
C
o
p
y
r
i
g
h
t

2
0
2
0
.

E
n
g
i
n
e
e
r
i
n
g

S
c
i
e
n
c
e

R
e
f
e
r
e
n
c
e
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 1:25 PM via
AN: 2368101 ; Vishnu Pendyala.; Tools and Techniques for Software Development in Large Organizations : Emerging Research and Opportunities
Account: ns335141

Tools and Techniques for
Software Development in
Large Organizations:
Emerging Research and
Opportunities

Vishnu Pendyala
Cisco Systems Inc., USA

A volume in the Advances in
Systems Analysis, Software
Engineering, and High Performance
Computing (ASASEHPC) Book Series

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Published in the United States of America by
IGI Global
Engineering Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2020 by IGI Global. All rights reserved. No part of this publication may be
reproduced, stored or distributed in any form or by any means, electronic or mechanical, including
photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material.
The views expressed in this book are those of the authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Pendyala, Vishnu, 1968- editor.
Title: Tools and techniques for software development in large organizations
 : emerging research and opportunities / Vishnu Pendyala, editor.
Description: Hershey, PA : Engineering Science Reference, 2020. | Includes
 bibliographical references. | Summary: “This book examines the tools,
 techniques, and processes large organizations use in software
 development”-- Provided by publisher.
Identifiers: LCCN 2019034165 (print) | LCCN 2019034166 (ebook) | ISBN
 9781799818632 (h/c) | ISBN 9781799818649 (s/c) | ISBN 9781799818656
 (eISBN)
Subjects: LCSH: Application software--Development.
Classification: LCC QA76.76.D47 T656 2020 (print) | LCC QA76.76.D47
 (ebook) | DDC 005.3--dc23
LC record available at https://lccn.loc.gov/2019034165
LC ebook record available at https://lccn.loc.gov/2019034166

This book is published in the IGI Global book series Advances in Systems Analysis, Software
Engineering, and High Performance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-
3461)

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advances in Systems
Analysis, Software

Engineering, and High
Performance Computing
(ASASEHPC) Book Series

Editor-in-Chief: Vijayan Sugumaran, Oakland University, USA
Mission

ISSN:2327-3453
 EISSN:2327-3461

The theory and practice of computing applications and distributed systems has emerged as
one of the key areas of research driving innovations in business, engineering, and science.
The fields of software engineering, systems analysis, and high performance computing
offer a wide range of applications and solutions in solving computational problems for any
modern organization.

The Advances in Systems Analysis, Software Engineering, and High Performance
Computing (ASASEHPC) Book Series brings together research in the areas of distributed
computing, systems and software engineering, high performance computing, and service
science. This collection of publications is useful for academics, researchers, and practitioners
seeking the latest practices and knowledge in this field.

• Enterprise Information Systems
• Software Engineering
• Network Management
• Performance Modelling
• Metadata and Semantic Web
• Virtual Data Systems
• Human-Computer Interaction
• Computer Graphics
• Computer System Analysis
• Parallel Architectures

Coverage

IGI Global is currently accepting
manuscripts for publication within this
series. To submit a proposal for a volume in
this series, please contact our Acquisition
Editors at Acquisitions@igi-global.com or
visit: http://www.igi-global.com/publish/.

The Advances in Systems Analysis, Software Engineering, and High Performance Computing (ASASEHPC) Book
Series (ISSN 2327-3453) is published by IGI Global, 701 E. Chocolate Avenue, Hershey, PA 17033-1240, USA, www.
igi-global.com. This series is composed of titles available for purchase individually; each title is edited to be contextually
exclusive from any other title within the series. For pricing and ordering information please visit http://www.igi-global.
com/book-series/advances-systems-analysis-software-engineering/73689. Postmaster: Send all address changes to above
address. © © 2020 IGI Global. All rights, including translation in other languages reserved by the publisher. No part
of this series may be reproduced or used in any form or by any means – graphics, electronic, or mechanical, including
photocopying, recording, taping, or information and retrieval systems – without written permission from the publisher,
except for non commercial, educational use, including classroom teaching purposes. The views expressed in this series
are those of the authors, but not necessarily of IGI Global.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

701 East Chocolate Avenue, Hershey, PA 17033, USA
Tel: 717-533-8845 x100 • Fax: 717-533-8661

E-Mail: cust@igi-global.com • www.igi-global.com

Cloud Computing Applications and Techniques for -Commerce
Saikat Gochhait (Symbiosis Institute of Digital and Telecom Management, Symbiosis
International University, India) David Tawei Shou (University of Taipei, Taiwan) and
Sabiha Fazalbhoy (Symbiosis Centre for Management Studies, Symbiosis International
University, India)
Engineering Science Reference • © 2020 • 300pp • H/C (ISBN: 9781799812944) • US
$245.00

Soft Computing Methods for System Dependability
Mohamed Arezki Mellal (M’Hamed Bougara University, Algeria)
Engineering Science Reference • © 2020 • 293pp • H/C (ISBN: 9781799817185) • US
$225.00

Grammatical and Syntactical Approaches in Architecture Emerging Research and
Opportunities
Ju Hyun Lee (University of New South Wales, Australia) and Michael J. Ostwald (University
of New South Wales, Australia)
Engineering Science Reference • © 2020 • 351pp • H/C (ISBN: 9781799816980) • US
$195.00

Fundamental and Supportive Technologies for 5G Mobile Networks
Sherine Mohamed Abd El-Kader (Electronics Research Institute, Egypt) and Hanan Hussein
(Electronics Research Institute, Egypt)
Information Science Reference • © 2020 • 360pp • H/C (ISBN: 9781799811527) • US
$225.00

Deep Learning Techniques and Optimization Strategies in Big Data Analytics
J. Joshua Thomas (KDU Penang University College, Malaysia) Pinar Karagoz (Middle
East Technical University, Turkey) B. Bazeer Ahamed (Balaji Institute of Technology and
Science, Warangal, India) and Pandian Vasant (Universiti Teknologi PETRONAS, Malaysia)
Engineering Science Reference • © 2020 • 355pp • H/C (ISBN: 9781799811923) • US
$245.00

For an entire list of titles in this series, please visit:
https://www.igi-global.com/book-series/advances-systems-analysis-software-engineering/73689

Titles in this Series
For a list of additional titles in this series, please visit:

https://www.igi-global.com/book-series/advances-systems-analysis-software-engineering/73689

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

To Kriti & Mahadyuti

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

Preface...viii

Chapter 1
Evolution.of.Integration,.Build,.Test,.and.Release.Engineering.Into.DevOps.
and.to.DevSecOps...1

Vishnu Pendyala, Cisco Systems Inc., USA

Chapter 2
Fuzzy.Ontology.for.Requirements.Determination.and.Documentation.During.
Software.Development..21

Priti Srinivas Sajja, Sardar Patel University, India
Rajendra A. Akerkar, Western Norway Research Institute, Norway

Chapter 3
Software.Effort.Estimation.for.Successful.Software.Application.Development..45

Syed Mohsin Saif, Islamic University of Science and Technology, India

Chapter 4
Artefact.Consistency.Management.in.DevOps.Practice:.A.Survey......................98

Dulani Meedeniya, University of Moratuwa, Sri Lanka
Iresha Rubasinghe, University of Moratuwa, Sri Lanka
Indika Perera, University of Moratuwa, Sri Lanka

Chapter 5
Tool.Support.for.Software.Artefact.Traceability.in.DevOps.Practice:.SAT-
Analyser..130

Iresha Rubasinghe, University of Moratuwa, Sri Lanka
Dulani Meedeniya, University of Moratuwa, Sri Lanka
Indika Perera, University of Moratuwa, Sri Lanka

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6
Continuous.Deployment.Transitions.at.Scale...168

Laurie Williams, North Carolina State University, USA
Kent Beck, Facebook, USA
Jeffrey Creasey, LexisNexis, USA
Andrew Glover, Netflix, USA
James Holman, SAS Institute Inc., USA
Jez Humble, DevOps Research and Assessment LLC, USA
David McLaughlin, Twitter, USA
John Thomas Micco, VMWare, USA
Brendan Murphy, Microsoft, UK
Jason A. Cox, The Walt Disney Company, USA
Vishnu Pendyala, Cisco Systems Inc., USA
Steven Place, IBM, USA
Zachary T. Pritchard, Slack, USA
Chuck Rossi, Facebook, USA
Tony Savor, Facebook, USA
Michael Stumm, University of Toronto, Canada
Chris Parnin, North Carolina State University, USA

Chapter 7
Data.in.DevOps.and.Its.Importance.in.Code.Analytics......................................182

Girish Babu, Cisco Systems Inc., Canada
Charitra Kamalaksh Patil, MNP LLP, Canada

Related Readings... 209

About the Contributors.. 219

Index... 222

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Succeeding is an art, even in the software industry. No amount of science can
substitute for this art. For instance, the principles of Agile methodologies are known
widely in the industry. But not every organization has practiced them successfully.
Practice that comes with profound experience and intuition makes the difference.
It is not easy to document the expertise so gained – it still needs to be practiced
as an art. But can we at least get some insights into the successful practices? This
book is an attempt at it. I sometimes wonder if the tribal knowledge in the corporate
world, particularly on the operations side of things will probably run into millions
of volumes in print. It remains in the organizations, largely untapped for application
to common good. The open-source movement brought the source code into the
open and contributed tremendously to the cross-organization synergies of software
development. But the operations side of software development is still mostly within
the closed doors. The motivation for conceptualizing this book was to present good
insights into how the operations around software development can be successfully
handled in large organizations, the best practices, opportunities, and challenges.

Having experienced how the software development landscape changed over the
last several years, I took upon myself to share my experiences in a book. It then
seemed more valuable if others also joined the efforts to cover more diverse topics,
given the scope of the proposed work. I therefore announced the idea for a book
on the “Innovation Challenge” portal within our organization, Cisco, mainly to see
the response from my colleagues to the idea. Expressing expertise in words is not
easy. I knew it was a daunting task. In the meantime, I also explored the option of
opening up the authoring opportunity to a wider audience by submitting this book
proposal to IGI publishers, which got accepted. My original idea of a joint authored
book now got converted into that of an edited book, with the prospects of much
broader scope and a more diverse authorship. Indeed, the authors of the chapters
in this book come from multiple countries and multiple organizations and cover a
much more diverse portfolio of topics.

Mere understanding solves many problems. One of the criteria for accepting the
chapters for this book was its contribution to raising the level of understanding of

viii

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

the reader. Merely stating the facts will not suffice to improve the understanding.
The treatise must also explain the motivation and philosophy behind the tools and
techniques. The chapters are written by diverse authors spread all around the world.
It is understandably hard to enforce a strict charter of expectations from the chapters,
but through reviews and the process of selection, we tried to make sure that the
chapters have certain common ingredients in terms of the purpose they serve, and
their tone and tenor in general. As you will notice, the chapters have been written
lucidly, providing substantial detail and sufficient inspiration to adopt the salient
insights provided in each chapter.

The chapters are all written independently and can be read in any order. The
first chapter serves as an introduction to the topic of the book, briefly tracing the
evolution of the tools and techniques used for software development for the last 20
to 30 years, providing an introduction to various concepts. History should never
be ignored, even if not everything in it was successful. Artificial Intelligence was
almost written off a few years ago, but the same tools and techniques today are
serving as the mortar of modernization. The chapter therefore provides some history
of software engineering over the years. It explains how integration engineering used
to be practiced several years ago, with multiple branches and merges between them
to propagate changes and provides the motivation for today’s continuous integration
in a single-branch model. Agile methodologies have largely obsoleted much of the
waterfall model concepts, paving way to the current day DevSecOps. As you will
read, the area is still evolving and needs to be closely watched for more disruptions.

One of the early steps in the Software Development Life Cycle is collecting
requirements. The second chapter is about determining and documenting requirements
for a software project in a more pragmatic way that models the real world more closely.
The chapter rightly starts with the statement that software quality depends on the
effectiveness of the requirements collection phase and presents an interesting idea
that can soon be an emerging trend in the software industry. Software requirements
often come from teams that are not well-versed with software. The requirements
tend to be stated loosely and imprecisely. One of the tools that is often used to model
imprecision in the real world is Fuzzy Logic. Ontology provides the framework
for capturing the knowledge in a given domain in a machine-interpretable way.
The chapter proposes and discusses how a combination of both these tools, Fuzzy
Ontology, can be used in the requirements phase of software development.

Once requirements are collected, the next step is to estimate the efforts required
to develop the software that can meet the requirements. The third chapter is a
comprehensive discussion on the process of estimating efforts, models that can be
used, and challenges encountered in the process. Using diverse techniques such as
Bayesian Belief Networks, Machine Learning, Case-Based Reasoning, and Multiple
Linear Regression, the author explains how to estimate the efforts, evaluate the

ix

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

models used for estimation, and the limitation of the models. Using a number of
illustrations, citations, and equations, the chapter details how the models can be
used for different kind of software applications. The chapter is hoped to serve as
a ready reference to anyone wanting to formally estimate the efforts needed in a
software project.

Strength lies in the ability to quickly change in non-intrinsic ways, whether it is
for an individual or an organization. Software development is all about changes –
code changes, requirement changes, process changes, etc. DevOps provides the tools,
techniques, and processes to manage change, particularly the code changes through
their deployment in production. The various changes can cause the artefacts produced
in the course of software development also to change, causing serious inconsistencies.
In the fourth chapter, Dr. Meedeniya and her colleagues survey how artefacts are
traced and their consistency is managed in the software development process. The
chapter starts with the required background of the key concepts, explaining the
importance of artefact traceability and the terminology involved. It then describes
multiple tools like IBM DOORS and Rational RequisitePro, and techniques from
areas like Information Retrieval that are used for artefact traceability. The chapter
concludes with a discussion on the challenges, limitations, and future directions in
artefact traceability.

Continuing the discussion, the authors of the previous chapter present their
prototype tool for software artefact traceability in the fifth chapter. Through detailed
flowcharts, pseudo-code, visualizations and architecture diagrams, the authors
explain how their tool detects changes in the software artefacts, analyzes the impact
of the changes, manages the consistency of the artefacts. The prototype tool that the
authors propose uses NLP based Information Retrieval techniques and integrates
with the DevOps tools stack. The chapter presents a case study and compares their
work with other existing solutions. The fourth and fifth chapters together provide a
comprehensive discussion on the important problem of software artefact traceability
and serve as a ready reference to organizations wanting to establish the practice in
their software development life cycle.

Next is an important chapter contributed by representatives of a few companies who
discuss various aspects of Continuous Deployments in their respective organizations,
every year, for the last few years, in a summit environment. I represented Cisco in
the annual summit that is hosted each year by a different company such as Google
and Twitter and considered it is important for the readers of this book to get insights
into the salient points of discussion at the summit. The chapter presents a number
of strategies and practices that helped the organizations succeed and/or learn. Did
you know that at one point of time, Google determined that 84% of the times, a test
failed because the test itself was flaky? Or that Netflix releases 4000 deployments
in a day? Read the chapter to know more about such practices. The chapter covers

x

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

diverse aspects of the DevOps tasks, providing valuable insights into how large
organizations run their DevOps activities.

From multiple companies and diverse aspects of DevOps, in the next chapter,
we narrow our focus to a single company, Cisco and to a single area, data. Data is
often touted as the new oil. Just like the source code has all the ultimate answers
to questions about the software product, answers to questions just about anything
or anyone can be obtained by tracing the roots and probing the metadata about the
source. The last chapter of the book talks about generating valuable analytics from
the metadata associated with software development. The artefacts from running
these data analytics can be used, particularly by the higher management to make
decisions and fine-tune strategies. Data analytics also help in determining expert code
reviewers, identifying areas for hardening, failure densities per module or engineer
and so on. More details on how all this is done are presented in the last chapter.

Overall, the book provides some unique tools and techniques, plenty of ready-
to-use best practices, and a general discourse on important and sometimes ignored
topics related to software development. The references and additional reading
suggested at the end of each chapter should help in further exploring the topics. It
is sincerely hoped that the book will serve as a compendium for ready reference by
the experts and the uninitiated, alike, for many years to come.

An effort like this will not be possible without the help of many individuals
and organizations. First and foremost, I thank all my present and past employers,
particularly Cisco and Synopsys for giving me the rich experience in the topical areas
of this book. Fortunately, all the years of my industry experience have been with
large organizations, who could afford time and resources for substantial processes,
tools, and techniques for software development. Next, my thanks go to the authors
of the chapters. They helped with the reviews of other chapters, some at a short
notice, providing valuable suggestions and insights. Thank you, authors, for the
excellent co-operation in bringing out the book. I also wish to express my gratitude
to IGI Publishers, who have been supportive all through, amending the contract and
accommodating my requests through the circumstantial changes over the months.
Thanks to my children who consider me as their role model, for motivating me to
live up to their expectations and for giving up quite a bit of their quality time with
me during the weekends for this cause. Finally, and most importantly, thanks to
my father, who set the standards high, but was not alive to see any of how I was
executing on the goals he set for me.

Vishnu S. Pendyala
Cisco Systems Inc., USA
San Jose, CA, USA

xi

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

1

DOI: 10.4018/978-1-7998-1863-2.ch001

ABSTRACT

Software engineering operations in large organizations are primarily comprised of
integrating code from multiple branches, building, testing the build, and releasing
it. Agile and related methodologies accelerated the software development activities.
Realizing the importance of the development and operations teams working closely
with each other, the set of practices that automated the engineering processes of
software development evolved into DevOps, signifying the close collaboration of
both development and operations teams. With the advent of cloud computing and
the opening up of firewalls, the security aspects of software started moving into the
applications leading to DevSecOps. This chapter traces the journey of the software
engineering operations over the last two to three decades, highlighting the tools
and techniques used in the process.

INTRODUCTION

Software Engineering teams have traditionally been responsible for branching
strategies, code merges, nightly and production builds, validation of the builds,
image generation and posting in addition to serving as consultants in Software
Engineering practices to the product development teams. These functions continue
to exist but have been transformed to adapt to the growing needs of the industry.

Evolution of Integration, Build,
Test, and Release Engineering
Into DevOps and to DevSecOps

Vishnu Pendyala
Cisco Systems Inc., USA

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

2

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Globalization has come to stay. Teams operate in different time zones, often providing
a seamless stream of development and operations activities round the clock. Software
Configuration Management (SCM) tools such as Clearcase used for version control
provided multi-site functionality to support code commits from all over the world –
an excellent application of the distributed computing paradigm (Van Der Hoek, et
al,1998). Software Engineering poses quite a few challenges when the code structure
is complex, and the product dependencies are significant. Present day requirements
of distributed teams and agile development add to these challenges.

Software Configuration Management (SCM) is key to effective product releases.
The SCM tool employed to maneuver the Software Engineering processes of an
organization should provide the necessary constructs to meet the requirements of
the various releases. Interdependencies of the code and the volume of the code
changes raise the complexity of the Software Engineering operations. With time,
needs multiplied, operations scaled drastically, causing new tools, architectures, and
patterns to be invented. From a handful of tools two decades ago, we now have a
plethora of tools to manage Software Engineering operations. XebiaLabs recently
came up with an entire periodic table of popular DevOps tools (Kaiser, 2018). The
integration, build and release engineering discipline that existed originally has far
transcended SCM related activities as its primary charter to a much broader DevSecOps
role. This chapter traces through the journey of the Software Engineering discipline
from the days of primarily performing builds, merges, releases, and tooling to the
present day DevSecOps.

RELATED WORK

The DevOps area has predominantly been a domain of the industry than that
of academia. Publishing articles is not as emphasized in the industry as it is in
academia. This is one of the reasons for working on this book, so that insights
into the tools, techniques, and processes employed in the industry, particularly,
the large organizations are captured in the literature. Nevertheless, there is quite
some literature already that captures the state-of-art in the DevOps and DevSecOps
areas. The literature uncovered several interesting aspects of DevOps. This section
captures a few of them. A framework for automated Round-Trip Engineering from
development to operations and operations to development (Jiménez et al, 2018) is
one of them. Round-Trip Engineering ensures that the Deployment and Configuration
specifications are automatically ensured to be consistent with the system, thereby
eliminating any technical debt on that count. This further confirms the need for tight
integration of development and operations and automating the coupling as much as
possible – one of the key points of this chapter.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

3

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Another channel of tight coupling between the development team and operations
is through metrics. Metrics can provide an effective feedback mechanism in software
organizations, which can be a substantial challenge in large organizations due to
bureaucracy and cross-organizational environments (Cito et al., 2018). The authors
identify feedback categories and phases and point to the tools that can help with the
metrics generation. Culture plays an important role in DevOps (Sánchez-Gordón &
Colomo-Palacios, 2018). Empathy is a critical component of the DevOps culture.
Development teams and Operations teams must understand each other’s perspectives
and strive towards the overall productivity of engineers and the quality of the product.
The authors survey the literature and summarize the trends about the DevOps culture.
DevOps can be thought of like a Project Management methodology that fills in the
lacunae in Agile methodology (Banica, et al, 2017).

Intertwined with culture is the skillset that the DevOps discipline demands. In
the 26th European Conference on Information Systems, the authors (Wiedemann
& Wiesche, 2018) categorize the skills needed to work in the DevOps area. The
role of a Full-stack Engineer is gaining increasing relevance with the advent of
DevOps. Full-stack engineering is particularly relevant in the Cloud Computing
era (Li, Zhang, & Liu, 2017). Full-stack Engineers require broad skills covering
all or most aspects of the software industry. Such skills are particularly important
in fast-paced companies that produce several releases in a day. Describing such an
environment where companies like Facebook release hundreds or even thousands
of deployments into production daily, the authors (Savor et al, 2016) point out that
it is possible to scale the teams and codebase several times without impacting the
developer productivity.

Before the preceding work, excellent insights into the nature of software
development at Facebook were provided by the authors of a different article (Feitelson
et al, 2013). They point out that the differentiating characteristic of companies like
Facebook is that the software they develop need not be “shipped” to customers
as it runs on their servers. This enables rapid deployments of software updates in
production. A different kind of domain is where software that is shipped is embedded.
The complexity of embedded systems makes DevOps a formidable challenge in that
domain (Lwakatare et al, 2016). Using multiple case studies, the authors explain
why embedded systems are different when it comes to DevOps. The practice of
DevOps in general, was surveyed and recommendations were made based on the
survey (Erich et al, 2017). One such recommendation is to implement Continuous
Delivery to the point of being able to release software updates on-demand.

From a software architecture perspective, microservices facilitate rapid
deployability (Chen, 2018). Monolithic architectures, however modular they are
designed to be, cannot scale-up to the level of microservices architecture when it
comes to Continuous Deployment. Using microservices architecture, small teams

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

4

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

can deploy their changes, without having to wait to merge changes from other teams.
Because of the limited functionality in a microservice, deploying the software
update is much faster as compared with monolithic architectures, which need to be
deployed a whole. Changing to microservices architecture and adopting DevOps
methodology requires substantial efforts. Designing a DevOps maturity model helps
in the process (Bucena & Kirikova, 2017). The maturity model helps in identifying
gaps in the current processes and goals for improvement.

DevOps brought-in a bunch of terms into the software engineering realm.
Disentangling the terms and giving them a clear definition helps in better
implementation of the DevOps practice. The authors of (Stahl, Martensson, &
Bosch, 2017) survey the literature substantially to come up with definitions of the
important terms used in the DevOps practice. One of the terms that is quite popular
with DevOps is “Infrastructure-as-Code (IasC)” It is a tactic to speed-up the DevOps
processes and is a good example of one of the many tactics that DevOps brought
into the software engineering discipline to accelerate the pipelines (Artac, 2017).
Software infrastructure typically comprises of several scripts and variable settings
for setting up the infrastructure needed for the software to run. IasC treats these
scripts and configuration files as source code as well, so that they can be versioned
and treated as any other source code.

The evolution of DevOps is currently at the stage of encompassing security into
DevOps and transitioning DevOps into DevSecOps. It has been observed that the
increased automation of the processes that DevOps entails leads to improved product
security (Rahman et al, 2016). The term, DevSecOps seems to have originated in
2012 in a blog post (Myrbakken et al, 2017) by a Gartner analyst. The key idea
behind DevSecOps is to further break the barriers in the Software organization and
make Security of the software product, everyone’s business.

THE SOFTWARE ENGINEERING JOURNEY

Software Engineering organization in large companies traditionally comprises of some
form of an Integration and Release Engineering team, a Platform Engineering team,
a Tools team, and Program Management. The Platform Engineering team is typically
responsible for porting the software across a wide variety of hardware and software
platforms and maintaining the common code components of the software product.
Porting involves making changes to the source code so that it works seamlessly across
the platforms. Tools team makes the software to ensure developer productivity is
high and processes run efficiently. Program management is responsible for managing
software development projects. Integration engineering teams are responsible
for builds, software configuration management, and sometimes, to some extent,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

5

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

quality assurance as well. The key component and highly visible role in Software
Engineering organizations is still most often held by the team responsible for Builds,
Release, and Integration engineering. The software development milestones have a
huge dependency on the operations of this team. Let us start our journey by taking
a closer look at this important function in its legacy form in the next subsection.

Integration Engineering

A typical large software organization has several products developed independently.
Each of these products comprises of several features. Integration Engineering
refers to the process of integrating these features and the individual changes that
go into each of these products. Integration engineering is the interface between
development and production. Interdependencies of the code and the volume of the
code changes raise the complexity of builds and configuration management. The
Integration Engineering team is responsible for branching strategies, code merges
between product modules, nightly and production builds, validation of the builds,
and image generation. Collecting metrics, creating dashboards, enabling access to
the results of the builds and validation are the other activities that form the crux of
Integration Engineering (Dyer, 1980).

A substantial portion of the source code is common to several products and
product families. It would be chaos if the developers of each of these products check-
into a single branch. Development is therefore segregated into more manageable
‘development’ or ‘dev’ branches. Developers check-in product-related changes
into these ‘dev’ branches which are periodically integrated into a ‘release’ or ‘rel’
branch. Each ‘dev’ branch contains code changes contributed by the development
team for a product or family of products. The ‘rel’ branch incorporates the changes
in all ‘dev’ branches which merge to and from it periodically.

We, therefore, have the time-synchronized handshakes between the ‘dev’ branches
and the ‘rel’ branch as shown in Figure 1. The merges to and from the ‘rel’ branch
are done against labels on the branches. Changes propagate to the ‘rel’ branch
and from the ‘rel’ branch to the ‘dev’ branches with every merge. Because of the
interdependencies of the code on different ‘dev’ branches, this is accomplished
through a physical merge, not by just updating the config_spec with the new label,
if using Clearcase for software configuration or similar means if using other tools
for the software configuration.

Handoffs to and from the release branch occur in Δt cycles where Δt is statically
determined for each release based on the rate of code changes on all branches and
their interdependencies. The time length of a cycle, Δt is inversely proportional to
the rate of code changes on all branches in Δt, which handoff to the release branch
and their interdependencies. We can mathematically model this relationship as,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

6

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Δt ∝ 1/[d/dt(
n∫db=1C)]γ1 γ2 γ3 ...γn……………………….(1)

where db = development branch, C= code changes, d/dt(
n∫db=1C) is the rate of code

changes on all ‘dev’ branches and γ1 γ2 γ3 ...γn are the correlation coefficients of the
‘dev’ branches. The formula is only a conceptual representation of the relationships.
In practice though, Δt is determined empirically, based on experience.

Each cycle comprises of 3 distinct phases on the ‘dev’ branch: development, merge
and build, which includes testing. The release engineering team, which manages the
‘rel’ branch also generates an image after consuming a handoff. As was mentioned
before development happens only on the ‘dev’ branch – merges, builds, regression
testing, and generating images are the only actions that happen on the ‘rel’ branch,
other than the handoffs. A handoff is typically a label, a snapshot of the source code,
and information about the criteria this snapshot meets, like the test pass %s, etc. The
label from a ‘dev’ team is a sparse label of the files on the ‘dev’ branch only, while
the label from release engineering is a complete label on all files. After consuming
the label from the ‘rel’ team, changes in all ‘dev’ branches will be visible in each
of the individual development views.

In all the above activities, automation is essential. Software Engineering is a
process and human-memory intensive. There are too many steps, dependencies
and other factors that make it difficult to remember and do them manually, without
the aid of scripts, checklists, and other aides. Manual processes have proven to be
error-prone and time-consuming. Automation is essentially programming human
expertise into scripts. When automation is not possible in entirety, it is a good idea
to generate checklists, messages, and other aides. The very nature of Software
Engineering makes it imperative that we automate as much as possible. Quality and
productivity demand automation.

From Waterfall to Agile

The traditional software development paradigm is referred to as the Waterfall
model because SDLC happens sequentially, in cascading stages. Requirements are

Figure 1. Branch integration

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

7

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

collected upfront; development happens as one big project and the feedback loop
between the development teams and operations is usually long. Over time, the
software industry realized the perils of following the Waterfall model and the need
for agility in the development (Sureshchandra & Shrinivasavadhani, 2008). Long
feedback cycles result in a substantial risk. Teams operate in silos and bugs are
discovered late in the cycle. Therefore, there is a need to break the one big project
into more manageable smaller chunks. The branching model discussed in the section
on Integration Engineering also needs to change to facilitate shorter release cadence.
Code changes need to be integrated more rapidly than wait for Δt time cycle, which
typically runs into days or weeks.

In the waterfall model, testing typically starts after all development is done. It is
often too late and too expensive to fix bugs that late in the cycle. It is imperative to
“fail fast” and recover from the failure fast as well. The cycle needs to be shortened
even if it takes several cycles for completion of the project. Overheads need to be
minimized and simplified to get into this iterative, agile mode of operations. Agility
calls for flexible and highly collaborative environments and an entire rethink of the
software development activity. For instance, companies have moved away from having
many feature branches as described in the section on Integration Engineering to a
single branch model that avoids merges and the heavy processes involved in managing
numerous branches. In large organizations, thousands of developers could be working
on a single branch. The source code instead uses ‘feature toggles’ for selectively
exercising the code. Agile methodologies resulted in substantial improvements for
companies. Some form of the Agile methodology has been successfully practiced
by most large organizations.

One of the popular flavors of the Agile methodology is Scrum. Much like in the
rugby football game by that name, where players flock together into a tightly packed
team to grab the ball, in the scrum framework, teams collaborate closely with each
other to develop the product. The idea of scrum is simple to understand, but difficult
to practice. It originated in 1986, from a paper in the Harvard Business Review
and is inspired by processes in the manufacturing firms like in the automotive and
the photocopier industries. Scrum defines only three roles: Product Owner, Scrum
Master, and the Team. The Product Owner is responsible for funding the project,
setting the vision and release dates for the product. The scrum master makes sure
that the team is productive and works to remove any blockers that the team may
run into during the execution of the project. Scrum master, as the name indicates,
is a key role, crucial for creating and sustaining a high-performance team. The team
typically comprises of 5 to 9 members who do the real work of building the product.
The team does not have a hierarchy, sub-teams or titles and functions seamlessly.

The work-cycle in scrum is called the sprint, which typically lasts for two
weeks and comprises of many tasks to be accomplished in that cycle. A task is a

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

8

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

fundamental unit of work in a sprint. The product is developed in increments. The
end of a sprint marks the completion of a useable portion of a product, which can
be released to the customers. This iterative development results in agile release
cycles and shortened time to market. The simple operating environment results
in low process overheads and quick decision making. Quality improves because
of frequent testing and feedback from the field. Teams feel empowered and work-
life balance is better achieved. Agile methodologies are big on automation, thus
enhancing productivity. During a sprint, the team meets daily for a short duration,
typically 15 minutes, standing and discuss these 3 key questions: (a) What did you
do yesterday? (b) What will you do today? (c) Are there any blockers impeding
the progress? Any blockers or issues are not resolved during the meeting – scrum
meetings are not to be used for problem-solving.

If there are blockers discovered during the meeting that cannot be resolved by
the scrum master, instead of extending the time, the scope is reduced – some of
the tasks are downsized or eliminated. It is therefore imperative that the scrum
master is an excellent problem solver and be able to unblock the team through
collaboration, coaching, and leadership. In terms of documentation, the tasks that
need to be implemented are described in form of “user stories” with the syntax,
“As a <some user>, I want <some goal>, so that <some reason>.” For instance, a
user story in a sales analysis application could be, “As a Regional Director for the
Asia Pacific, I want to be able to drill down to the sales numbers for a particular
country with a few clicks so that I can change the sales strategy for that country if
necessary.” Documentation need not be exhaustive – working software is prioritized
over comprehensive documentation.

Agile planning happens at different levels – task-level, done daily, feature level,
done for a sprint and at a strategic level for the entire release. The development
happens using timeboxed, lightweight iterations aligned with the sprint. The scrum
framework prioritizes individuals over tools or processes, making sure that there
are limits on the work in progress and feedback loops. One of the techniques often
used is pair programming, where programmers work in pairs, one of them writing
the code and the other reviewing it as it is being written. The pair keeps switching
roles and collaborate closely. A sprint retrospective is held after every sprint, also
for a short duration, where the entire team participates in reviewing what went
well and what did not. The retrospective also follows a simple process. The team
collectively decides what they should start doing for the next sprint, stop doing and
what the team should continue doing going forward.

There are simple tools that help in the process of the timeboxed, iterative
development. The tools include burndown charts which show the remaining work
plotted against the days in the sprint and sprint backlog that is updated by the scrum
master with the time required to complete the remaining tasks. Commercial software

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

9

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

packages like Rally or Jira incorporate these tools. A key aspect of the framework
is a sense of urgency that is shared by the entire team. The scrum methodology can
be viewed as a shift in coding culture and requires buy-in from all stakeholders.
It is a different way of doing software product development and can prove to be a
major shift in the organization’s culture. It must also be noted that Agile or Scrum
frameworks are not a silver bullet and are not suited for every software product
development. Often, large organizations use some components of the agile framework
in conjunction with other methodologies as a middle-ground.

DevOps

Software Engineering Operations teams continue to strive to provide a consistent
environment for global development. They engineer the products from the hands
of the developers to the hands of the customers. Agile methodologies proved
that collaboration and people must be top priority in software development. An
extension to that idea is to break the barriers between development and operations
teams further, resulting in the concept of DevOps. In some ways, DevOps can be
thought of as extending the principles of agile software development. Silos are
further broken down and development, quality assurance, and operations teams all
act without any barriers.

One of the best practices of DevOps is Continuous Integration (CI), an idea
proposed by Grady Booch, the inventor of the famed Unified Modeling Language,
UML. The idea is to provide immediate feedback to the developer about their code
changes and almost always have a working product that can be tested and possibly
released. The code changes need to meet several criteria such as being buildable, pass
sanity tests, go through static analysis checks successfully, reviewed and approved by
peers/module owners, and so on. Most of the checks happen automatically. The code
can be integrated into the product only if all the checks pass. Thus, all integration
issues are addressed immediately, in a sharp contrast with what was described in
the section on Integration Engineering. Continuous Integration, therefore, becomes
the basis for all subsequent operations and automation.

Unlike huge changesets getting propagated across branches through the handshakes
described in integration engineering, the changesets in Continuous Integration are
small, much more manageable, and iterative. The automation around CI is crucial
for developers to remain productive. Hence the need for tools – several of them – so
many that a periodic table can be filled with them and even more. The pivotal tool is
the CI engine, which does much more than the traditional ‘cron’ on Unix machines
that typically spun off the builds in the waterfall model. There are currently many
tools that function as a CI engine today. Jenkins, Travis, and Bamboo are a few
of such CI engines. These CI engines take the code changes from the developers

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

10

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

through a series of checks to validate the code diffs. The sequence of checks can be
envisioned as a ‘pipeline,’ quite analogous to the line of pipes that transport liquids
and gases to a production area. Just like the commercial liquid and gas pipelines
are equipped with the required control devices, the CI engine pipelines have the
necessary mechanisms to control the processes that take the code changes through
the validations.

Along with continuous integration, there is a need for continuous testing as
well, so that the developers get feedback on quality aspects, continuously. When the
product is continuously tested, it is ready for deployment in production continuously
as well, resulting in hundreds or even thousands of releases in a day. Continuous
Integration, Continuous Testing, Continuous Deployment, and Continuous Delivery
lead to continuous improvement. All these continuous processes can be implemented
using the ‘pipelines’ that the CI engines provide. As can be envisioned, the pipelines
can easily grow in complexity. The trend now is to ‘code’ the CI engine pipelines,
so that they can be maintained better and there is change history. ‘Pipeline as Code’
often resides in the same repository as the source code.

Cloud computing has come to stay. Today, most of the computing, including that
which happens in the pipeline, run in a private or public cloud. Cloud computing
and virtualization enable spinning up a ‘virtual’ machine (VM) in no time. Multiple
VMs, possibly running different operating systems can run on the same bare metal
hardware providing isolation and optimal usage. Cloud computing provides access
to the VMs seamlessly across the network, even if the bare metal machines are miles
away and are owned by a 3rd party. A lightweight model of a VM is a container,
which can run on a VM, providing an isolated environment for an application to
run. The container packages any given application along with all its dependencies
including configuration files and libraries so that the application is ready to run as
soon as the container is brought up – quite convenient for testing and deploying as
part of the pipeline. A container image is immutable so that it can be run and rerun
many times.

The container image contains everything that an application needs to run and
serves as an immutable snapshot of the application’s runtime environment. Multiple
containers share the kernel running on physical hardware and provide isolated
namespaces for the application to run. Therefore, a container includes its abstraction of
memory, devices, network ports, processes, and filesystems, shielding the underlying
kernel’s resources from direct access. The containers resources eventually use the
resources provided by the underlying kernel but do not let the applications access
them directly. Containers provide great portability suitable for instant deployment,
particularly when using a microservices architecture. As a general guideline, all builds
should be reproducible. Reproducibility is particularly important for production builds
or builds which go out to customers. Containerization can help in reproducibility

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

11

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

of builds since a container image can effectively store the configuration needed for
a build to be reproduced.

Some of the functions that the DevOps teams perform are shown in Figure 2. As
can be seen, the DevOps teams are responsible for most of the operations in software
development, starting with setting up the repository to deploying and shipping the
releases. Each one of these functions needs to be automated and automation requires
tools. Hence the explosion of tools. For instance, the number of artifacts that are
needed for the build and produced by it has grown so much that we now have tools
like Artifactory and Nexus to handle them. Source code itself is versioned in tools
like Git and Subversion. Huge files like the binary artifacts are not usually versioned
with the source code, hence separate tools for them. For testing, we have tools like
Selenium, JUnit, and TestNG. ElectricFlow and Julu help with deployment. Metrics
and dashboards play an important role in monitoring and improving productivity.
In the DevOps world, it is said that if it is measured, it is bound to improve. Tools
like Kibana and Nagios help in creating dashboards that can show metrics.

Docker and Kubernetes are popularly used tools for containerization and their
orchestration respectively. Configuration and provisioning tools include Chef,
Puppet, and Ansible. Coverity and SonarQube are two of the tools that help in static
analysis of the source code to detect any vulnerabilities and potential bugs, without
actually running the code. Tools like Cobertura, JaCoCo, and Valgrind are used
for measuring code coverage statistics. As we saw, collaboration plays a crucial
role in software development and is one of the main driving forces for the DevOps
movement. Multiple tools like Slack, HipChat, and Webex Teams are popularly
used for instant messaging and collaboration. In addition to these open-source or
commercially available tools, most large organizations have their internal tools to
handle several software development operations. For instance, Cisco has its huge
bug tracking system called CDETS and release posting tool called IRT.

Code bloating and code obsolescence is quite common over time. As highlighted in
Figure 2, the DevOps team needs to work on reducing the code footprint and explore
other ways to reduce the build times to reduce the wait-time for the developers to get
feedback about their code changes. In some cases, particularly when the software is
embedded, there are strict limits on how much memory the software can consume
at runtime, requiring a check to be placed on the incremental size of the image
built from the code changes. This is an example of a policy that needs to be put in
place. As can be seen, software development is a disciplined activity, which needs
to be regulated by several policies. Some of the other policies could be to allow
commits only after sufficient approving reviews, mandate a double-commit to the
master branch before committing to a release branch, and so on. The DevOps team
is responsible for enforcing the policies. Instrumenting such mechanisms and the
software development environment in general requires plenty of tooling on part

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

12

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

of the DevOps teams. It is not hard to see that DevOps is, therefore, a substantial
charter requiring strong technical and analytical skills.

DevOps to DevSecOps

Security is everyone’s business, even in the software industry. Application security
is critical, given their usage profile. That part has not changed, but the way security
is achieved has gone through substantial changes due to paradigm shifts in the
development processes. Traditionally, as shown in Figure 3a, boundaries were secured
using firewalls. Companies and applications operated in silos. Development and
Operations too operated in silos and were not well orchestrated. DevOps fixed the
broken collaboration mechanisms and provided for continuous, seamless operations.
Security continued to be ensured by protecting the organization’s borders.

The scenario is depicted in Figure 3b. However, as cloud computing gained in
adoption, borders weakened, and computing happened across borders. It was no
longer enough to protect the

corporate borders using firewalls. Security had to be built into the application,
resulting in the “Security as Code” paradigm and the birth of DevSecOps, as
depicted in Figure 3c.

Cloud computing and DevOps brought in a series of “…as a Service” and “…as
Code” paradigms, such as “Infrastructure as a Service,” “Infrastructure as Code,”
and “Pipeline as Code.” DevSecOps continued the trend with the “Security as Code”
paradigm, taking a holistic view of security. Like DevOps, DevSecOps has to do

Figure 2. Typical responsibilities of the DevOps team

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

13

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

a lot with the corporate mindset and is a culture shift. It can be viewed as a set of
tools, techniques, and processes to build security into software. It requires buy-in
from all stakeholders and is a community-driven effort. DevSecOps is still evolving
through learning and exploration. With security moving into the application, security
infrastructure needs to be ‘cloud-aware’ and security features need to be published
via APIs. Security aspects are now built into the CI engine pipeline and automation
tooling as much as possible. Security is part of the software building process as
illustrated in Figure 4.

Development, security, and operations are the new building blocks of a software
organization.

Figure 3a. Security in legacy software systems

Figure 3b. Security with the advent of DevOps

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

14

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

DevOps broke the silos between Development and Operations teams. DevSecOps
extends the idea and broke the silos between the Security teams and the DevOps
teams. DevSecOps orchestrates the workflows among the development, security, and
operations teams to provide an integrated, seamless infrastructure for the development
of the product. Security vulnerabilities in the code are continuously monitored and
addressed paving way for “Continuous Security.” Products are always security-ready,
in addition to being deployable with every code commit. Product security is therefore
tightly coupled with the pipeline controls. For instance, continuous testing now
requires security aspects to be tested as well as part of the code commit validations
in the pipeline. Security, which came into the picture in the later stages of software
development, now needs to “shift left,” to earlier stages of development as well,
right from the beginning. There must now be at least a few agile user stories related
to security in every sprint if agile methodologies are being used.

Figure 3c. Security in DevSecOps

Figure 4. Building blocks of a software organization

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

15

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Issues, Controversies, Problems

The DevSecOps area is still evolving and poses multiple challenges. It is a culture
shift and driving change across organizations continues to be a challenge. Roadshows
within the organization, identifying security champions to serve as brand ambassadors
for DevSecOps, and promoting the benefits of DevSecOps by other means are some
of the techniques that can be used to make the culture shift. Security certainly raises
the complexity of the applications. Architecture changes to accommodate security
aspects as applicable to on-premises, cloud, and container deployments must be
considered right from the beginning. A security mindset must be inculcated among
cross-functional teams.

Skilled manpower continues to be a challenge in the DevSecOps area. The author
personally interviewed scores of candidates for open positions in his team and found
that many engineers have restricted themselves to mere tool configuration and usage,
without much experience at all in writing substantial scripts and implementing tools
from scratch or understanding the underlying principles. It is also observed that some
engineers continue to work in older waterfall methodologies and tools, without much
exposure to the latest trends in the industry. Organizations, particularly the large,
well-established ones must learn to quickly adopt newer technologies and train their
personnel for the change. It is hard to drive change, but the risk of obsolescence
should be enough motivation to move with the industry.

Another major challenge is the budget allotted for DevSecOps. The higher
management may not always see the value or the complexity of the DevSecOps tasks,
resulting in understaffed DevSecOps teams and inadequate tooling infrastructure. In
such cases, it may help if the first-line managers and technical leads of DevSecOps
teams meet with the higher management to impress upon the critical value that the
DevSecOps methodologies provide and the complexities involved in them. It is also
helpful to standardize the tool and process usage across large organizations, so that
interoperability if needed, is better achieved. Legacy tools can pose challenges in
terms of scaling and adapting to growing needs. It is imperative to quickly identify
infrastructure that is not able to keep up and replace it with the industry-standard
tooling.

FUTURE RESEARCH DIRECTIONS

The Software Engineering journey will of course not stop at DevSecOps and full-
stack engineering. A hot area that is still evolving is implementing DevSecOps for
Artificial Intelligence products and using Artificial Intelligence for DevSecOps.
Machine Learning is the mortar of modernization and is becoming more and more

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

16

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

ubiquitous. Machine Learning approaches can be used to detect security vulnerabilities
and bugs in general. Analyzing the logs from the tools using AI techniques can help
improve the quality of the tools – an area that can benefit from more research. There
is also ample scope for building tools to integrate security aspects into the pipelines.

CONCLUSION

This chapter briefly examined the evolution of the Software Engineering domain
into today’s DevSecOps, presenting important tools, techniques, and observations,
all along. Several aspects of Software Engineering have transformed drastically over
the last three decades. For instance, the simple ‘cron’ in the Unix systems has now
become a full-blown Continuous Integration engine acting as the backbone of the
DevSecOps revolution. The chapter also identified a few challenges and solutions to
address them. The domain continues to evolve further and holds plenty of promise
for the future.

ACKNOWLEDGMENT

The author gratefully acknowledges the experience gained from various software
organizations that was instrumental in writing this chapter.

REFERENCES

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., & Tamburri, D. A. (2017, May).
DevOps: introducing infrastructure-as-code. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C) (pp. 497-498). IEEE.
10.1109/ICSE-C.2017.162

Banica, L., Radulescu, M., Rosca, D., & Hagiu, A. (2017). Is DevOps another Project
Management Methodology? Informações Econômicas, 21(3), 39–51. doi:10.12948/
issn14531305/21.3.2017.04

Bucena, I., & Kirikova, M. (2017). Simplifying the DevOps Adoption Process.
BIR Workshops.

Chen, L. (2018, April). Microservices: architecting for continuous delivery and
DevOps. In 2018 IEEE International Conference on Software Architecture (ICSA)
(pp. 39-397). IEEE. 10.1109/ICSA.2018.00013

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

17

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Cito, J., Wettinger, J., Lwakatare, L. E., Borg, M., & Li, F. (2018, March). Feedback
from Operations to Software Development—A DevOps Perspective on Runtime
Metrics and Logs. In International Workshop on Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production and
Deployment (pp. 184-195). Springer.

Dyer, M. (1980). The management of software engineering, Part IV: Software
development practices. IBM Systems Journal, 19(4), 451–465. doi:10.1147j.194.0451

Erich, F. M. A., Amrit, C., & Daneva, M. (2017). A qualitative study of DevOps
usage in practice. Journal of Software: Evolution and Process, 29(6), e1885.

Feitelson, D. G., Frachtenberg, E., & Beck, K. L. (2013). Development and deployment
at Facebook. IEEE Internet Computing, 17(4), 8–17. doi:10.1109/MIC.2013.25

Jiménez, M., Castaneda, L., Villegas, N. M., Tamura, G., Müller, H. A., &
Wigglesworth, J. (2018, March). DevOps round-trip engineering: Traceability from
dev to ops and back again. In International Workshop on Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production
and Deployment (pp. 73-88). Springer. 10.29007/gq5x

Kaiser, A. K. (2018). Introduction to DevOps. In Reinventing ITIL® in the Age
of DevOps (pp. 1–35). Berkeley, CA: Apress. doi:10.1007/978-1-4842-3976-6_1

Li, Z., Zhang, Y., & Liu, Y. (2017). Towards a full-stack DevOps environment
(platform-as-a-service) for cloud-hosted applications. Tsinghua Science and
Technology, 22(01), 1–9. doi:10.1109/TST.2017.7830891

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J., &
Oivo, M. (2016, January). Towards DevOps in the embedded systems domain: Why
is it so hard? In 2016 49th Hawaii International Conference on System Sciences
(HICSS) (pp. 5437-5446). IEEE.

Myrbakken, H., & Colomo-Palacios, R. (2017, October). DevSecOps: a multivocal
literature review. In International Conference on Software Process Improvement
and Capability Determination (pp. 17-29). Springer. 10.1007/978-3-319-67383-7_2

Rahman, A. A. U., & Williams, L. (2016, May). Software security in DevOps:
synthesizing practitioners’ perceptions and practices. In 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery (CSED)
(pp. 70-76). IEEE. 10.1145/2896941.2896946

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

18

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Sánchez-Gordón, M., & Colomo-Palacios, R. (2018, October). Characterizing
DevOps Culture: A Systematic Literature Review. In International Conference on
Software Process Improvement and Capability Determination (pp. 3-15). Springer.
10.1007/978-3-030-00623-5_1

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., & Stumm, M. (2016,
May). Continuous deployment at Facebook and OANDA. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C) (pp. 21-
30). IEEE. 10.1145/2889160.2889223

Stahl, D., Martensson, T., & Bosch, J. (2017, August). Continuous practices and
DevOps: beyond the buzz, what does it all mean? In 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA) (pp. 440-448). IEEE.
10.1109/SEAA.2017.8114695

Sureshchandra, K., & Shrinivasavadhani, J. (2008, August). Moving from waterfall
to agile. In Agile 2008 conference (pp. 97-101). IEEE. doi:10.1109/Agile.2008.49

Van Der Hoek, A., Carzaniga, A., Heimbigner, D., & Wolf, A. L. (1998). A reusable,
distributed repository for configuration management policy programming. Univ.
Colorado, Boulder, Tech. Rep. CU-CS-864-98.

Wiedemann, A., & Wiesche, M. (2018). Are you ready for DevOps? Required skill
set for DevOps teams. Proceedings of the European Conference on Information
Systems.

ADDITIONAL READING

Allen, L., Fernandez, G., Kane, K., Leblang, D., Minard, D., & Posner, J. (1993).
ClearCase MultiSite: Supporting geographically-distributed software development.
In Software Configuration Management (pp. 194–214). Berlin, Heidelberg: Springer.

Bartusevics, A., & Novickis, L. (2015). Models for implementation of software
configuration management. Procedia Computer Science, 43, 3–10. doi:10.1016/j.
procs.2014.12.002

Dyck, A., Penners, R., & Lichter, H. (2015, May). Towards definitions for release
engineering and DevOps. In 2015 IEEE/ACM 3rd International Workshop on Release
Engineering (pp. 3-3). IEEE. 10.1109/RELENG.2015.10

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

19

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Mohan, V., & Othmane, L. B. (2016, August). SecDevOps: Is it a marketing
buzzword?-mapping research on security in DevOps. In 2016 11th International
Conference on Availability, Reliability and Security (ARES) (pp. 542-547). IEEE.

Rahman, A. A. U., & Williams, L. (2016, May). Software security in DevOps:
synthesizing practitioners’ perceptions and practices. In 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery (CSED)
(pp. 70-76). IEEE. 10.1145/2896941.2896946

Schwägerl, F., Buchmann, T., Uhrig, S., & Westfechtel, B. (2015, February). Towards
the integration of model-driven engineering, software product line engineering,
and software configuration management. In 2015 3rd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD) (pp.
1-14). IEEE.

Ur Rahman, A. A., & Williams, L. (2016, April). Security practices in DevOps. In
Proceedings of the Symposium and Bootcamp on the Science of Security (pp. 109-
111). ACM. 10.1145/2898375.2898383

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., & Krcmar, H. (2019). The
DevOps Phenomenon. Queue, 17(2), 40.

Williams, L. (2018, May). Continuously integrating security. In Proceedings of
the 1st International Workshop on Security Awareness from Design to Deployment
(pp. 1-2). ACM.

Yasar, H. (2017, August). Implementing Secure DevOps assessment for highly
regulated environments. In Proceedings of the 12th International Conference on
Availability, Reliability and Security (p. 70). ACM. 10.1145/3098954.3105819

KEY TERMS AND DEFINITIONS

Artificial Intelligence: An area of Computer Science that involves writing
programs that can do things that would otherwise require human intelligence.

Everything as Code: A concept that everything that is needed to implement the
software lifecycle can be treated as code, for example, pipeline as code.

Machine Learning: A branch of Artificial Intelligence which involves writing
programs that can identify patterns, learn from data, and make predictions.

Pipeline as Code: Use a programming language to specify what needs to happen
in the pipeline and version the file containing this ‘pipeline program’ along with
the source code, so that it is much more maintainable.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

20

Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps

Shift-Left: Assuming that the software lifecycle is drawn from left to right in
chronological order, move certain aspects such as testing and security, which were
previously done towards the end, to the earlier phases of the software development
lifecycle.

Source Code Branch: An artifact in a version control system such as Git that
allows parallel and independent development in the same files, unbeknownst to each
other, until the branches merge.

Workflow: A series of processes through which software code changes need to
go through from conception to product completion.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

21

DOI: 10.4018/978-1-7998-1863-2.ch002

ABSTRACT

Every business has an underlying information system. Quality and creditability of
a system depend mainly on provided requirements. Good quality requirements of a
system increase the degree of quality of the system. Hence, requirements determinations
is of prime importance. Inadequate and misunderstood requirements are major
problems in requirements determination. Major stakeholders of the requirements are
non-computer professional users, who may provide imprecise, vague, and ambiguous
requirements. Further, the system development process may be partly automated and
based on platform such as web or Semantic Web. In this case, a proper ontology to
represent requirements is needed. The chapter proposes a fuzzy RDF/XML-based
ontology to document various requirements. A generic architecture of requirements
management system is also provided. To demonstrate the presented approach, a case
of student monitoring and learning is presented with sample software requirements
specifications and interfaces to collect requirements. The chapter concludes with
advantages, applications, and future enhancements.

Fuzzy Ontology for
Requirements Determination
and Documentation During

Software Development
Priti Srinivas Sajja

 https://orcid.org/0000-0002-9676-0885
Sardar Patel University, India

Rajendra A. Akerkar
Western Norway Research Institute, Norway

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://orcid.org/0000-0002-9676-0885

22

Fuzzy Ontology for Requirements Determination and Documentation

INTRODUCTION

The quality of any software depends on the requirements considered during the
development of the software. Requirements generally provide a basic skeleton of
the software. The document containing well-formed requirements serve the basis
for all phases of the software development activity. The inclusion of good quality
requirements in the software requirement specifications leads towards good quality
software. After proper analysis phase, once requirements are collected, analyzed
and documented; a Software Requirements Specification (SRS) will be prepared.
The SRS will be useful at the beginning of the design phase as well as at the end of
the design phase to test whether the specified requirements are accommodated in
the proposed design or not. Coding, testing and evaluation of the software are also
done according to the requirements.

The requirements often contain imprecision and vagueness within them. Further,
the importance of each requirement is different and affected by various parameters
such as requirement initiator’s (who has initiated the requirement) mindset, cost of
adding the requirements, loss due to missing of the requirements, the priority of the
requirements, etc. Such important but vague criteria can be added as a fuzzy tag to
each requirement while documenting the requirements with the help of fuzzy logic.
Fuzzy logic, with the virtue of fuzzy membership function, can efficiently handle
such vagueness and impression in computer systems. In this scenario, there is a need
for a documentation ontology that documents requirements on the Web platform
and manages the fuzziness associated with it. In contrast to traditional knowledge-
based approaches, e.g. formal specification languages, ontologies seem to be well
suited for an evolutionary approach to the specification of requirements and domain
knowledge (Wouters, Deridder, & Van Paesschen, 2000). Moreover, ontologies can
be used to support requirements management and traceability.

Besides, varying requirements and evolving solutions are important challenges
during the software development process. Agile software development is the way
to tackle these challenges by adopting methods based on iterative and incremental
development. The challenges are similar in the area of ontology engineering. Several
situations ontology development is a continuous and collaborative task.

The proposed chapter introduces the current scenario and sets the necessary
technical background of ontology, knowledge engineering and fuzzy logic in
section 1 and section 2. After that, the chapter documents related work in the area
of ontology, fuzzy logic, and use of ontology in software development activities
with general observations and limitations. The related work is documented in
section 3 of the chapter. The section also summarizes the survey on work done by
presenting the observations and characteristics. Section 4 of the chapter proposes
a fuzzy ontology for requirements determination. The section introduces various

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

23

Fuzzy Ontology for Requirements Determination and Documentation

components of requirements with the necessary description along with the graphical
representation of the components to highlight the relationship between them. An
RDF/XML structure is proposed for the requirements documentation in section 4. A
generic architecture to manage the fuzzy ontology repository along with a knowledge
base and other components are also illustrated here. Section 5 discusses a case of a
student’s learning and monitoring system and presents sample software requirements
specification with the requirements documented in the RDF/XML format and an
interface screen for the acquisition of requirements. Section 5 also presents the
fuzzy membership functions used for the experimental system. Section 6 presents
advantages, applications and future directions based on the proposed approach.

FUNDAMENTALS

Software Engineering, Knowledge Engineering and Ontology

Ontology deals with the study of various objects, attributes and relationships that
exist in the domain of interests. Ontology can be considered as the representation
and explicit conceptualization of vocabularies such as entities, sub-entities, relations
and properties in a domain of interest. With the help of such a formal definition,
it is possible to represent a situation in an efficient manner. Proper designing of
ontology in a given domain does not help only in the conceptualization of the
domain entities but also provides a framework/structure to store knowledge about
the domain. Ontology is a great tool not only for describing the domain but also
for managing the domain knowledge. The ontology can be considered as a formal
set of vocabularies, symbols and/or a model/schema in a predefined framework
with linked data. Both computer science and philosophy domain identify ontology
as “the nature of being”. In 1995, computer scientist Tom Gruber (1995) used the
term ontology and introduced it as a means of specification of conceptualization.
A formal definition of ontology as given by Mike Uschold and Michael Gruninger
(1996) is quoted below:

Ontology is the term used to refer to the shared understanding of some domain of
interest which may be used as a unifying framework to solve the above problems in
the above-described manner.

For ontology representation in a machine-interpretable way, different languages
exist. Ontology languages are typically declarative languages based on either first-
order logic or on description logic. Ontology languages based on first-order logic
have high expressive power, but computational properties such as decidability

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

24

Fuzzy Ontology for Requirements Determination and Documentation

are not always achieved due to the complexity of reasoning. The most popular
language based on description logic is OWL DL, which has attractive and well-
understood computational properties (Akerkar R., 2009). Another relevant language
in Ontological Engineering is the Resource Description Framework (RDF). RDF
was originally meant to represent metadata about web resources, but it can also be
used to link information stored in any information source with semantics defined
in the ontology. The basic construction in RDF is an <Object, Attribute, Value>
triplet: an object O has an attribute A with value V. A RDF-triplet corresponds to
the relationship that could be written as <O, A, V>.

Importance of Ontology

Well defined vocabularies about entities, their types and their inter-relationships
are always helpful in avoiding misunderstanding and communicating the basic
objectives of the business. Ontology helps in enhancing communication between
key-objects and key people of the organization. This is one of the major reasons to
develop ontology. An ontology defines the requirements, situations and goals in a
formal manner; which is easy to follow and communicate. Especially, requirements
documented in proper ontology support and accelerate the system development
process also. Further, the interoperability of the entities and concepts is also supported
by ontology. Once an ontology is defined, tested and utilized, it can be reused in a
similar situation for future decision making, problem-solving and learning. Various
advantages of ontology are illustrated in Table 1.

Software Engineering and Knowledge Engineering

The field of software engineering provides guidelines for the development of
software. There are many models and approaches suggested for the development
of software systems as described in a review paper of Isabel M. del Aquila et al.
(2014). In spite of the help offered by the established approaches and models, systems
development is partly an art. Higher-level systems dealing with tacit knowledge
such as expert systems and other intelligent systems face many problems related to
the acquisition of domain knowledge, representing and inferring the knowledge for
problem-solving. Many researchers have provided development models for such
a knowledge-based system (Akerkar & Sajja, 2009). A new disciplined also has
evolved namely knowledge engineering in the field of knowledge engineering which
considers the application of various software development techniques as well as
knowledge acquisition, knowledge representation and its use in co-operative form
(Studer, Benjamins, & Fensela, 1998). The field considers the techniques, approaches,
and models for software development for knowledge-based systems development. It

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

25

Fuzzy Ontology for Requirements Determination and Documentation

can also consider the knowledge-oriented development of a typical (non-knowledge
based) system. Figure 1 represents the relationship between the fields.

Software engineering as knowledge-based systems together can be applied in
many ways. The broad categories for the same can be given as (i) use of software

Table 1. Various advantages of using ontology

Documentation and
consistency

Ontology helps in modeling domain knowledge by modeling concepts, entities and
their relationships.

Communication

An ontology may be formally defined and shared among the beneficiaries with
clear understanding thus leaving a little scope of miscommunication. Meaning of
objects, a possible relationship between the objects, and intended applications of the
ontology are well defined at the time of ontology development; which leads to filling
the gap of communication.

Inter-operability Well documented ontology enables easy and smooth machine processing and helps
in exchanging data without ambiguity.

Reusability and
future use

Content once documented in a form of a suitable ontology, can be used for
predefined applications and also can be extended or reused for similar applications
without much change. It is advisable to go for modular and loosely coupled
representation of content, so a component (or a module) can easily detach/attached
as per need. Well documented concepts represented in the proper ontology can be
reused many times in the future for learning, training, knowledge representation,
and machine processing. Another key factor is the flexibility of ontologies. With
information integration as a major use case, ontologies are well-suited to combine
information from various sources and infer new facts based on this. The flexibility
permits to widen existing ontologies very straight forward, thus fostering the reuse
of existing work.

Ease of use and
testing

An Ontology component undergoes thorough testing while its development phase
and an integrated higher level ontology are built using such well-tested modules
resulting in a good quality upper-level ontology. Concepts described via such
ontology are comparatively error-free and have good quality.

Figure 1. Knowledge engineering

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

26

Fuzzy Ontology for Requirements Determination and Documentation

engineering guidelines to develop knowledge-based/intelligent systems; (ii) use of
intelligent systems to invent new guidelines for software engineering; and (iii) a true
hybrid manner, where intelligent systems are developed in an intelligent manner.
It should be noted that both the fields have some similarities, which can help
each other in evolving better for mutual advantages. Further, most of the systems
use Web as a platform, where ontology can be considered as an effective tool for
content representation. Considering these facts, in this chapter, we proposed the use
of ontology as a knowledge representation tool, which will be helpful in systems
development, specifically for the determination and management of the requirements
related to the software system.

Fuzzy Logic

The term fuzzy logic was proposed by Lotfi Zadeh (1965). Fuzzy logic is a logic-
based on fuzzy sets. Fuzzy sets are the special sets without a rigid boundary or sets
without boundaries. Belongingness of an entity to a set is generally well defined and
crisp in nature. That is, a given item belongs to a set is determined by the definition
of the set; and there is no vagueness in it. An element, if belongs to a set, then it
completely belongs to the set. Otherwise, it completely does not belong to the set.
In any case, the belongingness is crisp and Boolean. That is the nature of a typical
crisp set. However, the fuzzy sets talk about the partial or graded membership of
an element to a set; hence incorporating multiple values between two extreme crisp
values 0 and 1. To determine such partial membership, a specially designed function
is utilized; which is known as fuzzy membership function.

An example of crisp and fuzzy membership functions for various fuzzy membership
functions such as “Hot Temperature”, “Cold Temperature”, etc. is illustrated in
Figure 2.

Figure 2 illustrates the crisp set of hot temperature which is by definition bivalent.
That is, if the temperature is greater than or equal to 25 (in degree centigrade), then
the temperature is ‘Hot’ otherwise not. That means temperature value 24.99-degree
centigrade is not ‘Hot’, and similarly temperature value 13 degree centigrade is
also not ‘Hot’. The major difficulty with such typical bivalent logic is that, both
the temperature values are considered in the same ‘not hot’ category and treated
at par. The first value of temperature, 24.99-degree is nearly 25-degree and we
normally considered that as a ‘Hot’! Fuzzy logic helps to reduce such rigidness in
belongingness of the candidate into a given set by considering set without boundary
and suggest partial or graded membership to the set. As shown in the membership
function illustrated in Figure 2, the ‘Hot’ temperature considers temperature values
from 25-degree centigrade to 35-degree centigrade and provides multiple degrees
of belongingness for various temperature values provided within the range.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

27

Fuzzy Ontology for Requirements Determination and Documentation

Figure 2 also illustrates other fuzzy function for ‘Cold’, ‘Cool’, ‘Warm’, and ‘Very
Hot’ temperature using triangular membership functions. Since all the functions are
about the Temperature in a common domain and return values between 0 and 1, they
can be presented as an integrated chart. Slight change in the triangular membership
function for ‘Hot’ temperature, ‘Slightly Hot’ membership function can be generated.
Similarly, many other variations of the previously defined membership functions
can easily be generated.

It is obvious that human beings are very comfortable with such linguistic
representation of situations such as ‘Hot temperature’, ‘High speed’ and ‘Tall man’;
however, machines do not welcome such linguistic and native words. Machines are
more comfortable with values. Because the membership functions are efficiently
converting the linguistic parameters into its equivalent values, a human can use such
native words in decision making. A linguistic variable can be defined as follows.

A linguistic variable on a fuzzy set defined on universe U is characterized by a
four-tuple (X,T,U,G,S) where X is the name of the variable, T is the set of terms of
X, U is the universe of discourse, G is a grammar to generate the name of the terms,
and S is a semantic rule for assigning meaning to a term.

Use of the linguistic words in logic opens up the possibility to interact with
machines like human beings. This is possible with the help of fuzzy rules. Figure 3
illustrates some simple fuzzy rules associated with the fuzzy sets and membership
functions illustrated in Figure 2.Figure 3 also shows a general form of fuzzy rule.

Figure 2. Crisp and fuzzy membership functions for temperature

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

28

Fuzzy Ontology for Requirements Determination and Documentation

Such multiple rules are encoded and used as the major content of the knowledge
base of the fuzzy logic-based system. Along with such knowledge base and meta-data
for the fuzzy membership functions (for the meaning of linguistic variables used in
fuzzy rules), the user interface, inference mechanism, reasoning and explanation
facilities are also available with the fuzzy logic-based systems.

Exemplifying Fuzziness in Ontologies

Formalisms regarding fuzzy ontologies were introduced to represent semantic
knowledge-based on vague concepts and relations (Straccia, 2006). A number
of approaches have developed to implement those formalisms into OWL-based
ontologies. Some approaches emphasize on building precise OWL ontologies
formally defining the common elements of fuzzy set theory to be later populated with
instances representing the fuzzy axioms and elements of specific domain ontology.
Extending the OWL language to support fuzzy definitions is one strategy for building
fuzzy ontologies. While some approaches (Stoilos, Stamou, & Pan, 2010) propose
extending the standard building blocks of the OWL language, others use the OWL
standard tools to represent such fuzzy information. However, the work on Fuzzy OWL2
(Bobillo & Straccia, 2011) is the most prominent effort in this area. It uses OWL2
annotation properties to encode fuzziness. The use of annotation properties makes
fuzzy ontologies compatible with OWL2 management tools (editors, programmatic
environments, etc.) and enables crisp OWL-based reasoners to compute inferences
over this sort of ontologies discarding the fuzzy elements. Moreover, Fuzzy OWL2
also offers a general Java parser as a base for building specific parsers for translating
from Fuzzy OWL2 syntax to the syntax of any fuzzy DL reasoner.

RELATED WORK

Requirements determination in software engineering plays a vital role. Well
determined requirements are the skeleton of the systems being developed. The quality

Figure 3. Sample fuzzy rules

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

29

Fuzzy Ontology for Requirements Determination and Documentation

of the system directly depends on the quality of the requirements finalized for the
system under devolvement. If the right requirements are considered for software, the
purpose of the development will be served and users will get the required software.
The requirements and other knowledge are acquired from multiple users and various
sources in different forms/structures. Most of the software development projects
suffer from the problem of communication and getting the right requirements from
various categories of users. The following are the major common problems while
the determination of requirements.

• Users are not aware of the requirements or users are not ready to provide
the requirements- because of a lack of knowledge of advanced technology,
lack of domain knowledge, and inability to foresee the change required in the
business. Further, users may not know about their own requirements. They
are habituated with exiting systems and technologies; so they do not want to
change the working of the system.

• Users can not articulate their requirements correctly - users may want to share
their requirements and expectations from the system; but cannot explain their
needs effectively to the systems analyst.

• Requirements are not understood correctly- the requirements provided by the
users may not be properly understood by the systems analyst in its intended
manner. He may understand something else and communicate different
requirements to the team of programmers. Programmers and other developers
can also get the requirements in the wrong manner.

Above these, if the platform used for the development is Web or the semantic
web, problems related to representation and documentation of the requirements
also arise. Shared conceptualization of ideas (here requirements) can be helpful.
This leads to the utilization of suitable ontology to document and communicate
requirements. If software requirements are specified using a proper ontology, not
only for experts and users but for machines also it would be easy to work with such
requirements. Documentation, sharing, using and matching of requirements (with
similar requirements of the other software project), etc. operations would become
efficient and fruitful with the adaption of ontology in requirements engineering.

A lot of work is done in this area to resolve the above-mentioned issues and to
use ontology as a requirements determination tool. Ontology for documentation of
requirements is used by Jinxin Lin, et al., (1996) for the engineering domain. The
authors have proposed ontology for engineering design with an objective to provide a
common and generic ontology that can be used by many experts. A tool is also proposed
by Michael Lang and Jim Duggan (2001) to manage requirements in a collaborative
manner. In this work, the major importance is given to the communicability of the

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

30

Fuzzy Ontology for Requirements Determination and Documentation

software requirements specification between various developers. An experiment
on creating domain ontology in the area of public administration is proposed by
Graciela Brusa, et al., (2008). The paper also discusses the problem of semantic
heterogeneity while working in a large domain such as public administration.

A broad architecture of ontology-based engineering of requirements is also
proposed by Katja Siegemund, et al., (2011). As per the claim of the authors, it
is a meta-model capable of representing requirements into suitable ontology and
checking for consistency. S. Murugesh and A. Jaya (2015) represented requirements
in a suitable ontology and presents a mechanism to check the consistency of the
requirements represented in the OWL DL form. The domain of interest considered
for experimenting with the proposed research work is Automatic Teller Machine
transactions. Hans-Jörg Happel and Stefan Seedorf (2006) have demonstrated the
use of ontology during various phases of software engineering. The authors could
prove that the use of ontology may be costly at the initial stage and also requires
high efforts in the development of the ontology; however, later it is proved as cost-
beneficial with its reusability.

To encode security-related requirements, many authors have used ontology. Their
contributions can be seen in a survey paper by Amina Souag, et al., (2012). The
paper articulates the work of more than 40 researchers in the field of ontologies for
security requirements. The authors could classify the requirements into 8 different
groups and discusses sample ontology for the groups. The work also presents a
summary of various types of requirements ontologies with their comparative analysis.

The use of ontology for knowledge representation has started way back. Nicola
Guarino and Pierdaniele Giaretta (1995) studied ontologies and large knowledge
base together and explained the application of ontology in the domain of knowledge
representation. The incorporation of fuzzy logic in ontology is experimented by
Silvia Calegari and Davide Ciucci (2006). They have proposed a mechanism to
generate a fuzzy value and assigning it to a suitable label used in the ontology by
software. The authors have suggested the fuzzy modeling in two ways: linguistic
and precise. Chang-Shing Lee, et. al., (2005) have used fuzzy ontology for news
summarization. Jeff Pan, et al., presented the use of fuzzy logic in SWRL ontology.
Verónica Castañeda, et al., (2010) have proposed the use of ontology in requirement
engineering. However, fuzzy logic is not incorporated in their work. Priti Srinivas
Sajja (2014) has also used fuzzy logic for XML based ontology to represent knowledge
for a web-based expert system. A method for automatic extraction of attributes of
concepts, leading to the automatic creation of ontologies was proposed by G. Cui,
et. al., (2009). On the other hand, P. Alexopoulos, et al., (2012) proposed a method
to convert a “crisp” ontology in a fuzzy one. Ismail Muhammad (2016) proposed a
framework to create ontology in a semi-automatic manner and use it for requirements
testing. This is a case of post-conversion of the available requirements documents

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

31

Fuzzy Ontology for Requirements Determination and Documentation

into suitable ontology. Further, test case generation is also possible with the help
of ontology as claimed by Tarasov et al. (2016). The ontology layer cake model is
also proposed to deal with the specified ontology in natural language as mentioned
by Abel Browarnik and Oded Maimon (2015).

Verification of requirements via pre-specified ontology is experimented by
Dong, Q. et al. (2012), in which verification of the requirements is done from the
acquired and documented requirements in a proper ontology. Work by Dzung, D. V.,
and Ohnishi, A (2009) extracts the key elements form the set of requirements and
verifies them for their practical feasibility using natural language processing. The
latest work in the ontology domain is done by Rizvi, S et al. (2018), which restricts
itself to technical documents information to identify users’ behavior using the virtue
of ontology. However, the approach does not handle vagueness and imprecision.
Work of Oriol X., Teniente E. (2018) describes a framework of the ontology-based
discovery of various data services. This is purely related to data retrieval.

From the above mentioned related work and the discussion on underlying concepts,
the observed advantages of using ontology for requirements determination are as
follows:

• Documentation of requirements
• Communication of requirements
• Sharing of requirements
• Traceability of requirements
• Automatic use and matching of requirements
• Automatic testing the software product and cross-verification of requirements

with developed source code
• Partial management of ambiguous requirements
• Dynamic requirements

These advantages are more strengthened with the use of fuzzy logic. As the field
of software development is an art as well as science, it deals with more linguistic,
uncertain and ambiguous knowledge related to the process of software development.
The situation is manageable in comparison with the earlier scenarios, where software
development was more art and less science. Currently, it has become a bit systematic
and sophisticated because of available tools and technological advancements. Further,
users have also become familiar with various systems/software in a given domain.
Still, the major requirement providers are non-computer professionals. Though
they may not aware of the automation and popular computing advancements, it
is comparatively difficult for them to provide a clear requirement. Inadequate
specification, changing requirements and requirements that are not completely

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

32

Fuzzy Ontology for Requirements Determination and Documentation

defined (and may have chances to be interpreted in different ways) can be handled
with the notion of a linguistic fuzzy variable. Section 4 proposes how fuzzy logic
can be incorporated with ontology to determine requirements.

FUZZY ONTOLOGY FOR REQUIREMENTS DETERMINATION

Requirements determination typically involves requirements anticipation,
requirements investigation through fact-finding techniques and requirements
specification in suitable representation structure. Anticipated requirements are
common and standard requirements that are ordinary and typical in nature. The
anticipated requirements save time and effort, which is normally spent at the
investigation phase. For requirements investigation time and effort must be given
for the acquisition of requirements through fact-finding methods such as interviews,
questionnaires, record reviews and observations. However, this effort will earn some
extraordinary requirements. Whether anticipated or investigated, requirements once
acquired need to be specified in various structures and ontology for its safekeeping,
communication for further development and other future uses. To document
requirements in ontology following components may be considered.

• Requirements Statement: Description about the requirements in textual
format. The text may use one or more fuzzy linguistic variables, which later
on can be interpreted with the help of associated fuzzy membership functions.

• Requirement Author: Name of the expert or user who has suggested the
requirements.

• Requirement Subject: Subject or the requirement suggested.
• Requirement Section: The suggested requirements may be applicable to

a particular section or a block of the organization/business. It may also be
possible that more than one section can be benefited by the requirements or
the requirement is truly generic in nature.

• Requirement Identification Number: A unique identification number needs
to be given to each specified requirement for ease of access and documentation.
The identification number can be made by combining subfields/parts of
the above-mentioned components such as requirement author, subject and
sections.

• Requirement Class Hierarchy: The suggested requirement may be part of
or type of upper level/generic requirements.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

33

Fuzzy Ontology for Requirements Determination and Documentation

• Requirement Type: The suggested requirement may be an anticipated
requirement, quality requirement, a security requirement, network
requirement, interface requirement, etc. Further, it can be generic, multi-
disciplinary or hierarchical in nature.

• Requirement Date of Last Used: The last used date of the requirement
suggested. This will be helpful in auto-delete and back up procedures.
Requirements that are no longer in use can be automatically shifted to the
back up to create additional space to accommodate more latest requirements
and temporary workspace, if required.

• Frequency of Uses: This is a simple counter. Each time the requirement is
utilized, the counter is incremented. The requirements with the maximum
utilization (as per the value of the counter for each requirement) can be
proactively presented to the users/developers for consideration.

• Effect of the Requirement Use: This is really a fuzzy field. In many cases,
it is difficult to describe the effect of the use of a requirement in values but
description. Fuzzy linguistic variables can be used here for demonstrating
the effect of using the requirements at an organizational level as well as the
individual level.

Besides the above components, the requirements ontology may encompass sub-
section names, product/service for which the requirement is meant, identification
numbers of other similar requirements and some important comments on the
requirements.

The above components are organized and represented in an RDF/XML structure
to demonstrate the requirements ontology as shown in Figure 4.

The RDF is known as Resource Description Framework, which is used to represent
information on the Web platform. The World Wide Web Consortium (W3C.org)
has published a recommended set of syntax and specification for the use of RDF/
XML1]. We have added fuzzy tags within the RDF/XML schema as per the need
and nature of the application. With such use of fuzzy RDF/XML, not only ontology-
based advantages for knowledge engineering can be achieved, but advantages of the
Web and semantic web platform can also be achieved. The graphical representation
of the structure of the proposed requirement ontology is shown in Figure 5.

As per the structure shown in Figure 4, many requirements are documented with
the required fuzzy variable embedded in it. All the requirements are placed at a
common repository for centralized access on a need to multiple users. Along with the
requirements repository, there is a need for a fuzzy rule base and fuzzy membership
function definitions. Fuzzy membership definitions are used in conjunction with
the fuzzy linguistic variables used within requirements. Fuzzy rules are needed
to access and manage requirements within the centralized repository. The fuzzy

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

34

Fuzzy Ontology for Requirements Determination and Documentation

inference mechanism is also required in conjunction with the fuzzy rules. Users
such as manager, developer, programmer and testers can use the requirements for
the typical development purposes such as documentation of requirements, cross-
verification of requirements, reuse of requirements, testing the final product as per
the requirements documented, etc. Optionally, an interface facility may be made

Figure 4. RDF/XML structure to demonstrate the requirements ontology

Figure 5. Graphical representation of the requirements ontology

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

35

Fuzzy Ontology for Requirements Determination and Documentation

available besides the major components mentioned here. The general architecture of
the system is shown in Figure 6. Such an ontology management system keeps track
of users, development procedures and resources associated with the development
procedures besides the management of the requirements.

As shown in Figure 6, the two major components of the requirements ontology
management are namely: (i) the repository of the requirements and (ii) fuzzy rule base.
The requirements repository, as stated earlier, acts as a repository of the requirements
in the ontology structure presented in the RDF/XML format proposed in this chapter.
Independently, it is mere formal documentation of the requirements of the systems
being developed. To efficiently access the requirements, to proactively suggest
its possible uses and re-uses, and to automatically keep track of the development
activities fuzzy rules can be designed. These fuzzy rules are application-specific
and can be developed after considering the nature of the systems being developed
and requirements are documented. Similarly, the fuzzy membership functions
should be defined after documentation of the requirements is completed and the
repository of the requirements is developed in a selected ontology. After that, the
fuzzy linguistic variables used in the requirements can be defined formally and
stored in fuzzy membership functions definition utility for automatic interpretation
of fuzzy variables in requirements ontology as well as fuzzy rules. Necessary

Figure 6. General architecture of the requirements ontology management system

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

36

Fuzzy Ontology for Requirements Determination and Documentation

metadata, quality standards and other requirements of the organization also should
be considered while finalizing requirements for the use. To clearly demonstrate the
working of the proposed system, a case of students learning monitoring system is
discussed in the next section.

DEVELOPMENT OF STUDENTS LEARNING
AND MONITORING SYSTEM

In a classical teaching and learning system, students are manually monitored for
their learning and understanding. An expert teacher always has an eye on students’
ability to learning and applying the knowledge for day to day problem-solving.
Teachers know about positive as well as weak points of the students and can provide
personalized attention to the required students. To fast-learners, new challenges are
also provided with the necessary guidance and to weak-students support during
learning is also extended. In the case of distance learning, e-learning and sometimes
typical classroom learning, where a number of students is high; such a personalized
approach is not possible. A sample set of requirements is articulated for an effective
e-learning system that can handle the automatic selection of content with the help of
users’ profiles and monitors the learning process of students. The general working
of the system is as per the architecture shown in Figure 6.

The sample requirements specification with selected fields for the proposed
system is given below along with the necessary fuzzy membership functions.

Sample Software Requirements Specification

Purpose of the system: The system documents various learning material as well as
users and presents customized learning material as per the users’ need and level.

1. Users: Administrator, instructor, learner, evaluator and guest (description of
each with aliases can be made available here…)

2. Glossary: …..Glossary related to the system….
3. Basic functional requirements:

a. Management of course material:
i. Add course:

Title Add Course
Reference Reference if any
Trigger Request from administrator to add a course with one or
more material files
Precondition The administrator login and no such course is existing

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

37

Fuzzy Ontology for Requirements Determination and Documentation

Basic Path A new entry is made in database and path for the
material is set
Links between the material and the course are set
Material is assigned categories such as ‘High’, ‘Average’ and ‘Low’
Access rights for edit and view are provided to the course
Necessary validations are made
Alternative Paths If the course already exists, then a direct path
to the course is given
Required validations are made
Post-condition The Reviewer has been added to the database
Exception Paths The operation may not be granted if the course
has already existed
The operation may be abandoned at any time
Other Course code, title, prerequisites, author name and material
types are added within the necessary database/files

b. Registrations of users
i. Add user: as per the format shown in add course, this requirement

can be documented.
ii. etc.

c. Report on masters
i. Reports on learners’ strength with their details
ii. Reports on authors who have added material
iii. Topic wise list of material added between given dates
iv. etc.

d. Reports on transactions
i. ….

e. Present a course material to a learner (as follows)
Title Present Material
Reference Reference if any
Trigger Request from users to see material on an eligible topic
Precondition The users have access to the requested material
Basic Path The requested topic is searched from the database
Users level is determined through a fuzzy membership functions
If users level is low then the material with ‘low’ label is fetched and
presented to the user
Necessary validations are made.
Alternative Paths Users log may be accessed for the last material
category seen
Post-condition Users feedback is taken on the material

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

38

Fuzzy Ontology for Requirements Determination and Documentation

The material tag may be changed as per the users’ feedback by the
administrator. A call is raised for the same.
Exception Paths The message is passed to the authors if no such material
for the learner’s(user’s) category is available.
Other --

f. Learner wise reports
g. etc.

4. Quality requirements:
….

5. Database requirements:
…..

6. Interface requirements
…..

7. etc.

The XML/RDF representation of the above requirements is as follows:

< ? xml version = “1.0”? >
< !-- RDF Schema …. -->
< rdf:RDF xml:lang = “en”
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema# >
< rdf:Descriptionrdf: >
< dc:Title > Add Course </dc:Title >
< dc: Req_Id > Add_course_01 </dc: Req_Id >
< dc: Req_Author > Administrator </dc: Req_Autho r>
< dc: Req_Subjec t> Functional Add_Course </dc: Req_Subject >
< dc: Req_Section > Functional _General </dc: Req_Section >
< dc: Req_Class > Class_Master </dc: Req_Class >
< dc: Req_Type > Functional </dc: Req_Type >
< dc: Req_Date_Use > “27/07/2016” </dc: Req_Date_Use >
< dc: Req_Frequency >14 </dc: Req_Frequency >
< dc: Req_Effect > Good </dc: Req_Effec t>
< dc: Req_Path > Requirements Path </dc: Req_Path >
< dc: Req_Alt_Path > “path.txt” </dc: Req_Alt_Path >
< dc: Req_Trgg > “trigger_add_course01.txt” </dc: Req_Trgg >
< dc: Req_Pre > “Pre_trigger_add_course01.txt” </dc: Req_Pre >
< dc: Req_Exe > “Exe_trigger_add_course01.txt” </dc: Req_Exe >
< dc: Req_Other > “Other_ trigger_add_course01.txt” </dc: Req_Othe r>
…..

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.w3.org/2000/01/rdf-schema#

39

Fuzzy Ontology for Requirements Determination and Documentation

…..
< /rdf:Description >
< /rdf:RDF >

The fuzzy membership function used in the above-mentioned sample requirements
is about the learner’s level and material level. These functions are defined as follows.

Learners’ level can be identified as “High”, “Average” and “Low”. The learners
are presented with general questions from the domain for quick answers. Based on
the number of correct answers given to the rapid questions in a given time, the speed
correctness ratio is calculated. The initial set of questions fired to the users contains
questions that are generic and above average level from the domain selected by the
users. If the user cannot answers these questions to some efficiency, lower level
questions can be selected otherwise higher-level questions are provided. From such
exercise, the level of users can be calculated. See Figure 7.

The above requirements with necessary definitions of fuzzy membership functions
are well documented in the software requirements specification, which is used as
a base to carry out further systems development process. The initial requirements
acquisition interface is as shown in Figure 8.

ADVANTAGES, APPLICATIONS AND FUTURE DIRECTIONS

The main stakeholders of the requirements determination about a system are the
users of the system. The users, who have requested for system development and
who are directly benefited by the system are generally domain experts and not
the developers. Such non-computer professionals are key entities (major stack
holders) in providing requirements about the system. Many times the requirements
are fuzzy, incomplete and uncertain in nature. To correctly acquire requirements,
to correctly specify them, to use them in throughout the development process, etc.

Figure 7. Fuzzy membership functions for learner’s level

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

40

Fuzzy Ontology for Requirements Determination and Documentation

needs an effective representation of the requirements. The use of fuzzy logic helps
in documenting requirements in more native form as well as easy to understand
them by non-computer professionals. This is the way to directly include the users
in the determination of the requirements. Advantages related to the fuzzy logic
such as covering a large number of requirements into a small, manageable set of
requirements and simultaneously handing of the vagueness of the requirements can
be achieved with the proposed approach. Further, if the platform of the semantic
web is available, such requirements can be stored and accessed on the web platform
automatically with the help of the metadata (semantic) associated with them. Once
the requirements are in fuzzy ontology format, not only effective and machine-
based assess of them is possible, but automatic searching, merging, interpretation
and reuse of such requirements are also possible. Further, the documentation of
the requirements specification is more native in nature and hence easy to handle.

In future the interface can be enhanced that interacts with the users, developers
and other requirements providers and acquires useful requirements automatically.
The system can also provide an auto-generated output of the software requirements
specification (SRS) in standard formats such as IEEE. Various innovative algorithms
can be developed for automatic matching of the requirements and control the software
development procedures on the semantic web platform. It may lead to a general-
purpose knowledge acquisition tool that acquires knowledge about a project under
development and documents finding in the fuzzy ontology. One may propose a
model for guiding software engineering using a fuzzy ontology.

Figure 8. Initial requirements acquisition interface

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

41

Fuzzy Ontology for Requirements Determination and Documentation

REFERENCES

Akerkar, R. (2009). Foundations of the semantic web. London: Alpha Science
International Ltd.

Akerkar, R. A., & Sajja, P. S. (2009). Knowledge Based Systems. Sudbury, MA:
Jones & Bartlett Publishers.

Alexopoulos, P., Wallace, M., Kafentzisi, K., & Askounis, D. (2012). IKARUS-
Onto: A methodology to develop fuzzy ontologies from crisp ones. Knowledge and
Information Systems, 32(3), 667–695. doi:10.100710115-011-0457-6

Aquila, I., Palma, J., & Tunez, J. (2014). Milestones in software engineering and
knowledge engineering history: A comparative review. The Scientific World Journal,
2014, 10. PMID:24624046

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific
American, 284(5), 29–37. doi:10.1038cientificamerican0501-34 PMID:11234503

Bobillo, F., & Straccia, U. (2011). Fuzzy ontology representation using OWL 2.
International Journal of Approximate Reasoning, 52(7), 1073–1094. doi:10.1016/j.
ijar.2011.05.003

Browarnik, A., & Maimon, O. (2015). Departing the ontology layer cake. In J.
Zizka, & F. Darena (Eds.), Modern computational models of semantic discovery in
natural language (pp. 167-203). IGI Global. doi:10.4018/978-1-4666-8690-8.ch007

Brusa, G., Caliusco, L., & Chiotti, O. (2008). Towards ontological engineering: A
process for building a domain ontology from scratch in public administration. Expert
Systems: International Journal of Knowledge Engineering and Neural Networks,
25(5), 484–503. doi:10.1111/j.1468-0394.2008.00471.x

Calegari, S., & Ciucci, D. (2006). Integrating fuzzy logic in ontologies. 18th
International Conference on Enterprise Information Systems: Databases and
Information Systems Integration, Paphos, Cyprus.

Castaneda, V., Ballejos, L., Caliusco, L., & Galli, R. (2010). The use of ontologies
in requirements. Global Journal of Researches in Engineering, 2-8.

Chang-Shing, L., Zhi-Wei, J., & Lin-Kai, H. (2005). A fuzzy ontology and its
application to news summarization. IEEE Transactions on Systems, Man, and
Cybernetics, 35(5), 859–880. doi:10.1109/TSMCB.2005.845032 PMID:16240764

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

42

Fuzzy Ontology for Requirements Determination and Documentation

Cui, G., Lu, Q., Li, W., & Chen, Y. (2009). Automatic acquisition of attributes for
ontology construction. In L. Wenjie, & M.-A. Diego (Eds.), Computer Processing
of Oriental Languages. Language Technology for the Knowledge-based Economy
(pp. 248-259). Springer. doi:10.1007/978-3-642-00831-3_23

Dong, Q., Wang, Z., Zhu, W., & He, H. (2012). Capability requirements modeling
and verification based on fuzzy ontology. Journal of Systems Engineering and
Electronics, 23(1), 78–87. doi:10.1109/JSEE.2012.00011

Dzung, D. V. (2009). Ontology-based reasoning in requirements elicitationon.
In Software Engineering and Formal Methods, 2009 Seventh IEEE International
Conference (pp. 263–272). IEEE.

Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(5-6), 907–928.
doi:10.1006/ijhc.1995.1081

Guarino, N., & Giaretta, P. (1995). Ontologies and knowledge bases: Towards a
terminological clarification. In N. Mars (Ed.), Towards Very Large Knowledge Base:
Knowledge Building and Knowledge Sharing (pp. 25-32). Amsterdam: IOS Press.

Happel, J., & Seedorf, S. (2006). Applications of ontologies in software engineering.
2nd International Workshop on Semantic Web Enabled Software Engineering,
Athens, USA.

Ismail, M. (2016). Ontology learning from software requirements specification.
In Knowledge engineering and knowledge management (pp. 251–255). Springer.

Lang, M., & Duggan, J. (2001). A tool to support collaborative software requirements
management. Requirements Engineering, 6(3), 161–172. doi:10.1007007660170002

Lin, J., Fox, M., & Bilgic, T. (1996). A requirement ontology for engineering design.
Toronto: Enterprise Integration Laboratory, University of Toronto.

Murugesh, S., & Jaya, A. (2015). Construction of ontology for software requirements
elicitation. Indian Journal of Science and Technology, 8(29). doi:10.17485/ijst/2015/
v8i29/86271

Oriol, X. T. E. (2018). An Ontology-Based Framework for Describing Discoverable
Data Services. In Advanced Information Systems Engineering. CAiSE 2018. Cham:
Springer. doi:10.1007/978-3-319-91563-0_14

Pan, J., Stamou, G., Tzouvaras, V., & Horrocks, I. (2005). f-SWRL: A fuzzy extension
of SWRL. Notes in Computer Science, 829-834.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

43

Fuzzy Ontology for Requirements Determination and Documentation

Rizvi, S. M. (2018). Ontology-based Information Extraction from Technical
Documents. In Proceedings of the 10th International Conference on Agents and
Artificial Intelligence (ICAART 2018) (pp. 493-500). SCITEPRESS – Science and
Technology Publications, Lda. 10.5220/0006596604930500

Sajja, P. S. (2014). Knowledge representation using fuzzy XML rules in web based
expert system for medical diagnosis. In Fuzzy Expert Systems for Disease Diagnosis
(pp. 138–167). Hershey, PA: IGI Global.

Siegemund, K., Thomas, E., Zhao, Y., Pan, J., & Assmann, U. (2011). Towards
ontology-driven requirements engineering. 10th International Semantic Web
Conference, Bonn, Germany.

Souag, A., Salinesi, C., & Wattiau, I. (2012). Ontologies for security requirements:
A literature survey and classification. In 24th International Conference on Advanced
Information Systems Engineering, (pp. 61-69). Gdansk, Poland: Academic Press.
10.1007/978-3-642-31069-0_5

Stoilos, G., Stamou, G., & Pan, J. (2010). Fuzzy extensions of OWL: Logical properties
and reduction to fuzzy description logics. International Journal of Approximate
Reasoning, 51(6), 656–679. doi:10.1016/j.ijar.2010.01.005

Straccia, U. (2006). A fuzzy description logic for the semantic web. Capturing
Intelligence, 1, 73–90. doi:10.1016/S1574-9576(06)80006-7

Studer, R., Benjamins, V., & Fensela, D. (1998). Knowledge engineering: Principles
and methods. Data & Knowledge Engineering, 25(1-2), 161–197. doi:10.1016/
S0169-023X(97)00056-6

Tarasov, V., Tan, H., Ismail, M., Adlemo, A., & Johansson, M. (2016). Application
of inference rules to a software requirements ontology to generate software test cases.
In M. Dragoni, M. Poveda-Villalón, & E. Jimenez-Ruiz (Eds.), OWL: Experiences
and directions – Reasoner evaluation (pp. 82-94). Springer.

Uschold, M., & Gruninger, M. (1996). Ontologies principles methods and
applications. The Knowledge Engineering Review, 11(2), 93–136. doi:10.1017/
S0269888900007797

Wouters, B., Deridder, D., & Van Paesschen, E. (2000). The use of ontologies as a
backbone for use case management. 14th European Conference on Object-Oriented
Programming, Cannes, France.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/
S0019-9958(65)90241-X

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

44

Fuzzy Ontology for Requirements Determination and Documentation

ADDITIONAL READING

Sure, Y., Staab, S., & Studer, R. (2003). On-To-Knowledge Methodology. In S. Staab
& R. Studer (Eds.), Handbook on Ontologies (pp. 117–132). Berlin: Springer-Verlag.

KEY TERMS AND DEFINITIONS

Fuzzy Logic: It is a multi-valued logic based on sets without boundary and
offers graded membership of an element to such set. Crisp logic always gives binary
values say 0 or 1; however, the fuzzy logic provides many values between 0 and 1.

Fuzzy Membership Functions: Fuzzy membership function determines the
graded membership of an element to the base fuzzy set.

Fuzzy Ontology: The ontology which uses fuzzy linguistic variables to
demonstrate relationships between various objects and attributes.

Ontology: It is a study of various objects, attributes and their relationships that
exist in the domain of interests. Ontology can be considered as the representation
and explicit conceptualization of vocabularies such as entities, sub-entities, relations
and properties in a domain of interest. With the help of such a formal definition, it
is possible to represent a situation in an efficient manner.

Ontology Engineer: Ontology engineer is an expert, who is responsible for
identifying, acquiring, conceptualizing and representing ontology. He also keeps
track of the above-mentioned ontology cycle.

Ontology Life Cycle: Life cycle for typical phases of ontology development such
as setting an objective, collection of knowledge, conceptualization, determination
of suitable ontology model, knowledge representation into the ontology, evaluation
of the ontology, documentation of ontology and sharing ontology.

Requirement Determination: It is the process of anticipating, investigating and
specifying the necessary and important features about the system being developed
in a predetermined format.

XML/RDF: The RDF is known as Resource Description Framework; XML is
defined as eXtensible Markup Language. These tools are used to represent information
on Web/Semantic Web platform. The World Wide Web Consortium (W3C.org) has
published a recommended set of syntax and specification for the use of RDF/XML.

ENDNOTE

1 https://www.w3.org/TR/REC-rdf-syntax/

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.w3.org/TR/REC-rdf-syntax/

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

45

DOI: 10.4018/978-1-7998-1863-2.ch003

ABSTRACT

The recent advancements in information and communication technology (ICT) have
inspired all the operational domains of both public and private sector enterprise to
endorse this technology. Software development plays a crucial role in supporting
ICT. Software effort estimation serves as a critical factor in software application
development, and it helps application development teams to complete the development
process on time and within budget. Many developmental approaches have been used
for software effort estimation, but most of them were conventional software methods
and therefore failed to produce accurate results when it came to web or mobile effort
estimation. This chapter explains different types of software applications, software
estimation models, the importance of software effort estimation, and challenges
faced in software effort estimation.

INTRODUCTION

The current age is the era of information and communication technology (ICT).
The diverse ICT enabled modalities has inspired almost all the operational domains
of both public and private sector enterprise to endorse this technology. All these
advancements made in the field of Information and Communication Technology is

Software Effort Estimation
for Successful Software

Application Development
Syed Mohsin Saif

 https://orcid.org/0000-0001-7237-8828
Islamic University of Science and Technology, India

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://orcid.org/0000-0001-7237-8828

46

Software Effort Estimation for Successful Software Application Development

deployable when there is an appropriate underlying software framework to make it
functional. In real essence, it is this software component that has revolutionized the
modern age and has also facilitated humankind with its sophisticated serviceability
at every corridor of humanity.

The Merriam-Webster dictionary defines software as a set of programs,
procedures and related documentation associated with a system known as a computer
program (Merriam-Webster). The most critical and challenging aspect is to design
a mechanism to develop these computer programs. The design and development of
these computer programs remain a challenging aspect in the software development
industry. Identification, selection, and implementation of a particular development
strategy have a direct relationship with quality and successful development and
deployment of these computer programs more broadly the software application.
The identification and selection of a particular development process solely depend
on the overall experience and understandability of the developer in specific and
software project management in general.

Diverse people in the development industry have different opinions related to
various models available to develop software applications, and some were optimal;
some were contradictory; some were localized, and some were lacking specific
parameters. To streamline this development process and to design a benchmark
standard with universal acceptability, a collaborative deliberation among various
individuals related to software development was he, and the outcome was an
approach that can guarantee to deliver versatile, scalable and quality products.
This improvised software development approach is now a systematic sequence of
various processes known as software engineering (Mills H. D., 2010). Fritz Bauer
defines software engineering as; “A systematic design and development of software
products and the management of the processes (Fritz, 1968). The main objective
of Software Engineering is to meet the specifications & demonstrate accurateness
in completing the development process of a software system on time and within
budget”. The main practice of various fundamentals prescribed through software
engineering as a discipline was to development conventional or traditional standalone
software applications. With the advent of time, the cost of hardware technology
drastically came down and subsequently, the usage of soft systems increased. The
conventional software applications also saw evolutionary changes in both nature
and scope. Therefore, in addition to traditional software applications, web-based
and mobile based software applications came into existence. The introduction of
these soft variants has almost redefined both horizontal and vertical dimensions of
software engineering practices and principles.

The fundamental approach defined by software engineering to develop software
based applications is known as “software development life cycle (SDLC)”. SDLC
describes the more lucid and systematic procedure to guide successful software

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

47

Software Effort Estimation for Successful Software Application Development

development on time and within resources. With time the popularity of these soft
variants increased and therefore, the use also shown exponential trends. This popularity
resulted in increasing demand for software applications in general and application
features & functions in particular. This rapid demand for both application and the
features/functionality has made the software development process more and more
complex. This growing complexity and to manage the successful development became
challenging for software project management as many times project management
failed to deliver the project on time or sometimes failed to develop within the
allotted budgets or even were unable to understand and management development
positively and progressively.

TYPES OF SOFTWARE APPLICATIONS

Software-based applications are broadly categorized into three types: traditional
or conventional software applications, web-based applications, and mobile based
application. All these application variants do share certain similarities, but holistically
are different from one another in their nature, scope, and dimensionality. The brief
description of these types in mentioned as under.

• Traditional or Conventional Software Application: They are generally
known as software applications; they are designed, developed and deployed
as standalone software systems to deliver services and operations related
to a particular group or organization. This works within the boundary of
that working domain only outside access is restricted, and also its scope is
geographically localized and developed by more professional developers
only, e.g. Banking software, UMS, etc.

• Web-Based Applications: Web application is any hypertext rich program
with both technical and non-technical features, developed to serve some
purpose accessed inside a web browser by specifying a particular URL over
the network using HTTP. Web application services a vehicle to fulfill the
client request by acquiring information(say internet or WWW), structures
it, build a packed presentation and delivers it to serve the purpose(Web
engineering, 2014).

In a broader perspective, one can say web application is a software system
based on the technologies and standards of World Wide Web Consortium (W3C)
that provides Web-specific resources such as content and services through a user
interface, the Web browser.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

48

Software Effort Estimation for Successful Software Application Development

• Mobile-Based Applications: These applications are similar to that of web
applications. However, they are different in some aspects. These are specially
designed to run on a small display with almost no geographic restriction
meant for diverse people. Similar to web applications, a user downloads a
client program to run these mobile applications and also can browse through
mobile browsers to request for content on the internet. Nowadays, the trend for
acquiring mobile applications is heavy increasing, and most of the services
and practices that were delivered through conventional or web applications
are now available as mobile applications.

Figure 1. Different types of software applications

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

49

Software Effort Estimation for Successful Software Application Development

EFFORT ESTIMATION

Effort estimation has been a pivotal domain for software project management
that irregularities of which may lead to developmental or delivery failures. Effort
estimation helps the project management team to draw budgetary estimates required
to carry out successful software development on time and within budget. It is
this effort estimation that generates insights about the cost of development. The
inaccurate effort estimation process can result in inaccurate effort estimates or
inaccurate resource identification and elicitation, which always lead to failure. This
failure can sometimes completely abandon the development industry from software
development market. Therefore, it is very much essential to design an efficient,
effective and productive mechanism to perform effort estimation before the actual
software application development is conceived.

Software effort estimation is defined as a systematic and structured approach to
approximate the amount of human efforts required to perform software application
development successfully on time and within budget. This development can be the
development of any software application falling under traditional, web or mobile
application domains. The Effort estimation processes have a direct relationship with
the size of software development, and subsequently, the cost of the development is
approximated. The more accuracy and perfection in size always guides to get more
accurate effort estimates and therefore, the cost (Jørgensen, M., 2007). However, the
approximation of the overall cost is obtained after integrating the efforts, overhead
cost and profit margins with the estimated efforts (Boehm, B. 1981), inaccuracy
in effort estimates can cause overestimation or underestimation which will result
in miss management of projects. Accurate effort estimation not only helps the
development industry to leverage its client base but also edges the development
industries benchmark ahead of other similarly situated developers in the market.
Positive and perfect effort estimates help the software development team to draw a
clear view of all the fundamental requirements that are required to perform successful
software development on time and within budget. That means effort estimation
prescribes profitable budgetary schedulers for all related and relevant constructs that
are subjected to be consulted or used by the development team during the software
development process. The size of software development depends on various functional
and non-functional requirements that are expected to be delivered by the software
application when deployed in the candidate system. Therefore, it is essential and
equally a crucial step in effort estimation to identify all the requirements and then
map them into their respective functional or non-functional size measure to arrive
at the approximate size and subsequently the cost (Briand, L., 1998).

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

50

Software Effort Estimation for Successful Software Application Development

ACTUAL AND ESTIMATED EFFORTS

To perform successful effort estimation, different techniques or models have been
introduced by many researchers to be used by practitioners for successful software
development and delivery. The amount of efforts that are obtained during the effort
estimation process is called as estimated efforts. The amount of efforts that are actually
spent on the development of software application is called as actual efforts. Actual
efforts can be either same as that of estimated efforts or sometimes it can be either
more or less. This difference in the value of actual and estimated efforts is called as
deviation or estimation gap and can be defined as the difference between the value
of actual efforts and estimated efforts. The deviation of estimated efforts from their
corresponding actual efforts may cause either overestimation or underestimation. The
deviation can be defined as the difference between the actual efforts and estimated
efforts. Overestimation is the situation in effort estimation when the amount of
estimated efforts is found to be more than the amount of actual efforts incurred
in the development. While as underestimation is the situation when the observed
amount of estimated efforts is found to be out less in comparison to actual efforts
spent on software development. Both underestimation and overestimation are not
considered as good signs for successful project management.

IMPORTANCE OF EFFORT ESTIMATION
IN SOFTWARE DEVELOPMENT

The growing demand and increasing complexity in different types of software
applications have resulted in several issues for software project management
to perform successful software development on time and within budget. Effort
estimation plays an important role to ensure adequate software development and
to carry out different developmental assignments on time and within a budget
Effectiveness in effort estimation always helps development industry to establish
new benchmarks of success and quality product delivery. Both cases of deviation
that is either overestimation or underestimation have always proved disastrous for the
development industry like the development industry may fail to retain its reputation,
competition and market space resulting in less profitable outcome, unsuccessful
delivery, erroneous development, less user acceptance, delayed delivery and budget
overruns, etc. Selection of a proper effort estimation approach and accuracy in
efforts obtained before the actual development is made have greater chances of
success in comparison to vague estimation and software development. Therefore,
this has always been a critical task for software project management to indentify the
best possible effort estimation approach to predict the efforts required to perform

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

51

Software Effort Estimation for Successful Software Application Development

successful software development on time and by utilizing the allocated resources
efficiently. The importance of effort estimation can be understood by drawing a
simple analogy of prediction the fuel (gasoline) needed by an airplane for successful
departure and arrival. If the aero-engineers failed to guess the amount of fuel there
are chances that the airplane may either fail to reach the destination or may have to
make emergency landing somewhere between source and destination. The accurate
estimates of fuel have higher chances of successful arrival. Therefore, the technique
on the basis of which the fuel consumption is predicted is very much critical.

To ensure that the effort estimation process will deliver better outcomes, it is very
much preliminary for project manager to identify an experienced team to perform
effort estimation. The experienced team of estimators has probably greater dynamism
and wider understandability of problem domain, requirements identification and
analysis thereby leading to have arrived at accurate estimates for efforts. The
ill understanding of problem domain by inexperienced project management has
greater chances of failure. In conclusion it can be said that the successful software
development is possible only when the effort estimation team equipped with both
experience and knowledge to understand the problem domain thereby designing
estimation approach or select best suitable in-line with problem context. The decision
making that is involved at every single stage of effort estimation process is very
critical and challenging to manage when requirements are not clear, or analysis is
not done scientifically.

EFFORT ESTIMATION PROCESS

As effort estimation is a systematic process, it consists of many interrelated and
interdependent steps to arrive at the final estimated value for efforts required to
perform successful software development. Every step in effort estimation process is
meant to deliver a specific functionality needed to approximate the overall amount of
efforts needed by project management. Effort estimation begins with the requirements
specification, followed by the identification of functional and non-function measures.
The size of the software application development depends on various functional and
non-functional measures; the detailed discussion on functional and non-functional
measures is provided in the subsequent parts of this chapter. Software development
size has a direct relationship with the amount of efforts that may be required to
accomplish a successful software development. Therefore, the accuracy of effort
estimation lies on the accuracy of size approximation. Software project management
always needs to contemplate on the perfection and effectiveness of the effort
estimation process holistically. The group of individuals who are assigned the job of
performing effort estimation needs to have much diverse knowledge and experience

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

52

Software Effort Estimation for Successful Software Application Development

of the nature and scope of the development domain. The experienced team always
has the potential to identify various functional and non-functional requirements
attributed to a particular development to arrive at much accurate size approximation
and subsequently the efforts. The demand for software applications has increased
with much-unprecedented pace. Most of the organizations have endorsed software
applications for delivering their diverse functions. The growing use and demand for
features embedded in these software applications have made software application
development much complex, and subsequently, the effort estimation processes have
also become difficult for management to deal with. The abstract view of the effort
estimation process is described in figure 2 below and figure 3 represents a generic
effort, estimation model.

There is an array of techniques that can be selected and used to perform
software effort estimation. However, each effort estimation method has got different
background mechanism to deal with particular type of software effort estimation
using distinguished estimation approach. The selection of a particular technique
does also impact the accuracy of both size and efforts. Various effort estimation
techniques used across literature are discussed under section effort estimation models
later in this chapter. The best effort estimation approach helps project management
to minimize the gap between actual and estimated efforts.

Figure 2. Abstract view of effort estimation model

Figure 3. Components of generic effort estimation model

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

53

Software Effort Estimation for Successful Software Application Development

EFFORT ESTIMATION METRICS

Software application development in general and web or mobile application
development, in particular, is an integrated activity of different processes. The nature,
scope, and complexity of various software-based application developments depend
upon several functional and non-functional requirements. These requirements have
a direct relationship with software development size, and more requirements mean
more software size. To quantify software application size, different functional and
non-functional measures were identified, and based on these measures, the aggregate
size could be approximated. Therefore, software development metrics are used to
measure and then quantify application size in a standard metrics unit or sizing unit.
Metrics can be product metrics, process metrics, complexity metrics, effort metrics,
etc. which helps project managers to measure, monitor and control web development
or software development (S. M. Saif, 2017) These metrics are inputs to the system
where approximated efforts are obtained as output. More precisely the activity of
measuring these developmental parameters is called as software metrics or and are
calculated by establishing empirical relationships between functional, non-functional
and complexity measures like LOC, No. of web pages, No. of new web pages, No.
of media objects, etc. Web application development metrics can be broadly seen as
size metrics and effort metrics.

• Functional Size Measures: These are those measuring constructs that
directly specify the functional aspect of the development. They depend on the
services and functionality of the application. Like in case of function point
analysis, these functional measures can be related to external input, external
output, logical interface, internal logic files or external queries.

• Non-Functional Measures: These are those measuring constructs that
directly do not contribute towards size but have an indirect influence on
the development. These include the parameters that actually impact the
development environment, the technical aspect of the development. Their
presence or absence may either increase developmental efforts or may even
decrease. E.g., Knowledge of development, the experience of the development
team, code reusability, reliability, Difficult Programming Language, project
methodology, testability, etc.

EFFORT ESTIMATION STAKEHOLDERS

As mentioned above, effort estimation is a systematic process involving diverse
activities to reach out at final estimates. In order to accomplish these diverse

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

54

Software Effort Estimation for Successful Software Application Development

activities related to effort estimation at different levels of project management,
many individuals are directly or indirectly involved. These individuals are called
as effort estimation stakeholders. Below are few prominent stockholders that are a
party with effort estimation process.

• Estimation Process Owner (EPO): responsible identification, introduction,
and maintenance of activities required in the estimation process like methods,
process, models, functional and non-functional entities and the data are
emanating in whole management. EPO is usually an experienced person in
management who has got sufficient knowledge related to effort estimation
and this position within an organization is usually a sustentative position.

• Estimator: An individual in project management who implements various
available effort estimation models to perform effort estimation for software
developments.

• Domain Expert: They are the experienced people in the project manager
who can train or model different modalities to perform the effort estimation
when sample data is limited, or there is skewness or outliers in data. By
virtue of their knowledge, they guide project management to find and identify
various factors that have a potential influence on effort estimation process.
They have a significant role when it comes to expert-based or judgment based
effort estimation.

• Decision Marker: A stockholder with a unique role as decision maker have
indirect control or influence on effort estimation process. Whenever the
estimation team arrives with the estimates that are to be provided to complete
the development, in some cases, the estimated budget and the budget that
the project owner (Sponsor) is willing to provide contradicts than the role
of decision maker comes into practice to decide whether to accept the value
from sponsor or to reject his proposal. The decision maker can also guide
the estimators to revise or modify specific estimation criteria to minimize
some budget to please the project owner so that the development work can
be retained.

CHALLENGES TO SOFTWARE EFFORT ESTIMATION

The growing demand and increasing complexity in various types of software
applications (like web or mobile applications) have raised several issues in software
project management for the successful development of software application on time
and within budget. These issues have resulted into developmental failures, less

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

55

Software Effort Estimation for Successful Software Application Development

user acceptance, delayed delivery, and budget overruns. Effort estimation plays an
important role in effective software development and helps project managers to perform
development within budget and delivery on time by predicting or guessing the extent
of resources of various types required for the successful and on time completion of
software development. There has been several effort estimation approaches used by
practitioners to perform software effort estimation however, the implementation and
various methods could not be as significant as it would have been. Therefore, the
failures still continued to be there in software development, delivery and deployment.
The use of various effort estimation approaches across these application types to
perform effort estimation has failed to deliver much-required results acceptable to
both project sponsor and developer and subsequently caused many challenges in
development and management of software projects.

The overall success and accuracy of software development rely on how good
and perfect the efforts were estimated. As mentioned earlier effort estimation is
a systematic process and to perform it, there are various approaches designed by
several researchers to ensure more accuracy and perform in the said process. The
identification and selection of a particular approach are very much difficult, critical
and challenging for project management. The ill selection of approach definitely
will lead to unsuccessful development. There is no unanimous agreement among
researchers that which particular model performs effort estimation perfectly in all
situations (Boehm B., Abts C. and Chulani S., 2000).

The importance of software effort estimation has been justified by many
researchers in the literature. A report by Cutter Consortium in 2000 (Emilia M.,
2000)shows some alarming statistics which was derived from a large database of
effort estimation related to software projects in general and web-based projects in
particular and is given below:

• 79% of the studied projects presented schedule delays;
• 63% of the studied projects exceeded budgets;
• 84% of the studied projects did not meet requirements;
• 53% of the studied projects did not provide the required function; and
• 52% of the studied projects had a poor quality of deliverables.

According to the study performed by the International Society of Parametric
Analysis (ISPA) (Eck D., Brundick B. and Fettig ., 2009) and the Standish Group
International(Lynch J., 2009), two-thirds of software projects fail to be delivered
on time and within budget. And according to them the two main reasons that cause
these failures are: (1) improper estimation in terms of project size, cost, and staff
needed and (2) uncertainty of software and system requirements.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

56

Software Effort Estimation for Successful Software Application Development

As there exits different types of software applications (conventional software
application, web application, mobile application) and these applications are different
from one another in several aspects: nature, scope, functionality, development,
deployment, usage spectrum, etc. Therefore, each of these applications needs a tailor-
made approach to perform effort estimation. The use of model developed for one
type may be useful in some cases but cannot be a holistically successful approach.
Theref0re, the deployment of ad-hoc methods will only increase the chances of
failure and not a success.

It is an inevitable requirement to understand the differences between various types
of software applications so that a proper type of approach can be either identified
or developed to ensure accuracy in effort prediction. The project management not
only needs to differentiate the type of development then has to identify and select
if available a proper approach to pursue effort estimation and land in a good result.
The whole success of the development industry relies on its best estimation policy
and reliable estimation team. The sensitivity and seriousness of this domain make it
challenging, important and critical. The literature review performed in (S. M. Saif,
2017b) describes in length the various approaches developed and used for effort
estimation. These models continue to be revisited and modified to cater to more
desirous demands of estimates to achieve more effectiveness and accuracy in the
estimation process. Therefore, it is pretty crucial for a project manager to perform
efficient effort/cost estimation in early stages of software development. As the
perfection in estimation will help the development industry to perform better over
bidding process, since overestimation will lead to bidding loss and underestimation
will cause the company to lose money.

EFFORT ESTIMATION MODELS

Measurement and accuracy in effort estimation process is a very important and
critical activity for software project management to ensure that their development
is successful and effective. The identification and selection of an efficient and
reliable estimation process always help the development team to obtain accurate
size estimation and consequently, the cost of application development. Therefore, it
is inevitable for project management to select a best suitable and reliable method to
perform effort estimation at early stages of software development to draw realistic
budgetary for required to accomplish a successful software development (Jacky
K. and Ross J., 2008). In order to approximate software efforts estimation, several
approaches or methods were introduced. Most of these approaches were developed
to perform effort estimation for conventional software applications. However, they
were also used to perform effort estimation for mobile and web applications, and the

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

57

Software Effort Estimation for Successful Software Application Development

results obtained were not as good and promising as were obtained for conventional
software’s. The main reason behind this failure is purely on the nature and type
of the applications, as we know, all these types of applications are different from
one another. Therefore, the approaches developed for one type cannot prove out
to be successful for other as well. Therefore, there is need to have tailor-made and
specific effort estimation approaches specific to the particular type of application
development then only successful development and accurate estimates are possible.

Different researchers have put effort estimation methods were put into several
categories like Trendowicz and Jeffery (Back, T., Hammel U. and Schwefel H,
1997),(Burgess, Colin J., and Martin L., 2007) and Shepherd C. et al. (Shepherd M,
and Kadoda M., 2001).However, effort estimation methods can be broadly categorized
as Expert based, Algorithmic and Machine learning based models or Algorithmic
and non-algorithmic models. Figure 4 represents various effort estimation methods
and their corresponding sub-category. The models or approaches mentioned below
have been developed for either conventional applications or mobile applications or
web application.

ALGORITHMIC MODELS

Algorithmic models also called as parametric models as they use mathematical
equations between dependent and independent variables or empirical models to
estimate efforts required for software in general and web or mobile application
development in particular. These are the most popular and commonly used effort
estimation approaches as they are easier and simpler to use (R D Banker, 1994).

Figure 4. Classifications of effort estimation methods

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

58

Software Effort Estimation for Successful Software Application Development

However, to make them more effective, they need calibration or adjustment with
most circumstances. Algorithmic model is purely based on the state and degree of
various variables required in the development process; LOC, function points, web
objects, no. of web pages, no. of links, no. of multimedia files, etc. In addition to
these direct parameters, there are other factors that also have an impact on the efforts
and are called as cost drivers. These cost drivers correspond to all those factors that
are associated with an environment where the web application is developed, and the
technical resources are required to fulfill the pragmatic development process. These
factors are typically called as Environmental Factors and Technical Factors. This
relationship between parameters cost drivers is formalized by framing a mathematical
equation between them. Equation 1 below structures such relation.

Estimated Effort = a Size of New Proj × EAF (1)

where, a and b are parameters chosen based on certain criteria like; type of project
being developed, EAF is Effort Adjustment Factor. The relationship between effort
and size can either linear or non-linear; such representation can be expressed by
equation no 2 and 3 respectively obtained after applying regression analysis on past
project data. Equation 2 issues the relationship as linear and equation 3 as non-linear
(E. Mendes, N. Mosley and S. Counsell, 2006)

Estimated Effort = C + a0Estimated Size of New Proj + a1CD1 +…+ anCDn
(2)

EstimateEffort C EstimatedSizeofNewProj CD CDa a
n
an� � ���0

1

1 (3)

where, C is constant denoting initial estimated effort (assuming the size and Cost
drivers to be Zero) derived from past project data (Putnam, L. H., 1978) and a0…
an denote parameters derived from past project data.

The most popular algorithmic models used to perform effort estimation for
conventional/ web/mobile applications are briefly discussed below:

Putnam’s Model/ Software Life Cycle Model

The Putnam’s model, developed by Larry Putnam in the 1970s, is also called as
Software Life Cycle Model (SLIM) (Fenton N.E. and Pfleeger, S.L., 1997). This
model was used for estimating the efforts for projects exceeding 70,000 lines of
code (LOC). Putnam’s model describes the time and efforts required to complete a

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

59

Software Effort Estimation for Successful Software Application Development

software project development of certain size and complexity. The time-effort curve
required to accomplish development is performed by using the Rayleigh Curve
function or Rayleigh distribution. Putnam Suggests that staffing rises smoothly
during the project and then drops sharply during the acceptance testing. The SLIM
method is expressed by two variants equations: Software equation and Manpower-
Buildup equation. Software equation is expressed by equation 4, states that effort is
proportional to the cube of the size and inversely proportional to the fourth power
of time (Albrecht A. J., 1979) and Manpower-Buildup equation represented by
equation 5, states that effort is proportional to the cube of the development time.

Size E Effort td� � � �
1

3
4 3/

 (4)

where, E is Environment or technical factor; td is software delivery time in years.
Efforts are total project efforts in person-years. Size is an effective source lines of
code (SLOC).

D = E/t3 (5)

where, D is constantly called as manpower accelerator, E is total project effort in
years and‘t’ is a delivery time in years.

The total efforts required to develop software projects are represented by equation
6 below.

E
CE t
C

E
t

�
� ��

�
�
�

�

�
�
�

�
�
�

�
�
�

1 3 4 3
9 7

3

4 7/ /
/

/

 (6)

SLIM is applied to almost all types and sizes of software projects. It computes
schedules, efforts, cost, staffing for all software development phases and reliability
for the main development phase.

SLIM takes SLOC, Function Points and other valid measures of functions to
be created as its primary input metrics to generate efforts. Putnam’s model can be
used to plot software development effort as a function of time, as shown in figure 4.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

60

Software Effort Estimation for Successful Software Application Development

FUNCTION POINT ANALYSIS

Function point analysis (FPA) an effort estimation model developed by Allan
Albrecht of IBM in 1979 (Boehm B. W., 1981). In FPA, the project management
implements basic operational units known as function points to represent individual
function to be delivered through a software application. In more precisely, these
function points indicate different functional user requirement desired by the client
from the application. Therefore, FPA approximates the overall functional complexity
of application by identifying all functional size measures corresponding to each
function. In FPA, five types of functional components were identified to obtain
functional size measurement: external input file, external output file, external inquiry,
internal logic file, external interface file. In addition to functional components, 14
value adjustment factors (VAF) or general system characteristics (GSC) are used
to normalize the size. These factors are also called as cost drivers. Functional
components can be either data functions or transactional functions.

The functional complexity of the web application development is directly
proportional to the number of functional user requirements and there corresponding
basic functional units such as record element type (RET), data element type (DET)
and file type referenced (FTR). International Function Point Users Group (IFPUG), an
independent organization have developed a universal standard for proper elicitation,
identification, and counting of function points present in any software application
development.

Figure 5. Software development effort as a function of time in Putnam model
Source: Fenton N.E. and Pfleeger S.L., 1997

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

61

Software Effort Estimation for Successful Software Application Development

Once the identification of the function points is done, they are classified into
simple, average and complex categories. These categories have their specific
weighting factor associated to it is shown in table 1. The behavior of these function
types are described in figure 6,

The overall function points are calculated by obtaining by multiplying function
count by an adjustment factor that is defined by considering 14 technical attributes
called as General system characteristics (GSC) given in table 2. The aggregate
impact of these GSC is calculated as Summation of all the individual parameters,
as shown by equation 7 and total function points by equation 8.

VAF TDI F
i

i� �� � �
�
�0 01

1

14

. (7)

Figure 6. Function point model: a high-end view

Table 1. Overview of function point analysis

Parameter description Count
Weight Factor

Count
Simple Average Complex

Number of Inputs × 3 4 6

Number of Output × 4 5 7

Number of Inquiries × 3 4 6

Number of Internal Files × 7 10 15

Number of External
Interfaces × 5 7 10

Function Count (Unadjusted)

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

62

Software Effort Estimation for Successful Software Application Development

where TDI is the total degree of influence and has the lowest value, 0.65 and highest
value as 70. F is particular VAF

FP Function Fcount
i

i� � � �
�

�
�

�

�
�

�
�0 065 0 01

1

14

. . (8)

These calculated Function points are used to predict the efforts required for the
development of any software application in general and web applications in particular.

Table 3 shows the effort estimate (man-month), the actual effort (man-month),
and percentage MRE data of the 15 software projects using Function Point Analysis
(FPA) for the effort estimation performed by (Kemerer C.F., 1987).

COCOMO

The Constructive Cost Model (COCOMO), developed by Barry Bohm in 1980s, is
one of the most popular algorithmic cost estimation model (Boehm B. W., C. Abts,
A.W. and Brown S., 2000). This is also called a COCOMO 81 model. COCOMO
was aimed to be a generic effort estimation model to be applied by any software
development company to predict early efforts. The development of this algorithmic
technique was based on the study of 63 software development projects at TRW
Aerospace during the 1970s. COCOMO uses simple regression formula where
parameters have been derived from a past project and are adjusted based on current
developmental characteristics. The most fundamental calculation in the COCOMO
model is the use of effort equation to estimate the number of person-months required
for project development. The effort equation is represented by equation 9 and 10.

Effort = A ×(Est Pro Size)B (9)

where, A is proportionality constant, B represents economy or dis-economy of scale,
B depends on development mode or class (Organic, Semidetached, and Embedded).
Project size is in source lines of code (SLOC)

Effort = a(Est Pro Size)bEAF (10)

where, Effort is estimated project effort, and EstProSize is the size of an application
measure in thousand of delivered source instructions (KDSI), a and b are constants
that determine the class of the projects to be developed(Organic, Semidetached,
and Embedded), EAF is an effort adjustment factor, calculated from cost drivers.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

63

Software Effort Estimation for Successful Software Application Development

Table 2. Functional complexity parameter

S No Description of Parameter Value Range Lowest values Highest Values

1 Data Communication 0-5 0 5

2 Distributed data communication 0-5 0 5

3 Performance 0-5 0 5

4 Heavily used configuration 0-5 0 5

5 Transaction rate 0-5 0 5

6 Online data entry 0-5 0 5

7 End user efficiency 0-5 0 5

8 Online update 0-5 0 5

9 Complex Processing 0-5 0 5

10 Reusability 0-5 0 5

11 Installation ease 0-5 0 5

12 Operation ease 0-5 0 5

13 Multiple sites 0-5 0 5

14 Facilitate changes 0-5 0 5

Total degree of influence -TDI 0 70

VAF=(TDI*0.01) + 0.65 0.65 1.35

Table 3. Details of the software projects from Kemerer

Project Estimated Effort (man –month) Actual effort (man –month) MRE (%)

1 344.30 287.00 19.97

2 92.13 82.50 11.67

3 731.43 1,107.30 33.94

4 192.03 86.90 120.98

5 387.11 336.30 15.11

6 61.58 84.00 26.69

7 52.60 23.20 326.73

8 264.68 130.30 103.13

9 477.81 116.00 311.91

10 2.83 72.00 103.93

11 484.24 258.70 87.18

12 192.21 230.70 16.68

13 157.36 157.00 0.23

14 390.63 246.90 58.21

15 282.91 69.90 304.74

MMRE (%) 102.74

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

64

Software Effort Estimation for Successful Software Application Development

• The organic model incorporates small and less complicated projects, and
projects are familiar, stable. The project developed is similar to previously
developed ones. They are developed by highly experienced teams with similar
past development experience.

• Semi- Detached model incorporates projects that have intermediate
characteristics (either too small or too easy). The development team has a
mixed experience. This is also known as Basic COCOMO.

• Embedded Model, development is characterized by tight, inflexible constraints
and interface requirements. This mode requires a great deal of innovation.

COCOMO can be applied at different stages of development to estimate the
effort or cost of development at early stages of development where requirement
elicitation is not clear or when detailed requirements have been specified or at later
stages when application design has been finalized. These three different stages or
approaches are called as Basic COCOMO, Intermediate COCOMO and Advanced
COCOMO models(Nassif, A. B., Ho, D. & Capretz, L. F. (2011), RD Banker, H.
Chang, C. Kemerer, 1994).

COCOMO-II

It is an enhanced variant of basic COCOMO in which new cost drivers were introduced
to achieve better estimation accuracy. It uses LOC and Function Points as sizing
metrics to calculate project size. COCOMO-II has three sub-models, Application
composition, Early Design and Post-Architecture(R D Banker, H. Chang, C. Kemerer,
1994).The COCOMO II effort estimation model is summarized in equation 11:

Effort A size EME

i
i� �� �

�
�
1

17

 (11)

where, Effort is expressed in person-months (PM). ‘A’ is a calibration factor,
approximates productivity constant in (PM/KSLOC), it is 2.94 for COCOMO II
2000. Size is measured in KSLOC and unadjusted function points (UFP), converted
to SLOC or UFP divided by one thousand. EM is effort multiplier (Table 2.3) with
complexity classified into categorized into six ranking orders: very low, low, nominal,
high, very high and extra high with their respective weighting factor. Exponent ‘E’ is
an aggregation of five scale factors(SF) that accounts for the relative economics, and
diseconomies of scale countered for software development of different sizes(Barry
W. Bohm, 2000, Karner, G. (1993).

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

65

Software Effort Estimation for Successful Software Application Development

• if E<1.0, then project exhibits economy of scale
• if E=1.0, then project have both economy and diseconomy of scale in balance

and
• if E>1.0, then project exhibits diseconomy of scale.

Kemerer C.F.,1987, analyzed many COCOMO models. COCOMO Intermediate
showed the least Mean Magnitude of Relative Error (MMRE). The effort estimate
(person month), the actual effort (person month), and percentage MRE of the 15
software projects are shown in Table 4.

TOP-DOWN ESTIMATION

This can be considered as specialization approach where total efforts/cost required
for the software development is obtained by fine-graining the main problem into
its constituent components that collectively attribute to overall efforts. Top-down

Table 4. Details of the software projects from Kemerer

No. Estimated Effort (person month) Actual Effort (person month) MRE (%)

1 917.56 287.00 219.71

2 151.66 82.50 83.83

3 6,182.65 1,107.30 458.35

4 558.98 86.90 543.25

5 1,344.20 336.30 299.70

6 313.36 84.00 273.05

7 234.78 23.20 911.98

8 1,165.70 130.30 794.63

9 4,248.73 116.00 3,562.70

10 180.29 72.00 150.40

11 1,520.04 258.70 487.57

12 558.12 230.70 141.82

13 1,073.47 157.00 583.74

14 629.22 246.90 154.85

15 133.94 69.90 91.62

MMRE 583.82

Source: (Kemerer C.F.,1987)

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

66

Software Effort Estimation for Successful Software Application Development

Estimation is more beneficial in the early stages of software development because
detailed information is not available during this stage (Kusuma B. M., 2014) (Leung
H and Fan Z, 2001). Putnam’s Model is an example of this technique.

BOTTOM-UP ESTIMATION

Bottom-up estimation is opposite of Top-down estimation method. This can be
treated as a generalization approach wherein all the attributes that are expected
to play role in effort estimation are indentified and later converged into a single
collective variable. These attributes are also called as cost drivers and the cost of
each software component (drivers) is combined to achieve the overall cost of the
software. Goal is to derive system estimate from the accumulated estimate of the
small component (Leung H and Fan H., 2001).

USE CASE POINT ESTIMATION

Objective oriented software development has now become a development strategy
of choice. In objective oriented programming paradigm, use-case diagrams are
considered as basic information units modeled through unified modeling language
(UML) and are usually prepared at preliminary stages of software development. The
behavior of use case diagrams portrays the functional strength of the application
development. The interaction between user and system in use case modeling is
described through use case points in general and by using actors and use cases in
particular. Each use-case is represented by the use case scenario diagram. The use
case scenario is mainly composed of a success scenario and an alternative scenario.

Use Case Point (UCP) model for software effort estimation based on the use
case diagrams was first developed by (Karner G., 1993) to establish an estimation
framework to perform early and accurate effort estimation. In the UCP model, the
software size is calculated according to the number of actors and use cases in a use
case diagram and every number multiplied by their corresponding complexity factor.
The complexity of the use-case is determined by the strength of the transactions
incurred therein to complete a specific function.

ACTORS

The actors in the use-case point model are categorized as simple, average or complex
depending on the complexity of the use-case. A weight is assigned to each actor

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

67

Software Effort Estimation for Successful Software Application Development

category as specified in table 5. An actor can be defined as ‘simple’ if interaction
with the system through application programming interfaces (API). An actor can
be defined as ‘average’ if it interacts through protocols (like TCP/IP). The actor is
defined as ‘Complex’ if an interaction is through a Graphical User Interface (GUI).
The weight assigned to them is 1, 2 and 3, respectively, and the same is given in
table 5.

The total unadjusted actor weight (UAW) is calculated by totaling the number
of actors in each category and multiplying by its specified weight factor. All the
products are added to get unadjusted actor weight. The equation for calculating
unadjusted actor weight (UAW) is given as:

UAW = Σ(No. of factors × their respective weight factor) (12)

USE CASES

The use-cases are categorized as simple, average and complex, categories depending
on the number of transactions including the transactions in alternative flow within
a use-case. Use-case is categorized as ‘simple’ if the number of transactions is less
than 3, a use-case is categorized as ‘average’ if the number of transactions is between
4-7 and use-case is categorized as ‘complex’ if the number of transactions is more
than 7 within a use-case. The corresponding weight assigned to simple, average,
complex categories are 5, 10 and 15, respectively, and the same is given in table 6.

Unadjusted use case weight (UUCW) is calculated from the number of use-cases
in all the three categories simple, average and complex. The number of use-cases in
the corresponding category is multiplied by its corresponding weight factor, and at
the end, all values are summed to calculate unadjusted use case weight. The equation
for calculating UUCW gives as:

UUCW = Σ(No. of use cases × their respective weight factor) (13)

Table 5. Actor complexity and their respective weighting factor

Actor Complexity Categorization criteria Weight

Simple through an API 1

Average through TCP/IP protocol 2

Complex through Graphical User interface (GUI) 3

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

68

Software Effort Estimation for Successful Software Application Development

Different researchers have observed that both use cases and actors have their
discrete behavior and accordingly contribute to the nature of transactions. In the
UCP method of software effort estimation, the following three steps are carried out
to calculate efforts required for a software project:

• Calculate the number of Unadjusted Use Case Points (UUCP).
• Calculate the total number of adjusted Use Case Points (UCP).
• Calculate the overall effort based on the total man-hours needed for the

development of the project.

In order to calculate UUCP, the values for UAW and UUCW are required. Both
the UAW and UUCW values are used to calculate UUCP, and the equation for the
calculation is given as.

UUCP = UUCW + UAW (14)

where UUCP is unadjusted use case points, UUCW is unadjusted use case weight,
and UAW is unadjusted actor weight. After calculating UUCP, the UCP (use case
point) value needs to be calculated using the following equation.

UCP = UUCP × TCF × ECF (15)

where TCF is technical complexity factor, ECF is environmental complexity factor

TECHNICAL COMPLEXITY FACTORS

These are non-functional parameters that impact the development, implementation,
and maintenance of web application development. These factors influence the
technical characteristics associated with software application development like
architecture, internal processing, interoperability, scalability, user training, etc. The
technical complexity factor (TCF) is used to adjust the UCP estimate based on the

Table 6. Use case complexity and their respective weighting factor

Use Case Complexity Number of Transactions Weight

Simple <=3 5

Average 4 to 7 10

Complex >7 15

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

69

Software Effort Estimation for Successful Software Application Development

perceived technical complexities of the project to be developed. TCF corresponds
of thirteen (13) different parameters which are rated using a scale from 0 to 5
where value ‘0’ implies that the parameter is ‘irrelevant’ and the assigned value
will increase with the increase in significance and value ‘5’ implies significance
of the corresponding parameters is treated as ‘essential’. The details of all the 13
technical complexity parameters with their relative weight are given in table 7.
For each technical complexity factors, the influence estimate is multiplied by the
corresponding weight factor, and the summation of all the calculated value is the
Technical Complexity Factors (TCF) value.

The value of the TCF is calculated using the following equation.

TCF Ws S
i

i i� � �
�
�0 6 0 01

1

13

. . (16)

ENVIRONMENTAL COMPLEXITY FACTOR

These factors are related to various characteristics associated with the development
team like developers experience, skills, knowledge of technology, etc. To what
extent a person possesses these attributes makes its influence proportionally on web
development in general and effort estimation in particular.

Table 7. Technical factor and weight

Factor Description Weight (Wi)

T1 Distributed system 2

T2 Response or throughput performance objectives 1

T3 End-user efficiency (online) 1

T4 Complex internal processing 1

T5 Code must be reusable 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent 1

T11 Includes special security features 1

T12 Provides direct access for third parties 1

T13 Special user training facilities are required 1

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

70

Software Effort Estimation for Successful Software Application Development

Environmental complexity factor is directly dependent on software development
team experience in the software project to be developed. More experienced teams will
have a greater impact on the UCP computation in comparison with less experienced
software teams. The software development team determines the impact of each
factor on the project with respect to different parameters of ECF. The influence of
eight (8) environmental complexity factor parameters on the software development
effort is estimated using a scale from 0 to 5 where ‘0’ means ‘irrelevant and ‘5’ is
for ‘essential’. All the eight environmental complexity factor parameter with their
corresponding weights are given in table 8.

The weight assigned based on the software project to be developed for different
parameters of environmental complexity factor is multiplied with the corresponding
weight of the parameter. All the eight (8) values calculated after multiplying
corresponding weight are summed together to get the value of EF, which is used
to calculate ECF. The environmental complexity factor (EF) can be calculated as:

ECF Ws S
i

i i� � �
�
�1 4 0 03

1

8

. . (17)

After calculating the value of UUCP (unadjusted use case points), ECF
(Environmental Complexity Factors) and TCF (Technical Complexity Factors) the
values for UCP use case points is calculated using the following equation:

UCP = UUCP × TCF × ECF

Table 8. Environmental factor and weight

Factor (Ei) Description Weight (Wi)

E1 Familiarity with the project 1.5

E2 Application Experience 0.5

E3 OO Programming Experience 1

E4 Lead Analyst Capability 0.5

E5 Motivation 1

E6 Stable requirements 2

E7 Part Time Staff -1

E8 Difficult Programming Language -1

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

71

Software Effort Estimation for Successful Software Application Development

In order to estimate the effort in person-hours the UCP value is multiplied by
20, as was suggested by (Karner G., 1993) to calculate efforts:

Effort = UCP × 20 person-hours (18)

As use-cases based effort estimation are based on the object-oriented methodology
where unified modeling language (UML) has emerged as the dominant technique
for structuring requirements (Alves R., Valente P. and Numes N. J., 2013) The UCP
became very popular due to its relative simplicity and applicability at early stages of
software development process. The use case point method of software effort estimation
has gained wide popularity due to its easy-to-use characteristic and use-case. The
present state of software development is mostly using object-oriented approaches
for software development, which make the availability of use-case diagrams a
necessity. The use case diagrams are prepared by developers at the early stages of
development, which further make the UCP effort estimation method as a suitable
approach keeping in mind the present state of the software industry.

Table 9 shows the effort estimate (man-hour), the actual effort (man-hour),
and percentage MRE data of the 15 projects obtained by Frohnhoft and Engels (S.
Frohnhoff, and G. Engels, 2008) in thiere study.

Web Objects Model

Web Objects developed by Donald J. Reifer in 2000 used for sizing a web application,
Web Objects are considered as the first metric specially developed for a web
application. The size of the web application is measured as a total number of web
objects, a particular web application exhibits. It is an extension to function points
in the sense that four more web related components were added to it (Reifer J. D.,
2000). These added four components make it sizing method for a web application.
web objects consist of nine component: i) external input, ii) external output, iii)
external interface, iv) internal logic file, v) external quires, vi) multimedia files, vii)
web building blocks, viii) scripts and ix) links.

Web Objects computes the size by considering each and every possible element
of the web application by using Holsters equation (equation 19) for volume, the
measurements obtained in a language independent and related to the vocabulary
used to describe it in terms of operands and operators.

V Nlog n N N log n n* * * * *� � � � �� � �� �2 1 2 2 1 2
 (19)

where,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

72

Software Effort Estimation for Successful Software Application Development

N : number of total occurrences of operands and operators
n : number of distinct operands and operators
N1*: total occurrences of operand estimator
N1*: total occurrences of operator estimator
n1*: number of unique operand estimator
n2*: number of unique operand estimator
V* : volume of work involved represented as Web Object

In order to estimate the overall size of the web application, Reifer developed “Web
Object Calculation Worksheet(WOCW)”. WOCW consists of all the predictors with
their corresponding weighting factor assigned to low, Average or High complexity
level. The worksheet and size measurement metrics became the first step in developing
a model, this model is called as WebMo or Web Model that accurately estimates the
size and simultaneously the cost and optimal schedule required for the development
of web application.

Table 9. Details of the 15 software projects from frohnhoft and engels

Project Industry Effort estimates (Man-
Hour) Actual Effort (Man- month) MRE (%)

1 Apparel industry 1,205 728 65.52

2 Automotive 11,667 15,500 24.73

3 Automotive 114,023 136,320 16.36

4 Finance 1,002 2,992 66.51

5 Finance 3,301 3,680 10.30

6 Insurance 2,115 4,800 55.94

7 Logistics 1,406 944 48.94

8 Logistics 1,751 2,567 31.79

9 Logistics 8,840 7,250 21.93

10 Logistics 52,219 61,172 14.64

11 Public 39,030 46,900 16.78

12 Public 19,442 13,200 47.29

13 Telco 3,588 2,456 46.09

14 Telco 3,186 2,432 31.00

15 Telco 1,518 1,056 43.75

MMRE 36.10

Source: Frohnhoff S and Engels G., 2008

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

73

Software Effort Estimation for Successful Software Application Development

The mathematical foundation of WebMO depends on the parameters of COCOMO
II and SoftCost-OO software cost estimating models (Donald J. R., 1993). The
mathematical representation of WebMo is given in equation 20 and 21 below.

Effort A cd size
i

i
P� � �

�
�
1

9
1

 (20)

Duration = B(Effort)P2 (21)

where

An effort is expressed in person-months and duration in calendar months
A and B are constants
P1 and P2 are power laws
cdi are cost drives, Size is the number of Web Objects,

The duration was calculated based on a square-root relationship with effort based
upon built-in scaling rules. The validity of this estimation equation was performed
on web applications like e-commerce, financial applications, business-to-business
application, and web-based information utilities.

Table 10 shows the effort estimation results obtained by Ruhe (Ruhe M., Jeffery
R and Wieczorek I., 2004) for web application development using Function Points
and Web Object Counts with OLS regression based effort prediction models.

COSMIC-FFP

COSMIC-FFP (COSMIC stands for Common Software Metrics Consortium, while
FFP stands for Full Function Points) is a widely adopted effort estimation approach

Table 10. Results of effort estimation of web application development using FP, WO
and Allette’s expert method

Estimation Method Min MRE Max MRE Mean MRE Pred

OLS regression(FP) 0.02 0.84 0.33 0.42

OLS regression(WO) 0.00 0.60 0.24 0.67

Allette’s Expert Opinion 0.12 0.68 0.37 0.25

Source: M. Ruhe, R. Jeffery, I. Wieczorek, 2003

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

74

Software Effort Estimation for Successful Software Application Development

used for sizing software applications. It came into existence to address the challenges
faced by measurement experts while using existing functional sizing methods. It was
later approved as an International Standard (ISO/IEC 19761:2003 and now revised
as ISO/IEC 19761:2011)(ISO/IEC 19761:2011). Data movements or transactions
that correspond to any software application are fundamental identifiers for this
sizing method. The basic idea underlying this approach is that, for usual software
development, the biggest programming efforts are being devoted to handling data
movements, and thus the number of these data movements can provide a meaningful
insight of the development size (De Marco L., Ferrucci F and Gravino C., 2013).
These data movements can be “to and from” persistent memory or between different
users. The presence of these data movements in any application, whether core
software application or web application has a direct contribution towards the size
and complexity of the application. COSMIC standardize the mechanism to identify
different data movements and other characteristic aspects related to them(Costagliola
G., Di Martino S., Ferrucci F and Vitiello G., 2006).

COSMIC -FFP measures the functionality of the web application in terms of
cosmic functional size units (CFSU). These CFSU are identified after applying a set
rules, and procedures to Functional User Requirements to obtain a numerical value of
CFSU’s, which represents the functional size of the software. COSMIC-FFP model
consists of two models: the context model and the software model(Costagliola G.,
Di Martino S., Ferrucci F and Vitiello G., 2006).

Figure 7. Generic flow of data attributes from functional perspectives (a) and generic
software model for measuring software functional size(b)
Source: Bruegge B., Dutoit A. H., 2003

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

75

Software Effort Estimation for Successful Software Application Development

Context model establishes the boundary that separates software application
from its host operating environment. It illustrates the generic functional flow of
data attributes from a functional perspective. This data flow is characterized by two
directions, front-end, and back-end, representing four different data movements (see
Figure 6.a) entries and exits, read and write, respectively. Entries and exists allow
data exchanges with the user and read and writes, which allow the exchange of data
with the persistent storage hardware.

Software model assumes that software to be mapped and measure either takes
input or produces useful output to users. It can also manipulate pieces of information
designated as data groups, which consist of data attributes.

Software model allows us to consider that these functional user requirements are
implemented by a set of functional processes, each of which represents a unique set
of sub-processes performing either a data movement or a data manipulation (see
Figure 6b). Four different sub-processes can be executed: entry, exit, read, write.

• Entry moves a data from user across the boundary into the functional process
• Exit moves data from the functional process across the boundary to a user
• Read moves a data from persistent storage to the functional process and
• Write moves data from the functional process to persistent storage.

The implementation of COSMIC functional measurement method takes three
important aspects into consideration: measurement strategy phase, mapping phase,
and measurement phase. After these phases are rendered, it becomes possible to
determine the functional size that is a total number of CFP’s of software application
and is represented by equation 22.

Size FP Size Entries Size Exits Size Reads Sizi i i i() () () ()� � �� �� �� ee Writesi()
(22)

Similarly, the size of software in terms of COSMIC is then the sum of the sizes
of all functional processes that occur in the measured software application and is
expressed in equation 23.

Size(software) = ΣSize(FPi) (23)

The application of COSMIC in web application sizing was first adopted by
Rollo after he faced difficulties in sizing Internet Bank System with FPA method
(Rollo T., 2000). The application of the COSMIC method to size Web applications
was further analyzed by(Costagliola G., Di Martino S., Ferrucci F and Vitiello G.,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

76

Software Effort Estimation for Successful Software Application Development

2006) (Mendes E., Counsell S., and Mosley N., 2002)(Rollo T., 2000). The COSMIC
method was found to be a suitable method for sizing web applications (Costagliola
G., Di Martino S., Ferrucci F and Vitiello G., 2006).

Anda B. and Dreiem H., 2001, performed effort estimation using COSMIC-FFP
and the details of estimated efforts (11,859.88 man-hour), the actual effort (6,308
man-hour), and percentage MRE (88.01%) data of the case study and the results
obtained are shown in table 11 below.

EXPERT JUDGMENT

The estimation approach to predict the effort required for software application
development by means of subjective expertise of an expert on similar development
projects. The estimation of the new project involves that the expert must possess the
developmental experience and knowledge of similarly situated project development.
Later on, the estimates are drafted by these experts accordingly on the basis of their
similarity with exiting projects. The expert estimation methods can be a single
expert estimates, or it can be more than one experts consulting before forwarding
the final estimates. The accuracy of this method is directly proportional to the
experience, competence, skill set, environmental and technical knowledge of the
expert or experts (Melanie R., Ross J., and Isabella W., 2003). There is no doubt that
these methods are widely used in software and web development industry (Emilia
M., Mosley N., and Steve C., 2006), and 70-80% of the industrial estimates made
by experts are being performed without using any formal estimation models. The
effectiveness of this approach is reduced because of bias, inter expert conflicts,
political pressure, and expert centric approach. The simplest instance of this method
is also known as guesstimation approach as a single expert provides final estimates.
Expert-based estimation is adaptable at certain stages of software development and
in situations where the development team lacks quantified and empirical data from

Table 11. Details of the software projects from

Case Estimated Effort (Man-Hour) Actual effort (Man-Hour) MRE (%)

1 3,670 2,550 30.52

2 2,860 3,320 16.08

3 2,740 2,080 24.09

MMRE 27.30

Source: Anda B. and Dreiem H., 2001

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

77

Software Effort Estimation for Successful Software Application Development

the previously computed projects (Kirmani, M.M. and Wahid, A., 2015). Expert
estimation method has a limitation in quantifying and determining the factors that
have been used to derive an estimate so that this can be used as a pattern of further
estimation prediction. Expert estimation can produce much more efficient and
accurate estimates when used in combination with other algorithmic models (Gray
R., MacDonell S.G., Shepperd M.J., 1999)(Myrtveit I. and Stensrud E., 1999).
Despite of its usefulness expert judgment have some drawbacks (Leung H. and Fan,
Z., 2002) (Heemstra J. F., 1992)

• Depends highly on expert opinion.
• Very difficult to reproduce and use the knowledge and experience of an expert
• The estimation is not repeatable and means of deriving an estimate are not

implicit.

Delphi Technique

Delphi was originally developed for the purpose of making future predictions about
some issues by guiding the individuals involved in decision making to propose better
prediction after carrying out an assessment on each individual opinion. This constitutes
the preliminary stage in the Delphi technique. This assessment is performed by
the coordinator to generate a tabular report. In the next stage, this tabular report is
distributed among the participants to revisit and reassess the various interpretations
mentioned in the report. The feedback from the participants is collected and further
analyzed by the coordinator to project better estimation outcome. In original Delphi,
there is no group consultation or deliberation on the assessment of issues, but in more
open type of Delphi, Wideband Delphi accommodates group discussions between
the participants in different assessment rounds(Boehm B., 1981) (Jørgensen M.,
2007). The Wideband of Delphi technique can be used for software effort estimation
in the following manner;

1. A coordinator begins by providing every expert a project’s specification chart
and a response sheet.

2. The experts will anonymously respond to various fields mentioned in the
response sheet to nullify any bias.

3. The coordinator collects responses and summarizes them to prepare projections
for effort estimation.

4. In case the skewness among responses is very high or unusual, the coordinator
invites experts for further discussion to get a more aligned opinion.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

78

Software Effort Estimation for Successful Software Application Development

This methodology is relatively easier to implement, less-expensive, and accurate
in comparison to other techniques only when the experts have good expertise in the
problem domain for which efforts are being estimated. The main disadvantage of this
method is the lack of sensitivity analysis, dependency on experienced estimators;
human error and pessimistic approach or unfamiliarity with key aspects of the project
(Boehm B., 1981)(Jørgensen M., 2007).

Work-Breakdown Structure Approach

In this approach, software development is divided into modules or sub-processes
therefore, and this is also known as the divide-and-conquer approach. To further
fine-grain the work-breakdown structure, these sub-processes are further divided
into smaller units. The efforts required to develop these sub-processes are estimated
by experts on the bases of the previously completed similar software projects. This
estimation of this sub-process is fewer errors prone in comparison to estimating the
efforts for the whole project at once. The overall effort is estimated by aggregating
the efforts corresponding to these sub-processes. A WBS actually consists of two
hierarchies, one representing the software product itself, and the other representing
the activities needed to build that product (Boehm B., 1981).

COBRA

COBRA (Cost estimation, Benchmarking and Risk Assessment), a hybrid cost
modeling technique introduced by Briand in late 1990s (Briand L., El Emam K. and
Bomarius F., 1998) to overcome the limitations floating from existing cost estimation
methods. COBRA is based on both expert knowledge and quantitative project data.
This particular technique frees measurement experts by allowing the usability of
any functional size measure and data model to estimate cost. COBRA is actually a
framework of activates that are required for the development of the COBRA model.

The fundamental objective of this method is to develop a productivity estimation
model by clubbing overhead cost estimates with the productivity model. Productivity
model estimates productivity from cost overheads. In other words, the COBRA
model has two core components. The first component is a casual model that produces
overhead cost estimates and the second component uses data from past completed
projects o the basis of similarity in characteristics (Melanie R., Ross J., and Isabella
W., 2003).

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

79

Software Effort Estimation for Successful Software Application Development

• Causal Model: to calculate the overhead cost estimate, the causal model
considers local cost factors or drivers that have a direct relationship with
the cost overhead of the project. This particular relationship can be either
direct or interaction between any two cost drivers (Briand L., El Emam
K. and Bomarius F., 1998) and shown in figure 8. All those factors need
to be identified that have an additive effect on the cost of the project. This
particular activity of estimating overhead is carried out by expert knowledge
acquisition.

• Estimation Cost Overhead: The estimation of cost overhead begins with
the identification of most relevant cost drivers among the available drivers
in the literature that have a direct role in the cost of the project. The list
of identified 39 and 12 was retained to have a greater impact on overhead
cost estimation. Cost drivers were grouped into four categories: Product,
Process, Project and Personnel (Syed M. S. and Abdul W., 2017a). The
qualitative causal model was developed to further investigate the impact of
individual cost factor on cost estimation and their relative complexity. The
implementation of the causal model is followed by a reliable questionnaire
to measure and validate the impact of cost factors on the cost estimation.
Frequency scale, Evaluation scale, and Agreement scale were used to collect
responses regarding cost factors (Syed M. S. and Abdul W, 2017b). After the
acquisition of this conceptual, qualitative model, the experts were asked to
“quantify” the effect of each of these cost factors on the development cost,
by expressing in the percentage of overhead above an “optimal” application
that each factor may induce, called as overhead multipliers. The next step
ahead is to express the relationship and the estimates of multipliers and
project questionnaire variables in the form of equations. The relationship
between these variables can be direct, two way or three-way interaction and
are expressed in (Briand L., El Emam K. and Bomarius F., 1998). These
are then translated into parameters of triangular distribution (minimum, most
likely or maximum). Monte Carlo simulation is used to obtain an overhead
cost estimate by considering a sample from each triangular distribution. The
same is shown in figure 9. This procedure is repeated 1000 times to obtain
the distribution of cost overhead of the project. During these multipliers from
all the experts are combined. The mean of this distribution can be randomly
selected as the estimated value of cost overhead for the project.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

80

Software Effort Estimation for Successful Software Application Development

WEB-COBRA

The combinative nature of COBRA: expert opinion and formal modeling, increases
its scope to perform effort estimation of web application development. The adoption
of COBRA for estimating efforts was performed by Ruhe by developing a web-
specific version of COBRA, the Web-COBRA (Melanie R., Ross J., and Isabella
W., 2003). Web-COBRA has been modified in several aspects to make it suitable for
estimating efforts for web applications. The working framework of Web-COBRA
was obtained after conducting personal interviews with the experts of Allete Systems
using open questions (Ruhe M., 2002)(Jacky K. and Ross J., 2008). In contrast to
COBRA, the quality causal model developed had only direct relationships of cost
factors with a cost. Further in Web-COBRA interactions were avoided by deriving
a minimum set of independent cost factors. Quantification of relationships within
the causal model was refined by conducting personal interviews with Allete System
experts to obtain multipliers, in addition to this experts were in command to discuss
and understand the cost factors and the multipliers together to improve and validate
the quantitative causal model. To aggregate the multiple responses from experts
for cost overhead a measure of “central tendency” was used and no weighting was
done as Allete System experts were very similar in experience (Banker R D, Chang
H. and Kemerer C., 1994).

Figure 8. Causal model example

Figure 9. Overview of the productivity estimation model

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

81

Software Effort Estimation for Successful Software Application Development

Machine Learning

These are the most recent methods developed to estimate the efforts for software
applications in general and web and mobile applications in particular. Machine
learning models are based on computational intelligence extended from human
problem-solving characteristics. These models were developed to overcome the
challenges faced using expert and other algorithmic models. The irony is that there
is yet no “silver bullet” method for estimating the efforts. Machine learning based
methods do have both strengths and limitations as well. They largely depend on their
context where they are applied. Machine learning methods have the characteristic
feature to get trained, and then it automatically recognizes the complex pattern of
variables to predict estimates by adopting intelligent decision making. There are
different machine learning estimation methods like; Genetic algorithm (Back, T.,
Hammel U. and Schwefel H.,1997)(Burgess, Colin J., and Martin L., 2007), fuzzy
logic(Kumar S., Krishna B. A. and Satsangi P. S., 1994), regression trees(Schofield
C., 1998), neural networks (Shepperd M. J., Schofield C. and Kitchenham B., 1996)
and case-based reasoning(CBR) (Shepperd M. J., and Kadoda G., 2001). The brief
discussion on few popular machine learning based effort estimation methods is
given under;

Neural Network

Neural network based model for estimating software efforts has been conceived
from the work behavior of the human nervous system. The human nervous system
acquires or perceives certain input from the environment through its distinguished
perceptions and later activates desired actuators to deliver by responding through
proper action. As processing/responding power of the nervous system is instant and
fast, based on the same logic, an effort estimation algorithm is designed to perform
fast, accurate and instant effort estimation. A simple neuron model is provided in
figure 10. The neural network has become the most common and popular software
effort estimation model-building technique and is a computer-assisted learning
process that inherits the working principles of the human brain. Neural networks are
massively parallel and complex and have the capability to solve complex problems
with much speed and accuracy. Neural network based effort estimation model works
by feeding neural network with historical data of previously completed software
projects or web application to get it trained to learn the future course of data on
the similar patterns to generate corresponding output. The trained neural network
automatically configures or adjusts algorithmic parameters and corresponding weights
in order to generate more significant and optimal solution(here in this case estimates)

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

82

Software Effort Estimation for Successful Software Application Development

The actual design of the neural network model begins with the development of
an appropriate layout, intermediate levels and links between neural nodes. These
neural nodes compute the weighted sum of their corresponding input to generate
output. If the sum of the weights exceeds a certain threshold, then this output can be
either excitatory or inhibitory input to neuron or nodes of intermediate levels. This
passing of input from one node to another in intermediate level continues till the
final output is generated (Mair C., Gada K. and Martin L., 2000). The applicability
of neural networks for estimating software efforts was extensively studied by Mair
and Aggarwal (Gray A. and MacDonell S., 1996)(Aggarwal K.K., Singh Y.and
Chandra P., 2005). The performance of the neural network is pretty sensitive to the
training date set the feed to it.

Analogy Based Effort Estimation

Estimation by analogy is a systematic method where the estimation of efforts primarily
involves characterization of features for the software project for which estimates are
required. On the basis of these identified features, similar or analogous projects from
already completed past projects are extracted. This characterization, identification
of analogous projects forms the basic framework for analogy based effort estimation
(ABE) method. The efforts of these completed projects are used to construct estimates
for new but similar projects. This method of estimation is also called a systematic

Figure 10. A neural network estimation model

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

83

Software Effort Estimation for Successful Software Application Development

form of expert judgment since both involve the identification of similar projects to
obtain estimates (Martin, 1996). Analogy Based Effort Estimation method has been
widely used for developing software effort estimation models based upon retrieval
by similarity among the projects effectively (Azzeh M., Neagu D. and Cowling P.,
2010). The main challenging issue that needs further elaboration is “how to find
similar projects ?”, identification and prioritization of features.

The data driven ABE method involves four primary steps (Shepperd M and
Schofield C., 1997) (1) select k nearest analogies using Euclidean distance or
Manhattan distance. (2) Reuse efforts from the set of nearest analogies to find out
the effort of the new project. (3) Adjust the retrieved efforts to bring them closer to
the new project. Finally, (4) retain the estimated project in the repository for future
prediction.

To find analogous projects and to perform effort estimation, an automated tool
like ANGEL is used. It automatically finds the best combination of attributes used
to find a similar score.

The main disadvantage of analogy method is that it requires considerable amount
of computation to reveal similarity done previous projects like using Euclidian
distance, etc. Walkerden and Jeffery (Walkerden F. and Jeffery R., 1999),” have
compared few techniques for analogy-based software effort estimation with each other
furthermore with a linear regression model. The outcomes demonstrated that human
brains work superior than tools at selecting analogies for the considered dataset.

Case Based Reasoning

It is another variant of analogy based effort estimation approach, wherein estimates
for the new project is initiated by adapting efforts of the most similar and relevant
projects from the project pool of successfully completed projects. The process of Case-
Based Reasoning (CBR) begins with the detection of most relevant characteristics
of the project, called as cost drivers. These cost drivers give a real sense of project
size. The similarity between the two projects is found by using Euclidean Distance
to obtain distance metrics.

CBR is actually based on the principle that “new problems are often similar to
previously dealt problems”. Similarly, the estimates obtained for previously developed
projects can be a solution to a new project to develop. CBR can be accomplished in
four steps (Trendowiz A. and Joffery R., 2014):

1. Retrieve those projects that are similar to new projects to be estimated form
projects completed already (historical data).

2. The solution of the identified projects in step 1 above means the efforts and
attributes are reused to generate a solution for the current estimation problem.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

84

Software Effort Estimation for Successful Software Application Development

3. The results obtained for new project estimates can be revisited against the
actual estimate.

4. After successfully evaluating the estimates, that is to find the deviation either
positive or negative between the actual and estimated efforts and the results
are retained for future reference.

The estimation process in CBR is more or less similar to that of analogy based
effort estimation. The implementation of CBR in order to obtain effort estimates
for software applications in general and web application, in particular, is performed
after taking following decisions in order (Shepherd M, and Kadoda M., 2001):

• Selecting attributes
• Scaling attributes
• Identifying analogies
• selecting analogies and
• Adapting analogies

Bayesian Belief Networks

Bayesian belief network (BBN) or simply Bayesian network is a directed acyclic
graph in which nodes represent random variables, these variables can either be
discrete or continuous. The edges of the graph express the probabilistic dependency
among the connected nodes with different variables. Therefore, each of these nodes
is associated with a conditional probability table(CPT) that quantifies its probability
distribution. Relationship between two nodes is represented by an arrowhead stating
from influencing variable and terminating on an influenced variable that is the
direction from a child node to a parent node.

Figure 11 represents the believed causal dependencies between size and selected
web application sizing metrics that is “no. of pages” and “no. of multimedia files”.
In this case, root node “size” has two child nodes: “no. of pages” and “no. of
multimedia files”. These kinds of topologies represent the belief that the size of the

Figure 11. Bayesian belief network

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

85

Software Effort Estimation for Successful Software Application Development

web application is influenced by “no. of pages” and “no. of multimedia files”. BBN
actually represents a model that supports reasoning with uncertainty and is mainly
used in the situation where the knowledge of unknown events is obtained from
the knowledge of observed events and are updated accordingly (Emilia M., 2012)
(Jensen F.V, 1996). BBN can have broadly two events, Hypothesis and Evidence.
Hypothesis(H) are those events which are yet to be explored, and Evidences(E)
are those events that have been observed. The interpretation of these events is
performed by probability calculus and Bayes theorem, and it continues across the
belief to explore the entire hypothesis and update them to evidences, the observed
events. To build BBN for estimating the efforts for software applications in general
and web applications in particular, the number of issues surface (Emilia M, 2012)

• As BBN in context of the web application is concerned, the datasets used
to build belief network needs to be large enough to capture all the possible
relationships and the respective states of nodes so that probabilities can be
easily mapped.

• Identification of variables that represents all the factors within a specific
domain.

• Different structure and probability learning algorithms lead to different
prediction accuracy (Mendes E., and Mosley N., 2008).To differentiate
between the models is time-consuming.

• Implementation of hybrid BBN model the structure of these models needs to
be jointly elicited by more than one domain expert to generalize its diverse
applicability.

• The probabilities used by data-driven and hybrid models need to be
investigated by at least one domain expert. this may sound like to check the
probability of all the nodes of BBN, which is almost not feasible.

• The choice of variable discretization, structure learning algorithms, parameter
estimation algorithms, and a number of categories used in the discretization
all affect the accuracy of the results, and there is no proper guideline to make
the best choice.

Regression Based Estimation Techniques

Regression analysis is a statistical method to investigate the relationship between
two variables. One variable is regarded as independent or response/outcome and the
second one regarded as dependent or predictive/explanatory. This technique is used
to predict the relationship that exists between these variables. It is an important tool
for modeling and analyzing data. The main advantages of using regressions analysis
are: it indicates the significant relationships between the dependent and independent

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

86

Software Effort Estimation for Successful Software Application Development

variable, it also indicates the behavior, impact of multiple independent variables
on the dependent variable. In the case of estimating efforts, efforts are a dependent
variable, and it depends on various independent variables that collectively make the
size of particular software or web application.

Regression analysis can be pursued in different ways, depending on the number
and behavior of its predictors or independent variables, few popular regression-based
techniques implemented to predict effort estimates are mentioned and described briefly

Linear Regression

It is one of the most widely known modeling techniques. In this technique, the
dependent variable is continuous, the independent variable(s) can be, and the nature
of the regression line is linear.

Linear Regression establishes a relationship between the dependent variable
(Y) and one or more independent variables (X) using a best fit straight line (also
known as a regression line).

It is represented by an equation 24

Y=a+b*X + e, (24)

where a is intercept, b is the slope of the line and e is error term. This equation can be
used to predict the value of the target variable based on a given predictor variable(s).

MULTIPLE LINEAR REGRESSIONS

The relationship between dependent variable (Y) and independent variables (Xi) in
multiple linear regression (MLR) is expressed by equation 25

Y = β0 + β1X1 + β1X1 + ... + βnXn+ ε (25)

where, X1, X2, ..., Xn are repressors or predictors; β0 is the intercept parameter; β1,
β2, ..., βn are the regression coefficients; and ε is the error component.

MLR technique is usually employed when: (i) the number of cases is significantly
higher than the number of parameters to be estimated; (ii) the data has a stable
behaviour; (iii) there is a small number of missing data; (iv) a small number
of independent variables are sufficient (after transformations if necessary) to
linearly predict output variables (also transformed if necessary), so as to enable an

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

87

Software Effort Estimation for Successful Software Application Development

interpretable representation (Gray A. R. and MacDonell S. G., 1997). Application
of the MLR method requires verification of the associated assumptions. The major
assumptions to be considered are (Freund R. J. and Wilson W. J., 1998)(Ott R. L.
and Longnecker M., 2010):

• Linearity: The relationship between each Xi and Y is linear. Thus the model
adequately describes the behavior of data;

• The error component is an independent and normally distributed variable
with constant variance and means value zero.

The difference between simple linear regression and multiple linear regression
is that multiple linear regression has (>1) independent variables, whereas simple
linear regression has only 1 independent variable. Now, the question is “How do
we obtain the best fit line?”

Stepwise Regression

This form of regression is used when we deal with multiple independent variables.
In this technique, the selection of independent variables is done with the help of an
automatic process, which involves no human intervention.

This feat is achieved by observing statistical values like R-square, t-stats and AIC
metric to discern significant variables. Stepwise regression basically fits the regression
model by adding/dropping co-variates one at a time based on a specified criterion.
Some of the most commonly used Stepwise regression methods are listed below:

• Standard stepwise regression does two things. It adds and removes predictors
as needed for each step.

• Forward selection starts with the most significant predictor in the model and
adds variable for each step.

• Backward elimination starts with all predictors in the model and removes the
least significant variable for each step.

The main approach of implementing regression-based modeling is to find the set
of independent variables that best explains the variation in the dependent variable.
The goal of regression is to find the function f(x) that best models the data. In linear
regression, this is done by finding the line that minimizes the sum squares error
on the data.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

88

Software Effort Estimation for Successful Software Application Development

Evaluation Criteria

To investigate the effectiveness and accuracy of various effort estimation approaches
that are being used by practitioners to perform software effort estimation, various
evaluation criteria are used. Evaluation of effort estimation models is carried out by
using data sets of past projects developed by the various organizations in the past.
Using these datasets on these various models gives the idea about the effectiveness
and accuracy in effort estimation by just looking on the deviation obtained(Actual
efforts-estimated efforts using different models) The evaluation criteria statistically
analyse the results using various mathematical or statistical/ probability distributions
like Magnitude of Relative Error(MRE),Mean Magnitude of Relative error(MMRE),
Median Magnitude of Relative Error(MdMRE), Mean Absolute error (MAE), Median
Absolute Error(MdAE), Standard Deviation, PRED(x), Skewness, Significance
tests(Z-test, t-test, chi-square test etc)(Syed M. S., Abdul W., 2017a).

LIMITATIONS OF EFFORT ESTIMATION MODELS

Different effort estimation approaches that have been introduced from time to time
by several researchers to perform effective effort estimation have got both advantages
and disadvantages with them. The most common limitations and advantages of few
popular effort estimation models is provided in table 12.

CONCLUSION

Importance and usability of software applications are continuously increasing.
Therefore, it is inevitable for project management to ensure security, reliability, and
effectiveness in various software projects. Overriding the benefits of soft systems,
most of the organizations are using software-based applications as an interface
to access or deliver a multitude of services. To manage growing complexity and
demand for quality of services, there is much-required need to have good software
application development approach. Better development methodology helps project
managers to develop software applications on time and within budget to meet user
requirements effectively. Effort estimation plays a major role in effective web
application development by predicting the efforts required for web development and
subsequently, the cost of development. Accuracy in effort estimation helps project
management to draw efficient budgetary estimates so that web development can be
monitored and carried out in a systematic manner.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

89

Software Effort Estimation for Successful Software Application Development

Many developmental approaches have been used for software effort estimation
but, most of them were conventional software methods and therefore, failed to
produce accurate results when it comes to web or mobile effort estimation. Several
web specific effort estimation methods were also developed by researchers from
the past few years, but, their results are still questionable. Due to their inaccuracy,

Table 12. Advantages and disadvantages of effort estimation models

Type Approach Advantages Disadvantages
A

lg
or

ith
m

ic
 M

et
ho

d

LOC Very easy in implementation to
Estimate the size of software

Prediction of line is tough
in early stages, not good
for very large project and
language dependent

Putnam’s Model
Time, Size and Effort are easily
collected
for past projects

It does not consider the other
phases of SDLC

FPA
Tools, methods and language are
independent to achieve the fast
result

Time, Quality and manual
work are not considered

SEER-SEM Used in very large projects
50 input parameters are
required which increased the
complexity and uncertainty

COCOMO Estimating the cost is simple and
gets the clear result

Details of past project
are required

COCOMO II

It provides more support for modern
software development processes
and an updated project database.
Provide support to mainframe, code
reusability and batch processing.

It cannot estimate the effort
at all the different phase of
SDLC. Its prediction is .68
which is quite good.

Detailed COCOMO

Phase sensitive effort multipliers
are each to determine the amount
of effort required to complete each
phase.

Lots of parameters involved
in estimation time complexity
is high. Its prediction is .70
which is good.

N
on

-A
lg

or
ith

m
ic

M
et

ho
d

Analogy based
Estimation

Experience and knowledge are used
for actual projects Attributes are required

Expert Judgment
New technology, domain and
architecture are the basis to estimate
the cost

Experience of similar
projects

Top-Down

It requires very less detail about the
project, moreover it is faster, simple
and easier to use. Unlike other
approaches it focuses on activities
like integration, management etc

Low level problems are
difficult to Identify

Bottom-Up This technique is more stable and
error estimation is also performed

Time and system level
activities are not considered

continues on following page

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

90

Software Effort Estimation for Successful Software Application Development

the tradition of using conventional approaches is still continuing to remain effort
estimation approaches for web or mobile effort estimation.

The existing literature highlights that the existing software effort estimation
strategies are not adequate to produce accurate and effective estimates, therefore,
advocates the need to develop a more customized and tailor-made model for effort
estimation inline within changing development technology to ensure accurate and
effective effort estimation at early stages of software development.

REFERENCES

Aggarwal, K. K., Singh, Y., Chandra, P., & Puri, M. (2005). Bayesian regularization
in a neural network model to estimate lines of code using function points. Journal
of Computational Science, 1(4), 505–509. doi:10.3844/jcssp.2005.505.509

Type Approach Advantages Disadvantages
M

ac
hi

ne
 le

ar
ni

ng
M

et
ho

ds

Linear Regression statistical models
Relationships between
dependent and independent
variables

Support Vector
Machine

Flexibility, Robustness, Unique
solutions

computation is expensive,
binary classifier

Neural Network

Powerful method, mathematical
formula, eases to use. Consistent
with unlike databases, power of
reasoning

Large complexity of network
structure. There is no
guideline for designing, the
performance depends on
large training data

K-Means Fast Result, Easy to implement Difficult to predict K-value,
Global clusters

Hierarchical cluster Easy to decide the clusters
Time complexity, Not
possible to undo the previous
step

Fuzzy Training is not required, flexibility
Hard to use, maintaining the
degree of meaningfulness is
difficult

Artificial neural network
based estimation

Artificial Neural Network based
estimation methods are consistent
with unlike databases and they
provide power of reasoning in
estimation process

Large amount of training data
is required No guidelines or
instructions are provided for
designing.

Source: Rajeswari K. and Beena.R., 2018; Tailor O., Saini J. and Rijwani P. 2014

Table 12. Continued

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

91

Software Effort Estimation for Successful Software Application Development

Albrecht, A. J. (1979). Measuring application development productivity. In
Proceedings of the joint SHARE, GUIDE and IBM application development
symposium. IBM Corporation.

Alves, R., Valente, P., & Numes, N. J. (2013). Improving Software Effort Estimation
with Human-Centric Models: a comparison of UCP and iUCP accuracy. Proceedings
of the 5th ACM SIGCHI symposium on Engineering interactive computing systems,
287-296. 10.1145/2494603.2480300

Anda, B., & Dreiem, H. (2001). Estimating software development effort based on
use cases-experiences from industry. Fourth International Conference on the UML,
487–502. 10.1007/3-540-45441-1_35

Azzeh, M., Neagu, D., & Cowling, P. (2010). Fuzzy grey relational analysis
for software effort estimation. Empirical Software Engineering, 15(1), 60–90.
doi:10.100710664-009-9113-0

Back, T., Hammel, U., & Schwefel, H. (1997). Evolutionary Computation: Comments
on the History and Current State. IEEE Transactions on Evolutionary Computation,
1(1), 3–17. doi:10.1109/4235.585888

Banker, R. D., Chang, H., & Kemerer, C. (1994). Evidence on Economies of Scale
in Software Development. Information and Software Technology, 1994(5), 275–282.
doi:10.1016/0950-5849(94)90083-3

Bauer, F. (1968). Software engineering: A report on conference sponsored. NATO
Science Committee.

Boehm, B. (1981). Software Development Cost Estimation Approaches-A Surey.
Annals of Software Engineering, 10, 177-205.

Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation
approaches: A survey. Annals of Software Engineering, 10(1), 177–205.
doi:10.1023/A:1018991717352

Boehm, B. W. (1981). Software engineering economics (Vol. 197). Englewood
Cliffs, NJ: Prentice-Hall.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, W.,
... Steece, B. (2000). Software Cost Estimation with COCOMO 11. Prenctice Hall.

Briand, L., & Emam, K. (1998). COBRA: A Hybrid Method for Software Cost
Estimation, Benchmarking, and Risk Assessment. Proc. of the Intern. Conference
on Software Engineering (ICSE’98), 390-399. 10.1109/ICSE.1998.671392

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

92

Software Effort Estimation for Successful Software Application Development

Briand, L. C., & Wieczorek, I. (2002). Resource Estimation in Software Engineering.
In Encyclopedia of Software Engineering (Vol. 2, pp. 1160–1196). John Wiley & Sons.

Bruegge, B., & Dutoit, A. H. (2003). Object-Oriented Software Engineering: Using
UML, Patterns and Java (2nd ed.). Prentice-Hall.

Burgess, C. J., & Martin, L. (2007). Can genetic programming improve software
effort estimation? A comparative evaluation. Information and Software Technology,
43(14), 863–867. doi:10.1016/S0950-5849(01)00192-6

Burgess, C. J., & Martin, L. (2007). Can genetic programming improve software
effort estimation? A comparative evaluation. Information and Software Technology,
43(14), 863–867. doi:10.1016/S0950-5849(01)00192-6

Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., & Vitiello, G.
(2006). A COSMIC-FFP approach to predict web application development effort.
Journal of Web Engineering, 5(2), 93–120.

Costagliola, G., Di Martino, S., Ferrucci, F., & Vitiello, G. (2006). A COSMIC-FFP
approach to predict web application development effort. Journal of Web Engineering,
5(2), 93–120.

De Marco, L., Ferrucci, F., & Gravino, C. (2013). Approximate COSMIC size
to early estimate Web application development effort. Presented at the Software
Engineering and Advanced Applications, 2013. SEAA 2013. 39th EUROMICRO
Conference, 349– 356.

Donald, J. R. (1993). SoftCost-OO Reference Manual. Torrance, CA: Reifer
Consultants, Inc.

Donald, R. J. (2000). Web Development estimating quick-to-market software.
Software IEEE, 17(6), 57–64. doi:10.1109/52.895169

Eck, D., Brundick, B., & Fettig, T. (2009). Parametric estimating handbook. The
International Society of Parametric Analysis (ISPA).

Emilia, M. (2012). Using Knowledge Elicitation to Improve Web Effort Estimation:
Lessons from Six Industrial Case Studies. In 34th International Conference on
Software Engineering (ICSE). IEEE.

Emilia, M., Mosley, N., & Steve, C. (2006). Web Effort Estimation. In Web
Engineering. Springer.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

93

Software Effort Estimation for Successful Software Application Development

Emilia, M., & Steve, C. (2000). Web Development Effort Estimation using Analogy.
Software Engineering Conference, 2000, Proceedings.

Fenton, N. E., & Pfleeger, S. L. (1997). Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press.

Freund, R. J., & Wilson, W. J. (1998). Regression Analysis: Statistical Modeling of
a Response Variable. San Diego, CA: Academic Press.

Frohnhoff, S., & Engels, G. (2008). Revised Use Case Point Method - Effort Estimation
in Development Projects for Business. In Proceedings of the CONQUEST 2008 -
11th International Conference on Quality Engineering in Software Technology.
Potsdam: Dpunkt Verlag.

Gray, A., & MacDonell, S. (1996). A Comparison of Techniques for Developing
Predictive Models of Software Metrics. Information and Software Technology, 39,
1997.

Gray, A. R., & MacDonell, S. G. (1997). A comparison of techniques for developing
predictive models of software metrics. Information and Software Technology, 39(6),
425–437. doi:10.1016/S0950-5849(96)00006-7

Gray, R., MacDonell, S. G., & Shepperd, M. J. (1999). Factors Systematically
associated with errors in subjective estimates of software development effort: the
stability of expert judgment. Proceedings of the 6th IEEE Metrics Symposium.
10.1109/METRIC.1999.809743

Heemstra, F. J. (1992). Software cost estimation. Information and Software
Technology, 34(10), 627–639. doi:10.1016/0950-5849(92)90068-Z

ISO/IEC 19761:2011, Software engineering -- COSMIC: a functional size
measurement method. International Organization for Standardization.

Jacky, K., & Ross, J. (2008). Automated Support for Software Cost Estimation
using Web-CoBRA. In 15th Asia Pacific Software Engineering Conference. IEEE
Computer Society.

Jensen, F. V. (1996). An introduction to Bayesian networks. London: UCL Press.

Jørgensen, M. (2007). Forecasting of software development work effort: Evidence on
expert judgement and formal models. International Journal of Forecasting, 23(3),
449–462. doi:10.1016/j.ijforecast.2007.05.008

Karner, G. (1993). Metrics for objector. University of Linköping.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

94

Software Effort Estimation for Successful Software Application Development

Kemerer, C. F. (1987). An empirical validation of software cost estimation models.
Communications of the ACM, 30(5), 416–429. doi:10.1145/22899.22906

Kirmani, M. M., & Wahid, A. (2015). Revised Use Case Point (Re-UCP) Model for
Software Effort Estimation. International Journal of Advanced Computer Science
and Applications, 6(3), 65–71.

Kumar, S., Krishna, B. A., & Satsangi, P. S. (1994). Fuzzy systems and neural networks
in software engineering project management. Journal of Applied Intelligence, 4(1),
31–52. doi:10.1007/BF00872054

Kusuma, B. M. (2014). Software Cost Estimation Techniques. International Journal
of Engineering Research in Management and Technology, 3(4).

Leung, H., & Fan, Z. (2001). Software Cost Estimation. Academic Press.

Leung, H., & Fan, Z. (2002). Software Cost Estimation. In Handbook of Software
Engineering and Knowledge Engineering. Hong Kong Polytechnic University.
doi:10.1142/9789812389701_0014

Lynch, J. (2009). Chaos manifesto. The Standish Group. Retrieved from http://www.
standishgroup.com/newsroom/chaos_2009.php

Mair, C., Gada, K., & And Martin, L. (2000). An investigation of machine learning
based prediction. Journal of Systems and Software, 53(1), 23–29. doi:10.1016/
S0164-1212(00)00005-4

Martin. (1996). Effort Estimation Using Analogy. Proceedings of ICSE-18, 170-178.

Melanie, R., Ross, J., & Isabella, W. (2003). Cost Estimation for Web Applications.
Proceedings of the 25th International Conference on Software Engineering (ICSE’03).

Mendes, E., Counsell, S., & Mosley, N. (2002). Comparison of web size measures
for predicting web design and authoring effort. IEE Proceedings. Software, 149(3),
86–92. doi:10.1049/ip-sen:20020337

Mendes, E., & Mosley, N. (2008). Bayesian Network Models for Web Effort
Prediction: A Comparative Study. Transactions on Software Engineering, 34(6),
723–737. doi:10.1109/TSE.2008.64

Software. (n.d.). In Merriam-Webster. Retrieved from https://www.merriam-webster.
com/dictionary/software

Mills, H. D. (2010). The management of software engineering, part 1: Concepts of
software engineering. IBM Systems Journal, 19(4), 414–420. doi:10.1147j.194.0414

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.standishgroup.com/newsroom/chaos_2009.php
http://www.standishgroup.com/newsroom/chaos_2009.php

95

Software Effort Estimation for Successful Software Application Development

Myrtveit, I., & Stensrud, E. (1999). A Controlled Experiment to Assess the Benefits
of Estimating with Analogy and Regression Models. IEEE Transactions on Software
Engineering, 25(4), 510–525.

Nassif, A. B., Ho, D., & Capretz, L. F. (2011). Regression model for software
effort estimation based on the use case point method. International Conference on
Computer and Software Modelling, 14, 106-110.

Ott, R. L., & Longnecker, M. (2010). An Introduction to Statistical Methods and
Data Analysis. Belmont: Cengage Learning Inc.

Putnam, L. H. (1978). A General Empirical Solution to the Macro Software Sizing
and Estimating Problem. IEEE Transactions on Software Engineering, 4(4), 345–361.
doi:10.1109/TSE.1978.231521

Rajeswari, K., & Beena, R. (2018). A Critique On Software Cost Estimation.
International Journal of Pure and Applied Mathematics, 118(20), 3851–3862.

Rollo, T. (2000). Sizing E-Commerce. Proceedings of Australian Conference on
Software Measurement.

Ruhe, M. (2002). The early and accurate effort estimation of web applications.
Kaiserslautern, Germany: University of Kaiserslautern.

Ruhe, M., Jeffery, R., & Wieczorek, I. (2003). Using web objects for estimation
software development effort for web applications. Presented at Ninth International
Software Metrics Symposium (METRICS ’03), Sydney, Australia. 10.1109/
METRIC.2003.1232453

Schofield, C. (1998). An empirical investigation into software estimation by analogy
(Unpublished doctoral dissertation). Department of Computing, Bournemouth
University, Bournemouth, UK.

Shepherd, M., & Kadoda, M. (2001). Comparing Software prediction Techniques
using Simulation. IEEE Transactions on Software Engineering, 23(11), 1014–1022.
doi:10.1109/32.965341

Shepperd, M., & Schofield, C. (1997). Estimating software project effort using
analogies. IEEE Transactions on Software Engineering, 23(11), 736–743.
doi:10.1109/32.637387

Shepperd, M. J., & Kadoda, G. (2001). Using simulation to evaluate prediction
technique. In Proceedings of the IEEE 7th International Software Metrics Symposium
(pp. 349-358). IEEE.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

96

Software Effort Estimation for Successful Software Application Development

Shepperd, M. J., Schofield, C., & Kitchenham, B. (1996). Effort estimation using
analogy. Proceedings of, ICSE-18, 170–178.

Syed, M. S., & Abdul, W. (2017). Web Effort Estimation Using FP and WO: A
Critical Study. Proceedings of the 2nd International Conference on Computing
Methodologies and Communication (ICCMC 2018).

Syed, M. S., & Abdul, W. (2017a). Web Complexity Factors: A Novel Approach
for Predicting Size Measures for Web Application Development. Proceedings of
the International Conference on Inventive Computing and Informatics(ICICI 2017).

Syed, M. S., & Abdul, W. (2017b). Effort Estimation Techniques for Web Application
Development: A Review. International Journal of Advanced Research in Computer
Science, 8(9), 125-131.

Tailor, O., Saini, J., & Rijwani, P. (2014). Comparative Analysis of Software Cost
and Effort Estimation Methods: A Review. International Journal of Computer
Science and Mobile Computing, 3(4), 1364-1374.

Trendowiz, A., & Joffery, R. (2014). Case Based Reasoning. In Software Project
Effort Estimation. Springer International Publishing.

Walkerden, F., & Jeffery, R. (1999). An empirical study of analogy-based software
effort Estimation. Empirical Software Engineering, 4(2), 135-158.

KEY TERMS AND DEFINITIONS

Actual Effort: The actual extent of resources that are utilized to perform
successful software development.

Effort Estimation: Process of calculating the budget required to develop a
software application.

Effort Estimation Models: Different models that practitioners use to perform
effort estimation for different software developments.

Estimated Effort: The approximate prediction of efforts projected by estimator
to perform application development on time and within the budget.

Mobile Application: Similar to that of web application in certain parameters
developed to run on handheld devices with understandable interface.

Software Application: Conventional or traditional software application developed
to deliver a specific kind of functionality meant to be used within the boundary of
a particular organization.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

97

Software Effort Estimation for Successful Software Application Development

Software Development: Systematic approach followed in development industry
to develop software products

Web Application: Type of software application developed to be accessed via
web browser and meant to address the requirements or diverse people with non-
geographical access restriction.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

98

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-7998-1863-2.ch004

ABSTRACT

DevOps practices preserve the continuous innovation in software development. The
collaborative nature and stakeholder communication are keys in DevOps that lead
to highly effective and quality software outcomes with customer satisfaction. The
software artefacts involved in a DevOps practice must adapt to frequent changes due
to continuous stakeholder feedback. Hence, it is challenging to artefact consistency
throughout the software life cycle. Although artefact traceability preserves the
consistency management with theoretical support, there are practical limitations in
traceability visualisation, change impact analysis, and change propagation aspects.
This chapter presents an analysis of existing studies focused on software artefact
traceability for the suitability in DevOps. It also identifies leading limitations and
possible future research directions to resolve for the benefit of researchers and
software practitioners.

Artefact Consistency
Management in

DevOps Practice:
A Survey

Dulani Meedeniya
 https://orcid.org/0000-0002-4520-3819
University of Moratuwa, Sri Lanka

Iresha Rubasinghe
University of Moratuwa, Sri Lanka

Indika Perera
University of Moratuwa, Sri Lanka

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://orcid.org/0000-0002-4520-3819

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 99

Artefact Consistency Management in DevOps Practice

INTRODUCTION

Software System

Overview of a Software System

A software system is a combination of several software elements that evolves through
a particular software development process model. It is an interface that connects
the user with application software and computer hardware. It is a combination of a
set of design decisions that lead to system architecture, which is a blueprint for any
software system (Arora, & Arora, 2016). The study of theoretical concepts related
to software system development, technical aspects, budgeting, management and
maintenance is known as software engineering (Sommerville, 2010). With the rapid
improvements in technology and resources, the importance of software systems has
become vital in everyday activities. For instance, different domains such as finance,
transportation, agriculture, military, academics, healthcare, business rely on software
systems (Chang, 2005) (Sommerville, 2010). In practice, the aim is to maximise the
use of automated software systems to minimise manual workforce and to improve
quality. Thus, several well-defined software process models and technologies have
been used in software system development.

Software Artefacts

Software artefacts refer to the intermediate by-products used in different phases of
software development. These elements include System Requirement Specification
(SRS), design diagrams, architectural documents and quality attributes or the non-
functional design reports, source code, test scripts, walkthroughs, inspections, bug
reports, build logs, test reports, project plans and risk assessments among many
(Sommerville, 2010). Each artefact has its life cycle during software evolution.
The types of artefacts in a software project may vary depending on the adapted
software process model and technologies. Thus, a software system is a result of a
collection of elements that goes through changes affecting each other at different
levels. There are relationships and dependencies between these software artefacts,
and it is essential to manage these software artefacts to maintain adequate consistency
during changes. The improper management and outdated artefacts can lead to
inconsistencies, synchronisation issues and lack of trust by stakeholders (Cleland-
Huang, Zisman, & Gotel, 2012).

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

100

Artefact Consistency Management in DevOps Practice

Software Development Life Cycle

Software Development Life Cycle (SDLC) denotes the overall software development
related activities from the start of a software project until the completion and
evolution. As shown in Figure 1, SDLC is the collection of core activities typically
a software project follows regardless of project type, scale or domain (Sommerville,
2010) (Langer, 2016). The initial step is software project planning. Refinement can
be applied to this phase based on the factors such as project type, stakeholder and
organisational guidelines. A feasibility study is performed at this stage to identify
the technical, financial, resource feasibility for the system completion. Next, the
software requirements gathered from customers are further analysed, revised and
prioritise, which is known as requirements engineering (Dick, Hull, & Jackson,
2017). Then, the actual software system design representing the intended software
product is designed using design tools, different diagrams and mock-ups. The design
is crucial, especially for implementation, where the software is coded to produce
a useful product. Software developers are responsible for implementation using
programming languages, supporting tools and diverse coding environments within
given guidelines. Depending on the followed software process model, the application
is tested incrementally or sequentially (Arora, & Arora, 2016) and transformed into
a bug-free software product. Next, the software product is deployed, so that the end
user can experience the system with proper user guidance. The technological, ethical,
environmental circumstances and newer user requirements mainly lead to software
maintenance. Thus, with the evolving needs, the deployed product is revised during
the software maintenance phase.

Evolution of Software Systems

At present, software systems consider as critical business assets. A software system
change is inevitable and hence, must be updated continuously to maintain the assets.
In such situations, software evolution is preferred over building completely new
software systems due to the cost and time benefits (Rajlich, 2014). Often, software
evolution occurs in a software system life cycle at a stage where it is in active
operation due to new requirements. Software evolution mainly depends on the type
of software being maintained and cooperated development processes, which continue
the software system lifecycle. This is highly coupled with the components that are
affected due to changes which allow the cost and impact of changes to be estimated
(Pete, & Balasubramaniam, 2015). Alongside, user expectations increase with higher
demand and hence, software systems continuously improve with advanced technical
solutions. The process of creating software systems with improvements by software
engineering principles and methods is called software system evolution (Sommerville,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

101

Artefact Consistency Management in DevOps Practice

2010) (Mens, & Demeyer, 2008). It is a continuous effort to make software systems
bug-free, efficient until the end user desires are fulfilled (Chang, 2005).

The improper or outdated software artefacts and their inconsistencies result in
misleading the intermediate software system development processes due to the
high coupling among elements. Hence, software development and maintenance
become time-consuming with many issues such as higher cost and effort. Moreover,
proper artefact management is essential in integrating artefacts continuously. The
changes must propagate accurately in the integrations, which are challenging to be
automated. However, software artefact consistency maintenance is essential with
the rapid generation of information. Well-Defined traceability management among
software artefacts is required to overcome the impact of evolutions. Further, improper
traceability management may lead to product failures. Thus, traceability management
strengthens the software maintainability and helps for system acceptance (Cleland-
Huang et al., 2012).

Software Process

A software process is a collection of related activities in distinct phases that build
an intended software product. The main stages of an SDLC include all the tasks
that take place from the moment a problem is started to solve in terms of a software
solution. However, the structure of phases varies, resulting in different types of
software process models in practice. The plan-driven traditional Waterfall model
consists of well-defined requirements and follows a sequential flow of data (Arora,
& Arora, 2016). Evolutionary development handles immediate customer needs

Figure 1. Software development life cycle

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

102

Artefact Consistency Management in DevOps Practice

based on the refinement of initial development in an exploratory manner or using
throwaway prototyping. Process iteration with the spiral model is another software
process practice with incremental development (Sommerville, 2010). However, it is
challenging to manage frequent artefact changes in these software process models.

Currently, Agile is the commercially leading software process model in generic
software development in practice. Agile has an intimate and collaborative nature that
secures ultimate customer satisfaction and balance in cost profit trade-off (Flora,
& Chande, 2014). The Agile process mainly focuses on small rapid releases of
software through the iterative and change-driven methodology. It is a non-linear and
experimental process that accepts changes during software development (Rahman,
Helms, Williams, & Parnin, 2015). However, the customer-centric informal
behaviour in Agile often leads to chaotic complexities in large scale software project
developments.

DEVOPS PRACTICE

Terminology in DevOps Practice

• Development-Operations (DevOps): DevOps is a practice that combines
both ‘Development’ and ‘Operations’ work in a software development
process (Bass et al., 2015) (Kim et al., 2016). DevOps is defined as a culture
or a movement that highlights collaboration and communication between
developers and operational team professionals in a software development
environment. The goal of DevOps is to achieve automation and to improve
software delivery with high frequency and quality.

• Continuous Integration and Continuous Delivery (CICD): DevOps
practice emphasises the importance of having Continuous Integration
and Continuous Delivery (CICD) during software development (Duvall,
Matyas, & Glover, 2007). Continuous integration indicates the ability to
allow software changes at any stage of the SDLC to any software artefact.
Mainly, code-level changes in terms of new code additions, modifications
and deletions consider as integrations. The faster software product releases
are referred to by continuous delivery. Accordingly, Continuous Integration-
Continuous Delivery pipeline accelerates quality software development in
DevOps environments (Bass et al., 2015).

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

103

Artefact Consistency Management in DevOps Practice

Software Development in DevOps Practice

Software development with DevOps (Development-Operations) practice has become
a widely used approach in the industry. DevOps practice integrates both Agility and
automation between development and operations teams to provide sufficient product
efficiently. DevOps practice is highly coupled with the release cycle in Agile. It fills
in the gap between the developer and operations team in a development environment
to have consistency among stakeholder communication. It mainly facilitates CICD
with frequent changes by applying Agile methods to operations with interactive
stakeholders’ feedback (Bass, Weber, & Zhu, 2015) (Kim, Debois, Willis, Humble,
& Allspaw, 2016). Thus, it helps to achieve business goals by providing a high-
quality product efficiently. Also, ensures customer satisfaction.

Consequently, software development in DevOps practice increases the
productivity and influences the economies of scale. The main phases in DevOps
include continuous building, testing, Continuous Integration (CI), delivery and
monitoring that eventually minimise the defects in the operational level delivery.
This process is supported by a compatible DevOps tool stack, as shown in Figure
2. For instance, the build automation tool Jenkins, software version controlling by
GitHub, continuous delivery using Docker and project management with Trello are
some of the support tools (Azeri, 2018).

DevOps Tool Stack

The CICD pipeline in a DevOps environment is supported by a set of tools such as
Jenkins, Docker, Maven, Puppet, Travis, Ansible, Sonar and OpenStack support, as
shown in Figure 2. The DevOps tool stack executes in a collaborative environment,
although the tools are from different vendors. For instance, Jenkins is an open
source build automation tool that supports continuous integration. Docker supports
continuous deployment. Both Jenkins and Docker are integrable in the form of
plugins. It is the main reason for their applicability in the CICD pipeline.

Jenkins used as a build automation server that monitors regular jobs execution.
It generates a scenario where errors can be captured and enhance the capabilities to
support the CICD pipeline. Figure 3 shows the basic workflow of building a software
project on Jenkins automation server as a job. The Jenkins server performs tasks that
invoke via a trigger (Hembrink, & Stenberg, 2013). The trigger can be a change in
a linked version control system or a temporal trigger that builds in each of the fixed
time intervals and display the results. For example, a build with Maven or Gradle
includes the execution of pre-written shell scripts, tracking and storing the build
outcomes and initialising integration tests. The configuration of Jenkins is simple
through a web-based GUI and can deploy in large scale environment (Berg, 2015).

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

104

Artefact Consistency Management in DevOps Practice

Docker is a general platform to build, ship, execute distributed applications and
enhances the existence of microservices. Docker enables to hold and transport data
accessible using containers or objects (Farcic, 2016). In practice, Docker containers are
used to replace VMs for immutable deployments. Thus, the utilisation of Docker has
reduced deployment efforts. Figure 4 illustrates the workflow of Docker. Docker file
encapsulates the instructions required to build a source project with its dependencies
based on environmental features. The execution of Docker file results in a Docker
Image. It’s a runtime instance represented using a Docker container. The execution
of a Docker image supports continuous deployment (“Docker,” 2018).

Moreover, Puppet (Farcic, 2016) and Travis (“Travis CI,” 2018) are centralised
configuration server in DevOps environments. Puppet supports to deploy microservices
with less time and act as a platform to initiate system services, organize operating
system-based packages. Travis supports to build and test open source software with
the integration of GitHub repositories and enables team collaboration.

Furthermore, Project Management tools have a significant contribution to
software development, especially in DevOps, where collaboration is essential.
Thus, managing a large number of smaller teams, tracking software changes, tasks

Figure 2. DevOps overview
Source: “QASource DevOps Experts,” 2018

Figure 3. Jenkins workflow

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

105

Artefact Consistency Management in DevOps Practice

allocation among units are keep recorded using PM tools. Trello (“Trello,” 2018) is a
prominent, opensource, web-based PM application with API integration capabilities.
It manages different tasks by assigning deadlines, priorities and progress among
team members. Jira is another tool used by Agile teams for PM with tasks and issue
tracking (“JIRA Software,” 2018). Slack (“Slack,” 2018) is a team collaboration
tool, which stands for “Searchable Log of All Conversation and Knowledge”. It is
a cloud-based, proprietary tool with cross-platform capabilities that supports team
communication using chat room features.

Challenges in DevOps Practice

Managing software artefact traceability in a DevOps environment is challenging
due to many reasons. Generally, a DevOps environment consists of a large set of
small teams. Hence, there can be issues in team collaboration. Mainly, the frequent
code changes during continuous integration affect other artefacts in different impact
levels (Bass et al., 2015). Thus, the artefact consistency management throughout
CICD becomes challenging with the frequent changes of artefacts. Additionally,
operational teams get overhead with the workload, while migrating from the traditional
process and preserving the automation. DevOps tool stack related problems such as
adopting new tools, maintaining their compatibility and interoperability and training
the teams tend to be an overhead.

Further, adapting to the operational level in DevOps practice is challenging due
to the lack of formalism compared to traditional software models. Thus, there is a
need to address the challenges due to rapid artefact changes and team collaboration
with multi-user accessibility. The development of these systems requires reliable
traceability and consistent management for the correct functioning and maintenance
of the product. Therefore, the requirement of having traceability support in a DevOps
environment is significant than in a traditional software development environment.

Figure 4. Docker workflow

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

106

Artefact Consistency Management in DevOps Practice

Artefact Consistency Management

Overview of Software Traceability

Software artefact traceability is the process of tracking the behaviour of an artefact
from the start of a software project until it evolves. It is also known by monitoring
the life cycle of an artefact throughout a software project and maintaining the
consistency among others. In the early stages, traceability has defined by considering
the requirement artefact to revise them in the requirements engineering phase.
Subsequently, traceability aspects have considered regardless of the artefact types
and software process model categories (Sommerville, 2010). A professional body
named ‘Centre of Excellence for Software and Systems Traceability (CoEST)’, has
defined traceability as a way of interrelating artefacts with each other, to maintain
links among them (Keenan et al., 2012). Technically, the connections between
elements declare the traceability among them, which call as trace links or the
traceability links. Further, a collection of all the traces corresponding to a software
system is defined as a trace set (Cleland-Huang et al., 2012). Traceability matrix
and traceability graph are the two most popular methods of representing traceability
links (Marcus, Xie, & Poshyvanyk, 2005).

Terminology in Artefact Consistency Management

• Traceability establishment: Traceability management tracks the life cycle
of a given artefact. Thus, it is essential to identify the behavioural aspects of
an element such as how it evolves, what are the changes applied to it, how it
impacts from the changes in other artefacts, etc. Traceability establishment
is the process of creating links between artefacts, that have relationships
or dependencies among them. These links enable to track elements both
backward and forward (Cleland-Huang et al., 2012). Moreover, this trace-
link creation helps to avoid any possible chaotic consequences in a DevOps
environment, where artefacts are highly subjected to changes.

• Change detection: Artefacts in a software development process, often change
to produce the intended software outcome (Sommerville, 2010). Particularly,
in a DevOps environment, the CICD pipeline encourages frequent artefact
changes. Higher the artefact changes, it is more important to identify the
changes for better traceability management. Change detection is the process
of determining the changes in artefacts during the SDLC.

• Change Impact Analysis: The artefact changes that occur during an
ongoing software project may affect other artefacts. Change Impact Analysis
(CIA) is the process of determining the consequences or the impact of an

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

107

Artefact Consistency Management in DevOps Practice

artefact change in other parts of the software system (Sommerville, 2010).
For instance, when a change is detected, the CIA identifies the impact of
that change among other artefacts in the related trace paths. Since there are
heterogeneous artefacts involved in a software project, the consequences of
a single artefact change are not uniform on other artefacts. For instance, a
change in a source code method name might affect corresponding test script
and design diagram but may not affect requirements. Therefore, it is useful to
identify affected artefacts and the severity level of the impact.

• Consistency Checking: As the impact of artefact changes can reflect on
others differently, the artefacts tend to become unstable after a continuous
integration process in a DevOps environment. Consistency checking
ensures the stability among artefacts (Pete, & Balasubramaniam, 2015).
The Inconsistent elements may not produce the expected software system
(Walkinshaw, 2017).

• Change Propagation: Once the consequences of an artefact change are
identified, reacting on those is known by change propagation. It is essential to
manage any possible ripple-effects after changes to synchronise the artefacts.
Hence, when a change impact is identified, the impacted elements should
change accordingly (Li, Sun, Leung, & Zhang, 2013).

• Project Management: Project management is crucial during the SDLC in
a DevOps environment where team-based communication and collaboration
are high. Thus, it is essential to keep the teams and responsible stakeholders
up-to-date about the status of the software projects (Sommerville, 2010)
(Murray, 2016). The team members must be notified about their daily tasks,
targets, deadlines and the clients and investors; likewise; outside parties must
be informed about the project progress statuses. Additionally, the required
artefact changes can be notified to the teams to follow up. Currently, these
requirements achieve via many software tools which are a part of DevOps
tools stack.

Importance of Traceability Management

In practice, it is expensive to manage consistency whenever artefact changes due to
many relationships and dependencies. Although the number of artefacts is low, it
requires more effort to maintain artefact relations. Hence, ensuring the correctness
of trace-link relationship over time is essential in traceability management and is a
multi-step activity (Mäder & Gotel, 2012) (Maro, Anjorin, Wohlrab, & Steghöfer,
2016). The proper identification of a feasible traceability management approach
could minimise the cost and effort during the SDLC. Moreover, proper trace-link
management is useful in software development to manage the artefact consistency

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

108

Artefact Consistency Management in DevOps Practice

and directs towards the intended software product. Traceability among artefacts
helps to track the changes occurred such as new requirement additions, modifications
and any artefact deletion (Sommerville, 2010) (Cleland-Huang et al., 2012). The
importance is higher when there are frequent artefact changes due to rapid software
evolution (Mens, & Demeyer, 2008).

The Process of Traceability Management

In a software development project, identification of the relationships and dependencies
between artefacts is essential to maintain the consistency among elements throughout
the SDLC. Figure 5 shows the main phases in the traceability management process.
Traceability establishment process creates links between artefacts based on their
dependencies. This process can be automated with the use of natural language
processing techniques and refine with expert knowledge. These links need to be
updated continuously based on artefact changes. Thus, artefact change detection is
required to capture the changes in artefacts due to addition, modification and deletion.
Once an element is changed, that can cause consequences on linked artefacts in
different levels and severities. Identifying those effects of an artefact change on other
elements is known by change impact analysis, which should be modelled considering
artefact categories and relationship types among them. Consequently, some artefact
changes may require propagating to linked artefacts to update traceability relations.
Change propagation refers to the ripple effect of a change impact. Traceability
visualisation is vital to analyse the overall traceability connectivity and filter-out
the dependencies of a given artefact. Accordingly, consistency management refers
to transforming the traceabilities back into a stable state after change detection, CIA
and change propagation (Meedeniya, Rubasinghe & Perera, 2019).

Traceability Management Techniques And Tools

Traceability Management Approaches

Several techniques and approaches are used to establish and manage software artefact
trace links (De Lucia, Oliveto, & Tortora, 2008) (Winkler, & von Pilgrim, 2010).
Rule-based traceability approach is a popular method that uses a set of rules to
create trace-links. These rules are defined for the artefact semantics, relationships,
grammatical features of textual artefacts and their synonyms (Cleland-Huang et al.,
2012). This approach is mainly practical for small to medium level scopes.

Hypertext-based traceability is another method that uses mark-up specification
languages such as XML, XMI, HTML and JavaML to render and trace among
different artefact types. This method has mainly applied only with requirements

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

109

Artefact Consistency Management in DevOps Practice

and source code artefacts and lacks the applicability to other heterogeneous artefact
types (Mäder, & Gotel, 2012) (Cleland-Huang et al., 2012). In contrast, event-based
traceability is dynamic and synchronises continuously with the environment, since
events are the key to trigger and manage traceability (Mäder, Gotel, Kuschke, &
Philippow, 2008). Event-based traceability approaches have automation capability
due to the use of the publish-subscriber method. However, this approach has issues
in achieving scalability along with dynamicity.

Other less significant traceability approaches include constraint-based, goal-
centric, transformation-based, probabilistic and model-driven traceability. In
summary, constraint-based traceability is beneficial in traceability maintenance
(Fockel, Holtmann, & Meyer, 2012). But it requires to have a set of constraints
defined for traceability links, which may become difficult for a broader application.
Transformation-based consists of incremental transformations such as graph
transformations (Riebisch, Bode, Farooq, & Lehnert, 2011). The template-based

Figure 5. Traceability management process

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

110

Artefact Consistency Management in DevOps Practice

models are used in model-driven traceability applications (Javed, & Zdun, 2014).
Model-driven and transformation-based both are mostly applicable for model-driven
development software systems. The goal-centric traceability is applied to non-
functional requirements tracing with no broad applications (Galvão, & Goknil, 2007).
Probabilistic traceability is suitable to handle traceability consisting uncertainties
since it is associated with probabilistic models like Bayes’ theorem though depends
on assumption declarations. These are often domain dependent such as for model-
driven development projects. However, these approaches can be used as a combination
such that event-based can be associated with predefined rules as well.

Among these, some of the approaches apply to a specific type of artefacts. For
instance, the rule-based and hypertext-based traceability support techniques are mainly
used to establish relationships in requirements and source code artefacts (Mäder,
& Gotel, 2012) (Cleland-Huang et al., 2012). Event-based and constraint-based
methodologies, along with publish-subscribe mechanisms, are used for traceability
maintenance. However, these methods have scalability issues when the project scale
increases (Galvão, & Goknil, 2007). Thus, a generic traceability solution is still hard
to obtain using these techniques.

Tool Support for Tractability Management

One of the approaches for maintaining traceability is tool-based approaches, where
a specific tool is used for tracing purpose of an artefact. The tool support for artefact
traceability and continuous integration is an evolving area with the use of existing and
novel techniques. The representation and visualisation of the identified traceability
results is a challenge for proper artefact management. Table 1 summarises the
advantages and limitations of some of the existing traceability management tools.

Although there are different traceability tools, the majority have addressed only
requirements or source code artefact. IBM DOORS (“IBM-Rational DOORS,” 2017),
RequisitePro (“Rational RequisitePro,” 2017), Cradle (“3SL,” 2018), ReqView
(“ReqView,” 2017) and recently released YAKINDU (“YAKINDU Traceability,”
2019) are some prominent requirements traceability tools. IBM DOORS is a
multi-platform requirement management tool. It facilitates traceability support for
requirements artefact with annotations, graphical views and analytical features. This
tool is widely used in the software industry for the requirement and project management
(“IBM-Rational DOORS,” 2017). Another similar tool by IBM is RequisitePro for
requirements management and use case writing (“Rational RequisitePro,” 2017).
However, in practice, IBM DOORS is leading ahead of RequisitePro due to extensive
customer support with quick bug fixes, updates and features. Cradle is a proprietary
requirement artefact management tool. It supports document management, project
management with information assurance for Agile environments. Document version

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

111

Artefact Consistency Management in DevOps Practice

Table 1. Tool support for traceability management

Tool Usefulness Limitations

TraceME (Bavota et al.,
2012)

Visualise artefact trace-links using
traceability dependency graphs.

It is limited to Eclipse IDE as a
plugin. Research-level tool.

ADAMS Re-Trace (De Lucia
et al., 2008)

Support heterogeneous artefact traceability
management and recovery.

It is limited to Eclipse IDE as
a plugin.

IBM Jazz (Calefato,
Gendarmi, & Lanubile,
2009)

Support collaborative integration of data
and tasks in design and source code level.

It is limited to Eclipse IDE as a
plugin. Interface complexity.

Caliber-RM (Borland, 2006)
Allow stakeholder collaboration with
versioning. Support impact identification
and visualisation of requirements.

Proprietary. Limited for
requirements artefacts.
Platform dependent with
Windows OS.

Cradle
(“3SL,” 2018)

Designed for Agile development. Scalable
and multi-user accessible.

It is a proprietary tool. It is
limited for requirements and
lacks the CIA.

IBM DOORS (“IBM-
Rational DOORS,” 2017)

Support cross-platform traceability from
requirement to design level. Support CIA,
visualisation and versioning.

It is limited for requirements
artefact. It is a proprietary tool.

RequisitePro (“Rational
RequisitePro,” 2017)

A collaborative requirements management
tool that supports use case generation.

It is limited for requirements
artefact and lacks tool
maintenance support in
updates. It is a proprietary tool.

YAKINDU (“YAKINDU
Traceability,” 2019)

Support tool integration with the
considered artefacts. Visualise query and
generate traceability coverage and CIA
results.

It is limited for requirements
artefact. It is a proprietary and
patent-pending tool.

TraceMaintainer tool (Mäder
et al., 2008)

A rule-based tool for post-requirements
management with UML models. Research-level tool.

Palantír (Sarma, Redmiles,
& Van Der Hoek, 2012)

Support change detection and CIA
with continuous coordination. Provides
graphical representation.

Capture change data at the
file level and user notification
of conflicts at the code entity
level.

ReqView (“ReqView,” 2017)
Present structured requirements in a
tabular way and visualise in a traceability
matrix.

It is limited for requirements
artefact. It is a proprietary tool.

SAT-Analyser (“SAT-
Analyser,” 2019)

Traceability support for different artefacts
for all phases of SDLC with compatibility
for C1s. Support change detection using
XML comparison, CIA using network
analysis, change propagation, visualisation
using traceability graphs and validation.

Research-level tool. Limited
with natural language
processing for requirement
extraction. Based on UML
design and Java programming
language related artefacts.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

112

Artefact Consistency Management in DevOps Practice

management with traceability, visualisation and coverage analysis are features that
make it remarkable in practice (“3SL,” 2018).

Another well-established proprietary tool is ReqView for requirement traceability
for structural requirements given in tabular format (“ReqView,” 2017). YAKINDU
is a proprietary tool that has addressed Agility adequately with trace visualisations,
configuration features and coverage analysis report generation (“YAKINDU
Traceability,” 2019). The tool RETRO is more towards a case study and focuses
on requirements artefact (Hayes et al., 2007). TraceMaintainer tool (Mäder et al.,
2008) provides traceability support to both requirements and UML designs. The
tool TraceME has addressed all the main artefact types and stands as an Eclipse
plugin (Bavota et al., 2012). ADAMS Re-Trace is another Eclipse plugin that has
considered the main types of artefacts and has used the LSI as the IR technique
(De Lucia et al., 2008). Many tools remain integrative with an IDE such as Eclipse
IDE rather than being an independent tool. That can become a limitation when
integrating with DevOps tools stack.

Further, SAT-Analyser (“SAT-Analyser,” 2019), Software Artefacts Traceability
Analyzer, provides the tool support to manage traceability management. Currently,
its focus artefacts are the textual description for requirements, UML class diagrams
for design, Java source code for implementation, JUnit test cases for testing and
Maven build scripts for configuration. There is a possibility to extend their approach
for different other artefacts. This approach has covered all the main phases in the
traceability management process. Further, SAT-Analyser tool is featured with web-
based multi-user accessibility to allow DevOps teams to use the tool actively along
with DevOps tools stack to support the CICD process.

Related Studies On Traceability Management

Information Retrieval Related Work

In the traceability establishment process, information retrieval plays a vital role, as
the accuracy of the trace-link creation depends on the extracted artefacts. The Vector
Space Model (VSM) is one of the IR techniques that treat queries and elements,
especially documents as vectors. It assumes the terms are always independent of each
other and uses a similarity-based methodology to rank them. On the contrary, Latent
Semantic Indexing (LSI) is an IR approach that is useful to address the documents
having the same semantic information (Lucia, Fasano, Oliveto, & Tortora, 2007).
It focuses on complete user queries instead of individual word translations during
information retrieval. Term Frequency-Inverse Document Frequency (TF-IDF) is
another statistic measure useful to identify the strength of a word. Most ranking
functions are composed of this in queries (De Lucia et al., 2008). Moreover,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

113

Artefact Consistency Management in DevOps Practice

most of the IR based techniques such as VSM, LSI and TF-IDF have shown high
performances in the trace-link establishment (Marcus et al., 2005) (Hayes et al.,
2007). Nevertheless, these techniques have compatibility and scalability issues
and lack automated tool-support. Table 2 states some of the IR techniques used in
traceability related tools.

Artefact Consistency Management Studies

Software artefact consistency management has addressed in different levels of scope in
the literature. Among several related studies, this section considers recent studies that
have discussed significantly one or many phases in artefact consistency management
as the research space. Table 3 summarises a set of literature with the considered
features and techniques. In an earlier work (Lucia et al., 2007), information retrieval
techniques such as VSM, LSI have shown an essential task for traceability, change
detection and consistency management. This work has addressed heterogeneous
artefacts with semi-automation in traceability recovery. Another study has described
the use of an event-based methodology for traceability maintenance and CIA (Sarma
et al., 2012). Although it has a useful notification system for change propagation, the
automation capabilities are lacking. A rule-based traceability approach for several
artefacts using multi-level dependency modelling is presented in (Lehnert, Farooq,
& Riebisch, 2013).

Table 2. Summary of IR techniques used in traceability tools

Tool Artefacts
Information retrieval technique

VSM TF-
IDF LSI Other

TraceME (Bavota et al., 2012) All X

RETRO (Hayes et al., 2007) Requirements, design,
test X X X

ReqAnalyst (Lormans, & van Deursen,
2009) Requirements X Query-

View

ADAMS Re-Trace (Oliveto, 2008)(De
Lucia et al., 2008) All X

TraceTool (Mischler, & Monperrus, 2014) SRS X X

Traceclipse (Klock, Gethers, Dit, &
Poshyvanyk, 2011) Source code X

TraceViz (Chang, Hung, & Newman, 2012) Multimedia X

TraceMaintainer tool (Mäder et al., 2008) Requirements, UML
structural design models

Rule-
based

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

114

Artefact Consistency Management in DevOps Practice

Although the CIA has shown high accuracy, there is limited support in dynamic
UML. The study by Passos et al. (Passos et al., 2013) has focused on the artefacts
up to development phase. However their approach is restricted to feature-oriented
software projects. It computes the dependencies among features in the software
project for the CIA. The approach presented by (Rubasinghe, Meedeniya, & Perera,
2018a), consists of continuous integration tasks and collaborates with DevOps tool
stack. Moreover, the main phases of the tool SAT-Analyzer, which is proposed by the
authors include trace-link creation, visualisation, validation, scheduling algorithms,
versioning, XML-based artefact change detection, weighting scheme-based CIA
model for artefact impact computation, graph-based change propagation and project
management to maintain the artefact consistency. It has mainly occupied a rule-based
approach for traceability and CIA, while graph traversal for change propagation.

Related Studies on Change Impact Analysis

Several studies have addressed software artefact Change Impact Analysis (CIA). The
main aim of the CIA is to determine the consequences of an artefact modification
in other related elements (Sommerville, 2010)(Lehnert, 2015). Traceability is a
supportive technique in the identification of affected artefacts and is a key notion
in the software maintenance process. For instance, in areas such as Model-Driven
Engineering (MDE), before changing a metamodel, it is crucial to measure the
impact of the changes among the artefacts to understand whether the evolution
is sustainable or not. Table 4 summarises some of the related work on the CIA
according to their scope of artefacts.

Table 3. Summary of traceability management related studies

Related
work

Traceability
establishment

Change
detection

Change impact
analysis

Consistency
management

Change
propagation

Application of information
retrieval for traceability recovery
(Lucia et al., 2007)

Information
retrieval VSM. Rule-based LSI -

Heterogeneous artefact
traceability management (Lehnert
et al., 2013)

Rule-based - Rule-based Multi-
perspective

Dependent
links

Feature-based software evolution
(Passos et al., 2013) Feature-based Feature-

based
Feature
dependencies - -

Change detection for parallel
source code (Sarma et al., 2012) Event-based - Event-based Manually Notification

Traceability management
for continuous integrations
(Rubasinghe et al., 2018a)

Rule-based
with string
comparison

Versioning.
XML
comparison.

Rule-based with
network analysis. Automatic

Graph
traversal.
Updates and
notification

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

115

Artefact Consistency Management in DevOps Practice

A probabilistic CIA approach with gall graphs has presented in (Ibrahim, Idris,
Munro, & Deraman, 2005) for heterogeneous artefacts. The use of formal semantics
for requirements CIA is significant in the study (Goknil, Kurtev, van den Berg,
& Spijkerman, 2014). In contrast, Lee et al. (Lee, Deng, Lee, & Lee, 2010) have
used graph theory for CIA in requirements artefact. A rule-based CAI solution
for design, code and test case artefacts is discussed in (Lehnert, 2015) with a tool
named EMFTrace. The work (Zhang, Wan, & Jin, 2016) has presented a traceability
recovery approach for requirements to code artefacts. A traceability knowledge body
named TraceBoK by classifying requirements artefact has presented by Duarte et
al. (Duarte, Duarte, & Thiry, 2016). The work by (Goknil, Kurtev, & van den Berg,
2016) has extended a tool named TRIC to demonstrate their CIA approach that has
used formal semantics for requirements and architecture artefacts.

Traceability visualisation with different techniques like Sunburst and tree, matrix,
graphs and traceability evaluation has mainly considered in (Rodrigues, Lencastre,
& Filho, 2016) only for requirements artefact. A tool named HYCAT has presented
in (Shahid, & Ibrahim, 2016) as a CIA solution for requirements artefact using
traceability matrix. The work by (Kchaou, Bouassida, & Ben-Abdallah, 2017) has
shown a higher accuracy level for their information retrieval-based CIA approach
that has focused on design artefacts such as UML sequence and class diagrams. The
recent work (Rubasinghe, Meedeniya, & Perera, 2018b) has addressed traceability
management of different software artefacts covering the entire SDLC. The weighting

Table 4. Scope comparison of related studies based on change impact analysis

Related work
Artefact level

Requirements Design Code Test
case

Build
Script

Traceability for CIA (Ibrahim et al., 2005) X X X X

Goal-oriented requirement traceability CIA (Lee et al., 2010) X

Requirement CIA using meta-models (Goknil et al., 2014) X

CIA towards software re-use and maintenance (Lehnert, 2015) X X X

Software artefact traceability recovery (Zhang et al., 2016) X X X

Requirements traceability for CIA (Duarte et al., 2016) X

Requirement CIA on software architecture (Goknil et al., 2016) X X

Requirement traceability visualization (Rodrigues et al., 2016) X

CIA for software artefact maintenance (Shahid, & Ibrahim, 2016) X X

Text similarity-based CIA for UML models (Kchaou et al., 2017) X

Rule-based artefact traceability (Lehnert et al., 2013) X X X

Traceability in DevOps practice (Rubasinghe et al., 2018b) X X X X X

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

116

Artefact Consistency Management in DevOps Practice

scheme based on a mathematical model has used for CIA in SAT-Analyzer. It has
used the eigenvector centrality measure that captures the level of importance in each
artefact among others. A rule-based scenario has adapted for graph traversal paths,
and user alteration is used to improve the accuracy.

Related Studies on Traceability Visualisation

Several visualisation methods are available in the literature to analyse the trace-link
relationships and the impact of changes in the artefacts. Lists are one of the earliest
forms of visualisation method. It has the least advantages in modern demands.
Their applicability is limited for a single dimension with smaller data capacity, and
data needs to be stored sequentially. Traceability matrix is primarily introduced for
requirement artefacts to state the relationships between the requirements and test cases.
In general, the traceability matrix is a tabular format that holds a two-dimensional
structure. It is used to determine all the relationships between two sets of artefacts
types (Sommerville, 2010). All the captured requirements are listed and map each
with test cases. Thus, the traceability matrix confirms whether all requirements
given by clients are fulfilled or not. In practice, the quality assurance persons are
responsible for handling typical traceability matrix documents.

A tabular form of visualisation represents by cross-references having a list of
links for each artefact (Chen, Hosking, & Grundy, 2012). However, this technique
is not widely addressed or applied in traceability related visualisation. In contrast,
tree-map provides a two-dimensional hierarchical tree structure for data visualisation.
It gives more capacity for data to be expressed and used for computing purposes.
The data are represented hierarchically in the shape of nested rectangles such that
a rectangle denotes each tree branch. Thus, this is an optimal visualisation method
that takes maximum usage of space with utilisation. Different sizes and colours are
highly used in the approach to illustrate the dimension of data. There exist tiling
algorithms to decide on those parameters.

Another widely used visualisation technique is traceability graph that denotes a
node-link structure as a graph (Kugele, & Antkowiak, 2016). Usually, a traceability
graph is a directed graph that shows which is depending on which node. One
significant advantage in traceability graphs is the applicability of well-established
graph theories and graph analysis methods such as network analysis. Although different
colours, sizes and shapes can be used in this approach, overcoming scalability and
visual clutter issues are still challenging. Comparatively, traceability graph is rich
in scalability over other techniques. Further, Sunburst and Netmap is a customised
visualisation method with a radial structure with no broader recognition (Filho, &
Lencastre, 2012).

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

117

Artefact Consistency Management in DevOps Practice

Related studies have used several visualisation techniques to represent traceability
results as given in Table 5. Most of the traceability visualisation techniques have
slightly considered model driven features. Thus, there is a limitation of supporting a
range of software types (Kugele, & Antkowiak, 2016). Many studies have addressed
issues such as visual clutter and scalability (Merten, Jüppner, & Delater, 2011)
(Filho, & Lencastre, 2012) and integrated with a specific IDE. However, most
of the studies have not addressed different types of software artefacts. They have
considered a few types of artefacts, such as requirements or source code. Hence,
there is a potential need for a generic software artefact visualisation methodology.
The traceability visualisation in SAT-Analyzer (Rubasinghe, Meedeniya, & Perera,
2018b), is developed in three views, Gephi-based informative, Python-based analytical
and JavaScript-based interactive. Traceability visualisation is enhanced in three
variations to overcome scalability issues and to fasten decision making since time
is critical in a more collaborative DevOps environment.

DISCUSSION

General Features in Software Traceability Management

This chapter mainly explores the associated techniques and tools to achieve software
artefact traceability in a DevOps environment to assist researchers and software
practitioners. The addressed parameters include recent and highly cited related studies
on traceability establishment, visualisation, change detection, CIA, consistency
checking and change propagation. We have discussed the required aspects to secure
traceability in a collaborative DevOps environment in an analytical point of view.
Traceability establishment, traceability visualisation, CICD pipeline in DevOps,
artefact change detection in CI activities, corresponding CIA, consistency checking,
change propagation and project management have described with the support of
related works. Furthermore, the literature on traceability validation, CIA validation
and evaluation techniques, have not emphasised within the scope of this chapter.

As disused in the chapter, the current research space includes traceability solutions
in both research-level and industry-level tools, which apply to traditional software
development environments is one common observation. They include features to
safely cope with artefact traceability when the change frequency is low. Moreover,
traceability visualisation is another satisfactorily addressed aspect in research space
with minor limitations. Further, there are rapidly evolving DevOps related tools that
get added to DevOps tools stack to enrich the collaborative nature.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

118

Artefact Consistency Management in DevOps Practice

Limitations in Software Traceability Management

The existing software traceability related solutions have several limitations in
supporting DevOps environments. Majority of the related studies have addressed a
few types of artefacts only (Dekhtyar, Poly, Obispo, & Hayes, 2018). For instance,
many studies have addressed only requirement and source code artefacts. Only, few
studies have considered artefacts covering the phases in the entire SDLC (Rubasinghe,
Meedeniya, & Perera, 2018b); however, those studies also have not addressed all the
possible software artefacts with a generalised approach. Moreover, artefact change
detection is addressed mainly for source code changes in the current industry practice.

One of the main limitations in the present context of software traceability is the
lack of automated tool support to engage in the CICD pipeline collaboratively with
DevOps tools stack, with impressive performances and technique support. Some
related traceability tools are specific to a given Integrated Development Environment
(IDE) such as Eclipse. Most are not compatible with existing DevOps tools stack
(Bavota et al., 2012). Thus, the automation of traceability establishment is hard in a
DevOps environment. Hence, the support of traceability with continuous integration
is essential throughout the SDLC as it is not preserved in the current practices to

Table 5. Comparison of related work on traceability visualisation techniques

Related work

Visualisation technique

Li
st

Tr
ac

ea
bi

lit
y

m
at

ri
x

C
ro

ss
-

re
fe

re
nc

e

Tr
ee

m
ap

Tr
ac

ea
bi

lit
y

gr
ap

h

Su
nb

ur
st

 /
N

et
m

ap

O
th

er

Requirements traceability visualization
(Merten et al., 2011) √ √

Traceability visualization of source code and
documentation (Chen et al., 2012) √ √

Integration of multiple traceability
visualizations (Rodrigues et al., 2016) √ √ √ √

Customised traceability visualization (Zhou,
Huo, Huang, & Xu, 2008)

hyperbolic
tree

Scalable requirements traceability
visualization (Filho, & Lencastre, 2012) √ √ √

Requirements traceability visualization
(Kugele, & Antkowiak, 2016) √ metaphor-

based

Traceability visualization for DevOps
(Rubasinghe, Meedeniya, & Perera, 2018b) √

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

119

Artefact Consistency Management in DevOps Practice

its fullest (Chang, 2005). Additionally, the traceability representation with visual
clutter is an issue in related studies. It limits better decision-making capabilities
with the increase of project scale.

Challenges in Software Traceability Management

The software industry is still hesitating to adapt software traceability in practice due
to several challenges. It is challenging to build a general framework that supports
traceability management with a wide range of customizability. Additionally,
traceability does not provide tangible direct advantages to software development.
Therefore, there is a need for a tool that supports all the artefact types and development
environments in managing traceability. On the other hand, DevOps practices
support collaboration between the many functions engaged in the current software
development processes. Hence, a technically feasible approach to manage software
artefact traceability and impact analysis in a DevOps environment is essential for
software application development. The current software industry is still reluctant
to adopt traceability aspects into the settings due to the initial cost, time and effort.
Also, ensuring the accuracy of traceability is another challenge that leads software
practitioners to re-think in applying traceability in software projects. However,
artefact traceability management supports to deliver a quality product with customer
satisfaction. Hence, there is a requirement of having proper software traceability
validation and evaluation techniques to avoid traceability management being an
overhead.

Future Research Directions in Software
Traceability Management

The existing challenges motivate the research on software artefact traceability
management with well-defined approaches to integrate with DevOps practice. Also,
it is significant to manage artefact consistency efficiently and accurately during
software development to support CICD nature. Moreover, manual traceability
management is impractical with frequent artefact changes and project scalability due
to the necessary effort and possible flaws. Thus, there is a demand for automated
support tools to manage traceability in DevOps practice.

As future research directions, the most vital aspect to be focused on is to provide
traceability among various heterogeneous artefact types such that requirement,
design diagrams, source codes in different programming languages, test scripts and
configuration files representing all the major phases in an SDLC. Next, it is equally
essential to building an approach for continuous artefact change management, which
is the main difference in DevOps over traditional software process models. The

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

120

Artefact Consistency Management in DevOps Practice

traceability among artefacts must be synchronised during artefact change integrations.
Therefore, it is important to have a solution methodology for artefact change
detection, measure the impact of changes over different artefact types and change
propagation without being restricted only on source code artefact. Also, traceability
visualisation and validation are useful research directions having performance a key
quality attribute to avoid traceability management being an overhead. Moreover,
it is ideal for providing the solutions in a DevOps tools stack compatibly manner
to preserve the collaborative team-based nature in DevOps. Finally, a generalised
artefact consistency management framework to support the DevOps environment
is still a trending research area.

CONCLUSION

Software systems in every domain become highly complex and competitive. It requires
the ability to perform in high reliability to sustain without being replaced by a newer
software system. The development of these systems requires reliable traceability and
consistency management for the correct functioning and maintenance of the product.
Agile software development has become a widely used approach due to its highly
collaborative and cost-effective nature. It comprises of practices such as DevOps,
continuous integration and continuous delivery. DevOps reduce the gap between
development and the operations, whereas the continuous integration referrers frequent
merging of developer working copies. The resulting rapid changes of artefacts are
required to trace for preserving the maintainability in DevOps. Hence, traceability
management is essential in DevOps practice for artefact consistency maintenance
during continuous changes. Existing related work on software traceability are more
focused on requirements to code level artefact types that limit their applicability
for a DevOps environment with frequent artefact changes. Therefore, the need of
a broaden traceability management approach to be compatible with heterogeneity,
and continuous artefact integrations along with DevOps tools stack has identified
in this chapter.

This chapter has explored existing approaches to establish and maintain traceability
links between all stages of software development in DevOps practice. The survey
includes the studies on detecting the changes in trace links between software artefacts,
analysing the impact caused by the changes, visualise the consequences of a change
and provide traceability support for the continuous integration nature in a collaborative
environment. Moreover, this chapter has evaluated related tools and techniques that
support software artefact traceability management in DevOps practice. Finally,
this chapter has listed the main limitations and challenges in artefact consistency
management and suggested some recommendations for future research directions.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

121

Artefact Consistency Management in DevOps Practice

ACKNOWLEDGMENT

This research was supported by the University of Moratuwa, Sri Lanka [Senate
Research Committee Grant SRC/ST/2019/07].

REFERENCES

Arora, R., & Arora, N. (2016). Analysis of SDLC Models. International Journal
of Current Engineering and Technology, 6(1), 268–272.

Azeri, I. (2018). What Is CI/CD? Retrieved May 28, 2018, from https://dzone.com/
articles/what-is-cicd

Bass, L. J., Weber, I. M., & Zhu, L. (2015). DevOps : A Software Architect’s
Perspective (1st ed.). Addison-Wesley Professional.

Bavota, G., Colangelo, L., De Lucia, A., Fusco, S., Oliveto, R., & Panichella, A.
(2012). TraceME: Traceability Management in Eclipse. In 28th IEEE International
Conference on Software Maintenance (ICSM). (pp. 642–645). IEEE. 10.1109/
ICSM.2012.6405343

Berg, A. M. (2015). Jenkins Continuous Integration Cookbook (2nd ed.). Packt
Publishing.

Borland. (2006). Borland ® CaliberRM TM. Author.

Calefato, F., Gendarmi, D., & Lanubile, F. (2009). Embedding social networking
information into jazz to foster group awareness within distributed teams. 2nd
International Workshop on Social Software Engineering and Applications (SoSEA),
23–28. 10.1145/1595836.1595842

Chang, S. K. (2005). Handbook of Software Engineering And Knowledge Engineering:
Recent Advances. World Scientific Publishing. World Scientific Publishing.
doi:10.1142/9789812775245

Chang, Y. J., Hung, P. Y., & Newman, M. (2012). TraceViz: “brushing” for location
based services. 14th International Conference on Human-Computer Interaction
with Mobile Devices and Services Companion, 219–220. New York, USA.
doi:10.1145/2371664.2371717

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://dzone.com/articles/what-is-cicd
https://dzone.com/articles/what-is-cicd

122

Artefact Consistency Management in DevOps Practice

Chen, X., Hosking, J., & Grundy, J. (2012). Visualizing traceability links
between source code and documentation. In Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). (pp. 119–126). IEEE. doi.org/10.1109/
VLHCC.2012.6344496

Cleland-Huang, J., Zisman, A., & Gotel, O. (2012). Software and Systems
Traceability. Software and Systems Traceability (1st ed.). London: Springer-Verlag.
doi:10.1007/978-1-4471-2239-5

De Lucia, A., Oliveto, R., & Tortora, G. (2008). Adams re-trace: traceability link
recovery via latent semantic indexing. In 13th International Conference on Software
Engineering (ICSE ’08) (pp. 839–842). New York: ACM. 10.1145/1368088.1368216

Dekhtyar, A., Poly, C., Obispo, S. L., & Hayes, J. H. (2018). Automating Requirements
Traceability: Two Decades of Learning from KDD. doi.org/ doi:10.1109/
D4RE.2018.00009

Dick, J., Hull, E., & Jackson, K. (2017). Requirements Engineering (4th ed.). Springer
International Publishing Switzerland. doi:10.1007/978-3-319-61073-3

Docker. (2018). Retrieved August 28, 2018, from https://docs.docker.com

Duarte, A. M. D., Duarte, D., & Thiry, M. (2016). TraceBoK: Toward a Software
Requirements Traceability Body of Knowledge. In 24th International Requirements
Engineering Conference (RE). (pp. 236–245). IEEE. 10.1109/RE.2016.32

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley Professional (1st ed.). Addison-
Wesley Professional.

Farcic, V. (2016). The DevOps 2.0 Toolkit: Automating the Continuous Deployment
Pipeline with Containerized Microservices (1st ed.). CreateSpace Independent
Publishing Platform.

Filho, G. A. de A. C., & Lencastre, M. (2012). Towards a Traceability Visualisation
Tool. In 8th International Conference on the Quality of Information and
Communications Technology. (pp. 221–223). IEEE. 10.1109/QUATIC.2012.60

Flora, H. K., & Chande, S. V. (2014). A Systematic Study on Agile Software
Development Methodologies and Practices. International Journal of Computer
Science and Information Technologies., 5(3), 3626–3637.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.docker.com

123

Artefact Consistency Management in DevOps Practice

Fockel, M., Holtmann, J., & Meyer, J. (2012). Semi-automatic establishment and
maintenance of valid traceability in automotive development processes. In 2nd
International Workshop on Software Engineering for Embedded Systems (SEES)
(pp. 37–43). IEEE. 10.1109/SEES.2012.6225489

Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven
engineering. In International Enterprise Distributed Object Computing Workshop.
(pp. 313–324). IEEE. 10.1109/EDOC.2007.42

Goknil, A., Kurtev, I., & van den Berg, K. (2016). A Rule-Based Change Impact
Analysis Approach in Software Architecture for Requirements Changes. Eprint
ArXiv:1608.02757

Goknil, A., Kurtev, I., van den Berg, K., & Spijkerman, W. (2014). Change impact
analysis for requirements: A metamodeling approach. Information and Software
Technology, 56(8), 950–972. doi:10.1016/j.infsof.2014.03.002

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., Holbrook, E. A., Vadlamudi, S., &
April, A. (2007). REquirements TRacing On target (RETRO): Improving software
maintenance through traceability recovery. Innovations in Systems and Software
Engineering, 3(3), 193–202. doi:10.100711334-007-0024-1

Hembrink, J., & Stenberg, P. G. (2013). Continuous integration with Jenkins.
Coaching of Programming Teams (EDA 270), 1–8.

IBM-Rational DOORS. (2017). Retrieved October 14, 2017, from https://www.ibm.
com/us-en/marketplace/rational-doors

Ibrahim, S., Idris, N. B., Munro, M., & Deraman, A. (2005). Integrating Software
Traceability for Change Impact Analysis. Integrating Software Traceability for
Change Impact Analysis, 2(4), 301–308.

JIRA Software. (2018). Retrieved October 2, 2018, from https://www.atlassian.
com/software/jira

Kchaou, D., Bouassida, N., & Ben-Abdallah, H. (2017). UML models change impact
analysis using a text similarity technique. IET Software, 11(1), 27–37. doi:10.1049/
iet-sen.2015.0113

Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J., Shin, Y., & Moritz, E., …
Hearn, D. (2012). TraceLab: An experimental workbench for equipping researchers
to innovate, synthesize, and comparatively evaluate traceability solutions. In 34th
International Conference on Software Engineering (ICSE) (pp. 1375–1378). Zurich,
Switzerland: IEEE. 10.1109/ICSE.2012.6227244

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.ibm.com/us-en/marketplace/rational-doors
https://www.ibm.com/us-en/marketplace/rational-doors
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira

124

Artefact Consistency Management in DevOps Practice

Kim, G., Debois, P., Willis, J., Humble, J., & Allspaw, J. (2016). The DevOps
Handbook (1st ed.). IT Revolution Press.

Klock, S., Gethers, M., Dit, B., & Poshyvanyk, D. (2011). Traceclipse: an
eclipse plug-in for traceability link recovery and management. 6th International
Workshop on Traceability in Emerging Forms of Software Engineering, 24–30.
10.1145/1987856.1987862

Kugele, S., & Antkowiak, D. (2016). Visualization of Trace Links and Change Impact
Analysis. In 24th International Requirements Engineering Conference Workshops
(REW) (pp. 165–169). Beijing, China: IEEE. 10.1109/REW.2016.039

Langer, A. M. (2016). Guide to Software Development (2nd ed.). London: Springer-
Verlag London; doi:10.1007/978-1-4471-6799-0

Lee, W. T., Deng, W. Y., Lee, J., & Lee, S. J. (2010). Change impact analysis with a
goal-driven traceability-based approach. International Journal of Intelligent Systems,
25(8), 878–908. doi:10.1002/int.20443

Lehnert, S. (2015). Multiperspective Change Impact Analysis to Support Software
Maintenance and Reengineering. The University of Hamburg.

Lehnert, S., Farooq, Q. U. A., & Riebisch, M. (2013). Rule-based impact analysis
for heterogeneous software artifacts. In European Conference on Software
Maintenance and Reengineering, (CSMR). (pp. 209–218). Genova, Italy: IEEE.
10.1109/CSMR.2013.30

Li, B., Sun, X., Leung, H., & Zhang, S. (2013). A survey of code-based change
impact analysis techniques. Software Testing, Verification & Reliability, 23(8),
613–646. doi:10.1002tvr.1475

Lormans, M., & van Deursen, A. (2009). Reconstructing Requirements Traceability
in Design and Test Using Latent Semantic Indexing. Technical Report Series (TUD-
SERG-2007-007). Delft University of Technology, Software Engineering Research
Group.

Lucia, A. De, Fasano, F., Oliveto, R., & Tortora, G. (2007). Recovering traceability
links in software artifact management systems using information retrieval methods.
ACM Transactions on Software Engineering and Methodology, 16(4), 13:1-13:50.
doi:10.1145/1276933.1276934

Mäder, P., & Gotel, O. (2012). Towards automated traceability maintenance.
Journal of Systems and Software, 85(10), 2205–2227. doi:10.1016/j.jss.2011.10.023
PMID:23471308

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

125

Artefact Consistency Management in DevOps Practice

Mäder, P., Gotel, O., Kuschke, T., & Philippow, I. (2008). traceMaintainer - Automated
Traceability Maintenance. In 16th IEEE International Requirements Engineering
Conference (pp. 329–330). Catalunya, Spain: IEEE. 10.1109/RE.2008.25

Marcus, A., Xie, X., & Poshyvanyk, D. (2005). When and how to visualize traceability
links? In 3rd International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE ’05) (pp. 56–61). New York: ACM. 10.1145/1107656.1107669

Maro, S., Anjorin, A., Wohlrab, R., & Steghöfer, J. P. (2016). Traceability
maintenance: factors and guidelines. In 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2016) (pp. 414–425). New York: ACM.
10.1145/2970276.2970314

Meedeniya, D. A., Rubasinghe, I. D., & Perera, I. (2019). Software Artefacts
Consistency Management towards Continuous Integration: A Roadmap. International
Journal of Advanced Computer Science and Applications, 10(4), 100–110.
doi:10.14569/IJACSA.2019.0100411

Mens, T., & Demeyer, S. (2008). Software Evolution (1st ed.). Berlin: Springer-
Verlag Berlin Heidelberg. doi:10.1007/978-3-540-76440-3

Merten, T., Jüppner, D., & Delater, A. (2011). Improved representation of
traceability links in requirements engineering knowledge using Sunburst and Netmap
visualizations. In 4th International Workshop on Managing Requirements Knowledge,
MaRK’11 (pp. 17–21). Trento, Italy: IEEE. 10.1109/MARK.2011.6046557

Mischler, A., & Monperrus, M. (2014). An Approach for Discovering Traceability
Links between Regulatory Documents and Source Code Through User-Interface
Labels. Eprint ArXiv:1403.2639

Murray, A. P. (2016). The Complete Software Project Manager: Mastering Technology
from Planning to Launch and Beyond. Wiley.

Oliveto, R. (2008). Traceability Management meets Information Retrieval Methods -
Strengths and Limitations. In 12th European Conference on Software Maintenance and
Reengineering (pp. 302–305). Athens, Greece: IEEE. 10.1109/CSMR.2008.4493332

Passos, L., Apel, S., Kästner, C., Czarnecki, K., Wasowski, A., & Guo, J. (2013).
Feature Oriented Software Evolution. In 7th International Workshop on Variability
Modelling of Software-intensive Systems-VaMoS ’13 (p. 17:1-17:8). Pisa, Italy:
ACM. 10.1145/2430502.2430526

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

126

Artefact Consistency Management in DevOps Practice

Pete, I., & Balasubramaniam, D. (2015). Handling the differential evolution of software
artefacts: A framework for consistency management. In IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER) (pp.
599–600). IEEE. 10.1109/SANER.2015.7081889

QASource DevOps Experts. (2018). Retrieved August 28, 2018, from https://www.
qasource.com/devops#!devops-expertise

Rahman, A. A. U., Helms, E., Williams, L., & Parnin, C. (2015). Synthesizing
Continuous Deployment Practices Used in Software Development. In Agile
Conference (pp. 1–10). IEEE. 10.1109/Agile.2015.12

Rational RequisitePro. (2017). Retrieved July 5, 2017, from https://www.oit.va.gov/
Services/TRM/ToolPage.aspx?tid=41

ReqView. (2017). Retrieved May 7, 2018, from https://www.reqview.com/

Riebisch, M., Bode, S., Farooq, Q. U. A., & Lehnert, S. (2011). Towards comprehensive
modelling by inter-model links using an integrating repository. In 18th IEEE
International Conference and Workshops on Engineering of Computer-Based
Systems, ECBS 2011 (pp. 284–291). IEEE. 10.1109/ECBS.2011.32

Rodrigues, A., Lencastre, M., & Filho, G. A. de A. C. (2016). Multi-VisioTrace:
Traceability Visualization Tool. In 10th International Conference on the Quality
of Information and Communications Technology (QUATIC) (pp. 61–66). Lisbon,
Portugal: IEEE. 10.1109/QUATIC.2016.019

Rubasinghe, I. D., Meedeniya, D. A., & Perera, G. I. U. S. (2018a). Traceability
Management with Impact Analysis in DevOps based Software Development. 7th
international conference on advances in computing, communications and informatics
(ICACCI), 1956-1962. 10.1109/ICACCI.2018.8554399

Rubasinghe, I. D., Meedeniya, D. A., & Perera, G. I. U. S. (2018b). Automated
Inter-artefact Traceability Establishment for DevOps Practice. In 17th IEEE/ACIS
International Conference on Computer and Information Science, (ICIS 2018) (pp.
211-216). IEEE. 10.1109/ICIS.2018.8466414

Sarma, A., Redmiles, D. F., & Van Der Hoek, A. (2012). Palantír: Early detection
of development conflicts arising from parallel code changes. IEEE Transactions on
Software Engineering, 38(4), 889–908. doi:10.1109/TSE.2011.64

SAT-Analyser. (2019). Retrieved April 10, 2019, from https://sites.google.com/cse.
mrt.ac.lk/sat-analyser

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.qasource.com/devops#!devops-expertise
https://www.qasource.com/devops#!devops-expertise
https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=41
https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=41
https://www.reqview.com/
https://sites.google.com/cse.mrt.ac.lk/sat-analyser
https://sites.google.com/cse.mrt.ac.lk/sat-analyser

127

Artefact Consistency Management in DevOps Practice

Shahid, M., & Ibrahim, S. (2016). Change impact analysis with a software traceability
approach to support software maintenance. In 13th International Bhurban Conference
on Applied Sciences and Technology (IBCAST). (pp. 391–396). IEEE. 10.1109/
IBCAST.2016.7429908

3. SL. (2018). Cradle Overview. Retrieved July 6, 2017, from https://www.threesl.
com/cradle/

Slack. (2018). Retrieved October 2, 2018, from https://slack.com

Sommerville, I. (2010). Software Engineering (10th ed.). New York: Addison-
Wesley Professional.

Travis, C. I. (2018). Retrieved July 5, 2017, from https://travis-ci.org/

Trello. (2018). Retrieved October 2, 2018, from https://trello.com/

Walkinshaw, N. (2017). Software Quality Assuarance (1st ed.). Springer International
Publishing. doi:10.1007/978-3-319-64822-4

Winkler, S., & von Pilgrim, J. (2010). A survey of traceability in requirements
engineering and model-driven development. Software & Systems Modeling, 9(4),
529–565. doi:10.100710270-009-0145-0

Yakindu Traceability. (2019). Retrieved January 25, 2019, from https://www.itemis.
com/en/yakindu/traceability/

Zhang, Y., Wan, C., & Jin, B. (2016). An empirical study on recovering requirement-
to-code links. In 17th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD).
(pp. 121–126). Shanghai, China: IEEE. 10.1109/SNPD.2016.7515889

Zhou, X., Huo, Z., Huang, Y., & Xu, J. (2008). Facilitating software traceability
understanding with ENVISION. In International Computer Software and Applications
Conference (pp. 295–302). IEEE. 10.1109/COMPSAC.2008.36

ADDITIONAL READING

Antoniol, G., Cleland-Huang, J., Hayes, J. H., & Vierhauser, M. (2017). Grand
Challenges of Traceability: The Next Ten Years. arXiv preprint arXiv:1710.03129,
2017

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.threesl.com/cradle/
https://www.threesl.com/cradle/
https://slack.com
https://travis-ci.org/
https://trello.com/
https://www.itemis.com/en/yakindu/traceability/
https://www.itemis.com/en/yakindu/traceability/

128

Artefact Consistency Management in DevOps Practice

Cleland-Huang, J., Gotel, O. C. Z., Hayes, J. H., Mäder, P., & Zisman, A. (2014).
Software traceability: trends and future directions. In Future of Software Engineering
(FOSE 2014) (pp. 55–69). New York, USA: ACM; doi:10.1145/2593882.2593891

Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven
engineering. In IEEE International Enterprise Distributed Object Computing
Workshop (EDOC). (pp. 313–324). IEEE. 10.1109/EDOC.2007.42

Javed, M. A., & Zdun, U. (2014). A systematic literature review of traceability
approaches between software architecture and source code. In 18th International
Conference on Evaluation and Assessment in Software Engineering (EASE ’14).
(pp. 1–10). New York, USA: ACM. 10.1145/2601248.2601278

Jiménez, M., Castaneda, L., Villegas, N. M., Tamura, G., Müller, H. A., &
Wigglesworth, J. (2019). DevOps Round-Trip Engineering: Traceability from Dev
to Ops and Back Again. In: Bruel J.M., Mazzara M., Meyer B. (eds) Software
Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment. DevOps 2018. (73-88) 11350. Springer, Cham.
doi:10.1007/978-3-030-06019-0_6

Meedeniya, D. A., Rubasinghe, I. D., & Perera, I. (2019). Traceability Establishment
and Visualization of Software Artefacts in DevOps Practice: A Survey. International
Journal of Advanced Computer Science and Applications, 10(7), 66–76. doi:10.14569/
IJACSA.2019.0100711

Rath, M., Rendall, J., Guo, J. L. C., Cleland-Huang, J., & Mäder, P. (2018). Traceability
in the wild: automatically augmenting incomplete trace links. In 40th International
Conference on Software Engineering (ICSE ’18). (834-845). New York, NY, USA.
10.1145/3180155.3180207

KEY TERMS AND DEFINITIONS

Change Set: A set of artefacts that are affected due to artefact additions,
modifications, or deletions.

CIA: Change impact analysis.
CICD: A practice of continuous integration continuous delivery pipeline in a

DevOps environment.
DevOps: Development-operations.
IDE: Integrated development environment.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

129

Artefact Consistency Management in DevOps Practice

Industry-Level: Commercial software development companies.
IR: Information retrieval.
Ontology: A collection of pre-defined words and their synonyms.
PM: Project management.
SDLC: Software development life cycle.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

130

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-7998-1863-2.ch005

ABSTRACT

Software development in DevOps practice is a widely used approach to cope with
the demand for frequent artefact changes. These changes require a well-defined
method to manage artefact consistency to ease the continuous integration process.
This chapter proposes a traceability management approach for the artefact types
in the main phases of the software process including requirements, design, source
code, testing, and configuration. This chapter addresses traceability management,
including trace link creation, change detection, impact analysis, change propagation,
validation, and visualisation. This chapter presents a tool named SAT-Analyser that
is applicable for any software development method and designed for continuous
integration, multi-user collaboration, and DevOps tool stack compatibility. The
SAT-Analyser is assessed using case studies and shown an impact analysis accuracy
of 0.93 of F-measure. Further, the feedback by DevOps practitioners has shown the
suitability and innovativeness of the proposed approach.

Tool Support for Software
Artefact Traceability in

DevOps Practice:
SAT-Analyser

Iresha Rubasinghe
University of Moratuwa, Sri Lanka

Dulani Meedeniya
 https://orcid.org/0000-0002-4520-3819
University of Moratuwa, Sri Lanka

Indika Perera
University of Moratuwa, Sri Lanka

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://orcid.org/0000-0002-4520-3819

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 131

Tool Support for Software Artefact Traceability in DevOps Practice

INTRODUCTION

A software system is a combination of several software artefacts that evolves through
a software development process model. Software artefacts refer to the intermediate
by-products used in different phases of the SDLC such as SRS documents, design
diagrams, architectural documents and quality attributes or the non-functional
design reports, source code, test scripts, walkthroughs, inspections, bug reports,
build logs, test reports, project plans, risk assessments (Sommerville, 2010). It is
essential to manage the relationships and dependencies among artefacts to maintain
adequate consistency towards the completion of the software product. The improper
management and outdated elements can lead to inconsistency among artefacts,
synchronisation issues and lack of trust for the system by stakeholders. Therefore,
software artefact traceability is required to follow the artefact life cycle during the
software development process.

DevOps is a recently emerged software development practice that increases the
collaboration among developers and operations teams. It is required to manage the
consistency among the software artefacts throughout the SDLC phases and project
teams, with the nature of frequent artefact changes. Traceability supports to track
the artefact changes, their transformations and relationships in both forward and
backwards directions. Traceability management is a multi-step process and should
ensure the correctness and performance (Maro, Anjorin, Wohlrab, & Steghöfer, 2016)
(Mäder & Gotel, 2012). However, traceability in practice is popular due to the high
cost and effort required to manage the artefacts relationships and maintain consistency
during changes. Also, there is a lack of automated and platform independent tool
support in traceability management. Thus, automated traceability management and
consistency maintenance that covers a variety of artefacts in software development
are essential.

This chapter addresses traceability and artefact consistency management in DevOps
practice. We propose an approach for software artefact traceability management and
a prototype tool ‘Software Artefact Traceability Analyser’ (SAT-Analyser) as the
proof-of-work. This study considers different software artefact types representing the
main activities in a software process. These artefacts include requirements in natural
language text, UML class design diagram, Java source code, JUnit test scripts and
build-scripts configuration files. The methodology consists of several modules to
manage traceability through the trace-link establishment, change detection, change
impact analysis (CIA), change propagation, visualisation, validation and integration
with the DevOps tool stack. The applicability of the tool is evaluated using case-
study based analyses and a usability study among DevOps practitioners. Thus, the
proposed approach attempts to fulfil the research hindrance in traceability support
in DevOps practice.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

132

Tool Support for Software Artefact Traceability in DevOps Practice

RELATED WORK

The artefact traceability acts as the pillars for artefact change management (De Lucia,
Fasano, & Oliveto, 2008). As considered in several related studies, the traceability
establishment process establishes the inter-relationships and intra-relationships by
linking each artefact based on their dependencies. The main task associated with
traceability management includes artefact pre-processing, trace-line creation, change
detection, CIA, change propagation and consistency checking to support continuous
integration in DevOps practice (Rubasinghe, Meedeniya, & Perera, 2017).

Some recent studies in the context of traceability have focused on their
appropriateness to Agility and DevOps. An approach for requirement artefact
traceability and CIA for Agile environments is presented in (Carniel, & Pegoraro,
2018). They have proposed a meta-model that maps dependencies among user stories,
tasks and manages requirement evolution with the CIA based on a set of assumptions.
However, its usability in practise is yet to be achieved as a complete tool.

The study (Maro, Steghöfer, & Staron, 2018) has discussed the current challenges
and appropriate solutions in traceability related to automotive domain. They have
shown that the existing related solutions are inapplicable to the automotive field in
practice due to limitations in characteristics and higher complexity. However, the
implemented traceability tool for arbitrary artefacts lacks full automation capabilities.
A continuous integration framework for traceability in DevOps named TORNADO is
proposed in (Jiménez et al., 2019). They have introduced a bidirectional solution that
eliminates the gap between developers and operations team tasks by automatically
updating deployment and configuration specifications when a change occurs. Their
approach has evaluated with a proof-of-concept and has shown an acceptable level
of feasibility.

Most of the existing traceability management tools are platform dependent.
For instance, Caliber-RM tool supports only Windows environment (“Borland ®
CaliberRM TM,” 2003). TraceMaintainer is an independent tool that works with
any CASE tools in any heterogeneous environment. However, it is limited for the
support towards the requirements and design artefacts (Mäder et al., 2008). LDRA-
TBmanager is a tool that has addressed the elements related to testing activities in
SDLC, and it supports the applications developed using any programming language
(“LDRA - Requirements Traceability,” 2018). An agile based tool Echo presented
in (Lee et al., 2003), has addressed requirements and design artefacts. TraceME
(Bavota et al., 2012) and ArchEvol (Nistor, 2005) are integrative tools with the
Eclipse IDE as a plugin.

Moreover, it is complex to track the issues in distributed systems due to the
decentralised nature where many components are in different locations or cloud
platforms. Therefore, distributed tracing is a solution to detect performance issues,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

133

Tool Support for Software Artefact Traceability in DevOps Practice

track user requests across complex systems. Several industry-level tracing tools
designed for distributed systems are available in the literature. Some of the opensource
tools for distributed tracing systems with graphical user interfaces are Zipkin by
Twitter, Jaeger by Uber technologies and Appdash by Sourcegraph (“opensource.
com,” 2019).

Accordingly, it is observable that the IR methods have involved in requirement
traceability, whereas event-based and rule-based approaches have used in change
detection, CIA and change propagation. Although there are several tools and
techniques related to traceability management, there exist associated limitations.
Many related studies have certain boundaries such as being addressing only a few
artefact types, not focusing on complete SDLC, lack of support towards continuous
integration and lack of automation.

The lack of automated tool support that covers all types of software artefacts in
the SDLC is a limitation in overall consistency management (Mäder et al., 2008)
(Lee et al., 2003)(Meedeniya, Rubasinghe & Perera, 2019). The mostly addressed
elements in traceability management are requirements, design and source code
artefacts. Many related studies have not addressed the artefacts in later stages of
SDLC such as test scripts, configuration files and deployment files. Moreover,
the change detection and CIA related works are even limited only for source code
artefact (Acharya & Robinson, 2011). Some of the tools depend on a given IDE
such as Eclipse (Bavota et al., 2012)(Nistor, 2005) or a platform or operating system
(“Borland ® CaliberRM TM,” 2003). Thus, the independent tool level traceability
solutions are less compared to other rapidly evolving software related tools like
DevOps tools stack. Scalability is another main issue in many relevant studies, that
limits traceability management when the system is complex or large-scale. Similarly,
visual clutter is another limitation in visualising traceability aspects (Holten, 2006).
Accordingly, the existing studies lack the traceability management to cope with
continuous integrations for the entire SDLC. Thus, there is a requirement of having
a generic traceability management tool with extensible features.

SAT-ANALYSER DESIGN CONSIDERATIONS

This study designs an approach for artefact traceability management and implements
as a prototype tool called Software Artefact Traceability Analyser (SAT-Analyser).
The main goal is to achieve heterogeneous artefact traceability in a software process,
applicable to DevOps practice. Thus, this chapter addresses traceability among
different artefact types, impact analysis of changes, change propagation, consistency
management, interactive visualisation, validation, comply with CICD principles,

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

134

Tool Support for Software Artefact Traceability in DevOps Practice

integrable with DevOps tools stack and collaborative with DevOps teams. Mainly,
we have defined a mathematical derivative weighting scheme for the CIA process.

Figure 1 shows the abstract workflow of SAT-Analyser tool. The input artefacts
include textual requirements, design in UML class diagram, source code in Java, unit
test in JUnit and build script in Maven pom.xml. The data pre-processor transforms
each artefact type into an intermediate XML format, generates traces, visualises
and analyses them. Then the continuous integration process consists of a scheduler
to initiate the change detection process when a deployment request is triggered.
The method detects artefact changes based on their XML versions using version
control. After that, identify the impact and propagates the changes accordingly.
Finally, updates changed artefact and notify deployer via a PM tool by bringing the
system into a consistent state. Figure 2 shows a detailed system workflow. The data
elements include Java grammar, JSON parser, artefact elements, an XML writer,
WordNet, dictionary ontology, thresholds, Neo4j graph database and Gephi graph
platform. The notations IN, V1/2/3, CP, CIA, CD, CM denote inputs, versions,
change propagation, change impact analysis, change detection and consistency
management, respectively.

The layered architecture of SAT-Analyser is shown in Figure 3 with the presentation
layer, business logic and data access layer. The design is an extension of our previous
work with added Jenkins server integration and deployment features (Rubasinghe,
Meedeniya, & Perera, 2018b).

The presentation layer handles the tool’s inputs and outputs. The business logic
layer contains modules to pre-process data, establish trace-links and support the
continuous integration process. The pre-processor extracts data from the row artefacts
and converts to an XML format. The traceability generator creates trace links between
elements based on the identified relationships. The continuous integration module
consists of processes that detect changes, analyse the impact, propagate the change
impact and manage the artefact consistency. During the continuous deployment,
the pre-processor obtains the latest source code and build script artefacts via the
Jenkins automation server. The data access layer provides the data management
required by the business logic layer. Ontologies, WordNet for artefact identification,
XML representations for traceability management and visualisation support data
include in the data access layer. The presentation layer visualises the results with
informative, analytical and interactive graph views and provides notification back
to Docker Deployer. Then the delivery manager deploys the software.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

135

Tool Support for Software Artefact Traceability in DevOps Practice

DATA PRE-PROCESSING OF SAT-ANALYSER TOOL

Generally, the textual contents in artefacts provide descriptive details about their
informal semantics and data pre-processing helps to extract the required data from
the raw data. Requirements can be processed using Natural Language Processing
(NLP) tasks such as tokenisation, text normalisation, morphological analysis, anaphora
analysis, and stemming (MacDonell, Min, & Connor, 2005)(Cleland-Huang et al.,

Figure 1. SAT-Analyser abstract workflow

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

136

Tool Support for Software Artefact Traceability in DevOps Practice

2012) (Arunthavanathan et al., 2016). If the textual contents of artefacts are similar,
then they are conceptually related and creates the trace links. Other elements pre-
process with file readers, UML parsers and programming language specific parsers
(Ibrahim & Ahmad, 2010).

SAT-Analyser considers requirements, design, source code, unit test script and
builds script artefacts. We have taken requirement in document (.docs) or text
format (.txt), design diagrams in metadata-JSON file format (.mdj) following UML
notation, source codes in Java programming language (.java), unit test artefact in
JUnit script files (.java) and Maven build script pom file (.xml). The NLP module
with Stanford CoreNLP extracts artefact elements such as classes, methods, attributes
and relationships from the requirements. The NLP module consists of sub-modules
such as Part-of-Speech (POS) tagger, parser, Named Entity Recognizer (NER) and
Anaphora analysis. Initially, the NLP module tokenises the pronouns of a given
requirement, and Anaphora analysis identifies the coreferences in given sentences
before extracting the artefact elements. Consequently, nouns are extracted to detect

Figure 2. SAT-Analyser detailed workflow

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

137

Tool Support for Software Artefact Traceability in DevOps Practice

artefact elements. A parse tree is generated using Stanford CoreNLP to obtain a
detailed granularity of sentences by using POS tagging.

Accordingly, the classes, methods, attributes and relations extract as the main
elements. This study has used pre-defined rules to distinguish classes and attributes
from the noun set. For instance, if a verb phrase is following a noun, that noun is
extracted as class names. If a noun or adjective is not following a verb phrase, then
those are obtained as attributes. Methods derived from the noun phrases associated
with class names. Relationship identification is defined to identify the association and
generalisation type of relationships. Then, the morphological analysis is performed to
convert the contents into a root form for redundancy elimination purpose. Afterwards,
stemming analysis and redundant elimination are used to retrieve a unique set of
data related to the requirements of the system.

Figure 3. Architectural view of SAT-Analyser

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

138

Tool Support for Software Artefact Traceability in DevOps Practice

We used UML design tools that supports JSON (.mdj), XMI (.xmi) and UML
(.uml) formats. It is used to extract data via a JSON reader since JSON format has
used to store the design and class diagram concepts. Two pre-defined dictionaries are
integrated with this parsing module to fine-tune the data extraction by eliminating
non-realistic extractions in class diagrams. Moreover, a parser is used to pre-process
source code artefacts from the project workspace. The tool ANTLR is used to
generate lexers, tokens and listener classes for Java. Thus, an abstract syntax tree of
a source code file is generated by ANTLR and processed using the Java grammar.
The source code data are extracted by traversing the syntax trees using the tree
walker integrated with ANTLR to identify class declarations, methods, attributes,
generalisation and association relationships. Moreover, they are designed to store
in a temporary Neo4j database.

Algorithm 1 shows the data extraction process from the input artefacts.

Algorithm 1 Data pre-processing
Require: Software artefacts (requirements, design, source code)
Ensure: associating input data to a project

1. input: artefact a
2. if (a== requirements)→ a_req = NLP_module(a)
3. if (a== design)→ a_uml = UML_parser(a)
4. If (a== source code)→ a_src= SRC_parser(a)
5. If (a== unit test)→ a_ut= UT_parser(a)
6. If (a== build script)→ a_bs= BS_parser(a)
7. axml = Convert_to_XML(a)
8. If (all 5 axml exists)
9. Build the project structure module
10. Make folder structure
11. Initiate graph files
12. Else
13. Notify failure
14. output: new artefact management project

Based on the artefact type, the parser is selected. For instance, the artefacts
requirement, design, source code, JUnit test script, build script are forwarded to process
via NLP_module, UML_parser, SRC_parser, UT_parser, BS_parser algorithm,
respectively. Then the extracted artefact data converts to a common format using
XML writers using Convert_to_XML algorithm. A new project creates when all
artefacts related XML files are available. Thus, Algorithm 1 gives the steps related
to the creation of a new project.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

139

Tool Support for Software Artefact Traceability in DevOps Practice

Algorithm 2 shows the NLP based pre-processing of the requirements artefacts
written in the English language in the .txt or the .doc file formats. Initially, the
tokenisation is performed to segment the statements into words and sentences, and
anaphora analysis is used for coreference identification to identify pronouns and
re-organise the requirement statements. Then, the data extraction is performed to
determine the names of classes, methods, attributes and relationships. A rule-based
approach is designed for each element such as class rules, method rules, attribute
rules and relationship rules. Once the artefacts are collected, the morphological
analysis with stemming analysis is conducted to transform the extracted requirements
elements into a further base form by eliminating redundancies due to plurality.
Consequently, it outputs the pre-processed requirements elements.

Algorithm 2 NLP_module
Require: Software artefacts: requirements in natural language
Ensure: pre-process requirements artefact data

1. input: requirements artefact a
2. while (a)
3. tokanisation
4. Anaphora analysis
5. Data extraction
6. Return classes, methods and attributes
7. if (classes, methods, attributes exists)
8. morphological analysis
9. Stemming analysis
10. Redundant elimination
11. output: pre-processed requirements artefact

Algorithm 3 shows the pre-processing of the design artefacts. UML class diagrams
designed using StarUML and Modelio tools are input as the design artefacts, as they
contain the class diagram details in JSON or the model-based formats which eases
the processing. Thus, StarUML and Modelio readers are used to extract the encoded
information in a class diagram, including class names, methods and attributes.

Algorithm 3 UML_parser
Require: Software artefacts: design in UML class diagram
Ensure: pre-process design artefact data

1. input: design artefact a
2. if (a== uml class file)
3. process via StarUML reader OR Process via Modelio reader
4. Data extraction

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

140

Tool Support for Software Artefact Traceability in DevOps Practice

5. Return classes, methods and attributes
6. output: pre-processed design artefact

The pre-processing of Java source code artefacts is shown in Algorithm 4. The
Another Tool for Language Recognition (ANTLR) is used to generate Java grammar-
based syntax trees, to traverse the tree using its tree walker and to make use of the
listeners for tracking. Hence, the class declarations, methods, attributes are extracted
with the aid of the above mentioned ANTLR capabilities. The extracted source code
artefacts are stored temporarily in a Neo4j graph database. Algorithm 5 states the
pre-processing of unit test artefact given in JUnit test scripts. ANTLR tool is used
to generate Java grammar from the input JUnit test scripts. The extracted unit test
artefacts are stored as the output of this algorithm in a Neo4j graph database. The
pre-processing of build script artefact in Maven dependency file as a pom.xml file
is given in Algorithm 6. The Maven build script pom.xml files are in a .xml tag
structure. Thus, the XML data extraction is performed directly on pom.xml file to
extract build script (project) name and dependency plugins names. Then, the Neo4j
graph database stores the extracted build script artefacts.

Algorithm 4 SRC_parser
Require: Software artefacts: source code in Java programming language
Ensure: pre-process source code artefact data

1. input: source code artefact a
2. if (a== java source files)
3. process via ANTLR & Java grammar
4. Data extraction
5. Return object-oriented classes, methods and attributes
6. Store in Neo4j DB
7. output: pre-processed source code artefact

Algorithm 5 UT_parser
Require: Software artefacts: unit test in JUnit test scripts
Ensure: pre-process unit test artefact data

1. input: unit test artefact a
2. if (a== JUnit test script)
3. process via ANother Tool for Language Recognition (ANTLR)
4. Process via Java and JUnit grammar
5. Data extraction
6. Return JUnit classes, methods and attributes
7. Store in Neo4j DB
8. output: pre-processed unit test artefact

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

141

Tool Support for Software Artefact Traceability in DevOps Practice

Algorithm 6 BS_parser
Require: Software artefacts: build script in Maven dependency pom.xml
Ensure: pre-process build script artefact data

1. input: build script artefact a
2. if (a== build script file)
3. process using XML data extraction
4. Return build script name, plugin dependency names
5. Store in Neo4j DB
6. output: pre-processed build script artefact

The artefact processing modules write the pre-processed and extracted artefact
data in XML format using XML writers separately. The XML format is selected as
the common conversion format as XML structures help to build complex graphs with
readability over others. A new traceability project is created if the XML formats of
all artefact are available. The extracted pre-processed elements are processed through
the Convert_to_XML algorithm to convert the data into a common format using
XML writers, as shown in Algorithm 7. The input to this algorithm is designed to
be the pre-processed artefact elements. Hence, all pre-processed artefact element
data are written using XML writers. The outcome of this algorithm is a separate
XML file for each artefact type that contains relevant, extracted artefact data.

Algorithm 7 Convert_to_XML
Require: pre-processed artefact data
Ensure: Convert pre-processed software artefact to a common format

1. input: pre-processed artefact a
2. if (a== requirements OR design OR source code OR unit test OR

build script)
3. XML writer (pre-processed classes, methods, plugins, attributes)
4. Return a.xml
5. output: XML conversion of an artefact

TRACEABILITY LINK ESTABLISHMENT PROCESS

The traceability links between the elements and sub-elements are created using
the pre-processed and extracted data. WordNet and self-generated dictionary are
used to map the traces, and calculate the similarity among artefacts, respectively, to
manage trace-links. Levenshtein algorithm is used to calculate the similarity among
two strings at a time, where the strings represent the extracted artefacts and output
the ‘edit distance value’, that are stored in WordNet. Thus, the similarity among

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

142

Tool Support for Software Artefact Traceability in DevOps Practice

the two words is signifies based on the minimum edit operations needed to convert
from a given string to another string. The edit operations include the addition of a
character into a string, removal of a character from a word and replacing a character.
A threshold value is defined as 0.85 for the similarity calculation based on the edit
distances. Thus, the artefacts that exceed the defined threshold are defined as having
a higher similarity and map together. The self-generated dictionary fine-tunes the
performance of the matching artefacts. Trace-link generation uses the threshold-
based mapping that refers to the relationship building process.

In previous work, a semantic network has created for word matching through
the build relationship module of this traceability link generation component of the
SAT-Analyser (Arunthavanathan et al., 2016). The distance between the nodes in
the semantic network is measured to identify the matching percentage and keeps
track of the artefact element words. For instance, the network shown in Figure 4 is
created by considering the words Bank, Library, Online, Offline, etc. Thus, each
word is stored with its relevant similar words and properties. The properties include
name-value pairs, a word’s parent class data. An API provided by the Apache Jena
Library is used to build the ontology model.

This study uses the Resource Description Framework (RDF) as a data format that
accurately describes a metadata model and supports data merging and interchanging
features. RDF represents in different formats such as JSON and XML. Figure 5 shows
the artefact specific XML file conversions based on a pre-defined XML model. The
XML artefact models separately generate for all supported types of software artefacts
namely, requirements, UML class diagrams, Java code, JUnit test files and Maven
build script. Accordingly, the relationships among artefact elements are stored and
modified based on the detected changes, CIA and change propagation results during
the software development.

Figure 4. Semantic network for words

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

143

Tool Support for Software Artefact Traceability in DevOps Practice

Traceability Link Visualisation

The visualisation component in SAT-Analyser represents the traceability links
using graph-based techniques. Figure 6 shows the three views: an informative view
based on Neo4j with Gephi, analytical view using Python NetworkX and interactive
view based on JavaScript D3.js, for better data analysis and decision making. The
informative view provides multiple static filtered views and more information about
a given node. For instance, a filtered view of a given requirement artefact shows
only the methods, fields and relationships associated with it. The interactive view
support features such as drag, hover and browse nodes. It shows the direct links
and CIA values of a node. The analytical view is used for the validation process.

The modular view of the visualisation component is shown in Figure 7. The
inner modules manage intra-relations of the artefact types. Thus the relationship
management is defined for each artefact. The Neo4j graph database stores the
finalised relation nodes. Additionally, the relations are stored in JSON format for
interactive visualisations.

Software Artefact Change Detection

Change is always inevitable and necessary to handle the consistently to reduce the
cost irrespective of the software development model (Chawathe, Rajaraman, Garcia-
Molina, & Widom, 1996). Figure 8 shows the structure of the change detection
component of SAT-Analyser tool. The artefacts changes can occur in any type, and

Figure 5. Pre-defined relationship XML model

Figure 6. Visualisation views

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

144

Tool Support for Software Artefact Traceability in DevOps Practice

the consistency should manage during the continuous integration process. An artefact
integration may contain either element additions, alterations or removals. Whenever
a new artefact input is received, the tool generates the intermediate XML format,
extract the needed elements. The XML version recorder adds the version suffix to
the newly created XML file based on the previously generated version suffixes.
Then the changes are detected by comparing the new intermediate XML files and
the corresponding artefact type of the previous XML version.

A scheduler module is designed based on an executor framework to initiate the
detection of artefact changes. Figure 9 shows the component diagram of the scheduler.
The scheduled thread pool defines the number of tasks and threads. The CI trigger
object denotes the functionality of the continuous integration artefact fetching.
The scheduled executor service component handles the periodical behaviour of the
scheduler. A fixed delay is set as the scheduler frequency to invoke CI Trigger via
the thread. The executor service component contains the executor framework that
holds the runnable interfaces corresponding to threads.

Change Impact Analysis

Change impact analysis (CIA) can be initiated through change detection as they are a
sequence of activities in this problem domain. Figure 10 shows the iterative process

Figure 7. Visualisation module

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

145

Tool Support for Software Artefact Traceability in DevOps Practice

of CIA (Li, Sun, Leung, & Zhang, 2013). The process determines the impact of an
artefact modification, computes the Estimated Impact Set (EIS) and changes the
Actual Impact List (AIS) accordingly. The elements of the AIS differs based on the
execution procedure of a given change. CIA can be performed before a change for
better understandability, impact prediction and cost estimations. Consequently, the
CIA performs after the execution of a modification to get the ripple effect of the
modification to propagate the changes.

Figure 8. Change detection component

Figure 9. Scheduler workflow

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

146

Tool Support for Software Artefact Traceability in DevOps Practice

The changed artefacts set obtained from the change detector, and the trace
links from the traceability generator are input to the CIA module in SAT-Analyser
tool. Impact Generator handles the weighted scheme for the artefacts. The weight
calculator assigns a weight to each node and edge using their Eigenvector centrality
value (Rubasinghe et al., 2018b). Influence factor calculator provides a two-level
influence factor for each node and edge. We have calculated the change impact using
a rule-based algorithm with a minimal cost and complexity. CIA rules are defined
by considering the practical dependency scenarios by avoiding calculation overhead
and proceed with high impact artefacts to increase the performance. Impact Analyser
shows the results as change impact sets and their respective values. The decision
manager triggers the impacted set to change propagator to navigate the changes.

SAT-Analyser displays the automatically identified CIA results correspond to
the change types addition, modification and deletion. Additionally, this view allows
manual user modifications to ensure correctness. The final altered CIA results are
considered to propagate the changes further to graph manager for visualisation and
relations manager to update the artefacts. More details of this process are explained
in the case-study evaluation section, as shown in Figure 23.

Figure 10. Change impact analysis process (Source: Li et al., 2013)

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

147

Tool Support for Software Artefact Traceability in DevOps Practice

Change Propagation

The interactive view of the changes propagated relation graph is shown in Figure
11. The modified node and impacted nodes are shown in a larger node size, while
the deleted and the impacted nodes are removed from the graph views. Additionally,
the influence factor values of edges are shown on the edges, and influential factor of
nodes can be seen by hovering on a node. Moreover, the neighbourhood is highlighted
when a node is double-clicked. In parallel, the notifications are triggered to inform
the change propagation to the teams. Accordingly, relevant project teams update
their responsible raw artefacts. Then the relations manager is triggered, and the
artefact XML files of the changes propagated artefact types are updated. However,
in SAT-Analyser, if the change is the type of addition, then all artefacts’ XML files
and the Relations.xml file are re-generated during that traceability re-establishment.

Consistency Management

The consistency management module follows a rule-based approach, and the workflow
is shown in Figure 12. The process uses the version history to manage consistency
during continuous integration. It monitors the version directory structure and rolls
back in an unsuccessful integration attempt. During the change detection, the artefact
XML comparator ensures the consistency of inputs to the change detector component
and the outcome is handled in a separate directory structure by the consistency

Figure 11. Change propagated interactive graph view (“SAT-Analyser,” 2018)

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

148

Tool Support for Software Artefact Traceability in DevOps Practice

manager. The artefact stabiliser module executes during the CIA process for the
stability of the current version, by transferring non-altered artefact types XML files
from the previous version to the current version.

SAT-Analyser notifies the change propagation results to DevOps teams by
integrating with the Trello project management tool (“Trello,” 2018). Trello is selected
due to its open source availability and popularity. We have used Trello Java API to
integrate with SAT-Analyser. For each change propagation confirmation, a newer
card is created automatically in a dedicated list in the Trello board. The Trello card
name is generated with the given change propagated traceability project name with
the date and time for unique identification, as shown in Figure 13. The CIA results
that lead to change propagation are embedded in each card description. Once, the
change propagation is confirmed, the Trello board is loaded in the browser with
the new card instance, as shown in Figure 14. Accordingly, the teams are notified
of the artefact changes and requested to alter the corresponding affected artefacts.

Figure 12. Consistency management workflow

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

149

Tool Support for Software Artefact Traceability in DevOps Practice

Figure 15 shows the web-based GUI of the tool, developed using AjaxSwing
platform. It transforms Java Swing to HTML at run time and uses the open-source
Java Servlet container Apache Tomcat server. Thus, SAT-Analyser is featured with
cross-browser compatibility such that the team members can access the tool in
real-time using their client device browsers connected with the server. User session
timeouts, update intervals, auto-refreshing are defined to enable dynamic multi-user
accessibility.

Figure 13. Trello change propagation card instance

Figure 14. Trello board with change propagation notification

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

150

Tool Support for Software Artefact Traceability in DevOps Practice

Traceability Validation

Traceability establishment and CIA methodology proposed in SAT-Analyser is
evaluated using two methods. The statistical method is based on precision, recall
and F-measure (Hattori, Guerrero, Figueiredo, Brunet, & Dam, 2008), is used to
measure the accuracy of the artefact extraction process for trace link creation. The
network analysis method uses centrality measures of each node of the traceability
graph (Rubasinghe, Meedeniya, & Perera, 2018a). We have considered artefact-level
centrality measures such as degree, betweenness, closeness and Eigenvector centrality.
The validation module is developed using Python NetworkX libraries that support
network graph analysis with Java-based GUIs, Python Matplotlib and JavaScript
D3.js based graph visualisation extensions. Also, the tool measures performance in
terms of time and resource allocation. The process is explained using a case study.

CASE STUDY: TOUR MANAGEMENT

Artefact Change Types

SAT-Analyser tool is supported with 17 artefact change types as follows covering
the entire SDLC. C1: Add a main requirement, C2: Add a moderate importance
requirement, C3: Add a low importance requirement, C4: Modify a requirement,
C5: Delete a requirement, C6: Add a design component, C7: Modify a design

Figure 15. Multi-user accessible SAT-Analyser web version

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

151

Tool Support for Software Artefact Traceability in DevOps Practice

component, C8: Delete a design component, C9: Add a source code artefact, C10:
Modify a source code artefact, C11: Delete a source code artefact, C12: Add a unit-
test artefact, C13: Modify a unit-test case, C14: Delete a unit-test artefact, C15:
Add a configuration artefact, C16: Modify a configuration artefact, C17: Delete a
configuration artefact.

Experiment Setup

This study has used a tour management software solution to assess the proposed
method. Figure 16 shows a part of the requirements, which input as original artefacts.
The tour company provides a set of trips, where users select a tour and confirm by a
payment (“SAT-Analyser”, 2018). Figure 17 shows the corresponding design artefact,
UML class diagram, of the tour management system. Among the classes, there is an
inheritance relationship between the guide, driver and manager with employee class.
An aggregation relationship between town and route classes, a composition between
tour and route classes exist in the design with other association relationships. The
other artefacts related to the source code, test scripts and build scripts are given in
the SAT-Analyser tool web portal (“SAT-Analyser,” 2018).

Once the original artefacts are input, SAT-Analyser applies the data pre-processing
to identify the main artefact elements as listed in Figure 18. The tool generates a
unique identifier for each artefact, where the sub-elements attributes (fields), plugins
and methods denoted using _F, _P and _M, respectively. Further, Table 1 summarises
the manual artefact identification and categorisation by the experts, that can be used
for the evaluation process of the tool, and this will be not used in practice.

Traceability Establishment Process

A part of the tool generated traceability relations XML structure is shown in Figure
19. For instance, a relation between RQ1: Route to D6: Manager is listed as a directed
link from Route to Manager, since Manager assigns a route to each tour. Figure 20
shows a section of the corresponding traceability graph that shows the relationships
between artefacts with an interactive view.

Figure 16. Case-study description

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

152

Tool Support for Software Artefact Traceability in DevOps Practice

Figure 17. Case study design diagram

Figure 18. Artefact summary

Table 1. Artefact categorisation

Artefact type Low Medium High

Requirement RQ1, RQ3 RQ2, RQ6, RQ8 RQ4, RQ5, RQ7

Design D2, D4 D1, D3, D5, D6 D7, D8, D9

Source Code S7, S9 S2, S3, S4, S5 S1, S6, S8

Test Script UT7, UT9, UT10 UT2, UT3, UT4, UT5 UT1, UT6, UT8, UT9

Configuration files - - BS1

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

153

Tool Support for Software Artefact Traceability in DevOps Practice

Figure 21 shows the centrality measures for the network analysis-based traceability
validation. This case study consists of single build script artefact, that link with
each source code class artefact. The network analysis validates these relationships,
by showing the highest betweenness and closeness centrality values for the build
script (BS1), considering the nodes in the network graph. Moreover, one of the
maximum eigenvector centralities is held by the node SC6_M4 that denotes the
method setPreferences () in the Tour class, which is a major artefact in this case study.

Figure 19. Relations.xml instance

Figure 20. Traceability visualisation graph

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

154

Tool Support for Software Artefact Traceability in DevOps Practice

Continuous Integration Process

The tool is tested with five types of changes as follows. C2: Add a moderate
importance requirement, C5: Delete a requirement, C6: Add a design component,
C13: Modify a unit-test artefact and C17: Delete a configuration artefact. Figure
22 shows the tool generated change detection results. Consequently, the changes
have identified correctly and listed the affected artefact element, sub-element ID
and name. Accordingly, the CIA results are shown in Figure 23. For example,
consider the type C13: modified unit test artefact. The corresponding artefact UT5:
ManagerTest has impacted on its two child nodes UT5_M1: setUpClass method and
UT5_M2:tearDownClass method, which has a lower impact value. The propagated
changes are re-visualised, and Figure 24 shows a part of the traceability graph. For
example, the newly added D9_M15 is represented in the graph while BS1_P2 has
removed and earlier BS1_P3 has become BS1_P2 by making the IDs consistent.

Figure 21. Network analysis summary

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

155

Tool Support for Software Artefact Traceability in DevOps Practice

Performance Analysis

The CIA accuracy based on the statistical measures is shown in Figure 25. The tool
identifies the impact related to modification and deletion change types. However, there
are five missing impact items in the addition change type since the corresponding
artefacts are not modified according to the added changes. Thus, the addition of
RQ9 must impact on the design (D), source code (SC) and a UT item, while the
addition of D9_M15 must impact on an SC sub-element and may impact on a UT
item. Accordingly, the CIA process recall is obtained as 0.86, F-measure as 0.93 and
precision as 1.0. Moreover, artefacts with more links have a high CPU consumption.

Figure 22. Change detection window

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

156

Tool Support for Software Artefact Traceability in DevOps Practice

This study has assessed the usability of the tool using a survey of 20 DevOps
practitioners. As a part of the questionnaire, they have asked to select the most
relevant words that best describe the SAT-Analyser based on their perspective. Figure
26 shows the tag cloud that denotes user feedback. The most emphasised terms for
the tool are Traceability, Supportive and Improvable, which derive a high level of
user satisfaction about SAT-Analyser indicating a future direction to improve the
usability beyond a prototype-level with more HCI aspects.

Figure 23. Change impact analysis window

Figure 24. Change propagation instance

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

157

Tool Support for Software Artefact Traceability in DevOps Practice

DISCUSSION

Comparison with Existing Studies

This study has proposed a methodology for software artefact traceability management
and developed in SAT-Analyser tool. We have maintained the artefact consistency
through change detection, CIA, change propagation that supports CICD pipeline

Figure 25. CIA statistical analysis results

Figure 26. SAT-Analyser usability tag cloud

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

158

Tool Support for Software Artefact Traceability in DevOps Practice

in a DevOps environment, where Agile principles are practically applied deviating
from traditional software development processes. The feature selection of the
proposed SAT-Analyser tool is based on an initial survey conducted among DevOps
practitioners. We considered the requirements in natural language as it is the industry
practice. UML class diagrams are selected because the code base is dependent on
the class diagram. Unit testing is selected that checks the individual functions for
errors. Considering the continuous integration tasks, we have set up the scheduler
with different options such that automated fixed intervals, dynamic and manual
triggers to invoke change detection to avoid the overhead and reduce the cost. In
practice, change detection is defined mainly for source code changes and no proper
tools to automated detectors are used for other artefact changes.

SAT-Analyser detects changes in all artefact types not being limited to the source
code. We also gave prominence to source code changes, since it is the most affected
artefact type. Also, the design architecture supports extensible features that allow
incorporating the remaining sub artefacts.

According to the initial survey, 66.7% of the DevOps participants accepted
that traceability handling might be useful, while rest is unaware of the concept of
traceability. Thus, we have represented trace-link relationships using graph-based
interactive and analytical visualisation. Many analytical approaches for CIA process
have been conducted on graphs using related theories and mathematical models.
33.3% of the participants reported that they do not use any impact analysis for
changes and rest is having a vague idea about CIA methods due to lack of knowledge.
They have mentioned the factors such as time and effort consumption limit the use
of CIA in practice. This study has defined a novel dependency-based CIA with a
mathematical weighting scheme using EVC considering the influential factor of an
artefact. In practice, change propagation methods are automatically deployed to the
Jenkins server and executed based on pre-defined protocols and policies. Change
propagation is crucial for decision making, and hence, traceability graphs are re-
visualised for every change propagation.

In industry practice, continuous integration is supported by tools such as Jenkins,
CodeDeploy, CodePipeline, Puppet, Jira, TravisCI, and TeamCity. SAT-Analyser
has integrated with Jenkins, Docker for deployment activities and GitHub repository
for its open source capabilities. Additionally, SAT-Analyser is integrated with the
project management tool Trello, as it provides Agile Kanban boards, thus support
the CICD pipeline. Moreover, we have shown the applicability of the proposed
method for different project scales and domains, using case study-based evaluation.
Table 2 summarises the current industry perspectives in DevOps environments for
traceability related features over the SAT-Analyser. In industry practice, only the
change detection and CI are addressed in tool level using Jenkins and GitHub source
code handling without considering the other artefact types.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

159

Tool Support for Software Artefact Traceability in DevOps Practice

Moreover, Table 3 shows SAT-Analyser features over existing traceability
management tools. The main limitations in existing tools such as lack of heterogeneous
artefact support, change detection, CIA, change propagation, IDE independency are
successfully addressed in the SAT-Analyser prototype tool.

The approach we designed and developed as SAT-Analyser tool supports
traceability management of software projects in both traditional and Agile based
process. It is intended to facilitate requirements in a DevOps environment with
CICD concepts that support artefact changes and collaborative behaviour. In
traditional software development, the frequency of artefact changes is minimal
due to the sequential nature, where the artefact changes are not accepted at a later
stage of SDLC. Thus, in general, software development, the traceability and impact
analysis process is required only at the beginning and end of the process. Hence,
the requirement of incorporating the CI features with scheduling and versioning
included in this research work would be lesser significant in traditional methods,
while the traceability model would be equally important as for DevOps. Therefore,
the frequency of change detection, their impact analysis, change propagation,
visualisation, team collaboration and validation features included in this research
work are uniquely useful and supports continuous integration in DevOps practice.

Table 2. Traceability management in a DevOps practice vs SAT-Analyser tool

Feature Industry practice SAT-Analyser Tool

Traceability creation and
visualisation No proper tools.

Trace link creation using string
similarity method. Traceability
graph-based visualisation.

Change detection

No proper tools to auto-detect
changes of every artefact. Use
monitoring tools to detect failures
in Jenkins for source code
building.

Detect changes for every
artefact integration using XML
comparison.

Impact analysis

Manually decide the range of
affected artefacts in the code
level. No proper CIA method due
to time and effort concerns.

Calculate the level of impact for
every change using Eigenvector
centrality.

Change propagation

Automatically deploy to
the Jenkins server. Use pre-
defined rules for source code
management.

Propagate changes according
to impacts and re-visualise in a
traceability graph.

Continuous integration
Use Jenkins as a solution for
source code integration with build
automation.

Change detection process
consists of a scheduler. The tool
integrates with Jenkins, GitHub
code repository and Trello project
collaboration.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

160

Tool Support for Software Artefact Traceability in DevOps Practice

Thus, these features of SAT-Analyser are actively supported for the usage of CICD
pipeline in a DevOps environment, since any artefacts change can happen at any
stage of SDLC.

Future Research Directions

DevOps practices ease the Agile processes and maximise productivity with software
evolution. Thus, there exists a large DevOps tool stack, that introduces new tools and
updates existing tools with advanced features. These tools should be compatible and
integrable to enable collaborative nature, which is a crucial aspect of DevOps. SAT-
Analyser fits into the DevOps tool stack by addressing the heterogeneous artefact
traceability that has not been sufficiently focused by existing tools.

This study can be extended in many directions. The supported artefact types can be
extended with more sub artefact categories such as support for different programming
languages as the DevOps tools stack is dynamic with latest technologies. Performance
and accuracy of the traceability creation can be enriched with advanced NLP features
and information retrieval techniques. The CIA model based on Eigenvector centrality
values can be improved to better identification of the influential value of a node or a

Table 3. Existing traceability management tools vs SAT-Analyser

Tools Trace
ME

(Bavota
et al.,
2012)

IBM DOORS
(“IBM-

Rational
DOORS,”

2017)

LDRA-
TBmanager
(“LDRA,”

2018)

Arch
Evol

(Nistor,
2005)

SAT-
AnalyserFeatures

Consider different artefact
types √ √ √

Visualise traceability √ √ √

Validation methods √

Continuous integration tasks √ √ √ √

Detect artefact changes √

Analyse the impact of a change √ √ √

Propagate the change impact √

Consistency checking √ √

Project management √ √

Integrate with DevOps tools
stack √

Independent of a specific IDE √

Tool performance analysis √

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

161

Tool Support for Software Artefact Traceability in DevOps Practice

link. Moreover, SAT-Analyser can be extended as a software quality assessment tool
that assesses the quality of the design and code. This would be a significant future
improvement to facilitate traceability support regardless of project scale. Traceability
visualisation with better scalability is another promising future work. Integrating the
three visualisation variations provided in SAT-Analyser together would be useful.
Additionally, the usability aspects of the tool can be improved into an industry-level
DevOps supportive tool by integrating Human-Computer Interaction (HCI) concepts
for user friendliness along with refined performance parameters.

In another perspective, traceability can be applied for distributed systems with the
excessive use of microservices. Generally, adopting microservices is advantageous in
Agile development as it increases agility, team independence and system flexibility
(Jones, 2019). However, it can be challenging to manage the routing with better
user experience, when many microservices run on different servers continuously.
Microservices can eventually increase the inter-dependencies within a system, which
affect the service routing and management. Hence, traceability for microservices
based systems enables to secure the agility with team independence. Additionally,
this helps to route among microservices, since traceability creates awareness about
system relationships and dependencies. Hence, the proposed approach can be
extended with the support for more artefacts types that are commonly associated in
distributed computing, microservices architecture and cloud services.

Further, traceability can be applied for security scanning in open source
management (“WIPO,” 2019). Several security risks and vulnerabilities are
associated with the open source tools, software solutions and updates. For instance,
the tool Blackduck is one such open source management tool that helps to track
the components in source code and to avoid security, license and policies related
risks (“Blackduck,” 2019). Thus, the use of traceability approach in the context
of security scanning, when changing the base operating system or release of new
software features, is another possible future research direction.

CONCLUSION

At present, software systems have become complex and competitive, requiring the
ability to perform in high reliability to sustain, without being replaced by a new
software system. The software development process embraces Agile principles and
transforming into DevOps practices by supporting continuous integration concepts.
The DevOps reduces the gap between development and the operations, whereas
the continuous integration referrers frequent merging of developer working copies
enables high ROI. The development of these systems requires reliable traceability and
consistent management for the correct functioning and maintenance of the product.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

162

Tool Support for Software Artefact Traceability in DevOps Practice

This chapter addressed traceability management of software artefacts with a change
impact analysis model to maintain the artefact consistency during the continuous
integrations in DevOps practice. Mainly, we have considered the requirement, design
diagram, source code, unit test and build script artefact types, covering each stage
in SDLC. A proof-of-work prototype tool, SAT-Analyser is implemented based
on the proposed methodology. The traceability establishment process is based on
string comparison and NLP based information retrieval methods. The traceability
visualisation is supported with Gephi-based informative view, Python-based
analytical and JavaScript-based interactive graph network. These views help for
efficient decision making in a DevOps environment. This approach consists of a
scheduler, change detector, change impact analyser, change propagator, consistency
manager, collaboration components to support the continuous integration nature in
DevOps practice.

Further, SAT-Analyser tool integrates with DevOps tool stack and provides multi-
user accessibility with a web-based solution. Thus, the DevOps teams can use the tool
actively with DevOps tools stack. In current DevOps practice, traceability management
and validation have identified as essential to manage artefact consistency, where a
higher number of tools stack in active use. The proposed approach is evaluated using
case studies based on real software projects on different scales and user acceptance
test among DevOps practitioners. The results have signified the usefulness of the
research outcome for the software engineering domain as migration from theoretical
principles to practice.

ACKNOWLEDGMENT

This research was supported by the University of Moratuwa, Sri Lanka [Senate
Research Committee Grant SRC/ST/2019/07].

REFERENCES

Acharya, M., & Robinson, B. (2011). Practical change impact analysis based on
static program slicing for industrial software systems. In Proceedings of the 33rd
international conference on Software engineering (ICSE ’11). (p. 746). New York:
ACM Press. 10.1145/1985793.1985898

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

163

Tool Support for Software Artefact Traceability in DevOps Practice

Arunthavanathan, A., Shanmugathasan, S., Ratnavel, S., Thiyagarajah, V., Perera, I.,
Meedeniya, D., & Balasubramaniam, D. (2016). Support for Traceability Management
of Software Artefacts using Natural Language Processing. In Proceedings of the
Moratuwa Engineering Research Conference (MERCon). (pp. 18–23). IEEE. 10.1109/
MERCon.2016.7480109

Bavota, G., Colangelo, L., De Lucia, A., Fusco, S., Oliveto, R., & Panichella, A.
(2012). TraceME: Traceability Management in Eclipse. In Proceedings of the 28th
IEEE International Conference on Software Maintenance (ICSM) (pp. 642–645).
IEEE. 10.1109/ICSM.2012.6405343

Blackduck. (2019). Retrieved May 14, 2019, from https://www.blackducksoftware.
com

Borland ® CaliberRM TM. (2003). Retrieved from http://www.danysoft.com/free/
CyV_Cal.pdf

Carniel, C. A., & Pegoraro, R. A. (2018). Metamodel for Requirements Traceability
and Impact Analysis on Agile Methods. In Agile Methods. WBMA 2017.
Communications in Computer and Information Science (vol. 802, pp. 105-117).
Springer. doi:10.1007/978-3-319-73673-0_9

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., & Widom, J. (1996). Change
detection in hierarchically structured information. SIGMOD Record, 25(2), 493–504.
doi:10.1145/235968.233366

Cleland-Huang, J., Chang, C. K., & Christensen, M. (2003). Event-based traceability
for managing evolutionary change. IEEE Transactions on Software Engineering,
29(9), 796–810. doi:10.1109/TSE.2003.1232285

Cleland-Huang, J., Zisman, A., & Gotel, O. (2012). Software and Systems
Traceability. Software and Systems Traceability (1st ed.). Springer-Verlag London;
doi:10.1007/978-1-4471-2239-5

De Lucia, A., Fasano, F., & Oliveto, R. (2008). Traceability management for impact
analysis. In Proceedings of the Frontiers of Software Maintenance, FoSM 2008 (pp.
21–30). IEEE. 10.1109/FOSM.2008.4659245

Hattori, L., Guerrero, D., Figueiredo, J., Brunet, J., & Dam, J. (2008). On the
Precision and Accuracy of Impact Analysis Techniques. In Proceedings of the 7th
IEEE/ACIS International Conference on Computer and Information Science (ICIS
2008). (pp. 513–518). IEEE. 10.1109/ICIS.2008.104

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.blackducksoftware.com
https://www.blackducksoftware.com
http://www.danysoft.com/free/CyV_Cal.pdf
http://www.danysoft.com/free/CyV_Cal.pdf

164

Tool Support for Software Artefact Traceability in DevOps Practice

Holten, D. (2006). Hierarchical Edge Bundles: Visualisation of Adjacency Relations
in Hierarchical Data. IEEE Transactions on Visualization and Computer Graphics,
12(5), 741–748. doi:10.1109/TVCG.2006.147 PMID:17080795

IBM-Rational DOORS. (2017). Retrieved October 14, 2017, from https://www.ibm.
com/us-en/marketplace/rational-doors

Ibrahim, M., & Ahmad, R. (2010). Class Diagram Extraction from Textual
Requirements Using Natural Language Processing (NLP) Techniques. In Proceedings
of the 2nd International Conference on Computer Research and Development. (pp.
200–204). IEEE. 10.1109/ICCRD.2010.71

Jiménez, M., Castaneda, L., Villegas, N. M., Tamura, G., Müller, H. A., &
Wigglesworth, J. (2019). DevOps Round-Trip Engineering: Traceability from Dev to
Ops and Back Again. In Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment. DEVOPS 2018 (pp.
73-88). Springer. doi:10.1007/978-3-030-06019-0_6

Jones, M. (2019). Microservices Architecture in the Real World. TechEvents.online.
RedisConf19. Retrieved May 20, 2019, from https://www.techevents.online

LDRA - Requirements Traceability. (2018). Retrieved July 5, 2017, from http://www.
ldra.com/en/software-quality-test-tools/group/by-software-life-cycle/requirements-
traceability

Lee, C., Guadagno, L., & Jia, X. (2003). An agile approach to capturing requirements
and traceability. Proceedings of the 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering, 1–7.

Li, B., Sun, X., Leung, H., & Zhang, S. (2013). A survey of code-based change
impact analysis techniques. Software Testing, Verification & Reliability, 23(8),
613–646. doi:10.1002tvr.1475

MacDonell, S. G., Min, K., & Connor, A. M. (2005). Autonomous requirements
specification processing using natural language processing. In Proceedings of the
14th International Conference on Intelligent and Adaptive Systems and Software
Engineering (IASSE ’05). (pp. 266–270). Toronto, Canada: ISCA.

Mäder, P., & Gotel, O. (2012). Towards automated traceability maintenance.
Journal of Systems and Software, 85(10), 2205–2227. doi:10.1016/j.jss.2011.10.023
PMID:23471308

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.ibm.com/us-en/marketplace/rational-doors
https://www.ibm.com/us-en/marketplace/rational-doors
http://www.ldra.com/en/software-quality-test-tools/group/by-software-life-cycle/requirements-traceability
http://www.ldra.com/en/software-quality-test-tools/group/by-software-life-cycle/requirements-traceability
http://www.ldra.com/en/software-quality-test-tools/group/by-software-life-cycle/requirements-traceability

165

Tool Support for Software Artefact Traceability in DevOps Practice

Mäder, P., Gotel, O., Kuschke, T., & Philippow, I. (2008). traceMaintainer - Automated
Traceability Maintenance. In Proceedings of the 16th International Requirements
Engineering (RE ’08). (pp. 329–330). IEEE 10.1109/RE.2008.25

Maro, S., Anjorin, A., Wohlrab, R., & Steghöfer, J. P. (2016). Traceability maintenance:
factors and guidelines. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. (pp. 414–425). New York: ACM.
10.1145/2970276.2970314

Maro, S., Steghöfer, J., & Staron, M. (2018). Software traceability in the automotive
domain: Challenges and solutions. Journal of Systems and Software, 141, 85–110.
doi:10.1016/j.jss.2018.03.060

Meedeniya, D. A., Rubasinghe, I. D., & Perera, I. (2019). Traceability Establishment
and Visualization of Software Artefacts in DevOps Practice: A Survey. International
Journal of Advanced Computer Science and Applications, 10(7), 66–76. doi:10.14569/
IJACSA.2019.0100711

Nistor, E. C., Erenkrantz, J. R., Hendrickson, S. A., & van der Hoek, A. (2005).
ArchEvol. In Proceedings of the 12th international workshop on Software
configuration management (SCM ’05). (pp. 99–111). New York: ACM Press.
10.1145/1109128.1109136

opensource.com. (2019). Retrieved May 15, 2019, from https://opensource.com/
article/18/9/distributed-tracing-tools

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2017). Towards Traceability
Management in Continuous Integration with SAT-Analyzer. In Proceedings of
the 3rd International Conference on Communication and Information Processing
(ICCIP 2017) (pp. 77-81). ACM. 10.1145/3162957.3162985

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018a). Automated Inter-artefact
Traceability Establishment for DevOps Practice. In Proceedings of the 2018 IEEE/
ACIS 17th International Conference on Computer and Information Science (ICIS
2018) (pp. 211–216). Singapore: IEEE. 10.1109/ICIS.2018.8466414

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018b). Traceability Management
with Impact Analysis in DevOps based Software Development. In Proceedings
of the International Conference on Advances in Computing, Communications
and Informatics (ICACCI). (pp. 1956–1962). Bangalore, India: IEEE. 10.1109/
ICACCI.2018.8554399

SAT-Analyser. (2018). Retrieved November 10, 2018, from https://sites.google.
com/cse.mrt.ac.lk/sat-analyser/case-studies

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://opensource.com/article/18/9/distributed-tracing-tools
https://opensource.com/article/18/9/distributed-tracing-tools
https://sites.google.com/cse.mrt.ac.lk/sat-analyser/case-studies
https://sites.google.com/cse.mrt.ac.lk/sat-analyser/case-studies

166

Tool Support for Software Artefact Traceability in DevOps Practice

Sommerville, I. (2010). Software Engineering (10th ed.). New York: Addison-
Wesley Professional.

Trello. (2018). Retrieved October 2, 2018, from https://trello.com

WIPO. (2019). Retrieved May 15, 2019, from https://patentscope.wipo.int/search/
en/detail.jsf?docId=US226141321

ADDITIONAL READING

Antoniol, G., Cleland-Huang, J., Hayes, J. H., & Vierhauser, M. (2017). Grand
Challenges of Traceability: The Next Ten Years. arXiv preprint arXiv:1710.03129,
2017

Chen, X., Hosking, J., Grundy, J., & Amor, R. (2018). DCTracVis: A system
retrieving and visualizing traceability links between source code and documentation.
Automated Software Engineering, 25(4), 703–741. doi:10.100710515-018-0243-8

Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability
in a distributed health information system. Pervasive and Mobile Computing, 40,
692–707. doi:10.1016/j.pmcj.2017.06.020

Meedeniya, D. A., Rubasinghe, I. D., & Perera, I. (2019). Software Artefacts
Consistency Management towards Continuous Integration: A Roadmap. International
Journal of Advanced Computer Science and Applications, 10(4), 100–110.
doi:10.14569/IJACSA.2019.0100411

Mills, C. (2017). Towards the automatic classification of traceability links. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering-ASE 2017. (pp. 1018–1021). IEEE. 10.1109/ASE.2017.8115723

Murshed, S. M. M. (2016). An investigation of software vulnerabilities in open
source software projects using data from publicly-available online sources. Columbia
University Computer Science Technical Reports, CUCS-007-16.

Pete, I., & Balasubramaniam, D. (2015). Handling the differential evolution of
software artefacts: A framework for consistency management. In Proceedings of
the IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). (pp. 599–600). IEEE. 10.1109/SANER.2015.7081889

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://trello.com
https://patentscope.wipo.int/search/en/detail.jsf?docId=US226141321
https://patentscope.wipo.int/search/en/detail.jsf?docId=US226141321

167

Tool Support for Software Artefact Traceability in DevOps Practice

Rath, M., Rendall, J., Guo, J. L. C., Cleland-Huang, J., & Mäder, P. (2018). Traceability
in the wild: automatically augmenting incomplete trace links. In Proceedings of the
40th International Conference on Software Engineering (ICSE ’18). (834-845). New
York, NY, USA. 10.1145/3180155.3180207

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018). Software Artefact
Traceability Analyser : A Case-Study on POS System. In Proceedings of the 6th
International Conference on Communications and Broadband Networking (ICCBN
2018). (pp. 1–5). Singapore: ACM. 10.1145/3193092.3193094

Santana, M., Sampaio, A., Andrade, M., & Rosa, N. S. (2019). Transparent tracing
of microservice-based applications. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19). (pp. 1252–1259). New York, NY,
USA: ACM. 10.1145/3297280.3297403

KEY TERMS AND DEFINITIONS

Change Set: A set of artefacts that are affected due to artefact additions,
modifications, or deletions.

Cross-Browser: Different types of web browsers.
Graph-Based: Use graph as the visualisation method.
Industry-Level: Commercial software development companies.
Ontology: A collection of pre-defined words and their synonyms.
Proof-of-Work: A prototype solution to demonstrate the theoretical contribution.
Rule-Based: A set of defined rules based on constraints.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

168

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-7998-1863-2.ch006

ABSTRACT

Predictable, rapid, and data-driven feature rollout; lightning-fast; and automated
fix deployment are some of the benefits most large software organizations worldwide
are striving for. In the process, they are transitioning toward the use of continuous
deployment practices. Continuous deployment enables companies to make hundreds

Continuous Deployment
Transitions at Scale

Laurie Williams
North Carolina State University, USA

Kent Beck
Facebook, USA

Jeffrey Creasey
LexisNexis, USA

Andrew Glover
Netflix, USA

James Holman
SAS Institute Inc., USA

Jez Humble
DevOps Research and Assessment

LLC, USA

David McLaughlin
Twitter, USA

John Thomas Micco
VMWare, USA

Brendan Murphy
Microsoft, UK

Jason A. Cox
The Walt Disney Company, USA

Vishnu Pendyala
Cisco Systems Inc., USA

Steven Place
IBM, USA

Zachary T. Pritchard
Slack, USA

Chuck Rossi
Facebook, USA

Tony Savor
Facebook, USA

Michael Stumm
University of Toronto, Canada

Chris Parnin
North Carolina State University, USA

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 169

Continuous Deployment Transitions at Scale

INTRODUCTION

Continuous deployment is a software engineering process where incremental
software changes are automatically tested and deployed to production environments
without manual steps in the deployment pipeline (Rahman et al. 2015). Continuous
deployment enables companies, such as Facebook (Savor et al. 2016), to make
hundreds or thousands of software changes to live computing infrastructure every
day, while maintaining service to millions of customers. Such ultra-fast changes
create a new reality in software development.

Over the past four years, we have held the Continuous Deployment Summit,
hosted at Facebook (Parnin et al. 2017) (2015), Netflix (2016), Google (2017), and
Twitter (2018). For three years from 2015 to 2017, representatives from eleven
companies, Cisco, Disney, Facebook, Google, IBM, LexisNexis, Microsoft, Netflix,
SAS, Slack, and Twitter, have shared the triumphs and struggles of their transition
to continuous deployment practices—each year the companies press on, getting
ever faster. In this paper, we share the common strategies and practices used by
continuous deployment pioneers and adopted by newcomers as they transition and
use continuous deployment practices at scale. Every company is still making this
journey toward continuous deployment.

PERSISTENT AND INCREMENTAL PRACTICE ADOPTION

As Einstein advises, “Persistence is the most powerful force on earth, it can move
mountains.” The uniting factor among all the Summit companies was the persistent
movement toward becoming more efficient, improving customer satisfaction and

or thousands of software changes to live computing infrastructure every day while
maintaining service to millions of customers. Such ultra-fast changes create a
new reality in software development. Over the past four years, the Continuous
Deployment Summit, hosted at Facebook, Netflix, Google, and Twitter has been held.
Representatives from companies like Cisco, Facebook, Google, IBM, Microsoft,
Netflix, and Twitter have shared the triumphs and struggles of their transition to
continuous deployment practices—each year the companies press on, getting ever
faster. In this chapter, the authors share the common strategies and practices used
by continuous deployment pioneers and adopted by newcomers as they transition
and use continuous deployment practices at scale.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

170

Continuous Deployment Transitions at Scale

business results and increasing release frequency through the incremental adoption
of continuous deployment practices. Each year, the Summit companies demonstrated
measurable increases in the adoption of the practices.

Some of the Summit companies, such as Google, Facebook, and Netflix, were
“born” using continuous deployment practices. Older companies, such as Microsoft,
IBM, Cisco, and SAS, have large legacy products in their portfolio that were “born
and raised” with a waterfall-type software development process. Disney supports
a wide range of software products—from websites to safety-critical software that
runs theme-park rides. These older companies could have decided continuous
deployment was not appropriate for some of their products. Instead, these giants
took demonstrable steps each year to “turn their ship around.”

Each company found its unique way to bring about continuous change. Disney
attributes its success with the use of continuous deployment practices to their
company’s values established by Walt Disney himself: Curiosity, Confidence,
Courage, and Constancy. The developers are curious to see if the practices could help
them with their business results; they are confident in their abilities, systems, and
checks so they dare to make changes. Constancy helps them continue to incrementally
adopt more practices. Microsoft has a range of product types from Yammer and Bing,
which use continuous deployment practices similar to those of Google, Facebook,
and Netflix; to its monolithic software, such as Microsoft Exchange and Windows
operating system. Inspired by continuous deployment practices, Microsoft Exchange
now deploys to beta customers using a ring deployment model, where a release is
deployed to a new ring level every week, finally reaching beta customers in the sixth
week—if no problems are detected. Finally, Facebook has applied this principle to
changing their release process for all developers in the company.

MOBILE FIRST

Summit companies recognize that worldwide growth in the use of mobile
applications exceeds that of web and other cloud-based applications. This growth
trend motivated Facebook CEO, Zuckerberg, to announce a “Mobile First!” strategy
in 2012, which directed new development to occur first for mobile applications
before developing for the other platforms. Mobile First! strategy is followed by
other Summit companies, such as Google. However, the frequency of updates of
mobile software has traditionally lagged that of web applications for many reasons.
Mobile versions can only be released through the Apple and Google app stores that
control the frequency of releases and impose constraints on development. Users may
not auto-install updates and can decide when and if to upgrade; conceivably every
release of a mobile app that ever existed could be installed across their user base.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

171

Continuous Deployment Transitions at Scale

The need to support and test hundreds of Android hardware variants increases the
computational cost complexity and speed of the verification process, thereby further
slowing down deployment. Finally, quality requirements are higher for mobile apps
as there are more limited options for taking remedial action through deploying a
new version when a defect is detected, compared with web- and cloud-based apps.

Chuck Rossi, the director of release engineering at Facebook, delivered the
keynote at the 2017 Summit. At Facebook, mobile applications are used by over a
billion people each day (Rossi et al. 2016). Rossi shared that over a period of four
years, Facebook has decreased the deployment speed from 6 weeks to 4 weeks to 2
weeks to 1 week. Mobile applications are deployed more frequently to its internal
users during a one-week stabilization phase that occurs the week after development
is complete to conduct “dogfood” testing. Summit companies also use tools, such as
the Gatekeeper tool, and feature flags in the code to dynamically control from the
cloud the features that users see in an app. Even though the customer installations
of new versions of the app will occur periodically, the companies can still control
the incremental rollout of new individual features across their user base and can
disable problematic changes in the advent of unexpected behavior without requiring
customers to update their apps.

DEVELOPER PRODUCTIVITY METRICS (LOOK WITHIN)

Companies are increasingly looking inward at their productivity, to evolve practices
or improve tool infrastructure for developers. These opportunities offer a much richer
source of information beyond simple metrics, such as lines of code produced, and
are more deeply tied to customer behavior.

At Google, searching for internal libraries is a common task and deeply integrated
into developer tooling and culture. Given that many possible library choices may
exist, one determining factor may be signals (Trockman 2018), information cues that
indicate attributes, such as quality, that may bias a developer towards one particular
library. Google has recently integrated metrics that serve as signals into project
dashboards. For example, the metrics include pre-submit speed (i.e. time to run tests
before committing to a repository), release frequency (hypothesizing that projects
with higher frequency are healthier), green builds/week (builds with fewer failures),
and number of post-release patches (how error-prone is the code). A project with
good project health metrics (called PH-levels) can be perceived as more reliable and
thus might be more likely to be adopted. Developers are encouraged to strive for
healthy PH-levels. However, some metrics are considered controversial for certain
teams, who want to opt-in/opt-out of certain metrics. Despite these challenges, PH-
levels can help maintain a shared sense of productivity.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

172

Continuous Deployment Transitions at Scale

Finally, participants cautioned about direct interpretations of developer
productivity metrics. Some participants at the Summit argued that simply increasing
release frequency (say, 8 weeks to 4 weeks) does not necessarily improve developer
productivity. Instead, the increased frequency forces upgrades in tooling and
automation, which in turn reduces errors and inefficiencies in the process. In
another example, a common low-hanging fruit that an organization may target for
optimization is increasing the speed of tooling. However, Microsoft provided several
cases where tools were made faster, but observed no tangible benefit in productivity
gains: Instead, developers simply changed when they ran the tool (from night-time
to day-time). Ultimately, the participants recommended instead of simply striving
to hit or game metrics, organizations should target desirable changes in developer
behavior.

TOOLS EMBODY CULTURE

Creating a shared sense of culture and maintaining architectural integrity in a large
organization can be difficult; especially when the number of developers can be counted
in the thousands and with teams operating in small independent units. Traditionally,
many software organizations have relied on centralized architecture teams to help
manage standards (Parsons 2005). However, an alternative paradigm has emerged,
where architectural principles can be enforced through strong investments in tooling.

At the Summit, companies shared various ways in which tooling played a
central role in creating a shared engineering culture. Perhaps the most illustrative
example is the introduction of chaos engineering at Netflix. At Netflix, developers
mostly work in small teams that support a single feature or microservice. Given
Netflix’s anti-process culture and lack of centralized architectural teams but high
interdependence of microservices, there needed to be some way to communicate and
enforce architectural principles across the whole organization. Chaos engineering
(Basiri et al. 2016), is the practice of introducing small changes or unexpected events
into production environments to analyze how these changes or events could impact
the behavior of the system. For example, by introducing a chaos monkey, a tool
that randomly turned off AWS instances during working hours, the tool could help
enforce architectural principles of maintaining stateless and resilient microservices.

Enforcing cultural changes through tools can result in adoption barriers. For
example, Microsoft wanted to introduce stronger coding practices that could reduce
potential security problems. In one instance, trying to turn-on compiler errors for
uninitialized variables (a potential security concern) as a general policy resulted in
a large pushback from many development teams. While understanding the security
implications, many developers often viewed these compiler findings as false positives

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

173

Continuous Deployment Transitions at Scale

and did not want them turned on as errors for their projects. To combat a similar
problem at Google, the static analysis tool, Tricorder (Sadowski et al. 2015), allows
developers to give feedback on any finding (e.g., “Does not work in IE8”). Further
teams can opt-out of specific types of findings or even opt-in specialized findings. If
a finding is found not to be useful 10% of the time, the tool findings may eventually
be disabled across the company.

Tooling allows developers to share common workflows across the company
and even between companies. Some companies, such as Google and Facebook,
invest in their web-based IDE. By having all developers share the same interfaces
for developing code, the companies can ensure that all developers share the same
workflow for processes such as code review, code search, and reviewing findings
from static analysis tools. At the Summit, the participants noted the increasing
importance of partnership and investment of tooling across multiple companies and
open source communities. Open-source tools, such as Spinnaker (which supports
specifying and customizing deployment workflows), have been developed in
partnership between Netflix and companies such as Microsoft, Google, and Pivotal.
Some parameters and decisions can be highly variable between teams and products:
How long is a canary experiment; at what step do you sign-off on a deploy; how
does your particular service handle state? Scale differences between companies
and communities introduce a complication. For example, at Twitter, upstream open
source patches often end up breaking Twitter’s production environment because the
open source community operates at a much lower scale. Despite these challenges,
companies cite numerous benefits, such as attracting talent and improving tool
value. As one participant stated: “It makes sense to work together when you’re the
only two companies in the world that face the same issue.”

TESTING AND RELEASE IN PRACTICE

Operating continuous deployment pipelines at scale requires numerous shifts in
technology and practices. Traditional problems are amplified, while new problems
and pain points emerge. At Google, the demand for continuous integration (CI)
services double each year, with over 4.5 million tests being run daily—if not properly
optimized, this demand would require more servers to run than Google’s primary
product itself: search.

At the Summit, companies discussed numerous pain points related to testing and
shared various strategies that could help address them. One of the most common
pain points expressed was flaky tests, that is, tests that intermittently fail due to
random factors, such as resource availability (Luo et al. 2014). At Google, an internal
analysis of failing tests found that 84% of the time a failure is due to a flaky test.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

174

Continuous Deployment Transitions at Scale

Several strategies were discussed to combat flaky tests. Companies have started
calculating the flakiness of tests or try to tag flaky tests based on historical data. At
Google, tests are kept below 1–5% flakiness or are quarantined. At Facebook, the
current practice is to simply delete flaky tests without mitigation. Several companies
reported reliability issues of running tests in Jenkins due to resource exhaustion or
inconsistent state of the workspace. To improve the reliability of running tests in
Jenkins, IBM and Netflix are moving towards running tests in containers. Finally,
participants at the Summit discussed the goal of moving toward predicting failing
builds and the presence of flaky tests. For example, if the dependency chain between
a changed source file and a failing unit test is more than ten hops away, it is likely
to be a flaky test.

Companies also discussed various issues and strategies for deploying releases
into production. At LexisNexis, releases occur every three weeks during off-hours.
Each release requires manual coordination and blessing of released features—a
customized Gantt chart is used to coordinate the order of flips for new versions
of shared services. Once everything is in place, manual testers verify the release;
meanwhile, developers of each service/module are on standby to patch any problems.
At Disney, release management was more frequent, with three release windows per
week. However, developers did not have full autonomy for making release decisions;
a highly centralized process is used and overseen by executives for no/go decisions
on each release. Meanwhile, Netflix remained at the head of the pack with 4000
deployments a day.

HOLDING ONTO SCHEMAS

For some companies, the biggest barrier to full continuous deployment adoption is
a lack of an effective strategy for deploying schema changes to relational databases
(or their usage at all). For example, in many database engines, a simple operation
such as renaming a column in a table would require locking all rows and thus
prevent any new data from being stored, while the rename operation took place.
Major schema changes could effectively shutdown an application for many hours
(de Jong et al. 2017).

This challenge was especially apparent in companies that supported legacy
applications. For example, IBM used to take a month to migrate a system to a
new version at a customer’s site. The primary challenge was coordinating code
and database changes with on-premises instances. Eventually, IBM shortened
the process to one hour. For LexisNexis, a 200-year-old company with software
components that are over 15 years old, deploying database changes remains one of
the most challenging aspects of continuous deployment. For every deployment to

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

175

Continuous Deployment Transitions at Scale

production, the deployment process is often on hold for several hours as they wait
for the DBA to clear the release. In addition to schema changes, other issues can
make deployment with databases problematic.

For SAS, dumping and restoring databases to accommodate schema changes
can take hours. At Microsoft, database rollbacks are avoided at all costs, especially
if the failure rate is low. Companies that have built continuous deployment-ready
architectures often discard relational databases entirely or develop new storage
technologies that can handle schema changes. For example, Netflix uses a key-value
based store, Cassandra, and microservice architecture. Any changes to a database are
handled by managing access to versioned calls at the service layer. Graph databases,
such as Facebook’s social graph, avoid these locking issues entirely by being able to
add new nodes and edges, then removing old edges and nodes when done without any
downtime. Still, even the most advanced architectures cannot escape issues related
to schema changes. At Facebook, changes to the schema for storing messages and
photos required a year-long migration to a more efficient schema.

INTENTIONAL FEATURE EXPERIMENTATION

Companies have, for decades, used telemetry to capture usage of their software to
identify quality issues or to help improve deployed features. Since the inception of
the Lean Startup (Ries 2011) practice, Internet-based and other companies have
been using data obtained via feature experimentation instrumentation to make data-
driven decisions on whether a new feature or algorithm should “pivot or persevere”
in the released product. Specifically, companies are removing features from their
code if these features do not have a positive impact on their customers. Five of the
Summit companies have evolved their continuous deployment processes to include
feature experimentation.

To enable experimentation, feature toggles may be implemented in the software
to create multiple experiences for different customers. Feature toggles are essentially
conditional blocks – if/else statements that can be used to enable or disable a feature
selectively (Schermann, Cito, & Leitner, 2018). For example, when Facebook released
Live video, they realized an individual live video could receive up to 2500 comments
per second. Facebook built experiments to evaluate multiple algorithms for filtering
and ranking comments to choose the algorithm that performs best at elevating
comments with high engagement. Data scientists work with the development team
to design experiments, develop hypotheses, collect metrics, and analyze collected
data. The paper documenting the 2015 Continuous Deployment Summit contained
the adage, “Every feature is an experiment.” (Parnin et al. 2017) However in later
summits, the reality of the experiment complexity and the sheer amount of data

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

176

Continuous Deployment Transitions at Scale

needed to be collected has made Summit companies more intentional in their choice
of when to run an

experiment. For example, Google is cautious of experiments that may have
implications to ad revenue, so typically small, incremental experiments are run.
Naively, companies with large user bases may initially believe they would obtain
feedback on a new feature rapidly, such as in hours or a small number of days.
However, users behave differently throughout the day, on different days of the week,
and at different times of the month. Representative experiments on stable features
take longer than expected. Microsoft has analyzed 21,220 experiments applied in
Bing (Kevic et al. 2017). Their results indicate that an experiment runs an average of
42 days before a “pivot or persevere” decision is made. As discussed above, feature
rollout to mobile customers are delayed relative to online customers, making mobile
experiments slower and more technically challenging. Summit companies did not use
feature experimentation for bug fixes, infrastructure changes, or architecture changes.

SHAMELESS RETROSPECTIVES

Retrospectives are meetings in which a team inspects and adapts their methods and
teamwork after completing a unit of work. Retrospectives enable learning, act as a
catalyst for change, and generate action (Derby and Larsen 2006)—as long as the
environment for retrospective discussion is safe. Allow shame and blame to enter
the retrospective, and these benefits are obliterated. Shame crushes our tolerance

Figure 1. Cycle of shame

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

177

Continuous Deployment Transitions at Scale

for vulnerability, thereby killing engagement, innovation, creativity, productivity,
information flow, and trust (Brown 2012).

In the 2016 Summit, Kent Beck who was at Facebook at the time, delivered a
keynote about the role of shame in software development as depicted by the Cycle
of Shame (Figure 1). The Cycle of Shame uses the notation of influence diagrams
(Weinberg 1992). With influence diagrams, a regularly directed arrow indicates
that more of the source activity tends to create more of the destination activity
(i.e. an amplifier), such as more mistakes generate more shame. A directed arrow
with a circle over it indicates that more of a source activity tends to create less of
the destination activity (i.e. an inhibitor), such as more shame drives less learning.
Starting from the regular arrow into Shame in Figure 1, more shame drives less
learning which drives more mistakes which drives more shame. Conversely, starting
from the arrow with the circle, less shame drives more learning which drives fewer
mistakes which drives less shame.

Within the context of the Cycle of Shame, Beck remarked positively about how
little shame there was in the engineering culture at Facebook. An engineer can freely
share the details about a mistake that he or she has made, owning the mistake—and
most importantly not blaming anyone else for the mistake. The engineer shares the
consequences of the mistake, details the remedial action, and provides suggestions for
how that type of mistake could be avoided in the future. In sharing this information,
the engineer does not feel shame, benefiting his or her learning and that of the team
members. The practice of shameless retrospectives resonated with Summit companies
as an essential component of the continuous process improvement needed while
adopting continuous deployment practices, which are often disruptive changes to
the organization.

LEVERAGING CULTURE AND PRACTICES
TO ENHANCE SECURITY

Alongside continuous deployment practices, organizations are increasingly adopting
software security practices. However, from a frequency of adoption perspectives,
firms most often adopt software security practices for reasons, including responding
to a security event, detecting vulnerabilities, and preventing vulnerabilities (Williams
et al. 2018). Integrating software security practices in a continuous deployment
environment is challenging because teams must integrate these practices at speed,
perhaps in an environment that chooses speed over deliberate, methodical approaches
to testing, security, and quality (McGraw 2017).

Many of the Summit companies have their software security group “silo’ed”
into a separate organization, as is also common in most non-Summit companies.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

178

Continuous Deployment Transitions at Scale

Some of the smaller organizations, such as Twitter and Slack, have stronger
partnerships between the developers and their software security group, moving
towards a DevSecOps model, in which the security silo is broken down. At Slack,
teams often use Trello for collaborative, team-based project management. Based
upon the perceived risk of a new feature or product, their security team puts cards
on the team’s Trello board to signify the software security practice or reviews that
are needed to take place before the release. At both Slack and Twitter, the security
group partners with the development team starting with the requirements and design
phases. The philosophy of the security groups is that rather than taking the role of
fishing for security vulnerabilities when development is complete, the role of the
security team is to “teach the development team to fish” whereby the development
team specifies, designs, and implements secure products. All Summit teams desire
better automated security tools that could detect both architecture/design- and
code-level vulnerabilities with fewer false positives, a call for security researchers
and tool vendors.

Continuous deployment practices can enhance the security of a product. The
use of feature toggles is prevalent by Summit companies to support dark launches
and feature experiments. Dark launches release new features into production
surreptitiously, without any real users noticing them (Schermann, Cito, & Leitner,
2018). The system still duplicates the user requests to evaluate the new features in
the clandestine releases. Summit companies, such as Twitter, use feature toggles to
prevent features with security and/or privacy implications from being accessible to
external users until the security team has conducted their checks. Using this procedure,
developers can still continuously integrate code to these important features, but a
separate security/privacy process can take place before the public launch. Teams
instrument their code and constantly monitor the behavior of users to enable feature
experimentation. This same instrumentation and monitoring can be used to detect
anomalous behavior by attackers. Finally, organizations can use their normal process
to rapidly deploy security fixes that will more likely be installed by customers. In the
middle of 2016, security researchers found critical vulnerabilities in both Chrysler
and Tesla automobiles. Tesla was able to deploy their fix over the air, while Chrysler
sent USB sticks to its customers due to the lack of a better deployment process.

CONCLUSION

The eleven companies that participated in the annual summit, reveal their commitment
toward adopting software development practices that move them closer to continuous
deployment. All the companies at the Summit have experience applying continuous
deployment practices and are aware of the challenges in applying these practices. At

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

179

Continuous Deployment Transitions at Scale

one end of the spectrum, the adoption may be challenging yet feasible for deploying
hundreds or thousands of times of day, supporting feature experiments that can drive
data-driven decisions. On the other end of the spectrum, legacy products may be
deployed multiple times per year rather than once per year with a corporate strategy
shifting toward more cloud-based solutions that can be deployed more frequently.
Regardless of where they are on the spectrum, the Summit companies share a bond
of a commitment to continuous process improvement and sharing technical solutions,
approaches, and use of tools.

ACKNOWLEDGMENT

One of the authors who now works at VMWare had worked at Google during the
time of the Summits. Google has reviewed and approved the contents of this paper.

REFERENCES

Basiri, A., Behnam, N., De Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., &
Rosenthal, C. (2016). Chaos engineering. IEEE Software, 33(3), 35–41. doi:10.1109/
MS.2016.60

Brown, B. (2012). 3 Ways To Kill Your Company’s Idea-Stifling Shame Culture.
Fast Company.

de Jong, M., van Deursen, A., & Cleve, A. (2017, May). Zero-downtime SQL
database schema evolution for continuous deployment. In 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP) (pp. 143-152). IEEE. 10.1109/ICSE-SEIP.2017.5

Derby, E., Larsen, D., & Schwaber, K. (2006). Agile retrospectives: Making good
teams great. Pragmatic Bookshelf.

Kevic, K., Murphy, B., Williams, L., & Beckmann, J. (2017, May). Characterizing
experimentation in continuous deployment: a case study on bing. In Proceedings of
the 39th International Conference on Software Engineering: Software Engineering
in Practice Track (pp. 123-132). IEEE Press. 10.1109/ICSE-SEIP.2017.19

Luo, Q., Hariri, F., Eloussi, L., & Marinov, D. (2014, November). An empirical
analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (pp. 643-653). ACM.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

180

Continuous Deployment Transitions at Scale

McGraw, G. (2017). Six Tech Trends Impacting Software Security. Computer, 50(5),
100–102. doi:10.1109/MC.2017.143

Parnin, C., Helms, E., Atlee, C., Boughton, H., Ghattas, M., Glover, A., ... Stumm,
M. (2017). The top 10 adages in continuous deployment. IEEE Software, 34(3),
86–95. doi:10.1109/MS.2017.86

Parsons, R. I. (2005). Enterprise architects join the team. IEEE Software, 22(5),
16–17. doi:10.1109/MS.2005.119

Rahman, A. A. U., Helms, E., Williams, L., & Parnin, C. (2015, August). Synthesizing
continuous deployment practices used in software development. In 2015 Agile
Conference (pp. 1-10). IEEE. doi:10.1109/Agile.2015.12

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., & Stumm, M. (2016,
May). Continuous deployment at Facebook and OANDA. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C) (pp. 21-
30). IEEE. 10.1145/2889160.2889223

Schermann, G., Cito, J., & Leitner, P. (2018). Continuous experimentation: Challenges,
implementation techniques, and current research. IEEE Software, 35(2), 26–31.
doi:10.1109/MS.2018.111094748

Trockman, A., Zhou, S., Kästner, C., & Vasilescu, B. (2018, May). Adding sparkle
to social coding: an empirical study of repository badges in the npm ecosystem.
In Proceedings of the 40th International Conference on Software Engineering (pp.
511-522). ACM.

Weinberg, G. (1992). Systems Thinking, Quality Software Management (1st ed.).
New York: Dorset House.

Williams, L., McGraw, G., & Migues, S. (2018). Engineering Security Vulnerability
Prevention, Detection, and Response. IEEE Software, 35(5), 76–80. doi:10.1109/
MS.2018.290110854

ADDITIONAL READING

Arachchi, S. A. I. B. S., & Perera, I. (2018, May). Continuous Integration and
Continuous Delivery Pipeline Automation for Agile Software Project Management.
In 2018 Moratuwa Engineering Research Conference (MERCon) (pp. 156-161).
IEEE. doi:10.1109/MERCon.2018.8421965

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

181

Continuous Deployment Transitions at Scale

Laukkanen, E., Paasivaara, M., Itkonen, J., & Lassenius, C. (2018). Comparison of
release engineering practices in a large mature company and a startup. Empirical
Software Engineering, 23(6), 3535–3577. doi:10.100710664-018-9616-7

Mahdavi-Hezaveh, R., Dremann, J., & Williams, L. (2019). Feature Toggle Driven
Development: Practices usedby Practitioners. arXiv preprint arXiv:1907.06157.

Ravichandran, A., Taylor, K., & Waterhouse, P. (2016). DevOps for Digital Leaders.
doi:10.1007/978-1-4842-1842-6

Schermann, G., Cito, J., Leitner, P., & Gall, H. C. (2016, May). Towards quality gates
in continuous delivery and deployment. In 2016 IEEE 24th international conference
on program comprehension (ICPC) (pp. 1-4). IEEE. 10.1109/ICPC.2016.7503737

Schermann, G., Cito, J., Leitner, P., Zdun, U., & Gall, H. (2016). An empirical study
on principles and practices of continuous delivery and deployment (No. e1889v1).
PeerJ Preprints.

Shahin, M., Zahedi, M., Babar, M. A., & Zhu, L. (2019). An empirical study of
architecting for continuous delivery and deployment. Empirical Software Engineering,
24(3), 1061–1108. doi:10.100710664-018-9651-4

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

182

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-7998-1863-2.ch007

ABSTRACT

Robust DevOps plays a huge role in the health and sanity of software. The metadata
generated during DevOps need to be harnessed for deriving useful insights on the
health of the software. This area of work can be classified as code analytics and
comprises of the following (but not limited to): 1. commit history from the source
code management system (SCM); 2. the engineers that worked on the commit; 3.
the reviewers on the commit; 4. the extent of build (if applicable) and test validation
prior to the commit, the types of failures found in iterative processes, and the fixes
done; 5. test extent of test coverage on the commit; 6. any static profiling on the
code in the commit; 7. the size and complexity of the commit; 8. many more. This
chapter articulates many ways the above information can be used for effective
software development.

INTRODUCTION

Robust DevOps plays a huge role in the health and sanity of software and the
metadata generated during this activity need to be harnessed for deriving useful
insights. This area of work can be classified as Code Analytics and comprises of
the following (but not limited to) –

Data in DevOps and Its
Importance in Code Analytics

Girish Babu
Cisco Systems Inc., Canada

Charitra Kamalaksh Patil
MNP LLP, Canada

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 183

Data in DevOps and Its Importance in Code Analytics

1. Commit history from the Source Code Management system (SCM)
2. The engineers that worked on the commit
3. The reviewers on the commit
4. The extent of build (if applicable) & test validation prior to the commit, the

types of failures found in iterative processes & the fixes done
5. Test extent of test coverage on the commit
6. Any static profiling on the code in the commit
7. The size and complexity of the commit

The proposed chapter introduces the various attributes that are available during
DevOps, means to use them effectively and their application in source code analytics
that can help produce good quality software at increasing velocity. Each section
also gives a pictorial view of the role played by each metadata and how they can be
represented visually for effective insights.

Section 1 describes how commit history can be used to derive BugSpots/BugCache
(Rahman, et al, 2011). The techniques in this paper are extended to give a ‘phase-
containment’ view to bugs / commits which is used in Cisco systems by the author.

Section 2 dwells into the code review practices and the meta data that is available
during this activity and its application for sound peer reviews in the development
life cycle. An effective illustration around this is described in the papers Search-
Based Peer Reviewers Recommendation in Modern Code Review (Ouni, et al, 2016)
and A Large-Scale Study on Source Code Reviewer Recommendation (Lipcˇak &
Rossi, 2018).

Section 3 forays into code coverage measures from various test cycles and its
potential use in determining efficacy of the test activities, a paper in this area of
note is Examining the Effectiveness of Testing Coverage Tools: An Empirical Study
(Alemerien & Magel, 2014).

Section 4 goes into static analysis and static profiling of software, which is one of
the earliest indicators of quality and stability of software. This uses recommendations
described in the papers Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric (Watson & McCabe, 1996) and The Correlation
among Software Complexity Metrics with Case Study (Dr. Tashtoush, et al, 2014).

Section 5 leverages the study on cyclomatic complexity analysis (Watson &
Mccabe, 1996) to expand its use in code analytics.

Section 6 ventures into the DevOps workflow itself and why it is relevant to
interject many of the earlier insights right into the CI/CD (Continuous Integration /
Continuous Delivery) pipeline. It also circles around the first five sections and how
they contribute to meta data necessary for code analytics.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

184

Data in DevOps and Its Importance in Code Analytics

FUNDAMENTALS

Commit History

From the underlying SCM, deriving the commit history is extremely important to
mine the behaviour of code. The ability to find HotSpots based on frequency &
count of commits will yield considerable insights on areas of constant churn. It’ll
also help identify engineers who are struggling or experts with certain areas.

Often underappreciated and under-utilized is the importance of information that
is available in the Source Code management (SCM) and defect / ticket tracking
systems. Typically, the following information (but not limited to) is useful from
these systems –

1. Nature of change (i.e. – bug fix, feature development, feature extension, code
clean-up)

2. Priority of change (i.e. – High, Medium, Low)
3. Requestor (i.e. – Internal testing found, Customer reported)
4. Nature of issue (i.e. – security defect, usability defect, configuration,

documentation)
5. Change agent (i.e. – engineer making the change)
6. Time of change (i.e. – the date & time when it was done)
7. Time to change (i.e. – effort needed to understand and make the changes)
8. Applicability (i.e. – the product / service where it is needed)

From the underlying SCM, deriving the above information & more is extremely
important to mine the behaviour of code. You can use the above details to derive
the following (and many more) insights –.

BugSpots / HotSpots

A number of enterprises with rapidly expanding code bases and large legacy software
are using techniques to find high churn areas that are servicing defects. An oft-quoted
source is the research paper on BugCache (Rahman, et al, 2011).

The technique described in the paper and extended / made popular in enterprises
like Alphabet Inc. (http://google-engtools.blogspot.com/2011/12/bug-prediction-at-
google.html) and Cisco Systems helps teams identify areas that need attention for
hardening. One popular use of this data is to drill down to function level, perform
detailed complexity analysis (defined later in this chapter) and rework or rewrite
that specific area.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

185

Data in DevOps and Its Importance in Code Analytics

The ability to find HotSpots based on frequency & count of commits will yield
considerable insights on areas of constant churn, especially affecting high value
customers of your software. Using nature of change of commits, helps slice and
dice HotSpots and allows you to look at them in a phase-contained manner.

The figure 1 articulates ability to understand how HotSpot progression occurs in
a software module, allowing teams to prioritize which areas need attention closer
to a customer release.

In many cases, HotSpots also help identify change agents or engineers who are
struggling with certain modules or experts in those specific areas that can help better
them. An interesting dimension to this is if a really good engineer shows up in the
list, the root cause could potentially be bad or incomplete code reviews. A method
to determine if the (lack of) expertise of change agents is a cause for HotSpots is
to establish patterns around the size of code (a popular measure is lines and the
complexity of code) contributed during feature development and post that phase.
If the amount of code (size and complexity measure) is higher in post development
phases, relative to other engineers working on that software, then this should warrant
a closer look into the activities of that engineer.

An interesting dimension in HotSpot analysis is to look at the Applicability of
changes. i.e. – which customer facing services are churning the most. This is a
relevant and critical factor in library or infra or core modules that are shared across

Figure 1. Sample hotspots view

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

186

Data in DevOps and Its Importance in Code Analytics

different customer services or products. Knowing stability of software relative to
services or products helps teams prioritize and harden (aspect of solidifying the
performance and stability) software that they own.

Defect Density

A popular measure of actual software quality is defect density, more precisely the
number of defects per thousand lines of code – commonly attributed as Defect per
KLOC.

Slicing defect density by software modules is a quick way to classify stability of
software modules by size, and to understand where resource investments are needed
for quick improvement.

‘Phase Contained’ Defect Density

An effective way to also look at defect density is to make the view phase contained
(i.e. slicing the view across different phases of time or attributes). Additionally, this
is impactful to always look at this measure relative to the churn on code (change in
lines of code – added / modified / deleted).

Figure 3 is an example of this view.
A quick observation in the above is module A having an expected growth in

defect density relative to the lines of code added into the module. On the other
hand, module B is having higher growth in defect density while the module size
has remained stable or dormant. This would give insights to the owners to invest
in stabilizing module B.

Determination of Expert Code Reviewers

Peer review of code is an oft ignored or underplayed area, and in most organizations
is deemed to be just another part of the process that is rushed. However, the value
of it when done diligently, and especially by experts is considerably high. Some

Figure 2. Defect density snippet

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

187

Data in DevOps and Its Importance in Code Analytics

of the studies done in Cisco Systems around this area show that a lot of customer
reported issues would have been caught by early reviews; and to this end, using the
frequency of activities by engineers (either committing code to an area or contributing
to the code review process) to determine experts and recommend for code review is
important. The cost of finding a potential issue or bug during peer reviews is lowest.
Additionally, peer reviews help find flaws in implementation, in terms of missed or
misunderstood requirements, very early in the product lifecycle.

Code Peer Reviews are an extremely critical step in the software development
process. Various studies have shown that early and effective reviews tend to catch
over 70% of field defects (defects found after they have shipped to customers), and
to achieve this, identifying the right experts to review is necessary.

Before articulating the means and reasons for determination of expert reviewers,
following are few key reasons for peer code reviews –

• Feature Parity: For new features, does the current implementation cater to the
requirements. This determination is best done by an expert who understands
the need, goes over source code and is able to translate that into a matrix of

Figure 3. Sample phase contained defect density

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

188

Data in DevOps and Its Importance in Code Analytics

complete & incomplete scenarios. For defect fixes on existing features, peer
reviewers are expected to determine if the changes are catering to the spirit
of the original needs, as well as if the new changes done to fix the reported
defect are complete in exercising both the old and new behaviors.

• Unit Testing Effectiveness: For the newly implemented features, reviewers
are best placed to determine if (automated) unit tests are exercising a
maximum number of scenarios. This aspect is really key since developers
tend to focus on unit tests exercising all the code lines in the execution path
that they have added or modified. However, it is extremely important to also
determine if all the ‘loops’ and ‘branches’ in the code are also tested – think
if-else, for or while loops, etc.

• Logical Errors: While reviewers focus on the first two points above, an
obvious need for effective peer reviews is to eliminate any obvious logical
errors in the software. This is the earliest stage of finding potential defects and
is considered to be the least expensive. Any logical errors that slip through
tend to cost exponentially higher as it slips through each phase (like unit
testing, integration testing, pre-customer validation and customer use).

• Coding Guidelines & Styles: This is an underrated aspect of peer reviews
yet has a profound impact on the success for a software development team.
Defining or following coding guidelines and styles is extremely important
to ensure software is not highly complex or badly written (in terms of code
maintenance for the future). Software developed without proper formats
in terms of comments, readability and logical nomenclature (like variable
names, temporary loop elements, etc.) largely is difficult to maintain as it
grows in size and is generally an area that tends to figure high in HotSpot
evaluations.

• Understanding Code Base: Code review as a practice for reading existing
code is generally an effective way for engineers to understand and build
expertise, both in how that software works and in how to write effective
software from other experts. This helps them learn technological and
programming techniques for long term success.

• Improves Estimation: This is an obvious and apparent take on importance
of peer reviews. Understanding software functionality and how effective
software is written helps teams and individuals estimate time and risk for
software effectively.

• Improves Development: Knowing that experts are going to look at the code
written puts pressure on developers to be vigilant while writing software.
This is another aspect of gamification brought to make software development
effective.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

189

Data in DevOps and Its Importance in Code Analytics

• Improves communication: This is a facet of software and product
development that ultimately plays a very large role in the success of a product
or company. Peer reviews largely helps in improving the communication
between team members, breaking any shackles that may exist. When this
happens, teams tend to trust others more and generally tend to communicate
on other aspects of the software lifecycle.

An important question at this juncture is – when should peer reviews be done in
the software development lifecycle?

There are generally two points in the development lifecycle where this process
is most effective –

1. As soon as software is being written before any validations are done on it. If
time permits and experts are available to review, doing it this early ensures any
obvious logical flaws or gaps in feature expectation are met very early before
time is invested in other activities (like unit test, static analysis, complexity
analysis, etc.)

2. After software is written, all checks (like static analysis, complexity, unit tests)
are successfully done but before code is committed to the SCM. For experts
or reviewers to have all checks done while reviewing is invaluable to ensure
they have complete insight on the software and its associated artefacts.

Assuming all of the above are in place, the next step is to harness the above
information and automatically determine expert reviewers.

There are different mechanisms to derive experts in a particular area, and most
of these require the following details –

• Past reviewers and committers of all features and bug fixes: the time period
can be determined based on change or commit velocity

• Past review comments handling. i.e. – were the comments good or bad,
accepted or rejected or ignored.

• Time between various events. i.e. – time taken to review, turnaround time
of modifications after review comments were provided, volume of deferred
valid comments.

• Quantum of changes between review cycles for a single change. i.e. – how
many lines were modified / added between the first and subsequent revisions.
This will give an instant indicator on whether the first change put up was not
implemented accurately due to lack of understanding by author or if a version
of code was put up for review that was not ready.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

190

Data in DevOps and Its Importance in Code Analytics

Using the above with time series analysis, it is possible to find experts in a particular
area. An interesting paper on this is Search-Based Peer Reviewers Recommendation
in Modern Code Review (Ouni, et al, 2016).

A data driven approach to using the code review meta data to identify reviews
is in the paper A Large-Scale Study on Source Code Reviewer Recommendation
(Lipcˇak & Rossi, 2018).

Code Coverage From Testing

An important measure during DevOps is the extent of Code coverage from the tests,
and further if the most relevant areas of the software being covered. It is easy to get
side-lined by tracking just the percentage of coverage (i.e. lines of code covered by
test over total lines of code) while overlooking if some of the most relevant branches
in the software are uncovered in this process. As an example: consider the following
block of code with multiple branch statements, with the ‘default’ block (which could
be considered as the exception block) having high test coverage.

Code coverage is a measure of the number of lines of code and the different
scenarios (or branches) in the code exercised by testing. Typically, this is achieved
by any system that keeps track of all the runtime entities covered during testing
and associating that information to the source code. This activity is an extremely
important measure in the product development lifecycle. As tests are developed
against features, this measure allows teams to understand the efficacy of testing &
the potential risk of a release. For historically HotSpot areas, this gives good insights
into prioritization of tests.

To understand how code coverage metadata can be used for code analytics, it is
important to understand how and why coverage is measured; the following three
sub-sections go into the details of the same.

How Coverage is Measured

Take a look at the illustration below, where green lines indicate the lines covered
by test and red indicates those not covered yet.

Example snippet can seen in Figure 4.
There is clear indication in the example above that the tests have not exercised

the core areas of the block (i.e. test for actual cases) and only the default section
has been done. This kind of insight allows teams to understand very early in the
development process on gaps in testing. This progressively becomes more complex
as code complexity increases (a largely convoluted control flow graph of the code).

See References section for common / popular code coverage tools and solutions.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

191

Data in DevOps and Its Importance in Code Analytics

Why do we Need to Measure Coverage?

Code coverage measure is important (but not limited to) for the following reasons –

1. While static analysis uncovers a lot of coding or static errors, real testing aided
by coverage is the actual activity that uncovers most of the runtime errors.

2. Analyzing a detailed coverage report helps determine multiple conditions in a
block of code that are not covered, especially those driven by runtime variables
or inputs / parameters from external systems.

3. In a large team or organization with lot of ambiguity on definition of good
testing, this measure provides an unbiased view of test stability in a system.

4. Code coverage is more than just a number, it provides a holistic view of a
system’s risk profile.

Figure 4. Code fragment depicting a switch statement

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

192

Data in DevOps and Its Importance in Code Analytics

How do we Measure Coverage?

Typically, there are two broad categories of software –

1. dynamically compiled & executed at runtime
2. statically compiled & executed at runtime

In the former case, tools exist to capture coverage without much effort needed,
with just the overhead of instructing what you want to track for coverage.

In the latter case, there is a need to (in most cases) inject some specific code
during compilation to indicate to a runtime coverage environment that coverage
collection is necessary and in which specific parts it is desired.

There are broadly three approaches to measuring code coverage –

1. Source Code Instrumentation: This approach is common in embedded systems
development and relies on adding some instruction to the source code (either
before or during compilation).

2. Intermediate Code Instrumentation: This approach deals with already
compiled classes and instrumentation is achieved by adding bytecodes to
compiled artefacts

3. Gather Runtime Information: This is the process of actually collecting
information from the runtime environment (during and after test runs) to
determine coverage

TYPES OF COVERAGE

There are many dimensions to code coverage, with a few detailed as follows –

Statement Coverage

Statements are instructions in a program that have an intent of an action (for example:
initializing a temporary variable, reading a variable value, referencing a function,
etc.). In reality, this is useful as a simple metric and is considered as only an initial
measure of lines being covered.

Function Coverage

An interesting measure in code coverage is a count of functions or methods being
covered. By definition, a function or method is a logical block of code that is written

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

193

Data in DevOps and Its Importance in Code Analytics

with the intention of being used repeatedly. An example of a function is a means to
capture age of a person today given their date of birth. Knowing function coverage
is important since by definition it implies reusable modules.

Branch Coverage

Branch coverage is a measure of all the decision or control points in a source graph.
Consider the figure 5.

Here the tests need to cover two scenarios – one if honesty_factor is above the
honesty_factor_threshold and the other would be the vice versa scenario. This aspect
of coverage yields details on the extent of test detailing available.

Condition Coverage

An important aspect of testing and test coverage is condition coverage which indicate
whether all conditions of a Boolean statement are exercised. Consider the figure 6.

Figure 5. Code fragment depicting branch coverage example

Figure 6. Code fragment depicting a condition statement

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

194

Data in DevOps and Its Importance in Code Analytics

In this example, it is required to exercise both Boolean statements of age being
greater than 65 or if the employable check is false. Condition coverage provides
details on if all Boolean conditions are exercised.

A study that validates the importance of these different types of coverage metrics
is Examining the Effectiveness of Testing Coverage Tools: An Empirical Study
(Alemerien & Magel, 2014).

Code Analytics recommends the aspect of paying close attention to these elements
rather than just relying on some quantitative numbers. It is possible derive insights
on efficacy of tests and understand what to change in order to exercise the red parts
of the code fragment (from a coverage perspective).

STATIC PROFILING OF SOFTWARE

One of the most overlooked elements in software development is the importance
of Static profiling of software and what these insights provide very early in the
software development lifecycle.

Static profiling is the ability to understand some key behavior of your software
even before you compile and/or build. Areas like code complexity are derived from
this process (a future section delves into this), in addition to possible predictive
insights around which areas could run out of memory, illegal assignment of variables,
possible memory issues, etc. Understanding and reacting to these are critical since
one significant issue that creeps out to the customer could effectively damage the
entire reputation of the software provider.

There are multiple commercial and open-source software that helps measure
code complexity and provide means to keep track of its trend over time and the
references section has pointers to a few of the more popular ones.

Static analysis is typically the equivalent of someone reading through every single
line of code and performing some analysis on fundamental failures, bad practices,
poorly written code (in terms of complexity), possible security defects and more.
This action is typically performed prior to software being pushed for quality analysis
and verification.

Static Analysis Techniques

Static analysis tools typically employ following techniques during analysis –

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

195

Data in DevOps and Its Importance in Code Analytics

Data Flow Analysis

This technique is performed in a static state and is used to collect dynamic run-time
information about data in a software. It captures information about all possible values
used or impacted at various points in a block of code.

Typically, most tools or solutions that perform data flow analysis perform a
combination of two steps –

• Forward Analysis: This calculates each set of points of definition that may
help a program reach a specific point. See example in Figure 7.

From the example above, value of z depends on values for x and y. Hence if value
of y is assigned or set to be greater than 0, then the else is not exercised.

• Backward Analysis: This calculates points in a program by performing
variable analysis in a backward fashion for entities that are read before a
subsequent write. This helps in identifying and eliminating dead code.

Control Flow

The image in Figure 8 shows an abstract representation control graph for a software .
Static analysis performs a check on the number of entry and exit points, directed

edges in the graph are used to represent the jumps between blocks.

Static Analysis Value

A few reasons for running static analysis (compared to dynamic analysis which is
runtime dependent and is generally later in the software development cycle compared
to development) are as follows.

Figure 7. Code fragment depicting a variable assignment based on specific conditions

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

196

Data in DevOps and Its Importance in Code Analytics

Runs Quickly and Early

Typically, static analysis runs quickly (prior to running actual tests) and is a good
quality gate for validating code. This scales well in most scenarios and can be run
repeatedly. An effective practice around this is to plug this into commit workflows
(ensuring it is run on every commit) and CI/CD workflows (ensuring it is run one
to many times a day on the tip of the branch).

Figure 8. Control flow graph example

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

197

Data in DevOps and Its Importance in Code Analytics

Provides Good/Better Understanding Of Code

The aspect of finding basic or elementary flaws leads to developers and reviewers
understanding code and inherent risks better.

Detects Critical Security Vulnerabilities Early

It is very effective in automatically finding many issues with a high degree of
confidence. In embedded systems programming, it is very good at finding basic
security vulnerabilities like memory leaks, SQL injection flaws, buffer overflows
and more.

An important aspect of this is static analysis is good at finding Backdoors (or
application backdoors) compared to dynamic analysis. Backdoors by definition
are functionality added intentionally or inadvertently by developers either with the
intention of bypassing security for administrative action of for nefarious or malicious
actions later. In either case, the action of finding them is paramount before customers
are given access to the software.

Leverage Checks from the Wider Usage Community

Most of the solutions or tools that perform these analyses are designed to learn
and adapt from increased usage across different customer sites (much like how
anti-virus software solutions work). This ensures that software is guarded against
recent vulnerabilities.

LIMITATIONS OF STATIC ANALYSIS

Static analysis is effective in mostly finding basic issues, especially in the security
realm. There would have to be a supplement of specific vulnerability profiling and
detection tools. It also fails to find non-source code issues or gaps like configuration
issues. It also fails when profiling requires compiling code (building software)
and all the relevant dependencies like libraries are not available all the time or if it
requires some expertise level.

There are two other major concerns or issues around static analysis –

• False Positives: These are issues reported as a result of the tool being unsure
of integrity of data when it traverses the code and is incorrectly marked as
positive ones. The outcome is that engineers may be misled to invest a lot of
time on unnecessary areas.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

198

Data in DevOps and Its Importance in Code Analytics

• False Negatives: At times, static analysis tools can result in vulnerabilities
not being reported when in fact it is. This can happen if there are runtime or
external dependencies and this fact is not available during compilation.

Effective Use of Static Analysis

Static analysis is useful if employed as follows –

1. Prior to every code commit (to prevent issues going into the branch)
2. On committed code periodically (like nightly runs or other frequency periods)
3. On cumulative targets or platforms to capture inter-dependency issues
4. Actively working to keep issues out of the system
5. Constantly monitoring the static analysis profiles or checkers being used and

updating them when necessary

In summary, this category ensures a lot of issues are fixed early and more
importantly avoided before being reported. It is important in the context of code
analytics to track and fix specific types of static analysis defects that are applicable
to the software under development.

STATIC PROFILING OF SOFTWARE

Cyclomatic complexity is a measure of code complexity developed by Thomas J
McCabe Sr. It’s an important measure to understand the control flow of a program
and determine if the ability to maintain this software will be easy or difficult. For
the code fragment in Figure 9 below, the complexity is derived from the following
control graph of the fragment.

Mathematically, complexity is defined in Figure 10.
Details about the McCabe analysis process can be found at - http://www.mccabe.

com/pdf/mccabe-nist235r.pdf
Code complexity calculation is important for the following reasons –

1. Knowing state of software and potential effort to maintain it: development
teams can use this to determine review effort and prioritization. Additionally,
it can be used to forecast cost of supporting older software features.

2. Determining how many test cases are needed to maintain the software: quality
assurance or test teams can use this to determine how many test cases they
need to write, forecast and invest additional time in high complex areas.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

199

Data in DevOps and Its Importance in Code Analytics

3. Estimate risk in the software: determine where risk is high since traditionally
high complex areas are also high hotspot areas. Fix high complex areas to
address high hotspot areas.

This is widely discussed in the paper The Correlation among Software Complexity
Metrics with Case Study (Dr. Yahya, et al, 2014). This paper shows that there is a
strong correlation between Code complexity and the number of defects that originate
in that software. It is therefore imperative to ensure that code complexity is contained
over time, especially during early stages of software development.

Figure 10. Cyclomatic complexity definition

Figure 9. Control flow graph of the switch statement

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

200

Data in DevOps and Its Importance in Code Analytics

There are multiple commercial and open-source software that are quoted in the
References section.

Effective use of complexity analysis is achieved when it is constantly monitored,
and efforts are taken to ensure that it is contained, and early action is taken. Typical
actions include modularizing the code further, reducing the number of branches in
the code, re-visiting the design for the module or block. If the complexity has to
be maintained (at a higher rate), then investments should be done in sound code
peer reviews and more importantly on test automation for getting 100% coverage
in those areas.

Consider the code flow graph in Figure 11 that has a high complexity measure
against it.

The consideration should be to revise this call flow to something that is less
complex and easily manageable.

Figure 11. Convoluted call graph example

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

201

Data in DevOps and Its Importance in Code Analytics

From a code analytics perspective, code complexity and related measures have a
huge role to play in the eventual stability and maintenance of a system. These have
to be assessed in a phase contained manner and early measures are necessary for
the long-term health of a software pack.

DEVOPS, META TRACKING AND GATING CRITERIA

Every enterprise or start-up looking to scale and roll out software releases rapidly
need to have robust DevOps process. Having well defined checks and balances in
this process is paramount. The ability to orchestrate builds (compilation / packaging
/ dependency generation / etc.), tests (validation of behavior) and other necessary
criteria (like Code reviews, complexity check, tracking of source size, etc.) is
available with many popular DevOps systems today. Additionally, using the meta
data generated by these processes to infer and improve gating criteria for commits
needs to be harnessed. As an example, knowing which of your builds / tests are
flaky (flapping between success and failure), areas of software that are vulnerable
to certain test conditions, complexity of certain areas that are growing outside the
stability range, reviews in areas or by people that are resulting in constant customer
defects, etc. need to be closely watched and derived

What is DevOps?

DevOps or Developer Operations is a philosophy of providing sound practices,
tooling and solutions between developers building software and customers who will
ultimately receive and use the same. A common terminology in the industry for this
is also the CI/CD (Continuous Integration / Continuous Development) pipeline that
gives insights during code development, test, review, commit, customer validation
and customer deployment, eventually creating a feedback loop on customer usage.

An effective and successful DevOps model is one where software development,
testing / validation and operations teams are brought together. Members from these
various teams work together across the application lifecycle with the constant goal
of generating consistent, reliable and secure application behavior in rapid time.
This model also requires setting up a pipeline or stack that allows for quick insights,
telemetry across various phases and more importantly an easy way to use the different
processes or solutions required.

There are some very intuitive and obvious benefits of having well defined DevOps
in an enterprise, some of which are as follows –

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

202

Data in DevOps and Its Importance in Code Analytics

• Rapid Application Delivery: DevOps primarily aims rapid application
delivery by allowing quick insights into latest developments across different
members in a team and across different dependent modules. It allows for
different teams to contribute their tests and checks in the process (like special
code review rules, change based testing, etc.) and makes it available for
everyone to use without actually having to know the details.

• Reliability: Reliability of various artefacts is a key principle of DevOps.
These artefacts include Building (or commonly known as compiling) code,
executing tests (unit, integration, sanity, regression), packaging of modules
and much more. Much of the reliability of these are uncovered or tested when
you have sound DevOps in place.

• Stability: Stability is a major factor when you have a rapidly scaling
application or product. Knowing how newly developed code will perform in
a ‘near-production’ environment is made possible in DevOps.

• Co-Development: When there are dependent modules being developed,
DevOps allows quick and more pertinently accurate development across
teams and owners. It also encourages better accountability and ownership
across different teams.

• Visibility: One of the greatest advantages from DevOps is the visibility into
the progress, stability & risk of everything that is being developed or fixed.
Right from having the ability to see real time details, drill down to specifics
and to go back in time to see historical information, there is a great deal of
transparency that is made possible.

Meta Types in DevOps

The following are some of the additional meta data that is available from DevOps,
and how they are useful –

Granular Details of Every Change in a
Release or Given Time Frame

When a team or group has robust DevOps process and system in place, then granular
details of every change (commit, review, static analysis, validations, unit test, sanities
or functional tests, extended regression tests and more) are made available. Knowing
how each engineer is performing around each commit and extended details around
which tests failed to catch issues or which code reviews failed to do the same, are
very critical details that are possible here.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

203

Data in DevOps and Its Importance in Code Analytics

Quantum of Changes in a Release or Given Time Frame

This when profiled for patterns will quite quickly yield details around the volume
of changes going into feature commits, complexity of these features, potential gaps
with respect to design or requirements, security & reliability of the feature, some
sort of inter-operability of modules and much more. Extending this profiling to see
the same measures for bug fixes or defects or customer reported gaps will give an
insight into potential risks in the software release as they are progressing.

Quantum of Test Coverage and Test Stability

Section 3 has articulated the importance of Code coverage from different flavors of
testing and the means to collect and analyze the different types. A DevOps system
allows this measure to be harnessed significantly by allowing teams to generate the
quantum of test coverage for a release in addition to generating at every commit
or change level. Having the ability to track incremental progress and using it to
get a measure of test stability and test performance is another important facet that
DevOps provides.

While the primary value from this is looking at code stability over a release or a
given time frame, a more meaningful use of this is also to understand the efficacy
of testing during the lifecycle of the release in the form of the following –

1. How many existing test scripts are already scaling to exercise new feature code
being developed?

2. How many existing test scripts are still catching errors or the defect density
from these scripts?

3. How are the new scripts performing relative to existing scripts in terms of
code coverage?

4. How effective are test script engineers in the new release relative to prior
releases?

All and many more questions are answered by looking at the meta data being
generated in the DevOps CI/CD pipelines. This helps release teams truly understand –

1. The progressive quality of software from a test coverage perspective
2. The progressive quality of test scripts from a test organization perspective

Significant expenses in test processes and infrastructure can be avoided by reacting
quickly and appropriately to indicators emitted from DevOps

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

204

Data in DevOps and Its Importance in Code Analytics

Approval Criteria and Failures Being Bypassed

A major aspect of the DevOps CI/CD paradigm is having a commit criteria checklist
that every developer’s commit is subjected to and is fundamentally based on the
changes being made by each developer. A sample checklist of criteria would be as
depicted in figure 12.

Analyzing commit criteria for all commits going into a release, and especially
those that had a manual override, when failures follow gives considerable insights
into which criteria are the most effective and those areas where overrides are leading
to degrading quality.

A fundamental question that can arise here – why allow manual overrides for
any of these criteria?

Figure 12. Table of sample commit criteria

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

205

Data in DevOps and Its Importance in Code Analytics

There are multiple reasons a manual override may be allowed – lack of experts
available in a given time frame, open review comments that are not critical and
can be deferred in the interest of getting a feature committed, some test scripts that
cannot be candidates for coverage based runs due to this action interfering with the
behavior of code, some tests being inconsistent while test teams try to get to the root
cause, some commits having to be of considerable size because dependent modules
have to be committed together so as not to break the branch, and many such more.

Knowing from history which overrides lead to considerable increases in
breakages or defects and also from which overriding user helps profile who should
have override privileges revoked (probably due to lack of risk profiling insights or
ability from those people).

Most successful enterprises or teams are those that are able to consistently tweak
commit or gating criteria frequently based on incremental analytical insights from
this category of meta data.

Failure Density per Software Module or Engineer

In section 1 under the Phase contained defect density module, we saw the importance
of assessing defect density in the release lifecycle. An effective variant of this in the
DevOps workflow is the ability to look at Failure density per software module or
per engineer. The figure 13 details some of these areas.

Figure 13. Table of sample patterns of failure density

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

206

Data in DevOps and Its Importance in Code Analytics

The table describes how valuable DevOps meta data is and to some extent how
it can be used for effective Code Analytics.

IMPORTANCE OF CODE ANALYTICS

As can be seen from the previous sections, code analytics plays an extremely important
role and there are plenty of indicators that can be harnessed for this purpose. It is
important to apply many of the techniques described against each section and leverage
the ability to have a clean and fast CI/CD pipeline for development.

SAMPLE EXAMPLE

The image (Figure 14) illustrates a typical DevOps flow and some of the major
steps in it.

Figure 14. Typical DevOps CI/CD Workflow

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

207

Data in DevOps and Its Importance in Code Analytics

FUTURE DIRECTION

Analytics driven and guided development is the future of software development and
Code analytics harnessing increasing data from DevOps is the direction of many
enterprises

SUMMARY

This chapter has shed light on the following –

1. Commit history definition and how it can be used for BugSpots/HotSpots
analysis, defect density determination & its usage and how ‘phase-contained
defect density’ can be an extremely useful measure of software quality &
stability. This is backed by research in BugCache for inspections: hit or miss?
(Rahman, et al, 2011)

2. Importance of peer code reviews and how over time this info can be used to
determine & identify experts in specific areas of software. This is backed by
research in Search-Based Peer Reviewers Recommendation in Modern Code
Review (Ouni, et al, 2016) and A Large-Scale Study on Source Code Reviewer
Recommendation (Lipcˇak & Rossi, 2018).

3. Definition of code coverage from testing and its different types, how & why to
measure and an effective way to use it for test stability analysis. This backed
by research in Examining the Effectiveness of Testing Coverage Tools: An
Empirical Study (Alemerien & Magel, 2014)

4. Use of static analysis and its need, an efficient use of it to significantly reduce
cost of quality and the different mechanisms to derive and use it. This is backed
by research in The Correlation among Software Complexity Metrics with Case
Study (Dr. Yahya, et al, 2014).

5. Complexity analysis and its determination, and its use in profiling software in
correlation to HotSpots and the eventual means to reduce or keep it in check.

6. Importance of data available in DevOps (CI/CD pipelines – Continuous
Integration / Continuous Delivery pipelines) and some insights on how this
data can be used for effective code analytics.

In closing, meta data from DevOps is worth its weight in gold and can be the
defining difference between sustained success and accelerated failures for teams
and enterprises

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

208

Data in DevOps and Its Importance in Code Analytics

REFERENCES

Lipcˇak. J., & Rossi, B. (2018). A Large-Scale Study on Source Code Reviewer
Recommendation. Academic Press.

Ouni, A., Kula, R. G., & Inoue, K. (2016). Search-Based Peer Reviewers
Recommendation in Modern Code Review. doi:10.1145/2025113.2025157

Rahman, F., Posnett, D., Hindle, A., Barr, E., & Devanbu, P. (2011). BugCache for
inspections: hit or miss? Academic Press.

Tashtoush, Y., Al-Maolegi, M., & Arkok, B. (2014). The Correlation among Software
Complexity Metrics with Case Study. Academic Press.

Tashtoush, Y., Al-Maolegi, M., & Arkok, B. (2014). Examining the Effectiveness
of Testing Coverage Tools: An Empirical Study. Academic Press.

Watson, A. H., & McCabe, T. J. (1996). Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric. Academic Press.

KEY TERMS AND DEFINITIONS

BugSpots/HotSpots: It is the area of a software that churns or has a lot of code
commits done to service bugs or defects.

Code Analytics: The area of study that relates to applying data driven analysis
techniques to understanding and predicting how software would perform right from
development, testing, deployment all the way to usage by customers.

Code Complexity: It is the area of work that defines and deals with a measure
of complexity for a software which can then be used to forecast stability of that
software when deployed/used by customers.

Coverage Analysis: This pertains to the application of data driven techniques
to data collected from multiple test/validation phases of a software. It also dwells
into the various techniques and methods to capturing and harnessing test coverage
meta information.

Static Analysis: This deals with the aspect of static profiling of software prior
to actual testing, and the various techniques to use the same for code analytics.

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

To continue IGI Global’s long-standing tradition of advancing innovation through
emerging research, please find below a compiled list of recommended IGI Global
book chapters and journal articles in the areas of software development, software
engineering, and machine learning. These related readings will provide additional
information and guidance to further enrich your knowledge and assist you with
your own research.

Abramek, E. (2019). Maturity Profiles of Organizations for Social Media. In R. Lenart-
Gansiniec (Ed.), Crowdsourcing and Knowledge Management in Contemporary
Business Environments (pp. 134–145). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-4200-1.ch007

Abu Talib, M. (2018). Towards Sustainable Development Through Open Source
Software in the Arab World. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing
Contemporary Application and Processes in Open Source Software (pp. 222-242).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch009

Adesola, A. P., & Olla, G. O. (2018). Unlocking the Unlimited Potentials of Koha
OSS/ILS for Library House-Keeping Functions: A Global View. In M. Khosrow-
Pour, D.B.A. (Ed.), Optimizing Contemporary Application and Processes in Open
Source Software (pp. 124-163). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
5314-4.ch006

Akber, A., Rizvi, S. S., Khan, M. W., Uddin, V., Hashmani, M. A., & Ahmad, J.
(2019). Dimensions of Robust Security Testing in Global Software Engineering:
A Systematic Review. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.),
Human Factors in Global Software Engineering (pp. 252–272). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-9448-2.ch010

209

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Amrollahi, A., & Ahmadi, M. H. (2019). What Motivates the Crowd?: A
Literature Review on Motivations for Crowdsourcing. In R. Lenart-Gansiniec
(Ed.), Crowdsourcing and Knowledge Management in Contemporary Business
Environments (pp. 103–133). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
4200-1.ch006

Anchitaalagammai, J. V., Samayadurai, K., Murali, S., Padmadevi, S., & Shantha
Lakshmi Revathy, J. (2019). Best Practices: Adopting Security Into the Software
Development Process for IoT Applications. In D. Mala (Ed.), Integrating the Internet
of Things Into Software Engineering Practices (pp. 146–159). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-7790-4.ch007

Bhavsar, S. A., Pandit, B. Y., & Modi, K. J. (2019). Social Internet of Things. In D.
Mala (Ed.), Integrating the Internet of Things Into Software Engineering Practices
(pp. 199–218). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.ch010

Biswas, A., & De, A. K. (2019). Multi-Objective Stochastic Programming in Fuzzy
Environments (pp. 1–420). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-8301-1

Callaghan, C. W. (2017). The Probabilistic Innovation Field of Scientific Enquiry.
International Journal of Sociotechnology and Knowledge Development, 9(2), 56–72.
doi:10.4018/IJSKD.2017040104

Chhabra, D., & Sharma, I. (2018). Role of Attacker Capabilities in Risk Estimation
and Mitigation. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of
Risk Mitigation and Monitoring in Software Development (pp. 244–255). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch015

Chitra, P., & Abirami, S. (2019). Smart Pollution Alert System Using Machine
Learning. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 219–235). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch011

Dorsey, M. D., & Raisinghani, M. S. (2019). IT Governance or IT Outsourcing:
Is There a Clear Winner? In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary
Approaches to Information Systems and Software Engineering (pp. 19–32). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-7784-3.ch002

Dua, R., Sharma, S., & Kumar, R. (2018). Risk Management Metrics. In R. Kumar,
A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and Monitoring
in Software Development (pp. 21–33). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-6029-6.ch002

210

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Dua, R., Sharma, S., & Sharma, A. (2018). Software Vulnerability Management:
How Intelligence Helps in Mitigating Software Vulnerabilities. In R. Kumar, A.
Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and Monitoring in
Software Development (pp. 34–45). Hershey, PA: IGI Global. doi:10.4018/978-1-
5225-6029-6.ch003

Fatema, K., Syeed, M. M., & Hammouda, I. (2018). Demography of Open Source
Software Prediction Models and Techniques. In M. Khosrow-Pour, D.B.A. (Ed.),
Optimizing Contemporary Application and Processes in Open Source Software (pp.
24-56). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch002

Ghafele, R., & Gibert, B. (2018). Open Growth: The Economic Impact of Open
Source Software in the USA. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing
Contemporary Application and Processes in Open Source Software (pp. 164-197).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch007

Gilal, A. R., Tunio, M. Z., Waqas, A., Almomani, M. A., Khan, S., & Gilal, R.
(2019). Task Assignment and Personality: Crowdsourcing Software Development.
In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global
Software Engineering (pp. 1–19). Hershey, PA: IGI Global. doi:10.4018/978-1-
5225-9448-2.ch001

Gopikrishnan, S., & Priakanth, P. (2019). Web-Based IoT Application Development.
In D. Mala (Ed.), Integrating the Internet of Things Into Software Engineering
Practices (pp. 62–86). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.
ch004

Guendouz, M., Amine, A., & Hamou, R. M. (2018). Open Source Projects
Recommendation on GitHub. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing
Contemporary Application and Processes in Open Source Software (pp. 86-101).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch004

Hashmani, M. A., Zaffar, M., & Ejaz, R. (2019). Scenario Based Test Case Generation
Using Activity Diagram and Action Semantics. In M. Rehman, A. Amin, A. Gilal, &
M. Hashmani (Eds.), Human Factors in Global Software Engineering (pp. 297–321).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch012

Jagannathan, J., & Anitha Elavarasi, S. (2019). Current Trends: Machine Learning
and AI in IoT. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 181–198). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch009

211

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Jasmine, K. S. (2019). A New Process Model for IoT-Based Software Engineering. In
D. Mala (Ed.), Integrating the Internet of Things Into Software Engineering Practices
(pp. 1–13). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.ch001

Juma, M. F., Fue, K. G., Barakabitze, A. A., Nicodemus, N., Magesa, M. M., Kilima,
F. T., & Sanga, C. A. (2017). Understanding Crowdsourcing of Agricultural Market
Information in a Pilot Study: Promises, Problems and Possibilities (3Ps). International
Journal of Technology Diffusion, 8(4), 1–16. doi:10.4018/IJTD.2017100101

Karthick, G. S., & Pankajavalli, P. B. (2019). Internet of Things Testing Framework,
Automation, Challenges, Solutions and Practices: A Connected Approach for IoT
Applications. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 87–124). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch005

Kashyap, R. (2019). Big Data and Global Software Engineering. In M. Rehman,
A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global Software
Engineering (pp. 131–163). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
9448-2.ch006

Kashyap, R. (2019). Systematic Model for Decision Support System. In A. Mukherjee
& A. Krishna (Eds.), Interdisciplinary Approaches to Information Systems and
Software Engineering (pp. 62–98). Hershey, PA: IGI Global. doi:10.4018/978-1-
5225-7784-3.ch004

Kaur, J., & Kaur, R. (2018). Estimating Risks Related to Extended Enterprise
Systems (EES). In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of
Risk Mitigation and Monitoring in Software Development (pp. 118–135). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch008

Kaur, Y., & Singh, S. (2018). Risk Mitigation Planning, Implementation, and Progress
Monitoring: Risk Mitigation. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing
the Role of Risk Mitigation and Monitoring in Software Development (pp. 1–20).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch001

Kavitha, S., Anchitaalagammai, J. V., Nirmala, S., & Murali, S. (2019). Current
Trends in Integrating the Internet of Things Into Software Engineering Practices. In
D. Mala (Ed.), Integrating the Internet of Things Into Software Engineering Practices
(pp. 14–35). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.ch002

Köse, U. (2018). Optimization Scenarios for Open Source Software Used in
E-Learning Activities. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing Contemporary
Application and Processes in Open Source Software (pp. 102-123). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-5314-4.ch005

212

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Kumar, A., Singh, A. K., Awasthi, N., & Singh, V. (2019). Natural Hazard: Tropical
Cyclone – Evaluation of HE and IMSRA Over CS KYANT. In A. Mukherjee & A.
Krishna (Eds.), Interdisciplinary Approaches to Information Systems and Software
Engineering (pp. 124–141). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
7784-3.ch006

Kumar, N., Singh, S. K., Reddy, G. P., & Naitam, R. K. (2019). Developing Logistic
Regression Models to Identify Salt-Affected Soils Using Optical Remote Sensing.
In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to Information
Systems and Software Engineering (pp. 233–256). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-7784-3.ch010

Kumar, U., Kumar, N., Mishra, V. N., & Jena, R. K. (2019). Soil Quality Assessment
Using Analytic Hierarchy Process (AHP): A Case Study. In A. Mukherjee & A.
Krishna (Eds.), Interdisciplinary Approaches to Information Systems and Software
Engineering (pp. 1–18). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7784-
3.ch001

Lal, S., Sardana, N., & Sureka, A. (2018). Logging Analysis and Prediction in Open
Source Java Project. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing Contemporary
Application and Processes in Open Source Software (pp. 57-85). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-5314-4.ch003

Latif, A. M., Khan, K. M., & Duc, A. N. (2019). Software Cost Estimation and
Capability Maturity Model in Context of Global Software Engineering. In M.
Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global
Software Engineering (pp. 273–296). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-9448-2.ch011

Lenart-Gansiniec, R. A. (2019). Crowdsourcing as an Example of Public Management
Fashion. In R. Lenart-Gansiniec (Ed.), Crowdsourcing and Knowledge Management
in Contemporary Business Environments (pp. 1–19). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-4200-1.ch001

Lukyanenko, R., & Parsons, J. (2018). Beyond Micro-Tasks: Research Opportunities
in Observational Crowdsourcing. Journal of Database Management, 29(1), 1–22.
doi:10.4018/JDM.2018010101

Mala, D. (2019). IoT Functional Testing Using UML Use Case Diagrams: IoT
in Testing. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 125–145). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch006

213

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Mansoor, M., Khan, M. W., Rizvi, S. S., Hashmani, M. A., & Zubair, M. (2019).
Adaptation of Modern Agile Practices in Global Software Engineering. In M.
Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global
Software Engineering (pp. 164–187). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-9448-2.ch007

Memon, M. S. (2019). Techniques and Trends Towards Various Dimensions of
Robust Security Testing in Global Software Engineering. In M. Rehman, A. Amin,
A. Gilal, & M. Hashmani (Eds.), Human Factors in Global Software Engineering
(pp. 219–251). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch009

Mookherjee, A., Mulay, P., Joshi, R., Prajapati, P. S., Johari, S., & Prajapati, S. S.
(2019). Sentilyser: Embedding Voice Markers in Homeopathy Treatments. In A.
Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to Information Systems
and Software Engineering (pp. 181–206). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7784-3.ch008

Mukherjee, S., Bhattacharjee, A. K., & Deyasi, A. (2019). Project Teamwork
Assessment and Success Rate Prediction Through Meta-Heuristic Algorithms. In A.
Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to Information Systems
and Software Engineering (pp. 33–61). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7784-3.ch003

Nandy, A. (2019). Identification of Tectonic Activity and Fault Mechanism From
Morphological Signatures. In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary
Approaches to Information Systems and Software Engineering (pp. 99–123). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-7784-3.ch005

Omar, M., Rejab, M. M., & Ahmad, M. (2019). The Effect of Team Work Quality
on Team Performance in Global Software Engineering. In M. Rehman, A. Amin,
A. Gilal, & M. Hashmani (Eds.), Human Factors in Global Software Engineering
(pp. 322–331). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch013

Onuchowska, A., & de Vreede, G. (2017). Disruption and Deception in
Crowdsourcing. International Journal of e-Collaboration, 13(4), 23–41. doi:10.4018/
IJeC.2017100102

Papadopoulou, C., & Giaoutzi, M. (2017). Crowdsourcing and Living Labs in Support
of Smart Cities’ Development. International Journal of E-Planning Research, 6(2),
22–38. doi:10.4018/IJEPR.2017040102

214

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Patnaik, K. S., & Snigdh, I. (2019). Modelling and Designing of IoT Systems Using
UML Diagrams: An Introduction. In D. Mala (Ed.), Integrating the Internet of
Things Into Software Engineering Practices (pp. 36–61). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-7790-4.ch003

Pawar, L., Kumar, R., & Sharma, A. (2018). Risks Analysis and Mitigation Technique
in EDA Sector: VLSI Supply Chain. In R. Kumar, A. Tayal, & S. Kapil (Eds.),
Analyzing the Role of Risk Mitigation and Monitoring in Software Development
(pp. 256–265). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch016

Persaud, A., & O’Brien, S. (2017). Quality and Acceptance of Crowdsourced
Translation of Web Content. International Journal of Technology and Human
Interaction, 13(1), 100–115. doi:10.4018/IJTHI.2017010106

Phung, V. D., & Hawryszkiewycz, I. (2019). Knowledge Sharing and Innovative
Work Behavior: An Extension of Social Cognitive Theory. In R. Lenart-Gansiniec
(Ed.), Crowdsourcing and Knowledge Management in Contemporary Business
Environments (pp. 71–102). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
4200-1.ch005

Pohulak-Żołędowska, E. (2019). Crowdsourcing in Innovation Activity of
Enterprises on an Example of Pharmaceutical Industry. In R. Lenart-Gansiniec
(Ed.), Crowdsourcing and Knowledge Management in Contemporary Business
Environments (pp. 58–70). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
4200-1.ch004

Pramanik, P. K., Pal, S., Pareek, G., Dutta, S., & Choudhury, P. (2019). Crowd
Computing: The Computing Revolution. In R. Lenart-Gansiniec (Ed.), Crowdsourcing
and Knowledge Management in Contemporary Business Environments (pp. 166–198).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-4200-1.ch009

Priakanth, P., & Gopikrishnan, S. (2019). Machine Learning Techniques for Internet
of Things. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 160–180). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch008

Priyadarshi, A. (2019). Segmentation of Different Tissues of Brain From MR
Image. In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to
Information Systems and Software Engineering (pp. 142–180). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-7784-3.ch007

215

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Rath, M. (2019). Intelligent Information System for Academic Institutions: Using
Big Data Analytic Approach. In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary
Approaches to Information Systems and Software Engineering (pp. 207–232).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7784-3.ch009

Realyvásquez, A., Maldonado-Macías, A. A., & Hernández-Escobedo, G. (2019).
Software Development for Ergonomic Compatibility Assessment of Advanced
Manufacturing Technology. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani
(Eds.), Human Factors in Global Software Engineering (pp. 50–83). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-9448-2.ch003

Saini, M., & Chahal, K. K. (2018). A Systematic Review of Attributes and Techniques
for Open Source Software Evolution Analysis. In M. Khosrow-Pour, D.B.A. (Ed.),
Optimizing Contemporary Application and Processes in Open Source Software (pp.
1-23). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch001

Sanga, C. A., Lyimo, N. N., Fue, K. G., Telemala, J. P., Kilima, F., & Kipanyula,
M. J. (2019). Piloting Crowdsourcing Platform for Monitoring and Evaluation of
Projects: Harnessing Massive Open Online Deliberation (MOOD). In R. Lenart-
Gansiniec (Ed.), Crowdsourcing and Knowledge Management in Contemporary
Business Environments (pp. 199–217). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-4200-1.ch010

Sedkaoui, S. (2019). Data Analytics Supporting Knowledge Acquisition. In R. Lenart-
Gansiniec (Ed.), Crowdsourcing and Knowledge Management in Contemporary
Business Environments (pp. 146–165). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-4200-1.ch008

Sen, K., & Ghosh, K. (2018). Designing Effective Crowdsourcing Systems for the
Healthcare Industry. International Journal of Public Health Management and Ethics,
3(2), 57–62. doi:10.4018/IJPHME.2018070104

Sen, K., & Ghosh, K. (2018). Incorporating Global Medical Knowledge to Solve
Healthcare Problems: A Framework for a Crowdsourcing System. International
Journal of Healthcare Information Systems and Informatics, 13(1), 1–14. doi:10.4018/
IJHISI.2018010101

Sharma, A., Pal, V., Ojha, N., & Bajaj, R. (2018). Risks Assessment in Designing
Phase: Its Impacts and Issues. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing
the Role of Risk Mitigation and Monitoring in Software Development (pp. 46–60).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch004

216

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Sharma, A., Pawar, L., & Kaur, M. (2018). Development and Enhancing of Software
and Programming Products by Client Information Administration in Market. In
R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and
Monitoring in Software Development (pp. 150–187). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-6029-6.ch010

Sharma, A. P., & Sharma, S. (2018). Risk Management in Web Development. In
R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and
Monitoring in Software Development (pp. 188–203). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-6029-6.ch011

Sharma, I., & Chhabra, D. (2018). Meta-Heuristic Approach for Software Project
Risk Schedule Analysis. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the
Role of Risk Mitigation and Monitoring in Software Development (pp. 136–149).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch009

Sharma, S., & Dua, R. (2018). Gamification: An Effectual Learning Application for
SE. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation
and Monitoring in Software Development (pp. 219–233). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-6029-6.ch013

Shilohu Rao, N. J. P., Chaudhary, R. S., & Goswami, D. (2019). Knowledge
Management System for Governance: Transformational Approach Creating
Knowledge as Product for Governance. In R. Lenart-Gansiniec (Ed.), Crowdsourcing
and Knowledge Management in Contemporary Business Environments (pp. 20–38).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-4200-1.ch002

Sidhu, A. K., & Sehra, S. K. (2018). Use of Software Metrics to Improve the Quality
of Software Projects Using Regression Testing. In R. Kumar, A. Tayal, & S. Kapil
(Eds.), Analyzing the Role of Risk Mitigation and Monitoring in Software Development
(pp. 204–218). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch012

Srao, B. K., Rai, H. S., & Mann, K. S. (2018). Why India Should Make It Compulsory
to Go for BIM. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk
Mitigation and Monitoring in Software Development (pp. 266–277). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-6029-6.ch017

Srivastava, R. (2018). An Analysis on Risk Management and Risk in the Software
Projects. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk
Mitigation and Monitoring in Software Development (pp. 83–99). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-6029-6.ch006

217

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Related Readings

Srivastava, R., Verma, S. K., & Thukral, V. (2018). A New Approach for Reinforcement
of Project DEMATEL-FMCDM-TODIM Fuzzy Approach. In R. Kumar, A. Tayal,
& S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and Monitoring in Software
Development (pp. 234–243). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
6029-6.ch014

Tolu, H. (2018). Strategy of Good Software Governance: FLOSS in the State of
Turkey. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing Contemporary Application
and Processes in Open Source Software (pp. 198-221). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-5314-4.ch008

Trad, A. (2019). The Business Transformation Framework and Enterprise Architecture
Framework for Managers in Business Innovation: Knowledge Management in Global
Software Engineering (KMGSE). In M. Rehman, A. Amin, A. Gilal, & M. Hashmani
(Eds.), Human Factors in Global Software Engineering (pp. 20–49). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-9448-2.ch002

Vasanthapriyan, S. (2019). Knowledge Management Initiatives in Agile Software
Development: A Literature Review. In M. Rehman, A. Amin, A. Gilal, & M.
Hashmani (Eds.), Human Factors in Global Software Engineering (pp. 109–130).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch005

Vasanthapriyan, S. (2019). Knowledge Sharing Initiatives in Software Companies: A
Mapping Study. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human
Factors in Global Software Engineering (pp. 84–108). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-9448-2.ch004

Vasanthapriyan, S. (2019). Study of Employee Innovative Behavior in Sri Lankan
Software Companies. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.),
Human Factors in Global Software Engineering (pp. 188–218). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-9448-2.ch008

Zaei, M. E. (2019). Knowledge Management in the Non-Governmental Organizations
Context. In R. Lenart-Gansiniec (Ed.), Crowdsourcing and Knowledge Management
in Contemporary Business Environments (pp. 39–57). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-4200-1.ch003

Ziouvelou, X., & McGroarty, F. (2018). A Business Model Framework for Crowd-
Driven IoT Ecosystems. International Journal of Social Ecology and Sustainable
Development, 9(3), 14–33. doi:10.4018/IJSESD.2018070102

218

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

Girish Babu has extensive experience in Architecting DevOps and prominently
around using data from DevOps in deriving effective Code Analytics insights that
largely help organisations develop software with high quality.

Jason Cox majored in computer science at the University of Tulsa and later
worked in civil engineering, helping transition from manual engineering and drafting
to CAD. He spent several years using technology to design and build public infra-
structure and residential subdivisions. He later co-founded a local internet service
provider and web hosting startup, managing datacenters and business operations.
He eventually relocated to California and took a job at Disney where he is currently
leading several SRE and platform software engineering teams. Jason is a champion of
DevOps practices, collaboration, curiosity, automation, agile and lean methodologies.
He has spoken at many conferences and has co-authored several papers on DevOps
topics. He is the author of iCurlHTTP, an iOS app for those who want to cURL on
the go. He currently resides in Los Angeles with his wife and their four children.

Andrew Glover is the Director of Delivery Engineering at Netflix. He and his
team own and operate Spinnaker, the Continuous Delivery platform that is facilitating
Netflix’s rapid global expansion. He is the founder of the 2009 Jolt award winning
easyb Behavior-Driven Development framework and is the co-author of a number
of books including 2008’s Jolt award winning Continuous Integration, Groovy in
Action, and Java Testing Patterns.

Dulani Meedeniya is a Senior Lecturer in the Department of Computer Science
and Engineering, at the University of Moratuwa, Sri Lanka. She holds a PhD in
Computer Science from the University of St Andrews, United Kingdom. Her main
research interests are Software modelling and design, Workflow tool support for
bioinformatics, Data Visualization and Recommender systems. She is a Fellow of
HEA(UK), MIET, MIEEE and a Charted Engineer registered at EC (UK). https://
orcid.org/0000-0002-4520-3819.

219

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

Brendan Murphy is a Senior Principal Researcher at the Microsoft Research
Centre in Cambridge UK. Brendan’s research area is Empirical Software Engineer-
ing focusing on Continuous Software Deployment and Security. Brendan has spent
a number of years researching software development practices at Microsoft, prior
to joining Microsoft he worked at DEC.

Chris Parnin’s research spans the study of software engineering from empirical,
human-computer interaction, and cognitive neuroscience perspectives, publishing
over 60 papers. He has worked in Human Interactions in Programming groups at
Microsoft Research, performed field studies with ABB Research, and has over a
decade of professional programming experience in the defense industry. His re-
search has been recognized by the SIGSOFT Distinguished Paper Award at ICSE
2009, Best Paper Nominee at CHI 2010, Best Paper Award at ICPC 2012, IBM
HVC Most Influential Paper Award 2013, CRA CCC Blue Sky Idea Award 2016.
He research has been featured in hundreds of international news articles, Game
Developer’s Magazine, Hacker Monthly, and frequently discussed on Hacker News,
Reddit, and Slashdot.

Charitra Patil is a Solutions Architect at MNP LLP, based in Kanata, Canada.
She has over 10 years of experience in Software industry. Proactive, multi-tasking
professional with experience in .NET Technologies, Testing, Reporting Services,
Microsoft dynamics CRM and Integrating services. Involved in full life - cycle
projects from requirement gathering, coding, testing, designing and preparing unit
test cases to user training in a multi - project environment. Adept at planning and
delivering various successful deployment activities. Excellent communication,
process knowledge, strong analytical and problem-solving skills.

Indika Perera is a senior lecturer at the University of Moratuwa, Sri Lanka.
He holds a Ph.D (St Andrews, UK) MBS (Colombo), MSc (Moratuwa), PGDBM
(Colombo) and B.Sc. Eng. (Hons) (Moratuwa). His research interests include re-
search topics of software architecture, software engineering; technology enhanced
learning, UX and immersive environments. He is a Fellow of HEA(UK), MIET,
SMIEEE and a Charted Engineer registered at EC (UK) and IE(SL). https://orcid.
org/0000-0001-5660-248X.

Zachary Pritchard works as a Security Engineer at Riot Game(s) on the Plat-
form Security team. He is a security enthusiast and has worked in many fields in
the information security industry, but currently specializes in cloud security. Previ-
ously he worked as a Security Engineer on Slack’s Platform Security Team, where
he focused on securing the code and architecture of the platform.

220

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

Iresha Rubasinghe is a postgraduate student at the Department of Computer
Science and Engineering, University of Moratuwa, Sri Lanka. She has research
experience in Software Engineering, Embedded Systems, Information Security,
Image Processing and Computer Vision. https://orcid.org/0000-0001-9232-3648.

Priti Srinivas Sajja (b.1970) has been working at the Post Graduate Department
of Computer Science, Sardar Patel University, India since 1994 and presently holds
the post of Professor. She received her M.S. (1993) and Ph.D (2000) in Computer
Science from the Sardar Patel University. Her research interests include knowledge-
based systems, soft computing, multiagent systems, and software engineering. She
has produced more than 200 publications in books, chapters, journals, and in the
proceedings of national and international conferences out of which six publications
have won best research paper awards. She is author of Essence of Systems Analysis
and Design (Springer, 2017) published at Singapore and co-author of Intelligent
Techniques for Data Science (Springer, 2016); Intelligent Technologies for Web
Applications (CRC, 2012) and Knowledge-Based Systems (J&B, 2009) published
at Switzerland and USA, and 4 books published in India. She is supervising work
of a few doctoral research scholars while 7 candidates have completed their Ph.D
research under her guidance. She has served as Principal Investigator of a major
research project funded by University Grants Commission, India.She has produced
207 publications in books, book chapters, journals, and in the proceedings of na-
tional and international conferences out of which six publications have won best
research paper awards.

Michael Stumm received his undergraduate degree in Mathematics (dipl. math.)
and a PhD in Computer Science from the University of Zurich, Zurich Switzerland
in 1980 and 1984, respectively. From 1984 to 1987 he was a researcher at IBM Re-
search and a Post-Doc at Stanford University’s Computer Science Department. He
joined the ECE Department of the University of Toronto as an Assistant Professor
in 1987, becoming Associate Professor in 1993 and Professor in 1995. Dr. Stumm’s
research interests are in the general area of computer systems software with an
emphasis on operating systems for distributed systems and multiprocessors. While
professor, Stumm co-founded two companies, SOMA Networks, and OANDA, a
currency trading company. He ran OANDA from 2001 until 2012.

Laurie Williams is a Distinguished Professor in the Computer Science depart-
ment North Carolina State University (NCSU). Laurie has been the co-director of
the NCSU Science of Lablet research center, for over six years. Laurie’s research
focuses on software security; agile software development practices and processes,
particularly continuous deployment; and software reliability.

221

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
Actual Effort 62, 65, 71, 76, 96
Agile 1-3, 6-9, 14, 22, 102-103, 105, 110,

120, 132, 158-161
Artificial Intelligence 15, 19

B
BugSpots/HotSpots 208

C
Change Detection 108, 113-114, 117-118,

120, 130-134, 143-145, 147, 154-155,
157-159

Change Propagation 98, 108, 113-114, 117,
120, 130-134, 142, 147-149, 156-159

Change Set 128, 167
Chaos engineering 172
CIA 108, 113-117, 128, 131-134, 142-143,

145-146, 148, 150, 154-155, 157-160
CICD 103, 105, 112, 117-119, 128, 133,

157-160
Code Analytics 182-183, 190, 194, 198,

201, 206-208
Code Complexity 190, 194, 198-199,

201, 208
Consistency Management 98, 105-106,

108, 113, 120, 131, 133-134, 147-148
Container 10-11, 15, 104, 149
Continuous Deployment 3, 10, 103-104,

134, 168-170, 173-175, 177-178

Continuous Integration 9-10, 16, 103, 105,
110, 114, 118, 120, 128, 130, 132-134,
144, 147, 154, 158-159, 161-162, 173,
183, 201

Coverage Analysis 112, 208
Cross-Browser 149, 167
culture 3, 9, 13, 15, 171-172, 177

D
Dark launches 178
database rollbacks 175

E
Effort Estimation Models 52, 56, 83, 88, 96
Estimated Effort 45, 49-58, 60, 62, 64, 66,

68-69, 71, 73, 76-77, 80-84, 88-90, 96
Everything as Code 19

F
Feature flags 171
Feature toggles 7, 175, 178
Fuzzy Logic 22, 26, 30-32, 40, 44, 81
Fuzzy Membership Functions 23, 26-28,

35-36, 39, 44
Fuzzy Ontology 21-23, 30, 32, 40, 44

G
Graph-Based 114, 143, 158, 167

222

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index

I
IDE 112, 117-118, 128, 132-133, 159, 173
Impact Analysis 98, 108, 114, 119, 128,

130-131, 133-134, 144, 146, 156,
158-159, 162

Industry-Level 117, 129, 133, 161, 167
IR 113, 129, 133

M
Machine Learning 15-16, 19, 57, 81
Metadata 24, 36, 40, 142, 182-183, 190
metrics 3, 5, 11, 53, 59, 64, 72-73, 83-84,

171-172, 175, 183, 194, 199
Mobile Application 49, 53, 56-57, 96
Mobile First! strategy 170

O
Ontology Engineer 44
Ontology Life Cycle 44
Open-source tools 173

P
Pair programming 8
PH-levels 171
Pipeline as Code 10, 12, 19
PM 64, 105, 129, 134
productivity 3-4, 6, 8, 11, 64, 78, 80, 103,

160, 171-172, 177
Proof-of-Work 131, 162, 167

R
RDF/XML 23, 33-35, 38, 44
Requirement Determination 44
Rule-Based 108, 110, 113-116, 133, 139,

146-147, 167

S
SAT-Analyser 112, 130-131, 133-137,

142-143, 146-151, 156-162
Scrum 7-9

SDLC 6, 46, 100-101, 107-108, 115, 118-
119, 129, 131-133, 150, 159-160, 162

Security vulnerabilities 14, 16, 178, 197
Shift-Left 14, 20
Software Application 45-46, 49-54, 56, 60,

62, 68, 74-76, 88, 96-97, 119
Software Development 1, 3-7, 9, 11, 14,

20-22, 24, 29, 31, 40, 45-47, 49-51,
53, 55-56, 59-60, 62, 64-66, 70-71,
74, 76, 78, 90, 96-105, 107-108, 117,
119-120, 129-131, 142-143, 158-159,
161, 167, 169-170, 177-178, 182, 187,
189, 194-195, 199, 201, 207

Software Engineering 1-2, 4-6, 9, 15-16,
23-26, 28, 30, 40, 46, 99-100, 162, 169

Software Process 99-102, 106, 119, 130-
131, 133

Source Code Branch 20
Sprint 7-8, 14
Static Analysis 9, 11, 173, 183, 194-198,

202, 208

T
Traceability 22, 98, 101, 105-110, 112-118,

120, 130-134, 141-143, 146-148, 150-
151, 153-154, 156-162

Trace-link creation 112, 114

U
University of Moratuwa 121, 162

V
Visualisation 98, 108, 110, 112, 114-117,

120, 130-131, 133-134, 143-144, 146,
150, 153, 158-159, 161-162, 167

W
Web Application 47, 53, 56-58, 60, 68,

71-75, 80-81, 85-86, 88, 96-97
Workflow 20, 103-105, 134-136, 145, 147-

148, 173, 183, 205-206

223

 EBSCOhost - printed on 2/9/2023 1:25 PM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright Page
	Book Series
	Dedication
	Table of Contents
	Preface
	Chapter 1: Evolution of Integration, Build, Test, and Release Engineering Into DevOps and to DevSecOps
	Chapter 2: Fuzzy Ontology for Requirements Determination and Documentation During Software Development
	Chapter 3: Software Effort Estimation for Successful Software Application Development
	Chapter 4: Artefact Consistency Management in DevOps Practice
	Chapter 5: Tool Support for Software Artefact Traceability in DevOps Practice
	Chapter 6: Continuous Deployment Transitions at Scale
	Chapter 7: Data in DevOps and Its Importance in Code Analytics
	Related Readings
	About the Contributors
	Index

