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Preface

This book is based on several invited talks at the workshop “Discrepancy” which was
part of the RICAM Special Semester on “Multivariate Algorithms and their Founda-
tions in Number Theory.” The workshop took place at the Johann Radon Institute for
Computational and Applied Mathematics (RICAM) of the Austrian Academy of Sci-
ences in Linz, Austria, on November 26–30, 2018.

Discrepancy theory deals with point distributions in compact spaces, measuring
the discrepancy between the empirical distribution and the target (usually uniform)
distribution. One of the most prominent directions is the study of point distributions
in themultidimensional unit cube. Through the theory of quasi-Monte Carlomethods,
discrepancy theory has important applications in numerical analysis, since point sets
and sequences with low discrepancy are required for numerical integration as nodes
in quasi-Monte Carlo rules. A classical problem in discrepancy theory is concerned
with the optimal rate of convergence of the supremum of the discrepancy function
when the size of point distributions increases. The so-called “inverse of the discrep-
ancy” problem is also actively studied nowadays: it asks for explicit constructions of
point sets whose discrepancy depends at most polynomially on the dimension. From
the applications point of view—in particular with respect to very high-dimensional
integration problems—this new approach is of utmost importance. The discrepancy
of point distributions on the unit sphere (or other manifolds), as well as discrepancy
with respect to nonuniform target measures are also of great interest.

Theworkshop “Discrepancy” focused on discrepancy theory in a broad sense and
took into account aspects from number theory, geometry, combinatorics, and numer-
ical analysis. The goal of this book is to give an overview of recent developments in
discrepancy theory with its relations to other fields, like, for example, quasi-Monte
Carlo integration, uniform distribution theory, and Poissonian pair correlation, pre-
sented by leading experts in these vivid fields of research.

We briefly summarize the topics in this volume. The chapter “On some recent de-
velopments in uniform distribution and discrepancy theory” surveys recent develop-
ments on the relation between Poissonian pair correlation and uniform distribution,
the progress on Tusnády’ s problem, Levin’ s lower bounds for the discrepancy of
important low-discrepancy sequences, a link between the small ball inequality and
digital nets, various heuristic arguments supporting two conflicting conjectures on
the growth of the star-discrepancy of d-dimensional point sets, and different versions
of the Stolarsky principle for the discrepancy on the sphere. In addition, a number
of open problems and conjectures are posed. The chapter “Results and problems
old and new in discrepancy theory” discusses some of the main results in discrep-
ancy theory and highlights many difficult open problems in the subject. The chap-

https://doi.org/10.1515/9783110652581-201
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ter “On negatively dependent sampling schemes, variance reduction, and probabilis-
tic upper discrepancy bounds” studies probabilistic discrepancy bounds andprovides
new preasymptotic bounds with explicit constants for the star discrepancy and the
weighted star discrepancy of sampling schemes. The focus of this contribution is on
how discrepancy depends on the dimension. The chapter “Recent advances in higher
order quasi-Monte Carlo methods” studies the application of low-discrepancy point
sets for numerical integration by means of quasi-Monte Carlo rules. The focus is on
results on recently developed higher order quasi-Monte Carlo methods. The chapter
“On the asymptotic behavior of the sine product∏nr=1 |2 sinπrα|” reviews recently es-
tablished results on the asymptotic behavior of the sine product, which is related to
the distribution of the Kronecker sequence. The chapter “Fibonacci lattices have min-
imal dispersion on the two-dimensional torus” studies the dispersion of a given point
set in the two-dimensional torus, given by the size of the largest rectangle containing
no point, which is also related to the discrepancy of the point set. The chapter “On
pair correlation of sequences” surveys the concept of Poissonian pair correlation of
sequences in the unit interval and discusses a quite recent extension of this concept
to the multidimensional case. The chapter “Some of Jiří Matoušek’ s contributions to
combinatorial discrepancy theory” covers important advancements in combinatorial
discrepancy theory, especially for geometric set systems, by Jiří Matoušek, who was
a central figure in discrepancy theory but passed away too early in 2015. The chapter
“Fourier analytic techniques for lattice point discrepancy” provides a detailed de-
scription of several discrepancy problems (integer points problems and irregularities
of distribution problems) in the planar case with test sets from a particular family of
convex sets.

All chapters were reviewed by renowned experts in this field. We wish to thank
the anonymous referees for their precious help. We also would like to thank Annette
Weihs, Melanie Traxler, and Wolfgang Forsthuber for administrative support and all
the speakers of the workshop who contributed excellent talks and made the work-
shop a great success: Christoph Aistleitner, Bence Borda, William Chen, Ujué Etayo,
Damir Ferizović, Michael Gnewuch, Takashi Goda, Peter Grabner, Sigrid Grepstad,
Aicke Hinrichs, Lisa Kaltenböck, Ralph Kritzinger, Gerhard Larcher, Ryan Matzke,
Mario Neumüller, Aleksandar Nikolov, Maxim Skriganov, Tetiana Stepaniuk, Kosuke
Suzuki, Robert Tichy, Giancarlo Travaglini, Mario Ullrich, Alex Vlasiuk, Jan Vybíral,
Christian Weiss, Marcin Wnuk, and Agamemnon Zafeiropoulos.

More details on the RICAM special semester “Multivariate Algorithms and their
Foundations in Number Theory” can be found on the webpage.

https://www.ricam.oeaw.ac.at/specsem/specsem2018/
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We also thank the Johann Radon Institute for Computational and Applied Mathemat-
ics (RICAM) of the Austrian Academy of Sciences for financial support. We hope that
this book will be a useful resource for many people who study or apply discrepancy
theory.

Dmitriy Bilyk
Josef Dick
Friedrich Pillichshammer Linz, September 2019
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Dmitriy Bilyk
1 On some recent developments in uniform
distribution and discrepancy theory

Abstract:We survey some of the recent developments in uniform distribution and dis-
crepancy theory, which include, in particular, the fact that Poissonian pair correla-
tion implies uniform distribution, the progress on Tusnády’s problem, Levin’s lower
bounds for the discrepancy of most low-discrepancy sequences, a link between the
small ball inequality and digital nets, various heuristic arguments supporting two
conflicting conjectures on the growth of the star-discrepancy of d-dimensional points
set, and different versions of the Stolarsky principle for the discrepancy on the sphere.
We discuss known results and pose some open problems and conjectures.

Keywords: Uniform distribution of sequences, discrepancy, low-discrepancy sets

MSC 2000: Primary 11K38

1.1 Introduction
Uniform distribution theory originated from a seminal 1916 paper of Hermann Weyl
“Über die Gleichverteilung von Zahlen mod. Eins” [78]. A sequence ω = (ωn) ⊂ [0, 1)
is called uniformly distributed if for any subinterval [a, b) ⊂ [0, 1), the proportion of
points ωn ∈ [a, b) is asymptotically equal to the length of the interval, that is,

lim
N→∞

#{n ≤ N : ωn ∈ [a, b)}
N

= b − a. (1.1)

A very natural example of a uniformly distributed sequence is given by the famous
Kronecker sequence {nα}, where α is an irrational number and {x} denotes the frac-
tional part of x. Uniform distribution plays an important role in sampling and numer-
ical integration as (1.1) can be easily seen to be equivalent to the fact that

lim
N→∞

1
N

N
∑
n=1

f (ωn) =
1

∫
0

f (x) dx (1.2)

Acknowledgement: The author is extremely grateful to RICAM for hospitality and for sponsoring his
stay during the Special Semester onMultivariate Algorithms and their Foundations in Number Theory.
This survey is partially based on the tutorial talk on discrepancy theory which the author delivered
before the Discrepancy workshop. The author would also like to thank the anonymous referee for nu-
merous useful suggestions (as well as the fastest referee report that the author had ever seen). This
work is partially supported by the NSF grant DMS 1665007.

Dmitriy Bilyk, School of Mathematics, University of Minnesota, Minneapolis, MN, 55455 USA, e-mail:
dbilyk@math.umn.edu
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2 | D. Bilyk

for every continuous function f on [0, 1].
Discrepancy theory is essentially a quantitative counterpart of the uniform distri-

bution theory. The discrepancy of the sequence ω = (ωn) ⊂ [0, 1) is defined as

DN (ω) = sup
[a,b)⊂[0,1)

󵄨󵄨󵄨󵄨#{n ≤ N : ωn ∈ [a, b)} − N(b − a)
󵄨󵄨󵄨󵄨, (1.3)

in other words, DN (ω)/N is the rate of convergence in (1.1). It is a simple exercise to
show that ω is uniformly distributed if and only if DN (ω)/N → 0 as N → ∞, that is,
the convergence in (1.1) is necessarily uniform with respect to [a, b).

Both notions above can be extended in a straightforward way to higher-dimen-
sional sequences with the role of intervals taken by axis-parallel rectangles. In addi-
tion, other geometries and choices of test sets lead to numerous interesting general-
izations of these concepts.

Over a period of more than a hundred years since the publication of Weyl’s ar-
ticle uniform distribution and discrepancy have grown into a well-developed area of
mathematics with many connections to other fields such as analysis, combinatorics,
probability, number theory, discrete geometry, approximation theory, numerical inte-
gration, etc. Several great books written on this subject [10, 29, 33, 42, 53] can provide
the reader with a good introduction.

In the present survey paper, we do not make an attempt to compete with these
excellent references in providing a comprehensive account of the subject. Instead, we
give a gentle nontechnical exposition of some of the recent results in the field, which
of course, at times requires one to recall some classical facts. We also provide ample
references for the reader interested in studying these issues further. A survey of this
type is doomed to be incomplete and somewhat eclectic, and naturally reflects per-
sonal tastes of the author (including some of his own results). We note that a survey
by W. W. L. Chen in this volume [30] contains a remarkable array of results and open
problems in discrepancy theory and has some overlap with this paper. The author has
previously written several expository papers on various aspects and connections of
discrepancy theory [13–15, 22], but most of the results that we present now have been
obtained after the prior surveys were written.

1.2 Uniform distribution of sequences

In 1935 [75, p. 816] van der Corput implicitly conjectured that the discrepancy of any
sequence cannot stay bounded. He wrote “…Ich weisz auch nicht, ob es eine Folge ω,
eine stetige Funktion ψ(x) und eine Konstante K gibt, die für jedes x und jedes natürliche
Zahl N der Ungleichung

󵄨󵄨󵄨󵄨#{n ≤ N : ωn < x} − Nψ(x)
󵄨󵄨󵄨󵄨 < K
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1 On some recent developments in uniform distribution and discrepancy theory | 3

genügen.”1 It is implied here that ψ(x) is the distribution function of the sequence
ω, that is, ψ(x) = limN→∞ {n ≤ N : ωn < x}/N . In the case when ω is uniformly dis-
tributed, ψ(x) = x for 0 ≤ x < 1 according to (1.1).

Impossibility of such a “just” distribution was first proved by van Aardenne-
Ehrenfest [74], and a much stronger quantitative bound, which extends to all dimen-
sions, was later proved by Roth [58]; see (1.11). We shall discuss this in more detail in
Section 1.3, but for nowwe shall adhere to the one-dimensional case. A sharp discrep-
ancy bound was given by Schmidt: he proved that for any sequence ω = (ωn) ⊂ [0, 1)
its discrepancy satisfies

DN (ω) ≫ logN (1.4)

for infinitely many values of N. The fact that this estimate is sharp has been known for
a long time. Most known sequences with DN (ω) ≈ logN stem from two basic exam-
ples. The first example is of diophantine nature—it is the alreadymentionedKronecker
sequence {nα}, where α is a badly approximable number. The second example can be
called digital—this is the celebrated van der Corput sequence v defined by

vn = ∑
j≥1

nj2
−j, (1.5)

where n = ∑j nj2
j−1, nj ∈ {0, 1}, is the binary expansion of n. See [76, p. 1062] for the

original definition of this sequence and the proof that DN (v) ≪ logN .

1.2.1 Pair correlation and uniform distribution

A sequence ω = (ωn) ⊂ [0, 1) is said to have Poissonian pair correlation (PPC) if

lim
N→∞

1
N
⋅ #{1 ≤ i, j ≤ N , i ̸= j : |ωi − ωj| <

s
N
} = 2s. (1.6)

One can easily check that i. i. d. uniform random points ωn ∈ [0, 1) almost surely
have Poissonian pair correlation. Hence, this property, just like the uniform distribu-
tion (1.1), suggests random-like behavior of the sequence ω. This notion appeared in
the work of Rudnick and Sarnack [60] in 1998, but for almost 20 years a very natu-
ral question of its relation to uniform distribution has remained unanswered. Then,
in a surprising twist of fate, two solutions to this question appeared independently
and almost simultaneously—the papers of Aistleitner, Lachmann, and Pausinger [5]

1 We keep the author’s spelling, but use our notation. The passage translates as, “I also do not know
whether there exists a sequence ω, a continuous function ψ(x) and a constant K such that the inequality
|#{n ≤ N : ωn < x} − Nψ(x)| < K is satisfied for all x and all natural numbers N.”
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4 | D. Bilyk

and Grepstad and Larcher [37] had been posted on www.arxiv.org within a week of
each other in December 2016. Moreover, in only a month, in January 2017, Steinberger
posted yet another solution [67]. They have proved the following.

Theorem 1.1. If a sequence ω = (ωn) ⊂ [0, 1) has Poissonian pair correlation, then it is
uniformly distributed.

It is easy to see that the converse of this implication is not true: indeed, the Kro-
necker sequence {nα} is uniformly distributed for irrational α, but does not have Pois-
sonian pair correlation for any value of α.

The three known proofs of Theorem 1.1 are very different, yet all of them are very
accessible and easy to read. The proof in [37] is very ad hoc and uses elementarymeth-
ods, it also provides a quantitative discrepancy estimate in terms of the rate of conver-
gence in (1.6). The argument in [5] proceeds by bounding the pair correlation from
below by a quadratic form associated to a circulant matrix, which upon averaging
has nonnegative eigenvalues, thus leading to a contradiction if one assumes that ω
is not uniformly distributed. Finally, in [67] the author obtains more general quanti-
tative criteria for uniform distribution, which can be viewed as quadratic analogues
of the celebrated Weyl criterion with the Jacobi θ-functions (or Gaussians) in place of
the complex exponentials (whichmakes these criteriamore localized)—Theorem 1.1 is
then obtained as their corollary.

A lot of other work related to Poissonian pair correlation has been done in the
recent years. For example, the definition of PPC sequences (1.6) naturally extends to
sequences in [0, 1)d, but it depends on the metric that one uses. Theorem 1.1 has been
generalized and extended to the higher-dimensional setting: for the ℓ∞-norm (i. e.,
with respect to boxes) [40], and subsequently for the Euclidean distance [68]. It had
also been extended to smooth Riemannian manifolds with nonnegative Ricci curva-
ture; see [52] and also [36].

Among other recent publications related to the pair correlation, we would like to
specially point out the article of Aistleitner, Larcher, and Lewko [4] (with an Appendix
written by late Jean Bourgain, whose tragic passing in December 2018 is a tremendous
loss for themathematical community). In this paper, the authors show that themetric
property that the sequence {nkα} has Poissonian pair correlation for almost every α (the
sequence (nk) is metric Poissonian) is closely related to the arithmetic structure of the
sequence (nk), namely, the additive energy of the truncations of this sequence. The
additive energy of a finite N-element subset A of an additive group is defined as

E(A) = #{(a, b, c, d) ∈ A4 : a + b = c + d}, (1.7)

and it is obvious that N2 ≤ E(A) ≤ N3. The authors prove, in particular, that if the
additive energy of the truncations AN = (nk)k≤N is at least a little smaller than maxi-
mal, that is, E(AN ) ≪ N3−ε, then the sequence {nkα} has Poissonian pair correlation
for almost every α. Other recent work related to the interplay of the metric Poissonian
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1 On some recent developments in uniform distribution and discrepancy theory | 5

property and additive energy includes [1, 6, 25, 43, 44, 77]: some of these papers deal,
in particular, with the delicate situation when the additive energy is of the order very
close to N3, for example, [77] proves that primes, whose additive energy is roughly
N3(logN)−1, are notmetric Poissonian, while at the same time, there exists a constant
C > 0 such that whenever E(AN ) ≪ N3(logN)−C, the sequence (nk) is metric Poisso-
nian, and it is conjectured that this holds for any C > 1 [26].

In the end, we would like to raise the following interesting question concerning
Poissonian pair correlation and uniform distribution: What are the optimal discrep-
ancy bounds for a sequence with Poissonian pair correlation? Some upper bounds have
been obtained in [37, 69], but this question is really about the lower bounds. It is
known that both Kronecker and van der Corput sequences fail to have Poissonian pair
correlation, the former due to the famous three gap theorem, and for the latter, as well
as the more general LS-sequences and digital (t, 1)-sequences; see [45]. Therefore, it is
reasonable to assume that, while PPC implies equidistribution, the optimal bound of
Schmidt (1.4) cannot be achieved by sequences with PPC, and a lower bound of order
strictly greater than logN should exist in this case.

Another important question concerns explicit deterministic constructions of se-
quences with PPC. At present, apart from the sequence {√n} (see [34]), very few such
examples are known.

In conclusion,wewould like tomention that the survey by Larcher and Stockinger
[46] in this volume is dedicated entirely to thePoissonianpair correlation and contains
much more information than our short two-page description.

1.3 Star-discrepancy and related topics
We now turn to the circle of questions about the discrepancy of multidimensional
point distributions in the unit cube. Let 𝒫N = {p1, . . . , pN } ⊂ [0, 1)d be a finite set of
N points. We define the discrepancy function associated to this set as

DN (x) = #{𝒫N ∩ [0, x)} − Nx1 ⋅ ⋅ ⋅ ⋅ ⋅ xN , (1.8)

where x = (x1, . . . , xd) ∈ [0, 1)d and [0, x) = [0, x1) × ⋅ ⋅ ⋅ × [0, xd) is an axis-parallel box
with corners at 0 and x. This functions measures the local discrepancy of 𝒫N with re-
spect to the boxR = [0, x), much like in (1.3). Various norms ofDN provide information
about the extent of equidistribution of the point set 𝒫N . Perhaps, the most natural is
its L∞ norm, also know as the star-discrepancy:

D∗(𝒫N ) = ‖DN‖∞ = sup
x∈[0,1)d
󵄨󵄨󵄨󵄨#{𝒫N ∩ [0, x)} − Nx1 ⋅ ⋅ ⋅ ⋅ ⋅ xN

󵄨󵄨󵄨󵄨, (1.9)

(the reason for the name simply comes from the fact that historically this quantity
was denoted byD∗). The aforementioned result of Schmidt (1.4) for the discrepancy of
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6 | D. Bilyk

sequences easily translates to the following statement for two-dimensional point sets
(see, e. g., [10, 58]): for any 𝒫N ⊂ [0, 1)2, we have

‖DN‖∞ ≫ logN . (1.10)

More generally, there is a certain “transference” between estimates akin to (1.4) for
infinite sequences in [0, 1)d and uniform bounds for N-point sets in [0, 1)d, and we
adopt the latter setting in this section.

1.3.1 The main conjectures: (log N)d−1 vs. (log N)d/2

Schmidt’s bound (1.10) has long been known to be sharp, hence the question of the
optimal asymptotic behavior of the star discrepancy is essentially closed in dimension
d = 2. However, in higher dimensions, despite years of research, it is still completely
open, even at the level of conjectures. In his foundational 1954 paper [58] Klaus Roth
proved that in all dimensions d ≥ 2,

‖DN‖∞ ≥ ‖DN‖2 ≫ (logN)
d−1
2 , (1.11)

where the implicit constant depends only on the dimension. The L2 bound above is
sharp; see [31, 59]. But what is the correct optimal order of magnitude for the L∞

norm?! Beck and Chen [10] dubbed this question the “great open problem” and called
it “excruciatingly difficult.”

It is conjectured, heuristically, that the true L∞ (extremal) bound should grow
faster than the L2 (average) bound—in other words, the discrepancy function of well-
distributed sets cannot be “too flat.” Schmidt’s estimate (1.10) confirms this heuristic
in dimensiond = 2: indeed, the L2 bound (1.11) is√logN in this case,while the optimal
bound (1.10) is logN .

The precise conjectural rate of growth of the star-discrepancy in higher dimen-
sions is a subject of (sometimes heated) debate between the experts. Two main con-
jectures have crystallized after years of research. The first conjecture has been around
for a long time and may be regarded as classical.

Conjecture 1.2. For all dimensions d ≥ 2, there exists a constant cd > 0 such that

‖DN‖∞ ≥ cd (logN)
d−1. (1.12)

The second conjecture is much younger; it has been first put forth by Pollington
in an unpublished preprint and then stated again and popularized by the author and
collaborators [21, 24, 22, 13–15].

Conjecture 1.3. For all dimensions d ≥ 2, there exists a constant cd > 0 such that

‖DN‖∞ ≥ cd (logN)
d/2. (1.13)
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1 On some recent developments in uniform distribution and discrepancy theory | 7

The two conjectures differ in the power of the logarithm, and they coincide with
Schmidt’s result (1.10) in dimension d = 2.

A shift in attitudes toward these conjectures may be traced in the literature. In
the classical 1987 reference [10, p. 6], Beck and Chen essentially state Conjecture 1.2,
whilemuch later, in his 2010 book [53, p. 176]Matoušek poses the conjecture in amuch
more ambiguous way: Schmidt’s result improves Roth’s lower bound in the plane by a
factor of√logN. A similar improvement in higher dimensions turns out to bemuchmore
challenging (although it is widely believed that it should be possible).

Both conjectures have their own pros and cons. Below we attempt to present and
impartial list of reasons supporting each of the conjectures: some of these reasons are
heuristic or numerological, some anecdotal, and some stem from related proven facts.

Pros for Conjecture 1.2: (logN)d−1

– This conjecture is older and much more established. The popular belief in this
conjecture is evidenced by the fact that the literature often uses the term low-
discrepancy sets to denote point sets with ‖DN‖∞ ≪ (logN)d−1, thus implicitly
suggesting that sets with lower discrepancy cannot exist.

– The best among all the known constructions of well-distributed sets (digital nets,
lattices, Kronecker sequences, Halton–Hammersley sets) indeed have discrep-
ancy of this order ‖DN‖∞ ≪ (logN)d−1. Moreover, in a recent series of papers
[47]–[51] Levin had shown that, for each of these sets, the upper bound cannot be
improved, that is, they satisfy ‖DN‖∞ ≫ (logN)d−1. In other words, if Conjecture
1.2 were not sharp, one should be able to find absolutely different constructions
with much smaller discrepancy—it would be strange that they have eluded us so
far. This is further discussed in Section 1.3.3.

– Certain other “smoother” notions of discrepancy do satisfy a bound similar
to (1.12) with (logN)d−1 and a negative power of N depending on the smooth-
ness; see, for example, [73]. There is however a barrier which does not allow one
to extend the arguments all the way down to smoothness zero.

– Recent progress on Tusnády’s problem [54, 55] about the order of magnitude of
the combinatorial discrepancy generated by axis-parallel rectangles provides a
lower bound of the order (logN)d−1, which is conjectured to be sharp. Combinato-
rial discrepancy is an upper bound for the geometric discrepancy, which in many
situations is sharp. See Section 1.3.4 for a more detailed discussion.

Pros for Conjecture 1.3: (logN)d/2

– This conjecture is newer, but has gained acclaim in the recent years.
– The small ball conjecture (see (1.14) in Section 1.3.2 below) about the L∞ norm of

some linear combinationsof themultivariateHaar functions,which canbeviewed
as a linearmodel for the discrepancy functionDN , yields power

d
2 . This conjecture,

if true, would be sharp. However, no general “transference” technique is available
in order to translate such inequalities into discrepancy inequalities.
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8 | D. Bilyk

– The aforementioned small ball conjecture, if proven, would also provide lower
bounds in conjectures in probability (small deviation for the Brownian sheet)
and approximation theory (metric entropy for spaces with mixed smoothness),
whereas matching upper bounds are already known in these cases. A detailed ex-
position of the small ball inequality, its connections to discrepancy, and related
topics can be read in the author’s papers [13, 14, 22, 15].

– A difference of√logN between the L∞ and L2 bounds occurs often in the subject
of discrepancy in other geometric settings: for example, discrepancy with respect
to rotated boxes, balls, spherical caps: see, for example, (1.25) and (1.26). It usu-
ally stems from the sub-Gaussian large deviation estimates; see, for example, [8].
However, these geometric settings are rather different, and besides this √logN
difference is still conjectural (it is present only in the upper, not lower bounds—
see open problems in the end of Section 1.4.1).

Other conjectures have been proposed as to the correct power of the logarithm: d−1
2 +

d−1
d [63] and 3

4d −
1
2 [39]: both match (1.10) for d = 2, and the second one is the average

between Conjectures 1.2 and 1.3, but the author is not aware of more serious evidence
in their support. We conclude bymentioning that the best currently known bounds in
dimensions d ≥ 3 slightly improve on Roth’s L2 estimate (1.11): ‖DN‖ ≫ (logN)

d−1
2 +ηd ,

where ηd is a small constant; see [21, 24].

1.3.2 The small ball inequality, discrepancy, and digital nets

The proof of Roth’s L2 lower bound (1.11) involves a convenient choice of an orthog-
onal basis on L2([0, 1]d)—the so-called Haar functions (although Roth in [58] never
uses this term). In dimension d = 1, these functions were introduced by Haar in 1911
[38] and historically they are the first example of wavelets. Let𝒟 denote the system of
dyadic subintervals of [0, 1), that is, intervals of the form [ k2n ,

k+1
2n ), where n ∈ ℤ+ and

k = 0, 1, . . . , 2n−1. The Haar function on I ∈ 𝒟 is defined as hI (x) = 1IL (x)−1IR (x), where
IL and IR are the left and right halves of I. Togetherwith the constant function, this sys-
tem forms an orthogonal basis of L2([0, 1]). For a dyadic box R = R1 × ⋅ ⋅ ⋅ ×Rd ∈ 𝒟d, the
multidimensional Haar function hR is defined as a tensor product of one-dimensional
counterparts, hR(x) = hR1 (x1) ⋅ ⋅ ⋅ ⋅ ⋅ hRd (xd).

The small ball conjecture, in a simplified form, states that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∑
|R|=2−n

εRhR
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
≫ nd/2, (1.14)

where the coefficients εR = ±1 and the sum is extended over all R ∈ 𝒟d with volume
|R| = 2−n. Such sums with n ≈ logN serve as models for the discrepancy function DN
and the similarity between (1.14) and (1.13) of Conjecture 1.3 is apparent. Moreover, for
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1 On some recent developments in uniform distribution and discrepancy theory | 9

the L2 norm of this sum one easily obtains the lower bound of the order n
d−1
2 , which is

consistent with Roth’s bound (1.11). This analog also explains that the exponent d−1 is
combinatorially natural, there are ≈ nd−1 different shapes of dyadic rectangles R with
|R| = 2−n for a fixed n ≥ 0.

The small ball conjecture is known to be true in dimension d = 2: it was ini-
tially proved by Talagrand [71] and several other proofs have been given subsequently
[72, 20, 41]. In higher dimensions, this conjecture is still wide open; see [21, 24] for
known estimates. Much has been written about the connections of this conjecture
to discrepancy, as well as to open problems in probability and approximation theory
[14, 22].

While the latter connections are formal, the relation to discrepancy is only heuris-
tic. The first rigorous link was established by the author and Feldheim, who showed
that the extremal sets in the two-dimensional small ball inequality coincide with
a class of low-discrepancy sets. A dyadic (t,m, d)-net is a set of points 2m points in
[0, 1)d such that any dyadic rectangle R ∈ Dd of volume |R| = 2−m+t contains a fair
share of points of the net, that is, 2t points (m is referred to as the “order” of the
net, and t is called “deficiency”). The idea of such sets stems from the van der Cor-
pus sequence, and it is well known that, for fixed d and t, they satisfy the bound
‖DN‖∞ ≪t,d (logN)d−1. A lot of information about these constructions can be found
in the book by Dick and Pillichshammer [32]. In [20], the following was proved: in
dimension d = 2 the set of points x ∈ [0, 1)2, where the sum on the left-hand side of (1.14)
achieves its maximal value, consists of 2n+1 squares, whose lower left corners form a
(0, n+1, 2)-net. Moreover, every such net can be obtained by changing the coefficients εR.

1.3.3 Known low-discrepancy sets do not break the (log N)d−1
barrier: recent results of M. Levin

A whole array of examples of N-point sets in [0, 1)d with discrepancy of the or-
der (logN)d−1 (or almost equivalently, d-dimensional sequences with discrepancy
𝒪(logd N)) is available in the literature. We do not describe them in detail here, but
just mention that most of them arise from two classical examples of one-dimensional
sequences mentioned in the beginning of Section 1.2: Kronecker and van der Corput
sequences, although higher-dimensional extensions may be quite elaborate and non-
trivial. Generalizations of the van der Corput sequence to higher dimensions include
the Halton sequence, where the digit-reversing procedure is done in different coprime
bases, as well as the so-called (t, d)-sequences.

Infinite sequences ω = (ωn) ⊂ [0, 1)d−1 can be converted to the finite N-point sets
in [0, 1)d by considering collections {( nN ,ωn)}

N−1
n=0 . Under this identification, the Halton

sequence becomes the Hammersley set, and the (t, d)-sequences correspond to the
aforementioned (t,m, d)-nets. More complicated extensions are also known.
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10 | D. Bilyk

For a while only the upper discrepancy bounds were known for all these sets and
sequences—these boundswere consistent with Conjecture 1.2, but therewas still hope
that their discrepancy could be even smaller, which perhaps could lead to Conjec-
ture 1.3. However, in the last few years, this hope was shattered by a series of papers
of Levin.

In a nutshell, Levin had proved that almost all known low-discrepancy examples
also satisfy matching lower bounds consistent with Conjecture 1.3. Namely, he proved
the estimate

lim sup
N→∞

DN (ω) (logN)
−d > 0, (1.15)

whenever ω is the Halton sequence [48], generalized Halton sequence [49], shifted
Niederreiter sequence [50], Niederreiter–Xing sequence, or other explicit construction
of (t, d)-sequences [51]. This translates to the estimate

‖DN‖∞ ≫ (logN)
d−1 (1.16)

for the Hammersley set and various (t,m, d)-nets, showing that Conjecture 1.3 cannot
be improved for these sets. He also proved that the same lower bound holds for cer-
tain lattices, obtained from modules in a totally real algebraic number field [47]; the
matching upper bound in this setting was earlier obtained by Skriganov [62].

These results give a lot of weight to Conjecture 1.2 by effectively ruling out most of
the potential candidates that might have broken the (logN)d−1 barrier.

1.3.4 Combinatorial discrepancy: Tusnády’s problem and the
interplay with geometric discrepancy

Let 𝒜 be a collection of geometric sets in the unit cube [0, 1)d. For a N-point set 𝒫N ⊂
[0, 1)d, its combinatorial discrepancy with respect to𝒜 is defined as

disc(𝒫N ,𝒜) = inf
χ:𝒫N→{±1}

sup
A∈𝒜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑

p∈𝒫N∩A
χ(p)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (1.17)

The map χ is usually thought of as a red-blue coloring of the points of 𝒫N , that is, we
are looking for a largest disbalance of colors within sets in𝒜, and then optimize over
all colorings. The combinatorial discrepancy of𝒜 is

disc(N ,𝒜) = sup
𝒫⊂[0,1)d
#𝒫N=N

disc(𝒫N ,𝒜), (1.18)

which, in some sense, is a measure of complexity of the collection𝒜.
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It is well known that, under somemild conditions, the combinatorial discrepancy
disc(N ,𝒜) serves as an upper bound for the optimal geometric discrepancy. Namely,
if one defines

DN (𝒜) = inf
𝒫N⊂[0,1)d
#𝒫N=N

sup
A∈𝒜

󵄨󵄨󵄨󵄨#{𝒫N ∩ A} − N ⋅ vol(A)
󵄨󵄨󵄨󵄨, (1.19)

then the following “transference principle” holds between the two discrepancies

DN (𝒜) ≪ disc(𝒫N ,𝒜). (1.20)

This fact in various forms can be found in [7, 53, 2].
In the case when 𝒜 = ℛd is the system of axis-parallel boxes, anchored at the

origin, the question of finding the correct order of magnitude of disc(N ,ℛd) is known
as Tusnády’s problem. It is, in fact, conjectured that disc(N ,ℛd) ≈ (logN)d−1. Observe
that

DN (ℛd) = inf
𝒫N⊂[0,1)d
#𝒫N=N

‖DN‖∞.

For a long time, the only lower bounds available for this problems were obtained
through (1.20) and the known lower bounds for the star-discrepancy ‖DN‖∞.

However, in the past few years this problem came very close to being solved. The
following estimate is currently known:

(logN)d−1 ≪ disc(N ,ℛd) ≪ (logN)
d− 12 . (1.21)

The lower bound was proved by Nikolov and Matoušek [54] (unfortunately, this was
one of the last papers of Jiří Matoušek, who died in 2015 at the age of 51); see also [55].
The upper bound was just recently proved by Nikolov [56]. Much more information
about combinatorial discrepancy and about Matoušek’s contributions is contained in
Nikolov’s survey in this volume [57].

We conclude this subsection with a question on combinatorial discrepancy: for
most classes of sets𝒜, the transference inequality (1.20) is sharp, that is, the optimal
combinatorial and geometric discrepancies are of the same order. Does this statement
hold in general for reasonable geometric collections? The only known exception to
this pattern is a rather rich class consisting of all convex sets, in which case the opti-
mal geometric discrepancy DN (𝒜) is of the order N1− 2

d+1 (up to logarithms), while the
combinatorial discrepancy disc(𝒫N ,𝒜) ≈ N .

1.4 Geometric discrepancy: spheres and more
So far, we havemostly discussed discrepancy with respect to intervals or axis-parallel
rectangles for point sets contained in the unit cube, but it is also natural to consider
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12 | D. Bilyk

discrepancies with respect to other collections of sets and in other geometrical set-
tings. One of the most popular such settings that has received considerable attention
recently is discrepancy for points on the sphere.

1.4.1 Discrepancy on the sphere

Let 𝕊d ⊂ ℝd+1 denote the d-dimensional unit sphere, and let σ represent the (Haus-
dorff) surface measure on 𝕊d, normalized so that σ(𝕊d) = 1. Consider a set of N points
on the sphere Z = {z1, . . . , zN } ⊂ 𝕊d. For any reasonable collection of geometric subsets
of 𝕊d, we can define the discrepancy of Z, much like it was done in (1.19). The most
standard choice of the geometric test sets are the spherical caps. For x ∈ 𝕊d, t ∈ [−1, 1],
the spherical cap centered at x with height t is defined as

C(x, t) = {z ∈ 𝕊d : x ⋅ y > t}. (1.22)

The spherical cap discrepancy of Z = {z1, . . . , zN } ⊂ 𝕊d is the quantity

Dcap(Z) = sup
x∈𝕊d ,t∈[−1,1]

󵄨󵄨󵄨󵄨#(Z ∩ C(x, t)) − Nσ(C(x, t))
󵄨󵄨󵄨󵄨, (1.23)

and if one replaces the supremum with the quadratic average over all caps, one gets
the L2 spherical cap discrepancy:

D2
L2 ,cap(Z) =

1

∫
−1

∫
𝕊d

󵄨󵄨󵄨󵄨#(Z ∩ C(x, t)) − Nσ(C(x, t))
󵄨󵄨󵄨󵄨
2 dσ(x) dt. (1.24)

Unlike the discrepancy with respect to axis-parallel boxes, which grows logarith-
mically, the optimal spherical cap discrepancy grows as a power of N . The following
estimates have been proved by Beck [8, 9].

Theorem 1.4. The optimal spherical cap discrepancy of N-point sets Z = {z1, . . . , zN } ⊂
𝕊d satisfies

cdN
1
2−

1
2d ≤ inf

#Z=N
Dcap(Z) ≤ CdN

1
2−

1
2d√logN , (1.25)

and the L2 spherical discrepancy satisfies

cdN
1
2−

1
2d ≤ inf

#Z=N
DL2 ,cap(Z) ≤ CdN

1
2−

1
2d . (1.26)

This effect also propagates to other settings in which curvature or rotational in-
variance is involved, for example, balls or rotated rectangles—in these cases, the esti-
mates are exactly the same as above. The lower bounds in (1.25) and (1.26) are proved
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using L2 methods (Fourier or spherical harmonics), and for the L2 discrepancy they
are actually sharp as (1.26) shows.

The lower bound in (1.26) has been recently refined in [18], it was shown that

DL2 ,cap(Z) ≫ N
1
2−

1
2d(

1
N

N
∑
i,j=1

log(2 + N1/d‖zi − zj‖)
(1 + N1/d‖zi − zj‖)d+1

)

1
2

. (1.27)

By only keeping the diagonal terms in the sum above, one recovers Beck’s lower
bound (1.26), but for specific sets the discrete energy on the right may give more
precise information about the order of the discrepancy. An even deeper connection
between discrepancy and discrete energy is discussed in Section 1.4.2.

The upper bound in both (1.25) and (1.26) is obtained using a semirandom con-
struction known as “jittered (or stratified) sampling.” This construction starts with an
equal area partition of the sphere, that is, a partition 𝕊d = ⋃Ni=1 Ri, such that the com-
ponents Ri:
(a) are essentially disjoint, that is, σ(Ri ∩ Rj) = 0;
(b) have the same size σ(Ri) =

1
N , i = 1, . . . ,N;

(c) have small diameters, diam(Ri) ≪ N−1/d, i = 1, . . . ,N .

Then one chooses independent random points in each of the components zi ∈ Ri. This
construction provides upper bounds in both (1.25) and (1.26). The additional √logN
in for the extremal discrepancy emerges as an inverse of the Gaussian function e−λ

2

through the use of sub-Gaussian large deviation bounds, for example, Hoeffding’s in-
equality. This construction is also useful for other problems of optimal point distribu-
tions, in particular, for optimal estimates of the Riesz energy ofN points on the sphere.
Another random construction that almost satisfies the upper bound in (1.25), albeit
with a larger power of logarithm, is the so-called determinantal point process [11].

Several questions arise naturally in this respect and are still wide open:
– What is the correct order of growth of the optimal spherical cap discrepancy

Dcap(Z)? In other words, is the √logN necessary? It is quite possible that this
logarithmic factor is, in fact, needed, that is, N

1
2−

1
2d√logN may be the correct es-

timate for the discrepancy. If it is so, this would be a manifestation of the √logN
difference between the extremal and average (quadratic) discrepancy estimates,
which was alluded to in Section 1.3.1, and this would support Conjecture 1.3 for
the star-discrepancy. However, this would also require a novel approach to lower
bounds.

– Another important question is about explicit constructions of optimal or almost
optimal point sets on the sphere. All the constructions that come close to satisfy-
ing the upper bounds in (1.25) and (1.26) are partially random: for example, the
aforementioned jittered sampling, or the so-called determinantal point process.
Is there an explicit construction of a set of points with the (almost) optimal order of
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the spherical cap discrepancy? Even in the case of 𝕊2 such constructions are not
known. Several attempts have beenmade, for example, [3], however, the problem
still remains unsolved.

1.4.2 Stolarsky principle

It turns out that the L2 spherical cap discrepancy is closely related to another object,
which arises frequently in discrete and metric geometry—the sum of Euclidean dis-
tances. In 1973, Stolarsky [70] proved the following remarkable identity:

cdD
2
L2 ,cap(Z) = N

2 ∫
𝕊d

∫
𝕊d

‖x − y‖ dσ(x) dσ(y) −
N
∑
i,j=1
‖zi − zj‖, (1.28)

where cd is an explicit dimensional constant. This relation (which came to be known
as the Stolarsky invariance principle) implies that minimizing the L2 spherical cap dis-
crepancy is equivalent to the problem of maximizing the sum of pairwise Euclidean
distances between the points of Z = {z1, . . . , zN } ⊂ 𝕊d. New simplified proofs of this
identity have been given in [28, 17]. The idea became quite popular in the recent
years, and a number of papers have appeared exploring extensions and generaliza-
tions of (1.28).

Onaheuristic level, given anotion of discrepancy, it is fairly straightforward to ob-
tain an analog of (1.28): one can expand the square in the definition (1.24) ofD2

L2 ,cap(Z),
and the “cross terms” depending on zi and zj, after (sometimes technically compli-
cated) integration, yield an object similar to the distance sum, or discrete energy. In
this vein, the following versions of the Stolarsky principle have been obtained (rather
than stating the exact identities, we shall just describe the notions of discrepancy and
the discrete energies that arise from them):
– For the L2 discrepancy with respect to hemispheres, that is, caps with height t =

0, one obtains a complete analog of (1.28) with the Euclidean distance replaced
by the geodesic distance d(x, y) on the sphere. This identity yielded a complete
solution of the conjecture by Fejes Tóth [35] about configurations that maximize
the sum of geodesic distances. See [17, 65] for details.

– Consider spherical wedges, that is, sets of points which lie “between” the hyper-
planes x⊥ and y⊥ for some x, y ∈ 𝕊d:

Wxy = {z ∈ 𝕊
d : sgn x ⋅ z ̸= sgn y ⋅ z}.

These sets arise naturally in the problem of uniform tessellation of the sphere by
hyperplanes. The L2 discrepancy with respect to the spherical wedges yields the
discrete energy of the form

N
∑
i,j=1
(
π
2
− d(zi, zj))

2
,
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where d again represents the geodesic distance; see [23]. This energy is very sim-
ilar to the so-called frame potential ∑i,j |zi ⋅ zj|

2, which plays an important role in
frame theory and signal processing [12].

– Spherical slices are “halves” of spherical wedges: for x, y ∈ 𝕊d they are defined as
Sxy = {z ∈ 𝕊d : sgn x ⋅ z > 0, sgn y ⋅ z < 0}. Discrepancy with respect to these sets
was studied by Blümlinger [27]. They give rise to the Stolarsky identity with the
discrete energy of the form (see [17]),

N
∑
i,j=1

d(zi, zj)(π − d(zi, zj))

– On the circle 𝕊1 ≃ 𝕋, the L2 discrepancy with respect to unions of opposite quad-
rants, that is, rotations of the set [0,π/2) ∪ [3π/2, 2π), leads to the Stolarsky prin-
ciple with the discrete energy

∑
i,j
min{d(zi, zj),

π
2
− d(zi, zj)},

in other words, this is the sum of (nonobtuse) angles between the lines generated
by the vectors zi. This sum is the subject of yet another conjecture by Fejes Tóth
[35], and this version of the Stolarsky principle leads to a new proof of this conjec-
ture in dimension d = 1. Unfortunately, this idea does not easily extend to higher
dimensions, and the conjecture is still wide open in this case; see [19].

In addition, Skriganov [64] had proved an extension of the Stolarsky principal (1.28)
to general distance invariant spacesℳwith ameasure μ, for a “symmetric difference”
metric

ρ∗(x, y) =
diam(ℳ)

∫
0

μ(Br(x)ΔBr(y)) dξ (r),

where ξ is some positive Borel measure on [0,diam(ℳ)]. He also proved probabilistic
extensions of the Stolarsky principle to general metric spaces, as well as a version of
the Stolarsky identity on projective spaces [66].

Finally, wewould like tomention that, although it is generally harder to start with
adiscrete energy andfindanotionof discrepancy,whichwouldgive rise to aStolarsky-
type identity, a fairly general result in this direction was obtained by the author, Dai,
and Matzke in [16, 17]. Let F : [−1, 1] → ℝ be a continuous positive definite function
on the sphere 𝕊d in the sense that the matrix [F(zi ⋅ zj)]Ni,j=1 is positive semidefinite for
each collection {z1, . . . , zN } ⊂ 𝕊d. This is known to be equivalent to the fact that all the
coefficients in the Gegenbauer polynomial expansion of F(t) = ∑∞n=0 F̂n

2n+d−1
d−1 C

d−1
2

n (t)
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are nonnegative, that is, F̂n ≥ 0, n ∈ ℕ; see [61]. Then let us define the function f
through its Gegenbauer coefficients by the identity

(f̂n)
2 = F̂n, for all n ∈ ℕ, (1.29)

or, equivalently,

F(x ⋅ y) = ∫
𝕊d

f (x ⋅ z)f (z ⋅ y) dσ(z) for all x, y ∈ 𝕊d, (1.30)

that is, F is a “spherical convolution” of f with itself. Notice that f is not unique, as
we are free to choose the signs of f̂n. We can now define the L2 discrepancy of Z =
{z1, . . . , zN } ⊂ 𝕊d with respect to f as follows:

D2
L2 ,f (Z) = ∫

𝕊d

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
i=1

f (x ⋅ zi) − N ∫
𝕊d

f (x ⋅ z) dσ(z)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

dσ(x). (1.31)

Observe that if f (τ) = 1[t,1](τ), one obtains precisely the discrepancy with respect to
spherical caps of height t, that is, the inner integral in (1.24).

If F and f are related by identities (1.29)–(1.30), one obtains a very general analog
of the Stolarsky principle on the sphere:

D2
L2 ,f (Z) =

N
∑
i,j
F(zi, zj) − N

2 ∫
𝕊d

∫
𝕊d

F(x ⋅ y) dσ(x) dσ(y). (1.32)

While the relation between the functions F and f is somewhat implicit, it still allows
one to translate between discrepancy estimates and bounds for the discrete energy, in
particular one has the bound

min
1≤k≪N1/d

NF̂k ≪ inf
#Z=N

D2
L2 ,f (Z) ≪ max

|t|≪N−1/d
(F(1) − F(cos t)); (1.33)

see [16] for the details.
Some natural examples of functions to which the generalized Stolarsky principle

may be applied (i. e., positive definite functions on 𝕊d, up to constant terms) include
F(x ⋅ y) = −‖x − y‖α, where α ∈ (0, 2], or F(x ⋅ y) = −dα(x, y) for α ∈ (0, 1], that is, this
covers both the case of the classical Stolarsky principle (1.28) and the aforementioned
version for the geodesic distances. However, unfortunately, the explicit relation be-
tween the functions F and f is only known in the latter case. It would be interesting
to understand how to rewrite the original Stolarsky principle in the form (1.32): ob-
serve that the left-hand side of (1.28) is not of the same form as in (1.32), as there is
an additional integration in t in the definition (1.24) of D2

L2 ,cap(Z) compared to that of
D2
L2 ,f (Z) in (1.31). It is possible to write out the Gegenbauer coefficients of f , but the

closed form of f is still elusive. A similar question can be formulated for many other
interesting energies.
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2 Results and problems old and new in
discrepancy theory
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Abstract: In this brief survey, we discuss some of the main results in discrepancy the-
ory and highlight many of the very difficult open problems that remain in the subject.
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2.1 Introduction

The subject of discrepancy theory, or irregularities of point distribution, began with
the conjecture of van der Corput [29, 30] in 1935 and the pioneering results of van
Aardenne-Ehrenfest [1, 2] in 1945 and 1949, and took on a geometric flavor through
the groundbreaking early work of Roth [43] in 1954. Today, many of the problems are
formulated in the following way.

LetU be a bounded region in the k-dimensional Euclidean spaceℝk, where k ⩾ 2,
endowed with a measure μ, usually the Lebesgue measure, and let P be a set of N
points in U . The irregularity of the distribution of the point setP is usually described
in terms of an infinite collection ℬ of measurable sets in U . For any such measurable
set B in ℬ, we consider the discrepancy function

D[P ;B] = |P ∩ B| − Nμ(B).

Often the collection ℬ is endowed with an integral geometric measure dB. Then
for any real number q satisfying 0 < q < ∞, we can consider the Lq-discrepancy

󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q = (∫

ℬ

󵄨󵄨󵄨󵄨D[P ;B]
󵄨󵄨󵄨󵄨
q dB)

1/q
.
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Here, the values q = 1 and q = 2 are often of particular interest. We also consider the
L∞-discrepancy, or extreme discrepancy,

󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ = sup

B∈ℬ 󵄨󵄨󵄨󵄨D[P ;B]󵄨󵄨󵄨󵄨.
Our goal is then to find lower and upper bounds for the quantities

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q and inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)

󵄩󵄩󵄩󵄩∞,
where each infimum is taken over all points sets P of N points in U .

Notation. For any function f and positive function g, we write f ≪ g to denote that
there exists a positive constant C such that |f | ⩽ Cg. In particular, if f is a positive func-
tion, then we also write f ≫ g to indicate that g ≪ f , and write f ≍ g to indicate that
both f ≪ g and f ≫ g hold. The signs≪,≫ and ≍ may contain subscripts, denoting
that any implicit constants that arise may depend on these parameters. For any finite
set S, we write |S| to denote the cardinality of S.

2.2 The classical problem

The classical problem indiscrepancy theorywas formulated byRoth [43] in 1954.Here,
U = [0, 1]k, the unit cube inℝk, where k ⩾ 2, and the irregularity of a point setP in U
is described in terms of the infinite collection

ℬ = {B(x) = [0, x1) × ⋅ ⋅ ⋅ × [0, xk) : x ∈ [0, 1]
k}

of aligned rectangular boxes in the unit cube anchored at the origin.

The integral geometric measure in ℬ is given by the usual Lebesgue volume measure
dB = dx.

The Lq-discrepancy in this problem is well understood for every real number q
satisfying 1 < q < ∞, and we have the estimates

(logN)(k−1)/2 ≪k,q inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q ≪k,q (logN)(k−1)/2. (2.1)
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Here, the lower bound is due to Schmidt [51] in 1977, following the earlier work of
Roth [43] in 1954 on the special case q = 2 using an orthogonal function technique.
The upper bound is due to Chen [19, 20], following the earlier work of Davenport [31]
in 1956 on the special case k = q = 2 and the big breakthrough of Roth [45] in 1980 on
the special case q = 2.

We make here a few comments concerning the special case q = 2.
The proof of the lower bound is given in Roth [43] for the case k = 2 only, although

generalization to arbitrary dimensions k ⩾ 2 presents no extra difficulties. In fact,
the ideas are much more clearly presented in Schmidt [51]. A complete proof of these
results of Roth and Schmidt in arbitrary dimensions can be found in themonograph of
Beck and Chen [9, Section 2.1]. However, a simple description of the ideas along these
lines for the case k = 2 can be found in the survey of Chen and Travaglini [26, Section
1]. The idea is that sets where the expectation is a small fraction between 0 and 1 can
be found in abundance, and they give rise to what we call trivial discrepancies. We
need to combine these and not allow them to cancel each other. The tool is given by
Roth’s auxiliary function, of the form

F(x) = ∑
r
fr(x),

a sumof orthogonal functions over a suitable collection of vectors r,where each fr(x) is
either a Rademacher-type functionwith values ±1 or zero.WritingD(x) forD[P ;B(x)],
the Cauchy–Schwarz inequality then gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
U

D(x)F(x)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ ‖D‖2‖F‖2. (2.2)

A lower bound for ‖D‖2 will result from a lower bound for the left-hand side of (2.2)
and an upper bound for ‖F‖2.

The proof of the upper bound in Roth [45] is probabilistic, with no explicitly given
point sets, as are subsequent proofs by Chen [20] in 1983 and Skriganov [53] in 1994.
The first proof of the upper boundwith explicitly given point sets can be found in Chen
and Skriganov [24] in 2002. A different proof is given by Dick and Pillichshammer [32]
in 2014. For some comments on the differences between these two explicit proofs, see
also the paper of Dick and Pillichshammer [33].

On the other hand, for the case q = 1, we have the estimates

(logN)1/2 ≪k inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩1 ≪k (logN)

(k−1)/2.
Here, the upper bound is a simple consequence of the upper bound in (2.1), while
the lower bound is due to Halász [34] in 1981, using a variant of Roth’s lower bound
technique that only works when k = 2. Indeed, Halász uses the auxiliary function

H(x) = ∏
r
(1 + in−1/2fr(x)) − 1,
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where logN ≪ n ≪ logN . Then H(x) ≪ 1, and so

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
U

D(x)H(x)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≪ ‖D‖1. (2.3)

A lower bound for ‖D‖1 will result from a lower bound for the left-hand side of (2.3).
Thus the problem of the Lq-discrepancy in this classical setting is completely

solved for all finite q > 1 and for the case (k, q) = (2, 1).
Clearly, the upper bound in (2.1) remains valid for every natural number k ⩾ 2 and

every finite positive real number q.

Open Problem 1. In the classical discrepancy problem, is it true that for every natural
number k ⩾ 2 and every finite positive real number q, the estimate

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q ≫k,q (logN)(k−1)/2 (2.4)

holds?

It is interesting to observe that for every real number q satisfying 0 < q < 1, the
currently known best lower bound is precisely zero.

Much less is known for the L∞-discrepancy. We have the estimates

(logN)(k−1)/2 ≪k inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪k (logN)k−1. (2.5)

Here, the lower bound is a simple consequence of the lower bound in (2.1), while the
upper bound is due to Halton [35] in 1960. The lower bound has been improved in the
intervening years, and we have the estimate

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≫ logN (2.6)

in the special case k = 2, due first to Schmidt [49] in 1972, using a combinatorial argu-
ment, with an alternative proof given by Halász [34] in 1981, using Roth’s technique
with yet another auxiliary function, as well as the estimate

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≫k (logN)(k−1)/2+δ(k) (2.7)

for some δ(k) ∈ (0, 1/2), due to Bilyk, Lacey, and Vagharshakyan [15] in 2008.
There remains a rather big gap between the lower and upper bounds when k > 2.

Open Problem 2 (Great open problem). In the classical discrepancy problem, for every
natural number k ⩾ 3, find the correct order of magnitude of

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞.
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At the very least, try to prove or disprove the following conjectures:
(i) (Old conjecture) For every natural number k ⩾ 3, the estimate

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≫k (logN)k−1

holds, so that Halton’s upper bound in (2.5) is sharp.
(ii) (New conjecture) For every natural number k ⩾ 3, the estimate

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≫k (logN)k/2 (2.8)

holds, corresponding to the estimate in (2.7) with δ(k) = 1/2.

We comment that both estimates (2.4) and (2.8) hold on average over digit shifts,
as shown by Skriganov [54] in 2016. Digit shifts, since its introduction to discrepancy
theory by Chen [20] in 1983, have always been used to study upper bound questions.
This recent work of Skriganov is the first instance that they have been used in lower
bound considerations.

Before we make our concluding remarks, we mention a very interesting piece of
work of Lev [38] in 1996 which shows that our estimates are rather delicate.

Suppose that the real number q is fixed, where 1 ⩽ q < ∞. In view of the upper
estimate in (2.1), clearly there exists sets P of N points such that the Lq-discrepancy
satisfies the upper bound

󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q ≪k,q (logN)(k−1)/2. (2.9)

Let us treat the unit cube U = [0, 1]k as a torus. For every t = (t1, . . . , tk) ∈ [0, 1]k, we
now consider the translate

P − t = {p − t : p ∈P}

of the point set P. Then

sup
t∈[0,1]k󵄩󵄩󵄩󵄩Dℬ[P − t]

󵄩󵄩󵄩󵄩q ≍k
󵄩󵄩󵄩󵄩Dℬ[P]

󵄩󵄩󵄩󵄩∞, (2.10)

where the implicit constants may depend on the dimension k, but not on q.
In view of the great open problem, the inequality (2.10) tells us that the sharp

upper bound (2.9) can be destroyed by a simple translation on the point set P.
The original proof of Lev of the inequality (2.10) is an ingenious tour de force in-

volving a number of different ideas. The main thrust is an induction argument up the
dimensions. However, to make this work, one has to first consider the case k = 1,
usually dismissed by most experts as trivial. Also, to make the induction work, it is
necessary to introduce weights in order to hide some extra quantities that arise.
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An elementary proof the inequalities (2.10), given later by Kolountzakis [36], is no
less ingenious. We shall only discuss the case k = 2, as the proof generalizes naturally
to higher dimensions. Suppose that P is a distribution of N points in the unit square
[0, 1]2, treated as a torus. Note, first of all, that instead of shifting the set P, we may
equivalently shift the origin and the coordinate system and leave the set P in place.
Suppose that

󵄩󵄩󵄩󵄩Dℬ[P]
󵄩󵄩󵄩󵄩∞ = M.

Then there exists a point a = (a1, a2) ∈ [0, 1]2 such that |D[P ;B(a)]| > M/2. We assume
that the set A of points x = (x1, x2) ∈ [0, 1]2 such that x1 ⩾ a1 and x2 ⩾ a2 has measure
at least 1/10; the proof can be easily adjusted in other cases. For each such point x,
consider the following picture:

a

0 d f

c h

e b x

Let

R1 = rectangle with vertices 0, e,x, f,
R2 = rectangle with vertices c, e,x,h,
R3 = rectangle with vertices d,b,x, f,
R4 = rectangle with vertices a,b,x,h.

Then

D[P ;B(a)] = D[P ;R1] − D[P ;R2] − D[P ;R3] + D[P ;R4],

and clearly

max{󵄨󵄨󵄨󵄨D[P ;R1]
󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨D[P ;R2]

󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨D[P ;R3]

󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨D[P ;R4]

󵄨󵄨󵄨󵄨} >
M
8
.

Let f (x) = i, where i ∈ {1, 2, 3, 4} and

󵄨󵄨󵄨󵄨D[P ;Ri]
󵄨󵄨󵄨󵄨 = max{󵄨󵄨󵄨󵄨D[P ;R1]

󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨D[P ;R2]

󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨D[P ;R3]

󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨D[P ;R4]

󵄨󵄨󵄨󵄨},

with the convention that if there is more than one such value of i, then we choose the
smallest such value. Clearly, there exists one value i∗ ∈ {1, 2, 3, 4} for which the set

{x ∈ A : f (x) = i∗}
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has measure at least 1/40. Accordingly, we shift the origin to the point

{{{{
{{{{
{

0, if i∗ = 1,
c, if i∗ = 2,
d, if i∗ = 3,
a, if i∗ = 4.

This implies that there exists t ∈ [0, 1]2 such that ‖D[P + t]‖1 ⩾ M/320, and completes
the proof.

Note that all the estimates in this classical setting are logarithmic in size in terms
of the cardinality N of the point sets P in question. We sometimes refer to this as a
small discrepancy phenomenon.

2.3 Some work of Schmidt

There are many interesting discrepancy problems when we move away from the clas-
sical problem concerning aligned rectangular boxes anchored at the origin. The pi-
oneering work in this direction is due to Schmidt [46–48] in 1969, using an integral
equation technique and involving tilted rectangular boxes and balls as well as other
geometric objects. The paper [48] is of particular interest. Let U = [0, 1]k, treated as a
torus and with k ⩾ 2.

In the casewhenℬ is the collection of all rectangular boxes, we have the estimates

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≫ϵ { N1/4−ϵ, if k = 2,

N1/3−ϵ, if k ⩾ 3.
(2.11)

In the case when ℬ is the collection of all balls, we have the estimate

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≫ϵ N1/2−1/2k−ϵ. (2.12)

Note that the estimates in these new settings are now powers of the cardinality N of
the point sets P in question. We sometimes refer to these as a large discrepancy phe-
nomena.

Indeed, apart from the term ϵ in the exponent, both estimates are essentially
sharp, with the exception of (2.11) if k > 3. We shall demonstrate this observation by
Beck [4] in 1981 only in the special case k = 2, as the argument generalizes to higher
dimensions without any extra difficulties.

For simplicity, let us suppose that N = M2 is a perfect square. Then we partition
U = [0, 1]2 into N little squares in the usual way.
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Let 𝒮 denote the collection of all little squares, and we place one point anywhere in
each such little square S ∈ 𝒮, and denote by P the collection of all these points. This
is a deterministic point set of precisely N points in U .

Now take any convex set B ∈ ℬ. This can be a tilted rectangle or a circular disc;
the latter case is shown below on the left.

Clearly, D[P ; S ∩ B] = 0 whenever S ∩ B = 0 or S ⊆ B, and so

D[P ;B] = ∑
S∈𝒮 D[P ; S ∩ B] = ∑S∈𝒮

S∩𝜕B ̸=0D[P ; S ∩ B];
see the picture above on the right. The triangle inequality now leads to the estimate

󵄨󵄨󵄨󵄨D[P ;B]
󵄨󵄨󵄨󵄨 ⩽ ∑

S∈𝒮
S∩𝜕B ̸=0󵄨󵄨󵄨󵄨D[P ; S ∩ B]󵄨󵄨󵄨󵄨 ≪ M = N1/2.

This is rather crude, and clearly not good enough.
To get a better upper bound, we randomize the point setP bymaking the point in

any little square S ∈ 𝒮 a randompoint, uniformly distributedwithin that little square S
and independently of the randompoints in the other little squares in𝒮. Applying large
deviation techniques due to Bernstein–Chernoff or Hoeffding, this crude upper bound
N1/2 can then be converted to an upper bound of the form N1/4(logN)1/2. The logarith-
mic factor represents the cost of using probability theory.

For slightly more details and related problems, see the survey article by Chen [23,
Section 2].
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2.4 Beck’s Fourier transform technique
Let 𝕋k = [0, 1]k, treated as a torus and with k ⩾ 2. For any convex and compact set
B ⊆ [0, 1]k, it is easy to see that y ∈ B + x if and only if χ−B(x − y) = 1, where −B = {−y :
y ∈ B} and χ−B denotes its characteristic function, and so

D[P ;B + x] = ∑
p∈P χ−B(x − p) − N ∫

𝕋k

χ−B(x − y)dμ(y)
= ∫

𝕋k

χ−B(x − y) (dZ − Ndμ)(y).
This can be summarized in the form

D = χ−B ∗ (dZ − Ndμ). (2.13)

In other words, under translation, discrepancy is a convolution of geometry andmea-
sure.

As lower bound estimates apply to arbitrary point sets P, there is very limited
information on the measure part of this convolution, and so we wish to concentrate
on the geometry part. To separate the geometry part from the measure part, we apply
Fourier transform. Then the convolution (2.13) becomes an ordinary product

D̂ = χ̂−B ⋅ ?(dZ − Ndμ)

of the Fourier transforms of the constituent parts.
This is the basis of Beck’s Fourier transform technique, motivated by the work of

Roth [44] in 1964 on irregularities of distribution of integer sequences.
Indeed, the similarity of the bounds (2.11) and (2.12) is no coincidence.
Let U = [0, 1]k, treated as a torus and with k ⩾ 2, and let A be a fixed convex and

compact set in U satisfying some mild technical condition.
Suppose that the irregularity of a point set P in U is described in terms of the

infinite collection

ℬ = {A(λ, τ,x) : λ ∈ [0, 1], τ ∈ 𝒯 ,x ∈ [0, 1]k}, (2.14)

where A(λ, τ,x) = {τ(λy) + x : y ∈ A} denotes a similar copy obtained from the set A
under a contraction λ, an orthogonal transformation τ and a translation x, and where
ℬ is endowed with the integral geometric measure dB = dλ dτ dx.

Here, we have the lower bounds

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ⩾ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)

󵄩󵄩󵄩󵄩2 ≫A N1/2−1/2k , (2.15)

due to Beck [6] in 1987.
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A discussion of the special case k = 2 with a square A can be found in the survey
by Chen [22, Section 2]. The special case k = 2 is discussed in generality in the lecture
notes of Montgomery [41, Chapter 6]. There it is shown how estimates concerning the
decay of the Fourier transform of the characteristic function of A lead to the lower
bounds (2.15). Here, Montgomery also discusses the special case k = 2 with a circular
disc A of radius 1/2. Note that rotation is irrelevant here. Note also that the Fourier
transformof the characteristic function ofA involves aBessel function of the first kind,
and so it does appear that contraction is essential. However, Montgomery can show
that the contraction parameter λ can be restricted to a very small set. Indeed, he can
show that the inequality

∫[0,1]2 󵄨󵄨󵄨󵄨D[P ;A(1,x)]󵄨󵄨󵄨󵄨2 dx + ∫[0,1]2 󵄨󵄨󵄨󵄨D[P ;A(1/2,x)]󵄨󵄨󵄨󵄨2 dx ≫ N1/2
holds for every set P of N points in [0, 1]2. Here, we have omitted reference to the
unnecessary orthogonal transformation τ in our notation. Indeed, some average over
contractions is necessary in view of the work of Parnovski and Sobolev [42]. See also
the paper of Travaglini and Tupputi [55].

For an introduction to the relationship between the average decay of the Fourier
transform and discrepancy theory, the interested reader is referred to the survey of
Brandolini, Gigante, and Travaglini [18].

Returning to our original problem, we also have the upper bounds

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪A N1/2−1/2k(logN)1/2, (2.16)

obtained by Beck [4] in 1981, and

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ≪A N1/2−1/2k ,

due to Beck and Chen [11] in 1990 and then improved to

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q ≪A,q N1/2−1/2k (2.17)

for any fixed positive real number q by Chen [21] in 2000.
Combining (2.15) and (2.17), it is clear that the Lq-discrepancy in this problem con-

cerning all similar copies of a given convex and compact set in U is completely solved
for every finite real number q ⩾ 2. However, comparing (2.15) and (2.16), we see that
there is a gap in our knowledge for the L∞-discrepancy in this problem.

Open Problem 3. Let U = [0, 1]k , treated as a torus and with k ⩾ 2, and let A be a fixed
convex and compact set in U satisfying somemild technical condition. Suppose that the
set ℬ is given by (2.14). Does an estimate of the form

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪A N1/2−1/2k

hold?
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Suppose next that we no longer permit orthogonal transformation, and that the
irregularity of a point set P in U is described in terms of the infinite collection

ℬ = {A(λ,x) : λ ∈ [0, 1],x ∈ [0, 1]k}, (2.18)

where A(λ,x) = {λy + x : y ∈ A} denotes a homothetic copy obtained from the set A
under a contraction λ and a translation x, and where ℬ is endowed with the integral
geometric measure dB = dλ dx. Then much less is known, and our limited knowledge
is essentially restricted to the case k = 2, where we have a lower bound of the form

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≫A max{(logN)1/2, ξ (A,N)}, (2.19)

obtained by Beck [7] in 1988 from the corresponding estimate for the L2-discrepancy.
Here, ξ (A,N) is a function which depends on the boundary curve of the fixed set A. In
particular, ξ (A,N) is finite if A is a convex polygon, and ξ (A,N) = N1/4 if A is a circular
disc.

Open Problem 4 (Greater open problem). Let U = [0, 1]k , treated as a torus and with
k ⩾ 2, and let A be a fixed convex and compact set in U satisfying some mild technical
condition. Suppose that the set ℬ is given by (2.18):
(i) (Generalization of the bound (2.6)) In the case k = 2, can the term (logN)1/2 in the

estimate (2.19) be improved to logN?
(ii) What can we say when k ⩾ 3?

We complete this section bymaking a digression and discussing a result obtained
in part by Fourier transform considerations.

Let U = [0, 1]k, treated as a torus and with k ⩾ 1. Suppose that the irregularity
of a point set P in U is described in terms of the infinite collection ℬ of all balls of
diameter 1/2. Let P denote the perfect square grid of N = Mk points in U .

We now consider the quantity

DETk(M
k) = ∫

ℬ

󵄨󵄨󵄨󵄨D[P ;B]
󵄨󵄨󵄨󵄨
2 dB, (2.20)

where the integral geometric measure dB is given by Lebesgue translation measure.
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Next, let P̃ denote the random point set obtained by replacing each fixed point
of P by a random point which is uniformly distributed in its own little cube and in-
dependently of any other random point in any other little cube. We consider the cor-
responding quantity

PROBk(M
k) = 𝔼(∫

ℬ

󵄨󵄨󵄨󵄨D[P̃ ;B]
󵄨󵄨󵄨󵄨
2 dB). (2.21)

Which of the quantities (2.20) and (2.21) is smaller?We have the following surpris-
ing result, obtained by Chen and Travaglini [27] in 2009.

Suppose that k ̸≡ 1 mod 4. Then:
– DET2(M2) ⩽ PROB2(M2) for all largeM; and
– for all large k, PROBk(Mk) ⩽ DETk(Mk) for all largeM.

Suppose that k ≡ 1 mod 4. Then
– for all large k, PROBk(Mk) ⩽ DETk(Mk) for infinitely manyM;
– for all k, DETk(Mk) ⩽ PROBk(Mk) for infinitely manyM; and
– DET1(M) ⩽ PROB1(M) for everyM.

This is consistent with the work of Konyagin, Skriganov, and Sobolev [37] in 2003 on
lattice points in balls.

2.5 Roth’s disc segment problem

Let U be the circular disc in ℝ2 of area 1 and centered at the origin. Suppose that the
irregularity of a point set P in U is described in terms of the infinite collection

ℬ = {S(r, θ) : 0 ⩽ θ ⩽ 2π, 0 ⩽ r ⩽ π−1/2} (2.22)

of disc segments in U .
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A question of Roth concerns whether the quantity

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞

is unbounded as a function of N .
Although this question never appeared in any of Roth’s writings, it was recorded

in Schmidt [48, Section I, last paragraph] as well as in Schmidt [52, Chapter II, Sec-
tion 16].

To describe the results, it is useful to introduce the integral geometric measure
dB = (2π1/2)−1 dθ dr, appropriately normalized so that the total measure equals unity.

Roth’s question was answered in the affirmative by Beck [5] in 1983. Using his
Fourier transform approach, suitably adapted, one can establish the lower bound

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ⩾ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)

󵄩󵄩󵄩󵄩2 ≫ N1/4(logN)−7/2.
A stronger lower bound

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ⩾ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)

󵄩󵄩󵄩󵄩2 ≫ N1/4, (2.23)

via a new approach involving integral geometry, is due to Alexander [3] in 1990. On
the other hand, it can be shown that

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ⩽ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)

󵄩󵄩󵄩󵄩∞ ≪ N1/4(logN)1/2,
using the idea of Beck [4] in 1981. Here, the factor (logN)1/2 arises for precisely the
same reason as the corresponding factor in the estimate (2.16). However, there is no
analogue of open problem 3 in this setting. Courtesy of an extraordinary piece of work
by Matoušek [39] in 1995, it is now known that

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ⩽ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)

󵄩󵄩󵄩󵄩∞ ≪ N1/4. (2.24)

Combining thebounds (2.23) and (2.24),we see that theproblemof theL∞-discrepancy
in this setting is completely solved, as is the problem of the Lq-discrepancy for any
finite real number q ⩾ 2.

The situation is rather different if one studies the problem of the Lq-discrepancy
in this setting when 1 ⩽ q < 2.

Here, in particular when q = 1, the problem takes on some flavor of the classical
discrepancy problem. Indeed, one can establish an upper bound of the form

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩1 ≪ (logN)

2, (2.25)

as demonstrated by Beck and Chen [12] in 1993. The majority of the points of P come
from a square grid.
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The remaining points give rise to a one-dimensional discrepancy function along the
boundary of the disc, and contribute only to the error terms. Thus for a fixed disc seg-
ment, the size of the discrepancy depends on the diophantine approximation proper-
ties of the slope of the boundary of the disc segment. What the estimate (2.25) tells us,
therefore, is that in L1-average, these properties of the slope are reasonably close to
those of a badly approximable number, whereas the estimate (2.23) tells us that this is
far from the case when we look at the corresponding L2-average.

The argument can also be modified to show that

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q ≪ N (q−1)/2q

for every real number q satisfying 1 < q ⩽ 2. Note that the exponent drops from 1/4 to
0 as q drops from 2 to 1.

Open Problem 5A. Let U be the circular disc in ℝ2 of area 1 and centered at the ori-
gin. Suppose that the irregularity of a point set P in U is described in terms of the
infinite collection ℬ given by (2.22) and endowed with the integral geometric measure
dB = (2π1/2)−1 dθ dr.
(i) Improve the upper bound (2.25) if possible.
(ii) Find a lower bound for the problem of the L1-discrepancy.

An analogue of the Roth disc segment problem is the half-plane problem in the
unit cube. It is almost identical to the disc segment problem, except that we take U =
[−1/2, 1/2]2.

This problem can be extended to higher dimensions. Let U = [−1/2, 1/2]k, with
k ⩾ 2. Suppose that each half-space H(r, v) is characterized by its perpendicular dis-
tance r to the origin and its unit normal v. Then we write

ℬ = {S(r, v) = H(r, v) ∩ U : v ∈ Sk−1, r ⩾ 0}, (2.26)

where Sk−1 denotes the surface of the sphere of radius 1 in ℝk, endowed with the in-
tegral geometric measure dB = dvdr, suitably normalized. In the special case k = 2,
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the bounds (2.23)–(2.25) remain valid. For arbitrary k ⩾ 2, an analogue of the bound
(2.25) is given by

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩1 ≪k (logN)

k , (2.27)

obtained by Chen and Travaglini [28] in 2011. A key ingredient in the argument is the
divergence theorem which allows us to climb the dimensions.

Open Problem 5B. Let U = [−1/2, 1/2]k , with k ⩾ 2. Suppose that the irregularity of a
point set P in U is described in terms of the infinite collection ℬ given by (2.26) and
endowed with the integral geometric measure dB = dvdr, suitably normalized.
(i) Improve the upper bound (2.27) if possible.
(ii) Find a lower bound for the problem of the L1-discrepancy.

Unfortunately, the technique of Chen and Travaglini has not so far been shown
to work if we study the direct analogue of the Roth disc segment problem in higher
dimensions.

Open Problem 6. For every natural number k ⩾ 3, study the analogue of the Roth disc
segment problem when U is the ball in ℝk of volume 1 and centered at the origin.

2.6 Problem of convex polygons

We all know that a convex polygon can be viewed as the intersection of finitely many
half-planes. This suggests that the idea surrounding the Roth disc segment problem
can perhaps be transported over to this setting.

Let U = [0, 1]2, treated as a torus, and let A be a fixed convex polygon in U . The
irregularity of a point set P in U is described in terms of the infinite collection

ℬ = {A(λ, τ,x) : λ ∈ [0, 1], τ ∈ 𝒯 ,x ∈ [0, 1]2}, (2.28)

where A(λ, τ,x) = {τ(λy) +x : y ∈ A} denotes a similar copy obtained from the polygon
A under a contraction λ, a rotation τ, and a translation x, and where ℬ is endowed
with the integral geometric measure dB = dλ dτ dx.

We see that this is a special case of a problem studied in Section 2.4. Correspond-
ing to the bounds (2.15) and (2.17), we have

N1/4 ≪A,q inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩q ≪A,q N1/4

for every finite real number q ⩾ 2, so that the Lq-discrepancy in this problem is com-
pletely solved for these values of q.
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As for the Roth disc segment problem, the situation is again rather different if one
studies the problem of the Lq-discrepancy in this setting when 1 ⩽ q < 2. Indeed, one
can establish an analogous upper bound of the form

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩1 ≪A (logN)

2, (2.29)

as demonstrated by Beck and Chen [13] in 1993. The argument there can, as before, be
modified to show that

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩A,q ≪ N (q−1)/2q

for every real number q satisfying 1 < q ⩽ 2.
Corresponding to open problem 5A, we have the following.

Open Problem 5C. LetU = [0, 1]2, treated as a torus, and let A be a fixed convex polygon
in U. Suppose that the irregularity of a point set P in U is described in terms of the
infinite collection ℬ given by (2.28) and endowed with the integral geometric measure
dB = dλ dτ dx.
(i) Improve the upper bound (2.29) if possible.
(ii) Find a lower bound for the problem of the L1-discrepancy.

One can also study exceedingly difficult higher dimensional analogues.

Open Problem 5D. Let U = [0, 1]k , treated as a torus and with k ⩾ 2, and let A be a fixed
convex polytope in U. Suppose that the irregularity of a point set P in U is described in
terms of the infinite collection

ℬ = {A(λ, τ,x) : λ ∈ [0, 1], τ ∈ 𝒯 ,x ∈ [0, 1]k},

where A(λ, τ,x) = {τ(λy) + x : y ∈ A} denotes a similar copy obtained from the polytope
A under a contraction λ, a rotation τ, and a translation x, and endowed with the integral
geometric measure dB = dλ dτ dx. What can one say about the L1-discrepancy?

Again, let U = [0, 1]2, treated as a torus, and let A be a fixed convex polygon in U .
Suppose that we no longer permit rotation, and that the irregularity of a point set P

in U is described in terms of the infinite collection

ℬ = {A(λ,x) : λ ∈ [0, 1],x ∈ [0, 1]2}

where A(λ,x) = {λy + x : y ∈ A} denotes a homothetic copy obtained from the polygon
A under a contraction λ and a translation x, and where ℬ is endowedwith the integral
geometric measure dB = dλ dx.

Note that ifA is a rectangle, then this is somewhat analogous to the classical prob-
lem. Indeed, corresponding to the classical problem, we have the bound

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ≪A (logN)

1/2,
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due to Beck and Chen [14] in 1997. Funny enough, this paper contains no new ideas,
as all the major ingredients are known to Davenport and Roth, but not all of them to
both.

We do not know whether the lower bound

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ≫A (logN)

1/2,
analogous to Roth’s classical result, the lower bound in (2.1) with k = q = 2, holds.

Open Problem 7. Let U = [0, 1]k , treated as a torus and with k ⩾ 2, and let A be a fixed
convex polytope in U. Suppose that the irregularity of a point set P in U is described in
terms of the infinite collection

ℬ = {A(λ,x) : λ ∈ [0, 1],x ∈ [0, 1]k},

where A(λ,x) = {λy + x : y ∈ A} denotes a homothetic copy obtained from the polytope
A under a contraction λ and a translation x, and endowed with the integral geometric
measure dB = dλ dx. Is it true that

(logN)(k−1)/2 ≪A inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ≪A (logN)

(k−1)/2?
2.7 Rotations of rectangles
Throughout this section, let U = [0, 1]2. We first consider the problem concerning dis-
crepancy of finite point sets inU with respect to various collections of convex polygons
in U .

Suppose that ℬ is the collection of all convex polygons inU with sides in Θ, where
Θ is a fixed finite set of directions. Then

logN ≪Θ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪Θ logN . (2.30)

The lower bound is due to Beck and Chen [10] in 1989, whereas the upper bound is
due to Chen and Travaglini [25] in 2007.

We can expand the collection ℬ in a number of ways. For instance, if ℬ is the col-
lection of all convex polygons in U of at most k sides, then

N1/4 ≪k inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪k N1/4(logN)1/2.

Here, the lower bound is a simple consequence of the lower bound (2.15) when k = 2,
and the upper bound is again due to Chen and Travaglini [25] in 2007. On the other
hand, if ℬ is the collection of all convex polygons in U, then

N1/3 ≪ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪ N1/3(logN)4.
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Here, the upper bound is due to Beck [8] in 1988, while the lower bound arises
from an adaptation by Chen and Travaglini [25] in 2007 of an ingenious argument
of Schmidt [50] in 1975.

Our original problem concerning convex polygons in U with sides in a finite set
Θ has an analogous problem concerning finite rotations of rectangles. More precisely,
suppose that ℬ is the collection of all rectangles in U tilted by angles in a finite set Θ.
Then the inequalities in (2.30) remain valid with this choice of ℬ.

A natural question is what happens if Θ is no longer finite. Some answers can be
found in the work of Bilyk, Ma, Pipher, and Spencer [16, 17] in 2011 and 2016. Using
powerful results in diophantine approximation, it can be shown that

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞{{{{{{{{
{

≪Θ logN , if Θ is a finite set,
≪Θ (logN)(log logN)2, if Θ is a superlacunary set,
≪Θ (logN)3, if Θ is a lacunary sequence,
≪Θ (logN)M+2, if Θ is a lacunary set of orderM.

Furthermore, if Θ has upper Minkowski dimension d ∈ [0, 1), then

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪Θ,ϵ Nd/(d+1)+ϵ.

The following problem seems to be rather hard.

Open Problem 8. Study the problem of discrepancy of points sets in U = [0, 1]3 with
respect to polytopes in some suitable formulation.

2.8 Cartesian products
We complete this survey by discussing a problemmotivated by some interesting work
of Matoušek prompted by a question posed to him by the author in the first ever work-
shop on discrepancy theory in Kiel in 1998.

Consider first an example involving the well-known classical discrepancy prob-
lem. Let U1 = [0, 1]k, and let

ℬ1 = {B1(x) = [0, x1) × ⋅ ⋅ ⋅ × [0, xk) : x ∈ [0, 1]
k},

endowed with integral geometric measure dB1 = dx. We know that

(logN)(k−1)/2 ≪k inf|P|=N󵄩󵄩󵄩󵄩Dℬ1
(P)󵄩󵄩󵄩󵄩2 ≪k (logN)

(k−1)/2. (2.31)

Next, let U2 = [0, 1]ℓ, and let
ℬ2 = {B2(y) = [0, y1) × ⋅ ⋅ ⋅ × [0, yℓ) : y ∈ [0, 1]ℓ},
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endowed with integral geometric measure dB2 = dy. We know that

(logN)(ℓ−1)/2 ≪ℓ inf|P|=N󵄩󵄩󵄩󵄩Dℬ2
(P)󵄩󵄩󵄩󵄩2 ≪ℓ (logN)(ℓ−1)/2. (2.32)

Now let U = U1 × U2 = [0, 1]k+ℓ, and let
ℬ = ℬ1 × ℬ2 = {B1(x) × B2(y) : x ∈ [0, 1]

k , y ∈ [0, 1]ℓ},
endowed with integral geometric measure dB = dxdy. We know that

(logN)(k+ℓ−1)/2 ≪k,ℓ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ≪k,ℓ (logN)(k+ℓ−1)/2. (2.33)

Note that the order of magnitude in the estimates in (2.33) is roughly the product of
the order of magnitude of the estimates in (2.31) and the order of magnitude of the
estimates in (2.32). Clearly, both ℬ1 and ℬ2 play important roles.

Consider a second example. Let U1 = [0, 1]k, treated as a torus, and let

ℬ1 = {A(λ, τ,x) : λ ∈ [0, 1], τ ∈ 𝒯 ,x ∈ [0, 1]
k},

endowed with integral geometric measure dB1 = dλ dτ dx. We know from (2.15) and
(2.17) that

N1/2−1/2k ≪A inf|P|=N󵄩󵄩󵄩󵄩Dℬ1
(P)󵄩󵄩󵄩󵄩2 ≪A N1/2−1/2k . (2.34)

Next, let U2, ℬ2 and the integral geometric measure be the same as in the previous
example, so that the estimates (2.32) remain valid. Now letU = U1 ×U2 = [0, 1]k+ℓ, and
let

ℬ = ℬ1 × ℬ2 = {A(λ, τ,x) × B2(y) : λ ∈ [0, 1], τ ∈ 𝒯 ,x ∈ [0, 1]
k , y ∈ [0, 1]ℓ},

endowed with integral geometric measure dB1 = dλ dτ dxdy. We can show that

N1/2−1/2k ≪A,ℓ inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩2 ≪A,ℓ N1/2−1/2k . (2.35)

The lower bound follows fromwork of Beck [6] in 1987,while the upper bound is due to
Beck and Chen [11] in 1990.We observe that the order of magnitude of the estimates in
(2.34) and the order of magnitude of the estimates in (2.35) are identical, and the only
contribution that the classical problem part of this Cartesian product problem makes
to the estimates in (2.35) is in the implicit constants. In other words,ℬ1 dominates and
ℬ2 hardly matters.

To understand the situation a little better, we next consider a third example. Let
U1 = [0, 1]2, treated as a torus, and let ℬ1 be the collection of all circular discs in U1.
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Then it follows from (2.15) and (2.16) with k = 2 and noting that circular discs are
invariant under rotation that

N1/4 ≪ inf|P|=N󵄩󵄩󵄩󵄩Dℬ1
(P)󵄩󵄩󵄩󵄩∞ ≪ N1/4(logN)1/2. (2.36)

Next, letU2 = [0, 1]4, treated as a torus, and let ℬ2 be the collection of all circular balls
in U2. Then it follows from (2.15) and (2.16) with k = 4 and noting that circular balls
are invariant under orthogonal transformation that

N3/8 ≪ inf|P|=N󵄩󵄩󵄩󵄩Dℬ2
(P)󵄩󵄩󵄩󵄩∞ ≪ N3/8(logN)1/2. (2.37)

Finally, letU = [0, 1]4 = U1 ×U1, treated as a torus, and let ℬ = ℬ1 ×ℬ1 be the collection
in U of Cartesian products of two circular discs in U1. Then

inf|P|=N󵄩󵄩󵄩󵄩Dℬ(P)
󵄩󵄩󵄩󵄩∞ ≪ϵ N1/4+ϵ, (2.38)

as shown byMatoušek [40] in 2000. Comparing the order of magnitude of the terms in
(2.36) and (2.38), we see that the Cartesian product of two copies of the 2-dimensional
problem inU1 does not produce any estimate that is substantially greater than the esti-
mates produced by a single copy, and certainly nothing as large the estimates in (2.37)
produced by the corresponding 4-dimensional problem in U2. Indeed, in the paper of
Matoušek, it is shown that, under certain conditions, the discrepancy estimates for
a cartesian product problem is governed by the largest bound among the constituent
parts.

Open Problem 9 (Matoušek’s problem). Try to obtain a better understanding concern-
ing the discrepancy of Cartesian products.
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Abstract:We study some notions of negative dependence of a sampling scheme that
can be used to derive variance bounds for the corresponding estimator or discrepancy
bounds for theunderlying randompoint set that are at least as goodas the correspond-
ing bounds for plain Monte Carlo sampling. We provide new preasymptotic bounds
with explicit constants for the star discrepancy and the weighted star discrepancy of
sampling schemes that satisfy suitable negative dependence properties. Furthermore,
we compare the different notions of negative dependence and give several examples
of negatively dependent sampling schemes, including mixed sequences.
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quences, variance reduction
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3.1 Introduction
PlainMonte Carlo (MC) sampling is amethod frequently used in stochastic simulation
andmultivariate numerical integration. Let p1, . . . , pN be independent random points,
each uniformly distributed in the d-dimensional unit cube [0, 1)d. For an arbitrary in-
tegrable random variable (or function) f : [0, 1)d → ℝ, we consider the MC estimator
(or quadrature)

μMC(f ) = 1
N

N
∑
i=1

f (pi) (3.1)

for the expected value (or integral)

I(f ) = ∫
[0,1)d

f (u) du.

An advantage of the MC estimator is that already under the very mild assumption
on f to be square integrable, it converges to I(f ) for N → ∞ with convergence rate
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1/2. Even though the convergence rate is not very impressive, it has the invaluable
advantage that it does not depend on the number of variables d.

However, there are many dependent sampling schemes (i. e., random sample
points pi, i = 1, . . . ,N, that are still uniformly distributed in [0, 1)d, but not neces-
sarily independent any more) known that are superior to plain MC sampling with
respect to certain objectives. An example is suitably randomized quasi-Monte Carlo
(RQMC) point sets. They ensure, for instance, higher convergence rates for numerical
integration of sufficiently smooth functions, they lead to much smaller asymptotic
discrepancy measures, their sample points do not tend to cluster, and have more
evenly distributed lower dimensional projections (see, e. g., [4, 5, 18, 21]). It would
be desirable to be able to construct dependent sampling schemes that have some of
these or other favorable properties, and that are, with respect to other objectives, at
least as good as MC sampling schemes.

Recently, in this direction some research has been done. In [19], Christiane
Lemieux showed that a negative dependence property of RQMC points ensures that
the variance of the corresponding RQMC estimator for functions f that are monotone
with respect to each variable is never larger than the variance of the correspondingMC
estimator μMCf . She also proved that a different negative dependence property yields
that the variance of the RQMC estimator for an arbitrary bounded quasi-monotone
f is never larger than the variance of μMCf . Those negative dependence properties
rely solely on the marginals and the bivariate copulas of the RQMC points (i. e., on
the distribution of single points and on the common distribution of pairs of points).
Related results can be found in [33].

In a different line of research, the second and the third author of this book chap-
ter showed in [11, 13] that a specific negative dependence property of RQMC points
guarantees that they satisfy the samepreasymptotic probabilistic discrepancy bounds
(with explicitly revealed dependence on the number of points N as well as on the di-
mension d) as MC points. Here, the negative dependence property relies on the com-
mon distribution of all sample points. Related results can be found in [6].

For more extensive motivations of both lines of research, we refer to the elaborate
introductions of [19] and [6, 11], respectively. The aim of this book chapter is to survey
and compare the approaches mentioned above and to provide several new results.

This chapter is organized as follows: In Section 3.2, we introduce some notions of
negatively dependent sampling schemes and discuss how one can benefit from them.
In Section 3.3, we provide new probabilistic upper discrepancy bounds for sampling
schemes. The discrepancy measures we consider are the star discrepancy and the
weighted star discrepancy. These bounds are “plug-in results” in the following sense:
One just has to check whether a sampling scheme satisfies the sufficient negative de-
pendence condition and—if this is the case—obtains immediately a probabilistic dis-
crepancy bound with explicitly given constants. In the Section 3.4, we give several
examples of sampling schemes that satisfy the one or the other notion of negative de-
pendence, including a generalized notion of stratified sampling schemes and mixed
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randomized sequences. Finally, in the Section 3.5 we elaborate on relations between
different notions of negative dependence.

We finish the introduction by stating some notation. Let d,N ∈ ℕ. If not stated
otherwise, we are always considering a randomized point set (pj)Nj=1 := 𝒫 ⊂ [0, 1)d

consisting of N points. For a, b ∈ ℝd, a = (a1, . . . , ad), b = (b1, . . . , bd), we write a ≤ b
if ai ≤ bi, i = 1, . . . , d. All other inequalities are also to be understood componentwise.
Moreover, [a, b) := [a1, b1)× ⋅ ⋅ ⋅ × [ad, bd). Via 𝒞d0 , we denote the set of boxes (“corners”)
anchored at 0,

𝒞d0 := {[0, a)
󵄨󵄨󵄨󵄨 a ∈ [0, 1)

d},

and by 𝒞d1 the set of boxes anchored at 1,

𝒞d1 := {[a, 1)
󵄨󵄨󵄨󵄨 a ∈ [0, 1)

d}.

We write𝒟d
0 for the set of differences of boxes anchored at 0,

𝒟d
0 := {Q \ R

󵄨󵄨󵄨󵄨Q,R ∈ 𝒞
d
0}.

For m ∈ ℕ, we denote the set {1, 2, . . . ,m} by [m], λd stands for the d-dimensional
Lebesgue measure on ℝd, in case d = 1 we just write λ. If not specified, all random
variables are defined on a probability space (Ω, Σ,P).

3.2 Review of notions of negative dependance of
sampling schemes

3.2.1 γ-negative dependence of binary random variables and
sampling schemes

The concept of negative dependence was introduced by Lehmann [17] for pairs of ran-
dom variables. In the literature, one finds several contributions on rather demanding
notions of negative dependence as, for example, negative association introduced in
[15]; a survey can be found in [30]. Sufficient for our purpose is the following notion
for Bernoulli or binary random variables, that is, random variables that only take val-
ues in {0, 1}.

Definition 3.1. Let γ ≥ 1. We call binary random variables T1,T2, . . . ,TN upper γ-nega-
tively dependent if

P(⋂
j∈u
{Tj = 1}) ≤ γ∏

j∈u
P(Tj = 1) for all u ⊆ [N], (3.2)
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and lower γ-negatively dependent if

P(⋂
j∈u
{Tj = 0}) ≤ γ∏

j∈u
P(Tj = 0) for all u ⊆ [N]. (3.3)

We call T1,T2, . . . ,TN γ-negatively dependent if both conditions (3.2) and (3.3) are sat-
isfied. If γ = 1, we usually suppress the explicit reference to γ.

1-Negative dependence is usually called negative orthant dependence; cf. [3].
Notice that, in particular, independent binary random variables are negatively

dependent. Furthermore, it is easily seen that for N = 2 and γ = 1 the notions of upper
and lower γ-negative dependence are equivalent; cf. [17].

We are interested in binary random variables Ti, i = 1, . . . ,N, of the form Ti =
1A(pi), where A is a Lebesgue-measurable subset of [0, 1)d (whose characteristic func-
tion is denoted by 1A), and p1, . . . , pN are randomly chosen points in [0, 1)d.

We will use the following bound of Hoeffding-type; for a proof see, for exam-
ple, [13].

Theorem 3.2. Let γ ≥ 1, and let T1, . . . ,TN be γ-negatively dependent binary random
variables. Put S := ∑Ni=1(Ti − 𝔼[Ti]). We have

P(|S| ≥ t) ≤ 2γ exp(−2t
2

N
) for all t > 0. (3.4)

Definition 3.3. A randomized point set𝒫 = (pj)Nj=1 is called a sampling scheme if every
single p ∈ 𝒫 is distributed uniformly in [0, 1)d and the vector (p1, . . . , pN ) is exchange-
able, meaning that for any permutation π of [N] it holds that the law of (p1, . . . , pN ) is
the same as the law of (pπ(1), . . . , pπ(N)).

The assumption of exchangeability is only of technical nature and, if we consider
𝒫 as a randomized point set, it may be always obtained in the process of symmetriza-
tion. Indeed, let 𝒫̃ be apoint set such that every p̃ ∈ 𝒫̃ is uniformlydistributed in [0, 1)d

and let π be a random uniformly chosen permutation of [N]. Then (p̃π(1), . . . , p̃π(N)) is
already a sampling scheme.

3.2.2 Pairwise negative dependence and variance reduction

Definition 3.4. We say that a sampling scheme 𝒫 is pairwise negatively dependent if
for every Q,R ∈ 𝒞d1 it holds that the random variables

1Q(p1), 1R(p2)

are negatively dependent. In other words, a sampling scheme𝒫 is pairwise negatively
dependent if for every Q,R ∈ 𝒞d1 we have

P(p1 ∈ Q, p2 ∈ R) ≤ P(p1 ∈ Q)P(p2 ∈ R), (3.5)
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P(p1 ∉ Q, p2 ∉ R) ≤ P(p1 ∉ Q)P(p2 ∉ R). (3.6)

Note that (3.5) implies (3.6) and vice versa, therefore, one of the conditions is
in fact redundant. In [19], this is known as negatively upper orthant dependent—or
NUOD—sampling schemes.

Our interest lies in numerical integration of functions from some class ℱ ⊂
L2([0, 1)d) using RQMC. A QMC quadrature is just a quadrature consisting of N nodes,
such that the evaluation in every node is given the same weight 1

N . By randomizing
the set of nodes, we obtain an RQMC quadrature. Let μ𝒫 f be an RQMC estimator of
I(f ) := ∫[0,1)d f (u) du based on the sampling scheme 𝒫 = (pi)Ni=1, that is,

μ𝒫 f =
1
N

N
∑
i=1

f (pi).

Moreover, let μMCf be an estimator of I(f ) based on a Monte Carlo sample consisting
of N points (i. e., the integration nodes are chosen independently and uniformly from
[0, 1)d, see (3.1)).

It turns out that randomized QMC quadratures based on pairwise negatively de-
pendent sampling schemes may lead to variance reduction in comparison to the sim-
ple MC quadratures. Here, we describe shortly one of such cases, namely when in-
tegrands are bounded quasimonotone functions. The following exposition is based
on [19].

To define what a quasimonotone function is we need first to introduce the notion
of quasivolume. For a, b ∈ [0, 1)d, J ⊂ [d], and a function f : [0, 1)d → ℝ, we write
f (aJ , b−J) to represent the evaluation of f at the point (x1, . . . , xd), where xj = aj for j ∈ J
and xj = bj otherwise. The quasivolume of f over an intervalA = [a, b) ⊂ [0, 1)d is given
by

Δd(f ,A) := ∑
J⊂[d]
(−1)|J|f (aJ , b−J).

We say that the function f is quasimonotone if

Δd(f ,A) ≥ 0

for every interval A. Note that if we define a content νf ([0, a)) := f (a), a ∈ [0, 1)d then
quasimonotonicity of f means exactly that for any axis-parallel rectangle R ⊂ [0, 1)d it
holds νf (R) ≥ 0.

Apart from pairwise negative dependence there are a few similar notions which
are also of interest. Let pj = (p

(1)
j , . . . , p

(d)
j ), j = 1, . . . ,N . If for every i = 1, . . . , d, and

every measurable A,B ⊂ [0, 1)i−1, α, β ∈ [0, 1),

P(p(i)1 ≥ α, p
(i)
2 ≥ β
󵄨󵄨󵄨󵄨 p
(1:i−1)
1 ∈ A, p(1:i−1)2 ∈ B)

≤ P(p(i)1 ≥ α
󵄨󵄨󵄨󵄨 p
(1:i−1)
1 ∈ A, p(1:i−1)2 ∈ B)P(p(i)2 ≥ β

󵄨󵄨󵄨󵄨 p
(1:i−1)
1 ∈ A, p(1:i−1)2 ∈ B),
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we say that the sampling scheme (pj)Nj=1 is conditionally negatively quadrant depen-
dent (conditionally NQD). Here, p(1:i−1) denotes the orthogonal projection of p onto its
first i − 1 coordinates. Note that the conditional NQD property holds in particular if
(p(i)1 , p

(i)
2 )

d
i=1 are independent, and for every i = 1, . . . , d, and every q, r ∈ [0, 1), we have

P(p(i)1 ∈ [q, 1), p
(i)
2 ∈ [r, 1)) ≤ P(p

(i)
1 ∈ [q, 1))P(p

(i)
2 ∈ [r, 1)),

in which case we talk of a coordinatewise independent NQD sampling scheme. Chris-
tiane Lemieux showed in [19, Corollary 2] that conditionally NQD sampling schemes
provide RQMC estimators of integrals with variance no bigger then the variance of the
MC estimator if the integrand is monotone in each coordinate.

The following is basically a combination of Proposition 3, Remark 8, and Corol-
lary 2 from [19].

Theorem 3.5. Let f : [0, 1)d → ℝ and 𝒫 be a sampling scheme. Then if either:
1. The function f is bounded and f or−f is quasimonotone and𝒫 is pairwise negatively

dependent,
2. The function f is monotone in each coordinate and 𝒫 is conditionally negatively

quadrant dependent,

it holds

Var(μ𝒫 f ) ≤ Var(μ
MCf ).

In Section 3.5, we discuss relations between the introduced notions of negative
dependence.

Let us note that the aforementioned paper provides actually more general results.
Interested readers will find details in Sections 3 and 4 of [19].

For examples of pairwise negatively dependent and conditionally NQD sampling
schemes, see Sections 3.4.2 and 3.4.3.

3.2.3 Negatively dependent sampling schemes and discrepancy

Definition 3.6. We say that a sampling scheme (pj)Nj=1 = 𝒫 is 𝒮 − γ−negatively depen-
dent if for every Q ∈ 𝒮 the random variables

(1Q(pj))
N
j=1

are γ-negatively dependent. In other words, for every t ≤ N we require

P(
t
⋂
j=1
{pj ∈ Q}) ≤ γ

t
∏
j=1

P(pj ∈ Q), (3.7)

P(
t
⋂
j=1
{pj ∉ Q)} ≤ γ

t
∏
j=1

P(pj ∉ Q). (3.8)
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Note that differently from the case of pairwise negative dependence, for N > 2
one indeed needs to check both inequalities as they do not, in general, imply one an-
other. If γ = 1 and 𝒮 = 𝒞d0 , we usually talk just of negatively dependent sampling
schemes. Moreover, if (3.7) is satisfied we speak of upper γ-negatively dependent sam-
pling schemes, and if (3.8) is satisfied, we speak of lower γ-negatively dependent sam-
pling schemes.

Tomotivate the interest in negatively dependent sampling schemes, we introduce
the notion of discrepancy. Discrepancy is meant to quantify how far is a finite point
set P ⊂ [0, 1)d consisting of N points from being equidistributed in [0, 1)d. It plays
an important role in fields like numerical integration, computer graphics, empirical
process theory, and many more. Let x ∈ [0, 1]d and Qx := [0, x) ∈ 𝒞d0 . We define the
discrepancy function DN (P, ⋅) for the point set P at the point x via

DN (P, x) := DN (P,Qx) :=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
N
|P ∩ Qx| − λ

d(Qx)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

and the star discrepancy D∗N (P) by

D∗N (P) := sup
x∈[0,1]d

DN (P, x).

Making a connection to numerical integration, we note one of the versions of the
Koksma–Hlawka inequality, which states that for every point set P consisting of N
points it holds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

[0,1)d

f dλd(x) − 1
N
∑
p∈P

f (p)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ D∗N (P)VarHK(f ),

where VarHK(f ) is the Hardy–Krause variation of f . The inequality is actually sharp;
cf. [23].

It has been shown in [11] that𝒟d
0–γ-negatively dependent sampling schemes have

with large probability star discrepancy of the order√ d
N . More precisely, the following

theorem holds.

Theorem 3.7. Let d,N ∈ ℕ, and ρ ∈ [0,∞). Let 𝒫 = (pj)Nj=1 be a negatively 𝒟d
0-e

ρd-
dependent sampling scheme.

Then for every c > 0,

D∗N (𝒫) ≤ c√
d
N

(3.9)

holds with probability at least 1 − e−(1.6741⋅c
2−10.7042−ρ)⋅d. Moreover, for every θ ∈ (0, 1),

P(D∗N (𝒫) ≤ 0.7729√10.7042 + ρ +
ln((1 − θ)−1)

d
√ d
N
) ≥ θ. (3.10)
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Notice that these bounds depend only mildly on ρ or γ = eρd. In particular, 𝒟d
0-1-

negatively dependent sampling schemes satisfy the same preasymptotic discrepancy
bound as Monte Carlo point sets do. For more details, see [11].

In Remark 3.23, we present a bound similar to (3.10) under a bit different assump-
tions that can be applied to so-called mixed randomized sequences.

3.3 New probabilistic discrepancy bounds

3.3.1 Bound on the star discrepancy for negatively dependent
sampling schemes

Proving that a given sampling scheme is 𝒟d
0-γ-negatively dependent may turn out to

be a difficult task. One of the problems lies in the fact that elements of𝒟d
0 may in gen-

eral not be represented as Cartesian products of one-dimensional intervals; cf. also
Remark 3.23. With this in mind, we would like to weaken the assumptions on the
sampling scheme 𝒫. In the following result, we show that by requiring the sampling
scheme𝒫 only to be 𝒞d0 -γ-negatively dependent one already gets with high probability
a discrepancy of the order√ d

N log(e + N
d ).

Theorem 3.8. Let d,N ∈ ℕ, and ρ ∈ [0,∞). Let 𝒫 = (pj)Nj=1 be a 𝒞d0 -e
ρd-negatively

dependent sampling scheme in [0, 1)d. Then for every c > 0,

D∗N (𝒫) ≤ c√
d
N
max {1, log(N

d
)} (3.11)

holds with probability at least 1−2e(−
1
2 (c

2−1)ξ+ρ+log(2e( 2c +1)))d,where ξ = max {1, log (Nd )} .
Moreover, for every θ ∈ (0, 1),

P(D∗N (𝒫) ≤ √
2
N
√d log(η) + ρd + log( 2

1 − θ
)) ≥ θ, (3.12)

where η := η(N , d) = 6e(max(1, N
2d log(6e) ))

1
2 .

The proof of Theorem 3.8 requires some preparation. To “discretize” the star dis-
crepancy, we define δ–covers as in [7]: for any δ ∈ (0, 1], a finite set Γ of points in [0, 1)d

is called a δ–cover of [0, 1)d, if for every y ∈ [0, 1)d there exist x, z ∈ Γ ∪ {0} such that
x ≤ y ≤ z and λd([0, z]) − λd([0, x]) ≤ δ. The number 𝒩 (d, δ) denotes the smallest
cardinality of a δ–cover of [0, 1)d.

The following theorem was stated and proved in [9].

Theorem 3.9. For any d ≥ 1 and δ ∈ (0, 1], we have

𝒩 (d, δ) ≤ 2d d
d

d!
(δ−1 + 1)d.
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Notice that due to Stirling’s formula we have dd/d! ≤ ed/√2πd and so the cardi-
nality of the δ-cover may be bounded from above by (2e)d(1 + δ−1)d. Furthermore, it is
easy to verify that in the case d = 1 the identity

𝒩 (1, δ) = ⌈δ−1⌉ (3.13)

is established with the help of the δ-cover Γ := {1/⌈δ−1⌉, 2/⌈δ−1⌉, . . . , 1}.
With the help of δ-covers, the star discrepancy can be approximated in the follow-

ing sense.

Lemma 3.10. Let P ⊂ [0, 1)d be an N-point set, δ > 0, and Γ be a δ-cover of [0, 1)d. Then

D∗N (P) ≤ max
x∈Γ

DN(P, [0, x)) + δ.

The proof of Lemma 3.10 is straightforward; cf., for example, [7, Lemma 3.1].
Now we are ready to prove Theorem 3.8.

Proof. For δ ∈ (0, 1) to be chosen later, let Γ be a δ-cover consisting of at most
(2e)d(1 + δ−1)d elements. Such a Γ exists due to Theorem 3.9 and discussion there-
after.

Define

D∗N ,Γ(𝒫) = max
β∈Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
λd([0, β)) − 1

N

N
∑
j=1

1[0,β)(pj)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

Now Lemma 3.10 gives us

D∗N (𝒫) ≤ D
∗
N ,Γ(𝒫) + δ.

For every β ∈ Γ and j ∈ [N] put

ξ (j)β = λ
d([0, β)) − 1[0,β)(pj).

Let ϵ = 2δ. Due to Hoeffding’s inequality applied to random variables (ξ (j)β )
N
j=1 (appli-

cable since (pj)Nj=1 is e
ρd-negatively dependent), we obtain for every β ∈ Γ,

P(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑Nj=1 ξ
(j)
β

N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ δ) ≤ 2eρde−2Nδ

2
.

With the help of a simple union bound, we get

P(D∗N (𝒫) < ϵ) = 1 − P(D
∗
N (𝒫) ≥ ϵ)

≥ 1 − P(D∗N ,Γ(𝒫) ≥ ϵ − δ) = 1 − P(max
β∈Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑Nj=1 ξ
(j)
β

N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ δ)

≥ 1 − 2eρd|Γ|e−
N
2 ϵ

2
. (3.14)
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We first prove (3.12). Using (3.14) we would like to find a bound on the discrepancy of
the sampling scheme𝒫 which holds with probability at least θ ∈ (0, 1). We are looking
for ϵθ such that

P(D∗N (𝒫) < ϵθ) ≥ θ. (3.15)

Put ϵθ = Cθ(
d
N log(1 + N

d ))
1
2 = 2δθ. Inequality (3.15) holds true if

δθ ≥ (
1
2N
)

1
2

[log(|Γ|) + ρd + log( 2
1 − θ
)]

1
2

.

Our problem boils now down to finding possibly small δθ ∈ (0, 1) for which

δθ ≥ (
1
2N
)

1
2

[d log(2e[1 + δ−1θ ]) + ρd + log(
2

1 − θ
)]

1
2

. (3.16)

Specifying δθ to be of the form

δθ = (
1
2N
)

1
2

[d log(η) + ρd + log( 2
1 − θ
)]

1
2

we get that (3.16) is satisfied if

η ≥ 2e(1 + δ−1θ ).

Expanding δθ in dependence of η, it suffices to find η for which

(
η
2e
− 1) log(η)

1
2 ≥ (

2N
d
)

1
2

and one easily sees that this is satisfied for η given in the statement of the theorem.
To prove (3.11) one only needs to plug in ϵ := c√ d

N ξ into (3.14) and then consider
the two cases ξ = 1 and ξ = log (Nd ) separately.

3.3.2 Bound on the weighted star discrepancy for
𝒟d

0 − γ-negatively dependent sampling schemes
Oneof the reasonswhy theQMC integrationmaybe successfully applied inmanyhigh-
dimensional problems is the fact that quite often only a small number of coordinates is
really important. This observation led to the introduction of weighted function spaces
and weighted discrepancies by Sloan and Woźniakowski in [31]. The above concepts
are closely related to the theory of weighted spaces of Sobolev type, in particular the
integration error in those spaces obeys a Koksma–Hlawka-type upper bound, which
may be phrased using the norm of the function and the weighted star discrepancy.
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By weights, we understand a set of nonnegative numbers γ = (γu)u∈[d]\0, where
γu is interpreted as the weight of the coordinates from u. Let |u| denote the cardinality
of u. For x ∈ [0, 1]d, we write (x(u), 1) to denote the point in [0, 1]d agreeing with x on
the coordinates from u and having all the other coordinates set to 1.

The weighted star discrepancy of a point set X = (x1, . . . , xN ) and weights γ is de-
fined by

D∗N ,γ(X) := sup
z∈[0,1]d

max
u∈[d]\0

γu
󵄨󵄨󵄨󵄨DN(X, (z(u), 1))

󵄨󵄨󵄨󵄨.

The following theorem is similar in flavor to Theorem 1 from [1].

Theorem 3.11. Let N , d ∈ ℕ and let 𝒫 = (pj)Nj=1 ⊂ [0, 1)
d be a sampling scheme, such

that for every 0 ̸= u ⊂ [d] its projection on the coordinates in u is 𝒟|u|0 –eρ|u|-negatively
dependent. Then for any weights (γu)u⊂[d]\0 and any c > 0, it holds

D∗N ,γ(𝒫) ≤ max
0 ̸=u⊂[d]

cγu√
|u|
N

(3.17)

with probability at least 2 − (1 + e−(1.6741c
2−10.7042−ρ))d. Moreover, for θ ∈ (0, 1) it holds

P(D∗N ,γ(𝒫) ≤ max
0 ̸=u⊂[d]

γu√
|ρ + 10.7042 + log((2 − θ)

1
d − 1)|

1.6741
√|u|
N
) ≥ θ. (3.18)

Proof. We shall only prove the statement (3.17), the statement (3.18) follows then by
simple calculations. For 0 ̸= u ⊂ [d] and c > 0, put

Au = {ω ∈ Ω : D
∗
N(X

u(ω)) > c√|u|
N
}.

Here,Xu denotes the projection ofX on the coordinates fromu. By Theorem3.7, it holds

P(Au) < e
−(1.674c2−10.7042−ρ)|u|.

Now

P(D∗N ,γ(𝒫) > max
0 ̸=u⊂[d]

cγu√
|u|
N
) ≤ P( ⋃

0 ̸=u⊂[d]
Au)

<
d
∑
ν=1
(
d
ν
)e−(1.6741c

2−10.7042−ρ)ν

= (1 + e−(1.6741c
2−10.7042−ρ))

d
− 1.

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



54 | M.Wnuk et al.

3.4 Examples of negatively dependent and pairwise
negatively dependent sampling schemes

Many sampling schemes, such as randomly shifted and jittered rank-1 lattices (cf. Sec-
tion 3.4.2) and Latin hypercube sampling (cf. Section 3.4.3), aremultidimensional gen-
eralizations of the one-dimensional simple stratified sampling. Simple stratified sam-
pling is defined in the following way: let π be a uniformly chosen permutation of
{1, . . . ,N} and let (Uj)

N
j=1 be independent random variables distributed uniformly on

(0, 1]. Moreover, π is independent of (Uj)j. We put

pj :=
π(j) − Uj

N
, j = 1, . . . ,N .

Effectively, one is considering thepartition Ij := [
j−1
N ,

j
N ), j = 1, . . . ,N, of theunit interval

and in every element of the partition putting one point, independently of all the other
points. The simple lemma is a useful tool for our investigations andmay be found, for
example, in [33].

Lemma 3.12. Simple stratified sampling 𝒫 = (pj)Nj=1 is pairwise negatively dependent.

3.4.1 Negative dependence of generalized stratified sampling

We partition [0, 1)d into β ≥ N sets (Bj)
β
j=1 with λd(Bj) =

1
β , j = 1, . . . , β. Let Y =

(Y1, . . . ,Yβ) be a random vector distributed uniformly on

{(v1, . . . , vβ) ∈ {0, 1}
β :

β
∑
j=1

vj = N}.

Given the value of Y , we place one point for each j ∈ [β] with Yj = 1 uniformly and
independently of all other points inside Bj. Symmetrizing this construction yields a
sampling scheme 𝒫 = (pj)Nj=1, which we call generalized stratified sampling (note that
every single p ∈ 𝒫 is uniformly distributed in [0, 1)d). Here, “generalized” has to be
understood in the sense that there are possibly more strata then points.

Example 3.13. There are many natural choices for the strata. The simplest one would
be stripes of the form Bj, j = 1, . . . ,N, with Bj := [

j−1
N ,

j
N ) × [0, 1)

d−1. Alternatively, one
may divide [0, 1)d intoN = nd cubes of equal size; see, for example, [29]. However, one
could also choose, for example, elementary cells (i. e., fundamental parallelepipeds)
of a rank-1 lattice (cf. [16]); see Figure 3.1.

To show that generalized stratified sampling is negatively dependent, we need
first a simple lemma.
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Figure 3.1: N elementary cells of a rank-1 lattice as strata, β = N = 5.

Lemma 3.14. Let t,N ∈ ℕ, t ≤ N, ξ ≥ 0, and let

D = {x = (x1, . . . , xN ) ∈ ℝ
N
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x ≥ 0,

N
∑
i=1

xi = ξ}.

The function

f : D→ ℝ, (x1, . . . , xN ) 󳨃→ ∑
J⊂[N],|J|=t

∏
j∈J

xj

takes on its maximum in the point (x1, . . . , xN ) = (
ξ
N . . . . ,

ξ
N ).

Proof. We shall prove the statement by induction on N ≥ t. The case N = t is straight-
forward by Lagrange multipliers theorem. Suppose we have already shown the state-
ment forN−1 andwewould like to prove it forN . First, let us fix the value of xN ∈ (0, ξ ).
It holds

∑
J⊂[N],|J|=t

∏
j∈J

xj = ∑
J⊂[N],|J|=t,N∈J

∏
j∈J

xj + ∑
J⊂[N],|J|=t,N ̸∈J

∏
j∈J

xj

= xN ∑
J󸀠⊂[N−1],|J󸀠|=t−1∏j∈J󸀠 xj + ∑

J󸀠⊂[N−1],|J󸀠|=t∏j∈J󸀠 xj.
By the induction assumption for a fixed value of xN , the last term is maximal when for
j = 1, . . . ,N − 1 we have xj =

η
N−1 , where we put η = ξ − xN . Plugging it into the above

formula, we obtain

∑
J⊂[N],|J|=t

∏
j∈J

xj = (ξ − η)(
N − 1
t − 1
)(

η
N − 1
)
t−1
+ (

N − 1
t
)(

η
N − 1
)
t
,

which we need to maximize with respect to η. It holds

∑
J⊂[N],|J|=t

∏
j∈J

xj = Ch(η),
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where C = (N−1)!
(t−1)!(N−t)!(N−1)t−1 and h(η) = ξηt−1 + ( N−t

t(N−1) − 1) η
t . Now we have

h󸀠(η) = ηt−2[(t − 1)ξ + (N − t
N − 1
− t)η].

The derivative vanishes for t ≥ 3 at η1 = 0 and η2 =
N−1
N ξ . Since h(η2) > max{h(0), h(ξ )}

and η2 is a local maximum, the claim follows.

Theorem 3.15. Let 𝒫 = (pj)Nj=1 be a generalized stratified sampling as described above
and A ⊂ [0, 1)d be measurable. Then for every 1 ≤ t ≤ N, it holds

P(
t
⋂
j=1
{pj ∈ A}) ≤

t
∏
j=1

P(pj ∈ A).

In particular, generalized stratified sampling is 𝒮-negatively dependent for any system
𝒮 of measurable subsets of [0, 1)d.

Proof. Fix t as in the statement of the theorem and define

Dt = {(k1, . . . , kt) ∈ [β]
t : ∀i,j∈[t] i ̸= j 󳨐⇒ ki ̸= kj}.

Note that |Dt | = β(β − 1) ⋅ ⋅ ⋅ (β − t + 1). For k = (k1, . . . , kt) ∈ Dt, we have

P(
t
⋂
j=1
{Ykj = 1}) =

(β−tN−t )

(βN )
=
N(N − 1) ⋅ ⋅ ⋅ (N − t + 1)
β(β − 1) ⋅ ⋅ ⋅ (β − t + 1)

.

By Lemma 3.14, it follows

P(
t
⋂
j=1
{pj ∈ A})

= ∑
k∈Dt

P(
t
⋂
j=1

pj ∈ A
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

t
⋂
j=1
{pj ∈ Bkj })P(

t
⋂
j=1
{pj ∈ Bkj }

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

t
⋂
j=1
{Ykj = 1})P(

t
⋂
j=1
{Ykj = 1})

= ∑
k∈Dt

t
∏
j=1

λd(A ∩ Bkj )

λd(Bkj )
1

N(N − 1) ⋅ ⋅ ⋅ (N − t + 1)
N(N − 1) ⋅ ⋅ ⋅ (N − t + 1)
β(β − 1) ⋅ ⋅ ⋅ (β − t + 1)

=
1

β(β − 1) ⋅ ⋅ ⋅ (β − t + 1)
∑
k∈Dt

t
∏
j=1

λd(A ∩ Bkj )

λd(Bkj )

≤
1

β(β − 1) ⋅ ⋅ ⋅ (β − t + 1)
β(β − 1) ⋅ ⋅ ⋅ (β − t + 1)(λ

d(A)
β
)
t
βt = (λd(A))t .

Remark 3.16. Without further information on the strata, we cannot make any conclu-
sions about pairwise negative dependence of generalized stratified sampling. As an
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B2

B1

Figure 3.2: Example of strata for Remark 3.16.

example, consider a stratified sampling scheme 𝒫 = (p1, p2) defined by two strata B1,
B2 in d ≥ 2. One may choose B1, B2, and Q,R ∈ 𝒞d1 in such a way that Q ⊂ B1, B2 ⊂ R,
and R ̸= [0, 1)d; see Figure 3.2. In this case, however,

P(p2 ∈ R
󵄨󵄨󵄨󵄨 p1 ∈ Q) = 1,

and the sampling scheme is not pairwise negatively dependent.
On the other hand, if we consider strataBj, j = 1, . . . ,N, withBj := [

j−1
N ,

j
N )×[0, 1)

d−1

then this practically boils down to the one-dimensional case and so the corresponding
sampling scheme is pairwise negatively dependent; cf. Lemma 3.12.

3.4.2 Pairwise negative dependence and conditional NQD
property of randomly shifted and jittered rank-1 lattices

Theexposition follows closely [33]. LetN beprime.By𝔽:=𝔽N ,wedenote {0, 1, . . . ,N−1}.
Moreover, 𝔽∗ := 𝔽 \ {0}. We also put 𝔽̃ := 1

N𝔽, and similarly 𝔽̃∗ := 1
N𝔽
∗.

A discrete subgroupℒ of the d-dimensional torus𝕋d is called a lattice. A set (yj)Nj=1
is a rank-1 lattice if for some g ∈ (𝔽̃∗)d it admits a representation

yj = (j − 1)g mod 1 j = 1, . . . ,N .

In this case, g is called a generating vector of the lattice.
Note that our definition differs from the usual one in that we allow only for gen-

erating vectors g from (𝔽̃∗)d and not from 𝔽̃d, which saves us from considering some
degenerate cases.

We want now to define a sampling scheme based on rank-1 lattices which we call
randomly shifted and jittered rank-1 lattice. To this end, let (yj)Nj=1 be a rank-1 lattice
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with generating vector chosen randomly uniformly from (𝔽̃∗)d. Let U be distributed
uniformly on 𝔽̃d, Jj, j = 1, . . . ,N be uniformly distributed on [0, 1N )

d and π be a uni-
formly chosen permutation of {1, . . . ,N}. Moreover, let all of the aforementioned ran-
dom variables be independent. We put

pj := yπ(j) + U + Jj mod 1, j = 1, . . . ,N .

We call the sampling scheme 𝒫 = (pj)Nj=1 a randomly shifted and jittered rank-1 lattice
(RSJ rank-1 lattice). Putting it in words: we first take a rank-1 lattice with a random
generator and symmetrize it. Then we shift the lattice uniformly on the torus, where
the shift has resolution 1

N . In the last step, we jitter every point independently of all
the other points in a cube of volume ( 1N )

d.
The following is Theorem 3.4 from [33].

Theorem 3.17. Let N be prime, d ∈ ℕ. RSJ rank-1 lattice 𝒫 = (pj)Nj=1 in [0, 1)
d is a coordi-

natewise independent NQD sampling scheme.

In particular, RSJ rank-1 lattice is a pairwise negatively dependent and a condi-
tionally NQD sampling scheme, which means that both alternative conditions for 𝒫
from Theorem 3.5 hold.

In contrast to generalized stratified sampling (cf. Theorem 3.15) and Latin hyper-
cube sampling (see Theorem 3.18), RSJ rank-1 lattice is for d ≥ 2 and N ≥ 3 in general
not 𝒞d0 -negatively dependent; see Subsection 3.5.1.

3.4.3 Negative dependence, conditional NQD property, and
pairwise negative dependence of Latin hypercube sampling

Let (πi)di=1 be independent uniformly chosen permutations of [N], andU (i)j , i = 1, . . . , d,
j = 1, . . . ,N be independent random variables distributed uniformly on (0, 1] and in-
dependent also of the permutations. A sampling scheme (pj)Nj=1 is called a Latin hyper-
cube sampling if the ith coordinate of the jth point p(i)j is given by

p(i)j =
πi(j) − U

(i)
j

N
, i = 1, . . . , d, j = 1, . . . ,N .

What one intuitively does is the following: one cuts [0, 1)d into slices (Sk,j)Nj=1, k =
1, . . . , d given by

Sk,j =
k−1
∏
j=1
[0, 1) × [ j − 1

N
,
j
N
) ×

d
∏
j=k+1
[0, 1)

and puts N points in such a way that in every slice there is exactly one point.
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It is worthmentioning that for d = 1 Latin hypercube sampling is exactly the same
as RSJ rank-1 lattice (namely simple stratified sampling). For d ≥ 2, the joint distribu-
tion of a pair of points is the same for Latin hypercube sampling as for the RSJ rank-1
lattice. But if we sample more than two points, then the joint distributions already
differ; see [33].

Negative dependence of Latin hypercube sample has been studied in [11] and pair-
wise negative dependence has been investigated in [33].

Theorem 3.18. Latin hypercube sample in [0, 1)d is a sampling scheme which is:
(i) 𝒟d

0–e
d-negatively dependent,

(ii) 𝒞d0 -negatively dependent,
(iii) coordinatewise independent NQD.

In the above, statements (i) and (ii) follow from Theorem 3.5. from [11], and state-
ment (iii) is Theorem 3.4. from [33].

In particular, from (iii) it follows that LHS is pairwise negatively dependent aswell
as conditionally NQD.

3.4.4 Pairwise negative dependence of scrambled (0,m,s)-nets

The so-called (t,m, s)-nets belong to the most regular deterministic point sets. First
defined by Niederreiter in [22], they have been subject of extensive research. For a nice
introduction on (t,m, s)-nets and their randomization, see [21].

Let us fix a base b ∈ ℕ≥2. For j ∈ ℕ0 and k = 0, 1, . . . , bj − 1 an interval of the form

Ejk = [kb
−j, (k + 1)b−j)

is called an elementary interval (in base b). Moreover, for s ∈ ℕ and vectors j =
(j1, . . . , js) and k = (k1, . . . , ks) (where for every l = 1, . . . , s, we require 0 ≤ kl ≤ bjl − 1)
we define an s-dimensional elementary interval via

Ejk :=
s
∏
l=1

Ejlkl .

A (t,m, s)-net is any P ⊂ [0, 1]s such that for any elementary interval E with λs(E) =
b−m+t there are exactly bt points in P ∩ E. It is easily seen that a (t,m, s)-net consists of
exactly bm points. Specific constructions of (t,m, s)-nets are known.

Scrambling of depthm is a bijective function S : [0, 1]s → [0, 1]s such that for any
elementary interval E with λs(E) = b−m the image S(E) is again an elementary interval
of volume b−m.

Now let us focus on the case t = 0. Taking a (0,m, s)-net and applying to it a ran-
dom scrambling of depthm, one obtains a randomized point set. Scramblings are de-
fined in such away that for any scrambling S of depthm and a (0,m, s)-net P, the point
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set S(P) is again a (0,m, s)-net. By an appropriate choice of randomized scrambling S̃,
one may make S̃(P) to be a sampling scheme. In this case, we call S̃(P) a scrambled
(0,m, s)-net. Scrambling as a way of randomization of (0,m, s)-nets has been studied
by A. B. Owen, for example, in [28].

In a recent article [20], C. Lemieux and J. Wiart have shown the following theorem
(which follows from Corollary 4.10 from the aforementioned article).

Theorem 3.19. Scrambled (0,m, s)-nets are pairwise negatively dependent sampling
schemes.

3.4.5 Mixed randomized sequences

As already mentioned, part of the success of RQMC stems from the fact that in many
high-dimensional practical integration problems only a small number of coordinates
is of real importance. It stands to reason that one tries to use it to his avail by construct-
ing quadratures in which one uses RQMC on the “important” coordinates and simple
(usually much cheaper) Monte Carlo for the rest of the coordinates. This method is
sometimes referred to as padding and the resulting sequences of integration nodes
are called hybrid-Monte Carlo sequences. Let us give a formal definition.

Definition 3.20. Let d, d󸀠, d󸀠󸀠 ∈ ℕ with d = d󸀠 + d󸀠󸀠. Let X = (Xk)k∈ℕ be a sequence in
[0, 1)d

󸀠
, and let Y = (Yk)k∈ℕ be a sequence in [0, 1)d

󸀠󸀠
. The d-dimensional concatenated

sequence Z = (Zk)k∈ℕ = (Xk ,Yk)k∈ℕ is called a mixed sequence. If Y is a sequence of
independent uniformly distributed random points, one also says that Z results from X
by padding by Monte Carlo and calls Z a hybrid-Monte Carlo sequence. If X and Y are
both randomized sequences, we call Z amixed randomized sequence.

Padding by Monte Carlo was introduced by Spanier in [32] to tackle problems in
particle transport theory. He suggested to use a hybrid-Monte Carlo sequence result-
ing from padding a deterministic low-discrepancy sequence. Hybrid-Monte Carlo se-
quences showed a favorable performance in several numerical experiments; see, for
example, [25, 26]. The latter papers also provided theoretical results on probabilistic
discrepancy estimates of hybrid-Monte Carlo sequences which have been improved in
[2, 10]. Favorable discrepancy bounds for padding Latin hypercube sampling (LHS) by
Monte Carlo were provided in [11]. Padding a sequence by LHS (instead of by Monte
Carlo) was considered earlier by Owen [27, Example 5].

A related line of research, initiated in [24], is to study the discrepancy of con-
catenated sequences that result from two deterministic sequences.More recent results
can, for example, be found in [12, 8, 14] and the literature mentioned therein.

The following proposition shows that concatenating two mutually independent
negatively dependent sampling schemes results again in a (higher dimensional) neg-
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atively dependent sampling scheme. A weaker version of the next proposition may be
found in [13]; cf. Lemma 5 there.

Proposition 3.21. Let d, d󸀠, d󸀠󸀠 ∈ ℕ such that d = d󸀠 + d󸀠󸀠. Let A ⊆ [0, 1)d
󸀠
, B ⊆ [0, 1)d

󸀠󸀠
be Borel measurable sets. Let x1, . . . , xN be a sampling scheme in [0, 1)d

󸀠
and y1, . . . , yN a

sampling scheme in [0, 1)d
󸀠󸀠
. Furthermore, let α, β ≥ 1.

(i) If the random variables 1A(xi), i = 1, . . . ,N, and 1B(yi), i = 1, . . . ,N, are upper nega-
tively α- and β-dependent, respectively, andmutually independent, then the random
variables 1A×B(xi, yi), i = 1, . . . ,N, induced by the randomvectors (x1, y1), . . . , (xN , yN )
in [0, 1)d, are upper negatively αβ-dependent.

(ii) If the random variables 1A(xi), i = 1, . . . ,N, and 1B(yi), i = 1, . . . ,N, are lower nega-
tively α- and β-dependent, respectively, andmutually independent, then the random
variables 1A×B(xi, yi), i = 1, . . . ,N, induced by the randomvectors (x1, y1), . . . , (xN , yN )
in [0, 1)d, are lower negatively αβ-dependent.

Proof. Let us first prove statement (i). Obviously, we have for J ⊆ [N],

P(⋂
j∈J
{1A×B(xj, yj) = 1}) = P(⋂

j∈J
{xj ∈ A} ∩⋂

j∈J
{yj ∈ B})

= P(⋂
j∈J
{xj ∈ A})P(⋂

j∈J
{yj ∈ B}) ≤ (α∏

j∈J
P(xj ∈ A))(β∏

j∈J
P(yj ∈ B))

= αβ∏
j∈J

P(1A×B(xj, yj) = 1).

We now prove statement (ii). Take any 0 ̸= J ⊆ [N] and set t = |J|. Suppose first that
((xj, yj))Nj=1 is a hybrid-Monte Carlo sequence, that is, (yj)

N
j=1 is a Monte Carlo sampling

scheme. Due to our assumptions in statement (ii), we obtain

P(⋂
j∈J
{1A×B(xj, yj) = 0})

= ∑
K⊆J

P(⋂
j∈J
{1A×B(xj, yj) = 0} ∩ ⋂

j∈K
{1B(yj) = 1} ∩ ⋂

j∈J\K
{1B(yj) = 0})

=
t
∑
ν=0
(
t
ν
)P(

ν
⋂
j=1
{1A(xj) = 0})P(

ν
⋂
j=1
{1B(yj) = 1} ∩

t
⋂
j=ν+1
{1B(yj) = 0})

≤ α
t
∑
ν=0
(
t
ν
)P(1A(x1) = 0)

ν P(1B(y1) = 1)
ν P(1B(y1) = 0)

t−ν

= α[P(1A(x1) = 0)P(1B(y1) = 1) + P(1B(y1) = 0)]
t
= αP(1A×B(x1, y1) = 0)

t
.

Now let (yj)Nj=1 be any sampling scheme in [0, 1)d
󸀠󸀠
such that the random variables

(1B(yj))Nj=1 are lower β-negatively dependent and let (ŷj)
N
j=1 be a Monte Carlo sampling
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scheme in [0, 1)d
󸀠󸀠
; we assume both sampling schemes to be mutually independent to

(xj)Nj=1. Analogously, as in the previous case, we obtain

P(⋂
j∈J
{1A×B(xj, yj) = 0})

=
t
∑
ν=0
(
t
ν
)P(

ν
⋂
j=1
{1A(xj) = 1} ∩

t
⋂
j=ν+1
{1A(xj) = 0})P(

ν
⋂
j=1
{1B(yj) = 0})

≤
t
∑
ν=0
(
t
ν
)P(

ν
⋂
j=1
{1A(xj) = 1} ∩

t
⋂
j=ν+1
{1A(xj) = 0})βP(1B(y1) = 0)

ν

= β
t
∑
ν=0
(
t
ν
)P(

ν
⋂
j=1
{1A(xj) = 1} ∩

t
⋂
j=ν+1
{1A(xj) = 0})P(1B(ŷ1) = 0)

ν
.

It follows from the case of hybrid-Monte Carlo sequences that

P(⋂
j∈J
{1A×B(xj, yj) = 0}) ≤ βP(⋂

j∈J
{1A×B(xj, ŷj) = 0})

≤ αβP(1A×B(x1, ŷ1) = 0)
t
= αβP(1A×B(x1, y1) = 0)

t

Remark 3.22. It follows easily on closer examination of the proof that for the state-
ment (i) of Proposition 3.21 to hold true we need only (1A(xj))Nj=1 and (1B(yj))

N
j=1 to be

negatively α- respectively β-upper dependent point sets, not necessarily sampling
schemes. Moreover, if in (ii) we assume that (yj)Nj=1 is a Monte Carlo sampling scheme,
we also do not need to assume that (xj)Nj=1 is a sampling scheme.

Remark 3.23. Let 𝒮󸀠, 𝒮󸀠󸀠 be systems of measurable sets in [0, 1)d
󸀠
and [0, 1)d

󸀠󸀠
, respec-

tively. Let (xj)Nj=1 be an 𝒮󸀠-α-negative dependent sampling scheme in [0, 1)d
󸀠
and (yj)Nj=1

an 𝒮󸀠󸀠-β-negative dependent sampling scheme in [0, 1)d
󸀠󸀠
; both sampling schemes

should be mutually independent. Furthermore, let 𝒫 := (pj)Nj=1 be the resulting con-
catenated sampling scheme in [0, 1)d, that is, pi := (xi, yi), i = 1, . . . ,N .
(i) If 𝒮󸀠 = 𝒞d

󸀠
0 and 𝒮󸀠󸀠 = 𝒞d

󸀠󸀠
0 , we obtain from Proposition 3.21 that the mixed random-

ized sequence (pj)Nj=1 is 𝒞
d
0 -αβ-negatively dependent, which implies that we may

directly apply Theorem 3.8 to obtain a probabilistic discrepancy bound for 𝒫.
(ii) If 𝒮󸀠 = 𝒟d󸀠

0 and 𝒮󸀠󸀠 = 𝒟d󸀠󸀠
0 , we obtain from Proposition 3.21 that (pj)Nj=1 is

αβ-negatively dependent with respect to the set system

𝒟d󸀠
0 ×𝒟

d󸀠󸀠
0 := {D

󸀠 × D󸀠󸀠 󵄨󵄨󵄨󵄨D
󸀠 ∈ 𝒟d󸀠

0 ,D
󸀠󸀠 ∈ 𝒟d󸀠󸀠

0 } ̸= 𝒟
d
0 .

Hence Theorem3.7 is unfortunately not directly applicable to𝒫. Nevertheless, one
may prove a counterpart of Theorem 3.7 with slightly worse constants that relies
onnegative dependencewith respect to𝒟d󸀠

0 ×𝒟
d󸀠󸀠
0 . Namely, onemay show for every
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θ ∈ (0, 1) that

P(D∗N (𝒫) ≤ 2 ∗ 0.7729√10.7042 + ρ +
ln((1 − θ)−1)

d
√ d
N
) ≥ θ. (3.19)

The bound is based on the following simple observation: To estimate the local
discrepancy of 𝒫 in a test box Q ∈ 𝒞d0 , the strategy used in [11] (and earlier in [1])
is to decompose Q into finitely many disjoint differences of boxes Δ1, . . . ,ΔK ∈ 𝒟d

0
such that Q = ⋃Kν=1Δν. This gives

DN (𝒫 ,Q) ≤
K
∑
ν=1

DN (𝒫 ,Δν). (3.20)

Now let us consider a fixed index ν. Then we find Aν ,Bν ∈ 𝒞d0 such that Aν ⊆ Bν
and Δν = Bν \ Aν. Furthermore, we may write Aν = A󸀠ν × A

󸀠󸀠
ν and Bν = B󸀠ν × B

󸀠󸀠
ν with

A󸀠ν ,B
󸀠
ν ∈ 𝒞

d󸀠
0 and A󸀠󸀠ν ,B

󸀠󸀠
ν ∈ 𝒞

d󸀠󸀠
0 . Then we may represent Δν as disjoint union

Δν = (B
󸀠
ν \ A
󸀠
ν) × B

󸀠󸀠
ν ∪ A
󸀠
ν × (B

󸀠󸀠
ν \ A
󸀠󸀠
ν ) =: C

1
ν ∪ C

2
ν .

Thus

DN (𝒫 ,Δν) ≤ DN(𝒫 ,C
1
ν) + DN(𝒫 ,C

2
ν), (3.21)

where C1ν ,C
2
ν ∈ 𝒟d󸀠

0 × 𝒟
d󸀠󸀠
0 . Now large deviation inequalities of Bernstein and

Hoeffding-type can be used to obtain for each of the random variables DN (𝒫 ,C1ν),
DN (𝒫 ,C2ν) the same upper bound as for the local discrepancy DN (𝒫

∗,Δν) of a
𝒟d
0-αβ-negative dependent sampling scheme 𝒫∗ in the proof of [11, Theorem 4.3].

This, combinedwith (3.20) and (3.21), results in a probabilistic discrepancy bound
for D∗N (𝒫) that is as most as twice as big as the one from Theorem 3.7; for further
details, see [11, Proof of Theorem 4.3].

3.5 Relations between notions of negative
dependence

It may be easily seen that the coordinatewise independent NQD property implies the
pairwise negative dependence property as well as the conditional NQD property. It
turns out that this is the only valid implication between the considered notions of neg-
ative dependence. In this section, we give examples showing that other implications
do not hold.
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3.5.1 Pairwise negative dependence and negative dependence

Neither the pairwise negative dependence of a sampling scheme implies the negative
dependence, nor the other way around.

Example 3.24. We first show an example of a negatively dependent sampling scheme
which is not pairwise negatively dependent. To this end, consider a sampling scheme
consisting of just two points (p1, p2) with joint CDF F : [0, 1]2 → [0, 1] given by

F(x, y) = min{x, y, x
2 + y2

2
}.

It is easy to see that F(0,0) = 0, F(1, 1) = 1, F is continuous, quasi-monotone, and
F(x, y) = F(y, x), which implies that F is a CDF of a sampling scheme. Moreover,

P(p1 ∈ [0, q), p2 ∈ [0, q)) = F(q, q) = q
2,

so the sampling scheme is 𝒞10-negatively dependent. Notice that due to d = 1, it is
equivalent to saying that the sampling scheme is 𝒞11 -negatively dependent. However,
for instance

P(p1 ∈ [
3
4
, 1), p2 ∈ [

1
4
, 1)) = 1 − (F( 3

4
, 1) + F(1, 1

4
) − F( 3

4
,
1
4
))

= F( 3
4
,
1
4
) =

1
4
> (1 − 3

4
)(1 − 1

4
) = P(p1 ∈ [

3
4
, 1))P(p2 ∈ [

1
4
, 1)).

Example 3.25. To see that even the stronger coordinatewise independent NQD prop-
erty does not imply the negative dependence property, consider RSJ rank-1 lattice de-
fined inSubsection 3.4.2. On the onehand, according to Theorem3.17, RSJ rank-1 lattice
is coordinatewise independent NQD. On the other hand, let us consider the situation
for d = 2, and a large N to be chosen later. We put Q = [0, 3N )

2. Obviously,

P(p1 ∈ Q)
3 = (

3
N
)
6
.

We also have

P(p1 ∈ Q, p2 ∈ Q, p3 ∈ Q) ≥
1

(N3 )N(N − 1)
=

6
N2(N − 1)2(N − 2)

,

the inequality follows since for the diagonal configuration of the points (i. e., pj =
( π(j)N ,

π(j)
N ) + Jj, j = 1, . . . , n for some permutation π of {1, . . . ,N}, k ∈ [N − 1]) there is

one triple of points always lying in Q. Notice that any generating vector of the form
g = ( kN ,

k
N ) and any shift of the form S = ( lN ,

l
N ), l ∈ {0, 1, . . . ,N −1}, results in a diagonal

configuration. Now for N large enough it holds

P(p1 ∈ Q, p2 ∈ Q, p3 ∈ Q) > P(p1 ∈ Q)
3.
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3.5.2 Conditional NQD and pairwise negative dependence

Example 3.26. First, we show an example of a pairwise negatively dependent sam-
pling scheme which is not conditionally NQD. Let B1 = [0,

1
2 )
2, B2 = [

1
2 , 1) × [0,

1
2 ),

B3 = [0,
1
2 ) × [

1
2 , 1), B4 = [

1
2 , 1)

2 denote the slots. Now we are considering a sampling
scheme 𝒫 = (p1, p2) such that given the slots the points are distributed uniformly
within the slots and are independent. Denote Aij := {p1 ∈ Bi, p2 ∈ Bj} and set

P(Aii) =
1
16
, i = 1, 2, 3, 4,

P(A13) = P(A24) = P(A31) = P(A42) =
1
32
,

P(A14) = P(A23) = P(A41) = P(A32) =
5
32
.

It is easy to see that 𝒫 is not conditionally NQD, for example,

P(p(2)1 ≥
1
2
, p(2)2 ≥

1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p(1)1 ≥

1
2
, p(1)2 ≥

1
2
) =

1
3

>
1
4
= P(p(2)1 ≥

1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p(1)1 ≥

1
2
, p(1)2 ≥

1
2
)P(p(2)2 ≥

1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
p(1)1 ≥

1
2
, p(1)2 ≥

1
2
).

Showing that 𝒫 is pairwise negatively dependent requires simple but tedious calcu-
lations and as such will be omitted. Intuitively, it is clear, since the sampling scheme
gives high probability to diagonal arrangements (i. e., A14,A23,A41,A32).

Example 3.27. Now we show an example of a sampling scheme which is condition-
ally NQD but not pairwise negatively dependent. To this end, let X,Y be two indepen-
dent randomvariables distributed uniformly on [0, 1).We consider a sampling scheme
𝒫 = (p1, p2) given by p1 = (X,Y), p2 = (Y ,X). Let u, v ∈ [0, 1)2 and A,B ⊂ [0, 1) be mea-
surable. Sampling scheme 𝒫 is conditionally NQD since

P(p(2)1 ≥ u
(2), p(2)2 ≥ v

(2) 󵄨󵄨󵄨󵄨 p
(1)
1 ∈ A, p

(1)
2 ∈ B)

= P(Y ≥ u(2),X ≥ v(2) 󵄨󵄨󵄨󵄨X ∈ A,Y ∈ B)

= P(Y ≥ u(2) 󵄨󵄨󵄨󵄨X ∈ A,Y ∈ B)P(X ≥ v
(2) 󵄨󵄨󵄨󵄨X ∈ A,Y ∈ B)

= P(p(2)1 ≥ u
(2) 󵄨󵄨󵄨󵄨X ∈ A,Y ∈ B)P(p

(2)
2 ≥ v

(2) 󵄨󵄨󵄨󵄨X ∈ A,Y ∈ B).

On the other hand, 𝒫 is not pairwise negatively dependent. To see this, note that

P(p1 ≥ u)P(p2 ≥ v)

= P(X ≥ u(1),Y ≥ u(2))P(Y ≥ v(1),X ≥ v(2))

= P(X ≥ u(1))P(Y ≥ u(2))P(Y ≥ v(1))P(X ≥ v(2))

and

P(p1 ≥ u, p2 ≥ v) = P(X ≥ max(u(1), v(2)),Y ≥ max(u(2), v(1))).
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Taking for some u(1), u(2) ∈ (0, 1), the point v satisfying v(1) = u(2) and v(2) = u(1) yields
the claim.
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Takashi Goda and Kosuke Suzuki
4 Recent advances in higher order
quasi-Monte Carlo methods

Abstract: In this article, we review some of the recent results on higher order quasi-
Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who
originally introduced the concept of HoQMC, there has been significant theoretical
progress on HoQMC in terms of discrepancy as well as multivariate numerical inte-
gration. Moreover, several successful and promising applications of HoQMC to partial
differential equations with random coefficients and Bayesian estimation/inversion
problems have been reported recently. In this article, we start with standard quasi-
Monte Carlomethods based on digital nets and sequences in the sense of Niederreiter,
and then move onto their higher order version due to Dick. The Walsh analysis of
smooth functions plays a crucial role in developing the theory of HoQMC, and the aim
of this article is to provide a unified picture on how theWalsh analysis enables recent
developments of HoQMC both for discrepancy and numerical integration.

Keywords: Higher order quasi-Monte Carlo, digital nets and sequences, Walsh analy-
sis, discrepancy, numerical integration

MSC 2010: 11K38, 41A55, 42C10, 65C05, 65D30, 65D32

4.1 Introduction
For an integrable function f : [0, 1]s → ℝ, we denote the integral of f by

I(f ) = ∫
[0,1]s

f (x)dx.

Monte Carlo/Quasi-Monte Carlo (QMC) methods are a class of numerical algorithms
for approximating I(f ) based on pointwise function evaluations. Let P ⊂ [0, 1]s be a
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finite multiset, that is, if an element occurs multiple times, it is counted according to
its multiplicity. Then I(f ) is approximated by

I(f ;P) = 1
|P|
∑
x∈P

f (x),

where |P| denotes the cardinality of P. It is obvious that this algorithm is exact for any
choice ofP if f is a constant function, but except for such a trivial case, a careful design
of P and an accompanying theoretical analysis are required to show that the algorithm
works well for various function classes.

One fairly easy but sensible approach is to choose each point x independently and
uniformly distributed in [0, 1]s. This is widely known under the name of Monte Carlo
methods [39]. Many fundamental results in probability theory, including the law of
large numbers and the central limit theorem, apply to this approach. Looking at I(f ;P)
as a random variable (with P being the underlying stochastic variable), we have

𝔼[I(f ;P)] = I(f ) and 𝕍[I(f ;P)] = 𝕍[f ]
|P|
,

for any function f ∈ L2([0, 1]s), where𝕍[f ] on the right-hand side of the second equal-
ity denotes the variance of f . This means, Monte Carlo methods work for any square-
integrable functions, but the approximation error converges only probabilistically at
the notorious “one over square root of N” rate. Thus we have a trade-off between ver-
satility and efficiency.

In some applications where the Monte Carlo convergence is considered too slow,
one needs to improve efficiency while discarding the versatility of Monte Carlo meth-
ods to some extent. QMCmethods are one of the standard choices for this purpose. The
classical but still central result in QMCmethods is the celebrated Koksma–Hlawka in-
equality:

󵄨󵄨󵄨󵄨I(f ;P) − I(f )
󵄨󵄨󵄨󵄨 ≤ VHK(f )D

∗(P), (4.1)

where VHK(f ) denotes the total variation of f in the sense of Hardy and Krause, and
D∗(P) denotes the star-discrepancy of P (we shall give a precise definition of D∗(P)
later in Section 4.5). Although the class of functions we can deal with in this case is
restricted to functions with bounded total variations (i. e., we discard versatility to
someextent), througha clever designofP such thatD∗(P) is of order better than |P|−1/2,
the convergence rate can be improved (i. e., we improve efficiency). In fact, there are
manyexplicit constructions of so-calleddigital (t,m, s)-nets anddigital (t, s)-sequences
achieving star-discrepancy of order (logN)s−1/N and (logN)s/N, respectively;1 see [49,

1 To be precise, for an infinite sequence of points 𝒮, this means that there exists a constant Cs > 0
depending only on s such that the star-discrepancy of the first N elements of 𝒮 is bounded by
Cs(logN)s/N uniformly for all N .
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24]. Hence, it follows from the Koksma–Hlawka inequality that the integration error
converges deterministically faster than the “one over square root of N” rate.

One natural question in this line is then “Can we improve efficiency further while
sacrificing versatility to a greater extent?” Higher order quasi-Monte Carlo (HoQMC)
methods due to Dick [7, 8] provide an affirmative solution to this question. Now let
us focus on functions f having square-integrable partial mixed derivatives up to or-
der α > 1 in each variable, which obviously means that we discard versatility to a
greater extent than standard QMCmethods. In return for this drawback, however, the
order of convergence of the integration error can be improved to (logN)c(α,s)/Nα with
some exponent c(α, s) > 0 by employing so-called higher order digital nets and se-
quences as quadrature nodes P.2 Hence, when the considered integrand is smooth
enough, HoQMC methods can be much more efficient than standard QMC methods,
not to mention Monte Carlo methods. Of course, one may ask if one can encounter
such smooth functions inpractice. Fortunately, therehavebeen several successful and
promising applications of HoQMC methods reported already in the literature. These
include [18, 17, 20, 30, 31] on applications to partial differential equations with ran-
dom coefficients (see also the review article [41]), and [11, 32, 12] on applications to
Bayesian estimation/inversion problems.

Recently, there has been significant theoretical progress on HoQMC methods.
The first major step was made by Dick and Pillichshammer [25]. They proved that
order 5 digital sequences achieve the best possible order of L2-discrepancy, which is
(logN)s/2/N, uniformly for all N, and moreover, they proved that order 3 digital nets
of N points achieve the best possible order of L2-discrepancy, which is (logN)(s−1)/2/N
(here again, we shall give a precise definition of L2-discrepancy later in Section 4.5).
Prior to their work, there had been only one explicit construction of finite point sets
(for arbitrarily fixed dimension s) with the best possible order of L2-discrepancy due
to Chen and Skriganov [5, 55]. Therefore, higher order digital nets (resp., sequences)
are now recognized as the second (resp., first) explicit construction of optimal order
L2-discrepancypoint sets (resp. sequences).More recently, several refined analyses for
generalizing or extending the work of Dick and Pillichshammer have been conducted
[10, 42, 15, 16, 4].

Another major step was made in a series of papers [36–38], where the authors
refined the integration error analysis for smooth functions due to Dick [7, 8] and
proved that order (2α + 1) digital nets and sequences achieve the best possible order
of the worst-case error for a reproducing kernel Hilbert space with dominating mixed
smoothness α, which is (logN)(s−1)/2/Nα. Note that the original work byDick [8] proves
the worst-case error of order (logN)sα/Nα for order α digital nets and sequences; see
also [3]. Other than higher order digital nets and sequences, only the Frolov lattice

2 For higher order digital sequences, this order of convergence does not hold uniformly for all N, but
holds for a geometric spacing of N . It is known that this cannot be improved [53].
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rule in conjunction with periodization of integrands has been proven to achieve the
same, best possible order of the worst-case error so far [29, 64, 45].

The results of [25] and that of [37, 38] have been obtained by using a Walsh series
analysis. To introduce the concept of HoQMC methods originally, Dick managed to
prove results on the decay of the Walsh coefficients of smooth functions [7, 8]. In fact,
his digit interlacing construction of higher order digital nets and sequences, which
shall be described in Section 4.3.2, is carefully designed to exploit the decay of the
Walsh coefficients. In order to improve his seminal results, it may be sensible to at-
tempt to exploit some further aspect of the Walsh coefficients. Both the result of [25]
and that of [37, 38] rely not only on the decay but also on the sparsity of the Walsh
coefficients.

In this article, wemainly focus on the papers [25, 38] and provide a unified picture
on how the Walsh analysis enables recent developments of HoQMC methods both for
discrepancy and numerical integration.

The rest of this article is organized as follows. In Section 4.2, we explain standard
QMC methods based on digital nets and sequences in the sense of Niederreiter [49].
Although integer lattices are another important class of QMC point sets (see, for in-
stance, [56] and [19, Section 5]), we do not cover them in this article. In Section 4.3,
we introduce the definitions of higher order digital nets and sequences, and provide
an explicit construction algorithm due to Dick [8]. In Section 4.4, we introduce the
definition of the Walsh functions and give some key connection to digital nets. There-
after, recent advances inHoQMCmethods for discrepancy are described in Section 4.5,
while those for numerical integration are in Section 4.6. We shall highlight an anal-
ogy between the approach by [25] and that of [38], where exploiting both the decay
and the sparsity of the Walsh coefficients plays a crucial role. We conclude the article
with some future research directions.

Notation. Throughout this article, we shall use the following notation. Letℕ be the set
of positive integers and we writeℕ0 = ℕ ∪ {0}. For a prime b, let 𝔽b be the finite field
withb elements andwe identify𝔽bwith the set of integers {0, 1, . . . , b−1} equippedwith
addition andmultiplicationmodulo b. For x ∈ [0, 1], its b-adic expansion x = ∑∞i=1 ξib

−i

with ξi ∈ 𝔽b is understood to be unique in the sense that infinitely many of the ξi’s are
different from b − 1 if x ̸= 1 and that all of the ξi’s are equal to b − 1 if x = 1. Note
that for k = 1 ∈ ℕ we use the b-adic expansion 1b0, whereas for x = 1 ∈ [0, 1] we use
(b − 1)b−1 + (b − 1)b−2 + ⋅ ⋅ ⋅. It will be clear from the context which expansion we use.
The operator ⊕ denotes the digitwise addition modulo b, that is, for x, y ∈ [0, 1] with
b-adic expansions given by x = ∑∞i=1 ξib

−i and y = ∑∞i=1 ηib
−i, respectively, ⊕ is defined

as

x ⊕ y =
∞

∑
i=1

ζib
−i, where ζi = ξi + ηi (mod b).

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



4 Recent advances in higher order quasi-Monte Carlo methods | 73

Similarly, we use ⊕ for digitwise addition for nonnegative integers based on the b-adic
expansions. In case of vectors in [0, 1]s or ℕs0, the operator ⊕ is applied component-
wise.

4.2 Standard quasi-Monte Carlo

4.2.1 Digital nets and sequences

We start with a general construction scheme for a class of QMC point sets called digi-
tal nets due to Niederreiter [49]. Note that both, digital (t,m, s)-nets and higher order
digital nets can be regarded as special subclasses of QMC point sets.

Definition 4.1 (Digital nets). Letm, n ∈ ℕ, and let C1, . . . ,Cs be n ×mmatrices over 𝔽b.
For an integer 0 ≤ h < bm with b-adic expansion h = η0 + η1b + ⋅ ⋅ ⋅ + ηm−1bm−1, define
the point xh = (xh,1, . . . , xh,s) ∈ [0, 1]s by

xh,j =
ξ1,h,j
b
+
ξ2,h,j
b2
+ ⋅ ⋅ ⋅ +

ξn,h,j
bn
,

where

(ξ1,h,j, ξ2,h,j, . . . , ξn,h,j) = (η0, η1, . . . , ηm−1) ⋅ C
⊤
j .

The set P = {xh | 0 ≤ h < bm} ⊂ [0, 1]s is called a digital net over 𝔽b (with generating
matrices C1, . . . ,Cs).

It is obvious from the definition that the parameterm determines the total number
of points, which is bm, while the parameter n determines the precision of points. We
can extend this definition to construct infinite sequences of points called digital se-
quences. Again, both, digital (t, s)-sequences and higher order digital sequences can
be regarded as special subclasses of digital sequences.

Definition 4.2 (Digital sequences). Let C1, . . . ,Cs be ℕ × ℕ matrices over 𝔽b. For an
integer h ∈ ℕ0 with b-adic expansion h = η0 + η1b + ⋅ ⋅ ⋅, where all but a finite number
of ηi are 0, define the point xh = (xh,1, . . . , xh,s) ∈ [0, 1]s by

xh,j =
ξ1,h,j
b
+
ξ2,h,j
b2
+ ⋅ ⋅ ⋅ ,

where

(ξ1,h,j, ξ2,h,j, . . .) = (η0, η1, . . .) ⋅ C
⊤
j .

The sequence of points 𝒮 = {xh | h ∈ ℕ0} ⊂ [0, 1]s is called a digital sequence over 𝔽b
(with generating matrices C1, . . . ,Cs).
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Remark 4.1. Assume that for each 1 ≤ j ≤ s there exists a function Kj: ℕ → ℕ such
that Cj = (c

(j)
k,l)k,l∈ℕ satisfies c

(j)
k,l = 0 whenever k > Kj(l). Then for any m ∈ ℕ the first

bm elements of a digital sequence over 𝔽b with generating matrices C1, . . . ,Cs can be
identified with a digital net over 𝔽b with generating matrices C[n×m]1 , . . . ,C

[n×m]
s with

the precision parameter

n = max
1≤j≤s

max
1≤l≤m

Kj(l),

where C[n×m]j denotes the upper-left n ×m submatrix of Cj.

4.2.2 Quality measure

In order to generate point sets or sequences from the above construction scheme such
that the star-discrepancy is small, we need to design generatingmatrices C1, . . . ,Cs. In
this subsection, we introduce the widely-used quality measure called t-value, which
is based on the Niederreiter–Rosenbloom–Tsfasman (NRT) weight function [46, 54].

Definition 4.3 (Dual nets). Let m, n ∈ ℕ and let P be a digital net over 𝔽b with gener-
ating matrices C1, . . . ,Cs ∈ 𝔽n×mb . The dual net of P, denoted by P⊥, is defined by

P⊥ := {k = (k1, . . . , ks) ∈ ℕ
s
0 | C
⊤
1 νn(k1) ⊕ ⋅ ⋅ ⋅ ⊕ C

⊤
s νn(ks) = 0 ∈ 𝔽

m
b },

where

νn(k) = (κ0, . . . , κn−1)
⊤ ∈ 𝔽nb

for k ∈ ℕ0 with b-adic expansion k = κ0 + κ1b + ⋅ ⋅ ⋅, where all but a finite number of κi
are 0.

Remark 4.2. Let 𝒮 be a digital sequence over 𝔽b for which there exist functions
Kj: ℕ → ℕ such that Cj = (c

(j)
k,l)k,l∈ℕ satisfies c(j)k,l = 0 whenever k > Kj(l). Then the

dual net can be defined for the first bm elements of 𝒮 for anym ∈ ℕ, since they can be
identified with a digital net as discussed in Remark 4.1.

Definition 4.4 (NRT weight function). For k ∈ ℕ, we denote the b-adic expansion of k
by

k = κ1b
c1−1 + κ2b

c2−1 + ⋅ ⋅ ⋅ + κvb
cv−1

with κ1, . . . , κv ∈ 𝔽b \ {0} and c1 > ⋅ ⋅ ⋅ > cv > 0. Then the NRT weight function μ1: ℕ0 →
ℕ0 is defined by μ1(0) = 0 and μ1(k) = c1. In case of vectors inℕs0, we define

μ1(k1, . . . , ks) =
s
∑
j=1

μ1(kj).
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We are ready to introduce the definition of t-value.

Definition 4.5 (t-value). Letm, n ∈ ℕ, and letP be a digital net over𝔽bwith generating
matrices C1, . . . ,Cs ∈ 𝔽n×mb . We write

μ1(P
⊥) := min

k∈P⊥\{0}
μ1(k).

Then P is called a digital (t,m, s)-net over 𝔽b with t ∈ ℕ0 which satisfies

m − μ1(P
⊥) + 1 ≤ t ≤ m.

Such parameter t is called the t-value of P and is said to be strict if t = m − μ1(P⊥) + 1.

This definition of the t-value is based on the concept of duality theory of digital
nets as originally studied in [50]. There is another but equivalent definition of t-value:
let ρ be an integer such that, for any choice d1, . . . , ds ∈ ℕ0 with d1 + ⋅ ⋅ ⋅ + ds = ρ,

the first d1 row vectors of C1
the first d2 row vectors of C2
...
the first ds row vectors of Cs

are linearly independent over 𝔽b. Then the t-value can be also defined bym − ρ.
Because of the linear independence of the row vectors of generatingmatrices, any

digital (t,m, s)-net over 𝔽b has the following equi-distribution property: every b-adic
elementary box of the form

E =
s
∏
j=1
[
aj
bcj
,
aj + 1
bcj
)

with c1, . . . , cs ≥ 0, c1 + ⋅ ⋅ ⋅ + cs = m − t and 0 ≤ aj < bcj for all j, whose volume is bt−m,
contains exactly bt points. Hence, as the t-value is smaller, digital nets are more equi-
distributed over [0, 1]s. This is why the t-value works as a quality measure of digital
nets.

For digital sequences, the t-value is defined as follows.

Definition 4.6. Let 𝒮 be a digital sequence over 𝔽b. 𝒮 is called a digital (t, s)-sequence
over𝔽b if there exists a t ∈ ℕ0 such that the first bm points of𝒮 are a digital (t,m, s)-net
for anym ≥ t.

The following result states that the star-discrepancy of digital (t,m, s)-nets and
digital (t, s)-sequences are of order (logN)s−1/N and (logN)s/N, respectively, as men-
tioned in the first section. We refer to [49, Theorems 4.10 and 4.17] for the proof.
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Theorem 4.1. The following holds true:
1. Let P be a digital (t,m, s)-net over 𝔽b. There exists a constant B(1)s,b,t such that the

star-discrepancy of P is bounded by

D∗(P) ≤ B(1)s,b,t
ms−1

bm
.

2. Let 𝒮 = {xh | h ∈ ℕ0} be a digital (t, s)-sequence over 𝔽b. There exists a constant
B(2)s,b,t such that the star-discrepancy of the first N points of 𝒮 is bounded by

D∗({x0, . . . , xN−1}) ≤ B
(2)
s,b,t
(logN)s

N
,

for any N ≥ 2.

We end this subsection by providing one useful result in analyzing the integration
error of QMC rules using digital (t,m, s)-nets.

Lemma 4.1. Let P be a digital (t,m, s)-net over 𝔽b. The following holds true:
1. For z ∈ ℕ0,

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | μ1(k) = z}

󵄨󵄨󵄨󵄨

≤ {
0 if z < μ1(P⊥),
bz−μ1(P

⊥)+1(z + 1)s−1 otherwise.

2. For any real λ > 1,

∑
k∈P⊥\{0}

b−λμ1(k) ≤ 2s−1bλ (μ1(P
⊥))s−1

bλμ1(P⊥)
∞

∑
z=1

b(1−λ)zzs−1.

Proof. In this proof, we put Az = |{k ∈ P⊥ \ {0} | μ1(k) = z}|. It holds that

Az = ∑
z1 ,...,zs∈ℕ0
z1+⋅⋅⋅+zs=z

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | μ1(k1) = z1, . . . , μ1(ks) = zs}

󵄨󵄨󵄨󵄨.

Following [55, Lemma 2.2], the summand is bounded above by
󵄨󵄨󵄨󵄨{k ∈ P

⊥ \ {0} | μ1(k1) = z1, . . . , μ1(ks) = zs}
󵄨󵄨󵄨󵄨

≤ {
0 if z < μ1(P⊥),
bz−μ1(P

⊥)+1 otherwise.

Thus we have Az = 0 if z < μ1(P⊥), since each summand is 0. For z ≥ μ1(P⊥), this
bound gives

Az ≤ b
z−μ1(P⊥)+1 ∑

z1 ,...,zs∈ℕ0
z1+⋅⋅⋅+zs=z

1 = bz−μ1(P
⊥)+1(

z + s − 1
s − 1
)
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= bz−μ1(P
⊥)+1

s−1
∏
j=1

z + j
j
≤ bz−μ1(P

⊥)+1(z + 1)s−1,

which proves the first assertion of the lemma.
Using the result of the first assertion and then applying the change of variables

z 󳨃→ z + μ1(P) − 1, we have

∑
k∈P⊥\{0}

b−λμ1(k) =
∞

∑
z=μ1(P⊥)

b−λzAz ≤
∞

∑
z=μ1(P⊥)

b(1−λ)z−μ1(P
⊥)+1(z + 1)s−1

= b−λ(μ1(P
⊥)−1)
∞

∑
z=1

b(1−λ)z(z + μ1(P
⊥))

s−1

≤ 2s−1(μ1(P
⊥))

s−1b−λ(μ1(P
⊥)−1)
∞

∑
z=1

b(1−λ)zzs−1,

where the last sum over z is finite since λ > 1. Hence we complete the proof.

4.2.3 Explicit constructions

Theorem 4.1 together with the Koksma–Hlawka inequality (4.1) gives a motivation to
construct digital (t,m, s)-nets or digital (t, s)-sequences with small t-value. In fact,
many explicit constructions of digital (t, s)-sequences with small t-value are already
known. Examples are given by Sobol’ [58], Faure [26], Niederreiter [47], Tezuka [63],
Niederreiter and Xing [51], as well as many others. Here, we give one example from
[47, 63].

Let p1, p2, . . . ∈ 𝔽b[x] be a sequence of distinct monic irreducible polynomials over
𝔽b with deg(p1) ≤ deg(p2) ≤ ⋅ ⋅ ⋅. For each j ∈ ℕ, let ej = deg(pj) and consider the
following Laurent series expansion

xej−z−1

(pj(x))i
=
∞

∑
l=1

a(j)(i, z, l)
xl
∈ 𝔽b((x

−1)) (4.2)

for integers i ≥ 1 and 0 ≤ z < ej. Define the matrix Cj = (c
(j)
k,l)k,l∈ℕ by

c(j)k,l = a
(j)(⌊

k − 1
ej
⌋ + 1, (k − 1) mod ej, l).

Here, we see that the rows of Cj (from upper to lower) correspond to the Laurent series
expansions of

xej−1

pj(x)
, . . . ,

1
pj(x)
,

xej−1

(pj(x))2
, . . . ,

1
(pj(x))2

, . . . .

Hence, we have Kj(l) = l for any j, l in light of Remark 4.1, that is, c(j)k,l = 0 whenever
k > l, meaning that Cj is an upper triangular matrix.
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It is straightforward from the definition that this explicit construction of digital se-
quences is extensible in the dimension. The first smatrices C1, . . . ,Cs generate a digital
(t, s)-sequence over 𝔽b with

t ≤
s
∑
j=1
(ej − 1).

We refer to [24, Theorem 8.2] for the proof of this fact.

Remark 4.3. Some comments are in order:
1. If we replace the numerator xej−z−1 of (4.2) by xz, then we obtain the construction

algorithm originally introduced in [47], which is nowadays known as Niederre-
iter sequences. For the original Niederreiter sequence, the strict t-value is equal to
∑sj=1(ej − 1) [21].

2. A generalization of Niederreiter sequences by Tezuka [63] is to use the set of lin-
early independent polynomials {yj,i,z(x) | 0 ≤ z < ej} over 𝔽b for the numerator of
(4.2) rather than the simplest set {xz | 0 ≤ z < ej}.

3. The Sobol’ sequences due to [58] are a subclass of the generalized Niederreiter
sequences over 𝔽2, where the primitive polynomials are used for p1, p2, . . .. Re-
cently, Faure and Lemieux [27] gave some precise connections between the Sobol’
sequences and the generalized Niederreiter sequences.

4.2.4 Polynomial lattice point sets

We end this section by introducing another important class of digital nets called poly-
nomial lattice point sets introduced by Niederreiter [48].

Definition 4.7. Let m ∈ ℕ, and let p ∈ 𝔽b[x] and q = (q1, . . . , qs) ∈ (𝔽b[x])s such that
deg(p) = m and deg(qj) < m. For 1 ≤ j ≤ s, consider the Laurent series expansion

qj(x)
p(x)
=
∞

∑
l=1

a(j)l
xl
∈ 𝔽b((x

−1))

and define the Hankel matrix Cj = (c
(j)
k,l)1≤k,l≤m ∈ 𝔽

m×m
b by

c(j)k,l = a
(j)
k+l−1.

Then a digital net over 𝔽b with these generating matrices C1, . . . ,Cs is called a polyno-
mial lattice point set (with modulus p and generating vector q).

Indeed, polynomial lattice point sets can be constructedwithout using generating
matrices explicitly. Define the map vm: 𝔽b((x−1)) → [0, 1] by

vm(
∞

∑
i=w

aix
−i) :=

m
∑

i=max{1,w}
aib
−i.
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We identify h ∈ ℕ0, whose finite b-adic expansion is given by h = η0 + η1b + ⋅ ⋅ ⋅, with
the polynomial over 𝔽b given by h(x) = η0 + η1x + ⋅ ⋅ ⋅. Put

xh = (vm(
h(x)q1(x)
p(x)
), . . . , vm(

h(x)qs(x)
p(x)
)) ∈ [0, 1]s.

Then a point set {xh | 0 ≤ h < bm} is nothing but the polynomial lattice point set as
defined above.

Themodulus p is often chosen to be either themonomial p(x) = xm or irreducible.
The difficulty is in how to choose the generating vector q. In particular, for s ≥ 3,
no explicit way for this choice has been known yet. Currently, one of the most stan-
dard approaches is to recursively choose one component qj from the set {q ∈ 𝔽b[x] |
deg(q) < m} which minimizes a chosen criterion while the earlier ones q1, . . . , qj−1 are
kept unchanged. This greedy algorithm is known as component-by-component con-
struction [57]. Another well-known approach is to restrict ourselves to vectors of the
form

q = (1, q, . . . , qs−1) ∈ (𝔽b[x])
s

for q ∈ 𝔽b[x]with deg(q) < m, and then to choose one optimal qwith respect to a cho-
sen criterion. This algorithm is known as Korobov construction. Compared to Korobov
construction, the component-by-component construction has the advantage that it is
extensible in the dimension and that one can use the fast Fourier transform to find
good generating vectors [52]. However, neither of both is extensible in the number of
points.

4.3 Higher order quasi-Monte Carlo

4.3.1 Quality measure

To introduce the definitions of higher order digital nets and sequences, we start with
generalizing the NRT weight function.

Definition 4.8 (Dick weight function). Let α ∈ ℕ. For k ∈ ℕ, we denote the b-adic ex-
pansion of k by

k = κ1b
c1−1 + κ2b

c2−1 + ⋅ ⋅ ⋅ + κvb
cv−1

with κ1, . . . , κv ∈ 𝔽b \ {0} and c1 > ⋅ ⋅ ⋅ > cv > 0. Then the Dick weight function μα: ℕ0 →
ℕ0 is defined by μα(0) = 0 and

μα(k) =
min(α,v)
∑
i=1

ci.
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In case of vectors inℕs0, we define

μα(k1, . . . , ks) =
s
∑
j=1

μα(kj).

It is obvious that the Dickweight function coincides with the NRTweight function
when α = 1. As a natural generalization of digital (t,m, s)-nets and (t, s)-sequences
based on the NRT weight function, higher order digital nets and sequences due to
Dick [7, 8] are defined by using the Dick weight function as follows.

Definition 4.9 (Higher order digital nets). Let α ∈ ℕ. Letm, n ∈ ℕ, and let P be a digi-
tal net over 𝔽b with generating matrices C1, . . . ,Cs ∈ 𝔽n×mb . We write

μα(P
⊥) := min

k∈P⊥\{0}
μα(k).

Then P is called an order α digital (tα,m, s)-net over 𝔽b with tα ∈ ℕ0 which satisfies

αm − μα(P
⊥) + 1 ≤ tα ≤ αm.

The parameter tα is said to be strict if tα = αm − μα(P⊥) + 1.

Definition 4.10 (Higher order digital sequences). Let 𝒮 be a digital sequence over 𝔽b.
𝒮 is called an order α digital (tα, s)-sequence over 𝔽b if there exists tα ∈ ℕ0 such that
the first bm points of 𝒮 are an order α digital (tα,m, s)-net for anym ≥ tα/α.

Obviously, for fixed α, the tα-value works as a quality measure of order α digital
nets and sequences.

Our definition of higher order digital nets is again based on the concept of duality
theory of digital nets, and looks different from the original definition by Dick which
has an additional parameter β. When n ≥ αm, however, by setting β = 1, our definition
becomes equivalent to his original definition based on the linear independence of row
vectors of generating matrices described below: let ρ be an integer such that, for any
choice 1 ≤ dj,νj < ⋅ ⋅ ⋅ < dj,1 ≤ n, where 0 ≤ νj ≤ m for all 1 ≤ j ≤ s with

s
∑
j=1

min(νj ,α)

∑
i=1

dj,i = ρ,

the d1,ν1 , . . . , d1,1-th row vectors of C1
the d2,ν2 , . . . , d2,1-th row vectors of C2
...
the ds,νs , . . . , ds,1-th row vectors of Cs

are linearly independent over𝔽b. Then a digital netwith generatingmatricesC1, . . . ,Cs
is an order α digital (tα,m, s)-net over 𝔽b with tα = αm − ρ. This linear independence
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of the row vectors of generating matrices ensures that a higher order digital net has a
similar geometric equi-distribution property to what is described in Subsection 4.2.2;
see [24, Chapter 15.3] for more details.

Here, we provide one useful property called propagation rule of higher order digi-
tal nets and sequences shown in [7, Theorem 3.3].We give a different proof which does
not rely on the linear independence of generating matrices.

Lemma 4.2. For β ∈ ℕ, β ≥ 2, let P and 𝒮 be an order β digital (tβ,m, s)-net and an order
β digital (tβ, s)-sequence over 𝔽b, respectively. Then, for any 1 ≤ α < β, P and 𝒮 are also
an order α digital (tα,m, s)-net over 𝔽b and an order α digital (tα, s)-sequence over 𝔽b,
respectively, both with tα ≤ ⌈tβα/β⌉.

Proof. First, we prove that the inequality

μα(k)
α
≥
μβ(k)
β

holds for any k ∈ ℕs0 and 1 ≤ α ≤ β. Since the weight function for vector k is defined
as the sum of the weight function for each coordinate, it suffices to prove the one-
dimensional case. Since the result for k = 0 follows trivially, let us consider k > 0.
Denote the b-adic expansion of k by

k = κ1b
c1−1 + κ2b

c2−1 + ⋅ ⋅ ⋅ + κvb
cv−1

with κ1, . . . , κv ∈ 𝔽b \ {0} and c1 > ⋅ ⋅ ⋅ > cv > 0. Then we have

μα(k)
α
=
1
α

min(α,v)
∑
i=1

ci ≥
1
β

min(β,v)
∑
i=1

ci =
μβ(k)
β
,

which proves the assertion.
Now let us consider an order β digital (tβ,m, s)-net over 𝔽b. Using the above in-

equality, we obtain

μα(P
⊥) = min

k∈P⊥\{0}
μα(k) ≥ min

k∈P⊥\{0}

α
β
μβ(k) =

α
β
μβ(P
⊥).

Thus P is an order α digital (tα,m, s)-net over 𝔽b with

tα = αm − μα(P
⊥) + 1 ≤ αm − α

β
μβ(P
⊥) + 1

=
α
β
(βm − μβ(P

⊥) + 1) + β − α
β
=
α
β
tβ +

β − α
β
.

Given that tα is a nonnegative integer and that the fraction (β − α)/β is less than
1, the tα-value can be bounded above by ⌈tβα/β⌉. The result for an order β digital
(tβ, s)-sequence follows immediately.
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Importantly, this result implies that any higher order digital nets and sequences
are also digital (t,m, s)-nets and digital (t, s)-sequences, respectively.

We end this subsection by providing two useful results in analyzing the integra-
tion error of QMC rules usinghigher order digital nets. The first lemma is a higher order
version of Lemma 4.1.

Lemma 4.3. For α ≥ 2, let P be an order α digital (tα,m, s)-net over 𝔽b. The following
holds true:
1. For z ∈ ℕ0,

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | μα(k) = z}

󵄨󵄨󵄨󵄨

≤ {
0 if z < μα(P⊥),
(b − 1)sαb(z−μα(P

⊥))/α(z + 2)sα−1 otherwise.

2. For any real λ > 1/α,

∑
k∈P⊥\{0}

b−λμα(k) ≤ 2sα−1(b − 1)sα (μα(P
⊥))sα−1

bλμα(P⊥)
∞

∑
z=0

b(1/α−λ)z(z + 2)sα−1.

Proof. Similar to the proof of Lemma 4.1, we put Aα,z = |{k ∈ P⊥ \ {0} | μα(k) = z}|. For
1 ≤ j ≤ s, denote the b-adic expansion of kj ∈ ℕ0 by

kj = κ1,jb
c1,j−1 + κ2,jb

c2,j−1 + ⋅ ⋅ ⋅ + κvj ,jb
cvj ,j−1

with κ1,j, . . . , κvj ,j ∈ 𝔽b \ {0} and c1,j > ⋅ ⋅ ⋅ > cvj ,j > 0, and write cvj+1,j = cvj+2,j = ⋅ ⋅ ⋅ = 0. If
kj = 0, let c1,j = c2,j = ⋅ ⋅ ⋅ = 0. Then we have

Aα,z = ∑
z1,j≥⋅⋅⋅≥zα,j∈ℕ0 ,∀j=1,...,s
∑sj=1 ∑

α
i=1 zi,j=z

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | ci,j = zi,j, 1 ≤ i ≤ α, 1 ≤ j ≤ s}

󵄨󵄨󵄨󵄨.

It can be inferred from [24, Proof of Lemma 15.20] that the summand is bounded above
by

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | ci,j = zi,j, 1 ≤ i ≤ α, 1 ≤ j ≤ s}

󵄨󵄨󵄨󵄨

≤

{{{{{{{{{
{{{{{{{{{
{

0 if z < μα(P⊥),
(b − 1)sα if z ≥ μα(P⊥) and

zα,1 + ⋅ ⋅ ⋅ + zα,s < μα(P⊥)/α,
(b − 1)sαbzα,1+⋅⋅⋅+zα,s−μα(P

⊥)/α if z ≥ μα(P⊥) and
zα,1 + ⋅ ⋅ ⋅ + zα,s ≥ μα(P⊥)/α.

Thus, we have Aα,z = 0 if z < μα(P⊥), since each summand is 0. For z ≥ μα(P⊥), this
bound gives

Aα,z ≤ (b − 1)
sα ∑

z1,j≥⋅⋅⋅≥zα,j∈ℕ0 ,∀j=1,...,s
z1,1+⋅⋅⋅+zα,1+⋅⋅⋅+z1,s+⋅⋅⋅+zα,s=z

max(1, bzα,1+⋅⋅⋅+zα,s−μα(P
⊥)/α)
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≤ (b − 1)sα
⌊z/α⌋
∑
i=0
(
i + s − 1
s − 1
)(

z − i + s(α − 1) − 1
s(α − 1) − 1

)max(1, bi−μα(P
⊥)/α)

≤ (b − 1)sα
⌊z/α⌋
∑
i=0
(i + 1)s−1(z − i + 1)s(α−1)−1max(1, bi−μα(P

⊥)/α)

≤ (b − 1)sα(z + 2)sα−2
⌊z/α⌋
∑
i=0

max(1, bi−μα(P
⊥)/α)

≤ (b − 1)sα(z + 2)sα−2(z/α + 1)bz/α−μα(P
⊥)/α,

which proves the first assertion of the lemma.
Using the result of the first assertion and then applying the change of variables

z 󳨃→ z + μα(P), we have

∑
k∈P⊥\{0}

b−λμα(k) =
∞

∑
z=μα(P⊥)

b−λzAα,z

≤ (b − 1)sα
∞

∑
z=μα(P⊥)

b−λz+(z−μα(P
⊥))/α(z + 2)sα−1

≤ (b − 1)sαb−λμα(P
⊥)
∞

∑
z=0

b(1/α−λ)z(z + μα(P
⊥) + 2)sα−1

≤ 2sα−1(b − 1)sα(μα(P
⊥))

sα−1b−λμα(P
⊥)
∞

∑
z=0

b(1/α−λ)z(z + 2)sα−1,

where the last sum over z is finite since λ > 1/α. Hence we complete the proof.

Before stating the second useful lemma, we need to recall the notion of “type
(p, q)” introduced in [38].

Definition 4.11. For k, l ∈ ℕ0, we denote the b-adic expansions of k and l by

k =
v
∑
i=1

κib
ci−1 and l =

w
∑
i=1

λib
di−1,

respectively, where κ1, . . . , κv , λ1, . . . , λw ∈ {1, . . . , b − 1}, c1 > c2 > ⋅ ⋅ ⋅ > cv > 0 and
d1 > d2 > ⋅ ⋅ ⋅ > dw > 0. For k = 0 (l = 0, resp.), we assume that v = 0 and κ0bc0−1 = 0
(w = 0 and λ0bd0−1 = 0, resp.). For p, q ∈ ℕ0, we write

k(p) =
v
∑
i=p+1

κib
ci−1 and l(q) =

w
∑
i=q+1

λib
di−1,

where the empty sum equals 0. Then we say that (k, l) is of type (p, q) if k(p) = l(q) and
κpbcp−1 ̸= λqbdq−1, where we set κ0bc0−1 = λ0bd0−1 = 0, except the case k = l where we
say that (k, l) is of type (0,0).
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In what follows, we write (k, l) ∈ T≥α if (k, l) is of type (p, q)with p + q ≥ α. In case
of vectors inℕs0, we write (k, l) ∈ T≥α if there exists at least one index 1 ≤ j ≤ s such
that (kj, lj) ∈ T≥α.

Now the following result, which can be regarded as a generalization of the result
shown in [25, Lemma 3.7], is proven in [38, Lemma 8]. Here, we state the result in a
slightly more general form.

Lemma 4.4. For α ∈ ℕ, let P be an order α digital (tα,m, s)-net over 𝔽b. For z ∈ ℕ0,
there exists a constant Bα,b,s,tα > 0 such that the following holds:

󵄨󵄨󵄨󵄨{(k, l) ∈ (P
⊥ \ {0})2 | μ1(k) + μ1(l) = z, (k, l) ∉ T≥α}

󵄨󵄨󵄨󵄨

≤ {
0 if z < 2μ1(P⊥),
Bα,b,s,tα (z − 2μ1(P

⊥))s(α−1)+1zs−1b(z−2μ1(P
⊥))/2 otherwise.

4.3.2 Digit interlacing construction

Here,we give an explicit construction of higher order digital nets and sequences based
on the digit interlacing function due to Dick [7, 8]:

Definition 4.12. Let α ∈ ℕ and let x = (x1, . . . , xα) ∈ [0, 1]α. For 1 ≤ j ≤ α, we denote
the b-adic expansion of xj by xj = ∑

∞
i=1 ξi,jb

−i. The digit interlacing function (of factor
α)𝒟α : [0, 1]α → [0, 1] is defined by

𝒟α(x1, . . . , xα) :=
∞

∑
i=1

α
∑
j=1

ξi,j
bα(i−1)+j

.

In case of vectors in [0, 1]αs, we apply𝒟α to every nonoverlapping consecutive α com-
ponents, that is,

𝒟α(x1, . . . , xαs) := (𝒟α(x1, . . . , xα), . . . ,𝒟α(xα(s−1)+1, . . . , xαs)) ∈ [0, 1]
s.

Lemma 4.5. The following holds true:
1. Let P be a digital (t,m, αs)-net over 𝔽b. The set 𝒟α(P) = {𝒟α(x) | x ∈ P} is an order

α digital (tα,m, s)-net over 𝔽b with

tα ≤ αmin(m, t + ⌊s(α − 1)
2
⌋).

2. Let 𝒮 be a digital (t, αs)-sequence over 𝔽b. The sequence𝒟α(𝒮) = {𝒟α(x) | x ∈ 𝒮} is
an order α digital (tα, s)-sequence over 𝔽b with

tα ≤ αt +
sα(α − 1)

2
.
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Since there are many explicit constructions of digital (t,m, s)-nets and (t, s)-se-
quences with small t-value for arbitrarily dimension s, as described in Subsec-
tion 4.2.3, the above lemma from [8, Theorems 4.11 and 4.12] directly implies that
higher order digital nets and sequences can be explicitly constructed.

Remark 4.4. Let P be a digital (t,m, αs)-net over 𝔽b with generating matrices
C1, . . . ,Cαs ∈ 𝔽m×mb . Let c(j)i denote the ith row vector of Cj. For each 1 ≤ j ≤ s, construct
the matrix Dj ∈ 𝔽

αm×m
b , whose ith row vector is denoted by d(j)i , from the matrices

Cα(j−1)+1, . . . ,Cαj as

d(j)α(h−1)+i = c
(α(j−1)+i)
h , (4.3)

for 1 ≤ h ≤ m and 1 ≤ i ≤ α. Then the set 𝒟α(P) is a digital net over 𝔽b with generating
matrices D1, . . . ,Ds.

Similarly, the sequence 𝒟α(𝒮) can be identified with a digital sequence over 𝔽b
with generatingmatricesD1, . . . ,Ds ∈ 𝔽

ℕ×ℕ
b which are constructed from the generating

matrices C1, . . . ,Cαs ∈ 𝔽ℕ×ℕb of 𝒮, where the row vectors ofDj are given by (4.3) for h ≥ 1
and 1 ≤ i ≤ α.

To construct an interlaced finite point set 𝒟α(P), one can use polynomial lattice
point sets in dimension αs instead of digital (t,m, αs)-nets. The resulting point set
𝒟α(P) is called an interlaced polynomial lattice point set, and has been often used in
applications of HoQMC methods; see [18, 17, 20, 11, 30–32, 12]. Here, we need to find
good generating vectors q = (q1, . . . , qαs), but the digit interlacing composition makes
it nontrivial whether each component qj can be searched for one-by-one or consecu-
tive α components qα(j−1)+1, . . . , qαj should be searched for simultaneously. The papers
[35, 33] originally gave a justification for employing the former approach, that is, a
component-by-component construction.

4.4 Walsh functions

4.4.1 Definitions

The Walsh functions were originally introduced by Walsh [66] and have been studied
thereafter, for instance, in [28, 6]. In what follows, letωb denote the primitive bth root
of unity exp(2π√−1/b). The one-dimensional Walsh functions are defined as follows.

Definition 4.13. Let k ∈ ℕ0 with b-adic expansion k = ∑
∞
i=0 κib

i, where all but a finite
number of κi are 0. The kth b-adic Walsh function bwalk : [0, 1] → {1,ωb, . . . ,ωb−1

b } is
defined by

bwalk(x) := ω
κ0ξ1+κ1ξ2+⋅⋅⋅
b ,
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where the b-adic expansion of x ∈ [0, 1] is denoted by x = ∑∞i=1 ξib
−i, unique in the

sense that infinitely many of the ξi are different from b − 1 if x ̸= 1.

It is clear from the definition that everyWalsh function is piecewise constant since
it depends only on some finite number of the digits ξi. Multidimensional Walsh func-
tions are given by generalizing the one-dimensional Walsh functions.

Definition 4.14. Let s ≥ 1. For k = (k1, . . . , ks) ∈ ℕs0, the kth b-adic Walsh function
bwalk : [0, 1]s → {1,ωb, . . . ,ωb−1

b } is defined by

bwalk(x) :=
s
∏
j=1

bwalkj (xj).

Several important properties of the Walsh functions are listed below; see [24, Ap-
pendix A.2] for the proof.

Lemma 4.6. The following holds true:
1. For k, l ∈ ℕs0 and x, y ∈ [0, 1]

s,

bwalk(x)bwall(x) = bwalk⊕l(x) and bwalk(x)bwalk(y) = bwalk(x ⊕ y).

2. For k ∈ ℕs0,

∫
[0,1]s

bwalk(x)dx = {
1 if k = 0,
0 otherwise.

3. For k, l ∈ ℕs0,

∫
[0,1]s

bwalk(x)bwall(x)dx = {
1 if k = l,
0 otherwise.

4. For any s ∈ ℕ, theWalsh system {bwalk | k ∈ ℕs0} is a complete orthonormal system
in L2([0, 1]s).

It follows from the fourth assertion of Lemma 4.6 that we can define the Walsh
series of f ∈ L2([0, 1]s):

∑
k∈ℕs0

̂f (k)bwalk(x),

where ̂f (k) denotes the kth Walsh coefficient of f defined by

̂f (k) := ∫
[0,1]s

f (x)bwalk(x)dx.

For any continuous function f which satisfies∑k∈ℕs0 |
̂f (k)| < ∞, the aboveWalsh series

of f equals pointwise to f itself; see [24, Theorem A.20].
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4.4.2 Connection to digital nets

It follows from the first assertion of Lemma 4.6 that the Walsh functions hold the fol-
lowing important character property. The proof can be found, for instance, in [24,
Lemma 4.75].

Lemma 4.7. Let P ⊂ [0, 1]s be a digital net over 𝔽b. For k ∈ ℕs0 we have

∑
x∈P

bwalk(x) = {
|P| if k ∈ P⊥,
0 otherwise.

In what follows, by using this lemma, we show how the Walsh functions play a
crucial role in analyzing the QMC integration error.

As preparation, let us consider a reproducing kernel Hilbert space H equipped
with reproducing kernel K: [0, 1]s × [0, 1]s → ℝ and inner product ⟨⋅, ⋅⟩K . The norm of
f ∈ H is simply given by ‖f ‖K = √⟨f , f ⟩K . Theworst-case error of QMC integration using
a point set P is defined by

ewor(H ,P) := sup
f∈H
‖f ‖K≤1

󵄨󵄨󵄨󵄨I(f ) − I(f ;P)
󵄨󵄨󵄨󵄨,

while the initial error is defined as reference by

ewor(H ,0) := sup
f∈H
‖f ‖K≤1

󵄨󵄨󵄨󵄨I(f )
󵄨󵄨󵄨󵄨.

Both the initial error and the worst-case error have explicit formulas relying only on K
and P as follows; see [24, Chapter 2.3.3] for the proof.

Proposition 4.1. For a reproducing kernel Hilbert space H whose reproducing kernel
satisfies ∫[0,1]s √K(x, x)dx < ∞, the squared initial error is given by

(ewor(H ,0))2 = ∫
[0,1]2s

K(x, y)dx dy.

The squared worst-case error of QMC integration using a point set P is given by

(ewor(H ,P))2 = ∫
[0,1]2s

K(x, y)dx dy − 2
|P|
∑
x∈P
∫
[0,1]s

K(x, y)dy

+
1
|P|2
∑

x,y∈P
K(x, y). (4.4)

Now let us consider the Walsh series of a reproducing kernel K:

∑
k,l∈ℕs0

K̂(k, l)bwalk(x)bwall(y),
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where the (k, l)-th Walsh coefficient K̂(k, l) is defined by

K̂(k, l) = ∫
[0,1]2s

K(x, y)bwalk(x)bwall(y)dx dy.

Again the pointwise equality holds between the aboveWalsh series and K itself if K is
continuous and∑k,l∈ℕs0 |K̂(k, l)| < ∞.

The following proposition provides a simple expression of the squaredworst-case
error when the point set is a digitally shifted digital net

P ⊕ δ = {x ⊕ δ | x ∈ P},

where P is a digital net over𝔽b and δ ∈ [0, 1]s. The following result is well understood,
but as far as the authors know, this result is not available in the literature in this full
generality, so that we provide a proof for the sake of completeness.

Proposition 4.2. Let P be a digital net over 𝔽b and δ ∈ [0, 1]s. For a reproducing
kernel Hilbert space H whose reproducing kernel K is continuous and satisfies
∫[0,1]s √K(x, x)dx < ∞ and∑k,l∈ℕs0 |K̂(k, l)| < ∞, we have

(ewor(H ,P ⊕ δ))2 = ∑
k,l∈P⊥\{0}

K̂(k, l)bwalk(δ)bwall(δ).

Proof. It is trivial from the definition of the Walsh functions that the first term on the
right-hand side of (4.4) is equal to K̂(0,0). For the second term on the right-hand side
of (4.4), by using the symmetry of K, the first and second assertions of Lemma 4.6 and
Lemma 4.7, we have

2
|P|
∑
x∈P
∫
[0,1]s

K(x ⊕ δ, y)dy

=
1
|P|
∑
x∈P
∫
[0,1]s

K(x ⊕ δ, y)dy + 1
|P|
∑
x∈P
∫
[0,1]s

K(y, x ⊕ δ)dy

=
1
|P|
∑
x∈P
∑

k,l∈ℕs0

K̂(k, l)bwalk(x ⊕ δ) ∫
[0,1]s

bwall(y)dy

+
1
|P|
∑
x∈P
∑

k,l∈ℕs0

K̂(k, l)bwall(x ⊕ δ) ∫
[0,1]s

bwalk(y)dy

= ∑
k∈ℕs0

K̂(k,0)bwalk(δ)
1
|P|
∑
x∈P

bwalk(x)

+ ∑
l∈ℕs0

K̂(0, l)bwall(δ)
1
|P|
∑
x∈P

bwall(x)

= ∑
k∈P⊥

K̂(k,0)bwalk(δ) + ∑
l∈P⊥

K̂(0, l)bwall(δ).
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Finally, for the third term on the right-hand side of (4.4), by using the first assertion of
Lemma 4.6 and Lemma 4.7, we have

1
|P|2
∑

x,y∈P
K(x ⊕ δ, y ⊕ δ)

=
1
|P|2
∑

x,y∈P
∑

k,l∈ℕs0

K̂(k, l)bwalk(x ⊕ δ)bwall(y ⊕ δ)

= ∑
k,l∈ℕs0

K̂(k, l)bwalk(δ)bwall(δ)
1
|P|
∑
x∈P

bwalk(x)
1
|P|
∑
y∈P

bwall(y)

= ∑
k,l∈P⊥

K̂(k, l)bwalk(δ)bwall(δ).

Altogether we obtain

(ewor(H ,P ⊕ δ))2 = K̂(0,0) − ∑
k∈P⊥

K̂(k,0)bwalk(δ) − ∑
l∈P⊥

K̂(0, l)bwall(δ)

+ ∑
k,l∈P⊥

K̂(k, l)bwalk(δ)bwall(δ)

= ∑
k,l∈P⊥\{0}

K̂(k, l)bwalk(δ)bwall(δ),

which completes the proof.

Using Proposition 4.2 we obtain the following result.

Corollary 4.1. Let P be a digital net over 𝔽b and H be a reproducing kernel Hilbert
space whose reproducing kernel K is continuous and satisfies ∫[0,1]s √K(x, x)dx < ∞
and∑k,l∈ℕs0 |K̂(k, l)| < ∞. Then we have

(ewor(H ,P))2 = ∑
k,l∈P⊥\{0}

K̂(k, l),

and

∫
[0,1]s
(ewor(H ,P ⊕ δ))2 dδ = ∑

k∈P⊥\{0}
K̂(k, k).

Proof. The first assertion follows immediately from Proposition 4.2 by considering the
case δ = 0. For the second assertion, it follows from Proposition 4.2 and the third
assertion of Lemma 4.6 that

∫
[0,1]s
(ewor(H ,P ⊕ δ))2 dδ = ∑

k,l∈P⊥\{0}
K̂(k, l) ∫

[0,1]s
bwalk(δ)bwall(δ)dδ

= ∑
k∈P⊥\{0}

K̂(k, k).
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We would like to emphasize that the worst-case error of a QMC rule using a dig-
ital net is given by the double sum of the Walsh coefficients of reproducing kernel,
whereas the shift-averaged worst-case error is simply given by the single sum of their
diagonal elements. This way applying a random digital shift has an effect on vanish-
ing all nondiagonal terms, which sometimes makes the error analysis much easier as
we shall see in the subsequent sections.

4.5 Discrepancy

4.5.1 Definitions

As represented by the Koksma–Hlawka inequality (4.1), the star-discrepancy, or more
generally speaking, the Lp-discrepancy is an extremely important quantitative mea-
sure of how uniformly a point set is distributed over [0, 1]s.

Definition 4.15. Let P be a point set in [0, 1]s. For y = (y1, . . . , ys) ∈ [0, 1]s, we write
[0, y) = [0, y1) × ⋅ ⋅ ⋅ × [0, ys) and define the so-called local discrepancy function

ΔP(y) :=
1
|P|
∑
x∈P

1[0,y)(x) −
s
∏
j=1

yj,

where 1[0,y) denotes the indicator function which is equal to 1 if x ∈ [0, y), and 0 oth-
erwise. For 1 ≤ p ≤ ∞, the Lp-discrepancy of P is defined as the Lp-norm of ΔP(y), that
is,

Lp(P) := ( ∫
[0,1]s

󵄨󵄨󵄨󵄨ΔP(y)
󵄨󵄨󵄨󵄨
p dy)

1/p
,

with the obvious modification for p = ∞.

We speak of the star-discrepancy if p = ∞ and the different notation such asD∗(P)
have been often used in the literature.

4.5.2 L2-discrepancy and worst-case error

In this section, we are particularly interested in the L2-discrepancy. Here, we follow
the exposition of [24, Chapter 2.4] to give a connection between the L2-discrepancy
and the worst-case error for some reproducing kernel Hilbert space.

Let H↓ denote the reproducing kernel Hilbert space whose reproducing kernel is
given by

K↓(x, y) =
s
∏
j=1

min(1 − xj, 1 − yj).
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It is known from [1, Section 8] that the function space H↓ is the s-fold tensor product
of the univariate reproducing kernel Hilbert space with reproducing kernel K↓(x, y) =
min(1 − x, 1 − y). Moreover, H↓ contains the completion with respect to the L2-norm of
the derivatives of all products of absolutely continuous functions which satisfy

𝜕|u|f
𝜕xu
(xu, 1) = 0 for all 0 = u ⊊ {1, . . . , s},

where we write xu = (xj)j∈u and (xu, 1) is the vector whose jth component is equal to
xj if j ∈ u, and 1 otherwise. Note that the symbol ↓ is used to represent this “anchor”
property of the space. The inner product is given by

⟨f , g⟩K↓ = ∫
[0,1]s

𝜕sf
𝜕x
(x)𝜕

sg
𝜕x
(x)dx,

for f , g ∈ H↓. Then the following result is known.

Lemma 4.8. For any point set P ⊂ [0, 1]s, we have

L2(P) = e
wor(H↓,P).

Therefore, when P is a digital net over 𝔽b, combining this identity with Corol-
lary 4.1 gives an expression for the squared L2-discrepancy:

(L2(P))
2
= ∑

k,l∈P⊥\{0}
K̂↓(k, l),

and also an expression for the shift-averaged squared L2-discrepancy:

∫
[0,1]s
(L2(P ⊕ δ))

2 dδ = ∑
k∈P⊥\{0}

K̂↓(k, k).

In [25, Lemma 2.2], Dick and Pillichshammer conducted an exact evaluation of the
Walsh coefficients K̂↓(k, l) for all k, l ∈ ℕs0 when b = 2. Here, we simplify their result
in a way that will be sufficient for readers to understand the proof of optimal order
L2-discrepancy bounds.

Lemma 4.9. For k, l ∈ ℕs0, we have:
1. |K̂↓(k, l)| ≤ 3−s ⋅ 2−μ1(k)−μ1(l).
2. K̂↓(k, l) = 0 if (k, l) ∈ T≥3.

Here, we recall that the notion T≥α was introduced in Subsection 4.3.1. The first
assertion of the lemma shows the decay of the Walsh coefficients, while the second
assertion shows the sparsity of the Walsh coefficients.
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4.5.3 Optimal order L2-discrepancy bounds

Before stating the result byDick andPillichshammer [25] on the L2-discrepancy bound
for higher order digital nets, we start from another result by the same authors shown
in [23] by using Lemma 4.1.

Theorem 4.2. Let P be a digital (t,m, s)-net over 𝔽2. Then there exists a constant D(1)s,t
such that the following holds:

∫
[0,1]s
(L2(P ⊕ δ))

2 dδ ≤ D(1)s,t
ms−1

22m
.

Proof. Using Lemma 4.9 and the second assertion of Lemma 4.1 (with λ = 2), we have

∫
[0,1]s
(L2(P ⊕ δ))

2 dδ = ∑
k∈P⊥\{0}

K̂↓(k, k) ≤ 1
3s
∑

k∈P⊥\{0}
2−2μ1(k)

≤
2s+1

3s
⋅
(μ1(P⊥))s−1

22μ1(P⊥)
∞

∑
z=1

2−zzs−1.

Since we have μ1(P⊥) = m − t + 1, the result of the theorem follows.

This theoremdirectly implies the existence of adigital shiftδ ∈ [0, 1]s such that the
digitally shifted digital (t,m, s)-net satisfies the best possible order of L2-discrepancy:

L2(P ⊕ δ) ≤ √D
(1)
s,t
m(s−1)/2

2m
= √D(1)s,t

(log2 N)(s−1)/2

N
.

However, this is a probabilistic result since we do not know how to find such δ explic-
itly.

We note that the optimal exponent (s − 1) of the numerator in Theorem 4.2 comes
from the inequality

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | μ1(k) = z}

󵄨󵄨󵄨󵄨 ≤ b
z−μ1(P⊥)+1(z + 1)s−1

given in the first assertion of Lemma 4.1. As is clear from the proof, since the expres-
sion of the shift-averaged squared L2-discrepancy has only the diagonal terms of the
Walsh coefficients, there is no necessity of exploiting the sparsity of the Walsh coeffi-
cients. In order to obtain adeterministic counterpart of Theorem4.2, however, it seems
insufficient to exploit the decay of the Walsh coefficients only, and one approach is to
exploit both the decay and the sparsity of the Walsh coefficients simultaneously. To
do this, we rely on Lemma 4.4. The following theorem is from [25, Theorem 4.1].

Theorem 4.3. Let P be an order 3 digital (t3,m, s)-net over 𝔽2. Then there exists a con-
stant D(2)s,t3 such that the following holds:

(L2(P))
2
≤ D(2)s,t3

ms−1

22m
.
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Proof. Using Lemmas 4.9 and 4.4 (with α = 3) and then applying the change of vari-
ables z → z + 2μ1(P⊥), we have

(L2(P))
2
= ∑

k,l∈P⊥\{0}
K̂↓(k, l) ≤ 1

3s
∑

k,l∈P⊥\{0}
(k,l)∉T≥3

2−μ1(k)−μ1(l)

=
1
3s

∞

∑
z=2μ1(P⊥)

2−z 󵄨󵄨󵄨󵄨{(k, l) ∈ (P
⊥ \ {0})2 | μ1(k) + μ1(l) = z, (k, l) ∉ T≥3}

󵄨󵄨󵄨󵄨

≤
B3,2,s,t3
3s

∞

∑
z=2μ1(P⊥)

2−z(z − 2μ1(P
⊥))

2s+1zs−12(z−2μ1(P
⊥))/2

=
B3,2,s,t3
3s

2−2μ1(P
⊥)
∞

∑
z=0

2−z/2z2s+1(z + 2μ1(P
⊥))

s−1

≤
B3,2,s,t3
3s
⋅
22(s−1)(μ1(P⊥))s−1

22μ1(P⊥)
∞

∑
z=0

2−z/2z3s.

The last sum over z is trivially finite. It follows from Lemma 4.2 that an order 3 digital
(t3,m, s)-net over𝔽2 is also a digital (t,m, s)-net over𝔽2 with t ≤ ⌈t3/3⌉, that is, μ1(P⊥) ≥
m − ⌈t3/3⌉ + 1. Thus, the result of the theorem follows.

Remark 4.5. If we do not take the sparsity of the Walsh coefficients into account, we
might proceed like

(L2(P))
2
= ∑

k,l∈P⊥\{0}
K̂↓(k, l) ≤ 1

3s
∑

k,l∈P⊥\{0}
2−μ1(k)−μ1(l)

=
1
3s
( ∑
k∈P⊥\{0}

2−μ1(k))
2

=
1
3s
(
∞

∑
z=μ1(P⊥)

2−z 󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | μ1(k) = z}

󵄨󵄨󵄨󵄨)

2

≤
22

3s ⋅ 2μ1(P⊥)
(
∞

∑
z=μ1(P⊥)
(z + 1)s−1)

2

,

where we used Lemma 4.1 in the last inequality. Since the last sum over z obviously
diverges, this argument ends up with a trivial upper bound.

We recall that Theorem 4.3 is for order 3 digital nets over 𝔽2, a class of finite point
sets. By considering order 5 digital sequences, as the other main result of the paper
[25], Dick and Pillichshammer proved the optimal order L2-discrepancy bound which
holds uniformly for all N .
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4.6 Numerical integration

4.6.1 Sobolev spaces

Let us move on to multivariate numerical integration. The function space of our in-
terest in this section is defined as follows. First, let us consider the one-dimensional
case. For α ∈ ℕ, the Sobolev space with smoothness α is

Hα := {f : [0, 1] → ℝ |

f (r): absolutely continuous for r = 0, . . . , α − 1, f (α) ∈ L2([0, 1])},

where f (r) denotes the rth derivative of f . According to [65, Chapter 10.2], the spaceHα
is a reproducing kernel Hilbert space with the reproducing kernel

Kα(x, y) =
α
∑
r=0

Br(x)Br(y)
(r!)2

+ (−1)α+1B2α(|x − y|)
(2α)!

,

for x, y ∈ [0, 1], where Br denotes the Bernoulli polynomial of degree r, and with the
inner product

⟨f , g⟩Kα =
α−1
∑
r=0

1

∫
0

f (r)(x)dx
1

∫
0

g(r)(x)dx +
1

∫
0

f (α)(x)g(α)(x)dx,

for f , g ∈ Hα.
For the s-dimensional case, we consider the s-fold tensor product space of the

one-dimensional space introduced above. Thus the Sobolev spaceHα,s which we con-
sider is simply given by Hα,s = ⨂

s
j=1 Hα. Again it is known from [1, Section 8] that

the reproducing kernel of the space Hα,s is the product of the reproducing kernels for
the one-dimensional spaceHα. Therefore,Hα,s is the reproducing kernel Hilbert space
with the reproducing kernel

Kα,s(x, y) =
s
∏
j=1

Kα(xj, yj),

and with the inner product

⟨f , g⟩Kα,s = ∑
u⊆{1,...,s}

∑
ru∈{0,...,α−1}|u|

∫

[0,1]s−|u|

( ∫

[0,1]|u|

f (ru ,α)(x)dxu)( ∫
[0,1]|u|

g(ru ,α)(x)dxu)dx{1,...,s}\u,

for f , g ∈ Hα,s. In the above, we used the following notation: For u ⊆ {1, . . . , s} and x ∈
[0, 1]s, we write xu = (xj)j∈u. Moreover, for ru = (rj)j∈u ∈ {0, . . . , α − 1}|u|, (ru,α) denotes

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



4 Recent advances in higher order quasi-Monte Carlo methods | 95

the s-dimensional vector whose jth component equals rj if j ∈ u, and α otherwise.
Note that an integral and sum over the empty set is defined to be the identity operator.
Since the dimension s is fixed, we shall simplywriteHα andKα instead ofHα,s andKα,s,
respectively.

If P is a digital net over 𝔽b, Corollary 4.1 gives

(ewor(Hα,P))
2
= ∑

k,l∈P⊥\{0}
K̂α(k, l),

and

∫
[0,1]s
(ewor(Hα,P ⊕ δ))

2 dδ = ∑
k∈P⊥\{0}

K̂α(k, k).

Similar to Lemma 4.9, the following result is known.

Lemma 4.10. For k, l ∈ ℕs0, we have:
1. |K̂α(k, l)| ≤ Csα,bb

−μα(k)−μα(l) with

Cα,b = max
1≤ν≤α
{

α
∑
τ=ν

(C󸀠τ,b)
2

b2(τ−ν)
+
2C󸀠2α,b
b2(α−ν)
},

where

C󸀠1,b =
1

2 sin(π/b)
and C󸀠τ,b =

(1 + 1/b + 1/(b(b + 1)))τ−2

(2 sin(π/b))τ
for τ ≥ 2.

2. K̂α(k, l) = 0 if (k, l) ∈ T≥2α+1.

The first assertion on the decay of the Walsh coefficients was shown in [3], while
the second assertion of the sparsity of the Walsh coefficients was shown in [38]. Re-
garding the first assertion, we also refer to more recent works [62, 67] which introduce
different approaches from the one by Dick [7–9] for evaluating the Walsh coefficients.
In many cases, one may obtain smaller constants Cα,b.

Remark 4.6. A lower bound on the worst-case error of order (logN)(s−1)/2/Nα, which
holds for any (nonlinear/adaptive) quadrature rule based on N function evaluations,
can be proven by adapting the bump function technique from [2]. We also refer to [22,
Theorem 4 and Appendix] whose result directly applies to the present problem. As we
shall show, higher order digital nets and sequences achieve this best possible order
exactly.

4.6.2 Optimal order error bounds

First, we discuss what happens if we exploit only the decay of the Walsh coefficients.
A similar result has been already proven in [3, Theorem 30] but with a slightly worse
exponent of the logN term.
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Theorem 4.4. Let α ≥ 2. Let P be an order α digital (tα,m, s)-net over 𝔽b. Then there
exists a constant E(1)α,b,s,tα > 0 such that the following holds:

∫
[0,1]s
(ewor(Hα,P ⊕ δ))

2 dδ ≤ E(1)α,b,s,tα
msα−1

b2αm
.

Proof. Using the first assertion of Lemma 4.10 and the second assertion of Lemma 4.3
(with λ = 2), we have

∫
[0,1]s
(ewor(Hα,P ⊕ δ))

2 dδ

= ∑
k∈P⊥\{0}

K̂α(k, k) ≤ C
s
α,b ∑

k∈P⊥\{0}
b−2μα(k)

≤ Csα,b2
sα−1(b − 1)sα (μα(P

⊥))sα−1

b2μα(P⊥)
∞

∑
z=0

b(1/α−2)z(z + 2)sα−1.

By considering the equality μα(P⊥) = αm − tα + 1, the theorem follows.

Again the exponent (sα − 1) of the numerator of the theorem stems from the in-
equality

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | μα(k) = z}

󵄨󵄨󵄨󵄨 ≤ (b − 1)
sαb(z−μα(P

⊥))/α(z + 2)sα−1

given in the first assertion of Lemma 4.3. It seems hard to fundamentally improve this
bound. Thus, even before exploiting the sparsity of the Walsh coefficients, there is a
difficulty in obtaining the best possible order of the shift-averaged worst-case error.

To overcome this issue, let us go back to the bound given in the first assertion of
Lemma 4.1:

󵄨󵄨󵄨󵄨{k ∈ P
⊥ \ {0} | μ1(k) = z}

󵄨󵄨󵄨󵄨 ≤ b
z−μ1(P⊥)+1(z + 1)s−1.

As we discussed in Subsection 4.5.3, this gives the optimal order of the shift-averaged
L2-discrepancy. Considering that the best possible exponent of the logN term for the
present integration problem is the same as that of the L2-discrepancy, which is (s −
1)/2, one idea is to switch the weight function from μα to μ1 in the error analysis. The
following interpolation inequality was shown in [36] to realize this.

Lemma 4.11. Let α, β ∈ ℕ with 1 < α < β. For any k ∈ ℕs0, we have

μα(k) ≥
α − 1
β − 1

μβ(k) +
β − α
β − 1

μ1(k).

By using this inequality together with the propagation rule of higher order digital
nets (Lemma4.2),we canprove theoptimal order of the shift-averagedworst-case error
by using order 2α digital nets rather than order α digital nets. The following result is
from [36].
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Theorem 4.5. Let α ≥ 2. Let P be an order 2α digital (t2α,m, s)-net over 𝔽b. Then there
exists a constant E(2)α,b,s,t2α > 0 such that the following holds:

∫
[0,1]s
(ewor(Hα,P ⊕ δ))

2 dδ ≤ E(2)α,b,s,t2α
ms−1

b2αm
.

Proof. We write A = (α − 1)/(2α − 1) and B = α/(2α − 1). Using the first assertion of
Lemma 4.10, Lemma 4.11 (with β = 2α), and the second assertion of Lemma 4.1 (with
λ = 2B), we have

∫
[0,1]s
(ewor(Hα,P ⊕ δ))

2 dδ

= ∑
k∈P⊥\{0}

K̂α(k, k) ≤ C
s
α,b ∑

k∈P⊥\{0}
b−2μα(k)

≤ Csα,b ∑
k∈P⊥\{0}

b−2Aμ2α(k)−2Bμ1(k)

≤ Csα,bb
−2Aμ2α(P⊥) ∑

k∈P⊥\{0}
b−2Bμ1(k)

≤ Csα,b2
s−1b2B (μ1(P

⊥))s−1

b2Aμ2α(P⊥)+2Bμ1(P⊥)
∞

∑
z=1

b(1−2B)zzs−1.

Since 2B − 1 = 1/(2α − 1) > 0, the last sum over z is finite. Using Lemma 4.2, we have

μ1(P
⊥) ≥ m − ⌈t2α/(2α)⌉ + 1,

and so

2Aμ2α(P
⊥) + 2Bμ1(P

⊥) ≥ 2A(2αm − t2α + 1) + 2B(m − ⌈t2α/(2α)⌉ + 1)
= 2αm − 2A(t2α − 1) − 2B(⌈t2α/(2α)⌉ − 1),

from which the result of the theorem follows.

It is important to recall that we consider order 2α digital nets in this theorem, in-
stead of order α digital nets as in Theorem 4.4. The order 2α is required here to ensure
the finiteness of the sum

∞

∑
z=1

b(1−2B)zzs−1.

Finally, combining the idea of switching the weight function (Theorem 4.5) with
the idea of exploiting both the decay and the sparsity of theWalsh coefficients simulta-
neously (Theorem4.3),we arrive at a deterministic counterpart of Theorem4.5, proven
in [38].
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Theorem 4.6. Let α ≥ 2. Let P be an order (2α + 1) digital (t2α+1,m, s)-net over 𝔽b. Then
there exists a constant E(3)α,b,s,t2α+1 > 0 such that the following holds:

(ewor(Hα,P))
2
≤ E(3)α,b,s,t2α+1

ms−1

b2αm
.

Proof. We write A = (α − 1)/(2α) and B = (α + 1)/(2α). Using Lemmas 4.10, 4.11 (with
β = 2α + 1), and 4.4 (with α replaced by 2α + 1) in order and then applying the change
of variables z → z + 2μ1(P⊥), we have

(ewor(Hα,P))
2
= ∑

k,l∈P⊥\{0}
K̂α(k, l) ≤ C

s
α,b ∑

k,l∈P⊥\{0}
(k,l)∉T≥2α+1

b−μα(k)−μα(l)

≤ Csα,bb
−2Aμ2α+1(P⊥) ∑

k,l∈P⊥\{0}
(k,l)∉T≥2α+1

b−B(μ1(k)+μ1(l))

= Csα,bb
−2Aμ2α+1(P⊥)

∞

∑
z=2μ1(P⊥)

b−Bz

× 󵄨󵄨󵄨󵄨{(k, l) ∈ (P
⊥ \ {0})2 | μ1(k) + μ1(l) = z, (k, l) ∉ T≥2α+1}

󵄨󵄨󵄨󵄨

≤ B2α+1,b,s,t2α+1C
s
α,bb
−2Aμ2α+1(P⊥)

×
∞

∑
z=2μ1(P⊥)

b−Bz(z − 2μ1(P
⊥))

2sα+1zs−1b(z−2μ1(P
⊥))/2

≤ B2α+1,b,s,t2α+12
s−1Csα,b

(μ1(P⊥))s−1

b2Aμ2α+1(P⊥)+2Bμ1(P⊥)
∞

∑
z=0

b(1/2−B)zz(2α+1)s.

Since B − 1/2 = 1/(2α) > 0, the last sum over z is finite. Using Lemma 4.2, we have

μ1(P
⊥) ≥ m − ⌈t2α+1/(2α + 1)⌉ + 1,

and so

2Aμ2α+1(P
⊥) + 2Bμ1(P

⊥) ≥ 2A((2α + 1)m − t2α+1 + 1) + 2B(m − ⌈t2α+1/(2α + 1)⌉ + 1)
= 2αm − 2A(t2α+1 − 1) − 2B(⌈t2α+1/(2α + 1)⌉ − 1),

from which the result of the theorem follows.

The error bound shown in Theorem 4.6 also applies to the first bm points of an
order (2α + 1) digital (t2α+1, s)-sequence over 𝔽b ifm ≥ t2α+1/(2α + 1), since they can be
identified with an order (2α + 1) digital (t2α+1,m, s)-net over 𝔽b.

4.7 Conclusions and outlook
In this article, we have reviewed some of recent results on HoQMC methods with the
particular aim to provide a unified picture on how the Walsh analysis enables these
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developments. The challenge in analyzing either the L2-discrepancy or the worst-case
error in a reproducing kernel Hilbert space is that we have to deal with the double
sum over the Walsh coefficients. Considering the shift-averaged worst-case error in-
stead, the problem becomes much easier in many cases, but of course, the outcome
will remain probabilistic. To obtain a deterministic counterpart of such a probabilistic
result, exploiting the decay and the sparsity of the Walsh coefficients simultaneously
seems to be a reasonable strategy to attack the problem. In fact, as we have seen, both
the optimal order L2-discrepancy bound in [25] and the optimal order quadrature error
bound in [38] are obtained by employing this strategy.

Looking into the future, there are some possible directions for further research as
raised below.
1. Choice of an orthonormal basis: The system of Walsh functions fits quite well

with digital nets as emphasized in this article, but is not the only choice. Indeed,
recent papers [42, 15, 16, 4] use the system of Haar functions and succeed in gen-
eralizing or extending the result of [25]. For instance, it was proven in [15] that
order 2 (instead of order 5) digital sequences achieve the best possible order of
L2-discrepancy. Also, prior to the works of [36–38], Hinrichs et al. used the system
of Faber functions to analyze the worst-case error of order 2 digital nets for differ-
ent function spaces [40]. As natural questions from the current status, one may
ask “Canwe get better results in numerical integration problems by using the sys-
tem of Haar/Faber functions? Canwe lower the necessary order of digital nets and
sequences from 2α+ 1 to achieve the best possible error rate?”We do not have any
progress on these questions so far.

2. Alternative construction scheme: Higher order digital nets and sequences can
be explicitly constructed through the digit interlacing function (Definition 4.12
and Lemma 4.5). Quite recently, it has been shown in [14] that Richardson ex-
trapolation can be used as an alternative to the digit interlacing when the class
of underlying point sets are restricted to polynomial lattice point sets. Also, the
paper [34] proposed a different usage of Richardson extrapolation in the context
of HoQMCmethods. It is desirable to have more different options for explicit con-
struction of higher order digital nets and sequences.

3. Universality for various function classes: One major drawback of higher order
digital nets and sequences is that we need to construct point sets or sequences
depending on dominating mixed smoothness of the considered function space.
Propagation rule (Lemma4.2) says that, oncewe construct point sets or sequences
whichwork for a certain smoothness β, they alsowork for any smaller smoothness
1 ≤ α < β but not for larger smoothness. Ideally what we want in practice is point
sets or sequences which work for all ranges of smoothness. One straightforward
idea is to construct infinite order digital nets and sequences and then study their
propagation rule. In this line of research, we refer to [62, 67] for theWalsh analysis
of infinitely many times differentiable functions, and furthermore, to [44, 59–61,
13, 43] for the relevant literature.
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5 On the asymptotic behavior of the sine
product∏n

r=1 |2 sin πrα|
Abstract: In this paper, we review recently established results on the asymptotic be-
havior of the trigonometric product Pn(α) = ∏

n
r=1 |2 sinπrα| as n → ∞. We focus on

irrationals α whose continued fraction coefficients are bounded. Our main goal is to
illustrate that when discussing the regularity of Pn(α), not only the boundedness of
the coefficients plays a role; also their size, as well as the structure of the continued
fraction expansion of α, is important.

Keywords: Trigonometric product, Ostrowski representation, Kronecker sequence,
golden ratio
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5.1 Introduction

The trigonometric product

Pn(α) =
n
∏
r=1
|2 sinπrα|

has been subject to mathematical investigations for more than 50 years. It arises nat-
urally in a number of mathematical fields, such as partition theory, Padé approxima-
tion, and discrepancy theory. Of particular interest is the asymptotic behavior of Pn(α)
as n→∞, which has proven surprisingly difficult to determine. In Figure 5.1, we have
plottedPn(α) forn = 1, . . . , 250 anddifferent values of irrationalα. These plots illustrate
the chaotic nature of the product sequence Pn(α). Yet we see that for certain values of
α, there is some self-similarity in the behavior of Pn(α) with increasing n.

In this paper, we review known bounds on the growth and decay of Pn(α), focus-
ing on breakthroughs in the last 5 years. These recent developments deal mainly with
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Figure 5.1: Values of Pn(α) for α = (√5 − 1)/2 (upper left), α = √3 (upper right), α = e (lower left) and
α = π (lower right).

the case when α has bounded continued fraction coefficients. As shown by Lubinsky
20 years ago, this is a case in which the behavior of Pn(α) is exceptionally regular (see
Section 5.1.2). What recent results have come to reveal, is that also the structure of the
continued fraction expansion of α affects regularity. For instance, certain limit phe-
nomena appear only for very structured expansions (see Section 5.3). Moreover, and
perhapsmore surprisingly, also the specific sizes of the continued fraction coefficients
play a role. This is evident when discussing the long-standing open question (now re-
solved) of whether lim infn→∞ Pn(α) = 0 for all irrationals α.

5.1.1 Growth of Pn(α)

Let us briefly review what is known about the growth of Pn(α) as n → ∞. Note first
that if α = p/q is rational, then Pn(α) = 0 for all n ≥ q. Moreover, we have that Pn(α) =
Pn({α}), where {⋅} denotes the fractional part, so wemay safely restrict our attention to
irrationals α in the unit interval.

It was established by Sudler [11] and Wright [13] in the 1960s that the norm
‖Pn(α)‖ = sup0<α<1 |Pn(α)| grows exponentially as n→∞, and

lim
n→∞
󵄩󵄩󵄩󵄩Pn(α)
󵄩󵄩󵄩󵄩
1/n = C ≈ 1.22. (5.1)
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(See also [3] for an alternative approach and the exact value of C.) In light of (5.1), one
might expect that also the pointwise growth of Pn(α) is exponential, but this is not the
case. It was shown by Lubinsky and Saff in [9] that for almost every α ∈ (0, 1), we have

lim
n→∞

Pn(α)
1/n = 1.

In later work, Lubinsky provides a more precise growth bound on Pn(α), namely

󵄨󵄨󵄨󵄨logPn(α)
󵄨󵄨󵄨󵄨 = O(log n(log log n)

1+ε) (5.2)

for any ε > 0, and this holds for almost every α [8]. In the opposite direction, Pn(α)
grows almost linearly for infinitely many n. We have that

lim sup
n→∞

logPn(α)
log n

≥ 1

for all irrationals α ∈ (0, 1).

5.1.2 Significance of the continued fraction expansion

In his 1999 paper [8], Lubinsky illustrates a significant difference in nature of Pn(α)
depending on whether or not the continued fraction expansion of α has bounded co-
efficients. If this is the case, then there exist positive constants C1 and C2 such that

n−C2 ≤ Pn(α) ≤ n
C1 , (5.3)

that is, Pn(α) can be polynomially bounded (see [8, Theorem 1.3]).
When α has unbounded continued fraction coefficients, the upper bound in (5.2)

(valid for almost all such α) has yet to be improved upon. Moreover, Lubinsky showed
that

lim inf
n→∞

Pn(α) = 0 (5.4)

in this case, and that for almost all α the decay to 0 is faster than any negative power
of n for infinitely many n.

The focus of this paper will be on the more regular case when α has bounded con-
tinued fraction coefficients, and on two closely related questions raised by Lubinsky
in [8], namely:
1. Does (5.4) still hold in the case of bounded continued fraction coefficients?
2. What is the smallest value that we can choose for C2 in (5.3)?

Our interest in these questions was sparked by a recent paper by Mestel and Ver-
schueren [12], where the special case α = (√5 − 1)/2 is studied in great detail. We
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review key results from this paper in Section 5.3. Using these key results, we argue in
Section 5.4 that for α = (√5 − 1)/2, equality (5.4) does not hold. We will see in Sec-
tion 5.5 that, in fact, it appears one may choose C2 = 0 for this specific α. In the same
section, we explain why this simplest choice of C2 cannot possibly be valid for all α
with bounded continued fraction coefficients; this was also alluded to by Lubinsky
in [8].

A third question natural to raise is: what is the smallest value we may choose for
C1 in (5.3)? We firmly believe that for the special case α = (√5 − 1)/2, the answer to
this question is C1 = 1 (see Figure 5.2). More precisely, we believe that Pn(α) < cn for
some constant c > 0 independent of n. Upper bounds on Pn(α) will not be the focus
of this paper. Nevertheless, we will briefly return to this question for the special case
α = (√5 − 1)/2 in Section 5.4.

Figure 5.2: Value of Pn(α) for α = (√5 − 1)/2 plotted against f (n) = n.

5.2 Continued fraction expansions
In order to set the notation for the remainder of the paper, we briefly review some
facts about continued fraction expansions. Any irrational α ∈ (0, 1) has a unique and
infinite continued fraction expansion

α = 1

a1 +
1

a2 +
1

a3 + ⋅ ⋅ ⋅

= [0; a1, a2, a3, . . .],

where ai ∈ ℕ for all i ∈ ℕ. A best rational approximation of α is given by pn/qn, where
pn and qn are defined recursively by

q0 = 0, q1 = 1, qn+1 = anqn + qn−1;
p0 = 1, p1 = 0, pn+1 = anpn + pn−1.
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This approximation is best possible in the sense that for no q < qn can we find p ∈ ℕ
such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
α − p

q

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
α − pn

qn

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

We call pn and qn the best approximation numerator and denominator of α, respec-
tively. The fraction pn/qn is called the nth convergent of α, and it is well known that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
α − pn

qn

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1
qn+1qn
. (5.5)

Finally, we recall that given a sequence of best approximation denominators
{q0, q1, q2, . . .} corresponding to some irrational α, any natural number N has a unique
Ostrowski expansion in terms of this sequence.

Theorem 5.1 (Ostrowski representation). Let α ∈ (0, 1) be an irrational with continued
fraction expansion [0; a1, a2, . . .] and best approximation denominators (qn)n≥1. Then ev-
ery natural number N has a unique expansion

N =
z
∑
j=1

bjqj, (5.6)

where:
1. 0 ≤ b1 ≤ a1 − 1 and 0 ≤ bj ≤ aj for j > 1.
2. If bj = aj for some j, then bj−1 = 0.
3. z = z(N) = O(logN).

We refer to (5.6) as the Ostrowski representation of N in base α.

A proof of Theorem 5.1 can be found in [7, p. 126]. For further reading on the Os-
trowski expansion, see [1] or [10].

5.3 Convergence along subsequences

In a recent paper byMestel andVerschueren [12], the authors give adetailed exposition
on the product Pn(α) in the special case when α = φ = (√5− 1)/2 is the (fractional part
of the) golden mean. The irrational number φ has the simplest possible continued
fraction expansion

φ = 1

1 + 1

1 + 1
1 + ⋅ ⋅ ⋅

= [0; 1],
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and the sequence of best approximation denominators of φ is the well-known Fi-
bonacci sequence

(Fn)n≥0 = (0, 1, 1, 2, 3, 5, 8, 13, . . .). (5.7)

Mestel and Verschueren give a rigorous proof of an intriguing fact whichwas observed
experimentally in [6] by Knill and Tangerman, namely that the subsequence PFn (φ)
converges to a positive constant as n→∞.

Theorem 5.2 ([12, Theorem 3.1]). Let φ = (√5 − 1)/2 and let (Fn)n≥0 be the Fibonacci
sequence in (5.7). The subsequence (PFn (φ))n≥1 is convergent, and

lim
n→∞

PFn (φ) = lim
n→∞

Fn
∏
r=1
|2 sinπrφ| > 0.

Numerical calculations suggest that the limiting value of PFn (φ) is approximately
2.4 (see Figure 5.3).

It turns out that the convergence of the subsequence PFn (φ) is not a property spe-
cific to the golden mean. The same property can be established for any irrational α
with continued fraction expansion α = [0; a], and a similar phenomenon is observed
for any irrational with a periodic continued fraction expansion.

Theorem 5.3 ([5, Theorem 1.2]). Suppose α has a periodic continued fraction expansion
of the form α = [0; a1, a2, . . . , aℓ] with period ℓ, and let (qn)n≥0 be its sequence of best
approximation denominators. Then there exist positive constants C0,C1, . . . ,Cℓ−1 such
that

lim
m→∞

Pqℓm+k (α) = lim
m→∞

qℓm+k
∏
r=1
|2 sinπrα| = Ck

for each k = 0, 1, . . . , ℓ − 1.

Adding a preperiod to the continued fraction expansion of α in Theorem 5.3 does
not alter the conclusion, andaccordingly this result extends to all quadratic irrationals
α. See [5] for further details.

In Figure 5.3 below,wehave plotted the subsequencesPqn (α) for α = φ and α = √3.
In the latter case, the continued fraction expansion of α has period ℓ = 2, and accord-
ingly we observe that the two subsequences Pq2m (α) and Pq2m+1 (α) converge rapidly to
two different positive constants.

5.4 A positive lower bound for Pn(α)
The limit phenomenon observed in Theorem 5.2 sheds new light on the old and long-
standing open problem of whether

lim inf
n→∞

Pn(α) = 0 (5.8)
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Figure 5.3: Values of Pqn (α) for α = φ (above) and α = √3 = [1; 1, 2] (below), where qn is the nth best
approximation denominator of α.

for all irrationalsα. Asmentioned inSection 5.1.2, this questionwas raisedbyLubinsky
in [8], but the problem goes back much further; also Erdős and Szekeres asked this
question already in the 1950s [2]. Lubinsky showed that (5.8) indeed holds for all α
with unbounded continued fraction coefficients, and suggested it is likely that (5.8)
holds in general.

However, when α = φ is the golden mean, numerics indicate that it is precisely
along the subsequence (Fn)n≥1 of Fibonacci numbers that Pn(φ) takes on its minimum
values. On the other hand, peaks of Pn(φ) appear to be occurring along the subse-
quence (Fn − 1)n≥1. Specifically, numerical calculations are suggesting that

PFn−1 (φ) ≤ PN (φ) ≤ PFn−1(φ) (5.9)

for n ≥ 3 and N ∈ {Fn−1, . . . , Fn − 1}. This is illustrated in Figure 5.4.
The inequalities in (5.9) have two immediate and important consequences. First

of all, should the upper bound in (5.9) hold, then it would follow that the growth of
Pn(φ) is at most linear. Using the convergence of the subsequence PFn (φ), it is derived
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Figure 5.4: Value of Pn(φ), with the two subsequences PFn−1(φ) (peaks) and PFn (φ) (dips) high-
lighted.

in [12] that PFn−1(φ) ≤ cFn, and combining this with (5.9) we get

PN (φ) ≤ cFn ≤ 2cN .

Second, should the lower bound in (5.9) hold, then it would follow immediately from
Theorem 5.2 that

lim inf
n→∞

Pn(φ) ≥ lim
n→∞

PFn (φ) > 0. (5.10)

To the best of our knowledge, the inequalities in (5.9) have not been proven rigorously.
Nevertheless, it turns out that (5.10) can be deduced from Theorem 5.2 by a slightly
extended argument.

Theorem 5.4 ([4, Theorem 1.1]). If φ = (√5 − 1)/2, then

lim inf
n→∞

Pn(φ) = lim inf
n→∞

n
∏
r=1
|2 sinπrφ| > 0.

The main idea in the proof of Theorem 5.4 is rather simple: For any N ∈ ℕ, let
N = ∑mj=1 Fnj be its Ostrowski representation in base φ (also known as its Zeckendorf
representation [14]). We may then express PN (φ) as the double product

PN (φ) =
N
∏
r=1
|2 sinπrφ| =

m
∏
j=1

Fnj
∏
r=1

󵄨󵄨󵄨󵄨2 sinπ(rφ + kjφ)
󵄨󵄨󵄨󵄨, (5.11)

where kj = ∑
m
s=j+1 Fns for 1 ≤ j ≤ m − 1 and km = 0. Observe that the inner product

on the right-hand side in (5.11) is a perturbed version of PFj (φ). It was shown in [12,
pp. 220–221] that for these perturbed products, there exist constants 0 < K1 ≤ 1 ≤ K2
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such that

K1 ≤
Fnj
∏
r=1

󵄨󵄨󵄨󵄨2 sinπ(rφ + kjφ)
󵄨󵄨󵄨󵄨 ≤ K2 (5.12)

for all 1 ≤ j ≤ m. Now notice that the fractional part of the perturbation kjφ is tending
to zero with increasing values of j. This is a consequence of the identity

Fnφ = Fn−1 − (−φ)
n.

We know from Theorem 5.2 that the unperturbed sequence PFnj (φ) tends to a constant
c ≈ 2.4 as j increases, and it is thus tempting to suggest that the lower bound K1 ≤ 1 in
(5.12) can be raised to some value greater than 1 if j is chosen sufficiently large. Indeed
it turns out that

Fnj
∏
r=1

󵄨󵄨󵄨󵄨2 sinπ(rφ + kjφ)
󵄨󵄨󵄨󵄨 ≥ 1,

for all j greater than some threshold value J ∈ ℕ (independent of N), and accordingly
it follows from (5.11) and (5.12) that

PN (φ) ≥ K
J
1

for all N ∈ ℕ.
For a detailed exposition of the proof of Theorem 5.4, see [4].

5.5 Possible extensions of Theorem 5.4
We have now seen that lim infn→∞ Pn(α) = 0 fails for the golden mean α = φ, and it is
natural to ask whether

lim inf
n→∞

Pn(α) > 0

also for other irrationals. Since the fact that lim infn→∞ Pn(φ) > 0 is deduced from
Theorem 5.2, and Theorem 5.2 has a natural extension to quadratic irrationals (The-
orem 5.3), one is led to guess that Theorem 5.4 might be generalized to all quadratic
irrationals. Unfortunately, this is too much to hope for.

Theorem 5.5. Let α = [0; a1, a2, . . .] have bounded continued fraction coefficients, and
let M = maxj∈ℕ aj. Provided M is sufficiently large, there exists some threshold value
K = K(M) such that if aj ≥ K infinitely often, then

lim inf
n→∞

Pn(α) = 0. (5.13)
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Remark. Theorem 5.5 is a consequence of a result by Lubinsky (Proposition 5.6 be-
low). Lubinsky himself claims in [8] that Theorem 5.5 is true for a general threshold
K independent of M. However, this is not rigorously proven, and we have not man-
aged to verify it. Basing our argument on Proposition 5.6 below, we do not see that the
dependency onM can be omitted.

Proposition 5.6 ([8, Proposition 5.1]). Let α = [0; a1, a2, . . .], and for n ∈ ℕ let n =
∑zj=1 bjqj be its Ostrowski expansion in base α. Denote by z# the length of this expan-
sion

z# = z#(n) = #{j : 1 ≤ j ≤ z and bj ̸= 0}.

We then have

logPn(α) ≤ 800z
# + 151

z
∑
j=1

bj
aj
max
k<j

log ak +
3
2

z
∑
j=1

log+ bj

+
z
∑
j=1

bj log(
2πbjqj|qjα − pj|

e
),

(5.14)

where log+ x = max{log x,0}.

Remark. The fact that lim infn→∞ Pn(α) = 0 whenever α = [0; a1, a2, . . .] has un-
bounded continued fraction coefficients is a straightforward consequence of this
proposition (as illustrated by Lubinsky in [8]). To see this, simply construct a strictly
increasing subsequence of coefficients anj where

anj > ak for all k < nj.

Then putting n = Nj = qnj in (5.14), it is easily verified that this inequality reduces to

logPNj
(α) ≤ C − log anj

for some absolute constant C, and since anj →∞ as j →∞ it follows that

lim
j→∞

PNj
(α) = 0.

Let us now see how Theorem 5.5 is deduced from Proposition 5.6.

Proof of Theorem 5.5. Let α = [0; a1, a2, . . .] with M = maxj aj, and suppose aj ≥ K in-
finitely often for some natural number K ≤ M. Denote by (ni)i∈ℕ a sequence of indices
such that ani ≥ K for every i. We may choose this sequence so that

ni − ni−1 > 1 for all i > 1.

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



5 On the asymptotic behavior of the sine product∏nr=1 |2 sin πrα| | 113

Now construct a sequence of integers Nm by letting Nm = ∑
m
i=1 qni . We have then

given Nm in its Ostrowski representation to base α, as

Nm =
m
∑
i=1

qni =
nm
∑
j=1

bjqj,

where

bj = {
1, if j ∈ (ni)i∈ℕ
0, otherwise,

and where no two consecutive coefficients bj are both nonzero.
We now use Proposition 5.6 to estimate logPNm

(α). Since bj ∈ {0, 1}, it is clear that
the third term on the right-hand side in (5.14) is zero. For the second term on the right-
hand side in (5.14), we have the upper bound

151
nm
∑
j=1

bj
aj
max
k<j

log ak ≤ 151 logM
m
∑
i=1

1
ani
≤
151 logM

K
m. (5.15)

Finally, for the fourth term on the right-hand side in (5.14), we observe that if bj = 1,
then

bj log(
2πbjqj|qjα − pj|

e
) ≤ log(

2πqj
eqj+1
) ≤ log(

πqj
ajqj
) = logπ − log aj,

where for the first inequality we have used (5.5). It follows that
nm
∑
j=1

bj log(
2πbjqj|qjα − pj|

e
) ≤ (logπ − logK)m, (5.16)

and inserting (5.15) and (5.16) in (5.14), we arrive at

logPNm
(α) ≤ (802 + 151 logM

K
− logK)m. (5.17)

IfM is sufficiently small, then the right-hand side in (5.17) is positive regardless of the
size of K ≤ M. However, onceM is sufficiently large, one can find K = K(M) such that

802 + 151 logM
K
− logK < 0.

In this case, it is clear from (5.17) that

logPNm
(α) → −∞

asm→∞, and accordingly

lim
m→∞

PNm
(α) = 0.

This concludes the proof of Theorem 5.5.

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



114 | S. Grepstad et al.

5.5.1 Irrationals of the form α = [0; a]

Let us finally have an extra look at irrationals of the form

α = [0; a].

For this special case, we haveM = K = a in Theorem 5.5, and it is clear from the proof
that lim infn→∞ Pn(α) = 0 if

802 + 151 log a
a
− log a < 0,

or equivalently if a ≥ e802+ε for some small ε > 0.
Studying the product Pn(α) numerically, it appears that the true lower bound on

a for when lim infn→∞ Pn(α) = 0 might actually be significantly lower. In Table 5.1, we
have listed the evolution of minima of Pn(α) for α = [0; a], a = 1, 2, . . . , 8, determined
numerically.

Table 5.1: Evolution of minima of Pn(α) for n = 1, . . . , 50 000.

α Evolution of minima (Pn(α), n)

[0;1] (1.865, 1)
[0;2] (1.928, 1)
[0;3] (1.333, 1)
[0;4] (1.351, 1)
[0;5] (1.138, 1)
[0;6] (0.977, 1), (0.907, 7), (0.849, 44), (0.794, 272), (0.742, 1 677), (0.693, 10 335)
[0;7] (0.852, 1), (0.708, 8), (0.589, 58), (0.491, 415), (0.408, 2 964), (0.340, 21 164)
[0;8] (0.755, 1), (0.564, 9), (0.422, 74), (0.316, 602), (0.236, 4 891), (0.177, 39 731)

It is curious that for a ≤ 5, we have

min
1≤n≤50 000

Pn(α) = P1(α),

whereas for a > 5, the minimal value of Pn(α) is decreasing slowly with increasing n.
The apparent change in behavior at the cutoff a = 5 leads us to close by posing the
following conjecture.

Conjecture 5.7. Let α = [0; a]. If a ≤ 5, then

lim inf
n→∞

Pn(α) ≥ P1(α) > 0.

If a > 5, then

lim inf
n→∞

Pn(α) = 0.
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Simon Breneis and Aicke Hinrichs
6 Fibonacci lattices have minimal dispersion
on the two-dimensional torus

Abstract:We study the size of the largest rectangle containing no point of a given point
set in the two-dimensional torus, the dispersion of the point set. A known lower bound
for the dispersion of any point set of cardinality n ≥ 2 in this setting is 2/n. We show
that if n is a Fibonacci number then the Fibonacci lattice has dispersion exactly 2/n
meeting the lower bound. Moreover, we completely characterize integration lattices
achieving the lower bound and provide insight into the structure of other optimal sets.
We also treat related results in the nonperiodic setting.

Keywords: Dispersion, integration lattice, Fibonacci lattice

MSC 2010: 52C05

6.1 Introduction and main result
We identify the two-dimensional toruswith [0, 1]2. Any twopoints x, y ∈ [0, 1]2 define a
rectangle B(x, y) in the two-dimensional torus. If x = (x1, x2), y = (y1, y2) satisfy x1 ≤ y1
and x2 ≤ y2, this is the ordinary rectangle B(x, y) = [x1, y1] × [x2, y2]. If x1 > y1 and
x2 ≤ y2, then B(x, y) = ([0, y1] ∪ [x1, 1]) × [x2, y2] is wrapped around in the direction of
the first coordinate axis. Analogously, for x1 ≤ y1 and x2 > y2, it is wrapped around the
direction of the second coordinate axis, and for x1 > y1 and x2 > y2 around both axis;
see Figure 6.1.

Figure 6.1: Periodic rectangles.
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For a given finite point set 𝒫 ⊂ [0, 1]2, the dispersion disp(𝒫) of 𝒫 is the area
of the largest rectangle B(x, y) containing no point of 𝒫 in the interior. The follow-
ing lower bound follows as a special case from the result of M. Ullrich in [14] for the
d-dimensional torus in the case d = 2.

Theorem 6.1. For any n ∈ ℕ with n ≥ 2 and any point set 𝒫n ⊂ [0, 1]2 with #𝒫n = n, we
have

disp(𝒫n) ≥
2
n
.

The main purpose of this note is the investigation whether, and if so, for which
sets, this bound is sharp.

It is well understood that the Fibonacci lattice has exceptional uniform distribu-
tion properties. We shortly discuss some results in this direction for the discrepancy
and the dispersion as measures of uniform distribution. Let (Fm)m∈ℕ be the sequence
of Fibonacci numbers starting with F1 = F2 = 1 and defined via the recursive relation
Fm+2 = Fm + Fm+1 form ≥ 2. The Fibonacci lattice ℱm is defined as

ℱm := {(
k
Fm
, {

kFm−2
Fm
}) : k ∈ {0, 1, . . . , Fm − 1}}.

Here, {α} denotes the fractional part of α.
The Fibonacci lattice is an example of an integration lattice. A general integration

lattice in dimension d = 2 has the form

{(
k
n
, {

kq
n
}) : k ∈ {0, 1, . . . , n − 1}}.

Here, n and 1 ≤ q < n are positive integers. The number q is called the generator of the
integration lattice. It is sometimes required to be coprime to n. We do not make this
additional requirement here. Observe that an integration lattice consists of n points in
[0, 1)2. For the theory of integration lattices and applications to numerical integration,
we refer to [7].

It is well known that the Fibonacci lattice has order optimal L∞- and L2-discrep-
ancy. For the L∞-discrepancy, we refer to themonograph [5] of H. Niederreiter. For the
classical L2-discrepancy, this was first proved by V. Sós and S. K. Zaremba in [9]. For
the periodic L2-discrepancy, it is even conjectured that the Fibonacci lattice is globally
optimal among all point sets with the same number of points; see [3]. This is proved
in [3] for n = Fm ≤ 13. Among integration lattices, the Fibonacci lattice has minimal
periodic L2-discrepancy at least if n = Fm ≤ 832040. This can be shown by a not partic-
ularly sophisticated exhaustive search through all integration lattices using a suitable
simplification of the Warnock formula for the periodic L2-discrepancy of integration
lattices.
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For the dispersion, it was proved by V. Temlyakov in [13] that the Fibonacci lattice
is order optimal, that is, that there exists a constant c such that

disp(ℱm) ≤
c
Fm
.

The main purpose of this note is to show that the bound in Theorem 6.1 is actually
sharp for the Fibonacci lattices. In particular, we show the following theorem.

Theorem 6.2. Let m ≥ 3 be an integer. The Fibonacci lattice ℱm satisfies

disp(ℱm) =
2
Fm
.

It may be conjectured that, up to torus symmetries, the Fibonacci lattices are the
only point sets meeting the lower bound in Theorem 6.1. This is not true. The second
purpose of this note is to discuss the structure of general optimal sets. At least for
integration lattices, we get a complete characterization.

Theorem 6.3. Let 𝒫n be an integration lattice with n ≥ 2 points. Then disp(𝒫n) = 2/n
holds if and only if n = Fm is a Fibonacci number and 𝒫n is torus symmetric to the
Fibonacci lattice ℱm or n = 2Fm is twice a Fibonacci number and 𝒫n is torus symmetric
to the lattice with generator q = 2Fm−2.

Clearly, Theorem 6.3 immediately implies Theorem 6.2, so we will prove only The-
orem 6.3.

For the convenience of the reader, we provide a short proof of Theorem 6.1 in Sec-
tion 6.2. In particular, this proof also shows that any point set 𝒫n with n points sat-
isfying disp(𝒫n) = 2/n has to be of a certain structure. This structure is then further
employed in Section 6.4 to give examples of point sets with optimal dispersion that
are not integration lattices.

Section 6.3 contains the proof of our main result Theorem 6.3 which, as already
mentioned, implies Theorem 6.2. In Section 6.4, we comment on sets with dispersion
2/n that are not integration lattices. In Section 6.5, we compute the nonperiodic dis-
persion of the Fibonacci lattice, which turns out to be only slightly smaller than 2/Fm.
We finish with a final section containing a discussion of related results in particular
also in higher dimensions.

6.2 Proof of Theorem 6.1
We now give a simple proof of Theorem 6.1. This proof is basically the same as the
proof for general dimension in [14].

Fix a point set 𝒫n with n points. For x ∈ [0, 1), let n(x) be the number of points in
the (periodic) rectangle B(x) = [x, x + 2/n) × [0, 1). Then each point in 𝒫n is in B(x) for
a set of x of measure exactly 2/n. Hence ∫10 n(x)dx = 2.
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Assume first that n(x) < 2 for some x. Then, for this x, either n(x) = 0 or n(x) = 1.
Then, for some ε > 0, also the rectangle B = [x − ε, x + 2/n) × [0, 1) contains at most
one point of𝒫n. Splitting the box along the second coordinate of this point, if it exists,
we obtain a periodic rectangle of size 2/n + ε containing no points of 𝒫n in its interior
showing that disp(𝒫n) > 2/n.

If n(x) > 2 for some x, then ∫10 n(x)dx = 2 implies that n(x) < 2 for some x, again
disp(𝒫n) > 2/n follows.

The only case not considered is the case that n(x) = 2 for every x ∈ [0, 1). Let x be
the first coordinate of a point in the point set. Then we obtain that there exists exactly
one point in the point set with x-coordinate in (x, x + 2/n) and that there is exactly
one point in the point set with x-coordinate equal to x + 2/n. In particular, splitting
the rectangle (x, x + 2/n) × [0, 1] along the second coordinate of the (only) point in this
rectangle gives an empty rectangle of size 2/n and disp(𝒫n) ≥ 2/n follows.

Moreover, if n is odd, this implies that the x-coordinates of points of 𝒫n form the
set {ξ + k/n : k = 0, 1, . . . , n − 1} for some ξ ∈ [0, 1/n). If n is even, the situation is a little
different. Then n(x) = 2/n for every x ∈ [0, 1) only implies that 𝒫n is the union of two
sets {ξi + 2k/n : k = 0, 1, . . . , n/2 − 1} for some ξ1, ξ2 ∈ [0, 2/n). Similar reasoning can be
applied to the second coordinate instead of the first coordinate.

Altogether,weprovedTheorem6.1 togetherwith structural properties of point sets
meeting the bound. In particular, if n is odd, any point set 𝒫n with n points satisfying
disp(𝒫n) = 2/n is, up to torus symmetries, a lattice point set of the type

{(
k
n
, {

π(k)
n
}) : k ∈ {0, 1, . . . , n − 1}}

for some permutation π of the set {0, 1, . . . , n − 1}.

6.3 Proof of Theorems 6.2 and 6.3
Throughout this section, we fix an integration lattice

𝒫n = {(
k
n
, {

kq
n
}) : k ∈ {0, 1, . . . , n − 1}},

containing n points with generator q ∈ {1, 2, . . . , n − 1}. We will prove Theorem 6.3,
Theorem 6.2 is a direct consequence. Our proof of Theorem 6.3 relies on a careful ex-
amination of the length of the intervals obtained by splitting the torus with the points
({ kqn }). To simplify the notation, we will scale the one-dimensional torus by a factor of
n and consider the sequence (n{ kqn }). To this end, let y : {0, 1, . . . , n−1} → {0, 1, . . . , n−1}
be the function defined as

y(k) := n{kq
n
}.

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Fibonacci lattices have minimal dispersion on the two-dimensional torus | 121

Furthermore, let

Yℓ := (y(k))
ℓ−1
k=0

denote the sequence of the first ℓ function values of y.
We now want to consider the distances between consecutive elements of the se-

quence Yℓ.

Definition 6.4. Let (xk)ℓ−1k=0 be a sequence of ℓ elements of the one-dimensional torus
scaled by n. Let (yk)ℓ−1k=0 be the nondecreasing rearrangement of the sequence (xk)ℓ−1k=0.
For a, b ∈ [0, n] with a ̸= b, let d(a, b) denote the oriented scaled torus distance of the
points a and b, that is, d(a, b) = b − a for b < a and d(a, b) = n + b − a if b < a. We also
set d(a, a) = n. We say that c ∈ (0, n] is a distance of the sequence (xk) if there exists
an i ∈ {1, . . . , ℓ − 1} such that

d(yi−1, yi) = c

or if

d(yℓ−1, y0) = c.

The following lemma is a direct consequence of the three-distance or three-gap
theorem conjectured by H. Steinhaus and proved in the late 1950s by V. Sós [8],
J. Suránji [11], and S. Świerczkowski [12].

Lemma 6.5. For any ℓ ∈ {1, . . . , n}, the sequence Yℓ has atmost three different distances.
If Yℓ has three different distances d1 > d2 > d3, then d1 = d2 + d3.

Wewill now investigate how often those three distances occur. The following def-
inition will be helpful in simplifying the notation. We also refer to Figure 6.2 for an
instructive example.

Definition 6.6. Let the sequence Yℓ have the distances d1 > d2 > d3 a1, a2, a3 times,
respectively. Then we say Yℓ induces the splitting

n = a1d1 + a2d2 + a3d3.

Notice that the equality holds if we interpret it algebraically. If there are only one or
two distances, the notation is used accordingly. In that case, we also use the notation
above and allow d3 = d2 if a3 = 0 and d2 = d1 if a3 = a2 = 0.

As it turns out, if we increase the number ℓ of points considered, we always end
up splitting the largest distance.

Lemma 6.7. By going from Yℓ to Yℓ+1, the largest distance from Yℓ is split.
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Figure 6.2: Consecutive Splittings for n = 13 and q = 5.

Proof. If Yℓ only has one distance, this is trivial. Suppose now that Yℓ induces the
splitting

n = a1d1 + a2d2 + a3d3,

where a3 ≥ 0, that is, we also consider the case that Yℓ only has two different dis-
tances. Clearly, Yn splits the torus into equidistant intervals, that is, Yn has only one
distance. Suppose now that by going from Yℓ to Yℓ+1, we split either d2 or d3. Without
loss of generality, we will assume we split d2. By going from Yℓ to Yℓ+1, we introduced
the point y(ℓ). This point has a left neighbor, that is, there exists an a < ℓ such that
B(y(a), y(ℓ)) contains no other point of the sequenceYℓ+1. In the sameway, there exists
a right neighbor y(b). Since we split the distance d2, we know that d(y(a), y(b)) = d2.
It is easy to see that for any k such that ℓ + k < n we have that y(ℓ + k) is in the (peri-
odic) interval (y(a + k), y(b + k)). Thus, any point introduced after y(ℓ) can only split
a distance which is at most d2. This means that the distance d1 is never split again.
However, since Yn should induce a splitting with only one distance, this is clearly a
contradiction. Thus, we always split d1.

From now on, we will make additional assumptions on n and q. On the one hand,
we assume without loss of generality that 2q ≤ n. This is possible, since the integra-
tion lattices induced by (n, q) and (n, n−q) are torus symmetric. On the other hand, we
assume that the integration lattice has optimal dispersion 2/n, or, since we consider
the scaled torus, dispersion 2n. Since we are only interested in finding all optimal in-
tegration lattices, this is no real restriction.

The following lemma will give us an explicit formula for the splitting of Yℓ that
will then directly imply Theorem 6.3. Here, we also use Fibonacci numbers Fk with
k ≤ 0, which satisfy the same recursion as for k > 0.

Lemma 6.8. Let m, k, j be positive integers satisfying 3 ≤ k ≤ m, Fm ≤ n < Fm+1, and
1 ≤ j ≤ Fk−2.

If k is odd, then YFk−j induces the splitting

n = j(Fk−3q − Fk−5n) + (Fk−1 − j)(Fk−4n − Fk−2q) + (Fk−2 − j)(Fk−1q − Fk−3n). (6.1)
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Moreover, the fraction n
q satisfies

Fk
Fk−2
≤
n
q
≤
Fk−1
Fk−3
. (6.2)

If k is even, then YFk−j induces the splitting

n = j(Fk−5n − Fk−3q) + (Fk−1 − j)(Fk−2q − Fk−4n) + (Fk−2 − j)(Fk−3n − Fk−1q). (6.3)

Moreover, the fraction n
q satisfies

Fk−1
Fk−3
≤
n
q
≤

Fk
Fk−2
. (6.4)

Moreover, the inequalities (6.2) and (6.4) for 3 ≤ k ≤ m are not only necessary but
also sufficient for 𝒫n to have minimal dispersion 2/n.

Proof. We will prove this lemma by induction on k.
Let k = 3. The only j we need to consider is j = 1. We need to examine the splitting

YF3−1 = Y1. Y1 trivially splits the scaled torus into

n = 1(F0q − F−2n) + (F2 − 1)(F−1n − F1q) + (F1 − 1)(F2q − F0n)
= 1n.

Furthermore, since 2q ≤ n, the distances F0q − F−2n ≥ F−1n − F1q ≥ F2q − F0n are
ordered. Also (6.2), which reads as

2
1
=
F3
F1
≤
n
q
≤
F2
F0
= +∞,

holds since 2q ≤ n.
Let k = 4. Again, the only j we need to consider is j = 1. We need to examine the

splitting YF4−1 = Y2. But Y2 trivially splits the scaled torus into

n = 1(F−1n − F1q) + (F3 − 1)(F2q − F0n) + (F2 − 1)(F1n − F3q)
= 1(n − q) + 1q

as claimed. We assumed that the integration lattice has optimal dispersion, that is,
there is no empty box of size greater than 2n. The splitting Y2 gives us a box of size
3(n − q). Thus, we get

3(n − q) ≤ 2n ⇐⇒ n
q
≤ 3.

Together with the bound from the case k = 3, this implies

2
1
=
F3
F1
≤
n
q
≤
F4
F2
=
3
1
,
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which is (6.2). Moreover, it again follows that the distances of the splitting F−1n−F1q ≥
F2p − F0n ≥ F1n − F3q are ordered.

Wewill now assume the lemma has been proven for k, k+1 with k odd andwewill
prove it for k + 2 and k + 3. Of course, we then have to assumem ≥ k + 2 andm ≥ k + 3,
respectively.

We start with the proof for k + 2. We need to consider the splitting YFk+2−j for j ∈
{1, . . . , Fk}. This splitting still exists, since m ≥ k + 2. We know that YFk+1−1 gave us the
splitting

n = 1(Fk−4n − Fk−2q) + (Fk − 1)(Fk−1q − Fk−3n) + (Fk−1 − 1)(Fk−2n − Fkq).

Since, by Lemma 6.7, we always split the largest distance and the distances in the
splitting above are ordered, YFk+1 gives us

n = Fk(Fk−1q − Fk−3n) + Fk−1(Fk−2n − Fkq).

Nowwe need to split the largest distance Fk+2 − j − Fk+1 more times. Thus, YFk+2−j gives
us

n = j(Fk−1q − Fk−3n) + (Fk+1 − j)(Fk−2n − Fkq) + (Fk − j)(Fk+1q − Fk−1n).

This shows (6.3). It remains to check that the distances are ordered. To this end, we
use the minimality with respect to the dispersion. The splitting gives us an empty box
of size (Fk+2−j+1)(Fk−1q−Fk−3n). From the assumption on the dispersion, we conclude
that (Fk+2 − j + 1)(Fk−1q − Fk−3n) ≤ 2n. Of course, if this condition is satisfied for j = 1,
it is satisfied for any j ∈ {1, . . . , Fk}. Thus, we have

Fk+2(Fk−1q − Fk−3n) ≤ 2n ⇐⇒
Fk+2
Fk
=

Fk+2Fk−1
Fk+2Fk−3 + 2

≤
n
q
.

Together with the bounds (6.4) with k + 1 instead of k, we get the new bounds

Fk+2
Fk
≤
n
q
≤
Fk+1
Fk−1
.

These are the bounds (6.2) with k + 2 instead of k, which now also imply that the dis-
tances of the splitting were ordered. The proof for k + 3 is completely analogous.

Proof of Theorem 6.3. Assume that the integration lattice 𝒫n satisfies disp(𝒫n) = 2/n.
Let q be the generator of𝒫n and assume that 2q ≤ n, passing to a torus equivalent inte-
gration lattice if necessary. Let the positive integerm be such that n ∈ {Fm, . . . , Fm+1−1}.
Sincen ≥ 2,wehavem ≥ 3. Ifm is odd, Lemma6.8 gives us for k = m that nq must satisfy
the inequalities

Fm
Fm−2
≤
n
q
≤
Fm−1
Fm−3
.
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Since fractions of Fibonacci numbers are optimal rational approximations of the
golden ration φ = 1+√5

2 (or in that case φ2 = 3+√5
2 ), the next rational approximation

better than Fm
Fm−2 and Fm−1

Fm−3 would be Fm+1
Fm−1 . But this is not possible, since n < Fm+1. Thus,

if n
q satisfies the above inequality, it has to be equal to one of the two sides.
If n

q =
Fm
Fm−2 , then n = Fm and q = Fm−2 because of the restrictions on n (since

Fm+1 − 1 < 2Fm) and we have that 𝒫n = ℱm is a Fibonacci lattice.
If nq =

Fm−1
Fm−3 , then n = 2Fm−1 because of the restrictions on n. This implies q = 2Fm−3.

We conclude that the only possible optimal integration lattices are the lattices
described in the theorem. Moreover, since the inequalities (6.2) and (6.4) for 3 ≤ k ≤ m
are sufficient for𝒫n to haveminimal dispersion 2/n, these lattices indeed have optimal
dispersion 2/n.

Remark 6.9. The proof of optimality of the Fibonacci lattice without characterizing
all optimal integration lattices can be significantly simplified. In fact, it is then easier
to directly show the formula

disp(ℱm) =
1
F2m

max
3≤k≤m

FkFm−k+3,

which also follows from the above argument. The maximum is attained for k = 3 and
k = m. This was independently observed by M. Ullrich.

6.4 Optimal sets that are not integration lattices
In this section, we give examples of point sets𝒫n satisfying disp(𝒫n) = 2/n that are not
integration lattices. Of course, the restrictions given in Section 6.2 have to be satisfied.
These examples are obtained from the Fibonacci lattices ℱm for even Fm by shifting
every other point by a fixed small vector; see Figure 6.3. This leads to the distorted
Fibonacci lattices

ℱm,ξ ,η := {(
k
Fm
, {

kFm−2
Fm
}) : k ∈ {0, 2, . . . , Fm − 2}}

∪ {(
k
Fm
+

ξ
Fm
, {

kFm−2
Fm
} +

η
Fm
) : k ∈ {1, 3, . . . , Fm − 1}}

with 0 ≤ ξ , η < 1. It turns out that for small enough ξ and η, such a distortion does not
alter the dispersion of the Fibonacci lattice.

For simplicity, we just analyze the case η = 0 more closely, that is, half of the
Fibonacci lattice is shifted in the direction of the first coordinate. Then the argument
from the previous section or the more direct argument mentioned in Remark 6.9 lead
to the conclusion that, as long as

F3Fm ≥ max
4≤k≤m−1
(Fk + ξ )Fm−k+3,
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Figure 6.3: Fibonacci lattice, usual and distorted.

the dispersion does not grow. The maximum is attained (at least asymptotically) for
k = 4 and k = 5. So we get the condition

F3Fm ≥ (F4 + ξ )Fm−1,

which is asymptotically equivalent to

ξ ≤ lim
n→∞

F3Fm
Fm−1
− F4 = 2φ − 3 = 0.236068 . . . .

The distorted Fibonacci lattices above are neither integration lattices nor lattice
point sets. We could not decide if there are lattice point sets with large cardinality that
both have optimal dispersion and are not torus equivalent to an integration lattice.

6.5 The nonperiodic case
In this section, we study the dispersion of the Fibonacci lattice in the non-periodic
case. Basically, this means that we restrict the allowed rectangles in the definition of
the dispersion to rectangles B(x, y) where x ≤ y coordinatewise. Let disp∗(𝒫n) denote
the corresponding dispersion of a point set 𝒫n ⊂ [0, 1]2.

The best known lower bound (for n ≥ 16)

disp∗(𝒫n) ≥
5

4(n + 5)
(6.5)

was proved in [2]. As far as we know, until now, the best known upper bound in di-
mension 2 for large n is disp(𝒫n) ≤ 4/n if n = 2m for some positive integer m and
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a (0,m, 2)-net 𝒫n in base 2, in particular for the Hammersley point set; see [2, Theo-
rem 2] or [1] for higher dimensional versions. For general n, this implies that there exist
point sets 𝒫n of cardinality n with disp(𝒫n) ≤ 8/n. Already the periodic dispersion of
the Fibonacci lattices allows an improvement of these upper bounds. We compute the
nonperiodic dispersion of the Fibonacci lattice to further improve these bounds.

Theorem 6.10. Letm ≥ 6 be an integer. The Fibonacci latticeℱm without the point (0,0)
satisfies

disp∗(ℱm \ {(0,0)}) =
2(Fm − 1)

F2m
.

We only sketch the proof here. The proof for the periodic case in particular shows
that the maximal periodic boxes containing no points of ℱm in the interior have side
length Fj/Fm and Fm+3−j/Fm for some j = 3, 4, . . . ,m leading to the formula

disp(ℱm) =
1
F2m

max{FjFm+3−j : j = 3, 4, . . . ,m}.

The maximum is attained for j = 3 and j = m. But the corresponding rectangles with
side length 2/Fm and Fm/Fm = 1 are true periodic rectangles wrapping around one
direction. However, it is easy to see that there are still nonperiodic rectangles with
side length 2/Fm and (Fm − 1)/Fm. Those rectangles have an area of 2(Fm − 1)/F2m.

On the other hand, for each j = 4, 5 . . . ,m−1, there are nonperiodic rectangleswith
side length Fj/Fm and Fm+3−j/Fm that do not contain any point of ℱm in the interior. In
the nonperiodic setting, the point (0,0) can be safely omitted. We arrive at

disp∗(ℱm \ {(0,0)})

=
1
F2m

max{2(Fm − 1),max{FjFm+3−j : j = 4, 5, . . . ,m − 1}}

form ≥ 5. It is not too hard to check that, form ≥ 6, this maximum is attained for j = 5.
Clearly,

F5Fm−2
F2m
≤
2(Fm − 1)

F2m
form ≥ 6. This leads to the claim of the theorem.

6.6 Further results, final remarks, and open
problems

To put our results in the two-dimensional case into perspective, we now also consider
the general d-dimensional case. Let disp(n, d) and disp∗(n, d) be the minimal disper-
sion of all point sets 𝒫n in [0, 1]d of cardinality n in the periodic and nonperiodic set-
ting, respectively. The modifications in the definitions should be obvious.
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The known lower and upper bounds imply that

0 < a(d) := lim inf
n→∞

ndisp(n, d) ≤ lim sup
n→∞

ndisp(n, d) =: b(d) < ∞

and

0 < a∗(d) := lim inf
n→∞

ndisp∗(n, d) ≤ lim sup
n→∞

ndisp∗(n, d) =: b∗(d) < ∞.

The inequalities

a∗(d) ≤ a(d) and b∗(d) ≤ b(d) (6.6)

are trivial. It is natural to study these quantities and to determine if a(d) = b(d) and/or
a∗(d) = b∗(d), that is, if the limits

lim
n→∞

ndisp(n, d) and/or lim
n→∞

ndisp∗(n, d)

exist. For d = 1, equidistant points are optimal. This implies a(1) = b(1) = a∗(1) =
b∗(1) = 1.

Already the case d = 2 is much more difficult. In the periodic case, Theorems 6.1
and 6.2 show that

a(2) = 2 and b(2) ≤ 3 +
√5
2
= 2.6180339 . . . . (6.7)

Here, b(2) is estimated viamonotonicity of disp(n, d) in n togetherwith disp(n, d) = 2/n
if n is a Fibonacci number or twice a Fibonacci number. The question whether b(2) =
a(2) remains open. In the nonperiodic case, the lower bound (6.5), Theorem 6.10 and
inequalities (6.6) and (6.7) show that

5
4
≤ a∗(2) ≤ 2 and b∗(2) ≤ 3 +

√5
2
= 2.6180339 . . . .

The exact determination of a∗(2) and b∗(2) remains open.
For general d, we only know that

d ≤ a(d) ≤ 27d and b(d) ≤ 27d+1

as well as

log2 d
4
≤ a∗(d) ≤ 27d and b∗(d) ≤ 27d+1.

The upper bounds follow from a construction using digital nets due to G. Larcher;
see [1]. The lower bound for a(d) follows from the result of [14], the lower bound for
a∗(d) from the main result of [1]. Further upper bounds not directly applicable to this
problem or yielding worse bounds can be found in the papers [4, 6, 10, 13, 15].
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The lower bound from [14] for general dimension d is

disp(𝒫n) ≥
d
n
,

which is equal to d/n for d ≥ n. We now discuss the case of integration lattices 𝒫n ⊂
[0, 1]d with optimal periodic dispersion. It turns out that, in contrast to the already
considered case d = 2, such integration lattices can only exist for small n. We restrict
the discussion here to the case d = 3.

Theorem 6.11. There are no integration lattices in 3 dimensions which have more than
4 points and satisfy

disp(𝒫n) =
3
n
.

The crucial tool is the following additional information on the splittings induced
by a two-dimensional integration lattice. Here, we freely use the notation and lan-
guage introduced in Section 6.3.

Lemma 6.12. Let 𝒫n ⊂ [0, 1]2 be an integration lattice with n points and generator q.
Assume that the induced splitting has more than one different distance (it has distances
d1 > d2 and maybe distance d3 < d2). Then there is an empty interval of distance d1 and
an empty interval of distance at least d2 which are next to each other.

Proof. Assumewe have an interval of distance d1. Let the interval on the left and right
have distance d3. This distance d3 must have come from splitting a distance d1 or a
distance d2. A distance d2 has not been split, as there is a distance d1 remaining and
we always split the largest distance. Thus, both distances of length d3 next to the
d1-distance come from splitting a d1-distance. A d1 distance is always split into a d2
and a d3 distance. Furthermore, the d2 is always to the left of the d3 or the d2 is always
to the right of the d3. In any way, if there were distances d1 which were split to both
sides of our d1 distance, then there are now a d3 and a d2 distance next to our d1.

Proof of Theorem 6.11. Observe that the projection of an integration lattice in dimen-
sion 3onto anyof the coordinate planesproduces an integration lattice indimension 2.
Let q be the generator of one of those projected lattices. Splitting the 3-dimensional
torus along the third coordinate of a point shows that a lower bound for the disper-
sion of the 3-dimensional integration lattice is given by the maximal size of a periodic
rectangle for the 2-dimensional projection containing atmost one point in the interior.

Now, assume that the first k points o induce the splitting

n = a1d1 + a2d2 + a3d3

for the 2-dimensional projected lattice. Then we observe the following: if a1 > a2 + a3,
an application of the pigeonhole principle shows that there are two empty intervals of
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sized1 next to each other. In any other case, Lemma6.12 tells us that there is an interval
of sized1 next to an interval of sized2. Thus, in thefirst case, there is a two-dimensional
box of size (k + 1) ∗ (d1 + d1) and in the second case there is a two-dimensional box of
size (k+ 1)∗ (d1 +d2)which contains only one point. The sizes of those boxes are lower
bounds for the 3-dimensional dispersion.

Assumenow that the 3-dimensional integration lattice has dispersion 3/n.Wewill
show a contradiction if n is sufficiently large.Without loss of generality, assume q ≤ n.
We consider now the projected 2-dimensional lattice with generator q. The first two
points induce the splitting

n = 1(n − q) + 1q

and give rise to a relevant box of size

(2 + 1) ⋅ (n − q + q) = 3n ≤ 3n.

The first 3 points induce the splitting

n = 1(n − 2q) + 2q.

The proof will be completed by a giant case distinction:
1. n − 2q < q ⇐⇒ n < 3q. We have the largest box of size

4(q + q) ≤ 3n⇐⇒ 8q
3
≤ n.

Together, we obtain 8q/3 ≤ n < 3q. The next splitting is

n = 1q + 2(n − 2q) + 1(3q − n).

We again need to distinguish two cases:
(a) n − 2q < 3q − n⇐⇒ n < 5q/2. This is a contradiction.
(b) n − 2q ≥ 3q − n⇐⇒ n ≥ 5q/2. We have the largest box

5(q + n − 2q) ≤ 3n⇐⇒ n ≤ 5q
2
.

This is a contradiction.
2. n − 2q ≥ q ⇐⇒ n ≥ 3q. We have the largest box

4(n − 2q + q) ≤ 3n⇐⇒ n ≤ 4q.

Together, we obtain 3q ≤ n ≤ 4q. The next splitting is

n = 1(n − 3q) + 3q.

We again need to distinguish two cases.
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(a) n − 3q ≥ q ⇐⇒ n ≥ 4q. Together with n ≤ 4q we have n = 4q. This is a
contradiction for n > 4.

(b) n − 3q < q ⇐⇒ n < 4q. We have the largest box

5(q + q) ≤ 3n⇔ 10q
3
≤ n.

Together, we obtain 10q/3 ≤ n < 4q. The next splitting is

n = 2q + 2(n − 3q) + 1(4q − n).

We again need to distinguish two cases.
i. n − 3q ≤ 4q − n⇐⇒ n ≤ 7q/2. We have the largest box

6(q + 4q − n) ≤ 3n⇐⇒ 10q/3 ≤ n.

Together, we obtain 10q/3 ≤ n ≤ 7q/2. The next splitting is

n = q + 2(4q − n) + 3(n − 3q).

Luckily, we do not need a case distinction here, as we already know the
ordering of the distances. We have the largest box

7(q + 4q − n) ≤ 3n⇐⇒ 7q/2 ≤ n.

Thus, n = 7q/2. This is a contradiction for all n, except for n = 7 and
q = 2. This case can be excluded separately by exhaustively trying all
possibilities.

ii. n − 3q > 4q − n⇐⇒ n > 7q/2. We have the largest box

6(q + n − 3q) ≤ 3n⇐⇒ n ≤ 4q.

In total, 7q/2 < n < 4q. The next splitting is

n = q + 3(n − 3q) + 2(4q − n).

Again, we do not need a case distinction. We have the largest box

7(q + n − 3q) ≤ 3n⇐⇒ n ≤ 7q/2.

This is a contradiction.

Every branch of the case distinction failed for n > 4. This proves the theorem.
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7 On pair correlation of sequences
Abstract:We give a survey on the concept of Poissonian pair correlation (PPC) of se-
quences in the unit interval, on existing and recent results and we state a list of open
problems. Moreover, we present and discuss a quite recent multi-dimensional version
of PPC.
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7.1 The concept of Poissonian pair correlation for
sequences in [0, 1)

Let x1, x2, . . ., be a sequence of real numbers in the unit interval [0, 1). In the following,
for some x ∈ [0, 1), we denote by ‖x‖ the distance to the nearest integer, that is, to be
precise ‖x‖ := min(x, 1 − x). Further, in the sequel, {⋅}will denote the fractional part of
a real number.

Definition 7.1. We say that (xn)n≥1 ∈ [0, 1) has Poissonian pair correlation (PPC), if for
all real s > 0, we have

lim
N→∞

1
N
#{1 ≤ k ̸= l ≤ N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖xk − xl‖ <

s
N
} = 2s.

To put this in intuitive words, PPC means to study small distances between se-
quence elements, that is, the concept of PPC deals with a “local” distribution property
of a sequence in the unit interval.

It is natural to expect that the pair correlation function, RN , defined as

RN (s) :=
1
N
#{1 ≤ k ̸= l ≤ N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖xk − xl‖ <

s
N
}

tends to 2s. We give the following heuristic explanation for this limit behavior:
Consider a fixed N, and fix a sequence element xn for some 1 ≤ n ≤ N . Then the

region around xn with length 2s
N (see Figure 7.1) is expected to contain 2sN−1N of the

remaining (N − 1) points xi, for i = 1, . . . ,N and i ̸= n.
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Figure 7.1

Consequently, thismeans, on average there are 2sN−1N different indices i = 1, . . . ,N with
i ̸= n, such that

‖xi − xn‖ <
s
N
.

Since n can attain values between 1 andN, we expect that there are 2s(N −1) pairs with

‖xk − xl‖ <
s
N
, for 1 ≤ k ̸= l ≤ N .

Hence, we expect the quantity RN (s) to be approximately 2sN−1N and, therefore,

lim
N→∞

RN (s) = 2s.

Indeed, it can be shown that, in a certain sense, almost every sequence x1, x2, . . . in
[0, 1) has PPC. To be precise, if we consider a sequence (Xn)n≥1 of i. i. d. random vari-
ables drawn from the uniform distribution on [0, 1), then

lim
N→∞

1
N
#{1 ≤ k ̸= l ≤ N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖Xk − Xl‖ <

s
N
} = 2s,

almost surely.
Wewant to brieflymention that the originalmotivation for the investigation of the

PPC property comes from quantum physics. Roughly speaking, the concept is related
to the distribution properties of the discrete energy spectrum λ1, λ2, . . . of a Hamilto-
nian operator of a quantum system. The famous Berry–Tabor conjecture in quantum
physics now states, that this discrete energy spectrum (ignoring degenerate cases) has
PPC. For more details on the connection to quantum physics, we refer the reader to [1]
and the references cited therein.

Note that for several quantum systems the discrete energy spectrum λ1, λ2, . . . has
the following special form:

(λn)n≥1 = ({anα})n≥1,
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where α is a real constant, and (an)n≥1 is a given sequence of positive integers. There-
fore, in the 1990s Rudnick, Sarnak, and Zaharescu started to investigate the PPC prop-
erty of sequences of the form ({anα})n≥1 in [0, 1) from a purely mathematical point of
view.

Whenever, in the following, we consider such sequences, we restrict the setting
to strictly increasing sequences of positive integers. The most basic example of such a
sequence is the classical Kronecker sequence ({nα})n≥1. This sequence does not have
the PPC property for any choice of α. In most of the seminal papers on PPC, this fact
was argued by taking the famous three-gap theorem into account (see, e. g., [25–27]).

The three-gap theorem states the following: For every choice of α and for every N,
the gaps between neighboring points of the set

{1α}, {2α}, . . . , {Nα}

can have at most three different lengths. A sequence with such a gap structure does
not exhibit a random behavior and, therefore, it is reasonable to expect that it cannot
have PPC. Nonetheless, it is not immediately clear that this argument is indeed valid.

To argue that, we want to emphasize that the elements of a sequence satisfy-
ing such a weak gap structure could be ordered in a way, such that “many different”
distances between (not necessarily neighboring) elements can occur (see Figure 7.2).
However, for the Kronecker sequence a very simple argument can be given to deduce
the fact that it does not have PPC for any choice of α.

Figure 7.2

Let α ∼ pn
qn

where pn
qn

is a best approximation fraction to α with (pn, qn) = 1. It is well
known from basic Diophantine approximation theory that α = pn

qn
+ θn, with either

0 ≤ θn <
1
2q2n

, or − 1
2q2n
< θ < 0.

Let us assume the first case. Then the set of points

{1α}, {2α}, . . . , {Nα}

equals the set of points

0
N
+ φ0,

1
N
+ φ1, . . . ,

N − 1
N
+ φN−1,

with 0 ≤ φi <
1
2N , for i = 0, . . . ,N − 1 (see points in Figure 7.3).
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Figure 7.3

Hence, two arbitrary elements of this point set have a distance of at least 1
2N . Thus, for

the choice s = 1
4 , we get thatRN (s) = 0, and consequently the pair correlation function

cannot tend to 2s = 1
2 for N to infinity.

In fact, a deeper investigation reveals that the three-gap theorem is indeed a valid
argument to deduce the result on the PPC structure of the Kronecker sequence. It is
an immediate consequence of the following theorem, which was proven in [20], in
combination with the three-gap theorem.

Theorem 7.1. Let (xn)n≥1 be a “weak finite-gap-sequence,” that is, there exists an integer
L and indices N1 < N2 < N3 < ⋅ ⋅ ⋅ such that for all i the set x1, x2, . . . , xNi

has at most L
different gap lengths between neighboring elements. Then (xn)n≥1 does not have PPC.

Let us now come to “positive results” and to the study of the metrical pair corre-
lation theory of sequences of the form ({anα})n≥1. In [27], Rudnick and Sarnak showed
the following.

Theorem 7.2. The sequence ({ndα})n≥1 with an integer d ≥ 2 has PPC for almost all α.

The case d = 2 is of particular interest, as in this setting the spacings of sequence
elements are related to the distances between the energy levels of the so-called “boxed
oscillator,” that is, the study of the PPC property of ({n2α})n≥1 is of special importance
in quantum physics. The PPC property and also the gap distribution of the sequence
({n2α})n≥1 was further investigated by several authors (see [15, 22, 26]) and they could
also derive the metrical result for d = 2. Heath–Brown could even show slightly more.

Theorem 7.3. The sequence ({n2α})n≥1 has PPC for almost all real numbers α. Moreover,
there is a dense set of constructible values of α for which the PPC property holds, that is,
there is an informal algorithm,which, for any closed interval I of positive length, provides
a convergent sequence of rational numbers belonging to I, whose limit α satisfies that
({n2α})n≥1 has PPC.

These results are only metrical statements and, until now, no single explicit α is
known such that ({n2α})n≥1 (or ({ndα})n≥1 for any integer d ≥ 2) has PPC. Nonetheless,
we know that it isnot true, that ({n2α})n≥1 has PPC for all irrational α. Consider the fol-
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lowing example of an α that is in a certain sensewell approximable: If α is an irrational
number such that |α− aq | <

1
4q3 for infinitelymany integers a and q, then ({n2α})n≥1 does

not have PPC (see [15]).
On the other hand, it is conjectured that for an α which is not too well approx-

imable, we have PPC for ({n2α})n≥1. To be precise: Let α be such that for every ε > 0
there is a c(ε) > 0 with |α − a

q | > c(ε)
1

q2+ε for all a, q ∈ ℤ, then ({n2α})n≥1 has PPC (see,
e. g., [15]). This property for an irrational α is often referred to as Diophantine. It is
well known that almost all irrationals are Diophantine, for example, every real irra-
tional algebraic number has this property. The above discussion illustrates that the
pair correlation theory of sequences ({ndα})n≥1 is strongly related to the Diophantine
properties of α.

The case of lacunary sequences (an)n≥1 was considered, for example, by Rudnick
and Zaharescu (see [25]) or by Berkes, Philipp, and Tichy (see [8]). We recall that a
sequence (an)n≥1 is a lacunary sequence if there exists a c > 1 such that

an+1
an
> c for all

n ≥ N(c). Again, they obtained the following metrical result.

Theorem 7.4. Let (an)n≥1 be a lacunary sequence of positive integers. Then ({anα})n≥1
has PPC for almost all α.

We may again ask for explicit examples of lacunary sequences (an)n≥1 and α ∈ ℝ
such that ({anα})n≥1 has PPC.

One of the most basic examples of a lacunary sequence of integers certainly is
the sequence (2n)n≥1. In a first step, we may restrict the possible candidates α for
which ({2nα})n≥1 could have PPC. To do so, we consider the following result which has
been shown independently by Grepstad and Larcher [14], Aistleitner, Lachmann and
Pausinger [4], and Steinerberger [30].

Theorem 7.5. If the sequence (xn)n≥1 in [0, 1) has PPC, then (xn)n≥1 is uniformly dis-
tributed in [0, 1).

Remark. The paper of Grepstad and Larcher also contains a quantitative version of
this result. Roughly speaking: If RN (s) tends to 2s “fast in some uniform sense,” then
the discrepancy DN of the sequence (xn)n≥1 cannot tend to zero “too slowly.”

Having this result in mind, we can restrict the set of possible choices for α, such
that ({2nα})n≥1 has PPC. The above theorem implies that for such an α the sequence
({2nα})n≥1 has to be uniformly distributed, and hence α has to be normal in base 2.

The most well-known example of a real α which is normal in base 2 is the Cham-
pernowne number, that is, the number α which has in base 2 the digit representation

α = 0. 01 10 11 100 101 110 111 1000 . . .

However, it was shown by Pirsic and Stockinger in [24], that for α the Champernowne
number, the sequence ({2nα})n≥1 doesnot havePPC.Also for further concrete examples
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like Stoneham-numbers or infinite de Bruijn-words, the sequence ({2nα})n≥1 does not
have PPC (see [20]).

Indeed, until now we do not know any concrete example of (an)n≥1, a lacunary
sequence, and a real α such that ({anα})n≥1 does have PPC.

Recently, a much more general metric result on PPC of sequences of the form
({anα})n≥1 was given in [7] which shows that there is an intimate connection between
the concept of PPC of sequences ({anα})n≥1 and the notion of additive energy of the se-
quence (an)n≥1. The concept of additive energy plays a central role in additive combi-
natorics and also appears in the study of themetrical discrepancy theory of sequences
({anα})n≥1 (see [2, 6]).

For a strictly increasing sequence a1 < a2 < a3 < ⋅ ⋅ ⋅ of positive integers, we con-
sider the first N elements a1, . . . , aN . The additive energy of a1, . . . , aN is given by

E(a1, . . . , aN ) := ∑
1≤i,j,k,l≤N
ai−aj=ak−al

1.

It is obvious that N2 ≤ E(a1, . . . , aN ) ≤ N3 always holds. In [7], the following was
shown.

Theorem 7.6. Let (an)n≥1 be a strictly increasing sequence of integers such that there
exists ε > 0 with

E(a1, . . . , aN ) = 𝒪(N
3−ε),

then ({anα})n≥1 has PPC for almost all α.

This result recovers all above mentionedmetrical results and implies several new
results and examples.

Example 7.1. If (an)n≥1 is lacunary, then E(a1, . . . , aN ) = 𝒪(N2), hence ({anα})n≥1 has
PPC for almost all α.

Example 7.2. If (an)n≥1 are the values of a polynomial f (n) ∈ ℤ[x] of degree d ≥ 2, then
E(a1, . . . , aN ) = 𝒪(N2+ε) for all ε > 0, hence ({anα})n≥1 has PPC for almost all α.

Example 7.3. Let (an)n≥1 be a convex sequence, that is, an − an−1 < an+1 − an for all n,
then it was shown by Konjagin [18] that E(a1, . . . , aN ) = 𝒪(N

5
2 ), hence ({anα})n≥1 has

PPC for almost all α.

Example 7.4. If an = [βnc] for some β > 0 and c > 1, then

E(a1, . . . , aN ) = 𝒪(max(N
5
2 ,N4−c)),

hence ({anα})n≥1 has PPC for almost all α (see [29]).

The above theorem immediately raises two natural questions.
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Question 7.1. Is it possible for an increasing sequence of distinct integers (an)n≥1
which satisfies E(a1, . . . , aN ) = Ω(N3) that the sequence ({anα})n≥1 has PPC for almost
all α?

Question 7.2. If, for almost all α, ({anα})n≥1 does not have PPC, does this imply
E(a1, . . . , aN ) = Ω(N3)?

Both questions were answered by J. Bourgain in an Appendix to [7]. Concerning
question 7.1, Bourgain showed:
– If E(a1, . . . , aN ) = Ω(N3), then there exists a set of positive measure such that
({anα})n≥1 does not have PPC for every α in this set.

This result was improved by Lachmann and Technau [19]:
– If E(a1, . . . , aN ) = Ω(N3), then there exists a set of full Lebesguemeasure such that
({anα})n≥1 does not have PPC for every α contained in this set.

Finally, in [21] this result was improved to its final form.

Theorem 7.7. If E(a1, . . . , aN ) = Ω(N3), then there is no α such that ({anα})n≥1 has PPC.

Concerningquestion 7.2 Bourgain showed that the answer to this question is “no”:
He gave a construction for a sequence (an)n≥1 with E(a1, . . . , aN ) = o(N3), such that
({anα})n≥1 does not have PPC for almost all α. Up to now, we have the following situa-
tion:

E(a1, . . . , aN ) = Ω(N3) implies that there is no α such that the sequence ({anα})n≥1
has PPC.

E(a1, . . . , aN ) = 𝒪(N3−ε) for some ε > 0 implies PPC for almost all α.
The result by Aistleitner, Larcher, and Lewko, was first extended by Bloom, Chow,

Gafni, and Walker, albeit under an additional density condition on the integer se-
quence (an)n≥1 (see [9]).

Theorem 7.8. Let a1, . . . , aN be the first N elements of an increasing sequence of positive
integers (an)n≥1 satisfying the following density condition:

δ(N) = Ωε(
1

(logN)2+2ε
),

where δ(N) := N−1#({a1, . . . , aN } ∩ {1, . . . ,N}) and suppose that

E(a1, . . . , an) = 𝒪ε(
N3

(logN)2+ε
),

for some ε > 0, then, for almost all α, the sequence ({anα})n≥1 has PPC.

Recently, Bloom and Walker (see [10]) improved over this result by showing the
following theorem.
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Theorem 7.9. There exists an absolute positive constant C such that the following is
true. Suppose that

E(a1, . . . , aN ) = 𝒪(
N3

(logN)C
),

then for almost all α, ({anα})n≥1 has PPC.

A consequence of this result is the following theorem.

Theorem 7.10. Let (an)n≥1 be an arbitrary infinite subset of the squares. Then (an)n≥1 is
metric Poissonian, that is, for almost all α, ({anα})n≥1 has PPC.

To see that this result is valid, we note that, if a1, . . . , aN denotes a finite set of
squares, then E(a1, . . . , aN ) = 𝒪(N3 exp(−c1 log

c2 N)) for some absolute positive con-
stants c1 and c2; see, for example, [28].

The proof of Theorem 7.9 relies on a new bound for GCD sums with α = 1/2, which
improves over the bound by Bondarenko and Seip (see [11]), if the additive energy of
a1, . . . , aN is sufficiently large. Note that the constant C was not specified in the above
mentioned paper, but the authors thereof conjecture that Theorem 7.9 holds for C > 1
already. This result would be best possible. To see this, consider the following result
by Walker [31].

Theorem 7.11. Let (an)n≥1 = (pn)n≥1 be the sequence of primes (note that for the primes
we have E(p1, . . . , pN ) ≍

N3

logN ). Then ({pnα})n≥1 does not have PPC for almost all α.

The region between 𝒪 ( N3

(logN)C ), C > 1, and Ω(N
3) is therefore the interesting re-

gion and one might speculate about a sharp threshold which allows to fully describe
the metrical pair correlation theory in terms of the additive energy. Further construc-
tions and examples of sequences in this “interesting region,” with an even smaller
additive energy compared to the primes, were given by Lachmann and Technau [19]:

Theorem 7.12. There exists a strictly increasing sequence of positive integers (an)n≥1
with

E(a1, . . . , aN ) = 𝒪(
N3

logN(log logN)
)

such that ({anα})n≥1 does not have PPC for almost all α.

On the other hand, they gave a positive result of the following form.

Theorem 7.13. There exists a strictly increasing sequence of positive integers (an)n≥1
with

E(a1, . . . , aN ) = Ω(
N3

logN(log log)1+ε
)

for all ε > 0, such that ({anα})n≥1 has PPC for almost all α.
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Figure 7.4

Figure 7.4 summarizes the link between the additive energy and PPC properties of
({anα})n≥1. The following question therefore is near at hand:

Is there a strict thresholdT such that anadditive energyofmagnitude smaller than
T implies PPC of ({anα})n≥1 for almost all α and an additive energy of magnitude larger
than T implies PPC for ({anα})n≥1 for almost no α? The fundamental question concern-
ing such a putative threshold was raised in [10]. The authors of this paper conjectured
that there is a sharp Khintchine-type threshold, that is, if E(a1, . . . , aN ) = Θ(N3ψ(N)),
for some weakly decreasing functionψ : ℤ≥1 → [0, 1], then, for almost all α, ({anα})n≥1
has PPC if and only if

∑
N≥1

ψ(N)
N

converges.
The negative answer to this question was given by Aistleitner, Lachmann, and

Technau [5]:

Theorem 7.14. There exists a sequence (an)n≥1 of integers with

E(a1, . . . , aN ) = Ω(
N3

(logN)
3
4+ε
)

such that ({anα})n≥1 has PPC for almost all α. Hence a threshold T cannot exist.

To conclude, the additive energy is not enough to fully describe the metrical pair
correlation theory. Some further number theoretic properties need to be considered to
cope with that problem.
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7.2 The concept of Poissonian pair correlation for
sequences in [0, 1)d

Of course, it makes sense to generalize the concept of PPC to the multi-dimensional
setting. Oneway to generalize the one-dimensional concept to amultidimensional set-
ting was defined and discussed in [16] (for a more general analysis of a multidimen-
sional PPC concept, we refer to the recent work [23]). Here, we present the definition
of [16].

Definition 7.2. Let (xn)n≥1 be a sequence in the d-dimensional unit-cube [0, 1 )d. We
say that (xn)n≥1 has PPC if for all s > 0 we have

lim
N→∞

1
N
#{1 ≤ k ̸= l ≤ N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖xk − xl‖∞ <

s
N

1
d
} = (2s)d.

For this definition of d-dimensional PPC, it again follows that (xn)n≥1 with PPC is
uniformly distributed in [0, 1 )d. Moreover, for many of the abovementioned results in
dimension d = 1 we have analogous statements in dimension d ≥ 2. For example, the
d-dimensional Kronecker sequence

({nα1}, {nα2}, . . . , {nαd})n≥1

never has PPC. The proof of this fact however needs a bit more subtle arguments than
in dimension 1.

Naturally, we would also expect that under the same condition on the additive
energy as in Theorem 7.9, the sequence

({anα})n≥1

has Poissonian pair correlations for almost all instances and, in fact, we have the fol-
lowing even better result, which is a consequence of better bounds on GCD sums for
larger exponents than 1/2.

Theorem 7.15. Let a1, . . . , aN denote the first N elements of (an)n≥1 and suppose that

E(a1, . . . , aN ) = 𝒪(
N3

(logN)1+ε
), for any ε > 0,

then for almost all choices of α = (α1, . . . , αd) ∈ ℝd,

({anα})n≥1

has PPC.

However, if the additive energy is of maximal order, that is, if we have
E(a1, . . . , aN ) = Ω(N3), then there is no α such that ({anα})n≥1 has PPC.
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Theorem 7.16. If E(a1, . . . , aN ) = Ω(N3), then for any choice of α = (α1, . . . , αd) ∈ ℝd the
sequence

({anα})n≥1,

does not have Poissonian pair correlations.

7.3 Open problems
Many questions related to the concept of PPC are still open, and we will state some
of them in this section as open problems. Note that Problem 7.4 and Problem 7.5 listed
below, were recently solved in [3] and [17], respectively.

Problem 7.1. Is it possible to extend the regions concerning the size of the additive
energy of an integer sequence (an)n≥1 in Figure 7.4? To be precise: Are there functions
φ(n) (which increases slower than (logN)C, forC the constant in Theorem7.9) andψ(n)
both tending to +∞ for n to infinity, such that:

If E(a1, . . . , aN ) = 𝒪 (
N3

φ(N)), then, for almost all α, ({anα})n≥1 has PPC.

If E(a1, . . . , aN ) = Ω (
N3

ψ(N)), then there is no α such that ({anα})n≥1 has PPC.

Problem 7.2. We know that if E(a1, . . . , aN ) = Ω(N3), then ({anα})n≥1 has PPC for no α.
We consider the following question to be of high interest: Is there a sequence (an)n≥1
with the property that for almost all α, ({anα})n≥1 does not have PPC, but there exists
a set of zero measure such that ({anα})n≥1 has PPC for every α contained in this set?

Indeed, we believe, that this is not possible, that is, we have the following.

Conjecture 7.1. If, for almost all α, ({anα})n≥1 does not have PPC, then it has PPC for
no α.

For example (by the result of A. Walker), this would imply: ({pnα})n≥1 has PPC for
no α.

Problem 7.3. Although the metrical theory of sequences of the form ({anα})n≥1 seems
to be well established, we do not know any explicit construction of α (not even in the
one-dimensional case) such that ({anα})n≥1 has Poissonian pair correlations. It is in
general very hard to construct sequences on the torus having the PPC property. The
only known explicit examples—to the best of our knowledge—of sequences with this
property are {√n}n≥1 (see [12]) and certain directions of vectors in an affine Euclidean
lattice (see [13]). Hence, of course, it would be of high interest to find more concrete
examples of sequences with PPC.

Problem 7.4. This problem concerns a possible extension of Theorem 7.1 mentioned
above. We recall that we have shown that a sequence (xn)n≥1 with a weak finite gap
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property never has PPC. We wonder whether this result can be improved by showing
that it still holds if we have to deal with a sequence having a “slowly-growing-gap”
property, that is:

There is a (slowly growing) function L and a sequence of indicesN1 < N2 < N3 < ⋅ ⋅ ⋅
such that x1, x2, . . . , xNi

always has gaps of at most L(Ni) different lengths.

Problem 7.5. Let (xn)n≥1 be thed-dimensionalHalton-sequence in anybasesq1, . . . , qd,
where d ≥ 2. Does (xn)n≥1 have PPC or not? Of course, we strongly conjecture that it
does not have PPC. In dimension d = 1, the Halton-sequence is the well-known van
der Corput sequence. In this case, the PPC property trivially does not hold. In fact, it
should not be too hard to prove this in the multidimensional case, too.

The last problemwewant to state concerns amultidimensional version of themet-
rical PPC result for the primes.

Problem 7.6. Is it true that for almost all instances of α the sequence ({pnα})n≥1, where
(pn)n≥1 denotes the primes, does not have PPC?
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8 Some of Jiří Matoušek’s contributions to
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Abstract: Jiří Matoušek, who passed away in 2015, made important advancements
in combinatorial discrepancy theory, especially for geometric set systems. This sur-
vey covers some of his work in this area, including recent work of Matoušek that has
not been surveyed before. Throughout, our goal is to emphasize how Matoušek used
concepts from computational and discrete geometry in his discrepancy work, and to
present his results in the context of recent developments in the field.
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8.1 Combinatorial discrepancy
Howwell can a probabilitymeasure μ onℝd be approximated by the uniform distribu-
tion on n points? This question, which arises in many settings, ranging from number
theory to numerical analysis and computer science, lies at the heart of discrepancy
theory. In order to formalize it, we need to define what it means for one probability
measure to approximate another. The approach taken in discrepancy theory (and also
in algorithmic randomness, computational pseudorandomness, and other fields deal-
ing with similar questions) is to say that the measures are similar if they “look the
same” to a family of test sets. More formally, suppose that μ and ν are two probability
measures defined on the same measurable space (X, Σ), and let 𝒮 be a family of mea-
surable subsets (the test sets). Then we can say that ν ε-approximates μ with respect
to 𝒮 if

sup
S∈𝒮

󵄨󵄨󵄨󵄨μ(S) − ν(S)󵄨󵄨󵄨󵄨 ≤ ε.
In measure-theoretic discrepancy theory, typically μ is the Lebesgue measure λd on[0, 1]d or some other Borel probability measure on ℝd, and ν is the discrete measure
νP defined by νP(S) = |S∩P||P| for some finite set P ⊂ ℝd. Quantitatively, we are interested
in the smallest ε for which μ is ε-approximated by some νP for P of size n. Following
the standard notation, we define the discrepancy of P ⊆ X with respect to 𝒮 and the
measure μ by

D(𝒮 ,P; μ) = sup
S∈𝒮

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨μ(S) − |S ∩ P||P| 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨,
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and the discrepancy of 𝒮 with respect to μ by

D(𝒮 , n; μ) = inf{D(P,𝒮 ; μ) : P ⊆ X, |P| = n}.
There is a large body of work studying the growth rate of the functionD(𝒮 , n; λd)with n
for different families of sets 𝒮, for example, axis-aligned boxes, half-spaces, and con-
vex sets. In this survey, however, we focus on a combinatorial analogue of this rich
theory, in which, instead of asking how well discrete measures can approximate a
continuous one, we ask how well discrete measures with small support can approxi-
mate a measure with larger support. In the simplest variant of this question, we can
take X to be a finite set of size N, 𝒮 to be a family of subsets of X, and take μ = νX . If
the approximating set P has cardinality |P| = N

2 , we have

D(𝒮 ,P; νX) = max
S∈𝒮

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 |S|N − 2|S ∩ P|N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 1
N
max
S∈𝒮
󵄨󵄨󵄨󵄨|S \ P| − |S ∩ P|󵄨󵄨󵄨󵄨.

Then D(𝒮 , N2 ; νX) is achieved by the set P of size N
2 that minimizes the quantity

maxS∈𝒮 ||S \ P| − |S ∩ P||. Dropping the size requirement for P gives the combinatorial
discrepancy of (X,𝒮), defined by

disc(𝒮) = min
P⊆X

max
S∈𝒮
󵄨󵄨󵄨󵄨|S \ P| − |S ∩ P|󵄨󵄨󵄨󵄨.

It is common to encode membership in P by a coloring χ, in which the color of any
p ∈ P is χ(p) = +1, and the color of any p ∈ X \ P is χ(p) = −1. The discrepancy of
χ : X → {−1, +1} with respect to X is then defined by

disc(𝒮 , χ) = max
S∈𝒮
󵄨󵄨󵄨󵄨χ(S)󵄨󵄨󵄨󵄨,

where χ(S) = ∑p∈S χ(p).1 With this notation, the discrepancy of 𝒮 becomes disc(𝒮) =
min{disc(𝒮 , χ) : χ : X → {−1, +1}}.

At first, it may seem like something may be lost in these simplifications. Never-
theless, it turns out that combinatorial discrepancy is a powerful tool for designing
low discrepancy sets of points, and provides an upper bound on D(𝒮 , n; μ) under very
mild assumptions on μ. Suppose that 𝒮 is a family of Borel subsets of ℝd, and μ is a
Borel measure, such that D(𝒮 , n; μ) = o(n). The restriction of 𝒮 to a finite set P ⊂ ℝd is
defined by 𝒮|P = {S ∩ P : S ∈ 𝒮}. The combinatorial discrepancy function

disc(𝒮 , n) = max{disc(𝒮|P) : P ⊂ ℝd, |P| = n}
bounds nD(𝒮 , n; μ) from above up to a universal constant, as long as disc(𝒮 , n) = o(n).2
This connection goes back at least to Beck’s work on the Tusnády problem [8].

1 In the rest of the survey, we use χ(S) = ∑p∈S χ(p) for arbitrary functions χ : X → ℝ.
2 See [34, 1] for precise statements.
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The connection between the combinatorial and measure-theoretic notions of dis-
crepancymotivates the study of combinatorial discrepancy for natural families of geo-
metric shapes 𝒮. Then bounds on disc(𝒮 , n) can be used to bound D(𝒮 , n; μ) uniformly
for any sufficiently nice measure μ. This research direction, initiated by Beck, was
advanced spectacularly in the work of Jiří Matoušek. The present survey will give a
glimpse into someof thebeautifulwork ofMatoušek in combinatorial discrepancy the-
ory, both for geometric sets and in more abstract combinatorial settings. We will see
the interplay between computational and discrete geometry and combinatorial dis-
crepancy in his work. We will also cover his most recent work in discrepancy, which
has not been surveyed before. For many results, we will sketch simpler proofs that are
made possible by recent developments in discrepancy theory.

Matoušek was one of the great expositors of mathematics, and the interested
reader is encouraged to refer to his book, Geometric Discrepancy [34], for a thor-
ough introduction to this subject. The author of this survey is inspired by Matoušek’s
beautifully lucid style, even if he cannot hope to truly match it.

8.2 The discrepancy of half-spaces and
VC-dimension

In order to gain intuition into combinatorial discrepancy, let us explore some basic
bounds on the discrepancy of an arbitrary family 𝒮 ofm subsets of a finite set X of size
n. (From now on, we will call the pair (𝒮 ,X) a set system, and when X is clear from the
context, we will refer to 𝒮 itself as the set system.) An elementary application of the
probabilistic method (see, e. g., Lecture 4 of [49]) shows that disc(𝒮) = O(√n log(m)),
and this discrepancy is achieved, with high probability, by independently assigning
each p ∈ X a uniformly random color in {−1, +1}. When m is sufficiently large, this
bound cannot be improved. For example, in one extreme case, we can take 𝒮 to be the
powerset of X. Then, whatever coloring χ : X → {−1, +1} we choose, the sets {p ∈ X :
χ(p) = −1} and {p ∈ X : χ(p) = +1} are both in 𝒮, and the larger of themhas discrepancy
at least n/2. Surprisingly, when m is linear in n or smaller, one can do better than a
uniformly random coloring. Spencer [48] showed that disc(𝒮) = O(√n log(m/n))when
m > n, and disc(𝒮) = O(√m) when m ≤ n. Later in this survey we will come back to
the methods used in Spencer’s proof.

The discussion above concerns entirely unstructured collections of sets, for which
specialized methods offer only logarithmic factor improvements over simple proba-
bilistic constructions. By contrast, the set systems that arise in applications of dis-
crepancy typically have more structure. An example, considered in the work of Ma-
toušek, Welzl, and Wernisch [30], is the construction of an ε-approximation for geo-
metric families of sets. An ε-approximation of a probability measure μ with respect to
𝒮 is simply a point set P such that D(𝒮 ,P; μ) ≤ ε. Let us use ℋd to denote the family
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of half-spaces in ℝd, that is, all sets of the form {p ∈ ℝd : ⟨a, p⟩ ≤ b} where a ∈ ℝd,
b ∈ ℝ, and ⟨⋅, ⋅⟩ is the standard inner product. Constructing small ε-approximations of
discrete distributions μwith respect toℋd (and other geometric families) is of interest
in computational geometry, since often a computational problem can be solved on the
ε-approximation rather than on a full specification of μ, resulting in much better run-
ning time at the cost of some loss in accuracy. As discussed in the previous section, the
existence of small ε-approximations is implied by upper bounds on disc(ℋd, n), and
this motivated Matoušek, Welzl, and Wernisch to study this quantity. They identified
combinatorial properties that distinguish ℋd, and other geometric families of “low
complexity,” from unstructured set systems, and result in nontrivially small combina-
torial discrepancy. Subsequent work of Matoušek further sharpened their results. We
review this line of work below.

8.2.1 The primal shatter function

Let P be a set of n points in ℝd, and recall that ℋd|P is the collection of subsets of
P induced by half-spaces, that is, ℋd|P = {P ∩ H : H ∈ ℋd}. One simple but key
property of half-spaces is that, for any fixed d, ℋd|P has size polynomial in n. This is
because any d-dimensional half-space H can be shifted and rotated so that it rests on
d points of P, without changing H ∩ P. So, any set in ℋd|P is determined by a sub-
set of d points in P and a choice of whether they lie in or out of the half-space, giv-
ing a bound of |ℋd|P | ≤ 2d(nd) = O(nd).3 Many geometric families of sets share this
property, and Matoušek, Welzl, and Wernisch showed that it is sufficient for estab-
lishing nontrivial discrepancy upper bounds. To state their results, let us introduce
the standard definition of the primal shatter function π𝒮 : ℕ → ℕ of a family 𝒮 of
subsets of ℝd, given by π𝒮 (n) = max{|𝒮|P | : P ⊂ ℝd, |P| = n}. We just established
that πℋd

(n) = O(nd); a similar argument shows, for example, that πℬd
(n) = O(nd+1),

where ℬd is the family of all Euclidean balls in ℝd, and that πℛd
(n) = O(n2d), where

ℛd is the family of axis-aligned boxes in ℝd. More generally, recall that the Vapnik–
Chervonenkis (VC)-dimension VCdim(𝒮) of 𝒮 is defined to be the largest n such that
there exists aP ⊂ ℝd of sizen forwhich𝒮|P is thepowerset ofP. Then theSauer–Shelah
lemma shows that π𝒮 (n) = O(nVCdim(𝒮)) [53, 46, 47]. Nevertheless, direct bounds on
the shatter function are often tighter and easier to establish than bounds via the VC-
dimension.

We are now ready to state one of the main results in [30].

Theorem 8.1 (Matoušek, Welzl, and Wernisch [30]). Suppose that a family 𝒮 of subsets
of ℝd satisfies π𝒮 (n) = O(nκ) for κ > 1. Then disc(𝒮 , n) = O(n 1

2−
1
2κ log(n) 12+ 1

2κ ).
3 Here and in the rest of the survey, the asymptotic notation treats d as a fixed constant.

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



8 Some of Jiří Matoušek’s contributions to combinatorial discrepancy theory | 151

Roughly speaking, Theorem 8.1 shows that the discrepancy of half-spaces is poly-
nomially smaller than the discrepancy achievable by a simple random coloring. The
key property of families of sets with polynomially bounded shatter function that en-
ables this nontrivial upper bound is a form of combinatorial compactness. Recall that,
by a simple volume argument, the number of d-dimensional Euclidean balls of ra-
dius δ that we can fit inside a unit Euclidean ball is no more than (1/δ)d. A deep con-
sequence of the polynomial bound on the shatter function is that, for any P ⊂ ℝd,
the sets in ℋd|P satisfy an analogous packing bound. In the context of the following
lemma, we say that a collection 𝒫 of subsets of a finite set P is δ-separated if for any
two P󸀠,P󸀠󸀠 ∈ 𝒫 we have |P󸀠 △ P󸀠󸀠| ≥ δ|P|, where P󸀠 △ P󸀠󸀠 = (P󸀠 \ P󸀠󸀠) ∪ (P󸀠󸀠 \ P󸀠) is the
symmetric difference.

Lemma 8.2 (Haussler [25]). Suppose that a family 𝒮 of subsets of ℝd satisfies π𝒮 (n) =
O(nκ). Then for any set P ⊂ ℝd, and any δ ∈ (0, 1], if 𝒫 ⊆ 𝒮|P is δ-separated, then|𝒫| = O(δ−κ).

In fact, [30] uses a simpler to prove version of the lemma with an additional
log(1/δ)κ factor in the bound on |𝒫|, which is due to Dudley [20]. Because of this, the
bound stated in their paper is larger than the one we stated in Theorem 8.1 by a√log n
factor. Plugging in Lemma 8.2 into their argument immediately gives the bound we
stated.

A typical way to use Lemma 8.2 is to construct a small net of representative sets
for 𝒮|P, as captured in the following lemma. In the statement of the lemma, 𝒮󸀠 are the
representative sets, which have the property that any set in 𝒮|P is close to a set in 𝒮󸀠,
up to a small “correction.” The set of corrections is denoted 𝒯 in the lemma.

Lemma 8.3. Suppose𝒮, κ, P, and δ are as in Lemma8.2. Then there exist two set systems
𝒮󸀠 and 𝒯 on P such that
– 𝒮󸀠 ⊆ 𝒮|P ,
– |𝒮󸀠| = O(δ−κ) and |𝒯 | ≤ 2|𝒮|P |,
– |T| < δ|P| for all T ∈ 𝒯 ,
– any S ∈ 𝒮|P can be written as S = (S󸀠 \ T) ∪ T󸀠 for some S󸀠 ∈ 𝒮󸀠 and T ,T󸀠 ∈ 𝒯 such

that T ⊆ S󸀠 and T󸀠 ∩ S󸀠 = 0.
Proof. Take 𝒮󸀠 be an inclusion-maximal δ-separated subset of 𝒮|P. By Lemma 8.2,|𝒮󸀠| = O(δ−κ). Then any S ∈ 𝒮|P satisfies |S △ S󸀠| < δ|P| for some S󸀠 ∈ 𝒮󸀠, or other-
wise, we could add S to 𝒮󸀠, contradicting the latter’s maximality. We fix an arbitrary
such S󸀠 for any S ∈ 𝒮|P and add T = S󸀠 \ S and T󸀠 = S \ S󸀠 to 𝒯 . Both |T| and |T󸀠| are
bounded by |S△ S󸀠| < δ|P|, and all the desired properties of 𝒮󸀠 and 𝒯 hold.

Lemma 8.3 shows that, under the assumption that 𝒮 has polynomially bounded
shatter function, the sets in the set system 𝒮|P induced by 𝒮 can be decomposed into
small sets 𝒯 , and a small number of large sets 𝒮󸀠. To show that 𝒮|P has small discrep-
ancy, it suffices to do so for 𝒮󸀠 ∪𝒯 , as, for any coloring χ : P → {−1, +1}, the representa-
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tion S = (S󸀠 \T)∪T󸀠 implies χ(S) = χ(S󸀠)−χ(T)+χ(T󸀠). It is easy to see that a set system
consisting of small sets has small discrepancy, for example, by assigning every point
an independent random color. Intuitively, the same is true for set systemswith a small
number of large sets: requiring that a set has small discrepancy poses a constraint on
the allowable colorings, and if there are not too many sets, then there are not enough
constraints to disallow all colorings. The influential partial coloring lemma of Beck,
formulated next, gives a precise form of these informal observations.

Lemma 8.4 (Beck [9]). Let 𝒮󸀠 and 𝒯 be set systems on a set P of size n such that |T| ≤ s
for all T ∈ 𝒯 , and ∏

S󸀠∈𝒮󸀠 (󵄨󵄨󵄨󵄨S󸀠󵄨󵄨󵄨󵄨 + 1) ≤ 2(n−1)/5.
Then there exists apartial coloring4 χ : P → {−1,0, +1} such that χ(S󸀠) = 0 for all S󸀠 ∈ 𝒮󸀠,|χ(T)| = O(√s log(|𝒯 |)) for all T ∈ 𝒯 , and, for at least n

10 points p in P, we have χ(p) ̸= 0.
Proof sketch. If we pick χ󸀠 : P → {−1, +1} to be a uniformly random coloring of P, a
standard application of Hoeffding’s inequality shows that

Pr(max
T∈𝒯
󵄨󵄨󵄨󵄨χ󸀠(T)󵄨󵄨󵄨󵄨 > √2s ln(4|𝒯 |)) < 12 .

Equivalently, the set 𝒞 of colorings χ󸀠 of P such that maxT∈𝒯 |χ󸀠(T)| ≤ √2s ln(4|𝒯 |) has
size at least 2n−1.

On the other hand, the number of different values that the vector (χ󸀠(S󸀠))S󸀠∈𝒮󸀠 can
take for different colorings χ󸀠 : P → {−1, +1} of P is at most∏S󸀠∈𝒮󸀠 (|𝒮󸀠| + 1), which is
bounded by 2(n−1)/5 by assumption. Then the pigeonhole principle implies that there
must be a set 𝒞󸀠 ⊆ 𝒞 of colorings of P of size at least 24(n−1)/5 so that any two χ󸀠, χ󸀠󸀠 ∈ 𝒞󸀠
satisfy χ󸀠(S󸀠) = χ󸀠󸀠(S󸀠) for all S󸀠 ∈ 𝒮󸀠. Let us fix one such χ󸀠 ∈ 𝒞󸀠. Since the size of 𝒞󸀠
is much larger than the number of colorings of P which agree with χ󸀠 on > 9n

10 of the
points in P, there must be at least one χ󸀠󸀠 ∈ 𝒞󸀠 for which χ󸀠(p) ̸= χ󸀠󸀠(p) for at least n

10
points p ∈ P. We can then take χ = 1

2 (χ󸀠 − χ󸀠󸀠) as our partial coloring.
We now have everything in place to sketch the proof of Theorem 8.1. Once again,

our goal is to show that for an arbitrary P ⊂ ℝd of size n, the discrepancy is bounded
as disc(𝒮|P) = O(n 1

2−
1
2κ log(n) 12+ 1

2κ ). We define 𝒮󸀠 and 𝒯 as in Lemma 8.3 with δ on
the order of O( log(n)1/κn1/κ ). Then 𝒮󸀠 and 𝒯 satisfy the assumptions of Lemma 8.4 with
s = O(n1− 1κ log(n) 1κ ) and 𝒯 ≤ 2|𝒮|P | = O(nκ). The lemma gives us a partial coloring χ :
P → {−1,0, +1} such that at least n

10 points receive a nonzero color, and the discrepancy
of any set S ∈ 𝒮|P is bounded by󵄨󵄨󵄨󵄨χ(S)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨χ(S󸀠)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨χ(S󸀠󸀠1 )󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨χ(S󸀠󸀠2 )󵄨󵄨󵄨󵄨 = O(n 1

2−
1
2κ log(n) 12+ 1

2κ ),
4 We call a function χ : P → {−1,0, +1} a partial coloring, since we can think of the elements receiving
color 0 as uncolored.
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where S = (S󸀠 \ T) ∪ T󸀠 is the representation of S from Lemma 8.3. We can now in-
ductively find a full coloring χ󸀠 : P0 → {−1, +1} of the set P0 of points p ∈ P for which
χ(p) = 0, and define a full coloring of P by χ + χ󸀠. The induction to complete the par-
tial coloring to a full one increases the discrepancy by only a constant factor, since
the size of the set of points we are working with decreases geometrically with every
application of Lemma 8.4.

Subsequently, Matoušek strengthened the discrepancy upper bound in Theo-
rem 8.1 to disc(𝒮 , n) = O(n 1

2−
1
2κ ) [32]. The key to this improvement is a refined version

of the partial coloring lemma, which is due to Spencer [48], used in conjunction with
a more careful decomposition lemma. Spencer introduced his partial coloring lemma
in the proof of his upper bound on the discrepancy of arbitrary set systemswithm sets
and n elements, which we mentioned above. We give a more recent, stronger version
of the lemma, due to Lovett and Meka, and proved using different methods.

Lemma 8.5 (Lovett and Meka [29]). Let 𝒮 be a set system on a set P of size n, let χ0 :
P → [−1, +1] be a fractional coloring, and let λ : 𝒮 → ℝ≥0 be such that∑

S∈𝒮
e−

λ(S)2
16 ≤ n

16
.

Then there exists a fractional coloring χ : P → [−1, +1] such that |χ(S)−χ0(S)| ≤ λ(S)√|S|
for any S ∈ 𝒮, and, for at least n

10 points p in P, we have χ(p) ∈ {−1, +1}.
To gain some intuition, let us compare this lemma to Lemma 8.4. Let us take 𝒮 =

𝒮󸀠 ∪ 𝒯 , where 𝒮󸀠 and 𝒯 are as in Lemma 8.4. It makes sense to assume that any set
in 𝒮󸀠 has size at least s, as we can move the set to 𝒯 otherwise. Then the condition
on 𝒮󸀠 implies that |𝒮󸀠| ≤ n−1

5 log2(s)
, which is less than n−1

16 for all large enough s. Setting
λ(S󸀠) = 0 for S󸀠 ∈ 𝒮󸀠, and λ(T) = 4√log(16|𝒯 |) for T ∈ 𝒯 , we get that∑

S∈𝒮
e−

λ(S)2
16 ≤ n

16
,

and the condition in Lemma 8.5 is satisfied. Ignoring the distinction between a partial
and a fractional coloring, which is usually immaterial, Lemma 8.4 can be thought of
as a very special case of Lemma 8.5, in which the value of λ on any set must be either
0 or logarithmic in the total number of sets. Defining λ in a more flexible way leads to
tighter discrepancy bounds in many cases.

In order to utilize (Spencer’s variant of) Lemma 8.4, Matoušek refined the de-
composition in Lemma 8.3, by applying it recursively. Applying Lemma 8.3 once with
δ = 2

n , where n = |P|, we get that any set S in 𝒮|P is “close” to a set S󸀠 in the subcollec-
tion 𝒮󸀠 ⊆ 𝒮|P, in the sense that we canwrite S = (S󸀠 \T)∪T󸀠 for small sets T ,T󸀠 ∈ 𝒯 . Let
us rename 𝒮|P to 𝒮0, 𝒮󸀠 to 𝒮1, and the set of “corrections” 𝒯 to 𝒯1. Restating Lemma 8.3
in this notation, we know that
– 𝒮1 ⊆ 𝒮0,
– |𝒮1| = O((n/2)κ) and |𝒯1| ≤ 2|𝒮0|,
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– |T| < 2 for all T ∈ 𝒯1,
– any S ∈ 𝒮0 can be written as S = (S󸀠 \ T) ∪ T󸀠 for some S󸀠 ∈ 𝒮1 and T ,T󸀠 ∈ 𝒯1 such

that T ⊆ S󸀠 and T󸀠 ∩ S󸀠 = 0.
The first property implies that 𝒮1 again satisfies the assumptions of Lemma 8.3, and
we can apply it again with δ = 4

n , giving us a subcollection 𝒮2 = 𝒮󸀠1 of size O((n/4)κ)
and a set of corrections 𝒯2, where each set T ∈ 𝒯2 is of size |T| < 4, and |𝒯2| ≤ 2|𝒮1|. Con-
tinuing in this manner, we get collections of sets 𝒯1, . . . , 𝒯ℓ such that |𝒯i| = O((n/2i−1)κ)
and |T| < 2i for every T ∈ 𝒯i. We stop when 𝒯ℓ has size 1, which happens for someℓ = O(log(n)). We can write any S ∈ 𝒮|P as

S = (. . . (((Tℓ \ Tℓ−1) ∪ T󸀠ℓ−1) \ Tℓ−2) ∪ . . . \ T1) ∪ T󸀠1 , (8.1)

where Ti,T󸀠i ∈ 𝒯i, all unions are between disjoint sets, and all set differences remove a
set from a superset of it. This recursive decomposition is reminiscent of the technique
of chaining used in the theory of stochastic processes; see, for example, [51]. It is also
of independent interest, and was used, for example, by the author of this survey in
work on algorithms for private data analysis [41].

We can now apply Lemma 8.5 to 𝒯1 ∪ ⋅ ⋅ ⋅ ∪ 𝒯ℓ, and a fractional coloring χ0 set to be
0 on all points in P. We define λ so that λ(T) = 2−i/2n 1

2−
1
2κϕ(i) for any set T ∈ 𝒯i and a

function ϕ which we will choose shortly. Let us ignore, for simplicity, the constant in
the asymptotic notation and assume that |𝒯i| ≤ nκ

2κ(i−1) . Then we have
ℓ∑
i=1
∑
T∈𝒯i

e−
λ(T)2
16 ≤ 21+κ ℓ∑

i=1

nκ

2κi
exp(−n1− 1κϕ(i)2

2i+4
).

Let us focus on the term on the right-hand side corresponding to the value of i closest

to i0 = log2(n1− 1κ ). We have nκ
2κi0 = n, and n1− 1κ ϕ(i0)2

2i0+4 = ϕ(i0)2
16 . Setting ϕ(i0) to be a large

enough constant ensures that this term is much smaller than n
16 . We want to make

sure that this is the dominating term,whichhappens for a large class of nicely behaved
functionsϕ. For example, we can chooseϕ(i) = c2−|i−i0|/64 for a sufficiently large c > 0.
Now the entire sum is bounded by n

16 , and the conditions of Lemma 8.5 are satisfied.
The lemma guarantees the existence of a fractional coloring χ such that, for at least n

10
points p, we have χ(p) ∈ {−1, +1}, and for any T ∈ 𝒯i, |χ(T)| ≤ cn 1

2−
1
2κ 2−|i−i0|/64. Taking

an arbitrary S ∈ 𝒮|P and representing it as in (8.1), we have󵄨󵄨󵄨󵄨χ(S)󵄨󵄨󵄨󵄨 ≤ ℓ∑
i=1

󵄨󵄨󵄨󵄨χ(Ti)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨χ(T󸀠i )󵄨󵄨󵄨󵄨 ≤ 2c ℓ∑
i=1

n
1
2−

1
2κ 2−|i−i0|/64 = O(n 1

2−
1
2κ ).

It is now apparent why we didn’t just set ϕ to be a constant function: such a choice
would not be enough to get the sum above to converge. The final step is to repeat this
construction with the points p ∈ P for which −1 < χ(p) < +1. We can treat their color
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χ(p) as χ0(p) in a new application of Lemma 8.5, and continue in this fashion until
all colors become −1 or +1. This inductive process only increases the discrepancy by a
constant, as the number of points with colors between −1 and +1 drops exponentially
fast. The result is summarized in the following theorem.

Theorem 8.6 (Matoušek [32]). Suppose that a family𝒮 of subsets ofℝd satisfiesπ𝒮 (n) =
O(nκ) for κ > 1. Then disc(𝒮 , n) = O(n 1

2−
1
2κ ).

Theorem 8.6 is tight up to constants, even in the special case when 𝒮 = ℋd. This
was shown by Alexander [2], and a more direct and elementary proof of the lower
bound was given by Chazelle, Matoušek, and Sharir [19].

8.2.2 The dual shatter function

In the previous section, we explored the consequences for combinatorial discrepancy
of the observation that there are at most O(nd) sets induced by half-spaces on a set of
n points inℝd. Another sense in which half-spaces and hyperplanes are well behaved
is that a bounded number of hyperplanes divide ℝd into relatively few regions. More
precisely, any arrangement ofm lines inℝ2 divides the plane into at most O(m2) cells,
which can be easily verified with Euler’s formula. In general, an arrangement of m
hyperplanes in ℝd divides ℝd into O(md) cells. These observations can be captured
abstractly by the dual shatter function π∗𝒮 : ℕ → ℕ of a collection of subsets 𝒮 of ℝd.
Given a subcollection 𝒮󸀠 ⊆ 𝒮, let us call a set of points P ⊂ ℝd distinguishable by 𝒮󸀠 if,
for any two distinct points p and q in P, there is some S ∈ 𝒮󸀠 such that |S ∩ {p, q}| = 1.
Then we define

π∗𝒮 (m) = max{|P| : P ⊂ ℝd,𝒮󸀠 ⊆ 𝒮 , 󵄨󵄨󵄨󵄨𝒮󸀠󵄨󵄨󵄨󵄨 = m,P is distinguishable by 𝒮󸀠}.
The fact about the number of cells in an arrangement of hyperplanes above can be
expressed by the bound π∗ℋd

(m) = O(md). There is a sense in which the dual shatter
function is, in fact, the dual of the shatter function. In particular, let us define the dual
set system 𝒮∗ of 𝒮 as the collection of sets Sp, indexed by points p ∈ ℝd, and defined
by Sp = {S ∈ 𝒮 : p ∈ S}. Then π∗𝒮 = π𝒮∗ , since a point set P being distinguishable by
𝒮󸀠 ⊆ 𝒮 is equivalent to the sets Sp ∩ 𝒮󸀠 being distinct for all p ∈ P and, therefore, the
largest set of points distinguishable by 𝒮󸀠 equals the cardinality of 𝒮∗|𝒮󸀠 . Moreover,
the classical duality between points and hyperplanes gives an isomorphism between
ℋd and ℋ∗d , which implies that π∗ℋd

= πℋ∗d = πℋd
. These observations explain the

bound π∗ℋd
(m) = O(md) as being just the primal shatter function bound in disguise. Of

course, this sort of self-duality is rare, and often the primal and dual shatter function
can have different orders of growth. For example, the set of Euclidean balls ℬd in ℝd
satisfies πℬd

(n) = O(nd+1) and π∗ℬd
(m) = O(md). In his book on geometric discrepancy,

Matoušek describes how bounds on the dual shatter function for semi-algebraic sets
can be derived from basic results in real algebraic geometry [34].
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The fact that the dual shatter function can sometimes have a slower order of
growth than the primal shatter function motivates the question whether disc(𝒮 , n)
can be bounded in terms of π∗𝒮 . Such a bound was also proved by Matoušek, Welzl,
and Wernisch, and is the second result from their paper that we discuss.

Theorem 8.7 (Matoušek, Welzl, and Wernisch [30]). Suppose that a family𝒮 of subsets
of ℝd satisfies π∗𝒮 (m) = O(mκ) for κ > 1. Then disc(𝒮 , n) = O(n 1

2−
1
2κ√log(n)).

The proof of Theorem 8.7 relies on a deep theorem of Welzl establishing the ex-
istence of paths which are not crossed too many times by sets in a collection 𝒮 with
polynomially bounded dual shatter function. In the following, we say that a pair of
points {p, q} in ℝd is crossed by a set S ∈ 𝒮 if |S ∩ {p, q}| = 1.
Theorem 8.8 (Welzl [54]). Suppose that a family 𝒮 of subsets of ℝd satisfies π∗𝒮 (m) =
O(mκ) for some constant κ > 1. Then, for any set P of n points in ℝd, there exists an
ordering p1, . . . , pn of P so that any set S ∈ 𝒮 crosses at most O(n1− 1κ ) pairs of consecutive
points {pi, pi+1}.

In fact, Welzl states the weaker bound O(n1− 1κ log n) on the number of crossed
pairs, but once again, this is due only to using a weaker packing bound than that in
Lemma 8.2. Because of this, the discrepancy bound stated in [30] is also weaker than
the one in Theorem 8.7, but plugging in Theorem 8.8 in their argument immediately
yields the bound we give.

In order to give some intuition behind Theorem 8.8, let us fix some set of points
P, and consider a game between two players: the Max player proposes a (multi-)set 𝒮󸀠

of sets from 𝒮|P, and the Min player answers with a pair of points p, q ∈ P. The Min
player pays to the Max player an amount equal to the fraction of sets in 𝒮󸀠 that cross{p, q}. TheMaxplayerwants tomaximize thepaymenthe receives,while theMinplayer
wants to minimize the payment she makes. An application of Lemma 8.2 to the dual
set system (𝒮|P)∗ shows that for any choice of 𝒮󸀠, Min can find a pair {p, q} crossed by
at most O( |𝒮󸀠|n1/κ ) sets in 𝒮󸀠. Then the von Neumann’s minimax theorem in game theory
implies that one can switch the order of the players, without changing the value of the
game: Min can go first, and play a (multi)set E of pairs of points from P, so that Max
cannot find any set S ∈ 𝒮|P which crossesmore thanO( |E|n1/κ ) pairs in E. This is not quite
enough to prove Theorem 8.8, because there is no guarantee that E forms a path, or
that it spans all the points in P. These issues can be fixed by adapting a constructive
proof of the minimax theorem via the multiplicative weights update method [21, 3].

With Theorem 8.8 in hand, Theorem 8.7 follows by an ingenious application of
the probabilistic method. We split the ordering from Theorem 8.8 into disjoint pairs{p1, p2}, {p3, p4}, . . ., {p2k−1, p2k}, possibly leaving a singleton point pn if n is odd. Then
we choose a random coloring χ : P → {−1, +1} so that, for any pair {p2i−1, p2i}, χ(p2i−1)
is uniform in {−1, +1} and χ(p2i−1) = −χ(p2i), while the colors for points not in the
same pair are independent. The only pairs of points that contribute a nonzero value
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to the discrepancy χ(S) of a set S ∈ 𝒮|P are those crossed by S. Moreover, each of the
O(n1− 1κ ) crossed pairs contributes either −1 or +1 to χ(S), independently andwith equal
probability. A standard application of Hoeffding’s inequality then shows that, for any
S ∈ 𝒮|P,

Pr(󵄨󵄨󵄨󵄨χ(S)󵄨󵄨󵄨󵄨 ≥ ctn 1
2−

1
2κ ) ≤ 2e−t2/4,

for a large enough constant c > 0. Setting t = 2√log(4m) form = |𝒮|P | and applying the
union bound, we get that, with probability at least 1

2 , disc(𝒮|P , χ) = O(n 1
2−

1
2κ√logm).

The proof is complete by the fact that π𝒮 is polynomially bounded if and only if π∗𝒮 is,
som ≤ π𝒮 (n) = O(nκ󸀠 ) for some constant κ󸀠.

We remark that Theorem 8.8 was originally proved by Welzl for the purpose of
constructing a range counting data structure5 for geometric sets. In the next section,
we will see more examples fromMatoušek’s work of using ideas from range searching
data structures to prove discrepancy upper bounds.

Theorem 8.7 and the bound πℬd
(m) = O(md) imply that disc(ℬd, n) =

O(n 1
2−

1
2d√log n), which is tighter than the bound O(n 1

2−
1

2d+2 ) implied by Theorem 8.6.
It is natural to wonder whether this bound can be further improved to disc(ℬd, n) =
O(n 1

2−
1
2d ), and this remains a fascinating open question. More generally, one may ask

if the conclusion of Theorem 8.7 holds without the √log n factor, in analogy with
Theorem 8.6. Perhaps surprisingly, Matoušek showed this is not true even for κ = 2.
Theorem 8.9 (Matoušek [33]). For any natural number n and for κ = 2 or κ = 3,
there exists a set system 𝒮 on n elements6 with π∗𝒮 (m) = O(mκ) such that disc(𝒮) =
Ω(n 1

2−
1
2κ√log n).

We describe the construction used by Matoušek to prove Theorem 8.9 in the case
κ = 2. Let 𝔽 be a finite field of order q. Matoušek starts with the set system 𝒯 contain-
ing all sets Tf ⊆ 𝔽 × 𝔽 defined by a degree 2 polynomial f as Tf = {(x, f (x)) : x ∈ 𝔽}. 𝒯
is a set system over a universe of size n = q2, in which every set has size q = √n and|𝒯 | = q2(q − 1) = n3/2 − n. Moreover, for any two distinct Tf ,Tg ∈ 𝒯 , |Tf ∩ Tg | ≤ 2, since
quadratic polynomials that agree onmore than 2 points must be identical. A counting
argument reveals that π∗𝒯 (m) ≤ m2. Indeed, fix any m distinct sets T1, . . . ,Tm from 𝒯 ,
and, for any (x, y) ∈ 𝔽 × 𝔽, define the vector u(x, y) ∈ {0, 1}m by setting u(x, y)i = 1 if
and only if (x, y) ∈ Ti. This vector indicates which sets Ti the ordered pair (x, y) be-
longs to, and the maximum number of elements (x, y) distinguishable by {T1, . . . ,Tm}
5 A range counting data structure for𝒮 is away to store a set of pointsP ⊂ ℝd in a computer’smemory,
so that the count |S ∩ P| can be computed quickly for every S ∈ 𝒮. The goal is to be able to compute
|S ∩ P| in fewer than O(|P|) steps.
6 So far, we have only discussed shatter functions for subsets of ℝd, but it should be clear that the
definitions make sense in the abstract setting of arbitrary set systems, too.
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is equal to the number of distinct values taken by u(x, y) over x, y ∈ 𝔽. The number of
distinct vectors u(x, y) with only a single 1 entry is obviously bounded bym. Suppose
that (x1, y1), . . . , (xk , yk) are the pairs for which the vector u(xℓ, yℓ) has at least two en-
tries equal to 1, and let us count triples (ℓ, i, j) such that u(xℓ, yℓ)i = u(xℓ, yℓ)j = 1 in
two ways in order to bound k. On one hand, the number of such triples is at least k.
On the other hand, for each choice of i and j, there are at most two triples (ℓ, i, j) and(ℓ󸀠, i, j) of this type, because |Ti ∩ Tj| ≤ 2, and any triple (ℓ, i, j) corresponds to a pair(xℓ, yℓ) that belongs to both Ti and Tj. Therefore, k is bounded by the total number
of triples, which is, in turn, bounded by 2(m2 ). Putting things together, we have that|{u(x, y) : x, y ∈ 𝔽}| ≤ m + 2(m2 ) = m2. In fact, one can check that this argument still
holds if we replace any set in 𝒯 with a subset of it. Matoušek constructs 𝒮 by inde-
pendently taking a uniformly random subset of each T ∈ 𝒯 . He shows that, with high
probability, the discrepancy of 𝒮 is bounded from below as in Theorem 8.9. The fact
that 𝒯 has a superlinear (in n) number of sets of size√n is crucial for this probabilistic
argument.

As is apparent from the construction, the set system 𝒮 does not have a natural
geometric structure: every set in𝒮 is a randomsubsample of the graph of a polynomial
function over a finite field. Proving Theorem8.9 for any natural collection of geometric
sets in ℝd (e. g., the set of Euclidean balls ℬd) is an interesting challenge.

8.3 Sets with product structure

So far, we saw examples of geometric set systems that have combinatorial discrep-
ancy polynomially smaller than that of an arbitrary set system. It turns out that some-
times the improvement can be even exponential, and the discrepancy depends only
logarithmically on the number of points. The simplest example is ℛd, the family of
axis-aligned boxes in ℝd, that is, sets of the form [a1, b1] × ⋅ ⋅ ⋅ × [ad, bd] for a, b ∈ℝd. The problem of determining disc(ℛd, n) was posed by the Hungarian probabilist,
Tusnády, in the early 1980s, and has a rich history (see [38] and [44] for references
to the relevant literature). The family of axis-aligned boxes can be generalized in at
least two directions: we can consider polytopes that are the intersection of half-spaces
whose normals do not necessarily form an orthogonal basis; we can also consider sets
which are products of lower-dimensional sets other than intervals. Using insights from
range searching data structures, Matoušek proved discrepancy upper bounds for axis-
aligned boxes, as well as for both of these generalizations.

Before we describe Matoušek’s results related to sets with product structure, let
us briefly mention one important motivation for studying disc(ℛd, n). Recall that, by
the general connection between combinatorial and measure-theoretic discrepancy,
1
ndisc(ℛd, n) bounds D(ℛd, n; μ) from above for any Borel measure μ. Because of the
Koksma–Hlawka inequality (see, e. g., [43]), estimates on D(ℛd, n; μ) are of interest in
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numerical integration. It is a classical fact that for the Lebesgue measure λd on [0, 1]d,
D(ℛd, n; λd) = O( log(n)d−1n ) [23, 24]. The best known upper bound on disc(ℛd, n) [44]
extends this result and implies that D(ℛd, n; μ) = O( log(n)d− 12n ) for any Borel measure
μ. In the combinatorial setting, we know a nearly tight lower bound of Ω( log(n)d−1n ) on
1
ndisc(ℛd, n), due to work by Matoušek, Talwar, and the author [40, 38]. By contrast,
the largest known lower bound for the Lebesguemeasure discrepancy is Ω( log(n) d−12 +ηdn )
for a small constant ηd > 0 that goes to 0 with the dimension [14]. Closing the gap be-
tween the upper and lower bounds on D(ℛd, n; λd) is often called the great open prob-
lem in discrepancy theory. The combinatorial lower bounds suggest that the correct
order of growth may be the one given by the current upper bound.

We start with Matoušek’s upper bound on the discrepancy of axis-aligned boxes,
which was the best known result until very recently.

Theorem 8.10 (Matoušek [35]). For any positive integer d,

disc(ℛd, n) = O(log(n)d+ 12√log log(n)).
Matoušek’s proof was based on Beck’s original partial coloring lemma (Lem-

ma 8.4). We will sketch his proof, but will replace Lemma 8.4 by Lemma 8.5. This
slight change simplifies the calculations, and also improves the upper bound to
O(log(n)d+ 12 ). In the special case d = 2, this latter bound was also proved by Srini-
vasan [50] using a slightly different approach. The first published proof of the
O(log(n)d+ 12 ) upper bound for all d is due to Larsen [26], and uses different meth-
ods, to which we will return in the next section.

The key tool in the proof of Theorem 8.10 is a decomposition inspired by the range
tree data structure in computational geometry [13]. This is the second example we see
of ideas from data structures used by Matoušek in the context of discrepancy theory.
For simplicity, let us describe the construction in two dimensions. Suppose that P ⊂ℝ2 is a n-point set; without loss of generality, we may assume that n is a power of 2,
and that all points in P have distinct x- and y-coordinates. For any subset Q of P we
define a collection 𝒞x(Q) of sets by ordering Q as p1, . . . , pk, in increasing order of the
x-coordinate, and defining Cxℓ,i(Q) = {p(i−1)2ℓ+1, . . . , pi2ℓ } and

𝒞x(Q) = {Cxℓ,i(Q) : 0 ≤ ℓ ≤ ⌊log2(k)⌋, 1 ≤ i ≤ ⌊k/2ℓ⌋}.
We define Cyℓ,i(Q) and 𝒞y(Q) analogously, but ordering Q in increasing order of the
y-coordinate. When Q = P, we write simply 𝒞x for 𝒞x(P). 𝒞x(Q) and 𝒞y(Q) are called,
respectively, canonical intervals in the x- and the y-coordinate. We then form the col-
lection 𝒞 of canonical boxes by taking pairwise intersections, that is, 𝒞 = {C ∩ C󸀠 : C ∈
𝒞x ,C󸀠 ∈ 𝒞y(C)}. We can think of 𝒞x as a complete binary tree T: each set in 𝒞x is a node
in T, with singleton sets as the leaves, and any set Cxℓ,i of size 2

ℓ for ℓ > 0 is connected
to the two sets of size 2ℓ−1 contained in it. To represent all of 𝒞, we associate a similar

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



160 | A. Nikolov

binary tree with each node of T, where the binary tree TC associated with C ∈ 𝒞x has
the sets {C ∩ C󸀠 : C󸀠 ∈ 𝒞y(C)} as its nodes. These are the range trees mentioned earlier.

The key fact about 𝒞, and range trees, is that any box inℛ2|P can be written as the
union of O(log(n)2) disjoint canonical boxes from 𝒞. To do so, it is enough to take at
most two canonical intervals in 𝒞x from each level of the binary tree T, and intersect
each such interval C with at most two canonical intervals from every level of TC. In
data structures, this decomposition allows efficiently listing all the points in any set
inℛ2|P by navigating through the range tree. In the context of discrepancy, we use it
as a way to get an analogue of Lemma 8.3 for boxes, formulated in the lemma below.
We use the notation 𝒞y≥t(Q) for the subset of 𝒞y(Q) containing only sets with at least t
points, and also 𝒞≥t = {C ∩ C󸀠 : C ∈ 𝒞x ,C󸀠 ∈ 𝒞y≥t(C)}.
Lemma 8.11. For any positive integer t, any box R ∈ ℛ2|P can be written as the union of
O(log(n)2) sets in 𝒞≥t , and a set TR of size O(t log(n)), where all the sets in the union are
disjoint.

To see why the lemma is true, consider the decomposition of any R ∈ ℛ2|P into
canonical boxes described above. We remove all boxes which do not belong to 𝒞≥t
from this decomposition, and define TR to be their union. For each level of the binary
tree representing 𝒞x, this construction addsO(t) elements to TR, which gives the upper
bound on |TR|.

We can now complete the proof of Theorem8.10. For a choice of t to be determined
soon, let 𝒯 = {TR : R ∈ ℛ2|P}, with TR defined as in Lemma 8.11, and define 𝒮 = 𝒞≥t∪𝒯 .
We apply Lemma 8.5 to 𝒮 with λ(S) = 0 for all S ∈ 𝒞≥t and λ(TR) = c√log2(2n) for a
sufficiently large constant c > 0. We claim that |𝒞≥t | = O( n log nt ). Indeed, for each fixed
Cxℓ,i ∈ 𝒞x, 󵄨󵄨󵄨󵄨{Cxℓ,i ∩ C󸀠 : C󸀠 ∈ 𝒞y≥t(Cxℓ,i)}󵄨󵄨󵄨󵄨 = O(|Cxℓ,i|t ) = O(2ℓt ),
so, summing over all ℓ and i, we get that, for a constant c󸀠 > 0,|𝒞≥t | ≤ c󸀠 log2(n)∑

ℓ=0

n
2ℓ
⋅ 2ℓ
t
= c󸀠n(1 + log2(n))

t
.

Therefore, we can set t ≥ 16c󸀠(1 + log2(n)), and, since |𝒯 | ≤ |ℛ2|P | ≤ n4, for a large
enough constant c the set system 𝒮 and the function λ satisfy the assumptions of
Lemma 8.5. The lemma then implies a fractional coloring χ : P → [−1, +1] so that|χ(S)| ≤ λ(S)√|S| for any S ∈ 𝒮, and for at least n

10 points p in P, we have χ(p) ∈ {−1, +1}.
Since, by Lemma 8.11, any R ∈ ℛ2|P can be written as the disjoint union of sets in
𝒞≥t, which have discrepancy 0 under χ, and a single set in 𝒯 , which has discrepancy
O(log(n)3/2), we get that disc(ℛ2|P , χ) = O(log(n)3/2). Inductively completing the frac-
tional coloring to a true coloring increases the discrepancy by at most a O(log(n)) fac-
tor, giving the final bound of O(log(n)5/2). The proof for the higher dimensional case
is analogous, and only the notation becomes slightly more cumbersome.
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The decomposition in Lemma 8.11 (and its higher dimensional variant) was re-
cently used by Bansal and Garg, together with a more advancedmethod of using frac-
tional colorings, in order to give the improved bound disc(ℛd, n) = O(log(n)d) [7].
Subsequently, the author improved the upper bound to O(log(n)d− 12 ) using different
methods [44]. The best known lower bound of Ω(log(n)d−1) is due to the author and
Matoušek, and will be discussed in the next section.

As already mentioned, Theorem 8.10 can be extended in several directions. Sup-
pose that A is a finite set of vectors inℝd, and let POL(A) be the set of polytopes of the
form ⋂ℓi=1 Hi, where, for each i, Hi is a half-space {p ∈ ℝd : ⟨a, p⟩ ≤ t} for some t ∈ ℝ
and a ∈ A. In other words, POL(A) contains all polytopes whose facets have normal
vectors parallel to vectors in A. Then ℛd equals POL(A) for A = {±e1, . . . , ±ed}, where
ei is the ith standard basis vector of ℝd. Since ℛd|P, as a set system over P, does not
change after applying the same invertible linear transformation to P and to the sets in
ℛd, we get that

disc(ℛd, n) = disc(POL(A ∪ −A), n)
whenA is a basis ofℛd.WhenA is arbitrary,Matoušek showed a decomposition of any
polytope in POL(A) into a finite number of sets from POL(B1) ∪ ⋅ ⋅ ⋅ ∪ POL(Bk), where
each Bi is a basis of ℝd. Together with the techniques he used to bound disc(ℛd, n),
this decomposition allowed him to prove the following theorem.

Theorem 8.12 (Matoušek [35]). For any positive integer d, and any set of vectors A inℝd, disc(POL(A), n) = O(log(n)d+ 12√log log(n)), where the constant in the asymptotic
notation may depend on d and A.

Once again, Matoušek used Lemma 8.4 rather than Lemma 8.5 in his proof, and
using the latter, as we did for boxes above, immediately improves the bound in The-
orem 8.12 by a O(√log log(n)) factor. Similar to the case of boxes, Bansal and Garg
first improved this bound to O(log(n)d) and then the author improved it further to
O(log(n)d− 12 ) [7, 44].

Another natural generalization of the family of axis-aligned boxes is to take fami-
lies 𝒮1, . . ., 𝒮k of “nice” sets, where 𝒮i is a collection of subsets ofℝdi for some positive
integers di such that d1 + ⋅ ⋅ ⋅ + dk = d, and consider the discrepancy of

𝒮 = {S1 × ⋅ ⋅ ⋅ × Sk : S1 ∈ 𝒮1, . . . , Sk ∈ 𝒮k}. (8.2)

Boxes are the special case when all the di are equal to 1, and each 𝒮i equals the family
of all intervals of the real line. Motivated by work of Beck and Chen [10, 11], Matoušek
studied families 𝒮i of Tarski cells, that is, subsets of ℝdi determined by a Boolean for-
mula over polynomial inequalitieswith real coefficients. Each𝒮i is determinedby such
a Boolean formula, and a setting of the coefficients of the polynomials determines a
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set S ∈ 𝒮i. For example, we can express all intersections of two discs inℝ2 as the Tarski
cell {x ∈ ℝ2 : (x1 − a1)2 + (x2 − a2)2 ≤ r2} ∩ {x ∈ ℝ2 : (x1 − b1)2 + (x2 − b2)2 ≤ s2},
parametrized by a, b ∈ ℝ2 and r, s ∈ ℝ. It is worth noting that a collection 𝒮 of Tarski
cells inℝd has dual shatter function π∗(m) = O(md) (see [34]), and so, by Theorem 8.7,
it has discrepancy disc(𝒮 , n) = O(n 1

2−
1
2d√log(n)). Matoušek proved the following theo-

rem on the discrepancy of products of Tarski cells.

Theorem 8.13 (Matoušek [36]). Given positive integers d1, . . . , dk such that d1+⋅ ⋅ ⋅+dk =
d, and collections of sets 𝒮1, . . . ,𝒮k , where 𝒮i is a collection of Tarski cells in ℝdi , the
collection 𝒮 defined as in (8.2) has discrepancy disc(𝒮 , n) = O(n 1

2−
1
2d󸀠 +o(1)) for d󸀠 =

max{d󸀠1, . . . d󸀠k} and d󸀠i = max{di, 2di − 3}.
Further, Matoušek conjectured that the d󸀠i factors can be replaced with di, which

would give a nearly tight result. Roughly, the theorem states that the discrepancy of
the set system of products of Tarski cells is not much bigger than what we can expect
for the worst-case discrepancy of the individual families 𝒮i of Tarski cells.

The proof of the theorem uses a range tree similar to the one used for Theo-
rem 8.10, but instead of the binary trees used in Lemma 8.11, we need to use a more
complicated tree construction that uses the structure of the families 𝒮i. The key in-
gredient are partitions of finite pointsets into parts of a given size, so that most parts
are either contained in or disjoint from any given S ∈ 𝒮i. Recursively taking such
partitions allows building a tree for each 𝒮i analogous to the ones representing 𝒞x

and 𝒞y; then these trees are combined into a multilevel partition tree. While the high-
level ideas are similar to those in the proof of Theorem 8.10, the actual constructions
rely on deep results for range searching data structures, in which Matoušek was an
expert. We refer the reader to his survey [31] of this interesting area of computational
geometry.

8.4 General discrepancy results

So far, we focused on Matoušek’s results for set systems with geometric structure. It
is not surprising that most of his work on combinatorial discrepancy focused on ge-
ometric set systems, as he was an expert on computational and discrete geometry.
Nevertheless, he also proved important theorems on the combinatorial discrepancy of
abstract set systems, and some of these theorems also have implications for concrete
geometric set systems. We survey some of this work in this final technical section.

One difficulty when studying discrepancy of abstract set systems (𝒮 ,X) is that
disc(𝒮) is not robust to otherwise trivial changes to 𝒮. For example, if we add a copy
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p󸀠 of every element p ∈ X to every set that p belongs to, then the resulting set sys-
tem 𝒮󸀠 trivially has discrepancy 0, regardless of what the discrepancy of 𝒮 was to be-
gin with. This means that even set systems with discrepancy 0 can hide arbitrarily
complicated substructures within them. This lack of robustness of discrepancy also
has computational consequences: under the widely believed conjecture in complex-
ity theory that P ̸= NP, no algorithm that takes a polynomial number of steps can dis-
tinguish set systems 𝒮 of O(|𝒮|) sets with discrepancy 0, from those with discrepancy
Ω(√|X|) [18]. These issues motivate studying a more robust notion of discrepancy in-
stead, and one that has been particularly fruitful is hereditary discrepancy, introduced
by Lovász, Spencer, and Vesztergombi [28], and defined by

herdisc(𝒮) = max
Y⊆X

disc(𝒮|Y ).
Note that the combinatorial discrepancy function disc(𝒮 , n) of a collection𝒮 of subsets
of ℝd can also be equivalently defined in terms of hereditary discrepancy as

disc(𝒮 , n) = max{herdisc(𝒮|P) : P ⊂ ℝd, |P| = n},
so, in this sense,we are not losing anything by focusing on thismore robust notion. On
the other hand, it is usuallymuch easier to prove lower bounds and general structural
theorems about hereditary discrepancy.

One powerful tool in proving lower bounds on hereditary discrepancy is the de-
terminant lower bound, also due to Lovász, Spencer, and Vesztergombi. Let us define
the function detlb on anm × nmatrix A by

detlb(A) = max
k

max󵄨󵄨󵄨󵄨det(B)󵄨󵄨󵄨󵄨1/k ,
where the second maximum ranges over k × k submatrices B of A. Let us also define
the incidence matrix of a set system (𝒮 ,X) to be the matrix A whose rows are indexed
by 𝒮, and columns by X, and has entries

aS,p = {1 p ∈ S
0 p ̸∈ S .

We are going to write detlb(𝒮) = detlb(A) for the incidence matrix A of 𝒮. With these
definitions out of the way, we can state the lower bound.

Theorem 8.14 (Lovász, Spencer, Vesztergombi [28]). For any finite set system 𝒮 whose
incidence matrix is A,

herdisc(𝒮) ≥ 1
2
detlb(𝒮). (8.3)
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A starting point for the proof of Theorem 8.14 is the observation that for any set
system 𝒮 on a universe X of size n, which for convenience we identify with {1, . . . , n},
we can write

disc(𝒮) = min
x∈{−1,+1}n

‖Ax‖∞.
In fact, Lovász, Spencer, and Vesztergombi define the right-hand side above as the
discrepancy of an arbitrary matrix A; then they define the hereditary discrepancy
herdisc(A) as the maximum discrepancy over submatrices of A. Theorem 8.14 also
holds for arbitrary matrices, and states that herdisc(A) ≥ 1

2detlb(A). The core of the
proof is the fact that, for anym×nmatrix A, and t = herdisc(A), the hypercube [−1, 1]n
can be covered by 2n copies of the polytope K = {x ∈ ℝn : ‖Ax‖∞ ≤ 2t}, one centered
at each point in {−1, +1}n. The theorem then follows by a volume argument.

It was conjectured in [28] that inequality (8.3) can be reversed up to a constant
factor, that is, that herdisc(𝒮) ≤ c detlb(𝒮) for some absolute constant c. One piece
of evidence for this conjecture is a theorem of Ghouila–Houri, which states that, for
matrices A with entries in {−1,0, +1}, herdisc(A) = 1 if and only if detlb(A) = 1 [22].
Nevertheless, the conjecture was refuted by a beautiful example of Hoffman, which
we sketch next. Take X to be the edges of a complete k-ary tree of depth k, take 𝒮1 to
contain the sets of edges in any root to leaf path, and take 𝒮2 to contain, for any vertex
in the tree, the set of edges connecting the vertex to its children. 𝒮1 and 𝒮2 both have
hereditary discrepancy 1, and, by Ghouila-Houri’s theorem, detlb(𝒮1) = detlb(𝒮2) = 1.
Then it can be shown that detlb(𝒮1 ∪ 𝒮2) must also be bounded by a constant. (We
will state a general theorem to this effect shortly.) It is, however, not hard to see that
any coloring of X leaves at least one set in 𝒮1 ∪ 𝒮2 monochromatic: if every set in 𝒮2 is
bichromatic, then one can find a root to leaf path consisting entirely of edges colored+1. This means that, if we write n = |X| = kk, then disc(𝒮1 ∪ 𝒮2) = Ω( log(n)

log log(n) ). Other,
more complicated examples show that in fact the gapbetweenherdisc(𝒮) anddetlb(𝒮)
can be as large as Ω(log n) [45, 42]. Resolving a longstanding open question, Matoušek
showed that these examples are essentially the worst possible.

Theorem 8.15 (Matoušek [37]). There exists a constant c > 0 such that, for any finite
set system (𝒮 ,X),

herdisc(𝒮) ≤ c log2(2|𝒮||X|)3/2 detlb(𝒮).
The proof of Theorem 8.15 relies on a useful relaxation of discrepancy, called vec-

tor discrepancy and defined for a set system 𝒮 over a universe X of size n by

vdisc(𝒮) = min
χ:X→𝕊n−1 max

S∈𝒮

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∑p∈S χ(p)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2,
where 𝕊n−1 is the unit Euclidean sphere in ℝn. We recover the standard notion of
discrepancy if we restrict the values of χ to two antipodal points on 𝕊n−1. Because
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of this, we always have vdisc(𝒮) ≤ disc(𝒮). Vector discrepancy is in some ways a
more tractable quantity than the discrepancy: for example, it can be computed ef-
ficiently, and satisfies a duality property that we will use shortly. Unfortunately, it
can often be far from the discrepancy. Surprisingly, however, the hereditary versions
of the two quantities are never too far from each other. If we define the hereditary
vector discrepancy of 𝒮, analogously to the hereditary discrepancy, by hervdisc(𝒮) =
maxY⊆X vdisc(𝒮|Y ), then we have the following result, proved in the seminal work of
Bansal [6].

Theorem 8.16 (Bansal [6]). There exists a constant c > 0 such that, for any finite set
system (𝒮 ,X),

herdisc(𝒮) ≤ c log2(2|𝒮||X|) hervdisc(𝒮).
Because of Theorem 8.16, the proof of Theorem 8.15 reduces to showing an in-

equality between vector discrepancy and the determinant lower bound. Indeed, Ma-
toušek proved that there exists a constant c > 0 such that for any set system (𝒮 ,X),

vdisc(𝒮) ≤ c√log2(2|X|) detlb(𝒮). (8.4)

To prove (8.4), Matoušek used the fact that vector discrepancy can be formulated as
the value of a convex optimization problem, that is, the minimum of a convex func-
tion over a convex set. Such problems exhibit a beautiful duality theory: under some
technical conditions, any suchminimization problem is associatedwith an equivalent
problem of maximizing a concave function over a convex set, and the two problems
have the same value (see, e. g., [16]). Applying this theory to vector discrepancy yields
an equivalent formulation of vdisc(𝒮) as the largest value t > 0 for which there exist
functions w : 𝒮 → ℝ≥0 and z : X → ℝ such that∑

S∈𝒮
w(S) = ∑

p∈X
z(p) = 1,

and for all χ : X → ℝ, we have
∑
S∈SS

w(S)(∑
p∈S

χ(p))2 ≥ t2 ∑
p∈X

z(p)χ(p)2. (8.5)

In the special case when w and z are both constant, (8.5) is equivalent to the require-
ment that the incidencematrixA satisfies 1

|𝒮| ‖Ax‖22 ≥ t2 1
|X| ‖x‖22, for any |X|-dimensional

vector x. By the Courant–Fischer theorem, this is also equivalent to requiring that the
smallest singular value of A is at least t√ |𝒮||X| . If it were also the case that |𝒮| = |X|,
that is, A is a square matrix, then we would have that |det(A)|1/|X|, which equals the
geometric mean of the singular values of A, is at least the smallest singular value of
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A, which is at least t = vdisc(𝒮). This establishes (8.4), without the √log2(2|X|) fac-
tor, under themany assumptions wemade. It turns out that all these assumptions can
be removed with only constant loss in the bounds, except the assumption that w is
constant, whose removal seems to require losing the factor of√log2(2|X|).

Theorems 8.14 and 8.15 together imply that, up to logarithmic factors, hereditary
discrepancy and the determinant lower bound are always equal. This is useful be-
cause it allows proving theorems about hereditary discrepancy by proving themabout
the determinant lower bound instead. For example, a very natural question is how
hereditary discrepancy behaves under taking unions of set systems. Hoffman’s exam-
ple above shows that it can growby a logarithmic factor. Thenext theorem, also shown
by Matoušek, implies that the growth cannot be much faster than that.

Theorem 8.17 (Matoušek [37]). For any k finite set systems𝒮1, . . .𝒮k over a commonuni-
verse, and their union 𝒮 = ⋃ki=1 𝒮i, we have

detlb(𝒮) ≤ √ek ⋅ k
max
i=1

detlb(𝒮i).
Therefore, there exists a constant c > 0 such that for any such set systems we have

herdisc(𝒮) ≤ c log(|𝒮||X|)3/2 √k k
max
i=1

herdisc(𝒮i).
This type of theorem appears hard to prove using direct combinatorial arguments,

and no such proof is known.
While the determinant lower bound is often more tractable than discrepancy it-

self, it is often also hard to estimate directly, since it is defined as a maximum over
an exponential number of submatrices, and there is no known efficient algorithm for
computing it. This motivates searching for a yet more nicely behaved function that
approximates hereditary discrepancy. Unlike the determinant lower bound, we will
find such a function by considering natural upper bounds on hereditary discrepancy.
One simple upper bound is given by the maximum size of a set in the set system 𝒮:
by a standard probabilistic method argument, if all sets in 𝒮 have size bounded by
s, then disc(𝒮) = O(√s log(|𝒮|)). Moreover, this bound also holds for the hereditary
discrepancy, since the maximum size of a set in any restriction of 𝒮 is also at most s.
A much deeper result of Banaszczyk [4] shows that, if every element of the universe
appears in at most t sets, then disc(𝒮) = O(√t log(|𝒮|)).7 Again, this bound applies
also to hereditary discrepancy, because taking a restriction of 𝒮 does not increase t.
In terms of the incidence matrix A, the largest set size s can be written as the largest
squared Euclidean norm of a row ofA, whichwe denote by ρ(A)2. Similarly, the largest

7 Beck and Fiala famously conjectured that the correct bound is O(√t) [12]. They showed the bound
2t − 1, and the current best bound that only depends on t is due to Bukh [17] and equals 2t − f (t) for a
slowly growing function f (t). Beck and Fiala’s conjecture is wide open.
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number t of sets in which any element appears is ρ(A⊤)2, where A⊤ is the transpose
of A. It was the insight of Larsen that these two bounds can be combined into a single
one. Let us define the γ2-factorization constant of a matrix A as

γ2(A) = inf{ρ(B)ρ(C⊤) : BC = A},
where B and C range over matrices of the appropriate dimensions. This function is, in
fact, a norm, and has been studied extensively in functional analysis (see, e. g., [52]),
and, more recently, in complexity theory [27]. The next theorem connects it to combi-
natorial discrepancy, as well. In it, and in the remainder of this section, we use γ2(𝒮)
to denote γ2(A), where A is the incidence matrix of 𝒮.

Theorem 8.18 (Larsen [26]). There exists a constant c > 0 such that for any finite set
system 𝒮 we have

herdisc(𝒮) ≤ c√log2(2|𝒮|) γ2(𝒮). (8.6)

Curiously, Larsen proved Theorem 8.18 as a tool for giving lower bounds on the
complexity of range searching data structure, giving us another connection between
data structures and discrepancy. The formulation in terms of the γ2 norm is from [38].

Let us sketch the proof of Theorem 8.18. Once again, it is enough to establish the
inequality (8.6) for disc(𝒮), since it is easy to check that for any restriction 𝒮|Y of 𝒮 to
a subset Y of the universe we have γ2(𝒮|Y ) ≤ γ2(𝒮). The proof of (8.6) for disc(𝒮) uses
the following powerful theorem of Banaszczyk.

Theorem 8.19 (Banaszczyk [4]). For any m × n matrix A such that ρ(A⊤) ≤ 1
5 , and any

convex subset K ofℝm with standard Gaussian measure at least 1
2 , there exists a vector

x ∈ {−1, +1}n such that Ax ∈ K.
Touse Theorem8.19 in order to prove Theorem8.18,we take a factorizationBC = A

of the incidence matrix A such that ρ(C⊤) = 1
5 , and ρ(B) = 5γ2(A), and define K = {x :‖Bx‖∞ ≤ c√log2(2|𝒮|) γ2(A)}. For a large enough constant c, standard concentration

of measure bounds show that K has Gaussian measure at least 1
2 , and Theorem 8.19

implies that there exists some vector x with coordinates in {−1, +1} such that
Cx ∈ K ⇐⇒ ‖BCx‖∞ ≤ c√log2(2|𝒮|) γ2(A) ⇐⇒ ‖Ax‖∞ ≤ c√log2(2|𝒮|) γ2(A). (8.7)

The last inequality is equivalent to disc(𝒮) ≤ c√log2(2|𝒮|) γ2(A), proving the theorem.
A result proved by Matoušek, jointly with the author and with Talwar, shows an

inequality in the reverse direction.

Theorem 8.20 (Matoušek, Nikolov, Talwar [38]). There exists a constant c > 0 such
that for any finite set system 𝒮,

γ2(𝒮) ≤ c log2(2|𝒮|) detlb(𝒮) ≤ c2 log2(2|𝒮|) herdisc(𝒮). (8.8)
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Like vector discrepancy, the γ2 norm of a matrix can be written as the value of a
convex optimization problem, and, once again, the proof of Theorem 8.18 relies on the
duality theory of such problems. The dual formulation of the γ2 norm of a matrix A is

γ2(A) = max{‖PAQ‖∗ : P,Q diagonal, tr(P2) = tr(Q2) = 1}, (8.9)

where ‖⋅‖∗ is thematrix trace norm, equal to the sumof the singular values. If we think
about the special case when A is a square n × n matrix, and P and Q are both equal
to 1
√n I, where I is the n × n identity matrix, then ‖PAQ‖∗ is just the arithmetic mean

of the singular values of A. Since |det(A)|1/n is the geometric mean of the singular val-
ues, (8.8) appears to go in the wrong direction. Nevertheless, it turns out that, while|det(A)|1/n may be much smaller than 1

n ‖A‖∗ (e. g., when A is singular), A must con-
tain a submatrix whose determinant is comparable to 1

n ‖A‖∗. This fact is related to the
restricted invertibility theorem of Bourgain and Tzafriri [15], but has a much simpler
linear algebraic proof, given in [38].

The γ2 norm enjoys many pleasant properties, which make it a powerful tool to
study combinatorial discrepancy. In contrast to the determinant lower bound, there
are known algorithms which compute γ2(𝒮) efficiently [27]. Moreover, it satisfies the
following properties:
1. γ2 is a norm, that is, for any two matrices A and B with equal dimensions, γ2(A +

B) ≤ γ2(A) + γ2(B);
2. for any two set systems 𝒮1 and 𝒮2, γ2(𝒮1 ∪ 𝒮2)2 ≤ γ2(𝒮1)2 + γ2(𝒮2

2 );
3. for any matrix A, γ2(A) = γ2(A⊤); this implies that for the dual 𝒮∗ of a set system

𝒮, γ2(𝒮∗) = γ2(𝒮);
4. for any two matrices A and B, and their Kronecker product A ⊗ B, γ2(A ⊗ B) =

γ2(A)γ2(B); this implies that for two set systems 𝒮1 and 𝒮2, and the product set
system 𝒮 = {S1 × S2 : S1 ∈ 𝒮1, S2 ∈ 𝒮2}, we have γ2(𝒮) = γ2(𝒮1)γ2(𝒮2).

Via (8.6) and (8.8), these properties all hold, up to logarithmic factors, for hereditary
discrepancy, as well. For example, this partially explains why we saw similar discrep-
ancy bounds for set systems with polynomially bounded primal or dual shatter func-
tion in Theorems 8.6 and 8.7. Moreover, using these properties and the inequalities
(8.6) and (8.8), it is often possible to give surprisingly short proofs of upper and lower
bounds on discrepancy, which are difficult to establish with other methods. Perhaps
the most striking example is the application of this method to axis-aligned boxes inℝd, for which we can give a shorter proof of the upper bound we discussed in the
previous section, as well as a proof of the best known lower bound, captured in the
following theorem.

Theorem 8.21 (Matoušek, Nikolov, Talwar [40, 38]). For any positive integer d,

disc(ℛd, n) = Ω(log(n)d−1).
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Proof sketch. Let us define [n] = {1, . . . , n}, and further define ℐ to be the set of intervals
on [n]. The discrepancy of ℐ is 1 (just consider a coloring with alternating +1 and −1),
and so is its hereditary discrepancy, because any restriction of ℐ is a set system of the
same type. Then, by Theorem 8.20, γ2(ℐ) = O(log(n)). In fact, using the dual formu-
lation (8.9), one can also show that γ2(ℐ) = Ω(log(n)), as well. It is easy to verify that
ℛd|[n]d consists of d-wise products of sets in ℐ, and so, applying the fourth property
above repeatedly, we get that

γ2(ℛd|[n]d ) = γ2(ℐ)d = Θ(log(n)d). (8.10)

Theorem 8.20 and (8.10) now imply that disc(ℛd, n) = Ω(log(n)d−1).
In fact, (8.10) also implies the upper bound disc(ℛd, n) = O(log(n)d+ 12 ). This is

because, up to shifting and scaling, we can think of any n-point set P in ℝd as a sub-
set of [n]d. Then ℛd|P can be thought of as a restriction of ℛd|[n]d , and Theorem 8.18
and (8.10) imply the upper bound. This result is due to Larsen [26], with essentially
the same proof. As mentioned above, the upper bound was recently improved to
O(log(n)d− 12 ) by the author [44]. This improvement uses a variant of the γ2 method,
utilizing a recent result of Banaszczyk [5] in place of Theorem 8.19.

8.5 Conclusion

There are a number of combinatorial discrepancy results ofMatoušekwe did not cover
in this survey. Perhaps the most important one among them is the tight upper bound
on the discrepancy of arithmetic progressions, proved with Spencer [39]. The author
encourages the reader to also read Matoušek’s original papers, which are beautifully
and clearly written, as well as his book [34]. The aim of this survey is to be a guide to
his body of work on combinatorial discrepancy, and to help to put it in the context of
more recent developments, and also in the context of related results in computational
and discrete geometry.

On a personal note, writing the paper [38] with Matoušek felt like a master class
in mathematical writing, and I can only regret that I did not have enough time with
him to learn more. His clarity of thought and his ability to see the core idea of a proof
behind technical details is something I deeply admire.
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9 Fourier analytic techniques for lattice point
discrepancy

Abstract: Counting integer points in large convex bodieswith smooth boundaries con-
taining isolated flat points is oftentimes an intermediate case between balls (or convex
bodies with smooth boundaries having everywhere positive curvature) and cubes (or
convex polytopes). In this paper, we provide a detailed description of several discrep-
ancy problems in the particular planar casewhere the boundary coincides locallywith
the graphof the functionℝ ∋ t 󳨃→ |t|γ, with γ > 2.We consider both integer pointsprob-
lems and irregularities of distribution problems. The above “restriction” to a particular
family of convex bodies is compensated by the fact that many proofs are elementary.
The paper is entirely self-contained.

Keywords: Convex bodies, flat points, decay of Fourier transforms, discrepancy, inte-
ger points, irregularities of distribution

MSC 2010: 11H06, 11K38, 42B05

9.1 Introduction

The word discrepancy comes from its Latin counterpart discrepantia (disagreement,
contrast) and here expresses the deviation of a discrete volume of a convex body from
its (continuous) volume. Much of this paper is devoted to the study of lattice points dis-
crepancy in dimension two: for a given convex body C ⊂ ℝ2 (i. e., a compact convex set
with nonempty interior) and a large real positive parameter Rwe compare the number
of points with integer coordinates contained in the dilated body

RC = {t ∈ ℝ2 : t/R ∈ C}

and its area. More precisely, we consider the discrepancy

𝒟(RC) := −R2|C| + card(RC ∩ ℤ2) = −R2|C| + ∑
n∈ℤ2

χRC(n)

where χA denotes the characteristic (indicator) function of the set A.
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The problem of estimating𝒟(RC) for large values of R has a long history and sev-
eral connections to different branches of mathematics (see, e. g., [4, 11, 17, 20, 25, 29,
30, 40]).

Here, we are interested in the following specific family of convex bodies.

Definition 9.1. Let ℝ ∋ γ > 2. We denote by Cγ any planar compact convex set, con-
tained in the square (−1/2, 1/2)2, whose boundary 𝜕Cγ coincides, in a small neighbor-
hood U of the origin, with the graph of the function ℝ ∋ x 󳨃→ |x|γ. We also assume
that, outside 1

2U, 𝜕Cγ is smooth with curvature ⩾ c > 0.

Our interest in the above class of convex bodies comes from the fact that a large part of
Geometric discrepancy has been developed for rectangles (or parallelepipeds or poly-
topes) and discs (or balls, or convex bodies having smooth boundary with everywhere
positiveGaussian curvature). See the above list of references and also [3, 19, 31, 34, 36].
The above index γ provides a sort of “bridge” between, say, a disc and a square, which
respectively can be roughly seen as the cases γ = 2 and γ = ∞. Anyway in the last sec-
tion we shall see a situation where Cγ does not have this intermediate position, and a
sort of dichotomy appears.

The proofs in this paper are essentially Fourier analytic and several arguments
come from [8, 11, 15], and [21]. All the results in this paper are essentially known, except
Theorem 9.26.

We set the notation.
We identify the torus 𝕋2 = ℝ2/ℤ2 with the unit square [−1/2, 1/2)2. Let f ∈ L1(𝕋2)

and for every k ∈ ℤ2 let

f̂ (k) = ∫
𝕋2

f (t)e−2πit⋅k dt

be the Fourier coefficient of f (t), which therefore has Fourier series

∑
k∈ℤ2

f̂ (k)e2πit⋅k .
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The points in ℤ2 are termed integer points. If g ∈ L1(ℝ2) and ξ ∈ ℝ2, then

ĝ(ξ ) = ∫
ℝ2

g(t)e−2πit⋅ξ dt

denotes the Fourier transform of g(t).
The connection between the above discrepancy and Fourier analysis is a conse-

quence of the following simple observation. LetC be a convexbody inℝ2 and, for every
t ∈ ℝ2, define the discrepancy function

𝒟R(t) = 𝒟(RC + t) = −R
2|C| + card((RC + t) ∩ ℤ2)

= −R2|C| + ∑
n∈ℤ2

χRC(n − t) .

The function𝒟R(t) is periodic with Fourier series

∑
0 ̸=m∈ℤ2

𝒟R(m)e
2πim⋅t = ∑

0 ̸=m∈ℤ2
χ̂RC(m)e

2πim⋅t . (9.1)

Indeed,

𝒟R(0) = ∫
𝕋2

(−R2|C| + ∑
n∈ℤ2

χRC(n − t)) dt

= −R2|C| + ∑
n∈ℤ2
∫

𝕋2

χRC(n − t) dt = −R
2|C| + ∫

ℝ2

χRC(t) dt = 0 ,

and form ̸= 0,

𝒟R(m) = ∫
𝕋2

(−Rd|C| + ∑
n∈ℤ2

χRC(n − t))e
−2πim⋅t dt

= ∫
RC

e−2πiRm⋅t dt = χ̂RC(m) .

Observe that the two sides of the equality𝒟R(m) = χ̂RC(m) have a different nature. On
the LHS, the terms 𝒟R(m) are the Fourier coefficients of the periodic function 𝒟R(t)
(defined on 𝕋2), while on the RHS, the terms χ̂RC(m) are the restriction (to ℤ2) of the
Fourier transform χ̂RC(ξ ) of the function χRC(t) (which is defined on ℝ2).

Throughout the paper, c, c1, c2, . . . denote constants which may change from step
to step.
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9.2 Integer points in large convex bodies
First, we recall the circle problem and the Hardy–Voronoi identity. Let R be a positive
real number. The circle problem asks for a significant estimate of the sum

A(R) = ∑
0≤k≤R2

r(k)

of the arithmetic function

r(k) = card{(m1,m2) ∈ ℤ
2 : m2

1 +m
2
2 = k} ,

that is the number of ways of writing a nonnegative integer as a sum of two squares.
Let B = B(0, 1) = {t ∈ ℝ2 : |t| ⩽ 1} be the disc of unit radius centered at the origin. More
generally, we write B(τ, r) := {t ∈ ℝ2 : |t − τ| ⩽ r}.

More than 200 years ago, C. F. Gauss observed that the average of r(k) reduces to
counting the integer points in the dilated disc RB = {t ∈ ℝ2 : |t/R| ⩽ 1}, for R > 1.
Then it is easy to observe that card(RB ∩ ℤ2) equals the area R2π of the disc plus an
error term smaller, in absolute value, than (√2 times) the length of the boundary of
the dilated disc. That is,

card(RB ∩ ℤ2) = R2π +𝒟(RB) ,

with𝒟(RB) = 𝒪(R). The error bound𝒪(R) has been improved several times during the
last century. In 1906, W. Sierpiński proved that |𝒟(RB)| ⩽ cR2/3. The best result so far
(⩽ cR0.627⋅⋅⋅) has been recently obtained by J. Bourgain and N. Watt [6].

In 1916, G.Hardy proved that the exponent 1/2 is not large enough and conjectured
that |𝒟(RB)| ⩽ cR1/2+ε.

Earlier in 1915, G. Hardy proved the following result (previously conjectured by G.
Voronoi):

R
+∞

∑
k=1

r(k)
√k

J1(2π√kR) =
A(R+) + A(R−)

2
− πR2 , (9.2)

whereA(R+) andA(R−) denote the right and left limits at R, respectively, of the discon-
tinuous function A(x), and

J1(x) =
x
2

1

∫
−1

(1 − t2)1/2eitx dt

is a Bessel function, thereby giving an analytic expression for the discrepancy. See
[7, 27].

The series in (9.2) is the spherical Fourier series (see (9.1))

∑
0≠m∈ℤ2

χ̂RB(m)e
2πim⋅t = lim

K→+∞
∑

0<|m|⩽K
χ̂RB(m)e

2πim⋅t
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of the discrepancy function 𝕋2 ∋ t 󳨃󳨀→ 𝒟(RB + t), evaluated at the origin. Indeed, for
every 0 ̸= ξ ∈ ℝ2, we have

χ̂B(ξ ) = |ξ |
−1J1(2π|ξ |)

(see, e. g., [40, p. 216]) and, therefore, after summing on the integers points m on all
circles of radius√k, we obtain, at t = 0,

∑
m ̸=0

χ̂RB(m) = R
2 ∑
m ̸=0

χ̂B(Rm) = R ∑
m≠0
|m|−1J1(2πR|m|) (9.3)

= R
+∞

∑
j=1

r(k)
√k

J1(2πR√k) .

The above series is not absolutely convergent and, in spite of its explicit expression,
does not seem to help us in funding a sharp bound for the discrepancy, unless we
apply a smoothing argument of E. Hlawka which turns the above series into an ab-
solutely convergent one, and provides a new proof of Sierpiński’s estimate (see, e. g.,
[40, p. 162] or the proof of Theorem 9.13 below).

More generally, when C is a convex planar body, the discrepancy function

𝒟R(t) = −R
2|C| + card((RC + t) ∩ ℤ2)

is a periodic piecewise constant function (observe that 𝒟R(t) may change value only
when, moving t, we hit or we leave integer points). The above Hardy–Voronoi iden-
tity falls within the framework of pointwise convergence of Fourier series of piecewise
smooth functions. A simple nice result in this field says that if the graph of f (t) has the
shape in the following figure, about a point t0, then the spherical means of the above
Fourier series converge, at the point t0, to the number bβ/2π

(see, e. g., [7]).
The situationmay improve if we introduce an L2 average (over translations) of the

discrepancy function𝒟R(t).
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9.2.1 Kendall’s argument

D. Kendall [28] was the first one towrite explicitly the Fourier series of the discrepancy
function (and, therefore, to point out the identity (9.3)). Then he used the Parseval
identity to prove that for, say, the unit disc B we have

{∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(RB + t)
󵄨󵄨󵄨󵄨
2 dt}

1/2
⩽ cR1/2 .

Indeed it is known (by the asymptotics of Bessel functions or by Theorem 9.3 below)
that

󵄨󵄨󵄨󵄨χ̂B(ξ )
󵄨󵄨󵄨󵄨 ⩽ c(1 + |ξ |)

−3/2
.

Therefore,

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(RB + t)
󵄨󵄨󵄨󵄨
2 dt = R4 ∑

m ̸=0

󵄨󵄨󵄨󵄨χ̂B(Rm)
󵄨󵄨󵄨󵄨
2
⩽ cR ∑

m ̸=0
|m|−3 = cR . (9.4)

Kendall’s result for the disc can be extended to the case of an arbitrary planar
convex body C as long as we introduce an average over rotations. A. Podkorytov (see
[33], see also [40, p. 176], [13]) proved that for every planar convex body C we have

2π

∫
0

󵄨󵄨󵄨󵄨χ̂C(ρΘ)
󵄨󵄨󵄨󵄨
2dθ ⩽ c ρ−3 ,

where Θ = (cos θ, sin θ) and ρ ⩾ 2. This and Kendall’s argument yield

{ ∫
SO(2)

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(σ(RC) + t)
󵄨󵄨󵄨󵄨
2 dtdσ}

1/2
⩽ cR1/2 (9.5)

for every planar convex body C. Note that, within the family of convex planar bod-
ies having piecewise smooth boundary, the upper bound (9.5) can be inverted (see
[41, 15]) if and only if C is not a polygon that is symmetric and can be inscribed in a
circle.

Kendall’s L2 result for the disc can be extended to Lp spaces provided p < 4 (see
[26, 9]).

Theorem 9.2. Let B be the unit disc. Then

{∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(RB + t)
󵄨󵄨󵄨󵄨
p dt}

1/p
⩽ c
{{
{{
{

R1/2 if 1 ⩽ p < 4,
R1/2 log1/4(R) if p = 4,
R2/3(1−1/p) if p > 4.

(9.6)

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



9 Fourier analytic techniques for lattice point discrepancy | 179

The idea for the proof of (9.6) is that in Kendall’s argument the series ∑m ̸=0 |m|
−3

converges “more than enough” andwehave room for a fewpositive resultswhen p > 2.
Actually the upper bounds in Theorem 9.2 are known to be sharp in the range 1 ⩽
p < 4. The case p ⩾ 4 uses Hlawka’s smoothing argument and it does not seem to be
sharp.

9.2.2 Integer points in large polygons

The study of integer points in polyhedra is another topic with several applications in
different parts of mathematics (see, e. g., [2, 5, 37]).

As a first (trivial) example, we consider a square having sides parallel to the axes.
Then it is easy to check that the discrepancy is ≈ R for infinitely many large values of
R. Indeedwe see that the two squares of side≈ R in the previous figure have essentially
the same area, but one has ≈ R integer points more than the other.

A suitable rotation of the square may make the discrepancy for the square very
small. H. Davenport (see [19]) has proved that if a square Q has slope (say)√2 then

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(RQ + t)
󵄨󵄨󵄨󵄨
2 dt ⩽ c log(R) .

A logarithmic estimate holds true also after averaging over rotations. In [10], it is
proved that the discrepancy associated to a polygon P satisfies, for R ⩾ 2,

∫
SO(2)

󵄨󵄨󵄨󵄨𝒟(Rσ(P))
󵄨󵄨󵄨󵄨 dσ ⩽ c log2(R) . (9.7)

Moreover, this estimate is almost sharp in the following sense. For a triangle S ⊂ ℝ2,
we have

∫

𝕋2

∫
SO(2)

󵄨󵄨󵄨󵄨𝒟(Rσ(S) + t)
󵄨󵄨󵄨󵄨 dσdt ⩾ c log(R) .
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9.3 Pointwise estimates for χ̂Cγ (ξ)

To study the discrepancy for Cγ, we need careful estimates of the Fourier transform of
the function χCγ (t). We start with a general result; see [33] and also [16] for a result in
higher dimension.

Theorem 9.3. Let C ⊂ ℝ2 be a strictly convex body with piecewise smooth boundary.
We write Θ = (cos θ, sin θ) and, for 0 ⩽ θ < 2π and small δ > 0, let

λ(δ, θ) = {t ∈ C : δ + t ⋅ Θ = sup
y∈C
(y ⋅ Θ)}

be the chord perpendicular to Θ “at distance δ from the boundary” 𝜕C of C (see the
following figure). Then there exist c1 and c2 independent of θ such that, for ρ > c1, we
have

󵄨󵄨󵄨󵄨χ̂C(ρΘ)
󵄨󵄨󵄨󵄨 ⩽ c2 ρ

−1(󵄨󵄨󵄨󵄨λ(ρ
−1, θ)󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨λ(ρ
−1, θ + π)󵄨󵄨󵄨󵄨) ,

where |λ| denotes the length of the segment λ.

Remark 9.4. A slightly longer proof shows that the stricly convex assumption can be
removed. See e.g. [15].

Proof. Wemay assume Θ = (1,0), so that we consider

χ̂C(ξ ,0) =
+∞

∫
−∞

(
+∞

∫
−∞

χC(t1, t2) dt2) e
−2πiξt1 dt1 = ĥ(ξ ) ,

where h(x) is the length of the segment given by the intersection of C with the line
t1 = x (we can say that the 2-dimensional Fourier transform is a 1-dimensional
Fourier transform of a Radon transform). Observe that the function h(x) is continuous
on ℝ and strictly concave on its support, which we may assume to be the interval
[−1, 1]. We may assume that h(x) attains its maximum at some β ⩾ 0 (the other case
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being similar).

The strict convexity implies the continuity of h(x), so that h(−1) = h(1) = 0. We may
assume ξ > 1. Then integration by parts yields

ĥ(ξ ) =
1

∫
−1

h(x)e−2πiξx dx = 1
2πiξ

1

∫
−1

h󸀠(x)e−2πiξx dx

=
−1
2πiξ

1+(2ξ )−1

∫

−1+(2ξ )−1

h󸀠(x − 1
2ξ
)e−2πiξx dx .

Hence

2(2πiξ )ĥ(ξ ) =
−1+(2ξ )−1

∫
−1

h󸀠(x)e−2πiξx dx

+
1

∫

−1+(2ξ )−1

(h󸀠(x) − h󸀠(x − 1
2ξ
))e−2πiξx dx

+

1+(2ξ )−1

∫
1

h󸀠(x − 1
2ξ
)e−2πiξx dx

= I1 + I2 + I3 ,

say. Since h(x) is increasing on −1 ⩽ x ⩽ 0, we have

|I1| ⩽
−1+(2ξ )−1

∫
−1

󵄨󵄨󵄨󵄨h
󸀠(x)󵄨󵄨󵄨󵄨 dx =

−1+(2ξ )−1

∫
−1

h󸀠(x) dx = h(−1 + 1
2ξ
).
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In the same way, since h󸀠(x) is decreasing, we have

|I2| ⩽ −
1

∫

−1+(2ξ )−1

(h󸀠(x) − h󸀠(x − 1
2ξ
)) dx

= h(−1 + 1
2ξ
) + h(1 − 1

2ξ
) .

In order to estimate I3, we consider two cases. Let β ∈ [0, 1] be the point where h(x)
attains its maximum. If β ⩽ 1 − (2ξ )−1, we argue as we did for I1. If 1 − (2ξ )−1 ⩽ β < 1,
we have

|I3| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1+(2ξ )−1

∫
1

h󸀠(x − 1
2ξ
)e−2πiξx dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

β+(2ξ )−1

∫
1

h󸀠(x − 1
2ξ
)e−2πiξx dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1+(2ξ )−1

∫

β+(2ξ )−1

h󸀠(x − 1
2ξ
)e−2πiξx dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽

β+(2ξ )−1

∫
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
h󸀠(x − 1

2ξ
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dx +

1+(2ξ )−1

∫

β+(2ξ )−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
h󸀠(x − 1

2ξ
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dx

⩽

β+(2ξ )−1

∫
1

h󸀠(x − 1
2ξ
) dx −

1+(2ξ )−1

∫

β+(2ξ )−1

h󸀠(x − 1
2ξ
) dx

= 2h(β) − h(1 − 1
2ξ
) ⩽ 4h(0) − h(1 − 1

2ξ
) ⩽ 3h(1 − 1

2ξ
) ,

by the concavity of h(x). This completes the proof.

Corollary 9.5. Let C be a planar convex body having smooth boundary with strictly pos-
itive curvature. Then, for every |ξ | ⩾ 1, we have

󵄨󵄨󵄨󵄨χ̂C(ξ )
󵄨󵄨󵄨󵄨 ⩽ κ |ξ |

−3/2 (9.8)

(where κ depends on C).

Proof. Wechoose a point in 𝜕C, whichwemay assume to be the origin.We also assume
that C is contained in the right half-plane and that C contains a ball of radius 1. For
the sake of simplicity, we may also assume that 𝜕C is locally (i. e., for |y| ⩽ c) the
graph of an even function g(y) satisfying g(0) = g󸀠(0) = 0 and |g󸀠(y)| ⩽ c. Hence we
consider only 0 ⩽ y ⩽ c, so that 2g(y) is the inverse of the function h(x) described at
the beginning of the proof of Theorem 9.3. Moreover, our assumptions imply that (see
again Theorem 9.3 for the notation)

h(δ) = 1
2
󵄨󵄨󵄨󵄨λ(δ, −π)

󵄨󵄨󵄨󵄨
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and h(δ) is strictly increasing for 0 ⩽ δ ⩽ 1. The curvature K(y) at the point (g(y), y) ∈
𝜕C satisfies c1 ⩽ K(y) ⩽ c2 (where c1 and c2 depend on the convex body C). Since

g󸀠󸀠(y) = (1 + [g󸀠(y)]2)3/2K(y) ,

we have

g(y) =
y

∫
0

(y − t)g󸀠󸀠(t) dt ≈
y

∫
0

(y − t) dt ≈ y2 ,

whereA ≈ Bmeans thatA and B are positive and, for suitable constants c1, c2, we have
c1A ⩽ B ⩽ c2A.

Then Theorem 9.3 yields
󵄨󵄨󵄨󵄨λ(δ, −π)

󵄨󵄨󵄨󵄨 = h(δ) ≈ δ
1/2

and, therefore, (9.8).

Remark 9.6. The estimate (9.8) still holds under the less strict and more geometric
assumption that C is a convex body that can roll unimpeded inside a disc. See [9].
Observe that no convex polygon or convex body with smooth boundary having a flat
point of order > 2 can roll unimpeded inside a disc.
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Remark 9.7. Assume that C is a convex planar body with piecewise smooth bound-
ary. Without any assumptions on the curvature, the estimate (9.8) may fail. However,
Theorem 9.3 shows that

󵄨󵄨󵄨󵄨χ̂C(ξ )
󵄨󵄨󵄨󵄨 ⩽ c|ξ |

−1 , (9.9)

whenever |ξ | ⩾ 1.

We can now state and prove some useful pointwise estimates for the decay of
χ̂Cγ (ξ ); see [15].

Theorem 9.8. Let γ > 2 and let Cγ be as in the Introduction, let ψ ∈ (−π/2,π/2], let either
θ = ψ − π/2 or θ = ψ + π/2, and let Θ = (cos θ, sin θ). Then, for ρ ⩾ 2 we have (for small
ε > 0 and suitable positive constants c, c1)

󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)
󵄨󵄨󵄨󵄨 ⩽
{{
{{
{

cρ−1−1/γ for 0 ⩽ |ψ| ⩽ c1ρ−1+1/γ ,
cρ−3/2|ψ|(2−γ)/(2γ−2) for c1ρ−1+1/γ ⩽ |ψ| ⩽ ε,
cρ−3/2 for ε ⩽ ψ ⩽ π.

(9.10)

This theorem is the basic result in this paper and we are going to write two proofs
of it.

In the first proof, we use elementary arguments to estimate the chords introduced
in Theorem 9.3.

In the second proof, we apply the divergence theorem to pass from χ̂Cγ to μ̂γ, where
μγ is the measure on ℝ2, supported on 𝜕Cγ, where it coincides with the arc length
measure. Then we use a partition of unity to split 𝜕Cγ into dyadic pieces.

First proof of Theorem 9.8. Assume ψ > 0 and let x0 > 0 satisfy γx
γ−1
0 = tanψ, that is,

(x0, x
γ
0) is the point in 𝜕Cγ with outward unit normal Θ. Let x1 < x2 be the two solutions

of the equation

|x|γ = xγ0 + (ρ cosψ)
−1 + γxγ−10 (x − x0) , (9.11)

(of course x1 < x0 < x2, while the assumption ψ > 0 yields |x1| < x2). We observe that
|λ(ρ−1,ψ)| ⩽ cx2 and we now estimate x2. The inequality 0 ⩽ ψ ⩽ c1ρ−1+1/γ implies that
the equation (9.11) has no solution when x > κρ−1/γ with a suitably large constant κ.
Indeed since xγ−10 ≈ ψ we have x0 ≈ ψ1/(γ−1) ⩽ cρ−1/γ so that

xγ − xγ0 − (ρ cosψ)
−1 − γxγ−10 (x − x0)

> xγ − cρ−1 − (ρ cosψ)−1 − cρ−1+1/γx

> ρ−1((ρ1/γx)γ − c − (cosψ)−1 − cρ1/γx) > 0
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provided that ρ1/γx is large enough.

Let us now assume cρ−1+1/γ ⩽ ψ ⩽ εwith a suitable constant c. Since xγ−10 ≈ ψ, we have
x1 > 0. Indeed, let

y(x) = xγ0 + (ρ cosψ)
−1 + γxγ−10 (x − x0) .

Let ψ ⩾ c̃ ρ−1+1/γ (we shall choose c̃ later). Then

y(0) = (1 − γ)xγ0 + (ρ cosψ)
−1 ⩽ (1 − γ) c c̃ ρ−1 + (ρ cosψ)−1 < 0

if c̃ is large enough. Then we observe that, assuming |x − x0| ⩾ c󸀠ρ−1/2x
1−γ/2
0 with a

suitable choice of c󸀠, we obtain

xγ − xγ0 − (ρ cosψ)
−1 − γxγ−10 (x − x0)

= (x0 + (x − x0))
γ
− xγ0 − (ρ cosψ)

−1 − γxγ−10 (x − x0)

= xγ0((1 +
x − x0
x0
)
γ
− γ x − x0

x0
− 1) − (ρ cosψ)−1

⩾ xγ0
γ
2
(
x − x0
x0
)
2
− (ρ cosψ)−1 ⩾ ρ−1(c c󸀠 γ

2
− (cosψ)−1) > 0 ,

since x−x0
x0
> −1. Observe that we have used the inequality

(1 + u)γ − γu − 1 ⩾ γu2/2 .

Then |x − x0| ⩽ cρ−1/2x
1−γ/2
0 for every x1 ⩽ x ⩽ x2. Therefore,

󵄨󵄨󵄨󵄨λ(ρ,ψ)
󵄨󵄨󵄨󵄨 ⩽ cρ

−1/2x1−γ/20 ⩽ cρ−1/2ψ(2−γ)/(2γ−2) .
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Finally, let ε ⩽ ψ ⩽ π. Then Remark 9.7 yields |λ(ρ,ψ)| ⩽ cρ−1/2. Collecting the above
results and applying Theorem 9.3, we complete the proof.

For the secondproof of Theorem9.8,weneed somewell-known lemmas (see, e. g.,
[29, 31, 38]).

Lemma 9.9. Let f ∈ C1([a, b]) be a convex function such that

f 󸀠(x) ⩾ λ > 0

and let φ be a smooth function [a, b]. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

e2πif (x)φ(x)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽
1
λ
[󵄨󵄨󵄨󵄨φ(b)
󵄨󵄨󵄨󵄨 +

b

∫
a

󵄨󵄨󵄨󵄨φ
󸀠(x)󵄨󵄨󵄨󵄨dx] .

Proof. Integration by parts yields

b

∫
a

e2πif (x)dx =
b

∫
a

1
2πif 󸀠(x)

d
dx
(e2πif (x))dx

=
1

2πif 󸀠(b)
e2πif (b) − 1

2πif 󸀠(a)
e2πif (a)

−
b

∫
a

d
dx
(

1
2πif 󸀠(x)

)e2πif (x)dx .

Hence

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

e2πif (x)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

1
2πf 󸀠(b)

+
1

2πf 󸀠(a)
−

1
2π

b

∫
a

d
dx
(

1
f 󸀠(x)
)dx

=
1

2πf 󸀠(b)
+

1
2πf 󸀠(a)

+
1
2π

1
f 󸀠(b)
−

1
2π

1
f 󸀠(a)

=
1

πf 󸀠(b)
⩽
1
λ
.

Let now

G(x) =
x

∫
a

e2πif (t)dt .

Then

b

∫
a

e2πif (x)φ(x)dx = [G(x)φ(x)]ba −
b

∫
a

G(x)φ󸀠(x)dx
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and, therefore,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

e2πif (x)φ(x)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ 󵄨󵄨󵄨󵄨G(b)φ(b)

󵄨󵄨󵄨󵄨 +
b

∫
a

󵄨󵄨󵄨󵄨G(x)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨φ
󸀠(x)󵄨󵄨󵄨󵄨dx

⩽
1
λ
󵄨󵄨󵄨󵄨φ(b)
󵄨󵄨󵄨󵄨 +

1
λ

b

∫
a

󵄨󵄨󵄨󵄨φ
󸀠(x)󵄨󵄨󵄨󵄨dx .

Lemma 9.10. Let f ∈ C2([a, b]) satisfy f 󸀠󸀠(x) ⩾ κ > 0 and let φ be a smooth function on
[a, b]. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

e2πif (x)φ(x)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽
4‖φ‖∞
√κ
+
2‖φ󸀠‖1
√κ
.

Proof. Let

I1 = {x ∈ [a, b] :
󵄨󵄨󵄨󵄨f
󸀠(x)󵄨󵄨󵄨󵄨 ⩽ √κ}

and

I2 = {x ∈ [a, b] :
󵄨󵄨󵄨󵄨f
󸀠(x)󵄨󵄨󵄨󵄨 > √κ} .

The convexity of f (x) implies that I1 is either an interval or the empty set. I2 is the union
of at most two intervals. Let I1 = [α, β]. Then the mean value theorem yields

(β − α)κ ⩽ f 󸀠(β) − f 󸀠(α) ⩽ 2√κ .

Hence

β

∫
α

e2πif (x)φ(x)dt ⩽ (β − α)‖φ‖∞ ⩽
2‖φ‖∞
√κ
.

To end the proof, we observe that the previous lemma yields

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
I2

e2πif (x)φ(x)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

2
√κ
‖φ‖∞ +

2
√κ
󵄩󵄩󵄩󵄩φ
󸀠󵄩󵄩󵄩󵄩1 .

Lemma 9.11. Let ϵ ∈ C1(ℝ) such that ϵ(x) ≡ 0 for |x| < 1
2 and |x| ⩾ 1. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+∞

∫
−∞

e−2πi(au+b|u|
γ)ϵ(u) du

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

c
(1 + |(a, b)|)1/2

(where c is independent of a, b, but depends on ‖ϵ‖∞ and ‖ϵ󸀠‖∞).
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Proof. It is enough to consider the integral on (0, +∞). Let f (u) = au + buγ and let

J(a, b) =
+∞

∫
0

e−2πif (u)ϵ(u) du .

If |(a, b)| ⩽ 1, we have the trivial estimate

󵄨󵄨󵄨󵄨J(a, b)
󵄨󵄨󵄨󵄨 ⩽

1

∫
1/2

󵄨󵄨󵄨󵄨ϵ(u)
󵄨󵄨󵄨󵄨 du ⩽

1
2
‖ϵ‖∞ .

Assume |(a, b)| > 1 and γ|b| ⩽ 1
2 |a|. Then

󵄨󵄨󵄨󵄨f
󸀠(u)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨a + bγu

γ−1󵄨󵄨󵄨󵄨 ⩾ |a| − γ|b| ⩾
1
2
|a|

so that, by Lemma 9.9,

󵄨󵄨󵄨󵄨J(a, b)
󵄨󵄨󵄨󵄨 ⩽ 2
‖ϵ‖∞ + ‖ϵ󸀠‖∞
|a|

⩽
c2
|(a, b)|
⩽

c2
|(a, b)|1/2

.

Finally, if γ|b| > 1
2 |a| then

󵄨󵄨󵄨󵄨f
󸀠󸀠(u)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨bγ(γ − 1)u
γ−2󵄨󵄨󵄨󵄨 ⩾ c3|b|

so that by Lemma 9.10

󵄨󵄨󵄨󵄨J(a, b)
󵄨󵄨󵄨󵄨 ⩽ c4
‖ϵ‖∞ + ‖ϵ󸀠‖∞
|b|1/2

⩽
c5
|(a, b)|1/2

.

Second proof of Theorem 9.8. For t ∈ ℝ2, let η(t) be a smooth function supported in a
disc U centered at the origin and such that η(t) = 1 for each t ∈ 1

2U . Observe that for U
small enough

𝜕Cγ ∩ U = {(t1, t2) ∈ ℝ
2 : t2 = |t1|

γ} ∩ U .

For t, ξ ∈ ℝ2, let

ω(t) = e−2πit⋅ξ

−2πi|ξ |2
ξ ,

so that

divω(t) = 𝜕ω1
𝜕t1
+
𝜕ω2
𝜕t2
= e−2πit⋅ξ .
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Let us write ξ = ρΘ in polar coordinates and for every point t ∈ 𝜕Cγ let ν(t) be the
outward unit normal. Then application of the divergence theorem yields

χ̂Cγ (ξ ) = ∫
Cγ

e−2πiξ ⋅t dt (9.12)

= ∫
Cγ

divω(t) dt

=
−1
2πiρ
∫
𝜕Cγ

e−2πiρΘ⋅tΘ ⋅ ν(t) dμγ(t)

=
−1
2πiρ
∫
𝜕Cγ

e−2πiρΘ⋅tΘ ⋅ ν(t)η(t) dμγ(t)

−
1

2πiρ
∫
𝜕Cγ

e−2πiρΘ⋅tΘ ⋅ ν(t)(1 − η(t)) dμγ(t)

=:
−1
2πiρ

H1(ξ ) −
1

2πiρ
H2(ξ ) ,

where μγ is the arc length measure on 𝜕Cγ.
We first estimate H2(ξ ). Let

s 󳨃→ Γ(s)

be the parametrization of 𝜕Cγ by its arc length. Then

H2(ξ ) =
b

∫
a

e−2πiρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))(1 − η(Γ(s)))ds .

Since Γ󸀠(s) and Γ󸀠󸀠(s) are orthogonal vectors with norms ⩾ c1 > 0, then either
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d
ds
(ρΘ ⋅ Γ(s))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩾ c2ρ

or
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d2

ds2
(ρΘ ⋅ Γ(s))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩾ c2ρ .

Therefore, we can split the integral in H2(ξ ) as the sum of a finite number of integrals
that satisfy either the assumption of Lemma 9.9 or Lemma 9.10. Hence

󵄨󵄨󵄨󵄨H2(ξ )
󵄨󵄨󵄨󵄨 ⩽ c2ρ

−1/2.

Let us consider the integral H1(ξ ). By our assumption on the support of η(t), we
can write

H1(ξ ) = ∫
ℝ

e−2πi(ξ1x+ξ2|x|
γ)δ(x)τ(x) dx ,
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where τ(x) is compactly supported and takes value 1 in a neighborhood of 0 ∈ ℝ (say
τ(x) = 1 when |x| ⩽ 1/2 and τ(x) = 0 when |x| > 1) and δ(x) is a C2 function (recall that
γ > 2).

Assume first |ξ1| > |ξ2|. Since

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d
dx
(ξ1x + ξ2|x|

γ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨ξ1 + γξ2|x|

γ−1sign(x)󵄨󵄨󵄨󵄨 ≈ |ξ1| ≈ ρ ,

by Lemma 9.9 we have

󵄨󵄨󵄨󵄨H1(ξ )
󵄨󵄨󵄨󵄨 ⩽

c
ρ
.

Let now |ξ1| < |ξ2| and let ϵ(x) = τ(x) − τ(2x). Observe that ϵ(x) is positive and
supported in the interval (−1, −1/4) ∪ (1/4, 1). The key step in the proof is a dyadic de-
composition with the change of variables

∫
ℝ

e−2πi(ξ1x+ξ2|x|
γ)δ(x)τ(x) dx =

+∞

∑
j=1
∫
ℝ

e−2πi(ξ1x+ξ2|x|
γ)δ(x)ϵ(2jx) dx

=
+∞

∑
j=1

2−j ∫
ℝ

e−2πi((ξ12
−j)u+(ξ22−γj)|u|γ)δ(2−ju)ϵ(u) du .

By Lemma 9.11, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

e−2πi((ξ12
−j)u+(ξ22−γj)uγ)δ(2−ju)ϵ(u) du

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ c[1 + 󵄨󵄨󵄨󵄨(ξ12

−j, ξ22
−γj)󵄨󵄨󵄨󵄨]
−1/2
.

Hence

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

e−2πi(ξ1x+ξ2x
γ)τ(x) dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ c
+∞

∑
j=1

2−j[1 + 󵄨󵄨󵄨󵄨(ξ12
−j, ξ22
−γj)󵄨󵄨󵄨󵄨]
−1/2
.

Werecall thatweare assuming |ξ2| > |ξ1|, that is,we are considering only thedirections
close to be perpendicular to the part of 𝜕Cγ about the origin. Then

+∞

∑
j=1

2−j[1 + 󵄨󵄨󵄨󵄨(ξ12
−j, ξ22
−γj)󵄨󵄨󵄨󵄨]
−1/2 (9.13)

⩽ ∑
2j⩽(|ξ2|/|ξ1|)1/(γ−1)

2−j󵄨󵄨󵄨󵄨(ξ12
−j, ξ22
−γj)󵄨󵄨󵄨󵄨
−1/2

+ ∑
2j>(|ξ2|/|ξ1|)1/(γ−1)

2−j󵄨󵄨󵄨󵄨(ξ12
−j, ξ22
−γj)󵄨󵄨󵄨󵄨
−1/2

⩽ c ∑
2j⩽(|ξ2|/|ξ1|)1/(γ−1)

2j(γ/2−1)|ξ2|
−1/2 + c ∑

2j>(|ξ2|/|ξ1|)1/(γ−1)
2−j/2|ξ1|

−1/2
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⩽ c|ξ2|
−1/2(
|ξ2|
|ξ1|
)
(γ−2)/(2γ−2)

+ |ξ1|
−1/2(
|ξ1|
|ξ2|
)
1/(2γ−2)

⩽ c|ξ2|
−1/2(
|ξ2|
|ξ1|
)
(γ−2)/(2γ−2)

≈ ρ−1/2ψ−(γ−2)/(2γ−2) ,

where ψ = π/2 + arctan(|ξ2|/|ξ1|). Hence
󵄨󵄨󵄨󵄨χ̂Cγ (ξ )
󵄨󵄨󵄨󵄨 ⩽ cρ

−3/2ψ(2−γ)/(2γ−2) . (9.14)

Finally, we prove the inequality
󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)

󵄨󵄨󵄨󵄨 ⩽ cρ
−1−1/γ .

Observe that (9.14) yields the above upper bound when ψ ⩾ cρ−1+1/γ. We still have to
prove that the same bound is correct when 0 ⩽ ψ ⩽ cρ−1+1/γ, that is, |ξ1|/|ξ2| ⩽ cρ−1+1/γ.
Finally, we deal with the first inequality. We can assume |ξ1| < c|ξ2|. By the previous
computation, we have to bound

+∞

∑
j=1

2−j[1 + 󵄨󵄨󵄨󵄨(ξ12
−j, ξ22
−γj)󵄨󵄨󵄨󵄨]
−1/2

⩽ c
+∞

∑
j=1

2−j(1 + |ξ2|2
−γj)
−1/2

⩽ c ∑
2j⩽|ξ2|1/γ

2−j(|ξ2|2
−γj)
−1/2
+ c ∑

2j>|ξ2|1/γ
2−j ⩽ c|ξ2|

−1/γ ,

which yields the first inequality in (9.10).

9.4 Average decay of χ̂Cγ (ξ)

We shall consider both Lp average discrepancies when Cγ is translated, and Lp average
discrepancies when Cγ is translated and rotated. For the latter problem, we shall need
estimates for the Lp (spherical) average decay of χ̂Cγ (ξ ), that is,

{
2π

∫
0

󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)
󵄨󵄨󵄨󵄨
p dθ}

1/p

(where Θ = (cos θ, sin θ) and ρ ⩾ 2). To illustrate the relevance of these averages, we
point out that the above estimate (9.7) for the discrepancy of a polygon P is a conse-
quence of the estimate

2π

∫
0

󵄨󵄨󵄨󵄨χ̂P(ρΘ)
󵄨󵄨󵄨󵄨 dθ ⩽ c

log2(ρ)
ρ2
,
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which in turn follows from Theorem 9.3. We refer the interested reader to [10, 11], and
[39] for more details and applications.

In the next theorem (see [15]), we obtain estimates for the Lp (spherical) average
decay of χ̂Cγ (ξ ).

Theorem 9.12. We have

{
2π

∫
0

󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)
󵄨󵄨󵄨󵄨
p dθ}

1/p

⩽
{{{
{{{
{

cpρ−3/2 for p < 2γ−2
γ−2 ,

cρ−3/2 log(γ−2)(2γ−2)(ρ) for p = 2γ−2
γ−2 ,

cpρ
−1− 1p−

1
γ +

1
γp for p > 2γ−2

γ−2 .

Proof. It is enough to integrate between −π/2 and π/2. The estimates in Theorem 9.8
yield

{

π/2

∫
−π/2

󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)
󵄨󵄨󵄨󵄨
p dθ}

1/p

⩽ {

−π/2+cρ−1+1/γ

∫
−π/2

󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)
󵄨󵄨󵄨󵄨
p dθ}

1/p

+ {

−π/2+ε

∫

−π/2+cρ−1+1/γ

󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)
󵄨󵄨󵄨󵄨
p dθ}

1/p

+ {

π/2

∫
−π/2+ε

󵄨󵄨󵄨󵄨χ̂Cγ (ρΘ)
󵄨󵄨󵄨󵄨
p dθ}

1/p

⩽ c{
cρ−1+1/γ

∫
0

󵄨󵄨󵄨󵄨ρ
−1−1/γ󵄨󵄨󵄨󵄨

p dθ}
1/p

+ c{
ε

∫

cρ−1+1/γ

󵄨󵄨󵄨󵄨ρ
−3/2ψ(2−γ)/(2γ−2)󵄨󵄨󵄨󵄨

p dψ}
1/p

+ c{
π/2

∫
−π/2+ε

󵄨󵄨󵄨󵄨ρ
−3/2󵄨󵄨󵄨󵄨

p dθ}
1/p

= A + B + C ,

say. Finally, we have

A ⩽ cρ−1−
1
p−

1
γ +

1
γp ,
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B ⩽
{{{
{{{
{

ρ−3/2 for p < 2γ−2
γ−2 ,

ρ−3/2 log(γ−2)/(2γ−2)(ρ) for p = 2γ−2
γ−2 ,

ρ−1−
1
p−

1
γ +

1
γp for p > 2γ−2

γ−2 ,

C ⩽ cρ−3/2 .

It can be proved that the above estimates are sharp (see [15]).

9.5 Integer points in Cγ
We consider two different averages of the discrepancy function.

9.5.1 Discrepancy over translations

We now prove a few Lp estimates for the discrepancy function

𝒟R(t) = 𝒟(RCγ + t) = −R
d|Cγ| + card((RCγ + t) ∩ ℤ

2)

= −R2|Cγ| + ∑
n∈ℤ2

χRCγ (n − t) ,

which we recall to have Fourier series

∑
0 ̸=m∈ℤ2

χ̂RCγ (m)e
2πim⋅t .

We consider the Lp norms

‖𝒟R‖p = {
{∫𝕋2 |𝒟R(RCγ + t)|pdt}1/p for p < ∞,
supt∈𝕋2 |𝒟R(RCγ + t)| for p = ∞.

Our estimates are the following (see [8]).

Theorem 9.13. For 2 < γ ⩽ 3, we have

‖𝒟R‖p ⩽ {
cR1−1/γ for 1 ⩽ p ⩽ 4/(3 − γ),
cR

2
3 (1−

2
γp ) for p > 4/(3 − γ).

(9.15)

Theorem 9.14. For γ > 3 and every p ⩾ 1, we have

‖𝒟R‖p ⩽ cR
1−1/γ .

Remark 9.15. The proof of Theorem 9.13 follows Hlawka’s smoothing argument that
is usually used when the curvature of the boundary is strictly positive (i. e., γ = 2).

 EBSCOhost - printed on 2/10/2023 3:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



194 | L. Brandolini and G. Travaglini

Anyway, it takes no extra effort to apply it to the case γ ⩽ 3. Roughly speaking here,
we have to consider two cases. First, the integer points close to the origin, where verti-
cal translations yield discrepancy ⩽ cR1−1/γ. Second, the integer points away from the
origin, where the smoothing argument yields discrepancy ⩽ cR2/3. Therefore, γ ⩽ 3
works as well. The bound cR2/3 for γ ⩽ 3 has been first obtained in [18].

We need the following lemma (see [11]).

Lemma 9.16. Let φ(t) be a smooth nonnegative function supported in a small neighbor-
hood of the origin and such that ∫ℝ2 φ = 1. Then for every small ε > 0 and R > 1, we
have

ε−2φ(ε−1⋅) ∗ χ(R−ε)Cγ (t) ⩽ χRCγ (t) ⩽ ε
−2φ(ε−1⋅) ∗ χ(R+ε)Cγ (t) ,

where ∗ denotes the convolution

(f ∗ g)(t) = ∫ f (t − s)g(s) ds .

In particular,

|Cγ|((R − ε)
2 − R2) + Dε,R−ε(t) (9.16)

⩽ 𝒟R(t) ⩽ |Cγ|((R + ε)
2 − R2) + Dε,R+ε(t) ,

where

Dε,R(t) = R
2 ∑
0≠m∈ℤ2

φ̂(εm)χ̂Cγ (Rm)e
2πim⋅t .

Proof. First, we observe that the convexity of Cγ yields

R
R + ε

Cγ +
ε

R + ε
Cγ ⊆ Cγ

so that

(R + ε)Cγ ⊇ RCγ + εCγ ⊇ RCγ + B(0, ε) (9.17)

and, therefore, B(q, ε) ⊆ (R + ε)Cγ for every q ∈ 𝜕(RCγ). Applying (9.17) to Interior(Cγ)
with R in place of R + ε, we obtain

Interior(RCγ) ⊇ Interior(R − ε)Cγ + B(0, ε) .

Assume there exists y ∈ B(q, ε) ∩ Interior(R − ε)Cγ. It follows that

q ∈ Interior(R − ε)Cγ + B(0, ε) ⊆ Interior(RCγ)
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so that q ∉ 𝜕(RCγ). Hence for large R and small ε we have

B(q, ε) ⊆ (R + ε)Cγ \ Interior(R − ε)Cγ

for every q ∈ 𝜕(RCγ). Then

ε−2φ(ε−1⋅) ∗ χ(R−ε)B(t) ⩽ χRB(t) ⩽ ε
−2φ(ε−1⋅) ∗ χ(R+ε)B(t)

and, therefore, (9.16).

Proof of Theorem 9.13. By Lemma 9.16, we have

‖𝒟R‖p ⩽ |Cγ|max
±
󵄨󵄨󵄨󵄨(R ± ε)

2 − R2󵄨󵄨󵄨󵄨 +max
±
‖Dε,R±ε‖p

⩽ cRε +max
±
󵄩󵄩󵄩󵄩Dε,R±ε(t)

󵄩󵄩󵄩󵄩p .

We writem = (m1,m2) and we choose φ(t) as in Lemma 9.16, so that, in particular,

󵄨󵄨󵄨󵄨φ̂(ξ )
󵄨󵄨󵄨󵄨 ⩽

cN
1 + |ξ |N

for every N . Then

‖Dε,R‖p = {∫

𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
R2 ∑

0 ̸=m∈ℤ2
φ̂(εm)χ̂Cγ (Rm)e

2πim⋅t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dt}

1/p

⩽ {∫

𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
R2 ∑
| arctan(m1/m2)|⩽c1|m|−1+1/γ

φ̂(εm)χ̂Cγ (Rm)e
2πim⋅t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dt}

1/p

+ {∫

𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
R2 ∑

c1|m|−1+1/γ⩽| arctan(m1/m2)|<c2

φ̂(εm)χ̂Cγ (Rm)e
2πim⋅t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dt}

1/p

+ {∫

𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
R2 ∑

c2⩽| arctan(m1/m2)|

φ̂(εm)χ̂Cγ (Rm)e
2πim⋅t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dt}

1/p

= I + II + III ,

say. In order to prove the first inequality in (9.15), it is enough to consider the case
p = 4/(3 − γ) (observe that for γ = 3 we have p = ∞). We are going to deduce the
estimates of I , II , III from Theorem 9.8. We have

I ⩽ cR2 ∑
| arctan(m1/m2)|⩽c1|m|−1+1/γ

1
1 + |εm|

|Rm|−1−1/γ .

A modification of the above constant c1 allows us to replace the sum

∑
| arctan(m1/m2)|⩽c1|m|−1+1/γ
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with an integral, but for a finite number of unit squares close to the origin and centered
on the vertical axis. We write

I ⩽ cR1−1/γ + cR1−1/γ
+∞

∫
1

c(Rρ)−1+1/γ

∫
0

dψ 1
1 + ερ

ρ−1−1/γρ dρ

⩽ cR1−1/γ + c
+∞

∫
1

ρ−1 1
1 + ερ

dρ = cR1−1/γ + c log(1/ε) .

By the Hausdorff–Young inequality, we have for 1
p +

1
q = 1,

II ⩽ {∫
𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
R2 ∑

c1|m|−1+1/γ⩽| arctan(m1/m2)|<c2

φ̂(εm)χ̂Cγ (Rm)e
2πim⋅t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dt}

1/p

⩽ cR2{ ∑
c1|m|−1+1/γ⩽| arctan(m1/m2)|<c2

󵄨󵄨󵄨󵄨φ̂(εm)χ̂Cγ (Rm)
󵄨󵄨󵄨󵄨
q
}
1/q

⩽ cR2{ ∑
c1|m|−1+1/γ⩽| arctan(m1/m2)|<c2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
1 + |εm|

|Rm|−3/2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m1
m2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(2−γ)/(2γ−2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

q
}

1/q

⩽ cR1/2{
+∞

∫
1

c2

∫

cρ−1+1/γ

1
(1 + ερ)q

ρ−3q/2ψq(2−γ)/(2γ−2) dψρdρ}
1/q

= cR1/2{
+∞

∫
1

1
(1 + ερ)q

ρ1−3q/2
c2

∫

cρ−1+1/γ

ψq(2−γ)/(2γ−2) dψdρ}
1/q

= cR1/2{
+∞

∫
1

1
(1 + ερ)q

ρ1−3q/2 dρ}
1/q

= cR1/2{
+∞

∫
ε

1
(1 + s)q
(
s
ε
)
1−3q/2 1

ε
ds}

1/q

= cR1/2ε3/2−2/q

= cR1/2ε(2−γ)/2 ,

because q = 4/(γ + 1) < 4/3.

III ⩽ cR2{ ∑
c2⩽| arctan(m1/m2)|

(
1

1 + ε|m|
|Rm|−3/2)

q
}
1/q

⩽ cR1/2
+∞

∫
1

1
(1 + ερ)q

ρ1−3q/2 dρ = cR1/2ε3/2−2/q = cR1/2ε(2−γ)/2 .
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Then

‖𝒟R‖p ⩽ cRε + cR
1−1/γ + c log(1/ε) + cR1/2ε(2−γ)/2 .

By choosing ε = R−1/γ, we obtain

‖𝒟R‖p ⩽ cR
1−1/γ .

A similar computation shows that

‖𝒟R‖∞ = sup
t

󵄨󵄨󵄨󵄨𝒟(RCγ + t)
󵄨󵄨󵄨󵄨 ⩽ cR

2/3 .

To end the proof we need to show that ‖𝒟R‖p ⩽ cR(2γp−4)/(3γp) for 4/(3 − γ) < p < ∞.
Interpolation between the previous two cases yields

‖𝒟R‖p = {∫

𝕋2

󵄨󵄨󵄨󵄨𝒟R(t)
󵄨󵄨󵄨󵄨
p dt}

1/p

⩽ {∫

𝕋2

‖𝒟R‖
p−4/(3−γ)
∞

󵄨󵄨󵄨󵄨𝒟R(t)
󵄨󵄨󵄨󵄨
4/(3−γ) dt}

1/p

= ‖𝒟R‖
1−4/(3p−γp)
∞ ‖𝒟R‖

4/(3p−γp)
4/(3−γ) ⩽ cR

(2γp−4)/(3γp) .

Proof of Theorem 9.14. It is enough to consider the case p = +∞. Arguing as in the
previous proof, we write ‖𝒟R‖∞ ⩽ I + II + III and we obtain

I ⩽ cR1−1/γ , II ⩽ R1/2ε−1/2 , III ⩽ R1/2ε−1/2 .

Since now 1 − 1/γ > 2/3, choosing ε = R−1+2/γ we obtain

‖𝒟R‖∞ ⩽ cR
1−1/γ .

9.5.2 Discrepancy over translations and rotations

We obtain better estimates by averaging the discrepancy over translations and rota-
tions. Here is a result from [21].

Theorem 9.17. Let 2 < γ ⩽ 3 and p < 4 (hence p ⩽ (2γ − 2)/(γ − 2)). Then

{ ∫
SO(2)

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(Rσ(Cγ) + t)
󵄨󵄨󵄨󵄨
pdtdσ}

1/p
⩽ c R1/2 , (9.18)

where the constant c depends on γ and on p.
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Proof. Let q be the conjugate index of p (that is 1/p + 1/q = 1). By the inequalities of
Hausdorff–Young and Minkowski, and by Theorem 9.12, we have

{ ∫
SO(2)

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(Rσ(Cγ) + t)
󵄨󵄨󵄨󵄨
pdtdσ}

1/p

= { ∫
SO(2)

[(R2 ∫
𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
m ̸=0

χ̂Cγ (Rσ(m))e
2πim⋅t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dt)

1/p
]
p
dσ}

1/p

⩽ R2{ ∫
SO(2)

{∑
m ̸=0

󵄨󵄨󵄨󵄨χ̂Cγ (Rσ(m))
󵄨󵄨󵄨󵄨
q
}
p/q

dσ}
1/p

= R2(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∑
m ̸=0

󵄨󵄨󵄨󵄨χ̂Cγ (Rσ(m))
󵄨󵄨󵄨󵄨
q󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Lp/q(SO(2))

)
1/q

⩽ R2(∑
m ̸=0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨χ̂Cγ (Rσ(m))

󵄨󵄨󵄨󵄨
q󵄩󵄩󵄩󵄩Lp/q(SO(2)))

1/q

⩽ R2{∑
m ̸=0
{ ∫
SO(2)

󵄨󵄨󵄨󵄨χ̂Cγ (Rσ(m))
󵄨󵄨󵄨󵄨
pdσ}

q/p
}
1/q

⩽ cR2{∑
m ̸=0
|Rm|−3q/2}

1/q
= cR1/2 ,

because q > 4/3.

It is known that (9.18) can be reversed (see [15] for a proof). Here, we propose a dif-
ferent proof which depends on a general argument. We need a few preliminary results
which are essentially known (see [38] and [24]).

Proposition 9.18. Let ϕ ∈ C∞(−∞, +∞) be a convex function such that ϕ(0) = ϕ󸀠(0) =
0, ϕ󸀠󸀠(0) > 0. Let δ = 1

5
ϕ󸀠󸀠(0)
‖ϕ󸀠󸀠󸀠‖∞

, let ψ ∈ C∞0 (−δ, δ) and let

I(λ) = ∫
ℝ

eiλϕ(x)ψ(x)dx . (9.19)

Then there exists c > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
I(λ) − ψ(0)√ 2π

λϕ󸀠󸀠(0)
eiπ/4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ c 1

λ
.

The constant c depends on κ1 and κ2, where ϕ󸀠󸀠(0) ⩾ κ1, ‖ϕ‖C5 ⩽ κ2 and ‖ψ‖C2 ⩽ κ2.

Theproof is not short just becausewewant a constant c that depends on thenorms
of the functions and not on the functions themselves.

The proof of Proposition 9.18 needs a few lemmas.
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Lemma 9.19. Let ϕ ∈ C∞(−δ, δ) be a smooth function, and let for |x| < δ,

ω(x) = x−k
x

∫
0

(x − t)nϕ(t)dt

with n, k ⩾ 0. Then for 0 ⩽ r ⩽ n + 1 − k there exists c, independent of ϕ, such that

󵄨󵄨󵄨󵄨ω
(r)(x)󵄨󵄨󵄨󵄨 ⩽ c δ

n+1−k−r‖ϕ‖∞ .

Proof. Clearly,

󵄨󵄨󵄨󵄨ω(x)
󵄨󵄨󵄨󵄨 ⩽ |x|

−k |x|n+1‖ϕ‖∞ ⩽ δ
n+1−k‖ϕ‖∞ .

We claim that, for 1 ⩽ r ⩽ n + 1 − k, the derivative ω(r)(x) is a linear combination of
terms of the form

x−α
x

∫
0

(x − t)β

β!
ϕ(t)dt

with β − α = n − k − r and β ⩾ 0. The proof is by induction and it is enough to observe
that

d
dx
(x−α

x

∫
0

(x − t)β

β!
ϕ(t)dt)

= −αx−α−1
x

∫
0

(x − t)β

β!
ϕ(t)dt + βx−α

x

∫
0

(x − t)β−1

β!
ϕ(t) dt .

Hence

󵄨󵄨󵄨󵄨ω
(r)(x)󵄨󵄨󵄨󵄨 ⩽ c ∑

α+β=n−k−r, β⩾0,
|x|α
|x|

∫
0

|x|β󵄨󵄨󵄨󵄨ϕ(t)
󵄨󵄨󵄨󵄨dt

⩽ c ∑
α+β=n−k−r, β⩾0,

δα+β+1‖ϕ‖∞ ⩽ cδ
n+1−k−r‖ϕ‖∞ .

Lemma 9.20. Let ϕ ∈ C∞(−δ, +δ) such that

ϕ(0) = ϕ󸀠(0) = ⋅ ⋅ ⋅ = ϕ(k−1)(0) = 0 .

Then the function,

ψ(x) = ϕ(x)
xk
,

is smooth and for every integer n ⩾ 0, we have

‖ψ‖Cn ⩽ c‖ϕ‖Cn+k .
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Proof. By the integral form of the remainder in Taylor’s theorem, for every n we can
write

ϕ(x) = ϕ
(k)(0)
k!

xk + ⋅ ⋅ ⋅ + ϕ
(n+k−1)(0)
(n + k − 1)!

xn+k−1

+
x

∫
0

(x − t − 1)n+k−1

(n + k − 1)!
ϕ(n+k)(t)dt

(if n = 0 then only the integral appears). Let

ω(x) = x−k
x

∫
0

(x − t − 1)n+k−1

(n + k − 1)!
ϕ(n+k)(t)dt .

Then, by Lemma 9.19 we have

‖ψ‖Cn ⩽ c‖ϕ‖Cn+k−1 + ‖ω‖Cn

⩽ c‖ϕ‖Cn+k−1 + c
󵄩󵄩󵄩󵄩ϕ
(n+k)󵄩󵄩󵄩󵄩∞ ⩽ c‖ϕ‖Cn+k .

Lemma 9.21. There exist absolute constants c1, c2 > 0 such that if ϕ ∈ C∞(−∞, +∞) is
a convex function satisfying ϕ(0) = ϕ󸀠(0) = 0, ϕ󸀠󸀠(0) > 0, and δ = ϕ󸀠󸀠(0)

‖ϕ󸀠󸀠󸀠‖∞
. Then

g(x) = x√ϕ(x)
x2

is smooth and invertible in (−δ, δ). Moreover,

g󸀠(0) = √ϕ
󸀠󸀠(0)
2

(9.20)

and, for |x| < δ,

c1√ϕ󸀠󸀠(0) ⩽ g
󸀠(x) ⩽ c2√ϕ󸀠󸀠(0) .

Finally, ‖g‖Cn can be bounded from above by a constant that depends only on ‖ϕ‖C2+n ,
and from below by a constant that depends only on ϕ󸀠󸀠(0).

Proof. The integral form of the remainder in Taylor’s theorem and Lemma 9.19 yield

ϕ(x)
x2
=
ϕ󸀠󸀠(0)
2
+ x−2

x

∫
0

(x − t)2

2
ϕ󸀠󸀠󸀠(t) dt ,

so that, for |x| < δ, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ϕ(x)
x2
−
ϕ󸀠󸀠(0)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽
1
6
δ󵄩󵄩󵄩󵄩ϕ
󸀠󸀠󸀠󵄩󵄩󵄩󵄩∞ =

1
6
ϕ󸀠󸀠(0) .
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Hence, for |x| < δ,

1
3
ϕ󸀠󸀠(0) ⩽ ϕ(x)

x2
⩽
2
3
ϕ󸀠󸀠(0) .

Observe that this and Lemma 9.20 imply that g(x) is smooth. Similarly,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ϕ󸀠(x)
x
− ϕ󸀠󸀠(0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x−1

x

∫
0

(x − t)ϕ󸀠󸀠󸀠(t)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽
1
2
δ󵄩󵄩󵄩󵄩ϕ
󸀠󸀠󸀠󵄩󵄩󵄩󵄩∞ =

1
2
ϕ󸀠󸀠(0) ,

so that

1
2
ϕ󸀠󸀠(0) ⩽ ϕ

󸀠(x)
x
⩽
3
2
ϕ󸀠󸀠(0) .

Finally, since

g󸀠(x) = 1
2
ϕ󸀠(x)
x
(
ϕ(x)
x2
)
−1/2
,

there are absolute constants c1, c2 > 0 such that

c1√ϕ󸀠󸀠(0) ⩽
󵄨󵄨󵄨󵄨g
󸀠(x)󵄨󵄨󵄨󵄨 ⩽ c2√ϕ󸀠󸀠(0) .

Observe that

dn

dxn
(x√ϕ(x)

x2
) ≤ c∗ ,

where the constant c∗ depends on a lower bound for ϕ(x)
x2 and a lower bound for

dk
dxk (

ϕ(x)
x2 ), when k ≤ n. Then, by Lemma 9.20, c∗ depends on a lower bound of ϕ󸀠󸀠(0)

and on ‖ϕ‖Cn+2 .

Proof of Proposition 9.18. Let I(λ) be as in (9.19). Again let g = x√ϕ(x)x2 . Then [g(x)]2 =
ϕ(x), so that the change of variables u = g(x) and Lemma 9.21 yield

I(λ) = ∫
ℝ

eiλu
2 ψ(g−1(u))
g󸀠(g−1(u))

du = ∫
ℝ

eiλu
2
h(u)du ,

with h(u) smooth and compactly supported. Let η ∈ C∞0 (−∞, +∞) such that η(u) ≡ 1
on the support of h(u) and let

R(u) = h(u)e
u2 − h(0)
u

.

Then

I(λ) = ∫
ℝ

eiλu
2
h(u)η(u)du
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= ∫
ℝ

eiλu
2
e−u

2
[h(u)eu

2
]η(u)du

= ∫
ℝ

eiλu
2
e−u

2
[h(0) + uR(u)]η(u)du

= h(0) ∫
ℝ

eiλu
2
e−u

2
η(u)du + ∫

ℝ

eiλu
2
e−u

2
uR(u)η(u)du

= h(0) ∫
ℝ

eiλu
2
e−u

2
du + h(0) ∫

ℝ

eiλu
2
e−u

2
[1 − η(u)]du

+ ∫
ℝ

eiλu
2
e−u

2
uR(u)η(u)du

= I1(λ) + I2(λ) + I3(λ) .

The integral in I1(λ) can be computed through a familiar trick:

(
+∞

∫
−∞

eiλu
2
e−u

2
du)

2

=
+∞

∫
−∞

+∞

∫
−∞

eiλ(u
2+v2)e−(u

2+v2)dudv

=
2π

∫
0

+∞

∫
0

e(iλ−1)ρ
2
ρdρdθ = π

1 − iλ
.

Hence (9.20) yields

I1(λ) = h(0)
√π
(1 − iλ)1/2

=
ψ(0)

√ϕ󸀠󸀠(0)

√2π
(1 − iλ)1/2

(here we consider the branch of z1/2 that for z > 0 agrees with√z). Then, for λ > 1,

I1(λ) =
ψ(0)

√ϕ󸀠󸀠(0)
√2π(−iλ(1 + 1

−iλ
))
−1/2

=
ψ(0)

√ϕ󸀠󸀠(0)

√2π
√λ

eiπ/4 + ψ(0)

√ϕ󸀠󸀠(0)
O( 1

λ
) .

Integration by parts in I2(λ) yields

I2(λ) =
√2ψ(0)

√ϕ󸀠󸀠(0)

+∞

∫
−∞

eiλu
2
e−u

2
[1 − η(u)]du

=
ψ(0)

iλ√2ϕ󸀠󸀠(0)

+∞

∫
−∞

2iλueiλu
2 e−u

2
[1 − η(u)]
u

du
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=
ψ(0)

iλ√2ϕ󸀠󸀠(0)

+∞

∫
−∞

eiλu
2 d
du
[
e−u

2
[1 − η(u)]
u
]du ,

so that

󵄨󵄨󵄨󵄨I2(λ)
󵄨󵄨󵄨󵄨 ⩽ c

1
λ
|ψ(0)|

√ϕ󸀠󸀠(0)

(note that we can always assume that η(u) ≡ 1 in a given neighborhood of the origin).
Finally,

I3(λ) =
1
2iλ
∫ 2iλueiλu

2
e−u

2
R(u)η(u) du

=
1
2iλ
∫ eiλu

2 d
du
[e−u

2
R(u)η(u)] du

so that

󵄨󵄨󵄨󵄨I3(λ)
󵄨󵄨󵄨󵄨 ⩽

1
2λ
∫
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d
du
[e−u

2
R(u)η(u)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
du .

Since

h(u)eu
2
= h(0) + h󸀠(0)u +

u

∫
0

(u − t) d
2

dt2
[et

2
h(t)] dt ,

we have

R(u) = h󸀠(0) + 1
u

u

∫
0

(u − t) d
2

dt2
[et

2
h(t)] dt ,

󵄨󵄨󵄨󵄨R(u)
󵄨󵄨󵄨󵄨 ⩽
󵄨󵄨󵄨󵄨h
󸀠(0)󵄨󵄨󵄨󵄨 + sup

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d2

dt2
[et

2
h(t)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

where the supremum is on the support of h(t). We also have

R󸀠(u) = 1
u2

u

∫
0

t d
2

dt2
[et

2
h(t)] dt ,

so that

󵄨󵄨󵄨󵄨R
󸀠(u)󵄨󵄨󵄨󵄨 ⩽ sup

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d2

dt2
[eu

2
h(t)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ c‖h‖C2 .

Since

h(t) = ψ(g
−1(t))

g󸀠(g−1(t))
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and, by Lemma 9.21,

g󸀠(u) ≈ c1√ϕ󸀠󸀠(0) ,

we can control ‖h‖C2 through an upper bound on ‖ψ‖C2 and ‖g‖C3 , and a lower bound
on ϕ󸀠󸀠(0). In turns, by Lemma 9.21, ‖g‖C3 can be bounded by ‖ϕ‖C5 .

Asymptotic estimates for the Fourier transform of the characteristic function of
a convex body with smooth boundary having everywhere strictly positive curvature
are well known (see [23] and [22]). In the next lemma, we replace the above global
assumption on the curvature with a local one.

Lemma 9.22. Let C be a strictly convex planar body with smooth boundary but for a
single point that we assume to be the origin where we only assume C2 regularity. Let I be
a small closed interval contained in (0,π). For every direction θ ∈ I, let σ1(θ) and σ2(θ)
be the two points in 𝜕C where the tangents are perpendicular to Θ. We assume that the
curvatures K(σ1(θ)) and K(σ2(θ)) are positive. Then

χ̂C(ρΘ) = −
1
2πi

ρ−3/2 [e−2πiρΘ⋅σ1(θ)+πi/4K−1/2(σ1(θ))

−e−2πiρΘ⋅σ2(θ)−πi/4K−1/2(σ2(θ))]

+𝒪(ρ−2) ,

with the implicit constant in𝒪(ρ−2) depending only on infθ∈I K(σj(θ)).

Proof. By the divergence theorem, we have

χ̂C(ρΘ) =
−1
2πiρ
∫
𝜕C

e−2πiρΘ⋅tΘ ⋅ ν(t) dμ(t) ,

where dμ is the arc length measure on 𝜕C. Let

s 󳨃→ Γ(s)

be the arc length parametrization of 𝜕C. Then

χ̂C(ρΘ) =
−1
2πiρ

1

∫
0

e−2πiρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))ds

(without loss of generality we can assume that the arc length of 𝜕C is 1). Observe that
in the above integral the phase Θ ⋅ Γ(s) is stationary when Γ(s) = σj(θ). Let

Jj = {s ∈ [0, 1] : Γ(s) = σj(θ) for some θ ∈ I}
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and let φ1(s) and φ2(s) be cut-off functions that take value 1 in J1 and J2, respectively.
Then

χ̂C(ρΘ) =
−1
2πiρ

1

∫
0

e−2πiρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))φ1(s)ds

+
−1
2πiρ

1

∫
0

e−2πiρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))φ2(s)ds

+
−1
2πiρ

1

∫
0

e−2πiρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))[1 − φ1(s) − φ2(s)]ds

= A1 + A2 + A3 ,

say. The integral in A3 can be easily estimated since in the support of [1−φ1(s)−φ2(s)]
the phase is not stationary and we can integrate by parts. Therefore, we obtain

|A3| ⩽ cρ
−2 .

In the integral in A1, the phase is stationary at one point, say s where

Θ ⋅ Γ󸀠(s) = 0 .

Observe that at the point s we have

Θ ⋅ Γ󸀠󸀠(s) = 󵄨󵄨󵄨󵄨Γ
󸀠󸀠(s)󵄨󵄨󵄨󵄨 = K(σ1(θ)) ,

where K(σ1(θ)) denotes the curvature of 𝜕C at σ1(θ) = Γ(s). By Proposition 9.18, we
have

A1 = −
e−2πiρΘ⋅Γ(s)

2πiρ

1

∫
0

e2πiρ[Θ⋅Γ(s)−Θ⋅Γ(s)]Θ ⋅ ν(Γ(s))φ1(s)ds

= −
e−2πiρΘ⋅σ1(θ)

2πiρ
√

2π
2πρK(σ1(θ))

eiπ/4 + O(ρ−2) (9.21)

= −
1
2πi

ρ−3/2e−2πiρΘ⋅σ1(θ)+iπ/4K−1/2(σ1(θ)) + O(ρ
−2) .

Similarly,

A2 = −
e−2πiρΘ⋅Γ(s)

2πiρ

1

∫
0

e−2πiρ[Θ⋅Γ(s)−Θ⋅Γ(s)]Θ ⋅ ν(Γ(s))φ2(s)ds

=
e−2πiρΘ⋅σ2(θ)

2πiρ
√

2π
2πρK(σ2(θ))

e−iπ/4 + O(ρ−2)

=
e−2πiρΘ⋅σ2(θ)

2πi
ρ−3/2K−1/2(σ2(θ))e

−iπ/4 + O(ρ−2) .
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We can now prove the following result (see [15] for a different proof).

Theorem 9.23. For every γ > 2 and p ≥ 1, we have

{ ∫
SO(2)

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(Rσ(Cγ) + t)
󵄨󵄨󵄨󵄨
pdtdσ}

1/p
⩾ c R1/2 .

Proof. By our assumptions on Cγ, there is a positive constant κ and an interval I ⊂
[−π/2 − ε, −π/2 + ε] such K(σ2(θ)) > κ whenever θ ∉ I. Since (on the side close to the
origin) K(σ1(θ)) → 0 as θ → 0 there is an interval J ⊂ I such that K(σ(1θ)) < κ/2 for all
θ ∈ J. Then the asymptotic expansion in Lemma 9.22 yields

2π

∫
0

󵄨󵄨󵄨󵄨χ̂C(ρΘ)
󵄨󵄨󵄨󵄨 dθ > ∫

J∪(J+π)

󵄨󵄨󵄨󵄨χ̂C(ρΘ)
󵄨󵄨󵄨󵄨 dθ (9.22)

⩾ cρ−3/2 ∫
J∪(J+π)

󵄨󵄨󵄨󵄨K
−1/2(σ1(θ)) − K

−1/2(σ2(θ))
󵄨󵄨󵄨󵄨 − c1ρ

−2 ⩾ cρ−3/2 .

Then, for every 0 ̸= k ∈ ℤ2, (9.22) and an orthogonality argument yield

{ ∫
SO(2)

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(Rσ(Cγ) + t)
󵄨󵄨󵄨󵄨
pdtdσ}

1/p

= { ∫
SO(2)

({∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(Rσ(Cγ) + t)
󵄨󵄨󵄨󵄨
pdt}

1/p
)
p
dσ}

1/p

⩾ R2{ ∫
SO(2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝕋2

(∑
m ̸=0

χ̂Cγ (Rσ(m))e
2πim⋅t)e−2πik⋅tdt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dσ}

1/p

⩾ cR2{ ∫
SO(2)

󵄨󵄨󵄨󵄨χ̂Cγ (Rσ(k))
󵄨󵄨󵄨󵄨
pdσ}

1/p
⩾ cR1/2 .

The upper bound R1/2 still holds true for suitable rotations of Cγ; see [8].

Theorem 9.24. Let C̃γ be a rotated copy of Cγ and we assume that the outward unit
normal (α, β) at the flat point satisfies the following Diophantine condition: for every
given δ < 2/(γ − 2), there exists c > 0 such that for every positive integer n we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
nα
β

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
⩾

c
n1+δ
,

where ‖x‖ is the distance of the real number x from the integers. Then

{∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(RC̃γ + t)
󵄨󵄨󵄨󵄨
2dt}

1/2
⩽ cR1/2 .
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Proof. Of course, we may assume |α| < |β|. We write

∫

𝕋2

󵄨󵄨󵄨󵄨𝒟(RC̃γ + t)
󵄨󵄨󵄨󵄨
2dt = R4 ∑

(m1 ,m2) ̸=(0,0)

󵄨󵄨󵄨󵄨χ̂C̃γ (Rm1,Rm2)
󵄨󵄨󵄨󵄨
2

⩽ R4 ∑
0<|−βm1+αm2|<1/2

󵄨󵄨󵄨󵄨χ̂C̃γ (Rm1,Rm2)
󵄨󵄨󵄨󵄨
2

+ R4 ∑
1/2⩽|−βm1+αm2|<|αm1+βm2|

󵄨󵄨󵄨󵄨χ̂C̃γ (Rm1,Rm2)
󵄨󵄨󵄨󵄨
2

+ R4 ∑
0<|αm1+βm2|⩽|−βm1+αm2|

󵄨󵄨󵄨󵄨χ̂C̃γ (Rm1,Rm2)
󵄨󵄨󵄨󵄨
2

= A + B + C ,

say. We are going to apply the estimates in Theorem 9.8, with

ψ ≈ | − βm1 + αm2|

√m2
1 +m2

2

.

In order to estimate A, we observe that 0 < | − βm1 + αm2| < 1/2 impliesm2
1 +m

2
2 ≈ m

2
2

and, therefore,

A ⩽ cR ∑
0<|−βm1+αm2|<1/2

ψ−(γ−2)/(γ−1)(m2
1 +m

2
2)
−3

⩽ cR ∑
0<|−βm1+αm2|<1/2

| − βm1 + αm2|
−(γ−2)/(γ−1)|m2|

−2−1/(γ−1)

⩽ cR ∑
0<|−βm1+αm2|<1/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
m2

α
β

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−(γ−2)/(γ−1)
|m2|
−2−1/(γ−1)

⩽ cR ∑
0<|−βm1+αm2|<1/2

|m2|
(1+δ)(γ−2)/(γ−1)|m2|

−2−1/(γ−1) = cR ,

because δ < 2/(γ − 2). As for B we can replace the sum with an integral and have

B ⩽ cR ∑
1/2⩽|−βm1+αm2|<|αm1+βm2|

| − βm1 + αm2|
−(γ−2)/(γ−1)

× |αm1 + βm2|
−2−1/(γ−1)

⩽ cR ∫
1/2⩽|ξ |⩽|s|

|ξ |−(γ−2)/(γ−1)|s|−2−1/(γ−1) dξds

⩽ cR .

Finally,

C ⩽ R ∑
0<|αm1+βm2|⩽|−βm1+αm2|

󵄨󵄨󵄨󵄨(m1,m2)
󵄨󵄨󵄨󵄨
−3

⩽ cR ∑
(m1 ,m2) ̸=(0,0)

󵄨󵄨󵄨󵄨(m1,m2)
󵄨󵄨󵄨󵄨
−3
= cR .
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Remark 9.25. We recall that if ω is an irrational algebraic number, then Roth’s theo-
rem [35] says that for every ε > 0 there exists c > 0 such that

‖nω‖ ≥ 1
n1+ε
.

9.6 Irregularities of distribution for Cγ
The above upper boundR1/2 for the discrepancy is best possible in the following sense.
Let the integer N be a square,1 say N = M2. Then the set

1
M
ℤ2 ∩ [−

1
2
,
1
2
)2

contains N points and, for a convex planar body C ⊂ [− 12 ,
1
2 )
2, we have

card(ℤ2 ∩MC) = card( 1
M
ℤ2 ∩ C) .

Then the study of integer points in large convex bodies is a counterpart to a classical
“irregularities of distribution” problem (see [4, 30]). In other words, it is a particular
answer to the problem of choosing N points in [−1/2, 1/2)2 to approximate the area of
a given family of sets.

We have the following result.

Theorem 9.26. Let Cγ be as in the Introduction. Let N be a positive large integer. Then
there exists a constant c > 0 such that for every finite set

{u(j)}Nj=1 ⊂ [−1/2, 1/2)
2

we have

{
1

∫
1/2

∫

𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−N |Cγ| +

N
∑
j=1

χτCγ (u(j) + t)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

dtdτ}
1/2

⩾ c N1/4 . (9.23)

Corollary 9.27. Let Cγ and N be as in the previous theorem. Then there exists a dilated
and translated copy C̃γ of Cγ such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−N |Cγ| +

N
∑
j=1

χC̃γ (u(j))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩾ c N1/4 .

1 Actually, it is not necessary to choose N to be a square, see [14, p. 3533].
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Note that in order to compare (9.23) with the results in the previous section, we
should take R = N1/2.

To prove Theorem 9.26, we first need a mild variant of a classical result due to
J.W. S. Cassels (see, e. g., [31]). For every positive real number K, let we consider the
square

QK = {m = (m1,m2) ∈ ℤ
2 : |m1| ⩽ K , |m2| ⩽ K} .

Lemma 9.28. For every choice of positive integers H, N, and L, such that H < √L, let

Q̃N = Q√LN⟍QH . (9.24)

Then for every finite set {u(j)}Nj=1 ⊂ 𝕋
2, we have

∑
0≠m∈Q̃N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⩾ (L − H2)N2 . (9.25)

Proof. Since

∑
|m1|⩽H
∑
|m2|⩽H

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⩽ N2H2

it is enough to show that

∑
|m1|⩽√LN

∑
|m2|⩽√LN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⩾ LN2 ,

and this will follow from the inequality

∑
|m1|⩽[√LN]

∑
|m2|⩽[√LN]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⩾ N([√LN] + 1)2 . (9.26)

Indeed let u(ℓ) = (u1(ℓ), u2(ℓ)). Then the LHS of (9.26) is larger than

∑
|m1|⩽[√LN]

∑
|m2|⩽[√LN]

(1 − |m1|

[√LN] + 1
)

× (1 − |m2|

[√LN] + 1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

L

(9.27)

= ∑
|m1|⩽[√LN]

∑
|m2|⩽[√LN]

(1 − |m1|

[√LN] + 1
)(1 − |m2|

[√LN] + 1
)
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×
N
∑
j=1

N
∑
k=1

e2πim⋅(u(j)−u(k))

=
N
∑
j=1

N
∑
k=1
∑

|m1|⩽[√LN]

(1 − |m1|

[√LN] + 1
)e2πim1(u1(j)−u1(k))

× ∑
|m2|⩽[√LN]

(1 − |m2|

[√LN] + 1
)e2πim2(u2(j)−u2(k))

=
N
∑
j=1

N
∑
k=1

K[√LN](u1(j) − u1(k))K[√LN](u2(j) − u2(k)) , (9.28)

where

KM(x) =
M
∑
j=−M
(1 − |j|

M + 1
)e2πijx = 1

M + 1
(
sin(π(M + 1)x)

sin(πx)
)
2

is the Fejér kernel on𝕋. SinceKM(x) ⩾ 0 for every x, the last term in (9.28) is not smaller
than the “diagonal”

N
∑
j=1
K[√LN](u1(j) − u1(j))K[√LN](u2(j) − u2(j))

= N K[√LN](0)K[√LN](0) = N([√LN] + 1)
2
.

Now we need an estimate from below of ∫11/2 |χ̂sCγ (k)|
2 ds, for 0 ̸= k ∈ ℤ2.

Lemma 9.29. Let Cγ be as in the Introduction. Then there exist constants c1, c2 > 0 such
that for |ξ | ⩾ c1 we have

{
1

∫
1/2

󵄨󵄨󵄨󵄨χ̂Cγ (τξ )
󵄨󵄨󵄨󵄨
2 dτ}

1/2

⩾ c2|ξ |
−3/2 .

Proof. Let ξ = ρΘ, arguing as in the proof of Lemma 9.22 we write

χ̂Cγ (τρΘ) =
−1

2πiτρ

1

∫
0

e−2πiτρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))φ1(s)ds

+
−1

2πiτρ

1

∫
0

e−2πiτρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))φ2(s)ds

+
−1

2πiτρ

1

∫
0

e−2πiτρΘ⋅Γ(s)Θ ⋅ ν(Γ(s))[1 − φ1(s) − φ2(s)]ds

= A1(τρ) + A2(τρ) + A3(τρ) .
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We have

{
1

∫
1/2

󵄨󵄨󵄨󵄨χ̂Cγ (τξ )
󵄨󵄨󵄨󵄨
2 dτ}

1/2

⩾ {
1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ) + A2(τρ)
󵄨󵄨󵄨󵄨
2 dτ}

1/2

− {
1

∫
1/2

󵄨󵄨󵄨󵄨A3(τρ)
󵄨󵄨󵄨󵄨
2 dτ}

1/2

.

Since (inA3) in the support of [1−φ1(s)−φ2(s)] the phase is not stationary, integration
by parts yields

󵄨󵄨󵄨󵄨A3(τρ)
󵄨󵄨󵄨󵄨 ⩽ cτ

−2ρ−2 ,

and, therefore,

{
1

∫
1/2

󵄨󵄨󵄨󵄨χ̂Cγ (τξ )
󵄨󵄨󵄨󵄨
2 dτ}

1/2

⩾ {
1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ) + A2(τρ)
󵄨󵄨󵄨󵄨
2 dτ}

1/2

− cρ−2 .

By our assumptions on Cγ, we know that at least one (say the first one) of the two
integrals in A1 and A2 corresponds to a part of 𝜕Cγ where the curvature is bounded
away from zero. Let η ∈ C∞0 (1/2, 1) be a cut-off function such that 0 ⩽ η(τ) ⩽ 1 and
η(τ) ≡ 1 for 5/8 ⩽ τ ⩽ 7/8. Then

1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ) + A2(τρ)
󵄨󵄨󵄨󵄨
2dτ ⩾

1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ) + A2(τρ)
󵄨󵄨󵄨󵄨
2η(τ)dτ

=
1

∫
1/2

(󵄨󵄨󵄨󵄨A1(τρ)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨A2(τρ)

󵄨󵄨󵄨󵄨
2
+ 2 Re(A1(τρ)A2(τρ)))η(τ)dτ

⩾
1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ)
󵄨󵄨󵄨󵄨
2η(τ)dτ + 2 Re

1

∫
1/2

(A1(τρ)A2(τρ))η(τ)dτ

For the second integral, we have

1

∫
1/2

A1(τρ)A2(τρ)η(τ)dτ

=
−1

4π2ρ2

1

∫
1/2

τ−2
1

∫
0

1

∫
0

e2πiτρΘ⋅[Γ(w)−Γ(s)][Θ ⋅ ν(Γ(s))Θ ⋅ ν(Γ(w))]

× φ1(s)φ2(w)dsdw η(τ)dτ
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−1
4π2ρ2

1

∫
0

1

∫
0

1

∫
1/2

e2πiτρΘ⋅[Γ(w)−Γ(s)] η(τ)
τ2

dτ

× [Θ ⋅ ν(Γ(s))Θ ⋅ ν(Γ(w))]φ1(s)φ2(w)dsdw

Observe that if ℓ(τ) = η(τ)/τ2, then

1

∫
1/2

e2πiτρΘ[Γ(w)−Γ(s)] η(τ)
τ2

dτ = ℓ̂(ρΘ[Γ(w) − Γ(s)]) .

Since |Θ ⋅ [Γ(w) − Γ(s)]| ⩾ c > 0 for everyw, s in the supports of φ1 and φ2, respectively,
integration by parts gives

1

∫
1/2

e2πiτρΘ⋅[Γ(w)−Γ(s)] η(τ)
τ2

dτ = O(ρ−L)

for every L. It follows that

{
1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ) + A2(τρ)
󵄨󵄨󵄨󵄨
2dτ}

1/2

⩾ c{
1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ)
󵄨󵄨󵄨󵄨
2η(τ)dτ}

1/2

+ O(ρ−L).

Also, by our choice of A1, we have

A1(τρ) = −
1
2πi
(τρ)−3/2e−2πiτρΘ⋅σ1(θ)+i

π
4 K−1/2(σ1(θ)) + O(τ

−2ρ−2)

so that

{
1

∫
1/2

󵄨󵄨󵄨󵄨A1(τρ)
󵄨󵄨󵄨󵄨
2η(τ)dτ}

1/2

⩾ c1ρ
−3/2K−1/2(σ1(θ)) − c2ρ

−2 .

Finally,

{
1

∫
1/2

󵄨󵄨󵄨󵄨χ̂Cγ (τξ )
󵄨󵄨󵄨󵄨
2 dτ}

1/2

⩾ c1ρ
−3/2 − c2ρ

−2 ⩾ c3ρ
−3/2

for ρ large enough.

Proof of Theorem 9.26. We apply the Parseval theorem, (9.25), and Lemma 9.29, where
we choose H = c1. Then, for Q̃N as in (9.24), we have

1

∫
1/2

∫

𝕋2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−N |Cγ| +

N
∑
j=1

χτCγ (u(j) + t)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

dtdτ
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=
1

∫
1/2

∑
m ̸=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨χ̂τCγ (m)

󵄨󵄨󵄨󵄨
2 dτ

⩾ ∑
m∈QN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 1

∫
1/2

τ2󵄨󵄨󵄨󵄨χ̂Cγ (τm)
󵄨󵄨󵄨󵄨
2 dτ

⩾ c|√N |−3 ∑
m∈QN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
j=1

e2πim⋅u(j)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⩾ c N1/2 .

Remark 9.30. We have already pointed out that the discrepancy results for Cγ are “in-
termediate” between the case of a convex body with smooth boundary having every-
where positive curvature, and the case of a polygon (just send γ → 2 or γ → +∞). This
is not the case for the main result in this section. Indeed we know that for a polygon
we have a logarithmic lower bound (see [31]) which has a counterpart in Davenport’s
paper [19]. The “explanation” is that a polygon does not have points on the boundary
with positive curvature, while for every γ < +∞ the convex body Cγ has such points.

9.7 Remarks on higher dimensional cases

Kendall’s upper bound works in higher dimensions as well. Indeed, let B = {t ∈ ℝd :
|t| ⩽ 1} and let t ∈ 𝕋d = ℝd/ℤd. Let

DR(σ, t) = −R
d|B| + card((σ(RB) + t) ∩ ℤd) .

Then (see, e. g., [11])

{∫

𝕋d

󵄨󵄨󵄨󵄨DR(σ, t)
󵄨󵄨󵄨󵄨
2 dt}

1/2
⩽ c R(d−1)/2 .

Interestingly (see [32]), its converse

{∫

𝕋d

󵄨󵄨󵄨󵄨DR(σ, t)
󵄨󵄨󵄨󵄨
2 dt}

1/2
⩾ c1 R

(d−1)/2

holds if and only if d ̸≡ 1(mod 4).
Theorem 9.3 does not extend to the case d ⩾ 3. Indeed, consider the cube Q in

the following figure and the Fourier transform χ̂Q(ξ ) in the direction of ξ . Then |χ̂Q(ξ )|
cannot be controlled by the area of the triangle (i. e., the section) perpendicular to ξ
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(at distance 1/|ξ |).

Indeed the area of the triangle decays of order 2, so that the “parallel section function”
ℝ ∋ x 󳨃→ h(x), which measures the areas of the sections of C perpendicular to ξ , has a
shape similar to the following one:

The above figure shows that the parallel section function h(x) is more regular at the
boundary of its support than inside it. Since the Fourier transform is mostly affected
by the “irregular” points, the decay of χ̂Q(ξ ) cannot be controlled by a geometric esti-
mate around the boundary of Q. Anyhow this may not be an obstacle. Indeed, in the
case of a ball B or in the case of a convex body C with smooth boundary having pos-
itive curvature, we can still use the asymptotics of Bessel functions (or more refined
estimates introduced by E. Hlawka and C. Herz) to estimate χ̂C(ξ ). In the case of a poly-
hedron, we may obtain fairly precise estimates working by induction on its faces. See
also [16, 1] for general results concerning convexity and geometric estimates of Fourier
transforms.

The dyadic argument in the second proof of Theorem 9.8 holds true in several
variables as well (see [12]).

Theorems 9.13 and 9.14 can be extended to several variables with the following
more general assumption on 𝜕Cγ.

Definition 9.31. Let U be a bounded open neighborhood of the origin in ℝd−1, let Φ ∈
C∞(U \ {0}), and let γ > 1. For every x ∈ U \ {0}, let μ1(x), . . . , μd−1(x) be the eigenvalues
of the Hessian matrix of Φ. We say that Φ ∈ Sγ(U) if for j = 1, . . . , d − 1,

0 < inf
x∈U\{0}
|x|2−γμj(x)
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and, for every multiindex α,

sup
x∈U\{0}
|x||α|−γ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕|α|Φ
𝜕xα
(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< +∞.

Let B be a convex body in ℝd, let t ∈ 𝜕B, and let γ > 2. We say that t is an isolated
flat point of order γ if, in a neighborhood of t and in a suitable Cartesian coordinate
system with the origin in t, 𝜕B is the graph of a function Φ ∈ Sγ(U).

Also Theorem 9.17 can be extended to several variables; see [21].
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