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Preface

The subject of this book is convergence of sequences in Banach spaces without a
given compact embedding, or more specifically, structural representation of such
sequences, known in applications as concentration compactness, addressed on the
functional-analytic level.

Concentration compactness became a standard tool of analysis of partial differ-
ential equations since the publication of celebrated papers [83, 84] by P.-L. Lions, fol-
lowed by the profile decomposition approach introduced by Struwe [119], generalized
to general sequences in Sobolev spaces by Solimini [112], and further generalized to
sequences in Hilbert and Banach spaces, respectively, in [104] and [113].

This book is a sequel to an earlier monograph [127], whose purpose was to give
a functional-analytic theory of concentration compactness in general Hilbert spaces,
and to illustrate this abstract approach by applications to calculus of variations,
mostly in the settings of Lions. In the present book, the focus is shifted from sampling
the known applications to a broader presentation of the method, based on the cur-
rent state of art. The book extends analysis of concentration from Hilbert to Banach
spaces, and presents realizations of concentration compactness in a variety of func-
tional spaces, while [127] dealt only with Sobolev spaces. Now into consideration come
Besov and Triebel-Lizorkin spaces, embeddings into spaces of continuous functions,
embeddings associated with the Moser-Trudinger inequality, Strichartz embedding
for the nonlinear Schrdodinger equation, and the affine Sobolev inequality. The book
also extends the notion of profile decomposition to functional spaces that do not have
a nontrivial group of invariance.

Central to this book is the notion of cocompact embedding, which in [127] ap-
pears only implicitly. Cocompactness of an embedding of two Banach spaces is a prop-
erty similar to but weaker than compactness, and it plays central role in having well-
structured profile decompositions for bounded sequences — sum of asymptotically de-
coupled “blowups.”

Chapter 1 gives a brief introduction to the basic notions of the theory and exam-
ples of an “orderly loss” of compactness (profile decomposition) in presence of co-
compact embeddings. Chapter 2 contains technical preliminaries concerning Delta-
convergence, a less-known cousin of weak convergence, involved in the profile de-
composition for Banach spaces, which are considered in Chapter 4 together with its
realization in Sobolev and other scale-invariant function spaces. Chapter 3 sums up
known results on cocompactness relative to the rescaling group (actions of transla-
tions and dilations), in Besov and Triebel-Lizorkin spaces (with Sobolev and frac-
tional Sobolev spaces as a particular case), as well as cocompactness of an embedding
of the Moser-Trudinger-type relative to a different group of logarithmic dilations.

Chapters 5 through 9 can be read independently one of the other. Chapter 5
presents further cocompact embeddings and profile decompositions. Chapter 6 dis-
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cusses defect of compactness for sequences restricted to different subspaces. Chap-
ters 7 and 8 deal with profile decompositions that do not follow from the general
framework of Chapter 4 — for nonreflexive spaces and for Sobolev spaces without
invariance. Chapter 9 presents a small selection of applications of concentration
methods to semilinear elliptic equations.

Corrections, supporting materials, etc. related to this book, will appear on the au-
thor’s personal website, http://sites/google.com/site/tintarev.

The book was written in difficult circumstances, as since 2016 the author was sub-
jected by his former employer to a complete travel ban (including host- and self-funded
travel), together with further restrictions, which brought the author to leave his job
at Uppsala University. The author expresses his warm gratitude to Academic Rights
Watch and his colleagues and collaborators at Technion, University of Toulouse —
La Capitole, Tata Institute for fundamental research, University of Bari and Politec-
nic University of Bari, for their unwavering support of his academic rights. He thanks
Torbjorn Ohlsson, attorney at law, who negotiated author’s continued access to the
library resources of his former employer.

The work on this book was completed during the author’s stay as Lady Davis Vis-
iting Professor at Technion — Israel Institute of Technology.

Haifa, December 2019
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1 Profile decomposition: a structured defect of
compactness

Let E be a reflexive Banach space continuously embedded into another Banach
space F. If (u;)ren 1S a sequence in E, then by the Banach-Alaoglu theorem, it has
a (renamed) weakly convergent subsequence, u;, — u € E. If the embedding E — F
is compact, this gives u; — u in F. Otherwise, one regards the sequence (U — W)xen>
taken up to a remainder vanishing in F, as a defect of compactness of the sequence
(W) ken-

This book studies how the defect of compactness is structured. The famous series
of four papers by Pierre-Louis Lions [82, 83] described defect of compactness for se-
quences of functions in Sobolev spaces in terms of concentration phenomena. This
book studies profile decompositions which are a more detailed structure of the defect
of compactness. They not only elaborate concentration in functional spaces, but oc-
cur in general Banach spaces as well. The more traditional approach to concentration,
based on Lions’ version, is outlined in the Appendix, Section 10.4.

In this chapter, we provide definitions, elementary examples, and some quantita-
tive ramifications for this structure.

1.1 Cocompact embeddings: definition and examples

Cocompactness is a property of embedding of two Banach spaces which is similar to
(but is generally weaker) than compactness. Cocompactness is defined via the notion
of G-weak convergence.

Definition 1.1.1 (G-weak convergence). Let E be a Banach space and let G be a set of
homeomorphisms E — E. One says that a sequence (u,),cn in E is G-weakly conver-
gent to a point u € E relative to the set G, if for any sequence (g,),en i G, 8,(u, — 1) is

. . . g
weakly convergent to zero in E. In this case, we use the notation u,, — u.

Obviously, if G = {id}, then G-weak convergence coincides with weak convergence.
This is also the case if the set G is small enough, for example, if G = {u — u o n}yeom)
on L?(RM), which is a particular case of the following.

Proposition 1.1.2. Let G be a set of bounded linear operators in a reflexive Banach space
E such that its set of adjoints G* = {g* : g € G} is sequentially compact with respect to
the strong [i. e., pointwise] operator convergence, that is, any sequence (8 )xen in G has
a subsequence (8 and there exists g € G for which g,fj v — g*vforeveryv € E*. Then
every weakly convergent sequence in E is G-weakly convergent.

Proof. Assume that u,, — u, but for some sequence (g,,),cn in G the sequence g,(u,, -
u) is not convergent weakly to zero. By the uniform boundedness principle the set

https://doi.org/10.1515/9783110532432-001
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2 =—— 1 Profile decomposition: a structured defect of compactness

G* and the weakly convergent sequence (u,, — u),cn are bounded, and since norms
of an operator and of its adjoint coincide, the set G is bounded as well. Therefore,
(8, (U, —W)) e is @abounded sequence, and there exists v € E* such that, on a renamed
subsequence, (v, g,(u, —u)) — 1, and thus, (g,,v, (u, — u)) — 1. By the compactness
assumption of the proposition, a renamed subsequence of (g, v),,c\ converges in E* to
some point w € E*. This (w, (u, — u)) — 1, which contradicts the assumption u,, — u.

O

Corollary 1.1.3. Let E be a uniformly convex Banach space and let a set G of linear
isometries on E be sequentially compact with respect to the strong operator convergence.
Then if a sequence (u,) e in E is weakly convergent, it is G-weakly convergent.

Proof. The assertion will follow from Proposition 1.1.2 once we show that the set of
adjoints G* is compact with respect to strong convergence. Indeed, if a sequence (g )
in G* converges strongly to g*, then it converges weakly in E, and from the definition
of weak convergence one has gix — gx for any x € E. At the same time, since g;
are isometries, so are g, g, and g. In particular, lim |g;x|| = |Ix]| = [igx|. Then, by
Proposition 10.1.5, g, x — gx forany x € E. O

Definition 1.1.4 (Cocompact embedding). One says that a continuous embedding
E — F of two Banach spaces is cocompact relative to a set G of homeomorphisms
E — E if for any sequence (u,) e in E,

g ..
u, — 0inE = |lu,llp — O.

Remark 1.1.5. Obviously, if G ¢ G’, then a G-cocompact embedding is also G'-
cocompact.

Example 1.1.6 (Stephane Jaffard, [68]). The embedding ¢’(Z) — €' (Z),1<p <r <
00, is not compact, since any sequence of the form u,, = u(- +n), ne N, u € £P, con-
verges to zero weakly in £, while the £’-norm on the sequence is constant. On the
other hand, this embedding is cocompact relative to the group G, = {u = u(: - j)}jcz-
Indeed, consider a sequence (u,),c in €° that converges to zero G,-weakly, that is,
such that u, (- + j,,) — 0in €’ for any sequence j, € Z. Then u,(j,) — 0 in R for any se-
quence (j,) in Z, which implies u,, — 01in £*. Since |ul]} < [ul’_? |ul?, one has u,, — 0
in ¢" for all r > p. We conclude that the embedding ¢*(Z) — ¢ (Z),1 <p < r < oo,
is G;-cocompact. Furthermore, the same argument shows that £*° is G,-cocompactly
embedded into itself.

Example 1.1.7 (Cocompactness in the Strauss estimate). Let HY*(RY), N > 2, be the
space of measurable functions whose weak derivative lies in L*(RY) and let Hrlii(]RN )
be its subspace of all radial functions. Let C,,q(R", r¥) be the space of radial contin-
uous functions on RY \ {0} with the norm |lu| = sup,.¢ r¥ |u(r)|. Then the continuous

printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.confterms-of-use



1.1 Cocompact embeddings: definition and examples =—— 3

embedding Hrléfl(RN ) — Crad(lRN , r¥) (see [115]) is cocompact relative to the group

N-2
2

G={g: umtzult),, (11)

Indeed, let u, %, 0 and assume that r, > 0, n € N, are such that
N2 1 N-2
e’ Ju(ry)| > 5 supr 2 |u,(n).
r>0
This can be rewritten as

N-2
supr Z |u,(n)| < 2|g, u,(1)|.
r>0

Since the map u — u(1) is a continuous linear functional on Hrlzﬁl(lRN ), the right- hand
side in the inequality above is going to zero, which implies that u, vanishes in the

N N2 i 17l2 (N N =2
norm of C(R™,r2"), and thus embedding H > (R") — C(R",r z ) is cocompact.

Let us illustrate how cocompactness of an embedding allows to prove existence
of minimizers in isoperimetric problems.

Example 1.1.8 (Minimizer in the Strauss estimate). Consider a minimizing problem
for the embedding of Example 1.1.7, that is,

. 2
Cy = 1Nn2f IVull5. (1.2)

Sup,,o7 2 |u(r)l=1
Using the scaling operators (1.1), we may rewrite this as

c IVul3. 1.3)

= inf
Supyrso | [gr“] (1)|:1

Let (u,)pen be @ minimizing sequence for (1.3), namely, ||Vun||§ - oy, |gu, )] < 1
forall ¢ > 0 and [g; u,](1) — 1with some sequence (f,),en Of positive numbers. Let
w, = gtnun/[gtnun](l). Then we have IIan||§ — ¢y, |[8wr](D)| < 1+0(1) forallt > 0 and
Wy, (1) = 1. Then there is aw € H-2(R") such that, on a renamed weakly convergent
subsequence, w,, — w. Then w(1) = limw, (1) = 1, while |[[g,w](1)| < 1forall ¢ > 0. By
weak semicontinuity of the norm, ||Vw||§ < liminf ||an||% = cy. Thus w is a minimizer
for (1.3) (and then for (1.2) as well), [[Vw,|, — [Vwl|,, and, consequently, w, — w
and g; u, — w in the norm of A2, (R"). Furthermore, by the scaling invariance of the

gradient norm we have

. 2
cy inf [IVull
suppso llgul(MI=1 2

. 2 2
inf [[Vull; < [Vwl; = ¢y
u(1)=1
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which gives
Cy = lnf Vu 2. 1.4
N u(d) 1” ”2 ( )

The infimum in (1.4) is necessarily attained on a continuous function which is har-
monic on open intervals (0, 1) and (1, co), which by the requirement of being an ele-
ment of H*(RY) defines it uniquely as

1, r<i;
= 1.
Yy () {rz‘N o (15)

5 2 1.

Since le(T)r¥ < 1foranyr > 0, by (1.4) it is also a minimizer for (1.3) (as well as for
(1.2)), and by an elementary evaluation of ||V1/)N||% we have ¢y = (N - 2)wy where wy
denotes the measure of the N — 1-dimensional unit sphere.

We conclude that any minimizing sequence for (1.2) admits a renamed subse-
quence and a sequence of positive numbers (t,) such that g; u, — ¥y in the norm
of H>2 (RY).

Furthermore, if w is any minimizer for (1.2), the constant minimizing sequence
(W)yen admits a sequence of positive numbers (t,),en such that gg w — ¥y in the
HYRY)-norm to 1. Then necessarily t, — twithsomet>0Oandw = g%le.

The next example is cocompactness of the embedding H™ (RY) — LI(R) rela-
tive to the group of lattice shifts on R":

def
Gn = {u e u(- e (L6)
Theorem 1.1.9. Letm € N, 1< p < co and let

pN
« {N—_mp’ N>pm,

p =
" o , N<pm.
For any q € (p,p;,), the embedding H™P RY) — LIRYN) is cocompact relative to the
group Gn.

Proof. Indeed, let (1) be a sequence in H™ (RY), such that U (- —yg) — O forany
sequence (y;) in Z". By continuity of the embedding H™P((0,1)V) — L7((0,1)V), we
have for every y € ZV,

j luy? < € j (IV’"ukl”+|uk|”)< j |uk|q)l_p/q.

(0,)N+y (0,)N+y 0,)N+y

Adding the above inequalities over y € 7" and taking into account that (u;) is
bounded in H™P(RY), we have

J lwl?<C sup( J |uk|q>1_p/q. 1.7)

ezZN
RN y O)N+y
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1.2 Profile decomposition = 5

Let now y; € Z" be such that

sup J lul? <2 J g |? = J|uk('—yl<)|q-

ezZN
YR 0V 4y O+ 1

Note that the right-hand side here converges to zero since u; (- — y;) — 0 and the em-
bedding H™P(RY) — L9((0,1)V) is compact. Thus, by (1.7), u, — 0 in LY(RY). O

Example 1.1.10. Let N > 2, and let

P N-2
G ={uw~-2"u@( _y))}yeRN,jGZ, r=—" (1.8)
Elements of G" are isometries on H l’Z(IRN ) and on L% (IRN ). With this choice of G the
. 2N
limiting Sobolev embedding H 1’Z(IRN ) — L¥=2 (IRN ) is G"-cocompact. This is a particu-
lar case of Theorem 3.2.1 presented later in the book.

1.2 Profile decomposition

We give here a definition of profile decomposition in Hilbert space. The Banach space
version, presented in Chapter 4, requires to define additional notions, which are the
subject of Chapter 2.

Definition 1.2.1 (Concentration family). Let H be a Hilbert space and let G be a group
of linear isometries of H. One says that a countable set of pairs

N
{W(n)’ (gl((n))ke]N}ne]N CHx g

is a concentration family for a bounded sequence (u,),c in H, if gf(l) =id,

-1
g e — w, (1.9)

and

-1
g,((”) g,((m) — 0 wheneverm # n. (1.10)

The functions w'™ are called concentration profiles of (uy )y, associated with scal-

ing sequences (g,i"))keN, and sequences (gf(")w("))kelN C H are called elementary con-

centrations (or blowups, or cores) for the sequence (1;)ien- Property (1.10) is called

(asymptotic) decoupling.

Remark 1.2.2. Note that, since G consists of isometries of H, g™! = g* foreach g € G

-1

and, therefore, gf{") gf(m) — 0 if and only if (g,((m)v, gf(")w) — 0 forany v,w € H. Thus,

in the context of Hilbert space, decoupling property may be also called asymptotic

orthogonality.
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6 —— 1 Profile decomposition: a structured defect of compactness

Example 1.2.3. Let H = L*(RY). If G is a group of shifts

Grv E gy + ur uC ~ ) ey (1.11)

relation (1.10) is equivalent to |yl(<") - y,((m)| — 00, since g, — 0if and only if |y;| — co.
If G is a group of rescalings {g; ,u — 2" u(2°(: ~YD}yerY ser ON L*RY), withr = N/2
so that it preserves the L2-norm, asymptotic orthogonality (1.10) is expressed by

507 s+ @+ 2O - = 00, mtn (12

since 8y, — O in LZ(]RN) if and only if |s;| — oo or |y| — co.

Definition 1.2.4 (Profile decomposition). Let (i,),cn be a bounded sequence in a
Hilbert space H. One says that (u,,) admits a profile decomposition if it has a concen-
tration family {w™, (‘g,g"))keﬂ\j}ne]N ¢ H x GN such that the series

s & Y g™ (1.13)
n
called defect of compactness converges in H unconditionally (in n) and uniformly with
respect to k, and
u -5, 2 o. (1.14)
Such concentration family is called complete.

Remark 1.2.5. If H is G-cocompactly embedded into a Banach space F, then from (1.14)
it follows that u;, — Sy, — 0 in the norm of F.

The following statement is an analog of Parseval identity in presence of asymp-
totic orthogonality.

Proposition 1.2.6. Let {w",(g,((")),< € N}en € H x GN be a complete concentration

family for a bounded sequence (uy);cn € H. Then

Tl = Y w1 + g = Sell? + 0(D), (1.15)
n

Proof. By convergence properties of the series (1.13), we may without loss of general-
ity assume that the concentration family for (1) has finitely many, say M, nonzero
concentration profiles w™. Then

2

M
2
gl = g - S+ Y gPw®
n=1
2 M M 2
= [l — Sill” + 2<uk -Si, Z gl((n)w(n)> : z g,((n)w(n)
n=1 n=1
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1.3 Brezis-Lieb lemma =— 7

||uk—Sk|| +ZZ (u —S)W )
n=1
2
+Z||g(") I Y (g w ™, g w™)
m+#n

M
= e = Sl + o) + Y W™ + 0(D).

n=1

In the transition to the last line we used the following properties: [g(")] ly, — w®

and [gk 171, — w™ (with (1.10) involved) in the second term, isometry of g(") in the

third term, and (1.10) in the last term. O

Example 1.2.7. Any bounded sequence in H**(RY), N > 3, has a renamed subse-
quence that admits a profile decomposition relative to the group (1.8), that takes the
form

N-2 (n) (n)

ZZTS" W(n) P (._y,(:l))) -0 inL%(]RN), (1.16)

with

725y A (m)

(
277 Sy (2% . +y) = w ask - oo,neN,

with the asymptotic orthogonality expressed by (1.12), and with (1.15) satisfied. Indeed,
(1.16) follows from (1.13), (1.14), and cocompactness of the Sobolev embedding from Ex-
ample 1.1.10. This example is a particular case of the profile decomposition of Solimini
[112].

1.3 Brezis—-Lieb lemma

We now address effects of asymptotic orthogonality on values of functionals in the
Hilbert space, including the norm. We start with the asymptotic orthogonality pro-
duced by weak convergence in a Hilbert space: if u, — u, then (u,u;, —u) — 0, and
thus (u;) has an asymptotically orthogonal decomposition into u and u; —u. This leads
to an “asymptotic Pythagoras theorem”:

lgll® = Tl + g =l + 0(1), (117)
which follows from the asymptotic orthogonality in the obvious identity
g = Tl + g = wl’® + 20 — w4, w).

The Brezis-Lieb lemma gives a similar property for the quantity ||u||p defined for
a measure space, under assumption of convergence almost everywhere which is a
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8 = 1 Profile decomposition: a structured defect of compactness

stronger assumption than weak convergence (cf. Lemma 1.3.1 below). Further in this
section, we illustrate how the Brezis—Lieb lemma and relation (1.17), together with
cocompactness, yield existence of minimizers in the Sobolev inequality.

Lemma 1.3.1. Assume that (u,),cn iS a bounded sequence in LP(Q, ), p € (1, co), where
(Q, ) is a measure space. If u,, — u almost everywhere, then |u,, — u| — 0, and, conse-
quently, u, — u.

Proof. Without loss of generality, we may assume thatu = 0.Letv ¢ i (Qu,p' = z%’
and let

A, = {x € Qs ju,(0)| < veol” N, B, =Q\A,

By the Hoélder inequality, we have

1/p'
[ tnltvice < [ nlividp + ||un||p(j i du)
Q A, B,

NV
< J]lAnlunllv|d)1+C<J113n|v|1‘J dy) )
Q Q

Both integrands are bounded by an integrable function |v|? "and converge to zero
a. e., so the right-hand side vanishes by the Lebesgue dominated convergence theo-
rem. -

Theorem 1.3.2 (Brezis—Lieb lemma — general nonlinearity). Let 1 < g < oo and let
(Q, u) be a measure space. Let F : Q — R be a continuous function satisfying

|F(a+b) - F(a)| <€lal? + C.|bl?, a,beR,e>0. (1.18)

If (U,) e 1S a sequence bounded in L(Q, u) and convergent almost everywhere in Q to
a function u, then

J F(u,)dx = JF(u)dx + JF(un —u)dx + 0o(1). (1.19)
Q Q Q

Proof. Note that (1.18) with a = 0 gives that |F(s)| < inf, C, |s|?. Let ¢ > 0 and
def
Vi S (|F(uy) - F(uy, —w) — F(u)| - el - ul9),, (1.20)

so that v — 0 almost everywhere in Q. Combining (1.18) for a = w; — u, b = w; with
the estimate on F(u) by |u|?, we have

Vi = ([F(uy) - F(u, — w) - FW)| - el - ul?), < Cllul’. 1.21)
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1.3 Brezis-Lieb lemma =— 9

Then by the Lebesgue dominated convergence theorem, IQ vidu — 0. This implies

lim sup J|F(uk) - F(uy —u) - F(u)|du < elimsup J [uy — ul?du.
Q Q

Since ¢ in the right-hand side above can be arbitrarily small, (1.19) follows. O

Most often the name Brezis—-Lieb lemma is applied to the following particular case
of Theorem 1.3.2.

Corollary 1.3.3 (Brezis—Lieb lemma). Let q € [1,00) and let (Q, u) be a measure space.
Assume that (u;)ycn 1S a bounded sequence LY(Q, ), convergent to w almost every-
where. Then

J |y | Py - J lug —w|9dp - J lw|?du — 0. 1.22)
Q Q Q

Remark 1.3.4. Since lim,_,,(a? + bq)% = max{a, b} whenever a, b > 0, it is natural to
ask if the following analog of the Brezis-Lieb lemma for g = co is true:

U —wa.e. = [[Uugllo, = max{[wlly,, llug — Wi} + 0(D).

The answer is, without additional conditions, negative. Consider w(x) = sin %, X €
(0, %), and let up(x) = w(x) + I3 (x - 2,{7117/2)), where ¢ is a nonnegative smooth
function, supported in (—%, l%n) with @(x) < ¢(0) = 1. Then u;, — w pointwise in

(0, ), luglloo = 2 while Jlu = Wilgo = IWllgo =1 # 2,

If we heuristically understand the Brezis—Lieb lemma as a consequence of asymp-
totic separation of supports of w and (u;, — w), then the counterexample above is the
consequence of w and (1;, —w) having their peak values at the same point. The follow-
ing statement imposes a condition of local uniform convergence that separates the
maximal values.

Lemma 1.3.5 (Brezis—Lieb lemma for g = 00). Let (uy)ren be a bounded sequence in
L*®(Q, p), where (Q, u) is a measure space. Assume that for every € > 0,

uy, converges to w uniformly on the set Q, = {x € Q: |w(x)| > €}. (1.23)
Then
luglloo = max{wllo.q. lux — Wi} + o). (1.24)

Proof. In two cases, when w = 0 a. e. or when u; — w uniformly in Q, the assertion
is trivial. It suffices then to prove the lemma when w # O on a set of positive measure
and that 6 = limy_,, lug = Wlloo 0 > 0. By (1.23), for every € > 0, [luy — Wl 0\, — 6-
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Fixe > 0, ¢ < min{|w| q- %5}. Then we will have |u;, - WIIOO,QS < € and [[ly, -
Wleoq — ||uk||00,Q\QEI < ¢ for all k sufficiently large, and thus

luilloo,0 = max{lluglloo, g, ltillco,0\0, }

< max{"W"oo,Q’ ”uk - W"oo,Q} + 2e.
At the same time,

Il o,0 = Max{llugll o0, Ukllco,0\0, }

> max{[wle,q,» luloo,o\q,} — € 2 max{wl, o, lue = Wileo 0} — 2.
Since € is arbitrary, (1.24) follows. O

Remark 1.3.6. The Brezis—Lieb lemma, as well as its generalizations, Theorem 1.3.2
and later Theorem 4.7.1, remain valid also in the case when u, k € N, are functions
with values in R™, m ¢ N. The proof remains verbally the same provided that one
reads the notation | - | as a norm in R™.

Example 1.3.7. Let N >3 and let2* = 2. The minimum in

S= inf j (Vul?dx (1.25)
ueH(RV), |lul,+=1

IRN

is attained. Moreover, for every minimizing sequence (u,,),cn in H 1’Z(IRN ) (i. e., such
that lu,l,- = 1and IIVun||§ — S) there exists a renamed subsequence and sequences
Vp)nen in RY and (s,,) e in R, such that sequence

vy B2, (- y,), neN, (1.26)
converges to a minimizer in the norm of H*(RY). Indeed, if (1), is @ minimizing
sequence, then for any choice of sequences (y,,) in RY and (sp) in R, the correspond-
ing rescaled sequence (1.26) will be also a minimizing sequence. It may not occur,
however, that the corresponding rescaled sequence (v,,) will weakly converge to zero
for all choices of (y,) and (s,), since by cocompactness of the embedding H L2RNY
L (RY) (Example 1.1.10), one would have u;, — 0inL* (RY), which is a contradiction.
Let us therefore fix a renamed subsequence of (y,,), (s,,) and (u,,) such that correspond-
ing rescaled sequence (v,) converges weakly to some v # 0. It is easy to show that v is
a minimizer. Indeed, by (1.22) and (1.17) we have

1= Val3e = VI3 + v, = VI3 +0(1), (1.27)

S = [Vvul3 = IVVIB + IV, — VI3 + o(1). (1.28)

Lett = ||v||§:. Then by (1.27) we have |v,, - v||§I — 1-t, and by (1.28) we have S >
St¥ +S(1- t)¥, which can hold, given that ¢t # 0, only if t = 1. Consequently, v, —» v
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1.4 Lions’ lemma for the Moser-Trudinger functional = 11

inr? (]RN ) and thus ||v]|,- = 1. From the weak semicontinuity of the H 1’2(]RN )-norm, it
follows that v is a minimizer, and, sincev,, — vand |Vv,|, — [|Vvl,, wehavev, — vin
HY(RY). By the Polia—Szegb inequality (or the symmetry argument in [60]), the mini-
mizer is necessarily decreasing radial with respect to some point, and thus it satisfies
an ordinary differential equation of second order. Conditionv € H**(RY) together with
normalization selects a unique, up to a scaling (1.1), nonsingular radial solution

%

y- NNV-2]© (1.29)

A+1)'7

1.4 Lions’ lemma for the Moser-Trudinger functional

Let O ¢ RY, N > 2, be a bounded domain and let ay = Nw%(N’l) where wy = ZF’Z—;”; is
2
the area of the unit N — 1-dimensional sphere. In particular, a, = 47. The following

inequality is known as the Moser-Trudinger inequality:

N
N-1
sup Ay < 00, a<ay. (1.30)
ueHg" (Q), [Vully<1 g

It is known that, despite that the functional may lack a uniform bound on a bounded
set,

N
J M dx < o foranyu € HYV(Q)and A > 0. (1.31)
a

Indeed, for any € > O there exists M, > 0 such that |[V(lu| - M,). |y < €, so that, using

the inequality |a + b|? < 277 (a? + b?) fora,b > 0, q = %, we have

N N
J AN g J MM (1M [ FT g
Q Q

1 N 1 N
< M2TMNT Jem—l (=M T g

Q

We fix now € > 0 small enough so that the integral in the right-hand side is bounded
by (1.30).

Lemma 1.4.1 (Lions, [84]). Let Q ¢ R, N > 2, be a bounded domain and let sequence
(Up)pen N H(l)’N (Q), IVuylly < 1, converge weakly to a function u. Then for any

a
a< N

L bl
lim sup [|V(u, - wly"
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one has
N
lim sup J 4l 4y < oo, (1.32)
Q

Proof. We give the proof for N = 2. For the general case see [84]. Let us use the follow-
ing obvious inequality: for every e > 0 and € R,

A+ -1 +e)t* <1+1/e (1.33)

Set v, def u, — u. Note that lim sup IIanllg <1- IIVuII% by (1.17). Then, with any € > 0
such that a(1 - &)(1 - ||Vu||§)2 < a, we have by (1.33),

Unl® = [u+Vpl? < 1+ &) Vyl* + (1 +1/€) ul’.

2
oy |

Applying Holder inequality to e
get, with any r € (1, 0),

1/r
Jealunlzdx < <J etx(1+£)r|vn|2dx> (I ezx(1+1/£)r’|u|2dx>
Q Q Q

Setr close enough to 1and € small enough so that a(1+¢)r lim sup [|[Vv,, ||§ < ay.Then the
first integral in the right-hand side will be bounded by the Moser-Trudinger inequality.
The second integral will be bounded by inequality (1.31). This proves the lemma. [

and taking into account the estimate above, we

1/r'

N
Corollary 1.4.2. The functional IQ M dy, & < ay, is weakly continuous at any point
of fu e HYV(Q), [Vully < 1}, unless a = ay and u = 0.

Proof. Like in Lemma 1.4.1 we give the proof for the case N = 2, with a, = 4. Let

u, — U, [Vu,ll, <1.Letp € (1, %), noting that the interval is nonempty whenever

a < 4 oru # 0. By (1.17) lim sup |[V(u,, - w)|3 < 1 - |[Vul;3, so we have

4it/a
lim sup |V (u, - w3’

(1.34)

2
We have, using the derivative of e¥®*(1-01

Holder inequality with exponent p,

with respect to t € (0,1), and applying

J eauf,dx _ J eauzdx‘
Q Q

1
2
2a J J et U (4 (1 - t)u)(uy, — u) dxdt
00
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1 1
p i ’ !
< 871 sup (J BP(ttn+(1-00)" dx) <I|tu,l +(1- t)u|p [u, — ul’ dx>p .
te[0,1]
Q
Let us apply Lemma 1.4.1, taking into account (1.34). It is easy to see, following the
proof of Lemma 1.4.1, that the bound in (1.32) for the family of sequences tu, +(1-t)u —
u, t € [0,1], is uniform in ¢, so the first multiple in the right- hand side is bounded,
while by compactness of Sobolev embedding for 2-dimensional bounded domains the
second multiple converges to zero. O

In Section 3.11, we address further weak continuity properties of the Moser—
Trudinger functional.

1.5 Bibliographic notes

Example 1.1.6 is based on Proposition 1 of [68]. The term profile decomposition is due
to Gallagher [53], and the term cocompact embedding was introduced by the author in
[125]. The notions themselves have been in use well before the adopted terminology.
An early proof of cocompactness for subcritical Sobolev embeddings, Theorem 1.1.9,
can traced to a lemma by Lieb in [76]. The earliest proof of cocompactness of Sobolev
embeddings on RY relative to the group rescalings G (Example 1.1.10), known to the
author, is due to Solimini [112].

Lemma 1.3.1 is quoted from [134, Proposition 5.4.7]. The Brezis-Lieb lemma is a
simplified version of [25, Theorem 2], and Corollary (1.3.3) is [25, Theorem 1]. Existence
of minimizer in the limiting Sobolev embedding was proved by Talenti [121], while the
proof given in Example 1.3.7 follows [18] (a textbook version is [120, Theorem 4.2]).
The same paper gives a profile decomposition (restricted to critical sequences of the
semilinear elliptic functional) for the embedding H**(R") — I (RY), which was ex-
tended to general sequences by [112].

The Moser-Trudinger inequality has been first proved, without the optimal con-
stant ay, by Yudovich [135], and independently reproduced by Pohozhaev, Peetre,
and, finally, Trudinger [130]. The version with the optimal constant is due to Moser
[94], who also introduced Moser functions as test functions for the optimality of the
constant. Similar borderline embeddings for Hg’p (Q) with sp = N are known as well;
see [1, 88, 97]. Lions lemma was proved in [84].

We make a brief mention of another weak convergence method, which like con-
centration compactness, is also applied to finding solutions to PDE. The method orig-
inates in works of F. Murat and L. Tartar who gave it a similarly sounding name com-
pensated compactness. We will exemplify it by a modified version of Murat’s lemma
[124, p.278]. Let @ ¢ RN, N > 2, be a bounded domain. If Y — uin H>1(Q), then
Vu, — Vuin LY(Q) is generally false. A correct counterpart of this statement, based on
the modified Calderéon-Zygmund theorem, says that the assertion becomes true if one
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assumes in addition that Vzuk is bounded in the Hardy space HY(Q) ¢ LY(Q) instead
of being bounded only in LY(Q).

In other words, a missing compactness property of a Sobolev space is recovered
in a suitably chosen large subspace.

The space #!(RY) is characterized by equivalent norms

max ||al-(—A)_%u||1 and "suplht * u||| ,
i=1,...y >0 1

where h; = tN h(t™)andh € Ccy (IRN ) is a nonnegative function with .[]RN h(x)dx = 1.
In a heuristic sense, functions in 7' have a less oscillatory character than functions
in L' \ #'. Furthermore, nonnegative functions in #;, are characterized by improved
integrability ulogu € Lj . (a result by Elias Stein). The dual of #' is the space BMO
(see the Appendix, Section 10.2) and #! = VMO*, where VMO(RR") is the closure of the
Schwazrz class of rapidly vanishing functions in the BMO-norm. An important property
of #1, extending Lemma 1.3.1 where p € (1, 00), is that a bounded sequence in H!
convergent almost everywhere is weakly*-convergent to the same limit; see [70].

An important paper [32] of Coifman, Lions, Meyer, and Semmes presents a range
of cases, where functions in ! emerge naturally (a local version of this statements is
also true):

1. Ify; e HP(RY,RY), p; € (1,00), YN, 5 =Li=1..N,N>2andu= u,...,uy),
then Jacobian det Vu is in HI(RN ) and not just in Ll(]RN ).
2. Ifue Hl’z(]RN,]RN), N > 2,and divu = 0, then

N ou. ou;
Z ou; %Y e HI(RM).
A= 0X; OX;
ij=1 ""J l

3. IfE € I?(RV,RY), B € I’ (RV,RY), p € (1,00), N > 2, divE = 0, and curl B = 0,
thenE - B € H'(RY).
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2 Delta-convergence and weak convergence

Delta-convergence was originally studied in the context of the fixed-point theory, but
it has recently emerged as a technical tool for dealing with profile decompositions in
Banach spaces.

Delta-convergence is a mode of convergence in metric spaces similar to weak con-
vergence, and in Hilbert spaces it coincides with weak convergence. As it follows from
Theorem 2.1.3 below, in IP-spaces, 1 < p < co, Delta-convergence of u,, to u is equiv-
alent to |u, — ul(pfz)(un -u) — 0in Lp/, which is generally different from weak con-
vergence unless p = 2. Note also that from Lemma 1.3.1 it follows that if u, — u a.e.
and is bounded in I?; then u,, is both weakly and Delta-convergent to u. Similarly to
the Banach-Alaoglu theorem (Theorem 10.1.1), every bounded sequence in a metric
space (satisfying certain convexity conditions) has a Delta-convergent subsequence.
Unlike weak convergence, which is a topological property, Delta-convergence depends
on the norm, but weak and Delta-convergence may coincide under a suitable choice
of an equivalent norm.

2.1 Definition of Delta-convergence

Definition 2.1.1. Let (E, d) be a metric space. One says that a sequence (x,,),¢p in E is
Delta-convergent to a point x (to be written x,, — x), if forany y € E,

d(Xp, X) < d(Xp, ¥) + Ons0 (1) 21

(The remainder in (2.1) is not supposed to be uniform with respect to y.) Heuristi-
cally, a Delta-limit of a sequence can be understood as a point closest to the tail of the
sequence, in the asymptotic sense. Delta-limit is not necessarily unique.

In Hilbert spaces, Delta-convergence and weak convergence coincide.

Theorem 2.1.2. Let (x,,),en be a sequence in a Hilbert space H and let x € H. Then
X, — xif and only if x,, — x.

Proof. Consider the following identity, which is immediate by expansion of the scalar
product:

I = xI? = Iy = yIP = Ix = yI” = 206, - X, x - ),y € H. (2.2)
Assume first that x,, — x. Then from (2.2), it follows that |x,, — x|* = [, - y|I* - [Ix -

vyl + 0(1), which immediately implies x,, — x.
Assume now that x, — x. Let z € H be a unit vector and sety = x — tz, t > O.

Applying the definition of Delta-convergence to (2.2), we have

—lx = yI* = 206, = %, X = ¥) = X, = xI” = Ix,, = YI* < (1),

https://doi.org/10.1515/9783110532432-002
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which gives 2t(x, - x,z) < o(1) + t? and, therefore, lim sup(x, — x,z) < t/2. Since t is
arbitrary, lim sup(x,, —x, z) < 0, and since z is an arbitrary unit vector, replacing z with
-z gives liminf(x,, — x,z) > 0. Thus (x,, — x,z) — 0 whenever |z| = 1 and, therefore,
Xy — X. O

The proof above can be generalized in a way that yields a characterization of Delta-
convergence in a uniformly smooth Banach space. Recall that if the space E is uni-
formly smooth, then the function N(x) def %Hxll2 is Frechet-differentiable at any x # 0
with the derivative uniformly continuous on bounded sets bounded away from zero.
Moreover, x* def N'(x) is the unique conjugate element of x, that is, ||x*|z- = |lx| and
(x*,x) = |x||°. See [80, Section 1e] for details.

Theorem 2.1.3. Let (x,,)cn be a bounded sequence in a uniformly smooth Banach space
E,andletx € E. Thenx,, — x ifand only if (x,, — x)* — 0inE".

Proof. Note that N(x) is a convex function. Indeed, using convexity of the norm and a
trivial inequality (a® + b%) < 2a® + 2b?, we have
x+y) 1/1 1\ 1 1
N(X52) < 2(Sim+ m) < 3N+ N0,
Let z, = x,—x. We may assume that |z, | is bounded away from zero, since when x,, — x
in norm the assertion of the theorem is trivial.

Assume first that x, — x. Then z, — 0, and for any unit vector w and ¢ > 0,
N(z,) < N(z, + tw) + o(1). This implies, by convexity of N, that (N’ (z,, + tw), tw) > o(1).
Then lim inf(N'(z, +tw), w) > 0, and since N' is uniformly continuous on the sequence
(z,), by taking t — 0, we get liminf(N’(z,),w) = 0. Replacing w with —w we arrive at
(N'(z,),w) — 0, that is, (x, —x)* — 0in E*.

Assume now the converse, that (z,)* — 0 in E*. By convexity of the function N,
N(z, +V) = N(z,) + (N'(z,),v) for any v € E. Since the last term converges to zero, we
have N(x, - x) < N(x,, - x + v) + o(1), and thus x,, — x. O

2.2 Chebyshev and asymptotic centers. Delta-completeness and
Delta-compactness

Let (E, d) be a metric space.

Definition 2.2.1 (Chebyshev center and Chebyshev radius). Let A c E be a non-empty
set and let

I,(y) =supd(x,y), yE€E, (2.3)
xX€A
and

rad (4) < inf I, (y). .4)
yeE
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Quantity (2.4) is called the Chebyshev radius of A, and a minimum point in (2.4), if it
exists, is called Chebyshev center of A, cen (4).

In general, Chebyshev center is not unique.

Definition 2.2.2 (Asymptotic radius and asymptotic center). Let (x,,) e be a sequence
in a metric space (E, d), and let

Is(y) = limnsup d(x,,y), ye€E. (2.5)

The asymptotic radius rad x,, is the infimum value of the functional (2.5) over y € E,
and asymptotic center of the sequence cen x,,, if it exists, is a point of minimum of the
functional (2.5).

Definition 2.2.3 (Asymptotic completeness). One calls a metric space (E, d) asymptot-
ically complete if every bounded sequence in E has an asymptotic center. If, in addi-
tion, the asymptotic center of every bounded sequence is unique, (E, d) called strictly
asymptotically complete.

We will show soon that strict asymptotic completeness of a complete metric space
can be assured by the uniform rotundity condition, which in restriction to Banach
spaces coincides with uniform convexity. To illustrate how the notions above are used
in the fixed-point theory, we give below a version of the Browder fixed-point theorem
for metric spaces.

Theorem 2.2.4. Let (E, d) be a strictly asymptotically complete metric space and let T :
E — E be a nonexpansive map, that is, d(Tx, Ty) < d(x,y) for all x,y € E. Let w € E, be
such that the sequence T"w is bounded and let ¢ = cen T"w. Then Tc = c.

Proof. By definition of the asymptotic radius, rad T"w = limsup d(T"w, c). Note,
however, that since T is nonexpansive, limsup d(T"w, Tc) < limsup d(T" 'w,c) =
rad T"w, which means that Tc is also an asymptotic center of (T"w), but by the as-
sumption of strict asymptotic completeness the asymptotic center is unique, and thus
Tc =c. O

Note that this fixed-point theorem appears elementary only because the condition
of strict asymptotic completeness may be hard to satisfy.

Proposition 2.2.5. A sequence (x,),cn in the metric space (E, d) is Delta-convergent to
x if and only if every subsequence of (x,,) has x as its asymptotic center.

Proof. Let x,, — x and let (v,)),n be a subsequence of (x,,),,cn- Then (2.1) holds for
(Vp)nen- and by taking the upper limits in the both sides of (2.1) one has I,(x) < I(y)
for any y € E, which implies that x is an asymptotic center of (v,,) pen-

Assume now the converse, namely that x is an asymptotic center of every sub-
sequence of (X,)pens but (X,),en IS not Delta-convergent to x. Then there would
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exist a subsequence (v,)p,en Of (X)pens @ point y € E and an € > O such that
d(v,,x) = d(v,,y) + €. Taking the upper limit in both sides, we have limsup d(v,,,y) <
lim sup d(v,,,x) — €, which implies that x is not an asymptotic center of (v,) N, @
contradiction. O

Remark 2.2.6. By Proposition 2.2.5 a Delta-limit of a sequence in a metric space is its
asymptotic center, but the converse is not true. For example, the asymptotic center
of the sequence ((-1)"),¢n in R is 0, but the sequence is not Delta-convergent. All its
Delta-convergent subsequences are constant sequences (1),cn Of (-1)pen-

Theorem 2.2.7 (Delta-compactness theorem, T.-C. Lim [78]). Let (E,d) be an asymp-
totically complete metric space. If (x,)qen IS a bounded sequence in E, then it has a
Delta-convergent subsequence.

Proof. In this proof, we will write (x;)ren < ()ken if (X;) is @ subsequence of (x;).

Let r, = inf{radv, : (v,) < (x,)}. Choose a subsequence (v\") < (x,) so that
rad v,(f) < r0+%. Set inductively, assuming that subsequences (vfl’”)) << (vﬁll)) < (xy)
are defined, r,, = inf{radv, : (v,) < (vﬁ,’”))} and choose (vﬁ,m“)) < (vﬁl’")) such that
radv™™ < r, + zi,,, Note that (r,,)men iS @ nondecreasing bounded sequence, and
set r = limr,,. Let now w, = v, n € N. Since for every m € N, (Wp)yomsq < (VI™D),
radw, <r,+ 2lm This implies that rad w,, = r, and the same conclusion applies to any
subsequence of (w,,).

By asymptotic completeness sequence (w,,) has an asymptotic center, which we
denote as x. Let (v,) < (w,) and assume that x is not an asymptotic center of (v,). By
asymptotic completeness, (v,,) has then an asymptotic center different from x, which
we denote by y. Since x is not an asymptotic center, lim sup d(v,,,y) < lim sup d(v,, x),
but this implies radv,, < r, a contradiction. Thus x = cen v,,. Since (v,) was an arbi-
trary subsequence of (w,), by Proposition 2.2.5 we have w,, — x. O

Remark 2.2.8. Since Theorem 2.1.2 identifies Delta-convergence in Hilbert spaces
with weak convergence, once we know that Hilbert spaces are asymptotically com-
plete (see the next section), Theorem 2.2.7 proves the classical Banach—Alaoglu theo-
rem (Theorem 10.1.1) in the case of Hilbert space.

2.3 Rotund metric spaces

We now consider a class of strictly asymptotically complete metric spaces, which in-
cludes all uniformly convex Banach spaces and exhibits an analogous weak (i. e.,
Delta-) compactness property.

Definition 2.3.1 (Uniformly rotund space, John Staples [114]). A metric space (E,d) is
uniformly rotund if there exists a functionn : [0, 00)? = (0, c0) such that for any 6 >0
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and for any x,y € E with d(x,y) > § and for some n = n(r, 6)
rad(B,,,(x) N B,,,(y)) <r—n foranyr > 0. (2.6)

As we show below, this property is a natural generalization of the property of uni-
form convexity in normed vector spaces, which is defined as follows (see [80, Defini-
tion 1.e.1])

V6>03n>0: x,yeE,nxns1,||y||s1,||x—yu25=>”’% 1o @D

Proposition 2.3.2. A normed vector space E is uniformly convex if and only if it is uni-
formly rotund.

Proof. Uniform rotundity of a uniformly convex normed vector space follows imme-
diately from (2.7). Let us show the converse, namely that if the normed vector space is
uniformly rotund, then it is uniformly convex. Let ||x|| < 1, |ly|l < 1, such that |x-y|| > 6.
It follows easily that both 0 and x + y belong to B;(x) n B;(y). By uniform rotundity,
setting n = n(1,&), we have rad(B;(x) n B;(y)) < 1 - n. Therefore, |x +y - 0| <
2 rad(B;(x) N B,(y)) < 2-2nand so |5¥| < 1- 7 follows, thus proving uniform
convexity. O

Uniform rotundity assures uniqueness of asymptotic centers, and for complete
metric spaces, existence of asymptotic centers as well.

Proposition 2.3.3. Let (E, d) be a uniformly rotund metric space. Then every bounded
sequence in E has at most one asymptotic center.

Proof. Let (x,)nen be a bounded sequence in E. Assume that it has two asymptotic
centers x # y and an asymptotic radius r. Then lim sup d(x,,, x) = limsup d(x,,y) = r.
From uniform rotundity, it follows immediately that there is 7 > 0 and a point z ¢
B, 0 (x)NB, +,1(y) such that lim sup d(x,,, z) < r, which is in contradiction to r being the
asymptotic radius of (x,,). O

Corollary 2.3.4. If (x,),en IS bounded sequence in a uniformly rotund metric space, then
it has at most one Delta-limit.

Proof. Since Delta-limit of a sequence is its asymptotic center by Proposition 2.2.5, the
assertion follows from uniqueness of the asymptotic center (Proposition 2.3.3). O

Theorem 2.3.5. Let (x,),en be a bounded sequence in a uniformly rotund metric space
(E,d). Then every sequence (Vy)ren that minimizes the functional (2.5) for (x,) is a
Cauchy sequence.

Proof. 1t suffices to consider the case r def rad x,, > O, since if r = O the zero infimum
value of the functional (2.5) can be attained only on a Cauchy sequence.
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Assume that there is a minimizing sequence (y,,) e for (2.5), which is not Cauchy.
Then there exists € > 0 such that for any N € N there exist integers m,n > N, such
that d(y,;,y,,) = €. Then, by uniform rotundity, for N large enough there exists n > 0
such that rad x,, < rad (B,,,(V;) N B,y (yn)) <1 -1, which is a contradiction. O

Combining this theorem with the definition of complete metric space and Propo-
sition 2.3.3, we have the following statement.

Corollary 2.3.6. Every complete uniformly rotund metric space is strictly asymptotically
complete.

Delta-convergent sequences in uniformly rotund metric spaces always satisfy a
stronger relation than (2.1.1).

Proposition 2.3.7. Let (E,d) be a uniformly rotund metric space. Let (x,),en be a
bounded sequence in E, Delta-convergent to some x € E. Then, for each element z € E,
z # X, there exist positive constants n, and c depending on z such that

d(x,,x) <d(x,,z) —c foralln > n,, (2.8)

Proof. 1f the assertion is false, we can find z # x and a subsequence (x; ),en Such
that d(xkn,x) - d(xk",z) — 0. Passing again to a subsequence, we can also assume that
d(xkn,x) — 1> 0. Setn =n(r,d(x,z)). Since, for large n, Xy, € Brm(x) nB,+,1(z), we can
deduce from (2.6) existence of y € E such that d(xkn,y) < r — n, which contradicts the
Delta-convergence of (x,,) to x. O

Boundedness of Delta-convergent sequences stated below, similar to that of
weakly convergent sequences, is a consequence of the uniform boundedness prin-
ciple, although this is not as immediate as in the case of weak convergence.

Theorem 2.3.8. Every Delta-convergent sequence in a uniformly convex and uniformly
smooth Banach space is bounded.

Proof. Let (x;)ren be a Delta-convergent sequence in a uniformly convex and uni-
formly smooth Banach space E. Since x;, — x is equivalent to x;, — x — 0, without
loss of generality we may prove the theorem for the case x; — 0.

Since strongly convergent sequences are bounded, we may restrict the argument
tothe caseinf ||x; | > 0. Since E is uniformly smooth, there exists a continuous function
n on [0, 1] with nonnegative values, such that (see [80, p. 61]) lim,_,, n(¢)/t = 0, and

[lu+ vl = llull = (u*,v)| <n(Ivl), whenever ull =1and |v| <1.
Then, using the notation y(u,v) = lu + v|| - |ul| - (u*,v), u,v € E, we have

2 2
e+ VI = ull® = (e + VI = Tl (lc+ vi= Tl + 20l

= (y(u,v) + (u*,v))2 +20ull(y@, v) + (u*,v)).
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Substitute now u = 2% andv = =
Il {1l

tion 2.3.7 we have for all k sufficiently large (but not uniformly with respect to z)

with an arbitrary vector z. Then, by Proposi-

2 2 2
0 < [Ix +z[I” = lxgll” = ag + 2llxy Nl

where
X z *
a = I ||2y<—,—) + Il /el 2).-
= PV o o ) ¥ 10 el 2)
Consequently, either a; > 0 or a; < -2|lx; | — —oco. The latter case can be easily ruled

. . X
out, since [Ixgll/Ixll = 1, (x¢/lxll, z) is bounded, lxllw (kg o)l — O as lxll — oo,

and so ay is bounded. Therefore, for k sufficiently large, one has
Xj z %
by i 50 ) + il ) >
W Gl )+ %/l 22

and thus,

(e /xill, 2y > —n(t) /.

where ¢, = 1/|Ix; ]l — 0. In other words, we have |[((||x; )x; /Ixll, )| < 1, for k suffi-
ciently large (without, as we keep noting, uniformity with respect to z), where i(s) =
n(ss—_,ll) satisfies i(s) — oo when s — oo. By the uniform boundedness principle, se-
quence Y (||lx;|) is bounded, which implies that |x; || is bounded. O

2.4 Opial condition and Van Dulst norm

In this section, we discuss connections between Delta-convergence and weak conver-
gence.

Definition 2.4.1 (Opial condition - [96, Condition (2)]). Let E be a normed vector
space. One says that a sequence (x,,),cn in E, which is weakly convergent to a point
Xo € E, is an Opial sequence if

liminf|x, — x|l < liminf|x, — x| for every x € E. (2.9)

One says that the space E satisfies the Opial condition if (2.9) holds for every weakly
convergent sequence.

Remark 2.4.2. Every Opial sequence has a Delta-convergent subsequence, whose
Delta-limit equals its weak limit: consider a subsequence that realizes the lower limit
in the left hand side of (2.9).

The following statement applies, mainly, to uniformly convex Banach spaces.
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Proposition 2.4.3. Let E be a strictly asymptotically complete reflexive Banach space.
Then E satisfies the Opial condition if and only if for any bounded sequence (x,,)pen in E,

X, — X & X, — X. (2.10)

Note that the condition that the sequence is bounded can be omitted by Theo-
rem 2.3.8, provided that the space is uniformly smooth and uniformly convex.

Proof. 1. Necessity. Assume that the Opial condition is satisfied. Assume that x,, — x,
but x,, is not Delta-convergent to x. Then, by Delta-compactness, a further renamed
extraction is Delta-convergent to some y # x. However, by Opial condition, there is a
yet further extraction that is Delta-convergent to x, which is a contradiction, implying
that x,, — x.

Assume conversely that x,, — x, but on a renamed subsequence x,, is not weakly
convergent to x. Then, on a renamed further extraction, x, — y # x. By the Opial
condition, on a further extraction, x,, — y, which contradicts to uniqueness of Delta-
limit. Consequently, x,, — x.

2. Sufficiency. Assume (2.10) for every bounded sequence. If x,, — x,, but (2.9) does
not hold, then (x,,) has a bounded subsequence, Delta-convergent to some point y, #
Xo- Then by (2.10), this subsequence would weakly converge to y,, a contradiction. [

Proposition 2.4.4. Let E be a uniformly convex Banach space. All closed convex subsets
of E are closed with respect to Delta-convergence if and only if every bounded sequence
in E satisfies (2.10).

Proof. 1. Assume first that every closed convex set in E is closed with respect to Delta-
convergence. If x, — x is a bounded sequence, and x,, — y # x is its extraction, let
f € E* besuch that {f,x—y) > 0. Since {f,x,-y) — 0, from Delta-closedness of convex
closed sets it follows that (f,x —y) = 0, a contradiction. Thus x,, — x.

If x, — x, but on a renamed subsequence one has x,, — y # x, repeating the pre-
vious argument we arrive at a further subsequence that weakly converges to y, which
is a contradiction.

2. Assume the converse, that every bounded sequence in E satisfies (2.10). Since
every closed convex set in E is weakly closed, it will be thus closed with respect to
Delta-convergence. O

Proposition 2.4.5. Let (E,, E;) be compatible strictly convex Banach spaces with a com-
mon dense set E, satisfying the Opial condition. Then for any 6 € (0,1) and p € [1,00]
spaces (Ey, E1)g p, interpolated by the real method, with the norms (10.5), satisfy the
Opial condition.

Proof. Without loss of generality, it suffices to show that if u, — 0in (E,, EDops then
forany v € E, [luyllg,, < lug +vlg,, + 0(1). Note that it suffices in definition (10.4) of the
K-functional to consider u) € Eyanduy, € E; such thatu)+u; = u, uy — Oanduy — 0.
Indeed, if u) — w # O, then u; — —w and, using Delta-convergence, we have for k
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sufficiently large ||u2 I E, +t||ui|| E > ||u2 -w] E, +t||u}< +w| E,» SO that for k large enough the
pair ug and u}( does not contribute to minimization. Therefore, given v € E, v # 0, by
the Opial condition for E, and E; and Proposition 2.3.7, K (uy, t) < K(u+v, t)—c for some
¢ = c(v) and k sufficiently large. This implies lim inf lullg,p < lim inf lu; + Vg + 0(1),
that is, the Opial condition holds. O

Proposition 2.4.6. Let (Q,u) be a measure space. If (u)cn 1S a bounded sequence in
IP(Q,u), p € (1,00), convergent to a function u almost everywhere, then u,, — u and
W, — uinL’(Q, p).

Proof. By Lemma 1.3.1, uj — u. Since (4, — U)ycy is bounded in LP(Q, u) and con-
verges to zero a. e., the sequence |y — ulp_z(uk — u) is bounded in i (Q, ). Then, by
Lemma 1.3.1, |uy —uP(u,—u) — 0in 7 (@, 1). Assume without loss of generality that
llu — ull, > 6 > 0 for all k € N. Then by Theorem 2.1.3, u; — u. O

Corollary 2.4.7. If (u})cy is a bounded sequence in H*P(RN), 1 < p < N, and q «
p,p"), thenu, — win LYRY) if and only if u, — uin LYRY).

Proof. Assume that u; — uin Lq(IRN ). Then, since (u,) is bounded in H Lp (IRN ), it nec-
essarily converges to u almost everywhere. Indeed, if it were false, then by local com-
pactness of Sobolev embeddings, there would exist a subsequence of () that con-
verges almost everywhere, to a different limit than u, which contradicts Lemma 1.3.1.
Then by Proposition 2.4.6, u; — uin LY(RY). The same argument applies if we assume
that u, — uin LY(RY). O

Corollary 2.4.8. Space ¢, p € (1, 0), satisfies the Opial condition.

Proof. It suffices to verify (2.10) when [Ju; —ul| p 2 6 > 0. The assertion then follows from
the following chain of equivalent, up to extraction of subsequence, the statements:

- U, — 0

- (W -w*—0in d (by Theorem 2.1.3);

— lug — ulP~*(uy, — u) is bounded in ¢ and converges to zero pointwise;

- u, - ubounded in 7 and converges to zero pointwise;

- u — uin ¢ (by Lemma 1.3.1). O

Example 2.4.9.

1. Hilbert spaces, since they are uniformly convex and uniformly smooth, satisfy the
Opial condition by Theorem 2.1.2 and Proposition 2.4.3.

2. The space I*([0,1]), p € (1,00), equipped with the standard norm, does not sat-
isfy the Opial condition unless p = 2. Indeed, consider the following sequence of
functions on IP([0,1]). Let iy (t) = -2 for t € [0,1/3] and Y, (t) = 1 for t € [1/3,1].
Let i, (t) = Py(2"t), t € [0,1/2"], extended periodically to [0, 1]. By density in L?,
p < 00, of the set of functions constant on subsequent intervals of length 1/2™ for
all m € N, one easily sees that ¥, is Delta-convergent to a nonzero constant A,
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that minimizes f; [o(t) —APPdt = %I}l +2P + %I)l -1/ over A € R,and A, = Oifand
only if p = 2. At the same time ¢,, — 0 for any p € (1, 00).

If the Banach space is separable, it always has an equivalent norm such that Delta-
convergence and weak convergence coincide:

Theorem 2.4.10 (van Dulst). Any separable Banach space E admits an equivalent norm
[l - Il; such that (E, | - Il;) satisfies the Opial condition and, moreover, for any sequence

(X)nen INE,
X, = X = |x, - x| < lx, -yl + o), foranyy €E, thatis, x,, — X. (2.11)

Proof. By the Banach—Mazur theorem every separable Banach space is isometrically
isomorphic to a closed subspace of C([0, 1]), which has a Schauder basis. Consider,
without distinguishing in notation elements of E and their images in C([0, 1]), a basis
{y;}jen Of C([0,1]) with [ly;l = 1, j € N. Then the associated coefficient functionals Vi
will be bounded, and if we set Py = ézl(yl-*,y)yi, y € E,j € N, and P, = 0, then
{IP;ll}jen is bounded (see the Appendix, Section 10.1). Define for every x € E,

def
lxll, = sup I - Px]. 2.12)
j=0,1

.

Clearly, this is an equivalent norm on E, since x| = |x — Pox|l < lIx|l; < Supj_o1,. Il -
Billlix|l. Without loss of generality, in order to prove (2.11) it suffices to show that if
X, — 0, thenforeveryy € E, ||x,ll; < Ix, +¥l; +0450(1). Letus fixy € E. Lete > 0, and
let j, € N be such that ||(I - P; )yl < €. Note that since x,, — 0, we have IP;, x,ll; — O.
Then

\V

X, +ylly = | = P;,)x, + P;,y; —€ - 0()
sup ||(1-P)U - Py )x, + (1~ P)-)Pjey" —e-0(1)
j=0,1....
> sup |(1- P)(I - P)-E)x,,” —eg-o0(1)
Jedet Lo
= | = P )xy ]y — £ = 0(1) = lxylly = | (P, )%, - € = 0(1)

= xplly —o(1) - &.

In other words, lim inf(||x,+y|[;—[Ix,ll;) = —€, and since ¢ is arbitrary, we have (2.11). O

Remark 2.4.11. The mere fact that the Opial condition can be achieved by choosing a
different equivalent norm, in order to make weak convergence and Delta-convergence
coincide, may not be satisfactory in applications. In the context of the Browder fixed-
point theorem, a map that is nonexpansive in the original norm may not be such in
the new norm. In the context of profile decompositions, the new norm may no longer
be invariant with respect to the same group as the original norm.
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Sobolev spaces with the standard norm, in view of Example 2.4.9, do not satisfy
the Opial condition, but the Opial condition, as we show below in Theorem 4.2.1, is
satisfied by Besov and Triebel-Lizorkin spaces with scale-invariant norms (3.23) and
(3.24), and the identification of H? as F*P2, yields an equivalent scale-invariant norm
for Sobolev spaces meeting the Opial condition, without invoking Theorem 2.4.10.

2.5 Defect of energy. Brezis—Lieb lemma with Delta-convergence

The Brezis—Lieb lemma (Corollary 1.3.3) can be understood as a quantitative estimate
for the defect of convergence in I”. In this section, we would like to address similar
“energy estimates” for the defect of compactness in general Banach spaces, not only
for weakly convergent sequences, but also for Delta-convergent ones.

Weak semicontinuity of the norm assures that whenever x;, — x, one has [|x;| >
x|l + o(1), while in uniformly convex spaces the gap between |x; || and || x|| can be esti-
mated in terms of the modulus of convexity. Assuming that |x; | < 1, we have

X — x = xgll = Il + 8(lIx; — xI) + o(1). (2.13)

Indeed, by uniform convexity, (see (10.2) in the Appendix) one has, with t, =
max{flx|l, llxll},

X +X

<t — 6 6(lIxg — xll/ty). (2.14)

Xi+X
= =

Note that since the norm is weakly lower semicontinuous, ¢, = [x;[|+0(1), and |
x|l + o(1). Substituting these two relations into (2.14), we have (2.13).

For Hilbert spaces, one has a stronger counterpart of (2.13), namely (1.17). Since
weak convergence in Hilbert spaces coincides with Delta-convergence, it is natural
to ask whether Delta-convergent sequences in a general Banach space satisfy some
analog of (2.13). From the definition of Delta-convergence, one has immediately that
Xl = lIx — x|l +0(1) when x;, — x. We see from (1.17), that ||x; || dominates both | x| and
lx — x;ll, while in general Banach space |x;|| dominates | x| (with a remainder when
the space is uniformly convex) in the case of weak convergence, and |x; || dominates
Ix — x; || in the case of Delta-convergence. It is natural to ask then if, in case of uniform

convex space, ||x; || dominates |x—x; || with a nontrivial remainder dependent on &(||x|)).

Lemma 2.5.1. Let E be a uniformly convex Banach and let 6 be the modulus of convexity
of E. If (uy) is a sequence in E, |lu; || < 1, k € N, and u, — u, then |lu|| < 2 and

lugll > fluy = ull + 8(lul) (2.15)

for all k sufficiently large.
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Proof. If u = 0, the assertion is immediate, so assume that u # 0. Note that for k
sufficiently large, |[u; — ull < [lugll. This inequality implies that [ull < 2flu,ll < 2 and
it also implies that u; # O for these values of k. Thus we may apply to u; and u; — u
relation (10.3) from the Appendix with C; = ||| and C, = 1, getting

1

uk—iu

Uy + (uk - ll)
2

< Nl = 8(lull) -

Finally, since u; — u, one also has |lu;, — ull < [y, - %ull for sufficiently large k and
(2.15) follows. O

In Lebesgue spaces, the Brezis-Lieb lemma (Corollary 1.3.3) gives a more refined
evaluation of the defect of energy.

Remark 2.5.2. Delta-convergence is necessary for the assertion of the Brezis-Lieb
lemma: if a vector-valued sequence (uy),cn in LP(Q,ps R™), p € [1,00), m € N, and a
function u € LP(Q, u; R™) are such that for any v € I (Q, ; R™),

I [uy —viPdu > J lu—viPdu + J [uy, — ulPdu + o(1), (2.16)
Q ) )

then by the definition of Delta-limit v — u.
Let us consider a sufficient condition for (2.16) that will be weaker than conver-

gence almost everywhere. Note that by (1.17) pointwise convergence is not required in
the casep = 2.

Lemma 2.5.3. Let p > 3. Then the following inequality holds true:

def

Ft,0) € 1+ + 200" -

1- |t -pltP2t0-pth >0, |t|<1, 16l<l.  (2.17)

Proof. For each t € [-1,1], the function 8 — F(t,6) is convex on [-1,1]. By an ele-

mentary computation, one easily gets that %@’9) # Oforallt € [-1,1], and thus

F(t,0) > min{F(t,-1), F(t,1)}. Since F(t,-1) = F(-t, 1), it suffices to show that F(¢,1) > O
forall t € [-1,1], that is,

L+t >1+tl +pltP2t+pt, |t| <1 (2.18)
This holds if the two following inequalities hold:

f)=Q+tP -1t —ptP 1 —pt>0, t>0,
f=0-tP-1-tP+ptP1+pt>0, O0<t<l

Since both functions above vanish at zero, it suffices to show that f/ > 0 and f’ > 0.
We have

%fl(t) T B B R )
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and since this is also a function vanishing at zero, so it suffices to show that its deriva-
tive is nonnegative, that is,

: (pl_ SO =0t - -2 20,

Withs = 71,

1
plp-1)
By assumption p > 3, so the first term in the numerator above is convex and, therefore,

fl'(t)>0forallt € [0,1].
Consider now the derivative of f_:

A+sP2-1-(p-2)s

fll(t) = =

I%f_’(t) =—A-tP - 1+ (p- 1P,

which is nonnegative since (1 - t)* 1 + #1 < 1. O

Theorem 2.5.4. Let (Q, ) be a measure space and let p € [3,00) and m € N. Assume
that w, — u and uy, — win IP(Q, s R™). Then inequality with v = 0 (2.16) holds.

Proof. From (2.17), it easily follows that
gl = Ty —ul? + [l + plulP~u - (g —w) + pluy - ulP > - u) - u.

Consider the integral of the inequality above over Q. The integral of the second term
in the right-hand side vanishes since u;, — u, the integral of the third term vanishes,
taking into account Theorem 2.1.3, since u;, — u, and (2.16) follows. O

2.6 Bibliographic notes

For the notions of asymptotic radius and asymptotic center in the context of fixed-
point theory, see Edelstein [40], and, for further details, the book of Goebel and Reich
[63, pp. 18-22]. The proof of Theorem 2.2.4 is found, as Proof 2, in [63, p. 23]. Defini-
tion of asymptotic completeness and the Delta-compactness theorem are due to Teck-
Cheong Lim [78]. Shortly after, an independent proof was provided by Tadeusz Kuczu-
mow [74]. The proof of Delta-compactness in this book is a trivial adaptation to metric
spaces of the proof of [62, Lemma 15.2] by Goebel and Kirk written for the case of Ba-
nach spaces. Notably, while the proof of Banach—Alaoglu theorem is dependent on
the axiom of choice, the proof of the Delta-compactness theorem is not. We refer the
reader to the survey [38] for a number of attempts to extend the notion of weak con-
vergence to metric spaces, which indicates that, apart from definitions made for very
specific situations, most definitions for a counterpart of weak convergence in metric
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space amount to Delta-convergence or its close modifications. Finding fixed points of
nonexpansive maps as asymptotic centers of iterative sequences, which was a new
and simpler proof of the Browder fixed-point theorem, is due to Michael Edelstein
[40], with a generalization to metric spaces given by John Staples [114]. The notion
of uniform rotundity from [114] generalizes uniform convexity of Banach spaces. The
former implies asymptotic completeness of the space, which in turn implies its Delta-
compactness, while the latter implies reflexivity of the space, which in turn implies
its weak sequential compactness. The proof of asymptotic completeness (which im-
plies Delta-compactness) of complete uniformly metric rotund spaces is given in [114].
Boundedness of Delta-convergent sequences (Theorem 2.3.8) is proved in [113], which
also gives a characterization of Delta-convergence in uniformly smooth Banach spaces
in terms of weak convergence in the conjugate space, although this is probably not the
earliest reference.

The Opial property (sometimes called in literature nonstrict Opial property) was
introduced in [96, Condition (2)] and Examples 2.4.9 are also taken from [96]. The-
orem 2.4.10 is a weaker version of a theorem by D. van Dulst in [131]. The original
theorem produces an equivalent norm satisfying a slightly modified version of (2.11)
that uses the strict (for y # x) inequality, as it also appears in the definition of polar
convergence in the early version of [113] and in [38]. Polar convergence, in fact, was
an independently rediscovered, with a slight modification, Delta convergence, in par-
ticular, polar and Delta-convergence coincide in uniformly convex Banach spaces by
Proposition 2.3.7, quoted here from [113]).

Inequality (2.15) is found in [113]. Theorem 2.5.4 was proved for the scalar-valued
functions in [113] and for vector-valued functions in [8]. A counterexample showing
that its result does not extend to p < 3, unless p = 2, is given in [8].
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3 Cocompact embeddings with the rescaling group

This chapter presents several cocompact embeddings of functional spaces, relative to
the rescaling group acting on RV,

G =g, u—~2u@(-y) jezyeR"}, reR 31)

or to its subgroup, the group of integer shifts G .

3.1 Definitions and elementary properties of cocompactness

Let us define an analog of G-weak convergence (Definition 1.1.1) based, instead of weak
convergence, on Delta-convergence.

Definition 3.1.1 (G-Delta convergence). Let G be a set of homeomorphisms of a Banach
space E. One says that a sequence (u,),cn in E is G-Delta convergent to a point u € E
relative to the set G, if for any sequence (g,,) e in G, 8,(u,, — u) is Delta-convergent to

. . . g
zero in E. In this case, we use the notation u, — u.

Remark 3.1.2. In face of the definition above, we can also define by analogy with Def-
inition 1.1.4 a G-Delta-cocompact embedding, but in this book we study only the cases
where G-Delta-cocompactness follows from G-cocompactness.

Definition 3.1.3. Let E — F be two Banach spaces and let G be a bounded set of
bounded linear operators on E. One says that the norm of F provides a local metriza-
tion of G-weak convergence in E, if any sequence vanishing in F and bounded in E
vanishes G-weakly in E.

Example 3.1.4 (cf. Example 1.1.6). Metrization of G-weak convergence is not unique.
For example, given p ¢ [1, 0c0), all £4(Z)-norms with g > p are equivalent on a ball of
2P (7). If (u;) is a bounded sequence in £°(Z), convergent to zero in £4(Z), q > p, then,
for any sequence of integers (j; ), sequence (u; (-—ji)) converges to zero by components.
Since (1 (- - ji)) is bounded in ¢P(Z), it is weakly convergent in £ (Z). Therefore, con-
vergence of a sequence (u;) in ¢4(Z) implies G,-weak convergence. In other words,
each of the spaces ¢4(Z) with g > p provides a local metrization of the G,-weak con-
vergence in ¢P(Z).

Lemma 3.1.5. Let E — F be two Banach spaces, and assume that F* is dense in E*
and that the embedding E — F is cocompact relative to a bounded set G of bounded
linear operators on E. Assume that operators in G extend continuously as operators on
F and that the set of these extensions is bounded. Then the norm of F provides a local
metrization of G-convergence in E.

Proof. 1t suffices to show that if a bounded sequence (u ), in E converges to zero
in the norm of F, then it is G-weakly convergent to zero in E. Let u, — 0 in F. By

https://doi.org/10.1515/9783110532432-003
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assumptions on G, there exists C > 0 such that for any sequence (g;) in G, g uillr <
Cllugllr — 0in F. Thus gy, — 0 in F, and since F* is dense in E*, we also have
gy, — OinE. O

Lemma 3.1.6. Let V — E — F be three Banach spaces.

(i) If G is a set of homeomorphisms of V and the embedding V — E is G-cocompact,
then the embedding V — F is G-cocompact.

(if) If G is a set of homeomorphisms of E, whose restrictions to V are homeomorphisms
of V, and the embedding E — F is G-cocompact, then the embedding V. — F is
G-cocompact.

Proof. Assume that u, 9. 0inV.

Case (i). Since the embedding V — E is cocompact, then u, — 0 in E, and since
E is continuously embedded into F, u,, —» O in F.

Case (ii). Since E* — V*, g,u,, — 0in V for every sequence (g,),cn in G (restricted

to V) implies g,u, A 0 in E. Since the embedding E — F is G-cocompact, we have
u, —» 0inF. O

3.2 Cocompactness of the limiting Sobolev embedding

Consider the limiting Sobolev embedding H*P(RY) — P (RY), p; = A}’_Np with 0 <

S,
s < N/p, p € (1,00). In the argument below we use the refined Sobolev inequality

(10.25) from the Appendix.

Theorem 3.2.1. Letp € (1,00), s € (0, N/p). Then the embedding H**(RY) — L7 (RY)
is cocompact relative to the rescaling group (3.1) with r = N/p - s. Moreover, the
LPs (RN)-norm provides a local metrization of G'-weak convergence in H*P (RV).

Proof. Let g,u, — 0 for any sequence (g,)ycn in G'. Let us first show that
”un”Bs—N/p,oo,oo = Sup"Z(S_N/p)]P]unuoo e 0 (3.2)
jez
(see the definition (3.23) of the Besov norm in the Appendix) or, equivalently, that for
any sequence (j, )y in Z,
|277P; uy||, — O, (33)

which, ifwesetv, = g; (u, and note thatv,(--y,) — 0 for any sequence (y,)nen < RY,
would follow from

IPovyllee — O. (3.4)

Indeed, choose any s, > N/p, so that H%? RY) is compactly embedded into C (RN).
Since P,v, is bounded in H%?(RY), we have v,(- - y,) — 0 in H*P(RY) for any
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sequence (V,)pen i RN, and (3.4) follows by compactness of the embedding
H%P(RY) — C(RY). This yields (3.2).
Then substituting (3.2) into the refined Sobolev inequality (10.25) we have

s p/p; 1-p/p:
Mtnllp: < C(=8)2uy|l, ™ Ml N oo = O-

The local metrization property follows from Lemma 3.1.5. O

For the case s = 1, we give another proof of Theorem 3.2.1 that does not involve
tools of harmonic analysis.

Proof. We may assume without loss of generality that u; € Cg° (RN). Let (uy)gen be
a sequence in H*P(RY) and assume that for any (ji),cp in Z and any (y;)ey in RY,
8jy Uk — 0. Lety € Cgo((%,l;), [0,3]), such that |y'| < 2forall t and y(t) = tfort € [1,2].
By continuity of the embedding H*P(R") — I? "(RY), we have for everyy € 7,

. p/p”
( J x(lu ) dX) <C J (Ve P+ x(Jugel)” ),
0,1)N+y O,1)N+y

from which follows, if we take into account that y(¢)” "<Cfort>0,

j X(wl)” dx
(0,)N+y

. 1-p/p
<C j (IVuk|p+)((uk)p)dx< j x(lug )P dx)
O,1)N+y (0,)N+y

<o [ vl x| )

0,1)N+y 0,)N+y

1-p/p*

Adding the above inequalities over y € Z" and taking into account that x@tP < Cct? ’
fort > 0, so that

p'/p
Jx(lukl)pdx < C< j IVuklpdx> <C,
RN RN

we get

J)((lukDP*dx <C sup:}( J |uk|de>1p/p*. (3.5)

(/4
RN Y 0Ny

Let y, € Z" be such that

1-p/p* 1-p/p*
sup< j |u,<|de> sZ( J Iuklpdx> .

yezN
(0,)N+y (0,)N+yy
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Since w (- - y) — Oin HYY (]RN ) and by the local compactness of subcritical Sobolev
embeddings,

J luy Pdx = J (- -yl dx — .
O,)N+y, (o,pN
Substituting this into (3.5), we get
o
Jx(lukl) dx — 0.
]RN

Let
X(6) =27x(27t), jez

Note that we may substitute for the original sequence u; a sequence g;, Uy, with arbi-
trary j, € Z, and so we have

| x5, () ax — 0. G6)
IRN

Note now that, withj € Z,

b p/p
([t ax) <c [ v

]RN 2r(/'—1)§|uk |§27()’+2)

which can be rewritten as

1-&

j X (lugl)? dx < J |Vuk|pdx< j X].(|uk|)”*dx> " (37)

RN zr(j—l)gluklszr(HZ) RN

Adding the inequalities (3.7) over j € Z and taking into account that the sets 2707V <
[u| < 27042 cover RV with a uniformly finite multiplicity, we obtain

. 1-p/p*
[l ax < ¢ [ 1vupaxsup( [ x0ud ax) G8)
jez

RN RV RV
Let j; be such that

= 1-p/p” = 1-p/p”
sup< J X () dx) < 2( J X;, (el dx) ,

jez
RN RY

and note that the right-hand side converges to zero due to (3.6). Then from (3.8), it
follows that u; — 0in IP (RY), which yields the cocompactness. O
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Corollary 3.2.2. Let1 < p < 00,5, € R,s € (0,N/p), and let the number p; be defined by
1/p? = 1/p - s/N. Then the embedding H%*P(RN) — H%Ps (R") is cocompact relative
to the group (3.1) withr = N/p —s.

Proof. By definition of potential Sobolev spaces, operator (~A)~%/? acts isometrically
from H%*$4(RY) to H>4(R"); apply Lemma 3.1.6. O

We now consider the space H Lp (]RN ) for N < p, defined, asin thecase N > p, asthe
completion of CSO(IRN ) with respect to the gradient norm, which is known to have no
continuous embedding into L%OC(IRN ), or indeed, into the space of distributions. Let us
consider first the space CO’A(]RN ), with A > 0, whose elements are equivalence classes
of continuous functions, taken up to an additive constant, whose norm, given by

sup M (3.9)

x,y€RN x#y [x - y|/1

is finite. This space is complete by the Arzela—Ascoli theorem. A well-known inequality
(see [2], p.100),

sup MOZEDL_oyoyy oy e cR®Y), (3.10)

o S
x,yeRYN x#y x-y|»

. . -N
means that H*? (]RN ) is continuously embedded into C 055 (IRN ) and its elements, iden-
tified as functions up to an additive constant, have well-defined weak derivatives that
belong to LP(RM).

Definition 3.2.3 (rescaling group G" with r < 0). Definition of operators (3.1) forr < 0

extends to equivalence classes of functions on RY in the sense that for eachj € R,
N

yeRY,

gj it = {er u(2j --y): uisarepresentative of a} (3.11)

Nep . . 10 N ~0,28 N
Note that group G » acts isometrically on H’(R")andon C™ » (R").

. . -N
Theorem 3.2.4. Let N < p < co. The embedding Hl’p(]RN) — CO’pT(]RN) is cocompact
relative to the group G’ withr = 1% < 0, and the norm (3.9) provides metrization of
G"-weak convergence on H*P(RY).

Proof. Let (u;) be a sequence in H’(RY) convergent G"-weakly to zero. In order to
prove that it vanishes in the norm (3.9), it suffices to show that for any sequences (x;)
and (y) in RY, one has |x; — ykl% [u () — w (yp)] — 0. Let j, € Z be such that
1< 'sz,;kyk' < 2andletz = X"Z}k”, k € N. Since the sequence (z;) is bounded, we may
assume without loss of generality that z, — z € RY.
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Let (vi)ren be a sequence in HYY (]RN ) represented by 2’jkuk(yk + 2j’<~). Then by
definition of G"-weak convergence, we have v, — 0 in H 1"”(]RN ), and, in particular,
Vi (z) - v(0) — 0 in R for any sequence of representatives of v,. Moreover, by (3.10)

p-N
[Vi(z) = vi(2)] < ClIVviliplz =zl # — 0,
and, therefore, v;(z;) — v;(0) — 0. Thus,
N-p
P = Vil 7 JurGae) = we(y)|
<2 erkluk(Xk) - uk(yk)|

=2 29 (g (yie + 2%2) — we(yi0)]
=2[vi(zy) - v, (0)] — 0.

Finally, since group G" acts isometrically on H*?(RY) and on %" (RY) the last asser-
tion of the theorem follows from Lemma 3.1.5. O

3.3 Embedding A*(RY) — LP*P(R") is not cocompact

Let p € (1, N). The Hardy inequality

_p\? D
J VulPdx > (M) J L (3.12)
p |x[P
RN RN
defines a continuous embedding HYP (]RN ) e [P (IRN R %) with norms invariant with

respect to the dilation group
N-
G={ur 27 u@)},p (3.13)

Proposition 3.3.1. Embedding Hrlé%(lRN ) — IP(RN, %), 1 < p < N, is not cocompact
relative to the group (3.13).

Proof. Let us define a sequence (Y )y i Hrli’i(RN) as follows. Let ¢ € C3°((1,2)) \ {0}
and let

1 n=k 2P 0
u(x) = mgkz > (2" |x]). (3.14)

(RY), and the (positive) values of Vi ll,, and of .[]RN 4P 4y are

. 1l
Obviously, u, € H? i

rad
independent of k. Once we show that u;, LA 0, this will imply that the embedding is
not cocompact. Indeed, for any s; € R,

2sk¥uk(28kx) - - z 2(n+sk)¥(p(2(n+sk)|x|).
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It suffices to consider two cases: |s;| — oo and (s;) bounded. If |s;| — oo, then for any
compact set C there exists k, > 0 such that Zsk% U (2%x) =0 forall k > ky and x € C.
If the sequence (s ) is bounded, then 2° o Uy (2°-) converges to zero uniformly on any
compact set. Therefore, Zsk]vr%puk(zsh) — 0, and thus y; kA 0. O

Corollary 3.3.2. Embedding H**(RY) — IP*P(RV), 1 < p < N, is continuous but not
cocompact relative to the rescaling group G', 3.1), r = ?.

Proof. A quasinorm of a function u in the Lorentz space LP*P(R") can be given as the
LP(RY, %)-norm of the symmetric decreasing rearrangement u* of u. By the Polya—
Szegd inequality || Vu™|| » < [IVull,, (3.12) written for u* yields a continuous embedding
H" RNy — [P*P(RY), 1< p < N.

Consider the sequence (3.14) and note that by the Hardy-Littlewood inequality
the LP(RY, %)-norm of u; is bounded below by the L? (RY, %)-norm of u;, which is
a positive number independent of k. On the other hand, it is easy to show that the
sequence (3.14) (which we have seen to vanish G-weakly relative to the group (3.13) so
one has only regard the consequences of shifts) is G"-weakly convergent to zero. [J

Remark 3.3.3. Embedding H**(RY) — IP*YRN),1 < p < N, q € (p,p*]is G'-
cocompact, r = ?. Indeed, if u; 9. 0in H'P(RY), then w, — 0inI” (RY), and

thus uy — 0inL? "(RM). Since (uy) is bounded in LP (RY, %), it will converge to zero

by Holder inequality in the norm of LY, g € (p,p*), with the corresponding weight,
and thus u; — 0in L7 9(RY),

3.4 Cocompactness and existence of minimizers

Cocompactness together with some convexity conditions allows to prove existence of
extremal points in isoperimetric problems. We already gave two examples of use of
cocompactness for finding extremal points, Example 1.1.8 and Example 1.3.7. The fol-
lowing existence result generalizes the latter. Note that the proof for general p cannot
use (1.17), and resorts to a longer argument based on the Brezis—Lieb lemma for the
gradient norm and a proof of a. e. convergence of the gradient.

Theorem 3.4.1. Letp € (1,N),p* = A’,’—i, letf € Cj,.(R) satisfy

N-p. * N-p.
f(27p]s) =2 _1)Tp’f(s), jeZseR, (3.15)

and set F(s) = f; f(t)dt. Assume that F satisfies (1.18) with q = p*, and that, with some
6>0,

f(s)s>68F(s) >0 foralls e R\ {0}. (3.16)
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Then the supremum in

c= sup JF(u(x))dx (3.17)

Ivulst o

is attained.

Note that (3.15) implies that [f(s)| < CsI’" "}, so ¢ < oo, and |F(s)| < C|s]P", and that
F(s) = |s|P satisfies all the conditions of the theorem. Note also that it follows from
(3.16) that ¢ > 0.

Proof. Let (up) ey in H'? (RY) be a maximizing sequence for (3.17), namely, IVu,l, <1
N
and LRN F(u,(x))dx — c. Note that the sequence (g,u,)nen With any g, € G  isalso

N
a maximizing sequence. Then there is a sequence (g,,),en in G % such that (8nUn)nen
has a nonzero weak limit, since otherwise, by Theorem 3.2.1, u,, — 0in L? (]RN ), which
implies

j F(u,(0))dx < C j lu, 0 dx — 0,

RN RN

a contradiction. We will now rename (g,u,) with a nonzero weak limit u as (u,,).

It follows from the Ekeland’s variational principle [42] (repeat the argument in
[120, Corollary 5.3] replacing the whole Banach space with the differentiable manifold
IVull, = 1), that (u,)) ¢ Satisfies an asymptotic Lagrange multiplier relation: for some
A, =20,neN,

sup J (|Vun(x)|p72Vun(x) V(X)) = Apf (U, (00))v(x))dx — 0. (3.18)
I9vi,=1

Note that .[IRN f(u,)u,dx is bounded as n — oo, and that by (3.16) it is also bounded
away from zero. Thus A, is also bounded and bounded away from zero so we may
assume without loss of generality that A, — A > 0. Considering (3.18) for two different
values of n, say n = k and n = j, and taking v = u; - u; (up to normalization), we get
that, when minf{j, k} — oo,

(|Vuk(x)| Vuk - |Vu (x) |p 2Vu (0) - (Vg (%) = Vigy(x)) (3.19)
= A(f (ue () = f (u;())) (uye () - uj(x)) — O in measure.

Since (u,) isa bounded sequence in HYY (IRN ), which is compactly embedded into LY(B)
for any open ball B ¢ RV, a renamed subsequence (u,,) converges almost everywhere,
and thus from (3.19) we have, on a renamed subsequence, as min{j, k} — oo,

(|Vuk(x)|p72Vuk - |Vuj(x)|p72Vuj(x)) (Vi (x) - Vu(x)) - 0 a.e.in RrRY.  (3.20)
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Then (Vu,(x)),cn is @ Cauchy sequence for a.e. x € RY, and thus, (Vu,,) converges
almost everywhere. Then, since (u,),cn has a weak limit u € HYP (]RN ), we have nec-
essarily that Vi, — Vu a.e. in RY. By Remark 1.3.6 and Theorem 1.3.2, we have now

1= [Vuylb = IVull} + Vu, - Vulf + o(1), (3.21)
c= J F(uy)dx +o(1) = J F(u)dx + J F(u, —u)dx + o(1). (3.22)
RM RY RY

Lett = IIVullg. Then by (3.21), we have ||Vu,, - Vullg — 1-t. Note that .[]RN F(u(sx))dx =
sV I]RN F(u(x))dx while ||Vu(s-)||§ = sNP¢t, sosetting s = £ 75 we have .[]RN F(u(sx))dx <
ctir . Similarly, .[]RN F(uy,(sx) — u(sx))dx < c(1 - t)NLﬂz + 0(1) By (3.22) this implies 1 <
tN% +(1- t)N%’ which can be true only ift = O or ¢t = 1. Since u # 0, we have necessarily
t = 1, which means that u, — uin H Lp(RN), and thus u is the maximizer. O

3.5 Cocompact embeddings of Besov and Triebel-Lizorkin spaces

Homogeneous Besov spaces B”(RY) and homogeneous Triebel-Lizorkin spaces
F5PARYN are characterized by the respective equivalent norms,

lullgspa = II(II?stulle)jezlleq, seR,1<p<co, 1<g<oo, (3.23)
[l psna = | ||(2iSP]-u)j€Z||€q l» s€eR 1<p<oo, 1<q<oo, (3.24)

where operators P; are defined in the Appendix, (10.22).

Like homogeneous Sobolev spaces these spaces have continuous embeddings
into function spaces only whenr = %’ -5 > 0, while in general they are identified with
classes of equivalence of functions modulo polynomials. An equivalent Besov norm
(10.32) is defined in terms of wavelet coefficients.

Rescalings G (3.1) act on BSP4(RY) and F*P isometrically with r = % -s. In-
deed, norm (3.23) is invariant with respect to shifts, while actions of pure dilations
Sios1€Z,0n 29 P;u (with the appropriate value of r) yield shifts in £4(Z) that preserve
the ¢9-norm. Similar reasoning applies to the norm (3.24). Note that elements of G',
whenr < 0, are well-defined on classes of equivalence modulo polynomials of a given
degree, since translations and dilations on RY map a polynomial into a polynomial of
the same degree.

Theorem 3.5.1. Lets > t and assume that % -S= %’ —t = r. Then continuous embedding
BPYRY) — BYY(RN), a, b, p, q € (1,00, b > a, is cocompact relative to the group G'.

Proof. Let (u,)nen be a sequence in BP*(RY), ¢"-weakly convergent to zero. Let
2 G (Uyn) be the wavelet coefficients of u,, given by (10.31). By Remark 10.2.2, given

that %’ -5 = %’ —t = r, the normalized basis and thus the wavelet expansion are the
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same in B%P?, Bb%9 and B™°>®, Since the wavelet basis is a Schauder basis in B¢
(see the Appendix, Section 10.2), the wavelet coefficients define continuous linear
functionals u > 27¢; (u) on B*>, and thus ¢, o(g,u,) — 0 for every sequence (g,)nen
in ". Therefore, ¢; ;, — O for any sequence (j,, k,,) ¢ Z x 7N . Then from the wavelet
representation of the Besov norm (10.32) we have

[uyllg-rooce = sup | (uy)| — 0. (3.25)
jez,kezN
Then, using again the equivalent Besov norm (10.32), we have, noting that s > t implies
q>Dp,
linlfas = (3 Ieetm )

JEZ “kezZN

<Z< Z| k(un)l ) sup | k(un)la(l—p/q)
J€Z “kez" jez.kez.

ap/q al-pla) _, o

= sl 1212, 16 2

Thus the embedding B*»*(RY) — B“%(RY) is G"-cocompact. Then cocompactness

of the embedding B*»%(RY) — B*??(RY) follows from (10.27) and Lemma 3.1.6. [

G"-cocompactness of further embeddings involving homogeneous Besov and
Triebel-Lizorkin spaces follows from the transitivity properties stated in Lemma 3.1.6
by combining Theorem 3.5.1 with known continuous embeddings (10.24)-(10.29).

Corollary 3.5.2. Letp,q € [1,0),s >t,r=N/p-s=N/q-t,1<a<q,and1<b < co.
Then the embedding B*P*(RY) — F%P(RYN) is cocompact relative to the group G'.

Proof. By using, in sequence, embeddings (10.28), (10.27), (10.26), and (10.29), we
have the following chain of embeddings, fixing ¢’ € (max{a, p}, q) and setting ¢’ satis-
fying N/q' —t' =rsothatt' e (¢,5s):

Bs,p,a(IRN) - Bt’,q’,a(]RN) SN Bt’,q’,q’(]RN)
= FOOT(RY) o FP(RY),

Note that G" acts isometrically on each of these spaces. Since the first embedding in
the chain is cocompact by Theorem 3.5.1, the resulting embedding is cocompact by
Lemma 3.1.6. (]

Corollary 3.5.3. Letp,q € [1,00),s>t,r=N/p-s=N/q-t,b € (p,o0]anda € [1, 0].
Then embedding FSP%(RY) — B4 (RY) is cocompact relative to the group G'.

Proof. Letp < q' < min{q, b} and let t' satisfy N/q' —t' = r, so thatt’ € (¢,s). Invoking,
in a sequence, embeddings (10.29), (10.26), (10.28), and (10.27), we have

Fs,p,a(IRN) AN Ft',q',q' (]RN) _ Bt',q',q' (]RN) AN Bt’q’b(]RN).
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Since the last embedding is cocompact by Theorem 3.5.1, the resulting embedding is
cocompact by Lemma 3.1.6. O

Corollary 3.5.4. Letp,q € [1,00),s > t,r=N/p-s=N/q—-tanda,b € [1,00]. Then
the embedding FSP*(RY) — FS%(RYN) is cocompact relative to the group G'.

Proof. Letq' € (p,q) andlet N/q' —t' = rsothatt’ € (t,s). By Corollary 3.5.3 and then
by Corollary 3.5.2, we have

FPARN) s BT (RY) s FUO(RY), (3.26)

Since both embeddings are cocompact, so is the resulting one by Lemma 3.1.6. O

Corollary 3.5.5. Lets > 0,p € [1,N/s) and let p; = 1\%5. Then embedding FSP4(RY) —
1P (RY), a € [1, 0], is cocompact relative to the group G',r = N/p - s.

Proof. We use the identification (10.23) of Sobolev (and Lebesgue) spaces as Triebel—
Lizorkin spaces and apply Corollary 3.5.4. O
Corollary 3.5.6. Lets > 0,p € [1,N/s), a,b € [1,00],a < b, and let p; = 1\%5' Then
embedding BSPY(RN) — IPsP(RVN), is cocompact relative to the group G, r = N/p - s.

Proof. Lett <sandletr = N/p—s = N/q-t. Combine the cocompact embedding from
Theorem 3.5.1 with the known continuous embedding (10.30):

BPARY) — BYRY) - L%YRY), (3.27)

Note now that g; = p; and that IP5YRY) — IP5P(RV) for all b > a. The resulting
embedding is G -cocompact by Lemma 3.1.6. O

Corollary 3.5.7. Lets > 0,p € [1,N/s) and let p; = 1\%5. Then embedding BSP*(RY) —

¥ RY),1<a< ps is cocompact relative to the group G',r = N/p - s.

Proof. The statement follows from Corollary 3.5.6 and the identification of LPs as the
Lorentz space LPsPs O

Corollary 3.5.8. For all a,p € [1,00), embeddings BV/PP4 — BMO and FN/PPe
BMO are G°-cocompact. In particular, embedding H*NS(RY) — BMO, 0 < s < N, is
go-cocompact.

Proof. Apply, respectively, Corollary 3.5.2 and Corollary 3.5.4 with the target space
EO°2 = BMO. O

Remark 3.5.9. by Lemma 3.1.5, each of the norms of target spaces of embeddings in
Theorem 3.5.1 and its corollaries provides a local metrization of the G"-weak conver-
gence.
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3.6 Cocompactness and interpolation

In this section, we show that cocompactness of embeddings under some general con-
ditions is inherited under interpolation of spaces. We deal here only with the case
when the scaling operators do not change from space to space. We refer the reader for
the definitions of interpolation spaces to the Appendix, Section 10.1.

Definition 3.6.1. Let (E,, E;) be a Banach couple with E; continuously embedded in
E, and let G be a set of linear operators g : E, + E; — E, + E; which satisfies

g(A]-) c4; and g : Aj - 4 is an isometry forj = 0,1. (3.28)

Let E; be continuously embedded into some Banach space F;. A family of bounded

operators {M;};c(o 1) from E, to E; is said to be a family of G-covariant mollifiers (relative

to a space F)) if it satisfies the following conditions:

(i) Forj = 0,1, the norm of M; as a continuous map from E; into itself is bounded
independently of t € (0, 1), that is, sup;¢(q 1) M|l E—E, < 0.

(ii) The function o(t) def IT - Myllg, ., satisfies lim;_,, o(t) = 0.
(iii) For each g € G, and t € (0,1), there exists an element hg’t € G such that gM; =
Mthg,t'

For the present, we show that Definition 3.6.1 is satisfied by the classical mollifiers.

Lemma 3.6.2. Let (Ey,E;) = (IP(RV),H"*(RY)),1 < p < N, and F, = L"(R") with
r € (p,p*). Let G be the group of integer shifts

Gan =18y : U= Ut =P}y (3.29)

Letp : RY — [0, 00) be a smooth function supported in the open unit ball {z € RY :
|z| < 1} which satisfies LR[N p(x)dx = 1.
Then, for each fixed t € (0,1) the operator M;, which is defined by

(Mau)(x) = J pux + tz)dz, (3.30)

|z|<1

is a bounded map of E, into E;, and the family {M,},c o) Satisfies properties (i), (ii), and
(iii) of Definition 3.6.1.

Proof. The boundedness of M, from E into E for each fixed ¢ is simply the well- known
mollification property. It is also obvious that M, : E; — E; is bounded with [ M| E—E <
1forj=0,1andall ¢ € (0,1), which gives property (i).

Property (iii) is an immediate consequence of the fact that (M,u)(-—y) = M,(u(--y))

foreachy € RY. In fact, here we can take h,; = g for each g € G,~ and each ¢.
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It remains to prove property (ii). Consider the following identity:

¢
u(x) - Myu(x) = j p@)[u(x) —u(x + tz)]dz = - J p(2) Jz - Vu(x + sz)dsdz.
lz|]<1 |lz|<1 0
Then

t P
! Jqu(x+sz)|dzds .

lz|<1

4

lu(x) - Mu(x)” < supp(y)
lyl<1
By Holder’s inequality, we then have

¢
[u(x) —Mtu(x)|p < Ctp/p’j J |Vu(x+sz)|pdzds.
0

|z|<1

Integrating with respect to x, we obtain

¢
J u(x) —M[u(x)|pdx <P J J J |Vulx + sz)|pd.xdzds
0

RN |z|[<1 RN

¢
=Ctp/p,J J J|Vu(x)|pdxdzds
0

|z|[<1 RN

= cP J|Vu(x)|pdx. (3.31)

RN

Here, and also later, we will use the following immediate consequence of Holder’s
inequality: The inclusion IP° n [”* ¢ I” holds whenever 1 < p, < p < p; < 0.
Furthermore, the estimate

IF1L, < IFIC 0P, (3.32)

11

holds for each f € IPo n IP*, where § = 52+ < (0,1).

Po P
Let s be some number satisfying r < s < p*. Then p < r < s and so (3.32) gives us

that

1 1
lu — Meull, < lu— Mully ®lu - Mul?,  where = 2— € (0,1). (3.33)

1_1
p s

We estimate [lu — M;ull, and |lu — Mul|; using, respectively, (3.31) and the Sobolev em-
bedding theorem. Substituting these estimates in (3.33), and noting that 1 + p/p’ = p,
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we obtain that

1-6 9
lu = Meull, < C(¢ ullgs) (lu = Meullgo)

< Ct 0Py

This establishes property (ii) and completes the proof of the lemma. O

An abstract statement concerning cocompactness of embeddings under interpo-
lation of spaces is as follows.

Theorem 3.6.3. Let (E,, E;) and (F,, F;) be two compatible couples of Banach spaces
with E; continuously embedded in F; for j = 0, 1. Suppose, further, that E, is continuously
embedded in E,. Let G be a set of linear operators g : F, + F; — F, + F; which satisfies
(3.28) with respect to both of the couples (Ey, E;) and (F,, F;). Assume that there exists
a G-covariant mollifier family {M; : Ey — E;};(1) (see Definition 3.6.1). If, furthermore,
E, is G-cocompactly embedded into F,, then, for every 8 € (0,1) and q € [1, 0], the
space (Eq, Ey)g 4 is G-cocompactly embedded into (Fy, Fy)q 4 and the space [Ey, E;]y is
G-cocompactly embedded into [F, Fy].

Proof. We consider the case of real interpolation. The proof for the complex case is
completely analogous.
Inview of the continuous embedding (Ey, E;)g , — Eq+E; = Ey, it follows that, for

each fixed t, the operator M; is bounded from (Ey, E;)g 4 into E;. Suppose that u; L
in (Ey, Ey)g 4 Let (8i)ken be an arbitrary sequence in G. Then

giMeuy = Mihg, cuy (3.34)

by property (iii). Since hg . — 0 in (Eq, E;)g4, we deduce that M;hg e — 0 in E;
for each fixed t € (0,1). The cocompactness of the embedding E; — F; and (3.34) now
imply that

klim IM;ullp, = 0. (3.35)
In view of the continuous inclusions E; — F; and property (i), we have that M, :
E; — F; is bounded with

S; © sup M,llg _F, < 0o, forj=0,1. (3.36)
te(0,1) T

Since M;u;, € F, n F;, we can invoke (10.11) in the Appendix and then (3.36) to
obtain that

1-6 )
1Ml (£, F,)g,, < CoqlMettillp,” IMeullE,

1-6 0
< Ce,q(SOHMkHEO) ”Mtuk"F1 .
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Since (uj)en is necessarily a bounded sequence in the space (Ey, E;)g 4 and is there-
fore also bounded in the space E,, we can use (3.35) to obtain that

,}Lngo I|Mtuk||(Fo>F1)9,q =0. (3.37)

We now consider the operator I — M; in more detail. By (3.36), we of course have
I-M; : Ey — Fywith | - M| Ey—F, < Il Eo—F, T So- Using this estimate, property (ii)
and Theorem 10.1.6 from the Appendix, we obtain that I — M; is a bounded operator
from (EO,El)g’q into (FO,Fl)g’q and that

1-6 6
M = Mgy o — o, < M= Ml I = MelE
1-6
< (Mllg,—, +So)  0(®)’.
Therefore, with the help of (3.37), we have

lim sup IIukII(FO,Fl)aq < ligl sup ||Mtuk||(FO)F1)9’q + liin sup||d - Mt)uk||(F0’Fl)9’q
—00 —00

k—o0

<0+ limsup||(I - Mt)uk||(1,,0)F1

)
—00 0q

<timsup(lig, -5, +S0) 0O luelg, 5, -
k—o0 .
We now use the boundedness of the sequence ("uk"(EO,El)g,q)keN once more, together
with property (ii), to obtain that this last expression is bounded by a quantity which
tends to O as t tends to 0. Since we can choose t as small as we please, this shows that
limy_, ||Uk||(F0,F1)9,q = 0 and completes the proof of the theorem. O

We will apply Theorem 3.6.3 to prove cocompactness of embeddings of inhomo-
geneous Sobolev spaces in the next section. We would like to remark, however, that if
E, and E, are functional spaces with rescalings groups G" and G", respectively, with
1y # 17, their interpolations will also be scale-invariant.

Proposition 3.6.4. Let X, X; be two compatible Banach spaces of functions from RY to
R™, m € N, equipped with respective norms |-y, |- |,. Assume that there exist ro, 1, € R,
such that the norm || - ||; is invariant with respect to the action of the respective group G",
i =0,1. Then for any q € (0,00], 8 € (0,1), the norms of the interpolated, by the real
method, space Xg’q, and of that by the complex method, Xy, are invariant with respect
to the group G, rg =: (1— O)ry + Or;.

Proof. 1. Real method of interpolation. Let us calculate the value of the K-functional
(10.4) under rescalings g;,, € G%je 7,y e RY, noting first that lg;yxillx, = 277 lIx;lly,
i=0,1, and thus,

K(gj,yx, t; X0, X1)

: —Toj —rj
= inf{27|xo lly, + €27V Ixqlly, : X =Xo + Xy, X € Xo, X; € Xy}
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= 27K (x, 2" X, X))

Substituting this into the definition of the interpolated norm (10.5), we get for 0 < 0 <
1,1<g<oo,withg, €G°,jeZyeR",

. .
B de \’
Iyl g = <J (£ 7K gyt Xo X)) T)

0

1
[ee)

il o i e\’
-2 "”(J(t Ok (x, 2" X0, X)) T)
0

00 :
= 2'9’( J(s’eK(x,s;XO,Xl))q §>

5 S
= 27"xllg,,,

which proves the real method case of the proposition for g < co. For ¢ = oo, we have
similarly from (10.6)

-0
"gj,yX”B,oo = S;u(l)) t I<(gj,yx) t;X()»X])
>

= 27" sup K (x, 2"t X0, X;) = 277 xllg oo
t>0

2. Complex method of interpolation. Let G;,, : 7 — F (for the definition of the
space F see the Appendix), j € Z, n € RY, be given by Giaf (2) = 2(1"2)’°"+Z'1jgj,,1f(z),
Rez € (0,1), where 8y € G°. Let us show that operators Gj,, are isometries on F.
Indeed, using scaling properties of the norms of X, and of X;, we have

1Gaf 17 = max{suplGiof 1)l SuplGyf (1 + )l
= max{sup||2(1’iy ol g/ )| x ,sup||2(1+iyz)'1j g f (1 +1y)|x } (3.38)
yeR % yeRr !

= [Ifll = (3.39)

Thus, with 8 € (0,1),

129g;ully, = Inf{lIG;,f Il 7 + Gf (6) = 27 g5}
= inf{lfl = : £(0) = u} = ully,. (340)

3.7 Cocompact embeddings of inhomogeneous Besov spaces

We first apply results of the previous section to prove cocompactness of Sobolev—-
Peetre embeddings of inhomogeneous Sobolev spaces HP(RY) relative to the group
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of integer shifts G,~, followed by analogous result for inhomogeneous Besov spaces.
Later, in Section 3.8, we give an alternative proof of cocompactness of general inho-
mogeneous spaces handled as intersections of corresponding homogeneous spaces
with Lebesgue spaces.

Theorem 3.7.1. Lets € (0,00),p € (,N/s)andp < q < p; def Af’_lzp. Then embedding

H(RN) — LY(RYN) is cocompact relative to the group of integer shifts G, . Moreover,
the embedding H*""P(RY) — H"Y(RY) is G n-cocompact for every y > 0.

Proof. Let q € (p,p;) be fixed. Case 1: s = 1. The assertion of the theorem is proved for
this case in Theorem 1.1.9.

Case 2: s € (0,1). For the number p € (1, co) appearing in the statement of The-
orem 3.71, and for some number r in (p,p*) we let (Ey, E;) and (F,, F;) be the same
couples (LP(RY), H*P(RM)) and (LP(RY), L"(RY)) which appear in Lemma 3.6.2. Let us
also choose the group G and the family of operators {M,};¢ (o) to be as in Lemma 3.6.2.

We know, using Theorem 1.1.9, that A, is G,~-cocompactly embedded in B,. This,
together with Lemma 3.6.2, provides us with all the conditions required for apply-
ing Theorem 3.6.3 in this context. More specifically, if we invoke the statement about
complex interpolation spaces in Theorem 3.6.3, we obtain that [L” (]RN ), H*P (]RN )g is
G, n-cocompactly embedded in [LP(RY), L' (RY)], for each 6 ¢ (0,1). By standard re-
sults ((10.13) and (10.12) in the Appendix), these two spaces are H*?(RY) and LY (R")
respectively, where y is the number in the interval (p, r) given by

(3.41)

1-0
=—+
p

= |

1
Y

Setting 6 = s, we see that this establishes our result for g = y. It will now be easy
to extend the proof to all g € (p, p;):

Let (u;)ren be an arbitrary sequence in H” which converges G, -weakly to 0.

Given an arbitrary g in (p, p;), we choose r € (p,p*) sufficiently close to p so that
the number y given by (3.41), with 8 = s, satisfies p < y < q. By the previous step
of our argument, we also have that limy_,, [ullygv) = 0. Now let us choose some
number § € (g, p;). By the Sobolev embedding theorem, the sequence ()¢, Which
is bounded in H? (IRN ), must also be bounded in L‘s(]RN ). Finally, we use the Holder
inequality to bound [lu |, by ||uk||:,’t lugll§ for a suitable number ¢ € (0,1). This suffices
to complete the proof of Theorem 3.7.1 for the case s € (0, 1).

Case 3: s > 1. Let p and g be as in the statement of the theorem. Noting that
we always have p < p*, let us choose numbers g, and g; which satisfy p < g, <
min{p*, q} and q < q; < p;. Consider an arbitrary sequence (u)ex in H*?(RY) which
is G,n-weakly convergent to zero. Since in this case H*? (RY) is continuously embed-
ded into H*P(RY), we have that w(-—y) — 0in H(RM) for any sequence Vi)keN
of elements of Z", that is, (uy) is G n-weakly convergent in H Lp (]RN ). Then, by Exam-
ple 1.1.9, lim; _, ., ||uk||q0 =0.
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Since g, < g < g;, by Holder inequality we have

1
do q
1 1

luilly < ey llg, el where 6 = €(0,1). (3:42)

Then, since H*’(RY) is continuously embedded into L% (RY), we have Iy <
C ||uk||}1;9||uk||§,s,p. Since weakly convergent sequences are bounded, we obtain that
lelly < Cluglls, — . O

Since Sobolev-Slobodecky spaces WSP(RY) can be obtained by interpolation of
Sobolev spaces (see (10.17) in the Appendix), we have the following.

). Embedding WSP(RY) —

LYRY) is cocompact relative to the group of integer shifts G, Wheneverp < q < p; def
PN

N-sp*

Corollary 3.7.2. Suppose thats € [1,00) and p € (1,%

Proof. The case s € N is already proved in Theorem 3.71. Let us fix k € N, s €
(k,k + 1), and apply Theorem 3.6.3, with the real method of interpolation, to couples
(HP RN), HP(RN)) and (LYRY), IA(RY)), where a ¢ (p,p;) and B € (p,p},,)-
Note that conditions of Theorem 3.6.3 are verified by Lemma 3.6.2, and we have
wsPRY) = HPRY), P RY)) . and L (RY) = LYRY), ARY)),y,, with
% = % + S_Tk Thus WSP(RY) is cocompactly embedded into L(R") with any r

greater between the values corresponding to @ = 8 = p, to a = py, B = py,,, that s,
p<r<p;. O

We now apply Theorem 3.6.3 to couples of Sobolev spaces, for which the real in-
terpolation method yields Besov spaces (see (10.15) in the Appendix) The continuity
of the embeddings considered in this theorem is due to Jawerth [69].

Theorem 3.7.3. SupposethatO <t <s<ooandl<py<p;<ocoandq € [1, oo].prﬂ0 -
g] < s — t, then the continuous embedding B*?>4(RN) — B*Pr4(RYN) is G,v-cocompact.

Corollary 3.7.4. Let s, t, py, p1, and N be as in Theorem 3.7.3. Then the embedding
BSPodo(RN) — BtPrai(RN) js G n-cocompact whenever 1 < g, < g; < co.

This corollary follows immediately from Lemma 3.1.6. We take V = B*P>% E =
B“Pr9 and F = B*P%, By Theorem 3.7.3, V is G,v-cocompactly embedded into E. The
continuous embedding E — F follows from (10.15) and (10.7).

Theorem 3.7.5. Lets > 0,1 < p < 0o, p < ¢y < q < p;. Then the embedding
BP9 (RN) — LY(RN) is G,x-cocompact.

The following lemma will be the main component of the proof of Theorem 3.7.3.
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Lemma 3.7.6. Suppose that my,m; € R, 0 < my < my, 1 < py < p; < 00, and assume
further that

mo—m
1 1<0 1

»e N (3.43)
o M

Foreach t € (0,1), the operator M, defined by (3.30) is a bounded map from H™oPo (]RN )
to H™P1(RY) and satisfies

}E% ”I - Mt”H"’OrI’O(]RN)aHmlJ’l(]RN) = O . (3.44)

Proof. We begin by observing that the conditions on p, and p, in the statement of the
lemma are equivalent (also if (po);;,o below is infinite) to

PoN

—_— 3.45
N - (my—my)p (345)

1< Py <Pt < 00)mym, =
We shall make use once more of the operator A = I — A, noting that A and each of
its powers all commute with all of the operators M;. Since A2 defines an isometry
between H™Po(RN) and LPo(RN) as well as between H™P1(RY) and H™ "oPy(RY),
it suffices to prove the lemma in the case where the two parameters m, and m; are
replaced by m{, = my, — m; and mj = m; - m; = 0, that is, we can suppose that m; = 0.
Note that this “shift” of the values of m; and m; does not change the stated conditions
on p, and p;.

Case 1: Assume first that m > 1. By Lemma 3.6.2, we have

}iné Il = Myllgipo - =0 foreachr e (pg, (pg)*)- (3.46)

This also implies that
11»2% "I - M{‘”H’"O!I’O LT = O . (3.47)

Subcase 1.1: If p; = r, the lemma is proved.
Subcase 1.2: If p; > r, then we can obtain (3.44) by using (3.42), namely, there
exists 6 =¢ (0, 1), such that for each f € H™Po we have

[0 Ml < 1t~ Mpfl - o

1-6 0
< (I = Mmoo I oo )~ (20f Ns)” - (3.48)

Sincep, < s < (po),*no, we have that ||f||;s is bounded by a constant multiple of [|f || ggmo.ro
which we can substitute in (3.49) and then use (3.47) to obtain the required property
(3.44) in this case.
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Subcase 1.3: If p; < r, we use an argument similar to the one for Subcase 1.2, also
based on (3.42), namely, with some 6 ¢ (0, 1), for each f ¢ H™P° we have that

I = Mof | < T - MOFLE | - MOFIG
0

1-6
< (zllf"LPo) ("I — Millggmoro v |If||Hm0>P0) .

(3.49)

Obviously, [Ifllzre < IIfllgmero and so the proof is also complete in this case.

Case 2: If 0 < m, < 1, then we apply Theorem 10.1.6 to the operator T = I — M;
and the couples (4y, 4;) = (I¥°, H") and (B, B;) = (I*°,L") where r € (py, (po)*). We
choose 6 = m, and use the facts (see (10.13) and (10.12) in Appendix) that H™Po =
[LPo, H"°],, and [LP°,L"],, = L%, where

— = + 2, (3.50)

Thus we obtain that

1-m
1T = Mllgmoro pso < I = Mell g oo I = M0
<2701 - M|

HYWo L7

Tl - (351)

Since we are free to choose r arbitrarily close to p,, we see from (3.50) that we can
also have s, arbitrarily close to p,. So, keeping (3.45) in mind, let us choose r so that
So < p; and let us choose a second number s; € (p;, (po),’;lo). Now we use (3.42) once
more: for some 0 € (0,1), and for each f € H™P° we have

1T = Mpf < (= MOF | |10 - MF| 7
< (M = Mllgmoro 5o I lgmome ) 21l )° - (3.52)

The fact that s; € (pg, (po),*no) ensures that ||f|;s is bounded by a constant multiple of
If I ggmowo . After we substitute this in (3.52) and apply (3.51) and then (3.46), we obtain
(3.44) in this final case, and so complete the proof of the lemma. O

After these preparations, the proof of Theorem 3.7.3 is almost immediate. Let € €
(0,t/2)and letsy = s+¢€,5y =Ss—¢€,t, =t +eandt; =t - e. Consider the Banach
couples

(Ag,Ay) = (HP(RY), H™(R")) and (Bo,By) = (H*"'(R"), H"'(RY)).

LetA = p ~ N Forj=0,1, sinces;—t; = s—t > A, we obtain from Theorem 3.7.1, that
Ajis G -cocompactly embedded in B ThlS together with Lemma 3.7.6, shows that the
condltlons for applying Theorem 3.6. 3 are fulfilled. So we can deduce that (4y,A;)g,4
is Gzn-cocompactly embedded into (By, By)g, for each 6 € (0,1) and g € [1,00]. In
particular, if we choose 6 = 1/2 we obtain the assertion of the theorem. [
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We now turn to the proof of Theorem 3.7.5. Obviously, in view of (10.15), (10.7), and
Lemma 3.1.6, it suffices to give the proof when g, = g. Fix some 6 € (0,1) and define s,
and r so that they satisfy s = 0s, and

(3.53)

1-6
=—+
p

x|

1
q
We next want to show that

q<r< p:O ) (3.54)

The first inequality of (3.54) follows from (3.53) and the fact that p < gq. The second
inequality of (3.54) is equivalent to

S
N >

x| =

>

SR

which readily follows from 1/q > 1/p — s/N = 1/p — 6s,/N and (3.53).
In view of (3.54) and Theorem 3.7.1, we have that H*P(R") is G~ -cocompactly
embedded into L' (RY). Then, by Theorem 3.6.3 it follows that the embedding

(Lp’HSO’p)G,r [N (LprLro)G,r

is G n-cocompact. Using (10.15) and (10.12), we identify the above embedding as
BT L. O

3.8 Cocompact embeddings of intersections with L”(R")

G,n-cocompactness of embeddings of general inhomogeneous spaces can be derived
from G'-cocompactness of embeddings of their homogeneous counterparts. In this
section we consider general Banach spaces of locally integrable functions in RY. A
measurable function v will be identified as an element of a dual space to E by relation
vou) = [ u@v(§)dE forall u € E.

Lemma 3.8.1. Let E be a Banach space of functions on RN cocompactly embedded to
LI(RY) relatively to Ggn. Assume that C3° (RY) is dense in E* and that

g o—gy nE (3.55)

whenever&, — £éinRN and g ¢ Ccy° (RN). Then the embedding is also cocompact relative
tO gzN .

Proof. Assume that g u = U (- — z) — 0in E for any sequence (z;) in 7N, Let Vi)
be a sequence in RY and let z; € Z" be such that (y, - z;) is bounded. Consider an
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arbitrarily renamed subsequence of (y; — z;) convergent to some ¢ € RY. Then, with

@ € C(RY),
(P, 8y, W) = (. 8, Ui)
+{(8y,—2, P ~ 8£ P) 8z, Ui
+{(8r 9 — 9). 8z k)
— 0,
. glRN .
which proves thatu, — OinE. O

Theorem 3.8.2. Let E be a Banach space of functions on R, such that CSO(]RN ) is dense
in E*, and assume that the rescaling group G', r > 0, acts on E isometrically. Let E =
EnIP®Y), 1 < p < N/r, with the standard norm for intersection of spaces. If there
is a G"-cocompact embedding E — LN"(RY), then for every q € (p,N/r), there is
G,v-cocompact embedding E — LIRN).

Proof. Let hju def 5 u(?),j € Z. Assume that U (- —y) — 0in E for any sequence (y;)
in RV,

Let (y) be an arbitrary sequence in R, let (j,) in Z, and consider three cases.

Case 1: j, — co. Since (u) is bounded in I? (RY), by rescaling under the integra-
tion in the L -norm one has h; u; (- - y;) — 0in IP(RY), and thus hj, w (- = y,) — Oin
IP(RV)aswell asin E.

Case 2: j, — —oo. With an arbitrary function ¢ € CSO(]RN ), we have

<@, by e - = yi)) e = Ky 0w (- = vi)) pore| < |15 @l el — O,

which implies h; u (- - y;) — 0in LV/", and thus h; w,(- - y;) — O in E.

Case 3: (j; ) is bounded. Since it suffices to consider a constant subsequence, rela-
tions hj; wi (- - y;) — 0 and w (- - y;) — O are equivalent.

Thus we have shown that for any choice of g; € G, gyu; — 0in E, and by cocom-
pactness of the embedding h]-kE — INM®RN), u, — 0in LN, Since (1) is bounded in
I?, from the Holder inequality we have u;, — 0in L9, p < g < N/r.

We conclude that the embedding E — LY(R") is cocompact relative to Ggv. Note
that (3.55) is satisfied, so by Lemma 3.8.1 this embedding is cocompact relative to G, .

O

Corollary 3.8.3. Lets > 0,p € (1,N/s), p; = Af’_lzs. For every q € (p,p; ), embeddings

BPYRN) — LIRN), 1<a< ps are cocompact relatively to Gn.

Proof. Given the identification of B**4(R") as intersection B**4(RY) n LP(RY), s >
0, p,a € [1,00] (see Appendix, Section 10.2), apply Theorem 3.8.2 to Corollaries 3.5.5
and 3.5.7. =
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In Section 6.2 we study, in a more general setting, the consequences of intersection of
two spaces on profile decompositions.

3.9 Cocompactness of trace embeddings

Let RY = RY™ x (0, 00), with coordinates denoted as (x,z), x € R, z > 0. When it
does not cause ambiguity, we will abbreviate R x {0} in the notation as RN 1.

In this section, we consider the space H Lp (IR’f ), p € [1,N), defined as the closed
subspace of all functions from H Lp (]RN ) satisfying u(x, z) = u(x, -z). We equip it with
an equivalent norm

;
= ( [ 1vuaxdz) (356)
RY
(which is a scalar multiple of the gradient norm) and with a group
N-p: . .
G={um ZTp}u(ZJ(X +¥),22)} gyt ez (3.57)

This group consists of isometries on H"? (]Riv ), which also extend to isometries on
I? (]RN 1 {0}), where p= p;,N—;)l). We would like to address cocompactness of the trace

embedding H"P(RY) — IP(RN™! x {0}).

Theorem 3.9.1. Embedding HYY (Ile ) — IP (IRN Ty (o)) is cocompact relative to the
group (3.57), and the I? (IRN 1 {0} -norm gives a local metrization of the G-weak con-
vergence in H*P(RY).

Proof. 1. Let (u;) be a sequence in H*Y (IRﬂY ) and assume that u; A 0. We will reduce
the question whether u;, — 0 in I (IRN “Tx {0} to compactness of the local Sobolev
embedding, namely, thatif vy — Oin HYP (IR{Y ), then

J vie(x, 0)[ dx — 0. (3.58)
(0’1)N71

By density, we may assume without loss of generality that u; € CS"(]RN ). Let x €
CSO((%A)), such that x(t) < t, x(t) = t whenever t € [1,2] and |y'| < 2, and define

N-p: N—p
Xj(s) = 27;7’)((27711’5), jeZ,s>0.

Leth € C5°((-2,2)N ") satisfy p(x) = 1for x € (0,1)" . By continuity of the embedding
HP(RY) — L[P(RV! x {0}) written for a function (- — y)y(u), we have, for every
y e ZV

_\P/P
J X (W (x, O))pdx> <C j IV P + x ()P )dxdz.
(0,) 14y ((=22" ' 4y)%(0,00)
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Taking into account that X(s)’_’ < C|s?, we then have

[ xtueo)a
(O,)N 4y
_ 1-p/p
<C J (IVuy [P +X(uk)p)dxdz< J X (e (x, 0))de>

((=22)""'4y)x(0,00) (OD 14y

1-p/p
<C J (IVuk|p+)((uk)p)dde( J |(uk(x,0)|pdx>

(22N 1+y)x(0,00) (0,)N 14y
Adding the above inequalities over y € Z"™!, we obtain

j X(ue(x, 0))Pdx < € J (VP + x ()P )dxdz

(O.DN 14y RY

1-p/p
X sup< J Iuk(x,O)Ipdx> )

EZN_l
Y (0,)N 4y

Note that, by the definition of y and the limiting Sobolev embedding,
| xwrdrdz < ¢ |y draz

RY RY

pr’lp
< c( j |Vuk|pdxdz> <c,
R
which implies
_ 1-p/p
J X(w (6, 0)Ydx < C sup ( J g (%, 0)|de> . (359)

yezN—l

(0,)N-14y (0,)N-14y

Let y;, € ZN"! be such that

1-p/p 1-p/p
sup( j Iuk(x,O)Ipdx> gz< J Iuk(x,O)Ipdx> . (3.60)
yezZN-1
(0,HN"14y O, )N L4y,

Since u;, A 0, uy(- = (4, 0)) — Oin Hl’p(lRf) and, by (3.58),

j Jui (- O)fdlx = j (- -y 0)f dx — .

ODN 4y (N
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Substituting this into (3.59), and repeating the argument above for —u; we obtain

J X(Jur(x, O)|)i’dx - 0.
IRN71

Moreover, since for any sequence j; € Z,
N-p. .
27 ey (2, 0) L o,
we also have, with arbitrary j, € Z, k € N,

J Xjk(luk(x, 0)|)pdx — 0. (3.61)
]RN71
2. Note now that, withj € Zandr = 1%,

_ pip
( J X,-(|uk(x,0)|)pdx> <C J Vi [Pdxdz,
]RN—l ZrU—l)gluklszr()}Z)
which can be rewritten as
5 5 1-p/p
J Xi([u(x, 0)]) "dx < C J IVuklpdxdz< J Xj(|ur(x, 0))) dx> . (3.62)

RN-1 Zr(i—l)gluklgzr(j-v-z) RN-1

Adding the inequalities (3.62) over j € Z and taking into account that the sets 2! <
lug| < 22 cover RY with a uniformly finite multiplicity, we obtain

_ i 1-p/p
J |ue (x, 0)|pdx <C J IVuklpdxdzsup< J' X]-(|uk(x,0)|)pdx> ) (3.63)
]RN71 ]RN ]EZ ]RN71
Let j, be such that

_ 1-p/p _ 1-p/p
su%f)( j x,-(Iuk(X)O)I)de> s2( J Xjk(luk(X>O)|)de> ,
je

RN-1 RN-1

and note that the right-hand side converges to zero due to (3.61). Then from (3.63), it
follows that u (-, 0) — 0 in IP(RN"! x {0}).

3. Since G consists of isometries on LP(R¥ ™! x {0}), by Lemma 3.1.5, the norm of
IP(RN"! x {0}) provides local metrization of G-weak convergence on H"P(RY). O
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3.10 Spaces cocompactly embedded into themselves

Theorem 3.10.1. The space C"(]RN ), k € Ny = {0,1,2,...}, is cocompactly imbedded
into itself relatively to the group of shifts Gpn.

Proof. Let (u,) be a bounded sequence in ck (]RN ) such that for any sequence (y,) in
RY, u,(- +y,) — 0.Sincev — aﬁv(O) is a continuous functional in C* (]RN ) for each
B e N’(\,’, IBl < k, it follows from u,(- +y,) — O that aﬁun(yn) — 0 in RY whenever
|8l < k. Choosing y,, € R" such that

1 1
> Puy)l = 5 sup ¥ [P un)] = S luglr ey,

IBI<k yeRY |Bi<k

Let CO’“(IRN ), a € (0,1], denote the factor space of functions modulo additive con-

. _ [uG)-u@y)l
stants, with the norm |u|| = SUDysyeRY — oyt -

Theorem 3.10.2. The space C**(RY), a € (0,1], is cocompactly embedded into itself
relative to the rescaling group

G def {u u(t() - y)}t>0,ye]RN’ (3.64)

acting on CO(RY) in the sense of Definition 3.2.3.

Proof. Note that the group (3.64) acts isometrically on CO’“(IRN ). Let (;) be abounded
sequence in CO""(IRN ) such that t,;“uk(tkt +z;)) — 0 for any sequence (z;) in RY and
any sequence (t;) of positive numbers. Let x;,y;, € RY be such that

i O0) — eyl sup lu () — w1

1
= = = lugllga gy- (3.65)
IXi — V3| 2 ayert Ix -y 5 WHllcary)

Set t = X — Yiehs 2k = X, Wy = "kt;k"k and assume, without loss of generality, that

W — w. Set vi(x) = t; % (t(x + z)) and note, since v > v(&) —v(n), &,n € RV, isa
continuous functional in C*(RV), that Vi(w) = v4(0) — 0. Then

[ (X)) — wpe (V)|

TR = [Vi(wg) = v (0)] < |vi(wy) = vie(@)|+|vi (@) — v (0)|

< Willwy = wl* + 0(1) = lwlllwy — wl* +0(1) — 0,

and thus, by (3.65), [lu,ll — O. O

Remark 3.10.3. An analogous proof extends the assertion of the theorem above to the

spaces €%, k € N, which are cocompactly embedded into themselves relatively to the
—k-a

group Gp" .
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Corollary 3.10.4. Let E be a Ggn-invariant Banach space continuously embedded into
CK(RY) for some k € No. If C° (RY) is dense in E* and (3.55) is satisfied, then this em-
bedding is G, n-cocompact.

Proof. Apply Lemma 3.1.6 and Lemma 3.8.1. O
The following corollary generalizes Theorem 3.2.4.

Corollary 3.10.5. Let E be a gn’{k*“—invariant Banach space continuously embedded into
CoRN), a € (0,1], k € Np. IfCSO(IRN) isdenseinE", t,’i(p(t,:1 -+yi) — @ in E* whenever
Qe CSO(IRN ), ty = landy, — 0, then this embedding is cocompact relative to gk,

Proof. Apply Lemma 3.1.6 and an argument analogous to Lemma 3.8.1. O

3.11 Cocompactness of the radial Moser-Trudinger embedding

Let B = B;(0) RY, N > 2. In this section, we prove cocompactness of an embedding
of the Sobolev space Hé”r\; 4(B) of radial functions, relative to the multiplicative group

of isometries
G = {u— gyw) = s"MNy(|x),s > 0}. (3.66)
Let
, dﬁflog%, O<r<1,
and define

V,(n =

—-N_ . \-N—(p-N)%
r r ¥, N<p<oo,
def { n(r) p<oo (367)

1-N
nmnw, p = oo,
The following family of functions was used by Moser [94] in the proof that the constant
ay in (1.30) is optimal:

N-1

m(r) def (wN_l)‘ﬁth min{%, 1}, r,t € (0,1). (3.68)
t

It is easy to calculate that functions m,(|x|) on B satisfy |[Vm;|y = 1. Let us define a

continuous linear functional on H(l)’ﬁ d (B) associated with the function m;, t € (0,1):

(i) & j|th(|x|)|N*Zth(|x|) Vu dx.

B
Lemma 3.11.1. Letu ¢ H(l)’lr\; 4(B). Then for every t € (0,1),
(m/,u) = w%ﬁngl_mmu(t). (3.69)
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Proof. We have

t
(m/,u) = wy_, J u'(r)|m;(r)|N_1rN_ldr
1

t
1N
= a)N,le”_lrlEl_N)/N J u' (rydr = wll\{l_vlngl_N)/Nu(t). O

1

Corollary 3.11.2. Every functionu € H*Y 4(B) satisfies the inequality

O,ra

oy, = S?p)lu(r)lnﬁl‘mm < wyNIvully (3.70)
re(0,1

“1/N

and the constant wy; |

in the right-hand side is optimal.
Proof. Apply Holder inequality to (3.69). The best constant is attained atu = m,. O

Lemma 3.11.3. The space H(l)”r\; 4(B) is continuously embedded into IP(B, V,), p €
[N, co].

Proof. Casep = cois proved in Corollary 3.11.2. The case p = N is a well-known Hardy-
type inequality (see, e. g., [6])

N _ N
J ™ gy < (N 1) j IvulN dx. (.71)
XNy, N
B B
Case p € (N, co) follows from the endpoint cases by the Hélder inequality. O

Note that the LP(B, V,,)-norms are invariant with respect to the group (3.66).

Theorem 3.11.4. Embedding H(l)‘jr\; 4(B) = L (B, V,,) is cocompact relative to the group
(3.66).

Proof. Observe first, by direct computation, that for everys > O and t € (0, 1),

gsm; = myys  and g_: m: = m:l/s . (3.72)

Let t; € (0,1) be an arbitrary sequence and let s, = log i If wy LA 0, then (mj,,
8 U) — 0. By (3.72), we have

(mi‘/e)gsk“ﬁ = <m;:(>uk>~
Then, using (3.69) we have

sup |uk(r)|n£1_N)/N — 0. (3.73)
re(0,1) 0
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Corollary 3.11.5. Let p € (N, o). Embedding H(l)’lr\;d(B) — IP(B, V,) is cocompact rela-
tively to the group (3.66).

Proof. Letuy A 0. By (3.71) and (3), we have

-N
e Y (N1
Iy, sj B dx( sup 47 ) ~o0. 0

N N-1
g PPy e %

Remark 3.11.6. By Lemma 3.1.5, the LP(B, V,)-norm, p € (N,o0], provides a local
metrization of the embedding HY" .(B) — LP(B, V).

Proposition 3.11.7. Ifu; S 0in H(l)’r\; (B), then for any A > 0,

J(e/uu"l% - 1)dx — 0.
B

(In other words, embedding H(l)’lr\; 4(B) — exp L¥5 (B) is cocompact relative to the group

(3.66).)
Proof. By Theorem 3.11.4, there is a sequence €, — 0 such that IukIN /N _1)(r) < €y
Then
N
0< j(e"'“k'ﬂ ~1)dx < J(#‘ek ~1)dx — 0. (3.74)
B B O

3.12 Bibliographic notes

Theorem 3.2.1 fors = 1, 1 < p < N, was proved by Solimini [112]. We give here a second
proof, for general s > 0, following Jaffard [68], and also quote a third, elementary,
proof for the case s = 1 from [126]. A fourth proof, following the wavelet decomposi-
tions approach of [13], is provided for the embeddings of Besov spaces, Theorem 3.5.1
(its Corollary 3.5.5 applies to Sobolev embeddings). The range of parameters in em-
beddings handled here is larger than in [13] because the argument in the latter is de-
pendent on a technical property [13, Assumption 1.1] which is stronger than cocom-
pactness.

An example of non-cocompact embedding into the Lorentz space, H*P(RY) —
IP"P(RY) in Corollary 3.3.2, based on the noncompactness of the embedding defined
by the Hardy inequality (Proposition 3.3.1), is due to Solimini [112].

Interpolation of cocompact embeddings with applications to inhomogeneous
Sobolev and Besov spaces, studied in [35], is only a tentative incursion into the sub-
ject. Same applications as those following from Theorem 3.6.3 can be handled in the
case p < N/s by Theorem 3.8.2 by means of reduction of known G'-cocompactness
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for corresponding homogeneous spaces. Theorem 3.6.3 is restricted to spaces E, and
E, equipped with the same scaling group. An illustrative Proposition 3.6.4 studies
invariance of interpolated spaces when the endpoint spaces E,, E; have respective
G and G"-invariance, but presently we do not know of any result on interpolation of
G"-cocompactness.

Cocompactness of trace embeddings in Section 3.9 is an elementary generaliza-
tion of an analogous statement for H 1’2(]RIJ:’ ) in [127]. A further generalization to traces
on hyperplanes of lower dimension seems to be elementary but we have not seen it in
literature. Moreover, given that sharper trace embeddings involve Besov spaces (see,
e. g., [2]), there is a whole range of significant trace embeddings expected to be cocom-
pact.

Cocompactness of Moser-Trudinger embeddings and corresponding profile de-
compositions were first proved for the radial case by [4], followed by the nonradial
case for N = 2 in [7]. Embedding H(l)”jr\g1 4B = N, Vy), associated with inequality
(3.71), is not G-cocompact ([4]). The argument is similar to Proposition 3.3.1. The prob-
lem in full generality remains open, and in most remaining cases no suitable scaling
set G is known. Nonlinear dilations similar to the group (3.66) have been also studied
for the radial subspace of H"? on the hyperbolic space H" in [100].
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4 Profile decomposition in Banach spaces

In this chapter, we prove existence of profile decomposition for general Banach spaces
and its counterparts for dual spaces and for spaces of vector-valued functions, provide
its realization for Besov and Triebel-Lizorkin spaces (which, suitably normed, satisfy
the Opial condition), and discuss consequences of asymptotic decoupling of bubbles
in nonlinearities. We conclude the chapter with an example of a profile decomposition
in the context of the Moser-Trudinger inequality.

4.1 Profile decomposition

Definition 1.2.4 of profile decomposition can be extended from Hilbert spaces to Ba-
nach spaces verbatim, but when concentration profiles are obtained by (1.9), conver-
gence of the sum of elementary concentrations (4.3) generally cannot be assured by
known means. Only by replacing weak convergence with Delta convergence (which
makes no difference in Hilbert space) one has a Banach space counterpart of (1.15),
(4.7). Thus we extend Definition 1.2.4 to Banach spaces by invoking Delta-convergence
instead of weak convergence, which allows to use “energy” estimate (2.15), which
leads to (4.7), and eventually to convergence of the sum (4.3) representing defect of
compactness.

Definition 4.1.1 (Concentration family). Let E be a Banach space and let G be a set of
linear bijective isometries of E. One says that a countable set of pairs (W™,
(g,(("))keﬂ\l)ndN c B x GN is a concentration family for a bounded sequence (u,,),cn

inE,ifg =id,

k
g}((n)*1 U — W, (4.1)

and
gl((”f1 gl((’”) — 0 wheneverm # n. (4.2)

The functions w™ are called concentration profiles of (u,),cn» associated with scaling
sequences (g,((") JkenN> Sequences (g,i")w(")) ren i E are called elementary concentrations
(or blowups, or cores) for the sequence (u,),cn, and property (4.2) is called (asymp-
totic) decoupling.

Definition 4.1.2 (Profile decomposition). Let (u,),n be a bounded sequence in a Ba-
nach space E and let G be a set of linear bijective isometries of E. One says that (u,)
admits a profile decomposition if it has a concentration family (w™, (g,((”))kgﬂ\l)ne]N C
E x GN such that the series

S £y gMw, “3)
n
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called defect of compactness, converges in E unconditionally (with respect to n) and
uniformly with respect to k, and

Uy — S Zo. (4.4)

Such concentration family is called complete.

Definition 4.1.3. A group G, of isometries on a Banach space E is called a scaling group
(or dislocation group) if the following relations are satisfied:

8k €Go keN, g+ 0= 3(k;) c N : (g,:il) and (gkj) converge operator-strongly
(4.5)
(i. e., pointwise), and

Uy — 0, wekX, g€GykeN, g —-0 = u,+gw—0. (4.6)

Remark 4.1.4. When weak convergence and Delta-convergence coincide, condition
(4.6) trivially holds true, so this definition generalizes the definition of the dislocation
group from [127] to Banach spaces. Furthermore, in this case, concentration profiles
(4.1) become weak limits as in (1.9).

Remark 4.1.5. When g, is a scaling group, profiles w™ in (4.3) are unique, up to ex-
traction of a subsequence and up to multiplication by an operator g € G,. The argu-
ment is repetitive of that in Proposition 3.4 in [127], which considers the case of Hilbert
space.

Theorem 4.1.6. Let E be a uniformly convex and uniformly smooth Banach space
equipped with a scaling group G, and let G > id be a subset of G,.Then every bounded
sequence (x;)yen in E has a subsequence that admits a profile decomposition relative
to G. Moreover, if |x; || < 1, then |[w™| < 2for alln € N and

lim sup [x; = Sll + ) s(w™|) <1, (4.7)
n

where S, is the sum (4.3), w™ are concentration profiles as in Definition 4.1.1, and § is
the modulus of convexity of E.

Remark 4.1.7. Condition |x;|| < 1can be removed by applying Theorem 4.1.6 to a sub-
sequence of x;/|x;|| with |x,| — v > 0. Theorem 4.1.6 remains valid with § in (4.7)
replaced by vé(;).

Remark 4.1.8. The assumption of uniform convexity in Theorem 4.1.6 cannot be re-
moved. Indeed, let E = L°(R) equipped with the group of integer shifts G, and Let x;
be a characteristic function 1, _of the set

k

Ak = U[a;{l),ag) + z—k]
j=1
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o
k
tion profiles 1, 4, for every t € (0,1], contrary to Theorem 4.1.6 where the set of all

concentration profiles of a sequence is countable.

where a’ € R satisfy Ia]((i) - a)(f)l > 2k whenever j # £. Then x; will have concentra-

Corollary 4.1.9. If space E, in addition to the assumptions of Theorem 4.1.6, is G-Delta-
cocompactly embedded into another Banach space F (if E satisfies the Opial condition,
this coincides with G-cocompactness), then the remainder r; def u, — Sy converges to
zero in the norm of F. If, furthermore, E is a Hilbert space, one also has (1.15).

4.2 Opial condition in Besov and Triebel-Lizorkin spaces

Given that Delta-cocompactness of embeddings, distinct from cocompactness, re-
mains generally unknown, application of Theorem 4.1.6 relies on coincidence be-
tween Delta-convergence and weak convergence together with cocompact embed-
dings that yield a remainder vanishing in the target space. In particular, the two
convergence modes coincide in Besov and Triebel-Lizorkin spaces equipped with
norms (3.23) and (3.24), respectively. In the case of Sobolev spaces, which are a sub-
family of Triebel-Lizorkin spaces, the equivalent norm (3.24) is different from the
standard Sobolev norm, but this does not present any difficulties: once the profile
decomposition is stated in terms of weak convergence, we may revert to the stan-
dard Sobolev norm as well as discard the general energy inequality (4.7) in favor
of the stronger energy inequality (4.25), specific for Sobolev spaces and the group
G'. In this way, profile decomposition of Solimini (Theorem (4.6.4)) is a corollary of
Theorem 4.1.6.

Theorem 4.2.1. Lets € Randp, q € (1, 00). Besov spaces B¥P4(RN) with the norm (3.23)
and Triebel-Lizorkin spaces FSP4(RN) with the norm (3.24), satisfy the Opial condition,
and in each of these spaces Delta-convergence coincides with weak convergence.

Proof. 1. Note that the spaces in question are uniformly convex and uniformly smooth,
so once we show that Delta-convergence and weak convergence coincide, we will have
the Opial condition satisfied by Proposition 2.4.3. Furthermore, it suffices to prove only
that u, — u always implies u, — u. Indeed, if u,, — u, then by Theorem 2.3.8, (u,)
is a bounded sequence. Then it has a weakly convergent subsequence, whose limit is
necessarily the Delta-limit of (u,,), namely u. This shows, however, that every weakly
convergent subsequence of (u,) has weak limit u, and thus u,, — 0.

2. We may now apply characterization of Delta-convergence by Theorem 2.1.3, so it
suffices to show that u,, — 0 implies u; — 0. Finally, we may assume that the norm of
u, is bounded away from zero, since u,, — 0implies both weak and Delta-convergence.
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Consider first Besov spaces. We have, forany ¢ € S (]RN ),
2/q-1
N j q
(W 0) = ( TPl
jez

. q/P*l . -2 .
x Z( j |2’sP]~un|pdx> j|zspjun|'3 P(Pu)PPpdx.  (4.8)
J€Z gy RV

The first factor equals |lu, |9, while by assumption [|u,|| is bounded and bounded
away from zero, so it suffices to show that the remaining product vanishes. By density
and linearity, it suffices to use as test functions ¢ such that P;p = 0 for all values of
j except one. For any j € Z, J]RN |2jSPjun|pdx < |lu,lIP, which is bounded as n — oo,
and u,, — 0 implies that Pu, -0 in L, which means that, for the right-hand side of
(4.8), reduced to a single term of the summation, we have

) q/p-1 ) o )
( J |2’stun|de> J |25 Py, [P *2 (P, 2° Ppdx — 0.
RM RN
Similar calculations for the Triebel-Lizorkin norm give
(up> @)

. p/q_l . _ . .
= lu, > J [(lespjunr’) Y [2°Pu,| 22’s(Pjun)]2’sP,-(de. (4.9)

RV jez jez

With our particular choice of test functions ¢, we have

. p/q-1
(0| < ) | (ZIZ’SPjunI") 1Pyl Pipdx. (4.10)
RV J€Z

We now consider two cases. If p > g, then by Hélder inequality we have from (4.10)

alp
|09 < COll | [ (1P g x| = 0.
]RN

If, on the other hand, p < g, by substituting a trivial inequality } ., IZJSPjunlq >
2%|P;u,|?, into (4.10) we get

(2, )| < CG) J P, P2 Pypdx — 0.
]RN

We conclude that u;, — 0, and thus u,, — 0, which proves the theorem. O
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4.3 Proof of Theorem 4.1.6

Throughout this section, it is assumed that E is a uniformly smooth and uniformly
convex Banach space, equipped with a scaling group G, and that G is a subset of G,
containing id. We will use the notation (v;) < (u) or (i) > (v;) whenever (v;) is a
subsequence of (uy).

Our proof of Theorem 4.1.6 will start with several technical statements.

Lemma 4.3.1. Let (gy) be a sequence in G,. If g, — O then g,:l — 0.

Proof. 1If g,;l + 0, then by (4.5) the sequence (g;) has a strongly convergent subse-
quence, whose limit g is necessarily an isometry and, therefore, g # 0, a contradic-
tion. O

Lemma 4.3.2. Let (g;) be a sequence in G such that g;, Lis operator-strongly convergent.
If x, — O, then g;x;, — 0.

Proof. By operator-strong convergence, there is a linear isometry h, such that g; ly
hy forally € E,

(&) *,y) = (x¢.8¢'y) = (xp, hy) + 0(1) — 0. O

The next lemma describes how scaling sequences (g;) become asymptotically de-
coupled.

Lemma 4.3.3. Let (u;) be a bounded sequence in E. If two sequences (g(l))ke]N and
(gk))ke]N in g, satzsfy (g(l) — w® and (g(z)) (uy - k (1)) (2) + 0, then

& e?) —

Proof. Assume that (g (1))‘1(g(2)) does not converge weakly to zero. Then by (4.5), on a
renamed subsequence, (g(l)) (g(z)) converges operator-strongly to some isometry h.
Then by Lemma 4.3.2,

-1 -1
&) E@NE?) (w-gPw?) -w?] —o,
which, taking into account (4.6), gives

(1))‘l

(8,)) we— w® —mw? — 0.

This, however, contradicts the definition of w'? and the assumption that w? 0. O
In the next statement, we obtain decoupled scaling sequences by iteration.

Lemma 4.3.4. Let u;, be a bounded sequence in E and let sequences (g,(("))k in G,
and wW ¢ E, n = 1,...,M, satisfy g(D = id, (g(")) u — w, n ..M, and

(g ) (g(m)) — 0 whenever n < m. Assume that there exists a sequence (gk “)) ing

O_g@,,@Q_,.  _oM (M))_

such that, on a renumbered subsequence, (gk “)) (we-w-g"w -8

w2 0. Then (g™) ' (gM™) — 0forn=1,...M.

printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

64 —— 4 Profile decomposition in Banach spaces

Proof. We apply Lemma 4.3.3, with 1 replaced by n, 2 by M + 1, and u; by y; -
Yomen 8 W™, taking into account (4.6). O

We now start the construction needed for the proof of Theorem 4.1.6.

The following partial strict order relation between sequences in E will be denoted
as >. First, given two sequences (x;) and (y;) in E, we shall say that (x;) > (y;) if there
exists a sequence (gy) in G, an element w € E \ {0}, and a renumeration (n;) such that
g,;klxnk — wandy; = x,, —g, w. By Lemma2.5.1, if (x;) > (y;) and |Ix;|l < 1, then [ly, ]l <1
for all k sufficiently large. Then, by Delta-compactness of bounded sequences, every
sequence (x;) in E, |x; || < 1, which is not G-Delta-convergent to O, there is a sequence
(vx) in E, such that |ly, || < 1and (x;) > ().

Then we shall say that (x;) > (y;) in one step, if (x;) > () and in m steps, m > 2, if
there exist m sequences (x;) > (xz) > --- > (x{"), such that (x;) = (x;) and (") = (v).
Note that, for every sequence (x;) in E, ||x; ]| < 1, either there exists a finite number
of steps my € N such that (x;) > (y;) in m, steps for some (y;) in E, |yl < 1, and
p(yi)) = 0, or for every m € N there exists a sequence (y;) in E, [ly,ll < 1, such that
(xx) > (v) in m steps. We will say that (x;) > (y;) if either (x;) > (v) or (xi) = ()

Define now

o((x)) = inf supllykll
V)2 keN

and observe that if (x;) > (z;), then 0((x)) < 0((zx)), since the set of sequences (y;)
dominating (z;) is a subset of sequences dominating (x; ).

Lemma 4.3.5. Let (x;) > () in m steps, x|l < 1andn > 0. Then there exist
w® . w™ eE, sequences (g,il)), ceos (g,im)) in G, and a renumeration (n;) such that

m
Vi =Xn — Y 80w
n=1

(gﬁ,‘;’))*lgﬁl‘i) — Oforp # q,and foranysetJ c J,, = (1,...,m),

<Z g(") > < sup Ix, | - o((x,,)) +1,  for all k sufficiently large. (4.11)

nejJ

Proof. The first assertion follows from Lemma 4.3.4. Define

def
@ = x, — Y gw®,

nef,\J
def 1
Br = Xn, - z Zg = 5(“k +Yi)-
nef,,\J ne]

By Lemma 2.5.1, [ly;ll < llagll < lIxill < 1and B < 1 for all k large. Note that, as in
the construction above, we can take k large enough so that sup ||| < inf |||l + 1. By
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uniform convexity, we have for all k sufficiently large

1Bkl < el = 6(aty = yio).

Therefore,

Z gl((n)w(n)

nej

g

Let us now define the following value associated with sequences in E:

) < gl = 1Bl < sup Il - o((0) + 1. O

P((W)ken) def sup{lwll : 3(v¢) < (v) and (gy) in G, such thatg,;l(unk) — w}.

Note that by the definition of G-Delta convergence uy g u if and only if
p((Ug — Wken) = 0.

Proof of Theorem 4.1.6. Let x; € E, x|l < 1, k € N. For every j € N, define ¢; = 6(%).
Let (x,(cl)) c E be such that (x;) > (x,(:)) and sup ||XI((1) | < o((x})) + €;. Consider the fol-
lowing iterations. Given (x,((j))k, either p((x,((j))k) = 0, in which case there is a profile
decomposition with r;, = x,((j), or there exists a sequence (xl(j”))k < (x,((i))k, such that
supy ||Xl(j ) < 0((x,(j))k) + %, j € N. Let us denote as n’,.( the cumulative enumeration of
the original sequence that arises at the jth iterative step, and denote as m;,; the num-

ber of elementary concentrations that are subtracted at the transition from (x,((j))k to
j . . def i
(x,((“l))k (using the convention x\”’ =" x,). Set M; = ¥/_, m;, M, = 0. Then the sequence

(xl((i )) « admits the following representation:
. M;
X1(<1) =Xy - Zgg')w("), ke N.
n=1 'k
By Lemma 4.3.5, under an appropriate renumeration such that (4.11) holds for all k,

o

M;
Y gwt

- k
n=M;_;+1

k 7’

. . €:
) < sup|xV™| - a((x)) + 5] <€, keN,
and thus

M .
z gPwl <27 jeN.
n]k

n=M;_;+1

Let us now diagonalize the double sequence x,((i) by considering

My
k
A=y - g
n=1
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66 —— 4 Profile decomposition in Banach spaces

Let us show that x,((k) 5 0. Indeed, by definition of functional p and Lemma 4.3.5,
6(p(xy)) < sup |x_k|| — o(x;) and, therefore, for anyj € N and all k > j,

p(P) < p(x?) < sup|?| - o (x?) < ;.

Since j is arbitrary, this implies p(x,(:‘)) = 0. Furthermore, denoting an arbitrary subset
of{Mj + 1,...,M]-+1},j eN, as]]-, we have

1

(o)
Z (n) L

n=M;+1

z g (n)

nej;

<3

j=k

We have therefore
X - Z g<n> m 9

(n)

understanding the series as a sum Sy + S;, of Sy = Zn 18, k — a finite, not a priori

bounded, sum - and of a series S, = Yo, +1g k w that converges unconditionally
and uniformly in k.

Note, however, that S; is a sum of a bounded sequence X“ﬁ’ a G-Delta-vanishing
(and thus bounded) sequence, and of the convergent series S; is bounded with respect
to k. Therefore, the sum S,’< is bounded with respect to k and, consequently, the series
Si + S}, is convergent in norm, unconditionally and uniformly in k.

Finally, our construction can be carried out without further modifications if at the
beginning, if x; + O, one sets g,((l) = id, or, if x;, — O one starts the sum S, with the
zero term gVw'?. O

4.4 Profile decomposition in the dual space

Given a continuous embedding E — F, cocompact relative to a set G of scaling opera-
tors, this section deals with a dual embedding F* — E* and with existence of profile
decomposition in F* relative to a dual set of scalings

gt g geg.

Theorem 4.4.1. Let F be a uniformly convex and uniformly smooth Banach space that
satisfies the Opial condition. Let id € G c G, where G, is a group of linear isometries

on both E and F, which satisfies (4.5). If E i F and E is dense in F, then any bounded
sequence in F* has a subsequence that admits a profile decomposition relative to G,

#
and F* cg—»E"‘.
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Proof. 1. Note first that condition (4.5) holds for gg in F*. Indeed, if gy 1 4 0, then
(v,g,:lu) 4 Oforsomeu ¢ F,v e F*, and thusg,;1 + 0in F, and, by density, g,:l +~0
in E. Then, by (4.5), on a renamed subsequence, g; ! _, g7lin the strong operator sense
in E. By continuity of the embedding, g;' — g~ in the strong operator sense in F. This
implies that g"! is a linear isometry on E and on F. Then, by a simple duality argument,
g*_l is a linear isometry on E* and on F*. Then, forany v € F*, g; 1y g*_lv, and
gy _1v|| =g *_1v|| 7+ = [Vlp:. Since by assumption F* is uniformly convex, we have
g 1 g* L in the strong sense.

2. Note also that F* satisfies the Opial condition. Indeed, since F is uniformly con-
vex and uniformly smooth, sois F*. In each of F and F*, by Proposition 2.4.3, the Opial
condition is equivalent to the condition that weak convergence and Delta-convergence
coincide, or by Theorem 2.1.3 that u; — 0 & u; — O for any sequence, where u;, is the
dual conjugate of w; (with (uy, u;) = lu; |%). However, the latter holds in F if and only
if it holds in F*. Therefore, conditions of Theorem 4.1.6 are satisfied, which proves the
first assertion of the theorem. ,

3. Consider now a sequence (Vi)iens Vi 9 0inF *,as asequence in E*, and let v;
be a dual conjugate of v, in E. Consider a profile decomposition for a renamed subse-

. . def
quence of (v;) in E. Then, with r; 2 Vi = Yn g,((”)w("), we have
2
iz = Y (Vio 8" W™ ) + Vi idp
n
< 3@ Vi W™y Wil Il
n

Note now that each term (gl((")*vk, w(")) gs N € N, vanishes by the assumption on (v;),
and that their sum is uniformly convergent relative to k and therefore vanishes as well.
Sequence (v;) is bounded in F* (as a weakly convergent sequence), and r, — 0 in F
since embedding E — F is G-cocompact. This yields v, — 0in E*. O

The following two statements follow immediately from the definition of profile
decomposition.

Proposition 4.4.2. Let E be a Banach space where weak convergence and Delta-
convergence coincide, equipped with a group of isometries G, and let ) : E — E be
a continuous map satisfying y(gu) = g(u) for allg € G and u € E and, moreover, let Y
be continuous as a map from E, equipped with the weak topology, to E equipped with the
weak topology (i. e., “weak-to-weak” continuous). If (uy ) has a profile decomposition
on E relative to G, with a concentration family (w("), (gl((”) Jken)s N € N, then P(uy) has a
profile decomposition on E whose concentration family is (lp(w(”) ), (gl(("))keN), neN.

Proposition 4.4.3. Let E be a Banach space where weak convergence and Delta-
convergence coincide, equipped with a group of isometries G, and let ) : E — E*
be a continuous map satisfying

Y(gu) = g*flll)(u) forallg €e Gandu € E, (4.12)
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and, moreover, let  be continuous as a map from E, equipped with the weak topology,

to E* equipped with the weak topology (“weak-to-weak” continuous). If (u;)ien has a

profile decomposition on E relative to G with a concentration family (w'™, (g](:l))ke]N)’

n € N, then Y(uy) has a profile decomposition on E* whose concentration family is
()1
™), g™ Hien)s n € N.

Example 4.4.4. Let1 < p < N, and consider E = H*P(R") equipped with the group of
N-j
rescalings G 7. Let f : R — R be a continuous function satisfying

N-p

f(z%js) =2V k), seRjez
Then the map i defined by
(Y),v) = Jf(u)vdx
]RN
satisfies (4.12).

Example 4.4.5. Let1 < p < N, and consider E = H*P(R") equipped with the group of
shifts G v. Let f : R x RY - R be a continuous function, satisfying

fx+y,s)=fs), xeRV,yezZV,

and
o)l < C(IsP +IsP)
Then the map i defined by
Y),v) = I F 6 u()v(x)dx
IRN
satisfies (4.12).

4.5 Profile decomposition for vector-valued functions

Let E be a Banach space equipped with a bounded set G of bounded linear operators
on E. We consider now profile decompositions on a product space EV, v = 2,3,...,
relative to the diagonal action

"G = {(ugy ) = (G 8 geg (4.13)

as distinct from the product action {(w,...,u,) — (guy,. .. ,gvuv)}g1 ..... .G Profile de-
compositions relative to the latter, larger, group follow immediately from profile de-
compositions in the scalar case, but elementary concentrations in the former case take
a more specific form (g wy, ..., gxw,) without weakening the remainder.
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Proposition 4.5.1. Let E be a Banach space equipped with a bounded set G of bounded
linear operators on E. A sequence of vector-valued functions in E', v € N, is 'G-weakly
vanishing if and only if its every component is G-weakly vanishing.

Proof. Sufficiency in the statement is immediate. Let us prove necessity. Let (ug), ey
u,ﬁv)) 9 0. Then, for any fixed i = 1,...,v, using test functions with only the ith com-
ponent nonzero, we get ul({i) A 0. O

Corollary 4.5.2. If a continuous embedding E — F is G-cocompact, then E' — F is
VG-cocompact.

Let us fix the norm on E" as /|lu |2 + - -+ + [l ||

Proposition 4.5.3. Let E be a Banach space equipped with a bounded set G of bounded
linear operators on E. A sequence of vector-valued functions in E¥, v ¢ N, is 'G-Delta
vanishing if and only if its every component is G-Delta vanishing.

Proof. Sufficiency is immediate. Let us prove necessity. Let (uil), ces u,(fv)) 5 0. Then,
forany g, € Gandanyv € E,

©)

2 2
o <@, .gul) + (v,0,...,0)|5 +0(D).

l(gad ... ga”)

This implies that Ingu,(:) | < Ingug) + V| + o(1), that is, g,(f)uk — 0. Since the choice of

the index 1 is arbitrary, we have gku,(f) — Oforanyi=1,...,v. O

Remark 4.5.4. We may now apply Theorem 4.1.6 to the uniformly convex and uni-
formly smooth Banach space E” equipped with the group VG, and its subset "G, where
E, the group G, and its subset G are as in Theorem 4.1.6. It is easy to see that G, is a
scaling group for E'. Then every sequence in E¥ has a profile decomposition relative
to VG, and if E is G- cocompactly embedded into F, then the remainder in (4.4) van-
ishes in F’. We may, however, prove a more general statement that does not explicitly
require conditions of Theorem 4.1.6.

Theorem 4.5.5. Let E be a Banach space where every bounded sequence has a subse-
quence that admits a profile decomposition relative to a group of bijective linear isome-
tries G. Then every bounded sequence in the product space E',v € N, has a subsequence
that admits a profile decomposition relative to the diagonal group " G.

Proof. We will give here only a sketch of the proof, leaving to the reader to fill omitted
details. Consider for simplicity the space E x E and consider without loss of general-
ity two sequences (y;) and (it;) in E with respective complete concentration families
(8" ker- w™) and (&g W™).

Given n € N, if g,({”)_lgl((m) — 0 for all m, we set w'™) = 0. If, on the other hand,

-1 -1
g}(") g,ﬁ’") # 0 for some m,, then by (4.5), on a renamed subsequence, g]((") gl((m") -
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g € G (inthe sense of strong operator convergence) and, furthermore, by Lemma 4.3.3,
-1 ’

we have, on this subsequence, g}(") g}(’") — 0 forall m" # m,. We then can re-

place the term ((gﬁ’""))kEN,w”"n’) in the corresponding concentration family with

((g,(("))keN, g,w™) since

g,((n)ilﬂk — g ™.

Let us now apply this algorithm iteratively, extracting on the step n + 1 a subse-
quence from the sequence obtained at the step n, and completing the extraction by
the standard diagonalization argument. As a result, we get a renamed subsequence
of (uy, iy )ren With (uy) having the complete concentration family ((g](("))keN, w) s
and (i) having the complete concentration family, which we are free to order by the
index n, ((g,(("))keN, gnw(”)),,e]N. Thus we arrive at a complete concentration family for
the sequence (., it;) in E x E that has the form

{(g]((n),g’(:l))kEN’ (W(n)’ W(n))}nelN’ (4.14)

where W™ = g, w™), By Proposition 4.5.3, the remainder in (4.4) is G-Delta vanish-

ing. O

4.6 Profile decomposition in Besov, Triebel-Lizorkin, and Sobolev
spaces

Remark 4.6.1. Profile decomposition in B*P4(RY) and FP4(RY) relative to the group
of rescalings is a particular case of the general profile decomposition theorem, The-
orem 4.1.6, once we take into account that the Opial condition is verified by Theo-
rem 4.2.1, and verify (4.5). (Note that this remark includes Sobolev spaces H>" (IRN ) as
identified with FSP?(RN) — see (10.23).) Indeed, (4.5) holds once we note that Sy U=

2"k (2],;(~ ~¥4)) — Oifand only if |ji | + 2|y;| — co. Therefore, ifg; , u + 0, then we
have, on a renamed subsequence, j, =j € Zandy, — y € RY. Then Sy = 8iv — 8y
in the strong operator topology, which is easy to verify directly from the definition of
the respective norm. Furthermore, there is an explicit interpretation of the decoupling
relation (4.2) in terms of the group (3.1):

Lemma 4.6.2. Let E be B5P4(RY) or F5P4(RN) withs > 0and 1 < p < N/s. Let r = 1%

and let g; u = 27u(@(- - y)). Then g}i,ly,’(gjk’Yk — Oifand only if

i =kl + @ + 2 i = yi| = co. (4.15)
Proof. Elementary calculations show that

g],}y,u = 2"’j'u(2‘j' “+y'),

printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.confterms-of-use



4.6 Profile decomposition in Besov, Triebel-Lizorkin, and Sobolev spaces =—— 71

and thus

-1
gj:)y,gj,yu
— Gy (T (A () =
=2 u(z] ( +2 (y y))) - gj—j’,zj’ (y_yr)u-
Note now thatg; , — 0in E if and only if |ji| + 2|y, — co. Indeed, if |ji| + 2*|y;| < C,
then on a renamed subsequencej, =j € Z,y; >y € RY, and 8y, — 8jy- Conversely,
if [j] — oo, we may without loss of generality test weak convergence on functions
whose Fourier transform has compact support away from the origin, so that the sup-
port of F(u(- - y;))(27%&)p(&) is disjoint from any annular domain for k sufficiently
large. Finally, if j, is bounded while |y;| — oo, the support of u(2*(x -y, )) will become

disjoint from any compact set for k sufficiently large. We conclude that g].",ly, 8.y — Oif
k7 k

and only if [j, —j; | + p [V —V;] — oo.Itis easy to see that this is equivalent to (4.15). O

Remark 4.6.3. The same interpretation of decoupling applies to intersections of
Besov and Triebel-Lizorkin spaces whose norms are G" invariant with the same r.
Furthermore, for the subgroup Gpx of G', the same interpretation, that is,

8oy180y, = 0 = [y~ yi| — oo, (4.16)

also holds for intersections of Besov and Triebel-Lizorkin spaces with different values

of the parameter r = N ;p , in particular for the inhomogeneous spaces BS*4(RY) and
HP(RY).

For subcritical embeddings of inhomogeneous Besov and Sobolev spaces, co-
compact relative to the group of shifts G, (as in Theorem 3.7.1, Theorem 3.7.3, Corol-
lary 3.7.4, Corollary 3.7.5, or Corollary 3.8.3), profile decomposition follows from Theo-
rem 4.1.6, with the decoupling relation defined by |yl(<") - yf{m)| — 00, m # n, and the
remainder vanishing in the norm of the target space.

Profile decomposition in Sobolev spaces, H™? (IRN ), m € Ny, p € (1, N/m), in ad-
dition to the explicit decoupling relation (4.2) by Lemma 4.6.2, allows a sharper than
(4.7) estimate for the norms of concentration profiles, set in terms of the gradient norm:

Y J]Vmw(">|pdx < J|Vmuk|pdx+o(1). (4.17)

ne]NIRN RN

We give an abbreviated proof here, referring to [112] for details. Without loss of gener-
ality, we may assume that the sum S, is finite (the sum converges uniformly in k, so
the tail amounts for a uniform arbitrarily small correction in (4.17)), and that concen-
tration profiles w'™ are in C°(RY), by density of C3°(RY) in H™P (RY). By convexity,

J V"™ |”dx > J V™S dx + p(E"(Si), g = Sic)s (4.18)

RN RN
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where notation &' stands here for the Fréchet derivative of £(w) def }% .[RN |VwPdx.
The second term in the right-hand side, since the individual blowup terms g,((")w(")

in the sum S; have asymptotically disjoint supports (details are left to the reader), is
equal to a sum of terms of the form

(8w e - Sy + o(1) = p{(W™]", 8w - S)) + 0(1) — 0,

since the remainder r; = u; — S converges g » weakly to 0, so that

J V™ [P dx > j V7S Pdx + o(1) = ¥ J V"W Pdx o)), (419)

RN RN RN

where the last evaluation is again based on the asymptotically disjoint supports of
individual blowups. Taking into account (4.17) and Lemma 4.6.2, we have the follow-
ing profile decomposition (noting that the remainder r; vanishes in LP» (R") since the

. * N-mj
embedding H™P(RY) — I[Pn(RY), N > mp, is ng -cocompact).

Theorem 4.6.4 (Sergio Solimini). Let (u;) be a bounded sequence in H™®RN), m ¢

N, 1 < p < N/m. Then it has a renamed subsequence and a concentration family
s(n)
W, (g kendnenes W € HMPRY), g E 25 K u@ (—y ), j0 e 2y e R,

with
=0, =0 e @ 2y oo, mn (620
such that g ")] w, — w in H™P(RV),

w- Y g"w” »0 inLPn(RY), (4.21)
nelN

the series Y ey 8, Myw™ converges in H™P (RV) unconditionally and uniformly in k, and

Y J|Vmw(”)|pdx < liminf j V" [’ dx. (4.22)
ne]N]RN RN

For sequences bounded in the space H™(RY), 1 < p < oo, we similarly have
the following profile decomposition (noting that the remainder r, vanishes in Lq(]RN ),
p < q < p, since the embedding H™(RY) — LI(R") is cocompact relative to the
group of integer shifts).

Theorem 4.6.5. Let (1) be a bounded sequence in H™ (RY), m € N, 1 < p < co. Let
g e, o0)if N <mpandq € (p,p,,) if N > mp Then (u;) has a renamed subsequence

and a concentration family (w™, (u — u(- - ))ke]N)ne]N’ w™ e H™P(RY), y(n) b
with
W0 B min w)
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such that u (- +y(")) — w in H™P(RY),

U— Yy W W -y™) -0 inLYRY), (4.24)
neN

the series ¥ . W™ (- — y]((")) converges in H™P(RY) unconditionally and uniformly in k,
and

Y J 9w Pdx < lim inf J 9™, P dx. (4.25)
ne]NIR RV

Note that in addition to (4.22) and (4.25) one has an analogous relation for the
L?-norms, which is a particular case of the “iterated Brezis—Lieb lemma” below. Con-
ditions of this statement are satisfied in the case of Theorem 4.6.4 for g = p;,, and in
the case of Theorem 4.6.5 forp < g < p;,..

4.7 Decoupling of nonlinear functionals

In this section, we characterize behavior of the nonlinear mapping, for example, u +—
I}RN F(u)dx, in relation to profile decompositions in Sobolev spaces.

Theorem 4.7.1 ("Iterated Brezis-Lieb Lemma”). Let E be a Banach space of functions
on RN cocompactly embedded into LY(RY) for some q € [1, co) relative to a subgroup
G of the rescaling group G4/~ Assume that weak convergence in E implies convergence
almost everywhere on R, Let (u,) be a sequence in E that has a profile decomposition
relative to G. Then

J e l%dx — Y J|w(”)|qu. (4.26)

nelN

RN RN

Proof. Without loss of generality, we may assume that the sum (4.3) is finite and con-
tains M € N terms. Let us prove by induction that for any m < M,

[ |

RN

u - Zg(n)

J |w(")| dx + o(1). (4.27)

]RN

Since weak convergence in E implies convergence almost everywhere, we have by the
Brezis-Lieb lemma

J [ug|9dx = J [y - | dx + J [w®|%dx + 0(1),
RY RY RY

which is (4.27) for M = 1. Assume now that (4.27) holds for some m and let us prove it
for m+1. Indeed, let us apply the Brezis-Lieb lemma to [g(erl (U — Y 1g(")w(”)] —
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W(m+1):

|

RY

q

[g(m+1) [ Z g w ]

y

RN

q
m
-1
[gl({erl)] [uk _ Z gl((n)w(n)] _ W(m+1) dx +
n=1

J W™V Tdx + o(1).  (4.28)

RN

(m+1)

Taking into account that scalings g, preserve the L?-norm, this can be rewritten as

j e |

RV RN

m
U - z g,(:l)w(n)

n=1

dx + J W™D Tdx + o(1).

m+1 q
_ Z g]((n)w(n)
n=1 RN

Substituting the value of the left-hand side from (4.27) into the relation above, we get
(4.27) for m + 1 and, therefore, for all m < M. Setting m = M in (4.27), we have

M
j |uk|qu N Z le(n)lqu’

RN n=1
which concludes the proof. O

Lemma 4.7.2. Letq € (1,00) and let F : R — R be a continuous function satisfying
|F(s)| < CIs|?, s € R. Let (Q,u) be a measure space. Then the map ¢(u) = IQ F(u)du is
continuous in LY(Q, ).

Proof. Let u, — uin LY(Q,u) and assume that there is a renamed subsequence such
that lim @(uy) + ¢@(u). Then it will have a further renamed subsequence (see, e. g.,
Theorem 4.9 in [23]) such that for some u, € LY(Q, p), [y | < ugand uy, — ua.e.in Q.
Then F(u;) — F(u) a.e.in Q and |F(u)| < Clug|? € L}(Q, p). Then by Lebesgue domi-
nated convergence F(u,) — F(u) in LNQ, 1), and thus ¢(u;) — ¢@(u), a contradiction
that proves the lemma. O

Theorem 4.7.3. Let g € (1,00) and let F : R — R be a continuous function satisfying
|F(s)| < Cls|?, s € R. Assume that (uy) is a sequence in L that has defect of compactness
relative to the group G, of the form (4.24), with the series Y ,cn wm (. - y,((")) convergent
in LY(RN) unconditionally and uniformly with respect to k, Iy,(<") - y,im)l — oo whenever
m # n, and u; (- + y ) — w™ almost everywhere. Then

J Fluy)dx - ) J F(w™)dx. (4.29)

RN ne]NIRN

Proof. By Lemma 4.7.2, p(u) = .[]RN F(u)dx is continuous in LI(R"Y) and, therefore, it
suffices to prove the theorem when the profile decomposition has finitely many, say
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m, terms and no remainder, that is,
L)
we=y w(-y).
n=1

Moreover, by continuity of ¢ and by density of Cg° (RY) in LI(RY) we may assume that
all profiles w™ have compact support. Then there exists ko € N large enough so that
wm(. - y,‘(")), n = 1,...,m have pairwise disjoint supports for all k > k,. Then for all
k > kg

J F(uy)dx = i J F(w™)dx. O
n=1

RY

Corollary 4.7.4. Let (u;) be a sequence in H™(RY), m € N, p € (1,00), and assume
that w, — win H™P(RY). Let q € (p,00) if N < mp and q € (p,p},) if N > mp and let
F : R — R be a continuous function satisfying |[F(s)| < C|s|9, s € R. Then

J F(u)dx = J F(uwdx + J F(uy — u)dx + o(1). (4.30)

RN RN RN

Proof. Consider a renamed subsequence of (i; ) where (4.30) does not hold. Consider a
further renamed subsequence such that (u; ) has a profile decomposition given by The-
orem 4.6.5 with w® = u. Then, by continuity of the Sobolev embedding H™ (RY) —
LY(RY), we may apply Theorem 4.7.3, so that

j Fudx - 3 J Fw™)dx

RY =N

and
(o]
J F(uy —wydx — ) J F(w™)dx.
RY n=2pn
Taking the difference of the two relations, we have
J F(u)dx - J F(u, —uw)dx — J F(u)dx,
RN RN RN
which is a contradiction proving the corollary. O

Corollary 4.7.5. Assume all conditions of Corollary 4.7.4 except the condition on F(s),
and instead let F(x, s) be a continuous function on RN x R such that lim,_,, F(x,8) =
F..(s)and |F(x,s)| < C|s|?,s € R,x € RN, Then

J F(x, u)dx — J F(x, w)dx + i J Foo (w™)dx (4.31)

RY RY =2 N

EBSCChost - printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

76 —— 4 Profile decomposition in Banach spaces

and

J F(x, u)dx = J F(x,u)dx + J Fo(u —wdx + o(1). (4.32)
]RN

RN RN

Proof. Note that the functional I]RN(F (x,u) — F(u))dx is weakly continuous in
H™P(RY) because for any £ > 0 there exists R > 0 such that

|| oo - Foldx < e [ e < el

RN\Bg RN

while '[BR (F(x,u) — F,(u))dx is weakly continuous. Then

j F(x, uy)dx - J F (%, uy)dx (4.33)
RN RN
- J(F(x, W) - Fo (1)) dx — J(F(x, W) - F. (w)dx. (4.34)
Bg Bg

It remains to apply conclusions of Theorem 4.7.3 and Corollary 4.74 with F = F,. O

We now consider effects of decoupling on nonlinear functional of nonlocal char-
acter from a family that includes an expression involved in the Hartree-Fock equation.
LetN>3,uc(0O,N),ac (M M), and consider

N > N-2
B [u()|*“lviy)|*
q)(u,V) = J .[ dedy, (4.35)
RN RV

Lemma 4.7.6. Let q; > % > q, = 1. There exists C > 0 such that whenever u ¢

L (RY) n L (RY),
D(u,u) < C(lullzy + Nl )- (4.36)

Proof. Changing the integration variables (x,y) to (x,z) = (x,x — y), we represent
@O (u, u) as Dy (u, u) + O, (u, u), where

D, (u,u) = J <J|u(x)|a|u(x—z)|adx>|z|_”dz
|zI<1 RN
and

(1, 1) = j <J|u(x)|“|u(x—z)|“dx>|z|*”dz.

lz1>21 RN
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2
q_l )
Holder inequality, we obtain

N
N-p

andp' = 1# < zﬁv Then from the

which implies p > T

Let p satisfy 117 +1=

CDl(u,u)s< j |z|p"‘dz>;,

B,(0)

X J < J |u(x)|a|u(x - z)ladx>pdz

RY RV

a a P
:C‘H|u(x)| [u(x - 2)| dx” .
RY i

Then, since 117 +1= q%’ by the Young inequality for convolutions (If = g, < IIfl, gl
1

p+1=%+%,q,r21)wehave

@, (u,u) < Cllul|; = Clul,.

The same argument applies to @,: the only modification is that the choice of g, < %
yields p < Nl_y in the relation X +1 def q%, which assures that |z| 7 Mg integrable in the

exterior of the ball. Consequently,

Dy(u,u) < Cllullzy, . O

Corollary 4.7.7. There exist p;,p, € (2,2") such that the map (4.35) is continuous in
LP(RY) 0 IP2 (RN x IPY(RY) 0 LP2(RY).

Proof. Obviously, one can choose g; in (4.36) so that p; def aq; € (2,2%),i =1,2. The

proof of continuity of @ is then analogous to the argument in Lemma 4.7.2 by means of
replacing Lebesgue convergence with dominated convergence. In particular, if |u;| <
u e IP(RY) N IP2(RY) and |v;| < v € IPY(RY) n IP2(RY), then

e O eI _ uG)“vy)l*

< e L'RYN x RrY)
Ix —y* |x —y*

by Cauchy inequality and (4.36). O

Theorem 4.7.8. Let (uy,v;) be a bounded sequence in Hl’z(]RN) X Hl’z(]RN) that has a
profile decomposition relative to the diagonal group of integer shifts

G = {8y - wv) o U=y =Y}
and let ((w(”), Vv(")), (y,(("))) be the complete concentration family for (u,v;). Then

D vp) = Y W™, w™). (4.37)
n
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Proof. By Corollary 4.7.7 and continuity of the series in the profile decomposition (see
Section 4.5), it suffices to prove (4.37) when u;, = Zﬁzl wm( - y,((")), Vg = Zﬁ:l W -
y,((")), ¢ e N, and w, W ¢ (o (RY). Then for all k large enough

w0 =y M (y -y ™I
D V)= ) IJ : Xy £ dxdy
¢ y

— Z (D(W(n) W(n))

n=1

(n) a5, (m) a

w X w
+ZJJ| ()|(|n) (3;))'
m#n x-y+y, -y ¥

Since IyI((") - y,(("’)| — 0o when m # n, the second sum vanishes:

J J W™ ()™ ()|
=y +y -y

< W) %™ sup 1 ~o0. 0

(o)
xesuppw® yesuppw™ |X —y + y,(:’) - y,(f") M

Corollary 4.7.9. Letu, — u,vy —vinH 1’Z(IRN ). Then, on a renumbered subsequence,
D(uy, vi) - O, v) - Py, —u, vy —v) — 0. (4.38)

Proof. Relation (4.37) applied to the sequences (u;, - wv), (v, - W), gives

(o)
Oy - w, v ) 5 Y oW, w™). (4.39)
n=2
Substitution of the right-hand side of (4.39) into (4.37) gives (4.38). O

4.8 Profile decomposition for the Moser-Trudinger inequality

Let B ¢ R?bethe open unit disk, centered at the origin. In this section, we study profile
decompositions for the radial subspace Hé’fa 4(B), relative to the group (3.66).
It is easy to see that group (3.66) satisfies (4.5). Indeed, we have

8, €9,8;, — 0 & |logs;| — co. (4.40)

If s, — 0, then for any v € C3°(B \ {0}), 8,v=0 for k sufficiently large since |x|% — 1
uniformly on suppv. If s; — oo, then

<Cs* - 0.

j u(x)gs, v(x)dx

Consequently, (u,g;,v) — 0 in both cases, and by density this extends to all v €
H(l)’fad (B). Then (4.5) follows from compactness of closed intervals on R.
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Theorem 4.8.1. Let u; — 0 in H>? .(B). There exist sg’) € (0,00), k € N, n € N, such

O,ra
that for a renumbered subsequence,

-1/2 n

W(n) = w-lim S;(n) / uk(r_s;‘)), (441)
|log(s§<m)/s§("))| — oo forn+m, (4.42)
Z J|Vw(")|2dx < lim supj |V |2dx, (4.43)

nelN B B

-1/2 (n)

o= - Y s w0 o (444)

nelN

-1/2 n)
in L*°(B, (log %)"l/ 2) and in exp L*(B), and the series Y neN s,(:‘) / w(")(rs(k ) converges in

Hé’z(B) unconditionally and uniformly in k.

Proof. The theorem is a particular case of Theorem 4.1.6, with the decoupling relation
(4.2) realized as (4.42) as a result of (4.40) and the multiplicative character of the group:
g, = 81/s and g,g; = 8- Relation (4.43) follows from (1.15). Relation (4.44) follows from

cocompactness of embeddings of H(l)fa 4(B) into L¥(B, (log %)‘1/ 2) and into exp L*(B).
O

4.9 Bibliographic notes

Theorem 4.1.6 is proved in [113]. It generalizes both the Sobolev space version of
[112] and the Hilbert space version of [104]. The earliest profile decomposition that
we found in literature is by Struwe [119], for Palais—Smale sequences for semilinear
elliptic functionals. Profile decompositions, proved independently afterwards for par-
ticular classes of sequences are too numerous to be quoted here. We refer the reader
to the next chapter for more bibliographic references concerning specific profile de-
compositions.

The condition in Theorem 4.1.6 that the set G consists of bijective isometries can
be relaxed. We have not pursued generalization of Theorem 4.1.6 in this direction, but
Theorem 3.1in [127] gives an analog of Theorem 4.1.6 for the Hilbert space with a group
of quasi-isometries, namely, a group of linear bijective operators satisfying

inf |lg| > O. (4.45)
geg

Theorem 4.6.4 is a minor generalization of the result of [112]. Theorem 4.4.1 was
conjectured by Michael Cwikel (personal communication). Verification in Section 4.2
of Opial condition for Besov and Triebel-Lizorkin spaces with respective norms (3.23)
and (3.24) is based on an unpublished paper [34].

Profile decomposition for Besov and Triebel-Lizorkin spaces in Section 4.6 is a
corollary of Theorem 4.1.6, combined with cocompactness results of Chapter 3. Its pi-
oneering version in [13] has a weaker remainder, similar to the one in [68], and is based
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on a stronger property than cocompactness, [13, Assumption 1.1]. As it was observed
in [13, Remark 3.1], not all embedding pairs that we use in Theorem 3.5.1 satisfy [13, As-
sumption 1.1]. Since Theorem 4.1.6 is based on cocompactness, verified in Chapter 3,
rather than on a stronger [13, Assumption 1.1], it yields profile decomposition for the
full range of known embeddings except the endpoint values p, q = 1, co.

Decoupling in the nonlocal nonlinearity in Section 4.7 is a corrected and ex-
panded version of Section 10.4 in [127], that gives proper attention to the diagonal
action of the scaling group (Section 4.5).

Theorem 4.8.1 was proved in [4]. A nonradial counterpart of it was first provided
in [7]. A related profile decomposition for the Adams inequality in H m2(R2™) but with
a different form of elementary concentrations was obtained in [14].
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5 More cocompact embeddings

In this chapter, we prove cocompactness of several embeddings relative to respective
groups other than the rescaling group G" or the group of shifts. A natural analog of
the group of shifts for functional spaces of a Riemannian manifold M is the action
group of isometries u — u o n, n € Iso(M). Similarly, action of the conformal group on
M gives rise to an analog of the rescaling group in the Euclidean case. In Chapter 7,
we extend the notion of profile decomposition to Sobolev spaces of manifolds that
do not necessarily have a nontrivial group of isometries, outside of the functional-
analytic framework of Chapter 4. We consider cocompactness of Sobolev embeddings
on manifolds as a particular case of the energy form of Laplace-Beltrami operator with
magnetic shifts, as well as cocompactness of Sobolev embeddings on Lie groups. We
continue with cocompactness in the Strichartz inequality for time-dependent nonlin-
ear Schrdédinger equation, followed by a study of cocompactness related to the affine
Laplacian.

5.1 Sobolev spaces with periodic magnetic field

This section considers the modification of Sobolev spaces associated with the
Schrodinger operator in presence of external magnetic field on periodic (also called
cocompact) manifolds. As a particular case of zero magnetic field, it also gives re-
sults on cocompactness and profile decompositions for standard Sobolev spaces of a
periodic manifold.

Let (M, g) be a complete smooth connected N-dimensional Riemannian manifold
and let a be a smooth differential 1-form on M, to be denoted & € Al. We consider a
space H;’z (M) defined as a closure of Cg°(M; C) with respect to the norm given by

> % J(|dxu - iua(x)]ﬁ + Iulz)dvg. (5.1)
M

Throughout this section, d denotes external derivative of differential forms (in-
cluding covariant derivative of scalar functions) and d, indicates the value taken at a
pointx € M, | - |§ is evaluated by the Riemannian complex scalar product g, (-,-), and
Vg denotes the Riemannian measure on M. When N = 3, quadratic form (5.1) is the
energy functional for a charged particle in presence of an external magnetic field. The
linear form a € A! is called the magnetic potential, associated with the magnetic field
B = da € A? given by the external differential on M. An elementary calculation shows
that the norm (5.1) is invariant under the gauge transformation (a,u) — (a + do, ei‘pu)
with an arbitrary smooth ¢ on M. Magnetic potential a € A! for a given magnetic field
B € A?is nonunique: the form a + d¢ with any smooth ¢ is also a magnetic potential
for .

https://doi.org/10.1515/9783110532432-005
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By the well-known (see [77, Theorem 7.21]) diamagnetic inequality,
|dyu - iualy > |d,(lul)], a.e.inM,u e H (M), (5.2)

the space H-*(M) is continuously embedded into H**(M).

Let G be a discrete subgroup of Iso(M). One calls the magnetic field § € AX(M)
G-periodic if (using the pullback action of Iso(M), A% (M) — A*(M)) np = p for all
n € G or, in terms of the magnetic potential a € AL if d(na - a) = 0. We require
a somewhat stronger condition, noting that if M is simply connected then the form
na — a is a differential of a function. That is, we assume that for every n € G there
exists a C*°-function 1/1,1(-) : M — R, such that

na-a=dyp,. (5.3)

From (5.3), it follows that the magnetic field 8 = da is Iso(M)-periodic. Moreover, (5.3)
implies that

Ay =0 a—a= -1 dpy = -d@y on ),

and it is easy to see that for each n € G we may choose an additive constant for y,
such that ¢, = -y, o n~'. In particular, this gives

Pa(x) =0, xeM. (5.4)

Similar to shifts u — u-n, n € G, that define a group of isometries on H 1’Z(M ), one can
use the function i, to define an isometric action of G on Hy?(M), known as magnetic
shifts:

!

GaG =18y U ey o nue CSO(M)}nec. (5.5)

Note that if M is the Euclidean space and G = {x — X + 1}y, then every G-periodic
(here, constant) magnetic field corresponds to the magnetic potential with the com-
ponent vector Bx where B is a constant antisymmetric matrix, and the magnetic shifts
corresponding to the field a use ¥, = Bn - x.

Magnetic shifts do not generally form a group. Let us look at that in more detail.
Note first that, with some constant y(1;,71,) € R,

Ynm, = Y, o M2+ P, + Y011, 12); (5.6)

since the derivatives of the left- and the right-hand side coincide by (5.3).
Then for every n;, 1, € G, 0;,6, € R, using (5.6), we have

80,801 = €O eV y o (1)

(6,46, (n-. .
_ el( 1+6,—-y(m ’lz))e"/’mflzu ° (rllrlz) = Bnnp0+6r-y (M) (5.7)
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Therefore, the set G, ;, defined by

d f . .
GaG = {gr[,a cus eV nuce CSO(M)}}]EG,GE]R’ (5.8)
is closed with respect to the operator multiplication. We see below that it is a scaling
group.

Lemma 5.1.1. The set of isometries G, ; is a scaling group on H;’Z( M) and
6 =80 NEGOHER 59)

Proof. 1. Let us show first (5.9), which in turn is obviously true once we prove it for
6 = 0. As we have already shown above,

Yy =Py o (5.10)

which corresponds to y(n,n') = 0. Then solving the equation 8pot = v, one has
v=e el yo ' =e¥rtuon

2. Now we show that the set G, ; consists of isometries on H ;’2 (M). Without loss of
generality, we may consider only elements g, o, 17 € G:

(u, g,l)QV)H;,Z(M)

= j e_i‘/’"gx(du +iua, d(ven) —idpyven +i(ve n)a)dvg + J e ¥ryvo 1 dvg
M
= e*"‘/’rr”flgx((du) on +i(uen e dv + iva)dvg + J e Vuvon dvg
M
erig (d(uon™) +i(uon a+ dip,1),dv + iva)dv, + J ey dv,
M

= (grl‘l,Ou) V)H;,Z(M), u,ve CSO(M)>

which proves that g, ; = 8,10, 1 € G, and thus g 5 = 8,1 _g. By (5.9), we have g, o =
8nor
3. Let us verify now the four axiomatic properties that define a group.
(i) By (5.7), the set is closed with respect to operator multiplication.
(i) By (5.4), the identity element is g;q.
(iii) Associativity follows from the identity

(81,81,)8, U = 8, (8, 8y Ju = €V Vb Cly o ()

that can be obtained by direct computation.
(iv) Existence of the inverse is immediate from (5.9).
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4, It remains to show (4.5), while (4.6) is trivially true in Hilbert spaces. Note that (8n.0,)
does not converge weakly to zero if and only if (1) has a constant subsequence. Thus,
on a renamed subsequence we have ;. = 7, while 6y, taken modulo 277, converges to
some 0, € [0,271). Then g, o = el S0 — e‘eog,h’0 and g, o = e S0 e’e"gm’o
in the strong operator sense of H,}(’z(M ), and the lemma is proved. O

Definition 5.1.2. A Riemannian manifold M is called periodic (or cocompact) relative
to a subgroup G of its isometries if for some open geodesic ball V c M,

Jnv=m
neG

Lemma 5.1.3. If the group G is discrete, then the covering in Definition 5.1.2, {nV},leG, is
of uniformly finite multiplicity.

Proof. Let m(x) be the number of € G such that x € nV. If the covering does not have

uniformly finite multiplicity, there exists a sequence (x; ) in M such that m; def m(x;) —

oo. For each k, there exists n; € G such that y; def MiXi € V. Note that m(y,) = my by

isometry. Thus there exist distinct elements (l(k), s ,ffk) € G such that (].(k)yk eV,
j =1...,m. Since V is bounded, inf,, d((j(k)yk,(g(k)yk) — 0as k — 0 (otherwise V
would contain infinitely many disjoint geodesic balls of fixed radius). Thus there exist
ji and ny, ji, # ny, such that d((j(kk)yk, {rfi‘)yk) — 0. Passing to a renamed subsequence,

we have y, — y € V. Then d((jik)y, ,Ef)y) — 0 which, since the elements (].ik), (,Ei‘) are
distinct, contradicts the assumption that G is discrete. O

Remark 5.1.4. Itis easy to see that when M is periodic, the norm H, ;’Z(M ) is equivalent
to the Sobolev norm H*(M).

Theorem 5.1.5. Let G be a discrete subgroup of Iso(M) and assume that M is a complete
G-periodic Riemannian N-manifold. Then for any p € (2,2*) the embedding H;’Z(M ) —
LP(M) is G, g-cocompact.

Proof. Let V be as in Definition 5.1.2. From the Sobolev inequality on a bounded do-
main, and since the usual Sobolev norm is dominated by the H;’z-norm by the diamag-
netic inequality we have

1-2/p
J [ul’dv, < Cllullf{;,sz)( j Iulpdvg> , neaG. (5.11)
n(v) nv)

By adding terms in (5.11) over 1 € G, taking into account Lemma 5.1.3 we obtain

1-2/p
J lufPdv, < CIIuIIiI;,z(M) sug(J |g’171,0u|pdvg> ) (5.12)
ne
M v
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Replacing V with M in the right-hand side of (5.12) and taking into account that 8110
is an isometry on L” (M), we have that the embedding H 01;2 (M) — LP(M) is continuous.

Ga, .
Let (u;) be a sequence in H, ;’Z(M ) and assume that u;, = o. Applying (5.12) to (1),
we have

1-2/p
J Iuk|Pdvg < Cllukllf,l,z(M) sug(j Ignfl,ouk|pdvg> (5.13)
ne
M v

1-2/p
< c(J |g,1k,ouk|Pdvg>
14

for an appropriately chosen “near-supremum” sequence (17;) in G. It remains to note
that by compactness of the Sobolev embedding for a ball in M, g, o — 0in IP(V),
so that the assertion of the lemma follows from (5.13). O

As a consequence of the cocompact embedding, we have the following profile de-
composition.

Theorem 5.1.6. Let M be a periodic manifold with respect to a discrete group of isome-
tries G and let a € A be a magnetic potential of a G-periodic magnetic field. Any
bounded sequence in H;’Z(M ) equipped with the group G, ; and a has a subsequence
that admits a profile decomposition relative to the subset

s e¥ryo Mhec € Gar (5.14)
such that
_ 3 (n) (n) . p *
Uy z exp(u,brl(n))w ony’ — 0 inLP(M), pe(22"), (5.15)
nelN k
m~1

and sequences (n ° n}(”)) are discrete whenever m + n.

k

Proof. Since G, is a scaling group by Lemma 5.1.1, and embedding H;’z (M) — IP(M)
is G, g-cocompact by Theorem 5.1.5, we may apply Theorem 4.1.6 and Corollary 4.1.9,
getting a profile decomposition relative to the whole group G, ;.

We reduce it now to a profile decomposition relative to the set (5.14), that is, to the
one with 9;(") = 0 by using compactness of the sequences (e"ein) )ken- BY extraction of
convergent subsequences and standard diagonalization, we may assume that 0,&") -
0, € [0,27], and rename e w™ as w™,

Finally, we interpret the asymptotic decoupling relation (4.2). If a sequence
(& "iken is discrete and v, w € Co’ (M), then (g¢ oV, 8y, oWy = O for all k suffi-
ciently large. By density, this implies

® -1
84,0810 = 8¢,08m,0 — 0.
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On the other hand, if (¢ 1nk) is not discrete, since G is discrete, ({; 1nk) has a renamed
constant subsequence and 1, = {;n with some 1 € G. Then

-1 -1

|8g.08n.0w| = [wen|

>

which implies that g(’kl,og,lk)o does not weakly converge to zero in Hy*(M). Conse-

-1
quently, the decoupling property (4.2) is equivalent to discreteness of (n,((m) ° 11,((”)) keN
whenever m # n. O

Theorem 5.1.6 in the case of zero magnetic field takes the following form.

Corollary 5.1.7. Let M be a smooth Riemannian manifold, periodic relative to a discrete
group G of its isometries. Any bounded sequence in H**(M) has a subsequence that ad-
mits a profile decomposition relative to the group G(G) = {u — uon, n € G}:

w— Yy won” 50 inI’(M),pe(22), (5.16)
nelN

with

(n)

-1
w = w-limuyy o ni") , (5.17)

m~1

p e ;15(")) is discrete whenever m # n.

and the sequence (n

5.2 Cocompactness of subelliptic Sobolev embeddings

Let G be a Carnot group, that is, a connected and simply connected Lie group associ-
ated with a nilpotent Lie algebra G, generated (as a Lie algebra) by a subspace V; ¢ G,
and endowed with a stratification G = V; & - -- @ V, such that [V}, V;] ¢ V;,;. We denote
abasisfor V;as Y;,...,Y,.

Let us fix on G exponential coordinates, which allows to use the same notation
for an element Y of G, the left invariant vector field on G defined by Y and the first-
order differential operator Yu = u — du(Y) associated with this vector field. In these
notation, an element of 1 € G is represented by a pointy € R".

An example of a Carnot group is the Heisenberg group H,,. In exponential coor-
dinates (x,..., X, Y1, --->Yn 2), it has a stratified basis consisting of Y; = ox; + Zy,-%,
i=1...,nY,,= aiy,- - 2x,-a%, i=1,...,n,spanning V;, and %, spanning V,.

Using exponential coordinates, one defines anisotropic dilations 6; : G — G, t > 0,
by means of a mapping y — t'y on V;. Note that the Jacobian of §; in the exponential

. . def ‘1 . . .
coordinates is tQ, where Q = f:l ]dll‘an is called the homogeneous dimension. For

example, the homogeneous dimension of RY is N, and the homogeneous dimension
of the N = 2n + 1-dimensional Heisenberg group H,isQ=1-2n+2-1=2n+2=N+1.
It is known that the left-shift invariant Haar measure on Carnot groups coincides with
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the Lebesgue measure. We endow the group G with a left-invariant metric tensor by
fixing its value at the origin as an inner product on G where the basis is orthonormal,
and extending it to all points of G by the pullback action of the left shifts.

Definition 5.2.1. The homogeneous subelliptic Sobolev space H(G), p € [1,00), is a
completion of C5°(G) in the norm

1

Jul - ( | ilYiulpdy)p.

=

Let Q ¢ G be an open set. The inhomogeneous subelliptic Sobolev space H*?(Q) is a
completion of C*°(Q) in the norm

1

Jull = <j<i VP + Iulp>dy>p.

As in the Euclidean case, H"?(G) is not necessarily continuously embedded into
a Lebesgue space, that is, it cannot be identified as a space of measurable functions.
Similar to the Euclidean case, there is a continuous Sobolev embedding when Q > p,
where Q is the homogeneous dimension of the Carnot group G. In this case, H(G) —
P (G), where pa = 5_57' When Q is a domain with a piecewise smooth boundary, there
exists a continuous embedding H*?(Q) — L4(Q) forall ¢ € (p, pol when p < Q and
forallg > pwhenp > Q, as well as H Lp (Q) — C(Q) for p > Q. If, furthermore, Q is a
bounded domain, the embedding is compact. For p = Q and bounded Q, there is also
an embedding of Moser-Trudinger type, H*¢(Q) — exp Lei (Q).
For the Heisenberg group H,,, we have
2| ou oul” & ou ou
lult?,, :]RZL (Z o Vig | * Y

p
2\ 2
—u- 22— .
ayiu i3, ) dxdydz

i=1 i=1

Note that H"?(G)-norms and LY(G)-norms are invariant with respect to the group of
left shifts

G=1{gy:u—uonneGh (5.18)
Furthermore, for Q > p, the H"?(G)-norm and the I”¢(G)-norm are invariant with re-
spect to the action of anisotropic dilations

hs(u) e s 8y, 1= u seR. (5.19)

We will equip H(G) with a group of linear bijective isometries that is a product group
of discrete anisotropic dilations and left shifts:

G def {ur 2y 8y.j € Z} x {gy :ur>uon,neG} (5.20)
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Note that every element in Qg can be written in the form u — 27 u(éjn-) as well in the
formu — 2’]u(((6j-)),j €7Z,n,({ €QG.

Let G be a Carnot group and let G be the group of left shifts (5.18). Since Carnot
groups can be identified as groups of nilpotent matrices, a Carnot group always con-
tains a discrete subgroup G, corresponding to the matrices with integer components,
such that there exists an open bounded neighborhood V' c G of the zero element of G
satisfying

Jnv=6. (5.21)
neG,

For example, Heisenberg group Hy has a discrete subgroup consisting of elements,
whose canonic coordinates (x,y, z) take integer values. The group of left shifts by G,
{u = uonl,eq, will be denoted G,

Remark 5.2.2. The covering {n V}yeq, of G has uniformly finite multiplicity. The argu-
ment is analogous to that for Lemma 5.1.3 and can be omitted.

Theorem 5.2.3. The embedding HP(G) — LU(G), p € [Lco), g € (p.py). is Go-
cocompact.

Proof. Consider the embedding H (V) — L(V) with V as in (5.21). We have, using
the change of variables x — nx, we have

1-p/q
J luldy < Clluglfsp (j Iukl"dy> ., n¢€G. (5.22)
nv nv

Then adding the terms in (5.22) over 7 € G, we obtain

1-p/q
j ldy < Clugl, g, sup(J’|uk o ,1-1|qdy> (523)

G
L 1-p/q
[l oni't'ay)
v
where 1, € G, is any sequence satisfying
_ 1 _
J|“k o' [*dy = 5 sup J|“k on '['dy.
14 n<Go

Since y; o )1,;1 — 0, by compactness of the Sobolev embedding for bounded domains,
w o' — 01in L9(V). By (5.23), this implies w, — 0 in L(G). O

Proposition 5.2. 4 Group G, satisfies (4.5). Relation (4.2) is satisfied if and only if the
sequence (n}( (”))keN form + nis discrete.
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Proof. Letgiu = uony, n; € G.Since group G, is discrete, either the sequence (17; ) iS
discrete or has a constant subsequence. If the sequence is discrete, considering with-
out loss of generality u € C5°(G), support of u » i will be disjoint from the support
of any test function from C3°(G), provided that k is sufficiently large. Thus g — 0;
otherwise, g u = uon # 0 unless u = 0 and (4.5) is verified.

The second assertion of the proposition follows once we note that (uen)-{ = u(n{)
foralln,{ € Gy. O

Theorem 5.2.5. Let G be a Carnot group and let (uy) be a bounded sequence in H**(G).
Then (u;) has a renamed subsequence that has a profile decomposition relative to the
group G, of the form

w— Y w?en® -0 inL9(G).q € (22),
nelN

with n}(") ¢ G,. Elementary concentrations w'® o ’l;(f) are asymptotically decoupled in the
sense that

-1
(™ n")yen IS discrete whenever m # n, (5.24)

and (1.15) holds for respective H"*(G)-norms.

Proof. Since H*?(G) is Hilbert space, it satisfies Opial condition, and thus (4.6) is also
satisfied, so Theorem 10.4.4, and Corollary 4.1.9 apply and the decoupling relation (4.2)
and takes the form (5.24) by Proposition 5.2.4. O

We now consider the homogeneous space H*?(G), p < Q, equipped with the group
of anisotropic rescalings (5.20).

Theorem 5.2.6. Let G be a Carnot group, let 1 < p < Q, and let G, be the group (5.20).
The embedding H*P(G) — LP2(G) is Gl.-cocompact.

g?’
Proof. Let uy =o. Lety € CSO((%A), [0,3]), such that y(t) = t whenever t € [1,2] and
[x'| < 2.Let V be as in (5.21). By the local Sobolev embedding,

. /pg 3
< JX(|uk|)deX>p " <C J(Z Yy l® +X(uk)2)2dX,
nv nv

from which it follows, if we take into account that )((t)pa < Ct?,

p
2

Jx(lukl)p‘*)dx =C J(Z Yoy +X(u,<)2) dx( J X(|uk|)p5dx>1p/pa

nv nv nv
P 1-p/py
< (1t xu?) ax( [ hupax)

nv nv
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Since y(t)P < CtP2, we have

J X(ul)Pdx < Clg 2, ¢ =C (5.25)
G

By Remark 5.2.2, the covering {nV}, g, has uniformly finite multiplicity, so adding the
above inequalities over 1 € G, and using (5.25), we obtain

. 1-p/py
J)((Iukl)padx <C sup( J Iuklpdx> ) (5.26)

€
G neg, v

Let n; € G, be such that

1-p/py 1-p/pg
sup<J |uk|de) < 2( J Iuklpdx> .

€
€9 Sy v

r

g .
Since w, — 0, u o ;" — 0in H'P(G), and by compactness of the local Sobolev em-
bedding,

J |uk|de = jluk o q,:1|pdx — 0.
mV v

Substituting this into (5.26), we obtain
JX('“kl)deX - 0.
G

Let
X(6) =27x(27t), jez

Since for any sequence j; € Z, recalling that anisotropic dilations are defined in (5.19),

gl
h]-kuk = 0, we have also, with arbitrary j, € Z,
ijk(lukl)pody - 0. (5.27)
G
Note now that, with j € Z, we have

<Jx;(lukl)p3dx>p/pasc J (Z|Y,-uk|2)§dx,
G

2rG-1) Sluk |Szr(j+2)
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which can be rewritten as

[xuiacse [ (3 vud)

G 27(1‘71)5|uk|£2r(1‘+2>

1-2

dx(!Xj(lukDpadX) T 528)

p
2

Adding the inequalities (5.28) over j € Z and taking into account that the sets 270 <
lu| <27 0+2) cover RN with uniformly finite multiplicity, we obtain

. - 1-p/py
J [ [Pedx < C||uk||§p,p su;([xi(mkn de> . (5.29)
je
G G

Let j be such that

o 1-p/pq - 1-p/pg
sup(JXj(lukl) de) s2<ijk(|uk|) de) ,
jez
G G
and note that the right-hand side converges to zero due to (5.27). Then from (5.29) fol-
lows that u;, — 0 in LP¢, which proves the theorem. O

Theorem 5.2.7. Let G be a Carnot group and let (u;) be a bounded sequence in HY(G).
Then (u;) has a renamed subsequence that has a profile decomposition relative to the
group G, of the form
-(n) . 2*
Uy, — z 2% W(n)((szii") nf(")-) — 0 inL%(G),
nelN

with n}(") € Gand j,(:') € Z. Elementary concentrations 2’j(k€)w(e)(62iie> nff)-) are asymptoti-
cally decoupled in the sense that

m~n) i di
(Sjin)nk M ien IS discrete

on any subsequence where (j\ - j™), . is bounded. (5.30)

Proof. The proof of relation (4.5) is analogous to that in the beginning of Section 4.6
and can be omitted. Since H"*(G) is Hilbert space, it satisfies Opial condition and thus
(4.6) is also satisfied. Thus Theorem 10.4.4 and Corollary 4.1.9 apply. It is easy to see
that any element of the group G;; can be written in the formu — 27 u(52]_q~), jeZ,neG.
Proof of the decoupling relation (5.30) is analogous to the proof of Lemma 4.6.2. [

5.3 Cocompactness of a Strichartz embedding

Let N > 1. We will use notation v = e

problem

u for the solution v(t, x) of the initial value

1 _ 1+N
{ivt(t,x) Av(t,x), (t,x) e R, (5.31)

v(0,x) = u(x), x e RV,
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Here and throughout this section, all functions on RN are complex-valued. We con-
sider the following Strichartz inequality for the nonlinear Schrédinger equation (see
[61, 118]):

itA

le™u] ..

N( 1+N)

By b as E(RM), so that

We will denote the completion of L2 (]RN ) in the norm ||e .
N (RI+N)

(5.32) expresses, in short notation, a continuous embedding Lz(]RN ) — E (]RN ).
Let G, be the product of the following groups, all acting isometrically on L,z((]RN ):

= {u %, 6 R},
gz—{
Gy = fur 2u(2)j € 7).
G, = {u- e**u(x), & e RV}

ueu(--y), y e R"},

An arbitrary element of G, can be always written as
oy jmux) = N2y (D (x — y)). (5.33)
The propagation group
Gin = {e’mu, teRY |3
also acts isometrically on L)Z((]RN ). Moreover,
eimg[g,y,]-,n]u(x) = QINI2,i0 ginx -itinl? [ei22j’Au](2i (x -y -2nt)), (5.34)
or, equivalently,

itA _ 29t
€ 810y,inl = S16-tinly+2ntin €

This implies that any element in G, x G, can be written as a product g'g"”

and g" € G, or vice versa.

with g’ € G,

Definition 5.3.1. The set D of dyadic cubes in RY is the union

D E2(10.)" + )}z ezn-

For any function u € L*(RY) and Q € D, we define u? by

Fu?)@) C 1y Fu@), &RV

We cite the following refinement of the inequality (5.32).
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Proposition 5.3.2 (Begout and Vargas, [15]). Let q = % Then there exist C > 0

such that
Jully < Clul f?}w)(zgg |Q|”TZZ-%||e“AuQ||LZX(]RHN))ﬁ. (5.35)
Corollary 5.3.3. Leta = Wl(zvm There exist C > 0 such that
lulle < Cluler, sup |Q|‘“/2||e“AuQ||§?§(RHN). (5.36)

Proof. Using Holder inequality and taking into account that u? g < lulg, for any
Q € D, we have from (5.35):

N+2
Nl ™

N L Q| NZean1 || pith, Q| Wans
< Cllulligs, sup Q| - 2 u ||N2 s | iy llffo?n”ilim (5.37)

NWN+2)

N+1 2 M,l 2
< Clull>" lull 7+ sup QI ™ 2 "*u Q||g;3g;1,v)
QeD

Collecting the powers of [u| ¢ in the left-hand side and raising the left- and the right-
hand side to appropriate power we arrive at (5.36). O

Theorem 5.3.4. Strichartz embedding L*(RY) — E(RY), expressed by (5.32), is cocom-
pact relative to the group Gy x Gip.

Proof. Let (u;) be a sequence in L)z((lRN), G-weakly convergent to zero. Then, in partic-
ular, for any sequences (t;,y;) in RV, (i) in Z and (¢) in RY, we have

Z%.k eka(ijX+yk)[ei[kAuk](zij +y)—0 (5.38)

in LA(RM). By (5.36),

tx/leeitA

a
ey < Cllugll (g, sup |0/ o oy (5.39)

Since (1) is bounded in L*(RY), it suffices to show that

—1/2) it

Q
Zlelg|Q| le™ w0 gaemy — O (5.40)

Let Qx € D and (t,,yy) € RN, k € N, be such that

~1/2] it,A 1 - itA
Q] 1/2|e1tk ul?kl(yk) > 532g|a| 1/2||ezt ul?nL;’;(Rl*N)' (5.41)
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Let Q, have side length 27k, jx € Z, so that |Q;| = 27Nk, Then, combining (5.40), (5.41)
and (5.39) we have

N .
lglf® < C27e ™ u | (y,). (5.42)

Let & be the center of the cube Qy, k € N. Define a function h by as a Fourier transform

of a characteristic function of the cube [—l % N,

h= ]:_111[71 1N~
22
Then from (5.42), using Definition 5.3.1, we have
E. .
lugI/® < c279 ey (y,)
< C’ J I_l(x)z’%ke’wk'(zfjk”y")[eitkAuk](ij"x +yp)dx|.
]RN

The integral in the last expression is a scalar product (h, g;u;) in L*(RY) with certain
8x € GxGiy. By (5.38), this scalar product converges to zero, which proves the theorem.
O

As a consequence of the cocompactness, we have a profile decomposition for the
Strichartz embedding. Before we formulate the statement, we give an analytic charac-
terization of the decoupling relation (4.2).

Proposition 5.3.5. Let g,im), gk € G x G, k,m,n € N, be given by the expression

(€) 0(€) (e) 51(€)
gu = 2 N2 X [t Ay (x — ). (5.43)

-1
Then g,(:'” g,({m — Oifand only if

<m) <n) 2
7 =i 2 g g
(m) 50y 9i(M) 2
+27 0Ty A (gm) gy (5.44)
+ 27002 (AT oo,

Proof. We give only an outline. See [15] for details. Note that parameters 01({'"), 91((”) can
be set to zero without loss of generality. Show that g, . ; . el® . gifand only if on
every subsequence where |j; | is bounded,

15 + 1t ] + il = o0,

-1 .
and use the commutation formula (5.34) to express g}(m) g,i") intheformgoy, j n elih
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Theorem 5.3.6. Let (u)) be a bounded sequence in L)z((IRN ). A renamed subsequence
of (uy) has a profile decomposition relative to the group Gy x G, namely, there exist

w e L2(RN ) and sequences (t(”)) inR, (y(”)) in ]RN (](”)) inZ, and (11 inRY,neN,
such that gk = id and sequences (gk ))k eN® (g[ojy’((n),jin))n,((n)])ke]l\] (cf. (5.33)),n € N,
are asymptotically decoupled in the sense of Proposition 5.3.5;

(n) -1
e B Ty~ w® inP(RY), ne N (5.45)
. def e
the series Sy, 2 Z g,(fn)e"k Ay™ (5.46)
nelN

converges in E(RY) unconditionally and uniformly in k; and

le™ @y = S| 5. 4 - 0. (5.47)

Li:ﬁ (]RHN)
Furthermore,

3 w5z + e = el < g2 + o(0). (5.48)
nelN

Proof. Note that one can without loss of generality set 6,((") = 0. Indeed, passing to re-
named subsequence for each n € N, and using standard diagonalization, one can
have 6,((") - 271{?,((”) — 6, with suitable E,i") € Z. Then one can set , by renaming
ey ™ a5 wM, Taking this into account, the assertion of the theorem follows im-
mediately from Corollary 4.1.9 of Theorem 4.1.6, once we note that by Theorem 5.3.4,
Go x Gjp-convergence of the remainder to zero implies its vanishing in the Strichartz

norm. E

Profile decomposition above is applied to nonlinear Schrédinger equations with
mass-critical nonlinearity (see [73, 122]). In the case of energy-critical nonlinearity,
itA

. . . def
one studies sequences bounded in the gradient norm. We set [[ullz = [ u] 20012
2

tx

Theorem 5.3.7. Let (u;) be a bounded sequence in H;’Z(IRN ), N > 2. A renamed subse-

quence of () has a profile decomposition relative to the group G T x Gin, namely, there
exist w™ e H**(RY) and sequences (tl((")) inR, (y,((")) inRY, and (jl((")) inZ,n € N, such
that g(l) id and sequences

(&) N-2

) def it®
(g,(f))kelN,t’ €N, g ) Z T [l Au](x—yl(f)), (5.49)

are asymptotically decoupled in the sense of (4.2), equivalently,

) m
|11(<m) n)l 4+ 270 )y(n) yl((m)
jm) (n i(n)
+ 270D 2 fmA”| oo (5.50)
mA (-1 .
foreachn € N, e it Ag,‘(") w, — w" in HZ(RY); (5.51)
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the series Sk = z g(")e"k w (5.52)
nelN

converges in F unconditionally and uniformly in k; and

||eim(uk - Sk)”@% - 0. (5.53)
Furthermore,
3 Jow™ > + IV = VSiI2 < IV ll? + 0(1). (5.54)
nelN

Proof. We only sketch the proof. One applies Theorem 5.3.6 to Vu,, synchronizing pro-
file decompositions of components with help of Section 4.5. Note that the curl of profile
vectors of Vu; is zero, so they are Li-integrable derivatives of distributions and, there-
fore, elements of H ;’2. It remains to observe that if a sequence of parameters (.{IE") Jken i
the profile decomposition of Theorem 5.3.6 has an unbounded subsequence for some
n € N, then necessarily w™ = 0. Thus (f,i"))keN are necessarily bounded. Passing to
a renamed subsequence for each n and diagonalizing, we get é’,f") — &, € RY, and
renaming eif""‘w(")(x) as w (x), we have the profile decomposition of the form (5.52).
Relation (5.53) follows from (5.47) for Vy; — VS, and the Sobolev inequality. O

5.4 Affine Sobolev inequality and affine Laplacian

In this section, we study the case p = 2 of the functional from the affine Sobolev in-
equality, [86, 136]:
-1/N

def 1

= —d >C « 1< N, 5.55

Ok (j vy w) e, 1<p< (5.55)
a

where Sf’ ! denotes a unit sphere in RY centered at the origin. Unlike the limiting
Sobolev inequality, the affine Sobolev inequality is invariant not only with respect to
rescalings G', but also with respect to action of the group SL(N), the group of all ma-
trices with determinant 1. This also suggests that defect of compactness for sequences
with a bounded I should involve, in addition of dilations and translations, actions of
SL(N)-matrices. It is easy to calculate that ], (u) is a multiple of | Vu||, when u is a radial
function, and that in general J,(u) is dominated by ||Vul|,. From the right inequality in
the relation (5.66) below, one can easily conclude that ], (u) does not dominate ||Vul,,
therefore, (5.55) is a nontrivial refinement of the standard Sobolev inequality.
Functional ]1[J allows the following representation:

-1/N
o) = (ﬁ | e*”‘f'v”"pdsf) : (5.56)

RY

Indeed, the integral in (5.55) is obtained by radial integration in the integral in (5.56).
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In what follows, we always assume p = 2and N > 2. If we set

def ou ou

Al = 205 (5.57)
we can represent the L?-norm in (5.55) as
I vul = [ AWeog g ¢ R (5.58)
RY
Let now
Agjlu) j Ay lul(0dx. (5.59)
RY

Substituting (5.57) into (5.56) and taking n = AV 2¢, we have

J e IEul g J o~y AIWEE 0 g

RV RV
- [ e ag - [ eM(deranu)) Van
RY RY

= wy(N - D\(det Afu]) ",

where wy is the area of a unit sphere in RY. We conclude that
Jo(u) = wy N (det Afu)) . (5.60)

Note that this expression presumes that the matrix A[u] is well-defined, which is the
caseifand onlyif Vu € L*(RY). In what follows we will fix the domain of J,asH L2RN),
We will also consider later a functional

o) € o (det Ag u)) "

where Ag[u] = IQ Ajjlul()dx, Q ¢ RY is an open set. Note that if Jow) =0,and Qis
convex, then there is a family of parallel hyperplanes, such that u is constant on their
intersections with Q.

We would like to characterize the behavior of the matrix (5.59) relative to the action
of SL(N).

Lemma 5.4.1. Let T € SL(N) and letu € H**(RN). Then
AlueT] = T*Alu T. (5.61)

In particular, for every u € H**(RY), there is a Ty € O(N) such that Alu- T,] is diagonal,
and a T € SL(N) such that A{u - T|] = det(A[u])id and

det A[u]" = det Afu o T]V2Y = %uwu - T, (5.62)
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Proof. Equation (5.61) follows by elementary computation from the change of variable
Tx =y, taking into account that ou(Tx)qu(Tx) = [T*A[u](y)T]i]- and dx = dy. A suit-
able T, € O(N) makes T(;‘A[u] T, a diagonal matrix.

Applying the same transformation once again, with a diagonal unimodular matrix
T' = det(A[uoT,])?Alu-T,]) %, we get A[u-T,T'] = det(A[u-T,])id = det(A[u])id. The
last assertion follows once we note that |[Vu o T, T’ ||§ = Ndet(A[u])V", since the latter
expression is the trace of the diagonal matrix A[u~T,T'] with N equal eigenvalues. [

Corollary 5.4.2. Ifu € H"*(RY), then

w-IN
LW = 2— min |V(uoT)|,. (5.63)

VN TeSL(N)
Proof. Since for any v € Hl’z(lRN ), ||Vv||§ = trA[v], it follows from the inequality be-

tween the arithmetic and geometric mean that detA[u]% < %IIV(u ° T)Ilg forany v €
H 1’2(]RN yand T € SL(N). By Lemma 5.4.1, the minimum is attained. O

In view of (5.63), it is convenient to change the scalar multiple in the definition of
the energy functional associated with J,. Namely, we introduce

Eyw) € Ndet Afu)"N = NoZ N, (u)?, (5.64)
which allows to rewrite (5.63) as

E,u) = min [V(uo > (5.65)

min
€SL(N)
while for any radial function u € Hrlézd
later an analogous functional E; ;.

(RY) we have E;(u) = ||Vu||§. We will also use

Remark 5.4.3. By [67, Theorem 1.2], the gradient norm and the functional J,, for gen-
eral p > 1are connected by an inequality:

¢ min [Vue D, <J,w) <C min VoD, (5.66)

The affine Sobolev inequality (5.55) can be now easily derived from the usual
Sobolev inequality and (5.66):

lull,- = lue Ty < C TeisrifN)"V(u o T)||p < CJ,(w). (5.67)

inf
TeSL(N)
We consider now sequences with an E,-bound.

Theorem 5.4.4. Let (u;) be a sequence in H**(RY) satisfying supycy J>(1) < co. There
exist a sequence (Ty)ren in SL(N), functions w™ e H"*(RY), and sequences (y,i"))kdN
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in RV, (]("))kdN in Z with n € N, such that k(1 =0, y(l) 0, and for a renumbered
subsequence of (uy),

PR uk(Tk(Z_ji ) —w", neN, (5.68)
|j,(<”) (m)| + o |y(") ykm)| — 0o forn+m, (5.69)
3 w3 < liminfEy(u), (5.70)
nelN
uy [ Yy 2wl (- y;(">))] TS0 inlZ (RY), (5.7)

nelN

and the series in the square brackets above converges in H**(RY) unconditionally and
uniformly with respect to k.

Proof. Let T; € SL(N) such that, according to Lemma 5.4.1,
2
Ez(uk) = Ez(uk o Tk) = ||V(uk o Tk)HZ (572)

Let v; = uy o T and apply Theorem 4.6.4. To conclude the proof of Theorem 5.4.4, it
remains to note that (4.21) gives (5.71) by composing the left- and the right-hand side
with T} ! on the right, and that the right-hand side of (1.15) yields the right-hand side
of (5.70) by (5.72). O

A similar decomposition for sequences with bounded E, + | - ||§ can be derived in
a completely analogous way from Theorem 4.6.5:

Proposition 5.4.5. Let (u;) € H**(RY) be a sequence such that E,(u;) + |ull3 < C.
There exist w™ ¢ H, (T) in SL(N), and (y("))ke]N inzN, yl((l) =0, n € N, such that, on a
renumbered subsequence,

(T (- +y ")) — w, (5.73)
|y]((") (’">| — o0 forn+m, (5.74)
3w < limsup gz, (5.75)
nelN
Uy - [ Y w( -y ] oT' -0 inI’(RV),pe(22%), (5.76)
nelN

and the series in the square brackets above converges in H**(R") unconditionally and
uniformly in k.

5.5 Bibliographic notes

Concentration compactness argument for nonlinear magnetic Schrédinger operator,
involving magnetic shifts was developed by Arioli and Szulkin [12], who in turn gener-
alized the work of Esteban and Lions [44] dealing with the case of constant magnetic
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field. We follow, with corrections concerning the group of magnetic shifts, the pre-
sentation in [127]. A recent preprint [37] contains a profile decomposition with gen-
eralized magnetic shifts for the case of general bounded (not necessarily periodic)
magnetic field. Theorem 5.1.6 can be extended to the case of any Riemannian mani-
folds cocompact with respect to some group (not necessarily discrete) of its isometries
and any magnetic field invariant with respect to this group as it is done in [47] in the
non-magnetic case, but this is now a partial case of the profile decomposition in [37].

Section 5.2 on profile decomposition for Carnot groups is based on the paper [105]
with some excerpts from [127]. For details on Sobolev spaces on Lie groups see [49,
50, 132]. Earlier studies of noncompact variational problems on Carnot groups can be
found, among the rest, in the work of Biagini [20] or Garofalo et al. In particular, the
minimizer in the analog of (1.25)

"u"léigf 4 “u"HLZ(G) (577)
for Carnot groups of rank two, that is, the counterpart of function (1.29) is found in
[57, Theorem 1.1], and it equals a scalar multiple of ((1+x%)* + 16y2)’% , where x, y are
the exponential coordinates corresponding, respectively, to the strata V; and V,.

Theorems 5.2.5 and 5.2.7 most likely extend to any p > 1. A possible way to prove
it is to use an equivalent G,-invariant (respectively G -invariant) Sobolev norm satis-
fying the Opial condition, provided, similar to the Euclidean case, by the Littlewood-
Paley decomposition for Lie groups (see [52]). Alternatively, given the cocompactness,
one can reproduce the argument from [112].

Profile decomposition for the Strichartz inequality (5.32) was first proved by Merle
and Vega [91] in the case of two space dimensions (see also [22]). The one-dimensional
case was treated by Carles and Keraani [27, Theorem 1.4]. The result was obtained for
general dimension by Begout and Vargas [15]. All these profile decompositions have
a weak form of remainder, similar to [58]. The present version, with a remainder con-
vergent in the Strichartz norm, is due to Tao [123]. Tao’s proof, which we follow here,
is based on cocompactness of the embedding and profile decomposition in Hilbert
spaces of [104] (rendered in this book as Corollary 4.1.9 of Theorem 4.1.6 in this book).
Theorems 5.3.4 and 5.3.6 involve only a discrete subgroup of dilations that [15] use,
without any change in the argument. An early version of Theorem 5.3.7, in 1 + 3 di-
mensions and with a weak form of remainder, was proved by Keraani [71]. The idea of
deriving Theorem 5.3.7 from Theorem 5.3.6 is found in [73].

Affine Sobolev inequality was introduced by Zhang [136] for the case p = 1and ex-
tended to general p in [86]. Representation (5.63) of J,, definition of the affine Laplace
operator and profile decomposition for the affine energy functional are given in [102].
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In this chapter we study the effect that restriction of sequences to subsets has on pro-
file decompositions. Conditions imposed on a sequence may result in a more specific
character of its elementary concentrations, decrease the cardinality of their set, and
even make them all disappear, leading to sequential compactness. This is, for exam-
ple, the case when we look at profile decomposition in H Lp (IRN ), p € (1, N), relative to
the group of shifts G,v, for a bounded sequence (u;) supported in a bounded domain
Q ¢ R". For any sequence (y;) in RN, lyx| — oo, we have y; (- + y;) — 0, so the pro-
file decomposition (4.24) takes the form u, — w® — 0in L4, q € (p,p*), that is, we
get the classical Rellich compactness of embeddings H(l)’p (Q) — LY(Q). An analogous
argument will be used below in the case of the affine Sobolev functional.

Compactness of embedding Hrljc’i(RN ) — LIRN), g € (p,p*), proved by Strauss
[115], can be also derived from (4.24) with an observation that u; (- —y,) — 0 whenever
lyx] — oo (otherwise by radiality there would be infinitely many concentration profiles
equal up to an O(N)-transformation). We defer an exposition of this method to the
next chapter where we discuss compactness in Sobolev embeddings on noncompact
manifolds.

Another example of a consequence of restriction to a subspace is when a profile
decomposition relative to some group, such as G', has concentrations generated only
by a subgroup, such as G,v, as in Theorem 3.8.2. We address this situation in more
general terms in Theorem 6.2.2 below.

One more example is the notion of a flask subspace, which is not invariant with re-
spect to the scaling group, but yields concentration profiles in the space nonetheless.
In application to Sobolev spaces H(l)’p (Q), this can be achieved by Q having the shape
of an infinite flask mirrored at its bottom. We extend the term flask domain introduced
by del Pino and Felmer [36] to a more general setting.

6.1 Flask subsets. G-compactness

Definition 6.1.1 (Flask subset). Let E be a Banach space endowed with a group of
isometries G. A set A ¢ E is called a flask subset relative to G, or a G-flask subset, if
G(4) is closed with respect to Delta-convergence, that is, for any sequences (u,) e in
A and (g,),en in G such that g,u,, — w, there exists g € G such that gw € A.

The theorem below gives a profile decomposition for a flask subset that is gener-
ally not an invariant subset of G.

Theorem 6.1.2. Let E be a uniformly smooth and uniformly convex Banach space with a
scaling group of isometries G. Let A be a G-flask subset of E. If (u,)) is a bounded sequence
in A, then it has a subsequence with a profile decomposition in E as in Theorem 4.1.6 with
w cA neN.

https://doi.org/10.1515/9783110532432-006
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Proof. Consider a profile decomposition provided by Theorem 4.1.6. Since Aisaflask

(n) de

subset, for every n € N there exists g, € G such that w'"’ = g, w® ¢ A. Setting

g‘" def g(" gn , we get a profile decomposition in E with the scalings (gk )y ken and the
profiles w™ € A, once we show that (4.2) holds for the new scalings (gk ") ren- Indeed,

-1 _(m) -1

-1
@) 8™ = g,(g") &gy — O,

k

since g, and g,"n1 are isometries. O

A stronger property of a subset A relative to a scaling group G would be to require
that Delta-limits of sequences (g,w,),cn in E with w,, € A and g,, — 0 belong to some
proper subset of A. In the same spirit one can also introduce a notion of G-compact
sets.

Definition 6.1.3. Let E be a Banach space with a group of isometries G. A set K ¢
E is called locally G-compact if any bounded sequence in K has a subsequence
G-convergent in E.

Proposition 6.1.4. Let E be a Banach space with a scaling group G. If the set K C E is
locally G-compact and E is G-cocompactly embedded into a Banach space F, then any
bounded subset of K is relatively compactin F.

Proof. From local G-compactness of K, it follows that every bounded sequence (u,,)
satisfies g, (u,, —u) — 0 with some u ¢ E for every sequence (g,) in G, and in particular,
u, — u. Then u; — uin F by the definition of a G-cocompact embedding. O

6.2 Profile decompositions for intersection of two spaces

One can use a subgroup of a scaling group to isolate a decoupled portion of a profile
decomposition while the rest of the sum is G-weakly vanishing with respect to the
subgroup.

Lemma 6.2.1. Let E be a uniformly convex and uniformly smooth Banach space with a
scaling group of isometries G. Let G' be a subgroup of G. Let () be a bounded sequence
in E that admits a profile decomposition. Then it has a renamed subsequence such that
the sum (4.3) is of the form

Z g(") Z h(") KON z g (6.1

neN neN’ n¢N’

where N’ ¢ N, h,(( € G',v™ ¢ E, ifn ¢ N', and for any sequence (h;) in G', hk1 ™ _. 0
ifn¢ N'.

printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

6.2 Profile decompositions for intersection of two spaces =—— 103

Proof. By the uniform and unconditional convergence of the sum (4.3), we may as-
sume, without loss of generality, that all but finitely many terms in the sum are zero.
Define

N € {neN: 3 ed kg™ + o).

Let n € N'. Then, by the definition of the scaling group, there exist (h("))kelN in g’

- 1
and g, € G such that, on a renamed subsequence, h,((") (") — S 8 (m* h(") - g,

-1 -1
g,((") h;{") - g;l and h(")* (") . g,‘ll* in the sense of the strong operator conver-

),y

gence. Then g,((”) h(") — OinEsothatg; ) can be replaced in the profile

decomposition with h;{" v(”) — 0 wherev® % gnw(”). Observe now that, denoting by
o (1) any sequence convergent to zero in the norm of E,

1 41
h(ﬂ) U - v(ﬂ) _ h}((n) U - g,,w(")
.
= hl((”) (u - gw™) + 0f(1) — 0,
neN',

since for every ¢ ¢ E, using the definition of Delta-convergence,

1
IR0 (- gW ™) = g gy - w™|
-1 _ -1
< ||gl(<") U, — w® 4 gnl(p“ +0(1) = ||h§<") Uy, —gnw(") + | +o(1)
= 1 (e - 8w ™) + o] + 0(1).

Furthermore, whenever m # n,

-1 _
() R™ = g, (g™M) ' gMgt —

and thus, form ¢ N’ and n ¢ IN’,

-1 -1
(&) 1" = (&) ("8 — 0.
(and, similarly, (h(m)) lg(") — 0) . The uniform and unconditional convergence of the
series in (6.1) follows from the uniform and unconditional convergence of the original
series. O

Theorem 6.2.2. Let E and F be two Banach subspaces of some topological vector space.
Assume that E is a uniformly smooth and uniformly convex Banach space with a scaling
group G, that F is uniformly smooth, and that E N F is dense in E. Assume that G has a
subgroup G' that s a scaling group on ENF equipped with the standard intersection norm
lullg + llull . Asume that both E and F satisfy the Opial condition. If (uy )<y is a bounded
sequence in E N F, that admits a profile decomposition in E relative to the group G, then
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it has a renamed subsequence that admits a profile decomposition in E N F relative to
the group G' of the form

w— Y KPw® L0 inEnF, 62)
nelN’

and a profile decomposition in E with the defect of compactness relative to the group G
of the form (6.1) with the same (h,(("))kdN andw'™, n e N', as in (6.2).

Proof. The second assertion of the Theorem is immediate from Lemma 6.2.1, since un-
der the Opial condition Delta-convergence and weak convergence in E coincide. Note
that since E is uniformly convex and both E and F are uniformly smooth, E N F is also
uniformly convex and uniformly smooth. Furthermore, the Opial condition for E n F
follows directly from the Opial condition for E and for F.

By Lemma 6.2.1 and the Opial condition, for any sequence (h;) in G,

h,;1<uk— Y h(k")w“‘)) —0 inE,
nelN’

and it is easy to see that the expression in brackets coincides, up to passing to a sub-
sequence, with a profile decomposition for (i) in EN F. O

Example 6.2.3. Let E = HP(RV), F = IP(R"), p € (1,N/s), s > 0, let G be the rescal-
ing group g?, and let G' be the group G,v. We assure that E and F satisfy Opial
conditions by equipping them with the equivalent Triebel-Lizorkin norms (3.24) of
FSP2 and FOP?, respectively. Then, taking into account Corollary 3.5.4, Theorem 6.2.2
implies that every bounded sequence in H*?(R") has a subsequence with a profile
decomposition

def '

g
e = Uy — Z w(”)(- —yf(")) —0, (6.3)
nelN

with Iy,((m) - yl((")| — oo whenever m # n, (- + yl((")) — w®, and the remainder r,

converges to zero in LY(RY), g € (p, 1\%5), by Theorem 3.7.1 (or by Theorem 3.8.2). We
have thus derived profile decomposition of Theorem 4.6.5 from that of Theorem 4.6.4.

Theorem 6.2.4. Assume that bounded sequences in a Banach space E of functions on
RY admit profile decompositions relative to the rescaling group G" with somer € R. Let
F be a uniformly convex and uniformly smooth Banach space of functions on RY, let the
group G°, s € R, act isometrically on F, and assume that for any bounded sequence (v;,)
inENF,

vy — 0inF vy — 0inE. (6.4)

Let (u;) be a bounded sequence in E N F. If s > r, then every sequence (j,(:'))kEIN in the

s(n) s(n)
concentration term 2"« w(")(sz (O y](("))), n € N, of a profile decomposition of (u;) in E
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relative to the group G' is bounded from below. If s < r, then every respective sequence
(]("))kGN, n € N, is bounded from above.

Proof. Assume that (u;) has a concentration profilew # 0 such that 2"jkuk(2‘jk “+Yi) —
win E. Then

J2 @7 - 4yl = 2 gl — 0. 6.5)

Ifs >randj, » —coors < randj, — +oo, the right-hand side converges to zero.
Then 277y, (2% - +y,) — 0in F. By (6.4), we have 27 7xy; (2% - +y;) — 0in E, so that
w = 0, a contradiction. O

A particular case of this statement is as follows.

Corollary 6.2.5. Let m € Nand 1 < p < N/m. Let (u) be a bounded sequence in the
intersection of H™P(RY), and LY(RY), q # p},, equipped with the respective equivalent
norm (3.24). If q < p,,, then every concentration term 21w ")(Z’(H)(~ - y,‘("))), r= 1%, in
a profile decomposition of a renamed subsequence of (u;) in H™P (]RN ) has the sequence
(]("))kdN bounded from below. If q > p;,,, then every concentration term 7w ")(2’(")( -

k ")) in a profile decomposition of a renamed subsequence of (u;) in H™P (RY) has the

sequence (j](("))kdN bounded from above.

We consider now the profile decomposition of Theorem 4.6.4 for sequences of
functions with a compact support.

Theorem 6.2.6. Let (1) be a bounded sequence in H™P(RN), m € N, 1 < p < N/m, and
assume that there exists a compact set K ¢ RN such that supp U € K, k € N. Then it
has a renamed subsequence with a defect of compactness of the form

N-mp «( )

Si=w@+ Y 2 Iy 2e (-—yMy), (6.6)
nelN
where w© is the weak limit of (uk), -y, €K, j,(( — +00, and (2’k + 2’k )|y(m)

k | — oo whenever m # n.

Proof. Consider a weakly convergent subsequence of u; with a weak limit w@ It is
clear that if the assertion of the theorem holds for the sequence (u; — w(o)); it will
hold for (u;), so we may assume that u;, — 0. Consider the concentration terms
25 W@ (-~ y™)), r = Y with w® # 0.

Note that 1f on a renamed subsequence, y(") - y™ ¢ K, we have w =
lim 277 uk(Z"k (- + y,(("))) = 0 a.e., since weak convergence in H™?(RY) implies
convergence almost everywhere and uy, is evaluated in the limit away from the com-
pact set K. The same argument applies when |y | - oo. Applying the standard
diagonalization argument, we then may assume, for a renamed subsequence, that
y,((") — y, € Kforeveryn e N.
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Since (u) is supported on the compact set K, itis bounded in L?, 1 < g < p;,,. Then,
by Corollary 6.2.5, (j,((")) ken is bounded from below. Moreover, (jl((")) ren Cannot have a
bounded subsequence, since this would imply that u; has a nonzero weak limit, a
contradiction. O

Corollary 6.2.7. Let Q ¢ RY be a bounded domain with a piecewise C'-boundary and
let (uy,) be a bounded sequencein H LPQ),1 < p < N. Thenit has a renamed subsequence
with a defect of compactness of the form (6.6) with K = Q.

Proof. By the standard extension theorem, there exists a bounded domain Q' > Q
with a smooth boundary and a bounded linear operator T : H"?(Q) — H(l)’p (Q") such
that Tu(x) = u(x) whenever x € Q. The assertion of the corollary follows from applying
Theorem 6.2.6 to the sequence (Tu,) extended by zero to RY. O

6.3 Flask domains for Sobolev embeddings

In this section, G(G) will denote a group of shifts by vectors in G = Z™ x RV"™ with
somem € {0,...,N},

G(G) = {u = u(- -y},

Definition 6.3.1. A domain Q ¢ RY is called a G-flask domain (relative to the Sobolev
space H?(RY), p € [1,00)) if H(l)’p (Q) is a flask subspace of H"’(R") relative to the
group G(G), thatis, if u;, € Hé’p(Q) and y, (-—y;) — win H"P(RN) for some Vi € G, then
there exists ay € G such that w(- —y) € H(lj’p Q).

Let us recall the definition of the lower limit of a sequence of abstract sets (X;)yen:

liminfX, < | ) X ©67)

neN k>n

Proposition 6.3.2. Let Q ¢ RY be a domain with a piecewise-C'-boundary. If for any
sequence (y;) in G there existsy € Gand a set Z RY of measure zero such that

liminf(Q+y,) c (Q+y)UZ, (6.8)
then Q is a G-flask domain relative to the Sobolev space H*P(RY) for any p € [1, c0).

Proof. Lety; € G be such that u; (- -y;) — win H LP(RN). Since weak convergence in
H"(RY) implies convergence almost everywhere, let Z, c RY be a set of zero measure
such that u; (x-y,) - w(x) forallx € ]RN\ZO. Thenw(x) # Oforx ¢ Zyonlyifx-y, € Q
for all but finitely many k € N, that is, only if X € [Jjox()(Q + ¥ ) for some k(x) € N
sufficiently large. In other words, w = 0 in the complement of lim inf(Q + y; ), except
possibly on Z,. By (6.8), there is ay € G such that w(- — y) = 0 almost everywhere
outside of Q. Since 9Q is piecewise-C' and w € H*P(RY), this implies that w € H;P(Q).
Therefore, Q is a G-flask domain. O
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Example 6.3.3. From the definition or from Theorem 6.3.2, we can see that the follow-

ing domains are flask domains:

1. Any bounded domain is a G-flask domain for any G as above.

2. IfQ+y=Qforanyy € G, then Q is a G-flask domain.

3. IfQ = w x R, where w is a bounded domain set with a piecewise-C'-boundary in
RN, then Q is a G-flask domain.

4. If Qg is as in any of two previous cases, Q > Q, has a piecewise C!-boundary,
d(Qo, RY \ (QU BR(0))) — 0as R — oo, then Q is a G-flask domain.

5. IfQ,...,Q, are G-flask domains whose pairwise intersections are bounded sets,
then each connected component of | JI"; Q; is a G-flask domain.

Let

Q, e xeQ: dx,RV\Q)>¢e}, €>0, (6.9)

Xe(X) def min{%d(x, RV \ Q), 1]», (6.10)
and note that for every p € [1, N) there exists nj(e) > 0, n(¢) — 0 as € — 0, such that

lIxeu — ull, < nE)lullge. (6.11)

Theorem 6.3.4. Let p € [1,N). A domain Q in RN with a piecewise C'-boundary is a
G-flask domain (relative to H Lp (]RN ), b € [1,N)), if and only if for every sequence (y) in
G, lyx| — oo, there exists ay € G such that for every € > 0O,

liminf(Q, +y;) ¢ Q + y up to a set of measure zero. (6.12)

Proof. Letx, be as in (6.10).

Necessity. If Q is a G-flask domain, then for any (y;) in G, |y,| — oo, there is a
y € G such that on a renamed subsequence x.(- — y;) — W, € Hé‘p (Q +y), and thus
Xe(- = ¥x) — 0 almost everywhere in the complement of Q + y. On the other hand,
for every x e liminf(Q, + y;), x.(x — y;) = 1 for all k sufficiently large. Therefore,
lim inf(Q, +y;)  (Q +y) up to a set of measure zero.

Sufficiency. Let u;, € H(l)’p(Q), let w € H*P(RN), and let Yk € G be such that, on a
renamed subsequence, u; (- — y;) — w, and thus u, (- - y;) — w almost everywhere.
For every € > 0, we define (on a renumbered subsequence possibly dependent on €),

w, = w-lim(y.u, ) (- — yi)

and note that by the argument of Proposition 6.3.2, w, = 0 almost everywhere in RY \
(Q+y).By(6.11)

Iwe = wil, < lim inf| ()¢ +yi) = w- + Y, < sup e — uell, < 1(€) sup gl
keN keN keN

Then w, — w almost everywhere as on a subsequence of ¢ — 0, and thus w = 0 almost
everywhere in RY \ (Q + y). Therefore, Q is a G-flask domain. O
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Together with the group G, we also consider a subgroup T of O(N) and define
(G, T)-flask domains.

Definition 6.3.5. Let G be an additive subgroup of RY and let T be a subgroup of O(N).
A domain Q ¢ RY is called a (G, T)-flask domain if for every sequence (y;) in G, |y;| —
0o, there exist z € Gand 7 € T, such that whenever u;, € H(l)’p(Q) and w (- +y;) — win
H”(RY), w € HP(1Q + 2).

Note that if T = {id} then a (G, T)-flask domain is a G-flask domain according to
Definition 6.3.1. Note that RN is a (G, T)-flask domain for any choice of G and T.

The following is a sufficient geometric condition for a domain to be a (G, T)-flask
domain.

Proposition 6.3.6. Let @ ¢ RY be a domain with a piecewise C'-boundary. It is a
(G, T)-flask domain (relative to HY (]RN ), p € [1,00)) if for any sequence y, in G there
existz € G, T € T, such that, up to a set of measure zero,

liminf(Q + y;) c 7Q + 2. (6.13)

Proof. The proofis repetitive of the proof of Proposition 6.3.2 and may be omitted. [

Example 6.3.7. The following domains are (G, T)-flask domain:

1. Any G-flask domain.

2. A finite union of intersecting (G, T)-flask domains whose pairwise intersections
are bounded;

3. Domain Q = Q, U Q,, where Q is a (RY, O(N))-flask domain, Q, c TQ, with some
T € O(N), and Q, N Q, is bounded, is a (]RN , O(N))-flask domain.

Proposition 6.3.8. The following domains are not (RN, O(N))-flask domains:

(@) AdomainQ c RN, Q # RN, which for every R > 0 contains a ball of radius R (in
particular, an open cone) is not a (]RN , O(N))-flask domain;

(b) An open cylinder from which one has removed a closed bounded subset with a
nonempty interior;

(c) A product w x (0, c0), where w ¢ RV is a domain.

Proof. (a).Lety, € RY, k € N, be such that B (y) ¢ Q.Letw ¢ H"(RY), suppw = RY
(e. g, w(x) = e ™), and let ; € C°(B,(0),[0,1]) be equal to 1 on By ;(0) and satisfy
[VXi| < 2. Clearly, the Hé’p (Q)-norm of y; def XiW (- — ¥;) is uniformly bounded in k € N
(in particular, supp u; € suppy +Yx € Bi(yx) € Q), and the sequence (u) is uniformly
convergent on compact sets (and, therefore, weakly in H Lp (]RN )) to w. Since suppw =
RV, w¢ H(l)(TQ +z)forany 7 € O(N)and z ¢ RY.

(b) Let Q = w x R\ U, where w is a domain in R¥'andUisa nonempty bounded
domain contained in w x R. Let w ¢ H(l)’p(a) x R). Let M = sup{xy : x € U}y =
XOow(- — key), where ey = (0,...,0,1) and y € C®(R,[0,1]), x(x) = O for x < M,
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x(x) = 1forx = M + 1, || < 2. Similar to the argument above, u, (- + key) — w. Itis
clear that

inf |(wxR)\(1Q+2)|>0
7€0(N),zeRN

which implies that thereisa w ¢ H(l)(w x R) that is not in H(l)(TQ + z) for any T € O(N),
zeRV.
(c) The proof analogous to the one in the case (b). O

Theorem 6.3.9. Let Q c RY be a (ZY, T)-flask domain with a piecewise C'-boundary. If
(uy) is a bounded sequence in H(l)’p (Q), then it has a subsequence that admits a profile
decomposition in H*P(RN) relative to the group Gyn as in Theorem 4.6.5 with w® ¢
Hcl)’p(‘rnQ), neN.

Proof. Let u; be arenumbered subsequence with profile decomposition (4.24). By Def-
inition 6.3.5, there exist 7, € T and z, € Z", such that w™ ¢ H(l)"J (1,Q + z,) and
u (- + y,((m +2z,) — w(+2z,) € H(l)’p (1,Q). Then it remains to rename yf{") +2z,as y,i")
and w™(- + z,,) as w™. O

Let us give an example of existence of minimizers for a flask domain.
Theorem 6.3.10. LetQ c RN bea (Z", O(N))-flask domain with piecewise-C* boundary.
Letp € (1,N) and let q € (p,p*). Then the minimum in

K= inf J(IVulp + |ulP)dx (6.14)
uEH:)’”(Q),HuIIq:lQ

is attained.

Proof. Let (u;) be a minimizing sequence for (6.14) with a profile decomposition given
by Theorem 4.6.5 and refined by Theorem 6.3.9. Then (4.26) will give us

1= J [u|9dx — Z J|w(") 0 Tnlqu. (6.15)
a ne]NQ

Let us define ¢, def jQ W™ o 7,|9dx. while from (4.25), (4.26), and we have

K= j(qu;Jp + [y lP)dx +01) = ) J (VW™ + W™ P)dx + o(1)

) nENTnQ
= J(|Vw(") ot + W ot [P)dx +0(1) 2k Y 2.
nelN neN

Q

Since Y t, = 1and p < g, the relation above is contradictory unless all 7, except
one, say T,,, are zero, and 7,, = 1. It is easy to see then that w™ o 7, € H(l)’p Q) is
a minimizer. O
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Remark 6.3.11. Ifadomain lacks the flask property, a minimizing sequence in an anal-
ogous problem may have a profile supported in a larger domain or in a domain with a
smaller or equal value of k in (6.14), which is not conductive for attaining a minimum.
Consider, for example, the problem (6.14) for the half-space Q = RV"! x (0, 00). If w
is the known minimizer for (6.14) when Q = RY, then it is easy to see that u;(x) =
XO)w(x — (Oy_y, k), where y € C5°(0,00) and x(t) = 1for t > 2, is a minimizing se-
quence for the problem on the half-space, so that the constant k for the half-space and
for RN coincide. Then if the problem on the half-space had a minimizer (vanishing for
Xy < 0), this function would also minimize the problem for the whole space, thus
satisfying a corresponding semilinear elliptic equation on R" and contradicting the
maximum principle.

6.4 Asymptotically null sets, compact Sobolev embeddings

We now consider a sufficient condition for open sets Q ¢ RY such that H(l)’p Q) is
G, -locally compact (see Definition 6.1.3), and thus is compactly embedded into LY(Q),
q € (p,p*) by Proposition 6.1.4. We shall call such sets asymptotically null.

Definition 6.4.1. An open set O ¢ RY is called asymptotically null set (relative to
H”(RY) and G,v) if HyP(Q) is a G -locally compact subspace of H'F (RY).

Proposition 6.4.2. Anopenset Q ¢ RY is asymptotically null (relative to H*P(R") and
Gy, D € [1,00)) if for any sequence (y;) in 7N, lyxl — oo, the set liminf(Q - y;) has
measure zero.

Proof. Let (u;) be a bounded sequence in H(l)’p (Q). Assume without loss of generality
that u, — 0 and let (y;) in Z", |y;| — oo, be such that u(- + y;) — w in H**(RY).
Then u (- +y;) converges almost everywhere. Let Z ¢ RY be a set of zero measure such
that up (x + y;) — w(x) forall x € RY\ Z. Ifw(x) # 0, x ¢ Z, then U (x +yy) + 0 for
all k sufficiently large, and thus x + y;, € Q and x € liminf(Q - y;). By assumption the

g
latter set has measure zero and thus w = 0 a.e. Consequently, u; 2! 0. We conclude
that Hé’p (Q) is G -locally compact subspace of H YP(RN) and thus Q is asymptotically
null. O

A necessary and sufficient condition for a set to be asymptotically null, for p €
[1,N), can be formulated in terms of sets (6.9).

Theorem 6.4.3. An open set Q in RN is asymptotically null (relative to H*(RY) and
G, p € [1,N)) if and only if for every sequence y;, € Z" and every € > 0,

[lim inf(Q, - y;)| = 0. (6.16)

Proof. Let Q,, X, be as in (6.9), respectively (6.10).
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Necessity. If Qis an asymptotically null set, then x.(-+y;) — 0 whenever |y,| — co,
and thus x.(-+y;) — 0 almost everywhere. On the other hand, for every x € lim inf(Q, -
Vi) Xe(x+Y;) = 1for all k sufficiently large, and thus lim inf(Q, - y; ) has measure zero.

Sufficiency. Let u; € H(l)’p(Q), letw € Hl’p(]RN), and lety, ¢ 7N be such that, on a
renamed subsequence, u, (- + y;) — w, and thus u (- + y;) — w almost everywhere.
For every € > 0, we define (on a renumbered subsequence possibly dependent on €),

w, = W-lim(x 1) (- + Vi)

and note that by the argument of Proposition 6.4.2, w, = 0 almost everywhere. Note
now, that by (6.11),

Iwe = wll, < HminfGre) -+ i) = +yi)ll, = Hminf e —uell, < n(e) SUP gl

Then w, — w almost everywhere as € — 0, but w, = 0 a.e., so w = 0. Therefore, Q is
asymptotically null. O

An “infinitely narrow” flask-shaped set {|x| < ﬁ}, where X = (xq,...,Xy_1), iSan
N
asymptotically null set by Proposition 6.4.2.

6.5 Flask domains and null sets for the affine Sobolev inequality

In this section, we study compactness properties and related isoperimetric problems
for the affine Sobolev functional E, given by (5.64). We adapt the notions of flask do-
mains and asymptotically null sets to the setting of affine Laplacian.

Let O ¢ RY be a domain. By analogy with the p-Laplacian which equals the
Fréchet derivative of — % j |[VulP, we may also define the affine Laplace operator A, (u)

by differentiation of —%Ez in a suitable space, for example, in H(l)’z(Q) for the Dirich-
let affine Laplacian or in H**(Q) for the Neumann affine Laplacian. Since 4;;[u]’ =
(JQ VuViudx)' = -2(V;V;u);;, we have formally,

detA[u]’ = detAfu] tr(A'[u]A[u]’) = —2det A tr(A ' [ulu"),
where v’ (x) is the Hessian of u, that is, the matrix with components ViViu(x). Then
840 = -2 (det AL )
- _%(detA[u])%_l(detA[u])'
= (detA[u])ﬁtr(A‘l[u]u”). (6.17)

It is easy to see that for any u € H(l)’Z(Q) this expression is a Fréchet derivative of —%Ez
and that E, € C'(H}*(Q)). In what follows, the notation A, will be reserved for the
affine Dirichlet Laplacian, that is, for the Fréchet derivative above.
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We have the following elementary identity:
Ap(ueoS)=A4m)oS, SeSLNN). (6.18)

If T € SL(N) is as in the last assertion of Lemma 5.4.1, that is, A[u o T] is a multiple of
identity, then we have

(Ayw) o T =A(uoT). (6.19)

Consequently, both the strong and the weak maximum principle apply to classical
solutions of A, (v) = f, exactly in the same form as for the classical Laplacian. In what
follows, the norm of a matrix T will be denoted as |T|. We note that a sequence (T),, in
SL(N) is either unbounded in norm, or has a subsequence convergent to a matrix in
SL(N).

Definition 6.5.1. We shall say that a function f € L% (Q) is of class L, (Q) if for any
2N
sequence (T;) in SL(N), |T| — oo, one has f o Ty |g — 0in L¥2(Q).

In particular, if Q is bounded, L,(Q) = L% (Q),and if Q = RN, L,(Q) = {0}.

Theorem 6.5.2. Let Q ¢ RN be a domain with a piecewise-C' boundary. If f € L,(Q),
then the infimum
def

. 1
gt SR - i FOOu()dx (6.20)

is attained. If, additionally, f € L*(Q), then this minimizer is a classical solution of
Ag)x)+fx) =0, xeQ. (6.21)

Proof. Note first that K < 0. Indeed, let w € C(l)(Q) be such that JQ fwdx < 0. Then
for t > O sufficiently small the functional in (6.20) will have negative values, since the
first term is quadratic in ¢.

By (5.65), we can rewrite (6.20) as

Ky = inf 1 j IVv[2dx — j £00) V(Tx)dx. 6.22)
veHY(TQ), TeSL(N) 2 J
Let (vi, Ti)ken in C5° (T3 Q) x SL(N) be a minimizing sequence for (6.22). Consider
(v4) as a sequence in Hl’z(]RN). Assume first that |T)| — oo. Then, since f € L,(Q),
we have Kr > 0, which is false. Consequently, we have, on a renamed subsequence,

Ty » T e SLIN)and vy, — vin H l’Z(IRN ) with v = 0 outside of TQ, which means that

u®vort e H}*(Q) is a required minimizer. Equation (6.21) (in the weak sense)

follows, and the regularity of the solution is a consequence of the standard elliptic
regularity. O
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Theorem 6.5.3. Let J,, p € (1,N), be the functional (5.55). Let O ¢ RN be an open set
such that for any sequences (T}) in SL(N) and (y;) in zN satisfying | Ty | + lyi| — oo, one
has

[lim inf T,/(Q - y)| = 0. (6.23)
Then the set B, = {u € H(l)’p(Q); Jp(u) < 1} is relatively compact in LYQ),p<q<p”.
Note that, even for bounded Q the set B; is not bounded in Hé’p Q).

Proof. Let (u;) be a sequence in B; and consider it as a sequence in H Lp (IRN ).-Let T €
SL(N) satisfy, in accordance to (5.66),

CI
T () 2 7||V(uk ° Tk)np'

Let v = uy o T. Then (v;) is a bounded sequence in H Lp RNy, If |T,| — oo, then by
(6.23), vi(-~y) — Oin H'Y? (RY) for any sequence (y) in RY, which implies by cocom-
pactness thatv, — 0in LY (RY),p < q < p*,and thus u, — 0in LY(Q). Otherwise, there
is a renamed subsequence of (T} ) convergent to some T € SL(N). Passing again to a
renamed weakly convergent subsequence, we may assume that vy — vin H PRV,
and thusu; — vo T 'in H(l)’p (Q). On the other hand, from (6.23) we can infer that for

any sequence (y;) in zN, Vk=V)(-y,) = 0inH Lp (]RN ) and thus, setting u def voT T,
we have [luy —ull, < v = vlig+ lue T —ue Tyll, — O. O

Note that any bounded set satisfies (6.23). An example of an unbounded set sat-
isfying (6.23) is {(x;,%) € R x RY1 x| < e"‘f}. Not every asymptotically null set, con-
sidered in the previous section, satisfies (6.23): in particular, such is the set {(x;,x) €
RxR¥: %] < (1+]log |x, )71}

We consider now an example of a minimization problem. Note that if Q below were
a ball, existence of the minimizer would follow from a rearrangement argument, and
the minimizer would coincide with the minimizer for the Sobolev norm.

Theorem 6.5.4. Let Q ¢ RY, N > 2, be an open set with a piecewise-C'-boundary satis-
fying (6.23) [for example, a bounded domain]. Then the minimum in the problem

Ky = inf E,(u), 2<p<?2, (6.24)
ueHY(Q), lull, =1

is attained.

Proof. Let (u;) be a minimizing sequence and consider it as a sequence in H**(RM).
Let T, € SL(N) be as in (5.72). Repeating the argument in the proof of Theorem 6.5.3,
we may assume, for a suitable renamed subsequence, that either |T;| — co and then
u, —» 0in LY or T, — T € SL(N), and u; converges weakly in H(l)’z(Q) as well as
in I7(Q) to some u. The former case is ruled out, since by assumption of minimizing
sequence |luyl, o = 1. In the latter case, lower semicontinuity of the norm implies that
||Vu||§ < K. Then by (5.65) E,(u) < k,,, and thus u is necessarily a minimizer. O
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Corollary 6.5.5. Let Q ¢ RY be a bounded domain with a piecewise C'-boundary. Then
(6.24) has a minimizer that, up to a scalar multiple, is a smooth positive classical solution
of the boundary problem

- i(A_l[u]) U 0, g = 0 (6.25)
& ¥ 0x;0%; Pl = '

Proof. Note thatifu € H(l)(Q) is a minimizer for (6.24), then so is |u| by (5.65):

inf E>(u)
ueHy (), lull, 0=1

2
= inf V(uoT
”EHé’z(m,\lullp,g):l,TesL(N)" (we D

= inf [VIu o T|||§
ueHY(Q),lull, o =1T€SL(N)

inf Ey(Jul),
ueHI(Q),lully0=1

so we can without loss of generality assume that u > 0. Then, for some A > 0, the
function u satisfies, in the weak sense,

N -1 azu —
->(4 [u])l.].m =P inQ (6.26)
ij=1 94

Note that A[u]*1 is a positive constant matrix, as an inverse of a positive matrix, so
the standard elliptic regularity and the bootstrap argument yield the smoothness of
the solution. The solution is strictly positive by the maximum principle for uniformly
elliptic operators. Finally, note that the left-hand side of (6.26) is of homogeneity -1 #
p - 1, so a suitable scalar multiple of u satisfies (6.25). O

We extend here condition (6.8) to actions of the affine group on RY to state the
following minimization result for the affine Sobolev functional E,.

Definition 6.5.6. A domain Q in R" is an affine flask domain if for any sequences (Ty)
in SL(N) and (y;) in RY there exist a y € RY,aT e SL(N) and a set Z ¢ RN of zero
measure such that

liminf T, '(Q - y;) c (TQ+y) U Z. (6.27)

Example 6.5.7. Obviously, any bounded domain (as well as R") is an affine flask do-
main. A collection of unit balls Bl(n4e0), n € N, where e, is a fixed unit vector, con-
nected consecutively by circular cylinders of corresponding radius e™ that have Re,
as their common axis, is an affine flask domain. On the other hand, a cylindrical do-
main with a smooth boundary is an affine flask domain only if it is RY. Indeed, let
Q = R x w and let T} be a diagonal matrix with diagonal entries KN, k,...,k. Then
liminf T, Q = RV,
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Theorem 6.5.8. Assume that Q ¢ RY , N > 2, is an affine flask domain with a piecewise-
C! boundary. Then the minimum in the problem

K= inf Ey(u) + ull5, 2<p<p’, (6.28)
ueH* (Q): lull,=1

is attained.

Proof. Let (u;) ¢ H(l)’z(Q) be a minimizing sequence. Consider it as a sequence in
HY(RY). Let (T,) < SL(N) and let w'™, n € N, be as in Theorem 5.4.5, so we have
E,(uy o Ty) = IV (uy o Tk)llg. From the iterated Brezis—Lieb lemma (Theorem 4.7.1), we
have

1= el = Y [w™. (6.29)
n

Let t, = [w™[P.
By (5.75)

. 2
K = 1im Ey(uy Ty - =y + 1)) + (T - =y + v

> 3 (oW + W™D = Y (Ew™) + W), (6.30)

neN neN
Equation (6.27) implies that with some T ¢ SL(N) and somey,, € RY one has

i (Te((T™) - y) +7(") = w(T) 7 =) € H?(@).
From (6.30), we have

K> Z Ktﬁ/” , (6.31)
nelN

which can hold only if t, = 0 forn # m and t,, = 1 with some m € IN. Consequently,
wm((T™)71(. —y,)) is a minimizer. 0

Remark 6.5.9. Any minimizer for the problem (6.27) is, up to a scalar multiple, a pos-
itive smooth solution of the boundary value problem

N 2
- ou -1
—detA[u]"™ Y (A ) — +u=u""Y, ulyg = 0. (6.32)
i,}Z=:1( )i 0x;0%; *

The argument copies that of Corollary 6.5.5 with one modification: in the proof of the
corollary we omitted the scalar factor detA[u]l/ N in the Fréchet derivative of the left-
hand side. We do not omit it here, and as a consequence the left-hand side is now of
homogeneity 1 < p - 1, which allows to replace u by its scalar multiple while setting
the Lagrange multiplier to 1.
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Since RY is an affine flask domain, there is a minimizer in (6.28). A simple argu-
ment shows that the minimum in (6.28) is attained at the minimum of the correspond-
ing Euclidean problem.

Theorem 6.5.10. The minimal values in the problems

dnf o By (u), (6.33)
ueH Y (RY),[lull,« =1

and

in Ew) +llull;, 2<p<2", (6.34)
ueHY(R),|uf,=1

are attained at the minima for respective Euclidean problems (with E,(u) replaced by
Ivul).

Proof. By (5.65), for every u € H**(R") thereis T € SL(N) such that E,(u) = |V(ueT)|3.
Therefore,

inf  E)=  inf  |vul? (6.35)
ueH2(RY),llull» =1 ueHY(RN),[lufl =1
and
. 2 . 2 2
inf B +luly=_inf o [Vul + ful. (6.36)
ueH2(RY),Jull, =1 ueH(RY),|lufl,=1 O

6.6 Bibliographic notes

Sections 6.1 and 6.2 are written in the general spirit of [113]. Flask domains in a more
concrete form of Example 6.3.3, case 4, were introduced by del Pino and Felmer
[36]. The notion of asymptotically null set is related to the earlier studies of compact
Sobolev embeddings for unbounded domains such as [31]. The functional-analytic
notion of a flask subspace of a Hilbert space was introduced in [104, Chapter 4],
which also contains characterization of flask domains and asymptotically null sets
from Sections 6.3 and 6.4 in the case of H2.

Counterparts of flask domains and of asymptotically null sets for affine Sobolev
spaces were introduced in [102] for p = 2 and in [103] for 1 < p < N. Presentation in
Section 6.5 follows [102]. The first part of Theorem 6.5.10, for the affine p-Laplacian, is
proved in [86].

printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

7 Global compactness on Riemannian manifolds

In this chapter, we study loss of compactness, for Sobolev spaces of manifolds, that is
not attributable to an action of a group as it is, for example, in Corollary 5.1.7, where
the manifold is assumed to be periodic. An analog of profile decomposition is still pos-
sible in absence of an invariant group action, but at the cost of concentration profiles
emerging as functions on different manifolds.

An elementary example of profiles arising as functions on a different metric struc-
ture, as a consequence of noninvariant transformations, is the space ¢*(N), p € [1, 0c0),
equipped with the set of right shifts. If w € £°(Z), then u(x) def wx-k),x € N,isa
bounded sequence in £’ (N), which we extend by zero to Z, setting

~ {uk(x) =wkx-k), xeN,
X) =

0, x<0,
then

_ wx), x=-k+1,-k+2,...,
i(x+k) = xXeZ,
0, x=-k,-k-1,...

and w (x + k) — w(x), x € Z. This implies u; (- + k) — w, and thus w € €°(Z) may be
regarded as a profile of (u;), which is a sequence in £/ (IN).

Note that, of course, that profiles that emerge here are not weak limits in the orig-
inal spaces, like in Definition 4.1.1, and in general the concentration structures in this
chapter correspond to this definition only in the sense of analogy.

A paper of Struwe [120] addressed profile decompositions for limiting Sobolev em-
beddings on compact manifolds, where formation of dilation bubbles by a “zoom-in”
into the manifold yields profiles defined on the tangent space. In [110], dealing with
subcritical embeddings, profiles are generated by local isometries of the manifold,
which results in profiles defined on different manifolds-at-infinity of the given mani-
fold. The profile decomposition of Theorem 7.9.1 below combines both structures. The
conclusionary Section 710 presents a related result on compactness of embeddings for
subspaces of symmetric functions.

7.1 Bounded geometry. Discretizations and a “spotlight lemma”

Throughout this chapter, we consider be a smooth, complete, connected, N-
dimensional Riemannian manifold M, N > 2, with metric g. By B(x,r) ¢ M, we
will denote in this chapter the geodesic ball of M of radius r, centered at x ¢ M, and
by Q, we will denote the ball of radius r in the Euclidean space, centered at the origin.
For every x € M, there exists a maximal r(x) > 0, called injectivity radius, such that

https://doi.org/10.1515/9783110532432-007
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the Riemannian exponential map exp, is a diffeomorphism of {v € T,M : g, (v,v) <1}
onto B(x, r(x)). For each x € M, we choose an orthonormal basis for T, M which yields
an identification i, : RV — T, M. Thene, : Q,xy — B(x,r(x)) will denote a geodesic
normal coordinate map at x given by e, = exp, ° i,. We do not require smoothness of
the map i, with respect to x, since the arguments x will be taken from a discrete subset
of M.

For k integer, and f : M — R, we denote by dkf the k™ covariant derivative of u,
by o, partial derivative in local coordinates, %, and by |d“f| the norm of d*f defined
by a local chart by

S
|d'f|" = g% g, .0, fD; ... 0, f .

where g¥ are the components of the inverse matrix of the metric matrix g = (831

Throughout this chapter, we use the notation IN,, def N u {0}.

Definition 7.1.1 (Definition A.1.1 from [107]). A smooth Riemannian manifold M is of

bounded geometry if the following two conditions are satisfied:

(i) The injectivity radius r(M) = inf, ., r(x) of M is positive.

(ii) The Riemann curvature tensor R of M has bounded derivatives, namely, d“RM ¢
L (M) for every k € N,.

In particular, all compact manifolds, homogeneous spaces, and periodic manifolds
are manifolds of bounded geometry. When M is of bounded geometry and r < r(M),
the geodesic normal coordinate map e,, x € M, is a diffeomorphism Q, — B(x,r). A
Riemannian manifold of bounded geometry is always complete. Further properties of
such manifolds are given in the Appendix, Section 10.3.

The Sobolev space H* (M), p € [1,0), is a completion of Cy° (M) with respect to
the norm

Iul?,, = ng(du, duydvg + J juPdv,.
M M

Since M is of bounded geometry, the space HP(M) is continuously embedded into
LY(M) for every p € (1,N) and g € [p,p*] and the constant in Sobolev embeddings
over balls B(x, r) is independent of x € M (see, e. g., [65, Theorem 3.2]).

Definition 7.1.2. A subset Y of Riemannian manifold M is called (g, p)-discretization
of M, p > € > 0, if the distance between any two distinct points of Y is greater than or
equal to £ and

M= B@y.p).
yeY

Any Riemannian manifold M has a (¢, p)-discretization for any € > 0 and a suitable
p.1f M is of bounded geometry, then the covering {B(y, r)},y is uniformly locally finite
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for any r > p; cf. [64, 107, 108]. It is also well known that for any (&, p)-discretization
Y, there exists a smooth partition of unity {x,} .y on M, subordinated to the covering
{B(y;p)}yey, such that for any a € ]Ng’ there exists a constant C, > 0, such that

D%, | < Cq (71)
forally € Y.

Example 7.1.3. Let M be anoncompact manifold of bounded geometry, letw € C},(Qr)\
{0}, let (x;) be a discrete sequence on M, and let u; = we e;kl extended to the rest of the
manifold by zero. Then it is easy to see that u;, — 0 while llugll, is bounded away from
zero by (10.38). In other words, for noncompact manifolds of bounded geometry pres-
ence of a local concentration profile, w, results in a nontrivial defect of compactness.

Theorem 7.3.5 below is an analog of Corollary 5.1.7, based on local concentration
profiles in the spirit of Example 7.1.3. It is natural to expect that once we subtract from
the sequence all local “runaway bumps” of the form w o e;kl suitably patched together,
the remainder sequence (v;) should be left without nonzero local profiles, in other
word, it should satisfy v; o e, — 0 inH 1’Z(QP) with some p > 0. This is a condition
related to the one in the cocompactness Lemma 2.6 of [47] for periodic manifolds, and
it implies that (v;) vanishes in L” (M). In strict terms, we have the following property,
similar to cocompactness.

Theorem 7.1.4 (“Spotlight vanishing lemma”). Let M be an N-dimensional Rieman-
nian manifold of bounded geometry, supplied with a (g, r)-discretization Y ¢ M of M,
r < r(M). Let (uy) be a bounded sequence in H"Y (M), 1 < p < N. Then u;, — 0 in LY(M)
forany q € (p,p*) if and only if uy - e, —0in H"(Q,) for any sequence (y,) in Y.

Proof. Letus fix q € (p,p*) and assume that v o e, — 0in HYP (Q,) for any sequence
Vi)s Vi € Y. The local Sobolev embedding theorem and the boundedness of the ge-
ometry of the manifold implies that there exists C > 0 independent of y € M such
that

1-p/q
lul9dv, < C J (g (du, du)i|2 + Iuklp)dvg< J Iuqudvg> .
B(y.r) B(y.r) B(y.r)
Adding the terms in the left- and the right-hand side over y € Y and taking into account
the uniform multiplicity of the covering, we have

1-p/q
J luy|dv, < C J(gx(du, dw)P’? + |y [P)dvg sup< J |un|qdvg> ) (7.2)
M M yey B(y.r)
Boundedness of the sequence (u,,) in H LP (A1) implies that the supremum of the right-
hand side is finite. So for any k € IN, we can find a y; € Y, such that

sup J Iuqudvgszﬁ J |uk|qdvg. (7.3)

yeY
B(y.r) B(yor)
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By compactness of the Sobolev embedding H Lp (Q,) — L¥(Q,) and weak convergence
of the sequence in H*?(Q,), we have u; o e, — 0in LY(Q,), and thus, by (10.37),
JB(yk)r) lug|?dvy — 0. Combining this with (7.2) and (7.3), we have u — 0 in LI(M).
Assume now that u;, — 0 in LI(M). By Corollary 10.3.3, this implies convergence
Ycoe, — 0in LI(Q,) for any sequence (y;). On the other hand, boundedness of the
sequence y; in H LP(M) and (10.37) give us the boundedness of any sequence (u;, - eyk)
in H*P (Q,). By continuity of the embedding H Lp (Q,) — LI(Q,), we get uy, o e, —0 in
HY(Q,). O

As a consequence, we have the following compactness property for functions sup-
ported on sets thin at infinity. For an open set M, of a Riemannian manifold M, we
denote the closure of the space of Lipschitz functions with compact support on M, in
the norm of H*?(M) as Hy? (My).

Proposition 7.1.5. Let M be a N-dimensional Riemannian manifold of bounded geome-
try, let M, be an open subset of M, and let1 < p < N.Let Y c M be a (¢, r)-discretization
of M, r < r(M). If for any sequence (y;) inY,

Vg(Mo N B(y, 1)) — 0, (7.4)

then H(l)’p(MO) is compactly embedded into LY(M,,), p < q < p*.

Proof. Let (u;) be a sequence in H(l)’p (M,), weakly convergent to zero and let (y;) be an

arbitrary sequence in Y. Let Q; def e;kl (Mo N B(yy,1)). Since M has bounded geometry,

condition (74) implies that |Q;| — 0. Since y; - e, is bounded in 2 (Q,), by Holder
inequality,

q — q
Jlukoeykl dg = j luy ey, I"dg
Qr Qk

. q/p* e
< <J luy < ey, I df) 1|79 S 0.

'k

Thusuyee, — 0inL?(Q,)and, since yy-e, ishoundedin HY(Q,), we have ugee, — 0
in H"(Q,). Then by Theorem 7.1.4 u; — 0 in LI(M), which proves the proposition. [

7.2 Manifolds at infinity

In what follows, we consider the radius p < % and p-discretization Y of M, 2 < p < p.

Definition 7.2.1. Let (y;)ien be @ sequence in Y that is an enumeration of an infinite
subset of Y. We shall call a countable family {(yy,;)xentiew, 0f sSequences onY a trailing
system of (yi)xen if for every k € N sequence (yy,);en, €numerates Y in the order of the
distance from yy, that is, d(yy;, yx) < d(Vi.i41, Vi) for alli € Ny. In particular, yy.q = yi.
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Note that any enumeration of an infinite subset of Y admits a trailing system: it
can be constructed inductively, by starting with y,.o = y; and, giveni € IN,, choosing
Viis1 @S any pointy € Y \ {yy,..., ¥} with the least value of d(y,y;), i € Ny. Since
there may exist several points of Y with the same distance from y, for a given k, the
trailing system is generally not uniquely defined.

Lemma 7.2.2. Let (y;)ren be a sequence in a discretization Y that is an enumeration of
an infinite subset of Y. There exists a renamed subsequence of (y ).cn With the following
property: for any i € N, there exist a finite subset J; of N, such that

B(yki»p) NBlyyjp) #0 = j€J;. (7.5)

Proof. Let us fix i. If the ball B(y,;,p) intersects B(yy;,p), then B(yi,»p/2) < B(yy,
d(yy, Vi) + 3p) forany € € {0, 1,...,j}. The geometry of M is bounded so the respective
volumes of the balls (B(y,.,, p/4)) are bounded from below by a constant depending on
p but independent of the balls. Note that these balls are pairwise disjoint. Moreover,
the Ricci curvature of M is bounded from below, so by the Bishop—Gromov volume
comparison theorem the volume of any ball B(y,.,, r) can be estimated from above by
the constant depending only on the radius. In consequence,

j
Cj <) Vg(BWYe-p/4)) < Ve(Byio dWie Vi) + 3p)) < Cis (7.6)
=0

and the constants C, C; are independent of k. Let Ji;; = {j : B(yi;»p) N B(yy;j,p) # 0}.
Then for any k we have J;; [0, C;/C]. Therefore, there exists a subsequence ki, k, . ..
such that Jy,; = Ji ; for any ¢ and v. We put J; = Ji ;.

The assertion of the lemma follows now from the standard diagonalization argu-
ment. O

We will always assume throughout the paper that the sequence we work with sat-
isfies the above property. This can be done since passing to subsequence never spoils
our construction.

With a given trailing system {(yy,;)xeniew,» We associate a manifold Mg,k“'> defined
by gluing data that will be constructed below. In the construction, we will use defini-
tions from Section 10.3 of the Appendix.

When we define the manifold Mg)k“'), we assume that we work with a sequence
satisfying (7.5). The following subset of ]Nf) is essential for the construction:

8

k= Ut@n: i e

)
<}

If (,j) € K, then passing to a subsequence for any §,1 € Q,, we have

3r(M)
4

d(ey, §,ey, 1) < d(ey, § Vi) + AV Vi) + dViio €y, M) < 6p <
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Therefore, on a subsequence, we may consider a diffeomorphism

Wik def e;klu_ oey Oy = Qp a= %r(M).

To each pair (i,j) € K, we associate a subset Q; of Q,, and a diffeomorphism y;;
defined on Q;; whenever the latter is nonempty.

By boundedness of the geometry (cf. Lemma 10.3.2) and the Arzela—Ascoli theo-
rem, there is a renamed subsequence of (1;; ;)i that converges in C°°((_22p) to some
smooth function gbi]- : sz — Q, and, moreover, we may assume that the same extrac-
tion of (¥} )ken cOnvVerges in C*(Q,,) as well. Note that Lemma 10.3.2 gives that for
any a € ]Ng there exists a constant C, > 0, such that

|d“p;(&)] < C, wheneveri,j e No, £ € Q.
def

We define Q; = 1;;(Q,) N Q,. This set may generally be empty. Let us define a set that
we will invoke in our application of Corollary 10.3.8 that will follow:

K€ (i) e K1 0y #0). (7.7)

To prove the cocycle condition for the gluing data, condition (v) in Corollary 10.3.8,

we should extract subsequences in a more restrictive way. First, we consider a sub-

sequence l/)}n)k of 1o, that converges to iy, and note that on the same subsequence

we have convergence of z/;{o,k to . Fix an enumeration n — (i, j,) of the set of all
n+1

indices (i,j) € K, i < j, and extract the convergent subsequence l/)leje’k of the subse-

quence ¥;; ; from the previous extraction step, for € = 0,...,n + 1. Then the diagonal
sequence 1/)52 ok will converge to i, ;, for any £ € N.

By the definition of Q; and ;;, we have ¥;; o ;; = id on Q;; and j; - ;; = id on
Q;;. Therefore, y; = 1/)51 in restriction to Q;, and yj; is a diffeomorphism between Q;
and ;. Note that this construction gives that y; = id, Q; = Q, foralli € N. Thus
conditions (i)—(iii) of Corollary 10.3.8 are satisfied.

Note also that the second step of the constructions implies

-1 -1 -1

Yei = ,}E{}O e ® i = ,}E}}O e * iy ° eYk;j * €y

=lime' oe,
koo Yke Vi

.o _
’ klinolo iy ° i = l/)f] ° l/)],,

and
Vi(Q; N Q) = l/)ij('l)ji(Qp) nQ, N (Q,) N Qp) = Q5 N Qs

which proves condition (iv) of Corollary 10.3.8.

EBSCChost - printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

7.2 Manifolds at infinity = 123

Let x € 9Q; N Q,. Since 0Q;; € 0;;(Q,) U 9Q, and ), is open we conclude that x €
alp,-]-(Qp) = l,bi]-(an). Thus l,b]-,-(x) € an. This proves the condition (v) of Corollary 10.3.8.
We have thus proved the following proposition.

Proposition 7.2.3. Let M be a Riemannian manifold with bounded geometry and let Y
be its discretization.

For any trailing system {(yy,)ren}ien, related to the sequence (y;) in Y, there exists
a smooth manifold M2 with an atlas {(U;, T)}iew, Such that:
6] Ti(Ui) =Q

and

(2) there exists a renamed subsequence of k such that for any two charts (U;, 1;) and
(U;, 7;) with U;nU; # 0 the corresponding transition map ;; : 7;(U;nU;) — 1,(U;nU;)
is given by the C*°-limit

-1
zp = 11m eykl ° ey

For convenience, we will also widely use the “inverse” charts ¢; = 7; !'so that

'_ °oP; = !:b]z Q - Q
We now deﬁne the Riemannian metric on Mg, V) i two steps as follows. First, for
any i € N, we define a metric tensor g% on Q,, and afterwards we pull it back onto

Ui = 9;(Q,) € Mg,k“') via @; ! and prove the compatibility conditions.
Tensor g is defined as a C*-limit on a suitable renamed subsequence:

(')(v w) 11m ge (deyk;l_ (v),deyk;l_(w)), §feQyandv,we RrY, (7.8)

Existence of the limit follows from the boundedness of the geometry of the manifold
M since the coefficients of the tensors Se,, form a bounded family of functions in
the spaces C°°(Q ). Using the standard dlagonahzatlon procedure, we can choose the
same subsequence for any i. Furthermore, 2 is a bilinear symmetric positive-definite
form. Since we used in the definition (7.8) normal coordinates, we have gf)” wv,v) = v~
In consequence, by the boundedness of geometry, g(’)(v V) > |v|2 inQ, foralli € Ny,
provided that p is fixed sufficiently small.
Now we can define a metric g on Mgf”') by the following relation:

avw) 2 g0, (dp;' W), dg;'w)), (7.9)

x € @;i(Q,) C M2 and v,w e TXMSC/,“).
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To prove that the Riemannian metric is well-defined, we should verify the compatibil-
ity relation on overlapping charts, that is,

i 1 1 ~( -1 -1
Epi (i V. dgp W) =80, (do'v. oy w), (7.10)
ifx € 9;(Q,) N ¢;(Q,) and v, w ¢ T,M.

But (p}-’1 o @; = j;, so it suffices to prove that

0w = gg)?m(dzpﬁv, dpw),  withv,w € T¢Q,. (7.11)

Let e;kl;j o ey, (&) = ny then ¥h;;(§) = limy_,, my and ey, (§) = eyk;j(nk). In consequence,

=

8 (v,w) = klggo ge%(f)(deyk;iv, deyk;l_w) (712)

= I}LIEO geyk;j(ﬂk)(de)’,;} e)’k;iv’ de)’;;} ° e)’k;iw)

= 8y, (o) (v A w).

Definition 7.2.4. A manifold at inﬁnityMg,k“’) of a manifold M with bounded geometry,
generated by a trailing system {(y;,)rentien, Of @ sequence (y;) in Y, is the differen-
tiable manifold given by Theorem 10.3.8, supplied with a Riemannian metric tensor g
defined by (7.9).

For the given chart (Q,, 7;), components of the metric tensor g are defined by for-
mula (7.8); cf. (79). Let & = 0. The maps ey,, are normal coordinates systems, so for any
k components g, ,, of the metric tensor g satisfy g, ,(0) = 6,,, and 0,8,,,(0) = 0. So
by identity (7.8), we get

8om(0) =68,,, and 0,8,,(0)=0.

Moreover, the components g, ,, are a bounded set in C*°(Q,) so all the set of g, , is also
bounded in COO(QP).

For any k and i, (Q,, ey,,)isa normal coordinate system, so for any unit vector vwe
have on that ball I, ,(tv)v,v,, = 0,0 < t < p, where I’ , denotes Christoffel symbols
of a given Riemannian metric on M. But Christoffel symbols can be expressed in terms
of components of Riemannian metric tensor and their derivatives, so the Christoffel
symbols I, , of the manifold MY are limit values in C® of the Christoffel symbols
F;,e of the manifold M. Therefore, t — tv, 0 < t < p, are geodesic curves also for Mg,k"')
in the coordinates (Q,, ¢;). Thus the injectivity radius of M, é’;kf) is not smaller then p
and (Q,, ¢;) is a normal system of coordinates.

In terms of Definition 7.2.4, the argument above yields the following conclusion.

Proposition 7.2.5. Let M be a Riemannian manifold of bounded geometry and let Y be
its p-discretization, g <p<pc< %. Then every discrete sequence (y;) in Y with a
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given trailing system {(y)kentien, has a renamed subsequence (yy) that generates a

Riemannian manifold at infinity Mf,{,k”') of the manifold M. Moreover, manifold Mg)"”') is
of bounded geometry and its injectivity radius is not less than p.

Remark 7.2.6. Let M’ be another manifold such that M and M’ have respective com-
pact subsets M, and M(’) such that M \ M, is isometric to M "\ M!, that is, let M' and
M coincide up to a compact perturbation. Then their respective manifolds at infinity
for the same trailing systems coincide. From this, it follows that manifold at infinity
of the manifold M is not necessarily diffeomorphic to M.

7.3 Local and global profiles. Profile decomposition

Defect of compactness for bounded sequences in H**(M) can be formulated using dis-
cretizations, related trailing systems described in Definition 7.2.1 and corresponding
manifolds at infinity.

Definition 7.3.1. Assume that manifold M has bounded geometry and let Y be its dis-
cretization. Let (1) be a bounded sequence in H L2(M). Let (v) be a sequence of points
in Y and let {(yi;)kentien, Pe its trailing system. One says that w; € Hl’z(Qp) is a local
profile of (u;) relative to a trailing sequence (y;.;)xen- if, on a renamed subsequence,
Ugoe, — W inH 1’2(Qp) as k — oo. If (y;) is a renamed (diagonal) subsequence such
that uy - e, — w; in Hl’z(Qp) ask — coforalli € Ny, then the family {w;};cy, is
called an array of local profiles of (u;) relative to the trailing system {(Vi,)kentien, Of
the sequence (yy,).

Proposition 7.3.2. Let M be a manifold of bounded geometry with a discretization Y.
Let (uy) be a bounded sequence in HY(M). Let {Wiliew, be an array of local profiles of
(wi) associated with a trailing system {(yi;)ken}ien, related to the sequence (y;) in Y.
Then there exists a Hllézc -function w : Mgf"') — Rsuch thatw o ¢; = w;, i € Ny, where

@;:Q, — M((fé,’“”) are local coordinate maps of Mé’;"‘i).

- . . . def
Proof. Functions w; are defined on Q, that is a domain of definition of ¢;. Set w =

w; o ;' on ¢;'(Q,) and note that if x € ¢;'(Q,) N gaj‘l(Qp) for some j € Ny, then

$i(x) € Qy, @;(x) € Qy, and, using the a. e. convergence of uy - e,  and uy ey,, oW

and wj, respectively, and the uniform convergence of e;kl_eyk]_ to 1;;, we have
i 3
w~o<p71=1imu oe o(p._l:limu oe, o€l oe o(p._l
J ] k=00 k" Cyig ) k—00 k=Y ™ "y T i ]

-1 -1 -1 -1
=Wi°l/)ij°<Pj =Wie@; c@Pjo; =W Q;

almost everywhere in (p{l(Qp) n (plfl(Qp). O
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Definition 7.3.3. Let {w;};cy, be a local profile array of a bounded sequence (i) in

H"(M) relative to a trailing system {(Vksi)kentiew, - The function w Mg,k"') — R given
by Proposition 7.3.2 is called the global profile of the sequence (i) relative to (yy;).

Given that the discretization Y of M yields a uniformly finite covering of M by
geodesic balls {B(y, p)},cy satisfying (71), consider a smooth partition of unity {x,},cy
subordinated to this covering.

Definition 7.3.4. Let M be a manifold of bounded geometry with a discretization
Y c M. Let Mg)k‘i) be a manifold at infinity of M generated by a corresponding trail-
ing system {(yi;)kentien,- AD elementary concentration associated with a function

w: M((){)k‘i) — R is a sequence (W), of functions M — R given by

W=D Xy Weoio e;kl;p keN, (713)

ieN,

where ¢; are the local coordinate maps of manifold Mg)k"').

In heuristic terms, after we find limits w;, i € IN, of the sequence (i) under the
“trailing spotlights” (e, )xen, that follow different trailing sequences (yy,)ren Of (vk),
we give an approximate reconstruction W, of u; “centered” on the moving center y;
of the “core spotlight.” We do that by first splitting w into local profiles w o ¢;, i € N,
on the set Q,, casting them onto the manifold M in the vicinity of y;; by composi-
tion with e;:;i, and patching all such compositions together by the partition of unity
on M satisfying (7.1). Such reconstruction approximates u; on geodesic balls B(y;, R)
with any R > 0, but it ignores the values of u; for k large on the balls B(y;, R), with
d(yi ;) — oo, where u; is approximated by a different local concentration. Note that
in Corollary 5.1.7 we have for the case of periodic manifold that a global reconstruc-
tion of uy, up to a remainder vanishing in I (M), is a sum elementary concentrations
associated with all such mutually decoupled sequences.

Similarly, the profile decomposition theorem below says any bounded sequence
(ug) in HY*(M) has a subsequence that, up to a remainder vanishing in I?(M), p €
(2,2"), equals a sum of spatially elementary concentrations.

In the theorem below and in the subsequent sections, we will work with count-
able families of discrete sequences of the set Y. To each sequence, we assign a trailing
system so in consequence also a manifold at infinity. To simplify the notation, we will
index the sequences in Y, the related trailing systems the corresponding manifolds,
concentration profiles on these manifolds, etc. by n, that is, we will write yl(("), y,((';’i),
Mé?, w, etc.

Theorem 7.3.5. Let M be a manifold of bounded geometry with a discretization Y ¢ M.
Let (uy) be a sequence in H L2(M) weakly convergent to some function w'® in H**(M).
There exist a renamed subsequence of (u; ), sequences (y}(")) ken in'Y, and global profiles
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w™ on the respective manifolds at infinity M™, n ¢ N, associated with (y](("))kelN and

(oe)
their trailing sequences, such that d(y("), y(m)

Yk ) — oo whenn # m, and

w-wO =Y w50 inIl’(M), pe(22), (7.14)
nelN
where W = Yien, waw(") o™ o e;é? are elementary concentrations, ¢" are the

local coordinates of the manifolds Még) and {Y,}yey is the partition of unity satisfying
(71). The series Y e WIE") convergesin H L2(py unconditionally and uniformly in k € N.
Moreover,

[oe]
iz + 2 iqagy) < 1im sup llgu (719)
n=1
and
[ee]
,[ lu [Pdvg — JIW(O) "dvg + > J [w® |pdvg<”)' (716)
M M =y

7.4 Auxiliary statements

In Sections 7.5-7.10, we assume that conditions of Theorem 7.3.5 hold true. First, we
prove an inequality for the norms defined by Lemma 10.3.4 in the Appendix.

Lemma 7.4.1. Let (u;) be a bounded sequence in H L20Apy, let ngk;") be a manifold at
infinity of M generated by a trailing system {(Vi;)xen}ien,» and let w € H2MY) e
the associated global profile of (u;). Then

tim inf el ey = W, oo -

Proof. Let {Xy}yey be the partition of satisfying (7.1), and let us enumerate it for each
k € N according to the enumeration {y}ic, of Y, namely i - x,, , i € No. In other
words, for every k the set {x,, }ic, equals the set {x,},.y, and only its enumeration
depends on the given trailing system {(yy,;)ken}ien, - BY Arzela-Ascoli theorem, we can
define for any i a function n; on Q, by the formula

ni = I}LIEOX)’k;i ° e)’k;i' (717)

The functions n; are smooth functions compactly supported in Q,. Moreover, using
the diagonalization argument if needed, we get

_ 1 -1 _
ni = ,}LIEOXYk;i ° eYk;j ° e)/k;; °Cy = Mj° l/)l'i'
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Since Yien, Xy, °€y,; = 10nQ, foranyj € Ny, we have in the limit ¥ jen . i jye Moy = 1
on Q,; cf. Lemma 7.2.2. So the family of functions

X g, e N, (718)

is a partition of unity for M, )

, which is subordinated to the covering {¢;(Q,)}en, of
M) W) , and one can easily see that it satlsﬁes (7.1).

Both the manifolds M and Mof,k " have bounded geometry and, therefore,

11m1nf|||uk|||Hn(M) = 11m1nf z ||(ka u) o ey, “le(IRN) (719)
1e]N0
> z 11m1nf||()(yk Uy) o eyk1||le(1RN) Z IITI,-Willip,z(]RN)
ieN, ieN,
hm Z "X(ykl Wo ‘Panu(RN) 2 |||W|||H12 Oki)y:
IE]NO O

Lemma 7.4.2. Let {(yi;)kentien, be a trailing system for a discrete sequence (y;) and

letwe H 1’2(Mf,¥,k”')). Then the elementary concentrations W,Ey k"'), k € N, associated with
this system belongs to H*(M). Moreover, there is a positive constant C independent of
k and i such that

W < CIwl (7.20)

H20)

If (V;)ken s a discrete sequence on M such that d(yy.y;) — oo, then the elementary
concentration W,ﬁy i) satisfies

%)
Wk o eyL -0

D 1,2
in H>(Q,).
Proof. We recall that

Vi) 1
Wk v = z ka;i We ;e eyk;i; (7.21)

ieN,

cf. (713). The functions Xy, ° €y, are smooth compactly supported functions on Q, and
the family {x,, . -e,, }isabounded setinC °(Q,). By the boundedness of the geometry
(cf. Lemma 7.2.2 and Lemma 10.3.4), and using (7.18), we have

2
”ka;i ° eyk;,« Wo goi”Hl’z(IRN) B C"ka-' ° )’k; °T; W”le Mykl))

(§7%)
<C z (Yol H”(M(yk’)
Jj: (G)HeK
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So using once more Lemma 10.3.4 we get

Vi) (12 2
W™ pzan < € Z Dy, © €y W o Pillra g (7.22)
1
W), 12 2
SCY Y I Wiy, < CIWIE oo
i j:(ij)eK
This proves (7.20).

Let € > 0. If follows from (7.22) that there exist N, € N independent of k such that

Yy, © €y, W o Pillfggyy < E- (7.23)
i>N,
By (7.21), we have
Vst -1
Wk e e)’,'( = z (X)’k;iw °Pie eyk;i) ° eyl'(’ (7.24)
iely

where I = {i : B(y;,p) N B(yy»p) # 0}. Since d(yy. ;) — oo, we have

sup d(Viis Vi) 2 AW Vi) = 2Nep — 00
i<N,

as k — oo, and thus B(y;,p) N B(yy;,p) = 0 for all i < N, if k is sufficiently large. Then
fol(xyk;l_w ° ;) o e;:;i cey =0 for all k large, which together with (7.23) proves the
lemma. 0

Lemma 7.4.3. Let w be a profile of the sequence (uy,), given by Proposition 7.3.2 relative
to a trailing system {(Vx;)kentien,» and let (W) be the associated sequence of elemen-
tary concentrations. The following holds true:

2

e (7.25)

llm (uk, Wk>H1,Z(M) = ”W”
k—o00
Proof. We use for each k € N an enumeration of the covering {B(y, p)}, .y by the points
Yi;i from the trailing system {(yj,i)ken'tien, - Taking into account that, as k — oo, yy ©
Yii — Wj» e;gi cey = ¥y, and w; o ; = w;, and using the expression 0" (1) for any
sequence of functions that converges weakly to zero in H l’2(£2p), we have

(Wi Wid oy = Z J kag(x)uk(x)Wk(x)dvg(x) (7.26)
JENo B(y,0.0)

P [, Wslduo.dWio0)dvg o,
JENo By, )
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and
v
W = ¥ | " 000l avgen (127)
JENo B(y,50)
+ Z J 0 (08, (dw(x), dw(x))dv (x),
}E]NOB()’J(;; P)
where the functions X; Ye) are defined by the formulas (7.17)—(7.18) relative to the trailing

system {(yk,l)kG]N}lE]NO
Both coverings are uniformly locally finite, so it is sufficient to prove local identi-

ties
khl& J ka;i(x)uk(x)Wk(x)dvg(x) (7.28)
B(yiejp)
- J X7 00w dvg ()
B(yij0)
and
kli_g)lo J )(ykj(x)gx(duk(x),de(x))dvg(x) (7.29)
B(yjp)
= J' W) (08, (dw(x), dw(x))dvg (x),
B(yy;»p)

In the first case, we have

JXYk;i ° e)/k;j({)uk ° e)’k;i(g)

Q

x 3 Dy wo o€, )] o ey, (O\8(E) d§

ieN,

- J X, © €5, W, + 0" (D))

Q

XY Xy o€y, Wi (0 + 0" (D)(E)\8(§) d&

ieNg

= [ X, 0, O+ 0" )(E) (wy + 0" D))

Q

g+ 0" ) d¢
— [ - ol &) ae.

Q
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where the last inequality follows from the identity ¥, Xy,, ©
Lemma 7.2.2. This proves (7.28).
To prove (7.29), we first note that

ey, = 1 on Qp; cf.

N
Y. 870, (w - e, )0, (Wy = e )(&)

v,u=1

Z 83, > e, )(&)

v,u=1

X al‘< Z D()/k;i We e e;klz] ° eyk;i>(€)

ieN,

- Z g"H(£)0,((w; + 0" (D) o e, )(§)

v,u=1

X 0y (Xy,, © €y, () Wy © (1 + 0" (1))(&)

Z g"(E)0,((w; + 0" (1)) ey, ()0, (W; + 0(D))(&).

v,u=1

In consequence,

jxyk, e, (&) 3 g©0, (ty > €, )Wy = €, NE)\g(&) dé

v,u=1
p

=jxyk e 3§40, (w4 0"() e, NG)

v,u=1
p

9u((w; + 0" (1) o e, )(§)EE) +0(1) d&

— ijfyk;i) o ;(&) Z gHE)Pw o 9,(E)0,W ° p;(§)\E(E) dE

v,u=1
Qp

Combining the last calculations with (7.26)-(7.29), we arrive at (7.25). O

Lemma 7.4.4. Letw be a profile of the sequence u,, given by Proposition 7.3.2 relative to
a trailing system {(yy,)kentien,» and let (Wy)en be the associated sequence of elemen-
tary concentrations. The following holds true:

hm ”Wk"HH(M) ”w”H”(M(y'k)) (7-30)

EBSCChost - printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



132 — 7 Global compactness on Riemannian manifolds

Proof. We can proceed in the similar way as in the proof of Lemma 7.4.3. Once more
we can reduce the argumentation to local identities using (7.27) and

Willpan = | 2, COBWi00, W) dvg ) (731)
J&No p(y,..0)

+ Y| 0lawieolavgo,
J€No gy, -.0)

We have

N
[0, 20, Y 82, Wice e, )O3 Wic o, JOe(E) d

v,u=1
QP

N
oo e ® 3 R0+ 0 DO

v,u=1
Q,

x 9y, ((w; +0"(1)))\E(&) + o(1) d&

N
— [0 2, 800,00 9)(),0 - )O3 4.
VU=

Q

Also as above,

2
Z [XYk;i We ;e e;kll)] ° eYk;j (f) \/g({) d{

ieN,

Jka;i ° eyk;;(}:)

Q,

1]
ED_‘ no%

Xou, * €, ©)| T Xy, © ey, (€)W o (g + Ow(l))(f)‘ VB dE

ielN,

Yo, * €5, LW, + 0" W)@ V(& +0"(1)(®) dE

— [ e g@lomer &) de. _

Q,

Below we consider a countable family of trailing systems {(y,i’?j))kew}ieNo, neN,

. . . . . ce 0
and will abbreviate the notation of the associated manifolds at infinity, My¥’ asM o

This convention will also extend to all other objects generated by trailing systems
{(y,i'?i))keN}ieNo, but not to objects indexed by points in Y, such as Xy
> ksi

Lemma 7.4.5. Assume that u; — 0. Assume that trailing systems {(y,i',’i))keN}ieNo
of discrete sequences (y,(("))kelN, n e N, generate local profiles {Wf")}ieNo, such that
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diy™,y\¥) — co whenn # ¢. Then

m
2 .
> W™ 2y < limsup ||uk||§{1,z(M). (7.32)
Proof. Consider for each n = 1,...,m the elementary concentrations W,i") =
Yiemo X, oW o e "), w™® = w" o o, where {p;, Q,};cn, is the atlas of the mani-
. def (/¥ e L .
fold at infinity M. (()g = Mg,k" ), and let us expand by bilinearity the trivial inequality
2
m
U — Z ngn) > 0.
n=1 HY(M)

For convenience, the subscript in the Sobolev norm will be omitted for the rest of this
proof. We have then

2Z<uk, W) - ZIIW‘" I* <l + Y (W, w®). (733)
n#¢

Applying Lemmas 7.4.3 and 7.4.4, we have

Z"w ||H12 ) < g 24 YW Wy +o(1). (7.34)

n#é

In order to prove the lemma, it suffices therefore to show that (W("), W)EZ)> — 0 when-
evern # €.

Since d(yk ,y,(f)) — 00, we also have d(ykl , ,(f])
and let N, € N be such that, in view of Lemma 7.4.1,

) - oo foranyi,j € Ny.Lete > 0

N
> [x© Y e @, )O3,0)E) (735)

i>N, Op v,u=1

2
WP e@ds <e n=1..,m
) _ ' n)"
Let Wk = Wk + Wk where

W = Y G eeh) and W= S (i eeh)

i<N, ki i>N,
and note that for all k sufficiently large, W,E"), and W,Ee)’ have disjoint supports. Thus

(W, WY < 28, Ty + T, (7.36)
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where S = max,_; ||W,£n), lland Ty, = max,_; ||W,£n)" . The estimate for S, is read-
ily provided by repeating verbally the argument of Lemma 7.4.4, which gives

S < max ||w ||le ) +0(1),

.....

so Sy is bounded by Clluy| + o(1) due to Lemma 7.4.1, while a similar adaptation of
Lemma 74.4 to summation for i > N, yields that T,f is bounded, up to vanishing
terms, by the left-hand side of (7.35), and thus T < +& + o(1). Thus from (7.36), we
have

|<ngn)’ nge)>| < CVe(llugll + Ve + o(1)),

which implies, in turn, that lim sup;_, ., I(WIE"), W,Ee))l < C+/g, and since ¢ is arbitrary,
we have (W™, WIE‘})) — 0 for n # ¢, which completes the proof. O

Before we begin the proof of Theorem 7.3.5, we introduce the following technical
definition.

Definition 7.4.6. Let (u;)n be a bounded sequence in H**(M). Let (y Neers £ =
1,...,m, m € N, be discrete sequences of points in Y, satisfying d(y s (e)) — 00
for n # ¢, and generating global profiles wy, ..., w,, of a renamed subsequence of (i)
in respective Sobolev spaces H" 2(M ©). A modulus v(”k)((y,((l)), -..> (yg") of this subse-
quence is the supremum of the set of values ||w||2 2 of all global profiles w of the

renamed subsequence () generated by a tralhng system {(V; ) keN}leNO inY satlsfymg

d(yk;oJ/k ) > 00, £ = 1,...,m. If such set is empty, we set v* (g My, .. (y(m))) =
For m = 0, vJ(0) is deﬁned as the corresponding unconstrained supremum.

7.5 Proof of Theorem 7.3.5

Step 1. It suffices to prove Theorem 7.3.5 for sequences that weakly converge to zero.
Indeed, assume that the theorem is true in this case. A general bounded sequence (u;)
in H**(M) has a renamed subsequence weakly convergent to some w© in HY2(M).
Consider then conclusions of the theorem for the sequence (u; — w(o)). Since for any
discrete sequence (y;) in Y, w® o e ., — 0in Hl’Z(Qp) by Lemma 7.4.1, sequences
(uy) and (uy — w) have identical local profiles under the same trailing systems
{(ylf;';())keN}ieNo, identical manifolds at infinity and identical concentration terms W,
which yields (7.14). Relation (7.15) follows from the elementary identity for Hilbert
space norms (1.17), and (7.15) for the sequence (u;, — w®). Relation (7.16) follows from
the Brezis—Lieb lemma (Corollary 1.3.3) which gives, in our settings,

J [ [Pdvg - J|w(0)|pdvg - J|uk -w@Pdv, - o,
b M M

combined with (7.16) for the sequence (u; — w').

printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

7.5 Proof of Theorem7.3.5 = 135

From now on, we assume that u; — 0.

Step 2. Let us give an iterative construction of sequences (v(")) ren in H L2(M), n €
N,. We set v(o) = u; and choose (y(l))ke]N so that w( ||H12(M(1)) 1 v (@) (cf. Defini-
tion 7.4.6).

Assume that we have defined sequences (v}(o))ke]N,..., (v,((m)) xen»> With the following
properties:

— There exists, for a given m, a renamed subsequence of (u), sequences (y,((l))kGN,
(yk ))keIN of points in Y such that d(yk ,yk )) — co whenever ¢ # n, with trail-
ing systems {(yki Jkentien,» defining on a subsequence for each respective n =

1,...,m, an array of local profiles {W },eN of (the mth extraction of) (uy), and

consequently, a Riemannian manifold at infinity M, é’; and a global profile w™ ¢

HY(M®). Assume, furthermore, that W2, 2 V(). 0" ”)),

n = 2,...,m (cf. Definition 7.4.6). Let (WIE” Jkens N = 1,...,m, be corresponding

elementary concentrations, and define, with the convention that the sum over an

empty set of indices equals zero,

mdef @
vy = uk—sz , n=1...m
=1

Under the above assumptions, we construct now a sequence v (m+1) that will also satisfy

these assumptions. Consider all sequences (y;) of pointsin Y such that d(yy., yk ) — 00

forall ¢ =1,..., m. We have three complementary cases:

Case 1: for any such sequence, one has v('") ce, —~0inH 1’Z(QP) on a renamed subse-
quence;

Case 2: there exists a bounded sequence (y;) of points in Y (so that d(y;, y,(f)) — oo for
all £ =1,...,m) such that, on a renamed subsequence, v,im) ce, —Ww#0;

Case 3: there exists a discrete sequence (y;) of points in Y such that d(y;, y, ©) 5 oo

forall¢=1,...,m,and v(m) —w+0.

Case2is, in fact, vacuous. Indeed, in this case (y; ) would have a constant subsequence
with some value z and u; - e, — w # 0, which contradicts the assumption u; — 0.

Consider case 1. We prove that in that case v(m)

e, — 0 for any sequence (z;)
in Y. By assumption, we know that it is true if d(z, y(e)) — ooforall =1,....m
So let us assume that on a renamed subsequence, d(z;, yke)) is bounded for some ¢ €
{1, ...m}. Then by the definition of the trailing system there exists i € N, such that

= y,(f) on a renamed subsequence. So if uy e, — w # 0 then w coincides with
the local profile w; ©, Moreover, Az, y,, My 5 oo 1f1 <n < mandn # ¢ So by
Lemma 74.2, W" ce, — 0ifn # £and W,E oe, — w;.In consequence, v{"

Now by Theorem 7.1.4, v,((’") — 0 in IP(M), which means that the asymptotic rela-

oe, —0
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tion (7.14) is proved with a finite sum of elementary concentrations, and we can take

(m+1) _
Vi =0. 1

Consider now case 3. Now the modulus v ((y,((
(m+1)
k

in such a way that the corresponding global profile w

N, (i) > 01is positive; cf. Def-

inition 74.6. We may choose a sequence y;"" ', d(yl((m“), yl(f)) —ooforalle=1,...,m,

M) of () satisfies

2 1
™ g, = V00 G4 (737)

Then using the local profiles wl.("”l), i € Ny, we may define, for a renamed subse-

quence, the associated global profile w™? (cf. Proposition 7.3.2), and the correspond-
ing elementary concentration W,Em“), and put

men def R )
Vk = U — z P
¢=1

It is easy to see that the sequence (vl((m”)) has the same properties as (v,((")), n=0,...,m.
Step 3. By Lemma 7.4.5, we have

m
Z [w™ ||§1,Z(Mg>) < lim sup ||uk||f{1,z(M)
n=1

for any m, which proves (7.15).

Step 4. In order to prove convergence of the series Y ,°, W,E") note first that we may
assume without loss of generality that for each n € N, there exists r,, > 0 such that
supp W,E") C B(y](:’), 1,). Indeed, acting like in the proof of Lemma 7.4.5, from the cal-
culations in the proof of Lemma 7.4.4 one can easily see that one can approximate
WIE") in the H"2-norm by restricting summation in (7.13) to a finite number of terms,
with the norm of the remainder bounded by, say, €27 with a small £ > 0. Then, for

any m € N one can extract a subsequence (k;m))]-ElN of (k)yen such that d(y,({"), ,(f)) >

r, + 1, whenever 1 < £ < n < m. Then on a diagonal subsequence (k,(nm))melN the ele-
mentary concentrations (W,E”)) K=k™ meN will have pairwise disjoint supports. Together
with (7.15), this proves that the convergence is unconditional and uniform with respect
to k.

Step 5. Now we prove that (u — Y o2, Wlie)) ce, —0 in L (M) for any sequence y;,
inY.

Let first (y,) in Y be a bounded sequence. Since it has finitely many values, on
each constant subsequence we have y; - e, — 0 and W,Ee) ce, — 0, and thus (y -
ZZI WIEE)) °y — 0.

Let now (y;) be a discrete sequence in Y. If there is £ € IN such that on a renamed

subsequence we have d(y;, ") is bounded. Then on a renamed subsequence y; = y\)
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9 and WIE”) °ey,

for some i; cf. Step 2. But then u;, o e, — W(Z) W,Ee) oey, — 0if
n # ¢; cf. Lemma 74.2. Thus (u - ZH W}Ee)) oe, — 0.

Let (y;) be a discrete sequence in Y, such that d(yk,y,(f)) — oo for any £ € N,.
Assume that on a renamed subsequence (u; — Y., W,Ee)) oe, — Wy # 0.Then ()
generates a profile w of (u;) on some manifold ar infinity M, of M that necessarily
satisfies Wil < () (()’k ) - (y,((m))) for any m € N. By (7.15) and (7.37), we have

(”k)((y(l)) (y(m))) — 0asm — oo and, therefore, w = 0, which implies w, = 0.
This gives the contradiction.

We conclude that (u — Yo, WIEE)) o e, — O for any sequence (y;) in Y, and by
Theorem 7.1.4 (uy — Y o0y W,Ee)) oe, — 0inIF(M).

Step 6. It was proved in Step 4 that the series of elementary concentration W,E”) is
convergent in H**(M). So for any € > 0 the sum S of the elementary concentrations

can be approximated by the finite sum S%, that is,

ey = 1551, < el = 1Sl + 15 - 5, 739)
< 0(1) + C|Si = Sillgr2qan) < Ce +0(D).

Moreover, similar to Step 4, we may assume without loss of generality all w™ have
compact support. In consequence, we may assume that there exists m € IN such that
w™ =0 forall n > m, and that w™ have compact support if n < m.

Let us now evaluate || Sy || - Let us show first that
J|WI§") Pdv, — J W™ P dvgo. (739)
M Mo

Indeed, omitting for the sake of simplicity the superscript n and taking into account
that w;oe " o€y, = Wj» e;kl;]_ °ey,, — Y- andy,, oe, — x;asintheproofof Lemma74.1,

Vi
we have
14
j |Wk|pdvg = J Z Xy Wi © €y dvg
M M ieNg ’
-1
B Z ijkl Ykl z Xkaw eyl ° eyk;j \/rlk;jdg
)E]NOQ
=2 J(X) +0M)| Y Xy, © €y, (W +0(D) ’ )| V8 +o(1)dé
jeNo ieN,
7
- j lepdvg.
M,

o

Note that the notation o(1) above refers to functions vanishing in the sense of C* and
that all infinite sums contain uniformly finitely many nonzero terms.
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Now, for all k sufficiently large, all elementary concentrations W,E”) in the sum Si

have pairwise disjoint supports, and since ¢! — 61’2’, taking into account (7.15), we
have

nzv

2 2
(Z J, |W(") |pdV'g(n) )p < Z( J |W(n) IpdVE(n) )p
nxv ) ég)

0

< Z an(n) ”ZLZ(MQQ,") — 0 asv - oo.
n=v

Then (7.16) follows from (7.14), as we may now consider a finite sum; assume, by den-
sity, that w™ have compact support, and apply (7.39). This completes the proof of
Theorem 7.3.5. O

7.6 Local and global profile decompositions on periodic manifolds

Let M be now a smooth connected complete Riemannian manifold, periodic (cocom-
pact) relative to a subgroup G of its isometry group, that is, we assume that there exists
an open bounded set O such that (J,; 1O = M. Without loss of generality, we may
assume that O is a geodesic ball. Periodic manifolds are obviously of bounded geom-
etry. It is then natural to ask if Theorem 7.3.5 yields Corollary 5.1.7 with the manifolds
Mé’;’ isometric to M.

Theorem 7.6.1. Let M be a smooth connected N-dimensional Riemannian manifold, let

p € (0, r(g/f)) and z € M, and assume that there exists a discrete countable subgroup G

of isometries on M such that {B(nz, p)},ec covers M with a uniformly finite multiplicity.

Then:

(i) one can choose the construction parameters of manifolds M ég), so that they will co-
incide, up to isometry, with M, and

(ii) there exist sequences (nf{") Jkens Of elements in G, and functions w® e H L2(M), n e

N, such that the sequences ([n,(f) ]‘1)15(")),(61N are discrete whenever € # n, u; o ng’) —
w™ in H**(M), n € N, and

-1
W}gn) —w, [’1;:1)] )

Proof. 1. Let us repeat the construction of the manifold at infinity relative to a se-
quence (yi) in Y = {nz},c. Fix a sequence of elements ¢; € G, {; = id, such that

d(§12,2) 2 d(Gz, 2), 1 € Ny, and define the ith trailing sequence of (y) by y;.; def k62,
k € IN.Recall that the normal coordinates at the pointsy € Y were defined as exp, up to
an arbitrarily fixed isometry on T, M. For the present construction, we set them specifi-

def . s g .
callyas e, = nee,. Under such choice, the transition maps of Mg,k”) are characterized
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by elements of the group G:

Py = lim e/ oo, =lime; e ] MG ee; =€ oG Gk
and the sequences above are in fact constant with respect to k. Consequently, the tran-
sition maps ¥;; of the manifold Mg,kﬁ) aree;' o (i‘l(j o e, — same as of M itself. In other
words, all the gluing data for Mgf”') are taken from M, which suggests, since Theo-
rem 10.3.6 isbased on a suitable list of properties of charts of a manifold that will allow
its reconstruction that M, Vi)
formally, as follows.
Manifold MY* has an atlas {(p:i(Qy), ¢;1)}ieN0 with transition maps (p{l(p]- =elo

(.‘1(]- o e,, while manifold M has an atlas, enumerated by G € G, {(B((,-(z), p),e;1

is isometric to M. We will, however, apply Corollary 10.3.8

G )},EN with the same transition maps as M(yk’ Let T (i oe, 0 ‘P1 D 9i(Q,) = M,

i € Ny, and note that this defines a smooth map T : M, i) _, M, since the values of T;
are consistent on intersections of sets (pi(Qp).

_ —17-1 _
(ioezo(pl.lo[c}oezo(pjl] :(ioezol/)ijo[g}o Z]l (7_40)
=Goe0e; o Goe, 00 o =id. (741)

Furthermore, T is a diffeomorphism with T™! = ¢; - ;" o {!, consistently defined on
B(n;z,p), i € Ny. Note that (7.11) on Mg,k”') holds because it holds on M with the same
transition map for every k, so the Riemannian metric on Mé{,k“') in the normal coordi-
nates coincides with the Riemannian metric on M. In what follows, we will identify
Mg,k“') as M.

2. Let now (u;) be a bounded sequence in H»*(M) and note that its local profile
associated with the sequence (17;{;)xen is given by

w; = w-limuy o (i (;) © ey,
and the global profile is by definition w = w; o ;' = w; 0 €;' o {1 = w-limuy o 1y,
which coincides with the profile of (u;) as defined in Corollary 5.1.7, relative to the

sequence (1;). Consider now the local concentration defined by the array {w;};cx, of
local profiles:

Wie= D XngeWio €y = O XngeWio € oG ot

ieN, ieN,
-1 -1
= D XogeWe e =weng,
ieN,
which completes the proof. O
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7.7 Cocompactness of the limiting Sobolev embedding

We will now proceed with analysis of defect of compactness for the limiting Sobolev
embedding H**(M) — L? . The following property, like Theorem 7.1.4, is similar to
cocompactness.

Theorem 7.7.1 (Vanishing lemma - the critical case). Assume that M is a smooth N-
dimensional Riemannian manifold of bounded geometry. If (u}) is a bounded sequence
in HY2(M), u, — 0inIP(M) for some p € (2,2"), such that for any sequence (y;) in M,
and any sequence or positive numbers (t;), t; — O,

N-2

l‘kT U oe, (t&) — 0 a.e.in RN, (7.42)

Thenu, — Oin L* (M).
Proof. Step 1. For any u € H**(M), the following holds:
2
Py 2 > N
ully: < Cllullg. 51;8 < J lu| dvg> . (7.43)
4

je2 2 .
j 52

jSlu()l<2777j

Indeed, lety € C})(Z"¥ , 2872y extended by zero to [0, co) be such that y(s) € [0, 1] for
all sand y(s) = 1 whenever s € [1,2¥]. Let x;(s) :j)((j’ls),j € 2¥Z'
Applying Sobolev inequality to x;(|ul), we get

2/2*

2 )
< j lul dvg> <C J (8x(du, du) + u|")dv,,
N=2 N2
jslu@)ls2°2"j 2777 jglu(x)l<2¥?
from which we have
"
J |yl dvg
N-2
j<lu(x)|<2777j
1-2
* 2%
o | aawdn ([ )
N2 N2
277 j<lu(ol<2V j<lu()|<2 7 j

Adding the inequalities — and replacing the last term by its upper bound — overj €
N-2
27 2, we get (743). .
-2
Step 2. Let us now consider (7.43) with u = u;. Choose j € 22 Z that satisfy

sup j |u|i* dvg <2 J |u|2* dvg. (7.44)
jeZ#Z N2

J<ly (x)|<2727j Jeshu (01272 i
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Then we have from (7.43),
2
o* *N
gl < C< I 1| dvg> . (7.45)

JiluG)l<272 ji

Without loss of generality, we may consider two following cases: (a) j, < L for all
k, L € Z, and (b) j, — +o0. In the case (a) we have from (7.45) with any small € > 0,

era

2
. N2 . N.
gl < c( j g 2 dvg> < (:<L2 > j Iuklpdvg>
M

. N-2
Jelu (012727 i

which vanishes by assumption.

Step 3. Now consider the case (b), that is, j, — oco.Let Y, ¢ M, k € N, be a
(tye, tyr)-discretization of M, € € (0,r), t{,r < r(M), so that the collection of balls
{B(y, tin}yey, with & = j;ﬁ, is a uniformly finite covering of M. Note that the mul-
tiplicity of this covering is also uniformly finite with respect to k € IN. Let D, = {x ¢
M : (0] € o2 7 jiltand D} = {x € M : [ug ()] € (277 jio 2V %}

Applying scaled Sobolev inequality to X;, (luge|) on the geodesic balls B(y, t;r), we
have

2/2
Iuklz*dvg> <C J (g, (duy, duy) + t,:zluklz)dv ,
B(y,tr)nDy B(y,tkr)nDL

with some C independent of k.
Since the integration domain in the right-hand side is a subset of D}, we have
t,;2|uk|2 < CIukI2 uniformly in k, and thus

.
|l av,
B(y,t,r)NDy

, Y
< (eddwedu i [ )
B(y,txr)nD;, B(y,t,r)NDy

Let us add these inequalities — while replacing the second term in the right-hand side
by its upper bound - over y € Y;:

2
. . it
J Iukl2 dvg < Csup( I Iukl2 dvg> . (7.46)
yeYy
Dy B(y,t;r)NDy,
Choosing points y; € Y} so that
2 2
sup lug|” dvg <2 J lug|” dvg,
yeyy
B(y,tyr)NDy B(ytyr)NDy
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we have from (7.45) and (7.46),
4
o 2*N2
gl < C j 2 dvy )
B(yjtr)NDy

Using the geodesic map e), to change the variables from a small ball on M to small

ball on RY, noting that the Jacobian is uniformly bounded with respect to k since M

is of bounded geometry, and setting A, def {§€Q :lwoexp, (§) € (jk,2¥ ji)}, we

have, for all k sufficiently large,

4

||uk||2*sc< | |ukoeyk(€>|2*d£)z*”z-

QN

Let us change the variables again, & def ten, e Q,:

4

N-2 2* 2*N2
||uk||2*sc( | 167 o e, (6] dr1> ,

N-2
{neQy:lugoey, (temlelin2 2 jilt

and note that the expression under integral is bounded by the constant 2 and van-
ishes almost everywhere by assumption. Therefore, by Lebesgue dominated conver-
gence theorem, the right-hand side above vanishes, and the theorem is proved. O

Remark 7.7.2. Itis easy to show that (742) holds for all ¢, > 0 if it holds for all t, € aZ,
with some a > 1.

7.8 Profile decomposition for sequences vanishing in L?, p < 2~

In this section, we provide a profile decomposition for bounded sequences in H**(M)
that vanish in I”(M) for some p € (2,2*). This profile decomposition consists of a
sum of concentrating bubbles and a remainder vanishing in I? ’ (M). This allows to
take a profile decomposition of Theorem 7.3.5 whose remainder vanishes in I (M),
and further expand this remainder into bubbles (that still vanish in I (M), 2 < p < 2*)
with a sharper remainder that vanishes in I” (M), 2 < p < 2*. We will start with a
characterization of decoupling of bubbles involved in our profile decomposition. We
remind that we call two sequences (Uy) and (V}) in a Hilbert space asymptotically
orthogonal, if (Uy, V) — 0. Let us fixy € C5°(Q,) such that x(¢) = 1 whenever |¢] < %,
extended by zero to a function on R,

Lemma 7.8.1. Let:

def N2 o 12N
Siu=27kyoeu@re ), keNueH(RY),
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T €27 by ez_k1 u(ze"e;kl-), k e N,u e H(RY),
where ji, €, € N, ji, €, — oo and yy,z, € M, understanding the expressions in the
respective right hand sides as functions in H**(M) vanishing outside of B(yy,r). Then
(Sy) and (T}) are bounded sequences of continuous operators from H L2RNY to HY(M).
Sequences (Sv) and (T, w) are asymptotically orthogonal in H L2(p1) for everyv and
w in H(RY) if and only if the following condition holds:

& = jil + (2% + 2)dyz) > 00 (7.47)
ask — oo.
Furthermore, given w € H**(RY), one has (S,v, Tyw) — 0 for every v € H**(RY) if
and only if
27T W e, (27%¢) -0 a.e.inR". (748)

Proof. 1. Boundedness of sequences (S;) and (T}) follows from the bounded geometry
of M.

2. Note that IMISkv)Izdvg — 0and IMITkwlzdvg — 0, so asymptotic orthogonality
of S;v and T, w is equivalent to IM 8 (d(S,v), d(Tyw))dv, — 0. By density of CS(RY)
in H»*(RY), we may assume without loss of generality that v,w € C°(RY).

2. Sufficiency of (7.47): First, note that supports of S;v and T, w are contained in
By,.n) N eyk(2‘jk suppv) and B(z;,r) N e, (274 supp w), respectively. Thus, if on some
renamed subsequence infd(yy, z;) > 0, then the supports of S;v and T; w are disjoint
for large k and the asymptotic orthogonality follows. Hence we assume in the rest of
the proof that d(y;,z;) — 0 as k — co.

Support of g, (d(Sv, d(T,w) is contained in B(z;, r), so we can evaluate the integral
under the coordinate map e, :

N
ng(d(skv)’ d(TkW))dvg = J Z gaﬁ(ezk (5))aa(skv ° ezk)aﬁ(TkW ° ezk) \g(ezk (§))dé.

M q, b=t

Setji — & =my, e;kl oe, = Y. Setting the new variable n = 2%¢, and taking into
account that g"‘ﬁ (zi) = 8,5 and g(z;) = 1, the above expression can be written as

[ s aon)ar,
M

g (d(Syv), d(Tyw))dvg
B(zj,r)NBj,r)

N-2 N ;
2T [N 8 ()0 - YOV BN E W2 )8 e ()

D, a,f=1
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S5 [ (o2 ) W h 2 ) + o]

26Dy Nsupp w

where D; = ez‘k1 (B(zi, 1) N By, 1)), P}, is the N x N-matrix derivative of .. Given that M
is a manifold of bounded geometry, may assume (with reference to the Arzela—Ascoli
theorem) without loss of generality that i, and its derivatives will converge locally
uniformly in Q, to some function i € C*(Q, — Q,) and its respective derivatives.

Since (747) holds, it suffices to consider two cases:

Case 1: €, — ji| — oo.

Without loss of generality assume that j; — ¢, = m; — —oco and taking into account
that ¥, is bounded and v,w € C°(RY), we get

ng(d(skv),d(Tkw))dvg < C2™™ 0.
M

Case 2: |€, — ji | is bounded and (2% + 2%)d(y;., z;,) — .
For 17 € 2D, n supp w, one gets

P (27%n) = 24P (0) + 24l (0)2 %y + 02 ),

Taking into account that m is bounded and that [, (0)| = d(y;,z;) (since distance
from the origin in Q, is preserved by the geodesic map), we have

|2ikl,bk(275kl’l)| — 00, ask — oo

(with uniform convergence), and hence dv(2 P(27%n)) = 0 for all € suppw as long
as k is sufficiently large, and the asymptotic orthogonality follows.

3. Necessity of (747): If (747) if false, then, on a renamed subsequence, j, — &
is a constant sequence with some value m € 7, while ijd(yk,zk) = |2jk1/;,<(0)| stays
bounded. Hence extracting a further subsequence we may assume 21, (0) — 1, €
RY. Repeating calculations in the proof of sufficiency we get

j 2 (d(S), d(Tw))dvg — 22" j Yw(n) - ' (0)Vv(ny + 2" (0)) dn.
M RN

Since ¥'(0) # O by properties of the geodesic map, the above expression will be
nonzero with a suitable v and w(n) = v(1 + 2™’ (0)n).
4, Finally, representing the scalar product of H*(M) under the exponential map

at Yies
(Sv, Tiw) = J V2’jk¥(Tkw) ° eyk(Z’jkf) -Vv(&)dé + o(1),
]RN

which proves that (7.48) is equivalent to asymptotic orthogonality of S;v and T w for
allv. O
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Theorem 7.8.2. Assume that M is a smooth N-dimensional Riemannian manifold of
bounded geometry and let p € (2,2%). For any bounded sequence (u;) in H"“(M) that
vanishes in I” (M), there exist sequences (y,(:')) ke i M and (j;{")) ke NN, j,‘(") — +00, as
well as functions w™ € H**(RV), n € N, such that, for a renamed subsequence,

i) N-2

s(n)
27 Tyoe w27 8) - w(@) aeinRY; (7.49)
k

(AO) Condition (747) holds with j, = j™, y, = y'™, &, = j' and z, = y\ whenever
k = Jk »7k k otk Tk k k
m#n;
. def (n)
The series S = Y, n W, where

(n) N-2
2

s(n) +(n)
W,E”)(x) =27 yo e;(lm ) w2k e;},,) (x), xeM, (750)
k k

convergesin H L2pp) unconditionally and uniformly with respect to k,

u, -S, —»0 inLliM)2<q<2", (7.51)
and
Z J |VW(")|2d£ < lim iangx(du,<,duk)dvg. (7.52)
ne]N]RN M

Proof. The proof is largely repetitive of the proofs for profile decompositions earlier in
this book, Theorem 7.3.5 in particular, so we give it in an abbreviated form.

1. Consider arbitrary sequences (]'f{l)) in M j](:) — 00, and (yf{l)) in N. By the
bounded geometry of M, for any a € (0,r(M)), functions 2—]';1)%“,( ° ey(1>(2‘j<kl)~)

k
have a uniformly (in k € N) bounded H1’2(Qa)-norm, and thus their sequence
is weakly convergent in H 1’Z(Qa). We may infer by diagonalization that there ex-
ists a renamed subsequence of (u;) such that 2_";1)%11,( °em (2"ji1)~) converges to
k

some w¥ almost everywhere on RY. Since M is of bounded geometry, we have
||Vw<1)||% < limsup C IB(y(;)’r) 8 (duy, duy)dvg < oo with the constant C independent

of the sequence (y,((")) KeN-
LetZ, beasetofallw ¢ H“(M) such that there exist (jl({l)) in N, jl({l) — 00, and
(y,((l)) in M, such that

_)N-2 _i .
272 uk°ey;1)(2 iy > w ae.inRY,
define

def
Bi = sup Wl
WEE;
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and fix an element w ¢ Z; and corresponding sequences j( and (y(l)) so that
[w® g2 2 2/31 If B, = 0, then by Theorem 7.71 u;, — 01in 2 (M) and the theorem is
proved. We consider therefore the case 8; > 0.

2. We will now construct by iteration sequences (j,(:')) in N, j,(:') — oo and (y,‘("))
in M, functions w™ and numbers B, n € N. Given v € N, assume that for every n =
1,...,v we already have constructed the objects above with the following properties:

(i) Foreachn = 1,...,v, there exist a renamed subsequence of (i) such that w™ ¢
HY(RV) satisfies (7.49).

(ii) (AO) holds forallm,n =1,...,v, m # n.

(iii) If £, is a set of all w € H"*(M) such that

_] n) N-2 _]'(") . N
2% e w2’ ) >w aeinR
k

for some choice of ](") — oo and (yf{")) in M satisfying (AO) form <n=1,...,v, and if

def
B = sup Wil
WEE,
then w™ ¢ 2, and corresponding sequences j,(( and (y(")) satisfy Iw® ine 2 2ﬁn
def def
LetSY = y» W™ andletv” =

we have a renamed subsequence of () such that 2 s Ugoe e (2 i ) converges

S(V) Slmllar to Step 1, as in the Step 1,

almost everywhere on RY to some w"*V ¢ H 1’2(IRN ), for some sequences (]I((V”)) inN,

]I(("“) — 00, and (y(‘”l)) in M. As in Step 1, we consider the class £, of all such weak

limits, and fix W(V+1 and corresponding j, iV and (y(V“)) so that w1, = %,BV e
3. For every n < v, we have now
R ) G2y =y £y Q) —
27 T W e ey<n>(2 KE) =y W () > w(€) a.e.inR”, (7.53)
k
for each n’ < v, n' #+ n, we have, by (AO) and Lemma 7.8.1,
+(n) N-2

i(n)
27T W eew(27€) 50 aeinRY,
k

so for everyn <v,

s(n) N-2 +(n)
27075 e w(27E) > wP(§) aeinRY (7.54)
k
and, therefore,
_im N2 _im)
715 ;()oein)(z i E)
n) N-2 s(n)
=27 -5 oe,w(27¢) -0 aeinRY, (7.55)
k
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4, Let us show that (AO) is satisfied form = 1,...,vand n = v + 1 (or vice versa).
Once we show this, we will have completed the construction of (y,((")) ken DM, (j,((") VkeN
inN, j,((”) — 400, and w® e H 1’2(]RN ), n € N, such that, on a renamed subsequence of
(uy.), condition (AO) is satisfied for all n € N. If w¥*) = 0, then necessarily §,,; = 0,
and we are free replace (y(”l)) ken iN M and (]("”))k€ y With any sequence that satisfies
(7.47) for respective scaling sequences, namely

l](v+1) (n)| 4 k +21k) ( (VH)’yk )_)OO’ n=1,...v.

The renamed w®*? will be necessarily zero since f8,,; = 0.

We now may assume that w®"*? # 0. If (AO) does not hold with the index v +1and
some inde(g ¢ < v, then there exist m € Z and A € R, such that, on a renamed subse-
quence, 2k d(yl(f) V“)) is bounded and }("“ j,(f) -m. Letyy = e;(lg) oe . Note that

k k

d(yk ,yl((”1 ) — 0, and since M is of bounded geometry, on a renamed subsequence

we have 1), convergent uniformly, together with its derivatives of every order, and its

limit is the identity map. Also there exists, on a renamed subsequence, an 1, € RN
(V41

such that 2’1(< )l/)k(O) — 1 (since [P (0)| = d(y (v+1), ,(f))). Then, uniformly on compact

subsets of RV, one has

(v+1)

3 lle( §)
= 2" (0) + 2MPL0)E + 25 0(27% ) - My + 27
Note also that from (AO) and Lemma 7.8.1, one has foranyn=¢+1,...,v,
+(v+1) N 2

_9;(v+1)
2 T W o ey)(<v+1) (2 i f) — 0.

Substituting the two last calculations into the expression below, one has

(v+1)N 2 _H;(v+l)
2Ik o ey(v+1) (2 2] f)
k
s(v+1) N-2 _9;(v+])
=2 v,(f) o€ um(2 I E) + o(1)
k
(6) N-2 _9;(v+])
= 2]k 2 (€) oey(g) o k(Z i .f)
k

(6) N-2

IO o 0 (2 2 2

_zj;(vﬂ)

§))
-, (‘—’)o 2 [om m
eyl({e)( [2 No +2 €+0(1)])
— 0,

by (7.55), which by definition of w®*? implies w"*? = 0, a contradlctlon

6. Expanding a trivial inequality jM gx(d(uk—Sk ) d(uk— k ))dvg > 0 by bilinearity
we get

ng(duk, duy)dvg > 2 jgx(duk, ds\")dv, - I - I, (7.56)
M M
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where

()L
2

Xeehw?@ el )
Y Y

(n)N 2

d2x 7 xo e;(:n) 0w (2 v €;§o (x))))dv,
and

() N _ TG
L= ) j (2T xo e 00w (2 e (0),
m#n, m,n=1, Vi k k

s(m) N-2

(21k 7 yo e;,;m) (x) W(m)(zj’(‘me;l((lm) (X))))dvg'

We evaluate the first term in (7.56) by integration in rescaled geodesic coordinates & =
s(n)
2 e_(ln) (x)

ng(duk, dS,((V))dvg
M

v
SY | sldudice e w™ @V e 0)dvg
n=1 B(y,(("),r) ‘ .
«(n) N-2 N +(n)
-Z 2 J Y (8up + o)yt = €0 (271 )
Qw a,f=1

k r

x (027 £)3pw™(©) + oW ™ (¢))dé
-y wa("’({)fdg + o(1).
n:l]RN

where o(1) under the integral denotes a sequence of functions on RY uniformly van-
ishing as k — oo.
An analogous evaluation gives

b=y 2 | S Q@ £ (©) + oo (©)
n=1 Q o aﬁ 1
2] r

x (027 €)W ™ (&) + 013w ™ (¢)) (845 + 0(1))dE

-y leWm ©Fde + o).

n=1 RV
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By (AO) and Lemma 7.8.1, we have I; — 0. Consequently, (7.56) implies

ng(duk,duk)dvg >2 z J |Vw(")({)|2d§’ - Z J |VW(")(£)|2d£ +o0(1)
n=1

M RN nzl]RN

-y j [vw™ &)A€ + o(1).
n:lIRN

Since v is arbitrary, we have (7.52).

7.1t follows from (7.52) that 8, — Oasv — co. Repeating the argument in [113] with
only trivial modifications, one can show, for a suitably renamed sequence, that the
series S, unconditionally converges in H**(M) and that this convergence is uniform
in k.

8. It remains to show that defect of compactness is indeed given by the sequence
(Sy)- Let (ji) be a sequence in N, ji — oo and let (y;) be a sequence in M. Without loss
of generality, consider two cases.

Case A. For each n € N, pairs of sequences (j;(")), (i) and (y,ﬂ")), (vy) satisfy the
condition (747). Then Z"jkgsk ° eyk(Z‘jk-) — 0 a. e., because this is true for each term
in the series of S; by Lemma 7.8.1, and the series S, is uniformly convergent. On the
other hand, if, on a renamed subsequence, one has Z’jkguk °e, (Z’jk~) — wa.e.,
then, necessarily, [|[Vw|, < B, for every v € N, that is, w = 0. Therefore, 2‘jk¥(uk -
Sy) ° eyk(z‘jk-) — 0O a.e. in this case.

Case B. For some ¢ € N, j, — j,(f) =m € Zand ijd(yl((e),yk) is bounded. Then,
repeating the argument of Step 4, we have

7 4y -80 e, (275) 5 0 ace.,
while by (AO), Lemma 7.8.1 and the uniform convergence of the series Sy,
2T (-8 0, @7~ 0 ace,

from which follows 277" (W —Sp) o ey, (27%.) > O a.e. in this case as well.

Then, by Theorem 7.7.1 we have u;, — §; — 0in I*.

9. Let g € (2,2%) and note that each term in S;, vanishes in LI(M). Since the series
for S, converges uniformly in H L2(pM), it also converges uniformly in L(M), and thus
it vanishes in LY(M). Note that u;, — 0 in LP(M), and since (i) is bounded in H**(M),
w, — 0in LY(M) as well. Then

llug = Silly < luglly + ISxlly — O. O

We have the following consequences of decoupling of concentration in Theo-
rem 7.8.2 in terms of L?-norms, q € (2,2*].
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Proposition 7.8.3. Let u; and W("), n € N, be provided by Theorem 7.8.2. Then, with
q= 2*’

jluqudvg -y J|w(")|qd£.

M ne]N]RN

Proof. By (7.51), it suffices to show that

(n)
[|> w
M

nelN
Since sequences (W,i")) ren have asymptotically disjoint supports in the sense of (7.47),
and since one can by density of CO(IRN yin H 1’2(IRN ) assume that every profile w™ has
compact support, we can easily see that

|2 wr

M nelN

q
dv, > ¥ le(")r]d{.
ne]N]RN

q

dvg = > J|W]£")’qdvg -0,

ne]NM

so it suffices to show that for each n € N,

W, — [ ae.
M RN

(n)

Indeed, if we pass to normal coordinates at y;

and then rescale them, we get

s(n) _ A(n)  _
.[lwlin”qdvg =2 ,[ e ey,‘(l'" *x) W(n)(zjk ey,(;’ (X))|qdvg
M

M
=2 [ ow @) g )as

Q

= JIX(Z”Y)'I) w )| \g(2" n)dn — JIW‘")(n)qun.

RN RN

Taking the limit at the last step is possible by Lebesgue dominated convergence theo-
rem, once we take into account that in normal coordinates g(0) = 1. O

7.9 Profile decomposition — the limiting case

We will now assume that the parameter r € (0, r(M)), involved in the statement of The-
orem 7.3.5 satisfies the constraint r < r(M)/8. In the statement below, 1 g=2+ assumes
value 1if g = 2* and 0 otherwise.
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Theorem 7.9.1. Let M be a connected Riemannian manifold of bounded geometry. If
(uy) is a bounded sequence in H L2(M), there is a renamed subsequence of (u;), weakly
convergent to some u € H"*(M), sequences (y,ﬁ'"))keN, m € N, and (y;("))kE]N in M, se-
quences (]("))ke]N, inN, ](”) — +oo as k — oo, withn € N, satisfying the following
relations:

w—u-y WS w50 inLIM), ge(22°), (7.57)

melN nelN

where ng"’) are as in Theorem 7.3.5 (relative to sequences ()7,(:")) kens
i(n) N-2 _ * i) _
W, W) =2k 7 xo eygm 00w (2 ey;lm) x), xeM, (758)

where

+(n) N-2 s(n) *(n)

2 Tuyoe, w2 ) o w a.e.inRY, (7.59)
k

(as in Theorem 7.8.2); d(y(m) (e)) — co when m # ¢ and sequences (](n)) (yk(")) (](n )

y,’:(" satisfy the condition (747); both series in (7.57) converge unconditionally and uni-

formly in k.
Moreover, with Mc(f;), m € N, as in Theorem 7.3.5, we have

D J|Vw*(")|2d£+ > J (g™ (aw™, dw'™) |W(m)|2)dvg&m

nelN]RN meNMg:l)
J(gx(du du) +u )d J(gx(duk, duy) + uk)dv +0(1), (7.60)
M M
and
jluqudvg T Z le*(")|2 dé + z I |W | dv Jlulqdvg (761)
M neN_~y melN m M
R M

forevery q € (2,27].

Proof. Apply Theorem 7.3.5 to w; and let v, = uy —u - ¥ ,cn WIE”’) be the left hand
side of in (7.14) Note that v, is a bounded sequence in H L2(M) because so are both Uy,
and ) N W,Em) (for the latter it can be inferred from (7.15)). Apply Theorem 7.8.2 to v;.
Then (7.57) is immediate from combining (7.14) and (7.51). Relation (7.60) follows from
substitution of (7.52) for v into (7.15).

If g < 2%, relation (7.61) is immediate from (7.16). Consider now the case g = 2*. By
Brezis-Lieb Lemma and (7.57), we have

2 2
j [u | dvg = J |yl dvg + J
M M M

5
dvg +0(1). (7.62)

> e 3w

melN nelN
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Leaving details to the reader, we sketch the rest of the argument. Excising small neigh-
borhoods of the concentration points y(" of the bubbles W,:‘ ™ we have

K
> »

J dv, = J dvg + J Z W;(")

i

>
M melN M nelN

Then the first term in the right-hand side evaluates by the argument for (7.16) in the

proof of Theorem 7.3.5, which extends to the case g = 2" with no further modifications,

while the second term evaluates as in Proposition 7.8.3. O

,
Y Wy wp dv, +o(1).

meN nelN

Corollary 7.9.2. Let M be a manifold of negative curvature with bounded geometry
(in particular a hyperbolic space). If (w) is a sequence in HY(M) satisfying
jM 8y (duy, duj)dvg < C, then it has a renamed subsequence satisfying the assertions of
Theorem 7.9.1.

Remark 7.9.3. If M is a noncompact homogeneous space (in particular, R" or the hy-
perbolic space H" ) of dimension greater than 2. Then, in face of Theorem 7.6.1, The-

orem 79.1 holds with Mf)g") = M for every m € N, and with WIE’") =wm, n}(’"), where

-1
w™ = w-limuy o rl,(:") , n,(:") are discrete sequences of isometries on M, and the se-

-1 '
quences n,((m) ° n,‘(m ) are discrete whenever m + m'.

7.10 Compactness in presence of symmetries

Lemma 7.10.1. Let M be a manifold of bounded geometry and let Y be a (g,r)-
discretization of M, 0 < € < r. Then for any R > O there exists ny € N, such that
#(Y N B(x,R)) < ng forevery x € M.

Proof. Bydefinition, #(YNB(x, R)) cannot exceed the maximal number of disjoint balls
of radius &/2 contained in B(x, R + ), which is finite by (10.39). O

Definition 7.10.2. A (g, r)- discretization Y of a Riemannian manifold M is called an
orbital discretization if there exist nonempty subsets Y; ¢ Y, i € N, such that:

(@ Y=UZ YV;andY;nY;=0fori#j,

(b) #Y; <#Y;,,<00,i€N,

(c) lim;_,, #Y; = co.

1—00

We shall write then Y € O, ,(M). The sets Y; will be called quasi-orbits.

The term orbital discretization will be justified in the next subsection when we
discretize group orbits on a manifold.

Lemma 7.10.3. Let Y be an orbital discretization. For every R > 0 andj € N, there exists
i(R,j) € N such that for alli > i(R, j) and for every x € Y;, there exists a subset Y;(x) ¢ Y;
satisfying:
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(i) x €Y,
(i) d(y,z) > Rwhenevery,z € Y;(x),y # z,
(iii) #Y;(x) > j.

Proof. For j = 1 conditions (i)—(iii) hold tautologically when Y;(x) = {x}. We assume
now thatj > 2. Let ny be as in Lemma 710.1 and let i; € N be such that #Y; > jny
for any i > i,. Such i, always exists by property (c) in the definition of the orbital
discretization. Let y, = x and let us choose recursively y;.; € Y;, k = 0,...,j — 2, such
that y;,; ¢ B/s,R), £ = 0,..., k. This is possible since the balls B(y,,R), £ = 0,...,k
contain altogether not more than (k + 1)ny points of Y;, and this number is less than
jng, and thus less than #Y;. Obviously, d(y,y,) > R whenever k # £. We set Y;(x) =

Vitk=o,..j-1- O
Corollary 7.10.4. Let Y be an orbital discretization. Then lim;_, ., diam Y; = co.

Definition 7.10.5. LetY € O, (M), r < r(M).Leti € NandA > 1. A functionf € Llloc(M)
is called (i, A)-quasi-symmetric relative to Y if for every ¢ > i,

max J [fy)|dvg < "?é‘yrj J If ()|dv,. (7.63)
B(xr) B(xr)

We shall write then f € Sy ; ,(M).

Remark 7.10.6. 1.Forany Y, iand A, the set Sy ; ; (M) contains infinitely many linearly
independent functions from H*?(M). In particular, it has the following functions. Let
@, € H” (M) \ {0} be supported in B(x,/2), x € Y,, and define

f:Z Px

xeY, JM |§Dx|dvg

2. For any Y, i, and A, the set H*P(M) n Sy (M) is closed with respect to the weak
convergence in H Lp(p1), since all the quantities in the relation (7.63) are weakly con-
tinuous in HP(M).

Theorem 7.10.7. Let M be complete, noncompact, connected, Riemannian manifold of
bounded geometry. Let Y € O.,(M).Let1 < p < N =dimM,p < q < p*,i € N, and
A= 1LIfasetK c HP(M)n Sy (M) is bounded in H"* (M), then it is relatively compact
in LY(M).

Proof. By reflexivity, it is sufficient to show that if (u;) is a sequence in H’(M) n
Sy ia(M) weakly convergent to zero in HY (M), then u, — 01in LY(M). Assume that
this is not the case. Then by Theorem 7.1.4 and the Banach—Alaoglu theorem there is
a sequence y, € Y and a function w € H(Q,), w # 0, such that u, o e, —w#0in
HP (Q,). Note that if the sequence (y;) has a bounded subsequence, it has a constant
subsequence and (u;) has a nonzero weak limit, which contradicts the assumption. So
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we can assume that y; € Y, with ¢ >iand £ — co. Since the manifold has bounded
geometry, for all k large enough we have the following inequality:

j el dvg > C J ju o€, dE > C leld{ &fyso. (764)

B(y.r) Q, Q

The functions u; are of the quasisymmetry class Sy ; ,(M), so by the Holder inequality
and (7.63), for k large enough we have for every x € Y,, £ > i,

q
|uy | Tdvg > C( J Iukldvg> (7.65)
B(x,r) B(x,r)
1 def
> c/rq< j Iukldvg> > % g5 0.
B(yir)

Let us apply Lemma 710.3 with R = 2r and for each j € N choose k; such that b 2
i(2r,j). This gives

j ulddvg > Y j jugl9dvg > jB. (766)
M XEYka- (y")B(x,r)
Since j is arbitrarily large, we have a contradiction that proves the theorem. O

To study compactness of embedding of spaces invariant with respect to a group
action, it is natural to consider a specific kind of orbital discretizations, namely those
associated with group orbits. Let G be a compact connected group of isometries of a
complete Riemannian manifold M. Then Hé’p (M) will denote a subspace of HY (M)
consisting of all G-invariant functions.

Definition 7.10.8. We say that a continuous action of a group G on a complete Rieman-
nian manifold M is coercive if for every t > 0, the set

O;={x e M: diamGx < t}
is bounded.

Example 7.10.9. Let M = RY and let G = O(n;) x - -- x O(N,,), ny +--- + 1y, = N, m € N.
Then G is coercive if and only if n; > 2 foreveryi=1,...,m.

Remark 7.10.10. If the sectional curvature of M is nonpositive and the compact con-
nected group G of isometries fixes some point, then G is coercive if and only if G has no
other fixed point; see [109, Proposition 3.1]. An example of a compact connected coer-
cive group without fixed points (see [109, the end of Section 3]) is M = S! x R" (a Rie-
mannian product of the unit circle and the Euclidean space),n > 2,and G = S'xS0(n)
acting on M by the formulas (€', h)(e¥, x) = (**¥), h(x)), %, e € S', h € SO(n), and
x e R".
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Proposition 7.10.11. Let G be a compact connected group of isometries acting coercively
on the manifold M. Then there exists an orbital discretization Y € O, ,.(M) such that any
quasi-orbit Y; is a subset of a distinct orbit of G.

Proof. Let M be a union of all principal orbits of the group G. The set M is a dense open
subset of M. On the coset space M /G, one can introduce a Riemannian structure such
that the projections p : M — M/G have the following property:

di1,6(P00,pY)) = dy (Gx, Gy)

where the distances are taken on respective manifolds (see, e.g., [56]). Let ¥ =
{Gx,},cn be an (g, 2¢)-discretization of M/G with € < r(M)/3. Let Y, be an (&, 2¢)-
discretization of the orbit Gx, in M. Then Y = |72, ¥, is an (&, 2¢)-discretization of M.
Let {Y;} be the family {Y,} reordered by the number of elements in Y,. Then Y = Ui Y;
is obviously a (¢, 2¢)-discretization of M. We prove that it is an orbital discretization.
Conditions (a) and (b) are satisfied by the construction. The condition (c) is a con-
sequence of the coercivity of the action of G as follows. Let R > 0. By the coercivity,
all sets Y; of diameter not exceeding R lie in a bounded set Og. However, only finitely
many elements of Y may lie in Op. So there exists i € N such that diameter of Gx,
is greater then R whenever ¢ > ip. The orbits Gx, are connected since G is connected,
therefore, #Y, — co. O

Taking into account the above proposition, one can apply Theorem 7.10.7 to sets
of quasisymmetric functions related to the action of a group G of isometries of M.
In particular, it can be applied to the subspaces Hé’p (M) of H*P(M) consisting of all
G-symmetric functions.

Theorem 7.10.12. Let G be a compact, connected group of isometries of a N-
dimensional noncompact connected Riemannian manifold M of bounded geometry.
Let1<p < Nandp < q < p*. Then the subspace Hcl;’l’J (M) is compactly embedded into
LY(M) if and only if G is coercive.

Proof. Sufficiency in the theorem follows from Theorem 7.10.7 with the orbital dis-
cretization given by Proposition 7.10.11 since Hcl;’p (M) c HY(M) n Sy 11- Note that by
isometry

| yolav = [ rolave = eox

B(x,r) B(z,r)

if f € HP (M).

Proof of necessity. If G is not coercive, there exists R > 0 and a discrete sequence
(%) in M such that Gx; ¢ B(x,R). Letr € (0,r(M)) and let p € C5°(Q,) \ {0} be a
nonnegative function. Let us replace x; with a renumbered subsequence such that
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156 —— 7 Global compactness on Riemannian manifolds

distance between any two terms in the sequence will be greater than 2(R + r). Let
b= [¥e ) dugtm,
G

where the Haar measure y of G is normalized to the value 1. By the Young inequality,
taking into account that G is a group of isometries on M and that M is of bounded
geometry, we have

||l/)k||H1p ||l[) ° exk (’1 )”Hlp d}lG(n)

° e;kl ||H1,p(M)dllG('2)

o—, o—,

= e e lioan < Cllgq,

Note that the supports of the functions i, are disjoint and, therefore,
1 =~ Pulfacany = Wl aary + W0nlaary = 2inf I,

Furthermore,

Ve(BOR+1) M pelye = | v

g

GM

ce; dv, j¢d§>o.

QY

> [y

M

= [ [weeston) avy augn = [ [woe;! vy augtn
GM

- [veer

M

Thus, since supyen Vg(B(Xi,R+71)) < oo by the bounded geometry, [[yllLan is
bounded away from zero. Therefore, we have a sequence, bounded in H (M) and
discrete in LY(M), and so the embedding H*? (M) — L9(M) is not compact. O

7.11 Bibliographic notes

The earliest profile decomposition for the Sobolev space of a compact manifold, rel-
ative to the limit Sobolev embedding, was proved, to our best knowledge, by Struwe
[119] (see also [39]), and Theorem 79.1 is its natural generalization to general se-
quences and noncompact manifolds.

The “spotlight lemma” (Theorem 7.1.4) was proved in [110] for p = 2 and in [111]
for general p, and its counterpart for the limiting Sobolev embedding, Theorem 7.7.1,
in [101]. Both are possibly found elsewhere in literature. Theorem 7.3.5 is proved in
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[110], and Theorems 7.8.2 and 7.9.1 are proved in [101]. Similar results for H* (M) with
p € (1,00) can be proved by analogous arguments. Condition of bounded geome-
try (also called smooth bounded geometry to distinguish from bounds on only some
derivatives of the Riemannian curvature) is quite restrictive, and metric spaces at in-
finity (which are generally no longer Riemannian manifolds) emerge on the grounds
of Gromov’s compactness theorem using pointed Gromov-Hausdorff convergence. Un-
der the stronger pointed C™-convergence (see [99, Chapter 10]), however, Gromov-
Hausdorff limits of sequences of Riemannian manifolds remain Riemannian mani-
folds, so it should be possible to extend assertions of Theorem 7.3.5 and Theorem 7.9.1
to a larger class of manifolds, and in modified form to an even larger class.

Compactness of embeddings of radial subspaces of Sobolev spaces into I? is due
to Strauss [115]. For multiradial subspaces of Sobolev spaces see Lions, [81]. Hebey
and Vaugon [66] obtained compactness of local Sobolev embeddings in presence of
symmetries basing on effective dimension of the quotient manifold, that yields a cor-
respondingly higher critical exponent and thus compactness. In this chapter we give
a necessary and sufficient condition for compactness of subcritical embeddings on
non-compact manifolds, based on [111].
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8 Functions of bounded variation. Sobolev spaces on
fractals

This chapter addresses two separate topics. The first three sections address the ques-
tion if one can extend Solimini’s profile decomposition to H*!, dealing with the weak
convergence issues arising in this non-reflexive space and arriving at a profile de-
composition in the space of functions of bounded variations instead. The remaining
three sections deal with energy spaces on fractal blowups, where concentration pro-
files emerge at functions defined on blowups-at-infinity, resembling the situation de-
scribed in the previous chapter in the case of manifolds. The difference, however, is
that evem if fractal blowups generally do not possess a group of global translations,
they admit local translations of balls of any radius, thus sparing a need in a gluing
argument used in the previous chapter.

8.1 Cocompactness of the embedding BV — L' (R")

The first difficulty in describing defect of compactness of sequences in a non-reflexive
Banach space in terms of weak*-convergence is that weak*-topology is defined
only if the space is a conjugate of another Banach space and, furthermore, if the
weak*-compactness in this space implies sequential weak*-compactness (which is
true for separable Banach spaces, but not in general).

In particular, in the case of L}(RY), weak*-topology is not defined, while a

sequence of normalized characteristic functions in L'(RY), (%)%N, where 4, =
—%, %]N , has no weakly convergent subsequence. Instead, it converges to the point
mass at the origin in the weak* sense in a larger space of finite signed measures,
which it a conjugate of the Banach space CO(]RN ). Similarly, it is beneficial to regard
the space H"'(RY) as a subspace of the space of measurable functions whose weak
derivative, rather than a L!- function, is a finite signed measure. This space is known
as the space of functions of bounded variation BV(]RN ). It contains, of course, func-
tions that are qualitatively different from those in H*'(R"). In particular, while every
element in H*(RY) is represented by a function with a connected range, this is not
the case for BV(IRN ), which contains characteristic functions whose range is {0, 1}. For
basic properties of the space BV(RY), see the Appendix, Section 10.2. In particular,
we note a continuous embedding BV(RY) — L (RN), 1* def %,
the norm ||D - || (see (10.33)).
Since bounded sequences in H"(RY), as the example above shows, are expected
to have concentration profiles in BV(RV), the version of the profile decomposition of
Solimini for H*'(RY) studied in this chapter is, in fact, stated for bounded sequences

in BV(RY).

and the notation of

https://doi.org/10.1515/9783110532432-008
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In what follows, we assume that N > 1, and consider the BV(RY). equipped with
the rescaling group V! (cf. (1.8)), whose elements gy um— 2Dy (. - y)) are
linear isometries on BV(]RN ) and on L% (]RN ).

The proof of the theorem below repeats much of the proof of Theorem 3.2.1 but
with a different argument in evaluation of sums of BV-seminorms over lattices. We
use below notions of G-weak* convergence and G-* cocompactness defined by repeat-
ing the definitions of G-weak convergence and of cocompactness verbatim, but with
weak convergence replaced by weak*-convergence. Throughout this chapter, follow-
ing the prevailing convention for measure spaces, we will call weak*-convergence in
BV(RY) weak convergence, and use the notation — rather than = Consistently with

N-1 N-1 %
that, we will write % rather than *— " for gN1-weak* convergence, and call gN~1-*-

cocompactness gV "1-cocompactness.

Theorem 8.1.1. The embedding BV(RY) — Ll*(]RN ) is GV cocompact, namely if, for
any sequence (ji.,yy) in Z x RY, 8j.y Uk — Othenu; — Oin v RM).
Proof. Let (u;) be a bounded sequence in BV(RRV) such that for any sequence ()
inzZxR",g , w, — 0.

1. Assume first that sup;ep lugllee < 00 and supyep llugll; < co. Then, using the
L*-boundedness of (u;), we have (cf. (10.35))

J Iukll*dst<||Duk||(0)1)N+ j Iukldx>( J Iukldx>

oY OV (O,)N

1-1/1*

Repeating this inequality for the domain of integration (0,1)N +y, y € Z", and adding
the resulting inequalities over all y € Z", we have
1N
J " dx < C(IDug gy + ||uk||1,]RN)( sup J g (-~ y)|dx> . 8.1)
RV yez (0,)¥

Here, we use the fact that the sum } ;v [|Duyll o 1)v,,, can be split into 3" sums of vari-
ations over unions of cubes with disjoint closures, each of these sums, as follows from
Definition 10.2.3, bound by ||Duy ||z~ , which implies ZyEZN 1Dugell 0,1y 4y S 3N I1Duy | g -

The last term in (8.1) converges to zero, since by the assumption 8jy Uk — Owe
have (- - y;) — Oin LY((0,1)M) for any sequence (v) in RV,

2. We now abandon the restrictions imposed in the previous step on the sequence
(). Let x € C&((55=,4"™) be such that x(t) = t whenever ¢t € [1,2¥7"]. Let x;(t) =
2Ny NVije)), j € Z, t € R, and note that [lx]ll, = [X'll,- Consider now a general
sequence (i) in BV(RY) satisfying 8j.y Uk — O forany (jy,y,) € Z x RY. By (10.34),
we have
x * YN
j X))t dx < CIIDx,-(uk>||( j X! dx)

RN R
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Let us sum up the inequalities over j € Z. Note that by (10.36) [IDy;(u)ll <
' loo D], where A; = {x € RY : || e UDO-D 0Ny Eyrthermore,
one can break all the integers j into six disjoint sets J;,...,Jq, such that, for any
m € {1,2,3,4,5, 6}, all functions x;(u), j € J,5, have pairwise disjoint supports. Conse-
quently, Y [[Du|| Ay S 6/|Duy||. We have therefore

YN
J lu " dx < C|Duy|l §uZp><JXj(uk)l dx)
je

RN

It suffices now to show that for any sequence (ji) in Z, x;, () — 0in L', Taking
into account invariance of the L' -norm under operators g; , it suffices to show that
X(ij(N - |uk(2jk-)|) ~0inL" , but this is immediate from the assumption Sy Uk — 0
and the argument of the step 1, once we take into account that for sequences uniformly
bounded in L*, A -convergence follows from L! convergence. O

Corollary 8.1.2. The embedding H*'(RY) — L' (RY) is g¥~'-cocompact.

Proof. The statement is immediate once we note that G¥ ' acts isometrically on

HY(RY) and that Co(RY) ¢ LY(RN)*. O

8.2 Profile decomposition in BV

Theorem 8.2.1. Let (u;) be a bounded sequence in BV(]RN ). For each n € N, there exist
w™ e BV(RY), and sequences (j,({"))kelN in Z and (y,((")) in RN with j;{l) =0, yf{l) =0,
satisfying

m

|j/(<n) —1';(<m)| + (2].;’”) + 21’(‘")) yk") - y,(< )| - 0o wheneverm # n,

such that for a renumbered subsequence, g]f) ot = w™, ask — oo,
k 7k

def LN
ne'= u - Zg].in),yi,.)w(") -0 inLvi(RY), (8.2
n

where the series ), g ymw(") converges in BV(RY) unconditionally and uniformly in k,
k 7k
and

3 IDw™ | +0(1) < [IDugl. (8.3)
nelN

Proof. Without loss of generality, we may assume that u; — 0 (otherwise, one may

pass to a weakly convergent subsequence and subtract the weak limit). Observe that if
N-1
U 7. 0, the theorem is proved with r;, = y; and w® = 0, n € N. Otherwise, consider
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the expressions of the form w® = w-lim g]ll) Yo u.. The sequence uy is bounded, GV ' is
a group of isometries, so the sequence g (1) uk has a weakly convergent subsequence.

Since we assume that u, is not G- vanlshmg, there exists necessarily a sequence

(],i”,y,‘(l)) such that, evaluated on a suitable subsequence, w® # 0. Let v,‘(l) = Uy -

- g" .
g ymw( and observe that g mv = gj(ll) y(l)uk—w(l) — 0.1fv!") "~ 0, theassertion
k 7k

k 7k
of the theorem is verified w1th e = v](:) If not — we repeat the argument above — there

exist, necessarily, a sequence (jk ,yk )y and a w® # 0 such that, on a renumbered

@ _ (l)

subsequence, w? = w-lim g(z) 2)v ). Let us set v - g(z (2>W ). Then we will

have

1 2
g(z) (z>k g(Z) (z ()—W()—‘Oo

If we assume that gjﬁl, 080 oW w® £ 0or, equivalently, that i ] (2) [+ (zlk +2 )|y
kY Tk
yl((z) | has abounded subsequence, then passing to arenamed subsequence we will have

g].<11, 08,0 = oy, in the sense of strong operator convergence, for some j, € Z,
k Yk k 7k >
Yo € RY. Then

(2

| 1
w = w-lim g.@ <2>V1(<)

)

= w-lim(g 2) yO8, <1>)g Vg

I I J/

— w-li 1 _
=W hmglo’YOgj;{l),yf(l) Vk = 0,

(1)
a contradiction that proves that g. ],(f), ¥ — 0or, equivalently, [j{" - ji| + (2 +

(2
2k )|y,({1) (2)| — 00. Then we also haveg o, 8jm 0 = 0.
Recursively, we define

m _ (-1 _ M _ W_..._ m
Vk —Vk giin),yén)w Uy g].;{n,y;nw gjim)yin)w >

where w® = w-lim gj],,l, y(,,)v("’l),
k 7k

s calculated on a successively renumbered subse-

quence. We subordinate the choice of (j;("), (”)), and thus the extraction of a subse-
quence for every given n, to the following requirements. For every n € IN, we set

W, = {w € BV(RY)\ {0} : (i) € Zx RV, (k) c NN : gl vil” — w,
with the weak convergence holding up to extraction of a subsequence, and

t, = sup [Dw].
weW,

Note that ¢, < sup|ul < oo. If for some n, t, = O, the theorem is proved with
n = vl((”‘l). Otherwise, we choose a w™" e W, such that [Dw™"| > 1t and
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the sequence (]("”), (n+1)

(n)
g . 1%
}l(<"+1) ’y,({m-l) k

) is chosen so that on a subsequence that we renumber,
— w("”). An argument analogous to the one brought above forn = 1

shows that g} ,,g .« — O or, equivalently,
Jo Yie e Y

|]I((P) (q)l +(2]k +2]k )l yl((Q)l = 00 (84)

whenever p # q, p,q < n.

Let us show (8.3). Let n € N and let ()k ,y(l))k, w®, and (v}(’))k, i=1..,n be
defined as above. Let v ¢ Coo( (RY, ]RN), ||v(’)|| < 1,i=1,...,n and set S(") =
py 8o, mw(i) V(") =y 201-N)i¢ 8o, (>v ). (To clarify the construction, the operator

20-N )’/ 2g y is the LARY)- adjoint of 8y )Then noting that IIV(”) lo < 1and taking into
account (8 4), we have
(M g5, 77 (n 3:, 170
IDwell = | v div v, dx + JSk div V" dx

n
= Z jg’.(i) (1)V, )dIV V(l)dX + Z J W(l) div V(l)dX.
=) e i=1

Since the first term converges to zero by construction, while v is arbitrary, we have
IDull > Y, IDW®| + Ok 00(1). Since n is arbitrary, the lower bound in (8.3) fol-
lows.

Note now that Y% t; < 2|Duy| + o(1). Furthermore, ||D5,((") I < ¥, t+o0(1), and on
a suitable subsequence we have ||DS,(<”) I < 22?:1 t; and, furthermore, the inequality
remains true even if one omits an arbitrary subset of terms in the sum S,(("). Conse-
quently, by an elementary diagonalization argument, on a suitable subsequence,
series S;° converges in BV(R") unconditionally and uniformly in k. This together with

N-1
(8.4) implies that u; — S° — 0, which by Theorem 8.1.1 implies (8.2). Finally, the
second inequality in (8.3) follows from convergence of S;° and the triangle inequality
for norms. O

8.3 Sample minimization problems

def . . . .
Let ay > O be such that w 2 ay 1p, where B is a unit ball, satisfies |[Dw|| = 1. Then it
is known that w is a maximizer for the problem

Co = sup J |u|1 dx
ueBV(]RN):llDuM:I]RN

By scaling invariance, w =R"Nay1, isalso a maximizer.
R N1,
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Theorem 8.3.1. Let F : R — R be a continuous function such that the following supre-
mum is positive and is attained:

0<m® supF(s)/IsIl* = F(t)/ltll* for some t € R. (8.5)
seR

Then the maximum in the relation

c= sup J F(u)dx

ueBV(RN ):||Du||:l]RN

1
is attained at u = wg with R = ()7,

Proof. Since F(u) < quIl*, we have ¢ < mc,. On the other hand, comparing the supre-
mum with the value of the functional at wy we have ¢ > LRN F(wg)dx = F(t)|Bg| =
mltll* [Bgl = m LRN IaNRl’N]lBRll*dx = mc,. Therefore, c = mc, and is attained at wg.

O

Theorem 8.3.2. Let 0 < A < N — 1. Then the minimum in

. u
K= inf . |Duj - A J uclx
UeBV(RN): [ v ufl” dx=1 o x|

is attained.

Proof. The proof is based on a standard use of profile decomposition and may be ab-
breviated. Let (1; ) be a minimizing sequence. Applying Theorem 8.2.1 and noting that
there exists a subset of indices I ¢ N such that [, %dx = Yner | %dx (provided
that the functions w™ are rescaled, as it is always possible, by application of constant

operatorg; , € GN 1), we have using the notation,

J) = 1Dl -1 | ] g,
|x|
]RN
and recalling (8.3),
T 2 Y Jw™) + 3 [Dw™] +0(0). (86)
nel n¢l

On the other hand, from the iterated Brezis—Lieb lemma (Theorem 4.7.1) follows:
J " =Y J|w(")|l +0(1). (8.7)
RN ne]NIRN

Moreover, each w™ necessarily minimizes the respective functional, namely J if n e I

and |ID - | if n ¢ I, over the functions u € BV(RY) satisfying [o lul' = [oy w™|". In
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particular, w forn ¢ I are multiples of the characteristic function of some ball, which
(taken with scalar multiples) are clearly not minimizers for the functional J. From the
standard convexity argument, relations (8.6) and (8.7) imply that, necessarily, w® =0
foralln € N except n = mwith some m € I. Thus, [, WMV dx = [ lu | dx = 1and
J (W<m>) < J(u) = x + o(1). This implies that w™ is a minimizer. O

8.4 Fractals and fractal blowups

In this and the subsequent sections, we consider loss of compactness in fractal
blowups—the noncompact metric structures produced by iteration sequences of in-
versed constituent maps of a fractal (expansion maps). There is generally an uncount-
able family of different blowups of the same fractal, parametrized by the infinite words
of indices that determine the sequence of expansion maps. Similar to manifolds, non-
trivial isometry groups on fractal blowups generally do not exist, and concentration
profiles, produced by local isometries, emerge as functions on different blowups. Exis-
tence of local isometries with uniform properties, by analogy with manifolds, require
a counterpart of the condition of bounded geometry, which in the case of fractals is
a condition that all constituent maps scale the fractal measure, as well as the fractal
energy, by the same factor. In this setting, a uniform family of local isometries on the
blowup can be produced as a compositions of two maps, a “zoom-in” composition
of M constituent maps of the fractal and a “zoom-out” composition of the first M
members of the blow-up sequence.

Let us define a subset of the class of pcf (post-critically finite) fractals, introduced
by Kigami [72], as well as correspondent energy spaces following [117]. An essential
restriction below is that the constituent maps of the fractal are to have the same scaling
factor. The class includes the Sierpinski gasket.

Lety; : R" —» R", i € {1,..., N}, be the contractive similitudes, satisfying

i) - ;)] < a'x -yl (8.8)
with some a > 1 and assume that there is an open set U ¢ RY such that
Uc . (8.9)
i

There exists a unique compact set Q ¢ R" satisfying

Q=Jm© (8.10)

and there is a unique Borel regular measure y on Q such that for every integrable u :
QO - R,

Judy:adijuol,bidy (8.11)
Q
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log N

where d = Toga "

(8.11) is

The set Q is called then a self-similar fractal. An equivalent form of

N
HA) =Y p(p (A Q). (8.12)

i=1
Let 0Q be the set of fixed points of i, k = 1,..., N, with some N, < N. We assume that
Q is connected and satisfies the finite ramification condition

Pi(Q) NY;(Q) < h;(0Q) N P;(3Q) Wheneveri # . (8.13)

For every function u : Q — R, a positive quadratic form (energy) E(u) € [0, +oo], is
defined (see [72, 117]), satisfying for everyi € {1,...,N},u € H,u - ; € H, and

N
Ew) =p) Ee;) (8.14)
i=1

with some p > 0. Domain D of E(u) consists of functions for which E(u) < co. The
Sobolev space H 1 (Q), which we in what follows abbreviate as H, is defined as the linear
space D n L*(Q), equipped with the norm

lull® = E) + ul3 - (8.15)

By definition, H is continuously imbedded into Lz(Q,y). Moreover, it is compactly
imbedded into IP(Q) for all p € [1,00) ifd < 2 and forp < [1, dz—flz) if d > 2. In par-
ticular, there exists C > 0 such that

(i Iulpd;u) < C(E(u) +i |u|2dy>, ueH. (8.16)

In what follows, we assume that d < 2, in which case H is also continuously imbed-
ded into C(Q). The space H,, of functions in H vanishing on 0Q is a proper subspace
of H. The functions in H admit continuous restrictions to and continuous extensions
from the sets 1);(Q). The latter are also continuous operators H, — H,. As long as it is
not ambiguous, we will not distinguish in notations between the functions and their
extensions, respectively, restrictions. In such terms, one has, in particular,

E(uo;'o ;) =0 wheneveri # . (8.17)

An infinite blowup Q! of Q, relative to a sequence I = {i;,i5,...}, iy € {1,...,N}, is the
monotone increasing union

(o]
J Qi where Qj; := @},(Q) and @) = ;" oo, M e N. (8.18)
M=1

For the sake of consistency, we set Qy = Q and @, = id.
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The measure y and the functional E can be extended to Q and to functions there-
upon by self-similarity, as follows. The measure y induces a measure

-1
w=a™y.ol, " onql, MeN. (8.19)

From (8.13) and (8.11) easily follows that the measures y, and i, coincide on QJ,,
M = 0,1,.... This defines, by u;, | Qy = }4;, a measure on a generator set of a g-algebra
on the whole Q!, and thus, a Borel measure on Q!.

A similar construction yields an energy functional for the blowup. For a finite
blowup wa, we set

Ej ) = p ™ ME(uo @), (8.20)

whenever u € H, == {vo®L, v e H}.

Note that if u € Hyy = {vo Cwafl,v € H,} then the extension of u by zero to
Ql,., is an element of Hé’M +1 (we will extend the adopted convention not to distin-
guish in notation between u and its extension to this instance). From (8.14) and (8.17),
EY () = E,, (u). This defines E'(u) for any u € H} := Upen H(I),M. The Hilbert space
H' is defined as the completion of H(I) with respect to the norm

1/2
llully = (Ef(u) + j |u|2dy1> , Te{l,... NN
QI

8.5 Sobolev inequality and cocompactness on fractals
Let] = {jijp--- b ji € {L,...,N}, @) =" o 9p, and let

def -1
My = Opyo @y Qpy — Q. (8.21)

Let,J e {l,....N}N, M e N, let

T S @ | T e (.. NN

let

jI d:ef U j]{d

MeN

Lemma 8.5.1. Let1,] € {1,...,N}N. The collection of sets 7' is a covering of Q!. Further-
more, for every integrable function w on (QF, ub),

J wdy! = z J wdy = Z Jw o Ny mAK, (8.22)
of Mm@y, L) Ny @eT" o
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and for every u € H'

Ewy= Y  Euenyu) (8.23)
Nym(@eJ!

where the terms in the last two sums, corresponding to J, M resp. J', M' such that
Niyumla = N1y mlg» are repeated only once.

Proof. Letx € Q. By definition of O, there exist M € Nandy € Q, such thatx ¢ dbﬂdy.

Furthermore, by (8.10) thereisai € {1,...,N} such thaty € CD]M_lﬂ for some J. This
proves that 7 is a covering.

By density, it suffices to prove (8.22) for functions from H(I))M, M € N, that is, to
show that for every y’ -measurable function w on Qf s

jwdyfw = Z j wdpy,. (8.24)
Ql, Jelb,.o. N}M’TIJ,M(Q)

J vdu = Z J vdu.

M M
a Je{1,....N} o0 Je{1,...N} Py ooy,

The last relation easily follows from (8.10) and (8.13).
It suffices to prove (8.23) for functions in Hé)M, M € N, that is, to show

EIIV,(u) = Z E(uen;y), foruce H(I),M. (8.25)
Je{l,.., N}

Ifwesetu=wo CDﬂ,I, then (8.25) is equivalent to

Ewv)=p™ Z E(V0®]M71), forv e Hy,

which in turn is the Mth iteration of (8.14). O

Lemma 8.5.2. Letl,] €{1,... ,N}N, andletQ' c qD]M(Q) beay]-measurable set. For any
yI -measurable function u : o & R,

u d}ll = j Uo rlIJ’M d}l[ (8-26)
Nrym(Q) Q'
Proof. Using (8.19),
udy! = J u dyfw
N1y m(Q") @LCD]MA(Q')

EBSCChost - printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

8.5 Sobolev inequality and cocompactness on fractals —— 169

!
= oM J Uo @, du = J Uo CDﬂ/IGDIM_l dy]M.
o, (@) o

with understanding that the composition u < 177 ; 57, although not defined on the whole
of , is defined on the domain of the integration. O

Corollary 8.5.3. For any u'-measurable functionu : Q' — R,

J udy! = J uonyyydu. (8.27)
N1y m Q

Lemma 8.5.4. LetI,] € {1,...,N}™, M € N. For every u € Hy y,
By (e nyy ) = By
M rm) = Ly (U).
Proof. By (8.20) and the definition of n; ; s = o QD]M_I,

Epuongya) =p ME(ue @) = Ey (). O

Proposition 8.5.5. Let p > 2. The following Sobolev inequality holds true:

(j |u|de’); < C(El(u) + J |u|2dy’>, ueH. (8.28)

o of

Proof. 1t suffices to consider u € Hy. From (8.16) for u - n;; 5, and Corollary 8.5.3 for
Je{l,...,N}N, M e N, follows

2
p
( J ul? dy’) < C<E(u o Miyl) + J |u|2dy’>, ueH, (8.29)
Nrym(Q) Nrym(Q)
Add the inequalities above over J € {1,...,N }M , use Lemma 8.5.1, and then subaddi-

tivity of the left-hand side. O

Lemma 8.5.6. Letuy € H' be a bounded sequence and assume that for every sequence
Q) in T', Q= Mg, (Q), Wi o Nygoplo — 0 inIP(Q, ). Thenwy — 0 in IP(QF, ).

Proof. From (8.29), it is immediate for all u € H' that

luf” dp’
Nrym(Q)
1-2
< C(E@enizmla) + j |u|2dlll)< J Iulpdyl>

Nry.m(Q) Ny.m(Q)
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Adding the inequalities above for n;; ,yQ € J I"and using Lemma 8.5.1 together with
subadditivity of the left-hand side we obtain, setting u = u,

j g P dy’

of
1-2
p

< C<E(uk) + J |uk|2dll1> sup (J luy o np gl dﬂ)
o M@\

Let O = ’ll_,}k,Mk(Q) e 7%, be such that

1
J g o 1y, P dp > 5 sup J luye o 1y g ml” dpa.

a Mm@’ o
Then, by the assumption of the lemma,
J e l? '
QI
1-2
P
< o( B + [ e )( [ b o mugn P i) o 0
of Q
8.6 Minimizers on fractal blowups
Proposition 8.6.1. Letp > 2 and let
= inf{EI(u) + J uPdy’ : ueH, J [ufP = 1}. (8.30)

o o
Then forevery1,] € {1,...,N}N, =7,

Proof. 1t suffices to show that ¢/ > ¢/. Lete > 0 and let u, € H} be such that
jQ, Iuelpdyl =1land El(u)+jQ, Iuelzdyl < +e. By definition of H., there exists M, eN
such that u, « H(I,,ME. Let v = uc o nyyp. - Then by Lemma 8.5.4 and Lemma 8.5.2, we
have F/(v,) = El(u,), fQ, vel?dy/ = IQ, lu [*dp! and IQ, v lPdy = IQ, lu Pdu’ = 1.
Consequently, c < +e.Sincee, I, and J are arbitrary, the lemma follows. O

Due to the proposition above, we may denote the common value of constants I s
ITefl,...,N}N, as c®. Note that ¢ > 0 due to (8.29).

Theorem 8.6.2. Let Q be a self-similar fractal equipped with the energy E as defined
in Section 8.4. Let Q', I € {1,..., N}, be its blowup with correspondent energy E', as
defined in Section 8.4, and let p > 2. Then there exists | € {1,. .., NN such that the
minimum in (8.30) with I = ] is attained.
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Proof. The proof consists of three steps. On the first step one moves an Q-sized “spot-
light” n;; ,(Q) to find a weak limit of the minimizing sequence in restriction to the
spotlight domain. At this step, we also obtain the multiindex J € {1,...,N W from the
sequence of spotlight shifts 17, ; .

On the second step, we expand the size of the spotlight to the blowup ¢/, which
is generally different from Qof , and which becomes a domain of the weak limit for a
shifted sequence of uy.

The third step is a standard concentration compactness argument based on the
Brezis—Lieb lemma for functions on (.

Step 1. Let u; € H(I) be a minimizing sequence for (8.30), that is, fQ, | [P dyI =1
and EI(uk) + fQ, Iuklzdyl — ¢ Since u; does not converge to zero in rP@Qhuh), by
Lemma 8.5.6, there is a sequence of J; € {1,... ,N}N, M, € N, such that y o N1 M,
does not converge in L7 (Q, y) to zero, and since the local Sobolev imbedding (8.16) is
compact, the sequence does not converge to zero weakly in H. It is bounded, however,
in H due to Lemma 8.5.1 and Lemma 8.5.4. Thus, there exists a w; € H, such thaton a
renumbered subsequence, uy o 1y, lo — Wy # 0in H.

Step 2. Consider the sequence of maps

! J i
Mrjom, = P, © l/)jll\(/lk 0. ino lzb]’l‘ : QA’/(I,( — QI\I/(I,(' (8.31)

We recall that we consider all functions of the class Hj extended by zero to all of Q'.
Without loss of generality, as both composition chains (wak and dD[Mk may be length-
ened with mutually cancelling terms, we may assume that the values of renamed M,
are so large that u; ¢ Hé, - In more detail, assume first that u; € H(I), My +m,» With some

. def .
m € N, setjyrom = Iyeme M = L...,my and let @y o, = l'bewmk o---o);. Then
— ol
MM, = ®Mk+mk%k+mk' The map

. ok Ii
Ny Memy QMk+mk ‘M +my

is an extension of the map n;;, y, : Q’ﬁk - Q;]/}k. As we rename M, + m; as My, the map
N1J, M +m,» @Cquires the notation n;;, , of the map it extended.

There is a renamed subsequence J; where jix € {L,...,N}is constant, to be denoted
as ji. Moreover, if for a given m € N there is a subsequence J;" where j; ;. ...,jn are
constant, then it has an extraction where j,,,, ; is constant as well. Let ] := (j;, .. .).
Finally, rename ]ﬁl" as Ji so that j;; = j; fori =1,2,..., My (so that the componentwise
limit of J is J).

The map 1, y, is defined then as a map Q{Wk - Q{Mk (since the components of J;
with k > M. are not involved in the definition of n;; 5, ) and wy o nyy, p, Q{Mk — Ris

a bounded sequence in H’. Then, on a renamed subsequence, u;, o LM, — Win H.
Due to the step 1, w|g = w; # 0.
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Step 3. Let vy := u oy, p, —W- By Lemma 8.5.2 and the Brezis-Lieb lemma (Corol-
lary 1.3.3),

1=1lim j Py = lim J 1 o 11, 1, PR 8.32)
Qf o
- limj v Py + j wiPdy.
o o

We also have, since v, — 0in H , using the scalar products of, respectively H Tand H/ s
Q . . .
¢ =lim lug [} = lim lug o 1y, g, 17 = Him v ll7 + Iwll7. (8.33)

Let t := lim ||vk||§ o Then ||w||5 g =16 and by (8.30), from (8.33) follows:
> P2 4 - P2

which is true only if t = 1 (which is impossible since w; # 0, and thus w # 0) or
t = 0. Therefore, ||w||£ J 1, which easily yields that w is a minimizer for (8.30) with
I=]J. ’ O

8.7 Bibliographic notes

The first three sections are based on the paper [9], with corrections to both the state-
ment and the proof of Theorem 8.2.1. A similar profile decomposition, with a weaker
remainder and limited to sequences of characteristic functions of sets (but on a gen-
eral Riemannian manifold) is given in [95, Lemma 2.2] (cf. also references to the prior
work of Nardulli therein).

The remaining three sections deal with the scalar field equation on fractals (see
[45], Falconer and Hu [46], and Matzeu [89]) associated with a Dirichlet form ([72, 93,
117]) and extended by self-similarity to fractal blowups (see [116]). The presentation is
based on [106].
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9 Sample applications to variational problems

This chapter contains a very small selection of variational problems where profile
decompositions in Sobolev spaces are used to prove existence of critical points, or
to specify the structure of blowups for critical sequences. The main technical steps
in finding critical points of variational problems is to identify a minimax statement
that yields a critical sequence and to prove convergence of the critical sequence (the
Palais—Smale condition). The most elementary minimax statements are upper/lower
bound of the functional or mountain pass geometry. A common, although far from
optimal, sufficient condition to have a norm bound for a critical sequence for a semi-
linear elliptic functional is the Ambrosetti—Rabinowitz condition [10]. Convergence of
the critical sequences is assured by compactness argument, and in absence of com-
pactness, by means of profile decomposition.

9.1 Nonlinear Schrédinger equation with positive mass

Let N > 2. Letp € (1,2" — 1), and let f : R — R be a continuous function satisfying:
(f1) If(s)l < Clsl?,

(f2) limy o L2 =0,

(f3) llm|s|_>00 M = Q.

Is|

Let
F(s) = Jf(t)dt 9.)
0
and let
o) = J F(u)dx. 9.2)
]RN

Functional ¢ has a Fréchet derivative in H L2(RN) given by v — IRN f(u)vdx, which
by (f1), (f2) is a continuous map H>2(RY) — H(RY). In other words, we write ¢ ¢
c\(H 1’2(]RN )). Moreover, ¢’ remains continuous when the domain and the target space
are equipped with the weak topology. We will consider the following C'-functional on
HY(RY):
Jyr) = % J(IVuIZ + Voou?)dx - j Fwdx, ueH”RY). (9.3)
IRN ]RN

LetV e L°°(]RN ), limyy o, V(X) = V, > 0, and let us use the equivalent Sobolev norm:

Il = ( [ vut+ V(x>u2)dx)2. (04)
]RN

https://doi.org/10.1515/9783110532432-009
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The functional Jy r has a continuous Fréchet derivative on H 1’Z(IRN ), with ff,v(“) =
u - ¢'(u), so that critical points of Jy, p are defined by

“Mu+VOu=f@u a.e inR. (9.5)
Lemma 9.1.1. Assume (f1)-(f3). Then the function t — y(t), t € [0, co), given by

y(t)= sup F(u)dx, (9.6)

L2 —
E”u||1,2,V*tRN

is locally Lipschitz continuous, nondecreasing and satisfies
y{t)/t -0 ast— 0 9.7)
and
y()/t > 0 ast — oo. (9.8)

Proof. 1.1tis easy to see that y is locally Lipschitz continuous since ¢’ is bounded on
every ball.

2. To prove the monotonicity, let Q = (0, 1Y and let vy € H(l)’z(Q) \ {0}, k € N, con-
sidered as extended by zero to functions in HY(RN), satisfy v, — O and |lvill oy = 1.
For example, one can choose functions v, (x) = Hfil sin(knx;) normalized in the norm
(9.4). Let t,T > 0, and let u satisfy %”U"iz,v = t. Then, using expansion by bilinearity
and v, — 0, we have %llu + TVk"iz,V - t+ %‘rz, while @(u + 7vy) — ¢@(u). There-
fore, y(t + 37°) > (u). Taking the supremum over all u with $[ul?,, = t, we have
y(t + 3% > y(¢) with an arbitrary 7.

3. Relations (9.7) and (9.8) follow from (f2) and (f3), respectively. O

Definition 9.1.2. A sequence () in a Banach space E is called a critical sequence for
a C'-functional J on E ifJ'(u;) - 0in E* and J(u;) — c for some c € R.

Lemma 9.1.3. Assume (f1)—(f3). There exists a number C > O such that any profile de-
composition with respect to group of shifts G, for every critical sequence (u;) of the
functional (9.3), satisfying lugli v, <L, L >0, has at most M = CL? + 1 terms. Further-
more, with a convention that a sum over an empty set equals zero,

M
Jur) = Jyrw®) + Y Jy p(w™). 9.9)
n=2

Proof. Note that if u, (- — y) — wand |y,| — oo, then by (f1) function w satisfies
-Aw + Vw = f(w) and, in particular, by the Pohozhaev identity ([133, Corollary B4]),
WIS 55y, =27 [n Fw)dx, which gives 27 < 2"y, (7) where 7 = 3|wl?,, ,and
def
Yoolt) = sup J Fwdx, te€[0,00).

T2 -
3 Mulis v, _t]RN
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Note that y, is a function of the form (9.6), so by Lemma 9.1.1 the infimum in

t,, €inf{t > 0: 2y (O) > 2t} (9.10)

is taken on a nonempty set and is positive. Thus ”W”%)Z)Vm > 2t... Then by (1.15), if the

profile decomposition has at least M terms, and at least M — 1 terms correspond to

. . . li h
[Vi| — oco. Thus 2(M — 1)t < limsup |u 112 , Which gives M <1 + Lim sup el v,
k [e3) kll12,v 2t

Relation (9.9) follows from (1.15) and Theorem 4.7.3. O

CaseV <V

Theorem 9.1.4. Letf : R — R be a continuous odd function satisfying (f1), (£2), as well
as

(f4) @ is increasing on (0, 0co), and

(f5) f(s)s — uF(s) = 0 with some u > 2.

Let Jy  be the functional (9.3) with V ¢ L®®RY) and Voo = limpy o, V(x) > 0. Let T be
a set of all continuous pathsy : [0, 0) — Hl’z(lRN) such that y(0) = 0 and Jy p(y(s)) —
—00 as |s| — oo. Let

cyr = infsup Jy p(n(s)). (9.11)
nel s>0

IfV < Vg a.e on ]RN, then the functional ]y ¢ has a critical point u with Jy p(u) =
CV,F > 0.

Proof. By (f3), the set T contains every path of the form t — tv, v # 0. The func-
tional Ji, r has mountain pass geometry, namely Jy; r is zero at the origin, by (9.7) it is
positive on every sphere of sufficiently small radius, while the path 5 is necessarily
unbounded and thus crosses these spheres. By the standard mountain pass argument
(e. g., [133, Theorem 1.15]), functional J v.r has a critical sequence (y;) in H l’Z(IRN ) sat-
isfying Jy, () — 0 and Jy p(ux) — cyp > 0. By (f5) and the standard argument of
Ambrosetti-Rabinowitz, [10], it follows that this sequence is bounded. Consider a re-
named subsequence of (u;) that admits a profile decomposition relative to the group
of shifts G,n.

Let us show that ¢y p < ]V,F(w(l)) and cyp < ]VOO’F(W(")) for n > 2 whenever the
respective profile is not zero. This follows from the inequality ¢y p < max,.o Jy p(1(t)),
where n(t) = t>w™(- —y),y € Z". Indeed, when w¥ # Osety = 0. By (f4) t —
Jv_ r(n(0)) is a strictly concave function, and by the chain rule t = 1is a critical point
of Jy p(n(t)) since ]{,,F(w(l)) = 0. Therefore, t = 11is a point of maximum and ¢y <
]V)F(w(l)). Forn > 0, when w™ # 0, take |yl — oco. Then

Uy s (10) - Jy_r(n(®)| < t J Vi +y) - Vo W™ (0fdx — 0 as |yl — oo
IRN
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uniformly for ¢ near the maximal value for ally. Thus cy p < max;,o Jy_ r(n(t)), where
n() = 2w and the argument above for w® applies in this case as well, giving
Cyr < ]VOO,F(W(H))'

Comparing this with (9.9), we conclude that the profile decomposition for (i) con-
sists of a single nonzero term, say w'™_ Consider two cases.

Case 1: V =V, a.e. In this case, (u(- + y,(:"))) is also a critical sequence, which
we rename as U, which givesus m = 1.

Case 2: V < V_, on a set of positive measure. Assume that m > 2. Then we have,
taking into account that w™ # 0 by the maximum principle,

Jv_rW™) < cpp < max Jy p(tw™) < Jy_p(w™),
00> I tel0,00)” 00>

a contradiction, which shows that m = 1, and thus i, — w® in P (IRN ), and thus
@' () — @' W), Since () is a critical sequence, we have u;, = (u, — @' (uy)) + @' (),
that is, a sum of two sequences convergent in H"*(R"). Therefore, u; converges in
Hl’z(]RN) to its weak limit w. Thus ]{,’F(w(l)) =0and ](w(l)) = Cy f- O

Mountain pass solution as a ground state

Let V be as in the previous section and let F(u) = }jlul” , P € (2,2%), which obviously
satisfies conditions (f1)-(f5).

Let w be a critical point given by Theorem 9.1.4. Consider the minimax value in
(9.11), noting that t — ]V,F(\/fw) is a concave function and its unique maximum is
attained at t = 1 because w is a critical point:

Cyp < max] vr(Vtw) = Jy g(w) = cy p. (912)

This implies that the infimum in (9.11) is attained on the path ¢ — Vtw and that ¢y =
max o Jy r(Vtw). Comparing the maximal value of the functional on the optimal path
t — Vtw with other straight-line paths t — Vtu, we have

1 10
cyp= Inf maxZ>t J (IVul® + Vu?) - ~ts
T ueHYul,=1 t>0 2 p
IRN
5 =
_ =
- p—< inf J (1Vuf? + Vu2)> . ©.13)
2D \ueH™|ull,=1 )
R

In other words, a function w ¢ H*(RY) is a critical point given by Theorem 9.1.4 if
and only if it is the minimizer for the right-hand side of (9.13) multiplied by [ pszzCV, rl , .
For this reason, a positive-valued critical point from Theorem 9.1.4 is called a ground
state. From (9.13), we find that if w is a ground state, then so is |w|, and by maximum

principle |w| has no internal zeros, so w is strictly positive.
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When V(x) = V, > 0, it is known (see [60]) that w is radial with respect to some
point and decreasing, and it is unique up to the sign, once its point of maximum is
fixed (see [75]). We will reserve the notation w, for the positive minimizer for (9.13)
with V = V, (so that Weollp = 1) centered at the origin. Existence of a minimizer for
(9.13) can be also proved directly by an argument similar to one in Example 1.3.7.

Proposition 9.1.5. Every minimizing sequence (u; ) for the right-hand side of (9.13) has
a renamed subsequence of the form u;, = wo, (- + yy) + I with |y, | - coandr, — Oin
HY(RM). In particular, W, 1S a minimizer.

Proof. Let k = infyepzyy -1 [pu(IVul* + Vu?)dx. Without loss of generality, assume
that u, — w # 0 in H"*(RV). Indeed, if u; (- + y,) — O for any sequence (y;), then by
cocompactness of the embedding u; — 0 in LP (RY), which contradicts the constraint
lugll, = 1. Then, on a renamed subsequence u, (- + y,) — w # 0 and w necessarily
satisfies ]{,wF(w) = 0. By the Brezis-Lieb lemma, ||w||§ + lu - = yi) - W||§ — 1. Let
||w||§ = s. Since y (- + y;) — win Hl’z(]RN), we have

K= J (IVugl® + Voouz )dx + o(1)

]RN
= J (VW) + Vo w?)dx + J (|V(uy - w)|2 + Vo (uy — w)?)dx + o(1)
RNV RN

2 2
>ks? +k(1-5)? +0(1),

which can be true only if s = 0 or s = 1. However, the case s = 0 is vacuous since w # 0.
Therefore, u; — win Lp(lRN). Then y, = ]{, F) + o) — win Hl’z(]RN) and w is
the ground state. O

CaseV >V,

We will now give an example of an existence result for the critical points of the func-

tional (9.3) with F(u) = Iljlulp ,D €(2,2%), where V > V_ on a set of positive measure.

Let w,, be the radial positive minimizer in (9.13) with V' = V_, and let def

1
;TI’ZCVWF. By calculations in Subsection 9.1, w(® v W, is the critical point of Jy;_ ¢
of the ground state type. Let T be such that ]V,F(TW(OO)) <0, letyy(y,t) = tw (. - ¥),

y € ]RN, t >0, and let, for R € (0, 0),

Tr € {y € C(Bg x [0, TL,RY™Y) : y(y, £) = yo(y,£), whenever (y, t) € d(Bg x (0, T))}.

(914)
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Let us introduce the following map n : H 1’2(]RN ) — RN,

Xi 1P -

i) = { Jrv mglulPdx, i=1,....N, ©15)
[owlulPdx,  i=N+1

Note thatn(y(y.t)) # n* def (Oy,a) when (y,t) € 9(Bg x (0, T)). Indeed, if t = 0, we have

Mn+(Yo(,0)) = 0 < ny,q = a.Ift = Twehaveny,y(vo(y: 1) = TP > ny, = . If[y| = R,
since w,, is radially symmetric, positive, and decreasing, (1;,...,ny)YVo(>t)) # Oy.
Therefore, for any y € Ty, degree deg(n » y, Bg x (0, T),n*) is well-defined, and

deg(noy,Bg x (0,8),n")) = deg(n o yo, Bg x (0,1),1*) # 0. (9.16)
We set

def
Cy(R, T) = inf ). 1
viRT) ;gRY€Bg}f2€%,T)]V’F (v(.0) (9.17)

We now compare the constant (9.17) with the mountain pass level (9.11).

Lemma 9.1.6. Under assumptions above, there exists § > 0, independent of R, such that
Cv(R, T) > CVDO’F + 6. (9.18)

Proof. Since deg(n o y,Bg x (0,t),(0,a)) + 0 for all y € I'y, we have

CyR.T) > inf Jyru) €€,

lulh=a, | 2 Iy Pdx=0

If C coincides with inf”u”g:a Jv_ r(W), which equals cy_ r by (9.13), then there exists a
minimizing sequence for ¢y that satisfies the constraint J %le lu, Pdx = 0. However,
by Proposition 9.1.5 every minimizing sequence for cy ¢ has a renamed subsequence
of the form uy = W' (- —y;) + 15, Il m2rvy — 0, which cannot satisfy the constraint
| Topqlldx = O unless y; = yl({l) = 0. Then w(® = a'Pw__ is necessarily a minimizer
for C. However, since V > V_, on a set of positive measure, ]V,F(w(o")) > ]Vw,F(W(OO)) =
¢y, > Which contradicts the assumption.

Thus C > ¢y, r- Since neither value is dependent on R, the lemma is proved. [

Lemma 9.1.7. Under the assumptions above, one has
Cy(RT) <2cy_p +0p_00(1). (9.19)

Proof. Consider the path

_ i (00) Y> <ﬂl)/I> (oo)< )’> . (ﬂIYI>
,H(X) = tw X—R— |cos| — | +tw X +R— |sin[ — |,
v.H) ( i) <\ 2r i) 2R

t€[0,T]lyl <R (9.20)
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Then

Cy < ¢
Y Iylsg,ltae)[(o,r]]V,F(Y(y ))

< max (
lyl<R,te[0,T]\ 2

2p 1, 1 alyl\’ nlyl
= 2p—_ SV F |y|sg,lt%)[(o,ﬂ<§t ptp[cos< +sin R + 0p_0o(1)

2p 1, 1,1 )
= 2— ax —t _ _t o 1
p- 2 V F [’E[O,T]< 2 p 21’;2 R—’OO( )

<2cy_F+ Opoeo(D). O

1 1
STy oy, 1) - I;t” 2 1)||§>

In the course of the proof of the theorem below we will need, however, a strict inequal-
ity in (9.19), which will follow from an upper bound imposed on V.

-2
Theorem 9.1.8. Let F(s) = |sl’, p € (2,2%), and assume that V,, < V < 2177 Veos
where the first inequality is strict on a set of positive measure. There exists a solution
ueH 1’Z(IRN ) to the equation

—Au+ VU =[uP?u, xeRrY, (9.21)
satisfying Jy p(u) = Cy(R,T), where Cy(R,T) > cy_r > O is given by the relation (9.17)
with R > R, sufficiently large.

Proof. Let (u;) be a critical sequence for Jy ¢ at the level Cy (R, T). By the standard
Ambrosetti-Rabinowitz argument [10], we have the sequence (u;) bounded in
HY(RY). By Lemma 9.1.3, with some m € N U {0} we have

CyR.T) =mey_p +Jy (W), (9.22)

where w'V is the weak limit of the renamed subsequence of U, which necessarily is a
critical point of J, p. Assume that we have proved that w® £ 0. Then

2

]V,F(W(l)) = p;]V,O(W(l))

<

Iw @2

p- 2 (00)
> w _—
) ]VOO,O( ) "W(OO) "1%

1
J V,o(W(l))i

,
Ty, o (W)

=Jy F(W(OO))

00>

which implies Jy p(W®") 2 Ji;_£(W(s)) = €y - Combining this with (9.22) and (9.19),
we get (m + ey _r + 6 < Cy(R,T) < 2cy_p + Op_oo(1), which implies m < 1, that
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is, m = 0, provided that the value of R is fixed sufficiently large. Consequently, the
profile decomposition of the critical sequence (i) consists only of the term w, that
is, up — w in I”. Since ]V,F(uk) — 0in HIZ(IRN), we also have u, — w D jn le(]RN),
which implies Ji, s(w") = 0 and Jy (W) = Cy (R, T).

It remains therefore to prove that w'¥’ # 0. Assume that w'¥’ = 0. Combining (9.22),
(9.18), and (9.19) we have necessarily Cy(R, T) = 2cy_r with a critical sequence of the
form wo, (- — yi) + Woo (- — 2), where |y, | — 00, |z;] — o0, and |y — z;| — co modulo a
remainder Vanishing in H**(R"). On the other hand, evaluating the functional on the
path y,(y,t) = tw (- —y) and using V < 2 V , we have

R T) < s
Cy(R,T) < |y|£i’fo,n Jv (Yo, 1))

< Lt
|y|<glte)[(0 T] ]27 Veo F(YO()/ ))

p2 {2
< max] J[ 2% E(|VW(OO)| + Vg W ™P?) - ) Iw(°°)|p dx

and from an elementary evaluation of the maximum in the last line, analogous to
(9.13), one has Cy(R,T) < 2cy_ p uniformly in R, which contradicts (9.19), and thus
proves the theorem. O

9.2 Nonlinear Schrédinger equation — zero mass case

Let N > 3and let f : R — R be a continuous function, positive on (0, co) and negative
on (-0, 0), satisfying

() f(2¥s) = 2¥f(s), seR.

An example of such function is f(s) = |s|2*‘zs, and in general (f*) implies that there
exist C;,C, > 0 such that Cllslz*"l < |f(9)] < CZISIZ*"I. Let F be the primitive of f as
in (9.1) and let ¢ be the functional (9.2). Fréchet derivative ¢’ of ¢ in H L2(RN) equals
v [ f(wvdx, which is by (f*) is a continuous as a map H L2RNy o HY(RY), as
well as a map from H**(RY) equipped with weak topology to H**(RY) equlpped with
weak topology. Note that ¢ is invariant with respect to the rescaling group g > Wewill
consider now the functional of the form (9.3) with V e L¥?(RY), defined on H**(RY).
It has a continuous Fréchet derivative on H**(R"Y) and J;. , (u) = u+ [Vu] - ¢’ (u), where

V) < [ VOOuv dx.
Lemma 9.2.1. Assume (f*) and let V ¢ LN>(RY). There exists a number C > 0 such

that every profile decomposition in H**(RN), relative to the rescaling group G %) for
any critical sequence (u;), |Vugl, < L of the functional (9.3) has at most M = CL* + 1
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terms. Furthermore,

M
]V,F(W(l)) + ZJO’F(W(H)) < limsup Jy p(uy). (9.23)
n=2
Proof. Notethatifg, € G, g — 0, and g;u;, — w then function w satisfies -Aw = f(w),
and, in particular, by the Pohozhaev identity, ||Vw||§ =2" I]RN F(w)dx. Let

y(t) = sup J F(u)dx, te][0,c0).

SIvul=t gy

By setting u(x) = v(t*ﬁx), we easily get that
y(t) =yt s, (9.24)

From this, it is easy to see that ||Vw||§ > 2%(2*y(1))¥. Then by (1.15), if the profile
decomposition has at least M terms, then at least M — 1 terms correspond to g, — O,

and then (M - 1)22 (2*y(1)) 7 < lim sup |V |, which gives M < 1+ SmsupIVily |
27@ya) T

Relation (9.23) is analogous to (9.9). O

Theorem 9.2.2. Letf : R — R be a continuous function satisfying conditions (f*) and
(f5) of Theorem 9.1.4. Let T be a set of all continuous paths y : [0,c0) — H L2(RNY such
that y(0) = 0 and Jy p(y(s)) — —oo if |s| — co. Let

c= )11r€1£ supJy £(1(s)). (9.25)

520
IfV <0, then the functional ]y ¢ has a critical point u with Jy, p(u) = ¢ > 0.

Proof. Note that the set I' contains all paths of the form t — v(t™l) with v # 0 and
thus it is nonempty. The functional i r has the mountain pass geometry since it is
positive on any sphere of sufficiently small radius by (9.24), and since the path 7 is
necessarily unbounded, and thus crosses the sphere. This yields ¢ > 0. By the stan-
dard mountain pass argument (e. g., [133, Theorem 1.15]), functional Ji,  has a critical
sequence (u;) satisfying ]",,F(uk) — 0and Jy r(u) — c. From (f4) and the argument of
Ambrosetti-Rabinowitz, it follows that this sequence is bounded. Consider a renamed
subsequence of (i) that admits a profile decomposition relative to the rescaling group
G " . Note that for any n > 2, w™ is a critical point of Jo r- This follows from the weak-
to-weak continuity of ¢’ and of [Vu].

Assume now that w™ # 0 for some n > 2. By definition of the minimax value c we
have ¢ < max;.q Jy (n(t)), where n(t) = w(”)(t’1(~ -y),Y € RY. As we take lyl = oo,
we have

Uy r(n®) = Jor(n®)] < J IV +y)|w (e x) dx - 0

RN
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uniformly for t near the maximal value for all y, since V ¢ N/ Z(IRN ) (details are left to
the reader). We have then

M (1) — 1 NAyg, () N )
¢ <maxfop(w"(¢7)) = max SE VW, - £ p(w™).

By the chain rule, t = 1is a critical point of J, z(n(t)) since ]('),F(W(”)) = 0. Therefore,
t = 1is a point of maximum and ¢ < fo,F(W("))- Comparing this with (9.23), we conclude
that the profile decomposition for (1) consists of a single non-zero term gl((")w("). In

the exceptional case V = 0, the problem is shift-invariant, so g(")_luk is also a critical
sequence, renaming which as uy, so that its weak limit is win to be renamed as w(l)
we get u, — w® in 1% (RY). If, however, our assumption w™ # 0 were false for all
n > 2, this would imply u;, — w in L2 (RV).

Consider the case when V < 0 on a set of positive measure. Taking into account
that w™ # 0 by the maximum principle, we have

Jor(w™) <c< nax Jyp(w (")) <Jorw™),

a contradiction, which shows that u;, — w®in1? (IRN ) also in the case V # 0.

Then ¢’ () — @ 'w®) and [Vu,] — (vw®]. Since (ug) is a critical sequence, we
can write (1;) a sum of two sequences convergent in HI’Z(IRN): (]{,)F(uk)) = (U + [V ] -
@' () and (@' (uy) - [V, ). This implies that u, converges in H**(RY) to its weak limit
w._ Therefore, ]I’/’F(W(l)) =0and ]V,F(W(l)) =c. O

9.3 Equations with finite symmetry

Let N > 2, let p € (2,2"), and let Jy ¢ be the functional (9.3) with F = [,y [ulPdx.

Theorem 9.3.1. Let G be a subgroup of O(N) such that there is m € IN such that for every
y € RN,y # 0, the orbit Gy contains at last m distinct vectors. Let Jv r be the functional
(9.3) with V e L®(RN), lim,_,, V(x) =V and V on =V for every n € G, and consider
Jv 5 defined on HY*(RY) = {u € H"*(RY) : Vn € G, uon = u}. Let T be a set of all
continuous pathsy : [0,00 — H}}’Z(IRN ) such that y(0) = 0 and Jy p(y(s)) — -oo if
|s| — oo. Let

cg = infsup Jy p(n(s)). (9.26)
nel’ s>0
If
Vix) < mp2 V., with a strict inequality on a set of positive measure, (9.27)

then Jy p has a critical point u € H(l;’z(lRN) satisfying Jy p(u) = cg.
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Proof. Similar to the proof of Theorem 9.1.4, the functional i, ¢ has a bounded critical
sequence (u) in Hé’z(]RN) satisfying ]{,,F(uk) — 0 and Jy p(u;) — ¢ > 0. Consider a
renamed subsequence of (u; ) that admits a profile decomposition relative to the group
of shifts G,~. Note that any nonzero profile w™ with n > 2 equals (as discussed in the

previous section), a radially symmetric ground state w(® def Aw,,, up to a sign and
1
an Euclidean shift, with A = (”szcva)i. As in the proof of Theorem 9.1.4, we have

that if w® # 0, then ¢ < ]V,F(w(l)). Comparing this with (9.9), we conclude that the
profile decomposition for (1) has no terms w("), n > 2, thatis, u, — w® and, as in
Theorem 9.1.4, w'V is the required critical point and the theorem is proved. It remains
to prove that w # 0.

Assume that w'¥ = 0 and that, without loss of generality, w® = W) Sinceu ¢
Hé’z(]RN) and w (- + y,((z)) — w®_ we also have u(n(- + y,((z))) — W), n € G, and
thus u (- + ny,((z)) — W, Nt = w(®_ Passing to a renamed subsequence, assume

(2)
that % — w. By the assumption of the theorem, there exist n;,...,n,, € G such that
vectors ;. . .., N,,w are distinct. Then |,y -n,y\”| — coask — cowhenevern # ¢,
and thus a renamed subsequence of () has a profile decomposition with at least m

nonzero terms w'® (- - ﬂe)’,((z))» ¢ =1,...,m. Then by (9.9), we have C; > mcy_ . On
the other hand,

C; < max w®) < maxJ »
G t>0 ]V’F( ) t>0 ]mzﬁv

00>

which yields a contradiction. Thus w £ 0 and, consequently, w® is the required
critical point. O

9.4 Blowups for the Moser-Trudinger functional

We begin with a partial refinement of Corollary 1.4.2 concerning weak continuity prop-
erties of the Moser-Trudinger functional

o 1
J(u) = JeaN|u|N—1 dx, ay = Nw}]\\l[—l' (9.28)
Q
Let m;, t € (0,1), be the family (3.68) of Moser functions on Hé’)’r\; 4(B), B = B,;(0):
m,(r) < (wy) ¥ log(1/t) min{ igig;g , 1}-, r=Ixlrte(0,1). (9.29)

and consider the following functional on H™ | (B):
(m;,u) def J IthIN_Zth -Vudx, te(0,1). (9.30)
B
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An elementary computation shows that the functional m; is continuous. By
Lemma 3.11.1, we have

(mu) = N log(1/t) T u(t), t e (0,1). (9.31)

Proposition 9.4.1. Let u; € Hé’lr\;d(B), IVurly < 1, up — u, and let ] be the functional
(9.28) Then J(u,) — J(u), unless the sequence (u;) has a renamed subsequence such

that w - m,, — 0 in Hy" ;(B), with ti, — .

Proof. Let us substitute (9.31) into (9.28). After elementary simplifications one arrives
at the following representation:

1 N
J(u) = wy_y <j =i 41 ) (9.32)
) r
where u € H(l)ﬁ d(B) and [|Vuly = 1. Assume first that there exists ¢ > 0 such that
(m{,u) < 1- e Then J(u) — J(u) by the Lebesgue dominated convergence theo-
rem. The remaining case is when for some ¢ € (0,1), u; — m, — 0in H(l)’fr\; 4(B). As-
sume first that the weak limit u is not zero. Then, necessarily, w, — m, in Hyy, ,(B)
for some t € (0,1). This implies the uniform convergence of u; on [¢t,1] as well as
jB |Vuk|Ndx — 0, from which easily follows J(u;) — J(m;). If y;, = mg + o(1) — 0 with
t, — 1, an argument repetitive of that for the case u, — m; above will give J(u;) —
J(0). We have, therefore, with necessity, a renamed subsequence u; = me + o(1) with

tk—>0. O

The rest of this section is dedicated to the structure of Palais—Smale sequences
for a semilinear elliptic problem of critical growth in two dimensions. We should note
that unlike the critical nonlinearity j |u|2* dx when N > 2, in the case N = 2 the Moser-
Trudinger functional lacks scale invariance and, as we seen above, has weak continu-
ity behavior that is absent in I |u|2* dx (which lacks weak continuity at any point). In
this context, it is not a surprise that critical sequences of the semilinear elliptic func-
tional with a critical nonlinearity have more complex structure in the case N = 2 than
in the case N > 2.

Let B denote an open unit disk in R? centered at the origin.

Definition 9.4.2 (Moser—Carleson—Chang tower functions). Let C,, C_ be closed sub-
sets of (0,1), such that C = C, U C_ is nonempty, let A = (0,1) \ C, and let A =
{(a,, by)}nen be an enumeration of all connected components of A starting with a; = 0.
A continuous radial function p¢ ¢ € Hcl)’)fa 4(B) is called a Moser—Carleson—Chang

tower if
ﬂ%log % recC,,
Mc,c (1) = —\l%rlog % recC._, (9.33)

A, + B,log % r e (apb,),Apn B, € R
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If C_ = 0, we will use the notation y instead.

When the set C, consists of a single point ¢ € (0,1) and C_ = ¢, the function u,
is an original Moser function (3.68). When C ¢ (0,1) is a closed interval, a function
of the form p is found in the proof of existence of extremals for the Moser-Trudinger
functional by Carleson and Chang ([28], p. 121) written in the variable t = log %

Let us prove some elementary properties of Moser—Carleson—Chang towers.

Proposition 9.4.3.
() Coefficients A, B, are defined uniquely by continuity at the points a,,b, € C.In

particular, if C = C,,
ﬂlog \/ 0og — b
ol o
L !

(when n = 1 the values in (9.34) are understood in the sense of the limits as a; — 0,

thatis, A; = \lﬁlog bll and B; = 0).

(ii) The function Mc,c (1) has continuous derivative at every point of (0,1) except

Ay =

B, (9.34)

{an) bn}(an,bn)eA .
(iii) Let A’ be the set of all intervals (a,b) € A where Mc,.c. does not change sign, and
let A" = A\ A'. Then

1( dr
Whe.c =7 [ =
4 2 rlog -

|y viyos] sl s
(a,b)e A’ \/E+ \/E (a,b)e A" \/E— 1/log b.

(iv) The number of zeros of Uc,c_on (0,1) is less or equal than the value of ||Vyc+,cf ||§-1.
(v) For any choice of C_, C,, one has IVie, c. ||§ > 1 and the equality holds only if C
consists of one point.

(9.35)

Proof. (i): Values (9.34) for n > 2 are the unique solutions of continuity conditions at
a,and b,, A, + B,log ai = \lﬁlog ai and A, + B,log bi = \/%Tlog bi. Since p¢ ¢ has
a finite Sobolev norm, we have, necessarily, B; = 0, which yields A, = ﬂ%{log bil.

(ii): For the sake of simplicity, we consider the case C = C,, the general case is sim-
ilar. If (ay,, by, ) ¢ Aand a, — cfor some c, then necessarily b, — c, from which, by
elementary computation, follows pg(c) = limpg(a, ) = limpg(b, ) = (\55108 1)'|,—.
Consequently, since p. is (by definition) smooth at all internal points of A and of C,
the only points in (0, 1) where ;. is discontinuous are the points a,, and b,,.
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(iii) It follows from the direct computation of the right-hand side in

n

b
(e I3 =2m J |]1£«+)Ci(r)|2rdr +2m Z |yé+)ci(r)|2rdr.
c..C. "4,

(iv): The terms in (9.35) corresponding to the set A" are greater than 1. Further-
log, and the

\2log 1

more, on the interval (a,1) € A, one has necessarily p¢c ¢ (r) = +

contribution of this interval to (9.35) is

|VMC+,C, |2 = 1

re(a,1)

(v): By the last observation, the sum in (9.35) is greater than or equal to 1, and the
equality occurs only if the sum consists of the one term (a, 1), a situation correspond-
ingto A = {(0, a), (a, 1)}, that is, to the Moser function m,. O

We consider critical nonlinearities as defined in [3]. Without loss of generality,
we restrict the consideration to the factor b in the exponent equal to 4, since the
general case can be always recovered by replacing the variable u with a suitable scalar
multiple. Let f € C(R) and F(s) = [, f(t)dt.

Definition 9.4.4. We say that a continuous function f : R — R is of the 4m-critical
2
growth, if f(s) = 871g(s)e*™ and for any 6 > 0,

lim g(s)efgs2 =0.
|s|— 00
We will study the functional

1 2 1 12
J(u) = EJ|Vu| dx- JF(u)dx, ueH

o2 a(B). (936)
Q Q

We write % f(t) = g(t)el”“z, and we will use the following assumptions:
(g1) Thereisa T > O such thatinf,.; g(t) > 0 and sup;._r g(t) < 0;

. F
(82) limy_q % =0.

Remark 9.4.5. Examples of g(t) can be found in [3]. They include g(t) = t.

We use the fact that uy is a critical sequence for the functional (9.36) in order to
make the expansion (4.44) more specific, namely, to verify that every asymptotic pro-
file (4.41) is a Moser—Carleson—Chang tower and that the expansion (4.44) has finitely
many terms. This is stated at the end of this section as Theorem 9.4.7.
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Theorem 9.4.6. Assume that function f be of 4m-critical growth and satisfies (g0) and
(g1). Let uy, be a critical sequence of (9.36). Then every concentration profile w™
n = 2, of (uy), given by (4.41), equals a function Ko ¢ with some disjoint closed sets

c™, c™ ¢ (0,1), as given by Definition 9.4.2.
Proof. Let us derive first the equation satisfied by the limit (4.41). Index n in the argu-

ment below is fixed and will be omitted. Since uy, is a critical sequence, and operators
(3.66) are isometries on H fa 4(B)s

(gsk],(uk): V)Hé’Z(B) — 0. (937)

Since gs;u;, — w by (4.41), we have 8 (i —J '(u)) — w, which in turn implies that
gsk(—A)*’% — w, where (-A)™! is the inverse of the Dirichlet Laplacian on B (re-
sponsible for representation of the scalar product of L? as a bilinear form in Hé’z). An
elementary computation shows the following identity:

Agap = s’r" g .
Taking now § = (-A)™ 8f—n, we have

f 2. f
Ag Ao = sprPg g

from which it immediately follows that
si/zrzjk 1nf(uk(rsk) — —Aw (9.38)

in the sense of H “12(p).
2
Recall that -~ &f(8) = g(s)e*™ . 1t easily follows from (g0) and (g1) that

lim log|g(s)|

IS0 S2

=0. (9.39)

Note that |w(r)| < ﬂ%log% for all r € (0,1]. Indeed, if for some a € (0,1] a converse
inequality is true, then for all k sufficiently large, 47u;, (p° )2 -2s;log [1) will be bounded
away from zero when r is in some neighborhood of a and 9 ¢ S!, and thus, taking
into account (9.39), we have the left-hand side in (9.38) uniformly convergent to co on
an interval. Taking a positive test function supported on an interval, we arrive at a
contradiction, since —Aw is a distribution.

LetC; = {r € (0,1] : [w(r)| = ﬂ%log %}. Since w is continuous on (0, 1], the set C;
is relatively closed in (0, 1]. Since w € H**(B) and +/5-log + ¢ H"*(B), C; # (0,1]. Thus
the complement of C; in (0, 1] is an at most countable union of open intervals of (0, 1].
Let A be an enumeration of all such intervals. If (a, b) € A, then w(a) = + % log %,
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w(b) = i\l% log% and |w(r)| < \lﬁlog% for r € (a, b). From (9.38) it follows that w is
harmonic on (a, b), and, as a radial function, it has the form A + Blog %, A,B e R,and
the values of A and B are uniquely defined by the values w(a) and w(b). Let C = C;\ {1}.
It remains to show that w is constant in a neighborhood of zero and is harmonic in a
neighborhood of 1. Assume first that A is infinite, and thus countable in this case.
Then, by elementary calculations already mentioned in the proof of Proposition 9.4.3,
we have that w satisfies (9.35), which in turn shows that the set A" of intervals in A,
where the function w changes sign, is finite. Setting 0,, = 1 when a,, = 0, 0, = +c0

when b, =1and
oo 1
def IOg a,

O, = -
log b,
otherwise, we have
2 0, — 1
vwizz ) (9.40)
(@y,by)e Al 1

Note that the sequence o,, is bounded, otherwise the sum above would have in-
finitely many terms greater than 1/2, say 0, < M - 1, M > 0. Then from the relation
above it is immediate that 0,, — 1, and

on-1 2 -
[TonsC J] 0n<Ce™@ ™ <ceran < ceM™: = € < co.
n (anby)e A’

Let v be any finite subset of Z such that (a,, b,,),.c, are ordered by n and none of a,, is
zero. Then

max,, 1/1og a

min,,, 1/log bin nev nez

from which one immediately concludes that there are no sequences (a,,, by, ) € Asuch

thata, >Oanda, — Oorb, — 1.Nosuchsequences exist when the set A is finite.

Thus there exists an € > 0 such that on the whole interval (0, €), respectively, (¢, 1), the
. . . . 1 1

function w is either harmonic or equals ++/ ﬁlog < The latter, however, cannot occur

since this contradicts w ¢ Hé’Z(B). O

We derive the specific form of profile decomposition given by Theorem 4.8.1 to
critical sequences of the functional (9.36).

Theorem 9.4.7. Let J be the functional (9.36) with f of critical growth satisfying (g0),
(g1), and (g2). Let u, € HY 4(B) be a bounded sequence such that ] "(u) — 0 and

O,ra
J(uy) — c. Then the sequence u; has a renumbered subsequence of the following form:
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There exists an m € N, m < 2c, sequences (sg)), cees (s}(’")) of positive numbers, conver-

gent to zero except sE{l) =1, and closed sets CE_rl), e Cim) € (0,1), such that
1 1
log o log |~ whenever p # q, (9.41)
Sk s
$ 2
Uy — nggmd))c@ — 0 inexplL’, (942)

=

and

2 2
Vu Vo ~ol5-
I knﬁ]Zu Meo col

If Z; is the number of zeros of w¥ = Ko c0s then Zj"ll Z; < 2c-2m. Inparticular, ifc < m,
all functions w9 are sign definite. Furthermore, if % = ¢, then for everyj = 1,...,m,
cO = {t;} for some t; € (0,1), and pc is a Moser function mt}_,j =1,...,m.

Proof. The statement follows immediately from application of Theorem 9.4.6 to The-
orem 4.8.1 and properties of the profiles y¢ . from Proposition 9.4.3. Note that from
(g2) it follows that jF(uk) — 0,s0c > % Z]- ”Vch'),c@ ||§. Then relation Zi"ll Zj <2c-2m
is immediate from Proposition 9.4.3. If ¢ = m/2 then, necessarily, each of the norms
in the right-hand side equals 1, each Ko co is a Moser function, the inequality be-

comes an equality, and the resulting convergence of H(l)’z-norms in (9.42), ||Vuk||§ -
Y IVpeo q0l3, together with convergence in exp L* implies Hy*-convergence. O

Remark 9.4.8. It is natural to ask if any sum of the form as in (9.42) is a critical se-
quence for the functional (9.36). The answer is negative in the direct sense: the sim-
plest expression of the kind, A, g; m; with A, — 1may or may not be a critical sequence,
dependent on the choice of the sequence (A;) approximating 1 (see [5]). Rephrasing the
question, however, whether every sum of the form (9.42) becomes a critical sequence
if appended with a suitable sequence vanishing in H(l)’)fa 4(B), the answer is answered

positively in [33] in the cases when the sets Cg) are singletons of when the family Cg) i
consists of a single set which is a closed interval.

9.5 Bibliographic notes

A general introduction to direct methods of calculus of variations one may find in
many books, such as Chabrowski [30], Struwe [120], or Willem [133]. Profile decom-
positions for Palais—Smale sequences of semilinear elliptic functionals containing
finitely many terms (Lemmas 9.1.3 and 9.2.1 above), are abundant in literature, for ex-
ample, Struwe [119] (bounded domain, critical nonlinearity), Lions [85] (unbounded
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domain, subcritical nonlinearity), Benci and Cerami [17] (unbounded domain, crit-
ical nonlinearity). Theorems 9.1.4 and 9.2.2 stem from Proposition 9.1.5, proved by
Lions [83], whose different generalizations are too numerous to be cited here. Theo-
rem 9.1.8 uses a baricentric minimax statement inspired by [24] (see also [18] and [29,
Proposition 3.3]).

Existence of solution with finite symmetry under relaxed conditions, Theo-
rem 9.3.1, is due to [137].

Proposition 9.4.1 is following [7]. It uses some technical elements from [94] and is
related to a step in the proof in [28] for existence of extremals for the functional (9.28),
which then shows that the functional attains, on a function of the type (9.33), a higher
level than the value where it fails to be weakly continuous. Section 9.4 is the radial
case of the corresponding results in [33].
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10.1 Topics in functional analysis

Weak compactness

A Banach space is locally compact if and only if it is finite-dimensional. Infinite di-
mensional Banach spaces possess weaker compactness properties.

Theorem 10.1.1 (Banach-Alaoglu theorem). A closed ball in a Banach space E, which
is a conjugate of another normed vector space, is compact in the weak*-topology of E.

We recall that if F is a Banach space, then weak*-topology on E = F* is gener-
ated by sets {x ¢ E: (x,p)r < a},a € R, ¢ € F, and a sequence (x,), in E is
weak*-convergent to a point x € E if and only if (¢, x,) — (@, x) forevery ¢ € F.

Theorem 10.1.1 does not imply that every bounded sequence in E has a weak*-
convergent subsequence. This is true, however, if weak*-topology is metrizable on the
bounded subsets of E, which is the case, in particular, if E is reflexive or separable:

Theorem 10.1.2. Let (x,,),cn be a bounded sequence in a Banach space E.

(i) IfE is reflexive, then (x,),cn has a weakly convergent subsequence.

(ii) IfE is a conjugate of another normed vector space and is separable, then (x,))pen
has a weak*-convergent subsequence.

For more details the reader may refer, for example, to [23, Chapter 3].

Uniformly convex and uniformly smooth Banach spaces

Definition 10.1.3. A normed vector space X is called uniformly convex if the following
function, called the modulus of convexity of X, is strictly positive for all € > 0O:

X+y

6(¢e) >

= inf ‘ €€ [0,2].
xyeX, lIxl=lyl=1, Ix-yl=¢
The function € — 6(g)/e is nondecreasing on (0, 2], ([48] Proposition 3, p.122),
and thus € — 6(¢) is strictly increasing if 6(¢) > 0.
Uniform convexity is equivalent to the property

X +
6y eX <1yl <1 — “Ty <1-8(Ix-yl). (10,1

[48, Lemma 4, p. 124].

https://doi.org/10.1515/9783110532432-010
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From (10.1), it follows that for any two elements u,v € X which satisfy |ul| < |v|

andv # 0,
< ||v||<1 - 6( "“";”V” >> (10.2)

This in turn implies that for every two elements u, v € X that are not both zero one has

u+v

u+v

<C - c25< lu-vi > (10.3)
G
whenever C; > max{|lul, |[v|} and C, > max{[ul, [v|}. When C; = C, = max{|u], [v|}
relation (10.3) is exactly (10.2), up to an interchange of u and v.

One calls a Banach space X uniformly smooth if for every € > O there exists § >
0 such that |x + y|| + [x = ¥| < 2+ gllyll whenever |x| = 1and |ly| < &, x,y € X.
The conjugate space X* is uniformly convex if and only if X is uniformly smooth, see
[80, Proposition 1.e.2]. If X is uniformly convex, then the norm of X, as a function
¢ : x — |x||, considered on the unit sphere S; = {x € X, |x| = 1}, is uniformly Gateaux
differentiable, which immediately implies that ¢’ is a uniformly continuous function
S; — S™;; see [80, p. 61].

If one considers ¢ as a function on the whole X, by homogeneity one has ¢’ (x) =
@' (x/lIx]) € S*; forall x # 0, and it is easy to see that ¢’ (x) coincides with the uniquely
defined duality conjugate x* of x relative to the modulus ||x|| (i. e., with normalization
(x*,x) = ||Ix]|). We summarize this in the following statement.

Lemma 10.1.4. Let X be a uniformly convex and uniformly smooth Banach space. Then
the map x — x*, where x* is a duality conjugate element of x relative to the modulus
I, is a continuous map X \ {0} — X* with respect to the norm topologies on X and X*
and is in fact uniformly continuous on all closed subsets of X \ {0}.

In uniformly convex spaces, one also has an important connection between weak
convergence and convergence in the norm.

Proposition 10.1.5 ([23, Proposition 3.32]). Let E be a uniformly convex space. If
(W) ken 1S a sequence in E, such that u;, — u and |uy || — |ull, then u;, — uin E.

Schauder basis
For more details on Schauder bases, we refer to [79]. A Schauder basis {b, },cn Of @

Banach space E is a sequence of elements of E such that for every element x € E there
exists a unique sequence a,, of scalars such that

[oe]
X = Z a,b,,
n=0

where convergence is in the norm of E.
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Every expansion in Schauder basis is unconditionally convergent. It follows from
the Banach-Steinhaus theorem that the linear mappings P,, defined by

o0 n
X=Y by — Py(0) =) ayby
k=0 k=0
are uniformly bounded in norm by some constant C.
Let b;, denote the coordinate functionals, where b}, assigns to every vector x € E
the coordinate a,, of x in the above expansion. Each b, is a bounded linear functional
on E. Indeed, for every vector x € E,

Ib; (X)l ”bn" = |an| ”bn”
= @byl = [Py (0) = Py ()] < 2Clix].

Functionals b, are called bi-orthogonal functionals associated with the basis b,,.
When the basis b,, is normalized, one has a uniform bound ||b} |- < 2C. The famous
question of Banach if separable Banach spaces always admit a Schauder basis was
answered negatively by Paul Enflo [43].

The real and the convex interpolation methods

Let (X,, X;) be two Banach spaces continuously embedded into some Hausdorff topo-
logical vector space (such spaces are called a Banach couple or a compatible cou-
ple). Their interpolation by the real method can be defined with help of the Peetre
K-functional

K(x, t; X0, Xy) = inf{lIxollx, + tlxlly, : x =X + X, Xo € Xo, X1 € X3} (10.4)

The interpolated space Xj , is the space of all elements in X, + X; for which the follow-
ing norm is finite:

1
(o]

q
IXllg,gk = (J(t"eK(x, t: X0, X)" %) , 0<H<1,1<q< oo, (10.5)
0
Ixllg,c0k = SUP t °K(x,t; X0, X;), 0<O<1. (10.6)
t>0

One has ([2, p. 216, Corollary 7.17], [19, p. 46] or [128, pp. 25-26]) the following inclu-
sion:

Xo-X1)o,q, € Xo,X1)gq, forallfe (0,1)and1<gq < gy <co. (10.7)

Let now (4., 4,) be a compatible couple of Banach spaces (over the field C) and
define @ = ®(A, 4,) as the space of all functions f of the complex variable z = x + iy
with values in A, + 4, such that:
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(@) fisbounded and continuous on the strip 0 < x < 1;

(b) f is analytic from the strip 0 <x < 1into A, + A;

(c) fiscontinuous on the line x = 0 into A, and ||f (iy)ll 4, — O as ly| — co;
(d) fis continuous on the line x = 1into A; and |If(1+iy)ll4, — Oas [y| — co.

The space ® endowed with a norm
Il = max{suplf @), suplft + )l |
is a Banach space. The complex interpolation spaces Ay, 6 € (0, 1), are defined as
Ag=1[Ap,A1lg={ucAy+A;: u=f(0) for somef e ®}
(see Calderdn [26]), and they are Banach spaces with norms

lulla, = inf{If o : £(6) = u}.

Interpolation estimates

Theorem 10.1.6 (see, e. g., [2, pp. 220-221]). Let (Ay,A,) and (By B,) be two Banach
couples. Let T : Ay + A; — By + B, be a linear operator continuous as a map Aq — B,
and as a map A; — B,. Then

0 1-6
” T||(A0)A1)gyp—>(B0,Bl)9yp < " T"AO_’BO ” T”A1 _>Bl > (10.8)
and
1T <ITI§ 5 ITIL? (10.9)
[Ag-A1]lg—[Bo,Bilg = Aq—By Il 14, -B, B

foreveryp € [1,00] and every 6 € (0,1).

For elements a € Ay N A, the following estimates hold:
1-6, 16
lallia,a,, < lalla, lala, (10.10)
and

1-6 6
Il ay 4, < Coplalslall, - (10.11)
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Examples of interpolated spaces

1. Interpolation of Lebesgue spaces (see, €. g., [2, Chapter 7]):
(L, L), = (L7, L]y = L7 foralll<p, <p; <ocoandf e (0,1), (10.12)

0,0

Do p’
2. Sobolev spaces by interpolation (see [2, p. 250]):

. 1 _
Wlth}—7 =

H(RY) = [H™P(RY), P (RV)] meN,pe(l,00),0<s<m. (10.13)

s/m’

Note that all choices of m as above give the same space.

3. Interpolation of Besov spaces (see [19] for the homogeneous case, and [128, p. 186]
or [2, p. 230]) for the inhomogeneous case): for each s, s; € (0, 00), p € (1, c0) and
q € [1,00], Sy # S1, Sg = 051 + (1 — 6)s, one has

BSe,p,q(]RN )= ( H50>P(IRN ), Hspp(lRN e (10.14)

\q’

and

BSQ’P,CI(]RN) — (H50>P(]RN)) Hsl’p(]RN))e (10.15)

.q’
4. Lorentz spaces are obtained by the real-method interpolation of Lebesgue spaces:

(R LRy, = PR, - = s 2

= (10.16)
Pe D Po

10.2 Function spaces with scale invariance

In this section, we summarize properties of Banach spaces of functions (or classes of
equivalence of functions modulo polynomials) on RN whose norms are invariant with
respect to the rescaling group (3.1). We follow here [51, 128], and [2].

Sobolev spaces

Sobolev spaces H™? (RY), m € N, p € [1,00] are defined as completions of C3° RN)
with respect to the norm ||[V"ul|,,, where

0Mu

V'u=1{v% . = {—}
lal=m OX1s . X S ey =m

is the collection of all partial derivatives of u of order m. This definition extends to
the case of H*?(RY) = IP(RY). The space H™P(RY) is continuously embedded into

printed on 2/10/2023 3:51 PMvia . All use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

196 —— 10 Appendix

the space of distributions only if N > pm, in which case one has the limiting Sobolev
embedding H™P(R") — LY(RN) with 1/p - 1/q = m/N.

A common extension of the Sobolev spaces to fractional values of m, which re-
tains the name Sobolev spaces (otherwise called potential Sobolev spaces or spaces
of Bessel potentials), denoted H>? (IRN ),s € R, p € [1, 0], is characterized by the norm
1-0) 3 ull-

A different extension, Sobolev-Slobodecki spaces, denoted WSP(RY), s > 0, s ¢
N, p € [1, ), are defined with the help of the Slobodecki—Gagliardo seminorm

[flopa = (J J [feo —foP dxdy)é, 1<p<00,0e(0,1),
Q0

b - y1%+
and are characterized by the norm

def
flh-e@ = Wlaso@ + sup Vs s1p> 8> 0
al=LS
Sobolev-Slobodecki spaces coincide with the real interpolation spaces of Sobolev
spaces, that is, in the sense of equivalent norms the following holds:

WP (Q) = (HP(Q), H**P(Q)) keN,s e (kk+1). (10.17)

s-|slp’

When p = 2and s > 0 Sobolev and Sobolev-Slobodecki spaces coincide.
Corresponding inhomogeneous spaces are defined, respectively, as H*? = H¥’nL?
and W5 = WP nIP,

Besov and Triebel-Lizorkin spaces via Littlewood—Paley decomposition

The Littlewood-Paley family of operators {P;};, is based on existence of a family of
functions {g;};c, with the following properties:

suppg; c {& e R : 271 < ¢ < 27}, (10.18)
Y 9u(&) =1 forall¢ e RV \ {0}, (10.19)
jez
®;(§) = 9o(27¢) forall¢é e RN andj € Z, (10.20)
@18 + ;(§) + 9;,4(§) =1 forall§ € supp ¢;. (10.21)

Then P; : H'? (RY) - R, j € Z, are given by

Pu=F"py(27)Fu, (10.22)
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where F is the Fourier transform. Homogeneous Besov and Triebel-Lizorkin spaces
are characterized by the following norms (cf [128, (4) in Chapter 5] or [51, (5.2)]), re-
spectively,

lallgna = |(12°Piullpp)iezllens S€R1<p<oo, 1<g<oco,

lallgsna = I 2°P)iczlluallps s € R 1<p<oo, 1<q<oco.
Strictly speaking, the expressions above, evaluated on tempered distributions (space
&), are seminorms vanishing on polynomials, so the homogenous Besov and Triebel-
Lizorkin spaces are initially defined as quotient spaces. However, they can be real-
ized as functional spaces, in particular by means of embeddings into known function
spaces or via wavelet decompositions.

Inhomogeneous Besov spaces with s > 0, p,q € [1, o], can be identified as inter-

section of homogeneous Besov spaces with Lebesge spaces: B*P4(RY) = BSP4(RV) n
IP(RY) ([19, Theorem 6.3.2]).

Sobolev spaces H*?(R") and Sobolev-Slobodecki spaces WP (RY) are identified
as subfamilies of Triebel-Lizorkin spaces:

HP(RY) = FPARY), 1< p<oo,5>0, (10.23)
WP (RY) = FSPP(RN)[= BPP(RY)], 1<p<oco,5>0,5¢N. (10.24)

Space F®* is identified as the space of bounded mean oscillations BMO. The follow-

ing refined Sobolev inequality is due to Gerard, Meyer, and Oru [59]:
flully < ||(—A)§u||§/q||u||17p/q 1<g<p<oo,ands=N/qg-N/p. (10.25)

Bst /p,00,00°

Embeddings of Besov and Triebel-Lizorkin spaces
The first of the following embeddings is immediate from the definition, and the other
is an elementary consequence of order between #”-norms:
BPP(RN) = FPP(RY), s e R,p € [1,00), (10.26)
BPYRY) — BPP(RY), 1<a<b<oope[l,oolseR (10.27)

Other embeddings are of the same character as Sobolev embeddings: in heuristic
terms, they trade smoothness for integrability. For p,q,a, b € [1,00], 5, t € R,

BPYRN) — B YRN), s—-N/p=t-N/gs>t, (10.28)
FPARNY — FLYRN), s N/p=t-N/g,s>t,q<co. (10.29)

There is also a continuous embedding, derived from embeddings into Lebesgue spaces
and interpolation (10.16),

BPYRY) — 17, pe(1L,N/s),a € [1,00]. (10:30)
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Wavelet characterization of Besov spaces

We follow the presentation of the topic from [92, Section 6.10] and [13].

Definition 10.2.1. Let G, be a set of linear bijective isometries on a Banach space E and
lety € E. A set

W(lp) gO) = {glp}gego

is called a wavelet basis of E with a mother wavelet i if it forms a Schauder basis for E.

Fors € Rand1 < p,g < oo, Besov spaces BSP4(R") have normalized wavelet
bases with the same mother wavelet and with a set of rescalings
N-sp

Go={um2u(@ --k)jezkez'}c g, r= IR

Let cj’k(u), jeZ, ke zN , denote coefficients of the wavelet expansion of an ele-
ment u from one of the spaces above, that is,

u= Y ¢ wW27p(2 - k). (10.31)

jez,kezN

Remark 10.2.2. Expansion (10.31) uses the same wavelets for any values of N, p, g, or
s, but with different normalization, which dependent only on the value of r = % -S,
so the coefficients c; (u) in (10.31) with different values of s, p, g, and N depend only

on the value of r = % -s.

Then equivalent norms in Besov spaces can be expressed in terms of the wavelet
coefficients as:

(7P T CETPCT3) P P (10.32)

Space BV(R") - functions of bounded variation

For a comprehensive exposition on functions of bounded variations, we refer the
reader to the book [11]. We consider the case N > 2.

Definition 10.2.3. The space of functions of bounded variation BV(R") is the space of
all measurable functions u : RV — R vanishing at infinity (i.e., Ve > 0 |[{x € RV :
lu(x)| > €}| < co) such that

| Dul| def sup udivv dx < co. (10.33)

N.mNYy. —
VeCH (RYRY V=1 5,
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The BV(IRN )-norm can be interpreted as the total variation |[Du]| of the measure
associated with the derivative Vu (in the sense of distributions on RY ). Ifu e C(l)(]RN ),
then the right-hand side in (10.33) by integration by parts equals JRN |Vu|dx. The value
of the total variation of Du on a measurable set A ¢ RY we denote as [IDul|,.

The space BV(R") is a conjugate space and therefore is complete. We follow the
convention that calls the weak* convergence in the space of bounded variation weak
convergence. The space BV(R") is separable and, therefore, each bounded sequence
in BV(IRN ) has a weakly (i. e., weak*-) convergent subsequence. We use the following
properties of BV(RV):

1. A sequence (u;) in BV(]RN ) is weakly convergent to u if and only if u; — uin
L} .(RY) and the weak derivatives d;uy, i = 1,..., N converge to d;u weakly as finite
measures on RY.

2. Density of CSO(]RN ) in strict topology (note that the closure of CSO(]RN ) in the norm
topology is H"'(RY)). One says that u; converges strictly to u if lu; — uf;» — 0
and |Du,| — ||Du]l. Consequently, the rescaling group GN1 (3.1) extends by this
density property to a group of isometries on BV.

3. V.Maz’ya’s inequality (often referred to as Sobolev, Aubin-Talenti or Gagliardo—
Nirenberg inequality) [90]:

NVY/Nlully- < IDull, (10.34)

where 1" = ]% and Vy is the volume of the unit ball in RV A local version of this
inequality is

lully- o < C(IDullg + lully ), (10.35)

where QO ¢ RY is a bounded domain with sufficiently regular, say locally C!-
boundary.
4. Hardy inequality:

1Dull = (N - 1) j LIFNS

)i
(It follows from the Hardy inequality in H"'(R") and the density of Cs° RY) in
BV(RM) with respect to the strict convergence, if one first replaces 1/|x| with its
LN (RY)-approximations from below.)

5. Local compactness: for any set Q ¢ RY of finite Lebesgue measure, BV(RV) is
compactly embedded into L(Q) and any sequence weakly convergent to zero in
BV(IRN ) converges to zero in Ll(Q).

6. Chain rule (a cruder version of a more refined statement due to Vol’pert, see [11,
Remark 3.98]): let ¢ € C'(R). Then for every u € BV(RY),

IDe@)|| < ||l¢" || 1Dull. (10.36)
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10.3 Manifolds of bounded geometry

We list some general properties of Riemannian manifolds of bounded geometry. For
basic definitions and notation, see Chapter 7.

Lemma 10.3.1 ([41]). Let M be a Riemannian manifold of bounded geometry and let
0 < r < r(M).Ifk € N, then there exists a constant C;, dependent on the curvature
bounds and r but independent of x € M, which bounds the C*-norm of components 8j
of the metric tensor g and its inverse g” in any normal coordinate system of radius not
exceeding r at any point x € M.

Manifolds of bounded geometry have the following properties (see [107] for the
first assertion and [65] for the second one):

Lemma 10.3.2. Ifthe manifold M has bounded geometry and O < r < r(M), then for any
a € NY there exists a constant C, > 0, such that

|d”‘(e}j1 oe,)(&)| < C, wheneverx,y € M, and B(x,r) N B(y,r) # 0.
Moreover, there exists A > 0 such that for anyy € M, x € B(y,r),
/\7161']' < gij(ey(x)) < /\61} (10.37)

The following corollary is the immediate consequence of Lemma 10.3.1 above.

Corollary 10.3.3. Let p € (0,00) and r € (0,r(M)). There exists a constant C > 1 such
that for any x € M,

¢! | wbdvgs [weeldg<c | Py, (10.38)
B(x,r) Q, B(x,r)
and
N 2
¢! du, du)dv, < 9 dE<C du, du)d
8y (du, du)dvg < Z a—xi(uf’ex) &< 8y (du, du)dv,.
B(x.r) Q, =1 B(x,r)

A related global estimate that follows from Bishop—Gromov theorem (see [65, The-
orem 1.1]) says that whenever O < r < R, there is a C(r,R) > 0 such that

Vg(B(X,R)) < C(r,R)vg(B(y,r)) foranyx e M,y € B(x,R). (10.39)

Let us also recall a technical but useful equivalent norm of H L2(M); cf. [64] or [129,
Chapter 7].
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Lemma 10.3.4. Let Y be a (g, r)-discretization of an N-dimensional manifold M with
bounded geometry, r € (0,r(M)) and let {x;} be a partition of unity subordinated to the
covering {B(y;, 1}y,cy and satisfying (7.1). Then

1/2
def
I l120n) (Z If - exp, ||i,1,zaR~>> (10.40)
i

is an equivalent norm in H 1’2(M ). Moreover,

1/2

2
U lszany ~ W zqany ~ (Z ux,qul,z(M,)
i

Below is a particular case of the gluing theorem from Gallier etal. [55, Theo-
rem 3.1].

Definition 10.3.5 ([55, Definition 3.1], [54, Definition 8.1]). A set of gluing data is a

triple ({Qi}ien,» {Qijlijen,» Wit jex) satisfying the following properties:

(1) Foreveryi € Ny, the set Q; is a nonempty open subset of RY and the sets {Qitien,
are pairwise disjoint;

(2) For every pair i,j € N, the set Q;; is an open subset of Q;. Furthermore, Q; = Q;
and Q; # 0 if and only if Q; # 0;

() K = {(i,j) € Ng x Ng : Q5 # 0}, P;; : Q5 — Qj is a diffeomorphism for every
(i,j) € K, and the following conditions hold:
(@ Yy = idIQi, foralli € Ny,
(b) Yy =y, forall (i,j) € K,
(c) Foralli,j,k € Ny, if Q; 0 Q # 0, then ;;(Q; N Q) = Q5 N Qy., and Py(x) =

Yy © Yji(x), for all x € Qi N Qs

(4) For every pair (i,j) € K, withi # j, for every x € 0Q; N Q; and every y € 0Q;; N Q;,
there are open balls V, and V, centered at x and y so that no point of V, n Q; is
the image of any point of V, N Q; by ;.

Each set Q; is called parametrization domain or p-domain, each nonempty set Q;; is
called a gluing domain, and each map y;; is called transition map or gluing map.

Theorem 10.3.6 ([55, Theorem 3.1]). For every set of gluing data,

({Qi}ieN0> {Qihijenys Wit pex)>

there exists a N-dimensional smooth manifold M an atlas (U, T;); of M such that 7;(U;) =
Q;, whose transition maps are Tj o T; 1= Wji : Qy — Qj.1,j € Ny,

Remark 10.3.7. Note that the theorem does not provide any specifics about the maps
7; which are obviously not uniquely defined.
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Corollary 10.3.8. Let0 <p <r <aandletQ, c Q, c Q, be balls in RY centered at the

originwithradius p, r, and a, respectively. Let @ij}i,jewo be a family of smooth open maps

%j : Qy — Q. Assume that a family {;; = %ilgp}i,jeNo satisfies the following conditions:

(1) ¢ii = ld, ie NO;

(i) ;; is a diffeomorphism between Q;; def ¥;(Q,) N Q, and Qy, 1,j € Ny, whenever
Q}'i #0;

(iii) Y = 5" on Qy;, whenever Q;; # 0,1,j € No;

(IV) ')bl}(Q]l n Q}k) = Ql] n Qik’ and l/)ki(x) = ltbk] o ll)]l(X) for allX € QU n Qik’ i,j, k € NO;

W) forall (,) € K £ {(i,j) € NoxNy : Q; # 0} and all x € 3030 Q,, P;:(x) € 3Q;NIQ,.

Then there exists a smooth differential manifold M with an atlas {(U;, T;)}jen, » Such that
7;(U;) = Q, for any i € N, and whose transition maps TjOTi_l are;; : Q — Q. 1,j € Ny

. . . def .
Proof. Fix an enumeration (z;);e, of the lattice 3azVN ¢ RY. Set Q = zi +Q,, 1 € Ny,

and Qj; def Q; + 2z, Yy def V(- — ) + z;, for (i,§) € K. The corollary is immediate from
Theorem 10.3.6 once we show that ({Q}ien,» {Qfi}ijen,» (Wi} j)ex) 15 @ set of gluing data
according to Definition 10.3.5. Conditions of the definition verify as follows.
Condition (1) is immediate since 3a > 2p.
Condition (2). The sets Q; (and thus Q{]-) are open since the maps l/)]-i are open. The
relation Qj; ¢ Q; follows from Q; ¢ Q,, in (ii). By (i), we have Q;; = Q,, and thus Q;; = Q.

If QII] * 0, then QU * @, and since l/)u is the inverse of lpji’ Q]l dZEf l/)ﬂ(QP m/’ijQp) = ll)]lQl] +

0. Thus Q;; # 0.

Conditions (3): properties (a), (b), and (c) are immediate, respectively, from (i), (iii),
and (iv).

Condition (4). Let x € aQ{j NQ,(z)andy e aQ]fi NQ,(z). Then X = x - z; € 9Q; N Q,
and X = x — zj € 0Q;; N Qp(z}-). By assumption (v), we have y + l,b]-l-()'c). In consequence,
there exist Euclidean balls Q(x, €) and Q(y, €) such that no point of Q(y,€) N Q, is an
image of Q(X, &) N Qp. O

10.4 Concentration compactness — traditional approach

Defect of compactness of sequences in functional spaces can be described in terms of
sequences of measures, rather than as profile decompositions. In the pioneering work
of Lions, defect of compactness was identified in two types: type I, studied in [83],
related to the group of shifts Gpw, and type I, studied in [84], related to the rescaling
group (actions of translations and dilations) G'.

Concentration compactness I is used in applications involving subcritical Sobolev
embeddings H*P(RY) — LY(RN), 1< p < N, p < g < p*, which admit profile decom-
position with the scaling group of shifts Gyv. We quote it in a slightly refined version,
[30, Theorem 8.7.1].
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Theorem 10.4.1 (Concentration compactness I). Let (u;) be a bounded sequence in

HY(RY), 1< p < N, and let p;, = |u; [P with I]RN prdx = A > O for all k. Then there exists

a renamed subsequence satisfying one of the three following possibilities:

(i - Tightness) There exists a sequence (yy) in RrRY , such that (p,) is tight, that is, for every
€ > 0 there exists R € (0, co) such that

J prdx = A +e,
Bgr(yi)

(ii — Vanishing)

sup J prdx — 0 ask — oo,
N
yer Bg(y)

(iii — Dichotomy) There exists a € (0,A), such that for all € > O there exists k, € N and
bounded sequences (ul((l)) and (uf{z)) in H'P (]RN ) satisfying for k > k),

[l - (ug) + uf{z))nq <84(8), qe p:p"),

with Sq(e) —0ase— 0,

Hlu,((l)|pdx—a <&
RN
|J|u,(<2)|pdx—(/l—a) <&,

IRN
: (0 2)
dist(supp U, supp u; ) > oo ask — oo,
and

lilgn inf J (IVigel? = [vu [ — [vul?)dx > 0.
—00

RY

Concentration compactness II, [84, formula (1.15)], describes defect of compact-
ness and is used in applications related to the embedding H’(RY) — I’ 1< p <
N, relative to the scaling group G', r = ?. We cite a significantly improved ver-
sion of Chabrowski, [30, Sections 9.2-9.3], that, in particular, addresses concentra-
tion at infinity, which, in terms of profile decomposition, accounts for concentrations
t,r(w(tk(~ - yi)) with |y, | — co. We will denote as Snyp the best constant in the limiting
Sobolev inequality on RY, 1< p < N, [Vull, > Sy, llull,-

Theorem 10.4.2 (Concentration compactness Il). Let (1) be a sequence in Hl’p(]RN),
1< p < N, weakly convergent to u, and such that:
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. def .
(i) M = IVu|Pdx is weak*-convergent to a measure u;

.s def * .
(i) v, = |lul? dx is weak*-convergent to a measure v;

def .. .
(i) poo = limp oo HMSUDP oo [y, IVUilPdX;

and
. def .. . p*
(iv) vy = limg_, ., limsup;_,., J|X|>R [u P dx.

Then there exist an at most countable index set ], sequences (X;);;, in RY; (Mj)je, O <
Hj < 00; and (vj)j¢y, 0 < v; < 00, such that

V=MfM+ZW%> (10.41)
jeJ

U= [VulPdx + Z,ujéxj, (10.42)
jeJ

where 6,(1, are atomic measures supported at x;. Furthermore,

lim sup J |uk|p*dx: j |ulp*dx+2vj+voo, (10.43)
k—oo jef
N RN J
lim sup j IV [Pdx = J [VulPdx + Zy]- + oo (10.44)
k—o0 ie]
RN RN J
2 2
SnpVj <Mj and SypVe < U (10.45)

Moreover, if u = 0 and ],l(IRN )SN,pv(]RN )PL" , then ] is a singleton and, for some y > 0,
_ b
V=Y = SN%pyNy.
A similar statement by Palatucci and Pisante deals with embeddings of fractional

Sobolev spaces H%*(Q), where 0 < s < N/2and Q ¢ RY is a bounded domain, defined

as the completion of C3°(Q), in the HS’Z(IRN)-norm. For 0 < s < N/2, this space is

. . 2 o def oy
continuously embedded into LIOC(IRN ), where 20 = .

Theorem 10.4.3 (Palatucci and Pisante, [98]). Let Q ¢ RY be a bounded domain, and
let (uy)yep be a sequence in H2(Q), 0 < s < N/2, weakly convergent to u, and such that

|(—A)%uk|2dx Zp oand wlFdxSv o in M(RY).

Then, either u;, — uin legc(IRN ) or there exists a (at most countable) set of distinct points
{Xntney € Q and positive numbers {v,},; such that we have

V= |u|2; dx + Zvnéxn. (10.46)
n
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Moreover, there exist a positive measure ji € M(RY) supported in Q and positive num-
bers {jy}ney such that

s 2;‘
=0 dx o+ o+ D Unby s Vo <SM)7T (10.47)
n

where S = inf, . 4 (=) 2 ul , is the best Sobolev constant in RY .

Sketch of proof. We sketch how to derive this statement from the profile decomposi-
tion (1.16). Without loss of generality, we may assume that u; € C;°(Q). Consider a
subsequence of (u;), extended by zero to a sequence in H%2(RY), that has the profile
decomposition (1.16). By the definition of profile decomposition, w® = y. The fact that
sequence (i) is supported in a bounded domain Q restricts the possible values of sf(")
and y}(") in (1.16). In particular, if for some n € N, s§<") is not bounded from below, then
corresponding profile w'™ is zero. This and analogous arguments concerning possible
support of w™, together with passing to subsequence, allow to conclude that, without
loss of generality, sf(") — oo forn > 2, and yl((") — X, with some x,, € Q.

Evaluating J]RN (pluklzs* dx with @ € CC(]RN ), and taking into account uniform con-
vergence of the series (1.16) and the asymptotic orthogonality (1.12), we arrive at a de-
coupled sum

j P00 (0 dx
Q

- J (p(x)|w(1)(x)|2: dx + Z J (p(x)2NS§<") |w(")(252") (x - yf{")))|2:dx +0(1)

n>2 RN

)
- I (p(x)lu(x)|2:dx + Z o(x,) J |w(")(x)|2: dx + o(1).
Q

n>2 RV

We have arrived at (10.46) with

vy = W)

. (10.48)
Similar calculations based on (1.15) yield the first relation in (10.47) with
2
M = [TWP 00

which, compared with (10.48), provides the second relation in (10.47). O

Classical concentration estimates like those in Theorem 10.4.3 have been extended
to the case of unbounded domains with help of the notion of concentration at infinity,
that adds further positive measures to the counterparts of (10.46) and (10.47). We refer
the reader to [133, Lemma 1.40], that originates in the work of Bianchi, Chabrowski,
and Szulkin [21, inequality (1.16)] and Ben-Naoum, Troestler, and Willem [16]. Con-
centration at infinity, similar to Theorem 10.4.3, can be also interpreted in terms of
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concentration profiles: when the domain is unbounded, profile decompositions con-
tain blowup terms whose supports may escape to infinity (|y(")| — 00), or spread over
the space (s,((")

It is natural to expect that the case of dichotomy in Theorem 10.4.1 allows a further
splitting of cluster sequences (uf(l)) and (uf{z)) until they become tight. This idea can be
seen as a precursor of profile decomposition, but it was also developed for abstract

sequences of measures on metric spaces by Mihai Maris [87].

— —00).

Theorem 10.4.4 (Mihai Maris). Let (Q,d) be a metric space and (U,,),» @ Sequence of
positive Borel measures on Q such that

M def lim sup p,,(Q) < oo.
n—.oo

Let ¢ : [0,00) — [0,00) be an increasing function such that ¢(s) < % for all s and
limg_,, (s)= oo.

Then either (U,)nen IS a vanishing sequence, or there exists an increasing mapping
j : N — N such that the subsequence (Kjn))nen Satisfies one of the following properties:
(i) There are k € N, positive numbers my, ... my, Sequences of points (x,(f))nejN inQ and

increasing sequences of positive numbers (rff)),,e]N such that r,(f) — 0odasn — oo,

i€{1,...,k}, satisfying the following properties:

(a) Foreach n the balls Br;,-) (XS)), i€ {l,...,k} are disjoint.

(b) Foreachie{l,...,k}, we have

Him (B<p(r<f>)(xff))) —m; asn-— oo,

i 1
Hion (B () \ By () < i

and the sequence of measures (Ujp | o (x))neN concentrates around (x,(q"))neN.
(c) The sequence of measures Mjm| O\, B 0 m))neN is a vanishing sequence.

(ii) There are positive numbers my,...my,. . such that M1 < 2my, sequences of points
(x( ))n>, in Q and increasing sequences of positive numbers (r ﬁ,)),m such that r(k
0o as n — oo for each fixed k and the following properties hold:
(a) Foreach n, the balls Br;” (xfll)), ... ,Br’(ln) (x;”)) are disjoint.
(b) The same as (b) in (i) above.

(c) Denote by g qn is the concentration function of p;, |Q\Ue ) for € > n. Then

lim lim 11m sup qn(t)

£—o00 t—00

(d) The sequence of measures (i OB (X<i>))n€N is a vanishing sequence.
i=1°, (0 n

In [87], this theorem is used to prove a weaker version (from [58]) of the profile
decomposition of Solimini.
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Spaces

E—F
C(Q)
CRN, V), LR, V(x))

CO,A (IRN)
luall l1ull 0
Epaq(RY)

expL?
Lp)q
HP(RY)
HSP(RY)
H3P(Q)
wsP

Sets

B(x,r)

B, (x)

r

Groups

Iso(M)
O(N)
SL(N)

Miscellaneous

Wy
r(M)
1y
id

!

p

continuous embedding

space of smooth functions with compact support

space of continuous, resp. measurable, functions with
the norm sup, v [U(X)|V(x).

space of Holder continuous functions modulo constants
IP-norm

for a space of functions on RY, its subspace of radially
symmetric functions

Orlicz space with the modulus et _1q

Lorentz space

homogeneous Sobolev space

Sobolev space

closure of C3°(Q) in the H*P-norm

Sobolev-Slobodecki space

set IN of natural numbers with added zero

geodesic ball of radius r centered at x on a Riemannian
manifold

ball of radius r centered at x on RV

ball of radius r centered at the origin in RY

group of isometries on a Riemannian manifold
the orthogonal group on RY
special linear group on RY

area of the unit N - 1-dimensional sphere

injectivity radius of a Riemannian manifold

characteristic (index) function of a set A

identity mapping; identity element of a group
1

conjugate of p € [1,00]: 5 + 1-17' -1

https://doi.org/10.1515/9783110532432-011
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N (Y
op (1)

n—oo
*

Ps
*

p
F(u)

g
U, = u
g
U, —u

a sequence of real numbers convergent to zero

a sequence in a Banach space weakly convergent to zero
critical Sobolev exponent, p; = I\f’_As]p fori<p<N/s
same as p;

Fourier transform, normalized as a unitary operator in
L2RY).

G-weak convergence

G-Delta convergence
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