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Chapter 1
A voting system with a fixed point

C. de Kerchove
Department of Mathematics, Namur University, Namur, Belgium,
E-mail: cristobald.dekerchove@unamur.be

P. Van Dooren
Department of Mathematical Engineering, Université catholique de Lou-
vain, Louvain-la-Neuve, Belgium,
E-mail: paul.vandooren@uclouvain.be

A voting system is presented that is based on an iterative procedure that

converges to a unique fixed point. The votes are casted by m raters regarding

the reputation of n items, are organized as a m× n voting matrix X , which

is possibly sparse when each rater does not evaluate all items. From this

matrix X , a unique rating of the considered items is finally obtained via an

iterative procedure which updates the reputations of the n items as well as

that of the m raters. For any rating matrix the proposed method converges

linearly to the unique vector of reputations. Some applications of this voting

system will be presented.

1.1 Introduction
One of the most influential changes in our generation is undoubtedly

the internet and its use for the communication of information. It is via the

internet that most individuals are looking for information or are provided

with information when signing up for some information channel. Typical

tools for the finding of information are search engines, such as Google and

Yahoo, whereas Facebook, CNN, various newspapers and several entertain-

ment channels are examples of information channels. Many of these chan-

nels use databases of opinions gathered from a pool of arbitrary users and

are based on votes that are ultimately used to rate the objects that users are

1
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interested in. These objects could be books, hotels, restaurants, movies or

touristic locations: one may e.g. refer to Amazon to find out about popular

books, Booking or Trivago to inquire about hotels, Movielens to look into

movies, or Tripadvisor to investigate about various touristic hotspots. The

list of such interactive sites is continuously growing. These actions can all

be interpreted as a form of voting; but the honesty or reliability of the raters
cannot always be verified.

A rater on the Movielens database may give random ratings to movies

he/he has not even seen, or a dishonest voter on Tripadvisor may post biased

opinions just to favor his or her ”friends”.

Clearly these websites can only benefit from their rating system being

as trustworthy as possible. At first sight, this looks like an impossible task

since one cannot verify the honesty of all raters.

However, the coherence of the ratings provided by isolated raters can

at least be checked against that of the average opinion. This is the approach

that we propose here. We will actually try to achieve two simultaneous goals.

The first such objective is to assign a reputation to each of the evaluated

items, and the second one is to assign a grading of reliability or trust to each

of the raters who evaluated the items.

We establish a clear difference between the reputation of an item, that

is, between what is generally said or believed about the quality of character-

istics of an item, and the reliability of a rater, which is our expectation that

the rater gives a fair or relevant evaluation to the item in question.

We illustrate the need of such a voting system by recalling a voting scan-

dal at the 2002- Winter Olympics. To this effect, we quote the following

account from Wikipedia [8] (see also [1, 7]):

At the 2002 Winter Olympics held in Salt Lake City, allegations

arose that the pairs’ figure skating competition had been fixed.

The controversy led to two pairs teams receiving gold medals:

the original winners Elena Berezhnaya and Anton Sikharulidze

of Russia and original silver-medalists Jamie Salé and David

Pelletier of Canada. The scandal was one of the causes for the

revamp of scoring in figure skating to the new ISU Judging Sys-

tem. [...]. The ISU Judging System replaced the previous 6.0

system in 2004. This new system was created in response to the

2002 Winter Olympics figure skating scandal, in an attempt to

make the scoring system more objective and less vulnerable to

abuse.

During this event, two of the judges favored the Russian team with
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A voting system with a fixed point 3

scores that were quite different from the averages scores of the remaining

voters. The press and the public immediately, openly criticized the results

of the voting, and the reaction was so strong that the president of the In-

ternational Olympic Committee announced the decision that, though Russia

would be allowed to keep the Gold Medal, the Canadian team, to whom the

silver medal had been awarded as a result of the competition, would also get

a gold medal.

The new ISU system is actually quite complex and tailored to the the

specific case of figure skating events. We present a different voting system,

based on a fixed point iteration and that turns out to be the solution of an

optimization problem. We delve into the advantages of this system and il-

lustrate its use in several applications.

1.2 Reputation and trust
Various measures of reputation have been proposed in recent years un-

der the names of reputation, voting, ranking or trust systems, among others

and they deal with a number of contexts ranging from the classification of

football teams to the reliability of each individual in peer to peer systems.

Surprisingly enough, the most used method for measuring reputation on the

Web, amounts simply to averaging the votes. In that case, the reputation is,

for instance, the average of scores represented by stars in YouTube, or the

percentage of positive transactions in eBay. Such a method, then, implicitly

trusts evenly each rater of the system. Besides this method, many other al-

gorithms exploit the structure of networks generated by the votes: raters and

evaluated items are nodes connected by votes, as illustrated in Figure 1.1.

There are many different ways of defining trust or reputation and each

of them has advantages and shortcomings. We refer here to [2] for a short

survey on these ideas and the principles they are based on. Obviously the

choice of a specific reputation system depends on subjective properties that

are just accepted. For example, in the averaging method mentioned above,

it is tacitly agreed that every rater is taken into account in the same manner,

whereas the PageRank algorithm is based on the principle that a random

walk over the network is a good model for the navigation of a web surfer.

The fundamental assumption underlying the method we present here is the

following:

Raters diverging often from other raters’ opinions ought to be taken less
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FIGURE 1.1: Network and matrix of votes from raters to objects and from

raters to other raters

into account than the remaining raters.

This principle is the basis of our filtering process and implies that all votes

are taken into account, but with a continuous validation scale, in contrast

for instance, to the direct deletion of outliers. Moreover, the weight of each

rater depends on the distance between his/her votes and the reputation of

the objects he/she evaluates: typically weights of random raters and outliers

decrease during the iterative filtering. The main criticism to be raised against

this method is that it discriminates marginal evaluators.

Votes, raters and objects can appear, disappear or change, making the

system dynamical. This is for example the case when we consider a stream

of news like in [19]: news sources and articles are ranked according to their

publications over time. Nowadays, most sites driven by raters involve dy-

namical opinions. For instance, the blogs, the site Digg and the site Flickr

are good places to exchange and discuss ideas, remarks and votes about var-

ious topics ranging from political election to photos and videos. We will

see that our proposed system allows for the consideration of evolving voting

matrices and provides time varying reputations.

1.3 Weighted averages of votes
A natural way of tackling the problem of unreliable or unfair raters in

reputation systems is to assign a weight to the evaluations of the raters.
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A voting system with a fixed point 5

Hence the range of weights corresponds to a continuous scale of validation

of the votes. These weights change via an iterative refinement that is guar-

anteed to converge to a reputation score for every evaluated item and to a

reliability score for every rater. At each step the reliability of a rater is cal-

culated according to some distance between his/her given evaluations and

the reputations of the items he/she evaluates. This distance is interpreted as

the belief-divergence. Typically, a rater diverging too much from the group

should be distrusted to some extent. The same definition of distance appears

in [5, 6, 9] and is used for the same purpose. The strength of the reputation

system we will describe here is that it can be applied to any static network

of raters and items and that it converges to a unique fixed point. Moreover,

our reputation system can also be extended to dynamical systems with time-

dependent votes.

We describe our approach for a static system with m raters and n objects

to be rated. The entry Xi j represents the vote of rater j ∈ {1, . . . ,m} for item

i ∈ {1, . . . ,n}, the matrix X ∈ [a,b]n×m is the voting matrix. Each vote is in

the positive real interval [a,b], and the vector�x j, the j-th column of X , is the

vector of votes of rater j.
The graph of votes and raters can be represented by an adjacency matrix

A ∈ {0,1}n×m where Ai j = 1 if object i is evaluated by rater j, and is equal

to 0 otherwise. For the sake of simplicity, it is first assumed that every rater

evaluates all items. Then the item’s reputation vector �r is defined as the

weighted sum of the votes

�r := X
�w

�1T
m�w

, (1.1)

where �1m is the vector of all ones. Since this is a convex combination of

the vectors {�x1, . . . ,�xm}, it follows that�r ∈ [a,b]n. The rater’s weight vector

�w depends on the discrepancy with the other votes, interpreted as belief-

divergence, which we define as

�w := G(�r) :=�1m− k�d, where �d :=
1

n

⎡⎢⎣ ‖�x1−�r‖2
2

...

‖�xm−�r‖2
2

⎤⎥⎦ , (1.2)

and k is a positive parameter. Clearly, as k tends to zero, �w tends to�1m, and�r
tends to the average of the votes. Increasing k corresponds to more stringent

discrimination toward outliers.

We proved in [2] that for k < 1/b the vector �w is always positive, and that

this implies then that there exists a unique pair of vectors�r, �w(�r) satisfying

both (nonlinear) equalities (1.1) and (1.2). Moreover the nonlinear iteration

given by

�w0 :=�1m, �rt+1 := X�wt/(�1T
m�w

t), �wt+1 := G(�rt+1), for t = 0,1,2, . . .
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6 New Trends in Analysis and Geometry

FIGURE 1.2: Representation of steps �rt of the nonlinear iteration in the

unit box [0,1]× [0,1]. The sequence E(�rt) decreases with t and converges

to E(�r∗).

converges to a unique fixed point [�w∗,�r∗] that satisfies equations (1.1) and

(1.2).

The uniqueness of the solution is established via the definition of the

cost function E(�x) = − 1
2k�w(�x)

T�w(�x) that is minimized for �x equal to the

reputation vector �r∗. Moreover each step given by the nonlinear iteration

resulting from formulas (1.1) and (1.2) corresponds to the steepest descent

direction

∇�rE(�r
t) =− 1

α t (�r
t+1−�rt),

of the cost function with step size α t := n
2�1T

m�wt ≥ n
2m . It is shown in [2] that

the corresponding steepest descent iteration

�rt+1 :=�rt −α t∇�rE(�r
t)

converges to the fixed point �r∗ of the iteration and that �r∗ is the unique

minimum of the cost function E(�x) for �x in the hypercube [a,b]m. This is

illustrated in Figure 1.2 when only two objects are considered, that is, in the

particular case when m = 2, and where the voting interval is [0,1].

Therefore the solution should not only be viewed as the fixed point of a

nonlinear iteration, but it can also be interpreted as the minimizer of −�wT�w
(and hence, as the maximizer of the 2-norm of �w). It therefore remains to

be shown that there is a unique minimizer �r∗ in the imposed constrained

set �r ∈ H := [a,b]n. This was again analyzed in [2], where it is shown

that the function E(�r) is convex in H , provided that the positive parameter
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k is smaller than the value 1
b . This indeed guarantees that the weighting

vector �w is strictly positive, from which it then also follows that the function

E(�r) is strictly convex in H . In Figure 1.3 we show (for a 2-dimensional

vector�r and the set H = [0,1]2), a plot of four possible configurations of

the function E(�r) depending on the value of k. In (a) we chose k < 1 which

implies that the energy function is convex, in (b), (c) and (d), we gradually

increase k which introduces saddle points and local minima and maxima,

and eventually makes the function concave.

FIGURE 1.3: The function E(�r) for increasing values of k. In (a), k < 1

and there is a unique minimum. In (b), (c) and (d), k is increased and saddle

points and local maxima and minima are observed.

1.4 Extensions
Here we briefly mention three different extensions that have been ana-

lyzed in [2].

Sparse votes
In reputation systems like Amazon, Tripadvisor and the Movielens
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8 New Trends in Analysis and Geometry

Database, the votes are clearly sparse since most raters do not give their

opinion about all objects. If we assume that the entry Xi j of the voting matrix

X is set to 0 when the entry Ai j of the adjacency matrix is 0, then A◦X = X ,

where the symbol “◦” is used to denote the elementwise product of two

matrices of the same dimensions (also called the Hadamard product). This

property turns out to be crucial for the derivation of the sparse voting scheme

explained in [2] and is based on a fixed point idea. The formulas (1.1) and

(1.2) are now replaced with the following expressions :

�r =
[X�w]
[A�w]

(1.3)

�w = G(�r) :=�1m− k�d, where �d =

⎡⎢⎣
1
n1
‖�x1−�a1 ◦�r‖2

2

...
1

nm
‖�xm−�am ◦�r‖2

2

⎤⎥⎦ ,(1.4)

where �a j is the j-th column of the adjacency matrix A, and n j is the j-
th element of the vector �n containing the numbers of votes for each item,

i.e., �n = AT�1n, whereas the scalar n denotes the total number of items. We

point out that
[ · ]
[ · ] is the componentwise division of two vectors of the same

dimension, which implies that every item is evaluated by at least one rater

with nonzero weight. It is easy to verify that when the matrix A is the matrix

of all ones, one retrieves the formulas for the dense voting matrix. Moreover,

the nonlinear iteration

�w0 :=�1m, �rt+1 :=
[X�wt ]

[A�wt ]
, �wt+1 := G(�rt+1), for t = 0,1,2, . . .

converges to a unique fixed point [�w∗,�r∗] that satisfies equations (1.3) and

(1.4). We refer again to [2] for the proofs of these assertions.

Time-varying votes
This extension makes it possible to also consider dynamical votes where

the rating matrix changes over time. Clearly, votes and web users are con-

stantly evolving on the Web, therefore it appears necessary to develop also

dynamical reputation systems. In this scenario, we consider discrete se-

quences of votes and adjacency matrices such as

{Xs, s = 1,2,3, . . .} and {As, s = 1,2,3, . . .},
that evolve on a discrete time axis, and we again assume that As ◦Xs = Xs

for every s. The iteration then becomes

�w0 :=�1m, �rt+1 :=
[Xs+1�wt ]

[As+1�wt ]
, �wt+1 := Gs+1(�rt+1), for t = 0,1,2, . . . ,
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where

Gs+1(�rt+1) :=�1m− k

⎡⎢⎢⎣
1

ns+1
1

‖�xs+1
1 −�as+1

1 ◦�rt+1‖2
2

...
1

ns+1
m
‖�xs+1

m −�as+1
m ◦�rt+1‖2

2

⎤⎥⎥⎦ .
The convergence issue is clearly more delicate here but in the case of pe-

riodic votes it is e.g. shown in [2] that under mild conditions, the iteration

converges also to a “fixed” periodic limit cycle.

Other discriminant functions
The scalar function

g(d) = 1− kd

links the belief-divergence �d to the weights �w by an affine function. A sim-

ilar idea was already present in [6], [9] and [5], but using different scalar

functions, namely

g(d) =
1

d
, g(d) =

1√
d
, and g(d) = e−kd .

The motivation for using these more complex functions is that the corre-

sponding minimization problem has a statistical interpretation, but the use

of these functions also makes the problem of characterizing the fixed points

harder. We refer to [2] for a further discussion on this issue.

1.5 A worked example
We illustrate the sparse extension of the method described in Section

1.3 with an experiment involving a data set (supplied by the GroupLens

Research Project) of 100,000 ratings given by 943 users on 1682 movies.

The votes ranged from 1 to 5 and the movies were selected such that each

rater voted on at least 20 of the 1682 movies. This corresponds to a very

sparse voting matrix but since every voter has a sufficient overlap with other

raters, the computation of the divergence between raters remains sufficiently

relevant. In order to test the robustness of our reputation system, we added

237 spammers giving always a vote of 1 except for their preferred movie,

which they rated with a vote of 5.

Let�r∗ and �̃r∗ be respectively the reputation vector before and after the

addition of these spammers. We expect that such behavior will be penalized

by decreasing the spammer’s weights. Figure 1.4 illustrates the effect of
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adding spammers for the two different methods we want to compare: firstly

for our method using weighted averages, where the total perturbation can

be measured by the distance ‖�r∗ −�̃r∗‖1 = 267, and secondly by taking the

unweighted average, where it is clearly seen that all reputations tend to be

diminished. The distance is then given by ‖�r∗−�̃r∗‖1 = 638 and, as expected,

this is greater than in the previous case, since spammers receive as much

weight as the other raters.

FIGURE 1.4: X-Axis: the sorted movies according to their reputations be-

fore the addition of spammers. Y-Axis: their reputations according to our

algorithm (Top) and to the average (Bottom).

Let us now look at the evolution of the weights during the iterations. The

distribution of weights is shown in Figure 1.5 after one step, two steps and

after convergence. Clearly the spammers receive eventually a much smaller

weight than the original voters, and the method converges in very few steps.

This shows that our method could also be used to characterize outliers.

Spammers could be detected by setting a threshold on the rater’s weights wi.

In our example it follows from the last plot in Figure 1.5 that most raters with

a weight below 0.6 are spammers and that most of those with a weight larger
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A voting system with a fixed point 11

than 0.6 are not. Dismissing completely the raters with a low converged

weight can thus be viewed as a method to eliminate spammers. However,

we prefer to take them into account, though with a reduced weight.

FIGURE 1.5: X-Axis: the weights of the raters. Y-Axis: the density af-

ter one iteration (Top), after two iterations (Left), and after convergence

(Right). In dark grey: the spammers. In white: the original raters. In light

grey: overlap of both raters.

1.6 Concluding remarks
Several other examples can be found in [2] and [3]. It is shown there that

the voting system in competitions like the Eurosong contest suffers from so-

called cultural voting (see [4]) and that this deficiency can be corrected by

employing our filtering techniques. We point out that our technique could

also be applied to websites such as Booking.com, Amazon.com, Tripadvi-

sor and so on, where rankings are being offered based on anonymous votes.

Bringing order to votes on the Web is certainly a promising topic that re-

quires further investigations. Refining votes and hence reputations is one

way to achieve that aim.

In conclusion, the main issues in reputation systems are, in our view, the

relevance of the measure, the robustness against different sort of attackers,

the application of the method to any sorts of data and the easiness for users

to understand the measure.

It is surely tricky to determine how relevant a measure is in the context of

voting, In our case we accept the idea of belief-divergence as a basis for cal-
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culating the rater’s weight, even if it implies the disqualification of marginal

users. Nevertheless the parameter d allows us to quantify the degree of dis-

crimination. Moreover the exponent in equation (1.2) can be chosen to be

higher than 2, but then the uniqueness of the fixed point is no longer guaran-

teed. Several fixed points, however, could be interpreted as different opinion

groups. In that way a marginal group would maintain its reputation if the

number of its members is large enough. It makes sense to allow several

opinions for a same movie, but providing one intrinsic value for each item

should be more relevant in most contexts (such as the reputation of sellers

and buyers on E-bay).

A durable reputation system must be robust. Smart cheaters who under-

stand the system well enough to take advantage of it are certainly the most

effective spammers. The way to proceed according to our approach is sim-

ple: they need to establish their reliability by correctly evaluating a group

of items and then with that trust, they can rate some target items. In order

to significantly change the reputation of these target items, they must have

a number of coordinated evaluations that is larger than the one of honest

raters. Such cheaters can thus be easily disqualified by looking at their coor-

dinated ratings of one or several items. Unfortunately, this sort of spammer

requires an extra process, similar to the procedure used by Google to detect

spam farms that create thousands of links to boost their page ranks

The constantly increasing size of web data sets requires algorithms that

are not too time consuming. Typically, a linear complexity in the number

of votes is ideal. This is especially true for dynamical reputation systems,

where the frequency of updates is high. In addition to this efficiency re-

quirement, the method must be applicable to any ”sparse” data. In general,

the network resulting from votes between raters and objects is not complete,

i.e., each object is not evaluated by all raters. These two points - complexity

and sparse data - are a must if one wants a widespread use of a reputation

system.

It is also desirable that reputation systems be able to cope with time-

dependent data. More recent opinions may be considered more valuable than

older ones, especially in the case of timely items such as news, arts, fashion,

etc. The approach we described above can be easily extended to incorporate

dynamical systems with time-dependent votes (see [2]) but the convergence

to a fixed point is then replaced by the tracking of a time-varying trend.

Last but not least, the method must be understandable by those to whom

it is directed, namely, by the users. Indeed, users cannot be confident in a

voting if the measure of reputation looks like a black box. Although our

method is more complicated that a simple E-bay-like system in which all

ratings have the same weight, it remains relatively simple. In addition, users

like the voting system to be transparent. For example, a record of the voting
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history and comments from the raters helps users to develop their own opin-

ions.

Note that all figures in this chapter are taken from Chapter 7 of the
first author’s Ph.D. thesis, Cristobald de Kerchove [3].

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography

[1] CNN article, Canadian skaters get gold; judge suspended, https://
www.cnn.com/2002/US/02/15/oly.skate.row/

[2] C. de Kerchove, P. Van Dooren, Iterative Filtering for a Dynamical Rep-
utation System, Siam J. Matrix Anal. Appl. (2008).

[3] C. de Kerchove, Ranking Large Networks: Leadership, Optimization,
and Distrust Ph.D. thesis, Universtié catholique de Louvain, Louvain-
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This Chapter is devoted to the analysis of parabolic partial differential equa-

tions and to the development of methods that provide a priori estimates

for solutions with singular initial data. These estimates are obtained by un-

derstanding the time decay of the norms of the solutions. First, regularity

results are derived for the Fokker-Planck equation by estimating the decay

of Lebesgue norms. These estimates depend on integral bounds for the ad-

vection and diffusion. Then, we apply similar methods to the heat equa-

tion. Finally, we conclude by extending our techniques to the porous media

equation. The sharpness of our results is confirmed by examining known

solutions of these equations. Our main contribution is the use of functional

inequalities to establish the decay of norms by means of nonlinear differ-

ential inequalities. These are then combined with ODE methods to deduce

estimates for the norms of the solutions and their derivatives.

2.1 Introduction
Parabolic partial differential equations are often used to describe the dif-

fusion of mass, momentum or heat through a material. A classical parabolic

17
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18 New Trends in Analysis and Geometry

PDE is the heat equation:

ut(x, t) = Δu(x, t), (2.1)

where u : Rd × [0,T ]→ R. It is well known that the solution to (2.1) with

singular initial data u(x,0) = δx0
is the fundamental solution

Φ(x, t) =
1

(4πt)d/2
e−

|x|2
4t .

Although when t → 0, Φ becomes singular, for t > 0, Φ is smooth in x and

in any Lp space. More precisely, the L1-norm of this solution is conserved

and the Lp-norms decay in time as follows

‖Φ‖Lp(Rd) =Cpt−
1

2p d(p−1)

for some constant Cp > 0. The preceding identity can be checked by direct

computation. Here, we will prove similar bounds for solutions of parabolic

equations without relying on explicit formulas for the solutions.

We begin by investigating the Fokker-Planck equation

ut(x, t) = div(b(x, t)u(x, t))+div(a(x, t)∇u(x, t)),

where a is a positive scalar diffusion coefficient and b is a smooth advection

vector field . This second-order equation, also known as the Kolmogorov

forward equation, models the behavior of a particle under the effect of drag

(corresponding to the advection term, b) and random forces (corresponding

to the diffusion coefficient, a) and has applications in physics, polymer flu-

ids, plasma, surface physics, and finance, to name just a few. Here, for initial

data u0 and a domain Ω, we obtain estimates of the form

‖Dku‖Lp(Ω) ≤C‖u0‖ f (p,d,k)
L1(Ω)

t−g(p,d,k),

where k ∈ N0, f ,g ≥ 0 are functions of dimension d, k and p, and C is a

non-negative constant depending on the space and the problem parameters.

Moreover, these estimates depend only on the L1-norm of the initial data

and do not depend on the particular solution.

Our main results on the Fokker-Planck equation are as follows. First, un-

der assumptions on the divergence of the advection, we obtain the following

theorem:

Theorem 2.1. Let u be a solution of (2.9) with u ∈ C∞(Rd × [0,∞)). Let

a > 0. Moreover, assume a ∈ L
1

1−q (Rd) for some 1 < q < 2. Then, for d ≥ 2,
the following holds:

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



A priori regularity of parabolic partial differential equations 19

1. If d = 2 and 1 < q < 2, or q < (d +2)/d and d ≥ 3, divb = 0, and
p > 1, then, for all t > 0,

‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)t
− d(p−1)

p(2−d(q−1)) . (2.2)

2. If divb ∈ Lr(Rd) and p,q are such that

2≤ d < 2r and 1 < q <
2r+dr−d

dr
, (2.3)

then, there exists T > 0 such that

‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)t
− d(p−1)

p(2−d(q−1)) (2.4)

for all t < T . For t > T , ‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)T
− d(p−1)

p(2−d(q−1)) .

Remark 2.1. The exponent on the right-hand side of (2.2) is negative if

d = 2 and 1 < q < 2, or q < (d +2)/d and d ≥ 3.

Under further integrability assumptions on the advection, we have the

following result.

Theorem 2.2. Let u solve (2.9) with u∈C∞(Rd× [0,∞)). Moreover, assume

that a−1 ∈ Lr(Rd) and that |b| ∈ L
2rq
r−1 (Rd) for some q > 1, r > 2. Then, for

any p > 1 and d ≥ 2, the following holds:

1. Let q be such that

q >
d(1− r)
d−2r

for 2 < d < 2r. (2.5)

If a is bounded by above and below, there exists T > 0 such that

‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)t
− qr(p−1)

p(r+q−1) (2.6)

for all t < T . For t > T , ‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)T
− qr(p−1)

p(r+q−1) .

2. Let q be such that

q >
d(1− r)

dr(s−1)+d−2r
for

2

s
< d <

2r
1+ r(s−1)

. (2.7)

Moreover, if a ∈ L
1

1−s (Rd), there also exists T > 0 such that

‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)t
− qr(p−1)

p(r+q−1) (2.8)

for 1< s< 2 and t <T . For t >T , ‖u‖Lp(Rd)≤C‖u0‖L1(Rd)T
− qr(p−1)

p(r+q−1) .
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The proofs of the prior theorems are presented in Section 2.2. There,

we also discuss an application to L∞ bounds for the solutions of (2.9) with

singular initial data. Then, in Section 2.3, we study a particular case, the

heat equation. There, we compare our methods with the entropy method [8]

and hypercontractivity [1, 5, 7, 11, 12].

Finally, in Section 2.4, we extend our results to the porous media equa-

tion,

ut(x, t) = Δ(u(x, t)m),

where m ≥ 1. This equation models diffusion processes and fluid flow

through porous media (such as a sponge or wood, for example) and has

applications to mathematical biology, lubrication and boundary-layer the-

ory.

Our main contribution is the use of functional inequalities and of a dif-

ferential argument to derive a method to prove estimates for the norms of

solutions of linear and nonlinear equations. This method systematizes tech-

niques to infer estimates for solutions of parabolic PDE.

Similar techniques were studied in [2, 14, 15] and used to establish

smoothing effects and the time decay of solutions of the heat equation and

of the porous media equation. A method comparable to ours was studied

in [9, 10]. There, the regularizing effect and the long- and short-time decay

were studied for the parabolic Cauchy-Dirichlet problem and the viscous

Hamilton-Jacobi equation with a superlinear Hamiltonian.

There are three key techniques used to prove our results. First, we ex-

pand the time derivative of the Lp-norms and use integration by parts to

establish the decay of these norms. Then, we combine Gagliardo-Nirenberg

and Sobolev inequalities with the conservation of L1-norms to obtain a non-

linear dissipation estimate. Finally, we apply a nonlinear Grönwall-type es-

timate to get decay in time.

2.2 Fokker-Planck equations
Consider the Fokker-Planck equation with initial data in L1:{

ut(x, t) = div(b(x)u(x, t))+div(a(x)∇u(x, t)) in Rd× (0,∞)

u(x,0) = u0(x) in Rd ,
(2.9)

where a is a positive scalar diffusion coefficient and b is a smooth advection

vector field. In this section, we derive integrability conditions on a and b that

imply decay estimates for the Lebesgue norms. To simplify the discussion,
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we assume that a and b are time-independent. We are interested in two sce-

narios. In the first one, we assume integrability on the divergence of b. In the

second such scenario, we assume integrability on b. When b = 0 and a = 1,

(2.9) becomes the heat equation for which we deduce further regularity in

the following section.

2.2.1 Integrability conditions on the divergence of the advection

Here, we prove Theorem 2.1 and obtain the two estimates for the solu-

tions of (2.9) depending on the properties of divb.

Proof of Theorem 2.1. First, observe that

d
dt

�
Rd

up dx = p
�
Rd

up−1div(bu)dx+ p
�
Rd

up−1div(a∇u)dx. (2.10)

The reverse Hölder inequality, for functions f and g, states that

‖ f g‖L1(Rd) ≥ ‖ f‖
L

1
q (Rd)

‖g‖
L

1
1−q (Rd)

,

whenever q > 1. Then, since a ∈ L
1

1−q (Rd), we have

�
Rd

up−1div(a∇u)dx=−C
�
Rd

aup−2|∇u|2 dx≤−C
(�

Rd
(up−2|∇u|2) 1

q dx
)q

.

Fix γ = p/2. Then, by the Gagliardo-Nirenberg-Sobolev inequality for q <
2, it follows that(�

Rd
(up−2|∇u|2) 1

q dx
)q

=

(�
Rd
|∇(uγ)| 2

q dx
)q

≥C
(�

Rd
uγq∗ dx

) 2
q∗
,

(2.11)

where q∗ is the Sobolev conjugate exponent to 2
q , given by q∗ = 2d

dq−2 . Using

the interpolation inequality, L1-norm conservation, and 0 < λ < 1 with

1

p
= 1−λ +

λ
γq∗

,

we have that(�
Rd

uγq∗ dx
) λ

q∗
= ‖u‖γλ

Lγq∗ (Rd)
= ‖u‖γλ

Lγq∗ (Rd)
≥ ‖u‖γ

Lp(Rd)
‖u0‖γ(λ−1)

L1(Rd)
,
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where λ = d(p−1)
2+d(p−q) . Combining the previous estimates it is clear that

�
Rd

up−1div(a∇u)dx≤−C
(�

Rd
up dx

)β
‖u0‖

2γ(λ−1)
λ

L1(Rd)
,

where β = 1
λ = 2+d(p−q)

d(p−1) . For the other term in (2.10), it follows that

�
Rd

up−1div(bu)dx =−
�
Rd

up−1∇u ·bdx

=−C
�
Rd

∇(up) ·bdx =C
�
Rd

updivbdx.

Therefore, if divb = 0, with z(t) =
�
Rd up dx, one has the inequality

ż≤−C‖u0‖
2γ(λ−1)

λ
L1(Rd)

zβ .

Thus, by Lemma 2.1,

z(t)≤C‖u0‖
2γ(λ−1)
λ (1−β )

L1(Rd)
t

1
1−β =C‖u0‖p

L1(Rd)
t−

d(p−1)
2−d(q−1) ,

which yields the estimate in (2.2).

2. Now, assume that divb ∈ Lr(Rd). Hence, Hölder’s inequality leads to

�
Rd

updivbdx≤
(�

Rd
upr′ dx

) 1
r′
(�

Rd
(divb)r dx

) 1
r

,

where 1/r′+1/r = 1. From (2.11), we have

�
Rd

up−1div(a∇u)dx≤−C
(�

Rd
uγq∗ dx

) 2
q∗
,

where γ = p/2 and q∗ = 2d/(dq−2). Then,

d
dt

�
Rd

up dx≤C
(�

Rd
upr′ dx

) 1
r′ −C

(�
Rd

uγq∗ dx
) 2

q∗
. (2.12)

Note that it follows by interpolation that(�
Rd

upr′ dx
) 1

r′ ≤
(�

Rd
uγq∗ dx

) pθ
γq∗ ‖u0‖p(1−θ)

L1(Rd)
,

where θ is such that 1
pr′ =

θ
γq∗ +1−θ . Observe that the previous inequality

only holds if

pr′ < γq∗;
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that is, if
pr

r−1
<

pd
dq−2

,

which is true if (2.3) holds. Therefore, with y(t)=
�
Rd uγq∗ dx, the right-hand

side of (2.12) is bounded by

C1‖u0‖p(1−θ)
L1(Rd)

y
pθ

γq∗ −C2y
2

q∗ =C1‖u0‖p(1−θ)
L1(Rd)

y
2θ
q∗ −C2y

2
q∗ .

Then, since θ < 1, with z(t) =
�
Rd up dx, using Lemma 2.2 and interpolation

again, one concludes that there exists T > 0 such that, for all t < T ,

ż≤−Cy
2

q∗ =−C
(�

Rd
uγq∗ dx

) 2
q∗ ≤ −C

(�
Rd

up dx
) 1

λ ‖u0‖
2γ(λ−1)

λ
L1(Rd)

=−C‖u0‖
2γ(λ−1)

λ
L1(Rd)

z
1
λ ,

where λ = d(p−1)
2+d p−dq . Then

z(t)≤C‖u0‖
2γ(λ−1)

λ (1−1/λ )
L1(Rd)

t
1

1−1/λ =C‖u0‖p
L1(Rd)

t
d(p−1)

d(q−1)−2 ,

and thus (2.4) follows, for all t < T . For t > T ,

‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)T
− d(p−1)

p(2−d(q−1)) .

2.2.2 Integrability conditions on the advection

Recall now Theorem 2.2, where the integrability of the advection was

considered.

Proof of Theorem 2.2. We have

d
dt

�
Rd

up dx =C
�
Rd

up−1div(bu)dx+C
�
Rd

up−1div(a∇u)dx

=−C
�
Rd

up−1∇u ·bdx−C
�
Rd

aup−2|∇u|2 dx

=−C
�
Rd

a
1
2 u

p
2−1∇u ·bu

p
2 a−

1
2 dx−C

�
Rd

aup−2|∇u|2 dx.
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Then, reorganizing the previous inequality and using Cauchy’s inequality

with ε , it is clear that

d
dt

�
Rd

up dx+C
�
Rd

aup−2|∇u|2 dx =−C
�
Rd

a
1
2 u

p
2−1∇u ·bu

p
2 a−

1
2 dx

≤
∣∣∣∣C�

Rd
a

1
2 u

p
2−1∇u ·bu

p
2 a−

1
2 dx

∣∣∣∣ (2.13)

≤ εC
�
Rd
|a|up−2|∇u|2 dx+Cε

�
Rd
|b|2up|a|−1 dx.

Hence, for ε small, (2.13) can be rewritten as

d
dt

�
Rd

up dx+C
�
Rd

aup−2|∇u|2 dx≤Cε

�
Rd
|b|2up|a|−1 dx. (2.14)

Now, applying Hölder’s inequality twice to the last term in the previous

inequality it follows:

�
Rd
|b|2up|a|−1 dx≤

(�
Rd
|b|2r′upr′

) 1
r′
(�

Rd
|a|−r

) 1
r

≤C
(�

Rd
upr′q′

) 1
r′q′
(�

Rd
|b|2r′q

) 1
r′q ≤C

(�
Rd

upr′q′
) 1

r′q′
,

where 1
r +

1
r′ = 1 = 1

q +
1
q′ and r′q = rq

r−1 . Accordingly, defining γ = pr′q′ =
pqr

(q−1)(r−1) , one has from (2.14),

d
dt

�
Rd

up dx≤C1

(�
Rd

uγ dx
) p

γ
−C2

�
Rd

a|∇(u
p
2 )|2 dx,

where C1,C2 > 0 are constants depending on η and ε . Now the two cases

are considered separately.

1. If a is bounded above and below, then, by virtue of Sobolev’s inequal-

ity, one has �
Rd

a|∇(u
p
2 )|2 dx≥C

(�
Rd

u
2∗ p

2 dx
) 2

2∗
.

Then, using interpolation,

d
dt

�
Rd

up dx≤C1

(�
Rd

uγ dx
) p

γ
−C2

(�
Rd

u
2∗ p

2 dx
) 2

2∗

≤C1

(�
Rd

u
2∗ p

2 dx
) 2θ

2∗ ‖u0‖p(1−θ)
L1(Rd)

−C2

(�
Rd

u
2∗ p

2 dx
) 2

2∗
,
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where θ is such that 1
γ = 2θ

2∗p +1−θ . The previous inequality only holds if

γ ≤ 2∗p/2. This is true for q such that (2.5) holds. Hence, since θ < 1, using

Lemma 2.2 and interpolation again, it is concluded that there exists T > 0

such that, for all t < T ,

d
dt

�
Rd

up dx≤−C
(�

Rd
up dx

) 1
λ ‖u0‖

p(λ−1)
λ

L1(Rd)

for some λ > 0 such that 1
p = λ

γ +1−λ ⇔ λ = γ(p−1)
p(γ−1) , which yields

λ =
qr(p−1)

qr(p−1)+q+ r−1
.

Hence, setting z(t) =
�
Rd up dx, there follows an inequality of the type ż ≤

−C‖u0‖
p(λ−1)

λ
L1(Rd)

z
1
λ . Thus,

z(t)≤C‖u0‖p
L1(Rd)

t
1

1−1/λ =C‖u0‖p
L1(Rd)

t
qr(1−p)
r+q−1 ,

which combined with (2.5), yields (2.6), for t < T . For t > T , ‖u‖Lp(Rd) ≤
C‖u0‖L1(Rd)T

− qr(p−1)
p(r+q−1) .

2. If a∈ L
1

1−s (Rd), by virtue of the reverse Hölder’s inequality, it follows

that

�
Rd

a|∇(u
p
2 )|2 dx≥

(�
Rd

a
1

1−s dx
)1−s(�

Rd
|∇(u

p
2 )| 2

s dx
)s

≥C
(�

Rd
|∇(u

p
2 )| 2

s dx
)s

.

Then, for s < 2, the Gagliardo-Nirenberg-Sobolev inequality yields(�
Rd
|∇(u

p
2 )| 2

s dx
)s

≥C
(�

Rd
u

mp
2 dx

) 2
m

with m = 2d
ds−2 . Furthermore, interpolation and L1-norm conservation yield

(�
Rd

uγ dx
) p

γ
≤
(�

Rd
u

mp
2 dx

) 2θ
m

‖u0‖p(1−θ)
L1(Rd)

, (2.15)

where θ is such that 1
γ = 2θ

mp + 1− θ . Note that (2.15) holds if γ < mp/2.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



26 New Trends in Analysis and Geometry

This is true for q such that (2.7) holds. Following the same steps as before,

since θ < 1, one concludes that there exists T > 0 such that, for all t < T ,

z(t)≤C‖u0‖p
L1(Rd)

t
1

1−1/λ =C‖u0‖p
L1(Rd)

t
qr(1−p)
r+q−1 ,

which combined with (2.7), yields (2.8), for 1 < s < 2 and t < T . For t > T ,

one has ‖u‖Lp(Rd) ≤C‖u0‖L1(Rd)T
− qr(p−1)

p(r+q−1) .

2.2.3 The adjoint method

As an application of our estimates we present bounds of the form

‖v(·,0)‖L∞(Ω) ≤C‖ f‖Lb([0,T ],Lq(Ω)) (2.16)

for solutions of{
vt +b ·∇v = div(a∇v)+ f in Ω× (0,T ]
v(x,T ) = vT (x) in Ω,

(2.17)

where Ω =Rd or Ω =Td and vT ∈W 1,∞(Ω). Such bounds can be proved by

means of the adjoint method. Estimates such as (2.16) arise in the theory of

mean-field games, for example. As in [3, 4, 6], the adjoint problem to (2.17)

is {
ut = div(ub)+div(a∇u) in Ω× (0,T ]
u(x,0) = δx0

in Ω.
(2.18)

The central idea of the adjoint method is to derive a representation formula

for solutions of (2.17) in terms of solutions of (2.18). Arguing as in [6], it

follows that

v(·,0) =
� T

0

�
Ω

f (x, t)u(x, t)dxdt +
�

Ω
vT (x)u(x,T )dx.

Thus

|v(·,0)| ≤
� T

0

�
Ω
| f (x, t)u(x, t)|dxdt +

�
Ω
|vT (x)u(x,T )|dx. (2.19)

Therefore, to estimate the left-hand side, it is enough to bound each of the

two terms on the right-hand side of the preceding inequality. For the second

term on the right-hand side, we have that, by Hölder’s inequality,

�
Ω
|vT (x)u(x,T )|dx≤ ‖vT‖L∞(Ω)‖u(x,T )‖L1(Ω) = ‖vT‖L∞(Ω) ≤C,
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since vT ∈W 1,∞(Ω). For the first term in (2.19), we apply Hölder’s inequal-

ity twice to conclude that

� T

0

�
Ω
| f u|dxdt ≤

� T

0

‖ f‖Lq(Ω)‖u‖Lp(Ω) dt (2.20)

≤ ‖ f‖Lb([0,T ],Lq(Ω))‖u‖Lc([0,T ],Lp(Ω)),

where 1
b + 1

c = 1 = 1
p + 1

q . It is thus clear that bounds for u can be con-

verted into bounds for v. Therefore, the estimates from Theorems 2.1 and

2.2, which still hold for the Fokker-Planck equation with singular initial

data, yield estimates for ‖v(·,0)‖L∞(Ω). We have the following result.

Theorem 2.3. Let v,u solve (2.17) and (2.18), respectively, in Rd. Let 1
b +

1
c = 1 = 1

p +
1
q . Then,

1. Under the assumptions of Theorem 2.1, if

c >
p(2−d(q−1))

d(p−1)
, (2.21)

then ‖v(·,0)‖L∞(Rd) ≤C‖ f‖Lb([0,T ],Lq(Rd)).

2. Under the assumptions of Theorem 2.2, if

c >
p(r+q−1)

qr(p−1)
,

then ‖v(·,0)‖L∞(Rd) ≤C‖ f‖Lb([0,T ],Lq(Rd)).

Proof. 1. By (2.20), one concludes

‖v(·,0)‖L∞(Rd) ≤ ‖ f‖Lb([0,T ],Lq(Rd))‖u‖Lc([0,T ],Lp(Rd)).

Then, by Theorem 2.1,

‖u‖c
Lc([0,T ],Lp(Rd))

=

� T

0

‖u‖c
Lp(Rd)

dt ≤C
� T

0

t−
cd(p−1)

p(2−d(q−1)) dt,

which is finite if and only if (2.21) holds. Hence, the estimate follows.

2. The proof is analogous, using Theorem 2.2.
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2.3 The heat equation
Here the methods from the previous Section are applied to the homoge-

neous heat equation, which corresponds to (2.9) with b = 0 and a = 1:{
ut(x, t) = Δu(x, t) in Ω× (0,∞)

u(x,0) = u0(x) in Ω.
(2.22)

We consider the cases where Ω = Rd and Ω = Td .

2.3.1 Main estimate

We now give an estimate for the Lp-norm of a derivative of any order of

the solution of the heat equation.

Theorem 2.4. Let u solve (2.22) with u∈C∞(Ω× [0,∞)). Then, there exists
T > 0 such that, for any k ∈ N0, p > 1, the following estimate holds

‖Dku‖Lp(Ω) ≤C‖u0‖L1(Ω)t
− d p+kp−d

2p (2.23)

for all t > 0 with Ω = Rd and for t ∈ [0,T ) with Ω = Td. For t > T , the
norm is bounded.

Proof. Fix γ = p/2. Then,

d
dt

�
Ω
|Dku|p dx =C

�
Ω
|Dku|p−2DkuDkΔudx =−C

�
Ω
|∇(|Dku|γ)|2 dx.

For Ω = Rd , on account of the Sobolev and Gagliardo-Nirenberg inequali-

ties, it is clear that

C
(�

Rd
|∇(|Dku|γ)|2 dx

) λ
2

≥ ‖Dku‖γλ
L2∗γ (Rd)

≥ ‖Dku‖γ
Lp(Rd)

‖u0‖γ(λ−1)

L1(Rd)
,

where λ = d(p−1)+kp
2+d(p−1)+kp satisfies

1

p
= 1−λ +

k
d
+λ (

1

2∗γ
− k

d
).

Then, with z(t) =
�
Rd |Dku|p dx, it follows the inequality

ż≤−C‖u0‖
2γ(λ−1)

λ
L1(Rd)

z
1
λ .
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Thus, by Lemma 2.1, z(t)≤C‖u0‖p
L1(Rd)

t
1

1−1/λ ; (2.23) follows from

1

1/λ −1
=

1

2
(d(p−1)+ kp).

For Ω = Ttd , the Gagliardo-Nirenberg inequality for bounded domains

yields(�
Td
|Dku|2∗γ dx

) 1
2∗ ≤C

(�
Td
|Dku|2γ dx+

�
Td
|∇(|Dku|γ)|2 dx

) α
2

.

Next, observe that by virtue of the Gagliardo-Nirenberg inequality,(�
Td
|Dku|p dx

) 1
p

≤C
(�

Td
|Dku|2∗γ dx

) λ
2∗ ‖u0‖L1(Ttd),

where
1

p
− k

d
= 1−λ +λ

(
1

2∗γ
− k

d

)
.

The preceding identity yields

λ =
d(p−1)+ kp

2+d(p−1)+ kp
.

Setting z(t) =
�
Td |Dku|p dx, the following differential inequality follows:

ż≤C1z−C2‖u0‖γ λ−1
λ

L1(Td)
z

γ
λ p .

Hence, by Lemma 2.2, there exists T > 0 such that z satisfies

z(t)≤C‖u0‖p
L1(Td)

t
1

1−1/λ =C‖u0‖p
L1(Td)

t−
1
2 (d(p−1)+kp)

for t ∈ [0,T ). Thus, we get a similar estimate for Td . Also, by the same

lemma, the norm is bounded for t > T .

Remark 2.2. Comparing again with the fundamental solution, one has

�
Rd
|DkΦ|p dx≤Ct−

d p
2 − kp

2

�
Rd

e−C p|x|2
t dx =Ct−

d p+kp−d
2 ,

which is the same estimate as (2.23). Hence, our estimates are sharp.

In the following two Sections, this method is compared with two alter-

native approaches: the entropy and hypercontractivity methods.
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2.3.2 Entropy methods

We follow the discussion in [8] for the Fokker-Planck equation and

present the entropy method applied to the heat equation. We define the en-

tropy

H(t) =
�
Rd

φ(u)dx,

where u solves (2.22) and φ is a convex function. Integration by parts yields

Ḣ(t) =
d
dt

�
Rd

φ(u)dx =−
�
Rd

φ ′′(u)|∇u|2 dx≤ 0.

Furthermore,

Ḧ(t) =−
�
Rd

φ (3)(u)ut |∇u|2 +2φ ′′(u)∇u ·∇(ut)dx = I1 + I2,

where

I1 =−
�
Rd

φ (3)(u)ut |∇u|2 dx =
�
Rd

φ (4)(u)|∇u|4 +2φ (3)(u)Δu|∇u|2 dx

and

I2 =−2

�
Rd

φ ′′(u)∇u ·∇(ut)dx = 2

�
Rd

φ (3)(u)Δu|∇u|2 +φ ′′(u)(Δu)2 dx.

Hence,

Ḧ(t) =
�
Rd

φ (4)(u)|∇u|4 +4φ (3)(u)Δu|∇u|2 +2φ ′′(u)(Δu)2 dx.

We now set φ(u) = u2. Accordingly,

Ḧ(t) = 4

�
Rd
(Δu)2 dx.

Hence, for some constant, C > 0, the Gagliardo-Nirenberg inequality yields

Ḧ(t) = 4

�
Rd
(Δu)2 dx≥C

(�
Rd
|∇u|2 dx

)α
=C(−Ḣ(t))α ,

where α satisfies 1
2 = 2

d +
(

1
2 − 1

d

)
α +1−α . Hence,

z(t) =−Ḣ(t)
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satisfies the following differential inequality

ż≤−Czα .

Hence, as before, Ḣ satisfies

|Ḣ(t)| ≤Ct
1

1−α

and thus, for some C depending on α ,

�
Rd

u2 dx = H(t)≤Ct1+ 1
1−α =Ct−

d
2 ,

which is the same estimate as the one obtained in Theorem 2.4 with k = 0

and p = 2. We have thus shown that our technique yields results similar to

those obtained by means of entropy methods..

2.3.3 On logarithmic Sobolev inequalities and hypercontractiv-
ity

The gain of regularity in time can also be understood using the results in

[2, 7, 11] on logarithmic Sobolev inequalities and hypercontractivity. Con-

tractivity principles, which appear in quantum field theory, are often used to

describe operators such as contractions between Lebesgue spaces, the case

from Lp to Lq when p≤ q being of particular interest.

Next, we state a result from [5] that yields a generalization of the loga-

rithmic Sobolev inequality presented in [7]. First, we recall that the Fenchel-

Legendre transform of a convex function ϕ is the function ϕ∗ : Rd → R
given by

ϕ∗(μ) = sup
x∈Rd

{μ · x−ϕ(x)}.

Proposition 2.1 (Gentil-Gross). Let ϕ be a C1 strictly convex function on
Rd such that

lim
|x|→+∞

ϕ(x)
‖x‖ =+∞.

Then, for all λ > 0 and for any smooth function g on Rd, we have the fol-
lowing Euclidean logarithmic Sobolev inequality
�
Rd

eg log

(
eg�

Rd eg dx

)
dx≤−d log(λe)

�
Rd

eg dx+
�
Rd

ϕ∗(−λ∇g)eg dx.

(2.24)
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We begin by considering a time-dependent Lebesgue norm. More specif-

ically, we are interested in bounding

‖u‖Ls(t)(Rd) =

(�
Rd

us(t) dx
) 1

s(t)
,

where 1≤ s(t)< ∞.

Proposition 2.2. Let u be a solution to the d-dimensional heat equation
(2.22). Assume that 1 ≤ s(t) < ∞ is a nondecreasing function, with s(0) =
p≥ 1 and such that

s(t) = 1+(p−1)e
2t
λ2 , (2.25)

where λ = e−1. Then, the following estimate holds for all t : t > 0:

‖u‖Ls(t)(Rd) ≤ ‖u0‖Lp(Rd). (2.26)

Proof. Let s≡ s(t). As before, we have that

d
dt

�
Rd

us dx = s
�
Rd

us−1Δudx+ ṡ
�
Rd

us logudx. (2.27)

Thus,

s
�
Rd

us−1Δudx =−s(s−1)

�
Rd

us−2|∇u|2 dx (2.28)

=−4(s−1)

s

�
Rd
|∇(u

s
2 )|2 dx≤ 0.

Fix g = log(us) in (2.24) to get

�
Rd

us log

(
us�

Rd us dx

)
dx≤−d log(λe)

�
Rd

us dx+
�
Rd

ϕ∗(−λ∇ log(us))us dx.

Taking λ = e−1, we estimate the second term on the right-hand side of (2.27)

as

ṡ
�
Rd

us logudx≤ ṡ
s

[�
Rd

ϕ∗(−λ∇ log(us))us dx+ log

(�
Rd

us dx
)�

Rd
us dx

]
.

(2.29)

Fix ϕ(x) = |x|2
2 . Then, ϕ∗(μ) = |μ|2

2 . Thus

�
Rd

ϕ∗(−λ∇ log(us))us dx =
1

2
(λ s)2

�
Rd
|∇u|2us−2 dx = 2λ 2

�
Rd
|∇(u

s
2 )|2 dx.

(2.30)
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Combining (2.27), (2.28), (2.29) and (2.30), we obtain

d
dt

�
Rd

us dx≤ (g(t)− f (t))
�
Rd
|∇(u

s
2 )|2 dx+

ṡ
s

log

(�
Rd

us dx
)�

Rd
us dx,

where

f (t) =
4(s(t)−1)

s(t)
and g(t) =

2λ 2ṡ(t)
s(t)

.

Now, we select ṡ≥ 0 such that

g− f = 0;

that is,

ṡ =
2s−2

λ 2
, (2.31)

whose solution is (2.25). Hence, for s such that (2.31) holds, we have the

following differential inequality

d
dt

�
Rd

us dx≤ ṡ
s

log

(�
Rd

us dx
)�

Rd
us dx.

Fix z(t) =
�
Rd us dx and h(t) = ṡ

s =
d
dt log(s(t)). Thus, the previous inequal-

ity simplifies to

ż(t)≤ h(t) log(z(t))z(t).

The preceding inequality can be rewritten as

ż(t)
log(z(t))z(t)

≤ h(t)

and thus
d
dt
(log(log(z(t))))≤ d

dt
log(s(t)).

Finally, with s(0) = p, the integration of the above expression leads to

log(log(z(t)))≤ log(s(t))+ log(log(z(0)))− log p

and thus

z(t)≤ exp{exp{log(s(t))+log(log(z(0)))−log p}}= z(0)
s(t)

p = ‖u0‖s(t)
Lp(Rd)

.

Hence, (2.26) follows.
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Remark 2.3. 1. If s(0) = 1 in the previous proposition, (2.25) forces s(t) =
1 for all t ≥ 0, which makes (2.26) trivial.

2. For t such that s(t)> 2, interpolation yields, for some λ (t),

‖Φ‖L2(Rd) ≤ ‖Φ‖λ (t)
L1(Rd)

‖Φ‖1−λ (t)
Ls(t)(Rd)

≤C.

By the estimate in Theorem 2.4, we have ‖Φ‖L2(Rd) ≤ Ct−
d
4 . Hence, our

estimate still yields a sharper result.

3. For the fundamental solution Φ of the heat equation, the above hyper-

contractivity result yields ‖Φ‖Ls(t)(Rd) ≤C, where C is a fixed constant. On

the other hand, a direct estimate yields

‖Φ‖Ls(t)(Rd) = (4πt)−
d
2

(�
Rd

e−
s(t)|x|2

4t dx
) 1

s(t)
= s(t)−

d
2s(t) (4πt)−

d(s(t)−1)
2s(t) .

Since s(t)−
d

2s(t) → 1 and
s(t)−1

s(t) → 1 as t→∞, we have that the hypercontrac-

tivity estimate does not provide information about the decay of the Lebesgue

norms.

2.3.3.1 Estimate curves

We are now interested in finding a norm function, s(t), for a specific

estimate. We start by analyzing estimates for the fundamental solution. By

Remark 2.3, for a fixed a > 0, the curve s(t) such that ‖Φ‖Ls(t)(Rd) = a is

given implicitly by

s(t) = a−
2s(t)

d (4πt)1−s(t). (2.32)

Figure 2.1, generated by using a numerical solver in Mathematica, with d =
3, shows the curve s(t) for different time intervals and values of a.

0.00002 0.00004 0.00006 0.00008 0.000101.0

1.1

1.2

1.3

1.4

0.01 0.02 0.03 0.04 0.05

10

20

30

40

FIGURE 2.1: s(t) paths for 2≤ a≤ 15 up to t = 0.0001 and t = 0.05

Here, we are considering solutions of (2.32) such that s(t) ≥ 1. Such
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solutions only occur up to a certain time Ta, depending on a, which defines

a vertical asymptote of s(t). Using Mathematica again, we conclude that, for

any dimension, Ta is given explicitly by Ta = 1/(4πa
2
d ). Next, we deduce

a similar estimate for the curves s̃(t) regarding the result from Theorem 2.4

for general solutions of (2.22). Fixing s(t) = p and γ = p/2, we have that,

by Sobolev’s inequality and interpolation,

d
dt
‖u‖p

Lp(Rd)
=−4(p−1)

p

�
Rd
|D(uγ)|2 dx

≤−4(p−1)

pC2
d

(�
Rd

u2∗γ dx
) 2

2∗

≤ −4(p−1)

pC2
d
‖u‖

2γ(λ−1)
λ

L1(Rd)

(�
Rd

up dx
) 1

λ
,

where λ = d(p−1)
2+d(p−1) and Cd is the constant in the Sobolev’s inequality, which

only depends on the dimension. By [13], the sharp Sobolev’s constant is

given explicitly by

Cd = (πd(d−2))−
1
2

(
Γ(d)
Γ
( d

2

)) 1
d

.

Then, as in the proof of Theorem 2.4, we have that

‖u‖Lp(Rd) ≤
(

4(p−1)(1/λ −1)

pC2
d

) 1
p(1−1/λ ) ‖u‖L1(Rd)t

1
p(1−1/λ ) .

Now, for a fixed a, the curve s̃(t) such that ‖u‖Ls̃(t)(Rd)≤ a is given implicitly

by

2
− 3d(s̃(t)−1)

2s̃(t)

(
1

s̃(t)
(d−2)π1+ 1

d

(
2d−1Γ

(
d +1

2

))− 2
d
)− d(s̃(t)−1)

2s̃(t)

‖u‖L1(Rd)t
− d(s̃(t)−1)

2s̃(t) = a.

With d = 3 and ‖u‖L1(Rd) = 1, Figure 2.2 shows the curve s̃(t) for different

time intervals and values of a.

We now compare both norm curves. Fix a such that ‖Φ‖Ls(t)(Rd) = a.

Figure 2.3 illustrates ‖Φ‖Ls̃(t)(Rd), for different values of a.

Hence, for all t > 0, ‖Φ‖Ls̃(t) ≤ a and norm decay is still verified. Fur-

thermore, the nature of both norms near t = 0 is compared by studying the

limit of
s(t)−1
s̃(t)−1

as t → 0. Figure 2.4 suggests that lim
t→0

s(t)−1
s̃(t)−1

< ∞, also indicat-

ing that s(t) and s̃(t) might have similar behavior near t = 0.
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FIGURE 2.2: s̃(t) paths for 2≤ a≤ 15 up to t = 0.0001 and t = 0.05
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FIGURE 2.3: ‖Φ‖Ls̃(t)(Rd) for 2≤ a≤ 15 up to t = 0.0001 and t = 0.05

0.00002 0.00004 0.00006 0.00008 0.00010
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1.20

1.25

FIGURE 2.4:
s(t)−1
s̃(t)−1

2.4 The porous media equation
The porous media equation (PME) is the following PDE{

ut(x, t) = Δ(u(x, t)m) in Rd× (0,T )
u(x,0) = u0(x) in Rd ,

(2.33)
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for some m∈ [1,∞), u≥ 0. Note that m= 1 corresponds to the heat equation.

Here, we extend the ideas from the previous sections to obtain integrability

estimates for the solution of the PME. Next, we examine the Barenblatt

solutions to show that our bounds are sharp. We conclude this section by

comparing our method with the results in [15].

2.4.1 Estimate methods revisited

We begin by applying our method to (2.33).

Theorem 2.5. Let u solve (2.33) with u ∈C∞(Rd× [0,∞)). Then, for p≥ 1,
the following estimate holds:

‖u‖Lp(Rd) ≤C‖u0‖
d(m−1)+2p

p(d(m−1)+2)

L1(Rd)
t−

d(p−1)
p(d(m−1)+2) (2.34)

for all t > 0.

Proof. Start by noticing that

d
dt

�
Rd

up dx = p
�
Rd

up−1Δ(um)dx =−mp(p−1)

�
Rd

um+p−3|∇u|2 dx≤ 0.

(2.35)

Fix γ = (m+ p−1)/2. Then, (2.35) yields

d
dt

�
Rd

up dx =−C
�
Rd

u2γ−2|∇u|2 dx =−C
�
Rd
|∇(uγ)|2 dx. (2.36)

On account of the Sobolev inequality, it follows that(�
Rd

u2∗γ dx
) 1

2∗ ≤C
(�

Rd
|∇(uγ)|2 dx

) 1
2

. (2.37)

Using the interpolation inequality it is clear that(�
Rd

u2∗γ dx
) 2λ

2∗
= ‖u‖2γλ

L2∗γ (Rd)
= ‖u‖2γλ

L2∗γ (Rd)
(2.38)

≥ ‖u‖2γ
Lp(Rd)

‖u0‖2γ(λ−1)

L1(Rd)
,

where λ = d(p−1)(m+p−1)
p(2+d(m+p−2)) . Hence, (2.36), (2.37) and (2.38) lead to

d
dt

�
Rd

up dx≤−C‖u0‖
2γ(λ−1)

λ
L1(Rd)

(�
Rd

up dx
) 2γ

λ p
.
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Let z(t) =
�
Rd up dx. Then, the previous inequality can be written as ż ≤

−C‖u0‖
2γ(λ−1)

λ
L1(Rd)

zβ , where β = 2γ/(λ p)> 1. As before, we get the following

time estimate

z(t)≤C‖u0‖
2γ(λ−1)
λ (1−β )

L1(Rd)
t

1
1−β =C‖u0‖

d(m−1)+2p
p(d(m−1)+2)

L1(Rd)
t

d(1−p)
d(m−1)+2 .

Thus, (2.34) follows.

Next, we consider an estimate for a known solution to (2.33) and compare

it to the prior estimate.

2.4.2 Barenblatt solutions

The Barenblatt solution of the PME has the following explicit formula,

for an arbitrary constant C > 0:

U (x, t) = t−α(C− k|x|2t−2σ )
1

m−1
+ ,

where (s)+ = max{s,0} and

α =
d

d(m−1)+2
, σ =

α
d
, k =

α(m−1)

2md
.

Denote the ball centered at the origin with radius R = (Ct2σ/k)
1
2 by BR.

Then, with u = U , we have
�
Rd

U p dx =
�

BR

U p dx = t−pα
�

BR

(C− k|x|2t−2σ )
p

m−1 dx

= t−pα
�

BR

(C− k|y|2) p
m−1 tσd dy

=Cm,p,kt−pα+σd =Cm,p,ktα(1−p) =Cm,p,kt−
d(p−1)

d(m−1)+2 ,

where we considered the change of variables y = x/tσ , with dx = tσd dy.

Then, by comparison with (2.34), we conclude that our estimate is sharp.

2.4.3 Comparison with previous work

We now compare the results of our method with estimates in the lit-

erature. In [14], using phase-plane analysis, scaling techniques, and self-

similarity, it was shown that

‖u‖Lp(Rd) ≤C‖u0‖σ(p,q)
Lq(Rd)

t−α(p,q)
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with

α(p,q) =
d(p−q)

p(d(m−1)+2q)
, σ(p,q) =

q(d(m−1)+2p)
p(d(m−1)+2q)

.

In our case, we fix q = 1 to get

‖u‖Lp(Rd) ≤C‖u0‖σ(p,1)
L1(Rd)

t−α(p,1) =C‖u0‖
d(m−1)+2p

p(d(m−1)+2)

L1(Rd)
t−

d(p−1)
p(d(m−1)+2)

which yields the same estimate as in (2.34). Hence, our technique provides a

different method to establish the results in [14] without relying on symmetry

arguments.

2.4.4 Periodic solutions of the porous media equation

We now the deduce a similar estimate for the porous media equation on

Td .

Proposition 2.3. Let u solve (2.33) on the torus with u ∈C∞(Td × [0,∞)).
Then, there exists T > 0 such that the following holds

‖u‖Lp(Td) ≤C‖u0‖
d(m−1)+2p

p(d(m−1)+2)

L1(Td)
t−

d(p−1)
p(d(m−1)+2) (2.39)

for all t ∈ [0,T ). For t > T , ‖u‖Lp(Td) ≤C‖u0‖
d(m−1)+2p

p(d(m−1)+2)

L1(Td)
T−

d(p−1)
p(d(m−1)+2) .

Proof. Fix γ = (m + p− 1)/2, thus 2γ > p. From (2.36), we have that
d
dt

�
Rd up dx =−C

�
Rd |∇(uγ)|2 dx. Then,(�

Td
up dx

) γ
p

≤ ‖u0‖γ(1−λ )
L1(Td)

(�
Td

u2∗γ dx
) λ

2∗

≤ ‖u0‖γ(1−λ )
L1(Td)

(
‖u0‖L1(Td) +

�
Td
|D(uγ)|2 dx

) λ
2

≤ ‖u0‖γ(1−λ )
L1(Td)

(
‖u0‖L1(Td)−C

d
dt

�
Td

up dx
) λ

2

,

where λ = d(p−1)(m+p−1)
p(2+d(m+p−2)) . Then, fixing z(t) =

�
Td up dx, we get the fol-

lowing differential inequality ż ≤ C1‖u0‖L1(Td) −C2‖u0‖
2γ(λ−1)

λ
L1(Td)

zβ , where

β = 2γ
λ p . Hence, by Lemma 2.2, there exists T > 0 such that z satisfies

z(t)≤C‖u0‖
d(m−1)+2p

p(d(m−1)+2)

L1(Td)
t

d(1−p)
d(m−1)+2
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for t ∈ [0,T ), which yields (2.39). For t > T ,

‖u‖Lp(Td) ≤C‖u0‖
d(m−1)+2p

p(d(m−1)+2)

L1(Td)
T−

d(p−1)
p(d(m−1)+2) .

2.5 Differential inequalities
In this appendix, we present some of the estimates related to the differ-

ential inequalities used here.

Lemma 2.1. Let z : (0,∞)→ (0,∞) be a differentiable function satisfying
the differential inequality

z′(t)≤−Cz(t)β (2.40)

for some constant C > 0 and β > 1. Then, z satisfies

z(t)≤Cβ t
1

1−β

for all t > 0.

Proof. Let z ≡ z(t) and ż ≡ z′(t). Since β − 1 > 0, multiplying both sides

of (2.40) by −(β −1)z−β one gets −(β −1)z−β ż≥ (β −1)C. Next, we ob-

serve that the left-hand side in the preceding equation is d
dt (z(t)

1−β ). Hence,

integrating in time, we get

z(t)1−β ≥ z(0)1−β (1+ z(0)β−1(β −1)Ct).

Therefore,

z(t)≤ z(0)

(1+ z(0)β−1(β −1)Ct)
1

β−1

≤ 1

(z(0)1−β +(β −1)Ct)
1

β−1

≤ 1

((β −1)Ct)
1

β−1

.

Hence, since 0 < z(0)< ∞, z satisfies z(t)≤Cβ t
1

1−β for some constant Cβ >
0, depending on β .
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Lemma 2.2. Let z : (0,∞)→ (0,∞) be a differentiable function satisfying
the differential inequality

ż≤C1zθ −C2zβ (2.41)

for constants C1,C2 > 0, and 1≤ θ < β . Then, there exists T > 0 such that

z(t)≤Cβ t
1

1−β

for t ∈ (0,T ). Moreover, for t > T , z(t)≤Cβ T
1

1−β .

Proof. The function

z →C1zθ −C2zβ

has a single positive zero z. Fix z0 > z such that

C1(z)θ −C2(z)β <−C̃zβ

for z > z̃. Consider the solution z∗(t) of

ż∗ =−C̃zβ
∗

defined on (0,+∞) with lim
t→0

z∗(t) = +∞. Define T by

z∗(T ) = z̃.

Then, if z satisfies (2.41), we have z(t) ≤ z∗(t) for t ≤ T and z∗(t) ≤ z̃ for

t ≥ T . Thus, by computing z∗ and then z̃ as a function of T , we conclude

that z(t)≤Ct
1

1−β for all t ∈ (0,T ) and z(t)≤CT
1

1−β for t > T .
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This Chapter is devoted to a new kind of degenerate elliptic operator. It is

shown that it is possible to derive a regularity theory for this class. Despite

the strong degeneracy of the operator, the smoothness of the generalized

solutions can be proved.

3.1 Introduction
The regularity of generalized solutions of elliptic PDEs is a very impor-

tant issue that has received a lot of attention in the past decades (see [2], [4],

[5],[24], [27], [28] and [31]) and elliptic operators that are degenerate de-

serve a deeper study. This is mainly due to the fact that many operators that

appear in applications are not uniformly elliptic. Some of our previous con-

tributions are contained in [7] [8] [9] [10] [13] and [37], where Harnack in-
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equalities and Hölder continuity for solutions of degenerate equations have

been proved. There, one of the main tools is given by suitable sub represen-

tation formulas. In [21] it has been proved that these formulas are not always

available and in particular this is due to the given geometrical setting and to

the validity of Poincaré’s inequality.

In this note some regularity results are presented in those cases where

representation formulas are not available. Indeed such kind of formulas im-

ply embedding results that we use to control the effect of lower order terms

containing very strong degeneracy and singularity (see [10], and [11] [16],

[18], [10], and [11]). Unfortunately, our setting is not suitable for the validity

of a (1−1)-Poincaré inequality as the following example shows.

Let us consider the space R2 equipped with the Euclidean metric and the

measure μ generated by the density dμ(x) = |x2|tdx (t > 0). In this case, the

(1− p)-Poincaré inequality holds true if and only if p > t +1 (see [25]).

The lack of validity of the (1− 1)-Poincaré inequality implies that we

cannot have an explicit representation formula like that of the Euclidean

case for smooth functions in terms of a quantity related to the system of

vector fields.

We overcome this difficult task by using a special geometry introduced

in [21] by Franchi Perez and Wheeden. Then we may assume a different

instance of Poincaré inequality, namely we assume a (1− p)-Poincaré in-

equality. This allows us to use a different representation formula in terms of

chains of balls related to a given one and then we can prove the embedding

we need (see also [11], [12], [14] and [15]).

We now briefly describe the contents of the present note.

Let us consider a given system of m first order locally Lipschitz vector

fields in Rn, i.e

X = (X1,X2, . . . ,Xm), m < n

and the degenerate elliptic equation

−X∗j (ai jXiu+d ju)+
b0

λ
w|Xu|2 +biXiu+ cu = f −X∗i hi , (3.1)

where w is a 2-admissible weight (see Section 2 for definition) and {ai j(x)}
is a symmetric matrix of measurable functions in Ω satisfying the following

ellipticity condition

∃λ > 0 : λ−1w(x)|ξ |2≤ ai j(x)ξiξ j ≤ λw(x)|ξ |2 a.e. x∈Ω ∀ξ ∈Rm . (3.2)

The lower order terms are taken in suitable weighted Stummel classes

(see section 3.2 for definitions). The reason for the name is the optimality of

the Stummel classes in those cases in which subrepresentation formulas are

available.
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Our main goal here is the Harnack inequality for positive weak solu-

tions of the equation (3.1) and our results are achieved by adapting classical

iteration procedures to the present setting. First we consider solutions ot

equation (3.1) with b0 = 0, and closely following the proof by Serrin ([32])

we prove local boundedness and the Harnack inequality. Later we study the

case b0 �= 0 and, following the proof by Trudinger ([33]) we prove that the

local, bounded solutions satisfy the Harnack inequality. In both cases, as

a direct consequence, we will get continuity and Hölder continuity of the

weak solutions.

In the last section of this note we study the following quasilinear equa-

tion
m

∑
i=1

X∗i Ai(x,u,Xu)+B(x,u,Xu) = 0 (3.3)

where A and B are measurable functions. We consider two kinds of struc-

tural assumptions satisfied by A and B, involving p-admissible weights and

coefficients in Stummel classes. We refer to these assumptions as controlled

or natural growth respectively. As in the linear case, we obtain Harnack in-

equality for positive solutions of (3.3) and, consequently, the continuity and

Hölder continuity.

3.2 Sum operators and underlying geometry
Let X = (X1,X2, . . . ,Xm) be a system of locally Lipschitz vector fields in

Rn and d the associated Carnot-Carathéodory distance . We assume that d
is finite for each pair of points x,y ∈ Rn. Let us denote by B = Br = B(x,r)
the Carnot-Carathéodory ball centered at x ∈ Rn with radius r.

Throughout the paper the following assumptions are made:

(A1) The distance d is continuous with respect to the Euclidean distance in

Rn.

(A2) Let w be a finite Borel measure, absolutely continuous with respect to

the Lebesgue measure. We assume the following doubling condition,

: there exists a positive constant CD such that

w(B(x,2r))≤CDw(B(x,r)) ∀x ∈ Rn,r > 0,

where w(B(x,r)) =
�

B(x,r) wdy.

(A3) (1− p)-Poincaré inequality. If B0 is a given ball in Rn, p > 1, there
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exists a positive constant CP such that

1

w(B)

�
B
|u−uB|wdy≤CP r

(
1

w(B)

�
B
|Xu|pwdy

)1/p

for all B ⊂ B0 and all u ∈ C∞(B0). Here uB = 1
w(B)

�
B uwdy and r is

the radius of B.

The number Q = log2 CD will be called the homogeneous dimension of

Rn. In the sequel we will need the Sobolev and the Stummel-type spaces

with respect to the measure wdx.

Definition 3.1. Let Ω be a bounded domain in Rn and p > 1. We say that

u belongs to W 1,p(Ω,w) if u, Xiu ∈ Lp(Ω,w) for i = 1, . . .m. We denote

by W 1,p
0 (Ω,w) the closure of the smooth, compactly supported functions in

W 1,p(Ω,w) and furnished this space with the norm

‖u‖W 1,p(Ω,w) = ‖u‖Lp(Ω,w) +
m

∑
i=1

‖Xiu‖Lp(Ω,w) .

A function u is said to belong to W 1,p
loc (Ω,w) if u ∈ W 1,p(Ω′,w) for any

Ω′ � Ω.

In order to clarify the weights that are going to be considered in this

discussion, recall the concept of p-admissible weight given in [25] (see also

[26] and [20]).

Definition 3.2 (p-admissible weights). Let w be a nonnegative locally in-

tegrable function and 1 < p < ∞. w is a p-admissible weight if the following

conditions are satisfied:

1. There exists a positive constant CD such that

w(B(x,2r))≤CDw(B(x,r)) ∀x ∈ Rn,r > 0

2. If Ω is an open set in Rn and {ϕi} ⊂C∞(Ω) is a sequence such that

‖ϕi‖Lp(Ω,w) → 0 and ‖Xϕi− v‖Lp(Ω,w) → 0 for some v ∈ Lp(Ω,w),
then v≡ 0.

3. There exist two constant C > 0 and k > 1 such that(
1

w(B)

�
B
|ϕ|kpwdy

) 1
kp
≤Cr

(
1

w(B)

�
B
|Xϕ|pwdy

) 1
p

, (3.4)

for any ϕ ∈C∞
0 (B).
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4. There exists a constant C such that(
1

w(B)

�
B
|ϕ−ϕB|pwdy

) 1
p

≤Cr
(

1

w(B)

�
B
|Xϕ|pwdy

) 1
p

, (3.5)

for any ϕ ∈C∞(B).

Remark 3.1. Thanks to Theorem 13.1 in [25], all weights considered here

are p - admissible weights. Examples of admissible weights are Ap weights

and suitable powers of Jacobians of quasiconformal mappings (see Corol-

lary 15.34 in [26]).

Next, the geometry and related function spaces to be used in the sequel

are introduced.

Definition 3.3. Given B0 = B(x0,r) and x ∈ B0, let {Bi}= {Bi(x)}∞
i=1 be a

chain of balls of radius r(Bi), such that

(H1) Bi ⊂ B0 for all i≥ 0

(H2) r(Bi)∼ 2−ir(B0) for all i≥ 0

(H3) ρ(Bi,x)≤Cr(Bi) for all i≥ 0

(H4) for all i≥ 0, Bi∩Bi+1 contains a ball Si with r(Si)∼ r(Bi).

Remark 3.2. It follows from Remark 2 in [21] that a chain such as the one

described in Definition 3.3 actually exists in the present setting.

Next, the Stummel and Morrey classes adapted to the present setting are

introduced.

Definition 3.4. Let p > 1, B0 = B(x0,r) be a ball and {B j(x)}∞
j=1 be a chain

of balls as in Definition 3.3. We say that V ∈ L1
loc(R

n,w) belongs to the class

S̃p(Rn,w) if

η(V ;r)≡ sup
x0∈Rn

sup
y∈B0

�
B0

∞

∑
j=0

rp(B j(x))|V (x)|
w(B j(x))

χB j(x)(y)w(x)dx

is finite for all r > 0. V ∈ S̃p(Rn,w) is said to belong to Sp(Rn,w) if in

addition, it holds that limr→0 η(V ;r) = 0. One sets V ∈ S′p(Rn,w) if there

exists δ > 0 such that � δ

0

η(V ; t)
t

dt <+∞.

V is said to belong to the Morrey class Mσ (Rn,w) if there exist C and σ > 0

such that η(V ;r)≤Crσ .
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We denote the Stummel classes S̃2(Rn,w), S2(Rn,w), S′2(R
n,w) by

S̃(Rn,w), S(Rn,w) and S′(Rn,w), respectively.

The following embedding Theorem is crucial for the developement of

the main results in this Chapter. The unweighted case and some corollaries

have been proved in [11] (see also [3], [16], [18], [29] [34], [35], [36]).

A fundamental tool to prove the required embedding is the subrepresen-

tation formula proved by Franchi, Perez and Wheeden, in a more general

setting (see [21]).

Theorem 3.1. Given a ball B0 let {B j(x)}∞
j=1 be a chain of balls as in Defi-

nition 3.3, let p > 1 and let w be a p-admissible weight. Let u∈W 1,p(B0,w)
be such that for any ball B⊂ B0

1

w(B)

�
B
|u−uB|wdx≤Cs

(
1

w(B)

�
B
|Xu|pwdy

)1/p

where s is the radius of B. Then there exists C′ > 0 such that for a. e. x ∈ B0

|u(x)−uB0
| ≤C′

∞

∑
j=0

r(B j(x))

(
1

w(B j(x))

�
B j(x)

|Xu|pw(y)dy

)1/p

where C′ is a geometric constant which also depends on C.

Theorem 3.2. Let B0 be a ball in Rn, let p > 1, w be a p-admissible weight
and V a function in S̃p(Rn,w). Then, there exists a positive constant C such
that �

B0

|V (x)| |u(x)−uB0
|pwdx≤ C η(V ;r)

�
B0

|Xu(x)|pwdx

for any u ∈C∞(B0).

Proof. Let u be a smooth function in B0. Theorem 3.1 yields the following

representation formula for u

|u(x)−uB0
| ≤C

∞

∑
j=0

r(B j(x))

(
1

w(B j(x))

�
B j(x)

|Xu|pw(y)dy

)1/p

(3.6)
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for a.e. x ∈ B0. Now from (3.6) and Hölder’s inequality it follows that

�
B0

|V (x)||u(x)−uB0
|pw(x)dx≤

≤
�

B0

|V (x)||u(x)−uB0
|·⎧⎨⎩ ∞

∑
j=0

r(B j(x)) ·
[

1

w(B j(x))

�
B j(x)

|Xu(y)|pw(y)dy

]1/p
⎫⎬⎭

p−1

w(x)dx≤

≤
[�

B0

|V (x)||u(x)−uB0
|pw(x)dx

]1/p

·

·
[�

B0

∞

∑
j=0

|V (x)| r
p(B j(x))

w(B j(x))

�
B j(x)

|Xu(y)|pw(y)dyw(x)dx

] p−1
p

≤

≤
[�

B0

|V (x)||u(x)−uB0
|pw(x)dx

]1/p

·

·
[�

B0

∞

∑
j=0

|V (x)| r
p(B j(x))

w(B j(x))

�
B0

|Xu(y)|pχB j(x)(y)w(y)dyw(x)dx

] p−1
p

≤

≤
[�

B0

|V (x)||u(x)−uB0
|pw(x)dx

]1/p

·

·
[�

B0

|Xu(y)|p
�

B0

∞

∑
j=0

|V (x)| r
p(B j(x))

w(B j(x))
χB j(x)(y)w(x)dxw(y)dy

] p−1
p

≤

≤
[�

B0

|V (x)||u(x)−uB0
|pw(x)dx

]1/p

η
p−1

p (V ;r)·

·
[�

B0

|Xu(y)|pw(y)dy
] p−1

p

from which one readily obtains

�
B0

|V (x)||u(x)−uB0
|pw(x)dx≤Cη(V ;r)

�
B0

|Xu(x)|pw(x)dx .

From Theorem 3.2, one gets the following two Corollaries.
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Corollary 3.1. Let p > 1 and let V be a function in S̃p(Rn,w). Then there
exists a positive constant C such that�

Rn
|V (x)| |u(x)|pwdx≤ C η(V ;r)

�
Rn
|Xu(x)|pwdx,

for any smooth function u, compactly supported in Rn.

Corollary 3.2. Let Ω ⊂ Rn be a bounded domain and p > 1. Let V be a
function in Sp(Ω,w). Then, for any ε > 0 there exists a positive function
K(ε)∼ ε

[η−1(V ;ε)]Q+p , where η−1 is the inverse function of η(V ;r), such that
�

Ω
|V (x)| |u(x)|pwdx≤ ε

�
Ω
|Xu(x)|p dx+K(ε)

�
Ω
|u(x)|p dx (3.7)

for any smooth function u compactly supported in Ω.

Proof. Let ε > 0. Let r be a positive number to be determined later. Let

{αi}, i = 1,2, . . .N(r), be a finite partition of unity of Ω, such that suppαi ⊂
B(xi,r) with xi ∈Ω (for the construction of cut off functions αi see [22]).

It follows from Corollary 3.1 that

�
Ω
|V (x)| |u(x)|pwdx≤

�
Ω
|V (x)| |u(x)|p

N(r)

∑
i=1

α p
i (x)wdx =

=
N(r)

∑
i=1

�
Ω
|V (x)| |u(x)|pα p

i (x)wdx≤

≤C
N(r)

∑
i=1

η(V ;r)
(�

Ω
|Xu(x)|pα p

i (x)wdx+
�

Ω
|Xαi(x)|p|u(x)|pwdx

)
≤

≤Cη(V ;r)
(�

Ω
|Xu(x)|pwdx+

N(r)
rp |u(x)|pwdx

)
.

At this point, choose r such that Cη(V ;r) = ε; since N(r) ∼ r−Q (3.7) fol-

lows at once.

We recall a lemma (see Lemma 3.4 in [30]) useful in the sequel.

Lemma 3.1. Let μ(r) a continuous, positive, increasing function defined on
]0,+∞[ such that lim

r→0
μ(r) = 0. Let 0 < θ < 1. Then the series

+∞

∑
i=0

θ ilog μ−1
(
θ qi) ,

where q > 0, is convergent if and only if there exists ρ > 0 such that
� ρ

0

μ
1
q (t)
t

dt <+∞.
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Proof. We claim that � ρ

0

μ
1
q (t)
t

dt <+∞

if and only if the series
+∞

∑
i=0

(θai−ai+1)

is convergent, where

ai = θ i log μ−1
(
μ(ρ)θ qi) .

Indeed

� ρ

0

μ
1
q (t)
t

dt =
� μ(ρ)

0

s
1
q

μ−1(s)
1

μ ′(μ−1(s))
ds =

=
+∞

∑
i=0

� μ(ρ)θ qi

μ(ρ)θ q(i+1)

s
1
q

μ−1(s)
1

μ ′(μ−1(s))
ds <

<
+∞

∑
i=0

{
μ

1
q (ρ)θ i log μ−1

(
μ(ρ)θ qi)−

− 1

θ
μ

1
q (ρ)θ i+1 log μ−1

(
μ(ρ)θ q(i+1)

)}
=

μ
1
q (ρ)
θ

+∞

∑
i=0

(θai−ai+1).

Analogously, it is possible to show that

� ρ

0

μ
1
q (t)
t

dt >
+∞

∑
i=0

(θai−ai+1).

Thus, the claim is proved.

Since the series
+∞
∑

i=0
(θai− ai+1) and

+∞
∑

i=0
ai share the same character, the

conclusion is obtained.

The following Lemma will be used in the sequel (see Lemma 8.23 in

[23]).

Lemma 3.2. Let ϕ and σ be non-decreasing functions in (0,r0] such that

ϕ(τr)≤ γϕ(r)+σ(r) 0 < r ≤ r0

and 0 < γ,τ < 1, Then, for any μ ∈ (0,1), one has

ϕ(r)≤C
[(

r
r0

)α
ϕ(r0)+σ(rμ r1−μ

0 )

]
,

where C =C(γ,τ) and α = α(γ,τ,μ) are positive constants.
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3.3 Harnack inequality for linear and quasilinear degen-
erate elliptic equations

In this Section, Harnack inequality for degenerate elliptic equations will

be proved under two different kinds of growth conditions and it will be es-

tablished that generalized solutions are locally bounded and that the pos-

itive solutions satisfy a Harnack-type inequality. Then the case of natural

growth will be discussed, where - in general - solutions can fail to be lo-

cally bounded. Nevertheless, it is still possible to prove regularity for those

solutions that are a-priori locally bounded.

3.3.1 Degenerate equations under controlled growth

Let Ω be a bounded domain in Rn. Let X = (X1,X2, . . . ,Xm) be a system

of locally Lipschitz vector fields in Rn. For i = 1,2, . . . ,m, X∗i will stand for

the formal adjoint of the vector fields Xi. It will be assumed that (A3) is valid,

with p = 2. Let w be a 2-admissible weight and {ai j(x)} be a symmetric

matrix of measurable functions in Ω satisfying the ellipticity condition (3.2).

Consider the following elliptic linear equation in divergence form

−X∗j (ai jXiu+d ju)+biXiu+ cu = f −X∗i hi , (3.8)

where (
bi

w

)2

,
c
w
,

(
di

w

)2

,
f
w
,

(
hi

w

)2

∈ S′(Ω,w) . (3.9)

Next, the notion of weak solution of equation (3.8) is defined.

Definition 3.5. u ∈W 1,2
loc (Ω,w) is said to be a local, weak solution of (3.8)

if �
Ω
[(ai jXju+d ju)Xjφ +(biXiu+ cu)φ ]dx =

�
Ω
( f φ +hiXiφ)dx , (3.10)

∀φ ∈W 1,2
0 (Ω,w).

Notice that the integrals appearing in (3.10) are all finite because of

(3.9). The reasoning presented here follows along the lines of [32]. First,

we will prove the local boundedness of solutions of equation (3.8).

Theorem 3.3. Let u be a local, weak solution of the equation (3.8) in Ω.
We assume that the conditions (3.2) and (3.9) hold true. Then, there exists a
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positive constant C, independent of u, such that for any Br for which B4r ⊂
Ω, we have

‖u‖L∞(Br) ≤C

{(
1

w(B2r)

�
B2r

|u|2wdx
) 1

2

+

+η
(

f
w

;3r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;3r

))1/2
⎫⎬⎭ .

Proof. Let Br be a ball such that B4r ⊂Ω and

h = h(r) = η
(

f
w

;r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;r

))1/2

and l > h. For q≥ 1, we consider the function

G(u) = signu
{

F(v)F ′(v)−qh2q−1
}
, u ∈]−∞,+∞[,

where

v = |u|+h ,

and

F(v) =

{
vq if h≤ v≤ l
qlq−1v− (q−1)lq if l ≤ v.

Let φ(x) = ϕ2(x)G(u), where ϕ ∈ C∞
0 (Ω) is such that 0 ≤ ϕ ≤ 1 and

suppϕ ⊆ B2r. From the definition of solution and following the proof of

Theorem 3.1 in [37], one has

m

∑
i, j=1

�
Ω

ai jXiu[2ϕXjηG(u)+η2G′(u)Xju]dx+

+
m

∑
j=1

�
Ω

d ju[2ηXjηG(u)+η2G′(u)Xju]dx+

+
m

∑
i=1

�
Ω

biXiuη2G(u)dx+
�

Ω
cuη2G(u)dx =

=

�
Ω

f η2G(u)dx+
m

∑
i=1

�
Ω

hi[2ηXiηG(u)+η2G′(u)Xiu]dx.
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It follows from condition (3.2) that

λ−1

�
Ω
|Xu|2η2G′(u)wdx≤ 2λ

�
Ω
|Xu| |Xη |η |G(u)|wdx+

+
m

∑
j=1

�
Ω
|d j| |u|η2 |G′(u)| |Xju|dx+2

m

∑
j=1

�
Ω
|d j| |u|η |Xjη | |G(u)|dx+

+
m

∑
i=1

�
Ω
|bi| |Xiu|η2 |G(u)|dx+

�
Ω
|c| |u|η2 |G(u)|dx+

+

�
Ω
| f |η2 |G(u)|dx+2

m

∑
i=1

�
Ω
|hi|η |Xiη | |G(u)|dx+

+
m

∑
i=1

�
Ω
|hi|η2 |Xiu| |G′(u)|dx.

Since v = |u|+h and

G′ =

{
(2−1/q)(F ′)2 if |u|< l−h
(F ′)2 if |u|> l−h,

|G| ≤ F(F ′),

vF ′ ≤ qF,

it is clear that

�
Ω
|Xv|2ϕ2(F ′)2wdx≤ 2λ 2

�
Ω
|Xv| |Xϕ|ϕ F (F ′)wdx+

+

(
2− 1

q

)
qλ

m

∑
j=1

�
Ω
|d j|ϕ2 F (F ′) |Xjv|dx+

+2qλ
m

∑
j=1

�
Ω
|d j|ϕ |Xjϕ|F2 dx+λ

m

∑
i=1

�
Ω
|bi| |Xiv|ϕ2 F (F ′)dx+

+λq
�

Ω
|c|ϕ2 F2 dx+h−1λq

�
Ω
| f |ϕ2 F2 dx+

+2qλh−1
m

∑
i=1

�
Ω
|hi|ϕ |Xiϕ|F2 dx+

+

(
2− 1

q

)
qλh−1

m

∑
i=1

�
Ω
|hi|ϕ2 |Xiv|F (F ′)dx.

One gets from the inequality

ab≤ ε
2

a2 +
1

2ε
b2, ε > 0
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that�
Ω
|Xv|2ϕ2(F ′)2wdx≤C(λ )q2

{�
Ω
|Xϕ|2F2wdx+

�
Ω

V ϕ2F2 dx
}
,

(3.11)

where

V =
m

∑
i=1

|bi|2
w

+ |c|+
m

∑
j=1

|d j|2
w

+h−1| f |+h−2
m

∑
i=1

|hi|2
w

.

Note that V
w ∈ S′(Ω,w) and

η
(

V
w

;r
)
≤C

{ m

∑
i=1

η

((
bi

w

)2

;r

)
+η

( c
w

;r
)
+

+
m

∑
i=1

η

((
di

w

)2

;r

)
+h−1η

(
f
w

;r
)
+h−2

m

∑
i=1

η

((
hi

w

)2

;r

)}
,

then

η
(

V
w

;r
)
≤C

{ m

∑
i=1

η

((
bi

w

)2

;r

)
+η

( c
w

;r
)
+

m

∑
i=1

η

((
di

w

)2

;r

)
+2
}
,

Set U = F(v). From (5.1) it follows that
�

Ω
ϕ2|XU |2wdx≤Cq2

{�
Ω
|Xϕ|2U 2wdx+

�
Ω

V ϕ2U 2 dx
}
.

From Corollary 3.2, one has

�
Ω

ϕ2|XU |2wdx≤Cq2
{
(1+ ε)

�
Ω
|Xϕ|2U 2wdx+

+ ε
�

Ω
ϕ2|XU |2wdx+K(ε)

�
Ω

ϕ2U 2wdx
}

∀0 < ε < 1.

Choosing now ε = 1
2Cq2 it follows that

�
Ω

ϕ2|XU |2wdx≤

≤C
{

q2

�
Ω
|Xϕ|2U 2wdx+q2K

(
1

2Cq2

)�
Ω

ϕ2U 2wdx
}
. (3.12)

From (3.4), with p = 2, and (3.12),(�
B2r

|ϕU |2τ wdx
) 1

τ
≤
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≤Cr2w(B2r)
1
τ−1

{
q2

�
B2r

|Xϕ|2U 2wdx+q2K
(

1

2Cq2

)�
B2r

|ϕU |2wdx
}
,

with τ > 1.

Let r1 and r2 be such that r≤ r1 ≤ r2 ≤ 2r. Choose ϕ such that ϕ(x) = 1

in Br1
, 0≤ ϕ ≤ 1 in Br2

and |Xϕ| ≤ 2
r2−r1

. Then(�
Br1

U 2τ wdx

) 1
τ

≤Cr2w(B2r)
1
τ−1 1

(r2− r1)2
q2K

(
1

2Cq2

)�
Br2

U 2wdx.

Taking the 1
2q -th root and letting l →+∞, it follows readily that

(�
Br1

v2qτ wdx

) 1
2qτ

≤C
1

2q r
1
q w(B2r)

1
2 (

1
τ−1) 1

q

(
1

r2− r1

) 1
q

q
1
q ·

·
(

K
(

1

2Cq2

)) 1
2q
(�

Br2

v2qwdx

) 1
2q

.

For γ = 2q, one has

‖v‖Lτγ (Br1
,w) ≤C

1
γ r

2
γ w(B2r)

( 1
τ−1) 1

γ

(
1

r2− r1

) 2
γ
·

·

⎡⎢⎣ 1(
η−1

(
V
w ; 1

2C( γ
2 )

2

))Q+2

⎤⎥⎦
1
γ

‖v‖Lγ (Br2
,w).

Setting γi = 2τ i, for i = 1,2, . . . , and ri = r+ r
2i , the previous inequality

becomes

‖v‖Lγi+1 (Bri+1
,w) ≤C

1
γi r

2
γi w(B2r)

( 1
τ−1) 1

γi

(
2i+1

r

) 2
γi ·

·

⎡⎢⎢⎢⎣ 1(
η−1

(
V
w ; 1

2C(
γi
2 )2

))Q+2

⎤⎥⎥⎥⎦
1
γi

‖v‖Lγi (Bri ,w)
.

Iteration yields

‖v‖L∞(Br) ≤C
1

w(B2r)
1
2

+∞

∏
i=0

⎡⎢⎣ 1(
η−1

(
V
w ; 1

2Cτ2i

))Q+2

⎤⎥⎦
1
γi

‖v‖Lp(B2r ,w).
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We underline the fact that

+∞

∏
i=0

⎡⎢⎣ 1(
η−1

(
V
w ; 1

2Cτ2i

))Q+2

⎤⎥⎦
1
γi

<+∞

if and only if the series

+∞

∑
i=0

1

2τ i log η−1

(
V
w

;
1

2Cτ2i

)
is convergent. Thus, the desired conclusion follows from Lemma 3.1.

By using the same technique, a Harnack-type inequality can be proved.

Theorem 3.4. Let u be a weak nonnegative solution of equation (3.8) in a
ball B3r ⊂⊂ Ω. Assume (3.2) and (3.9). Then there exists C independent of
u, such that for any Br for which B4r ⊂Ω, it holds that

sup
Br

u≤C

⎧⎨⎩inf
Br

u+η
(

f
w

;3r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;3r

))1/2
⎫⎬⎭ . (3.13)

Proof. The proof follows along the lines of that of the previous Theorem.

Setting v = u+h, where

h = η
(

f
w

;3r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;3r

))1/2

,

and taking ψ(x) = ϕ2(x)vβ (x), where ϕ is a nonnegative smooth function

such that suppϕ(x)⊆ B3r and β ∈ R, (3.10) yields

λ−1|β |
�

B3r

|Xv|2ϕ2vβ−1wdx≤ 2λ
�

B3r

|Xv| |Xϕ|ϕ vβ wdx+

+ |β |
m

∑
j=1

�
B3r

|d j| |Xjv|ϕ2vβ dx+2
m

∑
j=1

�
B3r

|d j|ϕ |Xjϕ|vβ+1 dx+

+
m

∑
i=1

�
B3r

|bi|η2 |Xiv|vβ dx+
�

B3r

|c|η2vβ+1 dx+
�

B3r

h−1| f |ϕ2vβ+1 dx+

+ |β |
m

∑
i=1

�
B3r

h−1|hi|ϕ2 |Xiv|vβ dx+2
m

∑
i=1

�
B3r

h−1|hi|ϕ |Xiϕ|vβ dx.
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It follows that

�
B3r

|Xv|2ϕ2vβ−1wdx≤

≤C(λ )

{
|β |+1

β 2

�
B3r

|Xϕ|2vβ+1wdx+
( |β |+1

β

)2�
B3r

V ϕ2vβ+1 dx

}
,

(3.14)

where

V =
m

∑
i=1

|bi|2
w

+ |c|+
m

∑
i=1

|di|2
w

+h−1| f |+h−2
m

∑
i=1

|hi|2
w

.

Setting

U (x) =

{
v(x)

β+1
2 if β �=−1

log v(x) if β =−1
,

by virtue of (5.24) one concludes that

�
B3r

|XU |2ϕ2wdx≤C(λ )
{
(|β |+1)3

β 2

�
B3r

|Xϕ|2U 2wdx+

+

( |β |+1

β

)2�
B3r

V ϕ2U 2 dx

}
if β �=−1, (3.15)

and that

�
B3r

|XU |2ϕ2wdx≤C(λ )
{�

B3r

|Xϕ|2wdx+

+

�
B3r

V ϕ2 dx
}

if β =−1. (3.16)

Consider first (5.25). From Corollary 3.2

�
B3r

|XU |2ϕ2wdx≤C
{�

B3r

|Xϕ|2wdx+
�

B3r

ϕ2wdx
}
. (3.17)

Chooseϕ such that ϕ(x)≡ 1 in Bρ , suppη ⊂ B2ρ ⊂ B3r, and |Xϕ| ≤ C
ρ ,

where Bρ is an arbitrary open ball contained in B2r. By (3.17) and on account

of the doubling property of w, it follows that(
1

w(Bρ)

�
Bρ

|XU |2wdx

) 1
2

≤C
1

ρ
.
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Thus, from (3.5)(
1

w(Bρ)

�
Bρ

|U −UBρ |2wdx

) 1
2

≤C

for every Bρ ⊆ B2r, with C depending on λ , Q, η
(V

w ;3r
)

and the constant in

(3.5). By the John-Nirenberg Lemma for BMO spaces (see [1]) there exist

two positive constants, p0 and C, depending on the same arguments as C,

such that(
1

w(B2r)

�
B2r

ep0U wdx
) 1

p0
(

1

w(B2r)

�
B2r

e−p0U wdx
) 1

p0 ≤C. (3.18)

For any real number p �= 0 and h > 0 now set

Φ(p,h) =
(�

Bh

vpwdx
) 1

p

.

By virtue of (3.18) and since U = log v, one deduces

w(B2r)
− 1

p0 Φ(p0,2r)≤Cw(B2r)
1

p0 Φ(−p0,2r). (3.19)

Now consider (3.15). Corollary 3.2 implies

�
B3r

|XU |2ϕ2wdx≤C

{
(|β |+1)3

(
1+

1

|β |
)2�

B3r

|Xϕ|2U 2wdx+

+

⎡⎣ 1

η−1
(

V
w ; |q|−2(1+ 1

|β | )
−2
)
⎤⎦Q+2�

B3r

ϕ2U 2wdx

⎫⎪⎬⎪⎭ .

By (3.4),

(�
B3r

|ϕU |2τ wdx
) 1

τ
≤

≤Cr2w(B3r)
1
τ−1

{
(|β |+1)3

(
1+

1

|β |
)2�

B3r

|Xϕ|2U 2wdx+

+

⎡⎣ 1

η−1
(

V
w ; |q|−2(1+ 1

|β | )
−2
)
⎤⎦Q+2�

B3r

η2U 2wdx

⎫⎪⎬⎪⎭ , (3.20)
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where C is a positive constant independent of U .

Let r1 and r2 be real numbers such that r < r1 < r2 ≤ 2r. Let the function

ϕ be chosen so that ϕ ≡ 1 in Br1
, 0≤ ϕ(x)≤ 1 in Br2

, ϕ(x) = 0 outside Br2

and |Xϕ(x)| ≤ C
r2−r1

. By (5.27) it follows that

(�
Br1

|U |2τ wdx

) 1
τ

≤

≤Cr2w(B3r)
1
τ−1 1

(r2− r1)2
(|β |+1)3

(
1+

1

|β |
)2

·

·
⎡⎣ 1

η−1
(

V
w ; |q|−2(1+ 1

|β | )
−2
)
⎤⎦Q+2�

Br2

U 2wdx. (3.21)

Selecting p = β + 1, taking the p-th root in (5.28) and recalling U 2(x) =
vβ+1(x) = vp(x), it is easily derived that

Φ(τ p,r1)≤C
1
p r

1
q w(B3r)

1
p (

1
τ−1)(|β |+1)

3
p

(
1+

1

|β |
) 1

q

·

·
⎡⎣ 1

η−1
(

V
w ; |q|−2(1+ 1

|β | )
−2
)
⎤⎦

Q+2
p

1

(r2− r1)
2
p

Φ(p,r2), (3.22)

for positive p �= 1, and that

Φ(τ p,r1)≥C
1
p r

1
q w(B3r)

1
p (

1
τ−1)(|β |+1)

3
p ·

·
⎡⎣ 1

η−1
(

V
w ; |q|−2(1+ 1

|β | )
−2
)
⎤⎦

Q+2
p

1

(r2− r1)
2
p

Φ(p,r2), (3.23)

for negative p. These inequalities are next iterated in the spirit of [37] and

[9] to get

sup
Br

v≤C inf
Br

v

where C depends on λ , Q, η
(V

w ;r
)
, C1 and τ . Since v= u+h, (3.13) follows

easily.

3.3.2 Degenerate equations under natural growth

Let Ω be a bounded domain in Rn and let X = (X1,X2, . . . ,Xm) be a

system of locally Lipschitz vector fields in Rn whose formal adjoints are
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denoted by X∗i . Assume (A3) with p = 2 and let w be a 2-admissible weight.

Let {ai j(x)} be a symmetric matrix of measurable functions in Ω satisfying

the ellipticity condition (3.2). We consider the elliptic quasi linear equation

in divergence form

−X∗j (ai jXiu+d ju)+
b0

λ
w|Xu|2 +biXiu+ cu = f −X∗i hi , (3.24)

where

b0 ∈ R\{0} ,
(

bi

w

)2

,
c
w
,

(
di

w

)2

,
f
w
,

(
hi

w

)2

∈ S′(Ω,w) . (3.25)

Definition 3.6. A function u ∈W 1,2
loc (Ω,w) is said to be a local, weak super-

solution (subsolution), of (3.24) if for any φ ∈W 1,2
0 (Ω,w), φ ≥ 0

�
Ω

[
(ai jXiu+d ju)Xjφ +

(
b0

λ
w|Xu|2 +biXiu+ cu

)
φ
]

dx≥ (≤)
�

Ω
( f φ +hiXiφ)dx .

u ∈W 1,2
loc (Ω,w) is a local, weak solution of (3.24) if it is both a local

supersolution and a local subsolution.

Our first result is the weak Harnack inequality for local, bounded super-

solutions of (3.24). The proof follows along the lines of [33].

Theorem 3.5. Assume conditions (3.2) and (3.25) to be satisfied and let u
be a weak nonnegative supersolution of equation (3.24) in a ball B3r ⊂⊂
Ω. Let M > 0 be a constant such that u ≤ M in B3r. Then, there exists C
depending on Q, M, λ and the weight w, such that

w−1(B2r)

�
B2r

uwdx≤

≤C

⎧⎨⎩inf
Br

u+η
(

f
w

;3r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;3r

))1/2
⎫⎬⎭ .

Proof. Let k = η
(

f
w ;3r

)
+

(
∑m

i=1 η
((

hi
w

)2
;3r
))1/2

and v = u+ k. For

ϕ ∈C1
0(B3r), ϕ ≥ 0, set φ(x) =ϕ2(x)vβ (x)e−|b0|v(x), β < 0, as a test function
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in (3.24). Since u is a supersolution in B3r of (3.24), one has

�
B3r

[
2ϕ(ai jXiu+d ju−h j)Xjϕvβ e−|b0|v+

(−|β |vβ−1−|b0|vβ )ϕ2e−|b0|v(ai jXiu+d ju−h j)Xjv+
b0

λ
w|Xu|2ϕ2vβ e−|b0|v +(biXiu+ cu− f )ϕ2vβ e−|b0|v

]
dx≥ 0

and

�
B3r

ϕ2e−|b0|v(b0vβ + |β |vβ−1)|Xv|2wdx≤
�

B3r

ϕ2e−|b0|v(|b0|vβ + |β |vβ−1)|Xv|2wdx≤

λ
�

B3r

ϕ2e−|b0|v(|b0|vβ + |β |vβ−1)ai jXivXjvdx≤

λ
�

B3r

ϕ2e−|b0|v(|β |vβ−1 + |b0|vβ )(h j−d ju)Xjvdx+

2λ
�

B3r

ϕ(ai jXiv+d ju−h j)Xjϕvβ e−|b0|vdx+
�

B3r

b0w|Xv|2ϕ2vβ e−|b0|vdx+

λ
�

B3r

(biXiv+ cu− f )ϕ2vβ e−|b0|vdx . (3.26)

From (3.26), it follows

�
B3r

ϕ2e−|b0|v|β |vβ−1|Xv|2wdx≤

λ
�

B3r

ϕ2e−|b0|v(|β |vβ−1 + |b0|vβ )(h j−d ju)Xjvdx+

2λ
�

B3r

ϕ(ai jXiv+d ju−h j)Xjϕvβ e−|b0|vdx+

λ
�

B3r

(biXiv+ cu− f )ϕ2vβ e−|b0|vdx .
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Since v is bounded the exponential can be dropped to obtain

�
B3r

ϕ2|β |vβ−1|Xv|2wdx≤

C(M,b0)
[
2λ

�
B3r

ϕai jXivXjϕvβ dx+λ |β |
�

B3r

|d j||Xjv|vβ ϕ2dx+

2λ
�

B3r

|d j|vβ+1ϕXjϕdx+2λ
�

B3r

|h j|vβ ϕXjϕdx+λ
�

B3r

|bi||Xiv|ϕ2vβ+

λ
�

B3r

|c|ϕ2vβ+1dx+λ
�

B3r

| f |ϕ2vβ dx+

λ |β |
�

B3r

h jXjvvβ−1ϕ2dx+λ
�

B3r
|d j||Xiv|ϕ2vβ dx

]
.

Now, set

V =
n

∑
i=1

|bi|2
w

+ |c|+
n

∑
j=1

|d j|2
w

+ k−1| f |+ k−2
n

∑
i=1

|hi|2
w

.

A straightforward application of Young’s inequality yields

�
B3r

ϕ2vβ−1|Xv|2wdx≤

C(M,b0,λ )

[
|β |+1

β 2

�
B3r

vβ+1|Xη |2wdx+
( |β |+1

β

)2�
B3r

V ϕ2vβ+1dx

]
≤

C(M,b0,λ )
( |β |+1

β

)2 [�
B3r

vβ+1|Xϕ|2wdx+
�

B3r

V ϕ2vβ+1dx
]
. (3.27)

Next, set

U (x) =

{
v

β+1
2 (x) if β �=−1

logv(x) if β =−1.

By (5.26),

�
B3r

ϕ2|XU |2wdx≤C(β +1)2

( |β |+1

β

)2{�
B3r

|Xϕ|2U 2wdx+

�
B3r

V ϕ2U 2 dx
}
,β �=−1 (3.28)

while �
B3r

ϕ2|XU |2wdx≤C
{�

B3r

|Xϕ|2wdx+
�

B3r

V ϕ2 dx
}

(3.29)
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if β =−1.

Consider first the case β =−1. Corollary 3.2 yields

�
B3r

ϕ2|XU |2wdx≤C
(�

B3r

|Xϕ|2wdx+
�

B3r

ϕ2wdx
)
.

Let Bh be a ball contained in B2r. Choosing ϕ so that ϕ(x) ≡ 1 in Bh,

0≤ ϕ ≤ 1 in B3r \Bh and such that |Xϕ| ≤ C
h , one obtains

‖XU ‖L2(Bh,w) ≤C
w(Bh)

1
2

h
.

From (3.5) and on account of the John-Nirenberg lemma (see [1]), it holds

that U (x) = logv(x) ∈ BMO. Then, there exist two positive constants p0

and C, such that(�
B2r

ep0U wdx
) 1

p0
(�

B2r

e−p0U wdx
) 1

p0 ≤C . (3.30)

Consider the following family of seminorms:

Φ(p,h) =
(�

Bh

|v|pwdx
)1/p

, p �= 0 .

(3.30) yields

1

w(B2r)1/p0
Φ(p0,2r)≤Cw(B2r)

1/p0Φ(−p0,2r) .

Next, consider β �=−1 (see inequality (3.28)). Corollary 3.2 implies

�
B3r

|XU |2ϕ2wdx≤C

{[(
β +1

2

)2

+1

](
1+

1

|β |
)2�

B3r

|Xϕ|2U 2wdx+

+

⎡⎢⎢⎣ 1

η−1

(
V
w ;
(

β+1
2

)−2(
1+ 1

|β |
)−2

)
⎤⎥⎥⎦

Q+2�
B3r

ϕ2U 2wdx

⎫⎪⎪⎬⎪⎪⎭ . (3.31)
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From (3.4) one has

(�
B3r

|ϕU |2τ wdx
) 1

τ
≤ cw(B3r)

1
τ−1

{[(
β +1

2

)2

+2

](
1+

1

|β |
)2

·
�

B3r

|Xϕ|2U 2wdx+

+

⎡⎢⎢⎣ 1

η−1

(
V
w ;
(

β+1
2

)−2(
1+ 1

|β |
)−2

)
⎤⎥⎥⎦

Q+2�
B3r

ϕ2U 2wdx

⎫⎪⎪⎬⎪⎪⎭ (3.32)

where c is a positive constant independent of w.

Choose the function ϕ . For r1 and r2 such that r ≤ r1 < r2 ≤ 2r, select

ϕ such that ϕ(x)≡ 1 in Br1
, 0≤ ϕ(x)≤ 1 in Br2

, ϕ(x) = 0 outside Br2
znd

that |Xϕ| ≤ c
r2−r1

for some fixed constant c.

Then,

(�
Br1

U 2τ wdx

) 1
τ

≤ cw(B3r)
1
τ−1 1

(r2− r1)2

[(
β +1

2

)2

+2

]
·

·
(

1+
1

|β |
)2

⎡⎢⎢⎣ 1

η−1

(
V
w ;
(

β+1
2

)−2(
1+ 1

|β |
)−2

)
⎤⎥⎥⎦

Q+2�
Br2

U 2wdx .

Setting γ = β +1 and recalling that U (x) = v
β+1

2 (x), it can be seen that

Φ(τγ,r1)≥ c
1
γ w(B3r)

1
γ (

1
τ−1)

[(
β +1

2

)2

+2

] 1
γ

·

·

⎡⎢⎢⎣ 1

η−1

(
V
w ;
(

β+1
2

)−2
)
⎤⎥⎥⎦

Q+2
γ

1

(r2− r1)
2
γ

Φ(γ,r2) , (3.33)

for negative γ .

Iterate the inequality just obtained. Setting γi = τ i p0 and ri = r + r
2i ,

i = 1,2, . . . , iteration of (3.33) and Lemma 3.1 yield

Φ(−∞,r)≥ c(φV
w
,diamΩ)w(B3r)

1
p0 Φ(−p0,2r) .
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Therefore, by Hölder’s inequality,

Φ(p′0,2r)≤Φ(p0,2r)w(B3r)
1

p′
0
− 1

p0 , p′0 ≤ p0,

from which it follows that

w−1(B2r)Φ(1,2r)≤ cΦ(−∞,r)

and hence, the desired claim.

The following weak Harnack inequality for subsolutions can be obtained

in a similar way.

Theorem 3.6. Let u be a weak nonnegative subsolution of (3.24) in B3r ⊂⊂
Ω. Assume (3.2) and (3.25). Let M > 0 be a constant such that u≤M in B3r.
Then there exists C depending on Q, M, λ and on the weight w, such that

sup
Br

u≤

C

⎧⎨⎩w−1(B2r)

�
B2r

uwdx+η
(

f
w

;3r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;3r

))1/2
⎫⎬⎭ .

Now, from our previous results, a Harnack-type inequality for solutions

can be derived.

Theorem 3.7. Assume conditions (3.2) and (3.25) are satisfied and let u
be a weak nonnegative solution of equation (3.24) in a ball B3r ⊂⊂ Ω. Let
M > 0 be a constant such that u≤M in B3r. Then, there exists C depending
on Q, M, λ and on the weight w, such that

sup
Br

u≤C

⎧⎨⎩inf
Br

u+η
(

f
w

;3r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;3r

))1/2
⎫⎬⎭ .

3.4 Continuity of solutions for linear degenerate equa-
tions

Harnack’s inequality implies that weak solutions of (3.8) and (3.24) are

continuous (see [17], [19], [18], [8], [10]). Next, the regularity of the solu-

tions of equation (3.8) will be proved.
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Theorem 3.8. Let u ∈W 1,2(Ω,w) be a weak solution of (3.8) such that the
degenerate ellipticity condition (3.2) holds true and such that(

bi

w

)2

,
c
w
,

(
di

w

)2

,
f
w
,

(
hi

w

)2

∈ S′(Ω,w)

then u is continuous in Ω.

Proof. Let Br be an arbitrary ball contained in Ω and consider the functions,

with 0 < ρ ≤ r

M(ρ) = sup
Bρ

u, m(ρ) = inf
Bρ

u ϕ(ρ) = M(ρ)−m(ρ).

setting u = M−u = M(r)−u, u is a nonnegative weak solution of the equa-

tion

−X∗j (ai jXiu−d ju)+biXiu+ cu = (Mc− f )−X∗i (Mdi−hi)

in Br, with

Mc− f
w

,

(
Mdi−hi

w

)2

∈ S′(Ω,w) .

By virtue of Harnack’s inequality (3.13) one has

sup
B r

3

u≤C

(
inf
B r

3

u+h(r)

)

and

h(r) = η
(

f
w

;r
)
+

(
m

∑
i=1

η

((
hi

w

)2

;r

))1/2

,

where f = Mc− f and hi = Mdi−hi.

Observe that h(r) is a positive non-decreasing function with lim
r→0

h(r) =

0.

Then

M(r)−m
( r

3

)
≤C

{
M(r)−M

( r
3

)
+h(r)

}
. (3.34)

In the same way, setting u = u−m = u−m(r), it follows that

M
( r

3

)
−m(r)≤C

{
m
( r

3

)
−m(r)+h(r)

}
. (3.35)

Adding (3.34) and (3.35),

M
( r

3

)
−m

( r
3

)
≤ C−1

C+1
[M(r)−m(r)]+

2C
C+1

h(r).
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Set θ = C−1
C+1 < 1, h(r) = 2C

C+1 h(r).
Thus,

ϕ
( r

3

)
≤ θϕ(r)+h(r)

and the conclusion follows from Lemma 3.2.

The next result is a natural consequence of the previous one if one as-

sumes the lower order terms to belong to the Morrey classes Mσ . Specifi-

cally,

Corollary 3.3. Let u ∈W 1,2(Ω,w) be a weak solution of (3.8) or a local,
bounded solution of (3.24), such that the degenerate ellipticity condition
holds true and such that(

bi

w

)2

,
c
w
,

(
di

w

)2

,
f
w
,

(
hi

w

)2

∈Mσ (Ω,w) .

Then u is locally Hölder continuous in Ω.

Using similar techniques, analogous results for local, bounded solution

of equation (3.24) can be derived.

Theorem 3.9. Let u ∈ W 1,2(Ω,w) be a local, bounded weak solution of
(3.24), such that the degenerate ellipticity condition (3.2) holds true and
that (

bi

w

)2

,
c
w
,

(
di

w

)2

,
f
w
,

(
hi

w

)2

∈ S′(Ω,w) .

Then u is continuous in Ω.
Moreover, assuming(

bi

w

)2

,
c
w
,

(
di

w

)2

,
f
w
,

(
hi

w

)2

∈Mσ (Ω,w) ,

it follows that u is locally Hölder continuous in Ω.

3.5 Smoothness for non linear degenerate elliptic equa-
tions

Let Ω be a bounded domain in Rn. Let X = (X1,X2, . . . ,Xm) be a system

of locally Lipschitz vector fields in Rn. For i = 1,2, . . . ,m, let X∗i stand for

the formal adjoint of the vector fields Xi. Let 1 < p < Q and w be a p-

admissible weight.
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We consider the following quasilinear elliptic equation

X∗i Ai(x,u,Xu)+B(x,u,Xu) = 0, (3.36)

where A : Ω×R×Rm → Rm and B : Ω×R×Rm → Rm are measurable

functions in their domains. Two kinds of structural assumptions on A and

B will be considered, referred to as controlled-growth or natural-growth as-

sumptions, respectively. For the controlled-growth assumptions, there exist

a > 0 and functions b, c, d, e, f and g, such that⎧⎪⎨⎪⎩
|A(x,u,ξ )| ≤ aw(x)|ξ |p−1 +b(x)|u|p−1 + e(x)
|B(x,u,ξ )| ≤ c(x)|ξ |p−1 +d(x)|u|p−1 + f (x)
ξ ·A(x,u,ξ )≥ w(x)|ξ |p−d(x)|u|p−g(x).

(3.37)

For the natural growth assumptions it is assumed that there exist a,b0 >
0 and functions b, c, d, e, f and g such that

⎧⎪⎨⎪⎩
|A(x,u,ξ )| ≤ aw(x)|ξ |p−1 +b(x)|u|p−1 + e(x)
|B(x,u,ξ )| ≤ b0w(x)|ξ |p + c(x)|ξ |p−1 +d(x)|u|p−1 + f (x)
ξ ·A(x,u,ξ )≥ w(x)|ξ |p−d(x)|u|p−g(x).

(3.38)

Next, we give the definition of weak solutions of the quasilinear equation

(3.36).

Definition 3.7. A function u∈W 1,p(Ω,w) is a local weak solution of (3.36)

in Ω if�
Ω

A(x,u(x),Xu(x))Xφ(x)dx =
�

Ω
B(x,u(x),Xu(x)) φ(x)dx, (3.39)

for any φ ∈W 1,p
0 (Ω,w).

Local boundedness will next be proved for solutions of equations (3.36)

under controlled growth.

Theorem 3.10. Let u be a weak solution of (3.36). Assume that the struc-
tural conditions (3.37) hold true with

a ∈ R ,

(
b
w

)p/p−1

,
( c

w

)p
,

(
d
w

)
,
( e

w

)p/p−1
,

f
w
,

g
w
∈ S′p(Ω,w) .

(3.40)

Then, there exists a positive constant C, independent of u, such that, for any
metric ball Br = B(x0,r) for which B(x0,4r)⊂Ω, it holds that

sup
Br

|u| ≤C

{(�
B2r

|u|p wdx
) 1

p

+h(3r)

}
, (3.41)
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where

h(3r) =
[

η
(( e

w

) p
p−1

;3r
)
+η

( g
w

;3r
)] 1

p

+

[
η
(

f
w

;3r
)] 1

p−1

.

Proof. Let B(x0,4r) be a ball in Ω. We provide next a simplified form of the

structural assumptions (3.37). Setting h = h(3r) and ũ = |u|+h, one easily

gets from (3.37)⎧⎪⎨⎪⎩
|A(x,u,ξ )| ≤ aw(x)|ξ |p−1 +b1|ũ|p−1

|B(x,u,ξ )| ≤ c|ξ |p−1 +d1|ũ|p−1

ξ ·A(x,u,ξ )≥ w(x)|ξ |p−d1|ũ|p,
(3.42)

where

b1 = b+h1−pe , d1 = d +h1−p f +h−pg .

The functions

(
b1

w

) p
p−1

and
d1

w
belong to the class S′p(B4r,w) and more-

over, for any 0 < ρ < 2r,

η

((
b1

w

) p
p−1

;ρ

)
≤C(p)

[
η

((
b
w

) p
p−1

;ρ

)
+h−pη

(( e
w

) p
p−1

;ρ
)]

≤C(p)

[
η

((
b
w

) p
p−1

;ρ

)
+1

]

η
(

d1

w
;ρ
)
≤C(p)

[
η
(

d
w

;ρ
)
+h1−pη

(
f
w

;ρ
)
+h−pη

( g
w

;ρ
)]

≤C(p)
[

η
(

d
w

;ρ
)
+2

]
.

This means that, under assumptions (3.40), the reduced structural assump-

tions (3.42) are of the same kind as the general structural assumptions (3.37).

Fix q≥ 1, l > h and let

F(ũ) =

{
ũq if h≤ ũ≤ l
qlq−1(ũ− l)+ lq if l ≤ ũ .

Set

G(u) = signu
(

F(ũ)[F ′(ũ)]p−1−qp−1hβ
)

u ∈ ]−∞,+∞[ ,

where β is such that pq = p+β −1.
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The test function to be used in (3.39) is φ(x) = ϕ p(x)G(u), where ϕ(x)
is a smooth function such that 0≤ ϕ ≤ 1, ϕ ≡ 1 in Br, compactly supported

in B2r.

Following the classical pattern in [32] the test function in Definition 3.7

is substituted. So, by using the structural conditions (3.42) it follows that

�
B2r

ϕ p|XU |pwdx≤ ap
�

B2r

|(Xϕ)U | |ϕ(XU )|p−1wdx+

+qp−1 p
�

B2r

b1|(Xϕ)U ||ϕU |p−1 dx+
�

B2r

c|ϕU ||ϕ(XU )|p−1 dx+

+(1+ p)qp−1

�
B2r

d1|ϕU |p dx,

where U = U (x) = F(ũ).
With the aid of the elementary inequality

abp−1 ≤ 1

p
ε1−pap +

(
1− 1

p

)
εbp ∀ε > 0,

the previous one can be simplified to get

�
B2r

ϕ p|XU |pwdx≤

≤C(p,a)qp−1

{�
B2r

|U (Xϕ)|pwdx+
�

B2r

V |ϕU |p dx
}
,

where

V =
b

p
p−1

1

w
1

p−1

+
cp

wp−1
+d1 .

The desired clam follows by arguing as in the proof of Theorem 3.3.

Theorem 3.11. Let u be a nonnegative weak solution of (3.36). Assume that
the structural conditions (3.37) hold with

a ∈ R ,

(
b
w

)p/p−1

,
( c

w

)p
,

d
w
,
( e

w

)p/p−1
,

f
w
,

g
w
, ∈ S′p(Ω,w) . (3.43)

Then, there exists a positive constant C, independent of u, such that, for any
Br = B(x0,r)⊂ B(x0,4r)⊂Ω, one has

sup
Br

u≤C
{

inf
Br

u+h(3r)
}
,
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where

h(3r) =
[

η
(( e

w

) p
p−1

;3r
)
+η

( g
w

;3r
)] 1

p

+

[
η
(

f
w

;3r
)] 1

p−1

.

Proof. Start as in the proof of Theorem 3.10, setting ũ = |u|+ h, where

h = h(3r). From this it follows that conditions (3.42) are verified. Now let

ϕ be a nonnegative smooth function compactly supported in B3r. Taking

ϕ p(x)ũβ (x), β ∈ R as test function in (3.39), it is obtained that

�
B3r

|Xũ|pϕ pũβ−1wdx≤

≤C1(p,a)(1+ |β |−1)p
{�

B3r

|Xϕ|pũp+β−1wdx+

+

�
B3r

V ϕ pũp+β−1 dx
}
, (3.44)

where

V =
b

p
p−1

1

w
1

p−1

+
cp

wp−1
+d1 .

Setting

U (x) =

{
ũq(x) where pq = p+β −1 if β �= 1− p
log ũ(x) if β = 1− p,

(3.44) yields

�
B3r

ϕ p|XU |pwdx≤C1|q|p(1+ |β |−1)p
{�

B3r

|Xϕ|pU pwdx+

+

�
B3r

V ϕ pU p dx
}
,β �= 1− p,

whereas

�
B3r

ϕ p|XU |pwdx≤C1

{�
B3r

|Xϕ|pwdx+
�

B3r

V ϕ p dx
}

if β = 1− p .

(3.45)

The result follows by arguing as in the proof of Theorem 3.5.

Next, the Harnack inequality is stated for nonnegative solutions of equa-

tions under natural growth. The proof is similar to the one in the linear case.
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Theorem 3.12. Let u be a local, bounded nonnegative weak solution of
(3.36). Assume that the structural conditions (3.38) hold, with

a ∈ R ,

(
b
w

)p/p−1

,
( c

w

)p
,

d
w
,
( e

w

)p/p−1
,

f
w
,

g
w
, ∈ S′p(Ω,w) . (3.46)

Then, there exists a positive constant C, independent of u, such that, for any
Br = B(x0,r)⊂ B(x0,4r)⊂Ω, it holds that

sup
Br

u≤C
{

inf
Br

u+h(3r)
}
,

where

h(3r) =
[

η
(( e

w

) p
p−1

;3r
)
+η

( g
w

;3r
)] 1

p

+

[
η
(

f
w

;3r
)] 1

p−1

.

As shown next, regularity results are obtained directly from Harnack

inequalities.

Theorem 3.13 (Regularity of weak solutions). Let u be a weak solution of
(3.36). Let us assume that the conditions (3.37) hold true with

a ∈ R ,

(
b
w

)p/p−1

,
( c

w

)p
,

(
d
w

)
,
( e

w

)p/p−1
,

f
w
,

g
w
∈ S′p(Ω,w) .

Then u is continuous in Ω.
Moreover, assuming(

b
w

)p/p−1

,
( c

w

)p
,

(
d
w

)
,
( e

w

)p/p−1
,

f
w
,

g
w
∈Mσ (Ω,w) ,

u is locally Hölder continuous in Ω.

Theorem 3.14 (Regularity of weak solutions). Let u be a local, bounded,
weak solution of (3.36). Assume that the conditions (3.38) hold with

a ∈ R ,

(
b
w

)p/p−1

,
( c

w

)p
,

(
d
w

)
,
( e

w

)p/p−1
,

f
w
,

g
w
∈ S′p(Ω,w) .

Then u is continuous in Ω.
Moreover if(

b
w

)p/p−1

,
( c

w

)p
,

(
d
w

)
,
( e

w

)p/p−1
,

f
w
,

g
w
∈Mσ (Ω,w) ,

then u is locally Hölder continuous in Ω.
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[17] G. Di Fazio, P. Zamboni, Hölder continuity for quasilinear subelliptic
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We report recent results, examples and countererexamples on compactness

of Sobolev embeddings in the context of Musielak-Orlicz spaces.

4.1 Introduction and historical context
Twenty one years after F. Riesz’ ground-breaking ”Untersuchungen

Über Systeme Integrierbarer Funktionen” [22], W. Orlicz, while dealing

with a seemingly simple question regarding lacunary sequences, came to

the realization of the fact that much of the structure of the Lp spaces in-

troduced by Riesz could be preserved by allowing a variable exponent p.

In specific terms, Orlicz considered the class of functions f defined on the

interval [a,b] such that

� b

a
| f (x)|α(x)dx < ∞ (4.1)

and referred to such functions as integrable with respect to α(x). To the au-

thors’ best knowledge, his is the first occurrence in the literature of the class

of functions that are integrable with respect to variable exponents. The main
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difficulty inherent to Orlicz’ definition may have been the lack of a suitable

norm to study the new structure in the light of the by then novel concept of

B space. Orlicz himself did not continue studying these spaces immediately.

In fact the generalization of the Lp class (today known as the Orlicz’ class)

that, shortly after the publication of [24], Orlicz introduced in [20], did not

include the variable exponent class. It wasn’t until 1950 that Nakano [21],

while addressing a series of questions not directly related to Orlicz’ line

of work, came up with an example that generalized the Orlicz’ class and

did contain the variable exponent case. In 1961, Sharapudinov [24] studied

the variable exponent class on [0,1]. Notably, he introduced the Luxemburg

norm on this space and proved its reflexivity under the assumption that the

exponent be bounded away from 1 and ∞. The first systematic treatment

of Lebesgue variable exponent spaces was the work by O. Kováčik and J.

Rákosnı́k, [35]. In it, questions about the reflexivity and duality of Lp(·)(Ω)
(under the Luxemburg norm) were addressed in the case of an open subset

Ω⊂ Rn and an admissible variable exponent

p : Ω−→ R.

4.2 Modular spaces
Let V be a real or complex vector space over the scalar field K.

Definition 4.1. A convex modular on V is a function

ρ : V −→ [0,∞]

that satisfies the following conditions:

(i) ρ(x) = 0 ⇐⇒ x = 0

(ii) ρ(αx) = |α|ρ(x), for any x ∈V , |α|= 1

(iii) ρ(αx+(1−α)y)≤ αρ(x)+(1−α)ρ(y), for all x,y ∈V and α ∈
(0,1].

A convex modular ρ on a vector space V is left-(right-) continuous if for any

x ∈V the map

α −→ ρ(αx)

is left-(right-) continuous on [0,∞) (on (0,∞) for left continuity); if ρ is

both left- and right-continuous we refer to it as a continuous modular.
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Example 4.1. If (Ω,A ,μ) is a measure space and p ∈ [1,∞), then

ρ(u) =
�

Ω

|u|p dμ (4.2)

defines a convex modular on Lp(Ω,dμ).

Example 4.2. Any norm on a real or complex vector space X is a convex

modular on X .

It follows from the above axioms that for each fixed x ∈ the map

α −→ ρ(αx)

is non-decreasing on [0,∞), for if 0 ≤ α < β and x ∈ V , then convexity

yields:

ρ(αx) = ρ(αβ−1βx)≤ αβ−1ρ(βx)≤ ρ(βx).

Consequently:

ρ(αx) = ρ(|α|x)≤ |α|ρ(x) if |α| ≤ 1 (4.3)

ρ(αx) = ρ(|α|x)≥ |α|ρ(x) if |α| ≥ 1. (4.4)

To the effect of characterizing the modular space associated to ρ we prove

the following Lemma:

Lemma 4.1. Let ρ be a modular on a vector space V and x ∈ V . Then
conditions (i) and (ii) below are equivalent:

(i) ρ(λx)< ∞ for some λ > 0.

(ii) lim
λ→0+

ρ(λx) = 0.

Proof. If (i) holds for λ > 0, and 0 < λ j → 0 as j → ∞, then there exists

J ∈N such that j≥ J⇒ λ j < λ . Since ρ(0) = 0, convexity yields, for j≥ J:

ρ(λ jx)≤ λ jλ−1ρ(λx)→ 0 as j→ ∞.

The arbitrariness of the sequence (λ j) yields the implication (i)⇒ (ii).
Conversely if (ii) holds, there must be θ > 0 such that ρ(λ ) < 1 for all

λ < θ , whence (i) holds.

The preceding Lemma justifies the equality of the two sets in the next Defi-

nition:
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Definition 4.2. For a modular ρ on a vector space V we set:

Vρ := {x ∈V : ρ(λx)< ∞ for some λ > 0}

=

{
x ∈V : lim

λ−→0+
ρ(λx) = 0

}
.

Proposition 4.1. Let ρ be a convex modular on a linear space X and define

‖x‖ρ := inf{λ > 0 : ρ(x/λ )≤ 1} (x ∈Vρ).

Then:

(i)
(

Vρ ,‖·‖ρ

)
is a normed linear space.

(ii) If ρ(x)≤ 1, then ‖x‖ρ ≤ 1.

(iii) If ρ is left-continuous, then ‖x‖ρ ≤ 1 if and only if ρ(x) ≤ 1. If ρ is
continuous, then ‖x‖ρ < 1 if and only if ρ(x)< 1; and ‖x‖ρ = 1 if and
only if ρ(x) = 1.

Proof. See [14].

Corollary 4.1. Let ρ be a left-continuous modular on a modular space V .
Then:

(i) If ‖x‖ρ ≤ 1, then ρ(x)≤ ‖x‖ρ .

(ii) If ‖x‖ρ > 1, then ρ(x)≥ ‖x‖ρ .

(iii) For any x ∈V , ‖x‖ρ ≤ ρ(x)+1.

Proof. For (i), observe that if 0 < ‖x‖ρ ≤ 1 then the convexity of ρ yields

ρ(x) = ρ
(‖x‖ρ

‖x‖ρ
x
)
≤ ‖x‖ρ ρ

(
x
‖x‖ρ

)
≤ ‖x‖ρ ;

on the other hand if 1 < λ < ‖x‖ρ one has

ρ
( x

λ

)
> 1

and by convexity one gets 1 < λ−1ρ(x), which forces ρ(x) ≥ ‖x‖ρ , as

claimed. (iii) follows immediately from (i) and (ii).

We finish this Section with the following Definition:

Definition 4.3. The modular ρ on the vector space V is said to satisfy the

Δ2-condition if there exists a constant K ≥ 1 such that for any x ∈V

ρ(2x)≤ Kρ(x).

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Sobolev embeddings for spaces of Musielak-Orlicz type 85

4.3 Musielak-Orlicz spaces
Next, the Musielak-Orlicz spaces are introduced as a specific example

fitting the modular space theory described in the preceding Section.

Let /0 �= Ω ⊂ Rn, (n ≥ 1) be a domain (i.e., open and connected). An

Orlicz function on Ω is a convex, left-continuous function

ϕ : [0,∞)−→ [0,∞)

with ϕ(0) = 0, lim
x→∞

ϕ(x) = ∞ and lim
x→0+

ϕ(x) = 0. In particular, any Orlicz

function is non-decreasing. A Musielak-Orlicz function on Ω is a function

ϕ : Ω× [0,∞)→ [0,∞)

such that

ϕ(x, ·) : [0,∞)→ [0,∞)

is an Orlicz function for each fixed x ∈Ω and that

ϕ(·,y) : Ω→ [0,∞)

is Lebesgue measurable for each fixed y ∈ R.

There is convex modular associated to any Musielak-Orlicz function ϕ ,

namely:

ρϕ(u) :=

�

Ω

ϕ(x, |u(x)|)dx

The Musielak-Orlicz space Lϕ(Ω) is the real-vector space of all extended-

real valued, Borel-measurable functions u on Ω for which

ρϕ(λu) :=

�

Ω

ϕ(x, |u(x)|λ )dx < ∞ for some λ > 0.

Lϕ(Ω) is furnished with the norm

‖u‖ϕ = inf

{
λ > 0 :

�
Ω

ϕ
(

x,
|u(x)|

λ

)
dx≤ 1

}
.

We refer the reader to ([7, 20, 14]) for the proof of the fact that Lϕ(Ω) is a

Banach space under ‖u‖ϕ .

The Musielak-Orlicz Sobolev space W 1,ϕ(Ω) is the vector space of all func-

tions in Lϕ(Ω) whose distributional derivatives are in Lϕ(Ω), furnished with

the norm

‖u‖1,ϕ = ‖u‖ϕ +‖|∇u|‖ϕ ,
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Here ∇· stands for the gradient operator, i.e.,

∇u =

(
∂u
∂x1

, ...,
∂u
∂xn

)
and | · | denotes the Euclidean norm in Rn. It is well known (see [7, 20]) that

W 1,ϕ(Ω) W 1,ϕ(Ω) is a Banach space under the assumptions

�

K

ϕ(x, t)dx < ∞ (4.5)

for any K ⊂Ω with Lebesgue measure |K|< ∞ and satisfying the condition

inf
x∈Ω

ϕ(x,1)> 0. (4.6)

The Sobolev space W 1,ϕ
0 (Ω) is defined to be the closure of C∞

0 (Ω) in

W 1,ϕ(Ω).

Example 4.3. Consider the family of admissible exponent functions

P =
{

p : Ω→ R , p Borel-measurable,

1 < inf
x∈Ω

p(x) = p− ≤ sup
x∈Ω

p(x)p+ < ∞
}
. (4.7)

In this case one can set

ϕ(x, t) = t p(x).

It is clear that ϕ is a Musielak-Orlicz function. In this case it is customary to

denote Lϕ(Ω) by Lp(·)(Ω) and it is easy to prove that under the restrictions

on the exponent p, Lp(·)(Ω) is the set of all real-valued, Borel measurable

functions on Ω for which

ρp( f ) :=

�

Ω

| f (x)|p(x) dx < ∞.

As before, the function ρp is a convex, monotone, continuous modular on

Lp(·)(Ω) and

‖u‖Lp(·)(Ω) := inf
{

λ > 0 : ρp

( u
λ

)
≤ 1
}

defines a norm under which Lp(·)(Ω) is a Banach, reflexive, uniformly con-

vex space (see [7, 11]). It is apparent that the latter coincides with the usual

Lebesgue Lp(Ω) norm when p(·) is constant; accordingly the family of
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Lp(·)(Ω) for p as in (4.7) will be referred to as the generalized Lebesgue

class in Ω. The generalized Sobolev class in Ω for this particular Musielak-

Orlicz function is denoted as

W 1,p(·)(Ω) :=
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

and will be endowed with the norm

‖u‖W 1,p(·)(Ω) := ‖u‖Lp(·)(Ω) +‖|∇u|‖Lp(·)(Ω).

The closure of C∞
0 (Ω) in W 1,p(·)(Ω) is written as W 1,p(·)

0 (Ω).

The reader is referred to [7] and [35] for an exhaustive treatment of

variable-exponent Lebesgue-Sobolev spaces.

Under the restrictions posed on the exponent p, the following inequalities

hold for any w ∈ Lp(·)(Ω) ([9]):

min

{
ρ

1
p+

p (w),ρ
1

p−
p (w)

}
≤ ‖w‖p(·) ≤max

{
ρ

1
p+

p (w),ρ
1

p−
p (w)

}
. (4.8)

4.3.1 Sobolev-type embeddings

It is a result from classical analysis [4, 6] that for 1 < p < ∞, the natural

Sobolev embedding

W 1,p
0 (Ω) ↪→ Lp(Ω) (4.9)

is compact. Such compactness results are essential in a number of mathe-

matical situations in which one needs to extract a convergent subsequence

from a bounded sequence.

We refer the reader to [1, 4, 6, 25] for the following classical embedding

theorems:

Theorem 4.1. Let Ω ⊂ Rn be a bounded domain, p ∈ (1,n). Then the
space W 1,p

0 (Ω) is compactly embedded in Lq(Ω) for any q ∈ (1, np
n−p ). If

p > n, W 1,p
0 (Ω) embeds compactly in C(Ω) (and hence in Lq(Ω) for any

q ∈ (1,∞)). Finally, W 1,n
0 (Ω) is compactly embedded in Lq(Ω) for any

q ∈ [1,∞). Moreover, for any p ∈ (1,∞), the embedding

W 1,p
0 (Ω) ↪→ Lp(Ω) (4.10)

is compact.

The extension of the compactness of the embedding (4.9) to the variable

exponent case was given in [7, 35]. We refer the reader to [10] for a detailed

proof. Specifically

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



88 New Trends in Analysis and Geometry

Theorem 4.2. Let Ω ⊆ Rn be a bounded, Lipschitz domain and p ∈ C(Ω)
be an admissible exponent satisfying 1< p− ≤ p+ <∞. Then the embedding

W 1,p(·)
0 (Ω) ↪→ Lp(·)(Ω) (4.11)

is compact.

A natural question is whether a similar embedding theorem holds true in

the general framework of the Musielak-Orlicz spaces.

The following examples, however, show that one can’t expect Sobolev-type

embeddings to hold even in very simple settings, without imposing some

restrictions on the Musielak-Orlicz function.

Example 4.4. We consider Ω to be the Euclidean unit ball in R6 and for

n ∈ N let Bn be the ball of radius 2−n−2 centered at xn = (2−n,0,0,0,0,0).
The ball concentric with Bn of radius 2−n−3 is denoted by B−n and we set:

B+
n = Bn \B−n .

For each h > 0, let the function

vh : R6 −→ R

be given as follows:

vh(x) =

⎧⎪⎨⎪⎩
1 if |x| ≤ h
2− |x|

h if |x| ∈ (h,2h)
0 if |x| ∈ (2h,∞).

Let w6 stand for the Lebesgue measure of the unit sphere in R6 and consider

the sequence (un) given by

un(x) = 22(n+3)(w6)
− 1

3 v2−(n+3) (x− xn).

For each n ∈ N fix zn = 23(n+3) ≈ |∇un(x)| and consider

φzn(t) =

⎧⎪⎨⎪⎩
t2 if t ∈ (0,zn)

3s2
n(t− zn)+ z2

n if t ∈ (zn,sn)

t3 if t ∈ (sn,∞),

(4.12)

where for each n ∈N, zn = 23(n+3) and sn > zn is selected in such a way that

s3
n− z2

n = 3s2
n(sn− zn).
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Then the Musielak-Orlicz function ϕ is set to be:

ϕ(x, t) =

{
t3 if x ∈Ω\⋃n B+

n

φzn(t) if x ∈ B+
n .

We next prove that the sequence (un) is bounded in W 1,ϕ
0 (Ω). To this end

observe that

ρϕ(un) =

⎛⎜⎝�
B−n

+

�

B+
n

⎞⎟⎠ϕ (x,un(x))dx =
�

B−n

ϕ(x,22(n+3)w
− 1

3
6 )dx

+

�

B+
n

ϕ
(

x,22(n+3)w
− 1

3
6

(
2−2n+3|x− xn|

))
dx

� |Bn|
(

22(n+3)w
− 1

3
6

)3

+

�

B+
n

ϕ
(

x,22(n+3)w
− 1

3
6

)
dx

≤C+ |Bn|
(

22(n+3)w
− 1

3
6

)2

≤C1 +C2.

In the above statement, C1 is a positive constant independent of n and C2→ 0

as n→ ∞.

It is clear that 23(n+3)w−1/3
6 > sn for large enough n. A straightforward

computation reveals that while ∇un(x) = 0 on Ω\B+
n , for x ∈ B+

n one has:

|∇un(x)| ≈ 23(n+3)w−1/3
6 .

It follows from this statement that

ρϕ(|∇un|) =

⎛⎜⎝�
B−n

+

�

B+
n

⎞⎟⎠ϕ (x,un(x))dx

=

�

B+
n

ϕ
(

x,22(n+3)w
− 1

3
6

(
2−2n+3|x− xn|

))
dx

≈ |Bn|
(

22(n+3)w−1/3
6

)3

≤C
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for a positive constant C, independent of n. In all, it is clear that there are

positive constants k1,k2 such that for all n ∈ N, one has:

k1 ≤ ‖un‖ϕ ≤ k2

k1 ≤ ‖|∇un|‖ϕ ≤ k2.

It follows then that the sequence (un) is bounded in W 1,ϕ
0 (Ω). On the other

hand, each un is continuous, any two different functions in the sequence (un)
have disjoint supports and sup

Ω
un → ∞ as n → ∞. Hence, no subsequence

of (un) converges in Lϕ(Ω), and W 1,ϕ
0 (Ω) is not compactly embedded in

Lϕ(Ω).

4.4 The Matuszewska-Orlicz index of a Musielak-Orlicz
function

We next introduce a generalized version of the Matuszewska-Orlicz in-

dex, which is to play a fundamental role in our further developments. The

Matuszewska-Orlicz index of an Orlicz function ϕ was introduced by Ma-

tuszewska and Orlicz in [13].

Definition 4.4. Let ϕ be a Musielak-Orlicz function. For each x ∈Ω, set

M(x, t) = limsup
u→∞

ϕ(x, tu)
ϕ(x,u)

. (4.13)

The Matuszewska-Orlicz index of ϕ is defined to be

m(x) = lim
t→∞

lnM(x, t)
ln t

= inf
t>1

lnM(x, t)
ln t

. (4.14)

Definition 4.5. The limit (4.13) is said to be uniform if for each κ > 0 there

exist s0 > 1 and T > 1 such that, for all (x, t) ∈ Ω× [T,∞) and s ≥ s0 one

has

M(x, t)−κ <
ϕ(x, ts)
ϕ(x,s)

< M(x, t)+κ.

As it will be seen, the behavior of the Matuszewska-Orlicz index in fact

determines the validity of the Sobolev embedding.

Example 4.5. Let Ω⊆ Rn be a bounded domain and

p : Ω−→ (0,∞)
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be Borel-measurable. The Musielak-Orlicz function

ϕ : Ω× [0,∞)−→ [0,∞)

ϕ(x, t) = t p(x)

has Matuszewska index equal to p(x). In this case, the convergence (4.13)

is trivially uniform on Ω and the limit (4.14) is clearly uniform.

Example 4.6. Slightly less trivial is the uniform convergence of (4.13) for

the Musielak-Orlicz function

ϕ(x, t) = t p(x)(1+ log t)q(x)

where p is as in Example 4.5 and

q : Ω−→ R

is a Borel-measurable, bounded function on Ω.

Example 4.7. It is a matter of course to verify that the Musielak-Orlicz

function ϕ in Example 4.4 does not fulfill the Δ2-condition . Indeed, for any

x ∈ B+
n

ϕ(x,zn) = ϕ(x,23(n+3)) = φ23(n+3)

(
23(n+3)

)
= 26(n+3),

whereas

ϕ(x,2zn) = ϕ(x,23n+10) = φ23(n+3)

(
23n+10

)
≥ 3s2

n(2
3n+10−23(n+3))+26(n+3)

≥ 23(n+3)(3s2
n +23(n+3))

= ϕ(x,zn)
3s2

n +23(n+3)

23n+9
. (4.15)

Since sn > 23n+9, inequality (4.15) shows that ϕ fails the Δ2-condition, as

claimed.

On the other hand, it is easy to show that the Matuszewska index of ϕ is

equal to 3 in Ω and that

ϕ(x, t)−→ t2 as x−→ (0,0,0,0,0,0), on B+
n

ϕ(x, t)−→ t3 as x−→ (0,0,0,0,0,0) on Ω\
⋃
j∈N

B+
j .

Lemma 4.2. If ϕ is an Musielak-Orlicz function for which the limits (4.13)
and (4.14) are uniform, then there are constants C1 > 1, C2 > 1 and S0 > 1

for which
ϕ(x,C1s)≤C2ϕ(x,s) f or s≥ S0.
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Proof. A straightforward calculation shows that if δ > 0 then there exists a

constant C1 > 1 for which t ≥C1 implies

M(x, t)< tm(x)+δ ;

the assumed uniformity of the limit yields the existence of S0 > 1 for which

sup
s≥S0

ϕ(x, ts)
ϕ(x,s)

< tm(x)+δ +
1

2
C
[sup
x∈Ω

m(x)+δ ]

1 (4.16)

whenever s ≥ S0, t ≥ C1; in particular, setting t = C1 in (4.16) one easily

sees that for s≥ S0 it holds that

ϕ(x,C1s)≤ 3

2
C
[sup
x∈Ω

m(x)+δ ]

1 ϕ(x,s), (4.17)

whence the lemma follows immediately.

4.5 Soblev embedding for spaces of Musielak-Orlicz type
In this Section we state and prove the following version of the Sobolev

embedding theorem for spaces of Musielak-Orlicz type.

Theorem 4.3. Let Ω⊂ Rn be a bounded domain and

ϕ : Ω× [0,∞)−→ R

be a locally integrable Musielak-Orlicz function. Assume that

(i)
essinfx∈Ωϕ(x,1)> 0.

(ii) The limits (4.13) and (4.14) are uniform on Ω.

(iii) The Matuszewska-Orlicz index mϕ is the restriction to Ω of a contin-
uous function m̃ defined on the the closure of Ω.

(iv)
1 < m− := inf

Ω
mϕ .
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(v) There exists a function

β : (0,∞)−→ (0,∞)

such that the inequality

ϕ(x, t)≤ β (t) (4.18)

holds uniformly in Ω.

Then the embedding
W 1,ϕ

0 (Ω) ↪→ Lϕ(Ω) (4.19)

is compact.

Proof. Suppose first that m− < n. Observe that for γ such that

0 < γ <
m−(n−m−)

2n−m−
,

one has:
m−− γ

n−m−+ γ
>

1

2

m−
n−m−

.

Set

μ :=
1

2

m−
n−m−

.

Let r > 0 be so small that the inequality

n(n− r)
r

> n+2r (4.20)

holds and write

ε < min{μ,5r} , 0 < γ < min

{
ε
30

,
m−(n−m−)

2n−m−
,

m−−1

2

}
. (4.21)

It is then clear that

w(x) := m(x)− γ < m(x)< m(x)− γ +
ε
20

= w(x)+
ε
20

.

From the uniformity conditions (4.13) and (4.14) it follows the existence

of γ satisfying the second inequality in (4.21) and of a constant T0 > 1 such

that t ≥ T0 implies that the following inequality holds uniformly for all t ≥
T0, x ∈Ω:

tm(x)−γ = tw(x) < M(x, t)< tm(x)−γ+ε/20 = tw(x)+ε/20.
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The uniformity of the infimum (4.14) with respect to t and x yields a positive

number S0, which can be assumed to be greater than 1, such that, for all

(x, t) ∈Ω× [0,∞), one has, for t ≥ T0 > 1 and any δ such that

γ < δ <
ε
20

:

M(x, t)− 1

2
T m−−δ

0 <
ϕ(x, tS0)

ϕ(x,S0)
< M(x, t)+

1

2
T m−−δ

0 .

In all, the inequalities

1

2
tw(x) <

ϕ(x, tS0)

ϕ(x,S0)
<

3

2
tw(x)+ε/20

hold uniformly in Ω for any t ≥ T0. Setting tS0 = s, it is readily seen that for

s≥ T0S0, one has

1

2
ϕ(x,S0)

(
s

S0

)w(x)

≤ ϕ(x,s)≤ 3

2
ϕ(x,S0)

(
s

S0

)w(x)+ ε
20

. (4.22)

Furthermore, assumptions (i) and (v) yield positive constants A, B such that

for all x ∈Ω one has

(ϕ(x,S0))
1

w(x) ≤
(

sup
Ω

ϕ(x,S0)

) 1
w(x) ≤ B

and

A≤
(

inf
Ω

ϕ(x,S0)

) 1
w(x) ≤ (ϕ(x,S0))

1
w(x) .

Consequently, (4.22) implies the existence of positive constants c1, c2 for

which

c1sw(x) < ϕ(x,s)< c2sw(x)+ ε
20 , (4.23)

valid for all x ∈ Ω and s≥ S0 > 1. By assumption and by virtue of Tietze’s

extension theorem, w is the restriction to Ω of a continuous function

p : Rn −→ [w−,w+].

Let p1 = w−. For k > 1 if pk−1 < n, set

pk =
npk−1

n− pk−1
− ε

5
.

Clearly, if p j−1 < n, then p j > p1 +( j−1) 4
5 ε and p j−1 < p j. Let J be the

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Sobolev embeddings for spaces of Musielak-Orlicz type 95

first subindex for which pJ > n− r
2 , where r is as in (4.20). Let I = [w−,w+]

and

Ω1 := p−1

((
w−+1

2
,

np1

n− p1
− ε

10

)
∩ I
)
.

For 1 < k ≤ J−1 set

Ωk := p−1

((
pk,

npk

n− pk
− ε

10

)
∩ I
)

;

furthermore, define ΩJ and ΩJ+1 as

ΩJ := p−1 ((n− r,n+ r)∩ I)

ΩJ+1 := p−1
((

n+
r
2
,∞
)
∩ I
)

and let (χk)1≤k≤J+1 be a partition of unity subordinated to the cover (Ωk)k
of Ω. A straightforward argument shows that if v ∈ C∞

0 (Ω) (which can be

considered extended by 0 to Rn) then, for each k : 1 ≤ k ≤ J + 1, vχk ∈
C∞

0 (Ω∩Ωk). It follows from this observation that if v ∈W 1,w
0 (Ω), then for

each fixed k,

vχk ∈W 1,w
0 (Ω∩Ωk) .

Fix a sequence (u j) bounded in W 1,ϕ
0 (Ω); then inequalities (4.23) in

concert with a simple calculation imply that (u j) is bounded in W 1,w
0 (Ω). We

contend that (u jχk) j is bounded in W 1,pk
0 (Ω), for any subindex k : 1 ≤ k ≤

J−1. Denote the indicator function of any set A by IA. Then by construction

wk := wIΩ∩Ωk ≥ pkIΩ∩Ωk

so the embedding

W 1,wk
0 (Ω) ↪→W

1,pkIΩ∩Ωk
0 (Ω) (4.24)

is continuous, that is, for some positive constant C

‖u jχk‖
W

1,pkIΩ∩Ωk
0 (Ω)

≤C‖u jχk‖W
1,wk
0 (Ω)

.

On the other hand, if Fk j stands for any of the functions u jχk, (∇u j)χk or

u j∇χk, it is clear that

1 =

�

Ω

∣∣∣∣ |Fk j|
‖Fk j‖pk

∣∣∣∣pk

=

�

Ω

∣∣∣∣ |Fk j|
‖Fk j‖pk

∣∣∣∣pkIΩ∩Ωk
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and with the same token, that

1 =

�

Ω

∣∣∣∣ |Fk j|
‖Fk j‖wk

∣∣∣∣wk

=

�

Ω

∣∣∣∣ |Fk j|
‖Fk j‖wk

∣∣∣∣w . (4.25)

The two preceding observations and (4.24) yield

‖Fk j‖pk = ‖Fk j‖pkIΩ∩Ωk
≤C‖Fk j‖wk = ‖Fk j‖w,

whence the contention follows.

Hence, by vitue of Theorem 4.1 there is no loss of generality in assuming

that (u jχk) j converges in L
npk

n−pk
− ε

20 (Ω). For simlicity, let qk be the right-

endpoint of p(Ωk) for 1≤ k ≤ J. Next, if 1≤ j ≤ J, set

d j :=
(

q j +
ε
20

)
IΩ j +

(
w++

ε
20

)
IΩ\Ω j .

Then d j ≥ w+ ε
20 for all x ∈Ω and one has the continuous embedding

Ld j(Ω) ↪→ Lw+ ε
20 (Ω). (4.26)

For any function u ∈W 1,ϕ
0 (Ω) and 1≤ k ≤ J−1:

�

Ω

|uχk|dk =

�

Ω

|uχk|dkIΩk =

�

Ω

|uχk|qk+
ε
20 =

�

Ω

|uχk|
npk

n−pk
− ε

20 . (4.27)

The preceding string of inequalities yields the following observation:

If (u jχk) j is a Cauchy sequence in L
npk

n−pk
− ε

20 (Ω), 1 ≤ k ≤ J− 1 then

it is convergent in Ldk(Ω) and by virtue of (4.26), (u jχk) j converges in

Lw+ ε
20 (Ω).

We claim that the latter observation yields the convergence of (u jχk) j in

Lϕ(Ω) for 1≤ k ≤ J−1. Indeed, there is no loss of generality by assuming

that (u jχk) j converges pointwise a.e; on the other hand:

�

Ω

ϕ(x, |u j(x)−ui(x)|χk(x))dx = (4.28)

�

{x:|u j(x)−ui(x)|χk(x)≤S0}
ϕ(x, |u j(x)−ui(x)|χk(x))dx+

�

{x:|u j(x)−ui(x)|χk(x)>S0}
ϕ(x, |u j(x)−ui(x)|χk(x))dx.
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Since for any fixed x ∈ Ω, the function ϕ(x, ·) is nondecreasing, the inte-

grand in the first term above satisfies the inequality

ϕ(x, |u j(x)−ui(x)|χk(x))≤ ϕ(x,S0).

The assumption of local integrability on ϕ in conjunction with a straightfor-

ward application of Lebesgue’s dominated convergence yields

lim
i, j→∞

�

{x:|u j(x)−ui(x)|χk(x)≤S0}
ϕ(x, |u j(x)−ui(x)|χk(x))dx = 0.

Since S0 > 1, the second integral in (4.28) is dominated by

�

{x:|u j(x)−ui(x)|χk(x)>S0}
|u j(x)−ui(x)|w(x)+ ε

20 χk(x)dx.

In all,
(
ρϕ((u j−ui)χk) j

) −→ 0 as i, j −→ ∞. Next, we observe that for C1

as in the statement of Lemma 4.2 one has:

ρϕ(C1(ui−u j)χk) = �

{x:|u j(x)−ui(x)|χk(x)≤S0}
ϕ(x,C1|u j−ui|χk))dx

+

�

{x:|u j(x)−ui(x)|χk(x)>S0}
ϕ(x,C1|u j−ui|χk))dx;

a straightforward application of Lebesgue’s dominated convergence theo-

rem on the first integral and the consideration of Lemma 4.2 in the second

one easily yield

ρϕ(C1(ui−u j)χk)−→ 0 as i, j −→ ∞.

It follows automatically by induction that for any l ∈ N one has

ρϕ(Cl
1(ui−u j)χk)−→ 0 as i, j −→ ∞,

and it is concluded from here that the sequence (u jχk) j is Cauchy in Lϕ(Ω),
as claimed.

The remaining intervals in the covering are handled similarly: define

wJ := wIΩ∩ΩJ ≥ (n− r)IΩ∩ΩJ ;
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then the embedding

W 1,wJ
0 (Ω) ↪→W 1,n−r

0 (Ω)

is bounded. Retaining the notation of the above discussion, the sequence

(u jχJ) j is bounded in W 1,n−r
0 (Ω); without loss of generality it can be con-

sidered convergent in L
n(n−r)

r (Ω), which by the choice of r in (4.20) is con-

tinuously embedded in Ln+2r(Ω). Setting

h = (n+2r)IΩJ +
(

w++
ε
20

)
IΩ\ΩJ

it is clear that Lh(Ω) is continuously embedded in Lw+ ε
20 (Ω). It follows im-

mediately that (u jχJ) j is Cauchy in the latter space. Theorem 4.3 ensures

now that (u jχJ) j is convergent in Lϕ(Ω).

Finally, via the continuous embeddings

W 1,ϕ
0 (Ω) ↪→W 1,w

0 (Ω) ↪→W
1,(n+ r

2 )IΩJ+1
+w−IΩ\ΩJ+1

0 (Ω)

the boundedness of (u jχJ+1) j in W 1,ϕ
0 (Ω) yields its boundedness in

W
1,n+ r

2
0 (Ω) and by way of Theorem 4.1 it is readily concluded that

(u jχJ+1) j can be considered convergent in C(Ω), hence convergent in

Lϕ(Ω).

In all, for m− < n any bounded sequence (u j) j ⊂W 1,ϕ
0 (Ω) has a subse-

quence that converges in Lϕ(Ω).

The case n≤m− follows similarly; we only sketch the proof in this case.

For r as in (4.20), there exists T0 > 1 such that uniformly on Ω and for

all t ≥ T0 it holds that

tm(x)− r
4 < M(x, t)< tm(x)+r.

It follows as earlier that given the conditions on the index, there are positive

constants c1 > 1, c2 > 1 and T > 1 for which

c1tn− r
4 ≤ ϕ(x, t)< tm(x)+r (4.29)

uniformly in Ω, for all t ≥ T . Consider a partition of unity (χ1,χ2) subordi-

nated to the cover of Ω that consists of the open sets

Ω1 = p−1 ((n− r,n+ r)∩ I) , Ω2 = p−1
((

n+
r
2
,∞
)
∩ I
)
.
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If (u j) j is a bounded sequence in W 1,ϕ
0 (Ω) (hence in W

1,n− r
4

0 (Ω)) one can

set

q =
(

n− r
4

)
IΩ1

+m−IΩ\Ω1

and along the same lines as in (4.24)-(4.25), conclude that (u jχ1) j is

bounded in W
1,n− r

4
0 (Ω). Via Theorem 4.1 and on account of the choice

(4.20) it follows that (u jχ1) j has a subsequence that converges in Ln+2r(Ω).
If

t := (n+2r)IΩ∩Ω1
+(m++2r) IΩ\Ω∩Ω1

,

then the obvious equality

�

Ω

∣∣(ui−u j)χ1

∣∣n+2r
=

�

Ω

∣∣(ui−u j)χ1

∣∣t
implies that the subsequence also converges in Lt(Ω) and since m + r <
t in Ω, it converges also in Lm+r(Ω), hence in Lϕ(Ω) via the right-hand

inequality in (4.29). Still denoting this subsequence by (u jχ1) j, it is easy to

see, that (u jχ2) j is bounded in W
1,n+ r

2
0 (Ω); therefore from Theorem 4.1 it

is clear that it has a subsequence (still denoted by (u jχ2) j) that converges

in Lm+2r(Ω). The right-hand inequality in (4.22) yields the convergence of

(u jχ2) j in Lϕ(Ω).
A straightforward computation reveals that the above conclusion implies the

compactness of the embedding (4.19) in all cases.

It is apparent from the proof of the preceding Theorem that functions in

W 1,ϕ
0 (Ω) belong to a higher order integrability space than just Lϕ(Ω). We

state this important fact as a separate corollary:

Corollary 4.2. For a Musielak-Orlicz function ϕ on Ω that fulfills the con-
ditions of Theorem 4.3, the embedding

W 1,ϕ
0 (Ω) ↪→ Lm(x)+ ε

20 (Ω)� Lϕ(Ω)

is compact.

The following Corollary generalizes the Poincaré’s inequality to the set-

ting of Musielak-Orlicz spaces.

Corollary 4.3 (Poincaré’s inequality). For ϕ satisfying the conditions of
Theorem 4.3, there exists a positive constant C depending only on n,Ω,ϕ ,
such that for any u ∈W 1,ϕ

0 (Ω)

‖u‖ϕ ≤C‖|∇u|‖ϕ .

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



100 New Trends in Analysis and Geometry

Proof. If not, it would be an elementary matter to construct a sequence

(vk)⊂W 1,ϕ
0 (Ω)

with

‖vk‖1,ϕ = 1≥ ‖vk‖ϕ ≥ k‖|∇vk|‖ϕ for k ∈ N.

Clearly,

|∇vk| −→ 0 in Lϕ(Ω) (4.30)

as k −→ ∞ and the compactness of the Sobolev embedding yields the exis-

tence of v ∈ Lϕ(Ω) for which

vk −→ v in Lϕ(Ω).

Necessarily then,

‖vk− v j‖1,ϕ = ‖vk− v j‖ϕ +‖∇(vk− v j)‖ϕ −→ 0 as k, j −→ ∞;

it follows that (vk)k converges in W 1,ϕ
0 (Ω) and it is obvious that the limit

must be v. On the other hand, (4.30) forces ∇v = 0 and hence v = 0, which

is a contradiction.

4.6 Applications
In this Section some applications of the preceding compactness results

are studied. Throughout this Section, Ω⊂Rn denotes a bounded domain and

ϕ stands for a Musielak-Orlicz function on Ω that satisfies all the conditions

of Theorem 4.3

We set

Br :=
{

u ∈W 1,ϕ
0 (Ω) : ρϕ(|∇u|)≤ r

}
Theorem 4.4. Let ϕ be an Musielak-Orlicz function on Ω; assume that ϕ
satisfies the conditions of Theorem 4.3; in particular, ϕ satisfies the Δ2-
condition, i.e., for some K > 0, S0 > 0 it holds that

ϕ(x,2s)≤ Kϕ(x,s) for all s≥ S0 , x ∈Ω. (4.31)

Then,
sup

{
ρϕ(u) : ρϕ(|∇u|)≤ r

}
< ∞. (4.32)
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The following Lemma is vitally important in what follows.

Lemma 4.3. For r > 0, the modular ball

Br :=
{

u ∈W 1,ϕ
0 (Ω) : ρϕ(|∇u|)≤ r

}
is weakly closed.

Proof. See [14].

Theorem 4.5. Let r > 0. Then there exists a function ur ∈W 1,ϕ
0 (Ω) that is

maximal in the following sense:

ρϕ(ur) = Sr = sup
{

ρϕ(u) : ρϕ(|∇u|)≤ r
}

Proof. For each n ∈ N, select a function un un in Br with

Sr− 1

n
< ρϕ(un).

The sequence (un) is bounded in W 1,ϕ
0 (Ω); indeed, Theorem 4.4 guarantees

that the numerical sequence (ρϕ(un)) is bounded and it follows from here

that either ‖un‖ϕ ≤ 1 or

1 = ρϕ
(
un/‖un‖ϕ

)≤ ‖un‖−1
ϕ ρϕ(un), (4.33)

so that the boundedness of the sequence (‖un‖ϕ) follows from that of the

sequence (ρϕ(un)) (4.32). Likewise, since by definition, (ρϕ (|∇un|)) is

bounded, either ‖|∇un|‖ϕ ≤ 1 or

1 = ρϕ
(|∇un|/‖|∇un|‖ϕ

)≤ ‖|∇un|‖−1
ϕ ρϕ(|∇un|). (4.34)

Inequalities (4.33) and (4.34) together with the discussions preceding them

show the claimed boundedness of (un).

On account of the theorem of Banach-Alaoglu and of the reflexivity of

W 1,ϕ
0 (Ω), no generality is lost by assuming that (un) converges weakly in

W 1,ϕ
0 (Ω); let

un
W 1,ϕ

0 (Ω)
⇀ u ∈W 1,ϕ

0 (Ω). (4.35)

In particular, in the light of Theorem 4.3, statement (4.35) ensures that u ∈
Br.

By virtue of the compactness of the Sobolev embedding (Theorem 4.3)

one has the strong convergence

un
Lϕ (Ω)−→ u
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One can hence assume that un −→ u a.e. in Ω. In fact, u is the sought-for

maximal function. To see this, we notice that a.e. in Ω,

ϕ(x, |un(x)|)−→ ϕ(x, |u(x)|)
and that on account of convexity, for any n ∈ N:

ϕ(x, |un(x)|)≤ 1

2
ϕ(x,2|un(x)−u(x)|)+ 1

2
ϕ(x,2|u(x)|). (4.36)

Select n large enough so that 2‖u−un‖ϕ < 1; for such n (4.36) yields:

ϕ(x, |un(x)|)≤ ‖un−u‖ϕ ϕ
(

x,
|un(x)−u(x)|
‖u−un‖ϕ

)
+

1

2
ϕ(x,2|u(x)|). (4.37)

Denote the left-hand side and the right-hand side of (4.37) by vn and wn
respectively. Then the following conditions hold:

(i) vn(x)→ v(x) = ϕ(x, |u(x)|) ∈ L1(Ω) a.e. in Ω

(ii) wn(x)→ w(x) = 1
2 ϕ(x,2|u(x)|) ∈ L1(Ω) a.e. in Ω

(iii) vn,wn ∈ L1(Ω) for any n ∈ N

(iv)
�

Ω
wndx→ �

Ω

1
2 ϕ(x,2|u|)dx = 1

2 ρϕ(2u).

Since w− v≥ 0 a.e in Ω, Fatou’s Lemma leads to:�

Ω

(w− v)dx≤
�

Ω

wdx+ liminf
n

�

Ω

(−vn)dx

=

�

Ω

wdx− limsup
n

�

Ω

vn dx

and �

Ω

(w+ v)dx≤
�

Ω

wdx+ liminf
n

�

Ω

vn dx.

The two last statements yield

lim
n→∞

�

Ω

ϕ(x, |un(x)|)dx =
�

Ω

ϕ(x, |u(x)|)dx

or, equivalently

ρϕ(un)−→ ρϕ(u) as n→ ∞. (4.38)

By construction ρϕ(un)−→ Sr; (4.38) is therefore the desired result.
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Theorem 4.6. Let
ϕ : Ω× [0,∞)−→ [0,∞)

be a Musielak-Orlicz function on a bounded domain Ω ⊂ Rn. Assume that
ϕ satisfies the conditions of Theorem 4.3, that ϕ is an N-function and that

∂ϕ
∂ t

(x, t)> 0 for t > 0 and a.e.x ∈Ω. (4.39)

Then there exists at least one (weak) solution (λ0,u0) to the problem

div
(
|∇u(·)|−1∇u

∂
∂ t

ϕ(·, |∇u(·)|)
)
= λ |u(·)|−1u

∂
∂ t

ϕ(·, |u(·)|).

To facilitate the proof of Theorem 4.6 we digress on Lagrange-

multipliers. Let F be the functional defined by

F : Lϕ(Ω)→ [0,∞) F(v) = ρϕ(v) (4.40)

and set G(v) = F(|∇v|) for v ∈W 1,ϕ
0 (Ω).

For any r > 0, we recall that Theorem 4.5 yields the existence of at least

ur ∈W 1,ϕ
0 (Ω) such that

F(ur) = ρϕ(ur) = Sr = sup
{

ρϕ(u) : ρϕ(|∇u|) = G(u)≤ r
}
.

Lemma 4.4. It is easy to conclude (see [14]) that

〈G′(ur),ur〉> 0. (4.41)

Proof. It is clear that

〈G′(ur),ur〉=
�

Ω

∂ϕ
∂ s

(x, |∇ur(x)|)|∇ur(x)|dx.

On the other hand, G(ur) =
�
Ω

ϕ(x, |∇ur(x)|)dx= r > 0. In all, one must have

ϕ(x, |∇ur(x)|) > 0 a.e. x ∈ Ω. Thus, |∇ur(x)| > 0 a.e. ∈ Ω. The claim now

follows on account of assumption (4.39).

Lemma 4.5. Under the assumptions of Lemma 4.4, it follows that

W 1,ϕ
0 (Ω) = ker G′(ur)⊕〈{ur}〉. (4.42)

Proof. The proof is elementary: Any v ∈W 1,ϕ
0 (Ω) can be written as

v = v− (〈G′(ur),v〉/〈G′(ur),ur〉
)

ur +
(〈G′(ur),v〉/〈G′(ur),ur〉

)
ur

and a straightforward calculation shows this decomposition to be unique.
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Next, set

ω : ker G′(ur)⊕R−→ [0,∞)

ω(h, t) = G((1+ t)ur +h)− r.

By definition, it is immediate that w(0,0) = 0.
We claim that w is differentiable in both variables, that ∂w

∂ t (0,0)> 0 and that
∂w
∂h (0,0) = 0. The differentiability of w is clear from the differentiability of

G; it follows that
∂w
∂ t

(0,0) = 〈G′(ur),ur〉> 0.

The last assertion follows by direct computation, namely, for any h ∈ kerG′
(i.e., 〈G′(ur),h〉= 0) one has:

w(h,0)−w(0,0)
‖h‖1,ϕ

= w(h,0)/‖h‖1,ϕ =
G(ur +h)−G(ur)

‖h‖1,ϕ

=
G(ur +h)−G(ur)−〈G′(ur),h〉

‖h‖1,ϕ

−→ 0 as ‖h‖1,ϕ → 0.

Lemma 4.6. For w as above, the function

∂w
∂h

: ker G′(ur)⊕R−→ (
ker G′(ur)

)∗
is continuous.

Proof. By definition, one has, for η ∈ ker G′(ur):

∂w
∂h

(h0, t0)(η) = G
′
(h0 +(1+ t0)ur)(η)

�

Ω

∂ϕ
∂ s

(x, |∇u0(x)|)∇u0(x)∇η(x)
|∇u0(x)| dx.

The continuity claim follows immediately from Theorem 2.7.2 in [14], and

through repeated applications of Hölder’s inequality and Lebesgue’s domi-

nated convergence theorem.

Therefore, the implicit function theorem applies to w. There exist thus a

neighborhood of zero U in W 1,ϕ
0 (Ω), ε > 0 and a differentiable function

ψ : U ∩kerG′(ur)−→ (−ε,ε)
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such that for any (a,b) ∈U ∩kerG′(ur)× (−ε,ε) one has

w(a,b) = 0 ⇐⇒ b = ψ(a).

Select h ∈ kerG′, let δ > 0 be so small that th ∈U ∩ kerG′(ur) for |t| < δ
and put

b : (−δ ,δ )−→W 1,ϕ
0 (Ω)

b(t) = ur + th+ψ(th).

Then b(0) = ur, b is differentiable at 0 (since so is ψ) and b′(0) = h, since

ψ ′(0) = 0. Then the function

ξ : (−δ ,δ )−→ [0.∞)

ξ (t) = F(ur + th+ψ(th))

is differentiable and attains a maximum at t = 0. It follows then that

ξ ′(0) = F ′(ur)(h) = 0

and from here, by assumption on h, that

kerG′ ⊆ kerF ′.

Since both, kerG′ and kerF ′ have codimension one and neither functional

is identically zero, it is concluded that

kerG′(ur)⊆ kerF ′(ur),

and thus that there must exist a constant λ ∈ R such that

G′(ur) = λF ′(ur). (4.43)

4.6.1 The eigenvalue problem for the p-Laplacian

Fix a bounded domain Ω⊂ Rn and a function p ∈C(Ω) with 1 < p− ≤
p+ < ∞ on Ω. It is well known [35] that W 1,p

0 (Ω) is reflexive, whereas The-

orem 4.3 asserts that the Sobolev embedding

E : W 1,p(·)
0 (Ω) ↪→ Lp(·)(Ω) (4.44)

is in fact, compact. Theorem 2.7.8 in [14] gives an expression for the Fréchet
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derivative of the norm ‖·‖p. Elementary considerations show that the action

of the Fréchet derivative of the norm

W 1,p
0 (Ω) � u→‖u‖(1)p = ‖|∇u|‖p

on h ∈W 1,p
0 (Ω) is given by the following:

h−→
�

Ω

p‖∇u‖−p
p ‖∇u‖p−1∇u∇h�

Ω
p‖∇u‖−p−1

p ‖∇u‖pdx
dz. (4.45)

Remarkably, when p is constant on Ω, the operator given by (4.45) takes up

the form

−‖|∇u|‖1−p
p div

(|∇u|p−2∇u
)
=−‖|∇u|‖1−p

p Δp(u),

where Δp(u) := div
(|∇u|p−2∇u

)
is the much-studied p-Laplacian operator,

which emerged in the treatment of some applications to fluid mechanics.

On the other hand, any extremal function u0 for the Sobolev embedding

(4.44) is a solution of the eigenvalue problem

(grad‖u‖p) = λ (grad‖u‖(1)p ), (4.46)

with λ = ‖u0‖p/‖|∇u0|‖p ([3]).

It is shown in [3] that if (λ ,u) ∈ (0,∞)×W 1,p
0 (Ω) is a solution of Prob-

lem (4.46), then necessarily λ ≤ ‖E‖.
Problem (4.46) becomes

−λ‖|∇u|‖1−p
p div

(|∇u|p−1∇u
)
= ‖u‖1−p

p |u|p−2u,

which can be equivalently written as

−div
(|∇u|p−1∇u

)
= λ−1 (‖|∇u|‖p/‖u‖)p−1

p |u|p−2u. (4.47)

Any λ ∈ R satisfying equality (4.47) for some u ∈W 1,p
0 (Ω) satisfies the

inequality

λ−1 = ‖|∇u‖p/‖u‖p ≥ ‖E‖−1;

moreover, if (λ ,u) ∈ (0,∞)×W 1,p
0 (Ω) solves Problem (4.47), then the pair

(λ−1 (‖|∇u|‖p/‖u‖)p−1
p ,u)

is a solution of the eigenvalue problem for the p-Laplacian, namely

−Δpu = γ|u|p−2u (4.48)
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and conversely if (γ,v) is any solution of (4.48), then

(γ−1 (‖v‖p/‖|∇v|‖p)
p−1 ,v)

is a solution of (4.47). It is apparent from the preceding argument that under

the assumption of constant p, the smallest eigenvalue of the p-Laplacian p-

Laplacian is ‖E‖p, the p-th power of the norm of the Sobolev embedding;

also its corresponding first eigenfunction (which was shown in [2] to be

unique up to multiplication times constants, see also [7] for a simpler proof)

is extremal for the Sobolev embedding E. The situation changes radically

when p is non-constant on Ω. In this case, the tempting natural generaliza-

tion that results from replacing p with a function in problem (4.48), while

an eigenvalue problem, is not related to problem (4.46) in any useful way,

and both problems, (4.46) and (4.48) must be studied separately (see [10]

and the references therein).

Corollary 4.4. Let Ω⊂Rn be a bounded domain and p∈C(Ω). Then there
exists at least a solution (λ ,u)∈ (0,∞)×W 1,p

0 (Ω) of the modular eigenvalue
problem

−Δpu = λ |u|p−2u. (4.49)

Proof. By virtue of Theorem 4.6, for each r > 0 there exists an eigenfunc-

tion ur satisfying the exremality condition of Theorem 4.5 and a correspond-

ing eigenvalue λr for which (4.49) holds.
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Chapter 5
The wave equation with non-standard
linearities
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In this Chapter, a brief overview of some results related to the variable-

exponent Lebesgue and Sobolev spaces is presented. This is followed by a

brief discussion of some important and recent results related to the nonex-

istence and blow-up for wave equations with non-standard nonlinearities

(nonlinearities involving variable exponents), as well as some decay and

stability results for classical nonlinear wave equations. Finally we present

an exponential decay result for a strongly damped wave equation with a

nonstandard damping.
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5.1 Definitions and preliminaries

5.1.1 The variable-exponent Lebesgue spaces

In this Subsection some preliminary facts about the Lebesgue spaces

with variable exponents are summarized.

Definition 5.1. Let X be a K−vector space. A function ρ : X −→ [0,∞] is

said to be left-continuous if the mapping λ −→ ρ(λx) is left-continuous on

[0,∞), for every x ∈ X ; that is,

lim
λ→1−

ρ(λx) = ρ(x), ∀ x ∈ X .

Definition 5.2. Let X be a K−vector space. A function ρ : X −→ [0,∞] is

called a semimodular on X if the following properties hold:

(a) ρ(0) = 0

(b) ρ(λx) = ρ(x), for all x ∈ X and λ ∈K, with |λ |= 1

(c) ρ is convex

(d) ρ is left-continuous

(e) ρ(λx) = 0, for all λ > 0 implies x = 0

A semimodular is called modular if

(f) ρ(x) = 0 implies x = 0

A semimodular is called continuous if

(g) the mapping λ −→ ρ(λx) is continuous on [0,∞) for all x ∈ X

Example 5.1. Let L0(Ω) be the set of all Lebesgue-measurable functions

defined on Ω. If 1≤ p <+∞, then

ρp( f ) :=

�
Ω
| f (x)|pdx

defines a continuous modular on L0(Ω).
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Theorem 5.1. [25] Let ρ be a semimodular on X. Then, the mapping λ →
ρ(λx) is non-decreasing on [0,∞) for every x ∈ X. Moreover

ρ(λx) = ρ(|λ |x)≤ |λ |ρ(x) for all |λ | ≤ 1,

ρ(λx) = ρ(|λ |x)≥ |λ |ρ(x) for all |λ | ≥ 1.
(5.1)

Definition 5.3. [25] Let (A,Σ,μ) be a σ−finite, complete measure space.

Let P(A,μ) be the set of all μ−measurable functions p : Ω→ [1,∞]. The

function p ∈P(A,μ) is called a variable exponent on A. Set

p1 := essinfy∈A p(y) and p2 := esssupy∈A p(y).

If p2 < +∞, then p is said to be a bounded variable exponent. If p ∈
P(A,μ), then we define p� ∈P(A,μ) by

1

p(y)
+

1

p�(y)
= 1, where

1

∞
:= 0.

The function p� is called the dual variable exponent of p. In the special case

when μ is the n− dimensional Lebesgue measure and Ω is an open subset

of Rn, denote P(Ω) := P(Ω,μ).

Definition 5.4. [25] We define the Lebesgue space with a variable exponent

p(·) by

Lp(·)(Ω) :=
{

u : Ω→R; measurable in Ω : ρp(·)(λu)<∞, for some λ > 0
}
,

where

ρp(·)(u) =
�

Ω
|u(x)|p(x)dx

is easily seen to be a modular. Lp(·)(Ω) is endowed with the following

Luxemburg-type norm

‖u‖p(·) := inf
{

λ > 0 :

�
Ω

∣∣∣u(x)λ

∣∣∣p(x)dx≤ 1
}
.

Example 5.2. Let p(x) = x on Ω = (1,2). Then ‖1‖p(·) = 1. Indeed,

ρp(·)(1/λ ) =
� 2

1

λ−xdx =
λ −1

λ 2 lnλ
.

Since ρp(·)(1) = 1, then, by definition of ‖1‖p(·), we have ‖1‖p(·) ≤ 1. On

the other hand, it is easy to check that ρp(·)(1/λ ) > 1, for 0 < λ < 1. This

gives ‖1‖p(·) ≥ 1. Hence, we conclude that ‖1‖p(·) = 1.
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Lemma 5.1. If p(x)≡ p, where p is constant. Then,

‖u‖p(·) = λ0 =
(�

Ω
|u|p

) 1
p
. (5.2)

Proof. Since ρp(·)(u/λ0) = 1, then

‖u‖p(·) ≤ λ0. (5.3)

Next, using the property of the infimum, it is easy to see that there exists a

sequence {λk}∞
k=1 such that λk ≥ ‖u‖p(·), with

ρp(·)(u/λk)≤ 1 and λk →‖u‖p(·).

Since, ρp(·)(u/λk) =
1

(λk)
p

�
Ω |u|p ≤ 1, it follows

λ0 ≤ ‖u‖p(·). (5.4)

(5.2) follows by combining (5.3) and (5.4).

Definition 5.5. [25] We say that a function q : Ω→R is log-Hölder contin-

uous on Ω, if there exist A > 0 and 0 < δ < 1 such that

|q(x)−q(y)| ≤ − A
log |x− y| , for all x,y ∈Ω, with |x− y|< δ . (5.5)

Lemma 5.2. Let Ω be a domain of Rn. If p : Ω→ R is a Lipchitz function,
then it is log-Hölder continuous on Ω.

Proof. Let x,y ∈ Ω, with |x− y| < δ and 0 < δ < 1. Then, since p is Lips-

chitz, there exists L > 0 such that

|p(x)− p(y)| ≤ L|x− y|
≤ − L

log |x− y|
(−|x− y| log |x− y|). (5.6)

It is easy to check that g(s) = −s logs is continuous on [0,1] and hence

is bounded. So we have 0≤−s logs≤M. Therefore, (5.6) becomes

|p(x)− p(y)| ≤ − A
log |x− y| , (5.7)

where A = LM > 0. Hence, p is log-Hölder continuous.

Example 5.3. Let p(x,y) = x2 +1 be defined on the unit ball Ω = B(0,1).
Then, by the previous lemma p : Ω→ R is log-Hölder continuous on Ω.
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Lemma 5.3. [25][Unit ball property] Let p∈P(A,μ) and f ∈ Lp(·)(A,μ).
Then

(i) ‖ f‖p(·) ≤ 1 if and only if ρp(·)( f )≤ 1

(ii) If ‖ f‖p(·) ≤ 1, then ρp(·)( f )≤ ‖ f‖p(·)

(iii) If ‖ f‖p(·) ≥ 1, then ‖ f‖p(·) ≤ ρp(·)( f )

(iv) ‖ f‖p(·) ≤ 1+ρp(·)( f )

The following results from [25] are mentioned without proof.

Lemma 5.4. If 1 < p1 ≤ p(x)≤ p2 <+∞ holds, then

min
{‖u‖p1

p(·),‖u‖p2

p(·)
}≤ ρp(·)(u)≤max

{‖u‖p1

p(·),‖u‖p2

p(·)
}
,

for any u ∈ Lp(·)(Ω).

Theorem 5.2. If p ∈P(A,μ), then Lp(·)(A,μ) is a Banach space.

Lemma 5.5. If p : Ω→ [1,∞) is a measurable function with p2 <+∞, then
C∞

0 (Ω) is dense in Lp(·)(Ω).

Lemma 5.6 (Young’s Inequality). Let p,q,s ∈P(Ω) such that

1

s(y)
=

1

p(y)
+

1

q(y)
, for a.e y ∈Ω.

Then for all a,b≥ 0,

(ab)s(·)

s(·) ≤ (a)p(·)

p(·) +
(b)q(·)

q(·) . (5.8)

By taking s = 1, and 1 < p,q <+∞, it follows that for any ε > 0,

ab≤ εap +Cε bq, ∀a, b≥ 0,

where Cε =
1

q(ε p)
q
p
. For p = q = 2, ,

ab≤ εa2 +
b2

4ε
.

Lemma 5.7 (Hölder’s Inequality). Let p,q,s ∈P(Ω) such that

1

s(y)
=

1

p(y)
+

1

q(y)
, for a.e y ∈Ω.

If f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω), then f g ∈ Ls(·)(Ω) and

‖ f g‖s(·) ≤ 2 ‖ f‖p(·)‖g‖q(·).

Taking p = q = 2, yields the Cauchy-Schwarz inequality.
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5.1.2 The variable-exponent Sobolev spaces

In this Subsection some functional analysis-type properties of Sobolev

spaces with variable exponents are studied. Recall the definition of weak

derivative.

Definition 5.6. (weak derivative). Let Ω ⊂ Rn be a domain. Assume that
u ∈ L1

loc(Ω). Let α := (α1, ....,αn) ∈Nn be a multi-index and let |α|= α1 +
....+αn. If there exists g ∈ L1

loc(Ω) such that
�

Ω
u

∂ |α|ψ
∂ α1x1.....∂ αn xn

dx = (−1)|α|
�

Ω
ψg dx,

for all ψ ∈C∞
0 (Ω), then g is called a weak partial derivative of u of order α.

The function g is denoted by ∂α u or ∂ |α|u
∂ α1 x1.....∂ αn xn

.

Definition 5.7. Let k ∈ N. The Sobolev space W k,p(·)(Ω) is defined as

W k,p(·)(Ω) :=
{

u ∈ Lp(·)(Ω) such that ∂α u ∈ Lp(·)(Ω), ∀ |α| ≤ k
}
.

A semimodular on W k,p(·)(Ω) is defined by

ρW k,p(·)(Ω)(u) = ∑
0≤|α|≤k

ρLp(·)(Ω)(∂α u).

This induces a norm given by

‖u‖W k,p(·)(Ω) := inf
{

λ > 0 : ρW k,p(·)(Ω)

( u
λ

)
≤ 1
}

:= ∑
0≤|α|≤k

‖∂α u‖p(·).

For k ∈N, the space W k,p(·)(Ω) is called Sobolev space and its elements are
called Sobolev functions. Clearly W 0,p(·)(Ω) = Lp(·)(Ω) and

W 1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω) such that ∇u exists and |∇u| ∈ Lp(·)(Ω)
}
,

equipped with the norm

‖u‖W 1,p(·)(Ω) = ‖u‖p(·) +‖|∇u|‖p(·).

Theorem 5.3. Let p ∈ P(Ω). The space W k,p(·)(Ω) is a Banach space,
which is separable if p is bounded, and reflexive if 1 < p1 ≤ p2 <+∞.

Definition 5.8. Let p ∈ P(Ω) and k ∈ N. The Sobolev space W k,p(·)
0 (Ω)

”with zero boundary trace” is the closure in W k,p(·)(Ω) of the set of
W k,p(·)(Ω)−functions with compact support, i.e.,

W k,p(·)
0 (Ω) =

{
u ∈W k,p(·)(Ω) : u = uχK f or a compact K ⊂Ω

}
.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



The wave equation with non-standard linearities 117

Remark 5.1. [25] Let p ∈P(Ω) and k ∈ N. Then

(i) The space Hk,p(·)
0 (Ω) is defined as the closure of C∞

0 (Ω) in W k,p(·)(Ω).

(ii) Hk,p(·)
0 (Ω)⊂W k,p(·)

0 (Ω).

(iii) If p is log-Hölder continuous on Ω, then W k,p(·)
0 (Ω) = Hk,p(·)

0 (Ω).

(iv) The dual of W 1,p(·)
0 (Ω) is defined as W−1,p′(·)(Ω), in the same way as

the usual Sobolev spaces, where 1
p(·) +

1
p′(·) = 1.

Theorem 5.4. Let p ∈ P(Ω). The space W k,p(·)
0 (Ω) is a Banach space,

which is separable if p is bounded, and reflexive if 1 < p1 ≤ p2 <+∞.

Theorem 5.5. (Poincaré’s inequality). Let Ω be a bounded domain of Rn

and let p(·) satisfy the Log-Hölder continuity property. Then

‖u‖p(·) ≤C‖∇u‖p(·), for all u ∈W 1,p(·)
0 (Ω),

where the positive constant C depends on p(·) and Ω only. In particular, the
space W 1,p(·)

0 (Ω) has an equivalent norm given by ‖u‖
W 1,p(·)

0 (Ω)
= ‖|∇u|‖p(·).

If p = 2 we set H1
0 (Ω) =W 1,2

0 (Ω).

Remark 5.2. Contrary to the constant-exponent case, there is no modular-

type Poincaré’s inequality. The following example shows that Poincaré’s

inequality does not, in general, hold in a modular form.

Example 5.4. [25]Let p : (−2,2) −→ [2,3] be a Lipschitz continuous ex-

ponent defined by

p(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3, i f x ∈ (−2,−1)∪ (1,2)
2, i f x ∈ (− 1

2 ,
1
2 )

−2x+1, i f x ∈ [−1,− 1
2 ]

2x+1, i f x ∈ [ 1
2 ,1].

Let uμ be the xLipschitz function defined by

uμ(x) =

⎧⎪⎨⎪⎩
μx+2μ, i f x ∈ (−2,−1]

μ, i f x ∈ (−1,1)

−μx+2μ, i f x ∈ [1,2).

Then

ρ(uμ)

ρ(u′μ)
=

� 2
−2 |uμ |p(x) dx

� 2
−2 |u′μ |p(x) dx

≥
� 1

2

− 1
2

μ2 dx

2
� −1
−2 μ3 dx

=
1

2μ
→ ∞

as μ → 0+.
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This Subsection is concluded with some essential embedding results.

See [25].

Lemma 5.8. Let Ω be a bounded domain in Rn with a smooth boundary
∂Ω. Assume that p : Ω→ (1,∞) is a measurable function such that

1 < p1 ≤ p(x)≤ p2 <+∞, for a.e. x ∈Ω.

Assume that p(x),q(x) ∈ C(Ω) and that q(x) < p∗(x) in Ω with p∗(x) ={
np(x)

n−p(x) , if p2 < n

∞, if p2 ≥ n.

Then the embedding W 1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and compact.

As a special case, we underline the following:

Corollary 5.1. Let Ω be a bounded domain in Rn with a smooth boundary
∂Ω. Assume that p : Ω→ (1,∞) is a continuous function such that

2≤ p1 ≤ p(x)≤ p2 <
2n

n−2
, n≥ 3. (5.9)

Then the embedding H1
0 (Ω) ↪→ Lp(·)(Ω) is continuous and compact.

5.1.3 Blow-up for the wave equation with variable-exponent
nonlinearity

In recent years, a great deal of attention has been paid to the investi-

gation of nonlinear models of hyperbolic, parabolic and elliptic equations

with nonlinearities involving variable exponents. Such probems appear, for

instance, in some models for physical phenomena like flows of electro-

rheological fluids or fluids with temperature-dependent viscosity, filtration

processes in a porous media, nonlinear viscoelasticity, and image process-

ing. More details on this subject can be found in [2] and [3]. Interestingly,

only few works have appeared on hyperbolic problems with nonlinearities of

variable-exponent type. For instance, Antontsev [5] considered the equation

utt −div(a(x, t)|∇u|p(x,t)−2∇u)−αΔut = b(x, t)u|u|σ(x,t)−2

in a bounded domain Ω ⊂ Rn, where α > 0 is a constant and a,b, p,σ are

given functions. For specific conditions on a,b, p,σ , he proved some blow-

up results, for certain solutions with non positive initial energy. He also

discussed the case when α = 0 and established a blow-up result. Subse-

quently, the same author [4] discussed the same equation and proved local

and a global existence of some weak solutions under certain hypotheses on
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the functions a,b, p,σ . He also established some blow-up results for cer-

tain solutions having non positive initial energy. Guo and Gao [19] looked

into the same problem [5] and established several blow-up results for cer-

tain solutions associated with negative initial energy. Precisely, they took

σ(x, t) = σ > 2, a constant, and established a blow-up result in finite-time.

For the case σ(x, t) = σ(x), they claimed the same blow-up result, but no

proof has been given. This work is considered to be an improvement over

[5]. In [47], Sun et al. looked into the following equation:

utt −div(a(x, t)∇u)+ c(x, t)ut |ut |q(x,t)−1 = b(x, t)u|u|p(x,t)−1

in a bounded domain, with Dirichlet-boundary conditions, and established

a blow-up result for solutions with positive initial energy. They also gave

lower and upper bounds for the blow-up time and provided numerical illus-

trations for their result. Recently, Messaoudi and Talahmeh [31] studied

utt −div(|∇u|m(x)−2∇u)+μut = |u|p(x)−2u, (5.10)

with Dirichlet-boundary conditions and for μ ≥ 0. They proved a blow-up

result for certain solutions with arbitrary positive-initial-energy. This result

generalized that of Korpusov [24] established for (5.10), with m and p con-

stants. This latter result was later extended by the same authors in [32] to an

equation of the form

utt −div
(|∇u|r(·)−2∇u

)
+a|ut |m(·)−2ut = b|u|p(·)−2u,

where a, b > 0 are constants and the exponents of nonlinearity m, p and r
are given functions satisfying specific conditions. They proved a finite-time

blow-up result for the solutions with negative initial energy and for certain

solutions with positive energy. Very recently, Messaoudi et al. [33] studied

the problem

utt −Δu+aut |ut |m(·)−2 = bu|u|p(·)−2, (5.11)

where a, b are positive constants. They established the existence of a unique

local weak solution by using the Faedo-Galerkin method under suitable as-

sumptions on the variable exponents m and p. They also proved the finite-

time blow-up of solutions and gave a two-dimensional numerical example

to illustrate the blow up result. Yunzhu Gao and Wenjie Gao [15] studied a

nonlinear viscoelastic equation with variable exponents and proved the exis-

tence of weak solutions by using the Faedo-Galerkin method under suitable

assumptions. Autuori et al. [8] looked into a nonlinear Kirchhoff system in

the presence of the −→p (x, t)−Laplace operator, a nonlinear force f (t,x,u)
and a nonlinear damping term Q = Q(t,x,u,ut). They established a global

nonexistence result under suitable conditions on f ,Q, p. For more results

concerning the blow-up of hyperbolic problems, we refer the reader to An-

tontsev and Ferreira [6] and the book by Antontsev and Shmarev [7].

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



120 New Trends in Analysis and Geometry

5.1.4 Stability of the wave equation with variable-exponent
nonlinearity

There is an extensive literature on the stabilization of the wave equation

by internal or boundary feedbacks. Zuazua [51] proved the exponential sta-

bility of the energy for the wave equation by a locally distributed internal

feedback depending linearly on the velocity. Komornik [22] and Nakoa [42]

extended the result of Zuazua by considering the case of a nonlinear damp-

ing term with a polynomial growth near the origin. Martinez [27] studied

a damped wave equation and used the piecewise multiplier technique com-

bined with some nonlinear integral inequalities to establish explicit decay

rate estimates. These decay estimates are not optimal for some cases in-

cluding the case of the polynomial growth. Many authors considered the

following initial boundary value problem of the Kirchhoff equation with a

general dissipation of the form⎧⎪⎪⎨⎪⎪⎩
utt −φ

(�
Ω |∇u|2

)
Δu+σ(t)g(ut) = 0, in Ω× [0,+∞)

u(x, t) = 0, on ∂Ω× [0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Ω,

(5.12)

where Ω is a bounded domain Rn (n≥ 1) with a smooth boundary ∂Ω and

φ ,σ and g are given functions and the functions (u0,u1) are the given ini-

tial data. For instance, in the case when g = σ = 0, the one-dimensional

case of (5.12) was first introduced by Kirchhoff [20] in 1876, and was

called the Kirchhoff string thereafter. When σ = 1,φ(r) = rα (α ≥ 1) and

g(x) = τx (τ > 0), problem (5.12) was treated by Nishihara and Yamada

[43]. They proved the existence and uniqueness of a global solution and the

polynomial decay for small data (u0,u1)∈
(

H1
0 (Ω)∩H2(Ω)

)
×H1

0 (Ω) with

u0 �= 0 . In [44], Ono extended the work [43] to the case where φ(r) = r and

σ(t) ≡ (1+ t)−δ , δ < 1
3 by using the decay lemma of Nakao [39]. In [11],

Benaissa and Guesmia extended the results obtained by Ono [44] and proved

an existence and uniqueness theorem in Sobolev spaces, of a global solution

to the problem (5.12) when φ(r) = r, g(v) = v and for general functions σ .
Also, they obtained an explicit and general decay rate, depending on σ ,g
and φ , for the energy of solutions of (5.12), without any growth assumption

on g and φ at the origin, or on σ at infinity. Also, the following problem⎧⎪⎨⎪⎩
utt −Δu+g(ut)+ f (u) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× [0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Ω,

(5.13)

where Ω is a bounded region in Rn (n ≥ 1), with a smooth boundary ∂Ω,
was considered by many authors. For instance, in the case when f (u) =
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|u|p−2u, g(ut) = |ut |m−2ut , m, p > 2, Nakao [40] showed that (5.13) has a

unique global weak solution if 0 ≤ p− 2 ≤ 2/(n− 2),n ≥ 3 and a global

unique strong solution if p− 2 > 2/(n− 2),n ≥ 3. In addition to global

existence, the issue of the decay rate was also addressed. In both cases it

has been shown that the energy of the solution decays algebraically if m > 2

and decays exponentially if m = 2. This improved an earlier result in [38],

where Nakao studied the problem in an abstract setting and established a

theorem concerning decay of the solution energy only for the case m−2≤
2/(n− 2),n ≥ 3. Also in a joint work, Nakao and Ono [41] extended this

result to the Cauchy problem{
utt −Δu+λ 2(x)u+ρ(ut)+ f (u) = 0, in Rn× (0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Rn,
(5.14)

where ρ(ut) behaves like |ut |β ut and f (u) behaves like−bu|u|α . In this case

the authors required that the initial data be small enough in the H1×L2 norm

and with compact supports. In [28], Messaoudi considered problem (5.13)

in the case f (u) = bu|u|p−2, g(ut) = a(1+ |ut |m−2)ut , a,b > 0, p,m > 2,
and showed that, for any initial data (u0,u1) ∈H1

0 (Ω)×L2(Ω), the problem

has a unique global solution with energy decaying exponentially. Benaissa

and Messaoudi [9] studied (5.13), for f (u) =−bu|u|p−2, and g(ut) = a(1+
|ut |m−2)ut , and showed that, for suitably chosen initial data, the problem

possesses a global weak solution which decays exponentially even if m > 2.
In [17], Guesmia looked into the following problem⎧⎪⎨⎪⎩

utt −Δu+h(∇u)+g(ut)+ f (u) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× [0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Ω,

(5.15)

where Ω is a bounded open domain in Rn (n≥ 1), with a smooth boundary

∂Ω and f ,g : R→ R and h : Rn → R are continuous, nonlinear functions

satisfying some general properties. He obtained uniform decay of strong

and weak solutions under weak growth assumptions on the feedback func-

tion and without any control of the sign of the derivative of the energy re-

lated to the above equation. Guesmia and Messaoudi [18] considered (5.15)

with h(∇u) = −∇φ ·∇u, where φ ∈W 1,∞(Ω), proved local and global ex-

istence results and showed that weak solutions decay either algebraically or

exponentially depending on the rate of growth of g. Pucci and Serrin [46]

discussed the stability of the following problem⎧⎪⎨⎪⎩
utt −Δu+Q(x, t,u,ut)+ f (x,u) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× [0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Ω,

(5.16)

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



122 New Trends in Analysis and Geometry

and proved that the energy of the solution is a Liaponov function. Although

they did not discuss the issue of the decay rate, they did show that in general

the energy goes to zero as t approaches infinity. They also considered an

important special case of (5.16), namely when Q(x, t,u,ut) = a(t)tα ut and

f (x,u) =V (x)u, and showed that the behavior of the solution depends cru-

cially on the parameter α. Specifically, they showed that if |α| ≤ 1 then the

rest field is asymptotically stable. On the other hand, when |α|> 1 there are

solutions that do not approach zero or approach a nonzero function φ(x) as

t → ∞. In [16], Guesmia studied the following elasticity system⎧⎪⎨⎪⎩
∂ttui−σi j, j + �i(x,∂tui) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× [0,+∞)

ui(0) = u0
i ,∂tui(0) = u1

i , in Ω,

(5.17)

where �i(x,∂tui) = bi(x)gi(∂tui), bi’s ∈ L∞(Ω), are bounded nonnegative

functions and gi’s are non-decreasing continuous real-valued functions sat-

isfying some conditions. He proved some precise decay estimates of the

energy for the system (5.17) with some localized dissipations. Zuazua [52]

considered the following damped semilinear wave equation

utt −Δu+αu+ f (u)+a(x)ut = 0 in Rn× (0,∞),

with α > 0. He proved the exponential decay of the energy of the solution

under suitable conditions on the functions f and a. In [10], Benaissa and

Mokeddem looked into the following equation

utt −div
(|∇u|p−2∇u

)−σ(t)div
(|∇ut |m−2∇ut

)
= 0,

where σ is a positive function, p,m ≥ 2 and Ω is a bounded domain in

Rn (n ≥ 1) with a regular boundary. They gave an energy-decay estimate

for the solutions and extended the results of Yang [50] and Messaoudi [29].

Cavalcanti and Guesmia [12] looked into the following problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
utt −Δu+F(x, t,u,∇u) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Γ0× (0,+∞)

u+
� t

0 g(t− s) ∂u
∂ν (s)ds = 0, on ∂Γ1× (0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Ω,

(5.18)

where Ω is a bounded region in Rn whose boundary is partitioned into dis-

joint sets Γ0,Γ1, under some assumptions on the relaxation function g. They

proved that the dissipation given by the memory term is strong enough to

assure exponential (or polynomial) decay provided that the relaxation func-

tion also decays exponentially (or polynomially). In both cases the solution
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decays at the same rate as that of the relaxation function. This result was

later generalized by Messaoudi and Soufyane [30], where relaxation func-

tions of general-decay type were considered. Alabau-Boussouira [1] used

some weighted integral inequalities and convexity arguments and proved a

semi-explicit formula which leads to decay rates of the energy in terms of

the behavior of the nonlinear feedback near the origin, from which the opti-

mal exponential and polynomial decay rate estimates are only special cases.

The following problem has been widely studied in the literature:{
utt −Δu+α(t)g(ut) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× (0,+∞),
(5.19)

where Ω is a bounded domain of Rn with a smooth boundary ∂Ω and g,α
are specific functions. For instance, when α ≡ 1 and g satisfies

c1 min{|s|, |s|q} ≤ |g(s)| ≤ c2 max{|s|, |s|1/q},
where c1,c2 > 0 are constants and q > 1, it was proved that

E(t)≤C
(
E(0)

)
t−2/(q−1), ∀t > 0,

and for q = 1 the decay rate is exponential (see [21]). In the presence of

a weak frictional damping, Benaissa and Messaoudi [9] treated problem

(5.19), for g having a polynomial growth near the origin, and established

energy decay results. Stabilization of wave equations with dampings of arbi-

trary growth have been considered for the first time in the work of Lasiecka

and Tataru [26]. They showed that the energy decays as fast as the solu-

tion of an associated differential equation whose coefficients depend on the

damping term. Mustafa and Messaoudi [37] considered (5.19) and estab-

lished an explicit and general decay rate result, using some properties of

convex functions. Their result was obtained without imposing any restric-

tive growth assumption on the frictional damping term. Wu and Xue [49]

studied the following quasilinear hyperbolic equation

utt −ψ(t) div
(|∇ut |p−2∇ut

)− n

∑
i=1

∂
∂xi

σi(uxi)+μ|ut |α ut = 0,

where μ,α ≥ 0, and p ≥ 2 are constants, the functions σi (i = 1,2, ...,n)
and ψ are nonlinear and the domain Ω is bounded in Rn (n ≥ 1) and has a

regular boundary. By using multiplier methods they investigated the stability

of weak solutions and obtained an explicit estimate for the rate of decay. In

2015, Mokeddem and Mansour [36] revisited the problem considered in [10]

with some modifications. Specifically, they treated the equation

utt −div
(|∇u|p−2∇u

)−σ(t)
(
ut −div

(|∇ut |m−2∇ut
))

= 0,
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and gave the same decay result. Recently, Cavalcanti et al. [13] treated the

following damped wave problem⎧⎪⎨⎪⎩
utt −Δu+a(x)ut −div(b(x)∇ut) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× (0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Ω,

(5.20)

where Ω is a bounded open domain in Rn (n≥ 1), with a smooth boundary

∂Ω and a,b : Ω→ R+ are nonnegative functions satisfying specific condi-

tions. Under appropriate assumptions on the coefficients and on the initial

data (u0,u1), they proved the stabilization of the problem (5.20). Taniguchi

[48] studied the following problem with nonlinear boundary conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
utt(t)−ρ(t)Δu(t)+b(x)ut(t) = f (u(t)), on Ω× (0,T ),
u(t) = 0, on Γ0× (0,T ),
∂u(t)
∂ν + γ(ut(t)) = 0, on Γ1× (0,T )

u(0) = u0,ut(0) = u1, in Ω,

(5.21)

where Ω⊂ Rn is a bounded domain with a smooth boundary ∂Ω = Γ0∪Γ1

and Γ0∩Γ1 = φ . Under some conditions on ‖u0‖ and E(0), the global exis-

tence and exponential decay of the energy E(t) of weak solutions of (5.21)

were established.

To the best of our knowledge, there aren’t many stability results for wave

problems involving nonstandard nonlinearities. The only works in this di-

rection the authors are aware of, are those by Ferreira and Messaoudi [14]

and by Yunzhu Gao and Wenjie Gao [15]. In [14] the authors studied a

nonlinear viscoelastic plate equation with a lower order perturbation of a−→p (x, t)−Laplacian operator of the form

utt +Δ2u−Δ−→p (x,t)u+
� t

0

h(t− s)Δu(s)ds−Δut + f (u) = 0,

where

Δ−→p (x,t)u =
n

∑
i=1

∂
∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x,t)−2 ∂u
∂xi

)
, −→p = (p1, p2, ......, pn)

T ,

h ≥ 0 is a memory kernel that decays at a general rate and f is a nonlinear

function. They proved a general decay result under appropriate assumptions

on h, f , and the variable exponent−→p (x, t)−Laplacian operator. Yunzhu Gao

and Wenjie Gao [15] considered the following nonlinear viscoelastic hyper-
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bolic problem:⎧⎪⎨⎪⎩
L (u)(x, t) = |u|p(x)−2u, in Ω× (0,T ),
u(x, t) = 0, on ∂Ω× [0,T )
u(x,0) = u0(x), ut(x,0) = u1(x), in Ω,

(5.22)

where L (u)(x, t) = utt−Δu−Δutt +
� t

0 g(t−τ)Δu(τ)dτ+ |ut |m(x)−2ut , with

m(x), p(x) being continuous functions in Ω such that

1< inf
x∈Ω

m(x)≤m(x)≤ sup
x∈Ω

m(x)<+∞, 1< inf
x∈Ω

p(x)≤ p(x)≤ sup
x∈Ω

p(x)<+∞

and

∀z,ξ ∈Ω, |z−ξ |< 1, |m(z)−m(ξ )|+ |p(z)− p(ξ )| ≤ ω
(|z−ξ |),

where

limsup
t→0+

ω(τ) ln(
1

τ
) =C <+∞.

They also assumed that

(i) g : R+→ R+ is a C1 function satisfying

g(0)> 0, 1−
� +∞

0

g(s)ds = � > 0;

(ii) There exists η > 0 such that

g′(t)≤−ηg(t), t ≥ 0

and proved the existence of a weak solution to problem (5.22). In the re-

cent work of Messaoudi et al. [35], the authors considered the following

nonlinear damped wave equation:

utt −div
(|∇u|r(·)−2∇u

)
+ |ut |m(·)−2ut = 0.

By using a lemma by Komornik [23], they obtained decay estimates for the

solution, under suitable assumptions on the variable exponents m,r and on

the initial data. They also gave two numerical applications to illustrate their

theoretical results.
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5.2 A viscoelastic wave equation
This Section is devoted to the study of the existence and decay of solu-

tions of the following viscoelastic or strongly damped wave problem⎧⎪⎨⎪⎩
F (u)(x, t) = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× [0,+∞)

u(x,0) = u0(x),ut(x,0) = u1(x), in Ω,

(5.23)

where F (u)(x, t) = utt − Δu− Δut + a|ut |m(x)−2ut + b|u|p(x)−2u and Ω is

a bounded domain with smooth boundary, a, b are positive constants and

m(·), p(·) are continuous variable exponents defined in Ω and satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
2≤ m1 ≤ m(x)≤ m2 <

2(n−1)
n−2 , ∀n≥ 3;

2≤ m(x)<+∞, n = 1,2

2≤ p1 ≤ p(x)≤ p2 <
2(n−1)

n−2 , ∀n≥ 3;

2≤ p(x)<+∞, n = 1,2.

(5.24)

This problem is a generalization of a problem considered by Messaoudi

and Benaissa [9] for m and p constants. The equation in (5.23) can be re-

garded as a Kelvin-Voight model for a viscoelastic material in the presence

of nonlinear damping and forcing terms. The reader is referred to [45] for

the application of such models.

5.2.1 Existence

In this Subsection an existence Theorem is stated, which can be estab-

lished by repeating the steps of the proof of Theorem 3.1 [34]. See also [4]

and [32].

Theorem 5.6. Let (u0,u1) ∈ H1
0 (Ω)× L2(Ω) and let (5.24) be satisfied.

Then problem (5.23) has a global unique solution such that⎧⎨⎩
u ∈ L∞((0,+∞),H1

0 (Ω)
)
,

ut ∈ L∞((0,+∞),L2(Ω)
)∩Lm(·)(Ω× (0,+∞)

)∩L2
(
(0,+∞),H1

0 (Ω)
)
,

utt ∈ L2
(
(0,+∞),H−1(Ω)

)
.

The energy of the solution of (5.23) is defined by

E(t) :=
1

2

�
Ω

[
u2

t + |∇u|2]dx+b
�

Ω

|u|p(x)
p(x)

dx. (5.25)
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By multiplying the equation in (5.23) by ut and integrating over Ω, one can

easily see that

E ′(t) =−
�

Ω
|∇ut |2dx−a

�
Ω
|ut |m(x)dx. (5.26)

5.2.2 Decay of the solution

This Subsection is devoted to the proof of the fact that the solution of

(5.23) decays exponentially under conditions (5.24).

Theorem 5.7. Let (u0,u1) ∈ H1
0 (Ω)×L2(Ω) be given. Assume that condi-

tions (5.24) hold. Then there exist two constants Γ,λ > 0 such that

E(t)≤ Γe−λ t , ∀t ≥ 0.

Proof. Define the following functional

H(t) = E(t)+ ε
�

Ω
uut ,

for ε > 0. It is standard to verify that, for ε ≤ ε0, H ∼ E. Direct differentia-

tion using (5.23) leads to

H ′(t) = −
�

Ω
|∇ut |2−a

�
Ω
|ut |m(x) + ε

�
Ω

u2
t − ε

�
Ω
|∇u|2− ε

�
Ω

∇u ·∇ut

− aε
�

Ω
uut |ut |m(x)−2− εb

�
Ω
|u|p(x)

≤ −
�

Ω
|∇ut |2−a

�
Ω
|ut |m(x) + ε

�
Ω

u2
t − ε

�
Ω
|∇u|2− ε

�
Ω

∇u ·∇ut

− aε
�

Ω
uut |ut |m(x)−2− ε p1b

�
Ω

|u|p(x)
p(x)

.

By using (5.25), we get

H ′(t) ≤ −
�

Ω
|∇ut |2−a

�
Ω
|ut |m(x) +2ε

�
Ω

u2
t

−2εE(t)− εb(p1−2)

�
Ω

|u|p(x)
p(x)

v

−ε
�

Ω
∇u ·∇ut −aε

�
Ω

uut |ut |m(x)−2. (5.27)

Now, the last two terms of (5.27) can be estimated as follows:

•
�

Ω
∇u ·∇ut ≤ 1

2

�
Ω
|∇u|2 + 1

2

�
Ω
|∇ut |2 ≤ E(t)+

1

2

�
Ω
|∇ut |2.
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• For the last term, Young’s inequality with m(x) and its conjugate m�(x) =
m(x)

m(x)−1
yields

|ut |m(x)−1|u| ≤ δ |u|m(x) + cδ (x)|ut |m(x),

where δ > 0 is any constant and

cδ (x) = δ 1−m(x)(m(x))−m(x)(m(x)−1)m(x)−1.

It is thus clear that
�

Ω
uut |ut |m(x)−2 ≤ δ

�
Ω
|u|m(x) +

�
Ω

cδ (x)|ut |m(x). (5.28)

The first term in (5.28) can be estimated as follows:

�
Ω
|u|m(x)dx =

�
Ω+

|u|m(x)dx+
�

Ω−
|u|m(x)dx,

where

Ω+ =
{

x ∈Ω / |u(x, t)| ≥ 1
}

and Ω− =
{

x ∈Ω / |u(x, t)|< 1
}
.

So, we have �
Ω
|u|m(x) ≤

�
Ω
|u|m2 +

�
Ω
|u|m1 .

By using the embeddings H1
0 (Ω) ↪→ Lm1(Ω) and H1

0 (Ω) ↪→ Lm2(Ω), we ar-

rive at
�

Ω
|u|m(x) ≤ c0

[
‖∇u‖m1

2 +‖∇u‖m2
2

]
≤ c1

[(
E(t)

)m1−2
2 +

(
E(t)

)m2−2
2

]
‖∇u‖2

2

≤ c1

[(
E(0)

)m1−2
2 +

(
E(0)

)m2−2
2

]
‖∇u‖2

2

≤ c̃E(t).

Therefore, (5.28) yields

�
Ω

uut |ut |m(x)−2 ≤ δ c̃E(t)+
�

Ω
cδ (x)|ut |m(x), ∀δ > 0,

and, hence, (5.27) takes the form
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H ′(t) ≤ −
(

1− ε
2
−2εcp

)�
Ω
|∇ut |2−a

�
Ω
(1− εcδ (x))|ut |m(x)

−ε(1−δ c̃)E(t)− εb(p1−2)

�
Ω

|u|p(x)
p(x)

, (5.29)

where cp is the Poincaré constant.

At this point, fix δ > 0 so small that 1− δ c̃ > 0. Once δ is fixed, use the

boundedness of m to easily notice that cδ (x) ≤M. Choose ε ≤ ε0 so small

that

1− ε
2
−2εcp > 0 and 1− εM > 0.

Consequently, recalling that p1 ≥ 2, it follows from (5.29) that

H ′(t)≤−γE(t).

By using the fact that H ∼ E, it is clear that

H ′(t)≤−λH(t), ∀t ≥ 0.

A simple integration over (0, t) yields

H(t)≤ H(0)e−λ t .

This gives the desired result.
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Variable exponent sequences spaces, �p(·), emerged naturally in 1931 as W.

Orlicz [24] used them to comment on a previous work by S. Banach on lacu-

nary trigonometric series. �p(·) spaces are a particular case of the Musielak-

Orlicz class introduced by Nakano in 1950.

We devote this chapter to the investigation of some recently discovered mod-

ular geometric properties of �p(·) that went unnoticed for many decades. Our

research is triggered by the idea of uniform convexity: norm-uniform con-

vexity for �p(·) turns out to be very cumbersome to deal with, due mainly to

the rather complicated relationship between the modular and the norm de-

fined on �p(·). This difficulty is not visible in the case of a constant exponent

p: in this instance the modular is simply the pth power of the norm. More-

over it is well known that in the endpoint cases, namely when either p = 1

or p = ∞ one cannot expect uniform convexity in the classical sense.

We prove modular-type uniform convexity properties of �p(·) that to some

extent seem to be at least as natural as norm-modular convexity and remark-

ably, allow us to include endpoint cases.

Our results are not merely abstract constructions: we provide some applica-

tions of these new modular geometric properties. In particular we obtain a

modular analogue of the classical fixed point theorem by Kirk.
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6.1 Introduction
In a celebrated work by Orlicz [24], he introduced the vector space of

sequences

�p(·) =
{
{xn} ⊂ RN;

∞

∑
n=0

|λ xn|p(n) < ∞ for some λ > 0
}
,

where {p(n)} ⊂ [1,∞). Though Orlicz’ main interest in the cited work was

to provide some input on a previously published article by S. Banach on

lacunary series, it was soon realized that these spaces not only constituted

a mere ad-hoc tool for that specific purpose but were part of a much more

general theory that was insinuated by Orlicz himself in an example ([24, p.

207]). From the modern point of view, variable exponent spaces are a par-

ticular case of Musielak-Orlicz spaces, first introduced by Nakano [23].

As is the case with any normed space one unavoidably encounters questions

on the uniform convexity of �p(·).
Some problems about the geometry and topological properties of the vector

space �p(·) were investigated in [15, 23, 27, 28].

In particular, it is well known that �p(·) is uniformly convex if and only if the

exponent p(·) is bounded away from 1 and infinity. The geometry of �p(·)
when either inf

n
p(n) = 1 or sup

n
p(n) = ∞ remains largely ill-understood. In

the aforementioned works by Nakano [21, 22] the formal definition of a

modular that captured the essence of the definition of �p(·) was given. It re-

mains a remarkable fact that in [24] it was noted that �p(·) was a special case

of what is today known as a variable exponent space [7]. Well into the 20th

century it was realized that variable exponent spaces had tangible applica-

tions, especially in the field of material science and in fluid dynamics. Since

then, the area has expanded and continues to evolve at an ever increasing

rate. The seminal work by Kováčik and Rákosnı́k [35] was, to the best of our

knowledge, the first systematic treatment of the continuous Lebesgue’s vari-

able exponent spaces; Rajagopal and Ružička [25, 26] initiated a systematic

mathematical study of the hydrodynamics of electrorheological fluids. This

application remains one of the main driving forces in fueling the interest in

the field of spaces of variable exponent. The behavior of the non-Newtonian

fluids introduced in the Rajagopal-Ružička model is described by means of

partial differential equations with non-standard growth. The natural habitat

for the solutions of such equations are Sobolev spaces of variable exponents.

Electrorheological fluids are currently being used in the defense industry,

seismology, civil engineering and medicine.
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Uniform convexity plays a central role in the study of the geometry of Ba-

nach spaces. In particular it is a crucial issue in fixed point theory. On the

other hand, it is extremely cumbersome to handle in the absence of linear-

ity, in particular in the modular context [20]. This makes the analysis of

uniform convexity of Musielak-Orlicz spaces particularly problematic. We

set about to discuss some recent research results pertaining to the investiga-

tion of some hitherto unknown properties of �p(·) connected to the classical

notion of modular uniform convexity.

Much of the material covered in this chapter is related to metric fixed point

theory. A handy standard reference for the concepts, notation and terminol-

ogy used hereafter are the books by Khamsi and Kirk [10] and by Khamsi

and Kozlowski [12].

6.2 Modular vector spaces �p(.)

We start by considering the sequence spaces �p(·):

Definition 6.1. [24] If p : N→ [1,∞), let

�p(·) =
{
{xn} ⊂ RN;

∞

∑
n=0

1

p(n)
|λ xn|p(n) < ∞ for some λ > 0

}
.

As mentioned in the introduction, �p(·) is in particular a variable ex-

ponent space, as discussed in [24]. Motivated by these spaces, Nakano

[21, 22, 23] introduced the concept of the modular vector structure, namely:

Proposition 6.1. [15, 21, 27] Let p be as in Definition 6.1. Then, the func-
tion ρ : �p(·)→ [0,∞] defined by

ρ(x) = ρ((xn)) =
∞

∑
n=0

1

p(n)
|xn|p(n)

is a convex modular on �p(·). That is to say, it satisfies the following axioms:

(i) ρ(x) = 0 if and only if x = 0,

(ii) ρ(γx) = ρ(x), if |γ|= 1,
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(iii) ρ(tx+(1− t)y)≤ tρ(x)+(1− t)ρ(y), for any t ∈ [0,1],

for any x,y ∈ �p(·).

We remark the fact that ρ is left-continuous, i.e., lim
α→1−

ρ(αx) = ρ(x),
for any x ∈ �p(·). Associated to the modular function ρ , there is a modular

topology that captures the essence of the classical metric topology.

Definition 6.2. [11]

(a) A sequence {xn} ⊂ �p(·) is said to be ρ-convergent to x ∈ �p(·) if and

only if ρ(xn− x)→ 0 as n→ ∞. Note that the ρ-limit is unique if it

exists.

(b) A sequence {xn} ⊂ �p(·) is called ρ-Cauchy if ρ(xn − xm) → 0 as

n,m→ ∞.

(c) A set C ⊂ �p(·) is called ρ-closed if for any sequence {xn} ⊂ C that

ρ-converges to x, one has x ∈C.

(d) A set C ⊂ �p(·) is defined to be ρ-bounded if δρ(C) = sup{ρ(x−
y);x,y ∈C}< ∞.

Remark 6.1. It is easy to show that �p(·) is ρ-complete, i.e., any ρ-Cauchy

sequence in �p(·) is ρ-convergent to some element in �p(·).

To exploit the analogy with the metric terminology, we introduce the fol-

lowing notation. For any x ∈ �p(·) and r ≥ 0 the x-centered modular ρ-ball

of radius r is defined as Bρ(x,r) = {y ∈ �p(·) : ρ(x− y)≤ r}. In the interest

of a self-contained exposition, we recall the following standard definition:

Definition 6.3. A modular ρ on a metric space M is said to satisfy the Fatou

property if for any sequence {yn} ⊆ M that ρ-converges to y ∈ M and any

x ∈M one has

ρ(x− y)≤ liminf
n→∞

ρ(x− yn).

We remark the fact that the modular ρ defined in 6.1 satisfies the Fatou

property in �p(·). Fatou’s property, in particular, implies that the ρ-balls are

ρ-closed. The next property, called the Δ2-condition, is central in modular

space theory:
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Definition 6.4. We say that ρ satisfies the Δ2-condition if there exists K ≥ 0

such that

ρ(2x)≤ K ρ(x),

for any x ∈ �p(·).

For an deeper discussion on the Δ2-condition in its several forms, we

refer the reader to [12, 17, 20]. We underline the equivalence of the Δ2

condition for the modular ρ on �p(·) and the condition limsup
n→∞

p(n) < +∞

[15, 21, 27].

The Luxemburg norm on �p(·) is defined as the Minkowski’s functional of

the modular unit ball; in other words:

‖x‖ρ = inf

{
λ > 0;ρ

(
1

λ
x
)
≤ 1

}
.

It is well known that (�p(·),‖.‖ρ) is a Banach space.

6.3 Modular uniform convexity
The uniform convexity in (�p(·),‖.‖ρ) was well investigated since the

emergence of the theory. For example, it is well known that (�p(·),‖.‖ρ) is

uniformly convex if and only if 1 < liminf
n→∞

p(n) ≤ limsup
n→∞

p(n) < ∞ [27].

The latter implies the superreflexivity of (�p(·),‖.‖ρ) [4, 8].

Since uniform convexity fails for the classical sequence-spaces �1 and �∞,

it is not surprising that the classical definition of uniform convexity poses

a challenge when either limsup
n→∞

p(n) = ∞ or liminf
n→∞

p(n) = 1. In this re-

gard, a new modular uniform convexity-type property of �p(·) was recently

discovered in [2]. Before we dive into the new modular geometric proper-

ties satisfied by �p(·), we need the following definitions. Recall that modular

uniform convexity was introduced in general vector spaces by Nakano [22].

Its study in Orlicz function spaces was carried out in [7, 20].

Definition 6.5. [1, 7, 20] We define the following uniform convexity type
properties of the modular ρ:

(a) [22] Let r > 0 and ε > 0. Define

D1(r,ε) =
{
(x,y); x,y ∈ �p(·),ρ(x)≤ r,ρ(y)≤ r,ρ(x− y)≥ εr

}
.
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If D1(r,ε) �= /0, let

δ1(r,ε) = inf

{
1− 1

r
ρ
(

x+ y
2

)
; (x,y) ∈ D1(r,ε)

}
.

If D1(r,ε) = /0, we set δ1(r,ε) = 1. We say that ρ satisfies the uniform

convexity (UC) if for every r > 0 and ε > 0, we have δ1(r,ε) > 0.
Note, that for every r > 0, D1(r,ε) �= /0, for ε > 0 small enough.

(b) [12] We say that ρ satisfies (UUC) if for every s≥ 0 and ε > 0, there

exists η1(s,ε)> 0 depending on s and ε such that

δ1(r,ε)> η1(s,ε)> 0 for r > s.

(c) [12] Let r > 0 and ε > 0. Define

D2(r,ε) =
{
(x,y); x,y ∈ �p(·),ρ(x)≤ r,ρ(y)≤ r,ρ

(
x− y

2

)
≥ εr

}
.

If D2(r,ε) �= /0, let

δ2(r,ε) = inf

{
1− 1

r
ρ
(

x+ y
2

)
; (x,y) ∈ D2(r,ε)

}
.

If D2(r,ε) = /0, we set δ2(r,ε) = 1. We say that ρ satisfies (UC2) if

for every r > 0 and ε > 0, we have δ2(r,ε) > 0. Note, that for every

r > 0, D2(r,ε) �= /0, for ε > 0 small enough.

(d) [12] We say that ρ satisfies (UUC2) if for every s≥ 0 and ε > 0, there

exists η2(s,ε)> 0 depending on s and ε such that

δ2(r,ε)> η2(s,ε)> 0 f or r > s.

(e) [22] ρ is said to be uniformly convex in every direction (in short

(UCED)) if and only if for any z1,z2 ∈ �p(·) such that z1 �= z2 and

R > 0, there exists δ = δ (z1,z2,R)> 0 such that{
ρ(x− z1) ≤ R
ρ(x− z2) ≤ R =⇒ ρ

(
x− z1 + z2

2

)
≤ R(1−δ ),

for any x∈ �p(·). ρ is said to be (UUCED) if δ (z1,z2,R)≥ δ (z1,z2, R̄),
whenever R≤ R̄.

(f) [22] We say that ρ is strictly convex, (SC), if for every x,y∈ �p(·) such

that ρ(x) = ρ(y) and

ρ
(

x+ y
2

)
=

ρ(x)+ρ(y)
2

,

we have x = y.
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Note that (UC) and (UC2) are equivalent if ρ satisfies the Δ2-condition [12].

In this case, we must have sup
n∈N

p(n) < ∞. Moreover, it is easy to show that

(UUC2) implies (UUCED). Since (UUCED) implies (SC), we conclude

that (UUC2) also implies (SC).

6.4 Modular uniform convexity in �p(.)

The following technical result will be of central importance in the se-

quel:

Lemma 6.1. The following inequalities are valid:

(i) [5] If p≥ 2, then we have∣∣∣∣a+b
2

∣∣∣∣p + ∣∣∣∣a−b
2

∣∣∣∣p ≤ 1

2

(
|a|p + |b|p

)
,

for any a,b ∈ R.

(ii) [27] If 1 < p≤ 2, then we have∣∣∣∣a+b
2

∣∣∣∣p + p(p−1)

2

∣∣∣∣ a−b
|a|+ |b|

∣∣∣∣2−p ∣∣∣∣a−b
2

∣∣∣∣p ≤ 1

2

(
|a|p + |b|p

)
,

for any a,b ∈ R such that |a|+ |b| �= 0.

Before we state the main result of this work, we agree on the following

notation:

ρK(x) = ρK((xn)) = ∑
n∈K

1

p(n)
|xn|p(n),

for any K ⊂ N and any x ∈ �p(·). If K = /0, we set ρK(x) = 0.

We also agree on further terminology: the function p(·) will be said

to satisfy the (AO) condition if the set {n ∈ N; p(n) = 1} has at most one

element.

Theorem 6.1. [3] Consider the vector space �p(·). The following statements
are equivalent:

(i) p(·) satisfies the condition (AO);
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(ii) the modular ρ is (UUCED);

(iii) the modular ρ is (SC).

Proof. Note that (ii) easily implies (iii). We next prove that (iii) implies (i).
Assume that ρ is (SC) and that p(·) fails the condition (AO). Hence there

exist i, j ∈N such that i �= j and p(i) = p( j) = 1. Set x = (xn), where xn = 0

if n �= i and xi = 1, and y = (yn), where yn = 0 if n �= j and y j = 1. Then:

ρ(x) = ρ(y) = ρ
(

x+ y
2

)
= 1

and x �= y. This will contradict our assumption that ρ is (SC). In order to

complete the proof of Theorem 6.1, we only need to prove that (i) implies

(ii). Assume that p(·) satisfies the condition (AO). Let us prove that ρ is

(UUCED). Let z1 = (z1
n), z2 = (z2

n) ∈ �p(·) such that z1 �= z2. Let R > 0 and

x ∈ �p(·) such that

ρ(x− z1)≤ R and ρ(x− z2)≤ R.

Set K = {n ∈ N; z1
n �= z2

n}. Since z1 �= z2, K is not empty. We have K =
K1∪K2∪K3, where K1 = {n ∈ K; p(n)≥ 2}, K2 = {n ∈ K; 1 < p(n)< 2}
and K3 = {n ∈ K; p(n) = 1}. Since K is not empty, one of the subsets K1,

K2 or K3 is not empty.

First case: assume K1 is not empty. Using Lemma 6.1, we have:∣∣∣∣xi− z1
i + z2

i
2

∣∣∣∣p(i) + ∣∣∣∣ z1
i − z2

i
2

∣∣∣∣p(i) ≤ 1

2

(
|xi− z1

i |p(i) + |xi− z2
i |p(i)

)
,

for any i ∈ K1. Moreover, we have:∣∣∣∣xn− z1
n + z2

n

2

∣∣∣∣p(n) ≤ 1

2

(
|xn− z1

n|p(n) + |xn− z2
n|p(n)

)
,

for any n �∈ K1, which implies:

ρ
(

x− z1 + z2

2

)
+ ∑

i∈K1

1

p(i)

∣∣∣∣ z1
i − z2

i
2

∣∣∣∣p(i) ≤ ρ(x− z1)+ρ(x− z2)

2
≤ R.

In this case, we take

δ (z1,z2,R) =
1

R ∑
i∈K1

1

p(i)

∣∣∣∣ z1
i − z2

i
2

∣∣∣∣p(i) > 0.
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Second case: assume K2 is not empty. Using Lemma 6.1, we have∣∣∣∣xi− z1
i + z2

i
2

∣∣∣∣p(i) +Ai ≤ 1

2

(
|xi− z1

i |p(i) + |xi− z2
i |p(i)

)
,

where

Ai =
p(i)(p(i)−1)

2

∣∣∣∣ z1
i − z2

i

|xi− z1
i |+ |xi− z2

i |

∣∣∣∣2−p(i) ∣∣∣∣ z1
i − z2

i
2

∣∣∣∣p(i)
=

p(i)(p(i)−1)

21+p(i)

1(
|xi− z1

i |+ |xi− z2
i |
)2−p(i)

|z1
i − z2

i |2,

for any i ∈ K2. On other hand, we use the inequalities ρ(x− z1) ≤ R and

ρ(x− z2)≤ R to get:

1

p(i)
|xi− z1

i |p(i) ≤ R and
1

p(i)
|xi− z2

i |p(i) ≤ R,

which implies:

|xi− z1
i |+ |xi− z2

i | ≤ 2
(

p(i) R
)1/p(i)

≤ 2
(

2 R
)1/p(i)

= 21+1/p(i) R1/p(i)

≤ 22 R1/p(i),

for any i ∈ K2. Hence,(
|xi− z1

i |+ |xi− z2
i |
)2−p(i) ≤

(
22 R1/p(i)

)2−p(i) ≤ 22 R(2−p(i))/p(i);

this yields:

1

21+p(i)

1(
|xi− z1

i |+ |xi− z2
i |
)2−p(i)

≥ 1

21+p(i)

1

22 R(2−p(i))/p(i)

≥ 1

25 R(2−p(i))/p(i)
.

In all,

Ai ≥ p(i)(p(i)−1)

25 R(2−p(i))/p(i)
|z1

i − z2
i |2,

for any i ∈ K2. Therefore, we have:

∑
i∈K2

(p(i)−1)

25 R(2−p(i))/p(i)
|z1

i − z2
i |2 ≤ ∑

i∈K2

Ai,
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from which it follows immediately that

ρ
(

x− z1 + z2

2

)
+ ∑

i∈K2

(p(i)−1)

25 R(2−p(i))/p(i)
|z1

i −z2
i |2≤

ρ(x− z1)+ρ(x− z2)

2
≤R.

In this case, we take

δ (z1,z2,R)= ∑
i∈K2

(p(i)−1)

25 R1+(2−p(i))/p(i)
|z1

i −z2
i |2 = ∑

i∈K2

(p(i)−1)

25 R2/p(i)
|z1

i −z2
i |2 > 0.

Third case: assume K1 =K2 = /0 and K3 is not empty. Since p(·) satisfies the

condition (AO), then K = K3 is a singleton, i.e., K = {i}. Our assumptions

on x,z1 and z2 imply ρKc(x−z1)= ρKc(x−z2)= ρKc(x−(z1+z2)/2)=R(x)
and {

ρK(x− z1) = |xi− z1
i | ≤ R−R(x)

ρK(x− z2) = |xi− z2
i | ≤ R−R(x).

We have:∣∣∣∣xi− z1
i + z2

i
2

∣∣∣∣2 + ∣∣∣∣ z1
i − z2

i
2

∣∣∣∣2 = |xi− z1
i |2 + |xi− z2

i |2
2

≤ (R−R(x))2

and from here one concludes that∣∣∣∣xi− z1
i + z2

i
2

∣∣∣∣2 ≤ (R−R(x))2

(
1− 1

4(R−R(x))2
|z1

i − z2
i |2
)
,

i.e.,

ρK

(
x− z1 + z2

2

)
≤ (R−R(x))

(
1− 1

4(R−R(x))2
|z1

i − z2
i |2
)1/2

.

Hence

ρ
(

x− z1 + z2

2

)
≤ (R−R(x))

(
1− 1

4(R−R(x))2
|z1

i − z2
i |2
)1/2

+R(x).

If we set Δ = 1−
√

1− 1
4(R−R(x))2 |z1

i − z2
i |2, we have

ρ
(

x− z1 + z2

2

)
≤ R

(
1− R−R(x)

R
Δ
)
.

On the other hand, note that

|z1
i − z2

i | ≤ |z1
i − x|+ |x− z2

i | ≤ 2(R−R(x))≤ 2R.
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Hence

1−
√

1− 1

4(R−R(x))2
|z1

i − z2
i |2 ≥ 1−

√
1− 1

4R2
|z1

i − z2
i |2,

which implies that

R−R(x)
R

Δ =
R−R(x)

R

(
1−

√
1− 1

4(R−R(x))2
|z1

i − z2
i |2
)

≥ |z1
i − z2

i |
2R

(
1−

√
1− 1

4R2
|z1

i − z2
i |2
)
.

Set δ (z1,z2,R) =
|z1

i − z2
i |

2R

(
1−

√
1− 1

4R2
|z1

i − z2
i |2
)

. Therefore, we have:

ρ
(

x− z1 + z2

2

)
≤ R(1−δ (z1,z2,R)).

Note that δ (z1,z2,R) > 0. In all cases, we have δ (z1,z2,R) ≥ δ (z1,z2, R̄),
whenever R≤ R̄, i.e., the modular ρ is (UUCED) as claimed.

Next we discuss the modular uniform convexity in �p(·).

Theorem 6.2. [2] Consider the vector space �p(·). If inf
n∈N

p(n)> 1, then the

modular ρ is (UUC2).

Proof. Assume A = inf
n∈N

p(n)> 1. Let r > 0 and ε > 0. Take x,y∈ �p(·) such

that

ρ(x)≤ r, ρ(y)≤ r and ρ
(

x− y
2

)
≥ r ε.

Since ρ is convex, it holds that:

r ε ≤ ρ
(

x− y
2

)
≤ ρ(x)+ρ(y)

2
≤ r,

which implies that ε ≤ 1. Next, set I = {n ∈ N; p(n) ≥ 2} and J = {n ∈
N; p(n)< 2}=N\ I. Note that ρ(z) = ρI(z)+ρJ(z), for any z ∈ �p(·). From

our assumptions, we have either ρI((x− y)/2) ≥ r ε/2 or ρJ((x− y)/2) ≥
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r ε/2.

Assume first ρI((x− y)/2)≥ r ε/2. Using Lemma 6.1, we conclude that

ρI

(
x+ y

2

)
+ρI

(
x− y

2

)
≤ ρI(x)+ρI(y)

2
,

which implies:

ρI

(
x+ y

2

)
≤ ρI(x)+ρI(y)

2
− r ε

2
.

Since

ρJ

(
x+ y

2

)
≤ ρJ(x)+ρJ(y)

2
,

we get:

ρ
(

x+ y
2

)
≤ ρ(x)+ρ(y)

2
− r ε

2
≤ r

(
1− ε

2

)
.

For the second case, assume ρJ((x− y)/2)≥ r ε/2. Set C = ε/4,

J1 =
{

n ∈ J; |xn− yn| ≤C(|xn|+ |yn|)
}

and J2 = J \ J1.

We have:

ρJ1

(
x− y

2

)
≤ ∑

n∈J1

Cp(n)

p(n)

∣∣∣∣ |xn|+ |yn|
2

∣∣∣∣p(n) ≤ C
2

∑
n∈J1

|xn|p(n) + |yn|p(n)
p(n)

,

because C ≤ 1 and the power function is convex. Hence,

ρJ1

(
x− y

2

)
≤ C

2

(
ρJ1

(x)+ρJ1
(y)
)
≤ C

2

(
ρ(x)+ρ(y)

)
≤C r.

Since ρJ((x− y)/2)≥ r ε/2, we get:

ρJ2

(
x− y

2

)
= ρJ

(
x− y

2

)
−ρJ1

(
x− y

2

)
≥ r ε

2
−C r.

For any n ∈ J2, we have:

A−1≤ p(n)(p(n)−1) and C ≤C2−p(n) ≤
∣∣∣∣ xn− yn

|xn|+ |yn|
∣∣∣∣2−p(n)

,

which implies by Lemma 6.1:∣∣∣∣xn + yn

2

∣∣∣∣p(n) + (A−1)C
2

∣∣∣∣xn− yn

2

∣∣∣∣p(n) ≤ 1

2

(
|xn|p(n) + |yn|p(n)

)
.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Geometrical properties of the variable exponent spaces �p(.) 149

Hence,

ρJ2

(
x+ y

2

)
+

(A−1)C
2

ρJ2

(
x− y

2

)
≤ ρJ2

(x)+ρJ2
(y)

2
.

The latter implies

ρJ2

(
x+ y

2

)
≤ ρJ2

(x)+ρJ2
(y)

2
− r

(A−1)ε2

8
,

since C = ε/4. Therefore, we have:

ρ
(

x+ y
2

)
≤ r− r

(A−1)ε2

8
= r

(
1− (A−1)ε2

8

)
.

Using the definition of δ2(r,ε), we conclude that

δ2(r,ε)≥min

(
ε
2
,(A−1)

ε2

8

)
> 0.

Therefore, ρ is (UC2). Moreover, if we set η2(r,ε)=min
(
ε/2,(A−1)ε2/8

)
,

we conclude that ρ is in fact (UUC2).

Remark 6.2. Note that in our proof above, we showed that η2(r,ε) is in

fact a function of ε only. We will make use of this fact throughout this work.

6.5 Applications

Using the new modular uniform convexity property of �p(·) proved in

the preceding Section, we can prove some interesting modular geometric

properties which are not clear to hold in the absence of the Δ2-condition.

Definition 6.6. Let C be a nonempty ρ-closed convex subset of �p(·). C is

said to be ρ-proximinal, if for any x ∈ �p(·) such that dρ(x,C) = inf{ρ(x−
c);c ∈C}< ∞, the set Pρ,C(x) = {c ∈C; ρ(x−c) = dρ(x,C)} is not empty.

Moreover if Pρ,C(x) is a singleton for any x ∈ �p(·), we say that C is a

C̆ebys̆ev subset.
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In the next theorem, we investigate the relationship between the uniform

convexity of the modular and the unique best approximant property which

generalizes well known properties of Hilbert and uniformly convex Banach

spaces. For other results on best approximation in modular spaces see [13,

18].

Theorem 6.3. Consider the vector space �p(·). Assume the modular ρ is
(UUC2). Let C ⊂ �p(·) be nonempty, convex, and ρ-closed. Let x ∈ �p(·) be
such that dρ(x,C) < ∞. There exists then a unique best ρ-approximant of
x in C, that is, a unique y ∈ C such that ρ(x− y) = dρ( f ,C), i.e., C is a
C̆ebys̆ev subset.

Proof. The uniqueness follows from the strict convexity of ρ , since (UUC2)
implies (SC). Let us prove the existence of the ρ-approximant. Since C is ρ-

closed, we may assume without loss of any generality that d := dρ(x,C)> 0,

i.e., x �∈C. Consider a sequence {yn} ∈C such that

ρ(x− yn)≤ d
(

1+
1

n

)
.

We claim that

{
1

2
yn

}
is ρ-Cauchy. Assume, on the contrary, that it is not.

Then there exist an ε > 0 and a subsequence {ynk} of {yn} such that

ρ
(

ynk − ynp

2

)
≥ ε,

for any p,k ≥ 1. Since ρ is (UUC2), we have:

ρ
(

x− ynk + ynp

2

)
≤
(

1−δ2

(
d(k, p),

ε
d(k, p)

))
d(k, p),

where d(k, p) =
(

1+
1

min(np,nk)

)
d. For p,k ≥ 1, we have d(k, p)≤ 2 d.

Hence,

δ2

(
d(k, p),

ε
d(k, p)

)
≥ δ2

(
d(k, p),

ε
2d

)
.

Since ρ is (UUC2), there exists η > 0 such that

δ2

(
r,

ε
2d

)
≥ η

for any r >
d
3

. Since d(k, p)≥ d >
d
3

, we get:

ρ
(

x− ynk + ynp

2

)
≤ (1−η)d(k, p),
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for any k, p≥ 1. By the convexity of C,
ynk + ynp

2
∈C. Using the definition

of d it follows that

d ≤ ρ
(

x− ynk + ynp

2

)
≤ (1−η)d(k, p),

for any k, p ≥ 1. If we let k, p go to infinity, we get d ≤ (1−η)d, which

is impossible. Hence

{
1

2
yn

}
is ρ-Cauchy. By the ρ-completeness of �p(·),{

1

2
yn

}
ρ-converges to some z∈ �p(·). Fix m≥ 1. Since

{
ym + yn

2

}
⊂C and

it ρ-converges to
ym

2
+ z, given that C is ρ-closed, one concludes

ym

2
+ z ∈

C. Letting m → ∞, we get 2z ∈ C. Using the Fatou property, passing to a

subsequence if necessary, it follows that

ρ(x−2z)≤ liminf
n→∞

ρ
(

x− z− yn

2

)
≤ liminf

n→∞
liminf

m→∞
ρ
(

x− yn + ym

2

)
.

Since ρ is convex, it is apparent thatx

liminf
n→∞

liminf
m→∞

ρ
(

x− yn + ym

2

)
≤ liminf

n→∞
liminf

m→∞

ρ(x− yn)+ρ(x− ym)

2
= d.

Hence, ρ(x− 2z) ≤ d. Since 2z ∈C, it is clear that ρ(x−2z) = d. In other

words, y = 2z is the ρ-approximant of x in C, as claimed.

Theorem 6.3 allows us to establish a relationship between the modular uni-

form convexity and a property which is a modular equivalent of the Milman-

Pettis theorem, which states that the uniform convexity of a Banach space

implies its reflexivity. First, we need the following Definition:

Definition 6.7. [9, 12] Let C be a nonempty ρ-closed, ρ-bounded and con-

vex subset of �p(·). We will say that C satisfies the property (R), if for any

decreasing sequence {Cn}n≥1 of ρ-closed, convex, nonempty subsets of C,

we have
⋂

n≥1
Cn is nonempty.

Theorem 6.4. Consider the vector space �p(·). Assume the modular ρ is
(UUC2). Then any ρ-closed, ρ-bounded and convex nonempty subset C of
�p(·) satisfies the property (R).
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Proof. Let {Cn} be a nonincreasing sequence of nonempty, ρ-closed, con-

vex subsets of C. According to Definition 6.7 we need to demonstrate that

{Cn} has nonempty intersection. Fix any x ∈ C. Since C is ρ-bounded,

there exists M > 0 such that for any n ≥ 1, we have ρ(x− y) < M for any

y ∈Cn ⊂C. Using Theorem 6.3, there exists a unique cn ∈Cn such that

ρ(x− cn) = dρ(x,Cn) = inf{ρ(x− c);c ∈Cn},
for every n ≥ 1. It is easy to show that the sequence {dρ( f ,Cn)} is in-

creasing and bounded by M. Hence lim
n→∞

dρ(x,Cn) = d exists. If d = 0, then

dρ(x,Cn) = 0, for any n ≥ 1, i.e., x ∈ ⋂
n≥1

Cn since {Cn} are ρ-closed. Oth-

erwise, assume d > 0. Following the same ideas used in the proof of The-

orem 6.3, it can be easily shown that

{
1

2
cn

}
is ρ-Cauchy. Therefore it ρ-

converges to some z ∈ �p(·). Let us prove that 2z ∈Cn, for any n≥ 1. Indeed,

we have
ck + cp

2
∈ Cn, for any p,k ≥ n. Fix any k ≥ n. Since

{
ck + cp

2

}
ρ-converges to

ck

2
+ z as p→ ∞, and Cn is ρ-closed, then

ck

2
+ z ∈Cn, for

any k≥ n. If we let k→∞, we get 2z ∈Cn, for any n≥ 1. Hence
⋂

n≥1
Cn �= /0,

which completes the proof of Theorem 6.4.

In fact, the conclusion of Theorem 6.4 may be improved to have an inter-

section property for any family of subsets.

Theorem 6.5. Consider the vector space �p(·). Assume the modular ρ is
(UUC2). Let {Cα}α∈Γ be a decreasing family of nonempty, convex, ρ-
closed subsets of �p(·), where (Γ,≺) is upward directed. Assume that there
exists x ∈ �p(·) such that sup

α∈Γ
dρ(x,Cα)< ∞. Then

⋂
α∈Γ

Cα is not empty.

Proof. Set d = sup
α∈Γ

dρ(x,Cα). Without loss of generality, we may assume

d > 0. For any n≥ 1, there exists αn ∈ Γ such that

d
(

1− 1

n

)
< dρ(x,Cαn)≤ d.

Since (Γ,≺) is upward directed, we may assume αn ≺ αn+1. In particular

we have Cαn+1
⊂Cαn for any n≥ 1. Theorem 6.4 implies C0 =

⋂
n≥1

Cαn �= /0.

Clearly C0 is convex, ρ-closed and

dρ(x,C0) = sup
n≥1

dρ(x,Cαn) = d.
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By virtue of Theorem 6.3, there exists a unique c0 ∈C0 such that dρ(x,C0) =
ρ(x− c0). We claim that c0 ∈ Cα , for any α ∈ Γ. Indeed, fix α ∈ Γ. If for

some n≥ 1 we have α ≺ αn, then obviously we have c0 ∈Cαn ⊂Cα . There-

fore, we may assume that α �≺ αn, for any n≥ 1. Since Γ is upward directed,

there exists βn ∈ Γ such that αn ≺ βn and α ≺ βn for any n≥ 1. We can also

assume that βn ≺ βn+1 for any n≥ 1. Again we have C1 =
⋂

n≥1
Cβn �= /0. Since

Cβn ⊂Cαn , for any n≥ 1, we get C1 ⊂C0. Moreover we have

d = dρ(x,C0)≤ dρ(x,C1) = sup
n≥1

dρ(x,Cβn)≤ d,

which implies dρ(x,C1) = d. Theorem 6.3 again implies that there exists

a unique point c1 ∈ C1 such that dρ(x,C1) = ρ(x− c1) = d. Since C0 is a

C̆ebys̆ev subset, we get c0 = c1. In particular, we have c0 ∈ Cβn , for any

n ≥ 1. Since α ≺ βn, we conclude that Cβn ⊂ Cα , for any n ≥ 1, which

implies c0 ∈Cα . Since α was taking arbitrary in Γ, we get c0 ∈ ⋂
α∈Γ

Cα , i.e.,⋂
α∈Γ

Cα is not empty.

The conclusions of the above theorems will still hold under weaker assump-

tions.

Proposition 6.2. Let C be a nonempty ρ-closed ρ-bounded convex subset
of �p(·).

(i) Assume that C satisfies the property (R) and let K be a nonempty ρ-
closed convex subset of C. Then K is ρ-proximinal in C, i.e. for any
x∈C, the set Pρ,K(x) = {y∈C; ρ(x−y) = inf

z∈K
ρ(x−z)} is not empty.

Moreover if ρ is (SC), then K is a C̆ebys̆ev subset, i.e. Pρ,K(x) is a
singleton for any x ∈C.

(ii) Assume that C satisfies the property (R) and that ρ is (SC). Then
for any family {Cα}α∈Γ of ρ-closed, convex, nonempty subsets of C
such that

⋂
α∈Γ f

Cα �= /0 for any finite subset Γ f ⊂ Γ, we have
⋂

α∈Γ
Cα is

nonempty.

(iii) Assume that C satisfies the property (R) and ρ is (UUCED). Let K
be a nonempty, ρ-closed, convex subset of C. Then K has a unique
ρ-C̆ebys̆ev center x ∈ K, i.e.,

sup{ρ(x− y); y ∈ K}= inf
z∈K

(
sup{ρ(z− y); y ∈ K}

)
.
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Proof. Assume that C satisfies the property (R). Let K be a nonempty, ρ-

closed, convex subset of C. For x ∈C, we have dρ(x,K) = inf{ρ(x−y); y ∈
K}< ∞, since C is ρ-bounded. Moreover, since

Pρ,K(x) =
⋂
n≥1

Bρ

(
x,dρ(x,K)+1/n

)
∩K,

where Bρ(x,r) is the ρ-ball centered at x with radius r, the property (R)
implies that Pρ,K(x) is not empty. It is clear that if ρ is (SC), then Pρ,K(x)
must consist of a single point, which completes the proof of (i).
In order to prove (ii), assume that C satisfies the property (R) and that ρ is

(SC). Let {Cα}α∈Γ be a family of ρ-closed, convex, nonempty subsets of

C such that
⋂

α∈Γ f

Cα is not empty, for any finite subset Γ f ⊂ Γ. Let x ∈ C.

Then sup
α∈Γ

dρ(x,Cα)< ∞ holds since C is ρ-bounded. For any subset F ⊂ Γ,

set dF = dρ(x,
⋂

α∈F
Cα). Note that if F1 ⊂ F2 ⊂ Γ are finite subsets, then

dF1
≤ dF2

. Set

dΓ = sup
{

dρ

(
x,
⋂

α∈J

Cα

)
, J ⊂ Γ such that

⋂
α∈J

Cα �= /0
}
.

For any n ≥ 1, there exists a subset Fn ⊂ Γ such that dΓ− 1/n < dFn ≤ dΓ.

Set F∗n = F1∪·· ·∪Fn, for n≥ 1. Then
{ ⋂

α∈F∗n
Cα

}
is a decreasing sequence

of nonempty ρ-closed convex subsets of C. The property (R) satisfied by C
implies that

⋂
α∈J

Cα �= /0, where J =
⋃

n≥1
F∗n =

⋃
n≥1

Fn. Set K =
⋂

α∈J
Cα . Note

that dρ(x,K) = dΓ, because dΓ−1/n < dFn ≤ dρ(x,K)≤ dΓ, for any n≥ 1.

Because of (i), there exists a unique y ∈ K for which ρ(x− y) = dρ(x,K) =
dΓ. For fixed α0 ∈ Γ, one has:

K∩Cα0
=

⋂
α∈J∪{α0}

Cα �= /0

because of the same argument based on the property (R). Consequently

dρ(x,K) ≤ dρ(x,K ∩Cα0
) ≤ dΓ. Hence dρ(x,K ∩Cα0

) = dρ(x,K) = dΓ,

which implies y ∈ K ∩Cα0
. Therefore, we have y ∈ ⋂

α∈Γ
Cα , which proves

that the family {Cα}α∈Γ has nonempty intersection.

In order to prove (iii), assume that C satisfies the property (R) and that

ρ is (UUCED). Let K be a nonempty, ρ-closed, convex subset of C. Set

rρ(x,K) = sup
y∈K

ρ(x− y), for any x ∈ K, and

Rρ(K) = inf {rρ(x,K);x ∈ K}.
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All the above numbers are finite, since C is ρ-bounded. Note that the set

Kn = {x ∈ K; rρ(x,K)≤ Rρ(K)+1/n},
is non-empty for any n≥ 1 and that

Kn =
⋂
y∈K

Bρ

(
y,Rρ(K)+1/n

)
∩K, n≥ 1,

which shows that {Kn} is a decreasing sequence of ρ-closed, convex and

nonempty subsets of K. The property (R) implies that
⋂

n≥1
Kn is nonempty.

Clearly, any x ∈ ⋂
n≥1

Kn will satisfy rρ(x,K) = Rρ(K). We next set out to

show that
⋂

n≥1
Kn consists of a single point. Assume that there exists z ∈ K

such that z �= x and rρ(z,K) = Rρ(K). Since ρ(x− z) ≤ rρ(x,K) = Rρ(K)
and x �= z, we conclude that Rρ(K) > 0. Since ρ is (UUCED), there exists

δ = δ (x,z,Rρ(K))> 0 such that{
ρ(y− x) ≤ Rρ(K)
ρ(y− z) ≤ Rρ(K)

=⇒ ρ
(

y− x+ z
2

)
≤ Rρ(K)(1−δ ),

for any y ∈ K. The latter implies

Rρ(K)≤ rρ

(
x+ z

2
,K
)
≤ Rρ(K)(1−δ ).

This contradiction finishes the proof of (iii), which in turn completes the

proof of Proposition 6.2.

We aim at utilizing the above ideas for proving an analogue to Kirk’s

fixed point theorem [14], in �p(·). Since this classical theorem uses the nor-

mal structure property, the following definition is needed:

Definition 6.8. �p(·) is said to have the ρ-normal-structure property if for

any nonempty, ρ-closed, convex and ρ-bounded subset C of �p(·) that con-

tains more than one point, there exists x ∈C such that

sup
y∈C

ρ(x− y)< δρ(C).

Theorem 6.6. [2] Assume that inf
n∈N

p(n) > 1. Then �p(·) has the ρ-normal
structure property.
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Proof. Since inf
n∈N

p(n)> 1, Theorem 6.2 implies that ρ is (UUC2). Let C be

a ρ-closed, convex and ρ-bounded subset of �p(·) not consisting of a single

one point. It follows that δρ(C) > 0. Set R = δρ(C). Let x,y ∈C such that

x �= y. Hence ρ((x− y)/2) = ε > 0. For any c ∈ C, we have ρ(x− c) ≤ R
and ρ(y− c)≤ R. Hence

ρ
(

x+ y
2
− c
)
= ρ

(
(x− c)+(y− c)

2

)
≤ R

(
1−δ2

(
R,

ε
R

))
,

for any c ∈C. Thus,

sup
c∈C

ρ
(

x+ y
2
− c
)
≤ R

(
1−δ2

(
R,

ε
R

))
< R = δρ(C).

This completes the proof of Theorem 6.6, since C is convex.

Definition 6.9. Consider a nonempty set C⊂ �p(·) and a mapping T :C→C.

T is said to be ρ-Lipschitzian if for some constant K ≥ 0 one has

ρ(T (x)−T (y))≤ K ρ(x− y), for any x,y ∈C.

In particular T is called ρ-nonexpansive if K = 1 and x ∈C is called a fixed

point of T if T (x) = x. The collection of all fixed points of T will be denoted

by Fix(T ).

Theorem 6.7. [2] Assume that inf
n∈N

p(n) > 1. Let C be a nonempty, ρ-

closed, convex and ρ-bounded subset of �p(·). Let T : C → C be a ρ-
nonexpansive mapping. Then T has a fixed point.

Proof. Without loss of generality, it can be assumed that C is not a singleton.

Consider the family

F = {K ⊂C; K is nonempty, ρ-closed, convex and T (K)⊂ K}.
The family F is not empty since C ∈ F . Furthermore, inf

n∈N
p(n) > 1, ρ

is (UUC2). Using Proposition 6.2 combined with Zorn’s lemma, we con-

clude that F has a minimal element K0. We claim that K0 consists of

exactly one point. Assume not, i.e., assume that K0 has more than one

point. Set co(T (K0)) to be the intersection of all ρ-closed, convex sub-

sets of C that contain T (K0). Hence co(T (K0)) ⊂ K0 since T (K0) ⊂ K0.

So we have T
(

co(T (K0))
)
⊂ T (K0) ⊂ co(T (K0)). The minimality of K0
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implies K0 = co(T (K0)). Next, we use Theorem 6.6 to secure the existence

of x0 ∈ K0 such that

r0 = sup
y∈K0

ρ(x0− y)< δρ(K0).

Define the subset K = {x ∈ K0; sup
y∈K0

ρ(x− y) ≤ r0}. K is not empty, since

x0 ∈K. Note that K =
⋂

y∈K0

Bρ(y,r0)∩K0, where Bρ(y,r0) = {z∈ �p(·); ρ(y−
z) ≤ r0}. Since ρ satisfies the Fatou property and is convex, Bρ(y,r0) is ρ-

closed and convex. Hence K is a ρ-closed and convex subset of K0. Let

us show that T (K) ⊂ K. Let x ∈ K, then T (x) ∈ ⋂
y∈K0

Bρ(T (y),r0) ∩ K0

since T is ρ-nonexpansive. Hence T (K0) ⊂ Bρ(T (x),r0), which implies

K0 = co(T (K0)) ⊂ Bρ(T (x),r0), i.e., T (x) ∈ ⋂
y∈K0

Bρ(y,r0)∩K0. Therefore,

T (K)⊂ K holds. The minimality of K0 implies K = K0, i.e., for any x ∈ K0,

we have sup
y∈K0

ρ(x− y) ≤ r0. This clearly implies ρ(x− y) ≤ r0, for any

x,y ∈ K0. Hence δρ(K0) ≤ r0. This is our sought contradiction. Therefore,

K0 hast exactly one point. Since T (K0)⊂K0, we conclude that T has a fixed

point in C.

The following modular version of Kirk’s fixed point theorem is an im-

provement to Theorem 6.7 since it does not require that inf
n∈N

p(n)> 1.

Theorem 6.8. [3] Assume that p(·) satisfies the condition (AO). Let C be a
nonempty, ρ-closed, convex, ρ-bounded subset of �p(·), which has the prop-
erty (R). Let T : C → C be a ρ-nonexpansive mapping. Then Fix(T ) is a
nonempty, ρ-closed and convex subset of C.

Proof. Let /0 �= C ⊂ �p(·) be ρ-closed, convex and ρ-bounded and consider

T : C→C to be a ρ-nonexpansive mapping. Assume that C is not a single-

ton: it is clear that no generality is lost under this assumption. Consider the

family

F = {K ⊂C;K �= /0, K ρ-closed, convex and T (K)⊂ K}.

The family F is not empty, since C ∈F . Our assumption on p(·) implies

that ρ is (UUCED). Zorn’s Lemma in concert with Proposition 6.2 yields

the existence of a minimal element of F , which we denote by K0. We con-

tend that K0 consists of exactly one point. For otherwise we set co(T (K0)) to

be the intersection of all ρ-closed, convex subsets of C that contain T (K0).
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In particular, co(T (K0)) ⊂ K0 since T (K0) ⊂ K0 and we readily conclude

that

T
(

co(T (K0))
)
⊂ T (K0)⊂ co(T (K0)).

The minimality of K0 yields K0 = co(T (K0)). Next, set x ∈ K0 to be the

unique ρ-C̆ebys̆ev center of K0, i.e.,

rρ(x,K0) = sup{ρ(x− y); y ∈ K0}= inf
z∈K0

(
sup{ρ(z− y); y ∈ K0}

)
,

which exists according to (iii) of Proposition 6.2. Since T is ρ-nonexpansive

and K0 ⊂ Bρ(x,rρ(x,K0)), we get T (K0)⊂ Bρ(T (x),rρ(x,K0)). Hence K0 =
co(T (K0)) ⊂ Bρ(T (x),rρ(x,K0)), since the ρ-balls are ρ-closed and con-

vex. Thus we have

rρ(T (x),K0) ≤ rρ(x,K0)

= sup{ρ(x− y); y ∈ K0}
= inf

z∈K0

(
sup{ρ(z− y); y ∈ K0}

)
,

i.e., T (x) is also ρ-C̆ebys̆ev center of K0. Therefore we must have T (x) = x,

which implies K0 = {x}; this is a contradiction to our assumption that K0

contains more than one point. Hence any minimal element of F consists

of exactly one point, which shows that Fix(T ) is not empty. Since T is ρ-

nonexpansive, Fix(T ) is ρ-closed. Let us show that Fix(T ) is convex. Let

z1,z2 ∈ Fix(T ) with z1 �= z2. Let α ∈ [0,1]. Then

ρ(zi−T (α z1 +(1−α)z2)) = ρ(T (zi)−T (α z1 +(1−α)z2))
≤ ρ(zi− (α z1 +(1−α)z2)),

for i = 1,2. Since ρ is (UUCED), it follows that ρ is (SC). Hence T (α z1 +
(1−α)z2) = α z1 +(1−α)z2, i.e., α z1 +(1−α)z2 ∈ Fix(T ), which com-

pletes the proof of Theorem 6.8.

As a consequence of the properties of the fixed point set proved in The-

orem 6.8, we present the following common fixed point result.

Theorem 6.9. [12, 28, 65] Assume that p(·) satisfies the condition (AO).
Let C be a nonempty, ρ-closed, convex, ρ-bounded subset of �p(·) which
satisfies the property (R). Let {Tα}α∈Γ be a commutative family of ρ-
nonexpansive self-mappings defined on C. Then

⋂
α∈Γ

Fix(Tα) is a nonempty

ρ-closed convex subset of C.
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Proof. Let S,T : C → C be two commutative ρ-nonexpansive mappings.

Theorem 6.8 implies that Fix(T ) is a nonempty, ρ-closed, convex subset of

C. Since S and T commute, it follows that S(Fix(T ))⊂Fix(T ). A further ap-

plication of Theorem 6.8 yields that the restriction of S to Fix(T ) has a fixed

point, i.e., Fix(T )∩Fix(S) �= /0. It follows from this argument that for any

finite subset Γ f of Γ,
⋂

α∈Γ f

Fix(Tα) is a nonempty, ρ-closed, convex subset

of C. Since C satisfies the property (R), we conclude that
⋂

α∈Γ
Fix(Tα) �= /0.

The fact that this intersection is ρ-closed and convex follows easily.
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Chapter 7
Variational inequalities under the
global NPC condition
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land
E-mail: parin.cha@mail.kmutt.ac.th

The aim of this Chapter is to provide a concise summary of recent convex-

analytical results obtained under the global NPC condition, used in convex

optimization problems and also to study their extensions from convex opti-

mization to variational inequalities and further to equilibrium problems. It

will be seen that both the variational inequality and the Minty variational

inequality of the subdifferential provide sufficient and necessary optimality

conditions wherever a manifold structure is required in the analysis. It will

also be clear that the induced variational inequalities are never convex in any

variable unless the space has zero curvature. To overcome this difficulty, a

method will be introduced to solve a class of nonconvex equilibrium prob-

lems. This method is applicable to the treatment of variational inequalities

and of convex optimization problems, under appropriate conditions on the

space.

7.1 Introduction
Optimization in normed linear spaces, especially in Hilbert spaces, is no

doubt a very fruitful area. In view of several emergent applications includ-

ing computational biology, medical DTI/MRI image processing, manifold-
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valued data processing, and manifold learning, the need to develop the the-

ory of optimization, convex analysis, and optimization algorithms outside

a linear space is apparent. The first step of such extension is to consider

optimization on Riemannian or Hadamard manifolds. In such manifolds,

one exploits the available calculus defined through the smooth structure and

takes advantage of several identification processes using diffeomorphisms,

charts, connections, and so on. We refer the reader to [26, 1] for a nice sur-

vey on this topic.

The starting point of the present investigation is to consider metric

spaces with a synthetic curvature property - namely, the global NPC con-

dition. This notion directly generalizes both that of Hilbert space and that

of a Hadamard manifold. The main idea in this approach is to extract met-

rical properties from the analytical and differential geometrical properties

of a good model space (often a manifold). The ability to consider and solve

optimization problems as well as other variational problems in this gen-

eral setting will allow the study of more applications and the consideration

of spaces without a smooth manifold structure, such as metric trees, frac-

tals, singular surfaces, nonsmooth configuration spaces, nonsmooth statisti-

cal manifolds, etc.. In addition, this general setting allows us to neglect the

Riemannian structure which seems superfluous when the problem at hand

has to be dealt with in a nonsmooth manner. This topic was first indepen-

dently introduced in [13] and [24], where the proximal operator was first

introduced in the globally NPC space. It took quite a long time until uncon-

strained optimization problems in globally NPC spaces were considered in

[4]. In [2, 3], the concept of a dual space to a globally NPC space was dis-

cussed for the first time. In [10] and [14] the authors indepently developed

some theory of monotone operators in globally NPC spaces based on the

use of dual space of [3, 2] and showed the convergence of the correspond-

ing proximal algorithm to a stationary point. The results obtained in [10]

and [14] clearly improve the existing theory in Hilbert spaces. However it

is still unknown and puzzling how these problems, or even the dual space

itself, are related to the classical Hadamard manifold theory developed ear-

lier in [12, 21, 27]. In a recent preprint [8] the authors have developed a

new approach to study the monotone counterpart of convex functions, using

the concept of tangent cones due to [25]. In the same paper the subdiffer-

ential of convex functions with the tangent cone approach is considered and

the authors deduce the first-order optimality condition for an unconstrained

optimization problem.

It is quite natural to go beyond the above studies by introducing con-

straints to the problems. Suppose that (X ,d) is a globally NPC space.

Throughout this Chapter, we will consider the convex optimization prob-
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lem (P) with a closed convex constraint set Ω⊂ X , as follows:

min ϕ(x) such that x ∈Ω, (P)

where ϕ : X → (−∞,+∞] is convex. It is typical to link the first-order prop-

erties like the directional derivative Dϕ or the subdifferential ∂ϕ , to the

optimalities of ϕ . As is known in other settings, the first-order optimality

condition for such optimization problem is given in the form of a variational

inequality. In what follows, the motivation from such optimality condition

will be used and extended to a general variational inequality with proper-

ties inherited by the subdifferential as a vector field. In so doing it should be

noticed that the resulting variational inequality lacks the convexity (or quasi-

convexity) expected in linear spaces. In fact, the convexity holds if and only

if the space has identically zero curvature. In other words, the curvature im-

pedes a simple generalization. This difficulty can be overcome by moving to

a higher level of generality and by regarding the variational inequality as an

equilibrium problem to highlight the properties that each variable precisely

contributes. In fact, the general equilibrium problem in globally NPC spaces

was investigated in [9, 15, 20] under convexity (and generalized convexity)

assumptions on the second argument. Due to such convexity assumptions,

the results in the above works are not applicable to the situation in point.

Instead, we come up with a new type of continuity, tailored for a bifunction,

that captures the situation and that is sufficient to ensure the convergence

of the proximal algorithm at hand. To conclude, new notions to solve non-

convex equilibrium problems are developed, which are applicable to varia-

tional inequalities and constrained optimization problems at different level

of generalities - ranging from general globally NPC spaces to the level of an

Hadamard manifold.

This Chapter is organized as follows. Section 7.2 recalls the necessary

concepts needed in the sequel. It includes the definitions of the global NPC

condition, of convexity of sets and of functions, the definition of conver-

gence and of tangent cones. Section 7.3 is devoted to observations on the

first-order properties of convex functions. The motivation stemming from

variational inequalities as well as from the Minty variational inequalities

will be apparent. In Section 7.4, the target variational inequality is formu-

lated. Such formulation is strongly inspired by the optimality condition in

Section 7.3. In Section 7.4, the equilibrium problems are posed. In Section

7.5, the idea of a resolvent operator for a bifunction is developed and its

fundamental properties are proved. This resolvent operator is crucial for the

proximal algorithm used to find the solution of the equilibrium problem.

Finally, in Section 7.6, the convergence of proximal algorithms defined by

iterating the resolvent operators with different parameters is proved. The

results for nonconvex equilibrium problems are then applied to variational

inequalities and finally to convex optimization problems.
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7.2 Global NPC spaces
This Section is devoted to a very brief overview of the global NPC condi-

tion and to a discussion of related properties. Since an exhaustive discussion

of the geometry of globally NPC spaces is beyond the scope of our analysis,

the information given in this Section is the minimum required for a trans-

parent exposition. Most of the results given in this Section are covered in [5]

and [6, 7]. The reader is also referred to [17, 18] for a further discussion on

the space of directions and tangent cones. It is assumed that R and N stand

for the sets of all reals and all positive integers, respectively. Moreover, Rn

will always be assumed to be equipped with its Euclidean norm ‖·‖.

7.2.1 The global NPC condition

Let (X ,d) be a metric space. X is said to be geodesic if any two points

x,y ∈ X can be connected by a curve σ : [0,d(x,y)]→ X with σ(0) = x,

σ(d(x,y)) = y, and d(σ(s),σ(t)) = |s− t| for all s, t ∈ [0,d(x,y)]. Here, σ is

called a minimizing geodesic joining x to y. If each pair x,y∈ X is connected

by a unique minimizing geodesic, X is said to be uniquely geodesic. In this

case, the symbol [x,y] := σ([0,d(x,y)]), where σ is the unique geodesic

connecting x to y, denotes the corresponding geodesic segment. Moreover,

we adopt the notation (1− t)x⊕ ty := σ(td(x,y)) for t ∈ [0,1]. If σ is the

minimizing geodesic joining x and y, then |σ | := d(x,y) is called the length
of σ .

As is the case in a Riemannian manifold, the metric (induced from the

Riemannian structure) properties alone are not sufficient to obtain strong re-

sults. Thus this discussion is restricted to the case when the sectional curva-

ture is bounded either from above or from below. In the sequel the synthetic
curvature condition is considered, which corresponds to global nonpositive

sectional curvature in Riemannian manifolds, on geodesic metric spaces.

Note that this concept of curvature can be defined merely in terms of the

distance function, but this will not be so useful in any delicate analysis. To

fully exploit this notion, the definition of a comparison triangle has to be

recalled. Since the full generality of this idea is not needed, we rather adopt

the notions that are more natural than the more general ones.

Definition 7.1. Suppose that (X ,d) is a uniquely geodesic metric space. Let

x,y,z ∈ X and consider the geodesic triangle Δ ≡ Δ(x,y,z) = [x,y]∪ [y,z]∪
[x,z]. A triangle Δ≡Δ(x̄, ȳ, z̄) in R2 is a comparison triangle of Δ if d(x,y) =
‖x̄− ȳ‖, d(y,z) = ‖ȳ− z̄‖, and d(x,z) = ‖x̄− z̄‖.
Remark 7.1. Notice that by virtue of the triangle inequality, a comparison
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triangle always exists and it is unique up to rigid motions, i.e., up to transla-

tions and rotations. Also, the triangles above can be degenerated.

Definition 7.2. Suppose that (X ,d) is a uniquely geodesic metric space,

x,y,z ∈ X , and Δ(x̄, ȳ, z̄) is a comparison triangle of Δ(x,y,z). Let u ∈ [x,y].
The point ū ∈ [x̄, ȳ] is called the comparison point of u if d(x,u) = ‖x̄− ū‖
and d(u,y) = ‖ū− ȳ‖. Comparison points on [y,z] and [x,z] are defined like-

wise.

Next, the formal definition of a globally NPC space is stated.

Definition 7.3. A metric space (X ,d) is said to be globally nonpositively
curved (or globally NPC), if it is uniquely geodesic and if for any given

x,y,z ∈ X and any u ∈ Δ(x,y,z), the following inequality is satisfied:

d(x,u)≤ ‖x̄− ū‖,
where ū ∈ Δ is the comparison point of u.

Remark 7.2. A globally NPC space is also called a CAT(0) space, follow-

ing the terminology of Gromov. Moreover, a complete globally NPC space

is known by the terminology Hadamard space. In this Chapter, the term

globally NPC is opted for, as it best depicts the geometric situation of the

space.

There are several equivalent statements for (X ,d) being globally NPC.

For future reference, the following list is given:

Proposition 7.1. Let (X ,d) be a uniquely geodesic metric space. Then, the
following statements are equivalent:

(1) X is globally NPC.

(2) For any x,y,z ∈ X, the following inequality holds true:

d2(x,(1− t)y⊕ tz)≤ (1− t)d2(x,y)+ td2(x,z)− t(1− t)d2(y,z),
(7.1)

for any choice of t ∈ [0,1].

(3) For any geodesic triangle Δ in X and u,v∈ Δ, the following inequality
holds true:

d(u,v)≤ ‖ū− v̄‖,
where ū and v̄ are the comparison points of u and v, respectively.

(4) For any x,y,u,v ∈ X, the following inequality holds:

d2(x,v)+d2(y,u)≤ d2(x,u)+d2(y,v)+2d(x,y)d(u,v). (7.2)
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The class of globally NPC spaces includes Hilbert spaces, metric trees

and Gromov-Hausdorff limits of Riemannian manifolds of nonpositive sec-

tional curvature. It is useful to note that if (Xi,di), i = 1,2, · · · ,n are glob-

ally NPC spaces, then so is their product X := ∏n
i=1 Xi, when equipped

with the distance function d given by d(x,y) := (∑n
i=1 di(xi,yi))

1/2, where

x = (x1, · · · ,xn) and y = (y1, · · · ,yn) are elements from X. In the sequel,

products of globally NPC spaces are always to be understood in this sense.

Now, suppose that (X ,d) is a globally NPC space, p ∈ X , and take

any two minimizing geodesics σ1 and σ2 with common emanating point

σ1(0) = σ2(0) = p. Each geodesic triangle Δ(p,σ1(s),σ2(t)) associates

with it the comparison triangle Δs,t whose vertices p̄, ¯σ1(s), and ¯σ2(t) cor-

respond respectively to p, σ1(s), and σ2(t). Denote by ∠̄ p̄(σ1(s),σ2(t)) the

angle at p̄ of the triangle Δs,t . By virtue of the global NPC condition on X ,

the angle ∠̄ p̄(σ1(s),σ2(t)) decreases with s and t. Therefore, the limit as s, t
tend to 0+ always exists; it will be denoted by αp(σ1,σ2). As a function of

two minimizing geodesics on X , αp(·, ·) is called the Alexandrov angle at p.

In the remainder of this paper, unless stated otherwise, it will be always

assumed that (X ,d) is a complete globally NPC space.

7.2.2 Convexity

The main ideas presented in this Section revolve around the concepts of

convex sets and convex functions. A nonempty set Ω ⊂ X is called convex
if x,y ∈ Ω implies [x,y] ⊂ Ω. Likewise, a function ϕ : X → (−∞,+∞] is a

convex function if its epigraph epi(ϕ) := {(x,r) ∈ X ×R; ϕ(x) ≤ r} is a

convex set. A simple calculation reveals that ϕ is convex if and only if the

inequality

ϕ((1−λ )x⊕λy)≤ (1−λ )ϕ(x)+λϕ(y) (7.3)

holds for any x,y ∈ X and λ ∈ [0,1]. Viewing a convex function as one that

satisfies the above inequality can simplify the ideas. For instance, ϕ is called

strictly convex if (7.3) holds with strict inequality for distinct points x and y,

and it is called strongly convex if there is κ > 0 for which the inequality

ϕ((1−λ )x⊕λy)≤ (1−λ )ϕ(x)+λϕ(y)−κλ (1−λ )d2(x,y)

holds for all x,y ∈ X and all λ ∈ [0,1]. If ϕ is strongly convex and lsc, then

it is bounded from below. If, additionally, the space X is complete, then ϕ
has a unique minimizer. It is noticed right away that (7.1) actually states that

d2(·,y) is strongly convex with κ = 1, for any fixed y ∈ X . Fix a nonempty,

closed, convex set Ω ⊂ X and x ∈ X . Then d2(·,y) has a unique minimizer

over Ω provided that Ω is complete. This leads to the very definition of the

so-called metric projection.
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Definition 7.4. Suppose that Ω ⊂ X is nonempty, closed and convex. The

metric projection onto Ω is the mapping PΩ : X →Ω given by

PΩ(x) := argminy∈Ωd(x,y) (∀x ∈ X).

If ϕ : X →R(−∞,+∞] is proper, convex, lsc, then its proximal operator

proxλ
ϕ : X → X is well-defined for all λ > 0 and is given by

proxλ
ϕ(x) := argminy∈X

[
ϕ(y)+

1

2λ
d2(y,x)

]
(∀x ∈ X).

This operator was independently introduced in [13] and [24] to study gra-

dient flows and harmonic maps. It was recently used in [4] to define the

proximal algorithm used in finding an unconstrained minimizer of a convex

function.

7.2.3 Δ-convergence

Convergence in the metric topology is known to be irrelevant in infinite

dimensional spaces. In a CAT(0) space, the concept of Δ-convergence can

be defined, which coincides with the weak convergence when the space in

question is a Hilbert space. Let (xk)⊂ X be a bounded sequence and define

a function r(·;(xk)) : X → [0,∞) by

r(x;(xk)) := limsup
k→∞

ρ(x,xk), ∀x ∈ X .

According to [11], the minimizer of this function exists and is unique.

Following [16] (see also [23]), a bounded sequence (xk) is said to be Δ-
convergent to a point x̄ ∈ X if x̄ = argminx∈X r(x;(uk)) for any subsequence

(uk) of (xk). In this case, x̄ is called the Δ-limit of (xk). Recall that a bounded

sequence is Δ-convergent to at most one point. A point z ∈ X is said to be

a Δ-accumulation point of a sequence (xk) in X if (xk) has a Δ-convergent

subsequence whose Δ-limit point is z. Moreover, if (xk) is a sequence in a

closed convex set Ω, then its Δ-accumulation points are within Ω.

It is currently unknown whether Δ-convergence is equivalent to conver-

gence with respect to a topology on X . This question was partially answered

in [2], with additional assumptions.

In practice, it is often not simple to derive Δ-convergence directly from

the definition. The following notion is an important tool in showing Δ-

convergence of a given sequence. It also plays a vital role in the convergence

analysis given in the final Section of this Chapter.

Definition 7.5. A sequence (xk) in X is said to be Fejér convergent with

respect to a nonempty set Ω⊂ X if for each x ∈Ω, it holds that d(xk+1,x)≤
d(xk,x) for all large k ∈ N.
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Proposition 7.2 ([10]). Suppose that (xk) is a sequence in X which is Fejér
convergent to a nonempty set Ω⊂ X. Then, the following are true:

(1) (xk) is bounded.

(2) (d(x,xk)) converges for any x ∈Ω.

(3) If every Δ-accumulation point lies within Ω, then (xk) is Δ-convergent
to an element in Ω.

7.2.4 Space of directions and tangent cones

The ultimate goal of this Subsection is to introduce the notions of tan-

gent cones and of intrinsic scalar products. These concepts are originally

due to [25]. The tangent cone to a globally NPC space (X ,d) can be defined

in two equivalent ways, namely, as an Euclidean cone over the space of di-

rections or as a certain limit of rescalings of the space X . The focus in this

analysis is on the first approach. The metric calculation emanating from the

latter approach will be mentioned only in passing.

Let p ∈ X and Gp be the set of all geodesic emanating from p with

nonzero length. Define an equivalence relation ∼ on Gp by

σ1 ∼ σ2 ⇐⇒ αp(σ1,σ2) = 0,

for σ1,σ2 ∈ Gp. Then the quotient metric space (ΣpX ,∠p) := (Gp,αp)/∼
is called the space of directions of X at p. We shall write ↑x

p to denote the

equivalence class of ∼ containing the minimizing geodesic joining p to x,

for x ∈ X \ {p}. Next, the logarithm map associated to ΣpX , denoted with

logΣpX : X \{p}→ ΣpX , is defined by

logΣpX (x) =↑x
p (∀x ∈ X \{p}).

We then take the Euclidean cone Conep(ΣpX) defined by the quotient space

([0,∞)×ΣpX)/≈, where≈ is the equivalence class on [0,∞)×ΣpX defined

as (t1,↑1)∼ (t2,↑2) if either of the following holds:

(1) t1 = t2 = 0, or

(2) t1 = t2 > 0 and ↑1=↑2.

Set TpX := Conep(ΣpX) and define a metric dp on TpX by

dp([(t1,↑1)]≈, [(t2,↑2)]≈) :=
√

t2
1 + t2

2 −2t1t2 cos∠p(↑1,↑2)

for each [(t1,↑1)]≈, [(t2,↑2)]≈ ∈ TpX . Denote by 0p the equivalence class
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[(0,↑)]≈ ∈ TpX . The metric space (TpX ,dp) is called the tangent cone of X
at p. It must be noted that ΣpX is a complete CAT(1) space and that TpX
is a complete globally NPC space. With the notion of a tangent cone, one

defines logTpX : X → TpX , the logarithm map associated to TpX , given by

logTpX (x) :=

{
[(d(p,x),↑x

p)]≈ for x �= p,

0p for x = p.

It is customary to use the notation t logTpX (x) := [(td(p,x),↑x
p]≈ for x �= p.

From the second definition of the tangent cone TpX it follows that

dp(logTpX (x), logTpX (y)) = lim
ε→0+

ε−1d(σ x
p(ε),σ

y
p(ε)),

where σ x
p and σ y

p are respectively the minimizing geodesics joining p to x
and y. It is natural to identify ΣpX as the a subset {[(1,↑p)]≈ | ↑p∈ ΣpX} in

TpX . Next, define the scalar product < ·, ·> on TpX by

< [(t1,↑1)]≈, [(t2,↑2)]≈ >:= t1t2 cos∠p(↑1,↑2)

for [(t1,↑1)]≈, [(t2,↑2)]≈ ∈ TpX .

A final remark is in order, namely that when X is a Hadamard man-

ifold, X is locally compact, TpX is isometric to the Riemannian tangent

space TanpX and the map logTpX is identified via such isometry with the

inverse exponential map exp−1
p : X → TanpX , which is a global diffeomor-

phism by the Cartan-Hadamard theorem. In this case, TanpX is isometric to

the Euclidean space of the dimension of the manifold X . Moreover, ΣpX is

exactly the unit sphere in the tangent space TanpX . This fact yields the de-

composition T(p,q)(X1×X2) = TpX1×TqX2 if X1 and X2 are two Hadamard

manifolds, p ∈ X1, and q ∈ X2.

7.3 First-order properties of convex functions
This Section delves into deeper considerations in the study of convex

functions. Specifically, subdifferentials, directional derivatives, convex op-

timization and optimality conditions will be considered. The motivation for

the introduction of such notions will be apparent towards the end, as varia-

tional inequalities are introduced.

For convenience, denote by Γ0(X) the family of all functions ϕ : X →
(−∞,+∞] that are proper, convex, and lsc.
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Firstly, the notion of a subdifferential ∂ϕ will introduced and its connec-

tion with convex optimization problem emphasized. Note that even though

∂ϕ can be defined directly from ϕ , another approach to the definition is pre-

sented here, aiming to highlight its geometric features. First, we define the

notion of a normal cone to a convex set.

Definition 7.6. Let Ω⊂ X be a nonempty, convex set and take p∈ clΩ. The

normal cone to Ω at p is the set

NΩ(p) := {⇑p∈ TpX | < ⇑p, logTpX (x)>≤ 0 (∀x ∈Ω)}.

A normal cone NΩ(p) is always nonempty, since it contains 0p. More-

over, NΩ(p) is trivial (containing only 0p) if and only if p is an interior point

of Ω.

Definition 7.7. Let ϕ ∈ Γ0(X) and p ∈ domϕ . The subdifferential of ϕ at p
is defined by

∂ϕ(p) := {⇑p∈ TpX | (⇑p,−1) ∈ Nepiϕ(p,ϕ(p))}.
Elements in ∂ϕ(p) are called subgradients of ϕ at p.

Proposition 7.3. Let ϕ ∈ Γ0(X) and let p ∈ domϕ . Then,

∂ϕ(p) := {⇑p∈ TpX | ϕ(y)≥ ϕ(p)+< ⇑p, logTpX (y)> (∀y ∈ X)}.
Proof. Observe that

⇑p∈ ∂ϕ(p) ⇐⇒ (⇑p,−1) ∈ Nepiϕ(p,ϕ(p))

⇐⇒< (⇑p,−1), logT(p,ϕ(p))X×R(y,w)>≤ 0 (∀(y,w) ∈ epiϕ)

⇐⇒< ⇑p, logTpX (y)>+ϕ(p)−w≤ 0 (∀y ∈ domϕ)(∀w≥ ϕ(y))

⇐⇒< ⇑p, logTpX (y)>+ϕ(p)≤ ϕ(y) (∀y ∈ domϕ).

This completes the proof.

It is apparent that ∂ϕ(x) = /0 if x �∈ domϕ . In fact, dom∂ϕ is dense

in domϕ . Notice that ∂ϕ is tied the to convex optimization problem (P).

Specifically, both sufficient and necessary optimality conditions, can be

given for (P) in terms of a variational inequality. (7.4).

Theorem 7.1. Suppose that ϕ ∈ Γ0(X) and that Ω ⊂ int(domϕ) is
nonempty, closed, and convex. If there exist x∗ ∈ Ω and ⇑∗∈ ∂ϕ(x∗) for
which

< ⇑∗, logTx∗X (x)>≥ 0 (∀x ∈Ω), (7.4)

then x∗ is a solution of (P).
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Proof. By the definition of ∂ϕ and on account of (7.4), it is immediately

clear that

ϕ(x)≥ ϕ(x∗)+< ⇑∗, logTpX (x)>≥ ϕ(x∗)

for any x ∈Ω.

In order to develop necessary optimality conditions, the relationship be-

tween Dϕ and ∂ϕ has to be established. This will be facilitated by the notion

of directional derivative and its fundamental properties. For a slightly dif-

ferent point of view on directional derivatives, see [18].

Definition 7.8. Let ϕ ∈ Γ0(X) be Lipschitz continuous, p∈ int(domϕ), and

(t,↑p) ∈ TpX . The derivative of ϕ in the direction (t,↑p) is defined by

Dϕp(t,↑p) := lim
λ→0+

ϕ ◦σ(λ t)−ϕ(p)
λ

,

where σ ∈↑p has unit speed, provided that the limit exists. Here, the map

Dϕp(·) is called the directional derivative of ϕ at p.

Proposition 7.4. Let ϕ ∈ Γ0(X) be Lipschitz continuous and p ∈
int(domϕ). Then Dϕp is well-defined on TpX, and it is convex and positively
homogeneous.

Proof. The convexity guarantees that the quotient

λ → ϕ ◦σ(λ t)−ϕ(p)
λ

is well-defined and increasing for sufficiently small λ > 0. Therefore, the

limit exists for any t ≥ 0 and any unit speed minimizing geodesic σ ema-

nating from p. Now, suppose that σ1 and σ2 are two unit speed minimizing

geodesics emanating from a common point p, whose end points are x and y,

respectively. For any s, t ≥ 0, one has

|s(ϕ ◦σ1)′(0)− t(ϕ ◦σ2)′(0)|=
∣∣∣∣ lim
λ→0+

ϕ ◦σ1(λ s)−ϕ ◦σ2(λ t)
λ

∣∣∣∣
≤ L lim

λ→0+

d(σ1(λ s)−σ2(λ t))
λ

= Ldp(s logΣpX (x), t logΣpX (y)),

where L ≥ 0 is the Lipschitzian constant of ϕ . If σ1 and σ2 represent the

same class ↑p∈ ΣpX , then logΣpX (x) = logΣpX (y) and the above inequality

guarantees that Dϕp is well-defined. The Lipschitz continuity of Dϕp fol-

lows from the same inequality. Finally, the positive homogeneity is obvious

from the limiting process and the convexity of Dϕp is obtained from that of

ϕ .
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Even though the relationship between ∂ϕ and Dϕ is quite clear in the

linear setting, the full characterization between the two notions under the

general global NPC condition is still unknown. In the following result, it is

required that X be a Hadamard manifold in order to invoke the separation

theorem on the tangent space. To the author’s best knowledge, neither this

technique nor the following result, have appeared before in the literature

on convex analysis, outside the linear setting. Here, recall that epi<ϕ :=
{(z,w) ∈ X×R | ϕ(z)< w}.
Proposition 7.5. Let X be a Hadamard manifold and ϕ ∈ Γ0(X) be Lips-
chitz continuous. For any p ∈ int(domϕ) and ⇑p∈ TpX, it holds

Dϕp(⇑p) = max
ξ∈∂ϕ(p)

< ξ ,⇑p > .

Proof. The inequality Dϕp(⇑p) ≥ maxξ∈∂ϕ(p) < ξ ,⇑p > was already

proved in [22]. Thus, only the reverse inequality Dϕp(⇑p)≤maxξ∈∂ϕ(p) <
ξ ,⇑p > remains to be proved. Without loss of generality, only the case

⇑p �= 0 needs to be considered, otherwise there is nothing to prove. Fix a

representative (t,σ) of ⇑p such that the geodesic segment of σ lies in the

interior of domϕ and define

Ω1 :=
{

λ logΣ(p,ϕ(p))X×R(z,w) ∈ T(p,ϕ(p))X×R | (z,w) ∈ epi<ϕ, λ > 0
}

and

Ω2 :=

⎧⎨⎩logT(p,ϕ(p))X×R(y,v) ∈ T(p,ϕ(p))X×R

∣∣∣∣∣∣
y = σ(λ t),
v = ϕ(p)+λDϕp(⇑p),
0≤ λ ≤ |σ |/t

⎫⎬⎭ .

Observe that the convexity of Ω1 and Ω2 follows, respectively, from the

convexity of epi<ϕ and from the fact that Ω2 is a line segment. Moreover,

since ϕ ◦σ(λ t)≥ ϕ(p)+λDϕp(⇑p) for all 0≤ λ ≤ |σ |/t, the sets Ω1 and

Ω2 are disjoint. By virtue of the Hahn-Banach separation theorem, there

exists a nonzero vector (υ ,μ) ∈ (TpX)×R= T(p,ϕ(p))X×R such that

< υ , logTpX > (σ(λ t))+μ(ϕ(p)+λDϕp(⇑p))≤< υ ,η logΣpX (z)>+μw
(7.5)

for all 0≤ λ ≤ |σ |/t, all (z,w) ∈ epi<ϕ , and all η > 0. If μ < 0, it follows

that w < ϕ(p)+λDϕp(⇑p)), which is a contradiction. On the other hand,

letting μ = 0 one concludes that < υ , logTpX (σ(λ t))>≤< υ ,δ > for every

δ ∈ ΣpX , since p is in the interior of domϕ . Hence υ = 0 and (υ ,μ) = 0,

which is also a contradiction. Therefore, μ > 0. Dividing by μ in (7.5) and

letting ῡ := υ/μ it follows that

< ῡ , logTpX (σ(λ t))>+ϕ(p)+λDϕp(⇑p)≤< ῡ ,η logΣpX (z)>+w (7.6)
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for all 0≤ λ ≤ |σ |/t, all (z,w) ∈ epi<ϕ , and all η > 0. Choosing λ = 0 and

letting w→ ϕ(z)+, one has

ϕ(p)≤< ῡ ,η logΣpX (z)>+ϕ(z) (∀z ∈ domϕ).

This shows that −ῡ ∈ ∂ϕ(p). Letting z = p, w→ ϕ(p)+, and λ = |σ |/t in

(7.6), it is clear that

(|σ |/t)Dϕp(⇑p)≤<−ῡ , logTpX (σ(|σ |))> .

A simple rearrangement yields

Dϕp(⇑p)≤<−ῡ ,⇑p >≤ max
ξ∈∂ϕ(p)

< ξ ,⇑p > .

Consequently, Dϕp(⇑p) = maxξ∈∂ϕ(p) < ξ ,⇑p > where the maximum is

attained at −ῡ . This completes the proof.

Proposition 7.5 yields the necessary optimality condition on Hadamard

manifolds.

Theorem 7.2. Suppose that X is a Hadamard manifold, that ϕ ∈ Γ0(X) is
Lipschitz continuous, and assume that Ω⊂ int(domϕ) is nonempty, closed,
and convex. If x∗ ∈ Ω is a solution of (P), then there exists ⇑∗∈ ∂ϕ(x∗) for
which (7.4) holds.

Proof. Assume that (7.4) does not hold. Thus, for any ⇑∈ ∂ϕ(x∗) we can

find x⇑ ∈Ω such that < ⇑, logTx∗X (x⇑)>< 0. By Proposition 7.5, it is clear

that Dϕx∗(logTx∗X (x⇑)) < 0. It is immediate from the definition of Dϕ that

ϕ((1− λ )x∗ ⊕ λx⇑) < ϕ(x∗), for all sufficiently small λ > 0. Since Ω is

convex, all elements (1−λ )x∗ ⊕λx⇑ lie in Ω. This shows that x∗ is not a

solution to (P), which is a contradiction. Hence (7.4) must be true.

Remark 7.3. The above optimality has been studied in the Riemannian

manifold setting by exploiting the subdifferential calculus. A second proof

is presented, that better evidences the nature of general globally NPC spaces

where subdifferential calculus is not yet developed. Moreover, the question

of the full generalization to globally NPC space is reduced to the construc-

tion of an effective separation theorem.

Next, another optimality condition is presented via a different type of

inequality, the Minty variational inequality.

Theorem 7.3. Suppose that X is a Hadamard manifold, ϕ ∈ Γ0(X) is Lip-
schitz continuous, and Ω ⊂ int(domϕ) is nonempty, closed, and convex. If
x∗ ∈Ω satisfies the inequality

< η , logTyX (x
∗)>≤ 0 (∀y ∈Ω)(∀η ∈ ∂ϕ(y)), (7.7)

then x∗ is a solution of (P).
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Proof. Assume that x∗ ∈ Ω is not a solution of (P). Hence, there exists a

point z ∈Ω for which ϕ(z)< ϕ(x∗). Define a function h : [0,1]→ R by

h(t) := ϕ((1− t)z⊕ tx∗) (∀t ∈ [0,1]).

From the assumption of the theorem and basic facts of convex analysis, it is

seen that h is convex and differentiable on a dense subset of [0,1]. Applying

the mean value theorem, it is clear that there exists t̂ ∈ (0,1) for which

dh
dt

(t̂)≥ ϕ(x∗)−ϕ(z)> 0.

Since dh
dt (t̂) = Dϕx̂(logTx̂X (x

∗)), where x̂ = (1− t̂)z⊕ t̂x∗, it follows from

Proposition 7.5 that < υ , logTzX (x
∗) > is strictly positive for some υ ∈

∂ϕ(z). Therefore x∗ cannot be a solution to the inequality (7.7).

It shall be proved in the next Section that the Minty variational inequality

(7.7) is also a necessary optimality condition for (P).

7.4 Vector fields and their variational inequalities
In the previous Section we introduced the subdifferential ∂ϕ for each

ϕ ∈ Γ0; it was moreover observed there that partial optimality conditions for

convex optimization problems in globally NPC spaces can be expressed in

terms of ∂ϕ . Also, a full optimality characterization in the case of Hadamard

manifolds can also be expressed in terms of the subdifferential. In this Sec-

tion, the variational inequality given by (7.4) is extended to any vector field.

7.4.1 Subdifferential as a vector field

As motivation towards the study of variational inequalities, the following

properties of ∂ϕ , considered as a vector field, are recalled.

Definition 7.9. A mapping Φ : X � T X is called a (set-valued) vector field
if Φ(x)⊂ TxX for all x ∈ X .

It is now clear that, when viewed as a mapping, ∂ϕ : X � T X has the

property of a vector field. Moreover, ∂ϕ is called the subdifferential of ϕ .

The following property of a vector field plays a vital role in what follows.

It is observed that ∂ϕ also behaves as a monotone vector field - a fact to be

kept in mind throughout the paper.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Variational inequalities under the global NPC condition 179

Definition 7.10 ([8]). A vector field Φ : X � T X is said to be monotone if

the inequality

< logTpX (q),η >≤−< logTqX (p),ν >

holds for all p,q ∈ X , all η ∈ Φ(p) and ν ∈ Φ(q). Moreover, a nonempty

set Ω⊂ X , Φ is said to be maximally monotone if it is monotone and for any

x ∈ X and ξ ∈ TxX satisfying < ξ , logTxX (y)>≤−< η , logTyX (x)> for all

(y,η) ∈ grΦ, it holds ξ ∈Φ(x).

A few important properties of the subdifferential are next summarized.

We refer the reader to [8] for the proofs of the following statements.

Proposition 7.6 ([8]). Let ϕ ∈ Γ0(X) and let ∂ϕ : X � T X be its subdiffer-
ential. Then the following properties are satisfied:

(1) ∂ϕ is maximally monotone.

(2) 0 ∈ ∂ϕ(x∗) if and only if x∗ minimizes ϕ on X.

(3) λ−1 logTx∗X (x) ∈ ∂ϕ(x∗) if and only if x∗ = proxλ
ϕ(x).

(4) For any given λ > 0 and x ∈ X, there exists a unique point x∗ ∈ X
such that λ−1 logTx∗X (x) ∈ ∂ϕ(x∗).

7.4.2 Variational inequalities and equilibrium problems

In view of the above properties of ∂ϕ in conjunction with the optimality

conditions given in Section 7.3, there naturally arises the need for a gen-

eral theory of variational inequalities for a monotone vector field. More pre-

cisely, for a given monotone vector field Φ : X � T X and a nonempty closed

convex set Ω⊂ X , we will consider the following variational inequality and

denote it by V I(Φ,Ω):

Find (x∗,ξ ) ∈ grΦ such that < ξ , logTx∗X (x)>≥ 0 for all x ∈Ω.

(V I(Φ,Ω))
In this case, the point x∗ is said to be the solution of V I(Φ,Ω). It is natural

to also extend (7.7) to include a general vector field. The Minty variational
inequality, referred to as MV I(Φ,Ω), is given by:

Find x∗ ∈Ω such that < η , logTyX (x
∗)>≥ 0 for all (y,η) ∈ grΦ.

The equality V I(Φ,Ω) = MV I(Φ,Ω) will be used in case the correspoding

sets of solutions coincide.

In the linear setting, the study of variational inequalities relies
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largely on the linearity, or more precisely, the quasi-convexity, of y →<
ξ , logTx∗X (x)>. However, when X is a globally NPC space, neither linearity

nor quasi-convexity is expected . In fact, one has the following characteri-

zation from [19], even in the case of a Hadamard manifold.

Theorem 7.4 ([19]). Let X be an Hadamard manifold and p ∈ X. Then the
following statements are equivalent:

(1) y →< ξ , logTx∗X (x)> is convex for each ξ ∈ TpX.

(2) y →< ξ , logTx∗X (x)> is affine for each ξ ∈ TpX.

(3) The exponential map expp : TpX → X is a global isometry.

(4) The curve t → expp((1− t)exp−1
p (q1) + t exp−1

p (q2)) is a minimal
geodesic.

(5) X has identically zero sectional curvature (i.e., it is isometric to a
Euclidean space).

In view of the preceding Theorem, the classical approach to solving

V I(Φ,Ω) has to be redesigned in the setting of Hadamard manifolds, or

more generally, in the setting of globally NPC spaces. To solve V I(Φ,Ω),
the problem is written in the simpler, more general form of an equilibrium

problem. Recall now that the equilibrium problem associated to a given do-

main Ω ⊂ X and to a bifunction V : Ω×Ω → R, denoted by EP(V,Ω), is

given by:

Find x∗ such that V (x∗,y)≥ 0 for all y ∈Ω. (EP(V,Ω))

The notion of Minty equilibrium problems, which can be seen as a counter-

part of EP(V,Ω), is also needed. The Minty equilibrium problem associated

to Ω⊂ X and V : Ω×Ω→ R, denoted by MEP(V,Ω), is given by:

Find x∗ such that V (y,x∗)≤ 0 for all y ∈Ω. (MEP(V,Ω))

To simplify the notation, let us write EP(V,Ω) = MEP(V,Ω) if the corre-

sponding solution sets of the two problems coincide.

For any given monotone vector field Φ : X � T X and a nonempty closed

convex set Ω⊂ domΦ, let VΦ,Ω : Ω×Ω→ R be the bifunction defined by

VΦ,Ω(x,y) := sup
ξ∈Φ(x)

< ξ , logTxX (y)> (∀x,y ∈Ω). (7.8)

If Φ : X � T X is a vector field and Ω⊂ X , then the problems EP(VΦ,Ω,Ω)
and MEP(VΦ,Ω,Ω) are the variational inequality V I(Φ,Ω) and the Minty

variational inequality MV I(Φ,Ω), respectively.

Recall now the following notion of monotonicity of a bifunction and the

implication concerning the Minty equilibrium problem.
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Definition 7.11. A bifunction V : Ω×Ω→ R is said to be monotone if

V (x,y)≤−V (y,x)

for every x,y ∈Ω.

Proposition 7.7. Suppose that Ω⊂ X is nonempty and that V : Ω×Ω→R
is monotone. If x∗ ∈Ω is a solution of EP(V,Ω), then it is also a solution of
MEP(V,Ω).

Proof. If x∗ ∈Ω is a solution of EP(V,Ω), then for any y ∈Ω it holds that

0≤V (x∗,y)≤−V (y,x∗).

Thus, x∗ solves MEP(V,Ω), as claimed.

The next proposition shows that the monotonicity of Φ is inherited by

VΦ,Ω.

Proposition 7.8. If Φ : X � T X is a monotone vector field and Ω ⊂ X is
nonempty, then the bifunction VΦ,Ω defined by (7.8) is monotone.

Proof. Since Φ is monotone, one has

VΦ,Ω(x,y) = sup
ξ∈Φ(x)

< η , logTxX (y)>≤ inf
η∈Φ(y)

−< χ, logTyX (x)>

=− sup
η∈Φ(y)

< η , logTyX (x)>=−VΦ,Ω(y,x),

for any x,y ∈Ω. This shows the monotonicity of VΦ,Ω.

As in the above discussion together with Propositions 7.7 and 7.8, the

following optimality condition complements Theorem 7.3.

Theorem 7.5. Suppose that ϕ ∈ Γ0(X) and that Ω⊂ X is nonempty, closed,
and convex. If x∗ is a solution of the variational inequality (7.4), then, x∗
solves the Minty variational inequality (7.7).

Proof. Since VΦ,Ω is monotone, a solution of EP(VΦ,Ω,Ω) is also a solution

of MEP(VΦ,Ω,Ω).

The following result summarizes the relationships between the convex

optimization problem, the variational inequality, and the Minty variational

inequality.

Corollary 7.1. Let X be a Hadamard manifold, ϕ ∈ Γ0 be Lipschitz contin-
uous and Ω⊂ int(domϕ) be nonempty, closed and convex. Then the follow-
ing statements are equivalent:
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(1) x∗ ∈Ω is a solution of (P).

(2) x∗ ∈Ω is a solution of the variational inequality (7.4).

(3) x∗ ∈Ω is a solution of the Minty variational inequality (7.7).

This corollary suggests the consideration of a special class of vector

field, namely one whose variational inequality generalizes inequality (7.4),

and hence the problem (P) within the manifold structure. This will be done

by systematically passing some properties of such variational inequality to a

more general nonconvex equilibrium problem, as shall be seen in the sequel.

7.5 Resolvent operators
In this Section, the notion of resolvent operator of a given bifunction is

introduced. This concept is the pivotal ingredient in the construction of the

proximal method. It is assumed in what follows that Ω ⊂ X is nonempty,

closed and convex.

Definition 7.12. Let V : Ω×Ω→ R be a given bifunction and λ > 0. The

λ -resolvent operator of V is the mapping Rλ
V : X � X defined by

Rλ
V (x) := {z ∈Ω |V (z,y)−λ−1 < logTzX (x), logTzX (y)>≥ 0 (∀y ∈Ω)},

for all x ∈ X . V is said to be prox-friendly if domRλ
V ⊃Ω for any λ > 0.

Proposition 7.9. Suppose that V : Ω×Ω→R is a monotone, prox-friendly
bifunction. Then the following properties hold for all λ > 0:

(1) Rλ
V is single-valued.

(2) Rλ
V is nonexpansive on Ω.

(3) x∗ ∈Ω solves EP(V,Ω) if and only if x∗ = Rλ
V (x

∗).

Proof. 7.9 Let x ∈ dom(Rλ
V ) and suppose that z,z′ ∈ Rλ

V (x). Thus,{
V (z,z′)≥ λ−1 < logTzX (x), logTzX (z

′)>,

V (z′,z)≥ λ−1 < logTz′X (x), logTz′X (z)> .

Adding up the two preceding inequalities, applying the monotonicity of F
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and after some calculations, one concludes

0≥V (z,z′)+V (z′,z)

≥ λ−1 < logTzX (x), logTzX (z
′)>+λ−1 < logTz′X (x), logTz′X (z)>

≥ λ−1ρ2(z,z′).

This shows z = z′.
7.9 Let x,y ∈Ω. By the definition of Rλ

V , it follows that⎧⎪⎨⎪⎩
V (Rλ

V (x),R
λ
V (y))−λ−1 < logT

Rλ
V (x)

X (x), logT
Rλ

V (x)
X (R

λ
V (y))>≥ 0,

V (Rλ
V (y),R

λ
V (x))−λ−1 < logT

Rλ
V (y)

X (y), logT
Rλ

V (y)
X (R

λ
V (x))>≥ 0.

Adding up the two inequalities above, applying the monotonicity of V , and

multiplying both sides by λ , it becomes clear that

0≥ < logT
Rλ

V (x)
X (x), logT

Rλ
V (x)

X (R
λ
V (y))>

+< logT
Rλ

V (y)
X (y), logT

Rλ
V (y)

X (R
λ
V (x))>

≥
[
ρ2(Rλ

V (x),x)+ρ2(Rλ
V (x),R

λ
V (y))−ρ2(x,Rλ

V )
]

+
[
ρ2(Rλ

V (y),y)+ρ2(Rλ
V (x),R

λ
V (y))−ρ2(y,Rλ

V (x))
]
.

Rearranging terms in the above inequality and using the global NPC condi-

tion, one has

ρ2(Rλ
V (x),R

λ
V (y)) ≤ 1

2

[
ρ2(x,Rλ

V (y))−ρ2(y,Rλ
V (x))

−ρ2(x,Rλ
V (x))−ρ2(y,Rλ

V (y))
]

≤ ρ(x,y)ρ(Rλ
V (x),R

λ
V (y)),

which shows that Rλ
V is nonexpansive.

7.9 Let x∗ ∈Ω. Observe that

x∗ = Rλ
V (x

∗) ⇐⇒ V (x∗,y)−λ−1 < logTx∗X (x
∗), logTx∗X (y)> ≥ 0

⇐⇒ V (x∗,y)≥ 0,

for all y∈Ω. That is, x∗ ∈Ω solves EP(V,Ω) if and only if x∗ = Rλ
V (x

∗).

The formula for Rλ
V can be replaced with a simpler, more explicit ex-

pression in the case of convex optimization (P). Specifically,
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Proposition 7.10. If ϕ ∈ Γ0(X), λ > 0, and x∈ X, then z = Rλ
V∂ϕ,Ω

(x) if and
only if

z = argminy∈Ω

[
ϕ(y)+

1

2λ
d2(y,x)

]
= proxλ

ϕ+δΩ
(x).

Proof. Taking the maximal monotonicity of ∂ϕ one has

z = Rλ
V∂ϕ,Ω

(x) ⇐⇒ V∂ϕ,Ω(z,y)−λ−1 < logTzX (x), logTzX (y)>≥ 0

(∀y ∈Ω)

⇐⇒ sup
υ∈∂ϕ(z)

< υ , logTzX (y)>≥ λ−1 < logTzX (x), logTzX (y)>

(∀y ∈Ω)

⇐⇒ ϕ(y)−ϕ(z)≥ λ−1 < logTzX (x), logTzX (y)>
(∀y ∈Ω)

⇐⇒ λ−1 logTzX (x) ∈ ∂ (ϕ +δΩ)(z)

⇐⇒ z = proxλ
ϕ+δΩ

(x).

7.6 Proximal algorithms
In this Section, the convergence of the proximal methods associated to a

monotone bifunction V : Ω×Ω→R is proved. Since the aim is to apply our

results to the variational inequalities for monotone vector fields that are not

convex in the second argument (unless the curvature vanishes), a completely

new condition on V is needed. Recall that Ω ⊂ X is always assumed to be

nonempty, closed and convex. The proximal algorithm consists of generat-

ing a sequence (xk) from a given initial x0 ∈Ω by setting

xk+1 := Rλk
V (xk) (k = 0,1,2, · · ·), (7.9)

where (λk) is a sequence of positive reals.

Definition 7.13. A bifunction V : Ω×Ω→ R is said to be skewed Δ-upper
semicontinuous (for short, skewed Δ-usc) if−V (y,x∗)≥ limsupk V (xk,y) for

all y ∈Ω, whenever (xk) is a Δ-convergent sequence in Ω with Δ-limit point

x∗ ∈Ω.
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It is now time to state and prove the main convergence result of this

Chapter, which concerns the proximal algorithm applied to a general non-

convex equilibrium problem.

Theorem 7.6. Suppose that V is a prox-friendly monotone bifunction which
is skewed Δ-usc and assume that EP(V,Ω) =MEP(V,Ω) has a solution. Let
(λk) be a sequence of positive reals which is bounded away from 0. Then the
sequence generated by (7.9) is Δ-convergent to a solution of EP(V,Ω) for
any initial starting point x0 ∈ K.

Proof. Let x0 ∈Ω be an initial starting point and let x∗ ∈Ω be a solution of

EP(V,Ω). Clearly,

d(x∗,xk+1) = d(Rλk
V (x∗),Rλk

V (xk))≤ d(x∗,xk),

which implies that (xk) is Fejér convergent with respect to S, where S is

the set of all solutions to EP(V,Φ). In view of Proposition 7.2, the real

sequence (ρ(xk,x∗)) is bounded, and therefore it converges to some � ≥ 0.

Since xk+1 = Rλk
V (xk), we have

V (xk+1,x∗)≥ λ−1
k < logTxk+1 X (x

k), logTxk+1 X (x
∗)> .

Since x∗ is a solution of EP(V,Ω) and V is monotone, one has

V (xk+1,x∗) ≤ 0. In view of the above inequality, it is apparent that <
logTxk+1 X (x

k), logTxk+1 X (x
∗)>≤ 0. On account of the definition of the scalar

product and by the law of cosines in the model space, it follows that

0≥< logTxk+1 X (x
k), logTxk+1 X (x

∗)>

= d(xk+1,xk)d(xk+1,x∗)cos∠xk+1(logΣxk+1 X (x
k), logΣxk+1 X (x

∗))

≥ d(xk+1,xk)d(xk+1,x∗)cos∠xk+1(xk,x∗)

= d2(xk+1,xk)+d2(xk+1,x∗)−d2(xk,x∗).

Taking the limit as k → ∞ in the above inequalites, it is clear that

limk d(xk+1,xk) = 0.

Suppose that x̂ ∈ Ω is a Δ-accumulation point of (xk). There exists thus

a subsequence (xk j) of (xk) whose Δ-limit point is x̂. From the definition of

the resolvent operator and by virtue of the Cauchy-Schwarz inequality, the

following inequalities hold:

V (xk j ,y) ≥ λ−1
k j−1 < logT

x
k j X (x

k j−1), logT
x
k j X (y)>

≥−λ−1
k j−1d(xk j ,xk j−1)d(xk j ,y),
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for any y ∈ Ω. From the boundedness of (xk) and recalling that (λk) is

bounded away from 0, one gets

V (xk j ,y)≥−Md(xk j ,xk j−1)

for some constant M > 0. Since V is skewed Δ-usc, letting j → ∞ one has

the following inequalities

−V (y, x̂)≥ limsup
j→∞

V (xk j ,y)≥ 0.

Since y∈Ω is arbitrary and EP(V,Ω)=MEP(V,Ω), it is clear that x̂ belongs

to the solution set S and so does every Δ-accumulation point of (xk). In

view of Proposition 7.2, it follows that (xk) is Δ-convergent to a solution of

EP(V,Ω).

It is next proved that VΦ,Ω with a monotone vector field Φ, is skewed usc

in a locally compact space. Note that the assumption of local compactness

should not be an issue of concern, for the Δ-convergence (or weak con-

vergence in the linear settings) in an infinite dimensional space, cannot be

instantly detected in practical implementations. In fact, it is known that any

Hadamard manifold is locally compact and therefore all subsequent results

are perfectly useful.

Proposition 7.11. Let X be locally compact and Φ : X � T X be a mono-
tone vector field. If VΦ,Ω is defined as in (7.8), then it is skwed usc.

Proof. Suppose that (xk) is a sequence in Ω that is convergent to a point

x∗ ∈ Ω. Let y ∈ Ω be arbitrary. Then, by the monotonicity of Φ and hence

of VΦ,Ω, one has

limsup
k→∞

VΦ,Ω(xk,y)≤ limsup
k→∞

[−VΦ,Ω(y,xk)]

= limsup
k→∞

[− sup
η∈Φ(y)

< η , logTyX (x
k)>]

≤ limsup
k→∞

[−< η0, logTyX (x
k)>]

≤−< η0, logTyX (x
∗)>,

for any η0 ∈Φ(y). It follows that

limsup
k→∞

VΦ,Ω(xk,y)≤ inf
η∈Φ(y)

[−< η , logTyX (x
∗)>]

=− sup
η∈Φ(y)

< η , logTyX (x
∗)>

=−V (y,x∗).

Since y ∈Ω is arbitrary, it is clear that V is skewed usc.
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The following is the proof of the convergence of the proximal algorithm

applied to the solution of a class of variational inequalities in a globally

NPC space, which naturally lacks the affinity/convexity/concavity valid in

the linear settings.

Theorem 7.7. Let X be locally compact and Φ : X � T X be a monotone
vector field, such that V I(Φ,Ω) = MV I(Φ,Ω) has a solution. Suppose that
VΦ,Ω, defined by (7.8), is prox-friendly and that (λk) is a sequence of positive
reals which is bounded away from 0. Then the sequence generated by (7.9)

applied to VΦ,Ω is convergent to a solution of V I(Φ,Ω).

Proof. By Proposition 7.11, VΦ is skewed usc. Apply Theorem 7.6 to VΦ,Ω
to obtain the desired result.

The final main result in this Chapter concerns the proximal algorithm

associated to the solution of (P) in the context of a Hadamard manifold.

Theorem 7.8. Let X be a Hadamard manifold, ϕ ∈ Γ0(X), Ω⊂ int(domϕ),
and suppose that (P) has a solution. Let (λk) be a sequence of positive reals
which is bounded away from 0. Then the sequence (xk) generated by

xk+1 := proxλk
ϕ+δΩ

(xk) (k = 0,1,2, · · ·),

with any initial start x0 ∈Ω, is convergent to a solution of (P).

Proof. By Propositions 7.6 and 7.10, the resolvent Rλk
V∂ϕ,Ω

= proxϕ+δΩ

is well-defined. Moreover, Proposition 7.1 shows that EP(V∂ϕ,Ω,Ω) =
MEP(V∂ϕ,Ω). Again, it transpires from Proposition 7.6 that ∂ϕ is mono-

tone and hence it follows from Proposition 7.11 that V∂ϕ,Ω is skew usc. By

Theorem 7.7, one has that (xk) converges to a solution of EP(V∂ϕ,Ω,Ω),
which is no other than the solution of (P).

Conclusion
We have developed the fundamental theory of convex optimization of

variational inequalities and equilibrium problems. Despite the different lev-

els of generality, the foundation of the interplay between convex optimiza-

tion problems and variational inequalities has been laid. It has been under-

lined that the variational inequalities generated in such situations are never

convex, unless the space has zero curvature. This fact highlights the im-

portant difference between the linear setting and the case of spaces with
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non-zero curvature. Therefore, a new approach has to be found to deal with

such difficulty. This Chapter presented one new way that handles the prob-

lem in such a way that it can be solved using very classical methods, such

as proximal algorithms.

Taking into account the results where a manifold structure is needed, it is

apparent that, in fact, only a powerful separation theorem is required. Thus,

the problem of passing from a Hadamard manifold to, at least, a locally

compact globally NPC space, consists of developing the required separation

theorem. To the best of the authors’ knowledge, the present work is the first

in the literature to adopt the separation theorem and prove the characteriza-

tion of subdifferentials by directional derivatives with equalities outside the

linear setting.
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Chapter 8
Motion factorization and bond theory
in hyperbolic kinematics

D. F. Scharler
Department of Basic Sciences in Engineering Sciences, University of Inns-
bruck, Innsbruck, Austria,
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H. P. Schröcker
Department of Basic Sciences in Engineering Sciences, University of Inns-
bruck, Innsbruck, Austria,
E-mail: hans-peter.schroecker@uibk.ac.at

In this Chapter we look at bond theory and motion factorization, two re-

cently developed theories for the analysis and synthesis of closed loop link-

ages, from the viewpoint of planar hyperbolic kinematics. We do this in

order to better understand phenomena observed in Euclidean kinematics.

Bond theory in hyperbolic geometry allows for a real and finite visualiza-

tion and gives a concrete meaning to an originally abstract and imaginary

concept. In hyperbolic geometry the number of real factorizations (even if

finite, which is not always the case) can be substantially larger than in Eu-

clidean geometry. The presence of zero divisors in the algebraic description

makes factorization algorithms more subtle but also more interesting.

8.1 Introduction
In recent years, the parametrization of Euclidean motion groups via

quaternions has been used to gain new insight on flexible structures with

revolute and translational joints. The factorization of motion polynomials

[8, 12, 13] yields new mechanisms with certain prescribed properties while

“bond theory” [7, 9, 14] turned out to be a versatile tool for the analysis
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of mechanical structures. Here, we develop both theories in planar hyper-

bolic kinematics mainly for the purpose of illustrating certain phenomena

that also occur in Euclidean kinematics but cannot be easily explained or

visualized there.

This is especially true for bond theory where “bonds” are defined purely

algebraically and their geometric or kinematic meaning is rather unclear.

They can be thought of as points in the closure of a configuration variety

with “degenerate” kinematic behavior. In hyperbolic kinematics they can

be real and allow visualization in the Cayley-Klein model of hyperbolic

geometry.

Motion factorization in hyperbolic kinematics is more challenging than

in Euclidean kinematics because the underlying algebraic structure of split

quaternions is more intricate than that of quaternions or dual quaternions.

While algorithms for computing factorizations generically still work for left

polynomials over split quaternions, the presence of non-invertible elements

and their interesting geometric structure accounts for phenomena that are

hidden in Euclidean geometry. Most notably, the number of factorizations

can be larger in hyperbolic kinematics, even for generic polynomials.

The main purposes of this text are illustration and visualization. This

necessitates abandoning the viewpoint of traditional (axiomatic) hyper-

bolic geometry in favor of “universal hyperbolic geometry” in the sense

of [22, 23, 24]. In contrast to traditional hyperbolic geometry, points inside

and outside the “absolute circle” or “null circle” are treated on equal foot-

ing. This also fits well with our algebraic approach where the additional

inequality constraint of traditional hyperbolic geometry would only compli-

cate matters and obscure results.

We continue this text with a split-quaternion-oriented introduction to

universal hyperbolic geometry in Section 8.2, before we present the factor-

ization theory for split quaternion polynomials and its kinematic interpreta-

tion in Section 8.3. Section 8.4 is devoted to bond theory. Due to the alge-

braic equivalence of spherical and hyperbolic kinematics over the complex

numbers, the transfer of definitions and results from Euclidean geometry

is straightforward, whence the focus will mainly be on examples and their

illustration.
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8.2 Split quaternions and hyperbolic geometry
In this Section we introduce notions and notation concerning split

quaternions, the Section also features an introduction to universal hyper-

bolic geometry.

8.2.1 Split quaternion basics

The split quaternions S form an associative real algebra of dimension

four. A split quaternion can be written as h = h0 +h1i+h2j+h3k. Multipli-

cation is defined by the generating rules

i2 =−j2 =−k2 =−ijk =−1.

From this, the complete multiplication table can be worked out:

i j k
i −1 k −j
j −k 1 −i
k j i 1

It is clear then that the split quaternion algebra is not commutative. The

split quaternion conjugate to h = h0 + h1i+ h2j+ h3k is defined as h :=
h0−h1i−h2j−h3k, the split quaternion norm is given by

hh = hh = h2
0 +h2

1−h2
2−h2

3.

The split quaternion norm is real but, in contrast to the case of ordinary

(Hamiltonian) quaternions (defined by the generating relations i2 = j2 =
k2 = ijk = −1), may attain negative values as well. Every split quaternion

with non-zero norm has a multiplicative inverse given by

h−1 =
h

hh
.

Split quaternions with zero norm are not invertible.

The scalar or real part of h = h0 +h1i+h2j+h3k is defined as Reh :=
1
2 (h+h) = h0, its vector or imaginary part is Imh := 1

2 (h−h) = h1i+h2j+
h3k. Split quaternions with zero scalar part are called vectorial.

Split quaternion multiplication gives rise to the scalar product and the

cross product. For h, k ∈ S, define

〈h,k〉 := 1
2 (hk+ kh) and h× k := 1

2 (hk− kh).
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Writing h = h0 +h1i+h2j+h3k and k = k0 + k1i+ k2j+ k3k it is clear that

〈h,k〉= h0k0 +h1k1−h2k2−h3k3 and

h× k = (h3k2−h2k3)i+(h3k1−h1k3)j+(h1k2−h2k1)k.

Note that 〈h,h〉= hh and that h× k = Imh× Imk.

8.2.2 Hyperbolic geometry

The points of the hyperbolic plane H2 are the points of the projective

plane over the vector space ImS of vectorial split quaternions. The projec-

tive point represented by the vector h ∈ ImS will be denoted by [h]. The

geometric structure of H2 is given by the split quaternion multiplication

rule. In the sequel, the terminology of [22, 23, 24] will be followed. The

absolute circle or null circle N is the conic defined by the quadratic form

(h,k) → 〈h,k〉. The null circle is real and regular. Its points are called null
points, its tangents are null lines. The polarity with respect to N is called

absolute polarity or null polarity.
The quadrance of two non-null points [h], [k] ∈ H2 \N is

Q([h], [k]) := 1− 〈h,k〉2
〈h,h〉〈k,k〉 . (8.1)

The quadrance equals the square of the distance of traditional hyperbolic

geometry but is well defined for any two non-null points and may attain

negative values.

The line spanned by two different points [h], [k]∈H2 will be represented

by the point [u]∨ of the dual projective plane, given by u = h× k. The line

[u]∨ and the point [x] are incident if and only if 〈u,x〉= 0. These conventions

fit nicely in our split quaternion approach but are slightly (up to certain sign

changes) different from more common conventions in projective geometry

[2].

The spread of two non-null lines [u]∨, [v]∨ is defined as

S([u]∨, [v]∨) := 1− 〈u,v〉2
〈u,u〉〈v,v〉 . (8.2)

It equals the square of the sine of the angle in traditional hyperbolic geome-

try. Comparing (8.1) and (8.2), a perfect duality is observed between points

and lines in the hyperbolic plane.

The kinematics of hyperbolic geometry can be conveniently introduced

via reflection. A hyperbolic reflection μ is a homology in the sense of [2,

Section 5.7] that preserves N . It has a center [h] and an axis [h]∨, which are

absolutely polar and non-null. Every line through [h] and every point of [h]∨

is fixed under μ .
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Theorem 8.1. The reflection with center [h] and axis [h]∨ is the map

μ : H2 → H2, [x] → [hxh] (8.3)

Note that h in (8.3) is vectorial and non-null (hh �= 0).

Proof. In order to see that (8.3) really describes a reflection, it suffices to

show that μ preserves N and has a line of fixpoints [2, Corollary 5.7.13].

The former follows from

〈hxh,hxh〉= (hxh)hxh = (hh)2 xx = (hh)2 〈x,x〉.
In order to see the latter, consider the line [h]∨ and any of its points [x].
From the incidence condition 〈h,x〉= 0 it is inferred that xh =−hx, whence

μ([x]) = [h2x] = [x] because h2 =−hh ∈ R.

The composition of two reflections is called a rotation. Denote the re-

flection centers by [h1] and [h2] and their axes by [h1]
∨ and [h2]

∨, respec-

tively. Then the rotation center [h1]
∨ ∩ [h2]

∨ is a fixed point of the rotation,

and the rotation axis [h1]∨ [h2] is a fixed line. Rotation centers and rotation

axes are absolutely polar. Note that a rotation has several decompositions

into two reflections but centers and axes are still well-defined. The algebraic

description of rotations in terms of split quaternions generalizes (8.3):

Theorem 8.2. For any split quaternion h with non-zero norm, the map

ρ : H2 → H2, [x] → [hxh] (8.4)

is a rotation. The rotation center is [Imh].

Remark 8.1. In contrast to (8.3), h in (8.4) is not required to be vectorial.

One consequence of Theorem 8.2 is that reflections should viewed as special

rotations or, equivalently, the identity should be considered as a reflection.

This is different from the case in Euclidean geometry.

Lemma 8.1. For every split quaternion h there exist vectorial split quater-
nions u, w such that h = uw.

Proof. Pick two independent vectors u = u1i+u2j+u3k and v = v1i+v2j+
v3k in the orthogonal space of Imh in ImS, whose norm does not vanish.

This is possible because the orthogonal space has dimension two (we omit

the trivial case h= 0) and contains at most two directions of vanishing norm.

Set w := λu+μv and solve h = uw for λ and μ . With h = h0 +h1i+h2j+
h3k the scalar part of this equation yields

λ =−μ〈u,v〉+h0

uu
.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



198 New Trends in Analysis and Geometry

Plug this in the remaining three equations, which are linear in μ:

(u2v3−u3v2)μ +h1 = (u1v3−u3v1)μ +h2 = (u2v1−u1v2)μ +h3 = 0.

The vectors u and v are independent. Hence the coefficients of μ do not

all vanish and there exists at most one solution. The three equations are

independent if and only if

(u2v3−u3v2)h2− (u1v3−u3v1)h1 = 0,

(u1v3−u3v1)h3− (u2v1−u1v2)h2 = 0,

(u2v3−u3v2)h3− (u2v1−u1v2)h1 = 0.

The left-hand sides of these equations are (up to sign) just the coefficients

of h× (u×v). Since u and v are in the orthogonal space of Imh, they vanish

and a solution for μ does exist. It gives rise to a vectorial split quaternion w
that satisfies h = uw, as required.

Proof of Theorem 8.2. By Lemma 8.1, there exist vectorial split quaternions

u, w such that h = uw. Since hh �= 0, the norms of u and w cannot vanish.

Thus, the reflections μu and μw in [u] and [w], respectively, are well-defined

and

hxh = (uw)x(uw) = u(wxw)u

implies ρ = μuircμw. It can be immediately confirmed that h = −〈u,w〉+
u×w, whence the rotation center is indeed [u×w] = [Imh].

8.3 Motion factorization
Motion factorization is an algebraic procedure for representing polyno-

mials with quaternion coefficients as products of linear polynomials. The

factorization theory of split quaternions is not difficult in generic cases but,

due to non-commutativity and to the existence of non-invertible elements, it

requires some care. Some phenomena are not encountered in the more fa-

miliar case of polynomial factorization over the real numbers. Most notably,

factorizations are, in general, no longer unique.

One motivation for studying quaternion polynomial factorization is

kinematics. In the field of kinematics, factorization corresponds to the de-

composition of a rational motion into the product of coupled rotations. Non-

uniqueness of factorizations allows the construction of mechanisms from

them. In Euclidean geometry, the properties of factorizations are interest-

ing enough to merit publication in an engineering context [10, 11, 20]. Here
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factorizations are presented from the point of view of hyperbolic geometry

which is, of course, less relevant in engineering. Nonetheless, factorizations

in this case illustrate phenomena that are hidden in Euclidean geometry and

thus furthers our understanding of quaternion polynomial factorization the-

ory.

8.3.1 Split quaternion polynomials

A split quaternion polynomial C of degree d in the indeterminate t, is an

expression of the form

C =
d

∑
i=0

citi, (8.5)

with c0, c1, · · · , cd ∈ S and cd �= 0. The addition of polynomials is defined in

the usual way but multiplication and evaluation at h require some consider-

ation. We will use split quaternion polynomials to describe rational motions

in universal hyperbolic geometry, where the indeterminate t serves as a real

parameter. This leads to postulate that t commutes with all coefficients. The

product of C defined in (8.5) and D =
e
∑

i=0
diti is CD =

d+e
∑

i=0
eiti where

ei = ∑
j+k=i

cid j for i = 0,1, · · · , d + e.

While this is just what is required for kinematics, it is just one among several

multiplication rules from a mathematical viewpoint [19]. Since the multipli-

cation order matters, the convention is adopted to always write coefficients

to the left of the indeterminate. Even if this is often emphasized by speaking

of “left polynomials” we will simply refer to the thus defined ring S[t] as the

ring of split quaternion polynomials. The value of C at h ∈ S is defined as

C(h) :=
d

∑
i=0

cihi.

The computation of C(h) requires the expanded form of C, whence eval-

uation of C at h is not a homomorphism between the rings S[t] and S. At

any rate, evaluation is additive, that is, C(h)+D(h) = (C+D)(h) for any C,

D ∈ S[t] and h ∈ S.

The polynomial C conjugate to C is obtained by conjugating the coeffi-

cients of C, namely

C =
d

∑
i=0

citi.

The norm polynomial is defined as N(C) :=CC. Its coefficients are real.
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Via (8.4), a split quaternion h of non-zero norm represents a rotation.

Substitute h in (8.4) by a split quaternion polynomial C to obtain a one-

parametric motion of the hyperbolic plane whose trajectories depend ratio-

nally on the motion parameter t:

[x] → [x(t)] = [C(t)xC(t)]. (8.6)

For real zeros of C(t), the corresponding value of [x(t)] can be defined by

continuity requirements. This is called a rational motion and will be on the

agenda for the remainder of this Chapter. At this point, only a simple corol-

lary to Theorem 8.2 will be considered:

Corollary 8.1. If C = c1t + c0 ∈ S[t] is a linear polynomial with N(C) �= 0

and independent coefficients, then the rational motion (8.6) is the composi-
tion (from the left) of a fixed rotation with all rotations around a fixed center.

Proof. If c1 is not invertible, there exist suitable values α , β , γ , δ ∈ R with

αδ−βγ �= 0 such that the leading coefficient of C̃ :=(αt+β )c1+(γt+δ )c0

is invertible. The polynomials C and C̃ are just different parametrizations of

the same rational motion. Hence, it may assumed, without loss of generality,

that c1 is invertible and one can write C = c1(t + h) with h = c−1
1 c0. The

claim now follows, because t + h is, indeed, a rotation with fixed center

[Im t +h] = [Imh] for every value of t. Note that independence of c0 and c1

ensures Imh �= 0, so that the center is actually defined.

8.3.2 Factorization theory

A well-known consequence of the fundamental theorem of algebra is

that any polynomial

C =
d

∑
i=0

citi, c0,c1, · · · ,cd ∈ C

can be written as

C = cd

d

∏
i=1

(t− zi),

with complex numbers z1,z2, · · · ,zd . This representation is unique up to re-

ordering of the factors. Left polynomials over Hamiltonian quaternions ad-

mit similar factorizations but such factorizations are not unique. The corre-

sponding theory has been developed in the mid-twentieth century [6, 18]. To

a certain extent, it carries over to dual quaternions [8, 15] and also to split

quaternions [1, 13]. The main difference between polynomials and the latter

algebra is the existence of non-invertible elements.
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Definition 8.1. We say that the polynomial C ∈ S[t] admits a factorization
if there exist split quaternions c, h1, h2, · · · , hd such that

C = c(t−h1)(t−h2) · · ·(t−hd). (8.7)

Remark 8.2. If C ∈ S[t] is a split quaternion polynomial of degree d with

leading coefficient c, the following hold true:

• If c is invertible, the polynomial C admits a factorization if and only

if the monic polynomial c−1C admits a factorization.

• Unless CC = 0, there exists a fractional linear parameter transforma-

tion t → (αt +β )(γt + δ )−1 with α , β , γ , δ ∈ R and αδ −βγ �= 0,

such that the leading coefficient of

D := (γt +δ )degCC((αt +β )(γt +δ )−1)

is invertible. Every factorization of D also gives rise to a factorization

of C and vice versa.

In what follows, the focus will be on the factorizations of monic poly-

nomials. Due to Remark 8.2 this is only a minor loss of generality. The

only missing case is that of polynomials C with vanishing norm polynomial

N(C).
Before delving into the intricacies of polynomial factorization over the

split quaternions, a kinematic interpretation is presented. Consider a monic

polynomial C ∈ S[t] with a factorization, as in (8.7) where c = 1. We make

two assumptions:

1. The norm polynomial N(C) does not vanish

2. C has no real polynomial factor of positive degree.

By Corollary 8.1, the factor t− h� parameterizes a rotation around [Imh�],
for any t ∈ R. (Note that [Imh�] is well-defined, because otherwise t − h�
would be a real factor of C.) In other words, the factorization of C corre-

sponds to the decomposition of the rational motion (8.6) into a product of

hyperbolic rotations. In this sense, (8.7) describes a rational motion of an

open kinematic chain of hyperbolic revolute joints.

Assume that a split quaternion polynomial C can be written as =C′(t−
h), with C′ ∈ S[t] and h ∈ S. Then

CC =C′(t−h)C′(t−h) =C′(t−h)(t−h)C′ =C′C′(t−h)(t−h).

It is clear that a necessary condition for t−h to be a right factor of C is that

M := (t−h)(t−h) be a quadratic factor of the norm polynomial N(C).
Conversely, it is possible to compute a right factor from a quadratic fac-

tor of the norm polynomial, at least in generic cases. Its description profits

from a relation between right zeros and right factors (Theorem 2 of [13]):
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Theorem 8.3. Given a polynomial C ∈ S[t] and a split quaternion h ∈ S,
C(h) = 0 holds if and only if there exists C′ ∈ S[t] such that C =C′(t−h).

Given C ∈ S[t], pick a quadratic factor M of N(C) and use polynomial

division to compute the unique polynomials Q, R∈ S[t], with degR≤ 1 such

that C = QM+R. This yields

CC = (QM+R)(QM+R) = (QQM+QR+RQ)M+RR.

It follows that there exists m ∈ R such that RR = mM. Generically (but not

necessarily), m is invertible and the same is true for the leading coefficient r1

of the remainder polynomial R = r1t + r0. In this case, there exists a unique

zero h :=−r−1
1 r0 of R, whence R= r1(t−h) and M =m−1r1r1(t−h)(t−h).

But then, by Theorem 8.3, t−h is a right factor of R. It is also a right factor

of M and hence a right factor of C = QM+R as well.

This observation yields an iterative procedure to compute right factors

for generic polynomials C ∈ S[t]:

1. Pick a quadratic factor M of CC.

2. Compute the linear remainder polynomial R = r1t + r0 when dividing

C by M.

3. Compute the (generically) unique zero h =−r−1
1 r0 of R.

4. Use polynomial division once more to compute C′ ∈ S[t], such that

C =C′(t−h) and iterate with C′ instead of C.

Note that division of polynomials in S[t] is possible by means of a “left”

version of the Euclidean algorithm , as long as the divisor’s leading coeffi-

cient is invertible. Step 3 in the above procedure is critical, as the zero need

not exist and need not be unique. Moreover, at any iteration there is free-

dom to pick a quadratic factor M of CC. Depending on the number of real

roots of CC, there are up to
(

2degC
2

)
choices. In generic cases, the zero h

of M is unique at any iteration and the above procedure gives all possible

factorizations. Thus it holds:

Theorem 8.4. Generically, a polynomial C ∈ S[t] whose norm polynomial
has no multiple zeros (over C) admits between d! and

d−1

∏
i=0

(
2(d− i)

2

)
different factorizations.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Motion factorization and bond theory in hyperbolic kinematics 203

h1

k1
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k2k2
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FIGURE 8.1: Hyperbolic four-bar linkage via motion factorization

As already noted in [1], there can be up to six factorizations of generic

quadratic polynomials. For polynomials over the quaternions and dual

quaternions without multiple factors in the norm polynomial, the number

of factorizations is always d!.

Returning to the kinematic interpretation, different factorizations corre-

spond to different kinematic chains but, because the respective linear factors

have the same products, these factorizations describe the same motion of the

distal link. This allows us to connect them and produce a closed loop kine-

matic structure that is capable of performing the same motion. This is illus-

trated in Figure 8.1 of a quadratic polynomial C ∈ S[t] with two different

factorizations

C = (t−h1)(t−h2) = (t− k1)(t− k2).

It gives rise to a hyperbolic four-bar linkage with rational coupler motion

[16, 21].

A rather strange example is given by a quadratic polynomial C ∈ S[t]
with six factorizations. It gives rise to a linkage with six “legs”, each con-

sisting of a dyad of hyperbolic revolute joints. This can be thought of as a

“four-bar linkage” with six legs although that name seems no longer appro-

priate. Its elementary geometry has been investigated in [16] (Figure 8.2).

In particular:

• There exists a conic S that shares four real tangents with N . These

tangents form a complete quadrilateral and the fixed revolute joints,

denoted by H1, K1, · · · , O1 in Figure 8.2, are its vertices. In hyperbolic

geometry, they are usually called the focal points of S .

• By reflecting the fixed revolute joints in the tangents of S (or in the
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FIGURE 8.2: Hyperbolic “four-bar” linkage with six legs

points of their absolute polar conic), we obtain the possible positions

of the moving vertices H2, K2, · · · , O2.

Six-leg four-bars do not exist in traditional hyperbolic geometry because

their construction necessarily involves points in the exterior of N . Within

traditional hyperbolic geometry, the conic S is contained in N and only

two focal points are real [21]. This corresponds to quadratic motion polyno-

mials with only two factorizations.

Example 8.1. It is actually quite simple and straightforward to construct

quadratic polynomials C ∈ S[t] with six factorizations. Start by picking four

arbitrary linear polynomials over R, for example

m1 = t +2, m2 = t +1, m3 = t−1, m4 = t−2.

For �, r ∈ {1,2,3,4} and � < r we then define M�r := m�mr. For two of these

quadratic polynomials with complementary indices, say M12 and M34, we

compute h1, h2 ∈ S such that

M12 = (t−h1)(t−h1) and M34 = (t−h2)(t−h2).

This amounts to solving a quadratic equation and yields a two-parametric

variety of solutions. These degrees of freedom are then used to find a rational

example:

h1 =−3

2
+ i+

1

2
j+k, h2 =

1

2
(3+ i+ j−k).

The quadratic polynomial

C := (t−h1)(t−h2) = t2− 1

2
(3i+2j+k)t− 1

2
(6−3i−2j−5k)
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has the norm polynomial N(C) = m1m2m3m4 and, consequently, allows for

six factorizations:

C = (t− 1
10 i+ 1

10 j+ 1
2 k− 3

2 )(t− 7
5 i− 11

10 j−k+ 3
2 )

= (t + i+ 3
2 j+k− 1

2 )(t− 5
2 i− 5

2 j− 3
2 k+ 1

2 )

= (t− i+ j−k)(t− 1
2 i−2j+ 1

2 k)

= (t + 7
2 i+4j+ 1

2 k)(t−5i−5j−k)

= (t− 1
2 i+ 1

2 j− 3
2 k+ 1

2 )(t− i− 3
2 j+k− 1

2 )

= (t− i− 1
2 j−k+ 3

2 )(t− 1
2 i− 1

2 j+ 1
2 k− 3

2 ).

The factorization of split-quaternion polynomials in non-generic cases

goes beyond the scope of this discussion. We confine ourselves to one ex-

ample to demonstrate that split quaternion polynomials can have infinitely

many factorizations. Needless to say that this is only possible under very

special circumstances.

Example 8.2. The polynomial C = (1+ j)t2 + i−k ∈ S[t] allows the fac-

torizations

C = (1+ j)(t−h0−h1i−h2j−h3k)(t− k0− k1i− k2j− k3k),

where

h0 =−2h2k0−w
2k0

, h1 =
2h3k0 +1

2k0
, k2 =

−2k2
0−w

2k0
, k3 =

2k0k1 +1

2k0

and w =
√−1−4k0k1. In order to ensure that w is real the inequality 1+

4k0k1 ≤ 0 has to be satisfied. Otherwise, the values of h2, h3, k0 and k1 can

be chosen arbitrarily. This example violates our general assumption that the

norm polynomial of C be non-zero.

Example 8.3. The polynomial C = (t+1)(t+ j)∈ S[t] allows the factoriza-

tions
C = (t +1+λ (i+k))(t + j−λ (i+k))
= (t + j−λ (i−k))(t +1+λ (i−k)),

where λ ∈ R. This example violates the assumption that C has no real fac-

tors.

For more factorization results on split quaternion polynomials, we refer

the reader to [1], where zeros of quadratic polynomials are considered. Be-

cause of Theorem 8.3, this is actually the topic of this Section in disguise.

Some more factorization results for split quaternion polynomials of arbitrary

degree can be found in [13].
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8.4 Bond theory
Bond theory was introduced in [9] as a tool for the analysis and classi-

fication of movable closed kinematic chains with revolute joints [7, 14]. It

was soon extended to other mechanical structures [3, 4, 5, 17].

The definition of a bond is rather abstract and algebraic. One has to con-

struct a suitable closure of a coordinate description of the underlying motion

group (a kinematic space) and then intersect the linkage’s complete configu-

ration variety, with the set of newly added point set. The thus obtained “bond

points” of the configuration variety have been shown to bear a lot of infor-

mation on the underlying mechanism. They exhibit a degenerate kinematic

behavior. Therefore, they are not amenable to lucid visualization and evade

geometric intuition, at least in Euclidean geometry. Here, we are going to

study bonds in planar hyperbolic geometry along the lines of the original

paper [9]. In a certain way, this is a rather trivial task: The original theory

applies to SO and is algebraically equivalent to the planar hyperbolic motion

group over the complex numbers. Since bond points in SO are complex any-

way, the complete theory carries over to the hyperbolic setting without any

substantial changes and new proofs are not required. Moreover, [9] studies

closed loop linkages with only revolute joints and one degree of freedom. In

our planar hyperbolic setting, the only linkages falling into this category are

four-bar linkages. In spite of all these simplifications, the hyperbolic case is

still capable of providing some new insight. In particular, bond points need

not be complex, whence they can easily be visualized and their kinematic

degeneracy become obvious.

In order not to make the further development of planar hyperbolic bond

theory an unnecessarily badly motivated exercise, we briefly summarize im-

portant properties of bonds for closed linkages with revolute joints and a

one-parametric mobility, in Euclidean three-space [7, 9, 14]. We denote the

linkage’s joints by j1, j2, · · · jn, adopt the convention jk = j� if n≡ k mod �
and make the natural assumption that jk and jk+1 are always neighbors. In

order to eliminate trivial cases, we assume that every joint actually moves

during the motion of the linkage.

• A bond is a pair of conjugate complex points in the linkage’s com-

pactified configuration curve.

• For a bond, the notion of “connecting” two joints with a certain mul-

tiplicity can be defined.

• The pattern of all connections with bonds is subject to combinatorial

constraints: At least one and at most four connections emanate from
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every joint and no two neighboring joints are connected. Further re-

strictions are known, but are more complicated to formulate.

• The existence of connections between joints has implications on the

geometry of revolute axes. If, for example, the joints jk and jk+2 are

connected, then there exists a revolute joint j0 such that the four-bar

linkage ( j0, jk, jk+1, jk+2) is movable — even if the original joint axes

are skew. The resulting spatial four-bar linkage is known under the

name of Bennett linkage and its axis geometry is quite special. Exis-

tence of a joint connecting jk and jk+3 also has implications that were

used to classify linkages with configuration curves of maximal genus

in [7].

• From the connection combinatorics, the degree (in the dual quaternion

model of spatial kinematics) of relative motions between any joint

pair can be directly read off.

Most of the properties of bonds stated above are not relevant for planar

hyperbolic kinematics, but can easily be transferred to the kinematics of

Minkowski’s three space, where planar hyperbolic kinematics is embedded

as kinematics of the Minkowski unit sphere.

8.4.1 Definition of hyperbolic bonds

Consider a four-bar linkage in the hyperbolic plane. In some initial con-

figuration, its revolute joints are located at points [h1], [h2], [h3], [h4] and,

assuming none of these points is ideal, it can be assumed that

h�h� =±1. (8.8)

The sign depends on whether [h1] is inside (+) or outside (−) the null circle.

The rotation about the �th joint is parameterized by t�− h� where t� ∈ R∪
{∞}. The four-bar’s closure equation is

E(t1, t2, t3, t4) := (t1−h1)(t2−h2)(t3−h3)(t4−h4) ∈ R\{0}. (8.9)

Define the configuration curve as

K := {(t1, t2, t3, t4) ∈ (R∪{∞})4 | E(t1, t2, t3, t4) ∈ R\{0}},
and denote its Zariski closure by KC. The set of bond points is1

B := {(t1, t2, t3, t4) ∈ KC | (t1−h1)(t2−h2)(t3−h3)(t4−h4) = 0}. (8.10)

1For reasons of simplicity, it is tacitly assumed that none of the bond points is a singularity

of KC. If this were the case, one has to replace KC by a normalization.
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Since KC has dimension one, B is finite and non-empty. A bond point might

be thought of as an element of the Zariski closed configuration curve, for

which the closure equation (8.9) is actually violated.

8.4.2 Properties and examples

Properties of bonds in Euclidean or spherical geometry [9] effortlessly

carry over to our setting, because spherical and universal hyperbolic geom-

etry over the complex numbers are equivalent. In this Section some of these

properties are reviewed and examples are presented and discussed. In do-

ing so, significant benefit will be derived from the fact that bond points in

hyperbolic geometry can be real, and thus allow visualization.

Example 8.4. The bond points of the four-bar linkage (h1,h2,h3,h4) with

h1 = i, h2 =
1
3 w(i+2j), h3 =− 1

3 (i+3j+k), h4 =
1

29 (20i+35j+4k),

where w =
√

3 are:

(− 110
23 + 73

23 w,1, 41
3 − 22

3 w,1), (− 110
23 − 73

23 w,−1, 41
3 + 22

3 w,1),

(−30−17w,1,− 43
69 +

16
69 w,−1), (−30+17w,−1,− 43

69 − 16
69 w,−1),

(i,( 8
15 +

1
15 i)w,1, 35

29 − 16
29 i), (−i,( 8

15 − 1
15 i)w,1, 35

29 +
16
29 i),

(i,(− 2
3 − 1

3 i)w,−1,− 152
145 − 11

145 i), (−i,(− 2
3 +

1
3 i)w,−1,− 152

145 +
11
145 i).

(8.11)

Observe that two elements of {1,−1, i,−i} occur in every bond quadruple.

This is no coincidence.

Theorem 8.5. If b = (t1, t2, t3, t4) is a bond point, then there are at least two
coordinates �, m such that t�, tm ∈ I := {1,−1, i,−i}.
Proof. For any � ∈ {1,2,3,4} one has

(t�−h�)(t�−h�) = t2
� − (h�+h�)t�+h�h� = t2±1,

by virtue of the normalization condition (8.8) and because h� is assumed to

be vectorial. Moreover, for any bond point , the equation E(t1, t2, t3, t4) = 0

is fulfilled. This implies

0 = E(t1, t2, t3, t4)E(t1, t2, t3, t4) = (t2
1 ±1)(t2

2 ±1)(t2
3 ±1)(t2

4 ±1).

Hence, there is at least one coordinate � such that t� ∈ I. If � = 1, multiply-

ing the bond equation E(t1, t2, t3, t4) = 0 from the right times (t4−h4)(t3−
h3)(t2−h2) one obtains

(t1−h1)(t2
2 ±1)(t2

3 ±1)(t2
4 ±1) = 0. (8.12)
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Because t1−h1 �= 0, there exists a second index m with tm ∈ I. If �= 2, the

same argument applies after multiplication times t1− h1 from the left and

by (t4−h4)(t3−h3). The cases �= 3 and �= 4 are similar.

Generically, precisely two coordinates t� and tm of a bond point b are in

the set I. In this case it is said that b “connects” the joints of index � and m.

Moreover, the proof of Theorem 8.5 shows that generic bonds that connect

two joints come in pairs corresponding to the two solutions of (8.12). Paired

bonds connect the same joints. In (8.11), paired bond points are written in

the same respective lines.

Example 8.5. We consider another example of a four-bar linkage. In the

notation of Section 8.3, start with the quadratic motion polynomial C =
(t−h1)(t−h2), where

h1 = i and h2 = i+ j+2k.

The second factorization C = (t− k1)(t− k2) with

k1 = 11i+5j+10k and k2 =−9i−4j−8k

implies

(t−h1)(t−h2)(t−h3)(t−h4) ∈ R[t], (8.13)

where h3 = k2 and h4 = k1. Expression (8.13) can be interpreted as the clo-

sure equation of a four-bar linkage , which is fulfilled for any t ∈ R (and

also for t = ∞). In order to compute the bonds, we first compute the zero set

{±2,±i} of (8.13). With

n� :=
1

|h�h�|1/2
for � ∈ {1,2,3,4},

that is, n1 = n3 = 1 and n2 = n4 =
1
2 , the corresponding bond points are

±2(n1,n2,n3,n4)= (±2,±1,±2,±1), ±i(n1,n2,n3,n4)= (±i,± 1
2 i,±i,± 1

2 i).

This is, however, only half of the story. The reason is that the four-bar link-

age’s configuration curve has a second component, not parameterized by C,

that also has to be taken into account. The closure equation of this compo-

nent is given by

(t− �1)(t− �2)(t− �3)(t− �4) ∈ R[t],

where

�1 = h1, �2 =
2
3 h2, �3 =−h3, �4 =− 2

3 h4,
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so that, in fact, [h1] = [�1], [h2] = [�2], [h3] = [�3], [h4] = [�4] in the two

respective configurations corresponding to t = ∞. The bonds of the second

motion component are

±( 4
3 ,1,

4
3 ,1) ± (i, 3

4 i, i, 3
4 i).

As expected, precisely two entries are always in the set {±1,±i}.
A more profound theory of bonds is rather involved. One has to take into

account connection multiplicities, non-generic bonds need to be properly

paired and the notion of connecting joints needs to be defined. Moreover,

the computation of bonds also has to take into account the parameter value

tn = ∞. All of this is important for a consistent mathematical theory. Here

it suffices to mention that these concepts can be derived from the vanishing

orders at bond points of the coupling maps fm,n, which are defined on the

configuration curve’s normalization and map a regular point (t1, t2, t3, t4) to

fm,n := (tm+1−hm+1)(tm+2−hm+2) · · ·(tn−1−hn−1)(tn−hn). (8.14)

Here, indices are reduced modulo four and the value of fm,n at singular

points is defined by continuity.

Remark 8.1. It is easy to see that some of the maps fi, j indeed vanish at

generic bond points. Consider for example a bond point b := (t1, t2, t3, t4)
with t2 = t4 ∈ {±1,±i} and t1, t3 /∈ {±1,±i}. By (8.10) it is clear that

(t1−h1)(t2−h2)(t3−h3)(t4−h4) = 0.

Multiplying by t1−h1 from the left it follows tat

(t2
1 −h1h1)(t2−h2)(t3−h3)(t4−h4) = 0.

Since t2
1 −h1h1 is a non-zero scalar, f2,4 vanishes at b. The same is true for

f4,2 = (t4−h4)(t1−h1)(t2−h2).

Example 8.6. Example 8.4 is revisit here to consider the coupling maps

fm,m+2 at the bond b = (t1, t2, t3, t4), with

t1 =−30−17w, t2 = 1, t3 =− 43
69 +

16
69 w, t4 =−1

and w =
√

3. A straightforward computation confirms that

f2,4(t1, t2, t3, t4) = (t2−h2)(t3−h3)(t4−h4) = 0 and

f4,2(t1, t2, t3, t4) = (t4−h4)(t1−h1)(t2−h2) = 0

but f1,3(t1, t2, t3, t4) �= 0 and f3,1(t1, t2, t3, t4) �= 0.
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Example 8.7. A simple but, as far as bonds are concerned, rather atypical

four-bar linkage, is obtained from the motion polynomial C = (t− h1)(t−
h2) = (t− k1)(t− k2), where

h1 = i, h2 = i+ j+k, k1 =−i− j−k, k2 = 3i+2j+2k.

Its configuration curve has precisely three irreducible components, which

are parameterized by

(t, t, t, t), (∞, t,∞,−t) and (t,0,−t,0) t ∈ R∪{∞}. (8.15)

Setting h3 := k2 and h4 := k1, this can be verified by the following compu-

tation:

(t−h1)(t−h2)(t−h3)(t−h4) = t4−1,

(t−h2)(−t−h4) =−t2 +1, (t−h1)h2(−t−h3)h4 =−t2−1.
(8.16)

Because h1h1 = k2k2 = 1 and h2h2 = k1k1 = −1, the bond points are ob-

tained from the zeros of the polynomials in (8.16):

b� := (�,�,�, �) for � ∈ {±1,±i},
b′� := (∞, �,∞,−�) for � ∈ {±1}, b′′� := (�,0,−�,0) for � ∈ {±i}.

The bonds b� are not generic. However, among all coupling functions, only

f2,4 and f4,2 vanish at b1 and b−1, while only f1,3 and f3,1 vanish at bi and

b−i. In the language of bond theory in the sense of the original paper [9],

one would say that “b±1 connect joints of index 2 and 4” while “b±i connect

joints of index 1 and 3.”

Bonds in Euclidean or spherical geometry are always complex. As

demonstrated by several of the above examples, this is not the case in hy-

perbolic geometry. This Section is concluded by visualizing the bonds of

Example 8.7. There is a simple geometric explanation for the three compo-

nents of the configuration curve given in (8.15). Observe that

Q(h1,h2) = Q(h2,k2) = Q(k2,k1) = Q(k1,h1) = 2.

Hence, all four sides of the linkage are equal. The two motion components

in (8.15), where two joint parameters are fixed, correspond to configurations

where two joints coincide. The motion itself is the rotation about this com-

mon joint. Using the data of Example 8.7, these are visualized in Figure 8.3.

In order to better understand the kinematic behavior at bond points, we

study point trajectories and their values (or limit) at bonds. In the bottom

right drawing, several trajectories of the first motion component are visu-

alized. Four special points can be identified, namely [i− j+k], [i+ j−k],
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h1

h2

k2
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FIGURE 8.3: Motion modes of a hyperbolic four-bar linkage

[i+ j], [i+ k], that are apparently incident with many trajectories. Indeed,

these points are closely related to the undefined kinematic behavior of the

four-bar linkage at bonds. A straightforward computation yields the para-

metric trajectory of the point [x] := [x1i+ x2j+ x3k] as [y] = [CxC], where

y = y1i+ y2j+ y3k and

y1 = (t2 +1)(x1t2− (2x2−2x3)t +3x1−2x2−2x3),

y2 = (t +1)(x2t3− (2x1 + x2−4x3)t2 +(8x1−5x2−6x3)t−2x1 + x2 +2x3),

y3 = (t−1)(x3t3 +(2x1−4x2 + x3)t2 +(8x1−6x2−5x3)t +2x1−2x2− x3).
(8.17)

Evaluation at t = 1 (one of the real bond points), generically yields [y](1) =
[8(x1−x2)(i+j)]. The case x1 = x2 requires additional considerations. Here,

(8.17) simplifies to

y1 = (t2 +1)(x1t2− (2x1−2x3)t + x1−2x3),

y2 = (t +1)(x1t3− (3x1−4x3)t2 +(3x1−6x3)t− x1 +2x3),

y3 = (t−1)(x3t3 +(−2x1 + x3)t2 +(2x1−5x3)t + x3)

and evaluation at t = 1 yields an undefined point. However, in the limit, one
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has:

lim
t→1

y2

y1
= 1, lim

t→1

y3

y1
=−1.

This suggests the consideration of [i+ j−k] as limiting point of all points on

the line given by x1 = x2 for t → 1 and nicely fits with the intuition provided

by the bottom left drawing in Figure 8.3. Observe that two adjacent edges

of the four-bar linkage are aligned and null at bond points .

8.5 Summary
We have presented and reviewed some results on the factorization of

split quaternion polynomials and extended the theory of bonds to planar

hyperbolic kinematics. For algebraic and geometric reasons, both theories

exhibit interesting properties that differ from the (real) Euclidean or spher-

ical case and that make them worthwhile studying in this non-Euclidean

context. Most notably, the number of factorizations in hyperbolic geometry

can be significantly larger, even in generic cases. A quadratic polynomial

over Hamiltonian quaternions allows, at most, two different factorizations,

while six factorizations are possible for split quaternion polynomials (Ex-

ample 8.1, Figure 8.2). An interesting property of bond theory in hyperbolic

kinematics is the possibility of real bond points. For the first time, this article

features an investigation and also a visualization of the kinematic behavior

of a mechanism at such a point.
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Chapter 9
Sydpoints and parabolas in relativistic
linear algebra and universal
hyperbolic geometry
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We give an introduction to a completely algebraic form of hyperbolic ge-

ometry, which extends to general fields and connects naturally to relativistic

physics. It also allows remarkable new constructions, which typically have

meaning also outside the usual light-cone. In particular, we describe the role

of sydpoints and of twin circles, which allow us to extend hyperbolic trian-

gle geometry to non-classical triangles. We also connect these ideas with the

modern theory of the parabola in hyperbolic geometry.

9.1 Introduction
In this Chapter we present an overview of an exciting new algebraic

approach to hyperbolic geometry, which extends the subject beyond the light

cone of relativistic physics, and allows it to be built from arbitrary fields, not

necessarily of characteristic two. In particular we look at the new theory of

sydpoints and their connections with the hyperbolic parabola.

Universal Hyperbolic Geometry (UHG), first set out in Wildberger [44],

is the projective study of a distinguished conic, called the absolute in clas-
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sical geometry, and the null conic in UHG. Typically, the null conic can

be taken to be the unit circle, from which the interior of the circle is then

essentially the Beltrami Klein projective model of classical hyperbolic ge-

ometry, but with the concepts of distance and angle replaced by algebraic

equivalents called quadrance and spread. These terms come originally from

rational trigonometry, introduced a few years earlier in [42].

From this algebraic point of view, points both inside and outside of the

null circle are part of the geometry, which is no longer homogeneous and

supports both a Riemannian geometry inside the disk and a Lorentzian ge-

ometry outside the disk. We connect naturally to relativistic geometry by

projectively viewing a three-dimensional vector space with a Minkowskian

inner product on it, this is also in the direction of Ungar’s work [38] and

[39]. The algebraic aspect allows theorems to apply uniformly, which in

physics language unifies the geometry inside and outside the light cone of

special relativity.

Since its inception the subject has developed to include a rich hyperbolic

triangle geometry [46] and to provide many new insights into conics. UHG

provides not only new and wider understanding of existing subjects; it also

brings entirely new concepts and results into life. In particular we describe in

this Chapter how the classical notion of midpoints of a side, which typically

come in pairs when they exist, can be extended to incorporate sydpoints,

which connect points both interior and exterior to the null conic.

This Chapter is intended to be mostly an expository introduction to this

rich new form of metrical geometry. We first review classical hyperbolic

geometry, then introduce universal hyperbolic geometry, (UHG) first picto-

rially via projective geometry then analytically using projective linear alge-

bra. We then look in more detail at how the idea of sydpoints extends the

notion of midpoints and at how sydpoints relate to the hyperbolic parabola.

9.2 Classical hyperbolic geometry
In an effort to comprehend Euclid’s axiomatic basis for geometry,

Lobachevsky, Bolyai and Gauss discovered the concept of hyperbolic ge-

ometry by the first half of the 19th century. Hyperbolic geometry is a non-

Euclidean geometry which goes beyond the parallel postulate of Euclid [8],

[18], [19]. As Milnor states in [26], Lobachevsky was the first mathemati-

cian to publish on hyperbolic geometry in 1830; in particular, he showed the

existence of a natural unit distance in this new geometry. In 1832, another

work on non-Euclidean geometry was published independently by Bolyai,
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while Gauss revealed that he had studied the subject some years earlier. The

theory was more fully developed by Beltrami, Klein and Poincaré, who in-

troduced models which made this geometry more explicit ([34], [35]).

In the 20-th century, Einstein and Minkowski realized that an under-

standing of physical time and space necessitated the study of more general

geometries than both that of Riemann and non-Euclidean geometry. With

the work of Thurston and others, it has been recognized that the negatively-

curved geometries, of which hyperbolic geometry is a prototype, are in some

sense generic forms of geometry, and crucial for low-dimensional topology,

see for example [10].

Non-Euclidean geometries have also applications to different fields such

as complex variables, analytic number theory, harmonic analysis, Lie theory,

infinite discrete groups (following the more recent work of Gromov) and

even optics. Although Euclidean geometry has a single standard model, var-

ious models may describe hyperbolic geometry, most notably the Beltrami-

Poincaré disk and the upper half plane model, the Beltrami-Klein projective

model, and the hyperboloid model. These models differ from each other

in certain aspects and some properties are more evident in one rather than

the other, but they were all essentially discovered by Eugenio Beltrami in

the second half of the 19th century. The Beltrami-Poincaré models natu-

rally connect to complex analysis, while the Beltrami-Klein model connects

naturally to the projective geometry and to more general Cayley-Klein ge-

ometries.

9.2.1 The Beltrami-Poincaré model

In this model the underlying space is the interior of the unit circle C :

x2 + y2 = 1 in the complex plane C, that is

ζ = {(x+ iy : x2 + y2 < 1}.
The points on the unit circle C itself are assumed to be points ”at infinity”

rather than being part of the hyperbolic plane: these points are also referred

to as ideal points, omega points, vanishing points or null points–whatever

their name, they still play a key role in the theory. Lines of ζ are represented

by either circular arcs, which are parts of circles orthogonal to C , or Eu-

clidean lines which are diameters of C . The hyperbolic distance between

any two given hyperbolic points a and b in this model is defined in terms of

the complex structure by

d (a,b) = tanh−1

(∣∣∣∣ b−a
1−ab

∣∣∣∣) .

Measuring angles between hyperbolic lines in this model is the same as

measuring Euclidean angles, making it a conformal model of the hyperbolic
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plane [33]. So in order for this theory to work we need an underlying the-

ory of “real numbers”, and “transcendental functions”, depending of course

on “infinite processes”. With universal hyperbolic geometry, this restriction

is avoided, opening up the subject to more general fields, including finite

fields.

9.2.2 The Beltrami-Klein model

The underlying space in the Beltram-Klein projective model is the same

as that of the previous model: the open disk ζ in C. However, lines in the

Beltrami-Klein model are actual Euclidean lines instead of circular arcs. The

hyperbolic distance between two points a1 and a2 is given by

d (a1,a2) =
1

2
log |R(a1,a2 : a3,a4)| ,

where R(a1,a2 : a3,a4) is the cross ratio of the points a1, a2 and the inter-

section points a3,a4 of the line a1a2 and the null circle C . This model is

not conformal, so the hyperbolic angles are not the same as the Euclidean

angles [13].

This model may also be viewed as an example of a Cayley-Klein geom-

etry, whose underlying space consists of the entire projective plane, with a

distinguished conic, usually called the absolute, which plays the same role

as the unit circle does here.

9.2.3 The Beltrami-Poincaré upper half plane model

This model can be obtained from the Beltrami-Poincaré disk model by a

Cayley transformation. The underlying space of this model is the upper half

plane H = {z ∈ C : Im(z)> 0} in the complex plane C, and notions such

as that of point and angle will remain the same as the corresponding ones

in the complex plane. For instance, the angle between two curves in H is

the angle in C between the tangent lines to the two curves. Lines are either

the intersection of H with an Euclidean line in C which is orthogonal to the

x−axis; or the intersection of H with an Euclidean circle whose center is on

the x−axis, see [4]. Given any two hyperbolic points a and b, the hyperbolic

distance between them may be defined as

d (a,b) = cosh−1

(
1+

∣∣∣∣ b−a
1−ab

∣∣∣∣) .
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9.2.4 The hyperboloid model

There is another model coming from a three-dimensional vector space

with quadratic form

Q((x,y,z))≡ x2 + y2− z2, (9.1)

which also goes back to Beltrami and that in some sense is more fun-

damental than the previous models. Here the hyperbolic space is repre-

sented by the upper sheet of the hyperboloid of two sheets with equation

x2 + y2− z2 = −1, which turns out to be a Riemannian manifold with the

metric inherited from R3. Lines or geodesics are given by intersections of

the hyperboloid with planes through the origin. This model is quite similar

in spirit to the usual spherical model of elliptic geometry, where antipodal

points on a sphere are identified, see [4] and [30].

The hyperbolic model is closer to the 20-th century relativistic geometry

of Einstein and Minkowski, and brings up the question of how the relativistic

space outside the light cone, which the physicists sometimes refer to as de

Sitter geometry, figures in hyperbolic geometry .

There are well-known projections from the hyperboloid model to the

Beltrami-Klein and Beltrami-Poincaré disk models, see for example [33].

9.3 Universal hyperbolic geometry
Universal hyperbolic geometry (UHG) is a new model of hyperbolic

geometry introduced and developed by Wildberger in [43], [44], [45] and

[46]. In this new model, the Beltrami-Klein model has been extended to

the entire projective plane, so instead of working in the interior of a disk,

we are allowed to consider exterior points (including points at infinity), and

also points on the boundary of the disk—which are called null points. These

play a very important role, at least as important as the role played by interior

and exterior points.

The lines in this geometry are complete projective lines rather than

straight line segments. All measurements and theorems ultimately are pro-

jective and work more generally with an underlying projective plane to-

gether with a distinguished conic in it.

The symmetry between points and lines of the projective plane is in-

herited by this hyperbolic geometry; the main measurements of quadrance

and spread which replace the hyperbolic distance and the hyperbolic angle

respectively become completely dual in nature. The introduction of these
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metrical concepts grants new perspectives to this geometry because they

give a purely algebraic approach to Cayley-Klein geometries, emphasiz-

ing a projective metrical formulation without transcendental functions, valid

both inside and outside the usual null circle (or absolute), and working over

a general field, generally not of characteristic two. Because of the projective

nature of the measurements, this geometry extends to the case of a general

conic in the projective plane.

From the point of view of the hyperboloid model, we are looking at all
one-dimensional and two-dimensional subspaces of the three-dimensional

vector space with quadratic form (9.1); these form the points and lines of the

geometry, and the quadrance and spread measurements are intimately and

naturally linked to the associated bilinear form. From the point of view of

projective linear algebra, it is straightforward to extend this to more general

quadratic forms.

Since projective geometry is key to understanding this model of hyper-

bolic geometry, we review some related facts in the next Section.

9.3.1 Projective geometry

Projective geometry emerged as the result of the attempt to properly

present 3D figures in the plane; Renaissance artists were concerned with

giving their drawings a more realistic resemblance to actual scenes [48]. In

the 17-th century, the work of artists had been mathematically expressed

by Desargues but unfortunately his work was largely ignored for about two

hundred years, perhaps due to the wide interest generated by the analytic

geometry of Descartes and Fermat, which relates algebra to classical ge-

ometry. Desargues is considered to be the founder of the subject (although

of course Pappus’ theorem had been discovered much earlier); in 1636 De-

sargues published a paper on perspective, which was the first account of

projective geometry as an independent discipline. Pascal also contributed to

the subject; of particular importance is his celebrated theorem that extends

Pappus’ theorem to conics [35].

Projective geometry, also known as the geometry of the straightedge, be-

cause in it there is no need for a compass, is the study of properties which are

invariant under projective transformations, such as incidence of points, con-

currency of lines, and the cross ratio. On the other hand, some familiar and

fundamental concepts from classical geometry are not preserved in projec-

tive geometry; for instance, the usual notion of parallelism has no meaning,

since any two lines always meet at a point. Moreover, length between points

and angles between lines are variable quantities under projection, and so

they lose their applicability in this kind of geometry.

Although quite different from the usual classical geometry, projective
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FIGURE 9.1: Theorems of Pappus and Desargues

geometry has many advantages when dealing with the study and classifi-

cation of curves; for example the exceptions to Bezout’s theorem can been

removed; this becomes the foundational subject for modern algebraic ge-

ometry [35]. One of Wildberger’s main points is that projective geometry

is also the natural framework in which to develop hyperbolic geometry, see

[43], [44], [45] and [46].

So far we have dealt almost exclusively with situations in which only

points and lines were involved. Large parts of classical Euclidean geometry

deal also with constructions involving circles. While circles are not intrin-

sically a concept of projective geometry, Steiner showed that conic sections
have a natural place in this framework.

9.3.2 The projective plane

The projective plane can be obtained from the usual affine plane by ad-

joining to it a new additional line called the line at infinity. This can be done

by introducing new points called points at infinity. For every set of paral-

lel lines, a new point can be added that represents the intersection of these

parallel lines. In this geometry, thus, every two parallel lines meet at a point.

More precisely, the projective plane can be introduced using linear alge-

bra as follows; consider a fixed affine plane in the three-dimensional space

and a fixed point O (corresponding to the origin), not on this plane. Then

each point P on the plane is represented by a line which passes through

O and through P. The remaining lines through O which are parallel to the

affine plane represent the points at infinity and the plane containing them is

the line at infinity.

In other words, the projective plane is identified with the set of all lines in
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space that pass through a fixed point, or equivalently as the one-dimensional

subspaces of a vector space. Lines are then the two-dimensional subspaces

of that vector space, which typically meet the fixed plane in a line. If our

fixed plane is the plane z = 1 in R3, then we can specify a projective point

by its homogeneous coordinates [x : y : z] , with the convention that this is the

same as [λx : λy : λ z] , where λ �= 0. A point such as [x : y : 1] represents an

actual point on the affine plane, and a point at infinity has the form [x : y : 0].
Dually, a line is determined by the equation of a plane, such as lx+my+
nz = 0 and so it is represented by the proportion 〈l : m : n〉 , which again is

identical to 〈λ l : λm : λn〉 , for any λ �= 0. The line at infinity is 〈0 : 0 : 1〉,
while any other line is represented on the fixed affine plane as a usual line,

see [20].

Given any two points a and b in the projective plane, there is then exactly

one line ab passing through them both, and given any two lines L and M
there is exactly one point LM which lies on both of them.

The symmetries of the projective plane in this model are just the linear

transformations of the vector space, which naturally preserve both one- and

two-dimensional subspaces, hence points and lines. So the projective group

here is the projective general linear group, since two linear transformations

which are multiples of each other yield the same map on subspaces. At this

point, the projective plane has no intrinsic metrical structure. However, there

is an important quantity that can certainly be measured!

9.3.3 The cross ratio

The cross ratio is a fundamental measurement in projective geometry;

it has multiple applications in different areas and it possesses beautiful al-

gebraic properties. As mentioned earlier, the usual length and angle are not

invariant under projections, but the cross ratio compensates for this defi-

ciency, and plays a key role in UHG.

This important notion concerns four collinear points a,b,c and d on a

line L, in any order. Suppose we choose affine coordinates on L so that the

coordinates of a,b,c and d are respectively x,y,z and w. Then the cross-
ratio is defined to be the extended-number (i.,e., possibly ∞) given by the

ratio of ratios:

R(a,b : c,d)≡
(

a− c
b− c

)
/

(
a−d
b−d

)
.

This is independent of the choice of affine coordinates on L.

The cross-ratio is also projectively invariant, meaning that if a1,b1,c1

and d1 are also collinear points on a line L1 which are perspective to a,b,c
and d from some point p, as in Figure 9.2, then (a,b : c,d) = (a1,b1 : c1,d1).
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FIGURE 9.2: Projective invariance of the cross-ratio: (a,b : c,d) =
(a1,b1 : c1,d1)

Dually, the cross ratio of four concurrent (projective) lines can be de-

fined in a similar way. An important fact is that if a line A meets the

concurrent lines A1,A2,A3,A4 at four distinct points a1,a2,a3,a4, then

R(A1,A2;A3,A4) = R(a1,a2;a3,a4) . In addition, if four collinear points

a1,a2,a3,a4 are projective with four collinear points a′1,a
′
2,a

′
3,a

′
4, then

R(a1,a2;a3,a4) = R(a′1,a
′
2;a′3,a

′
4) .

Four collinear points a1,a2,a3,a4 are said to be a harmonic range when

R(a1,a2;a3,a4) =−1. In such a case, a1 and a2 are referred to as harmonic
conjugates with respect to the pair a3,a4 and vice versa.

9.3.4 UHG from a synthetic projective view

Universal Hyperbolic Geometry can be approached from either a syn-

thetic, projective-geometry-like point of view, or from an analytic, linear-

algebra-like point of view; both are useful and they shed light on each other.

In this Section we present a synthetic introduction that is useful for dynamic

geometry packages such as GSP, C.a.R., Cabri, GeoGebra and Cinderella.

We describe the situation generally in the projective plane over a field, which

in our diagrams will be the field of rational numbers, with a distinguished

conic, called the null circle, but elsewhere also the absolute. In the included

pictures, this will be the standard unit circle, always depicted in blue. The

points on the unit circle are called null points. We may consider this to be

the affine circle X2 +Y 2 = 1 or the projective version x2 + y2− z2 = 0.

Wildberger’s set-up of universal hyperbolic geometry is more general,

being set in a Cayley-Klein geometry both inside and outside the null cir-

cle (absolute), over a general field. One of the challenges is to extend ba-

sic notions, such as midpoints, angle bisectors/bilines, perpendicular bisec-

tors/midlines etc., to rather general triangles. This is the component of our

contribution that we want to describe in this Chapter. The notions of mid-
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points and bilines can be extended, but one must be prepared to undertake

the study of sydpoints and silines as well.

FIGURE 9.3: Duality and pole-polar pairs

Figure 9.3 shows a construction for the Apollonian dual of a point a; this

is the line A = a⊥ formed by the other two diagonals of any null quadrangle

αβγδ for which a is a diagonal point. Note that the construction works both

when a is inside as well as when a is outside, the null circle. To construct

the dual of a line L, take the intersection of the duals of any two points on it.

This duality between points and lines induced by the null circle allows

a notion of perpendicularity: two points a and b are perpendicular, written

a⊥ b, precisely when b lies on the dual a⊥ of a, or, equivalently, if a lies on

the dual b⊥ of b. Similarly two lines L and M are said to be perpendicular
(L ⊥ M) if and only if L passes through the dual of M (equivalently, if M
passes through the dual of L). In Figure 9.4, several lines perpendicular to

the line A are depicted: notice that they pass through the dual point a.

The basic isometries in the above described geometry are reflections in

points (or reflections in lines—these two notions turn out to be the same). If

m is not a null point, the reflection rm in m interchanges the two null points

on any line through m, should there be such. In Figure 9.5 for example, rm
interchanges x and w, and also y and z. It is then a remarkable and funda-

mental fact that rm extends to a projective transformation: to find the image

of a point a, construct any line through a which meets the null circle at two

points, say x and y, then find the images of x and y under rm, namely w and z,

and then define rm (a) = b ≡ (am)(wz) as shown. Perpendicularity of both

points and lines is preserved by rm.

The notion of reflection allows us to define midpoints without metrical

measurements: if rm (a) = b then we may say that m is a midpoint of the
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FIGURE 9.4: Perpendicular points and lines

FIGURE 9.5: Reflection rm in m sends a to b

side ab. To construct the midpoints of a side ab, when they exist (this is

essentially a quadratic condition), we essentially invert the above construc-

tion.

Following [44] a side a1a2 = {a1,a2} is said to be a set of two points,

and a vertex L1L2 = {L1,L2} is said to be a set of two lines. Figure 9.7 shows

two situations where midpoints m and n of the side ab can be constructed,

at least approximately over the rational numbers, which is the orientation of

the Geometer’s Sketchpad and other dynamic geometry packages. In the left

diagram, we take the dual c of the line ab, and if the lines ac and bc meet

the null circle, we take the other two diagonal points of this null quadrangle.

This is also the case in Figure 9.5. In the right diagram, the lines ac and bc
do not meet the null circle, but the dual lines A and B of a and b, which

necessarily pass through c, do meet the null circle in a quadrangle, whose

other diagonal points are the required midpoints m and n.
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FIGURE 9.6: Constructing midpoints m and n of the side ab

9.3.5 Quadrance and spread in UHG

Now we show how the main metrical notions of quadrance and spread,

as introduced by Wildberger, can be framed purely projectively. In the

Beltrami-Klein model, the hyperbolic distance between two points a and

b may be defined by means of a logarithmic function, together with the ab-

solute value of the cross ratio of the points a, b, and the intersection points

of the line ab and the null circle. However in universal hyperbolic geometry,

the quadrance between two points a and b may be defined simply as the

cross ratio

q(a,b) = R(a,d : b,c),

where c≡ (ab)a⊥ and d ≡ (ab)b⊥.

FIGURE 9.7: Defining quadrance and spread via cross ratios

This hyperbolic quadrance is superior to the usual hyperbolic distance

in several ways. First of all for two general points a,b the existence of the
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conjugate points c,d is always guaranteed, and so the quadrance extends to

general points. In addition, there is no ambiguity in the ordering of the four

points when applying the cross-ratio, while this is not true in the Beltrami

Klein model. Furthermore, hyperbolic quadrance does not involve any tran-

scendental function, such as the logarithm or an inverse circular function.

Such an algebraic approach allows the theory to extend to finite fields.

In addition, the purely projective nature of the cross ratio guarantees that the

same results will hold when applying a projective transformation to replace

the chosen distinguished conic with a more general one.

Over the rational numbers, quadrance takes negative values when a and

b are either interior or exterior to the null circle, while it is positive when

one of the points a or b is interior and the other one is exterior.

Dually, the spread between the lines A and B is defined to be the cross-

ratio

S (A,B)≡ R(A,D : B,C) ,

where C and D are the dual lines of the conjugate points c and d. Notice

that Figure ?? shows important points and lines used in the definitions of

quadrance and spread. It follows from basic properties of the cross-ratio,

that q(a,b) = S (A,B). This means that the fundamental projective duality

between points and lines extends to the metric notions of quadrance and

spread. Note also that it is not necessary for the line ab to meet the null

circle; in fact, these metric notions are valid for all points and lines, except

when null points or null lines are involved, when the cross-ratio becomes

infinite.

As shown in [44], it is possible to translate the theorems in UHG to

formulas of classical hyperbolic trigonometry in the special case of interior

points and lines using the following (necessarily approximate, transcenden-

tal) relations;

q(a,b) =−sinh2 (d (a,b)) and S (A,B) = sin2 (θ (A,B)) .

Hence, all formulas in this Chapter can be interpreted and reformulated

in case the points and lines are interior to the null circle, yielding relations

between classical distances and angles via these relations, if such are de-

sired.

While we could proceed with this synthetic point of view, we prefer to

work in an analytic environment using projective linear algebra.

9.3.6 Circles

A circle C in this setting may be defined synthetically or algebraically.

Suppose that c and p are points; then the locus of the reflections rx (p) as

x runs along the dual line of c, is the circle with center c, through p. This
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definition immediately yields a correspondence between a circle and a line.

Algebraically a circle is an equation of the form q(x,c) = k, where c is the

centre and k is the quadrance.

FIGURE 9.8: Circles centered at a, for an interior point

In Figure 9.8 examples of hyperbolic circles centered at a are presented,

for two different choices of a inside the null circle, also showing the values

of the quadrance k. These curves appear in our diagrams always as conics:

as ellipses, parabolas or hyperbolas.

Also in Figure 9.9, examples of hyperbolic circles centered at a are

given, for a choice of a outside the null circle. In classical hyperbolic ge-

ometry, The circles that result here are usually called curves of constant

width (at least for those inside the null circle). Notice that all such circles

are tangent to the null circle at the two points where the dual line a⊥ of the

center meets the null circle.

FIGURE 9.9: Circles centered at a, for an exterior point
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9.3.7 Relativistic geometry

In 1905 Einstein wrote his fundamental paper on Special Relativity (SR)

and a few years later Minkowski introduced a geometric framework for it,

which proved vital for Einstein’s introduction of General Relativity in 1918.

Minkowski’s idea was to introduce a four dimensional space time, consisting

of vectors (x,y,z, t) , in which x,y and z represent spacial coordinates and t
is time. In this space-time, particles now have trajectories, which describe

their entire histories, and observers moving in inertial frames (at a constant

velocity with respect to the fixed stars) can now compare their measurements

of events, which are points in this space-time.

The Lorentz transformations that underlie the symmetry of SR turn out

to be isometries of this four dimensional space, under the indefinite inner

product

(x1,y1,z1, t1) · (x2,y2,z2, t2) = x1x2 + y1y2 + z1z2− t1t2

or the associated quadratic form

Q(x,y,z, t) = x2 + y2 + z2− t2.

The physical implication is that neither the traditional three-dimensional dis-

tance (or quadrance) or the time are actually physically meaningful quanti-

ties: only the Einstein interval represented by the quadratic form Q is ob-

servable.

In this geometry the null cone consisting of vectors v for which Q(v) =
0, plays the role of the path of photons traveling at the speed of light. If

a particle’s world-line passes through the origin (0,0,0,0) , then Einstein’s

fundamental principle according to which nothing can exceed the speed of

light, implies that the world-line must then lie entirely in the interior of this

light-cone given by x2 + y2 + z2 = t2, if units are chosen appropriately. If a

particle’s world-line were to traverse outside this light cone, a speed greater

than that of light would be implied, which would yield curious relations

with respect to ”time travel”. Physicists are still divided on whether or not

such a phenomenon might exist. Nevertheless, the geometry outside his/her

light cone is important to an observer, because the future light cones of other

observers or events will inevitably meet.

In SR, the nature of the geometry inside the light cone is different from

that outside the light cone; the latter is often associated with the work of

de Sitter. It was early on realized that the geometry of SR inside the light

cone, at least in the simpler case of a three dimensional space-time (x,y, t) ,
was very closely connected to hyperbolic geometry, since Beltrami’s hy-

perboloid model could be viewed as a Riemannian submanifold inside the

interior of the upper portion of the light cone: actually, as an orbit under the

isometry group of the geometry.
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Another way to say this is that classical hyperbolic geometry corre-

sponds to a projective view of the interior of the light cone, as such one-

dimensional subspaces (lines through the origin) meet such a submanifold

at unique points. Furthermore the hyperbolic plane then naturally has the

light cone, or its projective analog the circle, as a limiting object.

This picture can be made explicit in the three-dimensional space-time

model by viewing one-dimensional subspaces via their meets with the view-

ing plane t = 1. In this case, the light cone becomes the null circle x2+y2 = 1

and two-dimensional subspaces represent geodesics , meeting the viewing

plane in lines, and so we recover the Beltrami-Klein projective model.

In UHG, we push this physical motivation further and consider also the

outside of the light cone, which is represented projectively by points out-

side the null circle. It becomes then natural to frame things algebraically in

the language of projective linear algebra, incorporating the bilinear form of

Einstein.

9.3.8 Metrical projective linear algebra

While the synthetic framework is attractive, for explicit computations

and formulas it is useful to work with analytic geometry in the context of

(projective) linear algebra. We will now proceed to explain this, starting with

some notation and basic results in the affine setting, although the projective

setting is the main interest [6].

The three-dimensional vector space V = F3 over a field F, not of char-

acteristic two, consists of row vectors v = (x,y,z) , or equivalently, of 1×3

matrices
(
x y z

)
. A metric structure is determined by a symmetric bilin-

ear form
v ·u≡ vCuT (9.2)

where C is an invertible, symmetric 3× 3 matrix. The elements of the dual

vector space V ∗ may be viewed as column vectors f = (l,m,n)T , or equiv-

alently as 3×1 matrices.

Two vectors v, u are said to beperpendicular if v · u = 0. The (affine)
quadrance of a vector v is the number Qv ≡ v ·v. A vector v is null precisely

when Qv = 0.

A variant of the following also appears in [25].

Theorem 9.1. (Parallel vectors) If the vectors v and u are parallel, then

QvQu = (v ·u)2 . (9.3)

Conversely if (9.3) holds, then either v and u are parallel, or the bilinear
form restricted to the span of v and u is degenerate.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Sydpoints and parabolas in relativistic linear algebra and UHG 235

The previous result motivates the following measure of the non-

parallelism of two vectors. The (affine) spread between two non-null vec-

tors v and u is the number

s(v,u)≡ 1− (v ·u)2

QvQu
.

The spread is unchanged if either v or u are multiplied by a non-zero number.

One-dimensional and two-dimensional subspaces of V = F3 may be

viewed as the basic objects forming the projective plane, with metric no-

tions coming from the affine notions of quadrance and spread in the asso-

ciated vector space, but we prefer to give independent definitions, so that

logically, neither the affine nor the projective setting has priority. In general,

our notation in the projective setting is opposite to that in the affine setting,

in the sense that the roles of small and capital letters are reversed.

In projective linear algebra, when multiplying a vector or matrix by a

scalar, the same object is obtained, meaning that vectors and matrices are

defined only up to non-zero scalar multiples. Here, in order to differentiate

between ordinary linear algebra and projective linear algebra, round brack-
ets will be used for the usual vectors and matrices, and square brackets will

be used to indicate vectors and matrices in the projective setting. Notice

that the operations of addition and subtraction of projective vectors or ma-

trices are undefined, while the operations of multiplication, transposes and

inverses are well-defined. Pleasantly, computing inverses in the projective

setting is very easy since common denominators can be scaled away. In par-

ticular. over the rational numbers, integer arithmetic is usually enough to

deal with projective linear algebra.

A (projective) point is a proportion a = [x : y : z] in square brackets,

or equivalently a projective row vector a =
[
x y z

]
, where the square

brackets in the latter equality are interpreted projectively: when multiplying

by a non-zero number this is unchanged. A (projective) line is a propor-

tion L = 〈l : m : n〉 in pointed brackets, or equivalently, a projective column

vector

L =

⎡⎣ l
m
n

⎤⎦ .
When the context is clear, projective points and projective lines are

simply referred to as points and lines. The incidence between the point

a = [x : y : z] and the line L = 〈l : m : n〉 is given by the relation

aL =
[
x y z

]⎡⎣ l
m
n

⎤⎦= lx+my+nz = 0.
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In such a case we say that a lies on L, or that L passes through a.

The join a1a2 of two distinct points a1 ≡ [x1 : y1 : z1] and a2 ≡
[x2 : y2 : z2] is the line

a1a2 ≡ [x1 : y1 : z1]× [x2 : y2 : z2]≡ 〈y1z2− y2z1 : z1x2− z2x1 : x1y2− x2y1〉 .
(9.4)

This is the unique line passing through a1 and a2. The meet L1L2 of distinct

lines L1 ≡ 〈l1 : m1 : n1〉 and L2 ≡ 〈l2 : m2 : n2〉 is the point

L1L2≡〈l1 : m1 : n1〉×〈l2 : m2 : n2〉≡ [m1n2−m2n1 : n1l2−n2l1 : l1m2− l2m1] .
(9.5)

This is the unique point lying on both L1 and L2.

Three points a1,a2,a3 are said to be collinear if they lie on a common

line L; in this case we will also write L = [[a1a2a3]]. Similarly three lines

L1,L2,L3 are said to be concurrent if they pass through a common point a;

in this case we will also write a = [[L1L2L3]].

9.3.9 Projective quadrance and spread

If C is a symmetric, invertible 3× 3 matrix, with entries in F and D
is its adjugate matrix (the inverse, up to a multiple), then we denote by C
and D the corresponding projective matrices, each defined up to a non-zero

multiple. This pair of projective matrices determines a metric structure on

projective points and lines, as follows.

The (projective) points a1 and a2 are called perpendicular if a1CaT
2 = 0,

written a1 ⊥ a2. This is a well-defined, symmetric relation. Similarly, the

(projective) lines L1 and L2 are said to be perpendicular if LT
1 DL2 = 0,

written L1 ⊥ L2. The point a and the line L are said to be dual if

L = a⊥ ≡ CaT or equivalently a = L⊥ ≡ LT D. (9.6)

Two points are perpendicular if one is incident with the dual of the other,
and similarly for two lines. So a1 ⊥ a2 precisely when a⊥1 ⊥ a⊥2 , because of

the projective relation(
CaT

1

)T D
(
CaT

2

)
=
(
a1CT )D

(
CaT

2

)
= a1 (CD)

(
CaT

2

)
= a1CaT

2 .

A point a is said to be null if it is perpendicular to itself, that is, when

aCaT = 0, and a line L is callednull when it is perpendicular to itself, that

is, when LT DL = 0. The null points determine the null conic, sometimes

also called the absolute.

Hyperbolic and elliptic geometries arise, respectively, from the special
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cases

C = J ≡
⎛⎝1 0 0

0 1 0

0 0 −1

⎞⎠= D and C = I ≡
⎛⎝1 0 0

0 1 0

0 0 1

⎞⎠= D.

(9.7)

In the hyperbolic case, which is the main object of interest for us in

this discussion and which forms the basis for almost all examples, the point

a = [x : y : z] is null precisely when

x2 + y2− z2 = 0

and dually, the line L = (l : m : n) is null precisely when

l2 +m2−n2 = 0.

This is the reason why the null circle can be pictured in affine coordinates

X ≡ x/z and Y ≡ y/z as the (blue) circle X2+Y 2 = 1. Note that in the elliptic

case, the null circle over the rational numbers, has no points lying on it.

This is why visualizing hyperbolic geometry is often easier than visualizing

elliptic geometry!

In the general setting, the bilinear forms determined by C and D can be

used to define the metric structure in the associated projective plane. The

dual notions of (projective) quadrance q(a1,a2) between two points a1

and a2, and (projective) spread S (L1,L2) between two lines L1 and L2, are

defined by

q(a1,a2)≡ 1−
(
a1CaT

2

)2(
a1CaT

1

)(
a2CaT

2

) and S (L1,L2)≡ 1−
(
LT

1 DL2

)2(
LT

1 DL1

)(
LT

2 DL2

) .
(9.8)

While the numerators and denominators of these expressions depend on

choices of representative vectors and matrices for a1,a2,C,L1,L2 and D, the

quotients are independent of scaling, so the overall expressions are indeed

well-defined projectively. If a1 = [v1], a2 = [v2], and L1 = [ f1], L2 = [ f2],
then we may write

q(a1,a2)= 1− (v1 · v2)
2

(v1 · v1)(v2 · v2)
and S (L1,L2)= 1− ( f1# f2)

2

( f1# f1)( f2# f2)
,

where we use (9.2) and introduce the dual bilinear form on column vectors

by f1# f2 ≡ f T
1 D f2.

Clearly q(a,a) = 0 and S (L,L) = 0 for any point a and any line L, while

q(a1,a2) = 1 precisely when a1 ⊥ a2, and dually, S (L1,L2) = 1 precisely

when L1 ⊥ L2. Then using (9.6) we see that

S
(

a⊥1 ,a
⊥
2

)
= q(a1,a2) .
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In [43], using suitable cross ratios, Wildberger showed that these metri-

cal notions agree with the projective formulation.

Example 9.1. In the hyperbolic case, the quadrance between points and the

spread between lines are given by essentially similar formulas:

q([x1 : y1 : z1] , [x2 : y2 : z2]) = 1− (x1x2 + y1y2− z1z2)
2(

x2
1 + y2

1− z2
1

)(
x2

2 + y2
2− z2

2

) (9.9)

S (〈l1 : m1 : n1〉 ,〈l2 : m2 : m2〉) = 1− (l1l2 +m1m2−n1n2)
2(

l2
1 +m2

1−n2
1

)(
l2
2 +m2

2−n2
2

) . $
9.3.10 Hyperbolic trigonometry in UHG

The following formula, introduced in [41], is given in a more general

setting in [42].

Theorem 9.2. (Projective Triple quad formula) Suppose that a1,a2,a3 are
collinear points, with quadrances q1 ≡ q(a2,a3), q2 ≡ q(a1,a3) and q3 ≡
q(a1,a2). Then

(q1 +q2 +q3)
2 = 2

(
q2

1 +q2
2 +q2

3

)
+4q1q2q3. (9.10)

We present a few useful consequences of the Triple quad formula. If one

of the quadrances is q3 = 1, then q1 + q2 = 1; this is a consequence of the

identity

(q1 +q2 +1)2−2q2
1−2q2

2−2−4q1q2 =−(q1 +q2−1)2 .

Also, if two of the quadrances are equal, say q1 = q2 = r, then q3 = 0 or

q3 = 4r (1− r); this is a consequence of the identity

(2r+q3)
2−4r2−2q2

3−4r2q3 =−q3

(
q3−4r+4r2

)
.

We are now in a position to give a more complete list of the main trigonomet-

ric laws in this setting. The laws are taken from [44]. These completely al-

gebraic rules incorporate and extend the more familiar, transcendental ones

found in the Klein model and in the Poincaré model. A triangle a1a2a3

= {a1,a2,a3} is a set of three non-collinear points. A trilateral L1L2L3

= {L1,L2,L3} is a set of three lines that are not concurrent. Every triangle

a1a2a3 has three sides, namely a1a2, a2a3 and a1a3; similarly, any trilateral

L1L2L3 has three vertices, namely L1L2, L2L3 and L1L3.

We will use the convention that q1 ≡ q(a2,a3), q2 ≡ q(a1,a3) and q3 ≡
q(a1,a2), and that S1 ≡ S (L2,L3), S2 ≡ S (L1,L3) and S3 ≡ S (L1,L2) , along

with the notation shown in the Figure.

The following are the main trigonometric laws of UHG.
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FIGURE 9.10: Quadrance and spreads in a hyperbolic triangle

Theorem 9.3. (Triple quad formula) If a1,a2 and a3 are collinear points,
then

(q1 +q2 +q3)
2 = 2

(
q2

1 +q2
2 +q2

3

)
+4q1q2q3.

Theorem 9.4. (Triple spread formula) If L1,L2 and L3 are concurrent lines,
then

(S1 +S2 +S3)
2 = 2

(
S2

1 +S2
2 +S2

3

)
+4S1S2S3.

Theorem 9.5. (Pythagoras) If L1 and L2 are perpendicular lines, then

q3 = q1 +q2−q1q2.

Theorem 9.6. (Pythagoras’ dual) If a1 and a2 are perpendicular points,
then

S3 = S1 +S2−S1S2.

Theorem 9.7. (Spread law) For a triangle a1a2a3 with quadrances
q1,q2,q2 and spreads S1,S2,S3, one has

S1

q1
=

S2

q2
=

S3

q3
.

Theorem 9.8. (Cross law) For a triangle a1a2a3 with quadrances q1,q2,q2

and spreads S1,S2,S3, it holds that

(q1q2S3− (q1 +q2 +q3)+2)2 = 4(1−q1)(1−q2)(1−q3) .

Theorem 9.9. (Cross dual law) For a triangle a1a2a3 with quadrances
q1,q2,q2 and spreads S1,S2,S3, one has

(S1S2q3− (S1 +S2 +S3)+2)2 = 4(1−S1)(1−S2)(1−S3) .
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FIGURE 9.11: Right triangles in UHG

Theorem 9.10. (Napier’s Rules) Suppose that a1a2a3 is a right triangle
with S3 = 1. Then, any two of the five quantities S1,S2,q1,q2 and q3 de-
termine the other three, using only the three basic equations from Thales’
theorem and Pythagoras’ theorem:

S1 =
q1

q3
, S2 =

q2

q3
and q3 = q1 +q2−q1q2.

Another important theorem is:

Theorem 9.11. (Menelaus’) Suppose that a1a2a3 is an arbitrary triangle
and let b1, b2 and b3 be three points on a2a3, a1a3 and a1a2, respectively. If
b1, b2 and b3 are collinear, then

q(a1,b3)

q(b3,a2)

q(a2,b1)

q(b1,a3)

q(a3,b2)

q(b2,a1)
= 1.

9.4 Sydpoints, triangle geometry and twin circles
In [46] it was shown that if each of the three sides of a triangle (in UHG)

has midpoints m, then these six points lie three at a time on four circumlines

C, whose duals are the four circumcenters c. These are the centers of the

four circumcircles which pass through the three points of the triangle. In the

geometry under consideration, a circle C may be defined as an equation of

the form q(c,x) = k, for a fixed point c called the center, and a fixed number

k called the quadrance of the circle, and a point a is said to lie on the circle,

if q(c,a) = k. Since in this case the circle is also determined by c and a, we

may refer to it as C
(a)
c . The bracket is a reminder of the non-uniqueness of

the point a.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Sydpoints and parabolas in relativistic linear algebra and UHG 241

FIGURE 9.12: Midpoints, midlines, circumlines, circumcenters and cir-

cumcircles

This four circumcircles are shown for a classical triangle inside the null

circle in Figure 9.12. The duals of the midpoints m are the midlines M,

traditionally called the perpendicular bisectors of the sides. While the red

circumcircle is a classical circle in the Cayley-Beltrami-Klein model of hy-

perbolic geometry, the other three are usually described as curves of constant
width, but in UHG they are all just circles. This is the start of the circum-

center hierarchy as studied in [46].

Remarkably, much of these observations extend also to triangles with

points both interior and exterior to the null circle; in the process of this

study we also find new phenomena related to circumcircles, that suggest a

reconsideration of the classical case above.

Next, the new notion of the sydpoints of a side in hyperbolic geometry

is explained, and we delve into how it allows us to widen the study of hyper-

bolic triangle geometry. This is parallel to, but with features different from,

the Euclidean case laid out in [23] and [24], and in a related but different

direction from Ungar in [40].

We have seen that a midpoint of a side ab is a point m on ab satisfying

q(a,m) = q(b,m) .

The new concept is the following: a sydpoint of ab is a point s on ab satis-

fying

q(a,s) =−q(b,s) .

Example 9.2. In the usual hyperbolic case, suppose that a = [x : 0 : 1] and

b = [y : 0 : 1]. It can be verified by direct computation that

q(a,b) =− (x− y)2

(1− x2)(1− y2)
,
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Thus, midpoints m = [w : 0 : 1] and sydpoints s = [z : 0 : 1] of ab exist pre-

cisely when
(
x2−1

)(
y2−1

)
= r2 and

(
x2−1

)(
y2−1

)
=−t2 respectively,

in which cases

w =
xy+1± r

x+ y
and z =

(1− xy)(x+ y)± t (x− y)
x2 + y2−2

.

It is thus clear that algebraically sydpoints are somewhat more complicated

than midpoints in general. $
As shown in [44], the existence of midpoints is equivalent to 1−q(a,b)

being a square in the underlying field. It turns out that the existence of syd-

points is equivalent to q(a,b)− 1 being a square. Asis the case with mid-

points, if sydpoints exist, there are generally two of them.

FIGURE 9.13: A non-classical triangle with both midpoints and sydpoints

Hence, sydpoints allow us to extend much of triangle geometry to non-

classical triangles, with points inside and outside of the null conic. In Figure

9.13, the non-classical triangle a1a2a3 has one side a1a2 with midpoints m
whose duals are midlines M and two sides a1a3 and a2a3 with sydpoints s
whose duals are sydlines S. Somewhat remarkably, the six midpoints and

sydpoints lie three at a time on four circumlines C, whose duals are the

four circumcenters c. The connection between these new circumcenters and

the idea of circumcircles is particularly interesting, since, in this case, it

is impossible to find any circles which pass through all three points of the

triangle a1a2a3.

In UHG, circles can often be paired: two circles are defined to be twins
if they share the same center and their quadrances add up to 2. The circum-

centers c are the centers of twin circumcircles passing through all the three

points of the triangle. This notion extends our understanding even in the
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classical case. The four pairs of twin circumcircles give eight generalized
circumcircles, even for the classical case.

FIGURE 9.14: Four twin circumcircles of a non-classical triangle

In Figure 9.14, we see the twin circumcircles of the triangle of the pre-

vious Figure; some of these appear in this model as hyperbolas tangent

to the null circle—these are invisible in classical hyperbolic geometry, but

have a natural interpretation in terms of hyperboloids of one sheet in three-

dimensional space (de Sitter space).

9.4.1 The construction of Sydpoints

The following theorem is helpful in constructing sydpoints using a dy-

namic geometry package.

Theorem 9.12. (Sydpoints null points) Suppose that the non-null side ab
has sydpoints s and r, and that ac has midpoints m and n, where c = (ab)⊥.
Then x ≡ (mr)(bc) = (ns)(bc) and y ≡ (ms)(bc) = (nr)(bc) , are null
points.

We use this theorem to give practical constructions of sydpoints using

Geometer’s Sketchpad, C.a.R., Cabri, GeoGebra or Cinderella. To construct

the sydpoints r and s of ab as in Figure 9.15, first construct the dual c =
(ab)⊥, then the midpoints m and n of ac, and then use the null points x and

y lying on bc as shown.

The required sydpoints are s=(nx)(ab)= (my)(ab) and r =(ny)(ab)=
(mx)(ab). Similarly, given the sydpoints r and s of ab, a and b can be con-

structed as the sydpoints of rs using the null points w and z lying on rc, and
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FIGURE 9.15: Construction of sydpoints of ab

the midpoints k and l of cs. The required points are a = (lz)(rs) = (kw)(rs)
and b = (lw)(rs) = (kz)(rs). So the construction of sydpoints can be re-

duced, at least in this kind of situation, to the computation of midpoints.

Another useful construction is to find, given the point b and one of the

sydpoints s, the other point a and the other sydpoint r as in Figure 9.16. First

construct the dual c = (bs)⊥, then find the midpoints k and l of cs. Use the

null points u, t lying on bk and the null points v,w lying on bl to construct

r = (cuv)(bs) and a = (lu)(bs) = (kv)(bs).
However, by symmetry there is a second solution, namely r = (cwt)(bs)

and a = (lt)(bs) = (kw)(bs). Thus, s and r can be thought of as being the

sydpoints of the side ab, and s and r as the sydpoints of the side ab. Notice

also that b is a midpoint of the side rr and similarly, s is a midpoint of the

side aa. In fact

q(b,r) = q(b,r) = q(s,a) = q(s,a) .

9.4.2 Twin circles

The connection between sydpoints and twin circles is described by the

following:

Theorem 9.13. (Sydpoint twin circle) If s is a sydpoint of ab, and c lies on
S≡ s⊥, then the circles C

(a)
c and C

(b)
c are twins. Conversely if C

(a)
c and C

(b)
c

are twins, then s≡ c⊥ (ab) is a sydpoint of ab.

We note that the theorem has another possible, quite interesting, inter-

pretation: the locus of a point c such that q(a,c)+q(b,c) = 2, is a line.
The Sydpoint twin circle theorem assists us in the construction of twin
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FIGURE 9.16: Constructing r and a (or r and a) from s and b

circles; we generally expect this task to reduce to finding midpoints, but

there are also some simpler scenarios. Suppose we are given a circle C (in

brown) with center c as in Figure 9.17. Choose an arbitrary point a on the

circle C and construct C ≡ c⊥, then let s be the meet of ac and C, and t the

meet of A≡ a⊥ and C.

FIGURE 9.17: Constructing the twin circle D of C

Now we can apply the construction of Figure 9.16; suppose that the side

st has midpoints m and n, and that x and y are null points on am, and z and w
are null points on an. Then b ≡ (mz)(ac) = (ny)(ac) and e ≡ (mw)(ac) =
(nx)(ac) lie on the twin circle D to C . Symmetry implies that we could also

use d ≡ (mw)(ct) = (ny)(ct) and f ≡ (mz)(ct) = (nx)(ct).
Figure 9.18 shows another example of construction of the twin D of a

given circle C (in brown) with center c. In this case c is outside the null

circle, so its dual line C passes through null points x and y (approximately—
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remember that a dynamic geometry package usually only deals with decimal

approximations, so the number-theoretical subtlety is diminished). Choose

a point a on C with dual line A = a⊥. Then the twin circle D (in red) is the

locus of the point b = (ax)A, or of the point d = (ay)A as a moves along C .

FIGURE 9.18: Another construction of a twin circle

n
The relation q(a,c)+q(b,c) = 2 then follows by applying either the Nil

Cross law ([43, Thm 80]) or the Null subtended quadrance theorem ([43,

Thm 90]), to the triangle abc. Similarly, given the red circle D , its twin

circle C (in brown) is the locus of the point a = (bx)b⊥, as the point b
moves on D .

9.4.3 The parabola in hyperbolic geometry

In Euclidean geometry, the parabola plays several distinguished roles. It

is the graph resulting from a quadratic function f (x) = a+bx+ cx2, and it

is also the second degree Taylor expansion of a general function. It is also

a conic section in the spirit of Apollonius, obtained by slicing a cone with

a plane which is parallel to one of its generatrices. In affine geometry the

parabola is the distinguished conic which is tangent to the line at infinity.

In everyday life, the parabola occurs in reflecting mirrors and automobile

head lamps, in satellite dishes and radio telescopes, and in the trajectories

of comets.

The ancient Greeks also studied the familiar metric formulation of a

parabola: it is the locus of a point which remains equidistant from a fixed

point F , called the focus, and a fixed line f (that does not contain F), called

the directrix. Such a conic P has a line of symmetry: the axis a through

F perpendicular to f . It also has a distinguished point V called the vertex,

which is the only point of the parabola lying on the axis a, aside from the
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point at infinity. The vertex V is the midpoint between the focus F and the

base point B≡ a f .

FIGURE 9.19: The Euclidean parabola

For such a classical parabola P hundreds of facts are known, see for

example [1], [8], [12], [15], [22], [31] and [32]; quite a few of them going

back to Archimedes and Apollonius. Of particular importance are theorems

that relate to an arbitrary point P on the conic and its tangent line p. In

particular, the construction of the tangent line p itself is important: there are

two common ways of doing this. One is to take the foot T of the altitude

from P to the directrix f , and connect P to the midpoint M of T F ; so that

p = PM. Another is to take the perpendicular line t to PF through F , and

find its meet S with the directrix; this gives p=PS. The point S is equidistant

from T and F , and the circle S with center S through F is tangent to both

the lines PF and PT .

A related and useful fact is that a chord PN is a focal chord—meaning

that it passes through F—precisely when the meet of the two tangents at P
and N lies on the directrix f , and in this case the two tangents are perpendic-

ular. These facts are illustrated in Figure 9.19. Another result, which appears

often in calculus, is that if P and Q are arbitrary points on the parabola with

Z the meet of their tangents p and q, and T,U and W are respectively the

feet of the altitudes from P,Q and Z to the directrix, then W is the midpoint

of TU .

So when investigating hyperbolic geometry, some natural questions

arise, such as what the analog of a parabola in this context is, what properties

of the Euclidean case carry over to this setting, and what additional prop-

erties might the hyperbolic parabola have that do not hold in the Euclidean

case. These issues have of course been studied by quite a few authors, such
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as [5], [36], [37], [21] and [29].

There is a very natural analog of the idea of a parabola in this hyperbolic

setting, and many, but certainly not all, properties of the Euclidean parabola

hold or have reasonable analogues for it. But there are also many interesting

aspects which have no Euclidean counterpart, such as the existence of a dual
or twin parabola, and an intimate connection with the theory of sydpoints

from the previous Chapter. In [2] and [3] we introduced and studied the rich

canonical structure on a hyperbolic parabola, with lovely collinearities and

concurrences.

In this Section definitions and some basic results for a parabola in uni-
versal hyperbolic geometry are introduced. As already discussed in [21], the

definition is not entirely obvious: there are several different possible ways

of generalizing the Euclidean theory. Recall that if a is a point and L is a

line, then the quadrance q(a,L) is defined to be the quadrance between a
and the foot t of the altitude line from a to L. We next present the definition

of the parabola.

Suppose that f1 and f2 are two non-perpendicular points such that f1 f2

is a non-null line. The parabola P0 with foci f1 and f2 is the locus of a

point p0 satisfying

q( f1, p0)+q(p0, f2) = 1. (9.11)

The lines F1 ≡ f⊥1 and F2 ≡ f⊥2 are the directrices of the parabola P0.

FIGURE 9.20: A parabola P0 with foci f1 and f2

So, at this point, there is no clear justification for the above definition. The

following connects our theory with the more traditional approach in [14]

and [28].

Theorem 9.14. (Parabola focus directrix) A point p0 satisfies (9.11) pre-
cisely when either of the following holds:

q( f1, p0) = q(p0,F2) or q( f2, p0) = q(p0,F1) .
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In this way we recover the ancient Greek metric definition of the

parabola, but it should be noted that there are two foci-directrix pairs:

( f1,F2) and ( f2,F1) . This is a main feature of the hyperbolic theory of the

parabola: a fundamental symmetry between the two foci-directrix pairs. In

Figure 9.20 a parabola P0 is displayed in red, with foci f1 and f2, and di-

rectrices F1 and F2, also in red.

FIGURE 9.21: Various examples of parabolas

Figure 9.21 displays some different examples of parabolas over the ra-

tional numbers, at least approximately. When the foci f1 and f2 are both

interior points of the null circle C , there is no interior point p satisfying the

condition q(p, f1)+ q(p, f2) = 1, since the quadrance between any two in-

terior points is always negative and the quadrance between an interior and

an exterior points is always greater than or equal 1. Thus, the parabola with

both foci inside the null circle, is an empty conic.

In the next theorem we find the equation of a parabola with given foci.

Theorem 9.15. (Parabola conic) The parabola P0 with foci f1 and f2 is a
conic.

We now define some basic points and lines associated to a parabola P0

with foci f1 and f2, and directrices F1 ≡ f⊥1 and F2 ≡ f⊥2 , as in Figure 9.22.

The axis of the parabola P0 is the line A ≡ f1 f2. The axis point of P0 is

the dual point a≡ A⊥. By assumption the axis A is a non-null line, so that a
does not lie on A.

If the axis A has null points, such points are called the axis null points
of P0 and are denoted by η1 and η2, in no particular order. In the diagrams

in this Chapter, the axis point and line will generally be displayed in black,

while the axis null points will be colored in yellow.

Theorem 9.16. (Axis symmetry) The axis A= f1 f2 of a hyperbolic parabola
P0 is a line of symmetry and its dual point a is a center.
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FIGURE 9.22: Dual and tangent lines, twin point and focal lines

9.4.4 Dual conics and the connection with sydpoints

The theory of the hyperbolic parabola connects strongly with the notion
of sydpoints, as first described in [47].

FIGURE 9.23: The parabola P0 and its twin P0

The reason is that the sydpoints f 1 and f 2 of the side f1 f2, should they exist

(and our assumptions on our field will guarantee that they do), are naturally

determined by the geometry of the parabola P0. They become the foci for

the twin parabola P0 (in orange in our diagrams), which turns out to be the

dual of the conic P0 with respect to the null circle C . This means that the

dual of the tangent to a point p0 on P0 is the point p0 on the twin P0. The

sydpoint symmetry between the sides f1 f2 and f 1 f 2 is key to understanding

many aspects of these conics.

Figure 9.23 shows the parabola P0 with foci f1, f2 and a point p0 on it, as

well as the twin parabola P0 with foci f 1, f 2 and the twin point p0 on it,

which is the dual of the tangent P0 to P0 at p0. Reciprocally the dual of

p0 is the tangent to P0 at p0. Note that the tangents to both the parabola

P0 and the null circle C at their common meets, namely the null points α0

and α0, pass through the foci of the twin parabola P0! Dually, note that

the tangents to both the parabola P0 and the null circle C at their common
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meets, namely the null points δ0 and δ0, pass through the foci of P0! This

Figure also shows the twin directrices F1 and F2, and the twin base points

b1 and b2.
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Chapter 10
Metric fixed point theory in weighted
graphs

M. R. Alfuraidan
Department of Mathematics and Statistics, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia,
E-mail: monther@kfupm.edu.sa

In this Chapter, some known results about the fixed point problem on

weighted graphs are discussed. We start by introducing the basic defini-

tions; then we present the concept of monotone mapping with respect to the

graph structure. The Chapter is concluded with a discussion of the metric

fixed point theory for such mappings. The approximation of fixed points of

monotone mappings will also be analyzed. It is worth mentioning that ap-

proximate fixed points are useful when computational issues are involved.

In particular, most of the approximate fixed points treated in this Chapter

are generated by an algorithm that is amenable to computational implemen-

tation.

10.1 Introduction
According to F. Browder, considered one of the forefathers of nonlinear

functional analysis, ”The theory of fixed points is one of the most powerful

tools of modern mathematics”. The origin of fixed point theory has its roots

in the works of Poincaré, Lefschetz-Hopf, and Leray-Schauder. This theory

is applied to a variety of areas of current interest in analysis. Topological

considerations play a crucial role in the study of fixed points, it is worth

remarking the relationship of fixed point theory with degree theory. Many

mathematical problems involving existence translate into a question involv-
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ing fixed point theory.

As its name suggests, metric fixed point theory is mainly concerned with

problems that involve metric properties. The line dividing metric fixed point

theory and its counterpart, topological fixed point theory is, as often the case,

fuzzy. Successive approximations are at the core of the metric theory and are

used to establish the existence and uniqueness of solutions. These successive

approximation ideas were used by Cauchy, Fredholm, Liouville, Lipschitz,

Peano and Picard. The Polish mathematician Banach is credited for orga-

nizing the ideas of successive approximations into an abstract framework,

suitable for broad applications which go beyond the initial use in elemen-

tary differential and integral equations.

The fundamental fixed point theorem of Banach is the foundation of

metric fixed point theory for contraction mappings, that is, for Lipschitz

maps with a Lipschitz constant strictly between zero and one, on a com-

plete metric space. Lipschitz maps with Lipschitz constant equal to one are

called nonexpansive mappings. The fixed point problem for nonexpansive

mappings differs sharply from that for contraction mappings, in the sense

that additional structure of the domain set is needed to ensure the existence

of fixed points.

Following the idea by Ran and Reurings [50] on the extension of the

Banach contraction principle [12] to metric spaces endowed with a partial

order, this new direction of research has attracted a great deal of attention

in recent years. The idea in [50] was motivated by the investigation of some

special matrix equations. It was Jachymski [33] who gave a more general

formulation of these results by considering digraphs instead of a partial or-

der. Since then, many publications appeared in this new direction and thus,

a bridge was established between graph theory and metric fixed point the-

ory, [1, 2, 3, 8, 6]. The approach in [50] and [33] is to define a digraph on

a metric space and, based on the properties of the metric space, to prove

some fixed point results. Our approach (see [5]) is different. We consider

a weighted digraph and introduce some necessary topological structures on

the set of vertices. These properties are analogous to the ones used in metric

spaces, though we show that they are not equivalent. These considerations

allow us to prove some fixed point results, which are more general than the

ones found in the literature.

The focus in this Chapter is on the fixed points of different types of

mappings defined on weighted graphs. It is the topological properties of

these weighted graphs that constitute the main tools used in our approach.
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A weighted digraph is a digraph with a numeric label associated to each

edge. Such labels can be integers, rational numbers, or real numbers and

might represent a concept such as distance, connection costs, or affinity. For

example, when using a graph to represent roads between cities, if the prob-

lem under consideration is to find the fastest way to travel cross-country, it

would not be appropriate for all edges to be equal, since some intercity dis-

tances will likely be much larger than others. It is thus natural to consider

graphs whose edges are not weighted equally.

Because of its applications to industrial fields such as image processing

engineering, computer science, economics, ladder networks, control theory,

stochastic filtering and telecommunication, among others, this connection

between graph theory and fixed point theory is presently attracting a great

deal of scientific attention (see [5]).

10.2 Weighted graphs
A graph G consists of two sets, denoted by V (G) �= /0 and E(G) (Or V

and E if no confusion arises from this notation). Each element of V is called

a vertex. The elements of E, called edges, are unordered pairs of vertices. A

directed graph (also called digraph) is obtained by replacing the set E with

a set D of ordered pairs of vertices. Replacing set E with a multiset, a so-

called multigraph is obtained and allowing edges to connect a vertex to itself

(i.e., by allowing loops), a pseudo-graph is obtained. Digraphs can have two

edges with the same endpoints, provided they have opposite directions. The

underlying graph G̃ of a digraph is constructed by ignoring all directions

and replacing any resulting multiple edges with single edges. All digraphs

appearing in this Chapter are assumed to be reflexive i.e., it is assumed that

each vertex has a loop.

The digraph G is said to be transitive if (x,z) ∈ E(G) whenever (x,y) ∈
E(G) and (y,z)∈ E(G), for any x,y,z∈V (G). In other words, G is transitive

if for any two vertices x and y that are connected by a directed finite path, it

holds that (x,y) ∈ E(G).
A weighted graph is a graph in which each edge is given a numerical

weight. A weighted graph is therefore a special type of labeled graph, in

which the labels are real positive numbers. Throughout this work, we con-

sider weighted digraphs such that the weight of each edge is given by a

distance function between the vertices.
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10.2.1 Topological aspects of weighted graphs

The stage is now set for the introduction of the topological concepts of

monotone mappings with respect to the graph structure.

Definition 10.1. Let G be a digraph. A sequence (xn) ∈V (G) is said to be

(a) G-increasing, if (xn,xn+1) ∈ E(G), for all n ∈ N;

(b) G-decreasing, if (xn+1,xn) ∈ E(G), for all n ∈ N;

(c) G-monotone, if (xn) is either G-increasing or G-decreasing.

In order to define the concept of G-compactness, some kind of sequen-

tial convergence in V (G) is needed. For example, if τ is a topology on V (G)
one might consider τ-convergent sequences, but there are sequential conver-

gences that are not associated to a topology. Still, the notation τ-convergence

will continue to be used, even if τ is not a topology.

Definition 10.2. Let G be a digraph and τ be as described above. A

nonempty subset C of V (G) is said to be Gτ -compact if any G-increasing

(resp. G-decreasing) sequence (xn) ∈ C has a subsequence (xφ(n)), that is

τ-convergent to x in C and that satisfies the condition that (xφ(n),x) ∈ E(G)
(resp. (x,xφ(n)) ∈ E(G)), for every n ∈ N. In particular, if G is transitive it

will hold that (xn,x) ∈ E(G), (resp. (x,xn) ∈ E(G)) for every n ∈ N.

Using the standard definition of τ-compactness in a metric space, a

nonempty subset C of V (G) is said to be τ-compact if and only if any se-

quence in C has a subsequence which τ-converges to a point in C. Note that

if G is transitive and the G-intervals are τ-closed, then any τ-compact subset

C of V (G) is Gτ -compact.

Example 10.1. Consider the family of intervals (Is)s∈[0,+∞), in R2 defined

by

Is = {(x,y) ; x = s and 0≤ y≤ [s]+1}.
On R2 define the digraph G by

(
(x,y),(a,b)

)
∈ E(G) if and only if (x,y)

and (a,b) belong to some Is, for s ∈ [0,+∞), and y ≤ b. It is clear that if(
(xn,yn)

)
is a G-monotone sequence, then there exists s0 ∈ [0,+∞) such

that (xn,yn) ∈ Is0
, for all n ∈ N. If τ is the Euclidean topology, then R2 is

Gτ -compact and any G-monotone sequence is bounded.

This example suggests the following definition.

Definition 10.3. Let G be a weighted digraph. Let d be a metric dis-

tance on V (G). A nonempty C ⊆ V (G) is said to be weakly G-bounded

if any G-monotone sequence (xn)n∈N in C is bounded, i.e. δ ((xn)) =
sup

n,m∈N
d(xn,xm)< ∞.
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It is clear that the motivation behind the introduction of the idea of G-

compactness is the sequential characterization of metric compact sets as

well as the use of monotone sequences in the study of fixed points of mono-

tone mappings. Therefore, whenever a topological concept is characterized

by sequences, it will have a similar extension to weighted graphs. The fol-

lowing definition illustrates this point.

Definition 10.4. Let G be a weighted digraph. Let d be a metric distance on

V (G). A nonempty set C ⊆ V (G) is said to be G-complete (or a G-Cauchy

space) if every G-monotone Cauchy sequence of vertices in C has a limit

that is also in C.

Remark 10.1. It is surprising that in the Ran and Reurings extension [50]

of the Banach contraction principle to partially metric spaces, one only

needs to assume order-completeness, in the sense that monotone Cauchy

sequences are convergent. Now one may ask whether such completeness is

different from the metric completeness. A small modification of Example

10.1 will settle this question.

Example 10.2. Consider the set C = {(x,y)∈R2; 0≤ x< 1 and 0≤ y≤ 1}
and the family of intervals (Is)s∈[0,1), in C defined by

Is = {(x,y) ; x = s and 0≤ y≤ 1}.

On C define the digraph G by
(
(x,y),(a,b)

)
∈ E(G) if and only if (x,y)

and (a,b) belong to some Is, for s ∈ [0,1), and y ≤ b. It is clear that if(
(xn,yn)

)
is a G-monotone sequence, then there exists s0 ∈ [0,1) such that

(xn,yn) ∈ Is0
, for all n ∈ N. If τ is the Euclidean topology, then C is G-

complete but not τ-complete.

10.2.2 Hyperbolic weighted graphs

In this Subsection, the concept of hyperbolic metric spaces defined on

weighted graphs is introduced. Let (X ,d) be a metric space. Suppose that

there exists a family F of metric segments such that any two points x,y in X
are endpoints of a unique metric segment [x,y]∈F (i.e., [x,y] is an isometric

image of the real line interval [0,d(x,y)]). We shall denote by βx⊕ (1−β )y
the unique point z of [x,y] which satisfies

d(x,z) = (1−β )d(x,y), and d(z,y) = βd(x,y),

where β ∈ [0,1]. Such metric spaces with a family F of metric segments are

usually called convex metric spaces [46]. Moreover, under the assumption

d
(

α p⊕ (1−α)x,αq⊕ (1−α)y
)
≤ αd(p,q)+(1−α)d(x,y),
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for all p,q,x,y in X , and α ∈ [0,1], X is said to be a hyperbolic metric space
(see [53]).

Obviously, normed linear spaces are hyperbolic spaces. Hadamard man-

ifolds [18] are nonlinear examples of hyperbolic metric spaces, as are the

Hilbert open unit ball equipped with the hyperbolic metric [29], and the

CAT(0) spaces [38, 39, 44]. A subset C of a hyperbolic metric space X is

said to be convex if [x,y]⊂C whenever x,y are in C.

Definition 10.5. Let (X ,d) be a hyperbolic metric space. A graph G on X is

said to be convex if and only if, for any x,y,z,w ∈ X and α ∈ [0,1], it holds

that

(x,z)∈E(G) and (y,w)∈E(G)=⇒ (αx⊕(1−α)y,αz⊕(1−α)w)∈E(G).

10.2.3 Modular weighted graphs

Let X be a nonempty set. Throughout this Chapter the following notation

is agreed upon: for a function ω : (0,∞)×X×X → (0,∞), we will write

ωλ (x,y) = ω(λ ,x,y),

for all λ > 0 and x,y ∈ X .

Definition 10.6. [20, 21] A function ω : (0,∞)×X ×X → [0,∞] is said to

be a modular metric on X, if it satisfies the following axioms:

(a) x = y if and only if ωλ (x,y) = 0, for all λ > 0;

(b) ωλ (x,y) = ωλ (y,x), for all λ > 0, and x,y ∈ X ;

(c) ωλ+μ(x,y)≤ ωλ (x,z)+ωμ(z,y), for all λ ,μ > 0 and x,y,z ∈ X .

If condition (a), is replaced with (a’):

ωλ (x,x) = 0, for all λ > 0, x ∈ X ,

then ω is said to be a pseudomodular (metric) on X . A modular metric ω on

X is said to be regular if the following weaker version of (a) is satisfied

x = y if and only if ωλ (x,y) = 0, for some λ > 0.

Finally, ω is said to be convex, if for λ ,μ > 0 and x,y,z ∈ X , it satisfies the

inequality

ωλ+μ(x,y)≤
λ

λ +μ
ωλ (x,z)+

μ
λ +μ

ωμ(z,y).
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Note that for a metric pseudomodular ω on a set X , and any x,y ∈ X , the

function λ → ωλ (x,y) is nonincreasing on (0,∞). Indeed, if 0 < μ < λ ,
then

ωλ (x,y)≤ ωλ−μ(x,x)+ωμ(x,y) = ωμ(x,y).

Definition 10.7. [20, 21] Let ω be a pseudomodular on X . Fix x0 ∈ X . The

two sets

Xω = Xω(x0) = {x ∈ X : ωλ (x,x0)→ 0 as λ → ∞},

and

X∗ω = X∗ω(x0) = {x ∈ X : ∃λ = λ (x)> 0 such that ωλ (x,x0)< ∞}

are said to be modular spaces (around x0).

It is obvious that Xω ⊂X∗ω ; in general this inclusion may be proper. It follows

from [20, 21] that if ω is a modular on X , then the modular space Xω can be

equipped with a (nontrivial) metric, generated by ω and given by

dω(x,y) = inf{λ > 0 : ωλ (x,y)≤ λ},

for any x,y ∈ Xω . If ω is a convex modular on X , according to [20, 21] the

two modular spaces coincide, i.e. X∗ω = Xω , and this common set can be

endowed with the metric d∗ω given by

d∗ω(x,y) = inf{λ > 0 : ωλ (x,y)≤ 1},

for any x,y ∈ Xω . These distances will be called Luxemburg distances.

First attempts to generalize the classical Lebesgue function spaces Lp

were made in the early 1930’s by Orlicz and Birnbaum in connection with

orthogonal expansions. With such generalization in mind, they considered

spaces of functions with growth properties different from the power-type

growth control provided by the Lp-norms. More precisely, they introduced

the function spaces defined as follows:

Lϕ =

{
f : R→ R; ∃λ > 0 : ρ(λ f ) =

�
R

ϕ
(
λ | f (x)|) dx < ∞

}
,
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where ϕ : [0,∞]→ [0,∞] was assumed to be a convex function increasing

to infinity. In particular, the power function ϕ(t) = t p, satisfies these condi-

tions.

The notion of modular function spaces Lϕ provides a wonderful example of

a modular metric space. Indeed, define the function ω by

ωλ ( f ,g) = ρ
(

f −g
λ

)
=

�
R

ϕ
( | f (x)−g(x)|

λ

)
dx,

for all λ > 0, and f ,g∈ Lϕ , then ω is a modular metric on Lϕ . Moreover the

distance d∗ω is exactly the distance generated by the Luxemburg norm on Lϕ .

For more examples on modular function spaces, the reader my consult the

book of Kozlowski [41]. For an exhaustive treatment of modular metric

spaces we refer the reader to [20, 21].

Definition 10.8. Let Xω be a modular metric space.

(1) The sequence {xn}n∈N in Xω is said to be ω-convergent to x ∈ Xω , if

and only if ω1(xn,x)→ 0, as n→ ∞. The element x will be called the

ω-limit of {xn}.
(2) The sequence {xn}n∈N in Xω is said to be ω-Cauchy, if ω1(xm,xn)→

0, as m,n→ ∞.

(3) A subset M of Xω is said to be ω-closed, if the ω-limit of a ω-

convergent sequence of M always belong to M.

(4) A subset M of Xω is said to be ω-complete, if any ω-Cauchy sequence

in M is a ω-convergent sequence and its ω-limit is in M.

(5) A subset M of Xω is said to be ω-bounded, if it satisfies

δω(M) = sup{ω1(x,y);x,y ∈M}< ∞.

(7) ω is said to satisfy the Fatou property, if and only if for any sequence

{xn}n∈N in Xω ω-convergent to x, we have

ω1(x,y)≤ liminf
n→∞

ω1(xn,y),

for any y ∈ Xω .
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In general if lim
n→∞

ωλ (xn,x) = 0, for some λ > 0, then it might not hold

that lim
n→∞

ωλ (xn,x) = 0, for all λ > 0. Therefore, following the usual termi-

nology used in the theory of function spaces, ω is said to satisfy the Δ2-

condition, if lim
n→∞

ωλ (xn,x) = 0, for some λ > 0 implies lim
n→∞

ωλ (xn,x) = 0,

for all λ > 0. The interested reader is referred to [20] and [21] for a dis-

cussion on the connection between ω-convergence and metric convergence

with respect to the Luxemburg distances. In particular, one has

lim
n→∞

dω(xn,x) = 0 if and only if lim
n→∞

ωλ (xn,x) = 0, for all λ > 0,

for any {xn} ∈ Xω and x∈ Xω . Also, ω-convergence and dω convergence are

equivalent if and only if the modular ω satisfies the Δ2-condition. Moreover,

if the modular ω is convex, it is well known that d∗ω and dω are equivalent,

which implies

lim
n→∞

d∗ω(xn,x) = 0 if and only if lim
n→∞

ωλ (xn,x) = 0, for all λ > 0,

for any {xn} ∈ Xω and x ∈ Xω [20, 21]. It will be assumed in the sequel that

ω satisfies the Fatou property.

10.3 Fixed point theory in weighted graphs
This Section is devoted to a detailed discussion of the latest fixed point

results for monotone mappings defined on weighted graphs. Since the pub-

lication of the work by Ran and Reurings [50], the interest in the fixed point

theory of such mappings has experienced unprecedented growth. The ap-

plications of this area are multiple. For example, the classical fixed point

results are inadequate to handle the problem of finding a positive (or nega-

tive) solution of some equations.

The Section is organized as follows: First, basic definitions pertaining to

the theory of monotone mappings on weighted graphs are given, secondly,

some elementary facts needed for the proof of the main result will be pre-

sented.

10.3.1 Monotone mappings

Definition 10.9. Let G be a weighted digraph, d be a metric distance on

V (G) and C be a nonempty subset of V (G). A mapping T : C→C is called
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(a) G-monotone, if T is edge preserving, i.e., (T (x),T (y)) ∈ E(G) when-

ever (x,y) ∈ E(G), for any x,y ∈C.

(b) G-contraction, if T is G-monotone and there exists k ∈ [0,1) such that

∀x,y ∈C,(x,y) ∈ E(G)⇒ d(T (x),T (y))≤ k d(x,y).

(c) G-nonexpansive, if T is G-monotone and

∀x,y ∈C,(x,y) ∈ E(G)⇒ d(T (x),T (y))≤ d(x,y).

The point x ∈C is called a fixed point of T if T (x) = x.

Next, the concept of monotone multivalued mappings is discussed, [13].

Definition 10.10. ([13], Def. 2.6). Let F : X → 2X be a multivalued map-

ping with nonempty closed and bounded values. The mapping F is said to

be a G-contraction if there exists k ∈ [0,1) such that

H(F(x),F(y))≤ k d(x,y), for all (x,y) ∈ E(G)

and such that, whenever u ∈ F(x) and v ∈ F(y) satisfy

d(u,v)≤ k d(x,y)+α , for each α > 0,

then (u,v) ∈ E(G).

In particular, this definition implies that if u ∈ F(x) and v ∈ F(y) are

such that

d(u,v)≤ k d(x,y),

then (u,v) ∈ E(G), which is very restrictive. In fact in the proof of Theorem

3.1 in [13], the authors tried unsuccessfully to construct an orbit (xn) such

that (xn,xn+1) ∈ E(G), for any n≥ 1, which is impossible according to Def-

inition 10.10. Our definition of G-contraction multivalued mappings is more

appropriate. It finds its roots in [37].

Definition 10.11. [4] Let (X ,d) be a metric space defined on a weighted

graph G i.e., V (G) = X and C be a nonempty subset of V (G). A multivalued

mapping T : C→ 2C is said to be a monotone increasing (resp. decreasing)

G-contraction, if there exists α ∈ [0,1) such that for any x,y∈C with (x,y)∈
E(G) and any u ∈ T (x), there exists v ∈ T (y) such that

(u,v) ∈ E(G) (resp. (v,u) ∈ E(G)) and d(u,v)≤ α d(x,y).
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Similarly, we will say that the multivalued mapping T : C → 2C is mono-

tone increasing (resp. decreasing) G-nonexpansive, if for any x,y ∈C with

(x,y) ∈ E(G) and any u ∈ T (x), there exists v ∈ T (y) such that

(u,v) ∈ E(G) (resp. (v,u) ∈ E(G)) and d(u,v)≤ d(x,y).

For a multivalued mapping T , x is a fixed point if and only if x ∈ T (x). The

set of all fixed points of a mapping T is denoted by Fix(T ).

10.3.2 Contraction monotone mappings

We begin with the following known theorems on the existence of a fixed

point for monotone single-valued and multi-valued contraction mappings on

metric spaces endowed with a graph structure.

Theorem 10.1. [33] Let (X ,d) be a complete metric space, and assume
that the triple (X ,d,G) has the following property:

(J∗) For any (xn)n≥1 in X, if xn → x and (xn,xn+1) ∈ E(G), for n≥ 1,
then there is a subsequence (xkn)n≥1 with (xkn ,x) ∈ E(G), for n≥ 1.

Let T : X → X be a G-contraction and set XT := {x∈ X : (x,T (x))∈ E(G)}.
Then the following statements hold:

1.
∣∣Fix(T )

∣∣= ∣∣{[x]G̃ : x ∈ XT}
∣∣.

2. Fix(T ) �= /0 if and only if XT �= /0.

3. T has a unique fixed point if and only if there exists an x0 ∈ XT such
that XT ⊆ [x0]G̃.

4. For any x ∈ XT , T |[x]G̃ is a PO, that is, T has a unique fixed point
x∗ ∈ [x]G̃ and for each x ∈ [x]G̃, lim

n→∞
T n(x) = x∗.

5. If XT �= /0 and G is weakly connected, then T is a PO, that is T has a
unique fixed point x∗ ∈ X and for each x ∈ X, lim

n→∞
T n(x) = x∗.

The multivalued version of Theorem 10.1 may be stated as follows:

Theorem 10.2. [4] Let (X ,d) be a complete metric space and suppose that
the triple (X ,d,G) has property (J∗). We denote by C B(X) the collection
of all nonempty closed and bounded subsets of X. Let T : X → C B(X) be
a monotone increasing G-contraction mapping and XT := {x ∈ X ; (x,u) ∈
E(G) f or some u ∈ T (x)}. If XT �= /0, then the following statements hold:

1. For any x ∈ XT , T |[x]G̃ has a fixed point.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



268 New Trends in Analysis and Geometry

2. If x ∈ X with (x, x̄) ∈ E(G) where x̄ is a fixed point of T , then {T n(x)}
converges to x̄.

3. If G is weakly connected, then T has a fixed point in G.

4. If X ′ :=
⋃{[x]G̃ : x ∈ XT}, then T |X ′ has a fixed point in X.

5. If T (X)⊆ E(G), then T has a fixed point.

6. Fix(T ) �= /0 if and only if XT �= /0.

Remark 10.2. The missing information in Theorem 10.2 is the uniqueness

of the fixed point. In fact we do have a partial positive answer to this ques-

tion. Indeed if ū and w̄ are two fixed points of T such that (ū, w̄) ∈ E(G),
then necessarily ū = w̄. In general T may have more than one fixed point.

Remark 10.3. Assuming G is such that E(G) := X ×X , then clearly G is

connected and Theorem 10.2 yields Nadler’s theorem [48].

The following is a direct consequence of Theorem 10.2.

Corollary 10.1. Let (X ,d) be a complete metric space. Let G be a graph
on X such that the triple (X ,d,G) has the Property (J*). If G is weakly
connected, then every G-contraction T : X → C B(X) such that (x0,x1) ∈
E(G), for some x0 ∈ X and x1 ∈ T (x0), has a fixed point.

The following property, initially introduced in [49] for partially ordered

sets and in [33] (Property (J∗) above) in metric spaces endowed with a

graph, will be assumed in the sequel.

(Property *) Let G be a weighted digraph and C be a nonempty subset

of V (G). C is said to have Property (*), if for any G-increasing (resp.

G-decreasing) sequence {xn} in C which converges to x, there is a

subsequence {xkn} with (xkn ,x) ∈ E(G) (resp. (x,xkn) ∈ E(G)), for

n ∈ N.

Note that if G is a reflexive, transitive weighted graph, then the Property

(*) implies the following property:

(Property **) For any G-increasing (resp. G-decreasing) sequence

{xn} in C, if xn → x, then (xn,x) ∈ E(G) (resp. (x,xn) ∈ E(G)), for

n ∈ N.

10.3.3 Other types of Lipschitzian mappings

Following the publication of the Banach contraction principle (BCP)

[12], there emerged multiple efforts to weaken its main assumptions. Most

of the attention was focused on the Lipschitz condition.
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10.3.3.1 Monotone almost contractions on weighted graphs

One of the first attempts to extend BCP was carried out by Kannan [34],

followed by Chatterjea [19], Rus [54, 55], Taskovic [59] and Zamfirescu

[61]. Berinde [14] was able to give a condition that captures most of the new

concepts, which he called weak contraction and later on, almost contraction

[15].

Definition 10.12. [15] Let (X ,d) be a metric space. A map T : X → X is

said to be an almost contraction if there exists k < 1 and θ ≥ 0 such that

d(T (x),T (y))≤ k d(x,y)+θ d(y,T (x)), (AC)

for any x,y ∈ X .

It is obvious by symmetry 5hat condition (AC) is equivalent to

d(T (x),T (y))≤ k d(x,y)+θ d(x,T (y)),

for any x,y ∈ X . The following definition of an almost contraction is intro-

duced because it captures most of the ideas behind the proofs of the exis-

tence of fixed points of such mappings.

Definition 10.13. Let (X ,d) be a metric space. A map T : X → X is said

to be a generalized almost contraction if there exist k < 1 and a function

θ : [0,+∞)→ [0,+∞) which satisfies lim
t→0+

θ(t) = θ(0) = 0, such that

d(T (x),T (y))≤ k d(x,y)+min
{

θ
(

d(x,T (y))
)
,θ
(

d(y,T (x))
)}

,

(GAC)

for any x,y ∈ X .

Remark 10.4. In [60], the authors gave an example of an almost contrac-

tion given by a convex averaging of nonexpansive mappings and for the

identity. In particular, they considered the so-called (XU)- property. Specif-

ically, let (X ,d) be a metric space. A map T : X → X is said to satisfy the

property (XU) in a nonempty subset K of X , if there exists C ≥ 1 such that

d(x,y)≤ d(x,T (y)) implies d(x,T (y))≤C d(x,y),

for any x �= y in K. In fact, in [60] the authors take K to be an open subset

of X . In this case, the only map which satisfies the property (XU) is the

identity map of K. To prove this claime notice that since C ≥ 1, we have

d(y,T (x))≤C d(x,y),
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for any x �= y in K. Hence,

d(x,T (x))≤ d(x,y)+d(y,T (x))≤ (1+C) d(x,y),

for any x �= y in K. Since K is open, we may choose y �= x, arbitrarily close to

x. Therefore, d(x,T (x)) smaller than any positive quantity. In other words,

T (x) = x, for any x ∈ K.

Next, we discuss the concept of monotone almost contractions defined

on weighted graphs. Aiming at facilitating the understanding of the main

definitions, we denote by C′(R+) the family of functions defined by θ ∈
C′(R+) if and only if θ : [0,+∞)→ [0,+∞) it satisfies lim

t→0+
θ(t) = θ(0) = 0.

Definition 10.14. [9] Let (G,d) be a weighted digraph. A map T : V (G)→
V (G) is said to be a monotone generalized almost contraction if

(a) T is G-monotone;

(b) there exist k < 1 and a function θ ∈ C′(R+) such that

d(T (x),T (y))≤ k d(x,y)+min
{

θ
(

d(x,T (y))
)
,θ
(

d(y,T (x))
)}

,

for any x,y ∈V (G) such that (x,y) ∈ E(G).

Theorem 10.3. [9] Let (G,d) be a weighted digraph. Assume G is G-
complete and satisfies the property (∗∗). Let T : V (G)→V (G) be a mono-
tone generalized almost contraction. Then T has a fixed point provided there
exists x0 ∈V (G) such that (x0,T (x0)) ∈ E(G̃).

Proof. It can be assumed without loss of generality that (x0,T (x0))∈ E(G).
Since T is G-monotone , it follows that (T n(x0),T n+1(x0)) ∈ E(G), for any

n ∈N. Therefore {T n(x0)} is a G-monotone sequence. Moreover, since T is

a monotone generalized almost contraction, there exist k < 1 and a function

θ ∈ C′(R+) such that

d(T (x),T (y))≤ k d(x,y)+min
{

θ
(

d(x,T (y))
)
,θ
(

d(y,T (x))
)}

,

for any x,y ∈V (G) such that (x,y) ∈ E(G). Hence

d(T n+2(x0),T n+1(x0))≤ k d(T n+1(x0),T n(x0)),

for any n ∈ N. Obviously this yields

d(T n+1(x0),T n(x0))≤ kn d(T (x0),x0),

for any n ∈ N. Since k ∈ [0,1), we conclude that {T n(x0)} is a Cauchy,

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Metric fixed point theory in weighted graphs 271

G-monotone sequence. Since G is G-complete, {T n(x0)} converges to some

point z∈V (G). We claim that z is a fixed point of T . Indeed, note that if T is

continuous, then this conclusion is obvious. Otherwise, we use the property

(∗∗) satisfied by G, for this property implies tat (T n(x0),z) ∈ E(G), for any

n ∈ N. Hence

d(T n+1(x0),T (z)) ≤ k d(T n(x0),z)

+min
{

θ(d(T n(x0),T (z))),θ(d(T n+1(x0),z))
}
,

for any n ∈N. Using the properties of the function θ , it is readily concluded

that

lim
n→+∞

θ(d(T n+1(x0),z)) = 0,

which implies lim
n→+∞

d(T n+1(x0),T (z)) = 0, i.e., {T n+1(x0)} converges to

T (z). The uniqueness of the limit implies T (z) = z.

The multivalued version of the BCP was obtained by Nadler [48]. Ex-

tensions and generalizations of Nadler’s fixed point theorem were obtained

by many mathematicians [26, 40].

Let (X ,d) be a metric space. The Hausdorff-Pompeiu distance H on

C B(X ), the set of nonempty bounded and closed subsets of X , is defined

by

H(A,B) = max
{

sup
b∈B

inf
a∈A

d(b,a), sup
a∈A

inf
b∈B

d(a,b)
}
,

for any A,B ∈ C B(X ). The following technical result will shed light on

Definition 10.15.

Lemma 10.1. [48] Let (X ,d) be a metric space. For any A,B ∈ C B(X),
ε > 0, and for any a ∈ A, there exists b ∈ B such that

d(a,b)≤ H(A,B)+ ε.

Using Lemma 10.1, a simpler definition of a monotone multivalued almost

contraction can be formulated, one that in particular, avoids the use of the

Hausdorff-Pompeiu distance.

Definition 10.15. [9] Let (G,d) be a weighted digraph. A map T : V (G)→
C (V (G)) is said to be

(a) monotone, if whenever x,y ∈V (G) and satisfy (x,y) ∈ E(G), then for

any α ∈ T (x), there exists β ∈ T (y) such that (α,β ) ∈ E(G).
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(b) a monotone generalized almost contraction, if T is monotone and

there exist k < 1 and a function θ ∈ C′(R+) such that for any x,y ∈
V (G) with (x,y)∈ E(G) and any α ∈ T (x), there exists β ∈ T (y) such

that (α,β ) ∈ E(G) and

d(α,β )≤ k d(x,y)+min
{

θ
(

dis(x,T (y))
)
,θ
(

dis(y,T (x))
)}

,

where dis(x,A) = inf{d(x,a); a ∈ A}.

We are now ready for the multi-valued version Theorem 10.3.

Theorem 10.4. [9] Let (G,d) be a weighted digraph. Assume G is G-
complete and satisfies the property (I∗). Let T : V (G)→ C (V (G)) be a
monotone generalized almost contraction. If

ET := {x ∈V (G); there exists y ∈ T (x) such that (x,y) ∈ E(G̃)} �= /0,

then T has a fixed point.

Proof. Note that if T has a fixed point z ∈V (G), then z ∈ ET . Assume ET is

nonempty and let x0 ∈ ET . Without loss of generality, we will assume that

there exists x1 ∈ T (x0) such that (x0,x1) ∈ E(G). Since T is a monotone

generalized almost contraction, there exist k < 1 and a function θ ∈ C′(R+)
such that for any x,y ∈ V (G) with (x,y) ∈ E(G) and any a ∈ T (x), there

exists b ∈ T (y) such that (a,b) ∈ E(G) and

d(a,b)≤ k d(x,y)+min
{

θ
(

dis(x,T (y))
)
,θ
(

dis(y,T (x))
)}

.

In this case, there exists x2 ∈ T (x1) such that

d(x1,x2)≤ k d(x0,x1)+min
{

θ
(

dis(x1,T (x0))
)
,θ
(

dis(x0,T (x1))
)}

.

Since x1 ∈ T (x0), we get dis(x1,T (x0)) = 0, which implies

d(x1,x2)≤ k d(x0,x1).

By induction, a sequence {xn} can be constructed in V (G) such that

(1) (xn,xn+1) ∈ E(G);

(2) xn+1 ∈ T (xn);

(3) d(xn+1,xn+2)≤ k d(xn,xn+1);
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for any n ∈ N. Condition (2) implies d(xn+1,xn)≤ kn d(x0,x1), for any n ∈
N. Since k ∈ [0,1), it follows that {xn} is a Cauchy G-monotone sequence

(because of (1)). On account of the fact that G is G-complete, {xn} converges

to some point z ∈V (G). We claim that z is a fixed point of T . Indeed, using

the property (∗∗) satisfied by G, it follows that (xn,z) ∈V (G) holds for any

n ∈ N. Hence for any n ∈ N, there exists zn ∈ T (z) such that

d(xn+1,zn)≤ k d(xn,z)+min
{

θ(dis(xn,T (z))),θ(dis(z,T (xn))
}
,

for any n ∈ N. Since xn+1 ∈ T (xn) it is clear that dis(z,T (xn))≤ d(z,xn+1),
for any n ∈ N. Hence lim

n→+∞
dis(z,T (xn)) = 0. The main property satisfied

by θ implies

lim
n→+∞

min
{

θ(dis(xn,T (z))),θ(dis(z,T (xn))
}
≤ lim

n→+∞
θ(d(z,T (xn)) = 0.

Therefore, lim
n→+∞

dis(xn+1,zn) = 0, from which it follows that {zn} also con-

verges to z. Since T (z) is closed, necessarily z ∈ T (z), i.e., z is a fixed point

of T .

10.3.3.2 Monotone quasi-contraction mappings on weighted graphs

The concept of quasi-contraction mappings was introduced by Ćirić [23]

in dealing with a generalization of the Banach contraction principle. In this

Subsection, the notion of quasi-contraction mappings is investigated in the

framework of monotone mappings. In what follows, it will be assumed that

(X ,d) is a metric space, that G is a reflexive transitive weighted graph de-

fined on X , that E(G) has property (*) and that G-intervals are closed.

Definition 10.16. [2] Let C be a nonempty subset of X . A mapping T : C→
C is called a G-monotone quasi-contraction if T is G-monotone and there

exists k < 1 such that for any x,y ∈C, (x,y) ∈ E(G), it holds that

d(T (x),T (y)) ≤ k max
(

d(x,y);d(x,T (x));d(y,T (y));

d(x,T (y));d(y,T (x))
)
.

An existence fixed point theorem for such mappings will be proved.

First, let T and C be as in Definition 10.16. For any x ∈ C, define the or-

bit O(x) = {x,T (x),T 2(x), · · ·}, and its diameter by

δ (x) = sup{d(T n(x),T m(x)) : n,m ∈ N} .

The following technical lemma is crucial in the proof of the main result

of this Section.
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Lemma 10.2. [2] Let (X ,d) and G be as above. Let C be a nonempty subset
of X and T : C→C be a G-monotone quasi-contraction mapping. Let x ∈C
be such that (x,T (x)) ∈ E(G) and that δ (x) < ∞. Then for any n ≥ 1, one
has:

δ (T n(x))≤ knδ (x) ,

where k < 1 is the constant given in Definition 10.16. Moreover, it holds that

d(T n(x),T n+m(x))≤ knδ (x),

for any n,m ∈ N.

Proof. Since T is G-monotone, one has (T n(x),T n+1(x)) ∈ E(G), for any

n∈N. The transitivity of the graph G yields (T n(x),T m(x))∈ E(G), for any

n,m ∈ N. Hence

d(T n(x),T m(x)) ≤ k max
(

d(T n−1(x),T m−1(x));d(T n−1(x),T n(x));

d(T m−1(x),T m(x));d(T n−1(x),T m(x));

d(T n(x),T m−1(x))
)
,

for any n,m≥ 1. This obviously implies that

δ (T n(x))≤ k δ (T n−1(x)) , n≥ 1.

Hence

δ (T n(x))≤ kn δ (x) , n≥ 1,

from which it follows that

d(T n(x),T n+m(x))≤ δ (T n(x))≤ kn δ (x),

for any n,m ∈ N.

Using Lemma 10.3, the main result of this Section can now be proved:

Theorem 10.5. [2] Let (X ,d) and G be as above. Assume that (X ,d) is
complete. Let C be a closed, nonempty subset of X and T : C → C be a
G-monotone quasi-contraction mapping. Let x ∈C be such that (x,T (x)) ∈
E(G) and that δ (x)< ∞. Then

(a) {T n(x)} converges to ω ∈C, which is a fixed point of T and (x,ω) ∈
E(G). Moreover, we have

d(T n(x),ω)≤ kn δ (x), n≥ 1.

(b) If z is a fixed point of T such that (x,z) ∈ E(G), then z = ω .
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Proof. For (i), observe that Lemma 10.3 implies that {T n(x)} is Cauchy.

Since X is complete and C is closed, there exists ω ∈C such that {T n(x)}
converges to ω . Since

d(T n(x),T n+m(x))≤ kn δ (x), n,m ∈ N,

letting m→ ∞ one gets

d(T n(x),ω)≤ kn δ (x) , n≥ 1.

It follows from the G-monotonicity of T that (T n(x),T n+1(x)) ∈ E(G), for

any n≥ 1. By property (**), (T n(x),ω)∈ E(G), for any n≥ 1. In particular,

(x,ω) ∈ E(G). In order to show that ω is a fixed point of T , note that

d(T n(x),T (ω)) ≤ k max
(

d(T n−1(x),ω);d(T n−1(x),T n(x));

d(ω,T (ω));d(T n−1(x),T (ω));d(T n(x),ω)
)
,

for any n≥ 1. Letting n→+∞, it follows that d(ω,T (ω))≤ k d(ω,T (ω)),
which forces d(ω,T (ω)) = 0, since k < 1. Therefore, T (ω) = ω .

As for (ii), let z ∈C be a fixed point of T such that (x,z) ∈ E(G). Then ,

d(T n(x),z)≤ k max
(

d(T n−1(x),z);d(T n−1(x),T n(x));d(T n(x),z)
)
,

for any n≥ 2 and letting n→+∞ one readily concludes that

d(ω,z) = limsup
n→∞

d(T n(x),z)≤ k limsup
n→∞

d(T n(x),z) = k d(ω,z).

Since k < 1, it follows that d(ω,z) = 0, i.e., ω = z.

In the next Subsection, the validity of Theorem 10.5 in modular metric

spaces is discussed. This is a very important class since spaces in it are

similar to metric spaces in their structure but without the triangle inequality.

Modular metric spaces are used in a wide range of applications.

First, the existence of fixed points for multivalued monotone Ćirić quasi-

contraction on weighted graphs is studied. In the sequel, it is assumed that

(X ,d) is a metric space, that C B(X) is the class of all nonempty closed and

bounded subsets of X and that G is a reflexive weighted graph defined on

X . Moreover, we assume that the triple (X ,G,d) has property (*) and that

G-intervals are closed.

Definition 10.17. [2] Let (X ,G,d) be as above. A multivalued mapping J :

X → C (X) is called a G-monotone quasi-contraction, if there exists k ∈
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[0,1) such that for any a,b ∈ X with (a,b) ∈ E(G) and any A ∈ J(a), there

exists B ∈ J(b) such that (A,B) ∈ E(G) and

d(A,B)≤ k max
(

d(a,b);d(a,A);d(b,B);d(a,B);d(b,A)
)
. (10.1)

The point a ∈ X is called a fixed point of J if a ∈ J(a).

Example 10.3. Let X = {0,1,2,3} and d(x,y) = |x− y|, ∀x,y ∈ X . Define

the multivalued map J : X → C (X ) by:

J(x) = {0,2,3} for x ∈ {0,1} and J(x) = {3} for x ∈ {2,3}.

Then J is a G-monotone quasi-contraction with k = 1
3 , where

G = {(0,0),(1,1),(2,2),(3,3),(0,1),(2,3)},

but is not a multivalued quasi-contraction since

d(0,3)>
1

3
max

(
d(1,2);d(1,0);d(2,3);d(1,3);d(2,0)

)
.

Next we discuss the existence of fixed points for such mappings. First, let

J be as in Definition 10.17. For any u0 ∈ X , the sequence {un} defines an

orbit of J at u0 if un ∈ J(un−1), n = 1,2, · · · .
The following technical Lemma is of vital importance in the proof of the

main result of this Section.

Lemma 10.3. [2] Let (X ,G,d) be as above. Let J : X → C (X ) be a G-
monotone multivalued quasi-contraction mapping. Let u0 ∈ X be such that
(u0,u1) ∈ E(G) for some u1 ∈ J(u0). Assume that k < 1

2 , where k is the
constant introduced in Definition 10.17 (for J). Then, there exists an orbit
{un} of J at u0 such that (un,un+1) ∈ E(G), for any n ∈ N and such that

d(un,un+1)≤
(

k
1− k

)n

d(u0,u1).

Proof. The orbit {un} of J at u0 will be constructed by induction. Assume

that {u0,u1, · · · ,un} have been found such that ui+1 ∈ J(ui), (ui,ui+1) ∈
E(G) and that

d(ui,ui+1)≤
(

k
1− k

)i

d(u0,u1), i = 0, · · · ,n−1.
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Since J is a G-monotone multivalued quasi-contraction mapping, there ex-

ists un+1 ∈ J(un) such that

d(un,un+1)≤ k max
(

d(un−1,un);d(un,un+1);d(un−1,un+1);d(un,un)
)
.

Obviously this implies

d(un,un+1) ≤ k max
(

d(un−1,un);d(un−1,un+1)
)

≤ k max
(

d(un−1,un);d(un−1,un)+d(un,un+1)
)

≤ k
(

d(un−1,un)+d(un,un+1)
)
.

Hence

d(un,un+1)≤ k
1− k

d(un−1,un)≤
(

k
1− k

)n

d(u0,u1).

The proof of Lemma 10.3 follows by induction.

Next we state the main result of this Subsection.

Theorem 10.6. [4] Let (X ,d) be a complete metric space and G be a re-
flexive weighted graph defined on X such that (X ,G,d) has Property (*). Let
J : X → C (X ) be a G-monotone multivalued quasi-contraction mapping.
Let u0 ∈ X be such that (u0,u1) ∈ E(G) for some u1 ∈ J(u0). Assume that
k < 1

2 , where k is the constant given in Definition 10.17 for J. Then there
exists an orbit {un} of J at u0, which converges to ω ∈ X, a fixed point of J.

Proof. The orbit sequence {un} of J at u0 obtained in Lemma 10.3, is

Cauchy. Since X is complete, there exists ω ∈ X such that {un} converges

to ω . Since (un,un+1) ∈ E(G), for any n≥ 1, Property (P) implies that there

is a subsequence {ukn} such that (ukn ,ω) ∈ E(G), for any n ≥ 0. It is next

shown that ω is a fixed point of J, i.e., that ω ∈ J(ω). Since ukn+1 ∈ J(ukn)
and (ukn ,ω) ∈ E(G), there exists ωn ∈ J(ω) such that

d(ukn+1,ωn) ≤ k max
(

d(ukn ,ω);d(ukn ,ukn+1);d(ω,ωn);

d(ukn ,ωn);d(ukn+1,ω)
)
,

for any n≥ 1. In particular, we have

d(ukn+1,ωn) ≤ k
(

d(ukn ,ω)+d(ukn ,ukn+1)+d(ω,ωn)

+d(ukn ,ωn)+d(ukn+1,ω)
)
,
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for any n≥ 1. Since d(ω,ωn)−d(ω,ukn+1)≤ d(ukn+1,ωn), we get

(1−2k)d(ω,ωn)−d(ω,ukn+1) ≤ k
(

d(ukn ,ω)+d(ukn ,ukn+1)

+d(ukn ,ω)+d(ukn+1,ω)
)
,

for any n≥ 1. Hence

(1−2k) limsup
n→+∞

d(ωn,ω)≤ 0,

which implies lim
n→+∞

d(ωn,ω) = 0, since k < 1/2. Therefore {ωn} converges

to ω and since J(ω) is closed, it follows that ω ∈ J(ω). In conclusion, ω is

a fixed point of J.

If G in Theorem 10.6 is assumed to be transitive, one has (u0,ω) ∈ E(G).

Remark 10.5. It is not clear to the authors whether the conclusion of The-

orem 10.6 is still valid when k < 1.

10.3.3.3 Monotone Gregus-Ćirić mappings on weighted graphs

In 1980, Gregus [30] proved the following result:

Theorem 10.7. Let X be a Banach space and C be a nonempty, closed and
convex subset of X. Let T : C→C be a mapping satisfying

‖T (x)−T (y)‖ ≤ a‖x− y‖+ p‖T (x)− x‖+ p‖T (y)− y‖,

for all x,y∈C, where 0 < a < 1, p≥ 0 and a+2p = 1. Then T has a unique
fixed point.

Ćirić [23] obtained the following generalization of Gregus’ theorem.

Theorem 10.8. Let (X ,d) be a complete, convex, metric space and C be
a nonempty, closed and convex subset of X. Let T : C → C be a mapping
satisfying

d(T (x),T (y)) ≤ a max
{

d(x,y),c
[
d(x,T (y))+d(y,T (x))

]}
+b max{d(x,T (x)),d(y,T (y))},

(CG)

for all x,y ∈C, where 0 < a < 1, a+b = 1 and 0≤ c≤ 4−a
8−a . Then T has a

unique fixed point.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Metric fixed point theory in weighted graphs 279

Remark 10.6. Under the assumption that a+b < 1 and c ≤ 1
2 , any map T

which satisfies the condition (CG) also satisfies the following condition:

d(T (x),T (y)) ≤ (a+b) max
{

d(x,y),d(x,T (y)),d(y,T (x)),

d(x,T (x)),d(y,T (y))
}
.

In other words, T is a Ćirić quasi-contraction mapping. This concept was

introduced by Ćirić [22] as an extension to the contraction condition. In

[22], he proved an analogue to the Banach contraction principle for this

type of mapping, without the use of convexity.

Recently, Djafari-Rouhani and Moradi [24] obtained the following im-

provement of Ćirić’s result:

Theorem 10.9. Let (X ,d) be a complete, convex metric space and T : X →
X be a mapping satisfying

d(T (x),T (y)) ≤ a max{d(x,y),c[d(x,T (y))+d(y,T (x))]}
+b max{d(x,T (x)),d(y,T (y))},

for all x,y ∈ X, where 0 < a < 1, a+ b = 1 and 0 ≤ c < 1
2 . Then T has a

unique fixed point.

In fact, in [24], the authors give a simple example showing that the con-

clusion of Theorem 10.9 does not hold if c > 1
2 and asked whether the con-

clusion holds when c = 1
2 . This problem is still open.

In this work, we generalize Theorem 10.9 to the case of monotone self-

mappings defined on a weighted graph.

Definition 10.18. [7] Let G be a weighted digraph and d be a metric dis-

tance on V (G). Let C be a nonempty subset of V (G). A mapping T : C→C
is called

(a) G-monotone Gregus-Ćirić-mapping, if T is G-monotone and there ex-

ist a,b,c ∈ [0,+∞) such that

d(T (x),T (y)) ≤ a max
{

d(x,y),c
[
d(x,T (y))+d(y,T (x))

]}
+b max

{
d(x,T (x)),d(y,T (y))

}
,

for any x,y ∈C with (x,y) ∈ E(G).

(b) G-monotone Gregus-Ćirić contraction, if T is a G-monotone Gregus-

Ćirić-mapping with 0 < a < 1, a+b = 1 and c≤ 1
2 .
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Note that in the example given by the authors in [24], the mapping

T (x) = x+ 1 is monotone for the corresponding order and may be seen as

an example of a monotone Gregus-Ćirić mapping. Moreover, any monotone

contraction is a monotone Gregus-Ćirić-contraction. The example studied

by Ran and Reurings [50] shows that a monotone-contraction may fail to be

a contraction.

Let C be a nonempty subset of V (G) and T : C → C be G-monotone

Gregus-Ćirić-contraction mapping. Then there exist positive numbers a,b,c,

such that 0 < a < 1, a+b = 1 and c≤ 1
2 such that

d(T (x),T (y)) ≤ a max
{

d(x,y),c
[
d(x,T (y))+d(y,T (x))

]}
+ b max

{
d(x,T (x)),d(y,T (y))

}
,

for any x,y ∈C with (x,y) ∈ E(G).

The following technical results will be crucial to the establishment of

the main Theorem of this Section.

Lemma 10.4. [7] Under the above assumptions, it holds that

d(x,y)≤ 2−a
1−a

(
d(x,T (x))+d(y,T (y))

)
,

for any x,y ∈C with (x,y) ∈ E(G) or (y,x) ∈ E(G).

Proof. Without loss of generality, it may be assumed that (x,y) ∈ E(G). It

then follows that

d(T (x),T (y)) ≤ a max
{

d(x,y),c
[
d(x,T (y))+d(y,T (x))

]}
+b max

{
d(x,T (x)),d(y,T (y))

}
.

Since c≤ 1
2 , it is concluded that

c
[
d(x,T (y))+d(y,T (x))

]
≤ c

[
d(x,T (x))+2d(T (x),T (y))

+d(y,T (y))
]

≤ d(x,T (x))+d(T (x),T (y))+d(y,T (y),
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which implies

d(T (x),T (y)) ≤ a max
{

d(x,T (x))+d(T (x),T (y))+d(y,T (y)),

c
[
d(x,T (y))+d(y,T (x))

]}
+b max

{
d(x,T (x)),d(y,T (y))

}
≤ a

{
d(x,T (x))+d(T (x),T (y))+d(y,T (y))

}
+b

{
d(x,T (x))+d(y,T (y))

}
≤ (a+b)

(
d(x,T (x))+d(T (x),T (y))

)
+a d(T (x),T (y)).

Next, the equality a+b = 1 yields

d(T (x),T (y))≤ 1

1−a

(
d(x,T (x))+d(T (x),T (y))

)
.

Hence

d(x,y) ≤ d(x,T (x))+d(T (x),T (y))+d(y,T (y),

≤ (
1+ 1

1−a

) (
d(x,T (x))+d(T (x),T (y))

)
,

which implies

d(x,y)≤ 2−a
1−a

(
d(x,T (x))+d(y,T (y))

)
.

Lemma 10.5. [7] Under the above assumptions, if x ∈ C is such that
(x,T (x))∈E(G) or (T (x),x)∈E(G), then the sequence

{
d(T n(x),T n+1(x))

}
is decreasing.

Proof. Without loss of generality, assume that (x,T (x)) ∈ E(G). It follows

from the monotonicity of T that (T n(x),T n+1(x)) ∈ E(G), for any n ∈ N.

Fix n≥ 1. Then

d(T n(x),T n+1(x)) ≤ a max
{

d(T n−1(x),T n(x)),

c d(T n−1(x),T n+1(x))
}

+ b max
{

d(T n−1(x),T n(x)),

d(T n(x),T n+1(x))
}
.
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Assume that d(T n−1(x),T n(x))< d(T n(x),T n+1(x)) holds. Since

d(T n−1(x),T n+1(x)) ≤ d(T n−1(x),T n(x))+d(T n(x),T n+1(x))
< 2 d(T n(x),T n+1(x)),

and c≤ 1
2 , one has

d(T n(x),T n+1(x)) < a d(T n(x),T n+1(x))+b d(T n(x),T n+1(x))
= d(T n(x),T n+1(x)).

This contradiction implies d(T n(x),T n+1(x))≤ d(T n−1(x),T n(x)). Since n

was taken arbitrarily, it clear that
{

d(T n(x),T n+1(x))
}

n∈N
is decreasing.

Lemma 10.6. [7] Under the above assumptions, if G is transitive and x∈C
satisfies (x,T (x)) ∈ E(G) or (T (x),x) ∈ E(G), then there exists n ≥ 1 such
that

d(T n(x),T n+2(x))≤ 2

2−a
d(x,T (x)).

Proof. The reasoning mimics the argument used by Djafari-Rouhani and

Moradi in their proof of [[24], Theorem 2.2]. Without loss of generality,

assume that (x,T (x)) ∈ E(G). Since G is transitive and T is G-monotone,

then (T n(x),T n+h(x)) ∈ E(G), for any n,h ∈ N. Fix n≥ 1. Then,

d(T n(x),T n+2(x)) ≤ a max
{

d(T n−1(x),T n+1(x)),

c
[
d(T n−1(x),T n+2(x))+ d(T n(x),T n+1(x))

]}
+ b max

{
d(T n−1(x),T n(x)),

d(T n+1(x),T n+2(x))
}
.

Assume that for some n≥ 1 it holds that

d(T n−1(x),T n+1(x))≤ c
[
d(T n−1(x),T n+2(x))+ d(T n(x),T n+1(x))

]
.

Since
{

d(T n(x),T n+1(x))
}

n∈N
is decreasing, it follows that

d(T n(x),T n+2(x)) ≤ ac
[
d(T n−1(x),T n+2(x))+ d(T n(x),T n+1(x))

]
+ b d(x,T (x)).

From d(T n−1(x),T n+2(x))≤ d(T n−1(x),T n(x))+d(T n(x),T n+2(x)) it fol-

lows that

d(T n(x),T n+2(x)) ≤ ac
[
2 d(x,T (x))+ d(T n(x),T n+2(x))

]
+ b d(x,T (x)),
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which implies

d(T n(x),T n+2(x))≤ 2ac+b
1−ac

d(x,T (x)).

The function f (c) = 2ac+b
1−ac is increasing in the interval [0, 1

2 ]. Hence

2ac+b
1−ac

≤ a+b
1−a/2

=
2

2−a
.

It is therefore concluded that

d(T n(x),T n+2(x))≤ 2

2−a
d(x,T (x)).

Next, assume that for any n≥ 1 it holds

c
[
d(T n−1(x),T n+2(x))+ d(T n(x),T n+1(x))

]
≤ d(T n−1(x),T n+1(x)).

In this case,

d(T n(x),T n+2(x))≤ a d(T n−1(x),T n+1(x))+b d(x,T (x)),

which easily implies

d(T n(x),T n+2(x)) ≤ an−1 d(x,T 2(x))+ b
1−a d(x,T (x)

= an−1 d(x,T 2(x))+d(x,T (x).

Since d(x,T 2(x)) ≤ d(x,T (x)) + d(T (x),T 2(x)) ≤ 2 d(x,T (x)) one con-

cludes thhat

d(T n(x),T n+2(x))≤ (2 an−1 +1) d(x,T (x),

for any n≥ 1. Since 0 < a < 1, there exists n≥ 1 such that

2 an−1 +1≤ a
2−a

+1 =
2

2−a
,

which implies

d(T n(x),T n+2(x))≤ 2

2−a
d(x,T (x)).

The final basic result of this Subsection is the following:
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Lemma 10.7. [7] Let a,b,c be positive numbers such that 0 < a < 1, a+
b = 1 and that c < 1

2 . Then for β ≥ 0 such that 2c < β < 1, it holds that

K = α a max
{

α +
2β

2−a
,c
[
2+

2β
2−a

]}
+β 2 a+b < 1,

where α = 1−β .

Proof. Note that K < 1 if and only if

α max
{

α +
2β

2−a
,c
[
2+

2β
2−a

]}
+β 2 < 1,

where 1−b = a and a > 0. It follows from the equality 1−β 2 = α(1+β )
and from the fact that α > 0, that K < 1 if and only if

max
{

α +
2β

2−a
,c
[
2+

2β
2−a

]}
< 1+β .

Since a < 1, one has 1 < 2−a which implies
2β

2−a
< 2β . Hence

α +
2β

2−a
= 1−β +

2β
2−a

< 1+β .

Moreover, β 2 < 1 < 2−a and since 2c < β , one readily concludes that

2c
[
1+

β
2−a

]
< β

[
1+

β
2−a

]
= β +

β 2

2−a
< 1+β .

Therefore,

max
{

α +
2β

2−a
,c
[
2+

2β
2−a

]}
< 1+β ,

which completes the proof that K < 1.

In what follows, the existence of fixed points of G-monotone Gregus-

Ćirić mappings defined on weighted graphs is discussed. As mentioned ear-

lier, the fixed point results for this type of mappings were obtained in the

context of convex metric spaces. Throughout this Subsection, G will stand

for a transitive weighted digraph with d a metric distance on V (G). It will

also be assumed that V (G) is a convex metric space, such that G-intervals

are convex. The next Theorem is the main fixed point result of this Section.

Theorem 10.10. [7] Let C be a nonempty, G-complete and convex subset
of V (G) that satisfies the Property (*). Let T : C → C be a G-monotone
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Gregus-Ćirić contraction mapping, i.e., assume there exist positive numbers
a,b,c with 0 < a < 1, a+b = 1 and c≤ 1

2 , such that

d(T (x),T (y)) ≤ a max
{

d(x,y),c
[
d(x,T (y))+d(y,T (x))

]}
+ b max

{
d(x,T (x)),d(y,T (y))

}
,

for any x,y ∈ C with (x,y) ∈ E(G). Assume that c < 1
2 . Let x ∈ C be such

that (x,T (x))∈E(G) (or (T (x),x)∈E(G)). Then T has a fixed point ω such
that (x,ω) ∈ E(G) (or (ω,x) ∈ E(G)). Moreover, if Ω is another fixed point
of T with (x,Ω) ∈ E(G) (or (Ω,x) ∈ E(G)), then necessarily ω = Ω.

Proof. It can be assumed without loss of generality that (x,T (x)) ∈ E(G)
and that x is not a fixed point of T . In this case, (T n(x),T n+1(x)) ∈ E(G),
for any n ∈ N. Lemma 10.6 implies the existence of n≥ 1 such that

d(T n(x),T n+2(x))≤ 2

2−a
d(x,T (x)).

Let β < 1 be the number obtained in Lemma 10.7. Set

z = α T n+1(x)⊕β T n+2(x) ∈C,

since C is convex. Using the convexity of the G-intervals, it can be easily

shown that (T n+1(x),z) ∈ E(G) and that (z,T n+2(x)) ∈ E(G). Since T is

G-monotone and G is transitive, one must have that (z,T (z)) ∈ E(G) and

(T n(x),z) ∈ E(G). Moreover,

d(z,T (z))≤ α d(T n+1(x),T (z))+β d(T n+2(x),T (z)).

Hence

d(T n+1(x),T (z)) ≤ a max
{

d(T n(x),z),c
[
d(T n+1(x),z)

+d(T n(x),T (z))
]}

+ b max
{

d(T n(x),T n+1(x)),d(z,T (z))
}
,

and

d(T n+2(x),T (z)) ≤ a max
{

d(T n+1(x),z),

c
[
d(T n+2(x),z)+d(T n+1(x),T (z))

]}
+ b max

{
d(T n+1(x),T n+2(x)),d(z,T (z))

}
.

First note that it holds that

d(T n(x),z) ≤ α d(T n(x),T n+1(x))+β d(T n(x),T n+2(x))
≤ α d(x,T (x))+β 2

2−a d(x,T (x)),

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



286 New Trends in Analysis and Geometry

and that

d(T n+1(x),z)+d(T n(x),T (z)) ≤ β d(T n+1(x),T n+2(x))
+d(T n(x),z)+d(z,T (z))

≤ β d(x,T (x))+α d(T n(x),T n+1(x))
+ β d(T n(x),T n+2(x))+d(z,T (z)),

≤ d(x,T (x))+β 2
2−a d(x,T (x))

+d(z,T (z)),

which implies

d(T n+1(x),T (z)) ≤ a max
{[

α + 2β
2−a

]
d(x,T (x)),

c
[(

1+ 2β
2−a

)
d(x,T (x))+d(z,T (z))

]}
+ b max

{
d(T n(x),T n+1(x)),d(z,T (z))

}
≤ a max

{[
α + 2β

2−a

]
d(x,T (x)),

c
[(

1+ 2β
2−a

)
d(x,T (x))+d(z,T (z))

]}
+b max

{
d(x,T (x)),d(z,T (z))

}
.

Analogously,

d(T n+2(x),T (z)) ≤ a max
{

d(T n+1(x),z),c
[
d(T n+2(x),z)

+d(T n+1(x),T (z))
]}

+ b max
{

d(T n+1(x),T n+2(x)),d(z,T (z))
}

≤ a max
{

β d(T n+1(x),T n+2(x)),

c
[
α d(T n+2(x),T n+1(x))+ d(T n+1(x),z)

+d(z,T (z))
]}

+b max
{

d(x,T (x)),d(z,T (z))
}

≤ a max
{

β d(x,T (x)),c
[
α d(x,T (x))

+β d(T n+1(x),T n+2(x))+d(z,T (z))
]}

+b max
{

d(x,T (x)),d(z,T (z))
}

≤ a max
{

β d(x,T (x)),c
[
d(x,T (x))+d(z,T (z))

]}
+b max

{
d(x,T (x)),d(z,T (z))

}
.

It follows from

d(z,T (z))≤ α d(T n+1(x),T (z))+β d(T n+2(x),T (z)),
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that

d(z,T (z)) ≤ α a max
{[

α + 2β
2−a

]
d(x,T (x)),

c
[(

1+ 2β
2−a

)
d(x,T (x))+d(z,T (z))

]}
+ β a max

{
β d(x,T (x)),c

[
d(x,T (x))+d(z,T (z))

]}
+ b max

{
d(x,T (x)),d(z,T (z))

}
.

Assume that d(x,T (x))< d(z,T (z)). It follows that

d(z,T (z)) < α a max
{[

α + 2β
2−a

]
,c
[(

1+ 2β
2−a

)
+1
]}

d(z,T (z)
+ β a max{β ,2 c} d(z,T (z))+ b d(z,T (z)).

The inequality 2c < β yields

d(z,T (z))<
[
α a max

{
α +

2β
2−a

,c
(

2+
2β

2−a

)}
+ β 2 a+ b

]
d(z,T (z)).

By virtue of Lemma 10.7 one has:

K = α a max
{

α +
2β

2−a
,c
(

2+
2β

2−a

)}
+ β 2 a+ b < 1,

which implies d(z,T (z))<K d(z,T (z)) an obvious contradiction. Therefore

it must hold that d(z,T (z))≤ d(x,T (x)). Hence

d(z,T (z))≤
[
α a max

{
α+

2β
2−a

,c
(

2+
2β

2−a

)}
+ β 2 a+ b

]
d(x,T (x)),

i.e., d(T (z),z)≤K d(x,T (x)). A sequence {zn} in C will be next constructed

by induction, such that

(a) z0 = x and z1 is the point constructed before;

(b) (zn,zn+1) ∈ E(G), for any n ∈ N;

(c) d(zn+1,T (zn+1))≤ K d(zn,T (zn)), for any n ∈ N.

In particular, d(zn+1,T (zn+1)) ≤ Kn d(x,T (x)), for any n ∈ N. Since G is

transitive, (zn,zm) ∈ E(G) for any n ≤ m. Using Lemma 10.4 it is immedi-

ately concluded that

d(zn,zm)≤ 2−a
1−a

(
d(zn,T (zn))+d(zm,T (zm))

)
.

Since K < 1, it is clear that {zn} is Cauchy and G-increasing. Hence it is
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convergent to some point ω ∈C, because C is G-complete. Since C satisfies

Property (*), it is clear that (zn,ω) ∈ E(G), for any n ∈ N. In particular, it

must hold that (x,ω) ∈ E(G). It will be proved next that ω is a fixed point

of T . Since (zn,ω) ∈ E(G), for any n ∈ N, one has

d(T (zn),T (ω)) ≤ amax
{

d(zn,ω),c
[
d(zn,T (ω))+d(T (zn),ω)

]}
+ b max

{
d(zn,T (zn)),d(ω,T (ω))

}
.

On account of the equality lim
n→+∞

d(zn,T (zn)) = lim
n→+∞

d(zn,ω) = 0, it fol-

lows that lim
n→+∞

d(T (zn),ω) = 0, which implies

d(ω,T (ω))≤ amax
{

0,c
[
d(ω,T (ω))+0

]}
+ b max

{
0,d(ω,T (ω))

}
,

i.e. d(ω,T (ω))≤ a c d(ω,T (ω))+ b d(ω,T (ω)). Since ac+b< a+b= 1,

it follows that d(ω,T (ω)) = 0, i.e., that T (ω) = ω . Finally, let Ω be another

fixed point of T such that (x,Ω) ∈ E(G). Since T is G-monotone, one must

have (T n(x),Ω) ∈ E(G). It follows from the convexity of the G-intervals

that (zn,Ω) ∈ E(G) for any n ∈ N. The application of Lemma 10.4 yields

d(zn,Ω)≤ 2−a
1−a

(
d(zn,T (zn))+d(Ω,T (Ω))

)
=

2−a
1−a

d(zn,T (zn)),

for any n ∈ N. Letting n→+∞, it is readily seen that {zn} converges to Ω.

The uniqueness of the limit implies that ω = Ω.

Remark 10.7. Assuming a+b < 1 and c≤ 1
2 it follows that the map T is a

quasi-contraction mapping [22]. In this case, Theorem 10.10 is similar to the

main fixed point result found in [1, 11], without any convexity assumption

on the weighted graph.

10.3.3.4 Monotone quasi-contraction mappings on modular weighted
graphs

This Subsection deals with the existence of fixed points of G-monotone

contraction mappings on modular function spaces. This result is the modular

version of Jachymski’s fixed point results for mappings defined on a metric

space endowed with a weighted graph.

Definition 10.19. [2] Let (X ,ω) be a modular metric space, G be a reflex-

ive weighted graph defined on X and C be a nonempty subset of X . The

mapping T : C→C is said to be a G-monotone ω-quasi-contraction if T is
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G-monotone and there exists k < 1 such that for any x,y ∈C, (x,y) ∈ E(G),
we have

ω1(T (x),T (y)) ≤ k max
(

ω1(x,y);ω1(x,T (x));ω1(y,T (y));

ω1(x,T (y));ω1(y,T (x))
)
.

E(G) is said to have Property (***) if

(Property ***) for any G-increasing sequence {xn} in X such that

xn ω-converges to x, there is a subsequence (xkn)n≥1 with (xkn ,x) ∈
E(G), for n≥ 1.

Note that if G is a reflexive transitive weighted graph defined on X , then the

Property (***) implies the following:

for any G-increasing sequence {xn} in X such that xn ω-converges to

x, then (xn,x) ∈ E(G), for every n≥ 1.

Throughout this Subsection, (X ,ω) will be assumed to be a modular

metric space, G will stand for a reflexive transitive weighted graph defined

on X and E(G) will be assumed to have property (***).

An analogue to Theorem 10.5 in modular metric spaces will be proved. For

any x ∈C, define the orbit O(x) = {x,T (x),T 2(x), · · ·}, and its diameter by

δω(x) = sup{ω1(T n(x),T m(x)) : n,m ∈ N} .

Throughout the remainder of this discussion it is assumed that ω is regular

and satisfies the Fatou property. The following technical Lemma is the crux

of the proof of the main result of this Subsection. It is the modular version

of Lemma 10.3 and its proof will be omitted.

Lemma 10.8. [2] Let (X ,ω) and G be as above. Let C be a nonempty subset
of X and T : C → C be a G-monotone ω-quasi-contraction mapping. Let
x∈C be such that (x,T (x))∈ E(G) and that δω(x)< ∞. Then for any n≥ 1,
it holds that

δω(T n(x))≤ knδω(x) ,

where k < 1 is the constant associated with the definition of G-monotone
ω-quasi-contraction. Moreover we have

ω1(T n(x),T n+m(x))≤ kn δω(x)

for any n,m ∈ N.
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The following theorem is the main result of this Subsection.

Theorem 10.11. [2] Let (X ,ω) and G be as above. Let C be a ω-complete,
nonempty subset of X. Let T : C→C be a G-monotone, ω-quasi-contraction
mapping. Let x ∈C be such that (x,T (x)) ∈ E(G) and assume that δω(x)<
∞. Then

(a) {T n(x)} ω-converges to z ∈C, which is a fixed point of T and (x,z) ∈
E(G), provided ω1(z,T (z))< ∞ and ω1(x,T (z))< ∞. Moreover,

ω1(T n(x),z)≤ kn δω(x), n≥ 1.

(b) If w is a fixed point of T such that (x,w) ∈ E(G) and that
ω1(T n(x),w)< ∞, for any n≥ 1, then z = w.

Proof. For the proof of (a), observe that Lemma 10.8 implies that {T n(x)}
is ω-Cauchy. Since C is ω-complete, there exists z ∈ C such that {T n(x)}
ω-converges to z. It follows from the inequality

ω1(T n(x),T n+m(x))≤ kn δω(x),

valid for any n,m∈N and from the Fatou property (once we let m→∞) that

ω1(T n(x),z)≤ kn δω(x) , n≥ 1.

Since T is G-monotone, one readily concludes that (T n(x),T n+1(x)) ∈
E(G), for any n ≥ 1. On account of property (***), one has (T n(x),z) ∈
E(G), for any n ≥ N. In particular, (x,z) ∈ E(G). Next, assume that

ω1(z,T (z)) < ∞ and that ω1(x,T (z)) < ∞. It will follow that z is a fixed

point of T . Indeed, it follows by induction that ω1(T n(x),T (z)) < ∞ and

that, for any n≥ 1,

(♦) ω1(T n(x),T (z)) ≤ k max
(

ω1(T n−1(x),z);ω1(T n−1(x),T n(x));

ω1(T (z),z);ω1(T n−1(x),T (z));

ω1(T n(x),z)
)
.

Consider r(y) = limsup
n→+∞

ω1(T n(x),y), for y ∈C. It is clear from (♦) that

ω1(T n(x),T (z)) ≤ k max
(

kn−1 δω(x);ω1(T (z),z);ω1(T n−1(x),T (z));

kn δω(x)
)

= k max
(

kn−1 δω(x);ω1(T (z),z);ω1(T n−1(x),T (z))
)

≤ kn δω(x)+ k ω1(T (z),z)+ k ω1(T n−1(x),T (z))
≤ δω(x)+ω1(T (z),z)+ k ω1(T n−1(x),T (z)),
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for any n≥ 1. One gets by induction:

ω1(T n(x),T (z)) ≤ 1

1− k

(
δω(x)+ω1(T (z),z)

)
+ kn ω1(x,T (z)),

for any n≥ 1, which implies

r(T (z))≤ 1

1− k

(
δω(x)+ω1(T (z),z)

)
<+∞.

So letting n→+∞ in the inequality

ω1(T n(x),T (z))≤ k max
(

kn−1 δω(x);ω1(T (z),z);ω1(T n−1(x),T (z))
)
,

one obtains

r(T (z))≤ k max
(

ω1(z,T (z)),r(T (z))
)
.

Since ω satisfies the Fatou property, it follows that ω1(z,T (z)) ≤ r(T (z)).
This yields,

r(T (z))≤ k max
(

ω1(z,T (z)),r(T (z))
)
= k r(T (z)).

Since k < 1, it follows r(T (z)) = 0, from which it is clear that ω1(z,T (z)) =
0. Since ω is regular, one cocludes that T (z) = z.

Next the proof of (b) is tackled. Let w ∈ C be a fixed point of T such that

(x,w) ∈ E(G) and that ω1(T n(x),w) < ∞, for any n ≥ 1. Using induction

again it can be seen that

ω1(T n(x),w)≤ k max
(

ω1(T n−1(x),w);ω1(T n−1(x),T n(x));ω1(T n(x),w)
)
,

for any n≥ 2. Note that if, for some n≥ 1 it holds that

max
(

ω1(T n−1(x),w);ω1(T n−1(x),T n(x));ω1(T n(x),w)
)
= ω1(T n(x),w),

then ω1(T n(x),w) ≤ k ω1(T n(x),w). Since k < 1 it is clear that

ω1(T n(x),w) = 0. So T n(x) = w which yields T n+m(x) = w, for any m≥ 0,

since w is a fixed point of T . This clearly forces z = w. Assume otherwise

that

max
(

ω1(T n−1(x),w);ω1(T n−1(x),T n(x));ω1(T n(x),w)
)
�= ω1(T n(x),w),

for any n≥ 2. In this case, one has:

ω1(T n(x),w)≤ k max
(

ω1(T n−1(x),w);kn−1 δω(x)
)
,
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for any n≥ 2. Hence

ω1(T n(x),w)≤ k ω1(T n−1(x),w)+ kn δω(x)≤ k ω1(T n−1(x),w)+δω(x),

which implies by induction

ω1(T n(x),w)≤ kn ω1(x,w)+
1

1− k
δω(x),

for any n≥ 1. In particular, limsup
n→∞

ω1(T n(x),w)<+∞. The inequality

ω1(T n(x),w)≤ k max
(

ω1(T n−1(x),w);kn−1 δω(x)
)
,

for any n≥ 2, yields

limsup
n→∞

ω1(T n(x),w)≤ k limsup
n→∞

ω1(T n(x),w).

On the other hand, k < 1, which yields limsup
n→∞

ω1(T n(x),w) = 0, i.e.,

{T n(x)} converges to w. The uniqueness of the limit implies that z = w.

Indeed,

ω2(z,w)≤ ω1(T n(x),z)+ω1(T n(x),w), n≥ 1.

Letting n→ +∞ it follows that ω2(z,w) = 0. Since ω is regular, one must

necessarily have z = w.

Note that under the assumptions of Theorem 10.11, if w is another fixed

point of T such that (w,z) ∈ E(G) and that ω1(z,w)< ∞ it follows that

ω1(z,w) = ω1(T (z),T (w))≤ k ω1(z,w),

which implies z = w, since k < 1.

10.3.3.5 Monotone Reich contraction mappings on weighted graphs

Following the Banach contraction principle, Nadler [48] gave the defi-

nition of multivalued contractions and established a multivalued contraction

version of the classical Banach’s fixed point theorem. Subsequently many

mathematcians generalized Nadler’s fixed point theorem in different ways.

In this regard, we mention the work of Reich, [52] where he posed a (still

open) problem on the existence of a fixed point of certain class of multi-

valued mappings (see Problem 10.1). Mizoguchi and Takahashi [47] gave

partial answers to Reich’ s problem. Following the publication of Ran and

Reurings’ fixed point theorem [50], seen as the Banach contraction princi-

ple in metric spaces endowed with a partial order, Sultana and Vetrivel [58]
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tried to extend the main results of [47] to metric spaces endowed with a

graph. In particular, they used their ideas to discuss the iterate of the Bern-

stein operator. Moreover, they gave an example of a nonlinear version of the

Bernstein operator and establish the Kelisky and Rivlin’s theorem [35] for

such operator.

In this Subsection, the definition of the Reich multivalued mappings

given by the authors in [58] will be revisited and a fixed point theorem

for these mappings will be proved. In addition, vector valued Bernstein op-

erators will be introduced and a more general version of the Kelisky and

Rivlin’s theorem will be discussed. In particular, the conclusion of [58] re-

garding the Bernstein operator will be improved.

The difficulty encountered when dealing with multivalued mappings de-

fined on a partially ordered set (X ,&) is the problem of comparing two

subsets with respect to the order. In fact, there are mainly three well-

known pre-orders (reflexive, transitive but not necessarily antisymmetric),

namely the Smyth ordering, the Hoare ordering and the Egli-Milner order-
ing [37, 31, 57], which have been proposed in the context of nondeterminis-

tic programming languages, for example.

For any nonempty subsets A and B of X :

1. A&S B, if and only if for any b ∈ B, there exists a ∈ A such that a& b
(Smyth ordering);

2. A&H B, if and only if for any a ∈ A, there exists b ∈ B such that a& b
(Hoare ordering);

3. A&EM B, if and only if A&S B and A&H B (Egli-Milner ordering).

Clearly, the Hoare order is equivalent to the Smyth order in the dual under-

lying lattice. Similarly, we follow Jachymski’s extension [33] of the fixed

point theorem of Ran and Reurings [50] to a metric space endowed with

a graph instead of a partial order. Recall that a directed graph G consists

of two sets: V (G) a nonempty set of elements called vertices, and E(G) a

possibly empty set of elements in V (G)×V (G) called edges. If E(G) con-

tains all the loops (u,u), then G is reflexive. Let X be a set endowed with a

reflexive digraph G such that V (G) = X . Given any nonempty subsets A and

B of X , the following notation will be used:

1. (A,B)S ∈ E(G), if and only if for any b ∈ B, there exists a ∈ A such

that (a,b) ∈ E(G);

2. (A,B)H ∈ E(G), if and only if for any a ∈ A, there exists b ∈ B such

that (a,b) ∈ E(G);

3. (A,B)EM ∈ E(G), if and only if (A,B)S ∈ E(G) and (A,B)H ∈ E(G).
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Throughout this Subsection, only the Hoare relationship will be used and

the subscript H will be omitted. The following technical result is useful in

the sequel.

Lemma 10.1, allows for a simpler formulation of the notion of multi-

valued contractions, which avoids the use of Hausdorff-Pompeiu distance.

More precisely, let (X ,d) be a metric space. The mapping T : X → C B(X)
is a contraction mapping if there exists α ∈ [0,1) such that for any x,y ∈ X
and a ∈ T (x), there exists b ∈ T (y) such that

d(a,b)≤ α d(x,y).

Clearly this definiton does not use the boundedness assumption of the con-

sidered subsets of X . Instead, the class C (X) of all nonempty closed subsets

of X will be considered.

In their attempt to extend the fixed point theorem of Mizoguchi-

Takahashi for Reich multivalued contraction mappings to the setting of met-

ric spaces endowed with a graph, Sultana and Vetrivel [58] introduced the

concept of Reich G-contractions, namely:

Definition 10.20. [58] Let (X ,d,G) be a metric space endowed with a

reflexive directed graph G with no parallel edges. The multivalued map

T : X → C B(X) is called a Reich G-contraction if for any different x,y ∈ X
with (x,y) ∈ E(G), it holds that

(a) H(T (x),T (y))≤ k(d(x,y)) d(x,y),

(b) if (u,v) ∈ T (x)× T (y) is such that d(u,v) ≤ d(x,y), then (u,v) ∈
E(G), for some k : (0,+∞)→ [0,1) which satisfies limsup

s→t+
k(s) < 1,

for any t ∈ [0,+∞).

This definition is not appropriate because of condition (b). The following

example clarifies the reason behind this claim.

Example 10.4. Consider the space R2 endowed with the Euclidean distance

d and the graph G obtained by the pointwise ordering of R2 defined by

(x,y) = ((x1,x2),(y1,y2)) ∈ E(G) iff x1 ≤ y1 & x2 ≤ y2.

Let A be the unit ball of R2, i.e., A = {(x1,x2)∈R2; d2(x,0) = x2
1+x2

2 ≤ 1}.
Consider the multivalued map T :R2→C B(R2) defined by T (x)=A. Then

H(T (x),T (y) = 0 for any x,y ∈ R2. Since T is a constant multivalued map-

ping, it is a contraction according to Nadler’s definition. Therefore, T must

be a Reich G-contraction. In this case, condition (a) is obviously satisfied

but condition (b) fails. Indeed, set x = (2,0) and y = (2,2). Then x �= y and

(x,y) ∈ E(G). Since d(x,y) = 2, (b) will hold if and only if for any u,v ∈ A
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such that d(u,v)≤ 2, it must hold (u,v) ∈ E(G). This is not the case, as can

be verified by considering

u = (1,0) and v = (0,1),

then u,v ∈ A, d(u,v) =
√

2, (u,v) �∈ E(G) and (v,u) �∈ E(G).

Before the correct definition of Reich multivalued G-contractions is

given, the following remark is in order:

Remark 10.8. Let (X ,d) be a metric space. Let T : X →C B(X ). Assume

there exists α : (0,+∞)→ [0,1) with limsup
s→t+

α(s)< 1, for any t ∈ [0,+∞),

such that

H(T (x),T (y))≤ α(d(x,y)) d(x,y),

for any different x,y ∈ X . Using Lemma 10.1, it can be easily shown that,

for any different x,y ∈ X and a ∈ T (x), there exists b ∈ T (y) such that

d(a,b)≤ β (d(x,y)) d(x,y),

where β = 1
2 (1+α) and satisfies limsup

s→t+
β (s)< 1, for any t ∈ [0,+∞).

The following Definition is more appropriate than Definition 10.20.

Definition 10.21. [10] Let (X ,d,G) be a metric space endowed with a

reflexive directed graph G with no parallel edges. The multivalued map

T : X → C (X) is called a Reich G-contraction if there exists k : (0,+∞)→
[0,1) with limsup

s→t+
k(s) < 1, for any t ∈ [0,+∞), such that for any different

x,y∈ X with (x,y)∈ E(G) and any a∈ T (x), there exists b∈ T (y) for which

(a,b) ∈ E(G) and

d(a,b)≤ k(d(x,y)) d(x,y).

A point x ∈ X is a fixed point of T if x ∈ T (x).

In [52], Reich raised the following question:

Problem 10.1. Let (X ,d) be a complete metric space. Consider a multi-

valued map T : X → C B(X ) and assume that T satisfies the following

condition: there exists k : (0,+∞)→ [0,1) with limsup
s→t+

k(s) < 1, for any

t ∈ (0,+∞), such that for any different x,y ∈ X ,

H(T (x),T (y))≤ k(d(x,y)) d(x,y).

Does T have a fixed point?
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In [51], Reich proved that such mappings have a fixed point provided

they have compact values. Clearly, if k(t) is a constant function, Nadler an-

swers Reich’s question in the affirmative. In [47], Mizoguchi and Takahashi

gave a positive answer when the function k(t) is defined on [0,+∞). It is still

unclear whether Reich’s problem can be answered in the affirmative. This

Section is devoted to a discussion of the graph version of the fixed point

theorem of Mizoguchi and Takahashi.

The first order of business is the statement and a simpler proof of the

original theorem of [47], in the absence of boundedness.

Theorem 10.12. [10] Let (X ,d) be a complete metric space. Then any
Reich-contraction mapping T : X → C (X), has a fixed point.

Proof. Since T : X → C (X) is a Reich-contraction mapping, there exists

k : (0,+∞)→ [0,1) with limsup
s→t+

k(s)< 1, for any t ∈ [0,+∞), such that for

any x,y ∈ X and a ∈ T (x), there exists b ∈ T (y) for which

d(a,b)≤ k(d(x,y)) d(x,y).

Fix y0 ∈ X . If y0 is a fixed point of T , then there is nothing to prove. Other-

wise, choose y1 ∈ T (y0) different from y0. Using the contractive assumption

of T , it can be seen that there exists y2 ∈ T (y1) such that

d(y1,y2)≤ k(d(y0,y1)) d(y0,y1).

By induction, construct a sequence {yn} in X such that yn+1 ∈ T (yn) and

yn �= yn+1 with

d(yn,yn+1)≤ k(d(yn−1,yn)) d(yn−1,yn),

for any n ≥ 1. Since k(t) < 1, for any t ∈ [0,+ inf), it is clearly seen that

{d(yn,yn+1)} is a decreasing sequence of positive numbers. Let

t0 = lim
n→+∞

d(yn,yn+1) = inf
n∈N

d(yn,yn+1).

Since limsup
s→t0+

k(s) < 1, there exist α < 1 and n0 ≥ 1 such that

k(d(yn,yn+1))≤ α , for any n≥ n0. It is then clear that

d(yn,yn+1)≤
k=n

∏
k=n0

k(d(yk,yk+1)) d(yn0
,yn0+1)≤ αn−n0 d(yn0

,yn0+1),

for any n ≥ n0. This implies that ∑d(yn,yn+1) is convergent. Hence {yn}
is a Cauchy sequence. Since X is complete, {yn} converges to some point
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x ∈ X . To see that x is a fixed point of T , observe that the contractivity of T
implies the existence of zn ∈ T (x) such that

d(yn+1,zn)≤ k(d(yn,x)) d(yn,x)< d(yn,x),

for any n ∈ N. This will force {zn} to also converge to x. Since T (x) is

closed, it is clear that x ∈ T (x), i.e., x is a fixed point of T , as claimed.

Next, the extension of Theorem 10.12 to metric spaces endowed with a

graph is analyzed.

Theorem 10.13. [10] Let (X ,d) be a complete metric space. Let G be a
reflexive graph with no parallel edges, such that E(G) = X. Assume that
(X ,d,G) satisfies Property (*). Let T : X →C (X) be a Reich G-contraction.
Then there exists k : (0,+∞)→ [0,1) which satisfies limsup

s→t+
k(s)< 1, for any

t ∈ [0,+∞), such that for any different x,y ∈ X with (x,y) ∈ E(G) and any
a ∈ T (x), there exists b ∈ T (y) such that (a,b) ∈ E(G) and

d(a,b)≤ k(d(x,y)) d(x,y).

Set XT = {x ∈ X ; there exists y ∈ T (x) such that (x,y) ∈ E(G)}. If XT �= /0,
then T has a fixed point.

Proof. Assume XT �= /0. Let y0 ∈ XT . Then there exists y1 ∈ T (y0) such that

(y0,y1) ∈ E(G). If y1 = y0, then y0 is a fixed point of T . Assume y0 �= y1.

Then, there exists y2 ∈ T (y1) such that

d(y1,y2)≤ k(d(y0,y1)) d(y0,y1).

Use induction to construct a sequence {yn} such that yn �= yn+1, yn+1 ∈
T (yn), (yn,yn+1) ∈ E(G) and

d(yn,yn+1)≤ k(d(yn−1,yn)) d(yn−1,yn),

for any n≥ 1. As in the proof of Theorem 10.12, it can be shown that {yn}
converges to some point x ∈ X . To see that x is a fixed point of T , observe

that (X ,d,G) satisfies Property (*), there exists a subsequence {yϕ(n)} of

{yn} such that (yϕ(n),x) ∈ E(G), for any n ∈ N. Using the contractivity of

T , it is clear that there exists zn ∈ T (x) such that

d(yϕ(n)+1,zn)≤ k(d(yϕ(n),x)) d(yϕ(n),x)< d(yϕ(n),x),

for any n ∈ N. This will force {zn} to also converge to x. Since T (x) is

closed, it follows that x ∈ T (x), i.e., x is a fixed point of T , which is the

desired conclusion.
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Remark 10.9. Once Theorem 10.12 and Theorem 10.13 are established, it

is easy to extend them to the case of uniformly locally contractive mappings

in the sense of Edelstein [25], with or without a graph.

Application: A generalized Bernstein operator
In [35], Kelisky and Rivlin investigated the behavior of the iterates of

the Bernstein polynomial of degree n≥ 1, defined by

Bn( f )(t) =
k=n

∑
k=0

f
(

k
n

)(
n
k

)
tk(1− t)n−k,

for any f ∈ C([0,1]) and t ∈ [0,1], where C([0,1]) is the space of con-

tinuous functions defined on [0,1]. In particular, they proved that for any

f ∈C([0,1]), the equality

lim
j→+∞

B j
n( f )(t) = f (0)(1− t)+ f (1)t, 0≤ t ≤ 1 (KRB)

holds.

Their proof relies on matrix-algebra techniques. Rus [56] was the first one

to notice the existence of a proof of (KRB) that is metric in nature. In fact,

his proof inspired Jachymski [33] to rephrase it using the language of graph

theory. In [58], Sultana and Vetrivel modified the Bernstein operator to ob-

tain a nonlinear version, which would not be suitable for the technique used

by Kelisky and Rivlin. Indeed, Sultana and Vetrivel introduced the operator:

B′n( f )(t) =
k=n

∑
k=0

∣∣∣∣ f ( k
n

)∣∣∣∣( n
k

)
tk(1− t)n−k,

for any f ∈C([0,1]) and they proved that

lim
j→+∞

(B′n)
j( f )(t) = f (0)(1− t)+ f (1)t, 0≤ t ≤ 1,

for any f ∈C([0,1]), such that f (0) ≥ 0 and f (1) ≥ 0. A better conclusion

will be presented here. Indeed, it is easy to see that B′n( f ) = Bn(| f |), for any

f ∈C([0,1]), which yields the proof of the following more general result:

Proposition 10.1. Let f ∈C([0,1]). Then

lim
j→+∞

(B′n)
j( f )(t) = | f (0)|(1− t)+ | f (1)|t, 0≤ t ≤ 1.

The classical Bernstein operator will be now extended to the vector-

valued case. Let (X ,‖.‖X ) be a Banach space. Consider the Banach space

C([0,1],X) of all continuous functions defined on [0,1] with values in X .

The norm in C([0,1],X) is given by

‖ f‖= sup{‖ f (t)‖X ; t ∈ [0,1]}.
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Fix n ≥ 1 and define the generalized Bernstein operator Bn : C([0,1],X)→
C([0,1],X) by

Bn( f )(t) =
k=n

∑
k=0

(
n
k

)
tk(1− t)n−k f

(
k
n

)
,

for any t ∈ [0,1]. In this case a conclusion similar to Kelisky and Rivlin’s

result holds:

Theorem 10.14. [4] For any f ∈C([0,1],X), we have

lim
j→+∞

B j
n( f )(t) = (1− t) f (0)+ t f (1), 0≤ t ≤ 1.

Proof. This conclusion will be proved using the language of graph theory.

Since the proof is identical to the one used by Rus [56], we prefer to give

this proof instead. First notice that

k=n

∑
k=0

(
n
k

)
tk(1− t)n−k = 1, and

k=n

∑
k=0

k
n

(
n
k

)
tk(1− t)n−k = t,

for any t ∈ [0,1]. Set g(t) = (1− t) f (0) + t f (1), for t ∈ [0,1]. Obviously

g ∈C([0,1],X). We have Bn(g) = g. Since f (0) = g(0) and f (1) = g(1), we

have

Bn( f )(t)−Bn(g)(t) =
n−1

∑
k=1

(
n
k

)
tk(1− t)n−k

(
f
(

k
n

)
−g

(
k
n

))
,

for any t ∈ [0,1]. Hence

‖Bn( f )(t)−Bn(g)(t)‖ ≤
n−1

∑
k=1

(
n
k

)
tk(1− t)n−k

∥∥∥∥ f
(

k
n

)
−g

(
k
n

)∥∥∥∥ ,
for any t ∈ [0,1], which implies

‖Bn( f )(t)−Bn(g)(t)‖ ≤
(

1− 1

2n−1

)
‖ f −g‖,

for any t ∈ [0,1]. Therefore,

‖Bn( f )−g‖= ‖Bn( f )−Bn(g)‖ ≤
(

1− 1

2n−1

)
‖ f −g‖.

It follow by induction that

‖B j
n( f )−g‖ ≤

(
1− 1

2n−1

) j

‖ f −g‖,

for any j ∈ N. This clearly implies the conclusion of Theorem 10.14.
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Motivated by the example given by Sultana and Vetrivel, the Bernstein

operator B′n : C([0,1],X)→C([0,1],X) is introduced as

B′n( f )(t) =
k=n

∑
k=0

(
n
k

)
tk(1− t)n−k T

(
f
(

k
n

))
, (10.2)

where T : X → X is continuous. Since B′n( f ) = Bn(T ◦ f ), it follows :

Theorem 10.15. [10] For any f ∈C([0,1],X), one has

lim
j→+∞

(B′n)
j( f )(t) = (1− t)T

(
f (0)

)
+ tT

(
f (1)

)
, 0≤ t ≤ 1.

Remark 10.10. A careful look at the definition reveals that Bn is actually

a convex combination, because
i=m
∑

i=0

(
m
i

)
ti(1− t)m−i = 1, for any m≥ 1.

Therefore, conclusions similar as those of Theorems 10.14 and 10.15 can

be obtained by taking X to be a hyperbolic metric space, such as CAT (0)
spaces. For more on hyperbolic spaces, we refer the interested reader to

[18, 29, 38, 39, 44, 53].

Next, the existence of fixed points for multivalued monotone Reich

(a,b,c)-contraction on weighted graphs is investigated. Throughout the fol-

lowing discussion it will be assumed that (X ,d) is a metric space, that

C B(X ) is the class of all nonempty closed and bounded subsets of X
and that G is a reflexive digraph defined on X . It is also assumed that the

triple (X ,G,d) has property (P) and that G-intervals are closed. Recall that

a G-interval is any of the subsets [x,→) = {u ∈ X ;(x,u) ∈ E(G)} and that

(←,y] = {u ∈ X ;(u,y) ∈ E(G)}, for any x,y ∈ X .

Reich in [51] proved that any multivalued Reich (a,b,c)-contraction on

a complete space has a fixed point. In this section, the notation of multival-

ued monotone Reich contraction mappings on graphs is defined and a fixed

point theorem for such mappings is proved.

Definition 10.22. [10] Let (X ,d) be a metric space. A multivalued mapping

J : X → C (X) is called Reich (a,b,c)-contraction if there exist nonnegative

numbers a,b,c with a+ b+ c < 1 such that for any u,w ∈ X and any U ∈
J(u), there exists W ∈ J(w) for which

d(U,W )≤ a d(u,w)+b d(u,U)+ c d(w,W ). (10.3)

Definition 10.23. [10] Let (X ,G,d) be as above. A multivalued mapping

J : X → C (X ) is called G-monotone Reich (a,b,c)-contraction if there

exist nonnegative numbers a,b,c with a+b+c < 1 such that for any u,w ∈
X with (u,w) ∈ E(G) and any U ∈ J(u), there exists W ∈ J(w) such that

(U,W ) ∈ E(G) and

d(U,W )≤ a d(u,w)+b d(u,U)+ c d(w,W ). (10.4)
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Example 10.5. Let X = {0,1,2,3} and d(x,y) = |x− y|, ∀x,y ∈ X . Define

the multivalued map J : X → C (X) by:

J(x) = {0,2,3} for x ∈ {0,1} and J(x) = {1,3} for x ∈ {2,3}.

Then J is a G-monotone Reich ( 1
3 ,0,

1
3 )-contraction, where

G = {(0,0),(1,1),(2,2),(3,3),(0,1),(0,2),(2,3)},

but J is not a multivalued Reich ( 1
3 ,0,

1
3 )-contraction since d(0,1) >

1
3 d(1,2) + 0 d(1,0) + 1

3 d(2,1) and d(0,3) > 1
3 d(1,2) + 0 d(1,0) +

1
3 d(2,3).

Such an example reinforces the idea that the study of multivalued G-

monotone Reich contraction is worthy of consideration. The next Theorem

is the main result of this Section.

Theorem 10.16. [10] Let (X ,d) be a complete metric space and G be a
reflexive digraph defined on X such that (X ,G,d) has Property (P). Let
J : X → C (X ) be a multivalued G-monotone Reich (a,b,c)-contraction
mapping. Let u0 ∈ X be such that (u0,u1) ∈ E(G), for some u1 ∈ J(u0).
Then there exists an orbit {un} of J at u0 which converges to ω ∈ X, a fixed
point of J.

Proof. Since (u0,u1) ∈ E(G) and as J is a G-monotone Reich contraction

mapping, there exists u2 ∈ J(u1) such that (u1,u2) ∈ E(G) and in addition

d(u1,u2)≤ a d(u0,u1)+b d(u0,u1)+ c d(u1,u2).

Thus,

d(u1,u2)≤ (a+b)
1− c

d(u0,u1).

Set α = (a+b)
1−c . A straightforward inductive procedure yields a sequence

{un}n∈N such that (un,un+1) ∈ E(G) with

d(un,un+1)≤ αn d(u0,u1).

Clearly, {un}n∈N is Cauchy. Since (X ,d) is complete, there exists ω ∈ X
such that un → ω . Since (X ,G,d) has Property (P), there is a subsequence

(ukn) such that (ukn ,ω) ∈ E(G), for every n ≥ 0. Next, ω will be proven to

be a fixed point of J, i.e., we will show that ω ∈ J(ω). Since ukn+1 ∈ J(ukn)
and (ukn ,ω) ∈ E(G), there exists ωn ∈ J(ω) such that

d(ukn+1,ωn)≤ a d(ukn ,ω)+b d(ukn ,ukn+1)+ c d(ω,ωn),
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for any n≥ 1. Thus,

d(ω,ωn)−d(ukn+1,ω)≤ a d(ukn ,ω)+b d(ukn ,ukn+1)+ c d(ω,ωn),

for any n≥ 1. Therefore,

(1− c)d(ω,ωn)≤ a d(ukn ,ω)+b d(ukn ,ukn+1)+d(ukn+1,ω),

for any n≥ 1. Hence

(1− c) limsup
n→+∞

d(ω,ωn)≤ 0,

which implies lim
n→+∞

d(ω,ωn) = 0, since c < 1. Therefore {ωn} converges to

ω and since J(ω) is closed it follows that ω ∈ J(ω), i.e., ω is a fixed point

of J.

10.3.4 Nonexpansive monotone mappings

For the rest of this Section, a Banach space (X ,‖.‖) is fixed. Let G be

a weighted digraph such that V (G)⊂ X . In this case, the weight of an edge

(u,v) is given by ‖u−v‖, for all u,v∈V (G). The following linear convexity

structure will be needed in the sequel:

(CG) If (x,y) ∈ E(G) and (u,v) ∈ E(G), then

(α x+(1−α) u,α y+(1−α) v) ∈ E(G)

for all x,y,u,v ∈C and α ∈ [0,1].

Remark 10.11. It is not difficult to show that a G-nonexpansive mapping

may not be continuous. Therefore, in this case, it is quite difficult to expect

any nice behavior that will imply the existence of a fixed point for this class

of mappings.

The existence of fixed points of G-nonexpansive mappings is next tack-

led. As such mappings do not behave well on their entire domains, but only

on connected vertices, our analysis is built on a constructive iteration method

introduced by Mann [45] (see also [32, 42]).

Lemma 10.9. [5] Let T : C → C be a G-monotone mapping, where C ⊆
V (G) is nonempty and convex. Fix λ ∈ (0,1) and x0 ∈C. Consider the Mann
iteration sequence (xn)n∈N ⊂C defined by

xn+1 = (1−λ )xn +λT (xn), n ∈ N. (MS)
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(a) If (x0,T (x0)) ∈ E(G), then (xn,xn+1) ∈ E(G) for any n ∈ N.

(b) If (T (x0),x0) ∈ E(G), then (xn+1,xn) ∈ E(G) for any n ∈ N.

Therefore, if (x0,T (x0)) ∈ E(G̃), then (xn) is G-monotone.

Proof. (a). As (x0,T (x0))∈ E(G) and (x0,x0)∈ E(G), it follows from prop-

erty (CG) that(
(1−λ )x0 +λx0,(1−λ )x0 +λT (x0)

)
∈ E(G),

i.e., (x0,x1) ∈ E(G). Now assume that (xn−1,xn) ∈ E(G) for n > 0. As T
is G-monotone, one has (T (xn−1),T (xn)) ∈ E(G). Property (CG) again im-

plies (
(1−λ )xn−1 +λT (xn−1),(1−λ )xn +λT (xn)

)
∈ E(G),

i.e., (xn,xn+1) ∈ E(G). Hence it follows by induction that (xn,xn+1) ∈ E(G)
for all n ∈ N. The proof of (b) follows along similar lines.

The following crucial inequality is essential to show that the sequence

(MS) has the main property.

Lemma 10.10. [1, 27, 28] Let T : C → C be a G-nonexpansive mapping,
where C ⊆ V (G) is nonempty and convex. Suppose that G is transitive and
that there is x0 ∈C with (x0,T (x0)) ∈ E(G̃). Consider the sequence (xn)n∈N
defined by (MS). Then:

(GK) (1+nλ )‖T (xi)− xi‖ ≤ ‖T (xi+n)− xi‖
+(1−λ )−n

(
‖T (xi)− xi‖

−‖T (xi+n)− xi+n‖
)
,

for any i,n ∈ N.

Theorem 10.17. [5] Let T : C → C be a G-nonexpansive mapping, where
C ⊆ V (G) is nonempty, convex and weakly G-bounded. Suppose that G is
transitive and that there is x0 ∈ C with (x0,T (x0)) ∈ E(G̃). Consider the
sequence (xn)n∈N, defined by (MS). Then, lim

n→∞
‖xn−T (xn)‖= 0.

Proof. It follows from Lemma 10.10 that for any i,n ∈ N, one has

(1+nλ )‖T (xi)− xi‖ ≤ ‖T (xi+n)− xi‖+
(1−λ )−n(‖T (xi)− xi‖−‖T (xi+n)− xi+n‖).

(10.5)
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Notice that (‖xn−T (xn)‖)n∈N is decreasing. Indeed,

xn+1− xn = λ (T (xn)− xn),

which implies that ‖xn+1−xn‖= λ ‖xn−T (xn)‖, for any n ∈N. In order to

see that (‖xn−T (xn)‖)n∈N is decreasing, it is enough to show that (‖xn+1−
xn‖)n∈N is decreasing. For any n ∈ N it is clear that

‖xn+2− xn+1‖ =
∥∥∥(1−λ ) (xn+1− xn)+λ (T (xn+1)−T (xn))

∥∥∥
≤ (1−λ ) ‖xn+1− xn‖+λ ‖T (xn+1)−T (xn)‖
≤ (1−λ ) ‖xn+1− xn‖+λ ‖xn+1− xn‖
= ‖xn+1− xn‖,

where we used the G-monotonicity of T . Therefore, (‖xn+1 − xn‖)n∈N is

decreasing. Set lim
n→+∞

‖xn−T (xn)‖= R. Note that for any i,n ∈ N, we have

‖T (xi+n)− xi‖ ≤ ‖T (xi+n)− xi+n‖+‖xi+n− xi‖ ≤ ‖T (x0)− x0‖+δ ((xn)).

Lemma 10.9 implies that (xn) is G-monotone. Since C is weakly G-bounded,

(xn) must be bounded. Now, letting i→+∞ in (10.5), we have

(1+nλ )R≤ ‖T (x0)− x0‖+δ ((xn)),

for any n ∈ N. This clearly implies that R = 0, i.e.

lim
n→+∞

‖xn−T (xn)‖= 0.

The above results lead to a fixed point result for G-monotone mappings.

This is the topic of the next discussion. The Banach spaces under consider-

ation will be Lp([0,1]), 1≤ p <+∞ and �p, 1≤ p <+∞ . It will be shown

that the new results are an improvement over the results given in [1]. Re-

call that Lp([0,1]) is the set of real valued functions defined on [0,1] with

Lebesgue-integrable absolute value, i.e., such that
�
[0,1] | f (x)|pdx <+∞. In

Lp([0,1]), p ≥ 1, τ is the almost everywhere convergence and in �p, p ≥ 1,

τ is the coordinatewise convergence. In the next example, a digraph G will

be constructed on L1([0,1]) for which Gτ -compactness and τ-compactness

are different.

Example 10.6. [5] Set In =
(

1
n+1 ,

1
n

)
, for n ≥ 1. Define the digraph G on

L1([0,1]) by ( f ,g) ∈ E(G) if and only if there exists n0 ≥ 1 such that

0 ≤ f (t) ≤ g(t) ≤ n0, for almost any t ∈ In0
and that f (t) = g(t) = 0, for
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almost any t �∈ In0
. We claim that L1([0,1]) is Gτ -compact. Let ( fn) be a

G-increasing sequence. Since ( f1, f2) ∈ E(G), there exists n0 ≥ 1 such that{
0≤ f1(t)≤ f2(t)≤ n0, for almost any t ∈ In0

;

f1(t) = f2(t) = 0, for almost any t /∈ In0
.

Now, ( f2, f3) ∈ E(G) implies that there exists n1 ≥ 1 such that{
0≤ f2(t)≤ f3(t)≤ n1, for almost any t ∈ In1

;

f2(t) = f3(t) = 0, for almost any t /∈ In1
.

If n0 �= n1, then f2 = 0 and hence f1 = 0. Either all fn = 0 or there exists

fm0
�= 0, for some m0 ≥ 1. Assume without loss of generality that m0 = 1,

i.e., f1 �= 0. In this case, there exists n0 ≥ 1 such that{
0≤ fn(t)≤ fn+1(t)≤ n0, for almost any t ∈ In0

,

fn(t) = 0, for almost any t /∈ In0
,

for all n ≥ 1. Hence the sequence ( fn) is bounded and converges almost

everywhere, i.e., τ-converges, to an element f ∈ L1[0,1] such that{
0≤ fn(t)≤ f (t)≤ n0, for almost any t ∈ In0

,

fn(t) = f (t) = 0, for almost any t /∈ In0
,

i.e., ( fn, f )∈ E(G), for all n≥ 1. Next, let (gn) be a G-decreasing sequence.

Since (g2,g1) ∈ E(G), there exists n0 ≥ 1 such that{
0≤ g2(t)≤ g1(t)≤ n0, for almost any t ∈ In0

,

g1(t) = g2(t) = 0, for almost any t /∈ In0
.

Obviously this implies that gn(t) = 0 for almost any t /∈ In0
and n≥ 1. There-

fore, either gn = 0 for any n≥ 2, or there exists n1 ≥ 2 such that gn1
�= 0. As

before,it can be shown that

0≤ gn+1(t)≤ gn(t)≤ n0, for almost any t ∈ In0
,

for any n ≥ n1. Hence the sequence (gn) is bounded and converges almost

everywhere, i.e., τ-converges, to an element g ∈ L1[0,1] for which there

exists n1 ≥ 1 such that{
0≤ g(t)≤ gn(t)≤ n0, for almost any t ∈ In0

,

gn(t) = g(t) = 0, for almost any t /∈ In0

In other words, (g,gn) ∈ E(G), for all n ≥ n1. Therefore, L1[0,1] is Gτ -

compact. We remark that it is obvious that L1[0,1] is not τ-compact.
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In the general theory of nonexpansive mappings, the iteration sequence

defined by (MS) is recognized as an approximate fixed point sequence

of T (see e.g. [32]). It is quite remarkable that this result holds for G-

nonexpansive mappings as well. To prove the next result, the following cru-

cial Lemma is indispensable.

Lemma 10.11. [17] If ( fn)n≥1 is a sequence of Lp-uniformly bounded func-
tions on a measure space, and fn

a.e.→ f , then

liminf
n→∞

‖ fn‖p = liminf
n→∞

‖ fn− f‖p +‖ f‖p,

for all p ∈ (0,∞).

The main result of this subsection is the following Theorem.

Theorem 10.18. [5] Let G be a weighted, reflexive and transitive digraph
such that V (G)⊆ Lp([0,1]), p≥ 1. Let C ⊂V (G) be nonempty, convex and
weakly G-bounded. Let T : C → C be a G-nonexpansive mapping. Assume
there exists f0 ∈C with ( f0,T ( f0)) ∈ E(G̃). Consider the sequence ( fn)nN,
defined by f0 and (MS). Then any a.e.-cluster point f of ( fn)n≥1 is a fixed
point of T , i.e., T ( f ) = f .

Proof. Without loss of generality, it may assumed that ( f0,T ( f0)) ∈ E(G).
Let f be an a.e.-cluster point of ( fn). Since C is Gτ -compact and as for

any n ∈ N, ( fn, fn+1) ∈ E(G), there is a subsequence ( fφ(n)) of ( fn) with

fφ(n)
a.e.→ f and ( fn, f ) ∈ E(G), for any n ∈N. Since C is weakly G-bounded,

Lemma 10.11 implies

liminf
n→∞

‖ fφ(n)−T ( f )‖p = liminf
n→∞

‖ fφ(n)− f‖p +‖ f −T ( f )‖p.

It follows from lim
n→+∞

‖ fφ(n)−T ( fφ(n))‖= 0 that

liminf
n→∞

‖ fφ(n)−T ( f )‖p = liminf
n→∞

‖T ( fφ(n))−T ( f )‖p,

which implies

liminf
n→∞

‖T ( fφ(n))−T ( f )‖p = liminf
n→∞

‖ fφ(n)− f‖p +‖ f −T ( f )‖p.

On the other hand, as ( fφ(n), f ) ∈ E(G), for every n ∈ N; thus:

liminf
n→∞

‖ fφ(n)− f‖p +‖ f −T ( f )‖p = liminf
n→∞

‖T ( fφ(n))−T ( f )‖p

≤ liminf
n→∞

‖ fφ(n)− f‖p,

which obviously implies ‖ f −T ( f )‖p = 0, or T ( f ) = f .
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Theorem 10.18 implies the following Theorem whose proof will be

omitted.

Theorem 10.19. [5] Let G be a weighted, reflexive and transitive digraph
such that V (G) ⊆ Lp([0,1]), p ≥ 1. Let C ⊂ V (G) be nonempty, convex,
weakly G-bounded and Gτ -compact. Let T : C → C be a G-nonexpansive
mapping. Assume there exists f0 ∈C such that ( f0,T ( f0)) ∈ E(G̃). Then T
has a fixed point.

Theorem 10.19 is a generalization of the original existence theorem [16, 43]

for nonexpansive mappings that are not necessarily monotone. It is at the

same time an extension of the main result of [1] and an improvement of the

main result of [36]

Since a lemma similar to Lemma 10.11 exists in �p, p≥ 1, for the coor-

dinatewise convergence, we have the following result:

Theorem 10.20. [5] Let G be a weighted reflexive and transitive digraph
such that V (G) ⊆ l p([0,1]), p ≥ 1. Let C ⊂ V (G) be nonempty, convex,
weakly G-bounded and Gτ -compact. Let T : C → C be a G-nonexpansive
mapping. Assume there exists f0 ∈C with ( f0,T ( f0)) ∈ E(G̃). Then T has a
fixed point.

Next, some existence results for nonexpansive, single-valued and multi-

valued G-monotone mappings defined on hyperbolic metric spaces will be

studied. To the best of our knowledge, the following results were never in-

vestigated for such mappings.

Theorem 10.21. [5] Let (X ,d) be a complete hyperbolic metric space and
suppose that the triple (X ,d,G) has property (*). Assume G is convex. Let
C be a nonempty, closed, convex and bounded subset of X. Let T : C→C be
a G-nonexpansive mapping. Assume CT := {x ∈C : (x,T (x)) ∈ E(G)} �= /0.
Then

inf{d(x,T (x); x ∈C}= 0.

In particular, there exists an approximate fixed point sequence (xn)] of T in
C i.e., such that

lim
n→∞

d(xn,T (xn)) = 0.

Proof. Fix a ∈C. Let λ ∈ (0,1) and define Tλ : C→C by

Tλ (x) = λa⊕ (1−λ )T (x).

If (x,y) ∈ E(G), then necessarily (T (x),T (y)) ∈ E(G), since T is G-edge

preserving. Moreover, since G is convex and (a,a) ∈ E(G) it is clear that

(Tλ (x),Tλ (y)) = (λa⊕ (1−λ )T (x),λa⊕ (1−λ )T (y)) ∈ E(G),
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i.e., Tλ is G-edge preserving, and

d(λa⊕ (1−λ )T (x),λa⊕ (1−λ )T (y)) ≤ (1−λ )d(T (x),T (y))
≤ (1−λ )d(x,y)

i.e., d(Tλ (x),Tλ (y))≤ (1−λ )d(x,y). In other words, Tλ is a G-contraction.

It is easy to see that CT ⊂CTλ . Hence CTλ is not empty. Theorem 10.1 im-

plies the existence of a fixed point ωλ of Tλ in C. Thus,

ωλ = λa⊕ (1−λ )T (ωλ ),

which yields

d(ωλ ,T (ωλ ))≤ λd(a,T (ωλ ))≤ λ δ (C),

where δ (C) = sup{d(x,y); x,y ∈C} is the diameter of C. Set xn = ω1/n, for

n≥ 1. It is then clear that d(xn,T (xn))≤ δ (C)/n for n≥ 1. In particular, it

follows that

inf{d(x,T (x); x ∈ X} ≤ lim
n→∞

d(xn,T (xn)) = 0.

The proof of Theorem 10.21 is therefore complete.

Theorem 10.22. [5] Let (X ,d) be a complete hyperbolic metric space and
suppose that the triple (X ,d,G) has property (*). Assume G is convex and
transitive. Let C be a nonempty, G-compact and convex subset of X. Let
T :C→C be a G-nonexpansive mapping. Assume CT := {x∈C : (x,T (x))∈
E(G)} �= /0. Then T has a fixed point.

Proof. Choose x0 ∈ CT . Let (λn) be a sequence of numbers in (0,1) such

that lim
n→∞

λn = 0. As in the proof of Theorem 10.21, define the mapping T1 :

C→C by

T1(x) = λ1x0⊕ (1−λ1)T (x).

Since (x0,T (x0)) ∈ E(G), one has (x0,T1(x0)) ∈ E(G), and since T1 is G-

edge preserving one concludes that (T n
1 (x0),T n+1

1 (x0)) ∈ E(G) and that

d(T n
1 (x0),T n+1

1 (x0))≤ λ n
1 d(x0,T1(x0)), f or n≥ 1.

Hence (T n
1 (x0)) is a Cauchy sequence. Since C is G-compact, (T n

1 (x0)) must

be convergent. Set lim
n→∞

T n
1 (x0) = x1. Property (**) implies that (x0,x1) ∈

E(G). A sequence (xn) can be constructed by induction in such a way that

xn+1 is a fixed point of Tn+1 : C→C, defined by

Tn+1(x) = λn+1xn⊕ (1−λn+1)T (x),
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obtained as the limit of (T k
n+1(xn))k≥1. In particular, (xn,xn+1) ∈ E(G),

for any n ≥ 1. Since C is G-compact, there exists a subsequence (xkn)
which converges to ω ∈C. Since G is transitive, property (**) implies that

(xkn ,ω) ∈ E(G). Using the G-nonexpansiveness of T , one concludes that

d(T (xkn),T (ω))≤ d(xkn ,ω), f or n≥ 1.

Hence (T (xkn)) converges to T (ω), and since xn+1 is a fixed point of Tn+1,

it follows that xn+1 = λn+1xn⊕ (1−λn+1)T (xn+1), which implies

d(xn+1,T (xn+1)) ≤ λn+1 d(xn,T (xn+1))≤ λn+1 δ (C), f or n≥ 1,

from which it follows lim
n→∞

d(xn,T (xn)) = 0. Hence (T (xkn)) converges to ω
as well. Therefore it must hold that T (ω) = ω , i.e., T has a fixed point.

Next the above results are investigated for mutlivalued mappings. The

first claim for these mappings is the analogue to Theorem 10.21.

Theorem 10.23. [5] Let (X ,d) be a complete hyperbolic metric space and
suppose that the triple (X ,d,G) has property (*). Assume G is convex. Let
C be a nonempty, closed, convex and bounded subset of X. Set C (C) to
be the set of all nonempty, closed subsets of C. Let T : C → C (C) be a
monotone increasings G-nonexpansive mapping. If CT := {x ∈ C; (x,y) ∈
E(G) f or some y ∈ T (x)} is not empty, then T has an approximate fixed
point sequence (xn) ∈C, that is, for any n≥ 1, there exists yn ∈ T (xn) such
that

lim
n→∞

d(xn,yn) = 0.

In particular, lim
n→∞

dist(xn,T (xn)) = 0, where

dist(xn,T (xn)) = inf {d(xn,y); y ∈ T (xn)}.

Proof. Fix λ ∈ (0,1) and x0 ∈C. Define the multivalued map Tλ on C by

Tλ (x) = λ x0⊕ (1−λ ) T (x) = {λ x0⊕ (1−λ ) y; y ∈ T (x)}.

Note that Tλ (x) is a nonempty and closed subset of C. It will be shown that

Tλ is a monotone increasing G-contraction. Let x,y ∈C be such that (x,y) ∈
E(G). Since T is a monotone increasing G-nonexpansive mapping, for any

x∗ ∈ T (x) there exists y∗ ∈ T (y) such that (x∗,y∗) ∈ E(G) and d(x∗,y∗) ≤
d(x,y). Since

d
(

λ x0⊕(1−λ ) x∗,λ x0⊕(1−λ ) y∗
)
≤ (1−λ ) d(x∗,y∗)≤ (1−λ ) d(x,y),

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



310 New Trends in Analysis and Geometry

the claim follows. Since G is convex, we get (λ x0 ⊕ (1− λ ) x∗,λ x0 ⊕
(1− λ ) y∗) ∈ E(G). This clearly shows that Tλ is a monotone increasing

G-contraction, as claimed. Note that CT ⊂ CTλ , which implies that CTλ is

nonempty. Using Theorem 10.2 it is readily concluded that Tλ has a fixed

point xλ ∈C. Thus there exists yλ ∈ T (xλ ) such that

xλ = λ x0⊕ (1−λ ) yλ .

In particular ,

d(xλ ,yλ ) ≤ λ d(x0,yλ ))≤ λ δ (C),

which implies dist(xλ ,T (xλ )) ≤ λ δ (C). Choosing λ = 1
n , for n ≥ 1, it is

easily seen that there exists xn ∈ C and yn ∈ T (xn) such that d(xn,yn) ≤
δ (C)/n, which implies

dist(xn,T (xn))≤ 1

n
δ (C).

The proof of Theorem 10.23 is therefore complete.

The multivalued version of Theorem 10.22 may be stated as:

Theorem 10.24. [5] Let (X ,d) be a complete hyperbolic metric space and
suppose that the triple (X ,d,G) has property (**). Assume G is convex and
transitive. Let C be a nonempty, G-compact and convex subset of X. Then
any monotone increasing G-nonexpansive mapping T : C → C (C) , has a
fixed point, provided that CT := {x ∈C; (x,y) ∈ E(G) f or some y ∈ T (x)}
is not empty.

Proof. Choose x0 ∈ CT . Let (λn) be a sequence of numbers in (0,1) such

that lim
n→∞

λn = 0. As in the proof of Theorem 10.23, define the mapping T1 :

C→C by

T1(x) = λ1x0⊕ (1−λ1)T (x).

Since CT ⊂CT1
, there exists y0 ∈ T1(x0) such that (x0,y0)∈ E(G). The prop-

erties of T1 imply that there exists y2 ∈ T1(y1) such that (y1,y2) ∈ E(G) and

d(y1,y2)≤ (1−λ1)d(x0,y1).

By induction, build a sequence (yn), with y0 = x0, such that yn+1 ∈ T1(yn),
(yn,yn+1) ∈ E(G) and that

d(yn,yn+1)≤ (1−λ1) d(yn−1,yn)≤ (1−λ1)
n d(x0,y1)≤ (1−λ1)

n δ (C),

for n ≥ 1. So (yn) is Cauchy. Set lim
n→+∞

yn = x1 ∈C. The property (**) im-

plies that (yn,x1)∈ E(G), for any n. In particular, (x0,x1)∈ E(G). Using the

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Metric fixed point theory in weighted graphs 311

properties of T1 it is readily seen that for any n, there exists zn ∈ T (x1) such

that

d(yn+1,zn)≤ (1−λ1) d(yn,x1).

Clearly this implies that (zn) converges to x1 as well. Since T (x1) is closed,

one concludes that x1 ∈ T (x1), i.e., x1 is a fixed point of T1. Inductively,

construct a sequence (xn) in C such that xn+1 is a fixed point of Tn+1 : C→
C (C), defined by

Tn+1(x) = λn+1xn⊕ (1−λn+1)T (x),

and in such a way that (xn,xn+1)∈ E(G). Since C is G-compact, there exists

a subsequence (xkn) that converges to ω ∈C. Since G is transitive, property

(**) implies that (xn,ω) ∈ E(G). Since xn is a fixed point of Tn, there exists

zn ∈ T (xn) such that

xn = λn xn−1⊕ (1−λn) zn,

for any n ≥ 1. Notice that d(xn,zn) ≤ λn d(xn1
,zn) ≤ λn δ (C), for any

n≥ 1. In particular, it is clear that lim
n→∞

d(xn,zn) = 0. It can be inferred from

the G-compactness of C that there exists a subsequence (xkn) which con-

verges to some point ω ∈ C. Clearly (zkn) also converges to ω . Using the

G-nonexpansiveness of T , since (xkn ,ω) ∈ E(G), it is immediate that there

exists ωn ∈ T (ω) such that d(zkn ,ωn)≤ d(xkn ,ω), for any n. Therefore, (ωn)
converges to ω . Since T (ω) is closed, it follows that ω ∈ T (ω), i.e. ω is a

fixed point of T .
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In this Chapter we present a generalization of the notion of metric space and

some applications to discrete structures as graphs, ordered sets and transi-

tion systems. Results in this direction started in the middle eighties and were

based on the impulse given by Quilliot (1983). Graphs and ordered sets were

considered as generalized metric spaces equipped with distance functions d
that are not real-valued, but are valued on an ordered semigroup equipped

with an involution. In this frame, the class of maps preserving graphs or

posets coincides with the family of nonexpansive mappings (that is, with

the class of maps f such that d( f (x), f (y))≤ d(x,y), for all x,y). It was ob-

served that many known results on retractions and fixed point property for

classical metric spaces (whose morphisms are the nonexpansive mappings)

are also valid for these spaces. For example, the characterization of abso-

lute retracts, by Aronszajn and Panitchpakdi (1956), the construction of the

injective envelope by Isbell (1965) and the fixed point theorem of Sine and

Soardi (1979), translate into the Banaschewski-Bruns theorem (1967), the

MacNeille completion of a poset (1933) and the famous Tarski fixed point

theorem (1955). This prompted an analysis of several classes of discrete

structures from a metric point of view. In this paper, we report the results
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obtained over the years, with a particular emphasis on the fixed point prop-

erty.

11.1 Introduction
This Chapter delves into a generalization of metric spaces and its appli-

cations to discrete structures as graphs, ordered sets and transition systems.

The results presented here originate in a paper by the second author [76],

motivated by the work of Quilliot [80, 81]. The genesis of this topic is to be

found in two theses [46], [66] and a paper [47]. The theme was subsequently

developped in [52], [75], [53], [85], [54], [55], [56], [10], [11] and [61].

Since its introduction by Fréchet (1906), the notion of metric space has

motivated many extensions (cf. the encyclopedia [29], also [64, 14, 15, 16],

and recently [24]). In the sequel, a generalized metric space (see [29] p. 82)

is a set E equipped with a distance, that is, with a map d from the direct

product E×E into an ordered monoid, say H , equipped with an involution

− preserving the order and reversing the monoid operation.This operation

will be denoted by ⊕ (despite that it is not necessarily commutative) and its

neutral element will be denoted by 0.

The conditions on d are the following:

d(x,y) = 0 if and only if x = y; (11.1)

d(x,y) = d(y,x); (11.2)

d(x,y) ≤ d(x,z)⊕d(z,y); (11.3)

for all x,y,z ∈ E.

The focus in this Chapter will be on the special case in which the fol-

lowing assumptions are imposed on H .

1. 0 is the least element of H ; in which case, condition (i) for d reduces

to d(x,y) = 0 if and only if x = y.

2. H is a complete lattice and the following distributivity condition

holds: ∧
α∈A,β∈B

(pα ⊕qβ ) =
∧

α∈A

pα ⊕
∧

β∈B

qβ

for all pα ∈H (α ∈ A) and pβ ∈H (β ∈ B).
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In previous papers (e.g. [76]) such a structure has been called a Heyting
algebra, or an involutive Heyting algebra. This terminology will be retained

in this Chapter despite the fact that a more appropriate term could be dual of
an integral involutive quantale, to refer to the notion of quantale introduced

by Mulvey [67] in 1985. Indeed, according to the terminology of [51] (see

also [31, 84]), a quantale is an ordered monoid satisfying the dual of the

distributivity condition stated in (2); it is involutive if it is equipped with an

involution, and it is integral if the largest element is the neutral element of

the monoid.

Besides ordinary metric spaces, there are plenty of examples of this gen-

eralized structure. Reflexive graphs, undirected as well as directed, ordered

sets, involutive and reflexive transition systems are the basic ones. Due to

the conditions imposed on H , there are important classes of objects that

fall beyond this framework. For example, metric spaces with distances in

Boolean algebras, as introduced in [14] (except if the Boolean algebra is

the power set of a set); ultrametric spaces with values in an arbitrary poset;

graphs which are not necessarily reflexive, or arbitrary transition systems.

Attempts to capture these situations have been made in [75]; the case of

generalized metric spaces over a Heyting algebra for which the least ele-

ment is not necessarily the neutral element (cf. condition (1) above) being

particularly studied.

We have restricted the scope of our approach to generalized metric

spaces over a Heyting algebra because in this class there are significant re-

sults, easy to present and with the potential to be extended to more general

situations.

The emphasis of this presentation is on retracts and on the fixed point

property. Considering the class of generalized metric spaces over a Heyting

algebra H , we introduce the nonexpansive maps as maps f from a metric

space E := (E,d) into another, say E′ := (E ′,d′), such that

d′( f (x), f (y))≤ d(x,y) for all x,y ∈ E. (11.4)

From this starting point, we derive the notions of isometry, retraction and

coretraction. Since the Heyting algebra under consideration is a complete

lattice, arbitrary products of spaces can be defined, hence, as Duffus and

Rival did [30] for graphs and posets, we may introduce varieties of met-

ric spaces as classes of metric spaces closed under products and retracts.

Among generalized metric spaces, those having the fixed point property
(fpp), that is, those spaces such that every nonexpansive map f has a fixed

point, are of particular interest. As in any category, (fpp) is preserved under

retractions. This elementary fact has a significant consequence. Indeed, ob-

serving that coretractions are isometric embeddings, those generalized met-

ric spaces for which this necessary condition is sufficient, which are called
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absolute retracts, play a special role. If there are enough absolute retracts,

meaning that every generalized metric space isometrically embeds into an

absolute retract, then absolute retracts are the natural candidates to have the

fixed point property. Indeed, it suffices for them to embed into some space

with the fixed point property. This point of view is illustrated by the fact

that in the category of ordered sets with ordered maps as morphisms, ab-

solute retracts coincide with complete lattices (Banaschewski, Bruns [6])

and according to the famous theorem of Tarski [90], these lattices have the

fixed point property. In the category of (ordinary) metric spaces with nonex-

pansive mappings as morphisms, the absolute retracts are the hyperconvex

metric spaces introduced by Aronszajn and Panitchpakdi [3] and on account

of the Theorem Sine-Soardi [88, 89], the bounded ones have the fixed point

property.

These results being expressible in terms of generalized metric spaces, it

was natural to look at absolute retracts in the category of generalized met-

ric spaces over a Heyting algebra. Four basic facts obtained in [47] are pre-

sented in this paper. First, we show that on the Heyting algebra H , there is a

distance dH and that every metric space over H embeds isometrically into

some power of the space H :=(H ,dH ), equipped with the sup-distance (cf.

Theorem 11.1). Next, we show that in this case, the notion of absolute retract

is much simpler than in other categories. It coincides with three other no-

tions: extension property, injectivity and hyperconvexity (cf Theorem 11.3).

This yields a straightforward extension of the characterization of absolute

retracts, due to Aronszajn and Panitchpakdi [3] for ordinary metric spaces.

The latter in conjunction with the fact that H := (H ,dH ) is hyperconvex

(Theorem 11.2), implies that every generalized metric space embeds iso-

metrically into an absolute retract (cf. (4) of Theorem 11.3). The third fact

is the existence of an injective envelope, that is, of a minimal injective space

extending an arbitrary space isometrically (cf Theorem 11.4). For ordinary

metric spaces, this was done by Isbell [45], while for posets, Banaschewski

and Bruns [6] showed that the injective envelope of a poset is its MacNeille

completion. This last fact is based on the observation that, in general, core-

tractions are more than isometries. Coretractions preserve holes, that is, fam-

ilies of balls with empty intersection. Considering the hole-preserving maps,

introduced by Duffus and Rival for posets under the name of gap preserving
maps [30], and then by Hell an Rival for graphs [40], we show that for the

hole-preserving maps, the absolute retracts and the injectives coincide, that

every generalized metric space embeds in one of them -by a hole-preserving

map- and consequently, that they form a variety (Theorem 11.5).

We illustrate the results about generalized metric spaces presented above

with metric spaces, graphs, posets and transition systems. We start with ab-

solute retracts. We mention that the Aronszjan-Panitchpakdi characteriza-
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tion of absolute retracts was extended to ultrametric spaces by Bayod and

Martinez [12]. We also refer the reader to Ackerman [2]. Considering reflex-

ive and symmetric graphs, with the usual distance of the shortest path, paths

are absolute retracts and every graph isometrically embeds into a product of

paths (a result due independently to Quilliot [80], Nowakowski and Rival

[71]). Furthermore, it has a minimal retract of product of paths (this last fact

has been obtained independently by Pesch [74]). This extends to directed

graphs: Quilliot [80] introduced a new kind of distance, the zigzag distance,

on a directed graph G. This distance takes into account all oriented paths

joining two vertices of G. The values of this distance are final segments of

the monoid Λ∗ of words over the two-letter alphabet Λ := {+,−}. The set

F(Λ∗) of these final segments can be viewed as a Heyting algebra. It turns

out that this Heyting algebra, not only possesses a metric structure, but it

also has a graph structure, rendering it an absolute retract into the category

of graphs. Every directed graph embeds isometrically into a power of itself,

and the absolute retracts are retracts of products of that graph. The notion

of injective envelope of two-element metric spaces was used to produce a

family of finite directed graphs generating the variety of absolute retracts.

A specialization to posets of the zigzag distance yields the notion of fence
distance (Quilliot [80]); in this case, absolute retracts of posets are retracts

of product of fences (Nevermann, Rival [68]). A graph is a zigzag if it sym-

metrisation is a path. Oriented zigzag graphs are absolute retracts in the va-

riety of directed graphs, but are too simple to generate all absolute retracts

in the variety of directed graphs. The full description was given in [55].

As shown in [11], zigzags generate the variety of absolute retracts in the

category of oriented graphs. Considering the hole-preserving maps, posets

that are absolute retracts are those with the strong selection property (no-

tion introduced by Rival and Wille [83] for lattices and extended to posets

by Nevermann and Wille [69]). For posets and graphs considered with the

fence distance and the graph distance, Theorem 11.5 is due to Nevermann,

Rival [68] and Hell, Rival [40], respectively. Of course, Theorem 11.5 ap-

plies to directed graphs equipped with the zigzag distance and to classical

metric spaces as well.

It appears that the zigzag distance between two vertices x and y of a di-

rected graph G := (V,E ) is the language accepted by the automaton having

V as set of states, T := {(p,+,q) : (p,q) ∈ E }∪{(p,−,q) : (q, p) ∈ E } as

set of transitions, x as initial state and y as final state. This fact leads to the

consideration of transition systems over an arbitrary alphabet Λ as a sub-

class of metric spaces, the distance between two states being the language

accepted between these two states. If the alphabet is equipped with an in-

volution, we may consider reflexive and involutive transition systems. The

distance function takes values in the set F(Λ∗) of final segments of the set
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Λ∗ of words over the alphabet Λ. As for the two-letter alphabet, F(Λ∗) is a

Heyting algebra, and our transition systems are generalized metric spaces,

thus the above results apply. The existence of the injective envelope of a

two- element metric space was used to prove that F(Λ∗) is a free monoid

[56]. A presentation of this result is given in Section 11.7.

Turning to the fixed property, we might say that over the years, fixed

point results for discrete of for continuous structures have proliferated. The

theorem by Sine-Soardi has been extended to metric spaces endowed with

a compact normal structure in the sense of Penot (Kirk’s Theorem, [62]). It

has also been extended to bounded hyperconvex generalized metric spaces,

with an appropriate notion of boundedness [47]. Baillon [5] proved that ar-

bitrary sets of commuting maps on a bounded hyperconvex metric space,

have a common fixed point. Khamsi [60] extended the conclusion to met-

ric spaces with a compact normal structure. Quite recently, Khamsi and the

second author [61] extended it to generalized metric spaces endowed with a

compact normal structure. As a consequence, every set of commuting order-

preserving maps on a retract of a power of a finite fence, has a fixed point

(the case of one map follows from a result due to I. Rival [82] for finite

posets, and from the result by Baclawski and Björner [4] in the case of infi-

nite posets). This applies in the same way to directed graphs (reflexive and

antisymmetric) equipped with the zigzag distance and substantially com-

pletes the results of Quilliot [80] (Theorem 11.15).

Some aspects of generalized metric spaces are not dealt with in this

Chapter. An important such aspect left untouched by us concerns homo-

geneity and amalgamation. In 1927, Urysohn [91] discovered a separable

metric space having the property that every isometry between finite subsets

of it extends to an isometry on the whole space and that every finite metric

space embeds into it. Later on, Fraı̈ssé [34] and then Jónsson [48], identi-

fied the notion of homogeneity and the test of amalgamation, showing that

several classes of structures, now called Fraı̈ssé classes (that includes the

class of metric spaces), has an homogeneous structure. The existence of the

Urysohn space follows then a special case. Then, in 2005, Kechris, Pestov

and Todorcevic [59] characterized the classes introduced by Fraı̈ssé with the

Ramsey property. This characterisation led to numerous papers on homo-

geneity and particularly on (ordinary) homogeneous metric and ultrametric

spaces [25, 26, 27, 70]. As indicated in [47] (Fact 4 of page 181), the class

of metric space over a Heyting algebra has the amalgamation property, thus

it may have homogeneous structures (e.g. when the algebra is countable).

Independently of our work, some research has been devoted to generalized

metric spaces that are also homogeneous [19, 42, 87].
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11.2 Metric space over a Heyting algebra
In what follows we introduce the basic terminology to be used in the

sequel, see [13, 18, 35]. Let H be a complete lattice, with a least element,

denoted by 0 and a greatest element denoted by 1, equipped both with a

monoid operation⊕ and with an involution− satisfying the following prop-

erties:

(i) The monoid operation is compatible with the ordering, that is, p≤ p′ and

q≤ q′ imply p⊕q≤ p′ ⊕q′ for every p, p′,q,q′ ∈H .

(ii) The involution is order-preserving and reverses the monoid operation,

that is,

p⊕q = q̄⊕ p̄ holds for every p,q ∈H .

We say that H is a Heyting algebra if it satisfies the following distributivity

condition: ∧
α∈A,β∈B

(pα ⊕qβ ) =
∧

α∈A

pα ⊕
∧

β∈B

qβ , (11.5)

for all pα ∈H (α ∈ A) and pβ ∈H (β ∈ B) or equivalently, (because of

the involution), if, for all pα ∈H (α ∈ A) and q ∈H , it holds that∧
α∈A

(pα ⊕q) =
∧

α∈A

pα ⊕ q . (11.6)

Note that the above distributivity condition entails the compatibility of

the monoid operation and the ordering.

In the sequel, the following assumption is made:

The least element 0 of H is the neutral element of the operation ⊕ .

Let E be a set. A distance on E is a map d : E ×E → H satisfying the

following properties for all x,y,z ∈ E:

d1) d(x,y) = 0 if and only if x = y;

d2) d(x,y) ≤ d(x,z) ⊕ d(z,y);
d3) d(x,y) = d(y,x).
The pair E := (E,d) is a metric space over H . If no confusion arises, the

metric space will be denoted simply by the underlying set, E. If we replace

the monoid operation⊕ by its reverse, that is by the operation (x,y) → y⊕x,

and leave the ordering and the involution unchanged, then the new structure

H
′

satisfies the same properties as H ; hence we can define distances over

H
′
. For example, if d : E×E →H is a distance then d̄ : E×E →H

′
de-

fined by d̄(x,y) = d(y,x) is a distance over H ′; it is called the dual distance

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



326 New Trends in Analysis and Geometry

to d. We write Ē := (E, d̄) or simply Ē to denote the corresponding space.

For typographical reasons, we will use d̄(x,y) instead of d(x,y). This will

cause no confusion in the sequel.

Let E := (E,d) be a metric space over H . For all x ∈ E and r ∈H ,

we define the ball with center x and radius r, as the set BE(x,r) = {y ∈ E :

d(x,y) ≤ r}; if there is no danger of confusion we will denote it simply by

B(x,r).
If E := (E,d) and E′ := (E ′,d′) are two metric spaces over H , then a

map f : E → E
′

is said to be nonexpansive (or contracting) provided that

d′ ( f (x), f (y))≤ d(x,y) for all x,y ∈ E. (11.7)

If equality holds in inequality (11.7) for all x,y ∈ E, then f is an isometry of

E into E′. Hence, in our terminology, an isometry is not necessarily surjec-

tive. We say that E and E′ are isomorphic, and in this case we write E∼= E′,
if there is a surjective isometry from E onto E′. If E is a subset of E ′ and the

identity map id : E → E ′ is nonexpansive, we say that E is a subspace of E′,
or that E′ is an extension of E. If, moreover, this map is an isometry (that is,

if d is the restriction of d′ to E ′ ×E ′), then we call E an isometric subspace
of E′ and E′ is said to be an isometric extension of E. The restriction of d′
to E, denoted by d′�E , is the restriction of the map d′ to E×E. This is a dis-

tance, the resulting space, denoted by E′�E := (E,d′�E), is the restriction of E′

to E; this is an isometric subspace of E′. As usual in categories, Hom(E,E′)
denote the set of all nonexpansive maps from E to E′.

The fact that H is a complete lattice allows us to define arbitrary prod-

ucts of metric spaces. If (Ei)i∈I , where Ei := (Ei,di), is a family of metric

spaces over H , then the direct product E := ∏
i∈I

Ei, is the cartesian product

E :=∏
i∈I

Ei, equipped with the ”sup” (or �∞) distance d : E×E→H defined

by:

d
(
(xi)i∈I ,(yi)i∈I

)
:=
∨
i∈I

di(xi,yi).

The distributivity condition on H allows to define a distance on the

space of values H . This fact relies on the classical notion of residuation
(see [17, 92]).

Let v ∈H . Given γ ∈H , the sets {r ∈H : v ≤ r⊕ γ} and {r ∈H : v ≤
γ ⊕ r} have least elements, that we denote respectively by (v− γ) and by

(−γ⊕ v) (in fact, (−γ⊕ v)= (v̄− γ̄)). It follows that for all p,q ∈H , the

set

D(p,q) := {r ∈H : p≤ q⊕ r̄ and q≤ p⊕ r}
has a least element, namely ( p̄− q̄)∨(−p⊕q). We set

dH (p,q) := MinD(p,q). (11.8)
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As shown in [47]:

Theorem 11.1. The map (p,q) → dH (p,q) is a distance on H and every
metric space over H embeds isometrically into a power of the space H :=
(H ,dH ).

This result follows from the fact that for every metric space E := (E,d)
over H , and for all x,y ∈ E, the following equality holds:

d(x,y) =
∨
z∈E

dH (d(z,x),d(z,y)) . (11.9)

Indeed, for each x ∈ E, let δ̄ (x) : E →H be the map defined by δ̄ (x)(z) =
d(z,x) for all z ∈ E; the equality above reflects the fact that the map from

E into the power HE is an isometric embedding (on the other hand, this

equality expresses the fact that δ̄ (x) is a nonexpansive map from E into

H̄ := (H ′,dH ′)).

11.3 Examples

11.3.1 Ordinary metric and ultrametric spaces

Let H := R+ ∪ {+∞} with addition on the set of non-negative reals

extended to H in the obvious way,and the involution being defined as the

identity. The metric spaces we get are just unions of disjoint copies of or-

dinary metric spaces. The fact that we add the point at infinity to R+ is an

inessential difference. The point at infinity is adjoined in order to make H
a complete poset and to have infinite products, thus avoiding �∞ type con-

structions. The distance between to elements in H := (H ,dH ) is given by

the absolute value of their difference if both elements are finite; the distance

from ∞ to any other element is ∞. Every space in our sense embeds isomet-

rically into a power of H and, in fact, into a power of R+ equipped with

the absolute value. On the other hand, every ordinary metric space embeds

isometrically into some �
∞
R(I), the space of bounded families (xi)i∈I of real

numbers, endowed with the sup-distance.

If the monoid operation on R+∪{+∞} is the join and the involution is

the identity, distances are called ultrametric distances and metric spaces are

called ultrametric spaces (see [12]). The notion of ultrametric spaces has
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been generalized by several authors (see [78, 79], [2], [19]). The general

setting for the space of values is a join semilattice with a least element.

A join-semilattice is an ordered set in which two arbitrary elements x
and y have a join, denoted by x∨ y, defined as the least element of the set of

common upper bounds of x and y.

Let H be a join-semilattice with a least element, denoted by 0. A pre-
ultrametric space over H is a pair D := (E,d) where d is a map from E×E
into H such that for all x,y,z ∈ E:

d(x,x) = 0, d(x,y) = d(y,x) and d(x,y)≤ d(x,z)∨d(z,y). (11.10)

The map d is an ultrametric distance over H and D is an ultrametric space
over H if D is a pre-ultrametric space and d satisfies the separation axiom:

d(x,y) = 0 implies x = y. (11.11)

Any binary relational structure M := (E,(Ei)i∈I), in which each Ei is an

equivalence relation on the set E, can be viewed as a pre-ultrametric space

on E. Indeed, given a set I, let ℘(I) be its the power set. Then ℘(I), or-

dered by inclusion, is a join-semilattice (in fact a complete Boolean algebra)

, in which the join is the union and the least element 0 is the empty set. For

x,y ∈ E, set dM(x,y) := {i ∈ I : (x,y) �∈ Ei}. Then the pair DM := (E,dM) is

a pre-ultrametric space over ℘(I). Conversely, let D := (E,d) be a pre-

ultrametric space over ℘(I). For every i ∈ I set Ei := {(x,y) ∈ E × E :

i �∈ d(x,y)} and let M := (E,(Ei)i∈I). Then Ei is an equivalence relation

on E and dM = d. Furthermore, DM is an ultrametric space if and only if⋂
i∈I Ei = ΔE := {(x,x) : x ∈ E}.

The congruences of an algebra form an important class of equivalence

relations; they can be studied in terms of ultrametric spaces (see Section

11.8 for an example). If we suppose that our distributivity condition holds,

which is for example the case if the set of values is a finite distributive lattice,

the study of these ultrametric spaces fits into the analysis of metric spaces

over a Heyting algebra. This case was particularly studied in [75] and more

recently in [2, 19, 77].

11.3.2 Graphs and digraphs

A binary relation on a set E is a subset E of E×E, the set of ordered

pairs (x,y) of elements of E. The inverse of E is the binary relation E −1 :=
{(x,y) : (y,x) ∈ E }. The diagonal of E is the set ΔE = {(x,x) : x ∈ E}. A

directed graph G is a pair (E,E ), where E is a binary relation on E. We say

that G is reflexive if E is reflexive, that is, if E contains the diagonal ΔE ; G
is said to be oriented if E is antisymmetric, that is, (x,y) and (y,x) cannot be
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in E simultaneously except if x = y. If E is symmetric, that is in the case that

E = E −1, we identify it with a subset of pairs of E and we say that the graph

is undirected. If G := (E,E ) and G′ := (E ′,E ′) are two directed graphs, a

homomorphism from G to G′ is a map h : E → E ′ such that (h(x),h(y))∈ E ′
whenever (x,y) ∈ E , for every (x,y) ∈ E×E.

In the sequel, all graphs we consider will be reflexive. Hence, graph-

homomorphisms can send edges or arcs on loops. We refer to [18] for the

terminology on graphs.

11.3.2.1 Reflexive graphs

Let H be the complete lattice consisting of three elements such that

“0 < 1
2 < 1”.

0

1
2

1

FIGURE 11.1: The ordered monoid H .

The monoid operation is defined by x⊕ y = min{x+ y,1} and the invo-

lution is the identity.

Every symmetric reflexive graph G := (E,E ) is a metric space over H . The

distance d : E×E −→H is defined by:

1. d(x,y) = 1 if (x,y) /∈ E ;

2. d(x,y) = 1
2 if (x,y) ∈ E and x �= y;

3. d(x,y) = 0 if x = y.

Conversely, every metric space E := (E,d) over H can be viewed as a

symmetric reflexive graph; the vertices are the elements of E and the set of

edges E (including the loops) is defined as follows:

(x,y) ∈ E ⇐⇒ d(x,y)≤ 1

2
.

Nonexpansive maps correspond to graph-homomorphisms (provided that

edges are sent to edges or loops).
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The distance dH on the Heyting algebra takes on the value 1
2 on the

pairs (x,y)∈ {(0, 1
2 ),(

1
2 ,0),(

1
2 ,1),(1,

1
2 )}, the value 1 on the pairs (0,1) and

(1,0), and the 0 on the diagonal. The corresponding graph GH is the path

P3 on three vertices with 1
2 as a middle point.

11.3.2.2 Reflexive digraphs

Let H be the complete lattice consisting of five elements {0, 1
2 ,+,−,1},

represented below:

0

1

+ −

1
2

FIGURE 11.2: The ordered monoid H .

The monoid operation is defined by{
x⊕ y = 1 if x,y≥ 1

2 ;

x⊕ y = max(x,y) otherwise.

The involution exchanges + and − and fixes 0, 1
2 and 1.

If G := (E,E ) is a reflexive directed graph, the application d : E×E −→H
defined by

1. d(x,y) = 1 if (x,y) /∈ E ∪E −1;

2. d(x,y) = + if (x,y) ∈ E \E −1;

3. d(x,y) =− if (x,y) ∈ E −1\E ;
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4. d(x,y) = 1
2 if (x,y) ∈ E

⋂
E −1\ΔE ;

5. d(x,y) = 0 if (x,y) ∈ ΔE ,

is a distance on E.

Conversely, every metric space (E,d) over H can be viewed as a reflexive

digraph; the vertices are the elements of E and the set of arcs E is defined

as follows:

(x,y) ∈ E ⇐⇒ d(x,y)≤+.

11.3.2.3 The graphic distance

A graph P is a path if we can enumerate the vertices in a non-repetitive

sequence (xi)i∈I , where either I = {0,1, ...,n}, I = N, or I = Z, in such a

way(xi,x j) forms an edge if and only if | j− i| ≤ 1; the path P is said to

be finite if I = {0,1, ...,n} and in this case n is its length, whereas P is

said to beinfinite if I = N, and doubly infinite if I = Z. If G := (V,E ) is

an (undirected) graph, the graphic distance is the map dG : V ×V −→ N∪
{+∞}, for which dG(x,y) is the length of the shortest path connecting x
to y (if there is a such a path) and +∞ otherwise. This is a distance on

H := (N∪{+∞},⊕), where ⊕ is the ordinary sum. The distance on H
defined by means of Formula (11.8) is the graphic distance associated with

the graph GH , made of a one-way infinite path and an isolated vertex. Not

every metric space over H comes from a graph. Still, with the fact that GH

embeds isometrically into an infinite product of finite paths, it follows from

Theorem 11.1 that every graph embeds into a product of finite paths, a result

due to Nowakowski-Rival [71] and Quilliot [80].

11.3.2.4 The zigzag distance

A reflexive zigzag is a reflexive graph L whose symmetric hull is a path.

If L := (L,L ) is a finite reflexive oriented zigzag, we may enumerate the

vertices in a non-repeating sequence v0 := x, . . . ,vn := y and to this enumer-

ation we may associate the finite sequence ev(L) := α0 · · ·αi · · ·αn−1 of +
and −, where αi := + if (vi,vi+1) ∈L and αi := − if (vi+1,vi) ∈L . We

call such a sequence a word over the alphabet Λ := {+,−}. If the path has

just one vertex, the corresponding word is the empty word, that we denote

by �. Conversely, to a finite word u := α0 · · ·αi · · ·αn−1 over Λ we may as-

sociate the reflexive oriented zigzag Lu := ({0, . . .n},Lu) with end-points

0 and n (where n is the length | u | of u) such that

Lu = {(i, i+1) : αi =+}∪{(i+1, i) : αi =−}∪Δ{0,...,n}.
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FIGURE 11.3: A reflexive oriented zigzag.
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FIGURE 11.4: A reflexive directed zigzag.

Let G := (E,E ) be a reflexive directed graph. For each pair (x,y) ∈
E×E, the zigzag distance from x to y is the set dG(x,y) of words u such that

there is a nonexpansive map h from Lu into G, which sends 0 to x and | u |
to y.

Because of the reflexivity of G, every word obtained from a word be-

longing to dG(x,y) by inserting letters into it, will also be into dG(x,y). This

leads to the following discussion.

Let Λ∗ be collection of words over the alphabet Λ := {+,−}. Extend

the involution on Λ to Λ∗ by setting � := � and u0 · · ·un−1 := un−1 · · ·u0,

for every word in Λ∗. Order Λ∗ by the subword ordering, denoted by ≤ and

defined in the following way: If u := α1α2 . . .αm,v := β1β2 . . .βn ∈ Λ∗ set:

u≤ v if and only if α j = βi j for all j = 1, . . .m, with some 1≤ j1 < .. . jm≤ n.
(11.12)

Let F(Λ∗) be the set of final segments of Λ∗. A final segment of Λ∗ is a

subset F of Λ∗ such that u ∈ F and u ≤ v implies v ∈ F . Setting X := {u :

u ∈ X} for a set X of words, we observe that X belongs to F(Λ∗). Order

F(Λ∗) by the reverse of the inclusion, denote its least element by 0 (observe
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that this is Λ∗, the final segment generated by the empty word), set uv for

the concatenation of two words u,v ∈ Λ∗ and X ⊕Y for the concatenation

XY := {uv : u ∈ X ,v ∈ Y}. Then, it is easy to see that HΛ := (F(Λ∗),⊕,⊇
,0,−) is an involutive Heyting algebra. This leads us to the consideration of

distances and metric spaces over HΛ.
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L

G

FIGURE 11.5: A morphism from an oriented zigzag L into a directed graph

G.

There are two simple and crucial facts in the consideration of the zigzag

distance (see [47]).

Lemma 11.1. A map from a reflexive directed graph G into another is a
graph-homomorphism, iff it is nonexpansive.

Lemma 11.2. The distance d of a metric space E := (E,d) over HΛ is the
zigzag distance of a reflexive directed graph G := (E,E ) iff it satisfies the
following property: for all x,y,z ∈ E, u,v ∈ Λ∗, uv ∈ d(x,y) implies u ∈
d(x,z) and v ∈ d(z,y) for some z ∈ E. When this condition holds, (x,y) ∈ E
iff + ∈ d(x,y).

On account of Lemma 11.2, the various metric spaces mentioned in the

introduction (injective, absolute retracts, etc.) are graphs equipped with the

zigzag distance; in particular, the distance dHΛ defined on HΛ is the zigzag
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distance of some graph, say GHΛ . According to Theorem 11.1, every graph

embeds isometrically into some power of GHΛ . This graph is countably in-

finite (this follows from Higman’s theorem on words [41]) but it is not easy

to describe. From the study of hyperconvexity (see Section 11.4.2) it follows

that it embeds isometrically (w.r.t. the zigzag distance) into a product of its

restrictions to principal initial segments of HΛ. Hence every graph isomet-

rically embeds into a product of these finite graphs. The latter fact leads to

a fairly precise description of absolute retracts in the category of reflexive

directed graphs (see [55]).

The notion of zigzag distance is due to Quilliot [80, 81]. He considered

reflexive directed graphs, not necessarily oriented and, in defining the dis-

tance, considered only oriented paths. The consideration of the set of values

of the distance, namely HΛ, is in [76]. A general study is presented in [47];

some developments appear in [85] and [55].

11.3.3 Ordered sets

Let H be the following structure. The domain is the set {0,+,−,1}.
The order is 0 ≤ +,− ≤ 1, with + incomparable to −; the involution

exchanges + and − and fixes 0 and 1; the operation ⊕ is defined by

p⊕q := p∨q for every p,q ∈V . As it is easy to check, H is an involutive

Heyting algebra. If (E,d) is metric space over H , then Pd :=(E,δ+), where

δ+ := {(x,y) : d(x,y)≤+}, is an ordered set. Conversely, if P := (E,≤) is

an ordered set, then the map d : E×E →H defined by d(x,y) := 0 if x = y,

d(x,y) :=+ if x < y, d(x,y) :=− if y < x and d(x,y) := 1 if x and y are in-

comparable, is a distance over H . Clearly, if E := (E,d) and E′ := (E ′,d′)
are two metric spaces over H , a map f : E → E ′ is nonexpansive from E
into E′ iff it is order-preserving as a map from Pd into Pd′ . Depending on

the value of their radius, v ∈H , a metric space over H has four types of

balls: singletons, corresponding to v = 0, the full space, corresponding to

v = 1, the principal final segments, ↑ x := {y ∈ E : x≤ y}, corresponding to

balls B(x,+), and principal initial segments, ↓ x := {y ∈ E : y ≤ x}, corre-

sponding to balls B(x,−). The set H can be equipped with the distance dH

given by formula (11.8). The corresponding poset is the four element lattice

{−,0,1,+}, with 0 <−,+< 1. The retracts of powers of this lattice are all

complete lattices.
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0

1

+−

FIGURE 11.6: The ordered monoid H .

The fact, due to Birkhoff, that every poset embeds into a power of the

two-element chain 2 := {0,1} is the translation in terms of posets of Theo-

rem 11.1.

11.3.4 The fence distance on posets

If we view an ordered set as a directed graph, we may associate its zigzag

distance to it. In this case, the reflexive oriented zizags defined at the begin-

ing of Subsubsection 11.3.2.4 reduce to fences. Indeed, a fence is a poset

whose comparability graph is a path. For example, a two-element chain is a

fence. Each larger fence has two orientations, for example on the three ver-

tices path, these orientations yield the
∨

and the
∧

. The
∨

is the 3-element

poset consisting of 0,+,−, with 0 <+,− and + incomparable to −. The
∧

is its dual. More generally, for each integer n, there are two fences of length

n: the up-fence and the down-fence. The first one starts with x0 < x1 > ...,
the second with x0 > x1 < ... For n := 2 one gets

∧
and

∨
respectively.
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FIGURE 11.7: Up-fence and Down-fence.

Let P := (E,≤) be a poset. If two vertices x and y are connected in the

comparability graph of P, one may map some fence into P by an order-

preserving map sending the extremities of the fence onto x and y. One can

then define the distance dP(x,y) between x and y as the pair (n,m) of in-

tegers such that n (resp. m), is the shortest length of an up-fence (resp. a

down fence), whose extremities can be mapped onto x and y. If x and y are

not connected in the comparability graph of P, one sets dP(x,y) = +∞. For

example, if x < y then dP(x,y) = (1,2). This distance is defined in [68], an

alternative definition is in [47].

Let H := {(n,m) ∈ (N\{0})2 : |n−m| ≤ 1}∪{(0,0),+∞}\{(1,1)},
the pairs being ordered componentwise and +∞ being at the top. The in-

volution transforms (n,m) into (m,n). The sum (n,m)⊕ (n′,m′) is (n⊕
n′,m⊕m′) where n⊕ n′ is n+ n′ − 1 if n is odd, or n+ n′ otherwise. With

this operation, H forms a Heyting algebra. If P := (E,≤) is a poset then

dP : E ×E →H is a distance over H . According to Theorem 11.1, this

Heyting algebra has a metric structure H and every metric space over H
embeds isometrically into a power of H. It turns out that H is the metric

space associated to a poset PH (to see this, set x≤ y if x = y or 1 is the first

component of dH (x,y)). This poset is represented below. Hence every poset

embeds isometrically into a power of PH . From the study of hyperconvex-

ity in Section 11.4.2 it follows that this poset embeds isometrically into a

product of fences, hence every poset embeds isometrically into a retract of

fences ([80]). For more, see Nevermann-Rival, 1985 and Jawhari-al 1986.
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FIGURE 11.8: The ordered monoid H .
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FIGURE 11.9: The poset PH .
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11.3.5 Transitions systems

The zigzag distance is a special case of distance defined on transition

systems. Indeed, it M is a transition system on an alphabet Λ, we may define

the distance dM(x,y) from a state x to a state y as the language accepted by

the automaton Ax,y := (M,{x},{y}), whose initial and final states are x y,

respectively. Once the alphabet is equipped with an involution, this distance

takes values in a Heyting algebra in which the neutral element is no longer

the least element and satisfies conditions (11.1) in the introduction. As it

turns out, if we view a reflexive graph as a transition system of a special

form, the zigzag distance is the distance on that transition system. Next, we

present the details of this claim.

Let Λ be a set. Consider Λ as an alphabet whose members are letters
and extend the above discussion for two-letter alphabets to Λ. We write a

word α with a mere juxtaposition of its letters as α = a0 . . .an−1, where ai
are letters from Λ for 0 ≤ i≤ n−1. The integer n is the length of the word

α; it is denoted by |α|. Hence we identify letters with words of length 1. We

denote the empty word by �, which is the unique word of length zero, by

�. The concatenation of two word α := a0 · · ·an−1 and β := b0 · · ·bm−1 is

the word αβ := a0 · · ·an−1b0 · · ·bm−1. We denote by Λ∗ the set of all words

on the alphabet Λ. Once equipped with the concatenation of words, Λ∗ is

a monoid, whose neutral element is the empty word, in fact Λ∗ is the free
monoid on Λ. A language is any subset X of Λ∗. We denote by℘(Λ∗) the

set of languages. We will use capital letters for languages. If X ,Y ∈℘(Λ∗)
the concatenation of X and Y is the set XY := {αβ : α ∈ X ,β ∈Y} (and we

will use Xy and xY instead of X{y} and {x}Y ). This operation extends the

concatenation operation on Λ∗; with it, the set ℘(Λ∗) is a monoid whose

neutral element is the set {�}.
Ordered by inclusion, this is a (join) lattice ordered monoid. Indeed,

concatenation distributes over arbitrary unions, namely:

(
⋃
i∈I

Xi)Y =
⋃
i∈I

XiY.

But concatenation does not distribute over intersections (for a simple ex-

ample, let Λ := {a,b,c}, I := {1,2}, X1 := {ab}, X2 := {a}, Y := {c,bc},
then /0 = (X1 ∩X2)Y �= X1Y ∩X2Y = {abc}). Ordered by the reverse of the

inclusion, the monoid ℘(Λ∗) becomes a Heyting algebra (ordered by in-

clusion, however, it is not), in the sense that it satisfies the distributivity

condition (11.5). If − is an involution on Λ, it extends to an involution on

Λ∗, by setting � := �, and α = an−1 . . .a0 if α = a0 . . .an−1. This invo-

lution reverses the concatenation of words. Extended to ℘(Λ∗) by setting

X := {α : α ∈ X}, it reverses the concatenation of languages and preserves

the inclusion order on languages. The set ℘(Λ∗), with the concatenation
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of languages as a monoid operation, the reverse of the inclusion as order

and the extension of the involution, is a Heyting algebra. But in this Heyting

algebra, the neutral element (namely {�}), is not the least element.

We suppose from now on that the alphabet Λ is ordered.

We order Λ∗ with the Higman ordering [41] that is, if α and β are two

elements in Λ∗ such α := a0 · · ·an−1 and β := b0 · · ·bm−1 then α ≤ β if there

is an injective and increasing map h from {0, ...,n−1} to {0, ...,m−1} such

that for each i, 0 ≤ i ≤ n− 1, we have ai ≤ bh(i). Then Λ∗ is an ordered

monoid with respect to the concatenation of words. A final segment of Λ∗ is

any subset F ⊆ Λ∗ such that α ≤ β ,α ∈ F implies β ∈ F . Initial segments

are defined dually.

Let F(Λ∗) be the collection of final segments of Λ∗. The set F(Λ∗) is

stable with respect to the concatenation of languages: if X ,Y ∈ F(Λ∗), then

XY ∈ F(Λ∗) (indeed, if u,v,w ∈ Λ∗ with uv ≤ w, then w = u′v′ with u ≤ u′
and v ≤ v′). Clearly, the neutral element is Λ∗. The set F(Λ∗) ordered by

inclusion is a complete lattice (the join is the union, the meet is the inter-

section). Concatenation distributes over unions. If we order F(Λ∗) by the

reverse of the inclusion, denote X ≤Y instead of X ⊇Y , and set 1 := Λ∗, we

have the exact generalization obtained for a two-letter alphabet.

Lemma 11.3. The set HΛ := (F(Λ∗),⊕,⊇,1,−), where⊕ denotes the con-
catenation of languages, is a Heyting algebra and 1 is its least element.

In contrast to the case of the power set, in F(Λ∗) concatenation dis-

tributes over intersections:

Lemma 11.4. (
⋂
i∈I

Xi)Y =
⋂
i∈I

XiY for all final segments Xi and Y of Λ∗.

Proof. The inclusion (
⋂
i∈I

Xi)Y ⊆ ⋂
i∈I

XiY is obvious. For the proof of the re-

verse inclusion, let z ∈ ⋂
i∈I

XiY. For every i ∈ I there are xi ∈ Xi and yi ∈ Y

such that z = xiyi. Let y be the shortest suffix of z such that y = yi0 for some

i0 ∈ I and let x ∈ Λ∗ such that z = xy. We claim that x ∈ ⋂
i∈I

Xi. Indeed, let

j ∈ I. We have z = x jy j and z = xi0yi0 . By the minimality of yi0 , we have

x j ≤ xi0 = x, hence x ∈ Xj since Xj is a final segment of Λ∗. This proves our

claim. Since z = xy, z ∈ (
⋂
i∈I

Xi)Y , as required.

We refer to [86] for the standard terminology on transition systems. A

transition system on the alphabet Λ is a pair M := (Q, T ), where T ⊆ Q×
Λ×Q. The elements of Q are called states and those of T are referred to as

transitions. Let M := (Q,T ) and M′ := (Q′,T ′) be two transition systems

on the alphabet Λ. A map f : Q−→ Q′ is a morphism of transition systems

if for every transition (p,α,q) ∈ T , we have ( f (p),α, f (q)) ∈ T ′. When
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f is bijective and f−1 is a morphism from M′ to M, we say that f is an

isomorphism.

An automaton A on the alphabet Λ consists of a transition system

M := (Q,T ) together with two subsets I, F of Q called the sets of initial
and final states, respectively. We denote the automaton as a triple (M, I,F).
A path in the automaton A := (M, I,F) is a sequence c := (ei)i<n of

consecutive transitions, that is, of transitions ei := (qi,ai,qi+1). The word

α := a0 · · ·an−1 is the label of the path, the state q0 is its origin and the state

qn is its end. For each state q in Q, we define a unique null path of length 0

with origin and end at q. Its label is the empty word �. A path is successful
if its origin is in I and its end is in F . Finally, a word α on the alphabet Λ
is accepted by the automaton A if it is the label of some successful path.

The language accepted by the automaton A , denoted by LA , is the set of

all words accepted by A . Let A := (M, I,F) and A ′ := (M′, I′,F ′) be two

automata. A morphism from A to A ′ is a map f : Q −→ Q′ satisfying the

following two conditions:

1. f is a morphism from M to M′;

2. f (I) ⊆ I′ and f (F)⊆ F ′.

If, moreover, f is bijective, f (I) = I′, f (F) = F ′ and f−1 is also a morphism

from A ′ to A , we say that f is an isomorphism and that the two automata

A and A ′ are isomorphic.

To any metric space E := (E,d) over HΛ := F(Λ∗), we may asso-

ciate the transition system M := (E,T ) having E as set of states and

T := {(x,a,y) : a ∈ d (x,y)∩Λ} as its set of transitions. Notice that such

a transition system has the following properties: For all x,y ∈ E and every

a,b ∈ Λ with b≥ a,

1) (x,a,x) ∈ T ;

2) (x,a,y) ∈ T implies (y,a,x) ∈ T ;

3) (x,a,y) ∈ T implies (x,b,y) ∈ T.
We say that a transition system satisfying the above properties is reflexive
and involutive (cf. [85], [55]). Clearly if M :=(Q,T ) is such a transition sys-

tem, the map dM : Q×Q−→HΛ, where dM (x,y) is the language accepted

by the automaton (M,{x} ,{y}), is a distance. We have the following:

Lemma 11.5. Let E := (E,d) be a metric space over HΛ := F(Λ∗). The
following properties are equivalent:

1. The map d is of the form dM for some reflexive and involutive transi-
tion system M := (E,T );

2. For all α,β ∈ Λ∗ and x, y ∈ E, if αβ ∈ d (x,y), then there is some
z ∈ E such that α ∈ d (x,z) and β ∈ d (z,y).
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Lemma 11.6. Let Mi := (Qi,Ti)(i = 1,2) be two reflexive and involutive
transition systems. A map f : Q1 −→ Q2 is a morphism from M1 to M2 if
only if f is a nonexpansive map from (Q1,dM1

) to (Q2,dM2
).

From Lemma 11.6, the category of reflexive and involutive transition

systems with the morphisms defined above can be identified with a subcat-

egory of the category whose objects are the metric spaces, with the nonex-

pansive maps as morphisms.

As is the case with directed graphs, Lemma 11.5 ensures that the vari-

ous metric spaces mentioned in the introduction (injective, absolute retracts,

etc.) come from transition systems. In particular, the distance dHΛ defined

on HΛ is the distance of some transition system, say MHΛ . According to

Theorem 11.1, every reflexive, involutive transition system embeds isomet-

rically into some power of MHΛ . As in the case of graphs, this transition

system is countably infinite (for more, see [55, 56, 57]).

11.4 A categorical approach of generalized metric spaces
Let C be a category, with objects, say P, Q , ... and morphisms f , g,....

We say that the object P is a retract of the object Q and we write P � Q
if there are morphisms f : P −→ Q and g : Q −→ P such that g ◦ f = idP,

where idP is the identity map on P.

We illustrate this definition with two examples:

1. The objects of the category are the posets and the morphisms are the

order-preserving maps (i.e. the maps f such that x≤ y implies f (x)≤
f (y)).

P

�

�

�

Q

�

�

�

�

�

�

FIGURE 11.10: P is retract of Q.

2. The objects of the category are all reflexive graphs (which are the

undirected graphs with a loop at every vertex, or, equivalently, the

reflexive and symmetric binary relations) and the morphisms are all

edge-preserving maps (note that an edge joining two vertices can be

mapped to a loop).
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G

K

FIGURE 11.11: G is retract of K.

The central question about retractions is to decide, for two given objects

P and Q, whether or not P is a retract of Q. A related question is to de-

cide whether a given morphism f : P −→ Q has a companion g : Q −→ P
such that g ◦ f = idP; if this is the case, f is said to be coretraction and its

companion is a retraction. In fact, these questions are still largely unsolved,

even for very simple categories like those of posets and graphs. Neverthlesss

a fruitful approach to a solution of said problems is as follows:

Identify a general property, say (p), that the coretractions enjoy in the cat-

egory considered; for example, in the above category of posets each core-

traction is an order-embeding (that is a map f such that x ≤ y is equivalent

to f (x) ≤ f (y)). Now looking at (p) as an approximation of the coretrac-

tions, characterize the objects P for which this approximation is accurate,

that is, the objects for which every morphism of source P and with prop-

erty (p), is a coretraction. These objects are commonly called the absolute
retracts (briefly AR) (a terminology not perfectly adequate, since these ob-

jects depend upon the approximation, but commonly used in the field), we

will rather say AR with respect to the approximation (p). In the category of

metric spaces with nonexpansive mappings these observations lead to the

following definitions:

11.4.1 Retraction, coretraction, absolute retract

Let E and F be two metric spaces over a Heyting algebra H . The space

E is said to be a retract of F, denoted as E�F, if there are nonexpansive

maps f : E→ F and g : F→ E such that g ◦ f = idE. If this is the case, f
is said to be coretraction and g a retraction. If E is a subspace of F, then

E is a retract of F if there is a nonexpansive map from F to E such that

g(x) = x for all x ∈ E, where E is the domain of E. We can easily see that

every coretraction is an isometry. A metric space is an absolute retract if it

is a retract of every isometric extension.
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11.4.1.1 Injectivity and extension property

A metric space E is said to be injective if for all spaces F and E′, each

nonexpansive mapping f : F→ E, and every isometry g : F→ E′ there is a

nonexpansive mapping h : E′ → E such that h◦g = f .

A metric space E has the one-point extension property if for every space

E′ := (E ′,d′) and every subset F of E ′, every nonexpansive map f : E′�F →E
extends, for some x′ ∈ E ′ \F (if any), to a nonexpansive map from E′�F∪{x′}
into E.

Using Zorn’s lemma one has immediately:

Lemma 11.7. A metric space E := (E,d) over H is injective iff it has the
one-point extension property.

Proof. Trivially, injectivity implies the one-point extension property. For

the converse, let E′ := (E ′d′), F ⊆ E ′ and f : F → E be a nonexpansive

map from E′�F into E. Consider the collection of all nonexpansive maps

f ′ : F ′ → E that extend f . This collection of maps is inductive. From Zorn’s

lemma, it has a maximal element g. The domain F ′′ of g is E ′, otherwise,

pick x ∈ E ′ \E ′′; since E has the one-point extension, g would extend to x, a

contradiction.

As it will become apparent in Theorem 11.3, we may replace the phrase ”for

some x′” by ”every x′” in the definition above.

11.4.1.2 Hyperconvexity

We say that a space E is hyperconvex if the intersection of every family

of balls (BE(xi,ri))i∈I is non-empty whenever d(xi,x j)≤ ri⊕ r j for all i, j ∈
I.

Hyperconvexity is equivalent to the conjunction of the following condi-

tions:

1) Convexity : for all x,y ∈ E and p,q ∈H such that d(x,y) ≤ p⊕q, there

is z ∈ E such that d(x,z)≤ p and d(z,y)≤ q.

2) The 2-Helly property, also called the 2-ball intersection property : The

intersection of every set (or, equivalently, of every family) of balls is non-

empty, provided that their pairwise intersections are all non-empty.

11.4.2 A description of hyperconvex metric spaces

As it is easy to see, the collection of hyperconvex spaces over a Heyt-

ing algebra is stable under (non-empty) products and retracts. Thus, in the

terminology of Duffus and Rival [30], this collection forms a variety. A less

trivial property is this:
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Theorem 11.2. [47] The metric space H := (H ,dH ) is hyperconvex.

Proof. We briefly sketch the proof; the interested reader might refer to [47]

for details.

We show first that H is convex. Indeed, let x,y ∈ H and p,q ∈H sat-

isfy dH (x,y) ≤ p⊕ q. Set z := (x⊕ p)∨ (y⊕ q). It is easy to verify that

dH (x,z)≤ p and that dH (z,y)≤ q.

Next we tackle the fact that balls in H are intervals of H . More pre-

cisely, any ball BH(x,r) of H is the closed interval [q, p] := {y ∈H : q ≤
y≤ r} where q :=

∧
BH(x,r) and p :=

∨
BH(x,r).

To conclude the proof, we observe that the closed intervals of a complete

lattice have the 2-Helly property.

In what follows, we recall the notions of metric forms .

Let E := (E,d) be a metric space over a Heyting algebra H . A weak
metric form is any map f : E −→H satisfying

d(x,y)≤ f (x)⊕ f (y), (11.13)

for all x,y ∈ E.
This is a metric form if it is a weak metric form satisfying:

f (x)≤ d(x,y)⊕ f (y) (11.14)

for all x,y ∈ E.
We denote by C (E), (L (E)), the set of weak metric forms, (metric

forms) over E. We equip these sets by the distance induced by the sup-

distance on the power HE .

Lemma 11.8. Let E := (E,d) be a metric space over H , and f : E →H .
The following properties are equivalent:

(i) f is a metric form;

(ii) f satisfies
dH (d(x,y), f (x))≤ f (y) (11.15)

for all x,y ∈ E;

(iii) In the product space HE equipped with the ”sup” distance,
d(δ̄ (y), f ) = f (y) for all y ∈ E;

(iv) There is some isometric extension E′ := (E ′,d′) of E and u ∈ E ′ such
that f (y) = d′(y,u) for all y ∈ E.
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Proof. (i)⇒ (ii) According to the definition of the distance dH , conditions

(11.13) and (11.14) amount to the inequality dH (d(x,y), f (x))≤ f (y), that

is precisely condition (11.15).

(ii)⇒ (iii)
According to formula (11.9):

d(δ̄ (y), f ) =
∨
x∈E

dH (d(x,y), f (x))≤ f (y).

Taking x = y, we get d(x,y) = 0, and dH (0, f (y)) = f (y), thus the supre-

mum in the inequality above is f (y).
(iii)⇒ (iv) Since δ̄ is an isometric embedding from E into HE , it suf-

fices to take E′ := HE and u := f .

(iv)⇒ (i) This impliction is obvious from the triangle inequality.

Corollary 11.1. The image of δ̄ is included into L (E), hence, δ̄ is an isom-
etry from E into L (E).

Proof. Let u∈ E. We check that δ̄ (u) is a weak metric form for every u∈ E.

For that we show that inequality (11.15) holds with f := δ̄ (u). Indeed, we

have dH (d(x,y), δ̄ (u)(x)) = dH (d(x,y),d(x,u))≤ d(y,u) := δ̄ (u)(y).

We recall Lemma II-4.4 of [47].

Lemma 11.9. Let E := (E,d) be a metric space over H . For every weak
metric form f , the map fM : E →H defined by fM(x) :=

∧{d(x,y)⊕ f (y) :

y ∈ E} is the largest metric form below f and
⋂{B(x, f (x)) : x ∈ E} =⋂{B(x, fM(x)) : x ∈ E}. Furthermore, the map f → fM is a retraction from

C (E) onto L (E).

Proof. The verification is straightforward (the difficulty lies in finding the

precise formulation).

One proves first that if g ∈ L (E) and g ≤ f then g ≤ fM . Indeed, it

follows from the fact that g is a metric form, that for every x,y ∈ E, one

has g(x)≤ d(x,y)⊕g(y) and since g≤ f , one has g(y)≤ f (y). Thus g(x)≤
d(x,y)⊕ f (y), from which it follows that g(x)≤∧{d(x,y)⊕ f (y) : y∈E}=:

fM(x).
Next, one proves that fM is a metric form, that is, that d(x,y)≤ fM(x)⊕

fM(y) and that fM(x) ≤ d(x,y)⊕ fM(y) for all x,y ∈ E. The right hand

side of the first inequality fM(x)⊕ fM(y) is equal to
∧{d(x,z)⊕ f (z) : z ∈

E}⊕∧{ f (t)⊕d(t,y) : t ∈ E}. Using the distributivity condition on H , this

yields
∧{d(x,z)⊕ f (z)⊕ f (t)⊕d(t,y) : z, t ∈ E}. From the triangle inequal-

ity and the fact that f (z)⊕ f (t) ≥ d(z, t), one gets d(x,z)⊕ f (z)⊕ f (t)⊕
d(t,y) ≥ d(x,y), hence fM(x)⊕ fM(y) ≥ d(x,y). For the second inequality,

one observes that d(x,z)⊕ f (z)≤ d(x,y)⊕d(y,z)⊕ f (z) for all z∈ E, hence
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fM(x) :=
∧{d(x,z)⊕ f (z) : z ∈ E} ≤ ∧{d(x,y)⊕ d(y,z)⊕ f (z) : z ∈ E} =

d(x,y)⊕{∧d(y,z)⊕ f (z) : z ∈ E}=: fM(z).
These two facts yield that fM is the largest metric form below f .

For the equality of the intersections of balls, note that the inclusion⋂{B(x, fM(x)) : x ∈ E} ⊆ ⋂{B(x, f (x)) : x ∈ E} follows immediately from

the fact that fM ≤ f . For the reverse inclusion, pick t ∈ ⋂{B(x, f (x)) :

x ∈ E}, that is δ (t)(x) = d(x, t) ≤ f (x), for every x ∈ E or, equivalently,

δ (t) ≤ f . Since δ (t) is a metric form and fM is the largest metric form be-

low f , it is clear that δ (t)≤ fM , which yields t ∈⋂{B(x, fM(x)) : x ∈ E}.
Finally, one checks that the map f → fM is a retraction from C (E) onto

L (E).
Since fM is the largest metric form below f , this map fixes L (E)

pointwise. To conclude, it suffices to prove that this map is nonexpan-

sive, i.e., that d( fM,gM) ≤ d( f ,g), for all f ,g ∈ C (E). Let f ,g ∈ C (E).
By definition of the distance on C (E), one has f (y) ≤ g(y)⊕ d( f ,g),
hence d(x,y)⊕ f (y) ≤ d(x,y)⊕ g(y)⊕ d( f ,g), for all x,y ∈ E. This yields

fM(x) :=
∧{d(x,y)⊕ f (y) : y ∈ E} ≤∧{d(x,y)⊕g(y)⊕d( f ,g) : y ∈ E}=∧{d(x,y)⊕ g(y) : y ∈ E} ⊕ d( f ,g) =: gM(x)⊕ d( f ,g), that is fM(x) ≤

gM(x)⊕ d( f ,g). The same argument shows that gM(x) ≤ fM(x)⊕ d( f ,g).
Consequently, dH ( fM(x),gM(x)) ≤ d( f ,g). Since the latter holds for ev-

ery x ∈ E, it follows that d( fM,gM)≤ d( f ,g), as required. The proof of the

lemma is then complete.

Lemma 11.9 was obtained independently by Katětov [58]. It plays a key

role in the description of hyperconvex spaces, of injective envelopes and of

hole-preserving maps.

We next state the following hyperconvexity test.

Proposition 11.1. Let E := (E,d) be a metric space over a Heyting algebra
H . The following properties are equivalent:

(i) E is hyperconvex;

(ii) For every weak metric form f : E → H , the intersection of balls
B(x, f (x)) is non-empty;

(iii) For every isometric extension E′
:= (E ′,d′) of E and every u ∈ E

′ \E,
there is a retraction of E′�E∪{u} onto E.

Proof. (iii)⇒ (ii) Let f : E →H be a weak metric form and fM be the

largest metric form below f given by Lemma 11.9. According to Corol-

lary 11.1, δ̄ is an isometry of E into L (E). Thus, setting E′ := L (E),
we may view E′ as an isometric extension of E. Since fM is a metric

form, Lemma 11.8 ensures that dE′(δ̄ (y), fM) = fM(y) for all y ∈ E. Thus
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fM ∈ ⋂x∈E BE′(δ̄ (x), fM(x)). Any retraction of E′�δ̄ (E)∪{u} onto E will send

fM into
⋂

x∈E BE(x, fM(x)). According to Lemma 11.9, this intersection is⋂
x∈E BE(x, f (x)).
(ii)⇒ (i) Let

(
B(xi,ri)

)
i∈I be a family of balls of E such that

d(xi,x j)≤ ri⊕ r j (11.16)

for all i, j ∈ I.

Define f : E →H as follows: for each x ∈ E, set f (x) =
∧

i∈I,xi=x

ri. The

distributivity condition on H ensures that

d(x,y)≤ f (x)⊕ f (y),

for all x,y ∈ E. Hence f is a weak metric form. It follows that:

/0 �=
⋂
x∈E

B
(
x, f (x)

)⊆⋂
i∈I

B(xi,ri).

(i)⇒ (iii) Let E′ := (E ′,d′) be an isometric extension of E and u ∈ E ′ \E.

For all x,y ∈ E, we have d(x,y) = d′(x,y) ≤ d′(x,u)⊕ d′(u,y). Since E is

hyperconvex, the set
⋂
x∈E

B
(

x,d′(x,u)
)

is non-empty. Let u′ be an arbitrary

element of this intersection. The map g : E ∪{u} → E defined by g(x) = x,

for every x ∈ E with g(u) = u′ is a retraction.

We conclude this paragraph with a characterization theorem:

Theorem 11.3. [47] Let H be an Heyting algebra. Then, for a metric
space E := (E,d) over H , the following conditions are equivalent:

(i) E is an absolute retract;

(ii) E is injective;

(iii) E is hyperconvex;

(iv) E is a retract of a power of H .

Proof. We sketch the proof and refer the reader to [47] for the details.

(i)⇒ (iv) According to theorem 11.1, the space E isometrically embeds

into a power of H := (H ,dH ); since it is an absolute retract, it must be a

retract of such a power.

(iv)⇒ (iii) The space H is hyperconvex and the class of hyperconvex

spaces is closed under products and retracts, i.e, in our terminology, it con-

stitutes a variety.

(iii) ⇒ (ii) We prove that the one-point extension holds. Let E′ :=
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(E ′,d′), A′ ⊆ E ′, x′ ∈ E ′ \A′ and f : A → E be a nonexpansive map. Let

B := (BE( f (a′),d′(a′,x′)))a′∈A′ . Since f is nonexpansive, this family of

balls satisfies the hyperconvexity condition, namely

d( f (a′), f (a′′))≤ d′(a′,a′′)≤ d′(a′,x′)⊕d′(a′′,x′).

Hence, B has non-empty intersection. Pick an element x of this intersection

and set f (x′) := x.

(ii)⇒ (i) Trivial.

11.4.3 Injective envelope

A nonexpansive map f : E−→E′ is said to be essential if for every non-

expansive map g : E′ −→ E′′, the map g ◦ f is an isometry if and only if g
is isometry (note that, in particular, f is an isometry). An essential nonex-

pansive map f from E into an injective metric space E′ over H is called an

injective envelope of E. We will rather say that E′ is an injective envelope of

E. Indeed, this says in substance that an injective envelope of a metric space

E is a minimal injective metric space over H , containing E isometrically.

The construction of injective envelopes is based upon the notion of min-
imal metric form, a notion borrowed to Isbell [45] that he calls extremal.

Let us recall that a (weak) metric form is minimal if there is no other

(weak) metric form g satisfying g ≤ f (that is g(x) ≤ f (x) for all x ∈ E).

Since from Lemma 11.9, every weak metric form majorizes a metric form,

the two notions of minimality coincide. Due to the distributivity condi-

tion and to the completeness of H , a straightforward application of Zorn’s

lemma yields the existence of a minimal metric form , below any given weak

metric form.

As shown in [47], (cf. also theorem 2.2 of [55]):

Theorem 11.4. Every generalized metric space E over a Heyting algebra
H has an injective envelope, namely the space N (E) of minimal metric
forms.

Proof. Let E be a metric space over the Heyting algebra H .

One proves first that the space L (E) of metric forms is an absolute retract.

This means that every isometric extension E′ := (E ′,d′) can be retracted

on L (E). This is almost immediate. For every u ∈ E ′, let ϕu : E → H
be defined by setting ϕu(x) := d′(δ̄ (x),u). Since the map δ̄ : E → H
is an isometry, ϕu is a metric form. To conclude, one proves that the

map ϕ : u → ϕu is a retraction of E′ on L (E). First, ϕ is the identity

on L (E). Indeed, if f ∈ L (E), then, according to (iii) of Lemma 11.8,

ϕ f (x) = d(δ̄ (x), f ) = f (x) for every x ∈ E, hence ϕ f = f . Next, ϕ is non-

expansive, that is, d(ϕu,ϕv) ≤ d′(u,v) for all u,v ∈ E′. It follows from the
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triangle inequality that

d′(δ̄ (x),u)≤ d′(δ̄ (x),v)⊕d′(v,u) (11.17)

and that

d′(δ̄ (x),v)≤ d′(δ̄ (x),u)⊕d′(u,v), (11.18)

for every x ∈ E.

These inequalities translate to ϕu(x)≤ ϕv(x)⊕d′(u,v) and ϕv(x)≤ ϕu(x)⊕
d′(u,v), that is, to dH (ϕu(x),ϕv(x)) ≤ d′(u,v). This yields d(ϕu,ϕv) :=∨

x∈E dH (ϕu(x),ϕv(x))≤ d′(u,v), as required.

Next, one proves that the space N (E) of minimal metric forms over

E is hyperconvex. According to (iii) of Proposition 11.1, this amounts to

proving that for every isometric extension E′ := (E ′,d′) of N (E) and every

u ∈ E ′ \N (E), there is a retraction of E′�N (E)∪{u} onto N (E). This re-

duces to the fact that the intersection of balls A :=
⋂

f∈N (E) BE′( f ,d′( f ,u))
contains some element ũ of N (E). Let ϕu : E→H be defined by setting

ϕu(x) := d′(δ̄ (x),u). As illustrated above, this is a metric form on E. Let

ũ be a minimal metric form on E below u. Let φ : δ̄ (E)∪ {u} → L (E)
be the nonexpansive map sending u to ũ and leaving every other ele-

ment fixed. Since L (E) is an absolute retract, it is injective, hence φ ex-

tends to a nonexpansive map Φ from E′ into L (E). This map is the iden-

tity on N (E). Indeed, let f ∈ N (E). Since Φ is nonexpansive, we have

d(δ̄ (x),Φ( f )) ≤ d′(δ̄ (x), f ), for every x ∈ E; in other words, Φ( f )(x) ≤
f (x). Since f is minimal, it necessarily follows that Φ( f ) = f . This yields

that d( f , ũ) = d(Φ( f ),Φ(u) ≤ d′( f ,u), for every f ∈N (E). This proves

that ũ belongs to A. Hence N (E) is hyperconvex. By virtue of Theorem

11.3 it is injective. If E′ is an injective space between E and N (E), then the

identity map id on E extends to a nonexpansive map Φ from N (E) into E′.
As above, for every f ∈N (E), we have Φ( f )≤ f , hence Φ( f ) = f , since f
is minimal. It follows that E′ =N (E). This proves that N (E) is a minimal

injective metric space containing E.

A particularly useful fact is the following:

Lemma 11.10. If a nonexpansive map from an injective envelope of E :=
(E,d) into itself fixes E pointwise, then it is the identity map.

Note that two injective envelopes of E are isomorphic via the identity

over E. This justifies the use of the expression ”the” injective envelope of E.

A particular injective envelope of E, as N (E), will be called a representa-
tion of the injective envelope.

We describe the injective envelopes of two-element metric spaces (see

[55] for the proofs of the statements below). Let H be a Heyting algebra
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and v∈H . Let E := ({x,y},d) be a two-element metric space over H such

that d(x,y) = v. We denote the injective envelope of E by ˜Nv. We give two

representations of it. Let Cv be the set of all pairs (u1,u2) ∈H 2 such that

v≤ u1⊕u2. Equip this set with the ordering induced by the product ordering

on H 2 and denote the set of its minimal elements by Nv. Each element

of Nv defines a minimal metric form. We equip H 2 with the supremum

distance, namely:

dH 2

(
(u1,u2),(u′1,u

′
2)
)

:= dH (u1,u′1)∨dH (u2,u′2).

Let v ∈H and set Sv := {(v−β) : β ∈H }; equipped with the ordering

induced by the ordering over H this is a complete lattice. According to

lemma 2.5 of [55], (x1,x2) ∈Nv iff x1 = (v− x2) and x2 = (−x1⊕ v). This

yields a correspondence between Nv and Sv.

Lemma 11.11. (Lemma 2.3, Proposition 2.7 of [55]) The space Nv
equipped with the supremum distance and the set Sv equipped with the
distance induced by the distance over H are injective envelopes of the two-
element metric spaces {(0,v),(v,0)} and {0,v} respectively. These spaces
are isometric to the injective envelope of E := ({x,y},d), where d(x,y) = v.

We refer the reader to[55] and in [57] for further details, in particular, for

a presentation in terms of Galois correspondences. An illustration is given

in Section 11.7.

11.4.4 Hole-preserving maps

In this Subsection, we introduce the notions of hole-preserving maps. A

large part of our account is borrowed from subsection II-4 of [47].

Let E and F be two metric spaces over a Heyting algebra H . If f is a

nonexpansive map from F into E and h is a map from F into H , the image
of h is the map h f from E into H defined by h f (x) :

∧{h(y) : f (y) = x}
(in particular h f (x) = 1 where 1 is the largest element of H for every x
not in the range of f ). A hole of F is any map h : F →H such that the

intersection of balls B(x,h(y)) of F (x ∈ F) is empty. If h is a hole of F,

the map f preserves h provided that h f is a hole of E. The map f is hole-
preserving if the image of every hole is a hole.

As it is easy to see, coretractions preserve holes and hole-preserving

maps are isometries. One may then use hole-preserving maps as approxi-

mations of coretractions

We recall the following result of [47].

Theorem 11.5. On an involutive Heyting algebra H , the absolute retracts
and the injectives wit respect to hole-preserving maps coincide. The class of

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Geometric aspects of generalized metric spaces 351

these objects is closed under products and retractions. Moreover, every met-
ric space embeds into some member of this class by some hole-preserving
map.

The proof relies on the introduction of the replete space H (E) of a

generalized metric space E. The space E is an absolute retract (with respect

to the hole-preserving maps), or not, depending on whether or not E is a

retract of H (E). Furthermore, with the existence of the replete space one

may prove the transferability of hole-preserving maps (Lemma II-4.6 of

[47]), that is the fact that for every nonexpansive map f : F→ E, and every

hole-preserving map g : F→ G, there are a hole-preserving map g′ : G→
E′ and a nonexpansive map f ′ : G → E′ such that g′ ◦ f = f ′ ◦ g. Indeed,

one may choose E′ = H (E). As it is well known among categorists, the

transferability property implies that absolute retracts and injective objects

coincide [63].

In the sequel we define the replete space and present the proof of the

transferability property.

Proofs are borrowed from [47].

F G F G

E E ′ E H (E)

g

f f ′

g

f f̄

g′ δ̄

FIGURE 11.12: Transferability.

Let H (E) be the subset of L (E) consisting of metric forms h such that

the intersection of balls B(x,h(x)) for x ∈ E is nonempty. If H is a Heyting

algebra, we may equip H (E) with the distance induced by the sup-distance

on HE . We call it the replete space.

We recall the following two results [47].

Lemma 11.12. (see Lemma II-4.3 p. 195) If E := (E,d) is a metric space
over a Heyting algebra H , then δ : E → H (E), defined by δ (x)(y) :=
d(y,x) is a hole-preserving map from E into H (E). Furthermore H (E) is
an absolute retract with respect to the hole-preserving maps (i.e., this is a
retract of every extension by a hole-preserving map).

Proof. The proof of this lemma is almost immediate. We just indicate that

H (E) is an absolute retract. Let E′ := (E ′,d′) be a hole-preserving ex-

tension of H (E). For u ∈ E′, set ũ : E →H , defined by setting ũ(x) :=
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d′(δ (x),u), for all x ∈ E. By construction, ũ is a metric form; moreover,

it belongs to H (E). To conclude, observe that the map u → ũ is a retrac-

tion.

Lemma 11.13. (see Lemma II-4.5 p. 196) If E := (E,d) and F are two
metric spaces over a Heyting algebra H , then every nonexpansive map
f : F→ E extends to a nonexpansive map H f : H (F)→H (E).

Proof. The proof relies on Lemma 11.9. We define f̃ : HF → HE by set-

ting f̃ (h) := h f , where h f is the map from E into H defined by h f (x) :=∧{h(y) : f (y) = x}). One checks first that this map is nonexpansive and next

that if h∈C (F), then f̃ (h)∈C (E). For k ∈C (E), let kM be the largest met-

ric form below k given by Lemma 11.9. Let r be the retraction from C (E)
onto L (E) defined by setting r(k) := kM , for all k ∈C (E). The composition

r ◦ f̃ : C (F)→L (E) is nonexpansive, for it is a composition of nonexpan-

sive maps. It extends f once F and E are identified with their images δ (F))
and δ (E), that is (r ◦ f̃ )(δ (y)) = δ ( f (y)) for all y ∈ F . Indeed, observe first

that f̃ (δ (y))( f (y))= 0. Next, since by definition of r, r( f̃ (δ (y)))≤ f̃ (δ (y)),
one has (r ◦ f̃ )(δ (y)( f (y)) = 0. Since r ◦ f̃ (δ (y)) is a metric form, it neces-

sarily follows that r ◦ f̃ (δ (y)) = δ ( f (y)) (indeed, d(δ (y),r ◦ f̃ (δ (y))) = 0).

Finally, by Lemma 11.9, we have
⋂{B(y,v(y)) : y ∈ F} = ⋂{B(x, f̃ (v)(x) :

x ∈ E}=⋂{B(x,(r ◦ f̃ )(v)(x) : x ∈ E}. Consequently, r ◦ f̃ (v) ∈H (E) for

every v ∈ H (F). The restriction H f of r ◦ f̃ to H (F) has the required

property.

Lemma 11.14. (see Lemma II-4.6 p. 197) The hole-preserving maps are
transferable.

Proof. Let f : F → E be a nonexpansive map and g : F → G be a hole-

preserving map. As above, denote by δ the map from E into H (E) defined

by δ (x) := d(z,x) for z ∈ E. We define f̂ : G→H (E) in such a way that

f̂ ◦g = δ ◦ f .

For this purpose, define a nonexpansive map Ig : G → H as fol-

lows. For every u ∈ G, set û : F → H , given by û(y) := (d(g(y),u)
and set J (u) := û. We check successively that the map û belongs to

H (F) (indeed, u ∈ ⋂y∈F B(g(y),d(g(y),u)); since g is hole-preserving,⋂
y∈F B(y,d(g(y),u)) =

⋂
y∈F B(y, û(y)) is non empty), hence Ig maps G

into H . Next, Ig is nonexpansive and finally Ig(g(y)) = δ (y), for ev-

ery y ∈ F (since g is hole-preserving, it is an isometry, thus Ig(g(y))(z) =
d(g(z),g(x)) = d(z,y) = δ (y)(z), for every z∈ F). Set f̂ :=H f ◦Jg, where

H f is given by Lemma 11.13. Then f̂ ◦g= δ ◦ f . This proves that f is trans-

ferable.

 EBSCOhost - printed on 2/10/2023 4:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



Geometric aspects of generalized metric spaces 353

11.4.4.1 Hole-preserving maps and one-local retracts

In his study of the fixed point property, Khamsi [60] introduced the no-

tion of one-local retracts. This notion, defined for ordinary metric spaces,

extends to metric spaces over a Heyting algebra. In fact, it extends to met-

ric spaces over an ordered monoid equipped with an involution and, more

generally, to binary structures that are reflexive and involutive in the sense

of [61]. One-local retracts play a crucial role in the fixed point theorem pre-

sented in the next Section. In the sequel, unless otherwise stated, we do not

suppose that H satisfies the distributivity condition.

Let E := (E,d) be a metric space over H and A be a subset of E. We say

that E�A := (A,d�A) is a one-local retract of E if it is a retract of E�A∪{x} :=
(A∪{x},d�A∪{x}) (via the identity map) for every x ∈ E.

Lemma 11.15. Let E := (E,d) be a metric space over H and A be a sub-
set of E. Then E�A is a one-local retract of E iff for every family of balls(

B(xi,ri)
)

i∈I
, with xi ∈ A, ri ∈H for any i ∈ I, such that

⋂
i∈I

BE(xi,ri) is

not empty, the intersection
⋂
i∈I

BE(xi,ri)∩A is not empty.

Proof. Suppose that E�A is a one-local retract of E. Let I be a set. Consider

a family of balls
(

BE(xi,ri)
)

i∈I
, with xi ∈ A, ri ∈ H for any i ∈ I, such

that B =
⋂
i∈I

BE(xi,ri) is not empty. Let a ∈ B and let h be a retraction from

E�A∪{a} onto E�A. Set a′ := h(a). Since h fixes A and retracts a onto a′,
a′ ∈ BE(xi,ri), hence a′ ∈ ⋂

i∈I
BE(xi,ri)∩ A. Conversely, ones proves that

E�A is a one-local retract provided that the intersection property of balls is

satisfied. Let a ∈ E \A and define

B := {B(u,r) : u ∈ A, a ∈ B(u,r) and r ∈H }.

Set B :=
⋂

B. Then a ∈ B, which implies B �= /0. According to the ball’s

property, B∩A �= /0. Let a′ ∈ B∩A. The map h : A∩{a} → A, which is the

identity on A and satisfies h(a) = a′, is a retraction of E�A∪{a}.

Lemma 11.16. Let E and E′ be two metric spaces over H . A nonexpansive
map f from E into E′ is hole-preserving iff f is an isometry of E onto its
image and this image is a one-local retract of E′.

The routine proof is based on Lemma 11.15. We omit it.
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11.5 Fixed point property
A central result in the category of ordinary metric spaces endowed with

nonexpansive maps is the Sine-Soardi’s fixed point theorem [88, 89]. This

theorem asserts that every nonexpansive map on a bounded, hyperconvex

metric space has a fixed point.

This result was generalized in two directions. First, Penot [73] intro-

duced the notion of space endowed with a compact normal structure, ex-

tending the notion of bounded hyperconvex space. With this notion, Kirk’s

theorem [62] amounted to the fact that every nonexpansive map on a space

endowed with a compact normal structure has a fixed point. The existence

of a common fixed point for a commuting set of nonexpansive maps was

considered by several authors (see [20, 28, 65]). In 1986, Baillon [5], ex-

tending the theorem of Sine-Soardi, proved that every set of nonexpansive

maps which commute on a bounded hyperconvex space, has a common fixed

point. Khamsi [60] extended this result to metric spaces endowed with a

compact and normal structure. In [47] the theorem of Sine-Soardi was ex-

tended to bounded hyperconvex spaces over a Heyting algebra, for an appro-

priate notion of boundedness. The possible extension to commuting sets of

nonexpansive maps remained open (only the case of a countable set was set-

tled). In [61] the notion of compact normal structure for metric spaces over

Heyting algebras (and more generally for systems of binary relations) was

introduced and Khamsi’s theorem was extended to families of nonexpan-

sive maps which commute on a space endowed with a compact and normal

structure.

Here we present first the generalization of the theorem of Sine-Soardi

to bounded hyperconvex spaces over a Heyting algebra. Next, we introduce

the notion of compact and normal structure and provide a brief description

of the result by Khamsi-Pouzet.

In the sequel we consider generalized metric spaces whose set of values

H does not necessarily satisfy the distributivity condition. For these spaces,

we define the notions of diameter, radius and of Chebyshev center.

Let E := (E,d) be a metric space over H . We denote by BE the set of

balls of E. Let A be a nonempty subset of E and r ∈H . The r-center is the

set CE(A,r) := {x ∈ E : A⊆ B(x,r)}. Set CovE(A) :=
⋂{B ∈BE : A⊆ B}.

The diameter of A is
∨{d(x,y) : x,y ∈ A}. The radius r(A) is

∧{v ∈H :

A ⊆ B(x,v) for some x ∈ A}. A subset A of E is said to be equally centered
if δ (A) = r(A).
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11.5.1 The case of hyperconvex spaces

We suppose that H is a Heyting algebra. We define the notion of bound-

edness.

An element v ∈ V is called self-dual if v = v, it is said to be accessible
if there is some r ∈ V with v �≤ r and v ≤ r⊕ r and inaccessible otherwise.

Clearly, 0 is inaccessible; every inaccessible element v is self-dual (other-

wise, v is incomparable to v and we may choose r := v).

Definition 11.1. We say that a space (E,d) is bounded if 0 is the only inac-

cessible element below δ (E).

Lemma 11.17. Let A be an intersection of balls of (E,d). If δ (A) is inaces-
sible then A is equally centered; the converse holds if (E,d) is hyperconvex.

Proof. Suppose that v := δ (A) is inaccessible. Let r ∈ H such that A ⊆
B(x,r). This yields d(a,b) ≤ d(a,x)⊕ d(x,b) ≤ r⊕ r for every a,b ∈ A.

Thus v ≤ r⊕ r. Since v is inacessible, v ≤ r, hence v ≤ r(A). Thus v =
r(A). Suppose that A is equally centered. Let r be such that v ≤ r⊕ r. The

balls B(x,r) (x ∈ A) intersect pairwise and intersect each of the balls whose

intersection is A; since (E,d) is hyperconvex, these balls have a nonempty

intersection. Any member a of this intersection is in A and satisfies A ⊆
B(a,r). Since A is equally centered r(A) = v. Hence, v ≤ r. Since v is self-

dual, v≤ r. Thus v is inaccessible.

Lemma 11.18. Let E be a non empty hyperconvex metric space over a Heyt-
ing algebra H and f : E−→E be a nonexpansive mapping. Then there is a
non empty hyperconvex subspace S of E such that f (S)⊆ S, and its diameter
δ (S) = ∨{d(x,y) : x,y ∈ S} is inaccessible.

For a proof see Lemma III-1.1 of [47]. The next Lemma follows imme-

diately.

Lemma 11.19. Let E be a non empty hyperconvex space. Then there is a
nonempty, hyperconvex, invariant subspace S, whose diameter is inaccessi-
ble.

Theorem 11.6. Let E be a nonempty, bounded, hyperconvex space. Then
every nonexpansive map f has a fixed point. Moreover, the restriction of E
to the set Fix( f ) of its fixed points is hyperconvex

Proof. Since 0 is the unique inaccessible element below the diameter δ (E),
the diameter of the non empty set S given by lemma 11.18 is 0, thus S must

consist of a single element, fixed by f . Let {BF(xi,ri) : i ∈ I} be a family

of balls of Fix( f ) with d(xi,x j) ≤ ri + r j for all i, j ∈ I. Since E is hyper-

convex, then T = ∩{BF(xi,ri) : i ∈ I} �= /0 and, as any intersection of balls
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of an hyperconvex space, E�T is hyperconvex and clearly, bounded. Now,

since f is nonexpansive and the xi are fixed by f , we have f (T ) ⊆ T . The

f.p.p applied to T yields the existence of x ∈ Fix( f )∩ T . Thus, the above

intersection is non empty and Fix( f ) is hyperconvex.

Corollary 11.2. Let E be a nonempty bounded hyperconvex space. Among
the subspaces of E, the retracts of E are the sets of fixed points of the non-
expansive maps from E into itself.

Proof. If A is a retract of E, then A = Fix(g) for every retraction. Con-

versely, it follows from the above result that the set Fix( f ) of fixed points of

a map f : E −→E is hyperconvex. But hyperconvex set are absolute retracts,

thus Fix( f ) is a retract.

11.5.2 Compact and normal structure

We next extend the notion of compact and normal structure defined by

Penot, [72, 73], for ordinary metric spaces. We consider generalized met-

ric spaces over an involutive ordered algebra H which, unless otherwise

stated, does not necessarily satisfy the distributivity condition. We say that

a metric space E has a compact structure if the collection of balls of E has

the finite intersection property (f.i.p.) and it has a normal structure if for ev-

ery intersection of balls A, either δ (A) = 0 or r(A) < δ (A). This condition

amounts to the fact that the only equally centered intersections of balls are

singletons.

Lemma 11.17in conjunction with the fact that the 2-Helly property im-

plies that the collection of balls has the finite intersection property, yields:

Corollary 11.3. If a generalized metric space E := (E,d) over a Heyting
algebra is bounded and hyperconvex, then it has a compact normal struc-
ture.

We denote by B̂E, the collection of intersections of balls and by B̂∗
E the

set of the non empty ones.

Lemma 11.20. Let E := (E,d) be metric space over H . Let f be a non-
expansive map E. If E has a compact structure, then every member of B̂∗

E
preserved by f contains a minimal one. If A ∈ B̂∗

E is a minimal member
preserved by f , then CovE( f (A)) = A and A is equally centered.

This lemma allows us to deduce Penot’s formulation [72, 73] of Kirk’s

fixed point theorem [62] under our formulation.

Theorem 11.7. Let E := (E,d) be a generalized metric space over H . As-
sume that E has a compact normal structure. Then every nonexpansive map
f on E has a fixed point.
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An easy consequence of Theorem 11.7 is the following beautiful struc-

tural result:

Proposition 11.2. Let E := (E,d) be a a metric space over H with a com-
pact normal structure. Let f be an endomorphism E. Then the restriction
E�Fix( f ), to the set Fix( f ) of fixed points of f , has a compact normal struc-
ture.

Proposition 11.2 will allow us to prove that a finite set of commuting

endomorphism maps has a common fixed point and that the restriction of E
to the set of common fixed points has a compact normal structure. Obviously

one would like to know whether such a conclusion still holds for infinitely

many maps. In order to settle this point, one has to carefully investigate the

structure of the set of fixed points of an endomorphism. This will rely on the

properties of one-local-retracts.

The next result is the most important one, as it shows that a one-local

retract enjoys the same properties as those of the larger set.

Lemma 11.21. Let E := (E,d) be a metric space over H , X ⊆ E be a
nonempty subset. Assume that E�X is a one-local retract of E. If E has both
a compact and a normal structure, then E�X also has a normal compact
structure.

Proposition 11.3. Let E := (E,d) be a metric space over H . Assume that
E has a compact normal structure. Then for every nonexpansive map f of
E, the set of fixed points Fix( f ) of f is a nonempty one-local retract of E.
Thus E�Fix( f ) has a compact normal structure.

Proof. Let I be a set. Consider a family of balls
(

BE(xi,ri)
)

i∈I
, with xi ∈

Fix( f ) and ri ∈ E for i ∈ I, such that A =
⋂
i∈I

BE(xi,ri) is not empty. Since

each xi belongs to Fix( f ), f preserves A. Since A is an intersection of balls,

Lemma 11.20 ensures that A contains an intersection of balls A′ which is

minimal, preserved by f , and equally centered. From the normality of E,

A′ must consist of a single element, i.e., A′ consists of a fixed point of f .

Consequently, A∩Fix( f ) �= /0. According to Lemma 11.15, Fix( f ) is a one-

local retract.

In [61], Khamsi and Pouzet proved the following:

Theorem 11.8. If a generalized metric space E := (E,d) has a compact
normal structure, then every commuting family F of nonexpansive self
maps has a common fixed point. Furthermore, the restriction of E to the
set Fix(F ) of common fixed points of F , is a one-local retract of (E,d).
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The fact that a space has a compact structure is an infinistic property (any

finite metric space enjoys it). A description of generalized metric spaces

with a compact normal structure eludes us, even in the case of ordinary

metric spaces.

From Theorem 11.8, we obtain:

Corollary 11.4. If a generalized metric space E is bounded and hypercon-
vex, then every commuting family of nonexpansive self maps has a common
fixed point.

In order to prove the existence of a common fixed point for a family of

nonexpansive mappings in the context of hyperconvex metric spaces, Bail-

lon [5] discovered an intersection property satisfied by this class of metric

spaces. In order to prove an analogue to Baillon’s conclusion in our setting,

we will need the following lemma.

Lemma 11.22. Let E := (E,d) be a metric space over H , endowed with a
compact normal structure. Let κ be an infinite cardinal. For every ordinal
α , α < κ , let Bα and Eα be subsets of E such that:

1. Bα ⊇ Bα+1 and Eα ⊇ Eα+1, for every α < κ;

2.
⋂

γ<α
Bγ = Bα and

⋂
γ<α

Eγ = Eα , for every limit ordinal α < κ;

3. Eα := E�Eα is a one-local retract of E and Bα is a nonempty intersec-
tion of balls of Eα .

Then Bκ :=
⋂

α<κ
Bα �= /0.

The proof, which is beyond the scope of this Chapter, can be found in

[61].

From Lemma 11.22 it follows:

Theorem 11.9. Let E := (E,d) be a generalized metric space. Assume that
E has a compact normal structure. Then, the intersection of every down-
directed family F of one-local retracts, is a nonempty one-local retract.

Proof. Let E := (E,d) be a generalized metric space. Assume that E has

a compact normal structure. Let P be the set, ordered by inclusion, of

nonempty subsets A of E such that E�A is a one-local retract of E. As is

the case for any ordered set, every down-directed subset of P has an infi-

mum iff every totally ordered subset of P has an infimum (see [23] Propo-

sition 5.9 p 33). We claim that P is closed under the intersection of every

chain of its members. Indeed, we argue by induction on the size of totally
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ordered families of one-local retracts of E. First we may suppose that E has

more than one element. Next, we may suppose that these families are dually

well ordered by induction. Thus, given an infinite cardinal κ , let (E�Eα )α<κ
be a descending sequence of one-local retracts of E. From the induction

hypothesis, we may suppose that the restriction of E to E ′α :=
⋂

γ<α
Eγ is a

one-local retract of E, for each limit ordinal α < κ . Hence, we may sup-

pose that Eα :=
⋂

γ<α
Eγ , for each limit ordinal α < κ . Since Eα := E�Eα

is a one-local retract of E and E has a normal structure, Eα has a nor-

mal structure (Lemma 11.21). Hence, either Eα is a singleton, say xα , or

rEα (Eα)\δEα (Eα) �= /0. In both cases, Eα is a ball of Eα . Hence in the first

case, Eα = BEα (xα ,r�Eα ), whereas in second case, Eα ⊆ BEα (x,r), for some

x ∈ Eα ,r ∈ rEα (Eα) \ δEα (Eα). Thus, Lemma 11.22 applies with Bα = Eα
and yields that Eκ is nonempty. Let us prove that Eκ := E�Eκ is a one-local

retract of E. We apply Lemma 11.15. Let (BE(xi,ri))i∈I ,xi ∈ Eκ , ri ∈H be

a family of balls with nonempty intersection. Since Eα is a one-local retract

of E, the intersection Bα := Eα
⋂ ⋂

i∈I
BE(xi,ri) is nonempty for every α < κ .

Now, Lemma 11.22 applied to the sequence (Eα ,Bα)α<κ yields the fact that

Bκ := Eκ
⋂ ⋂

i∈I
BE(xi,ri) is nonempty. According to Lemma 11.15, E�Bκ is a

one-local retract of E.

The desired fixed point result follows from the preceding Theorem.

Proof of Theorem 11.8. For a subset F ′ of F , let Fix(F ′) be the set of

fixed points of F ′. Using Proposition 11.3, we conclude that E�Fix(F ′) is a

nonempty one-local retract of E, for every finite subset F ′ of F . We show

this by induction on the number n of elements of F ′. If n = 1, the claim

follows from Proposition 11.3. Let n ≥ 1. Suppose that the property holds

for every subset F ′′ of F ′ such that |F ′′|< n. Let f ∈F ′ and F ′′ :=F ′ \
{ f}. From the inductive hypothesis, E�Fix(F ′′) is a one-local retract of E.

Thus, according to lemma 11.21, E�Fix(F ′′) has a compact normal structure.

Now since f commutes with every member g of F ′′, f preserves Fix(F ′′).
Indeed, if u ∈ Fix(F ′′), we have g( f (u)) = f (g(u)) = f (u), that is f (u) ∈
Fix(F ′′). Thus f induces an endomorphism f ′′ of E�Fix(F ′′). According to

Proposition 11.3, the restriction of E�Fix(F ′′) to Fix( f ′′), that is E�Fix(F ′), is a

nonempty one-local retract of E�Fix(F ′′). Since the notion of one-local retract

is transitive,s it follows that E�Fix(F ′) is a nonempty one-local retract of E.

Let P := {Fix(F ′′) : |F ′′| < ℵ0} and P :=
⋂

P . According to theorem

11.9, E�P is a one-local retract of E. Since P = Fix(F ), the conclusion

follows. �
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11.6 Illustrations

11.6.1 The case of ordinary metric and ultrametric spaces

Let H := R+ ∪{+∞}. The inaccessible elements are 0 and +∞. ence,

if one deals with ordinary metric spaces, unbounded spaces in the above

sense are those which are unbounded in the ordinary sense. If one deals with

ordinary metric spaces, infinite products may yield spaces for which +∞ is

attained. On may replace powers with �∞-spaces. In this case, the notions

of absolute retract, injective, hyperconvex and retract of some �∞
R(I)-space

coincide. This is the result of Aronzajn and Panitchpakdi [3]. The existence

of an injective envelope was proved by Isbell [45]. The injective envelope of

a 2-element, ordinary metric space is a closed interval [0,v] of the real line

with the distance given by the absolute value; injective envelopes of ordinary

metric spaces consisting of at most five elements have been described [33].

For some applications, see [22, 33].

The existence of a fixed point for a nonexpansive map on a bounded

hyperconvex space is the famous result of Sine and Soardi. When Theorem

11.8 is applied to a bounded, hyperconvex metric space, Baillon’s fixed point

theorem is obtained. The application of Theorem 11.8 to a metric space with

a compact normal structure yields a result obtained by Khamsi [60]. For a

survey about hyperconvex spaces we refer the reader to [32].

The results presented about injective spaces apply to ultrametric spaces

over R+ ∪{+∞}. A characterization similar to the one just presented was

obtained in [12]; a description of the injective envelope is also given there.

The paper [75] contains a study of ultrametric spaces over a complete lat-

tice satisfying our distributivity condition, also called an op-frame. Metric

spaces over op-frames are studied in [2]. Ultrametric spaces over a lattice

and their connection with collections of equivalence relations are also stud-

ied in [19].

11.6.2 The case of ordered sets

Set H := {−,0,1,+} with 0 <−,+< 1. The retracts of powers of this

lattice are all complete lattices. This is confirmed by the following fact.

Proposition 11.4. A metric space (E,d) over H is hyperconvex iff the cor-
responding poset is a complete lattice.

Since 0 is the only inacessible element of H , Theorem 11.4 applies:
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Every commuting family of order-preserving maps on a complete lattice has
a common fixed point. This is the full version of Tarski’s theorem. Posets

resulting from H -metric spaces with a compact normal structure are a bit

more general than complete lattices, hence Theorem 11.8 on compact nor-

mal structures could yield a bit more than Tarski’s fixed point theorem. As

will be seen below, in the case of one order-preserving map, this is no more

than Abian-Brown’s fixed-point theorem.

Let P := (E,≤) be a poset. We observe first that the f.i.p. property of

the collection of balls BP := {↓ x : x ∈ E}∪ {↑ y : y ∈ E} is an infinistic

condition: it holds for every finite poset. In order to describe it we introduce

the following notions. A pair of subsets (A,B) of E is called a gap of P
if every element of A is dominated by every element of B but there is no

element of E which dominates every element of A and is dominated by every

element of B (cf. [30]). In other words: (
⋂

x∈A B(x,≤))∩ (⋂y∈B B(y,≥)) = /0

while B(x,≤)∩B(y,≥) �= /0 for every x ∈ A,y ∈ B. A subgap of (A,B) is any

pair (A′,B′) with A′ ⊆ A, B′ ⊆ B, which is a gap. The gap (A,B) is finite if A
and B are finite, otherwise it is infinite. Say that an ordered set Q preserves
a gap (A,B) of P, if there is an order-preserving map g of P to Q such that

(g(A),g(B)) is a gap from Q. For further information on the preservation of

gaps, see [69].

Lemma 11.23. Let P := (E,≤) be a poset. Then:

1. P is a complete lattice iff P contains no gap;

2. An order-preserving map f : P→Q preserves all gaps of P iff it pre-
serves all holes of P with values in H \ {0}, iff Q�P is a one-local
retract of Q;

3. BP satisfies the f.i.p. iff every gap of P contains a finite subgap, iff
every hole is finite.

Since the proof is straightforward, it will be omitted. We may note the

similarity of (b) and Lemma 11.16.

From item (c) of Lemma 11.23 it follows that every nonempty chain in a

poset P for which the collection of balls has the f .i.p, has a supremum and

an infimum. Such a poset is said to be chain-complete.

Abian-Brown’s theorem [1] asserts that in a chain-complete poset with a
least or largest element, every order-preserving map has a fixed point. The

fact that the collection of intersections of balls of P has a normal structure

means that every nonempty intersection of balls of P has either a least or a

largest element. Being the intersection of the empty family of balls, P has

either a least element or a largest element. Consequently, if P has a compact

normal structure, we may suppose without loss of generality that it has a
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least element. Since every nonempty chain has a supremum, it follows from

Abian-Brown’s theorem that every order preserving map has a fixed point.

On the other hand, a description of posets with a compact normal struc-

ture is still open. We just observe that retracts of powers of
∨

or retracts of

powers of
∧

have a compact normal structure.

Theorem 11.8 above yields a fixed point theorem for a commuting fam-

ily of order-preserving maps on any retract of a power of
∨

or of a power

of
∧

. But this result says nothing about retracts of products of
∨

and
∧

.

These two posets fit into the category of fences. As we have seen in Sub-

section 11.3.4, every poset embeds isometrically (with respect to the fence

distance) into a product of fences. Fences are hyperconvex, hence the fol-

lowing Theorem follows from Theorem 11.4.

Theorem 11.10. [61, Theorem 4.18] If a poset Q is a retract of a product P
of finite fences of bounded length, every commuting set of order-preserving
maps on Q has a fixed point.

Since every complete lattice is a retract of a power of the two-element

chain, this result contains Tarski’s fixed point theorem.

11.6.3 The case of graphs

Retracts of (undirected) graphs have been considered by various authors,

for reflexive as well as for irreflexive graphs (see [7, 36, 38, 39, 40]. The

existence of the injective envelope of an undirected graph (presented in [47])

is given in [74], a characterization of injective graphs is presented in [8].

To each directed graph we have associated its zigzag distance, yielding

a metric with values in HΛ := F(Λ∗). Metric spaces over HΛ whose dis-

tance is the zigzag distance associated with a reflexive directed graph, were

characterized by Lemma 11.2. The condition stated there is a weak form of

convexity, thus it holds for hyperconvex spaces. Let D := HΛ and GD be

the class of graphs whose zigzag distance belongs to D . With the homomor-

phisms of graphs, this class becomes a category. As a category, GD identifies

with a full subcategory of MD , the category of metric spaces over D , with

the nonexpansive maps as morphisms (see Lemma 11.1).

According to Theorem11.3, one has:

Theorem 11.11. A member E := (E,d) of MD is an absolute retract iff the
distance on E comes from a directed graph and this graph is an absolute
retract in GD , with respect to isometric embedding.

These members of GD are described by the following result:

Theorem 11.12. [47] For a reflexive directed graph G = (E,E ), the fol-
lowing conditions are equivalent
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(i) G is an absolute retract with respect to isometries;

(ii) G is injective with respect to isometries;

(iii) G has the extension property;

(iv) The collection of balls B(x,↑ α)x∈E,α∈Λ∗ has the 2-Helly property;

(v) G is a retract of a power of GHΛ .

Every metric space E over HΛ has an injective envelope; being injec-

tive, its metric comes from a graph. If E comes from a graph, the graph

corresponding to the injective envelope of E is the injective envelope in GD .

For more recent facts about the injective envelope, see [57].

We just mention a simple example of hyperconvex graph.

Lemma 11.24. The metric space associated to any directed zigzag Z has
the extension property. In particular, every nonexpansive map sending two
vertices of a reflexive directed graph G to the extremities of Z, extends to a
graph homorphism from G to Z.

Proof. Let Z be a directed zigzag (with loops). Its symmetric hull (obtained

by deleting the orientation of arcs in Z) is a path. The balls in Z are inter-

vals of that path, and each of these intervals is either finite or the full path.

Hence, every family of balls has the 2-Helly property. Since convexity holds

trivially in this case, Z, as a metric space over HΛ, is hyperconvex, hence

according to Theorem 11.3, it satisfies the extension property.

We refer the reader to [53, 55] for further discussions on this topic.

11.6.4 The case of oriented graphs

The situation of oriented graphs is different from that of the preceding

Section. Oriented graphs cannot be modeled over a Heyting algebra (theo-

rem IV-3.1 of [47] is erroneous), but the absolute retracts in this category can

(this was proved by Bandelt, Saı̈dane and the second author and included in

[85]; see also the forthcoming paper [11]). The appropriate Heyting algebra

is the MacNeille completion of Λ∗, where Λ := {+,−}.
The MacNeille completion of Λ∗ is in some sense the least complete

lattice that extends Λ∗. The definition goes as follows. If X is a subset of Λ∗
ordered by the subword ordering, then

↑X := {β ∈ Λ∗ : α ≤ β for some α ∈ X}
is the final segment generated by X and

↓X := {α ∈ Λ∗ : α ≤ β for some β ∈ X}
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is the initial segment generated by X . For a singleton X = {α}, we omit the

set brackets and call ↑α and ↓α a principal final segment and a principal
initial segment, respectively. We refer to

XΔ :=
⋂
x∈X

↑ x

as the upper cone generated by X , and

X∇ :=
⋂
x∈X

↓ x

is the lower cone generated by X . The pair (Δ,∇) of mappings on the com-

plete lattice of subsets of Λ∗ constitutes a Galois connection. Thus, a set Y
is an upper cone if and only if Y = Y ∇Δ, while a set W is an lower cone

if and only if W = W Δ∇. This Galois connection (Δ,∇) yields the Mac-
Neille completion of Λ∗. This completion is realized as the complete lattice

{W ∇ :W ⊆Λ∗}, ordered by inclusion or alternatively, {Y Δ :Y ⊆Λ∗} ordered

by the reverse inclusion. We choose as completion the set {Y Δ : Y ⊆Λ∗} or-

dered by the reverse inclusion and we denote it by N(Λ∗). This complete

lattice is studied in detail in [10]. We recall the following characterization

of members of the MacNeille completion of Λ∗.

Proposition 11.5. [10] corollary 4.5. A member Z of F(Λ∗) belongs to
N(Λ∗) if and only if it satisfies the following cancellation rule: if u+ v ∈ Z
and u− v ∈ Z then uv ∈ Z.

The concatenation, order and involution defined on F(Λ∗) induce a

Heyting algebra NΛ on N(Λ∗) (see Proposition 2.2 of [10]). Being a Heyting

algebra, NΛ supports a distance dNΛ and this distance is the zigzag distance

of a graph GNΛ . But, it is not true that every oriented graph embeds iso-

metrically into a power of that graph. For example, an oriented cycle cannot

be embedded. The following result characterizes graphs which can be iso-

metrically embedded, via the zigzag distance, into products of reflexive and

oriented zigzags. It is partially stated in Subsection IV-4 of [47], cf. Propo-

sition IV-4.1.

Theorem 11.13. For a directed graph G := (E,E ) equipped with the zigzag
distance, the following properties are equivalent:

(i) G is isometrically embeddable into a product of reflexive and oriented
zigzags;

(ii) G is isometrically embeddable into a power of GNΛ ;

(iii) The values of the zigzag distance between vertices of G belong to NΛ.
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The proof follows along the same lines as the proof of Proposition IV-5.1

p.212 of [47].

We may note that the product can be infinite even if the graph G is finite.

Indeed, if G consists of two vertices x and y with no value on the pair {x,y}
(that is the underlying graph is disconnected), then we need infinitely many

zigzags of arbitrarily long length.

Theorem 11.14. An oriented graph G := (V,E ) is said to be an absolute
retract in the category of oriented graphs, if and only if it is a retract of a
product of oriented zigzags.

The proof will be sketched; see Chapter V of [85] and the forthcom-

ing paper [11] for specific details. We proceed in three steps. Let G be

an absolute retract. It will first be proved that G has no 3-element cycle.

In the second stage it is shown that the zigzag distance between two ver-

tices of G satisfies the cancelation rule. From Proposition 11.5, it belongs to

N(Λ∗); from theorem 11.13, G isometrically embeds into a product of ori-

ented zigzags. Since G is an absolute retract, it is a retract of that product.

As illustrated by the results of Tarski and Sine-Soardi, absolute retracts are

appropriate candidates for the fixed point property. Reflexive graphs with

the fixed point property must be antisymmetric, i.e., oriented. Having de-

scribed absolute retracts among oriented graphs, it is clear from Theorem

11.4 that the bounded ones have the fixed point property. We start with a

characterization of accessible elements of NΛ. The proof is omitted.

Lemma 11.25. Every element v of NΛ \{Λ∗, /0} is accessible.

Theorem 11.15. If a graph G, finite or not, is a retract of a product of
reflexive and directed zigzags of bounded length, then every commuting set
of endomorphisms has a common fixed point.

Proof. We may suppose that G has more than one vertex. The diameter of

G equipped with the zigzag distance belongs to NΛ \ {Λ∗, /0}. According

to Lemma 11.25, it is accessible, hence as a metric space, G is bounded.

Being a retract of a product of hyperconvex metric spaces, it is hyperconvex.

Theorem 11.4 then applies.

The properties of reflexive and involutive transition systems extend al-

most verbatim the properties of directed graphs. They have been extended to

non-necessarily reflexive transition systems ([75], [43, 44]. Instead of pre-

senting these properties, we illustrate their use in the following section.
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11.7 An illustration of the usefulness of the injective enve-
lope

Using the notion of injective envelope, we prove that on an ordered al-

phabet Λ the monoid F◦(Λ∗) := F(Λ∗)�{ /0} is free. This result is presented

in [56].

Theorem 11.16. F◦(Λ∗) is a free monoid.

We recall that a member F of F(Λ∗) is irreducible if it is distinct from

Λ∗ and is not the concatenation of two members of F(Λ∗), distinct of F (note

that with this definition, the empty set is irreducible). The fact that F◦(Λ∗)
is free amounts to the fact that each member decomposes in a unique way

as a concatenation of irreducible elements. Both a synctactical proof and a

geometrically-flavored proof are given in in [56]; only the last one will be

presented here.

We suppose that Λ is equipped with an involution (this is not a restric-

tion: we may choose the identity on Λ as our involution). Then, we consider

metric spaces such that the values of their distances belong to F(Λ∗). The

category of metric spaces over F(Λ∗), with the nonexpansive maps as mor-

phisms, has enough injectives. Furthermore, for every final segment F of

Λ∗, the 2-element metric space E := ({x,y} ,d) such that d(x,y) = F , has an

injective envelope SF .

We define the gluing of two metric spaces by a common vertex. Sup-

pose that two metric spaces E1 := (E1,d1) and E2 := (E2,d2) have only one

common vertex, say r. On the union E1 ∪E2 we may define a distance ex-

tending both d1, d2, setting d(x,y) := di(x,r)⊕d j(r,y) for x∈ Ei,y∈ E j, and

i �= j. If E1 and E2 are arbitrary, we may replace them by isometric copies

with a common vertex. We apply this construction to the injective envelope

of two-element metric spaces. Let v1 and v2 be two elements of a Heyting

algebra and Sv1
,Sv2

be their injective envelopes. Suppose that Sv1
is the

injective envelope of {x1,y1}, with x1 := 0,y1 := v1 and that Sv2
is the injec-

tive envelope of {x2,y2} with x2 := v1 and has no other element in common

with Sv1
. Let Sv1

⊕Sv2
be their gluing. Since the distance from x1 to y2 is

v1⊕ v2, this space embeds isometrically into the injective envelope Sv1⊕v2
.

For some Heyting algebras (and v1, v2 distinct from 1), these two spaces are

isometric (see Figure 11.13 for a geometric interpretation). This is the case

of the Heyting algebra F(Λ∗) (Corollary 4.9, p. 177 of [55]). In terms of this

Heyting algebra, this yields (with self-explanatory notation):

SF1
SF2

∼= SF1F2
for all F1,F2 ∈ F◦(Λ∗). (11.19)
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Say that an injective which is not the gluing of two proper injectives

is irreducible. From (11.19) it follows that an injective of the form SF is

irreducible iff F is irreducible.

In order to prove that the decomposition of a final segment F into

a concatenation of irreducible final segments is unique, we consider the

transition system MF on the alphabet Λ, with transitions (p,a,q) if a ∈
d(p,q), corresponding to the injective envelope SF . The automaton AF :=
(MF ,{x} ,{y}), with x = Λ∗ as initial state and y = F as final state, accepts

F . A transition system yields a directed graph whose arcs are the ordered

pairs (x,y) linked by some transition. Since the transition system MF is re-

flexive and involutive, the corresponding graph GF is undirected and has

a loop at every vertex. For an example, if F = Λ∗, SF is the one-element

metric space and GF reduces to a loop. If F = /0, SF is the two-element

metric space E := ({x,y},d) with d(x,y) = /0 and GF has no edge. The cut

vertices of GF (vertices whose deletion increases the number of connected

components) allow to reconstruct the irreducible components of SF .

Sv1 Sv2

v1 v2

v

�

�

� �

u1 u2

Sv1
Sv2

v1 v2

�

�

� �

u1 u2

�

u1
2

Case 1

Sv1 Sv2

v1 v2

�

�

� �

u1 u2

�
u2

1

Case 2

FIGURE 11.13: Interpretation of the convexity property of a pair (v1,v2).

With the notion of cut vertex and block borrowed from graph theory, we

prove:

Theorem 11.17. Let F be a final segment of Λ∗, distinct from Λ∗. Then F is
irreducible if and only if SF is irreducible, if and only if GF has no cut ver-
tex. If F is not irreducible, the blocks of GF are the vertices of a finite path
C0, . . . ,Cn−1 with n ≥ 2, whose end vertices C0 and Cn−1 contain respec-
tively the initial state x and the final state y of the automaton AF accepting
F. Furthermore, F is the concatenation F0 . . .Fi . . .Fn−1, the automaton AFi
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accepting Fi being isomorphic to (MF � Ci,{xi} ,{xi+1}), where x0 := x,
xn := y and {xi+1}=Ci∩Ci+1 for 0≤ i < n−1.

From this result, the fact that F◦(Λ∗) is free follows easily.

This result does not yield a concrete test for irreducibility. The size of the

injective envelope SF in terms of the length of words generating F can be

a double exponential (see Subsection 4.5 of [56]). But it suggests a similar

result for the minimal automaton recognizing F . In [56], we prove

Theorem 11.18. If A is the minimal deterministic automaton recognizing
a final segment F ∈ F◦(Λ∗), then F is irreducible iff there is no vertex z
distinct from the initial state x and the final state y, which lies on all directed
paths going from x to y.

11.8 Further developments
There are several interesting examples of generalized metric spaces for

which the set of values is not a Heyting algebra.

This is the case for metric spaces over a Boolean algebra (except if the

Boolean algebra is the power set of a set). If B is a Boolean algebra, not

necessarily complete, or not satisfying the distributivity condition, residua-

tion holds (i.e., for every x,y ∈ B, y \ x is the least element r of B such that

x≤ y∨r); hence, one may define a distance d over B: the distance d(p,q) be-

tween two elements p,q of B is the symmetric difference pΔq := p\q∪q\ p.

If B is complete, Theorem 11.1 holds.

Another example is arithmetic in nature. The Chinese remainder theo-

rem can be viewed as a property of balls in a metric space. Indeed, if ai,ri
(i ∈ I) is a family of pairs of integers we may view each congruence class

of ai modulo ri in Z as a (closed) ball B(ai,ri) := {x ∈ Z : d(ai,x) & ri},
for a suitable distance d on Z and an order & on the set of values of the

distance. The Chinese remainder theorem characterizes the situation when

these balls have a nonempty intersection. As we have seen, the Helly prop-

erty and convexity are the keywords to ensure a non-empty intersection of

balls. In our case, Z has a structure of ultrametric space with values in N
provided that N is ordered by the reverse of divisibility, setting n & m if

n is a multiple of m. In this way (N,&) becomes a distributive, complete

lattice, with least element 0 and largest element 1; the join n∨m of n and

m is their largest common divisor. Replacing the addition by the join and

setting d(a,b) := |a−b| for any two elements a,b ∈ Z, we have d(a,b) = 0

iff a = b; d(a,b) = d(b,a) and d(a,b) & d(a,c)∨d(c,b) for all a,b,c ∈ Z.
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With this definition, closed balls in Z are congruence classes of the addi-

tive group (Z,+). In an ordinary metric space V := (V,&), the necessary

condition for the non-emptiness of the intersection of two balls B(ai,ri) and

B(a j,r j) is the convexity property, namely the condition that the distance

between centers is at most the sum of the radii. In this case, the above con-

dition translates into d(ai,a j)& ri∨ r j, i.e. ai and a j are congruent modulo

lcd(ri,r j). The Chinese remainder theorem expresses that the intersection

of finitely many balls B(ai,ri) is non-empty iff this family of balls B(ai,ri)
satisfies the convexity property and the finite 2-Helly property. This prop-

erty does not extend to infinite families: the space Z is not hyperconvex (and

N equipped with the join as a monoid operation is not a Heyting algebra);

we may say that it is finitely hyperconvex.

Metric spaces over (N,&), like Z, are examples of metric spaces over

a join-semilattice V := (V,&) with a 0. They fit into the category of ultra-

metric spaces. If E := (E,d) is such a metric space, set ≡r:= {(x,y) ∈ E :

d(x,y)& r} for each r; this defines an equivalence relation on E. Let Eqv(E)
be the set of equivalence relations on E and set Eqvd(E) := {≡r: r ∈ V}.
Then, it is easy to see that any two members of Eqvd(E) commute and

≡r ◦ ≡s=≡s ◦ ≡r=≡r∨s, for every r,s ∈V , iff (E,d) is convex. If the meet

of every non-empty subset of V exists, then Eqvd(E) is an intersection-

closed subset of Eqv(E). Furthermore, (E,d) is hyperconvex iff Eqvd(E) is

a completely meet-distributive lattice of Eq(E) (Proposition 3.12 of [76]).

A sublattice L of the lattice Eqv(E) of equivalence relations is arithmeti-
cal (see [50]) if it is distributive and pairs of members of L commute with

respect to composition. As is well known (see [50]), arithmetic lattices can

be characterized in terms of the Chinese remainder conditions (expressed

as in the theorem mentionned above). This property amounts to finite hy-

perconvexity, and it yields the one-extension property for maps with finite

domains and the fact that if E is countable, then every partial nonexpansive

map from a finite subset of E, extends to E [49]. The study of maps preserv-

ing congruences, nonexpansive maps in our setting, is a very basic subject

of universal algebra (for a beautiful recent result, see [21]). Some results

about metric spaces over meet-distributive lattices and their nonexpansive

maps were obtained in [75, 77]. The relation with universal algebra (and

arithmetic) suggests the consideration of possible extensions.
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juillet 1983, Lyon.

[47] E. Jawhari, D. Misane, M. Pouzet, Retracts : graphs and ordered sets
from the metric point of view, (I.Rival, ed) Contemporary Mathematics,

Vol 57, (1986), 175-226.

[48] B. Jónsson, Homogeneous universal relational systems, Mathematica

Scandinavica, 8 (1960), 137-142.

[49] K. Kaarli, A new characterization of arithmeticity, Conference on Lat-

tices and Universal Algebra (Szeged, 1998). Algebra Universalis 45
(2001), no. 2-3, 345–347.

[50] K. Kaarli, A.F. Pixley, Polynomial completeness in algebraic systems,

Chapman and Hall/CRC, Boca Raton, FL, 2001. xvi+358 pp.

[51] K. Kaarli, S. Radeleczki, Representation of integral quan-
tales by tolerances, Algebra Universalis 79 (5) (2018),

https://doi.org/10.1007/s00012-018-0484-1

[52] M. Kabil : Enveloppe injective de graphes et de systèmes de transitions
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0 (Ω), 117

L1-norm conservation, 25

L1
loc(R

n,w), 49

Lp, 18, 263

Lp space, 81

Lp-norm, 28, 86

L∞, 20

Lϕ , 264

Lϕ(Ω), 85

Lp(·)(Ω), 82, 86, 87

Mσ , 70

Mσ (Rn,w), 49

NΩ(p), 174

PΩ(x), 171

S′p(Rn,w), 49

S′p(B4r,w), 72

Sp(Ω,w), 52

Sp(Rn,w), 49

T , 323

TpX , 172

V (G), 259, 261, 265, 266, 268, 272,

279, 280, 284, 293

Vρ , 84

W 1,2(Ω,w), 69, 70

W 1,2
0 (Ω,w), 63

W 1,2
loc (Ω,w), 54, 63

W 1,ϕ(Ω), 85, 86

W 1,ϕ
0 (Ω), 101

W 1,p(·)(Ω), 87

W 1,p(B0,w), 50

W 1,p(Ω,w), 48, 71

W 1,p
loc (Ω,w), 48

W 1,ϕ
0 (Ω), 86, 89, 98–101

W 1,p
0 (Ω,w), 48

[h], 196

Δ-accumulation point, 171, 185, 186

Δ-convergent sequence, 171

Δ-limit point, 185

Δ2-condition, 84, 91, 100, 141, 265

F(Λ∗), 323

G, 323

ImS, 196

�p(·), 139

λ -resolvent operator, 182

‖.‖ρ , 84

E, 321

H, 322

H , 320

P(A,μ), 113

ω-Cauchy, 264

ω-bounded, 264

ω-closed, 264

ω-complete, 264

ω-convergence, 264

ω-limit, 264

⊕, 320

∂ϕ(p), 174

379
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ρ , 82

ρ-Lipschitzian, 156

ρ-C̆ebys̆ev center, 153

ρ-ball, 140

ρ-nonexpansive, 156

ρ-normal structure property, 155

ρ-proximinal, 149, 153

τ-closed subset, 260

τ-compact subset, 260

proxλ
ϕ , 171

S̃p(Rn,w), 52

S̃p(Rn,w), 49

2-Helly property, 343, 363

2002-Winter Olympics, 2

Absolute, 219, 222, 227

Absolute polarity, 196

Absolute circle, 196

Absolute retract, 322, 323, 333, 334

Adjacency matrix, 5, 8

Adjoint method, 26

Admisible exponent, 86

Advection, 18

Advection term, 18

Affine geometry, 246

Affine spread, 235

Alexandrov angle, 170

Almost contraction, 269

Alphabet, 323, 324

Ander, J. W., 222

Angle between two curves, 222

Apollonian dual, 228

Apollonius of Tyana, 246

Archimedes of Syracuse, 247

Automaton, 323, 338, 340, 367, 368

Banach contraction principle, 268,

273, 279, 292

Banach contraction principle in

metric spaces endowed

with a partial order, 292

Banach fixed point theorem, 258

Banach space, 278, 298, 302, 304

Banach, S., 258, 292

Barenblatt, 37

Barenblatt solution, 38

Base point, 247

Belief-diverence, 11

Belief-divergence, 5

Beltrami-Klein model, 221, 222,

231

Beltrami-Klein projective model,

234

Beltrami-Poincaré models, 221

Beltrami-Poincaré upper half plane

model, 222

Bennet linkage, 207

Best approximant, 150

Bezout’s theorem, 225

Birnbaum, Z., 263

Blow-up, 118

Bolyai, J., 221

Bonahon, F., 221

Bond point, 206–213

Bond points, 206

Bond quadruple, 208

Bond theory, 206

Boolean algebra, 321, 328, 368

Browder, F., 257

Cabri, 227, 243

Carnot-Carathéodory ball, 47

Carnot-Carathéodory distance, 47

CAT(0) space, 262

Cauchy sequence, 261, 296, 308

Cauchy, A-L., 20, 258

Cauchy-Schwarz inequality, 115,

185

Cayley-Beltrami-Klein model, 241

Cayley-Klein geometry, 227

Cebys̆ev subset, 149, 153

Chinese remainder theorem, 368,

369

Cinderella, 227, 243

Circle, 231, 232, 240, 243, 246

Circumcenter, 240
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Circumcircles, 240

Closure equation, 209

Closure equation, 208, 209

Collinear points, 236

Comparison point, 169

Comparison triangle, 168–170

Complete lattice, 320, 322

Complete metric space, 258, 260

Computational biology, 165

Concurrent lines, 236

Configuration curve, 206, 207,

209–211

Conic sections, 225

Conics, 232

Conjugate points, 231

Conjugate polynomial C, 199

Connection multiplicities, 210

Continuous modular, 82

Contraction mapping, 258

Contraction monotone mapping,

267

Controlled-growth, 71

Convex averaging, 269

Convex combination, 300

Convex function, 264

Convex function on an NPC space,

170

Convex graph, 262

Convex metric space, 261, 278, 284

Convex metric space, complete, 279

Convex modular, 82–84, 263, 265

Convex modular associated to a

Musielak-Orlicz function,

85

Convex modular function, 139

Convex optimization problem, 167

Convex set in an NPC space, 170

Convex subset, 278

Convexity structure, 302

Coretraction, 321, 322, 342

Cost function, 6

Coupling map, 210

Coxeter, H. S. M., 222

Cross dual law, 239

Cross law, 239

Cross ratio, 226, 231

Cultural voting, 11

Curves of constant width, 241

de Sitter geometry, 223

de Sitter space, 243

de Sitter, W., 233

Decay, 127

Degenerate equation, 54

Degenerate equations, 62

Degree theory, 257

Desargues, G., 224

Descartes, R., 224

Differential inequalities, 40

Digraph, 258–261, 304

Digraph, reflexive, 259, 293, 300,

301

Digraph, reflexive, transitive,

weighted, 306, 307

Digraph, transitive, 259

Digraph, weighted, 259–261, 265,

268, 270–272, 279, 284,

302

Directed graph, 323, 328, 330,

333–335, 341, 362, 364,

367

Directional derivative, 175

Directrix, 246, 249

Dirichlet, P. G. L., 20

Distance function, 170

Division of polynomials in S[t], 202

Doubling condition, 47

Dual (point and line), 236

Dual variable exponent, 113

Dynamical votes, 8

E(G), 259

Edges, of a graph, 259

Eigenfunction for the

p(·)-Laplacian, 107
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Eigenvalue for the p(·)-Laplacian,

107

Eigenvalue problem, modular, 107

Einstein’s fundamental principle,

233

Einstein, A., 234

Electrorheological fluids, 138

Elliptic equations, degenerate, 54

Ellipticity condition, degenerate, 69,

70

Entropy, 30

Entropy method, 20, 30

Equilibrium problem, 180

Essinf, Esssup, 113

Euclidean algorithm, 202

Euclidean cone, 172

Euclidean geometry, 206, 208, 211

Euclidean motion group, 193

Eurosong contest, 11

Extremal function for the Sobolev

embedding, 106

Factorization of monic polynomials,

201

Fatou property, 140, 264

Fejér-convergent, 171

Fence, distance, 323, 335, 362

Fence, finite, 324

Fenchel-Legendre transform, 31

Fermat, P., 224

Filtering, 4

Fixed point, 5, 6, 156, 267–279,

284, 285, 288, 290–293,

295–297, 300–302,

309–311

Fixed point for G-monotone

mapping, 304

Fixed point for G-nonexpansive

mapping, 302

Fixed point property, 321

Fixed point sequence, 306, 307, 309

Fixed point theorem for Reich

multivalued contraction

mappings, 294

Fixed point theorem of

Mizoguchi-Takahashi,

296

Fixed point theory, 257, 258

Fixed points for multivalued

monotone Reich

(a,b,c)-contraction, 300

Foci, 248

Focus, 249

Focus of a parabola, 246

Fokker-Planck equation, 17, 18, 20,

27, 30

Four dimensional space-time, 233

Four-bar linkage, 209

Four-bar linkage, 203, 206–209,

211–213

Fréchet, R. M., 320

Fréchet derivative of the norm, 106

Fréchet, M., 106

Fractional linear parameter

transformation, 201

Fredholm, E. I., 258

Fundamental solution, 18

Fundamental theorem of algebra,

200

G- monotone, 288

G-bounded, 303, 304, 306, 307

G-compact, 308, 309, 311

G-compactness, 261

G-complete, 270–273, 288

G-complete subset, 261

G-contraction, 266–268, 308, 310

G-decreasing sequence, 260, 268,

305

G-edge, 308

G-edge preserving, 307, 308

G-increasing sequence, 260, 268,

287, 289, 305

G-interval, 284, 285, 288, 300
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G-monotone, 266, 270, 273, 282,

285, 289, 290, 303, 304

G-monotone ω-quasi-contraction,

288

G-monotone ω-quasi-contraction

mapping, 289, 290

G-monotone contraction mappings

on modular function

spaces, 288

G-monotone Gregus-Ćirić

contraction, 279

G-monotone Gregus-Ćirić

contraction mapping, 280,

285

G-monotone Gregus-Ćirić mapping,

279, 284

G-monotone mapping, 302, 304

G-monotone mapping on hyperbolic

metric spaces, 307

G-monotone multivalued

quasi-contraction

mapping, 276, 277

G-monotone quasi-contraction, 275,

276

G-monotone quasi-contraction

mapping, 274

G-monotone Reich

(a,b,c)-contraction, 300

G-monotone Reich

(a,b,c)-contraction

mapping, 301

G-monotone Reich contraction, 301

G-monotone Reich contraction

mapping, 301

G-monotone sequence, 260, 271,

273

G-monotonicity, 304

G-nonexpansive, 266, 308, 309, 311

G-nonexpansive mapping, 302, 303,

306, 307, 309, 310

G-nonexpansive mappings, 302

Gagliardo-Nirenberg inequalities,

28

Gagliardo-Nirenberg inequality, 30

Gagliardo-Nirenberg-Sobolev

inequality, 21, 25

Gap preserving map, 322

Gauss, C. F., 221

General relativity, 233

Generalized circumcircles, 243

Generalized metric space, 320, 321

Generalized metric space over a

Heyting algebra, 321,

322, 324

Gentil-Gross, 31

Geodesic, 168

Geodesic segment, 168

Geodesic triangle, 168–170

GeoGebra, 227, 243

Geometer’s sketchpad, 229, 243

Global NPC condition, 168, 170,

176, 183

Globally nonpositively curved

metric space, 169

Globally NPC metric space, 169

Globally NPC space, 169, 170, 177,

178, 180, 187

Globally NPC space, complete, 170,

173

Globally NPC space, locally

compact, 188

Globally NPC space, tangent cone

to a, 172

Graph, 259

Graph, directed, 323, 324

Graph-homomorphism, 329

Gromov, M. L., 221

Gromov-Hausdorff limit, 170

GroupLens Research Project, 9

GSP, 227

Hölder continuous, 70

Hölder continuous, locally, 75
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Hölder’s inequality, 24, 26, 51, 68,

115

Hölder, O., 46

Hadamard manifold, 173, 176, 177,

180, 186, 187

Hadamard manifolds, 173, 180, 262

Hadamard product, 8

Hadamard space, 169

Hamiltonian quaternion, 195, 200

Harmonic conjugates, 227

Harmonic range, 227

Harnack, 46

Harnack inequality, 47, 54, 59, 68,

69, 74, 75

Harnack inequality, weak, 63, 68

Heat equation, 18, 28

Heyting algebra, 321, 323, 324, 354

Hilbert space, 170

Hole preserving map, 322, 323

Homogeneous coordinate, 226

Homogeneous dimension, 48

Hyperbolic bonds, 207

Hyperbolic circle, 232

Hyperbolic distance, 221

Hyperbolic distance in the

Beltrami-Klein model,

222

Hyperbolic geometry, 196, 208,

211, 219, 223–225, 227,

237, 241, 247

Hyperbolic geometry,

Cayley-Beltrami-Klein

model, 241

Hyperbolic geometry, classical, 220,

232, 234, 243

Hyperbolic geometry, traditional,

204

Hyperbolic geometry, universal,

220, 222, 230, 248

Hyperbolic metric space, 261, 262,

300, 307–310

Hyperbolic plane, 207

Hyperbolic quadrance, 231

Hyperbolic reflection μ , 196

Hyperbolic revolute joints, 201, 203

Hyperbolic rotations, 201

Hyperbolic space, 223

Hyperbolic triangle geometry, 241

Hyperbolic trigonometry, 238

Hyperboloid model, 223

Hyperconvex metric spaces, 322,

324, 354, 355, 358, 360,

365

Hyperconvexity, 322, 334, 343, 346,

348, 369

Hypercube, 6

Ideal points, 221

Image processing, 165

Inertial frame, 233

Information channel, 1

Injective envelope, 319, 322–324,

346, 348–350, 360, 362,

366, 368

Injective metric space, 343, 348,

349, 360

International Olympic Committee, 3

Involutive transition system, 323

ISU, 3

Item reputation vector, 5

John-Nirenberg lemma, 61, 66

Join, 236

Kinematic space, 206

Kolmogorov, 18

Kováčik, O., 82

Lagrange Multiplier, 103

Lebesgue class, 87

Lebesgue measurable, 85

Lebesgue measure, 86, 88

Lebesgue space with a variable

exponent p(·) , 113

Lebesgue variable exponent spaces,

82
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Lebesgue’s dominated convergence

theorem, 97, 104

Lebesgue-Sobolev spaces, 87

Lefschetz-Hopf, 257

Left continuous, 112

Left polynomials, 199

Left-continuous modular, 82

Length of a minimizing geodesic,

168

Leray-Schauder, 257

Light cone, 233, 234

Line at infinity, 225, 226

Linear complexity, 12

Liouville, J., 258

Lipschitz, R., 258

Lipschitzian map, 258

Lobachevsky, N., 220

Locus of a point, 244

log-Hölder continuous function, 114

Logarithm map, 172

Lorentz transformations, 233

Luxemburg norm, 82, 113, 141

Manifold learning, 166

Manifold=valued data processing,

166

Mathematica, 34, 35

Matuszewska-Orlicz index, 90, 92

Maximally monotone set, 179

Mean-field games, 26

Measure space, 83

Meet, 236, 245

Menelaus, 240

Metric fixed point theory, 257, 258

Metric fixed point theory in

weighted graphs, 257

Metric form, 344–346, 348, 349,

352

Metric projection, 170

Metric space, 258, 261

Metric tree, 170

Midline, 241, 242

Midpoint, 228

Milman-Pettis theorem, 151

Milnor, J., 220

Minimal geodesic, 180

Minimizing geodesic, 168, 170,

172, 175

Minkowski’s functional, 141

Minkowski, H., 233

Minty equilibrium problem, 180

Minty variational inequality,

177–179, 181

Mizoguchi, N., 296

Modular, 82, 112

Modular ball, 101

Modular metric, 262

Modular metric on Lϕ , 264

Modular metric space, 264, 275,

288, 289

Modular metric, convex, 262

Modular metric, regular, 262

Modular space, 263

Modular strict convexity, 142

Modular topology, 140

Modular uniform convexity, 141

Modular uniformly convex in every

direction, 142

Modular, continuous, 82

Modular, convex, 82

Monoid, 320, 321, 323

Monoid, free, 324

Monoid, ordered, 321

Monotone almost contraction, 269

Monotone mapping, 257, 260, 265,

273

Monotone mappings on weighted

graphs, 265

Monotone mappings, fixed points

of, 261

Monotone quasi-contraction

mappings on modular

weighted graphs, 288

Monotone vector field, 179, 181

Monotonicity of a bifunction, 181
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Morrey class, 49, 70

Motion factorization, 198

Motion factorization in hyperbolic

kinematics, 193

Motion polynomial, 193, 204, 211

Musielak-Orlicz function, 85–92,

99, 100, 103

Musielak-Orlicz space, 85

Musielak-Orlicz spaces, 88

Musielak-Orlicz-Sobolev space, 85

Nakano, H., 82, 138

Napier’s rule, 240

Natural-growth, 71

non-Newtonian fluids, 138

Nonexpansive mapping, 258

Nonexpansive mappings, 319, 321,

342, 358

Nonexpansive monotone mapping,

302

Nonlinear iteration, 6, 8

Norm polynomial, 201, 205

Norm polynomial N(C), 199

Normal cone , 174

Normalization condition, 208

NPC condition, 165, 166

NPC space, 166

Null circle, 196, 207, 227, 232, 234

Null conic, 220, 236

Null line, 236

Null lines, 196

Null point, 223, 234, 236

Null points, 196

Null polarity, 196

Null vector, 234

Omega points, 221

One-local retract, 353, 357–359,

361

Order-preserving map, 324, 336,

341, 361, 362

Ordered semigroup, 319

Oriented graph, 323, 363–365

Orlicz function, 85

Orlicz’ class, 82

Orlicz, W., 81, 138, 263

Outliers, 4, 5, 10

p-inequalities, 143

p-Laplacian, 106

PageRank algorithm, 3

Pappus theorem, 224

Parabola conic, 249

Parabola focus directrix, 248

Parabola, in hyperbolic geometry,

246

Parabolic Cauchy-Dirichlet

problem, 20

Parabolic equation, 18

Parabolic equation, nonlinear, 20

Parabolic PDE, 17, 18, 20

Parametric trajectory, 212

Partial order, 258

Partition of unity, 52

Pascal, B., 224

Peano, G., 258

Perpendicular lines, 228, 236

Perpendicular points, 228, 236

Photons, 233

Picard, E., 258

Planar hyperbolic motion group,

206

Poincaré constant, 129

Poincaré’s inequality, 46, 99, 117

Poincaré, H., 257

Point trajectories, 211

Polynomial factorization over the

split quaternions, 201

Porous media equation, 20, 36

Projective geometry, 224–227

Projective line, 235

Projective linear algebra, 234, 235

Projective plane, 225

Projective point, 235

Projective quadrance, 236

Property J∗, 267, 268
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Property (R), 151

Prox-friendly, 187

Prox-friendly bifunction, 182

Proximal algorithm, 184, 187

Proximal algorithm, convergence,

187

Proximal operator, 171

Pseudo-graph, 259

Pseudomodular metric, 262

Pythagoras, 239

Pythagoras’ dual theorem, 239

Quadrance, 230–232, 237, 240, 248

Quadrance of null points, 196

Quadratic function, 246

Quasiconformal mappings, 49

Quasilinear equation, 47, 71

Quasilinear equation, elliptic, 71

Quasilinear equation, elliptic,

degenerate, 54

Rákosnı́k, J., 82

Ran, A., 258, 261, 293

Random walk, 3

Rater’s weight, 10

Rater’s weight vector, 5

Reflection, 197

Reflection center, 197

Reflexive directed zigzag, 332

Reflexive graph, 297

Reflexive oriented zigzag, 331, 332

Reflexive weighted graph, 277, 288

Reflexive, graph, 331

Regularity, a priori, 17

Reich G-contraction, 294, 297

Reich G-contractions, 294

Reich multivaued G-contraction,

295

Reich, S., 292, 294

Relativistic geometry, 233

Reliability score, 5

Reputation score, 5

Reputation system, 4, 7, 9, 12

Reputation system, durable, 12

Reputation system, strengh, 5

Reputation systems, dynamical, 12

Reputation vector, 6, 9

Reputation, measures of, 3

Retraction, 319, 321, 342, 345–349,

353, 356

Retracts, 321

Reurings, M., 258, 261, 293

Reverse Hölder’s inequality, 25

Revolute joint, 207

Riemannian manifold, 168

Riesz, F., 81

Right factors, 201

Right zeros, 201

Right-continuous modular, 82

Ring of split quaternion

polynomials, 199

Rotation, 197

Rotation axis, 197

Rotation center, 197

Scalar product, 173

Semimodular , 112

Set-valued vector field, 178

Sharapudinov, I., 82

Silines, 228

Singular points, 210

Skewed Δ-upper semicontinuous,

184

Sobolev class, generalized, 87

Sobolev conjugate, 21

Sobolev embedding, 87, 88, 107

Sobolev embedding theorem for

spaces of Musielak-Orlicz

type, 92

Sobolev inequality, 20, 24, 28, 35,

37

Sobolev inequality, logarithmic, 31

Sobolev space, Musielak-Orlicz, 86

Sobolev spaces , 116

Space of directions of an NPC

space, 172
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Spammers, 12

Sparse votes, 8

Special relativity, 233

Spherical geometry, 208, 211

Split quaternion, 195

Split quaternion algebra, 195

Split quaternion conjugate, 195

Split quaternion multiplication, 195

Split quaternion norm, 195

Split quaternion polynomials, 199

Split quaternion scalar product,

cross product, 195

Split-quaternion polynomials,

factorization, 205

Spread, 230, 231, 237

Spread law, 239

Spread of two lines, 196

Stability, 120

Static system, 5

Steepest descent direction, 6

Steepest descent iteration, 6

Stillwell, J., 221

Strongly damped wave problem,

126

Structural assumptions, 72, 75

Structural condition, 73

Stummel class, 49, 50

Subdifferential, 174

Subgradient, 174

Sum operators, 47

Sydpoint, 228, 241, 243, 248

Sydpoint twin circle, 244

Sydpoints null points, 243

Takahashi, W., 296

Tangent cone, 173

Theorem of Banach-Alaoglu, 101

Tietze’s extension theorem, 94

Time dependent votes, 5

Time travel, 233

Time- dependent data, 12

Topological fixed point theory, 258

Traditional hyperbolic geometry,

196

Transferability, 351

Transition system, 319–323

Triangle, 238

Trilateral, 238

Triple quad formula, 239

Triple spread formula, 239

Twin circumcircles, 242

Twin parabola, 248

Twins, 242

UHG, 219, 223, 240

Ultrametric space, 321, 323, 324,

327, 328, 360, 368, 369

Ungar, A. A., 241

Uniform convexity, 141

Uniform convexity in every

direction, 142

Uniquely geodesic metric space,

168, 169

Unit ball property, 115

UUC, 142

UUCED, 142

Validation scale, 4

Vanishing points, 221

Variable exponent, 113

Variable exponent class, 82

Variable exponent space, 138

Vectorial split quaternion, 195, 198

Vectorial split quaternions, 196

Vertex, 246

Vertex, of a graph, 259

Viscoelastic wave equation, 126

Vote validation, 5

Voting interval, 6

Voting matrix, 5, 8

Voting matrix, sparse, 9

Voting system, 3

Wave equation, 126

Weak derivative, 116
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Weak metric form, 344–348

Weak solution, 47, 54, 59, 68–71

Weak solution, local, 54, 63, 70, 71

Weak solution, nonnegative, 69, 73

Weak supersolution (subsolution)

local, 63

Weakly G-bounded, 260

Weakly closed, 101

Weight to rater’s evaluation, 4

Weight, p-admissible, 47, 48, 50, 70

Weighted graph, 257–259, 261, 266,

270, 288

Weighted graph, fixed point theory

of, 265

Weighted graph, hyperbolic, 261

Weighted graph, modular, 262

Weighted graph, monotone-almost-

contraction on,

269

Weighted graph, monotone-quasi-

contraction on,

273

Weighted graph, monotone-Reich-

contraction mapping on,

292

Weighted graph,

multivalued-monotone-

Reich-(a,b,c)-contraction

on, 300

Weighted graph, reflexive, 268, 273,

289

Weighted graph, topological

properties, 260

Weighted graph, transitive, 268,

273, 289

Weighted graphs, 257

Weights, Ap , 49

Young’s inequality, 65, 115

Zariski closure, 207

Zariski-closed configuration curve,

208

Zigzag, 323

Zigzag, distance, 323, 324,

332–335, 338, 362, 364,

365

Zigzag, graph, 323
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