + r)jC j)π →∞. (B.11)

Schefold points out that Sraffa prefers to represent prices in terms of standard com-
modity instead of ‘commanded labour’. Consider a non-negative vectord representing

3 [109], p. 220, dilatation factor determining the units of calculation = Recheneinheit.
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a basket of commodities of total value 1, corresponding to a price vector expressed in
a given numéraire, and then one sets the equation,

Y0 = 1 = d
 ⋅ p = d ⋅ pc ⋅ w. (B.12)

The wage rate is then presented as,

w = w(r) = 1
d ⋅ p
=

1
d ⋅ (I − C)−1π

, (B.13)

w falling monotonously with increasing profit rate r and disappearing with r = R,
independently of the chosen numéraire,

lim
r→R

w(r) = lim
r→R

1
d ⋅ (I − C)−1π

= 0. (B.14)

(5) From here on, Schefold treats Sraffa’s Chapter III (PCMC [109], p. 222).
In PCMC, Par. 13, Sraffa says that the wage ratew varies, 0 ≤ w ≤ 1, when the price

equations are normalised, for this reason the (normalized) net product (= national
income) is Y0 = 1. Schefold starts considering the expression q(I − C)p, which he
calls “net product”. We will show this. We have to set the following sequence of well
known equations: C = Sq̂−1, S = Cq̂, then q = Se + d = Cq̂e + d = Cq + d, one obtains
d = q − Cq = (I − C)q and d = q(I − C), we set the intermediate result,

d = q(I − C), (B.15)

considering Schefold’s next equation inPCMC [109], p. 22, for thenormalisednet prod-
uct (= national income),

Y0 = d
p = q(I − C)p = 1 = weπ + reCp. (B.16)

This last equality corresponds exactly to the national income part contained in equa-
tion (4.178),

Cp(1 + r) + πw = p⇒ reCp + weπ = Y0 = 1. (B.17)

Schefold then considers here the variation of the prices, resulting from the variation
of the profit rate r. He differentiates (B.5) with respect to r and gets,

dp
dr
=
dw
dr

π + Cp + (1 + r)C dp
dr
, (B.18)

or with the constant R = (1/λC) − 1, obtained from the Frobenius number λC of matrix
C, having normed L = 1, Y = 1, one gets therefore w̃ = w:

dp
dr
= (I − (1 + r)C)−1(dw

dr
π + Cp), (B.19)
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i. e., a system of nonlinear differential equations, written in vector form, for the prices
pi, i = 1, . . . , n, components of the price vector p, and the wage rate w.

The differential equation (B.19) can be developed in a series, appliying Theo-
rem A.10.2:

dp
dr
= (

dw
dr

π + Cp) + (1 + r)C(dw
dr

π + Cp) + (1 + r)2(C)2(dw
dr

π + Cp) + ⋅ ⋅ ⋅ (B.20)

(6) The series development is not intended to solve equation (B.20) but is used to ex-
amine the conditions of price invariance to identify somenewequalities. There is price
invariance when the condition

dp
dr
= on1 (B.21)

holds. Schefold discusses two cases. First, (B.21) holds, when with (B.7) the factors

on1 =
dw
dr

π + Cp = dw
dr

π + wC(I − (1 + r)C)−1π (B.22)

vanish in equation (B.20).
Schefold then argues that π is an eigenvector of matrix C. Further, when the vec-

tor π is positive, the equation

(1 + R)Cπ = π (B.23)

holds (because of the Perron–Frobenius theorem A.9.3).4 Evidently, with a (given)
profit rate r, the prices are stationary if and only if they remain constant for all profit
rates and equal to the labour values (prices equal labour value!). This only happens
when the labour vector is an eigenvector of matrix C. This is a special case of con-
dition (B.23), therefore Schefold concludes that this case “is quite unlikely” (PCMC
[109], p. 222).

Then Schefold goes on to discuss the case where the equality does not hold, so:

dw
dr

π + Cp ̸= on1. (B.26)

4 Schefold continues (PCMC [109], footnote 121, p. 222): “There is a theorem in matrix algebra which
says that in a matrix ring generated by a matrix, there is an exchangeability of elements”. It is indeed a
property of commutativity used in (B.24), giving

dw
dr

π + wC(I − (1 + r)C)
−1
π = dw

dr
π + w(I − (1 + r)C)

−1
Cπ = o (B.24)

also
dw
dr
w

π = {
dw
dr
w
(1 + r) − 1}Cπ (B.25)

and then w = 1 − (r/R), an equality which is valid for Standard systems.
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He discusses the possibility that some of the equations in the system (B.20) may be
equal to zero for a given profit rate r. If Ci is the i-th row of matrix C, this gives

dw
dr

wi + C

ip = 0. (B.27)

If for all i = 1, . . . , n the price pi = const, then
dp
dr = 0 and therefore ( dwdr π + C

p) = 0
and we get the equality

−
dw
dr
=
Cip
wi
. (B.28)

Schefold then discusses the terms of first, second, …order of the development (B.20)
with either dpi

dr > 0 or dpi
dr < 0 for any commodity i = 1, . . . , n, in PCMC [109],

pp. 223−224.

B.2 Determination of the standard net product according to
Schefold

(1)We will summarise here Schefold’s ([109], pp. 224–225) construction of a Standard
system with normalised labour size, L1 = 1, and national income, Y0 = 1, leading to a
Standard net product with Standard national income.

Remember that our procedure, Chapter 5 started from Sraffa’s actual economic
system, expressed as a production scheme (S,q,L), and we intended by application
of a orthogonal Euler map to get a Standard system (S̆, q̆, L̆), which accordingly also
enables one to present the elements of standard commodities. Then additionally, due
to the normalisation of the size of labour, L = L1 = 1, we get a further Standard system
(S̆1, q̆1, L̆1), see equation (5.69) with a Standard net product contained in d̆1 = S̆1e − q̆1
(see Recapitulation 5.3.1).

Schefold [109], pp. 224–225, starts from the construction of the Standard system
with the semi-positive and irreducible or positive matrix C = S̆1 ̂q̆−11 = Sq̂

−1 and5 the
Frobenius number λC. He circumvents the calculation of multipliers, Subsection 5.2.2.
He sets up directly the eigenvalue equation (5.68) determining the quantity eigenvec-
tors q̆1 of total output of the present Standard system (S̆1, q̆1, L̆1)with the Standard net
product contained in d̆1,

(1 + R)Cq̆1 = q̆1 ⇔ (I − C)q̆1 = R ⋅ Cq̆1 ⇔ Cq̆1 =
1

1 + R
q̆1 = λCq̆1. (B.29)

One sets the total means of production,

S̆1e = (S̆1 ̂q̆
−1
1 )q̆1 = Cq̆1. (B.30)

5 We note that matrix C = S̆1 ̂q̆−11 = Sq̂
−1 is unique in the Euler class ℰ = {(S,q, L)|γ̂} (see Proposi-

tion 5.2.1).
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ThenSchefold ([109], p. 224) determines the vector of surplus (2.55) gettingwith (B.29),
(B.30) and (5.25):

q̆1 = S̆1e + d̆1 = Cq̆1 + d̆1 ⇒ d̆1 = (I − C)q̆1 = R ⋅ Cq̆1. (B.31)

We also find:

Cq̆1 =
1
R
(I − C)q̆1 ⇒ rq̆1C

 =
r
R
q̆1(I − C)

. (B.32)

Then Schefold applies the Sraffa normalisation of the national income, leading to the
Standard national income,

Y0 = d̆

1p = q̆


1(I − C

)p = 1. (B.33)

Then he normalised the size of labour, L1 = 1, calibrating an eigenvector q̆1, using the
vector of labour per unit of commodities π = q̂−1L, equation (4.58),

L1 = 1 = q̆

1π. (B.34)

Consider nowwith this eigenvector q̆1 (B.34) the Standard system (S̆1, q̆1, L̆1) and write
down the single-commodity Sraffa system (4.174) expressed by the commodity flowma-
trix S̆1, the vectors q̆1 and L̆1,

S̆1p(1 + r) + w ⋅ L̆1 = ̂q̆1p. (B.35)

When equation (B.35) is multiplied from the left by the diagonal matrix ( ̂q̆1)−1 , we
know that we get the single-commodity Sraffa system with normalised labour per unit
of commodity (B.5) described by the input-output coefficientsmatrix C, which we tran-
scribe in an appropriate form for further calculations,

Cp(1 + r) + w ⋅ π = p ⇔ r ⋅ Cp + w ⋅ π = (I − C)p. (B.36)

Starting again from the definition of the Standard national income (B.33), taking into
account the normalised labour size L1 = q̆1π = 1 (B.34), the conclusions in (B.32) and
(B.36), the known rule of proportionality (5.142) reappears:

Y0 = 1 = d̆

1p = q̆


1(I − C

)p = q̆1(r ⋅ C
p + w ⋅ π) = (r ⋅ q1C

)p + w(q̆1π)

=
r
R
q̆1(I − C

)p + wq̆1π =
r
R
+ w. (B.37)

Thus, the parallelism of the vectors of total output, surplus andmeans of production is
confirmed: q̆1 ‖ d̆1 ‖ S̆1e, for the obtained Standard system, because r = R(1 − w).6

(2)We now illustrate Schefold’s method.

6 Schefold (see Sraffa [109], p. 225) in fact works with the vector of labour per units of commodities,
L1 = q̆1π = 1, and the normalisation of national income, Y0 = d̆1p = 1.
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Example B.2.1. Consider Example 5.4.1 (with L = [152, 152]). Choose now the labour
vector L = [22/34, 12/34]. Apply Schefold’s approach to determine the Standard net
product, defined by L1 = 1, with standard national income Y0 = 1 GDP. Start comput-
ing the input-output coefficients matrix C, its Frobenius eigenvalue λC and associated
right eigenvectors q̆1. Set up and solve the single commodity Sraffa system (B.36), com-
pute the total wagesW , the total profits P circulating capital K and the total output X.

Solution to Example B.2.1:
We start by identifying the essential elements of the actual economic system.
– The commodity flowmatrixS = [ 280 120

12 8 ] inphysical terms ismeasured inqr.wheat;
the second row is measured in t. iron.

– The vector of normalised labour L = [L1, L2] = [22/34, 12/34] is measured in TAL
(= total amount of labour).

– The vector of surplus d = [d1, d2] = [175,0] in physical terms has themixed units:
[d1] = qr. wheat, [d2] = t. iron.

– The vector of total output q (2.15) in physical terms, where the units are mixed:
[q1] = qr. wheat, [q2] = t. iron.

One gets the vector of total output in physical terms,

q = Se + d = [ q1q2
] = [

280 120
12 8 ] [

1
1 ] + [

175
0 ] = [

575
20 ] . (B.38)

The normalised labour vector L in TAL gives the total amount of labour,

Le = [L1, L2] [
1
1 ] = [

22
34
,
12
34
] [

1
1 ] = 1 TAL. (B.39)

These calculations are summarised in Table B.1: After the preliminary identification of
thematrices, we perform Schefold’s calculations to determine a Standard net product,
computing the matrices C and D,

C = Sq̂−1 = [ 280 120
12 8 ] [

1
575 0
0 1

20
] = [

56
115 6
12
575

2
5
] ,

D = q̂−1S = [
1
575 0
0 1

20
] [

280 120
12 8

] = [
56
115

24
115

3
5

2
5
] , (B.40)

then set up the eigenvalue equations, Cq̆1 = λq̆1 (B.29) and Dγ = λγ, and determine
the characteristic polynomial,

P2(λ) = det(C − λI2) = λ
2 −

102
115

λ + 8
115
= (λ − 4

5
)(λ − 2

23
) = 0. (B.41)

The Frobenius number is λC = 4/5, associated with the right eigenvectors of matrix C,
which are q̆1 = k[115/6, 1], k ∈ ℝ+. The productiveness is R = (1/λC) − 1 = (5/4) −
1 = 0.25. The right eigenvectors of the distribution coefficients matrix D are parallel to
vector γ = [ 23 , 1]

.
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Table B.1: Input-Output Table of Sraffa’s model [108], Par. 5 (with labour).

Buying sectors Final
demand

Total
outputwheat iron

wheat (qr. wheat) s11 = 280 s12 = 120 d1 = 175 q1 = 575
iron (t. iron) s21 = 12 s21 = 8 d2 = 0 q2 = 20
labour (TAL) L1 =

22
34 L2 =

12
34 L = 1

↓ ↓
production (unit) q1 = 575 q2 = 20

We then calculate the normalised vector of labour per unit of commodity (4.58), and
the Euler transformation matrix G = γ̂,

G = [
2
3 0

0 1
] , π = q̂−1L = [

1
575 0

0 1
20

][
22
34
12
34

] = [
11

9,775
3
170

] . (B.42)

Following Schefold, we consider the normalised size of labour, L1 = 1, calibrating the
eigenvectors q̆1 of matrix C, using the previously obtained vector of labour per unit of
commodities π (B.42), applying the norming rule (B.34)

L1 = q̆

1π = k[(115/6), 1] [

11
9,775
3
170

] = k( 115
6
⋅

11
9,775
+ 1 ⋅ 3

170
)

= k ⋅ 2
51
= 1⇒ k = 51

2
⇒ q̆1 =

51
2
[

115
6

1
] = [

1,955
4
51
2

] . (B.43)

Then, we can immediately calculate the other vectors of this standard net product,
starting with the surplus vectors d̆1. Following (B.31), we obtain (expressed without
physical units),

d̆1 = (I − C)q̆1 = ([
1 0
0 1
] − [

56
115 6
12
575

2
5

])[
1,955
4
51
2

] = [
391
4
51
10

] . (B.44)

Finally, we calculate directly the vector ofmeans of production (again expressed with-
out physical units) with (B.30),

S̆1e = Cq̆1 = [
56
115 6
12
575

2
5

][
1,955
4
51
2

] = [
391
102
5
] . (B.45)

The three calculated vectors S̆1e, q̆1, d̆1 are all parallel. They are eigenvectors of the
input-output coefficientsmatrixC andconstitute proxies for a standard commodity, that
is a Standard net product of the Standard system (S̆1, q̆1, L̆1).

Without detailed calculation,wepresent the steps to attain the transformedvector
of labour: L̆ = G ⋅ L = [ 2251 ,

6
17 ]
.
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Its norm is eL̆ = 40/51, leading to L̆1 = (51/40)L̆ = [ 1120 ,
9
20 ]
.

We also compute the matrix

S̆1 =
51
40
(S ⋅ G) = 51

40
[
280 120
12 8

][

[

2
3 0

0 1
]

]
= [

238 153
51
5

51
5

] . (B.46)

Then we take the complete single-product Sraffa price model (B.36), that we repro-
duce here with the specified values for the profit rate, r = 0.15, and the wage rate
w = 1 − (r/R) = 1 − (0.15/0.25) = 0.4, presented in matrix form,

Cp ⋅ 1.15 + 0.4π = p⇔

1.15 ⋅ [
56
115

12
575

6 2
5

][
p1
p2
] + 0.4[

11
9,775
3
170

] = [
p1
p2
] , (B.47)

and calculate the prices p1 and p2, components of the vector p = [p1, p2]. We get the
price vector p = [p1 = (56/9, 775) GDP

qr. wheat , p2 = (22/255)
GDP
t. iron ]

.
Let us conclude with the aggregate economic variables of the Standard system.

Y0 = d̆

1p = [

391
4
,
51
10
] ⋅ [

56
9,775
22
255

] =
14
25
+
11
25
= 1 GDP. (B.48)

Consequently, the total wages and total profits are accordingly:

W = w ⋅ Y0 = 0.4 ⋅ 1 = 0.4 GDP,
P = Y0 −W = 0.6 GDP, (B.49)

the total output

X = q̆1p = [
1955
4
,
51
2
] ⋅ [

56
9,775
22
255

] = 5 GDP (B.50)

and the total circulating capital

K = X − Y0 = 4 GDP. (B.51)

Thus, Schefold’s approach leads to the Standard system, to the Standard net product
with Standard national income, as does the methododology based on the orthogonal
Euler map. 

Let us summarize: Consider a semi-positive and irreducible or positive matrix S,
forming an actual economic system (S,q,L) of basic commodities. Compute the input-
output coefficients matrix C = Sq̂−1 and the distribution coefficients matrix D = q̂−1S.
We know that both matrices C and D have the same eigenvalues λ, see Lemma A.6.1.
We then recognise that there are two methods to obtain a Standard system. There is
the method of the orthogonal Euler map, Subsection 5.2.2 and the Schefold approach,
Section B.2. Both methods rely indeed on a mathematical basis, Lemma A.6.2.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



C Glossary of terms as they are used in this book

This glossary defines and comments the essential terms and concepts used in this text-
book. A clear understanding of these terms is important for the understanding of the
applicability and limitations imposed by the models of production presented.

Aggregation
Designates the process of regrouping or summing up entities to form a whole.

Comment. In the context of Leontief and Sraffa, where one operates in accordance
with the rules of linear algebra, aggregation means adding up linear terms and equa-
tions. Given also that constant returns to scale, which amount here to the multiplica-
tion of all terms of an equation by a constant, are thus, whenever implicitly assumed,
compatible with linear structures, this summation process does not lead to the fallacy
of composition that in most cases seriously impedes aggregation of microeconomic
ensembles to form a coherent global macroeconomic whole. While this is valid at the
theoretical level, in practice however measurement problems and statistical uncer-
tainties may nevertheless lead to aggregation biases ([65], Par. 4.9: The Aggregation
Problem), a special case of the fallacy of composition. Where no confusion will arise,
we shall use indifferently the terms aggregate and total.
– aggregate profits/aggregate wages

Total profits P, respectively total wagesW , in the economy obtained by summing up
the profits, respectively wages, realised industry by industry.
– aggregate surplus

Or simply: surplus, is the total value of commodities produced in addition to in-
terindustry transactions required to maintain the conditions of production. In other
words: National Income or Gross Domestic Product (GDP) Y , which by definition is
equal to total value added generated by the economy during the reference period.
– autonomous (exogenous) variables

Contrary to induced (endogenous) variables such as consumption C, investment I and
imports M, which figure in Y = C + I + G + E − M, and which are generated by the
various agents (households, firms, etc) operating in a given economy, government ex-
penditure G and exports E have no causal links with the endogenous variables and
are labeled autonomous variable, see Bortis ([8], pp. 144–146).

Base year/Year under review (or current year)
Without indication to the contrary, prices in Leontief and Sraffa are expressed in nom-
inal values, i. e., commodity prices registered at then-moment prices during the year
under review. Generally speaking, “real” prices in economic terms are obtained by ex-

https://doi.org/10.1515/9783110635096-014
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pressing nominal prices in terms of prices at some given base year of reference (base
year prices) using a price index (Price Index), usually set at one or 100 for that year.
A price index is a measure that permits a comparison of the prices of the present, ac-
tual year, the year under review (or the current year) to the former prices of the base
year.

Calibration
The term calibration comes frommetrology andmeans that a variable ismeasured in a
unit of a general or a universal reference, like time in seconds or distance inmetres. In
our context, the term is used in a Sraffa pricemodel composed of n equations and n+k
variables (normally k = 2), giving precise numerical values to the k excess variables
(such as the rate of profits, the wage rate, one of the prices, national income, etc.)
based on the economic production process under consideration, and further defining
the appropriate numéraire or choosing a currency as reference for the measurement of
value.

Capitalists
This technical term designates here, without any political or ideological undertone,
the owners of the technical means of production, i. e., entrepreneurs and sharehold-
ers.

Capital
Designates in general the value of themeans of production in terms of land, rawmate-
rial, intermediate products, instruments of production (i. e., capital goods), financial
goods and services etc., excludingwages and salaries, that entrepreneurs respectively
businesses (also referred to as capitalists, for example by Sraffa) require to produce the
goods and services they intend to sell.

Circulating capital
Will be used here to designate the aggregate value K of what Sraffa, PCMC Par. 4, has
termed the means of production. The term means of production, here excluding fixed
capital, includes short-lived commodities that are used up in a single period of pro-
duction (raw materials, intermediate materials, combustibles, energy, services, etc.).
In accounting, circulating capital comes under the heading current assets and is not
to be confused with working capital (operating capital) calculated as current assets
minus current liabilities.

Closure
The term closure has various meanings:
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(a)Macroeconomically this expression refers to closed economies, i. e., economies
without external exchanges of goods and services, meaning no exports E (E = 0) and
no importsM (M = 0).

(b) The system of national accounts is closed in the sense that on its basis exists
an equation called the national income accounts identity (see Mankiw [63], p. 28), Y =
C + I + G + (E −M) = GDP. This means that the national income Y or gross domestic
productGDP is equal to the sum of consumption C plus investment I plus government
purchase G plus net exports (E −M).

(c) Consider input-output tables, as presented by Miller and Blair [65], Chapter 2,
pp. 10–68. There, the commodity flow matrix Z in monetary terms, governing inter-
industry requirements, is extended by inclusion of additional rows containing value
added elements, in particular labour, and additional columns containing final de-
mand elements, such as household consumption expenditures and gross private do-
mestic investment. This leads to an accounting identity where the total outlays are
equal to the total inputs (see equation (2.7)).

Commodities
This termdesignates both goods, including composite products, services, and, at least
by a purely formal extension, also money.

Comment. The following are specific to Sraffa [108]: Commodities (excluding
“money”) which enter, either directly or indirectly, into the production of all com-
modities are basic commodities; those that do not are called non-basic. Human
labour often plays an important part in the latter: take for example jewelery, which
requires some commodities but more importantly hours of specialized labour, but
enters into no other industrial products.

Conditions of production
Generally speaking, in a closed economic system involving several industries, the con-
ditions of production mean that, to ensure sustainability of the system from period to
period without production of a surplus (in other words maintaining the system in a
self reproducing state), the total quantity of a specific commodity produced by one or
several industriesmust at least equal the total quantity of that commodity required for
production by all the industries, including the industries producing the commodity.
The totals are explicit sums, like quantities.

This definition may be extended from quantities to the values of the quantities
involvedbymultiplicationwith a commodity price, leading to a system that conditions
prices (see also the item Equilibrium).

Constant returns to scale
This concept may be applied to individual industries or to the system of production
taken as a whole.
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Asystemof productionpresents constant returns to scale if an increase of an equal
percentage in all factors of production causes an increase in output of the same per-
centage. Mathematically speaking, a production function F with output Q has con-
stant returns to scale if zQ = F(zK, zL) where K is the amount of capital and L the
amount of labour.

Comment. This assumption is routinely used by firms in their standard cost calcu-
lations and marginal cost optimisation using linear programming and medium-term
business planning.

Demand
Wewill from time to time refer to: final exogenous demand, the technical term used in
Input-Output analysis. Depending on circumstances, it is equal to: effective demand,
in the Keynesian terminology, which is the driving force inciting the owners of the
system of production to generate a surplus which may be sold to pay wages and to
provide profits.

Comment. A production surplus without demand generates no profit; it just in-
creases the producer’s stocks. We draw the reader’s attention to the fact that Sraffa in
PCMC makes no reference whatsoever to demand, but does mention markets.

Economic systems: linear vs. circular
A linear economic system corresponds in this text to an individual row in Sraffa’s
price equations. Productive entities in agriculture, manufacturing and services oper-
ate linearly at the microeconomic level following this type of scheme, from purchas-
ing, throughproduction anddistribution unto sales. Such systemsmaybe represented
by directed networks without circuits (except for feedback loops specific to each pro-
ductive entity).

Comment. Linear economic systems are driven by the “bigger-better-faster” com-
petitive syndrome and are typical of non-basic commodities such as fast-moving con-
sumer goods (FMCG). The Walrasian model follows this logic bottom up, aiming at a
macroeconomic equilibrium. The emphasis is on the final exchange, i. e., the “mar-
ket”, at the end of a given period.

Generally speaking, circular economic systems correspond here to macroeco-
nomic ensembles of interrelated processes of production and exchange defined by
the systems of equations encountered in the Leontief and Sraffa models. Such sys-
tems may be represented by directed networks containing many circuits.

Comment. The foregoing highlights the fallacy of composition that lurks in Wal-
rasian aggregation. Circular systems that fulfill Sraffa’s conditions of production are
self-replacing and are typical of basic commodities. The emphasis of the Sraffian
model is on continuous production and exchange ensuring sustainability from pe-
riod to period. Note that the term “circular economies” has in the recent literature
been taken, for better or for worse, as synonymous to ecological economic systems
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reprocessing commodities, saving energy while reducing resource consumption and
waste.

Economics
The Webster New Collegiate Dictionary, p. 260, defines the term “Economics” as fol-
lows: “The science that investigates the conditions and laws affecting the production,
distribution and consumption of wealth, or material means of satisfying human desires;
political economy.”

Equilibrium
Consider a closed economy of production represented by a system of Leontief or of
Sraffa price equations. If the conditions of production in terms of physical units are
fulfilled, meaning that the production process is self-replacing (i. e., sustainable) in
the sense that the total input of each commodity required for production is equal to the
total output of that commodity, the process is said to be in a quantitative equilibrium.
If one considers the conditions of production expressed in value terms, for example
in monetary units, the process is said to be in an accounting equilibrium.

This is an equilibrium defined in a system of production governed by input and
output; it must not be confused with the notion of an equilibrium in a market system
governed by supply and demand.

Growth
This term is used in macroeconomics as an indication of the increase in inflation-
adjusted GDP (respectively National Income, or surplus as in PCMC) over time, based
on national accounting data. It is related to the expansion of production capacity. This
measure must not be confused with the ratio of the surplus generated by the means
of production to operational capital, often wrongly referred to as “growth”.

Comment: Say, there is a times series Qt , t = 0, 1, . . . , n, measured at equidistant
time intervals of the given period of Δt = 1 year, then the discrete annual growth rate is
defined as rt =

Qt−Qt−1
Qt−1 , being itself a time series and clearly the dimension of this dis-

crete growth rate is [r] = 1. The time does not appear explicitly in the discrete growth
rate, which must always be indicated with the chosen time interval. Indeed, the indi-
cation of a discrete growth rate is given together with the time interval. We say: the
annual discrete growth rate, themonthly discrete growth rate.

On the other hand, the continuous growth rate is defined as follows for a continu-
ous function Q(t), t ∈ ℝ for every continuous time point t: c(t) = dQ(t)

dt
1

Q(t) , c(t) is in it-
self a continuous function. Thedimensionof the continuous growth rate is [c(t)] = 1

time .
The relationshipbetween thediscrete growth rate rt and the continuous growth rate

c(t) can be established as follows: c(t) = dQ(t)
dt

1
Q(t) ∼

Q(t)−Q(t−1)
Δt

1
Q(t−1) ∼

Q(t)−Q(t−1)
Q(t−1)

1
Δt =:

r(t)
Δt .
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Clearly, the relationship of the dimension is again: [c(t)] = [ r(t)Δt ] =
[r(t)]
Δt =

1
time .

Graphs and networks
In the mathematical literature, a graph is a collection of vertices (nodes) joined by
edges (links or connections).When adirection is given on the links (arrows), the graph
is directed. When applied in modeling practical problems, such as the systems of pro-
duction examined here, the directed graphs are termed networks, see Newman ([70],
Chap. 6:Mathematics of Networks, pp. 109–157.)

Inflation (Deflation)
Simply stated, following Mankiw [63], the generic term inflation (deflation) is an in-
crease (decrease) in the overall level of prices measured using a price index (see Price
Index).

Such indices give no clue as to the causes of changes in prices. In the context of the
extended Leontief and Sraffamodels discussed in this text, “price inflation/deflation”
may thus have various, even simultaneous, causes:
– in increase in the money supply;
– changes in the level of wages;
– changes in corporate policies regarding EBITDA;
– changes in final demand of commodities;
– changes in interindustry transactions due to technology;
– modifications in the prices of exports/imports.

Labour (Labor)
Labour is expressed in this text generally in man-hours during a given reporting pe-
riod, e. g., annually. It is accordingly a measure in units of time of human hours of
labour by men and women alike, required to execute a production task. It is the re-
quired time of work.

This measure must not be confused with the notion of “labour force”. But labour
may also mean the number of workers required for the execution of such a task.

Sraffa normalises the total quantity of labour L, in this case giving L = 1, with
the artificial physical unit Total Amount of Labour (TAL), the reference to the initial
natural physical unitman-years vanishes. In the context of Leontief and Sraffa, labour
Lj can have a second signification, namely the required number of workers of sector
Sj, quantity of labour being the main and number of workers the second signification.

Land
It is an ambivalent item. Every productive entity has a labour force and land attached
to it. As such, land does not have the status of a commodity but is an item which
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will, according to the context investigated, generate rents or income from concessions
which are then included in national income, in addition to profits and wages.

But again, depending on the system of production being modelled, land can also
appear under the label of commodities, for example as surveyed or equipped land
being sold for building or exploitation purposes.

Micro/Macro-Economics
Microeconomics is understoodhere as the study of ensembles of economic agents (per-
sons, households, entrepreneurs, firms, etc.) especially regarding their activity in de-
termining prices based on the problem of allocating scarce resources to comply with
market demands. These economic agents, together with institutions that govern their
activities, are the basic constituents of vast systems ofmonetary economies of produc-
tion and exchange (national economies).

Macroeconomics is then the study of such economies considered as a whole. At
such a global level, a commonmeasure of valuemust be applied in theory andpractice
to quantify problems and decisions: money, the basis of fixing prices for production,
for exchange, for future payment promises etc.

Comment. The Leontief and Sraffa models of production examined here repre-
sent some of the constituents of such macroeconomic processes that in the end are
expressed in monetary terms obeying a number of fundamental national accounting
identities.

Mark-up factor k
This parameter has been used in economic theory by Kalecki ([46], Chapter 2) and
byWeintraub ([120], pp. 44–47) who replaces at the macroeconomic level the identity
P+W = Y , by kW = kwL = Y which defines k. The idea is that entrepreneurs in setting
their profit targets will find it straightforward to aim at obtaining adequate earnings to
cover various operating costs other than wages by fixing an income target exceeding
by an appropriate amount their costs of labour.

Matrix
In the context under discussion, one distinguishes between two conceptual types of
matrices that are each representative of the level of technology attained:
(a) matrices whose components represent quantities;

– the commodity flow matrix (also termed the commodity requirement matrix);
– the input matrix;

(b) matrices whose components are pure numbers (ratios);
– the input coefficient matrix;
– the technical coefficient matrix.
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Means of production
In input-output analysis and in PCMC themeans of production are incorporated in the
commodity flow matrix.

Comment. In Sraffa the components of the matrix are constants over the time pe-
riod concerned, this means we are dealing with a short-term time horizon. Wages are
either included as sustainable wages PCMC, Par. 1, or excluded from this definition of
the means of production PCMC, Par. 8, in the case of explicitly indicated quantities of
labour. In Input-Output analysis, labour is incorporated under value added, seeMiller
and Blair ([65], Par. 4.4).

Measurement and dimensional analysis
If various commodities are to be added together or their values compared, or if wages
enter expressions also involving means of production composed of commodities, all
these items must be expressed in some common measure, a numéraire or money, to
give meaningful relations.

Comment. Indeed, quantities expressed, e. g., in kg, lt, kWh, barrels of petrol,
heads of animals etc. cannot be meaningfully added together as such. Furthermore, if
economic equations are involved, the left and right hand sides of the equations must
be expressed using the same measurement units, in technical terms: they must re-
duce to the same dimensions (see Chable [13] and de Jong [24] regarding dimensional
analysis.)

As an example, the reader is invited to interpret in measurement terms the quan-
tity equation of money:M ⋅ υ = P ⋅ Q = Y to ascertain its dimensional consistency.

Finally to be consistent, measurement units must be calibrated, e. g., one cannot
measure in the same model a numéraire in USD and EURO, or if quantities are in-
volved, for example in barrels of petrol and tons of petrol. The instrument of measure-
ment that must be calibrated in our monetary economies of production and exchange
is national accounting.

Money
Money is not a commodity and accordingly cannot be considered as a numéraire in
the usual sense. Briefly stated, in modern monetary economies of production and ex-
change, the banking system generates a twofold composite monetary entity formed
of money as such (the form) and bank deposits (the substance); the two cannot be
dissociated.

Comment. Money as such is just a numerical counter, and is in this sense a formal
“dimensionless numéraire”. The corresponding measurement unit is then labelled in
EURO, USD, CHF, etc., in which for example prices and wages are expressed, depend-
ing on the banking system involved. Bank deposits are measured in money units and
represent physical output in its monetary form as registered in bank accounts, fol-
lowing payments on the factor market for the production of commodities. On further
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analysis, notes and coins in circulation issued by the banking system follow the same
logic: they just constitute a particular monetary service, officialised by a metal or pa-
per commodity, offered to facilitate certain economic transactions.

We invite the reader to consult Rossi and Rochon et al.: Money and Banking in a
Monetary Theory of Production ([93], Chap. 16) to obtain more details on further fun-
damental aspects of money in theory and practice (see also Rossi [95]).

National accounting and national income
On the macroeconomic level, monetary economies conform to a number of well-
known national accounting identities linking national income Y , respectively Gross
Domestic Product (GDP), to such variables as consumption, investments, profits,
wages, savings, taxes, government purchases, imports and exports. In this textbook,
we systematically refer to a simplified, but fundamental, accounting identity given
by Y = P +W , where P are aggregate entrepreneurial profits and W aggregate wages
registered in the economy during the reference period. In PCMC, national income is
the surplus, if any, generated by the production process.

Normalisation
Will mean here setting a parameter c = 1 or a sum of vector components eυ = 1 (when
dealing with components υi ≥ 0).

Comment. This can be illustrated on the equation ax + by = c, given a, b, c. We
normalise c in two ways. Either
(1) by dividing the left and right-hand sides by c: → (a/c)x + (b/c)y = 1 (see Sraffa

([108], Par. 10)), or
(2) by positing ab initio c = 1, leading to the linear equation ax + by = 1 (see Sraffa

([108], Par. 11–12)).

Numéraire
Quite generally it is definedas ameasurement unit chosen for pricing.Numérairemust
not be confused with money.

Comment. Thus in the context quantified by PCMC, the numéraire is expressed in
terms of a given commodity, for example, as a quarter of wheat or a ton of iron (not
wheat or iron as such!); such a real numéraire accordingly has a physical dimension.
The numéraire may then be multiplied by a number to give a value as a measure of
exchange. For example, certain coins such as Kruger Rands, Double Eagles, etc. are
a numéraire expressed in units of the commodity gold; bitcoins on the other hand
are a purely numerical accounting numéraire. The numéraire can also be a composite
entity, as in Sraffa’s standard commodity. However, for consistency with input-output
analysis andnational accounting in amonetary economyof productionandexchange,
the numéraire must be replaced by money.
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We invite the reader to consult Schmitt inGnos andRossi ([95], pp. 22–37) Pasinetti
([80], pp. 63–67) for further comments.

Outlays
This is a monetary concept. Outlays simply equal the expenditures in monetary terms
generated by the production process of an industry (acquisition of commodities,
labour, imports, other value-added items). The simplest examples of outlays are ex-
penses linked to purchased commodities and labour. Total outlays are equal to total
output in monetary terms, see Miller and Blair ([65], Subsection 2.2.1, p. 14).

Price
Is the number of units of numéraire or of money required to obtain one unit of a given
commodity.

Comment: Many factors may enter the determination of prices, such as scarcity of
certain commodities, the characteristics of the production process, the cost of labour,
the level of demand, government policies etc.

Price index
A price index is a dimensionless measure that enables the comparison of a given set
of prices as they change over successive reporting periods starting from a base ref-
erence period (see Base year/Year under review). Accordingly, such an index usually
indicates how the prices of a given bundle of commodities (goods and services) have
evolved; examples are the Consumer Price Index, the Producer Price Index, the GDP
deflator (see the item Inflation) which then givemeasures of the increase in the cost of
living. Price indices are based on various mathematical formulas which incorporate
the quantities and the prices of the commodities concerned. Themost commonly used
are the Paasche Index and the Laspeyres Index.

Prices indices may also be defined for each relevant commodity taken individu-
ally; in that case, the price of the commodity is a dimensionless entity called an index
price.

Productive entity
This generic term is understood here in a large sense as encompassing entities pro-
viding goods and services, such as industries (single-product industries and joint-
production industries), industrial sectors, human resources (providing labour) or
landowners (providing land for basic requirements like agriculture, extraction of raw
materials and housing).

Production system (system of production, production scheme)
Having ascertained the quantities of various commodities required by the productive
entities for production (with labour included directly or indirectly), and the quantities
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of commodities these entities produce, and having defined an appropriate numéraire
as a uniform unit of measurement, the production process can then be represented by
a system of production equations constituting a system of production, represented by
a production scheme.

Production economy (Economy of production)
The production process is termed a production economy if it is understood that there
exists a price for each commodity (wages considered as the “price” of labour) and a
market for the sale or exchange of the commodities produced, and if furthermore the
corresponding system of production is consistent with the national accounting iden-
tities. If prices are expressed in money as numéraire, the economy is then a monetary
economy of production and exchange.

Production process
A production process regroups one or several productive entities. Every production
process has an associated Sraffa Network and its adjacency matrixW characterising
the underlying logical connections between commodities and productive entities en-
tering that process.

Production of commodities
– conditions of production simply reflect the fact that, from one production period

to another, the process of productionmust reconstitute the commodities required
to sustain the apparatus of industrial production. This is represented in the input-
output model by interindustry purchases. PCMC, Par. 3, specifies these conditions
by a system of linear equations.

– joint production Sraffa’s initial model, PCMC, Part I, considers industries produc-
ing one commodity only, i. e., single-product industries. In PCMC, Part II, he ex-
pands hismodel to consider industries producingmore than one commodity, i. e.,
multiple-product industries, analysing in particular the mathematical properties
of the systems describing such joint production.

Productivity, productiveness
Productivity is commonly defined as a ratio between the output volume and the vol-
ume of inputs. In other words, it measures how efficiently production inputs, such
as labour and capital, are being used in an economy to produce a given level of out-
put. Productivity is considered a key source of economic growth and competitiveness
and, as such, is basic statistical information for many international comparisons and
national performance assessments, see Krugman [47].

We term in this text the variableR = (1/λC)−1 as “productiveness”. It is a character-
isation of the productivity of a Sraffa production system, where λC > 0 is the Frobenius
number of the corresponding semi-positive input-output coefficientsmatrix C.
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Profits
The earnings entrepreneurs, or capitalists to use Sraffa’s vocabulary, obtain from sales
of their production surplus after payment of wages to labour.

Comment. When referring to the surplus produced in Sraffa’s model, this implic-
itly assumes that there exists a demand that will absorb the surplus via sales, thus
generating a gross profit on production after payment ofwages, i. e., in business termi-
nology, EBITDA: earnings before interest, taxes, depreciations and amortization (see
comments in Godeley and Lavoie [37], Chap. 8.2). Realised profits thus depend cru-
cially ex post on final demand and not on the surplus level of production.
– share of total profits ̃r

This is the ratio of total aggregate profits P to national income Y : ̃r = P/Y .
– uniform rate of profits r

The uniform rate of profits is defined as r = P/K, where P is total aggregate profits
registered by the national accounts and K the total value of circulating capital (the
value of the means of production in Sraffa’s terms). Sraffa (PCMC, Par. 4) posits that
the surplus is distributed in proportion to circulating capital in all industries, thus
necessarily implying a uniform rate of profits for all the industries.
– productiveness or maximum rate of profits R

The productiveness (maximum rate of profits) is obtained from the Sraffa price equa-
tions with semi-positive input-output coefficients matrix C by setting the wage rate w
or the total wages to national income w̃ to zero, w = w̃ = 0. For example, in single-
commodity processes one has the eigenvalue equation C(1 + R)p = p, the Frobenius
number being λC = 1/(1+R) > 0, and the uniform rate of profits r is limited to 0 ≤ r ≤ R.
Mathematically speaking, R is just an upper bound on the aggregate uniform rate of
profits r. The productiveness R must clearly be distinguished from the surplus ratio
R̃ = Y/K. In general R ̸= R̃.

Comment. For a Standard system Sraffa terms: “R is the Standard Standard ratio
or Maximum rate of profits” (PCMC, Par. 30). In Standard systems there is the equality
R = R̃. Therefore there is in Standard systems the rule r = R(1 − w̃).

The eigenvalues of its distribution coefficients matrix D and the eigenvalues of
the input-output coefficients matrix C are identical. For an economy, where a surplus
exists, d ≥ o, the corresponding Frobenius number is smaller than 1, 0 < λD = λC < 1.
The Frobenius number λC gives rise to the determination of theproductiveness R. There
is R = (1/λC) − 1 > 0 because we also have 0 < λC = 1/(1 + R) < 1. The rate of profits r is
then contained in an interval, 0 ≤ r ≤ R. For a economy with no surplus, d = o, there
is λC = 1 and the productiveness and rate of profits are zero, r = R = 0.

Rate of profits (continuous and discrete measurements)
The term “rate of profits” implicitly assumes the ensuring surplus is absorbed by ex-
ogenous demand; if this is not the case, one should use the term “surplus ratio”.
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The rate of profitsused in this context is adiscrete rate, defined for a given constant
discrete time interval of a given period, which in this case can be weekly, monthly or
annuall.

Rates and ratios
There is some confusion in the use of these terms in the literature, in particular in
Sraffa [108]. We shall use the term ratio (“Quote” in German; “quote-part” in French)
to designate the percentage part of a whole: the ratio P/Y for example designates the
part of total profits in national income according to the national accounts. Other rela-
tionships of this type between different variables will be termed rates: Y/K, for exam-
ple, is the percentage relation between national income (the surplus) and operational
capital and is a surplus rate. Similarly, P/K is a rate of profit.

We shall also refer to rates when considering an increase in macroeconomic vari-
ables: ΔY/Y , for example, would be the rate of change in GDP (growth or decrease)
from one accounting period to another.

Comment. In international financial transactions, the terms even vary from one
language to another: a currency “exchange rate” in English, is “cours de change” or
“taux de change” in French , “Wechselkurs” in German; but the term remains literally
the same for interest rate.

Short term/Long term
In planning their production, firms must make many decisions. In order to reduce
these to theoretically manageable decisions, one can distinguish three time periods
and group production decisions into one of these (see Lipsey ([58], An Introduction
to Positive Economics, pp. 218–219)). These time periods vary from one industry to an-
other. We apply this approach in this text.

The short term: Defined as the period of time overwhich the inputs of some factors
cannot be varied. The firm cannot get the use ofmore of the fixed factors of production
(such as plant and equipment or land) than it has on hand; the factors that can be
varied in the short term (such as cheap labour and raw materials) are called variable
factors.

The long term (medium term) is defined as the period long enough for inputs of
fixed factors of production to vary without changes in the production technology. This
is where the notion of constant returns to scale enters the picture.

The very long term is concerned with situations in which the technological pos-
sibilities open to firms are subject to change, leading to new and improved products
and new methods of production.

Governments in defining their economic policies are also confronted with these
differing time horizons, but at the macroeconomic level and over a very long term,
Keynes quipped: “In the long run we are all dead”.
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Standard system
In Sraffa’s initialmodel (PCMC, Part I), each industry produces as output just one com-
modity. In this connection, Sraffa’s Standard system (PCMC, Chap. IV and V) is a theo-
retical construct describing a system of production in which the various commodities
entering themeans of production are in the same proportion as they figure in the total
output. The national income Y in such a system is a composition of all the commodi-
ties, i. e., a composite commodity, called the standard commodity taken as the basis
to define the numéraire.

Comment. In order to avoid logical inconsistencies in the use of this numéraire,
Sraffa (PCMC, Par. 35), then posits that only basic commodities be included in the
corresponding Standard system. Note that Sraffa’s conditions of production (PCMC,
Par. 3) represent a limit case of a Standard system.

Surplus and total output
The global economic process of production generates a total output of commodities
which is split between,
(a) interindustry purchases required to maintain the means of production at their at-

tained level (raw materials, replacements, etc.);
(b) a production surplus, fueled by exogenous demand, which will be distributed be-

tween wage earners (labour) as income and entrepreneurs in the form of gross
profits.

Surplus ratio – Standard ratio
In the context of Sraffa’s model, the Standard ratio is the ratio in value terms be-
tween the surplus generated by a given industry and the means of production (cir-
culating capital). This ratio is in general specific to each industry. For aggregate Sraffa
economies, the surplus ratio or national income to circulating capital ratio is written in
this text R̃ = Y/K.

In Sraffa’s Standard system, however, the surplus ratio is the same for all indus-
tries and is called the Standard Ratio R, with R = R̃. It is a fundamental characteristic
of a Standard system.

Value
Goods and services are measured in terms of their value expressed in numerical units
of some adopted numéraire or in terms of money. In monetary terms, value is thus
defined as multiplying a physical quantity by a price and thus obtaining a number
labelled in a given currency.

Value added
Is the value of a firm’s output minus the value of the intermediate commodities that
the firmhas purchased for production, i. e., to replace usedmeans of production. Value
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added comprises such items as wages, profits, interest, taxes paid, adjustments to in-
ventories, imports, etc. Within the models examined here, we will concentrate essen-
tially onwages andprofits. In a closed economy, national income, or equivalentlyGDP,
equals the total value added, summed over the whole economy.

Vertical integration versus horizontal integration
Inmicroeconomics andmanagement, vertical integration describes companies/ indus-
tries in which the whole supply (production) chain is controlled by a common owner.
Each constituent of the production chain produces a different commodity, and these
commodities combine to produce a final commodity to satisfy demand.

By analogy, this expression was taken up in macroeconomics by Pasinetti [80] in
connection with Sraffa’s model where the rows of the transpose of the supply matrix
S are the columns of the matrix S in Leontief’s input-output representation, i. e., the
vertical components corresponding to commodities entering production. In this con-
nection, vertical integration is just a mathematical artefact.

Inmicroeconomics, horizontal integration is a procedurewhere businesses/indus-
tries create or acquire production units of commodity outputs that are alike. Where
competitors are acquired following this goal, this leads to market monopolies.

In Sraffa’smodel at themacroeconomic level, horizontal integration then logically
refers to the regrouping of the column components of S, i. e., the row elements of S in
Leontief’s representation.

Wages
– wage ratio w̃

This is the ratio of aggregate wagesW to national income Y : w̃ = W/Y .
– unit wage w

In Sraffa’smodel, this is the “wage per unit of labour” and has in PCMC the dimension
numéraire per unit of time, [w] = (numeraire/unit of time).

Comment: This definition is however ambiguous: it can be interpreted as either (a)
the weighted average wage of the labour force or, as is often implied, (b) the wage of
the lowest paid unit of labour in the economy. In the latter case, however (a managing
director would receive for example per annum a salary 50 times higher than that of
an unqualified manual worker and would count as 50 units of labour) this biases the
count of persons employed and would invalidate unemployment statistics. For our
mathematical purposes, we shall consider w as a given parameter and take the Sraffa
definition at face value.
– subsistence wage

There exists some confusion about this antiquated concept which goes back to 19th-
century writings and earlier. Sraffa (PCMC, Par. 1) uses this notion of aminimalmeans
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workers require for survival and implicitly includes such wages, payable as a bundle
of commodities, as components in the commodity flowmatrix defining the conditions
of production. From Sraffa’s PCMC, Par. 8, onwards however, subsistence wages are
no longer included in the commodity flow matrix and are incorporated in the basic
wages entering his model, Sraffa being no doubt aware of the disputed nature of the
concept of subsistence wages in a modern economy.

The reader is warned that variations in definitions and notations from one author
to another can generate much confusion in economic discussions on matters such as
those treated in this book. In addition,we encourage the reader to look up translations
of these terms in other languages, notably in French, German, Italian, Russian and
Spanish,whichwill reveal conceptual differences due to differing cultural approaches
and of course to different economic schools of thought.

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography
[1] Alexandre, L., La Guerre des Intelligences, JCLattès, Paris (2017).
[2] Ashmanov, S. A., Introduction in Mathematical Economics (in Russian language), Nauka,

Moscow (1984), 296 pages.
[3] Bailly, J.-L., On the Macroeconomic Foundations of the Wage-Price Relationship, in: Rochon

L.Ph. and S. Rossi (eds.), Modern Theories of Money: The Nature and Role of Money in
Capitalist Economies, Edward Elgar Publishing, Cheltenham, UK (2003).

[4] Bharadwaj, K., On the Maximum Number of Switches Between Two Production Systems,
Schweizerische Zeitschrift für Volkwirthschaft und Statistik, Vol. 106, No. 4, pp. 409–29
(December 1970).

[5] Birner, J., The Cambridge Controversies in Capital Theory, Routledge, London (2002).
[6] Bortis H., Keynes and the Classics - Notes on the Monetary Theory of Production,

in: L.-Ph. Rochon and S. Rossi (eds.): Modern Theories of Money – The Nature and Role of
Money in Capitalist Economies, Edward Elgar, Cheltenham, UK and Northampton, MA, USA
(2003).

[7] Bortis, H., Piero Sraffa and Shackle’s ‘Years of High Theory’ - Sraffa’s Significance in the
History of Economic Theories, 3. Chapter, in: Enrico Sergio Levrero, Antonella Palumbo
and Antonella Stirati (eds.): Sraffa and the Reconstruction of Economic Theory, volume
3, Antonella Stirati (ed.): Sraffa’s Legacy: Interpretations and Historical Perspectives,
Palgrave-Macmillan, London, pp. 55–83 (2013).

[8] Bortis, H., Institutions, Behaviour and Economic Theory, Cambridge University Press, 435
pages (1997).

[9] Bortkiewicz, L., Zur Berichtigung der grundlegenden theoretischen Konstuktion von
Marx im 3. Band des ‘Kapitals’, Jahrbücher für Nationalökonomie und Statistik, pp. 319–35
(1907).

[10] Bottazzi, Patrick et al., Assessing sustainable forest management under REDD+ : A
community-based labour perspective, Ecological Economics, Vol. 93, pp. 94–103 (2012).

[11] Branson, W. H.,Macroeconomic theory and policy, Grand Rapids [etc.]: Harper & Row, cop.,
New York (1989).

[12] Bundesamt für Statistik, Input-Output Tables, retrieved from Input-Output Tables: http:
//www.bfs.admin.ch, Schweiz (2016, 03).

[13] Chable, D., Economics, Thermodynamics, and Quantum Theory: Rekindling Political Economy,
paper presented at the Dijon Conference on Post-Keynesian Economic Policies, University of
Burgundy, December (2007).

[14] Champernowne, D. G. Unemployment, Basic and Monetary: The Classical Analysis and the
Keynesian. Review of Economic Studies, Vol. 3, pp. 201–16 (1936).

[15] Charasoff, G., Das System des Marxismus. Darstellung und Kritik, Hans Bondy, Berlin (1910).
[16] Carré H., NACE Rev. 2, Statistical classification of economic activities in the European

Community, General and regional statistics, Methodologies and working papers, European
Community (2008).

[17] Carsten N., Schmid Chr., van Nieuwkopp R., Schätzung einer Input-Output-Tabelle der Schweiz
2008, Schlussbericht an das Bundesamt für Statistik, Rütter + Partner, sozioökonomisdche
Forschung und Beratung, Rüschlikon/Bern (Mai 2011).

[18] Chesney, M., De la Grande Guerre à la Crise Permanente, Presses polytechniques et
universitaires romandes, Lausanne (2015).

[19] Chiang, A. C. and Wainwright K., Fundamental Methods of Mathematical Economics, 4th
edition, McGrawHill Int. Editions (2005).

https://doi.org/10.1515/9783110635096-015

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



522 | Bibliography

[20] Cobb Ch.-W., Douglas P. H., A Theory of Production, The American Economic Review, Vol. 18,
No. 1, Supplement, Papers and Proceedings of the Fortieth Annual Meeting of the American
Economic Association, pp. 139–65 (1928).

[21] Daly, H. E., Farlay, J., Ecological Economics, Principles and Applications, Pan-American
Copyright Conventions, Island Press, Suite 300, 1718 Connecticut, Ave., NW, Washington,
DC 20009 (2004).

[22] Dietzenbacher, E., In Vindication of the Ghosh Model: A Reinterpretation as a Price Model,
Journal of Regional Science, Vol. 41, pp. 185–96 (1997).

[23] Duchin, F., Steenge, A. E.,Mathematical Models in Input-Output Economics, in Encyclopedia
of Life Support Systems (EOLSS) and, Rensselaer Polytechnic Institute, Working Papers in
Economics, Nr. 0703, New-York (2007).

[24] de Jong, F. J., Dimensional Analysis for Economists, North-Holland Publishing Co. (1967).
[25] de Mesnard, Louis, About the reinterpretation of the Gosh model as a price model, LATEC

(UMR CNRS 5118), Faculty of Economics, University of Burgundy, Working paper (2001).
[26] Emmenegger, J.-F., Rehabilitierung der Input-Output Analyse in den universitären

Curricula, Hrsg. IWH (Ludwig Udo, Brautzsch Hans-Ulrich), Neuere Anwendungsfelder der
Input-Output-Analyse – Tagungsband – Beiträge zum Halleschen Input-Output-Workshop
2012, IWH-Sonderheft 1/2013, Halle (Saale), pp. 65–79 (2013).

[27] Emmenegger, J.-F., Chable, D., Knolle, H., Algorithmen und Berechnungen zu Piero Sraffa’s
Standardware, Hrsg. GWS (Gerd Ahlert), Neuere Anwendungsfelder der Input-Output-Analyse,
Tagungsband, Beiträge zum Input-Output-Workshop 2014 in Osnabrück, GWS Research
Report (2014/2).

[28] Emmenegger, J.-F., Chable, D., Sraffa Preismodelle mit Profit- und Lohnverteilungen,
pp. 15–24, Hrsg. GWS (Mönnig Anke), Tagungsband zum 8. Input-Output-Workshop 2016,
Osnabrück, GWS Specialists in Empirical Economic Research, Osnabrück (Januar 2017).

[29] Emmenegger, J.-F., Chable, D., Die Rolle des Satzes von Perron-Frobenius in Leontief
und Sraffa Modellen, Hrsg. GWS (Mönnig Anke), pp. 14–25, Tagungsband zum 9.
Input-Output-Workshop 2017, Osnabrück, GWS Specialists in Empirical Economic Research,
Osnabrück (Januar 2018).

[30] Emmenegger, J.-F., Chable, D., Konvexe Kegel in Sraffas Ökonomien der Kuppelproduktion,
Hrsg. GWS (Mönnig Anke), pp. 10–20, Tagungsband zum 10. Input-Output-Workshop 2018,
Bremen, GWS Specialists in Empirical Economic Research, Osnabrück (Januar 2019).

[31] Frobenius, G., Über Matrizen aus nicht negativen Elementen, Sitzungsberichte der Königlich
Preussischen Akademie der Wissenschaften 26, Berlin, pp. 456–77 (1912).

[32] Forrester, J.W., A New View of Business Cycle Dynamics, The Journal of Portfolio Management
(Fall 1976).

[33] Gale, D., The Theory of Linear Economic Models, McGraw-Hill Book Company (1960).
[34] Gantmacher, Felix R. (ed.):Matrizentheorie, Springer-Verlag, Berlin, Heidelberg, New-York,

Tokyo (1986).
[35] Georgescu-Roegen, N., The Entropy Law and the Economic Process, Harvard University Press

(1999).
[36] Gilibert G., Circular Flow, in The New Palgrave Dictionary of Economics, Vol I, pp. 742–5 (2013).
[37] Godeley, W., Lavoie, M.,Monetary Economics, Palgrave MacMillan, London (2006).
[38] Gnos, Cl., Rossi, S.,Modern Monetary Macroeconomics: A New Paradigm for Economic Policy,

Edward Elgar, Cheltenham, UK et Northampton, MA, USA, xiii, 315 pages (co-editor, avec
Claude Gnos, Université de la Bourgogne, France) (2012).

[39] Hall, Luis J., A Mathematical Study of the Sraffa Model, Ciencias Económicas, Vol. 30,
No. 2:2012, pp. 77–88 (2012). ISSN: 0252-95211.

[40] Hand, D. J.,Measurement, Theory and Practice. The World Through Quantification, Arnold

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 523

Publishers, London (2004).
[41] Hobson J. A., The Industrial System (1909); Reprint: Augustus M. Kelley Publishers, USA

(1969).
[42] Holub, H.-W., Schnabl, H., Input-Output-Rechnung: Input-Output-Analyse, Einführung, R.

Oldenbourg Verlag, München, Wien (1994).
[43] Horn, R. A., Johnson, Ch. R.,Matrix Analysis, second ed., Cambridge University Press (2013).
[44] Illik, J. Anton, Formale Methoden der Informatik, Expert Verlag, Renningen, Deutschland

(2009).
[45] Kaldor, N., Alternative Theories of Distribution, The Review of Economic Studies Ltd, Vol. 23,

No. 2, pp. 83–100 (1955–1956).
[46] Kalecki, Michal, Theory of Economic Dynamics, Unwin University Books, London (1954).
[47] Krugman, P., The Age of Diminishing Expectations, U.S. Economic Policy in the 1990s, Orell

Füssli, Zürich (1994).
[48] Kowalsky, Hans-Joachim, Lineare Albegra, de Gruyter Lehrbuch, Berlin, New York (1972).
[49] Knolle, Helmut, Vollbeschäftigung bei Nullwachstum: Für eine soziale und ökologische

Wirtschaft, Im Jahrbuch Denknetz/Réseau de Réflexion, hrsg. Hans Baumann & all, Verlag:
Edition 8, Postfach 3522, 8021 Zürich (2010).

[50] Knolle, Helmut, Und erlöse uns von dem Wachstum, Eine historische und ökonomische Kritik
der Wachstumsideologie, Pahl-Rugenstein, 2. erw. Auflage (2011).

[51] Knolle, Helmut, Die Wachstumsgesellschaft, Aufstieg, Niedergang und Veränderung,
PapyRossa Verlags GmbH & Co. KG, Köln (2016).

[52] Kurz, H. D., Salvadori, N., Theory of Production, A Long-Period Analysis, Cambridge University
Press, paperback (1995 and 2007).

[53] Kurz, H. D., Salvadori, N., Interpreting Classical Economics: Studies in Long-Period Analysis,
Routledge Studies in the History of Economics, 269 pages (2007).

[54] Kurz, H. D., Salvadori, N., Classical Economics and Modern Theory, Routledge Studies in the
History of Economics, 333 pages (2003).

[55] Leontief, W.W., Die Wirtschaft als Kreislauf, Archiv für Sozialwissenschaft und Sozialpolitik,
Vol. 60, pp. 577–623 (1928).

[56] Leontief, W.W., The Structure of American Economy 1919–1929, Oxford University Press, Fair
Lawn, New Jersey (1941).

[57] Leontief, W.W., Input-Output Economics, second edition, Oxford University Press, New-York
(1986).

[58] Lipsey, R. G., An Introduction to Positive Economics, Weidenfeld & Nicolson, London (1979).
[59] Ludwig, U., Brautzsch, H.-U., Neuere Anwendungsfelder der Input-Output-Analyse. Beiträge

zum Input-Output-Workshop 2012 in Halle, Tagungsband, Institut für Wirtschaftsforschung
Halle IWH, Halle (2012).

[60] Lütkepohl, H, Introduction to Multiple Time Series Analysis, Springer Verlag, Berlin,
Heidelberg, New York (1991).

[61] Manara, C. F., Sraffa’s Model for the Joint Production of Commodities by Means of
Commodities, in Pasinetti (Ed.) [83], hereunder, Chap. 1, pp. 1–15 (1980).

[62] Manara, C. F., Il modello di Sraffa per la produzione conguinta di merci a mezzo di merci,
L’industria, No. 1 (1968).

[63] Mankiw, N. G.,Macroeconomics, 5th edition, Worth Publishers (2003).
[64] Michaelova, A. and Dutschke, M.,Will credits from avoided deforestation jeopardize the

balance of the carbon market? In: Palmer, Ch. and Engel, St. (eds.) Avoided deforestation,
Routledge, New York (2009).

[65] Miller, R. E., Blair, P. D., Input-Output Analysis, Foundations and Extensions, 2nd edition,
Cambridge University Press (2009).

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



524 | Bibliography

[66] Mori, Kenji, Charasoff and Dimitriev: An Analytical Characterisation of Origins of Linear
Economics, Discussion Paper No 249, Tohoku Economics Research Group, Graduate School
of Economics and Management Tohoku University, Kawauchi, Aoba-Ku, Sendai, Japan, January
(2010).

[67] Murphy, A. E., The Genesis of Macroeconomics, New ideas fromWilliam Petty to Henry Norton,
Oxford University Press, New York (2009).

[68] Nathani, C., Schmid, Ch., van Nieuwkoop, R., Schätzung einer Input-Output-Tabelle
der Schweiz 2008, Schlussbericht an das Bundesamt für Statistik, with the Swiss
Input-Output-Table, Schweizerisches Bundesamt für Statistik, Rüschlikon/Bern (2011).

[69] Nef, W., Lehrbuch der Linearen Algebra, Birkhäuser Verlag, Basel und Stutgart (1966).
[70] Newman, M. E. J., Networks, An Introduction, Oxford Univ. Press (2012).
[71] Newman, P., Production of Commodities by means of Commodities, Schweizerische Zeitschrift

für Volkswirtschaftslehre und Statistik, 98. Jg., pp. 58–75 (1962).
[72] Norlund, Laurs, Eurostat Manual of Supply, Use and Input-Output Tables, Office for Official

Publications of the European Community, Luxembourg (2008).
[73] Nour Eldin, H. A., Emmenegger, J.-F., Nabout, A. A., Currency and Market Decisions in a

Decision-Based Economy (paper to be published) (2020).
[74] Nour Eldin, H. A., Heister, M., Two state representation forms with explizit Kronecker-Indexes,

Decoupling-Indexes and prime-matrix product representation, in German, Regelungstechnik
28, Heft 12 (1980).

[75] O’Neil, Cathy,Weapons of Math Destruction, Crown Publishers, New York (2016).
[76] Ormerod, P., Positive Linking: How Networks Can Revolutionise the World, Paperback, Kindle

Edition (2012).
[77] Oosterhaven, J., Leontief versus Ghoshian Price and Quantity Models, Southern Economic

Journal (1996).
[78] Oetsch, W., Die Kapitalkontroverse heute, in Zeitschrift für Wirtschafts- und

Sozialwissenschaften (ZWS) 112, Duncker & Humbolt, Berlin, pp. 419–32 (1992).
[79] Parys, Wilfried, All but one: How pioneers of linear economics overlooked Perron-Frobenius

mathematics, in Conference at the University of Paris Ouest, Nanterre, 17–18. January 2013,
“The Pioneers of Linear Models of Production” (2013).

[80] Pasinetti, L. L., Lectures on the Theory of Production, The Macmillan Press Ltd, London and
Basingstoke (1977).

[81] Pasinetti, L. L., A Mathematical Formulation of the Ricardian System, in The Review of
Economic Studies, 1959–1960, vol. 27, pp. 78–98 (1960).

[82] Pasinetti, L. L., Structural Economic Dynamics, A Theory of the Economic Consequences of
Human Learning, Cambridge University Press (1993).

[83] Pasinetti, L. L. (ed.): Essays on the Theory of Joint Production, Columbia Univ. Press, New York
(1980).

[84] Pasinetti, L. L.: Theory of Value - a Source of alternative Paradigms in Economic Analysis, in:
Baranzini Mauro and Scazzierri Roberto (eds.) Foundations of Economics: Structure of Inquiry
and Economic Theory, Basil Blackwell, pp. 409–31 (1986).

[85] Pasinetti, L. L.: The notion of Vertical Integration in Economic Analysis, Metroeconomica,
pp. 1–29 (1973).

[86] Perron, O., Zur Theorie der Matrices, Mathematische Annalen, Vol. 64, No. 2, pp. 248–63
(1907).

[87] Plotnitsky, A., The Knowable and the Unknowable, University of Michigan Press, Ann Arbor
(2005).

[88] Quesnay, François, Oeuvres économiques complètes et autres textes, éd. par Christine Théré,
Loïc Charles et Jean-Claude Perrot, Paris, Ined, 2 vol., p. 618 (2005).

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 525

[89] Reich, U.-P., Cambridge, England gegen Cambridge, Massachussets; Input-Output Analyse
the Kapitalkontroverse, 9. Input-Output Workshop, Bremen (2018).

[90] Reich, U.-P., Accounting for international trade in value added: a comment on the OECD-WTO
prject, Economic Systems Research, Journal of the International Input-Output Association,
Vol. 30, No. 4, December (2018).

[91] Ricardo, D., Üb̈er die Grundsätze der Politischen Ökonomie und der Besteuerung (mit einer
Einleitung von Piero Sraffa, hrsg. von Heinz D. Kurz), Marburg (1994).

[92] Robinson, J., The Production Function and the Theory of Capital, Review of Economic Studies,
Vol. 21, No. 2, pp. 81–106 (1953–1954).

[93] Rochon, L.-Ph., and Rossi, S. (eds.),Modern Theories of Money, Edward Elgar Publishing, 588
pages (2003).

[94] Rochon, L.-Ph., and Rossi, S. (Eds.), An Introduction to Macroeconomics. A heterodox
approach to economic analysis. Ed. Elgar Publishing, Cheltenham (2016).

[95] Rossi, S.,Money and Inflation, Ed. Elgar. Publishing, Cheltenham (2001).
[96] Roncaglia, A., Piero Sraffa. His Life, Thought and Cultural Heritage, New York, Routledge

Studies in the History of Economics (2000).
[97] Roncaglia, A., Piero Sraffa, Series Editor A.P. Thirlwall: Great Thinkers in Economics, Palgrave

Macmillan (2009).
[98] Rutishauser, H., Vorlesungen über numerische Mathematik, Birkhäuser Verlag, Basel,

Stuttgart (1976).
[99] Saaty, T. L., The Analytic Hierarchy Process, MacGraw Hill, New York (1980).
[100] Salvadori, N., and Steedman, I., Joint Production Analysis in a Sraffian Framework, Bulletin of

Economic Research, Vol. 40, No. 3, pp. 165–95, 0307-3378 $2.0 (1988).
[101] Samuelson, P. A., Nordhaus, W. D., Economics, 5th edition, McGraw-Hill, Inc., New-York (1995).
[102] Schefold, B., Sraffas Theorie der Kuppelproduktion. Ein Überblick., Zeitschrift für Wirtschafts-

und Sozialwissenschaften, pp. 315–40 (1983/4).
[103] Schefold, B.,Mr Sraffa on Joint Production and Other Essays, Unwin Hyman, London (1989).
[104] Schumann, J., Input-Output Analyse, Springer Verlag, Berlin (1968).
[105] Skiena, S. Strong and Weak Connectivity, §5.1.2 in Implementing Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica, Addison-Wesley, Reading, MA, pp. 172–4
(1990).

[106] Smith, A. The Wealth of Nations, Pelican Books, London, p. 131 (1970).
[107] Sokow, R.M., Technical Change and the Aggregate Production Function, The Reviw of

Economics and Statistics, Vol. XXXIX, No. 3, pp. 312–20 (August 1957).
[108] Sraffa, P., Production of Commodities by means of Commodities, Cambridge University Press,

Cambridge (1960).
[109] Sraffa, P.,Warenproduktion mittels Waren (aus dem Englischen übersetzt mit einem Anhang

von B. Schefold), Edition Suhrkamp 780, Erste Auflage (1976).
[110] Steenge, A. E., Consistency and Composite Numeraires in Joint Production Input-Output

Analysis; an Application of Ideas of T. L. Saaty, Math. Modelling, Vol. 9, No. 3–5, pp. 233–41,
Pergamon Journals Ltd. (1987).

[111] Stetsyuk, P. I., Koshlai, L. B., Optimal Normalized Structure of Demand and Value Added in a
Productive Leontief Model, Cybernetics and Systems Analysis, Vol. 46, No. 5 (2010).

[112] Stetsyuk, P. I., Bondarenko, A.W., Spectral Leontief Models (in Russian), Theory of Optimal
Solutions (“Theorija Optimalnich Rishen”), No. 10, pp. 84–90 (2011).

[113] Stetsyuk, P. I., Emmenegger, J.-F., The Maximum Singular Value of a Matrix and its Economic
Interpretation (in Russian), Cybern. Syst. Anal., Vol. 50, No. 3, pp. 51–7 (2014).

[114] Steedman I., Basics, Non-Basics and Joint Production, The Economic Journal, Vol. 87,
pp. 324–8 (June 1977).

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



526 | Bibliography

[115] Stern, N., The Economics of Climate Change. The Stern Review, Cambridge University Press
(2007).

[116] Takayama, A.,Mathematical Economics, 2nd edition, Cambridge University Press, London,
New-York, Cambridge (1985).

[117] Taleb, N. N., Antifragile. Things That Gain from Disorder, Penguin Books, London (2014).
[118] Varga, R. S.,Matrix Iterative Analysis, Prentice-Hall, Inc. Englewood Cliffs, New Jersey (1962).
[119] Wagner, K., Graphentheorie, Hochschultaschenbücher, Bibliographisches Institut,

Vol. 248/248a*, Manheim-Wien-Zürich (1970).
[120] Weintraub, Sydney, Capitalism’s Inflation and Unemployment Crisis, Addison Wesley,

Massachusetts (1978).
[121] Welsh, D. J. A.,Matroid Theory, Dover (2010).
[122] World Input-Output Database,WIOD, retrieved fromWorld Input-Output Tables: http://www.

wiod.org/new_site/database/niots.htm (April, 2015).
[123] Wolfram, St., The Mathematica Handbook, Organisation: University of California, Irvine,

Department of Physics (2006) and Software PackageWolfram Mathematica 8, Wolfram
Research, Inc. 100 Trade Center Drive, Champaign, IL 61820, USA.

[124] Yang, M.,Matrix Decomposition, Electrical and Computer Engineering, Northwestern
University Evanston IL 60208, Working paper, USA (2000).

[125] Young, D.M., Iterative Solution of Large Linear Systems, Academic Press, Inc. New York (1971).
[126] Zurmühl, R.,Matrizen und ihre technischen Anwendungen, Springer Verlag, Berlin (1964).

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index
Actual economic system 196, 197, 200, 204,

207, 210, 211, 216, 220, 224, 500
Adjugate matrix 446
Assumption, invariant technology 24, 47
Assumption, linear independence of processes

249
Assumption, on commodity flow matrices 18
Assumption, on positivity of output vectors 17
Assumption, surplus in joint production 247
Assumption on input-output in joint production

249

Calibration of quantities of produced
commodities to annual production units
109

Characteristic polynomial 76, 91, 92, 94, 97,
100, 112, 115, 131, 141, 154, 181, 192, 231,
240, 367, 420, 427, 451, 454, 463,
465–468, 477, 502

Circulating capital 119
Coefficient of production 12
Commodities, basic 170
Commodities, non-basic 170
Commodity, basic 146
Commodity, non-basic 146
Commodity flow 190
Commodity space, product space 202, 249
Commodity unit 126, 135, 180, 226
Conditions of joint production 255
Conditions of production XVII, 70, 237
Costs of production XVII, 37, 109

Demand-driven input-output quantity model 22,
30

Determinat of a matrix 445
Digraph, bipartite or bidigraph 483
Digraph, commodity 168, 484, 489
Digraph, complete 482, 483
Digraph, connected or weakly connected 485
Digraph, directed graph 482
Digraph, node-complete 483
Digraph, strongly connected 485
Distribution of surplus 259
Domination of labour economy 66, 312

Eigenspace 73
Eigenvalue 73, 74

Eigenvalue, of zero matrix 473
Eigenvalue equation 73, 212
Eigenvector, left 71, 72, 75, 76, 78, 92, 94, 111,

495
Eigenvector, right 71, 74, 75, 77, 78, 81, 86, 92,

110, 111, 116, 209, 211, 213, 216, 406, 495
Eigenvector problem 223
Eigenvectors, left 406
Eigenvectors, of zero matrix 473
Euler class of systems of production 207, 211,

212, 216
Euler class of systems of production, generator

207
Euler transformation 203
Eurostat manual of Supply, Use and

Input-Output Tables 5, 9
Exploitation of labour economy 66, 113, 153, 312

Final consumption market 57
Frobenius number 31, 33, 43, 50, 73, 80, 463,

465, 467
Frobenius theorem 465

Garden of Eden economy 66, 110, 311
Graph, bipartite directed graph 157, 159
Graph, connected 485
Graph, connectivity of digraphs 487
Graph, directed graph 157
Gross domestic product (GDP) 60
Gross integrated industries 249, 268, 298, 302
Gross national income 60

Hawkins–Simon condition 481

Index price 36
Inequality conventions for vectors and matrices

XV
Input-output analysis XVII
Input-Output Table VII, XVII, 107, 140
Input-Output Table, see Eurostat manual 10
Interindustrial economy 57, 110, 119, 199, 453,

476
Interindustrial market 3, 57, 67, 182, 383, 431
Interindustrial production 56, 384
Interindustry transactions 8, 84, 182, 369, 505,

510

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



528 | Index

Invariance property of the Pasinetti matrix 273,
274, 276, 279, 280

Inverse matrix 447
IOT in physical terms 13

Joint connection 177
Joint production 157, 159, 245, 247
Joint production Sraffa system 187, 245, 257,

292
Joint production Sraffa system, complete 261

Labour, human labour 118
Labour value 65, 182, 287, 292, 325
Leontief cost-push input-output price model in

monetary terms 38, 40, 48
Leontief cost-push input-output price model in

physical terms 46, 48
Leontief economy 7
Leontief Inverse 19, 21, 27, 32, 50, 141
Leontief Inverse, transposed 38, 41, 48, 50, 51,

54
Leontief matrix 19, 21, 32
Leontief matrix, transposed 41
Leontief model XIX, 2, 22, 23, 30, 66, 71, 477,

479
Leontief model, productive 23, 82, 140, 143,

433, 477–479
Leontief price model 2, 5, 36
Leontief quantity model 2, 5, 23, 25, 30, 56

Market, see interindustrial market 383
Matrices, similar 453
Matrix, adjacency 164, 281, 462, 484, 486, 487
Matrix, canonical form 147, 150, 172–174, 271,

279, 458
Matrix, direct and indirect capital matrix =

Pasinetti matrix 267
Matrix, imprimitive 468, 470
Matrix, irreducible 148
Matrix, Manara transformation 274, 277, 278,

298
Matrix, non-negative 456
Matrix, normal form 462
Matrix, primitive 467, 468, 470
Matrix, rank 445
Matrix, rank criterion 267, 272, 277, 329, 335
Matrix, reducible 148
Matrix, reducible and irreducible 459, 487
Matrix, regular 78, 445
Matrix, Schefold transformation 274, 277, 298

Matrix, semi-positive 457
Matrix, singular 78, 445
Matrix, stochastic 23, 110, 112, 117, 388, 476
Matrix, stochastic production 388, 393
Matrix algebra 440
Maximal rate of profits IX, 79, 81, 116, 129, 176,

308, 330, 350, 356, 516
Means of production 11, 15, 18, 20, 56
Means of production, aggregate 196, 197
Mises–Geiringer Itration 482

National accounting identity 58, 59, 61, 63, 144,
371, 435

National income 61, 119
Nomenclature des activités économiques dans

la communauté européenne (NACE) 6
Numéraire VII, 13, 47, 50, 52, 56, 58, 62, 119

Object representation 110
Octant, top-front right 202
Orthogonal Euler map 202, 205, 206, 212, 214

Palette (bundle) of products 6, 7
Pasinetti matrix VIII, 267, 271
Payment flow 190
Permutation, column 273
Permutation, row 273
Permutation matrix 273, 457
Perron theorem 111, 463
Perron–Frobenius theorem 20, 463, 467
Polyhedral cone, combination description 305
Polyhedral cone, convex 302
Polyhedral cone, inequality description 309
Polyhedron, commodity 250
Polyhedron, output 250
Polyhedron, production process 250
Power iteration algorithm of Mises-Geiringer

482
Price index of Laspeyres 37
Price model 354
Prices, positive 72
Problem of distribution: the “principal problem

in Political Economy” (David Ricardo) 120
Production cycle 57
Production process 78
Production processes and linear independence

78, 82
Production scheme 83, 110, 113, 114, 117, 122,

123, 128, 133, 134, 140, 153, 175, 183, 184,
200, 204, 205, 219, 232, 247, 255, 259

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index | 529

Productive economy 23, 194, 369, 480
Productiveness IX, 3, 4, 23, 80, 82, 83, 103,

106, 107, 122, 123, 127, 128, 133, 134, 140,
141, 154, 177, 178, 184, 198, 199, 210, 215,
222–224, 232, 233, 237, 240, 242, 257,
258, 263, 288, 291, 327, 330, 366, 414,
416, 417, 420, 476, 480, 515, 516

Profitable economy 19

Quantity of labour VIII, 14, 50, 182, 218, 293,
304, 377, 510, 512

Quesnay’s economic model 187, 189, 193

Rank of a matrix 445
Rate of growth 183

Sectorial surplus ratio 183
Self-replacement 71, 113, 175, 176
Self-replacement, positive 71, 176
Single product industry 109, 146, 161, 164
Single product Sraffa system 65, 66, 69, 107,

109, 111, 114, 115, 119, 134, 175
Single product Sraffa system, complete 126,

133, 135, 140, 142, 178
Social surplus 65, 435
Spectral radius 463, 467
Sraffa model, productive 82, 140, 478
Sraffa Network 160, 164, 165, 167, 168, 170,

188, 289, 295, 300, 434, 488, 489
Sraffa price model 65, 69, 71, 80, 84, 106, 109,

111, 131, 135, 140, 153, 175, 177, 222, 224,
225, 354

Sraffa price model, extended 355
Sraffa price model for joint production 261,

268, 302
Sraffa price model for joint production of an

open economy 348
Stability conditions 126, 302
Standard commodity 195, 196, 199, 204,

214–217, 237
Standard composite commodity 196

Standard national income 222, 224, 225, 233
Standard net product 197, 217–219, 237
Standard ratio IX, 197–199, 516
Standard system 196, 198, 204, 210, 212, 216,

220, 223, 232, 237–239, 433, 437, 516, 518
Subsistence wages 3, 19, 66, 104, 108, 113, 118,

120, 153, 175, 176, 178, 183
Summation vector VIII, 39, 70, 110, 355, 434,

441
Supply table, see Eurostat manual 9
Surplus 10, 55, 66, 75, 119
Surplus, positive 79
Sustainability 70
Sustainable wages 512
SWISS IOT 2008 17
System of linear equations, homogenous 70
System of production 196, 203, 204, 212, 222
System of production, joint 266

Total output 55, 76
Transformation matrix, Manara 272
Transformation matrix, Schefold 272

Uniform distributive economy 66, 312
Uniqueness of the Frobenius number 468
Unit vector 325, 440, 491
Use table, see Eurostat manual 9

Value added 7–9, 38–40, 44, 45, 47
Vector of net product, vector of surplus 71, 247,

252, 253
Vector of objects 110
Vector of sectorial wages 304
Vector of total output 66, 223
Viability of an economy 17, 19, 71, 117
Viability of an economy, just viable 19, 71, 117,

465

Wage to profit ratio 354, 359
Waste good 325

 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/10/2023 3:22 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Notes
	Table of Symbols
	Abbreviations
	Notations
	Preface
	Contents
	1. Introduction
	2. Elements of Input-Output Analysis
	3. Sraffa’s first examples of single- product industries
	4. Sraffa’s single-product industries with wages and profits
	5. Sraffa’s Standard system and the Standard commodity
	6. A new look at joint production analysis
	7. Sraffa’s theory of joint production as a tool in ecological economics
	8. Sraffa and extensions
	9. The algebraic structure behind the “Leontief–Sraffa” interindustrial economy*
	10. Exploration of Input-Output Tables
	11. Conclusions and outlook
	A. Mathematical tools
	B. Bertram Schefold’s mathematical explanations to PCMC*
	C. Glossary of terms as they are used in this book
	Bibliography
	Index

