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Preface

The Purpose of this Book

Pest risk maps are frequently used to inform strategic and tactical decisions for the 
management of invasive alien species. Invasive alien species can threaten human health, 
drive species extinctions, lower agricultural production, impede economic growth or impair 
ecosystem structure and function.

Th e International Pest Risk Mapping Workgroup acknowledges that advanced training 
and a ‘tool kit’ of software packages are needed to produce pest risk maps that are fully fi t for 
purpose. Th is book is an initial attempt to address those needs. Invited chapters emphasize 
specifi c steps and data requirements to guide users through the development of pest risk 
models and maps, or components thereof. Each chapter describes assumptions behind each 
model, briefl y addresses pertinent theory and illustrates key concepts through worked 
examples.

Th e methods discussed in this book are descriptive not prescriptive. Th at is to say, these 
are examples of methods that have been used in previous assessments and have met 
standards for publication in peer-reviewed journals. Readers should not assume that these 
particular methods must be used to construct pest risk maps or that simply following the 
methods in this book will satisfy all scientifi c or regulatory concerns about invasive alien 
species. Th e Sanitary and Phytosanitary Agreement reached by the World Trade Organization 
acknowledges the sovereign right of any nation to protect its agricultural and natural 
resources from invasive alien species through biosecurity measures. Th ose measures are 
justifi able insofar as they are consistent with International Standards for Phytosanitary 
Measures. Pest risk models and maps to support local, regional or national decision making 
about the management of invasive alien species are not subject to these standards until they 
aff ect international trade. However, pest risk models and maps for domestic decision making 
are subject to their own standards set by the decision-making body/bodies.

My hope is that by revealing greater detail about some of the methods that are currently 
being used to construct pest risk maps, more scientists and modellers will be able to 
confi dently produce pest risk models and maps and will fi nd inspiration to improve pest risk 
mapping techniques. Th e methods in the book are not exhaustive, and more approaches 
than those described herein are available for pest risk modelling and mapping.
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The Intended Audience

Th e text will be instructive to current and future land managers, regulatory offi  cials, 
conservation biologists, landscape ecologists, applied economists, invasion biologists and 
anyone else who is interested in the development and application of pest risk models and 
maps for invasive alien species. Th e text would also be appropriate in courses for advanced 
undergraduates or introductory graduate students.

Scope

Most of the methods that are described herein have been used to support the development 
of pest risk maps or components thereof. Some of these methods have been addressed in the 
scientifi c literature or in government documents, but frequently in ways that would be 
diffi  cult for someone else to reproduce the results. Th is text and the accompanying online 
support materials are intended to provide much greater transparency with respect to data 
sources, software packages and specifi c methods to produce pest risk maps. As such, the text 
is not intended to describe all of the methods that have been, or could be, used for pest risk 
mapping nor is it meant to fully describe the theory behind the methods.

Th e text emphasizes the application of models to terrestrial ecosystems, in particular to 
invasive alien species that might aff ect plants. Many of these approaches could be adapted 
to invasive alien species that aff ect livestock, wildlife or aquatic ecosystems.

Prerequisites

Pest risk maps typically require the integration and application of a number of skills. Despite 
the emphasis on maps, this book does not provide an extensive discussion of geographic 
information systems (GIS) or cartographic methods. Additionally, the text frequently 
assumes that the user has some familiarity with statistics, modelling and at least one of the 
core biological disciplines that support pest risk analysis (e.g. entomology, plant pathology 
or weed science).

The Text

Th e text is organized around the phases that are common to all biological invasions: arrival, 
establishment, spread and impact. Chapters 1 and 2 off er introductory comments about 
general goals and challenges of producing pest risk models and maps for invasive alien 
species. Chapters 3 and 4 address the arrival of new invasive alien species, either through 
international trade or aerial dispersal. Chapters 5, 6 and 7 describe techniques to determine 
where invasive alien species might establish. Chapters 8 and 9 convey methods to characterize 
or measure the spread of invasive alien species. Chapters 10, 11 and 12 explain specifi c 
methods to assess the potential economic or environmental impacts of biological invasions 
and the benefi ts of management. Chapters 13 and 14 describe methods to measure a 
common form of uncertainty in pest risk models (i.e. parametric uncertainty) and how to 
formally incorporate uncertainty measures into products for decision makers. Th e text 
concludes with a general discussion of measures of model validity and reliability.

Several chapters include additional information in the online supplement to this book. 
Th e supplement can be found at www.cabi.org/openresources/43946.
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1 The Challenge of Modelling and 
Mapping the Future Distribution 
and Impact of Invasive Alien 
Species

Robert C. Venette*

USDA Forest Service, Northern Research Station, St. Paul, 
Minnesota, USA

Abstract

Invasions from alien species can jeopardize 
the economic, environmental or social 
benefi ts derived from biological systems. 
Biosecurity measures seek to protect those 
systems from accidental or intentional 
introductions of species that might become 
injurious. Pest risk maps convey how the 
probability of invasion by an alien species or 
the potential consequences of that invasion 
vary spatially. Th ese maps inform strategic 
and tactical decisions for invasive species 
management. Pest risk modellers must 
contend with the challenges of developing 
models that forecast the course or 
consequence of invasions and are more 
meaningful than could be obtained by 
chance, of demonstrating the validity of 
those models and of portraying results on 
maps in ways that will be useful for decision 
makers. Frequently, these forecasts depend 
on extrapolations from limited information 
to project how a species might be aff ected, 
for example, by changes in commerce, 
exposure to novel environments or 
associations with new dispersal vectors, or 
how these species might aff ect resident 
species or ecological processes. Conse-
quently, pest risk maps often focus on one 
phase of the invasion process: arrival, 
establishment, spread or impact. Risk 

assessors use diff erent analytical tools and 
information sources to address each phase. 
To be certain that pest risk models and maps 
are fully fi t for purpose, models and maps 
must be critically evaluated at each stage of 
the development process. Invariably, errors 
will be revealed. Th e International Pest Risk 
Mapping Workgroup has off ered a number 
of suggestions to improve the development 
of pest risk models and maps. In addition, 
short-term improvements are likely to be 
achieved through critical, objective assess-
ments of model performance and greater 
transparency about model development.

Introduction to Pest Risk Maps

Abraham Maslow (1943) proposed a 
hierarchy of human needs to explain 
preconditions for certain human behaviours. 
Higher-level needs (e.g. self-actualization 
from which reason, creativity and morality 
emerge) cannot be met until more 
fundamental needs are satisfi ed. Modern 
concepts of biosecurity intertwine the most 
basal need for food and water to support life 
with the next most basic need to have safety 
and security. Indeed, biosecurity describes 
the measures taken ‘to manage risks of 
infectious disease, quarantined pests, 
invasive alien species, living modifi ed 

* E-mail: rvenette@fs.fed.us
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2 Robert C. Venette

organisms, and biological weapons. … 
[M]any of these problems are a subset of the 
issue of invasive alien species’ (Meyerson 
and Reaser, 2002). Ultimately, biosecurity is 
intended to protect human health, the 
environment or the economy from such 
biological threats. Pest risk maps for invasive 
alien species are pivotal tools for biosecurity.

Alien species (also known as exotic, 
non-native, non-indigenous or introduced 
species) are those species that have been 
accidentally or intentionally introduced to 
one or more areas outside their native 
geographic range but are by no means 
extraterrestrial. Often, these species are 
pathogens, plants or animals with a history 
of being problematic elsewhere in the world. 
Th ree dimensions (i.e. space, time and 
impact) aff ect whether a species is considered 
an invasive alien. In the USA, Executive 
Order 13112 defi nes an invasive alien 
species as ‘with respect to a particular 
ecosystem, any species, including its seeds, 
eggs, spores, or other biological material 
capable of propagating that species, that is 
not native to that ecosystem’ and ‘whose 
introduction does or is likely to cause 
economic harm or harm to human health’ 
(Th e White House, 1999). International 
Standards for Phytosanitary Measures 
similarly recognize a quarantine pest as 
‘any species, strain or biotype of plant, 
animal, or pathogenic agent injurious to 
plants or plant products’ that is ‘of potential 
economic [or environmental] importance 
to the area endangered thereby and not yet 
present there, or present but not widely 
distributed and being offi  cially controlled’ 
(FAO, 2012). Both defi nitions implicitly 
acknowledge that being alien is insuffi  cient 
evidence by itself to consider a species an 
invasive pest.

Pest risk for invasive alien species refers 
to both: (i) the probability that a species will 
arrive, establish and spread (i.e. successfully 
invade) within an area; and (ii) the 
magnitude of harm should the invasion be 
successful (Orr et al., 1993; Ebbels, 2003). 
Economic harms result from lowered 
yields, reduced marketability, lost trade 
opportunities or increased management 
costs. Environmental harms include altered 

ecosystem functioning (e.g. fi re regimes or 
nutrient cycling) or reductions in the 
abundance or diversity of resident taxa. 
Environmental harms can also occur if 
management activities aff ect non-target 
species (e.g. through drift of pesticides or 
predation by non-specifi c biological control 
agents). Environmental harms are con-
sidered particularly severe if threatened or 
endangered species might be aff ected. Social 
harms can occur if an invasive species or 
management activities interfere with 
benefi ts people draw from an ecosystem. 
However, it is not reasonable to assume an 
invasive alien species will be present in all 
places at all times; thus, risks posed by 
invasive alien species have spatial and 
temporal contexts.

Pest risk maps convey how risks from 
invasive alien species vary spatially within 
an area of concern and refl ect underlying 
models of the factors that govern the course 
of invasion and the eff ects of invasive alien 
species on the structure or function of 
ecosystems (Venette et al., 2010). Some of 
these models are derived from heuristic 
descriptions of conditions necessary for an 
alien species to complete each phase of an 
invasion or have an impact. Other 
empirically based, statistical models infer 
quantitative relationships between a 
response variable (e.g. the probability of 
pest arrival) and a number of covariates 
(i.e. independent or predictor variables). 
Conceptual mathematical models follow a 
logical formalism to deduce relationships 
among variables (e.g. factors that aff ect 
species’ spread rates). Many models for pest 
risk maps are based on more general 
ecological theories about factors that aff ect 
species’ distributions, rates and patterns of 
spread, or the outcome of species’ inter-
actions. Although the goal of a pest risk map 
is to characterize how the probability and 
consequences of invasion by an alien species 
vary within an area of concern, in practice, 
pest risk maps frequently address just one or 
a few components of pest risk. For example, 
a map could focus on the suitability of the 
climate for pest establishment within an 
area of concern, with the rationale that a 
species which fails to fi nd a suitable climate 

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



 The Challenge of Modelling and Mapping of Invasive Alien Species 3

cannot establish, spread or have a lasting 
impact.

A well-crafted risk map serves a number 
of purposes. From a pragmatic perspective, 
risk maps can be powerful tools to help 
managers (e.g. foresters, farmers, pest-
survey coordinators and some policy 
makers) select appropriate strategies and 
tactics with which to mitigate species’ risks. 
Such risk mitigation (i.e. biosecurity) 
strategies can be classifi ed broadly as 
prevention, eradication, suppression and 
restoration, which correspond generally 
with the arrival, establishment, spread and 
impact of invasive alien species (Venette and 
Koch, 2009). Pest risk maps also inspire 
critical thought about: (i) the adequacy of 
current theory, models and data to 
characterize risks from biological invasions; 
and (ii) alternative explanations for the 
course of an invasion or the impacts that 
have been realized, as was suggested by 
Koch (2011) for maps of human disease. 
Th is chapter describes long-standing goals 
for pest risk maps and introduces the general 
process by which pest risk maps are created. 
General models that have been applied to 
address diff erent stages of the invasion 
process are briefl y discussed. Types of errors 
associated with many pest risk models are 
presented and discussed with respect to 
measures of model performance. Th e 
chapter concludes with a series of recom-
mendations that would help to improve the 
future development of pest risk models and 
maps.

An Historical Example of a Pest Risk 
Map

No consensus exists about when the fi rst 
modern pest risk map was created. Figure 
1.1 is likely among the fi rst maps that begin 
to address contemporary concepts of pest 
risk, although the map was not created with 
the formal defi nition of pest risk in mind. In 
the 1870s, the San Jose scale, currently 
Quadraspidiotus perniciosus, was detected in 
North America for the fi rst time in 
California’s San Jose Valley (Howard and 

Marlatt, 1896). Th e pernicious insect, now 
recognized as native to parts of Asia, feeds 
on several deciduous fruit trees, such as 
peaches, plums, apples and pears, and is 
easily moved on nursery stock. Few details 
have been published about the creation of 
this map, but two pragmatic questions seem 
to have motivated its production: where was 
the insect likely to spread within the USA 
and what major fruit production regions 
might be aff ected?

Th is map (Fig. 1.1), published in 1896, 
shows the distribution of San Jose scale up 
to that time relative to ‘life zones’ in the 
conterminous USA. Th e life zones had been 
proposed by C.H. Meriam to distinguish 
areas that were especially suitable, or 
unsuitable, for many plants and animals. 
Meriam’s map identifi es fi ve major zones in 
North America: boreal, transition, upper 
austral, lower austral and tropical. Known 
occurrences of San Jose scale seemed to 
occur ‘within or near the so called austral life 
zones’ (Howard and Marlatt, 1896, p. 33). 
Th e supposition at the time was that San 
Jose scale should be able to continue to 
spread within these regions wherever 
suitable hosts occurred. Th e map was 
developed before modern quarantine 
regulations were in place, so it was intended 
to reassure fruit producers in New England 
and portions of Pennsylvania, New York, 
Michigan and Wisconsin that the insect 
would ‘not establish itself to any serious 
extent’ (Howard and Marlatt, 1896, p. 35). 
At the time the map was published, Howard 
and Marlatt (1896) cautioned about the 
uncertainty in this forecast by acknowledging 
that ‘its possibility is suggested by what we 
know up to the present time. Against its 
probability may be urged the fact that, in 
general, scale insects … are seldom restricted 
by geographical limitations which hold with 
other insects’ (Howard and Marlatt, 1896, p. 
35). Th e precautionary note has proven 
justifi ed. San Jose scale is now established in 
all conterminous states except Wyoming, 
North Dakota, South Dakota and Maine 
(CABI, 1986), but is often kept under control 
by a suite of natural enemies (Flanders, 
1960).
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The General Challenge for Pest Risk 
Assessors

Pest risk modellers and mappers face a 
three-part challenge. Th e fi rst part of the 
challenge is to develop a model that gives a 
more meaningful forecast of the course and 
consequence of a biological invasion than 
would be obtained by random chance or 
from obvious, intuitive models (e.g. a plant 
pest will occur and cause damage anywhere 
its host plants occur). Models are often 
needed for species that have not yet arrived 
in an area of concern. In these cases, pest 
risk modellers cannot develop or test models 
with empirical observations on the 
distribution, biology or behaviour of a 
species within the area of concern. Th ey 
must extrapolate from what is known about 
a species in its native or adventive (i.e. areas 
where it has invaded) range, from studies in 
biosecure laboratories or from inferences 
drawn from taxonomically related species. 
Further, most pest modellers must rely on a 

simplifying assumption that individuals in 
an invading population are equivalent to 
individuals from the native range and will be 
equivalent to future generations (i.e. no 
signifi cant genotypic or phenotypic changes 
have occurred or will occur). If an invasive 
alien species has arrived within an area of 
concern, initial observations of distribution, 
dynamics or impact may test the robustness 
of current knowledge or provide the 
foundation for a new model.

Th e second part of the challenge is to 
demonstrate the validity of the pest risk 
map and the underlying model. All models 
(physical, conceptual, statistical or mathe-
matical) are an abstraction of reality. Th ey 
are never intended to incorporate all of 
reality. Rather, models are intended to 
capture enough reality to be useful. What 
constitutes enough or useful is often a 
matter of debate. Venette (Chapter 15 in 
this volume) provides a typology of validity, 
drawn from the social sciences, to apply to 
pest risk maps. One might reasonably 

Fig. 1.1. An early ‘pest risk’ map – the historical distribution of San Jose scale (black dots) in the 
conterminous USA relative to C.H. Meriam’s life zones. (Reproduced from Howard and Marlatt, 1896.)
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consider the map to be a hypothesis, so the 
validity of the model would be demonstrated 
though empirical testing (i.e. comparisons 
of model outputs with observations that are 
independent of the model). Such evaluation 
would also formally confi rm that the fi rst 
challenge was met. However, in many cases, 
relevant empirical observations are likely to 
be rare or non-existent, at least in the short 
term. So, pest risk modellers must use other 
lines of reasoning to argue for model validity. 
In some cases, arguments for or against a 
model reduce to so-called fi rst principles 
with respect to content or construct validity. 
First principles are axiomatic statements 
about forces that drive biological invasions, 
aff ect population dynamics or aff ect in -
vasion outcomes. Given the imperfect state 
of knowledge about biological invasions, 
debates based on fi rst-principle arguments 
are seldom resolved, except in the most 
extreme cases.

Once a model is created and its validity 
established, the third part of the challenge 
is to portray results in a way that will be 
useful for decision making. Th e risk mapper 
must consider the required geographic 
extent (e.g. continent, country, region or 
parcel) and resolution of the map. 
Resolution (i.e. grain) refers to the size of 
grid cells (i.e. pixels) that comprise the map; 
smaller grid cells provide higher resolution. 
High-resolution maps can be visually 
appealing but come with additional un -
certainty as fi ne-scale information is often 
interpolated from distantly neighbouring 
observations. Because all maps have some 
degree of distortion, a consequence of 
plotting the Earth’s curved surface in two 
dimensions, thought should be given to the 
appropriate map projection that accurately 
represents area or distances (DeMers, 1997). 
Model results should be reported with 
suffi  cient precision to support decision 
making, but should not be so precise as to 
visually overwhelm the end user (Smans and 
Estève, 1996). Consider a model output, 
such as the Ecoclimatic Index from climex 
(Sutherst and Maywald, 1985; Sutherst et 
al., 2007), with values from 0 to 100. At the 
extreme, each model output could be 
associated with a unique colour and that 

colour scheme applied to the map, but subtle 
variations among 101 colours may be 
diffi  cult to distinguish. Typically, all possible 
model results are divided into classes. For 
example, Vera et al. (2002) interpret an 
Ecoclimatic Index of 0 as a climate that is 
unsuitable for pest establishment; values of 
1–10 are marginal; values of 11–25 are 
suitable; and values >25 are very suitable. A 
unique colour, stippling or shading is 
assigned to each class and that classifi cation 
scheme is applied to each grid cell. For many 
pest risk maps, red designates the highest-
risk areas (i.e. red zones or hot spots).

The Production of Pest 
Risk Maps

Despite calls for more pluralistic approaches 
to ecological risk analysis (NRC, 1996), the 
creation of pest risk maps regularly follows 
a technocratic approach with distinct roles 
for assessors, managers and stakeholders. 
Th e assessor (i.e. pest risk modeller/mapper 
or analyst) typically has advanced academic 
training in entomology, plant pathology, 
weed science or one of the other core bio-
logical disciplines that provide foundational 
knowledge about taxa that might become 
invasive alien species (Worner et al., 2014). 
Assessors may also have experience with 
computer science or geographic information 
systems or be asked to collaborate with 
individuals who do. Formal training in pest 
risk assessment is rare but is slowly 
increasing (Worner et al., 2014). Individual 
assessors or assessment teams have the 
technical knowledge to produce pest risk 
models and maps or to evaluate such 
products from others.

Risk managers are those decision 
makers, end users or land managers who use 
pest risk models to mitigate the likelihood 
or impacts of pest invasion. Risk managers 
are often senior personnel within 
governmental agencies. In the ideal case, 
distinctions between risk assessors and 
managers are maintained to prevent undue 
outside pressures from infl uencing the pest 
risk model or map. Likewise, risk managers 
use pest risk models and maps as 
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components of a much broader decision-
making framework.

Stakeholders are those individuals with 
an interest in the outcome of the risk 
mitigation decision and are most likely to be 
aff ected by that decision. Stakeholders are 
often given the opportunity to comment on 
interim or proposed/fi nal pest risk models, 
maps or mitigation decisions. Stakeholders 
also have the opportunity to sue in court a 
government agency if a pest risk model, map 
or mitigation decision can be shown to cause 
demonstrable harm. Alternative approaches 
to ecological risk analysis seek more inclusive 
roles for stakeholders throughout the pro-
cess, especially during problem formu lation 
and risk mitigation.

An event, such as a request to import 
commodities or an incursion by an invasive 
alien species (as illustrated in the historical 
example presented above), typically triggers 
the development of a pest risk map, but the 
work of the risk assessor begins with prob-
lem formulation (Fig. 1.2). In this phase, 
risk managers and assessors articulate the 
purpose of the map, identify practical 
limitations (e.g. budgets and deadlines) and 
discuss consequences of particular errors. 
Th e purpose of the map may dictate whether 
it is especially important to analyse the 
arrival, establishment or spread phase of an 
invasion or to attempt a more integrative 
analysis across phases. Errors of commission, 
when some sites are classifi ed as having 
higher risk than they do in reality, might be 
acceptable in certain contexts, for example, 
when risk managers want to know the 
maximum possible geographic extent of 
risk. Errors of omission, when some sites are 
classifi ed as having less risk than they do in 
reality, might be acceptable to severely 
resource-constrained decision makers, for 
example, who are able only to expend 
resources where needs are greatest. As part 
of problem formulation, risk assessors 
evaluate the extent and quality of infor-
mation about the invasive alien species and 
the endangered area and identify additional 
questions for research.

Problem formulation is the most 
important phase in the production process 
but is often most neglected because decision 

makers are not always able to articulate fully 
how they intend to use a risk map or what 
would constitute an acceptable end product. 
Th e challenge for scientists who are 
responsible for the production of pest risk 
maps is to ‘balance rigor and timeliness in 
their work to obtain an acceptable degree of 
accuracy’ in their map for decision makers; 
for decision makers, ‘the challenge is to 
describe clearly what information is needed 
to support time-critical decision making’ 
(Venette et al., 2013, p. 1). Th e urgency for a 
pest risk map can become especially high 
when an invasive alien species has been 
detected within an area of concern and 
decision makers contemplate needs for 
quarantine, eradication or containment and 
consider the potential consequences if no, or 
ineff ective, action is taken.

Once the problem has been fully 
described, the pest-risk-mapping process 
moves to the analytical phase (Fig. 1.2). Th is 
phase begins with the selection of a model 
or suite of models appropriate to the task. 
Numerous software packages, described in 
the next section, exist to support model 
development. Th ese packages typically rely 
on information about an invasive alien 
species and spatially explicit covariates. 
Th is information is more accessible now 
than it has ever been. For example, several 
online databases provide current and 
historical species’ distributions, climato-
logical records, elevation data, land-use 
classifi  cations and population censuses. 
Never theless, not all desired data may be 
available, so a number of models may be 
considered but ultimately rejected if the 
requisite data to forecast the outcome of 
interest cannot be obtained.

Next, the assessor calibrates the 
model(s) by estimating key parameters to 
account for unique aspects of the invasive 
alien species under consideration or the 
qualities of the endangered area that has 
been or might be invaded. In some situations, 
the assessor calibrates the model by fi tting it 
to a training data set. In the verifi cation 
step, the assessor checks for coding errors 
and confi rms that the model is giving 
outputs that are consistent with the data 
that were used to develop the model. A 
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Fig. 1.2. Diagram of the events that lead to the development of a pest risk map. Pest risk analysts communicate with decision makers and stakeholders 
throughout the process. As the process concludes, models and maps are given to decision makers to select risk mitigation options.
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validation step follows. Here, model outputs 
are compared with a completely independent 
set of data, sometimes called a test data set. 
Validation exercises are meant to gauge the 
reliability of the model. Th e analysis phase 
culminates in the production of a pest risk 
map. Advanced geographic information 
systems now exist to allow users to create 
visually compelling map products. Th ese 
products are used by decision makers to 
select strategies and tactics to mitigate the 
risk posed by the invasive alien species. Th e 
mitigation decision itself may prompt the 
development of a new risk map.

An aspirational component to include 
with the map is a representation of the 
uncertainty associated with the forecast for 
each grid cell. Methods to characterize 
uncertainty in support of decision making 
have been proposed (e.g. Koch and 
Yemshanov, Chapter 13 and Yemshanov et 
al., Chapter 14 in this volume) but are not yet 
routine. Uncertainty stems from imprecise 
uses of language (i.e. linguistic uncertainty), 
a lack of knowledge (i.e. epistemic 
uncertainty) and inherent variation in a 
system (i.e. aleatory un  certainty; Regan et 
al., 2002). Further study of a system can 
reduce epistemic uncertainty, but can only 
serve to characterize aleatory uncertainty. 
Uncertainty assessments for pest risk maps 
presently address aleatory uncertainty.

Overview of Models to Create Pest 
Risk Maps

In many respects, pest risk maps take 
spatially implicit concepts about the course 
of biological invasions or impacts from 
invasive alien species and make them 
spatially explicit. For example, Orr et al. 
(1993) proposed one of the fi rst qualitative 
risk assessment models for invasive alien 
species. Th e model had two major com-
ponents, the likelihood of pest invasion and 
the potential consequences of pest invasion. 
Each of these components had three to four 
sub-components. Although the model only 
required answers of high, medium or low for 
each of these sub-components, the model 
asked a number of intrinsically spatial 

questions about an alien species or a 
commodity with which that species might 
be associated. Where is the species likely to 
arrive within the area of concern? Where 
might the species move? Where could the 
species encounter suitable climate and host 
plants? Pest risk mappers use a variety of 
models to provide spatially specifi c answers 
to these questions.

Arrival

Arrival (i.e. entry) describes the likelihood 
that a species could be brought into an area 
of concern and the conditions under which 
arrival would occur. Models for arrival are 
generally intended to answer one or more 
of the following questions: where is a 
species most likely to arrive; by what means 
is it likely to arrive; and in what numbers 
and condition (i.e. live, moribund or 
dead) will it arrive? Answers to these 
questions are typically used to justify bio-
security measures, such as inspecting cargo, 
screening luggage or prohibiting imports, to 
prevent the arrival of highly threatening 
species into an area of concern. Answers 
may also suggest the futility of such eff orts 
for species that are likely to be brought into 
an area of concern by natural processes (e.g. 
with wind or water). When justifi ed, 
biosecurity strategies that prevent the 
arrival of a highly threatening species are 
generally considered the most eff ective and 
least costly relative to other biosecurity 
measures.

A number of models are used to address 
the arrival of invasive alien species. In 
general, these models are used to identify 
particular alien species that should be of 
concern or to analyse pathways by which 
those species might arrive within the area of 
concern. For example, in trait-based screen-
ing assessments, a number of characteristics 
that improve the likelihood that a species 
will successfully invade a site and cause 
harm are identifi ed by expert opinion or 
through statistical analyses of previous 
invasions. For example, Pheloung et al. 
(1999) provide an extensive list of char-
acteristics related to the biogeography and 
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ecology of invasive plants (e.g. evidence that 
the species has naturalized beyond its native 
range or produces buoyant propagules). Risk 
assessors evaluate whether a plant species of 
concern has these traits and use the results 
to generate a weed risk assessment score. 
Th is index correlates well with experts’ 
perceptions about the degree of risk posed 
by particular plant species. Similarly, Kolar 
and Lodge (2002) analyse previous fi sh 
invasions to identify characteristics of fi sh 
(e.g. relative growth rate, diet breadth, 
temperature tolerances and previous 
invasion history) that are associated with 
(un-) successful invasions and estimate the 
probability that new fi sh species will 
establish, spread or cause harm in the Great 
Lakes. Such trait-based models typically are 
not used to generate pest risk maps but 
frequently rely on risk maps, especially 
spatial assessments of climate suitability, in 
the course of the assessment. Screening 
assessments can also be used to select 
species for more in-depth analysis.

Pathway models typically focus on the 
means by which a species might arrive in the 
area of concern or on the suite or abundance 
of potentially pestiferous species that might 
be associated with a particular commodity or 
conveyance. Pathway models often de -
compose the process by which pests/
commodities are moved from a country of 
origin to the area of concern into discrete 
steps. Th e probability of successful com-
pletion of each step is estimated. For example, 
Colunga-Garcia and Haack (Chapter 3 in this 
volume) analyse import trade statistics to 
determine where bark- and wood-boring 
insects associated with solid wood packing 
might fi rst arrive in the USA and be 
subsequently moved within the country.

In other pathway models, each step 
in the pathway is characterized by a 
probability distribution (i.e. a probability-
density function). In a process generally 
known as Monte Carlo analysis, values are 
selected repeatedly at random in proportion 
to their likely occurrence as defi ned by each 
probability distribution. Th e values are used 
to calculate a new probability distribution 
for the number of individuals that are likely 
to complete all of the steps and arrive in the 

area of concern. For example, Gould et al. 
(2013) studied the potential for Copitarsia 
corruda to arrive in the USA with imports of 
Peruvian asparagus. In the course of their 
studies, they developed a model using 
statistical distributions to describe: (i) the 
volume of asparagus imported at diff erent 
times of the year; (ii) potential rates of 
infestation, i.e. eggs per spear; (iii) 
proportionate survival of eggs during 
transport; (iv) the likelihood of disposing of 
asparagus at importer warehouses, whole-
sale distributors or retail outlets; and (v) the 
potential for individual insects to develop 
into adults (i.e. moths) by feeding on 
discarded asparagus. Monte Carlo analysis 
was used to estimate the likelihood that at 
least one mating pair of C. corruda on 
Peruvian asparagus would arrive in the USA 
and escape into the wild (B. Caton, North 
Carolina, 2014, personal communication). 
Th e analysis suggested that the likelihood 
would be low because once produce moved 
beyond importation facilities, an insuffi  cient 
volume of asparagus was present at any 
point in time for a mating pair to develop.

Although many invasive species have 
been transported into areas of concern 
directly through human activities (e.g. 
international trade), some species, par-
ticularly pathogens and small insects, may 
be transported via wind. Models such as 
hysplit and pmtraj have been used to 
describe where low-level jet streams might 
carry species of concern and in what 
numbers (Parry et al., Chapter 4 in the 
current volume). Th ese models may also be 
used to describe the passive spread of a 
species within the area of concern after the 
species has established.

Establishment

Establishment occurs when an invasive 
alien species sustains a population through 
time by local reproduction. Models for 
establish ment are generally used to 
determine where a species is most likely to 
persist through time if it were to arrive, 
where a species might ultimately spread if 
given enough time and where a species 
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might eventually cause economic or 
multiple harms (Baker et al., Chapter 2 in 
this volume). For establishment to occur, an 
invasive alien species must encounter 
suitable climate, food and a mate and avoid 
local antagonists (e.g. predators, pathogens 
and competitors). Maps of potential 
establishment are useful, for example, to 
determine the need to eradicate an invading 
population or to keep the invasive alien 
species from spreading by enacting quaran-
tines.

Several spatially explicit models to 
characterize where a pest might establish 
are known synonymously as bioclimatic 
envelopes, habitat models, species dis-
tribution models or ecological niche models. 
Frequently these models focus on an analysis 
of climate because many invasive alien 
species are ectothermic (i.e. poikilothermic) 
and temperature directly aff ects develop-
mental, reproductive and survival rates. 
Diff erent schemes have been proposed 
to classify these models. Inductive model-
ling approaches relate information about a 
species’ geographic distribution, either 
presence-and-absence or presence-only 
data, to any number of environmental co -
variates to infer statistically what factors 
might explain where a species occurs. 
Inductive models do not depend on know-
ledge of mechanisms by which environ-
mental covariates might aff ect distribution. 
In contrast, deductive modelling approaches 
specify factors a priori that should shape 
species’ range limits and abundances and 
rely on results from appropriately designed 
studies to evaluate, for example, how 
changes in temperature will aff ect population 
growth rate. Information about the climate 
at a site (i.e. grid cell) and the relationship 
between the response and the covariates is 
used collectively to forecast if a species 
might persist in the area represented by the 
grid cell if it were to arrive.

Software to create models for establish-
ment varies considerably. Some software is 
devoted to a single modelling approach and 
provides a clear structure for the analysis. 
Venette et al. (2010) identify 13 software 
packages that have been used to evaluate 
environmental suitability for establishment. 

Two popular inductive models, garp 
(genetic algorithm for rule-set prediction) 
and maxent (maximum entropy; e.g. 
Jarnevich amd Young, Chapter 5 in this 
volume), ask the user to provide latitudes 
and longitudes for known occurrences of a 
species and to select ecologically relevant, 
geo-referenced covariates, commonly 
climatological data.

Structured deductive models (e.g. 
nappfast; Magarey et al., Chapter 6 in this 
volume) ask the user to provide estimates of 
key parameters (e.g. upper and lower 
temperature thresholds for development) 
from published literature or from appro-
priately designed experiments. Another 
software tool, climex (Sutherst and 
Maywald, 1985; Sutherst et al., 2007), may 
be used inductively, deductively or through a 
combined approach. Th e software assumes 
that broken stick models will describe a 
species’ response to temperature or moisture 
gradients. Th e challenge is to estimate key 
parameters for these models. Estimates may 
be derived from fi eld or laboratory studies 
(i.e. deductively) or by iteratively altering 
parameters in the model until a qualitatively 
satisfactory fi t between the model outputs 
and the known distribution is reached (i.e. 
inductively).

Other statistical software packages (e.g. 
r or sas) provide powerful analytical tools to 
assess the relationship between species 
occurrences and covariates but off er little 
structure to guide the analyses. Venette et al. 
(2010) identify six classes of statistical 
models that have been used for this purpose.

Another type of inductive model, a self-
organizing map (Worner et al., Chapter 7 in 
this volume), uses information about com-
munities of pest organisms in an area of 
concern and their similarity to communities 
around the world to determine which 
species (and from where) are most likely to 
establish within the area of concern.

A signifi cant assumption behind many 
inductive species distribution models is 
that the species is in equilibrium with its 
environment and geographic range 
boundaries are stable. Such a condition is 
more likely to be true for a species in its 
native range than in its adventive range. 
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Inductive models developed from occurrence 
data in the native range may underestimate 
the potential distribution of an invasive 
alien species in the adventive range because 
the models typically do not explicitly account 
for the eff ects of natural enemies. Natural 
enemies are more likely to constrain a 
species in its native range than in the 
adventive range. Freedom from natural 
enemies is a commonly cited reason for the 
success of many biological invasions. Th e 
constrained distribution from natural 
enemies in the native range might be 
misattributed to the eff ects of climate. 
Conversely, inductive models developed 
from a species’ adventive range may over-
estimate the distribution in a species’ native 
range.

Spread

Spread describes the means by which a 
species redistributes itself in an area of 
concern after it has established. Spread 
models are often used to answer general 
questions such as: where is the species likely 
to move through time and when is it likely to 
get there? Spread is either active (i.e. by 
fl ying, walking or swimming) or passive (e.g. 
wind-, animal- or water-dispersed). Passive, 
anthropogenic spread occurs when humans 
intentionally or accidentally move a species 
to new areas. If spread of an invasive alien 
species has been extensive before detection 
occurs or if a species is so highly dispersive 
that quarantines are unlikely to be eff ective 
(e.g. certain wind-borne pathogens), 
biosecurity measures begin to focus on 
managing and mitigating damage from the 
species.

A number of quantitative models have 
been developed to measure and forecast 
spread by invasive alien species. Th is 
extensive body of literature will not be 
reviewed here; see Shigesada and Kawasaki 
(1997) and Hastings et al. (2005) for 
excellent reviews. Many spread models have 
not been organized into software packages 
as has been done with species distribution 
models (but see Robinet et al., Chapter 8 in 
this volume); most spread models are 

derived mathematically and key parameters 
are estimated statistically from empirical 
observations (e.g. Tobin et al., Chapter 9 
in this volume). Geographic information 
systems can be useful to estimate distances 
moved over periods of time, the results of 
which are further analysed in statistical 
software, and to project the location of the 
expanding invasion front over time.

In general, many spread models require 
information about the probability that an 
individual will move, or be moved, a 
particular distance (i.e. the dispersal kernel) 
and quantitative information about life 
history parameters, particularly population 
growth rates. Such information is frequently 
unavailable for species that have only 
recently been detected in areas outside their 
native range. Rare long-distance dispersal 
events have a signifi cant impact on patterns 
and rates of spread but are diffi  cult to 
forecast. Gravity models and individual-
based models have been used to describe 
where invasive alien species might be moved, 
for example, based on an understanding of 
fl ows of people and goods through 
transportation corridors (Prasad et al., 
2010; Crespo-Perez et al., 2011; Koch et al., 
2011).

An alternative approach, applicable to 
invasive alien species that have already 
arrived within the area of concern and 
started to spread but do not seem to have 
reached the limits of their distribution, 
relies on statistical analyses of realized 
spread. Th e rationale is that future spread is 
likely to be similar to previous patterns of 
spread. Generalized linear models (GLMs) 
such as logistic regression have been used 
for this purpose. Care must be taken to 
account for spatial and temporal auto-
correlations in these data or risk 
misestimating the statistical signifi cance 
and explanatory power of the resulting 
model.

Many spread models assume that the 
propensity of a species to disperse is 
spatially independent. However, tests of 
this assumption have found that the 
likelihood that an individual will move 
depends on the environment into which it 
is moving. Th is phenomenon poses a 
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signifi cant complication for pest risk 
modellers because models of spread with 
parameters estimated from data from one 
location may have little relevance to spread 
behaviour in another location (Hastings et 
al., 2005). For pest risk modellers, extra-
polations based on experiences with an 
invasive alien species in another location or 
at another time seem inescapable, so results 
must be interpreted with great caution.

Integrative models of invasion or impact

Integrative models attempt to synthesize 
results from diff erent data sources or 
individual models into a more complete 
characterization of pest risk. For each grid 
cell, models estimate the probability of an 
invasive alien species arriving, either directly 
as a beachhead population or indirectly from 
other infested sites within the area of 
concern, and establishing and the associated 
magnitude of impact. Complete, spatially 
explicit characterizations of risk are 
exceptionally diffi  cult to prepare and, as a 
result, are rare (but see Murray and Brennan, 
1998).

Rule-based models (Meentemeyer et al., 
2004; Seybold and Downing, 2009), often 
implemented in geographic infor mation 
systems, have been used to describe spatial 
diff erences in relative degrees of risk. Th e 
models are forms of multi-criteria decision 
models. Rules, often expressed as ‘if …, then 
…’ statements, are typically provided by 
experts to refl ect their knowledge and 
opinions about factors that might contribute 
to invasion risk or impact. Th e ‘if ’ describes 
a condition that would increase or reduce 
risk and the ‘then’ typically results in the 
assignment of a risk score. Often, one 
gridded data layer relevant to each rule is 
queried and scores assigned to each grid cell 
on the map. Resultant scores from each rule 
for the same grid are summed and the fi nal 
summation used as an indicator of the 
degree of risk in that cell. A simple 
summation indicates that each rule 
contributes equally to the fi nal risk score. In 
more complex situations, a weighting factor 
can be applied to refl ect the relative 

importance of each rule. Weights can be 
assigned directly by experts or can be elicited 
through structured questions. For example, 
the analytical hierarchy process, a form of 
multi-criteria decision model, provides an 
elicitation approach to generate these 
weights.

Th e weighted sums are quantitative, but 
ordinal, data and refl ect the correct rank 
order of cells in a data set. Th e (weighted) 
sums do not necessarily capture the correct 
ratio between observations. So, for example, 
if sites 1, 2 and 3 get sums of 4, 16 and 32, 
respectively, site 3 has greater risk than sites 
1 and 2, but the risk at site 3 is not eight 
times the risk at site 1 or twice the risk at 
site 2. Some authors prefer to refer to such 
scores as semi-quantitative assessments of 
pest risk.

Periodically, rule-based models will 
incorporate the results from an arrival, 
establishment or spread model. A rule is 
formed for the model output and applied 
just as it would have had the data been based 
on empirical observations. However, 
because the models generate an estimate of 
the actual value, the model outputs have 
some degree of error. Th is error propagates 
through the model, but only rarely is such 
error propagation formally measured.

Individual-based models have also been 
constructed to generate a more com-
prehensive representation of pest risk. For 
example, Koch and Smith (2008) describe 
the potential spread of the ambrosia beetle 
Xyleborus glabratus in the south-eastern USA 
after accounting for the geographic 
distribution of hosts, the density of hosts, 
the degree of climate similarity to regions in 
Asia where the beetle is native, the expected 
spread rate and the eff ect of host density on 
spread. Th is well-integrated model does not 
attempt to forecast the potential impact of 
the beetle and its fungal symbiont Raff aelea 
lauricola on potentially aff ected host plants.

Impacts from invasive alien species 
remain exceptionally diffi  cult to forecast 
quantitatively (Venette et al., 2010). In 
general, impacts depend on the response of 
resident species or genotypes to the invasive 
alien, and those responses are likely to vary 
depending on the densities the invasive 
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alien pest can achieve. For example, the 
detection of a single individual may trigger 
international quarantines on potentially 
aff ected hosts and cause severe economic 
impacts. Partial budgeting, which can be 
performed in any spreadsheet, is a relatively 
simple technique to estimate the net eff ect 
on farm incomes from value of lost yield 
(e.g. volume of timber or tonnes of grain) 
and increased control costs, less any 
additional revenue or cost savings (Soliman 
et al., 2010). Such impact assessments work 
well at the micro scale, but do not capture 
potential macroeconomic impacts, such as 
shifts in market prices or consumer demand. 
However, it is not yet clear whether these 
eff ects can be mapped.

Model Performance

Risk modellers can rigorously evaluate the 
performance of a model by comparing 
outputs with independent observations 
from the fi eld. In the calibration phase of 
model development (see ‘Th e Production of 
Pest Risk Maps’ above), such comparisons 
are useful to determine if model parameter 
estimates are appropriate and during the 
validation phase, to evaluate the quality of a 
model’s forecasts. A 2 × 2 decision matrix 
(i.e. confusion matrix; Table 1.1) is one 
approach to compare model outputs and 
fi eld observations when the model gives a 
binary result (e.g. species presence or 
absence). Cell A includes the true negatives, 
cases when a model suggests that an event 
will not happen and it does not. Cell B 
describes instances where the model 
suggests an event will occur, but in actuality 
it does not. Th ese circumstances are known 
as type I errors, false positives or commission 
errors. Cell C describes instances when the 

model indicates no event will occur but it 
does. Th ese are type II errors, false negatives 
or omission errors. Cell D includes the true 
positives, cases where the model suggests 
the event will occur and it does. Overall 
model accuracy is the proportion of all cases 
in which the model correctly forecast the 
outcome: (A + D)/(A + B + C + D). Specifi city 
is the proportion of observed non-events 
that were correctly indicated by the model: 
A/(A + B). Sensitivity is the proportion of 
events that were correctly ide ntifi ed by the 
model: D/(C + D).

Sensitivity can receive considerable 
attention in the development of pest risk 
models and maps for two primary reasons. 
First, greater confi dence is placed in the 
observance of events than non-events 
(i.e. not seeing anything). Detecting and 
recognizing an event (e.g. a species is 
present) is empirically testable. For example, 
specimens can be examined for the accuracy 
of identifi cation and new specimens can be 
collected to confi rm initial reports. For non-
events, the adage ‘you can never prove a 
negative’ is appropriate. To conclude that no 
event of interest has occurred and will not 
ever occur at a location implies a great deal 
of knowledge about current and future 
events. For newly arrived alien invasive 
species, in particular, it may be more 
accurate to conclude that a species has not 
arrived at a site yet than to conclude that it 
has not arrived. Second, decision makers 
frequently consider false positives to be 
more acceptable than false negatives. Th e 
reason for this bias is not completely clear, 
but studies of risk perceptions in humans 
consistently indicate that the fear of loss is 
greater than the fear of a missed gain.

If events are trusted over non-events 
and false positives are preferable to false 
negatives in pest risk analysis, pest risk 

Table 1.1. Confusion matrix for the comparison of binary model outputs 
with independent fi eld results.

Model output

Field results

No event Event

No event A. True negatives C. False negatives
Event B. False positives D. True positives
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models and maps may overestimate the 
potential distribution and impact from 
invasive alien species. Models that forecast a 
more widespread occurrence of an alien 
invasive species will be judged superior to 
models that forecast a more limited 
distribution. In fact, the simplest model, 
‘the invasive alien species will be everywhere’, 
will have perfect sensitivity now and in the 
future. Overestimation increases the likeli-
hood that an area will be covered by bio-
security measures. If resources for 
biosecurity are allowed to vary ‘as needed’, 
overestimation may lead to unnecessary 
biosecurity measures and a suboptimal 
allocation of resources to other valued goods 
and services. Alternatively, if resources are 
fi xed, overestimation may lead to resources 
being spread too thin.

In cases where model specifi city is a 
concern, the potential for overfi tting a 
model becomes an issue (Peterson et al., 
2011). Overfi tting describes the case where 
an excessive number of covariates, more 
than can be justifi ed statistically, are 
included in a model. Overfi t models will 
often suggest that an invasive alien species 
has specifi c environmental requirements 
and will not be able to survive in areas other 
than those it currently occupies. Overfi tting 
is not easily recognized a priori but is 
revealed during model validation. Models 
found to have low error during the 
verifi cation stage but high error when tested 
on an independent data set are likely to be 
overfi t (Peterson et al., 2011). Such models 
lack robustness and are likely to under-
estimate the area potentially aff ected by an 
invasive alien species over time.

Many risk models describe the potential 
for future events as a probability, not as an 
absolute yes or no. In these cases, the analyst 
must select a threshold to describe when an 
event is probable (e.g. when the probability 
is >50%) or when it is not. At very low 
threshold values, the model will have perfect 
sensitivity but no specifi city. Conversely, at 
high threshold values, the model will have 
perfect specifi city but no sensitivity. A 
receiver-operating characteristic (ROC) 
curve describes the trade-off  between model 
sensitivity (i.e. the true positive rate) and 

the false positive rate (i.e. 100 – specifi city). 
If a model has no discriminatory power, the 
ROC curve will fall along the diagonal and 
the area under the ROC curve (AUC) will be 
0.5. As the discriminatory power of the 
model improves, the AUC will approach 1. 
AUC is not appropriate to evaluate models of 
potential distribution (Jimenez-Valverde, 
2012). Alternatives to AUC have been 
proposed when only presence data are 
available (Phillips and Elith, 2010; Li and 
Guo, 2013).

Conclusions

Th e International Pest Risk Mapping 
Workgroup (IPRMW) off ered pragmatic 
recommendations to address pressing 
issues for the production of pest risk maps 
(Venette et al., 2010). Th e IPRMW now 
includes nearly 90 scientists, modellers and 
decision makers from around the world who 
specialize in aspects of pest risk analysis. 
Most members have formal or informal 
affi  liations with decision-making bodies 
that regulate the movement of plants, plant 
products or pests that might aff ect plants. 
Some recommendations were intended to 
support ongoing pest risk analysis eff orts. 
Species’ distributions and environmental 
covariates are still fre quently lacking, so a 
call was made to expand the availability and 
accessibility of primary data sources. In 
addition, greater communication between 
pest risk analysts and decision makers is 
needed to clarify interpretation and uses of 
risk maps. Some recommendations called 
for changes of practice within the pest risk 
modelling and mapping community. For 
example, calls were made for pest risk 
modellers to more fully document model 
development and validation, improve repre-
sentations of uncertainty, increase inter-
national collaborations and work towards 
pest risk maps that include impacts. Some 
recom mendations were intended to support 
new individuals coming into the discipline. 
General needs were recognized for a best-
practice guide, a modelling tool kit and 
advanced training in risk modelling practice. 
Lastly, a call was made to incorporate global 
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climate change and studies of human 
behaviour into pest risk models.

Pest risk analysts must also contend 
with some pressing issues in basic science. 
Foremost, many risk assessment models do 
not account for evolution in the invading 
population or recipient communities. In 
fact, the assumption is that phenotypic 
traits remain constant. Th is simplifying 
assumption constrains most risk models to 
relatively short time horizons (e.g. <30 
years). Critical questions pertain to the 
heritability and conservation of the 
fundamental niche, selection for resilience 
to environmental stresses and the evolution 
of increased competitive ability (Felker-
Quinn et al., 2003; Wiens et al., 2010; Morey 
et al., 2013). Pest risk analysis has been 
criticized for failing to account for post-
invasion evolution by alien species (Whitney 
and Gabler, 2008).

Pest risk modelling and mapping occurs 
at the interface of science and policy. Some 
nations may perceive governmental actions 
to protect human, animal and plant health 
from risks posed by invasive alien species as 
non-tariff  barriers to free trade. Th e World 
Trade Organization’s Agreement on the 
Application of Sanitary and Phytosanitary 
Measures (also known as the SPS Agreement) 
defi nes principles for the appropriate 
implementation of such protective measures 
(WTO, 1994). Devorshak (2012) provides a 
thorough discussion of the history of the 
SPS Agreement and its current and future 
ramifi cations for plant health protection. A 
chief principle of the SPS Agreement is that 
nations have the sovereign right to 
implement biosecurity policies and practices 
as they deem necessary insofar as those 
measures are supported by scientifi c 
evidence, are consistent with international 
standards and are not a disguised barrier to 
trade. Th e sovereignty principle acknow-
ledges that no nation or body can dictate the 
biosecurity measures taken by another 
nation. Similarly, although the methods 
described in this text have been scrutinized 
for scientifi c credibility during the peer 
review process, no nation or organization is 
obligated to use these approaches.

Common challenges for pest risk 
modellers and mappers are outlined in this 
chapter and some solutions are off ered 
throughout the remaining text of this book. 
Th ese solutions (i.e. modelling approaches 
and software tools) were developed out of 
necessity and have proven to be scientifi cally 
credible. However, these tools could be 
refi ned or new tools developed to address 
long-standing concerns over risks posed by 
invasive alien species. By making the 
conceptual and logistical challenges that 
underlie pest risk mapping more tran-
sparent, my hope is that others may see new 
opportunities for scientifi c and technical 
advancements.
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Abstract

Th is chapter provides guidance on mapping 
risks posed by invasive alien species to 
support pest risk analysis (PRA), the process 
required to justify phytosanitary measures. 
Because pest risk mapping can be 
challenging and resource-intensive, the 
situations in which risk maps are particularly 
useful are highlighted. Th e procedures 
described focus on mapping areas where the 
pest can establish and potentially cause the 
greatest harm. In the fi rst stage of risk 
mapping, the factors that might infl uence 
the potential distribution and impacts of an 
invasive alien species are identifi ed and the 
data are assembled and mapped. In the 
second stage, the maps of each factor are 
combined using matrix rules to generate 
areas of potential establishment and highest 
risk. Th ese general procedures are illustrated 
with two examples. Risk maps for the 
western corn rootworm, a maize pest that 
has invaded Europe, are based on the 
combination of maps of climatic suitability, 
the presence of sandy soils, the distribution 
of grain and forage maize and the value of 
these commodities in Europe. Uncertainty 
is estimated by varying the classifi cation of 

climatic suitability to obtain the worst, best 
and most likely scenarios. Risk maps for the 
common water hyacinth, an invasive plant 
on the Iberian Peninsula, are based on maps 
of climatic suitability, the distribution of 
suitable wetland habitats and areas of 
conservation importance. Th e chapter 
concludes by summarizing some of the 
major challenges that remain to enhance the 
production of risk maps for PRA and their 
interpretation by risk managers.

Background: The Context for Pest 
Risk Mapping

Pest risk analysis (PRA) is fundamental to 
plant biosecurity because it requires a review 
of the biology and ecology of an invasive 
alien invertebrate, pathogen or plant to 
evaluate its potential to enter, establish, 
spread and cause harm to plants in an area 
where it is, or might become, established. If 
the risk is unacceptable, appropriate 
phytosanitary measures to prevent entry 
and establishment are identifi ed.

PRAs that might aff ect trade between 
two or more countries should follow 
International Standards for Phytosanitary 
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Measures (ISPMs), principally ISPM 11 
(FAO, 2013), because ISPMs have been 
formulated by the International Plant 
Protection Convention and are recognized 
by the World Trade Organization (WTO, 
1994; Devorshak, 2012). Although inter-
national standards clearly describe the 
elements that need to be assessed to evaluate 
the likelihood of entry and establishment 
together with the magnitude of spread and 
impacts, they do not provide guidance on 
the methods to be used. A number of 
schemes (i.e. methodologies) have been 
created to assist pest risk analysts with the 
production of PRAs based on expert judge-
ment supported by documented evidence. 
EPPO (2011) provides one of the best-
known examples. Analysts need additional 
guidance on when and how to produce maps 
to support PRA.

Th is chapter is principally based on work 
undertaken by PRATIQUE, a project funded 
by the European Union (EU) 7th Framework 
Programme in 2008–2011 to enhance PRA 
techniques (Baker et al., 2009; Baker, 2012) 
by developing decision support schemes (or 
systems; hereafter DSSs) for mapping 
endangered areas. DSSs provide organiza-
tion, structure and assistance in evaluating 
alternative courses of action.

Defi nitions of critical terms: the area of 
potential establishment, the endangered 

area and the area at highest risk

Within the geographical area of interest to 
the pest risk analyst, three risk areas can be 
distinguished: (i) the area of potential 
establishment; (ii) the area at highest risk; 
and (iii) the endangered area. Th e area of 
potential establishment is where it is likely 
that there is ‘perpetuation, for the 
foreseeable future, of a pest within an area 
after entry’ (FAO, 2012). Th is area 
encompasses the geo graphical range in 
which climate is suitable, hosts (or suitable 
soils for weeds) are available and no other 
biotic or abiotic constraints prevent 
establishment. Th e area at highest risk does 
not have an offi  cial defi nition but is where, 
independent of economic loss, impacts are 

likely to be greatest (e.g. because particularly 
valuable or vulnerable hosts occur where 
abiotic and biotic factors are most suitable 
for an invasive alien species). Th e endangered 
area is where ‘ecological factors favour the 
establishment of a pest whose presence in 
the area will result in economically important 
loss’ (FAO, 2012). Th e endangered area is 
therefore within and smaller than or equal 
to the area at highest risk. Likewise, the area 
at highest risk is always within and almost 
always smaller than the area of potential 
establishment. Although these three areas 
can be described by listing geographical 
regions or sub-national boundaries (e.g. 
states, provinces or counties) that might be 
aff ected, maps generally convey a clearer 
message.

Mapping areas of potential establish-
ment and highest risk for pests of plants is 
diffi  cult, but mapping endangered areas 
creates additional challenges because 
endangered area maps need to show where 
plants have the greatest economic, environ-
mental and social value and where the pest 
population density is likely to cause an 
economically important loss. Th e threshold 
for such a loss has been named the economic 
injury level (EIL) and defi ned by Stern et al. 
(1959) as ‘the lowest population density of a 
pest that will cause economic damage; or the 
amount of pest injury which will justify the 
cost of control’. Th e concept has been 
developed further by Pedigo et al. (1986) 
and Pedigo and Higley (1992). Although the 
EIL concept has been used in PRA (Lammers 
and MacLeod, 2007), the authors of this 
chapter are not aware of PRAs that include 
maps showing where the EIL would be 
expected to be exceeded. Th e EIL is very 
diffi  cult to determine because, although 
yield loss data are available for some crops 
(e.g. Oerke et al., 1994; CABI, 2013), these 
losses need to be extrapolated to the current 
crop, pest management and market con-
ditions in the PRA area. Th e EIL concept can 
be extended beyond yield to include 
marketability. For example, high quality 
standards demanded for fresh produce in 
Europe can mean that a relatively low level 
of pest damage leads to a large drop in value 
of fresh fruit and vegetables.
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Even in the rare cases where an 
appropriate EIL is available, it is diffi  cult to 
make accurate estimates of population 
abundance because population dynamics 
models are complex to construct and diffi  cult 
to parameterize reliably even for well-known 
species. Although EILs can be estimated for 
particular crops in particular locations in 
particular years, they will rarely be suffi  cient 
to account for spatial or temporal variations 
in agronomic practices or climate within the 
large areas that often need to be assessed in 
PRAs.

Scope: aspects of pest risk mapping in 
this chapter

Maps of the area at highest risk are often 
suffi  cient to support written descriptions of 
the endangered area in a PRA. Th e type of 
map utilized, whether the area at highest 
risk or the endangered area, should be 
explicitly stated and justifi ed. Th is chapter 
addresses three key questions: (i) when is it 
appropriate to map areas at highest risk or 
endangered areas; (ii) what data and 
information are required for mapping areas 
at highest risk; and (iii) how can maps that 
represent key factors be integrated to 
identify endangered areas or areas at highest 
risk? Examples demonstrate how these 
questions can be answered for invasive alien 
pests of plants.

Guidance and Needs for Mapping 
Highest-Risk Areas

Guidance is needed to help inexperienced 
pest risk analysts, students and even more 
advanced practitioners both to correctly 
apply modelling and mapping techniques 
and to accurately interpret risk and un -
certainty. Th is guidance includes assistance 
in deciding whether it is necessary or even 
appropriate to construct a map given the 
information available and selecting from the 
large number of modelling methods that can 
be used to create the maps. Th e lack of such 
important guidance was a key incentive for 

the establishment of the International Pest 
Risk Mapping Workgroup in 2007 which 
identifi ed the principal challenges in pest 
risk mapping and set them out in a roadmap 
(Venette et al., 2010).

Th e simplest method to describe the 
highest-risk area or endangered area, as 
recommended by the European and Mediter-
ranean Plant Protection Organization 
(EPPO) DSS for PRA, is to refer to existing 
ecoclimatic zones, geographic areas, crop 
distributions, production systems or eco-
systems within a geographic area of concern. 
While such descriptions can be eff ective, 
maps generally provide a clearer method for 
visualizing, summarizing and communicat-
ing risk in PRA. However, maps need to be 
constructed, interpreted and communicated 
with caution as they may convey a false 
sense of certainty. Risk maps have been 
deployed in a number of detailed PRAs. In 
some cases, these maps have been limited to 
assessments of climatic suitability with or 
without host or habitat distributions. Such 
maps may provide an indication of the area 
of potential establishment, but because 
they omit critical economic, agronomic or 
environ mental factors, they are not 
suffi  cient to identify the endangered area or 
the area at highest risk.

DSSs are now available to guide the 
construction of pest risk maps. For example, 
nappfast (Magarey et al., 2007, 2011, 
Chapter 6 in this volume) provides a suite of 
models that allows risk assessors to model 
pest phenology and pathogen infection, 
apply a technique for climatic matching, 
generate pathway risk maps and utilize a 
Pareto dominance method (Yemshanov et 
al., 2010) to combine climate suitability 
analyses with host distribution records. 
Although the methods available in nappfast 
are widely applicable, nappfast is par-
ticularly designed to support the require-
ments of the US Department of Agriculture, 
uses customized climatic data sets and is 
thus diffi  cult for other countries to apply. 
For the EU, the PRATIQUE project has 
developed DSSs for mapping climatic 
suitability (Eyre et al., 2012), the ar  ea of 
potential establishment and the area at 

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Mapping Endangered Areas for Pest Risk Analysis 21

highest risk (Baker et al., 2012). When 
linked to models of spread (Kehlenbeck et 
al., 2012; Robinet et al., 2012, Chapter 8 in 
this volume) and economic impact (Soliman 
et al., 2012), the PRATIQUE DSSs can help 
to map invasion dynamics and illustrate 
endangered areas. Th e DSSs are independent 
of models used and the area of concern. 
Examples of the application of the DSSs 
provided in this chapter are for the EU.

The Structure of the 
PRATQUE DSSs to Map Areas at 

Highest Risk and Endangered 
Areas

A fl ow diagram (Fig. 2.1) shows how the 
diff erent stages of the DSSs are linked. Th e 
Introduction identifi es situations when pest 
risk mapping is most appropriate, the 
resources required and prior steps that need 
to be taken. Four stages follow the 
Introduction. In Stage 1, key factors that 
might aff ect the course or impact of invasion 
are identifi ed, data are assembled and maps 
are generated. In Stage 2, mapped layers of 
spatial data are combined to determine the 
areas at highest risk. In Stage 3, areas are 
identifi ed where the EIL might be exceeded 
by the pest and economically important 
losses could occur (Soliman et al., 2012). 
During Stage 3, potential relationships 
between modelled climatic suitability and 
measures of impact are explored. Th is stage 
is diffi  cult and requires a detailed modelling 
approach that will rarely be possible within 
the PRA process. In Stage 4, generic spread 
models are applied to portray invasion 
dynamics (Kehlenbeck et al., 2012; Robinet 
et al., Chapter 8 in this volume).

Th e PRATIQUE DSSs and this chapter 
emphasize Stages 1 and 2 to identify the 
area of potential establishment and the area 
at highest risk. Maps of the area at highest 
risk often suffi  ce to describe endangered 
areas. In practice, maps of the areas at 
highest risk provide evidence to support the 
PRA process, surveillance programmes, 
contingency plans and remedial actions.

Application of the PRATIQUE DSS

Before commencing the process of mapping 
areas of highest risk, it is important to think 
through options and implications. Detailed 
mapping may require considerable resources 
including time and expertise. For example, 
models and maps of climatic suitability from 
computer programs such as climex 
(Sutherst et al., 2007) and maxent (Phillips 
et al., 2006; Phillips and Dudík, 2008) 
require extensive inputs. Guidance on 
options and implications is provided in the 
introduction to the PRATIQUE DSS.

Th e DSSs help users determine if risk 
maps are needed and feasible. Mapping may 
be only necessary once a qualitative PRA has 
been completed, at least in draft, and may be 
only practical after careful consideration of 
the information available and resources 
required. When risk maps are desirable but 
insuffi  cient resources are available, pub-
lished maps, simpler models or individual 
maps of key risk components may still be 
useful in communicating risk (Baker et al., 
2013).

Maps may be particularly important 
when there is great uncertainty concerning 
the likelihood of establishment; but, if 
establishment occurred, the magnitude 
of impact would be expected to be high. 
Maps may also be critically important 
when the magnitude of impacts is likely 
to vary spatially, signifi cant areas of crop 
production or special areas of conservation 
are particularly vulnerable or targeted sur-
veillance and protection measures are 
required. If PRAs include phytosanitary 
measures likely to have a signifi cant 
impact on trading partners, maps can 
provide valuable justifi cation for the PRA 
conclusions.

Low priorities for mapping

Pests that clearly pose little risk to an area 
are generally considered low priorities for 
mapping. Maps are also a low priority for 
pests already considered likely to become 
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NO 
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factors and gathering relevant maps.  If appropriate, 
summarize information relating to spread.  Put maps into 
same resolution and enter into MCAS-S 

Decide whether it is 
appropriate to map based 
on data availability, etc.

STOP 

Fig. 2.1. Mapping endangered areas decision support scheme (DSS) – an example of its use.

widely established (e.g. because the pest is 
common in neighbouring countries with 
similar climates and host distributions). 
For example, the pine wood nematode 
(Bursaphalencus xylophilus) clearly posed a 

risk to Spain once outbreaks were discovered 
in Portugal (Vicente et al., 2012). Sometimes, 
an area of potential establishment can be 
identifi ed without risk mapping, especially 
for pests with obvious risks (e.g. primary 
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tree killers), if analysts can refer to existing 
national boundaries, climatic zones, eco-
climatic zones, host distributions, habitats 
or geographic coordinates. Lastly, maps may 
be considered low priority when extant data 
are too unreliable.

Information and resources for the 
PRATIQUE DSSs

Before starting the DSSs, analysts need to 
assemble three critical pieces of information: 
(i) a list of key factors that constrain 
establishment; (ii) a description of the area 
of potential establishment and suitability 
for population growth therein; and (iii) an 
assessment of potential economic, environ-
mental and social impacts. Information 
about the species’ biology, distribution and 
climatic responses can also be useful. 
Analysts can obtain this information from a 
draft or fi nal detailed PRA.

Locating relevant data sets can be time-
consuming for the PRA in general and for 
mapping pest risk. Useful pest distribution, 
host distribution and economic data sets 
have been collated and rated as part of the 
PRATIQUE project, and these are now listed 
online (EPPO, 2012a). PRATIQUE also 
provides assistance through: (i) links to 
models for assessing spread (Kehlenbeck et 
al., 2012; Robinet et al., Chapter 8 in this 
volume) and impacts (Soliman et al., 2012); 
(ii) a database of online data sources for PRA 
(EPPO, 2012a) such as crop maps (based on 
Monfreda et al., 2008); (iii) automation of 
several common data manipulation pro-
cedures by using the r software language (R 
Core Team, 2012); and (iv) a user-friendly 
method for combining maps using open 
source software, the Multi-Criteria Analysis 
Shell for Spatial Decision Support (mcas-s; 
ABARES, 2012), as an alternative to 
expensive and complex geographic infor-
mation systems (GISs). mcas-s requires all 
data sets to be at the same resolution and 
adjustments may require some GIS skills, 
but it does allow diff erent spatial data sets 
to be displayed and combined to represent 
risk using a variety of arithmetical, logical 
and matrix methods that can be set by the 

user. Guidance, data and tools are provided 
by the DSS to ensure that all the key data 
sets are available at 10 km × 10 km resolution 
for the EU by appropriate re-projection, 
up-scaling and down-scaling.

Linked to the DSS for mapping highest-
risk area is a separate climatic DSS that 
assists with selection of an appropriate 
climatic risk mapping model. Selection is 
based on: (i) the pest’s biology, its known 
climatic responses and the extent of 
knowledge of its distribution at the centre 
and the periphery of its geographical range; 
and (ii) relevant attributes of each model, 
such as functionality, ease of use and quality 
assurance (Eyre et al., 2012).

Stage 1: Assembling and Mapping 
Data for Key Factors

Stage 1 starts by assembling data for the key 
factors that determine the suitability of an 
area for establishment. Th ese factors are 
described in detail in the EPPO PRA scheme 
(EPPO, 2011) and relate to the suitability of 
both the biotic environment, e.g. host 
availability, and the abiotic environment, 
e.g. climatic suitability. Th e next task is to 
describe what data are available for each of 
the relevant factors that could potentially be 
put into a map. An example is provided in 
Table 2.1.

Data and any existing maps then need 
to be assembled for the factors that 
determine where hosts or habitats are at 
highest risk from impacts (excluding the 
factors that enhance establishment that 
have already been selected). Determining 
the factors that lead to highest risk requires 
substantial knowledge of the host, its 
cultivation or habitat, and its ecological or 
commercial value. Key factors may be related 
to host genotype or crop husbandry. Some 
cultivated plants are inherently more 
susceptible to damage by particular pests 
than other plants. Th is diff erence in 
susceptibility can be for a variety of reasons 
including: the crop cultivar; cropping 
patterns, especially grower reliance on one 
cultivar; growing conditions that favour pest 
impacts; high quality standards in crop 
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products; and, if the host is killed, long 
replacement times. For example, develop-
ment of the chestnut leaf miner (Cameraria 
ohridella) varies considerably between 
diff erent chestnut species and hybrids. 
Aesculus × hemiacantha is the most 
susceptible, but no damage is observed on A. 
× carnea (Rämert et al., 2011). Debilitating 
damage to plants has a greater potential to 
cause economic damage to crops with long 
replacement times, such as forest and 
orchard trees.

Growing conditions and production 
methods can make some crops more 
vulnerable to damage; for example, maize 
grown in sandy soil is less likely to be 
damaged by western corn rootworm 
(Diabrotica virgifera virgifera) than when the 
crop is grown in other soil types (Turpin and 
Peters, 1971). Western corn rootworm is 
also much less likely to be a signifi cant pest 
in fi rst year maize fi elds than in fi elds which 
have been in continuous maize production 
for several years (Dillen et al., 2010; 
Krügener et al., 2011).

Certain conditions increase the likeli-
hood that an invasive alien species will have 
major environmental impacts. Th e most 
severe impacts are anticipated when the 
pest damages populations of keystone, rare 
or endemic species or those that provide 
important ecosystem services. For example, 
the invasive harlequin ladybird, Harmonia 
axyridis, is thought to have led to a decline of 
a natural insect predator in northern 
Europe, the native two-spotted ladybird, 
Adalia bipunctata (Roy et al., 2012). 
Environmental impacts are also likely to be 
high in special areas for conservation such 

as national nature reserves. Islands are 
known to be particularly vulnerable to the 
impacts of invasive species, e.g. invasive 
species have had a major impact on the 
people and economy of Hawaii (Jang, 2007).

Techniques for classifying variables 
representing different risk factors

Once relevant data sets have been converted 
to the same resolution, uploaded to mcas-s 
and mapped, thresholds for data 
classifi cation are then selected. Each factor 
has a range of values and these values are 
divided into a number of classes, with the 
number and defi nition of each class specifi ed 
by experts on a case-by-case basis (Stephens 
et al., 2007). Six classes (e.g. absent, very 
low, low, medium, high and very high) or 
two classes (e.g. absent and present) are 
common. Classifi cation is undertaken before 
factors are combined because assessors 
generally fi nd it easier to attempt a 
judgement about the relationship between a 
single factor (e.g. climate suitability or host 
abundance) and the topic of interest 
(e.g. the likelihood of establishment) than 
to consider combinations of variables 
simultaneously. It can also be worthwhile to 
explore the eff ect of diff erent classifi cations 
on the outcome once factors are combined 
because combining mapped variables that 
have been pre-classifi ed will lead to a loss of 
some information (Dupin et al., 2011). An 
alternative is to combine variables 
arithmetically and then classify the results 
of this combination, thus eliminating one 
source of error.

Table 2.1. Summary of data and maps for key factors that determine the area of potential establishment 
for Diabrotica virgifera virgifera in the EU.

Factor Assessment and uncertainty score Maps for the PRA area

Host plants and suitable 
habitats

Abundant
Low uncertainty

EU grain and forage maize maps

Climatic suitability Largely similar to native range
Low uncertainty

CLIMEX maps (Kriticos et al., 2012)

Other abiotic factors Sandy soil has a negative effect
Low uncertainty

Soil maps

EU, European Union; PRA, pest risk analysis.
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Representing uncertainty

Since the diffi  culties of representing risk and 
uncertainty are magnifi ed when mapping 
combinations of risk factors, analysts must 
ensure that maps displaying the diff erent 
risk factors are examined before com-
bination. Where possible, maps showing the 
most likely outcome and the extremes 
should also be provided to risk managers. 
One way of doing this is to use lower, most 
likely and upper estimates of factors that 
contribute to a calculation of the endangered 
area. To calculate the best case, most likely 
case and worst case extent of the 
endangered area, the lower, most likely and 
upper estimates of diff erent variables (e.g. 
crop values) can be combined. For example, 
a best case scenario could be calculated by 
using the lower estimates of pest damage 
crop value. If there is any evidence to support 
a probability distribution of the factors 
contributing to the endangered area, it is 
then possible to create maps representing 
the ‘best case’ (e.g. 10% percentile outcome), 
median scenario (50%) and ‘worst case’ 
scenario (90%). In some cases, it will 
be appropriate to investigate diff erent 
scenarios, especially when considerable 
changes in risk are expected over time. 
Further discussion about the representation 
of uncertainty is provided by Koch and 
Yemshanov (Chapter 13) and Yemshanov et 
al. (Chapter 14) in this volume.

Stage 2: Combining Maps

In Stage 2 the maps of the key risk factors 
prepared in Stage 1 are combined to: (i) 
illustrate the area of potential establishment; 
(ii) map the area of potential impacts; and 
(iii) defi ne the area(s) at highest risk. Th e 
assumptions and combination rules used by 
the assessor should be documented. Seven 
matrix rules (Fig. 2.2; see colour plate 
section) have been implemented using 
mcas-s to cover the map combinations 
required:

1. Th e minimum rule matrix is used when 
both factors, e.g. climatic suitability and 
host presence, are required so that the factor 

with the most severe constraint (lowest 
classifi cation) dominates and the other 
factor is ignored. Equivalent scores for each 
factor impose equivalent levels of constraint.
2. Th e maximum rule matrix is the inverse 
of the minimum rule matrix. Th e factor with 
the highest classifi cation is what matters 
and the classifi cation of the other factor is 
ignored. For example, if protected environ-
ments are present, the climate, as measured 
at weather stations, may not be important.
3. Th e addition rule matrix sums both 
factors. Th is rule can be applied, for example, 
when combining production maps for two 
host crops, when production is expressed on 
ordinal scales from none to high. Th is rule 
was used in a PRA for western corn root-
worm to combine the lack of crop rotation 
(which may increase population densities) 
with the amount of crop production in the 
area of potential establishment.
4. Th e limiting factor matrix can be used 
when the absence of one factor prevents 
pest establishment but, if present, the value 
of the factor does not have any infl uence on 
the potential for pest establishment. For 
example, a pathogen may only become 
established in soils below pH 7; however, 
there may be no diff erence in the likelihood 
of establishment between soils of pH 6 or 5.
5. Th e modifi ed average matrix increases the 
classifi cation by one class if favourable or 
decreases the classifi cation by one if 
unfavourable. For example, an early harvest 
date may prevent some pests from com-
pleting their life cycle whereas a late harvest 
date may allow time for all individuals to 
develop.
6. Th e high risk matrix can be used to 
identify locations where there is a co -
incidence of high classes, e.g. when com-
bining the suitability of the area of potential 
establishment with factors infl uencing 
impact, to produce a fi ve-level risk clas-
sifi cation, in addition to a zero-risk level. 
Th is diff ers from the maximum rule matrix 
in that both factors have to be at maximum 
to give the highest risk output, whereas for 
the maximum rule matrix only one factor 
has to be at maximum. Th e high risk matrix 
is recommended, for example, to produce a 
map of the areas at highest risk from the 
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combination of a map of potential 
establishment with a map of economic, 
environmental or social impacts.
7. Cox’s risk matrix is a 5 × 5 classifi cation 
scheme that is useful to characterize risk as 
the product of probability and consequence, 
when these two factors are measured 
qualitatively. Th e results are categorized 
into three classes (in addition to zero).

To produce a classifi ed map of potential 
establishment, the analyst begins with maps 
of host distribution, other biotic constraints 
(e.g. presence of vectors), climatic suitability 
and other abiotic constraints (e.g. soil 
suitability, irrigation usage or protection 
from weather). All calculations occur within 
each grid cell, so all cells must have a 
common resolution (e.g. 10 km × 10 km). If 
an invasive alien species has more than one 
host, host densities in each cell are added 
together and that sum is given an ordinal 
rating (e.g. 0–5). Th e ordinal ranking of total 
host density can be combined with maps of 
the presence/absence of other biotic factors 
required by the invasive alien species by 
using the limiting factor matrix. Th e 
combined map shows areas where biotic 
factors are suitable for establishment. Th is 
map can be integrated with a map of climatic 
suitability, also described with ordinal 
rankings, by using the minimum rule matrix, 
to generate a map of the area where climatic 
factors and hosts are suitable for establish-
ment. Th is map can be joined to maps of the 
presence/absence of additional abiotic 
requirements for establishment (e.g. soil 
types) by using the limiting factor matrix to 
produce a map of the area of potential 
establishment without additional manage-
ment factors. Th e resulting map can be 
combined with maps of management 
activities that would favour the establish-
ment of the pest (e.g. irrigation or protection 
of sites from weather) by using the maximum 
rule matrix to create a map of the area of 
potential establishment with additional 
management.

To produce a classifi ed map of the areas 
at highest risk, the map of potential 
establishment is combined with a map of 
economic impacts. Th is part of the process 

assumes crop values are known. For each 
aff ected crop, the distribution (i.e. crop 
hectares per 10 km × 10 km grid), yield (e.g. 
tonnes per crop hectare) and value (e.g. 
Euros per tonne) are multiplied together, 
and the resulting crop production value 
(Euros per 10 km × 10 km grid) is given an 
ordinal rating. (We recommend six classes 
divided by equal area.) When two or more 
host crops are aff ected, productivity value 
maps are combined by using the addition 
matrix to generate a map of total crop 
production value. If an additional factor 
places the host crops at higher risk (e.g. a 
lack of crop rotation increases the potential 
damage caused by western corn rootworm), 
this factor can be combined with the total 
crop production value by using the modifi ed 
average matrix. If crop production values are 
not known, the areas at highest risk still can 
be identifi ed. Th e map of potential 
establishment is combined with a map of 
environmental, social or other economic 
impact maps. We recommend using the high 
risk matrix for this integration.

Stage 3: Mapping Endangered Areas

Before attempting to map an endangered 
area, it is important to have a clear 
understanding of economically important 
loss in terms of the PRA. For producers, as 
explained above in the section ‘Defi nitions 
of critical terms’, economically important 
loss occurs when the EIL is exceeded. EILs 
can be expressed in several ways such as the 
number of pests recorded over a unit of time 
on traps or the proportion of plants infected 
with a disease. When the EIL is exceeded for 
a crop pest, an intervention such as treating 
the crop with a plant protection product 
gives greater fi nancial benefi ts than the cost 
of the treatment. Defi ning an EIL for a pest 
that does not attack a commercially 
important crop, but rather attacks a resource 
viewed as a common good, ecosystem service 
or plant of conservation concern, may 
require other strategies.

To forecast the area where economically 
important losses are likely to occur, it is 
important to identify the areas at highest 
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risk (see ‘Stage 1: Assembling and Mapping 
Data for Key Factors’ and ‘Stage 2: 
Combining Maps’ above) and to know the 
extent to which the conditions necessary for 
pest populations to exceed the economic 
injury level are present in the PRA area. For 
example, MacLeod et al. (2005) created a 
model to determine the potential area in 
which the western corn rootworm might 
cause economic damage in England and 
Wales. In the absence of models predicting 
pest population densities and the extent to 
which they are likely to exceed the EIL, yield 
and quality loss scenarios can still be 
explored. For example, the analyst could 
create a worst case scenario, where it is 
assumed that the pest has reached its 
maximum geographical extent and the 
maximum pest density.

With suffi  cient data it would not only be 
possible to map the area where economic 
loss may occur but also the estimated losses 
per unit area, e.g. in a 10 km × 10 km grid 
cell. For example, if $100,000 worth of a 
susceptible crop is grown in a particular grid 
cell and losses due to a pest are likely to be 
about 10%, then losses could be mapped in 
units of $10,000. However, it is unlikely that 
such estimates can be made with confi dence 
because changes in pest populations, 
relationships between population densities 
and yield or quality loss, the climate, crop 
variety, agronomic practices, other crops 
grown in the area, surrounding non-crop 
habitat and market values can infl uence the 
magnitude of economic loss.

In cases where yield and quality loss are 
caused by polyphagous species, decision 
rules for combining maps of economic 
impact for diff erent hosts are provided.

Worked Examples

To illustrate how the DSS functions, the 
western corn rootworm is used as the 
principal example. Methods for mapping the 
risks posed by the water hyacinth (Eichhornia 
crassipes), a highly invasive freshwater plant, 
are also described to illustrate the procedures 
for an organism that primarily causes 
environmental impacts.

Example 1: the western corn rootworm

Th e western corn rootworm is a highly 
destructive pest of maize in the USA. Beetles 
and lodged maize plants were fi rst detected 
in Serbia (Yugoslavia) in 1992 near the 
Belgrade airport. Th e western corn 
rootworm is univoltine, overwintering as an 
egg in the soil. Larvae injure maize plants by 
feeding on root tissue. Adults feed on all 
above-ground parts of maize plants, 
especially maize pollen and silk.

For Stage 1, information from PRAs for 
France (EPPO, 1997), Th e Netherlands 
(Lammers, 2006) and the UK (CSL, 2007) 
and other sources obtained by the 
PRATIQUE project were used to complete 
Table 2.1.

In Stage 2, maps were produced for each 
key factor. A map of climatic suitability for 
the western corn rootworm was prepared by 
using climatology from 1961–1990 gridded 
to a resolution of 0.5º latitude × 0.5º 
longitude in the software climex to generate 
an Ecoclimatic Index (EI) (Kriticos et al., 
2012), a measure of climate suitability that 
ranges from 0 (unsuitable) to 100 (ideal 
suitability) for a species. Th e climex model 
for western corn rootworm assumed, among 
other parameters, that 666 degree-days 
(base 9°C) would be required annually to 
complete a generation (modifi ed from 
Baufeld et al., 1996). Th is map was rescaled 
to a 10 km × 10 km grid and divided into six 
classes for entry into mcas-s (Fig. 2.3a; see 
colour plate section).

A map of sandy soil, defi ned as clay 
<18% and sand >65%, from the European 
Soil Database version 2 (JRC, 2010) was 
rescaled to a 10 km × 10 km grid and divided 
into presence or absence classes (Fig. 2.3b; 
see colour plate section). Th e importance of 
sandy soil is based on observations from 
Hungary that the damage caused by larvae 
of the western corn rootworm on sandy soil 
is insignifi cant.

Maize was considered to be the only 
host and the western corn rootworm was 
assumed only to be able to establish where 
grain or forage maize is present. Maps of 
grain maize (Fig. 2.3c) and forage maize 
data (Fig. 2.3d; see colour plate section) at 
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5 arcminutes latitude × 5 arcminutes 
longitude resolution from Monfreda et al. 
(2008) were rescaled to provide the 
percentage of hectares in a 10 km × 10 km 
grid cell with maize and divided into fi ve 
classes based on equal area, with a sixth 
class representing the absence of maize. 
Maize production in tonnes per hectare at 5 
arcminutes latitude × 5 arcminutes longi-
tude resolution from Monfreda et al. (2008) 
was rescaled to a 10 km × 10 km grid cell 
and divided into six classes (with one absent 
class) based on equal area. Maize production 
maps (in tonnes per 10 km × 10 km grid 
cell) were generated for grain maize (Fig. 
2.3e) and forage maize (Fig. 2.3f; see colour 
plate section) by multiplying the harvested 
area (expressed as the percentage of the 
grid square area) by 100 (to convert to 
hectares) and then by the grain maize yield 
(in tonnes per hectare). (Note: As each 
10 km × 10 km grid cell contains 10,000 ha, 
the calculation of harvested hectares is 
equivalent to multiplying the harvested 
proportion of the area of the grid cell by 
10,000.) To obtain the production value per 
crop per grid cell, the grain maize and 
forage maize production were multiplied by 
the estimated price per tonne for each crop 
(€50 per tonne for forage maize and €250 
per tonne for grain maize). To map the area 
at highest risk of impacts based on 
economic data, the grain maize and the 
forage maize production value maps were 
then combined to generate the total maize 
production value map. Maps showing the 
proportion of maize that is not rotated and 
present a much higher risk are available 
only for a few countries, e.g. France, and so 
cannot be mapped at a European scale. 
Th e environmental and social impacts of 
western corn rootworm were considered to 
be negligible.

To take soil type into account, the map 
of total maize production was combined 
with the map of soil textures. Where the soil 
texture is defi ned as sandy, damage is 
expected to be low, so the modifi ed average 
matrix rule was applied and the impact 
classifi cation was reduced by one. Where the 
soil texture is not sandy, the impact level 
was unchanged.

Th e key factors that were considered to 
infl uence the area at highest risk of damage 
by the western corn rootworm were: (i) crop 
value; (ii) whether maize is grown for forage 
or grain production; (iii) yield; (iv) sandy 
soils; and (v) the extent to which maize is 
rotated with other crops.

An area-of-potential-establishment map 
for the western corn rootworm was produced 
by using the minimum matrix rule to 
combine the climatic suitability map based 
on the climex EI with the host distribution 
map based on the areas harvested for 
grain and forage maize (in hectares per 
10 km × 10 km grid cell). Th e maps of host 
production (i.e. value per grid cell) and the 
area where the soils are not sandy were 
combined by using a modifi ed average matrix 
and then combined with the area of potential 
establishment to map the area at highest 
risk. Th e area in each risk category can also 
be summarized in a table using standard GIS 
procedures. Th e mcas-s software allows the 
user to easily export data and statistics from 
the combined maps. Table 2.2 shows the 
number of 10 km × 10 km grid cells in each of 
the six levels of risk for each EU member 
state.

Uncertainties arise when classifying 
data and model outputs before or after 
combining data sets. For example, in 
classifying the climex EI for the climatic 
suitability of western corn rootworm, dif-
ferent inter pretations of the EI might 
reasonably be applied. For example, ‘very 
highly suitable’ cells might have an EI ≥ 12 
(i.e. the worst case), an EI ≥ 20 (i.e. the most 
likely case) or an EI ≥ 28 (i.e. the best case). 
As the threshold for ‘very high’ suitability 
increases, the total area classifi ed as very 
highly suitable will decline. Th is reduction in 
turn reduces the area of potential establish-
ment and the area at highest risk. Figure 
S2.1 in the online supplement to Chapter 2 
shows where the areas of climatic suitability, 
potential establish ment and highest risk 
diff er according to the three scenarios.

Th e choice of scenario can have 
important ramifi cations. For example, if the 
numbers of grid cells in the high and very 
high risk ratings are tallied for each EU 
country under the best case scenario, the 
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fi ve countries at greatest risk are France 
(342 high cells and 345 very high cells), 
Italy (300 and 25), Hungary (31 and 0), 
Portugal (27 and 3) and Spain (22 and 0). 
Similar tallies under the most likely scenario 
change fi ve countries at greatest risk to 
France (1099 and 486), Italy (310 and 212), 
Hungary (213 and 190), Romania (228 and 
8) and Spain (55 and 0). Under the worst 
case scenario, the fi ve countries at greatest 
risk change yet again to France (1442 and 
571), Romania (979 and 66), Hungary (431 
and 224), Italy (305 and 227) and Germany 
(315 and 43). Although the largest area 
under threat is in France under each 
scenario, the worst case scenario showed 
Romania and Hungary are more threatened 
than Italy.

Example 2: the common water hyacinth

Risk mapping for water hyacinth provides 
an example of identifying areas at high risk 
from environmental impacts. A PRA for the 
common water hyacinth, a highly invasive 
fl oating freshwater weed native to South 
America, was produced by EPPO (2008) and 
included a climex model to identify areas in 
Europe that are climatically suitable or 
unsuitable for invasion. Water hyacinth is 
sensitive to frost, which kills the leaves and 
upper petioles that normally protect 
rhizomes. At prolonged cold temperatures 
(<5°C), rhizomes may be killed (Owens and 
Madsen, 1995). Water hyacinth’s low 
tolerance to frost limits distribution of this 
species to southern Europe. Th e common 

Table 2.2. Number of 10 km × 10 km grid cells in each EU country classifi ed by risk level for Diabrotica 
virgifera virgifera. Countries are ranked based on the sum of high and very high cells.

Rank Regiona

Number (proportion) of cells at each risk level

Absent Very low Low Moderate High Very high

1 France 700 (0.13) 1356 (0.25) 897 (0.17) 864 (0.16) 1099 (0.20) 486 (0.09)
2 Italy 896 (0.31) 656 (0.22) 569 (0.20) 274 (0.09) 310 (0.11) 212 (0.07)
3 Hungary 5 (0.01) 92 (0.10) 126 (0.14) 288 (0.32) 213 (0.23) 190 (0.21)
4 Romania 327 (0.14) 775 (0.33) 391 (0.16) 642 (0.27) 228 (0.10) 8 (<0.01)
5 Spain 1141 (0.23) 3276 (0.67) 317 (0.06) 130 (0.03) 55 (0.01) 0 (0.00)
6 Bulgaria 92 (0.08) 728 (0.66) 177 (0.16) 64 (0.06) 46 (0.04) 0 (0.00)
7 Portugal 336 (0.40) 235 (0.28) 148 (0.18) 71 (0.09) 38 (0.05) 3 (<0.01)
8 Greece 255 (0.22) 687 (0.59) 149 (0.13) 49 (0.04) 25 (0.02) 7 (0.01)
9 Austria 540 (0.64) 126 (0.15) 73 (0.09) 80 (0.10) 23 (0.03) 0 (0.00)
10 Slovenia 74 (0.39) 71 (0.38) 17 (0.09) 12 (0.06) 15 (0.08) 0 (0.00)
11 Germany 188 (0.05) 2695 (0.75) 575 (0.16) 119 (0.03) 11 (<0.01) 0 (0.00)
12 Netherlands 0 (0.00) 190 (0.63) 61 (0.20) 43 (0.14) 8 (0.03) 0 (0.00)
13 Slovakia 104 (0.22) 248 (0.53) 64 (0.14) 47 (0.10) 5 (0.01) 0 (0.00)
14 Czech Republic 37 (0.05) 668 (0.86) 65 (0.08) 7 (0.01) 1 (<0.01) 0 (0.00)
15 Belgium 6 (0.02) 203 (0.68) 67 (0.22) 24 (0.08) 0 (0.00) 0 (0.00)
16 Denmark 5 (0.01) 373 (0.99) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
17 Estonia 407 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
18 Finland 3278 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
19 Ireland 636 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
20 Latvia 617 (0.99) 8 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
21 Lithuania 110 (0.16) 557 (0.84) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
22 Luxembourg 0 (0.00) 25 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
23 Poland 182 (0.06) 2929 (0.94) 8 (<0.01) 0 (0.00) 0 (0.00) 0 (0.00)
24 Sweden 4379 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
25 UK 1246 (0.54) 1047 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

aCyprus and Malta are missing.
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water hyacinth colonizes still or slow-
moving water in estuarine habitats, lakes, 
urban areas, watercourses and wetlands. 
Although the species can tolerate extremes 
of water-level fl uctuation and seasonal 
variations in fl ow velocity, nutrient 
availability, pH, temperature and toxic 
substances (Gopal, 1987), seawater con-
centrations >20–25% are lethal (Muramoto 
et al., 1991).

Th e area of potential establishment was 
identifi ed by mapping habitats suitable for 
establishment based on the EU Corine Land 
Cover Map (i.e. inland marshy areas, 
watercourses and water bodies; EEA, 2012) 
and climatic suitability as characterized by 
climex and combining these maps by using 
a limiting factor matrix. Th e process is 
illustrated in Fig. S2.2 in the online 
supplement to Chapter 2. Th e areas at 
highest risk were considered to be the 
habitats of highest conservation import-
ance. Th ese were represented by the Natura 
2000 sites, special areas of conservation 
established under the 1993 EU habitats 
directive (EEA, 2011), that could be invaded 
by the common water hyacinth.

Based on an expert interpretation of the 
evidence, fi ve Natura 2000 habitat types 
were selected as being particularly suitable 
for water hyacinth invasion: (i) natural 
eutrophic lakes with Magnopotamion or 
Hydrocharition; (ii) constantly fl owing 
Mediterranean rivers with Glaucium fl avum; 
(iii) watercourses of plain to montane levels 
with Ranunculion fl uitantis and Callitricho–
Batrachion vegetation; (iv) rivers with muddy 
banks with Chenopodion rubri p.p. and 
Bidention p.p. vegetation; and (v) constantly 
fl owing Mediterranean rivers with Paspalo–
Agrostidion species and hanging curtains of 
Salix and Populus alba. Th e area of the Iberian 
Peninsula at highest risk from the common 
water hyacinth was identifi ed by overlaying 
the raster map of the area of potential 
establishment with a vector map of Natura 
2000 sites that are particularly suitable for 
colonization by common water hyacinth. 
Figure S2.3 in the online supplement to 
Chapter 2 provides details about where the 
highest-risk locations occur.

Further Work

DSSs provide pest risk analysts with a 
structured process to identify key factors 
that aff ect the probability and consequence 
of invasion by alien species and to combine 
maps of those factors to identify 
endangered areas. PRATIQUE DSSs focus 
on mapping areas of highest risk due to the 
diffi  culties in identifying areas where 
economic loss will occur. However, 
considerable testing and development are 
required to identify best practices and 
further enhance guidance. Advancements 
are needed to: (i) identify the most 
appropriate methods for calculating and 
representing uncertainty in risk maps; (ii) 
accurately refl ect current climate and 
taking climate change into account; (iii) 
map organisms with complex life cycles; 
(iv) map areas where economic loss will 
occur; and (v) provide guidance on the 
choice of models in particular situations. 
Additional challenges include: (i) the lack of 
consistently accurate and up-to-date data 
for all the key parameters, particularly if 
the PRA area includes several countries; (ii) 
the diffi  culty of combining data sets at 
diff erent resolutions and formats without 
clear combination rules, (iii) the complexity 
of many GISs; and (iv) the absence of clear 
techniques or conventions for representing 
pest risk uncertainty in maps.

Priorities for enhanced pest risk 
mapping DSSs are already articulated in the 
roadmap provided by Venette et al. (2010). 
Th ere is a continuing need to help risk 
mappers provide clear, accurate and readily 
interpretable maps to risk managers and 
policy makers. Policy makers in Europe 
increasingly require the use of shorter PRA 
schemes that can be completed quickly, e.g. 
the Quick Scan PRA scheme of Th e 
Netherlands (Netherlands Plant Protection 
Service, 2012), the Rapid PRA scheme of the 
UK (Fera, 2013) and the EPPO Express PRA 
scheme (EPPO, 2012b). Th is demand for 
rapid PRAs creates additional challenges for 
pest risk mapping that are partly addressed 
by the guidance given here and by Baker 
et al. (2013), who give examples of how 
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shortcuts to the detailed DSSs can be made 
when information, time or resources are 
limited.
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Abstract

Freight transportation is an important 
pathway for introduction and dissemination 
of invasive alien species. Identifying the 
fi nal destination of imports is critical in 
determining the likelihood of introduction 
by invasive alien species.   In this chapter, we 
used the Freight Analysis Framework (FAF) 
database to model freight transport of 
imports to the USA with urban areas as their 
fi nal destination. We also used FAF-based 
projections for the year 2040 for 20 
pathways consisting of four commodities 
from fi ve world regions of origin. After 
modelling the fi nal distribution of imports 
among urban areas in the USA, we 
characterized the distribution patterns of 
imports and assessed the introduction 
potential of invasive alien species to urban 
forests. Freight pattern analyses were 
conducted for one category of agricultural 
products and three categories of imports 
whose products or packaging materials are 
associated with invasive alien species: wood 
products, non-metallic mineral products 
and machinery. We found that the type of 
import and the world region of origin 
greatly infl uenced the fi nal distribution of 
imported products. A simple pest risk 
assessment model for invasive alien species 
in urban forests was built based on the 

percentage of forestland and volume of 
imports for each urban area. We found that 
several urban areas are potentially highly 
vulnerable to introductions from invasive 
alien species, regardless of import pathway. 
We conclude that inclusion of freight 
movement information is critical for proper 
risk assessment of invasive alien species.

Introduction to Trade Analysis for 
Invasive Alien Species

Economic losses by invasive alien species in 
agricultural and forest ecosystems of the 
USA have been estimated at US$37.1 billion 
per annum (Pimentel et al., 2005). 
International transport of goods has been 
widely acknowledged as one of the leading 
causes of introductions of invasive alien 
species (Meyerson and Mooney, 2007; 
Westphal et al., 2008; Hulme, 2009; Perrings 
et al., 2009). Manufactured and agricultural 
goods, including their associated wood 
packaging material and cargo containers, 
can harbour a number of invasive alien 
species (NACEC, 2003; Caton et al., 2006; 
McCullough et al., 2006; Liebhold et al., 
2012; Haack and Rabaglia, 2013). Wood-
based crating, dunnage and pallets have 
been implicated as major pathways by which 
bark- and wood-infesting insects have 
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moved with commerce among countries 
(IPPC, 2009). Imports such as tiles, 
machinery, marble, steel and ironware have 
been commonly associated with borer-
infested wood packaging material (Haack, 
2006).

Port inspections can help detect invasive 
alien species and reduce their frequency of 
entry. When high-risk pests are intercepted 
at ports in the USA, reports of those 
interceptions are stored in electronic 
databases maintained by the US Department 
of Agriculture, Animal and Plant Health 
Inspection Service (NRC, 2002; McCullough 
et al., 2006; PPQ, 2011). Th is information 
allows federal and state agencies to 
implement detection surveys and possible 
mitigation measures at ports if warranted 
(McCullough et al., 2006). Inspection rates 
of imports entering the USA are under 2% 
(NRC, 2002); and thus a non-zero probability 
exists that some infested cargo will be 
missed at the ports and be transported to 
the cargo’s fi nal destination. Th erefore, it 
would be valuable to identify the principal 

fi nal destinations of selected imports that 
are commonly associated with invasive alien 
species to aid in regional risk assessments 
and detection surveys.

Th e Freight Analysis Framework (FAF) 
database shows promise in helping to predict 
the movement of invasive alien species via 
imports. FAF consists of several data tables 
for US imports, exports and within-country 
fl ow of 43 commodity groups (Southworth 
et al., 2011). FAF is compiled from multiple 
data sources in which data gaps are fi lled 
using a combination of log-linear modelling 
and iterative proportional fi tting (South-
worth et al., 2011). Th ere are eight world 
regions of origin for the imports in FAF and 
63 FAF regions within the USA. Th e latter 
consist of Core Based Statistical Areas 
(CBSAs), which cover entire US states or 
portions of states.

To obtain an initial idea of the potential 
usefulness of the FAF data to understand 
freight transportation patterns in the USA, 
we can look at one record in the database 
(Table 3.1). In this record, we see that the 

Table 3.1. Summary variables from Freight Analysis Framework’s Origin–Destination Database. This 
example shows codes and values for machinery imports from Asia (southern, central or western regions) 
that arrived at Seattle–Tacoma–Olympia CSAa ports in the USA via maritime transportation and were 
delivered to Los Angeles–Long Beach–Riverside CSA via truck transportation in 2007, with projections 
for 2040.

Variable Description
Code or 

value Description of code or value

TRADE_TYPE Trade type (import, export, domestic) 2 Import
SCTG2 Two-digit SCTGb commodity (43 

categories)
34 Machinery

FR_ORIG World region of origin (eight regions) 806 Southern–Central–Western Asia
FR_INMODE Transportation mode from world 

region of origin to US point of entry 
(seven modes)

3 Water

DMS_ORIG US point of entry (123 regions) 531 Seattle–Tacoma–Olympia CSA
ST_ORIG US state of point of entry 53 Washington
DMS_MODE Transportation mode from point of 

entry to fi nal destination (seven 
modes)

1 Truck

DMS_DEST US regional fi nal destination (123 
regions)

061 Los Angeles–Long Beach–
Riverside CSA

ST_DEST US state of regional fi nal destination 06 California
TONS_2007 Volume of imports in 2007 0.3759 Thousand short tonsc

VALUE_2007 Value of imports in 2007 1.565 US$ million
TONS_2040 Projected weight of imports in 2040 2.4805 Thousand short tons 
VALUE_2040 Projected value of imports in 2040 10.329 US$ million

aCSA, Combined Statistical Area.
bSCTG, Standard Classifi cation of Transported Goods.
cOne short ton = 0.9072 tonnes (metric tons).
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Combined Statistical Area (CSA) of Los 
Angeles–Long Beach–Riverside in the state 
of California imported 376 short tons (~341 
tonnes), with a total value of US$2.5 million, 
of machinery goods that originated some-
where in the southern, central or western 
regions of Asia during 2007. Th ese imports 
initially arrived via maritime transport at 
ports located in the Seattle–Tacoma–
Olympia CSA in the state of Washington. 
After arrival, imports were then transported 
via truck to their fi nal destination in the Los 
Angeles–Long Beach–Riverside CSA. In the 
same record, we can see that, by the year 
2040, annual imports are projected to 
increase to 2480 short tons (~2250 tonnes) 
with a total value of US$10.3 million. Th e full 
record includes projected import fi gures 
every fi ve years from 2015 to 2040. With 
more than half a million import records, the 
FAF database provides a comprehensive view 
of freight fl ow in the USA.

FAF data have been used to enhance 
pest risk assessment and survey eff orts for 
invasive alien species (Koch et al., 2011; 
Magarey et al., 2011). To illustrate the 
usefulness of the FAF database from an 
invasive alien species perspective, we used 
projections of regional freight transport in 
the USA to characterize the potential for 
introductions into urban forests. We focused 
on urban areas because as hubs of economic 
activity (McGranahan and Satterhwaite, 
2003; Rodrigue et al., 2009), urban areas 
are likely the fi nal destination for most 
imports and thus are at greater risk of 
invasive alien species introductions. Th e 
initial intro ductions of the Asian longhorned 
beetle (Anoplophora glabripennis (Coleoptera: 
Cerambycidae)) in Illinois, New York, New 
Jersey and Toronto (Haack et al., 1997, 
2010) and the emerald ash borer (Agrilus 
planipennis (Coleoptera: Buprestidae)) in 
Michigan (Poland and McCullough, 2006) 
are prime examples. As with the emerald ash 
borer, once invasive alien species become 
established in urban areas they are likely to 
continue spreading into rural areas.

Before continuing, we provide some 
concepts defi ned by the US Census Bureau 
(USCB, 2012) that are important in under-
standing this chapter:

1. Combined Statistical Areas (CSAs) consist 
of two or more adjacent core-based 
statistical areas that have substantial 
economic connections, as measured by the 
number of commuters.
2. Core Based Statistical Areas (CBSAs) refer 
collectively to metropolitan and micro-
politan statistical areas and consist of the 
county or counties associated with at least 
one core population of at least 10,000, plus 
adjacent counties having a high degree of 
social and economic integration with the 
core, as measured through commuting ties 
with the counties associated with the core.
3. Metropolitan Statistical Areas are CBSAs 
associated with at least one urbanized area.
4. Micropolitan Statistical Areas are CBSAs 
associated with at least one urban cluster.
5. Urbanized area consists of densely 
developed territory that contains ≥50,000 
people.
6. Urban cluster consists of densely 
developed territory that has ≥2500 people 
but <50,000 people.
7. Urban area refers collectively to 
urbanized areas and urban clusters.

In a nutshell, from the above defi nitions: 
(i) CSAs are clusters of CBSAs; (ii) CBSA is 
the generic term for metro/micropolitan 
areas; and (iii) metro/micropolitan areas 
diff er from each other by whether their main 
populated centres involve an urbanized area 
or urban cluster. Of relevance from a 
biological invasion perspective is that the 
terms metropolitan and micropolitan are 
not equivalent to urban land use. Both 
metropolitan and micropolitan concepts 
imply the presence of urban–rural gradients 
in their territory (Offi  ce of Information and 
Regulatory Aff airs, 2010). In fact, in the 
USA, only 11% of the combined metro/
micropolitan area is classifi ed as developed 
land, while forest, agriculture and shrub/
scrub account collectively for 70% of the rest 
of the land (Colunga-Garcia et al., 2013). 
Moreover, the socio-economic interactions 
between urban and rural areas that are 
characteristic of metro/micropolitan areas 
make them highly suitable for the 
establishment and spread of invasive alien 
species.
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In the remainder of this chapter, we 
show a methodology to use the FAF database 
to model freight transport of US imports 
with urban areas as their fi nal destination. 
We use FAF projections for the year 2040 for 
20 pathways consisting of combinations of 
four commodities and fi ve world regions of 
origin. After modelling the fi nal distribution 
of imports among urban areas in the USA, 
we: (i) characterize the distribution patterns 
of imports; and (ii) assess the introduction 
potential of invasive alien species to urban 
forests.

Modelling   Urban Areas as 
Destinations of US Imports

Modelling the fi nal distribution of US 
imports among urban areas was done in two 
phases (Fig. 3.1). In the fi rst phase, we used 
the international FAF origin–destination 
data set to determine the regional destina-
tion (i.e. CBSAs and other territories in the 
contiguous USA) of commodities and the 
total volume imported as projected for the 
year 2040. In phase two, the regional 
imported volumes were disaggregated 
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Fig. 3.1. Conceptual model for the fl ow of transported goods from selected world regions to US urban 
areas. (Modifi ed from Colunga-Garcia et al., 2009.)
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among the urban areas within a region. Th e 
combination of urban population size and 
long-distance truck volume was used as 
disaggregation criteria.

We focused our analyses on four com-
modity groups derived from the two-digit 
Standard Classifi cation of Transported 
Goods (SCTG). Th ree of the commodity 
groups, including wood products (SCTG 26), 
non-metal  lic mineral products (including 
marble and ceramic tiles; SCTG 31) and 
machinery (SCTG 34), have been associated 
with wood-infesting insects (Haack, 2006). 
Our concern with the last two is the wood 
packaging material used to protect and 
handle the products. Th e fourth commodity 
was general agricultural products (SCTG 3), 
which does not include cereal grains, seed, 
animal feed, or live animals and fi sh. Th e fi ve 
world regions of origin included in the 
analysis were Eastern Asia, Central and 
South America, Europe, Canada and Mexico. 
Th ese world regions were selected because, 
according to preliminary calculations we 
made with the FAF database, they were 
projected to be major regions of origin for 
US imports of agricultural products (92%), 
wood products (97%), non-metallic mineral 
products (92%) and machinery (95%) in 
2040.

Regional destination of imports (Phase 1)

For each selected pathway (i.e. combination 
of world region × commodity) we used data 
projections for the year 2040 from the FAF 
origin–destination data set (Box 3.1) to 
compute the total volume of imports at their 
projected regional destinations as follows:

 (3.1)

where Ri is the total imported volume in a 
selected pathway to reach the ith regional 
destination; Eij is the total imported volume 
in a selected pathway arriving at the jth US 
point of entry to be transported to the ith 
regional destination; and m is the number of 
all US points of entry involved in a selected 
pathway for the ith regional destination. 

Volume estimates were converted from 
FAF’s original values in short tons to tonnes 
or metric tons (1 short ton = 0.9072 tonnes). 
We pooled the FAF data as to the pathway by 
which the imports arrived in the USA (i.e. 
via water, air and land). We also pooled the 
FAF data for the following modes of 
domestic transportation: truck, rail, water, 
air and truck–rail.

Disaggregation of regional imports to 
urban areas (Phase 2)

For this analysis, we used the Urban Areas 
Boundary Layer as delimited by the US 
Census Bureau (Box 3.1). Because some 
urban areas overlap the boundaries of more 
than one FAF region, we had to split those 
urban areas by FAF region. To do this, we 
intersected the Urban Areas Boundary Layer 
with the FAF Regions Boundary Layer (Box 
3.1) in ArcGIS 10.1 to produce an FAF 
Region-Urban Areas Layer.

Th e disaggregation of regional import 
volumes (see Ri in Eqn 3.1) among the urban 
areas within a region was conducted as a 
function of urban population size and 
maximum long-distance truck volume using 
the following equation:

 (3.2)

where Uij is the total imported volume in a 
selected pathway to reach the jth urban area 
of the ith regional destination; Ri is the total 
imported volume in a selected pathway to 
reach the ith regional destination (from Eqn 
3.1); Pij is the size of the urban population in 
the jth urban area of the ith regional 
destination; Tij is the maximum long-
distance truck volume in the jth urban area 
of the ith regional destination; and n is the 
number of urban areas in the ith regional 
destination.

To compute Tij in Eqn 3.2, we joined the 
FAF Network Data to the FAF Network 
Layer (Box 3.1) using ArcGIS 10.1. Th e 
resulting FAF Network Layer was intersected 

1

m

i ij
j

R E




1

ij ij
ij i n

ij ij
j

P T
U R

P T


 



 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



40 Manuel Colunga-Garcia and Robert A. Haack

with the FAF Region–Urban Areas Layer to 
obtain for each FAF Region–Urban Area 
polygon the maximum value of the ‘FAF40’ 
data fi eld of the FAF Network Layer. Th is 
data fi eld corresponded to the projected 
long-distance truck volume data for the year 
2040. FAF Region–Urban Area polygons 
whose FAF40 values were equal to zero were 
discarded from the analysis. To obtain Pij in 
Eqn 3.2, we used the 2010 Census Gazetteer 
File (Box 3.1). When urban areas were 
completely part of an FAF region, Pij values 
were taken directly from the Census 
Gazetteer File. For urban areas that over -
lapped more than one FAF region, we had to 
disaggregate the urban area population 
values in the Census Gazetteer File among 
FAF Region–Urban Area poly gons. To do 
this, we intersected the FAF Region–Urban 
Areas Layer described above with the Census 
Blocks Layers (Box 3.1). Th en we summed 
the urban population for all the blocks that 
intersected the same FAF Region–Urban 
Area polygon. Summed values for each FAF 

Region–Urban Area polygon were then used 
as weights to disaggregate proportionally 
the urban area population values in the 
Census Gazetteer Files among the urban 
area–FAF region polygons.

Analysing distrib  ution patterns of imports 
among urban areas

Th e purpose of the analysis was to determine 
if the 20 selected pathways produced 
diff erent patterns in the distribution of 
imports among urban areas. Following the 
Pareto principle (i.e. the 80–20 rule), we 
selected urban areas that contributed to the 
upper 80% of total imported volume for 
each pathway. Two spatial statistics were 
computed using ArcGIS 10.1: (i) the 
weighted mean centre; and (ii) the weighted 
standard distance (Mitchell, 2005). Th e 
mean centre is the centre of concentration 
of the urban areas in a selected pathway and 
is computed as follows:

Box 3.1. Sources of data sets used in this chapter

Source:  US Department of Transportation – Federal Highway Administration
 Name: Freight Analysis Framework (FAF) Version 3.4
Link: http://www.ops.fhwa.dot.gov/freight/freight_analysis/faf/
  Data set: FAF Origin–Destination Data
  Data set: FAF Network Layer
  Data set: FAF Network Data
  Data set: FAF Regions Boundary Layer
Source: US Department of Commerce–US Census Bureau
 Name: TIGER/Line® Shapefi les and TIGER/Line® Files (web interface)
 Link: http://www.census.gov/geo/maps-data/data/tiger-line.html
  Data set: 2010 Urban Areas Boundary Layer
 Name: 2010 Census Gazetteer Files
 Link: http://www.census.gov/geo/maps-data/data/gazetteer2010.html
  Data set: 2010 Urban Areas Gazetteer Files (2010 population counts)
 Name: TIGER/Line® Shapefi les and TIGER/Line® Files (FTP site)
 Link: ftp://ftp2.census.gov/geo/tiger/TIGER2010/TABBLOCK/2010/
  Data set: 2010 Census Blocks Layers (including 2010 population counts)
Source: Multi-Resolution Land Characteristics (MRLC) consortium
 Name: National Land Cover Database 2006
 Link: http://www.mrlc.gov/nlcd06_data.php
  Data set: NLCD2006 Land Cover
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 (3.3)

where, for each selected pathway, x‒ and y‒ 
are, respectively, the centre mean x and y 
coordinates; xi and yi are the x and y 
coordinates of the ith urban area; and n is 
the number of urban areas. Th e weighted 
mean centre is a mean centre adjusted (or 
weighted) for the volume imported by each 
urban area for a selected pathway as follows:

 (3.4)

where, for each selected pathway, wx‒ and  
wy‒ are, respectively, the weighted centre 
mean x and y coordinates; xi and yi are the x 
and y coordinates of the ith urban area; Ui is 
the total imported volume in a selected 
pathway to reach the ith urban area (Eqn 
3.2); and n is the number of urban areas.

Th e standard distance (SD) measures 
the degree to which urban areas were 
concentrated or dispersed around the mean 
centre and is computed as follows:

 (3.5)

where xi, x‒, yi , y‒, i and n are as in Eqns 3.3 
and 3.4. In the weighted standard distance 
we adjusted (i.e. weighted) the computations 
using the volume imported by each urban 
area for a selected pathway as follows:

 (3.6)

where, for each selected pathway, WSD is the 
weighted standard distance and the other 
variables are as in Eqns 3.3 and 3.4. Th e 
greater the standard distance value, the 
more widely dispersed the urban areas were 
around the centre (Mitchell, 2005).

We also used two non-spatial indicators 
of concentration of import volume among 

urban areas. First, we measured the number 
of urban areas and US states that contributed 
to import volume. Th e smaller the numbers, 
the more concentrated the imports were 
among urban areas. Second, we measured 
the largest percentage contribution made by 
any individual urban area for each pathway. 
Th e smaller the number, the more evenly 
distributed were the imports among urban 
areas.

Assessing the introduction potential of 
invasive alien species to urban forests

Th e purpose of this analysis was to explore if 
pathways diff ered in their eff ect on the 
vulnerability of urban areas to potential 
introductions of invasive alien species. 
Introduction, for the purposes of this 
chapter, is defi ned as the entry of an invasive 
alien species resulting in its establishment 
(IPPC, 2012). To measure introduction 
potential, we built a simple model based on 
the volume of imports and the percentage of 
forested land within each urban area for 
each selected pathway. Th e model assumed 
that if a pathway was carrying invasive alien 
species, then urban areas with higher 
percentage of forest cover that were also the 
destination for high import volumes would 
have higher introduction potential for 
invasive alien species. Because the focus of 
the analysis for this chapter was primarily 
on trade patterns, we did not consider 
phytosanitary, environmental or biological 
factors other than forest cover (see Koch et 
al., 2011 or Magarey et al., 2011 for examples 
of comprehensive analyses of introduction 
risk involving trade patterns). Th e equation 
used to calculate the introduction potential 
was:

 (3.7)

where Ij is the introduction potential of 
invasive alien species in the jth urban forest; 
Uj is the total imported volume in a selected 
pathway to reach the jth urban area (i.e. 
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from Eqn 3.2); Umax is the highest Uj 
observed among all urban areas in a selected 
pathway; Fj is the percentage of forest land 
cover within the jth urban area; and Fmax is 
the highest Fj observed among all urban 
areas.

To estimate the percentage of forest 
land cover in each urban area (Fj), we used 
ArcGIS 10.1 to cross-tabulate areas between 
the 2006 USA National Land-Cover Data 
Layer and the Urban Areas Boundary Layer 
(Box 3.1). Th en we combined the areas of the 
deciduous, evergreen and mixed forest 
classes. Finally, we computed the percentage 
of forest land cover with respect to the total 
area of the urban area. After we computed Ij 
values for all 20 pathways, we selected a 
subset of urban areas for further analysis. To 
do this we computed Ij as:

(3.8)

and selected the urban areas within the 
upper 95% of I values for each pathway. Th e 
urban areas within each selected pathway 
subset were ranked for introduction 
potential by using a scale of 1–6, where 1 
was the highest value. To implement the 
ranking, we fi rst used the boxplot method 
(Tukey, 1977) to divide the subset of urban 
areas into four quartiles (i.e. Q1, Q2, Q3, 
Q4) based on their Ij values. We assigned 
the introduction potential rank values of 3, 
4, 5 and 6 respectively to Q4, Q3, Q2 and 
Q1. Th en we computed the interquartile 
range (IQR; i.e. Q3–Q1) to identify urban 
areas with outlier values (i.e. 

Q 3 1.5 IQRjI    ) and extreme outlier 
values (i.e. Q 3 3 IQRjI    ). Urban areas 
identifi ed as outliers and extreme outliers 
were assigned, respectively, the introduction 
potential rank values of 2 and 1. We counted 
the number of urban areas included in each 
ranking category for each pathway to 
determine if the number of urban areas 
with introduction potential varied with 
pathway type. Th en we selected the urban 
areas with a rank of 1 (i.e. with the highest 
introduction potential) and computed their 
mean centre (Eqn 3.3) and standard 
distance (Eqn 3.5) by using ArcGIS 10.1 to 

characterize invasion potential patterns 
under diff erent pathways.

Distribution Patterns of Imports 
among Urban Areas

We modelled the fi nal distribution of US 
imports to 3156 urban areas via 20 pathways 
(Fig. 3.2). Considering all 20 pathways 
combined, 211 urban areas (i.e. 6.7% of all 
urban areas in the USA) across 49 states 
(including Hawaii) contributed to the upper 
80% of the US imported tonnage in at least 
one pathway. Th ere were on average 50 ± 6 
urban areas across 23 ± 2 states for the 20 
pathways analysed (Table 3.2). Th e weighted 
mean centre of urban areas for each pathway 
showed strong infl uence by the world region 
of origin in the distribution of tonnage 
among urban areas (Table 3.2, Fig. 3.3a). In 
general, mean centres were in the north for 
products from Canada, south-west for 
products from Mexico, west for products 
from Eastern Asia, south-east for products 
from Central and South America, and east 
for products from Europe. Mean centres for 
pathways involving machinery were 
relatively clustered, suggesting this com-
modity has a strong infl uence on the 
distribution pattern. Weighted standard 
distances varied from 1000 km for 
machinery from Canada to over 1700 km for 
non-metallic mineral products from Eastern 
Asia (Table 3.2). Th is indicates that urban 
areas within each pathway are in general 
geographically widespread. Th e model 
results indicated that the geographic 
concentration of tonnage among urban 
areas varied depending on the pathway 
involved. At one end of the spectrum, 
agricultural products from Mexico went to 
23 urban areas in seven states (i.e. 0.7% of 
all US urban areas) with the largest 
percentage contribution by an individual 
urban area to all US imports of 27.9% (Table 
3.2). At the other end of the spectrum, wood 
products from Canada went to 119 urban 
areas in 43 states (i.e. 3.8% of all US urban 
areas) with the largest percentage 
contribution by an individual urban area to 
all US imports of 8.6%.
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Introduction Potential of Invasive 
Alien Species to Urban Forests 

Th e geographic patterns resulting from the 
introduction potential model (Eqn 3.5) for 
each of the 20 pathways are shown in Fig. 
3.3b. Overall, compared with the import 
‘cloud’ of mean centres in Fig. 3.3a, the 
introduction cloud of mean centres in Fig. 

3.3b was centred more in the north-eastern 
USA (i.e. the mean centre of the mean 
centres in Fig. 3.3b moved 1°N and 5.5°E in 
relation to Fig. 3.3a) and was slightly more 
clustered (i.e. the standard deviation of all 
mean centres in Fig. 3.3a was 734 km versus 
595 km in Fig. 3.3b). Th is likely refl ects the 
eff ect of forest vegetation abundance 
patterns in the contiguous USA. In general, 

Agricultural products Wood products Non-metallic mineral products Machinery
Canada

Mexico

Central and South America

Europe

Eastern Asia

Gg
      < 1101
      1101–1677
      > 1677

Gg
      < 305
      305–466
      > 466

Gg
      < 2171
      2171–3393
      > 3393

Gg
      < 31
      31–46
      > 46

Gg
      < 143
      143–219
      > 219

Gg
      < 9
      9–14
      > 14

Gg
      < 302
      302–458
      > 458

Gg
      < 97
      97–146
      > 146

Gg
      < 48
      48–71
      > 71

Gg
      < 55
      55–84
      > 84

Gg
      < 264
      284–400
      > 400

Gg
      < 109
      109–163
      > 163

Gg
      < 1020
      1020–1586
      > 1586

Gg
      < 510
      510–775
      > 775

Gg
      < 3129
      3129–4796
      > 4796

Gg
      < 707
      707–1092
      > 1092

Gg
      < 309
      309–470
      > 470

Gg
      < 539
      526–799
      > 799

Gg
      < 526
      526–799
      > 799

Gg
      < 1217
      1217–1808
      > 1808

Fig. 3.2. Modelled destinations (urban areas) and projected imported volume (tonnes × 103, or Gg) for 
2024 for 20 pathways (i.e. combinations of commodity type and world region of origin) in the contiguous 
USA. Only the fourth quartile of urban areas that contributed to the upper 80% of the US import volume 
in each pathway are shown. The two upper size classes (larger circles) of import volume in the labels for 
each of the 20 maps represent destination hot spots, i.e. respectively, the ‘outliers’ and the ‘extreme 
outliers’.
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mean introduction centres were similar to 
those for imports (Fig. 3.3a). However, mean 
centres for introduction from Central and 
South America shifted primarily to the 
north-east, and for the wood products 
pathway shifted towards the mid-west. 
Diff erences among pathways were observed 
in the number of urban areas within each 
ranking level (Table 3.3). For instance, 
imports from Central and South America 
went to an average of 6 ± 0.5 urban areas 
where the introduction potential was 1 (i.e. 
highest ranking). On the other hand, 
imports from Mexico and Canada went to 
an average of 14 ± 2 and 15 ± 1 urban 
areas, respectively, where the introduction 
potential was 1. On average, 44.3 ± 1.8% of 
the total tonnage of US imports from 20 
pathways went to urban areas where invasive 
alien species had the best opportunity to 
establish.

Th e potential for introduction of in -
vasive forest species among some urban 
areas remained high (i.e. ranking category 1) 
regardless of the pathway involved (Fig. 
3.3c). For instance, Atlanta, GA; New York–
Newark, NY/NJ/CT; Houston, TX; Chicago, 
IL; Cincinnati, OH/KY/IN; Seattle, WA; and 
Washington DC/VA/MD were ranked in 
category 1 for ten or more pathways.

Discussion

Th e role of trade and commerce in the 
dispersal of plant pests is well recognized; 
however, research on this topic has been 
limited. Th e use of FAF data to model the 
fi nal destination of imports to urban areas 
in the USA was useful to identify relevant 
patterns of potential introductions of 
invasive alien species. Our analysis in this 

Table 3.2. Number of urban areas that contributed to the upper 80% of the US import volume via 20 
pathways (combinations of commodity and world region of origin). Also included are number of US states 
involved, imported tonnage, largest percentage contribution made by an individual urban area, weighted 
mean centre and weighted standard distance.

SCTGa
Region of 
origin

Imported 
volumeb States

Urban 
areas

Largest 
percentage WMCc

WSDd 
(km)

Agricultural 
products 
(SCTG 03)

Canada 8,881 25  48 15.2 45.1 N, 92.9 W 1180
Mexico 14,390  7  23 27.9 34.2 N, 109.1 W 1000
C&S Americae 16,790 16  24 17.9 38.4 N, 89.9 W 1626
Europe 1,104 24  49 29.3 39.4 N, 85.7 W 1558
Eastern Asia 1,389 16  23 21.9 38.5 N 101.2 W 1742

Wood 
products 
(SCTG 26)

Canada 15,291 43 119 8.6 41.9 N, 96.7 W 1611
Mexico 200 12  39 13.9 34.4 N, 105.6 W 1175
C&S America 1,847 22  39 22.7 36.6 N, 90.0 W 1483
Europe 1,208 21  39 21.3 37.8 N, 86.7 W 1425
Eastern Asia 1,617 29  56 13 38.7 N, 99.4 W 1650

Non-metallic 
mineral 
products 
(SCTG 31)

Canada 5,542 35  77 15.2 42.6 N, 86.7 W 1489
Mexico 6,521 15  48 15.2 34.1 N, 98.5 W 1099
C&S America 10,756 14  27 28.7 31.6 N, 84.8 W 1070
Europe 10,641 21  34 23.1 35.4 N, 83.9 W 1351
Eastern Asia 39,272 16  27 18.9 37 N, 103.5 W 1627

Machinery 
(SCTG 34)

Canada 14,657 40 101 9.3 40.3 N, 88.5 W 1000
Mexico 19,648 24  70 7.8 37.8 N, 92.4 W 1141
C&S America 6,594 20  26 21.2 37 N, 85.6 W 1122
Europe 18,855 31  79 9.2 38.8 N, 88.3 W 1210
Eastern Asia 44,753 29  59 12.8 38.2 N, 92.1 W 1317

aSCTG, two-digit Standard Classifi cation of Transported Goods.
bImported volume in thousand tonnes.
cWMC, weighted mean centre; coordinates (latitude, longitude) are in the World Geodetic System 84 (WGS 84).
dWSD, weighted standard distance; equals one standard deviation.
eC&S America, Central and South America.
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(a)

(b) (c)

1000–1250

1251–1500

1501–1740

350–800

801–1200

1201–1710

1–4

5–9

10 or higher

1000

1000

Pathways
A1) Canada–Agricultural products
A2) Canada–Wood products
A3) Canada–Non-metallic mineral products
A4) Canada–Machinery
B1) Mexico–Agricultural products
B2) Mexico–Wood products
B3) Mexico–Non-metallic mineral products
B4) Mexico–Machinery
C1) C&S America–Agricultural products
C2) C&S America–Wood products
C3) C&S America–Non-metallic mineral products
C4) C&S America–Machinery
D1) Europe–Agricultural products
D2) Europe–Wood products
D3) Europe–Non-metallic mineral products
D4) Europe–Machinery
E1) Eastern Asia–Agricultural products
E2) Eastern Asia–Wood products
E3) Eastern Asia–Non-metallic mineral products
E4) Eastern Asia–Machinery

Fig. 3.3. (a) Spatial statistics for the fi nal destination (urban areas) of US imports via 20 pathways. Only 
urban areas that contributed to the upper 80% of the US import volume in at least one pathway are 
shown. Dot locations represent the weighted mean centre and dot size is the weighted standard distance 
(one standard deviation). (b) Spatial statistics for urban areas in the contiguous USA with the highest 
introduction potential for invasive forest pest species via 20 pathways. Each dot location represents the 
mean centre and dot size represents the standard distance (one standard deviation). (c) Urban areas 
with the highest introduction potential for invasive forest pest species via 20 pathways. Dot size indicates 
the number of pathways where a particular urban area was ranked. Introduction potential was estimated 
based solely on volume of imports (i.e. rate of entry of invasive species was assumed to be proportional 
to the amount of tonnage) and percentage of forest cover in an urban area. Highest introduction potential 
means they were in the ranking category 1 on a scale of 1–6 (with 1 being the highest ranking). Pathways 
were combinations of commodity and world region of origin (C&S America, Central and South America) 
as listed in the upper right. Ellipses were drawn as a visual reference to indicate values belonging to the 
same world region of origin (with the exception of C2 in Fig. 3.3b for clarity).

chapter showed that the type of imports and 
the world region of origin aff ect the fi nal 
distribution of the imported products to 
urban areas and thereby can infl uence the 
initial distribution of introduced invasive 
alien species. Incorporating such trade 
information into risk assessments should 
help plant health specialists prioritize areas 
for detection and monitoring programmes.

Some adaptations to the methodology 
described in this chapter have already been 
implemented in the analysis of invasive 
alien species. For instance, Koch et al. (2011) 

and Magarey et al. (2011) modifi ed Eqn 3.1 
to include the domestic movement of goods. 
Presumably, the fl ow of imported goods 
could continue domestically after delivery to 
the fi nal destination specifi ed in the bill of 
lading, which is assumed to be the fi nal 
destination in the present chapter. Eqn 3.1 
can also be modifi ed to provide rates of fl ow 
(i.e. percentages or proportions) instead of 
tonnages. Such modifi cation would enable 
the integration of other trade databases 
such as the port import database in USA 
Trade® Online (https://usatrade.census.gov/). 
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Th is database provides data on port imports 
at a fi ner resolution in terms of the origin of 
imports (i.e. country) and commodity type 
(i.e. six-digit Harmonized Code Classifi -
cation). Import volume data from USA Trade 
Online can be used in a modifi ed Eqn 3.1 for 
rates to determine transportation fl ow of 
those imported goods. If knowing the actual 
fl ow of imports is more important than 
simply knowing the fi nal destinations, it 
would be worthwhile to take an in-depth 
look at the FAF Network Data (Box 3.1) to 
model the transportation of goods (i.e. truck 
mode) on US roads. If knowing the point of 
entry is not a priority (i.e. only the origin 
and fi nal destination are desired), other 
approaches could be implemented. For 
example, Colunga-Garcia et al. (2013) used 
the State Import Destination database of 
USA Trade Online to obtain information 
about the country of origin and US state of 
destination of imports and then used 

geocoded data on wholesale or retail 
establishments and sales within the US 
states to disaggregate the state import data.

In working with these data sources, it is 
important to keep in mind that databases 
such as FAF or USA Trade Online were 
designed to be used at the scale provided. 
Attempts to disaggregate the data at fi ner 
resolutions are as good as the assumptions 
behind the disaggregation approach and 
therefore caution should be used when 
deriving conclusions from their analysis. 
Th at being said, these types of analyses 
should be encouraged because they provide 
important insights into the potential 
dynamics between international trade, 
freight movement and biological invasions. 
Colunga-Garcia et al. (2010) modelled the 
potential destination of imports within 
urban areas based on human population 
numbers and commercial land use. Th eir 
goal was to explore the potential interactions 

Table 3.3. Number of urban areas in the contiguous USA (and percentage contribution to US imports) in 
different ranking categories for the introduction potential of invasive forest species via 20 pathways 
(combinations of world region of origin and commodity)a.

SCTG
World region of 
origin

Introduction potential rankingc

1 2 3 4 5 6

Agricultural products
(SCTG 03)

Canada 13 (31)  6 (4)  26 (17)  46 (21) 45 (8) 45 (4)
Mexico 10 (39)  9 (5) 11 (2) 31 (3) 32 (4) 30 (1)
C&S Americad  5 (45)  3 (7)  8 (4)  17 (10) 16 (3) 16 (7)
Europe 11 (51)  4 (2) 15 (9) 30 (6) 29 (7) 30 (2)
Eastern Asia  7 (38)  2 (2)  11 (33) 20 (6) 19 (1) 20 (3)

Wood products 
(SCTG 26)

Canada 17 (38) 11 (9)  29 (13)  59 (10) 57 (8) 58 (3)
Mexico 13 (49)   7 (12) 17 (6) 39 (6) 37 (4) 38 (1)
C&S America  7 (47)  5 (6)   9 (10) 22 (9) 22 (5) 21 (3)
Europe  9 (51)  1 (2)  15 (16)  25 (11) 26 (4) 25 (4)
Eastern Asia 17 (44)   9 (20) 22 (6) 49 (8) 49 (3) 48 (2)

Non-metallic mineral 
products (SCTG 31)

Canada 14 (48)  7 (6)  21 (10)  43 (11) 42 (5) 42 (3)
Mexico 14 (53)  6 (5) 17 (8)  38 (11) 38 (5) 37 (2)
C&S America  6 (26)  5 (5)  18 (13) 30 (7)  29 (38) 29 (1)
Europe 10 (38)  7 (7) 18 (8)  35 (10) 35 (3)  35 (24)
Eastern Asia  7 (43)  5 (7)  16 (21) 30 (8) 28 (2) 29 (1)

Machinery (SCTG 34) Canada 17 (44)  9 (9)  35 (15) 61 (9) 62 (6) 61 (4)
Mexico 20 (53)  6 (5) 22 (9)  48 (11) 47 (4) 48 (3)
C&S America  7 (58)  7 (8) 12 (7) 27 (7) 27 (3) 26 (2)
Europe 15 (44)  12 (14)  20 (11)  48 (10) 48 (5) 47 (4)
Eastern Asia 14 (47)  13 (10)  21 (17) 49 (7) 49 (4) 48 (2)

aIntroduction potential was estimated based solely on percentage of forest cover in an urban area and on volume of 
imports (rate of entry of invasive species was assumed to be proportional to the amount of imported tonnage).
bSCTG, two-digit Standard Classifi cation of Transported Goods.
cA ranking of 1 indicates the greatest likelihood of introduction.
dC&S America, Central and South America.

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Following the Transportation Trail  47

between propagule pressure and forest cover 
and the potential establishment of a 
hypothetical invasive forest pest. When they 
delimited hot spots for its potential 
establishment, they found that such hot 
spots encompassed historical initial 
detections of actual invasive alien species in 
those urban areas.

An important fi nding of the analysis in 
this chapter is that some urban areas were 
highly ranked in terms of invasion potential 
across several pathways (Fig. 3.3b). Th e fact 
that some of those urban areas (e.g. Chicago, 
New York–Newark) have experienced intro-
ductions of invasive alien pests in the past is 
signifi cant because our analysis was con-
ducted with FAF data projections for the 
year 2040. Th is means that urban areas that 
have experienced invasions in the past are 
also vulnerable to future invasions. In fact, 
Colunga-Garcia et al. (2010) argue that hot 
spots for invasion due to international trade 
or freight transport are exposed to propagule 
pressure from multiple pathways. Th e 
combination of multiple pathways with high 
volumes of propagule pressure increases the 
likelihood of entry and establishment by 
invasive alien species where environmental 
conditions are favourable (Haack and 
Rabaglia, 2013; Brockerhoff  et al., 2014). 
Although we may not be able to predict 
which species will be introduced next nor 
when, our analysis indicates that we can 
anticipate where introductions will likely 
occur by following the transportation trail.
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Abstract

We present a method to simulate atmos-
pheric dispersal events in invasion ecology 
using examples of two economically 
important and highly mobile insect species: 
the bird cherry-oat aphid, Rhopalosiphum 
padi (which vectors yellow dwarf viruses to 
maize, barley, oats and wheat); and the 
biting midge, Culicoides imicola (which 
vectors bluetongue virus to a wide range of 
domestic and wild ruminants). We 
demonstrate this method using two avail-
able atmospheric trajectory modelling tools: 
hysplit and pmtraj.

Signifi cance of Windborne Dispersal 
for Invasive Alien Species

In an increasingly interconnected world, 
many pests and pathogens can be moved 
through multiple dispersal pathways, not 
just natural, but human-mediated or human-
enhanced (Wilson et al., 2009). However, 
biological transport processes through the 
atmosphere and the oceans have always 
been (Munoz et al., 2004), and still are (Kim 
and Beresford, 2008; Chapman et al., 2010; 
Hopkinson and Soroka, 2010), an important 

mechanism for long-distance dispersal for 
both motile organisms, such as birds and 
insects, and passive dispersers, such as plant 
seeds, fungal spores and aerosolized 
bacteria.

Th e concept of trajectory modelling for 
long-distance dispersal in ecology is not new 
(Hendrie et al., 1985; Aylor, 1986; Scott and 
Achtemeier, 1987). For approximately 25 
years, researchers have developed trajectory 
models to simulate long-distance dispersal 
of both particles and organisms, including 
insect pests, through the atmosphere (Drake 
and Gatehouse, 1995). Recently, there has 
been increased interest in applying these 
methodologies to invasion ecology and 
biosecurity risk analysis (Russo and Isard, 
2011). Th is interest is perhaps because the 
tools, resolution and accuracy of 
meteorological data, modelling techniques, 
computational power and knowledge 
about ecological behaviours have become 
sophisticated enough to establish realistic 
and robust simulations rapidly.

Aerial dispersal models are suitable for a 
range of economically important applica-
tions (Table 4.1), such as assessing bio-
security risks, pest alert systems, pest 
(including weeds) and disease management, 
and forensic investigations of pest incursions 

4 Simulation Modelling of Long-
distance Windborne Dispersal for 
Invasion Ecology
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(Kim and Beresford, 2008; Chapman et al., 
2010; Hopkinson and Soroka, 2010; Savage 
et al., 2010; Leskinen et al., 2011). Models 
are now progressing from simple analysis of 

air-parcel trajectories assuming passive 
organism transport to trajectory models 
that are able to incorporate simple organism 
behavioural features. In the future, 

Table 4.1. Summary of some existing trajectory/dispersion models and their application in invasion 
ecology. An extended version of this table is available in the online supplement to Chapter 4 (Table S4.1) 
giving more details on each trajectory/dispersion model such as spatial and temporal resolution and 
availability. 

Trajectory/dispersion 
model Study subject Application

SILAM (Leskinen et al., 
2011)

Pest: Bird cherry-oat aphid 
(Rhopalosiphum padi); 
diamondback moth (Plutella 
xylostella)

Early warning of pest arrival via long-
distance dispersal events

HYSPLIT (Garner et al., 
2006; Zhu et al., 
2006; Kim and 
Beresford, 2008; 
MacRae et al., 2011; 
Eagles et al., 2013; 
Otuka, 2013)

Pathogen: Wheat stripe rust 
(Puccinia striiformis); FMDV

Pathogen/vector: Bluetongue/
Culicoides

Pest: Green peach aphid (Myzus 
persicae); rice planthoppers 
(Laodelphax striatellus, 
Sogatella furcifera and 
Nilaparvata lugens)

Identifi cation of sites at which rust spores 
are likely to be deposited after transit 
from Australia to New Zealand

Risk assessment of windborne spread of 
FMDV, to allocate activities like 
surveillance and vaccination on a risk 
basis

Relate spring low-level jet streams to 
intensity of M. persicae flight activity and 
spread of PLRV and PVY

Identify the migration source of rice 
planthoppers and Culicoides

PMTRAJ (Rochester et 
al., 1996; Deveson et 
al., 2005; Anderson 
et al., 2010; Parry et 
al., 2011; Eagles et 
al., 2012)

Pest: Bollworms (Helicoverpa 
punctigera and Helicoverpa 
armiger); Australian plague 
locust (Chortoicetes 
terminifera); planthopper 
(Eumetopina fl avipes)

Pest/vector: Aphid (R. padi)
Pathogen/vector: Bluetongue/

Culicoides

The basis of a system for forecasting moth 
migrations from inland habitat to coastal 
cropping regions

The identifi cation of dispersal mechanisms 
which facilitate particular biological 
invasions

Tracing the source of locust pest outbreaks

TAPM (Hurley et al., 
2005; Savage et al., 
2010)

Fungal pathogen (generic) Determine whether changes to the 
seasonal and circadian timing of 
propagule release can a have a 
signifi cant effect on the area covered by 
resulting aerial dispersal

CMC (LRTAP) (Hopkinson 
and Soroka, 2010)

Pest: Diamondback moth (P. 
xylostella)

Use of both forward and back trajectories 
to identify likely sources of pest 
outbreaks

CALPUFF (Pfender et al., 
2006)

MM5 (Hu et al., 2013)

Pathogen: Grass stem rust 
(Puccinia graminis)

Pest: Brown planthopper (N. 
lugens)

Estimation of dispersal and deposition of 
grass stem rust at a landscape scale

NAME (Ågren et al., 
2010; Chapman et 
al., 2010) (now NAME 
III)

Pest: Autographa gamma moths; 
air pollution

Pathogen: Culicoides midges/
bluetongue virus, FMDV

Trajectory analysis in combination with 
radar data showed that moth behaviours 
alter migration distances and directions 
of seasonal migration

Estimation of likely source of bluetongue 
introduction to Sweden from Europe and 
likely points of introduction

FMDV, foot-and-mouth disease virus; PLRV, potato leafroll virus; PVY, potato virus Y.
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trajectory models are likely to incorporate 
more advanced ecological parameters and be 
coupled with mechanistic, process-based 
simulations of fl ight initiation.

Th e aerial transport process (Fig. 4.1) 
has four key phases: (i) uplift; (ii) atmos-
pheric transport; (iii) deposition; and (iv) 
redistribution (Hendrie et al., 1985; Isard 
and Irwin, 1993). For each phase of this 
process, three activities can increase our 
knowledge of pest risk from long-distance 
atmospheric dispersal events (Fig. 4.1): (i) 
data collection/surveillance; (ii) mapping/

data analysis; and (iii) simulation modelling. 
We address all three activities in this chapter, 
as they are often interdependent. We 
present data requirements, analysis and 
simulation modelling methods applicable in 
invasion ecology to the fi rst three phases of 
the aerial transport process by two worked 
examples of insect pests (Table 4.2). We 
focus on the fi rst three phases as the fourth 
phase of redistribution (i.e. further move-
ment and spread in the destination area) 
warrants a full exploration in its own right 
due to its complexity, where multiple 

Source
Transport in 
atmosphere

Initial
distribution

Local
movement

Uplift Atmospheric transportation

?

Deposition

Sampling by 
trapping towers or 

scouting

Profiling
pest/pathogen

threats

Atmospheric
transport modelling

Modelling potential 
introduction points

Species distribution 
risk maps

Natural pathway 
analysis

Primary and 
alternate host 

maps

Surveillance for 
native vector 

potential

Secondary
dispersal modelling

Modelling
pest/pathogen
phenology and 

movement triggers

Aerial sampling

Species distribution 
maps

Data collection/surveillance
Mapping/data analysis
Simulation modelling

Fig. 4.1. Key phases in the aerial transport process for pests and pathogens (after Hendrie et al., 1985; 
Isard and Irwin, 1993). Integrated methods to study the processes are shown.

Table 4.2. Summary of long-distance windborne dispersal cases.

Species Model aims
Means to estimate pest 
density at source Software used

Rhopalosiphum padi 
(bird cherry-oat aphid)

Seasonal long-distance 
migration of insect pest 
into crop

Mechanistic/process-
based model

PMTRAJ (part of GENSIM)

Culicoides imicola (biting 
midges)

Long-distance dispersal 
potential for pest entry

Arbitrary estimate HYSPLIT
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pro cesses may operate at a range of spatial 
and temporal scales (Parry et al., 2013). 
Further data and analysis are required to 
calculate risk and model dispersal at the 
destination in this fourth phase. While these 
models may have many of the same 
characteristics as the long-distance dispersal 
models, they also have some important 
scale-dependent nuances and are, therefore, 
outside the scope of this chapter.

It should be noted, however, that the 
interpretation of phase 3 (i.e. deposition) in 
the aerial transport process is often aff ected 
by linkage with the events of phase 4 (i.e. 
redistribution). Identifi cation of a deposition 
(i.e. arrival) point often occurs after some 
redistribution has occurred. Our ability to 
identify precisely these points can be 
limited. For example, the detection of new 
bluetongue serotypes is confounded by the 
diffi  culty of assignment of any particular 
possible arrival event/s or location as the 
entry point (Eagles et al., 2012, 2013).

We demonstrate the use of two 
atmospheric wind trajectory1 modelling 
tools: hysplit – Hybrid Single-Particle 
Lagrangian Integrated Trajectory model 
(Draxler and Hess, 1997, 1998; Draxler, 1999; 
Draxler and Rolph, 2013; Rolph, 2013) and 
pmtraj (Rochester et al., 1996; Rochester, 
1999), both of which are freely available. We 
apply these tools to the dispersal of the bird 
cherry-oat aphid, Rhopalosiphum padi, and 
the biting midge, Culicoides imicola. Integrated 
simulation methods are now available to 
study the entire aerial transport process from 
the source, in the atmosphere, the initial 
distribution following transportation and 
through subsequent local movement and risk 
(Fig. 4.1). Such holistic approaches aim to 
advance an ecological understanding of the 
initiation of long-distance dispersal, the 
eff ects of atmospheric dynamics on an 
organism during dispersal and the con-
sequences of such dispersal.

Aerial Dispersal of R. padi and 
C. imicola

Atmospheric pest and pathogen dispersal 
can be a regular event, although dispersal 

events may vary greatly by year and season, 
such as with locusts (Deveson et al., 2005) 
and aphids (Leskinen et al., 2011). Pest risks 
may arise as movement patterns shift with a 
changing global climate; for example, 
migration events to higher latitudes may 
become more common (Chapman et al., 
2010). Signifi cant threats from invasive 
alien pests also come from changing 
movement and host susceptibility patterns 
as crops, animals and other host species are 
translocated from their native environments. 
As a secondary consequence of new geo-
graphical risks, we may create additional 
‘stepping-stone’ risks to new areas 
(Hopkinson and Soroka, 2010).

R. padi, the bird cherry-oat aphid, is the 
primary vector of yellow dwarf viruses in 
Australia (Parry et al., 2012). Worldwide, 
cereal aphids such as R. padi continue to be 
a major pest of cereal crops, largely due to 
their complex life cycle and dispersal 
behaviours making them diffi  cult to 
suppress (Parry, 2013). Many studies have 
shown that cereal aphids are capable of 
long-distance movement; cereal aphids are 
known to have a distinct ‘migratory’ fl ight 
phase, in which they are often carried 
distances of tens, even hundreds, of 
kilometres from their source by wind 
trajectories. R. padi is a non-native species 
that has established in Australia, 
periodically ‘invading’ autumn crops from 
over-summer host sources such as ryegrass 
pasture, potentially many kilometres away 
from the crop (Parry et al., 2012). Th erefore 
a better understanding and projection of 
aphid movement patterns at multiple 
spatial scales is important to build area-
wide strategies for cereal aphid integrated 
pest management (Parry, 2013).

Th e genus Culicoides includes a number 
of species of biting midge known to vector a 
range of arboviruses, including new sero-
types of bluetongue virus, worldwide. Such 
viruses are isolated occasionally from cattle 
and insects in northern Australia and are 
thought to be introduced via windborne 
dispersal of Culicoides from neighbouring 
land masses to the north (Eagles et al., 
2013). Unlike cereal aphids, Culicoides are 
not regular long-distance dispersers. 
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However, due to their small size it is thought 
that on occasion they may become entrained 
in wind currents that enable them to move 
large distances. In view of this, trajectory 
modelling has been used to estimate what 
the potential may be for the long-distance 
windborne transport of Culicoides (Eagles et 
al., 2012, 2013) and thus the arrival of novel 
arboviruses into Australia: a major bio-
security threat.

Research Questions

In invasion ecology, simulations of long-
distance wind dispersal have been applied to 
several spatially explicit research topics, for 
example: (i) exploring invasion risk and 
identifying likely sites of introduction 
(Pfender et al., 2006; Kim and Beresford, 
2008; Anderson et al., 2010); (ii) developing 
early-warning systems for pest arrival 
(Rochester et al., 1996; Deveson and Hunter, 
2002; Deveson et al., 2005; Leskinen et al., 
2011); and (iii) identifying the potential 
source of known outbreaks (Deveson et al., 
2005; Ågren et al., 2010; Hopkinson and 
Soroka, 2010). In addition, studies of aerial 
transport have been used to explore 
relationships between population processes 
at the source and resultant dispersal 
patterns (Savage et al., 2010); design 
surveillance and vaccination strategies for 
insect-vectored diseases of humans and 
animals (Garner et al., 2006); and explore 
in-transit behaviours of insects (Chapman 
et al., 2010; Drake and Wang, 2013).

Data and Software Needs

Modelling the aerial transport process can 
be data-intensive because data are required 
for each phase. For the fi rst phase, data are 
needed to profi le the initial pest migration 
threat (i.e. where might the species of 
concern be coming from). Methods to 
address this need range from simple, 
sometimes arbitrary, estimates of popu-
lation size and distribution to dynamic 
population simulations coupled with 
empirical observations from the fi eld for 

model initialization (i.e. biofi xes) and 
verifi cation. All aerial simulation methods 
require that a spatial location for the source 
be specifi ed; however, this source may be 
specifi ed with varying degrees of precision, 
from a point to a broad geographical area. 
Likewise, temporal dynamics at the source 
may be specifi ed with diff ering degrees of 
complexity, from a single dispersive event to 
an ongoing migration threat. For the 
migration-trajectory model phase, the 
assumption of active or passive dispersal 
will dictate data requirements. Th e cal-
culation of risk at the destination can be a 
risk-modelling-and-mapping exercise (e.g. 
identifi cation of suitable climates and 
vulnerable hosts) or can involve dynamic 
simulation modelling methods to calculate 
immediate and longer-term risk (Parry et al., 
2013). Both types of methods require data 
relating to the environment at the 
destination, the dispersal ecology of the 
organism and the assumed response of the 
organism to the new environment.

Profi ling pest migration threat (Phase 1)

Th ree broad approaches are typically used to 
profi le a pest or pathogen migration threat: 
(i) empirical fi eld data are used to generate 
initial estimates of fl ight activity, simply by 
scaling up observations under certain 
environmental conditions (Deveson et al., 
2005; Westbrook et al., 2011); (ii) life history 
data are used to develop mechanistic, 
process-based models that include factors 
that lead to migratory behaviour (Parry et 
al., 2011); and (iii) highly arbitrary migration 
estimates are used to consider a wide range 
of hypothetical dispersal scenarios (i.e. 
‘sensitivity’ methods; Eagles et al., 2012, 
2013).

In many cases, empirical data will not be 
available because they are costly to obtain. 
Nonetheless, fi eld observations, if collected 
regularly with good spatial coverage, provide 
perhaps the best estimates of immediate 
migration threats. Empirical data may be 
from a variety of sources including 
traditional survey data, light-trap catches, 
suction traps, satellite imagery and direct 
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observations from purpose-built insect-
monitoring radar. Surveillance records may 
sometimes be available as used in locust 
migration modelling (Deveson et al., 2005) 
or proxy information may also be useful 
such as habitat distribution.

In general, observational data are only 
likely to identify large populations because 
small, dispersed populations are much more 
diffi  cult to detect. Th erefore, an empirically 
driven profi le of pest migration threat 
basically assumes that only easily detected, 
high-density populations will pose a 
migration threat. For many species of insects, 
this circumstance is likely to be true, 
particularly as some species (e.g. aphids) 
generate winged morphs (i.e. alates) at high 
population densities, although alates are 
produced in response to other factors such as 
a decline in food availability. Th e assumption 
that organisms must reach high densities 
before they are likely to disperse may be less 
applicable to plants or pathogens; for these 
cases, the start of migration periods might 
be forecast from phenological development 
models. In general, ground-level obser -
vations that confi rm the presence of a species 
do not necessarily indicate a propensity for 
migration by that species. Other en-route 
aerial observation methods, such as suction 
trapping (Woiwod and Harrington, 1994) or 
radar (Nieminen et al., 2000; Drake and 
Wang, 2013), are better suited to identify 
species movements but may leave little time 
to respond to these events when they occur.

If aerial or en-route sampling data are 
unavailable, ground-level empirical data are 
best supplemented by process-based models 
that include factors known to infl uence 
migratory behaviour (Parry et al., 2006, 
2011, 2013). Such models can include factors 
that aff ect population dynamics, propensity 
to produce migratory morphs (e.g. alate 
aphids) and the potential to alight. For 
example, an aphid model could be initialized 
with empirical observations on population 
structure and geographic distribution to 
identify when and where alate adults might 
appear. Alternatively, a spatially explicit 
population dynamics model could be used to 
infer the production of alate adults from 

suitable habitat and environ mental drivers 
(Parry et al., 2006, 2011, 2013). Data 
requirements for such process-based 
modelling vary considerably, depend ing on 
the structure of the model. Th e models must 
be interpreted with care because errors 
compound over simulated time. Th e models 
are most eff ective if they can be run with 
periodic biofi xes to eff ectively re-calibrate 
the model to actual fi eld conditions.

Most trajectory modelling software 
requires identifi cation of a source point or 
region. Th e source may be characterized by a 
single point coordinate or multiple points of 
varying concentration (e.g. for use in 
hysplit and pmtraj; software described in 
greater detail in the section ‘Modelling 
migration trajectories (Phase 2)’ below), or a 
region defi ned in a geographical information 
system and exported as an appropriate fi le 
type (e.g. pmtraj reads ASCII grid fi les and 
point locations). Th e grid cell values or 
points will contain an estimate of the 
number of migrants, which can range from a 
simple arbitrarily large value (i.e. the 
‘sensitivity’ approach) to density values that 
fl uctuate in space and time according to a 
population dynamics model. Th e model 
could include a sub-model to describe the 
propensity of individuals to migrate depend-
ing on a range of environmental and be -
havioural cues. Output then becomes input 
to initialize the redistribution trajectory 
model.

Examples of useful data for both 
profi ling the propensity of species to migrate 
and estimating migration trajectories are 
given in Table 4.3. We were able to simulate 
fl ight initiation of R. padi due to the vast 
amount of information in the literature on 
the life history of this species in particular 
and aphids in general (Parry, 2013). Th is 
knowledge base allowed us to construct a 
mechanistic model of population dynamics 
for aphid populations at a source that 
considers factors which are likely to drive 
aphids to disperse. However, the biological 
literature is much more limited for Culicoides, 
so a ‘sensitivity’ method was used to give a 
less precise but still valuable indication of 
potential migration risk.
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Modelling migration trajectories (Phase 2)

Aerial dispersal can be viewed generally as 
passive (i.e. where the movement of the 
organism is controlled primarily by move-
ments of a medium such as the wind) or 
active (i.e. where organismal behaviours 
primarily dictate the speed and direction of 
movement). In reality a continuum between 
the two forms of dispersal may exist, but 
simplifi cation of aerial dispersal into these 
two categories makes it easier to consider 
appropriate models. Plants, microbes and 
small insects are generally considered pas-
sive dispersers over long distances whereas 
large, winged insects usually exhibit some 
degree of active dispersal behaviour. Even 
weak fl ying insects may select conditions for 
migratory take-off , possibly related to 
photoperiod and seasonal con ditions. For 
example, in China moths of the Old World 
bollworm, Helicoverpa armigera, actively fl y 
northwards in southerly winds during 
spring and summer and return south on 
nights with northerly winds during autumn 
(Feng et al., 2009). We use the term ‘migrate’ 
generally to describe long-distance active 
transport.

In order to parameterize an atmospheric 
circulation model with biological factors 
that are important to fl ight and simulate 
continuously across space and time, a ‘front 
end’ to most standard circulation models 
must be built to modify the estimated 
trajectories in relation to fl ight behaviours. 
Front-end models allow the user to create 
time-dependent, time-varying sources of 
dispersing biota. For passive dispersers, the 
front-end model can be very simple because 
there are very few data requirements.

hysplit is a freely available model 
capable of computing simple air-parcel 
trajectories to running complex dispersion 
and deposition simulations (Draxler and 
Hess, 1997, 1998; Draxler, 1999; Draxler 
and Rolph, 2013; Rolph, 2013). hysplit can 
be accessed via a web-based interface or the 
software can be downloaded and run locally. 
Meteorological data also can be downloaded 
with the software or the user can provide 
his/her own meteorological inputs, provided 
they are converted to a format that hysplit 
can process. Sample programs for converting 
meteorological data into this format are 
available. hysplit will not allow for complex 
organism behaviours (although recent 

Table 4.3. Details of meteorological data used in Phase 1 (i.e. profi ling pest migration threat) and Phase 
2 (i.e. migration-trajectory model). (All data supplied by the Australian Bureau of Meteorology and the Air 
Resources Laboratory.)

Meteorological data Spatial extent
Spatial 
resolution Temporal scale Format

Phase 1
 Temperaturesa Weather station Point Daily maximum 

and minimum
Text fi le

 Day lengtha Weather station Point Daily Text fi le
 Wind speed (ground)a Weather station Point Mean daily Text fi le
 Wind direction (ground)a Weather station Point Mean daily Text fi le
 Humiditya Weather station Point Mean daily Text fi le
Phase 2
 Wind speed and direction (multi-

level): limited-area prediction 
system regional atmospheric 
circulation modela

Australia 0.75° 6 h Hdf

 NCEP/NCAR re-analysisb Global 2.5° 6 h Air Resources 
Laboratory 
format

aData requirement for PMTRAJ (Rhopalosiphum padi) model only.
bNCEP/NCAR, National Center for Environmental Protection/National Center for Atmospheric Research (USA). Data 
requirement for HYSPLIT (Culicoides imicola) model only.

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



56 Hazel R. Parry et al.

development of a new web-based front-end 
'TAPPAS' may change this; see Graham et al., 
2013), but will allow for multiple take-off  
locations, start times and dispersal 
durations. Th ese input variables can be 
adjusted manually or by using the EMITIMES 
fi le.

gensim is the C++ program that runs 
models in the pmtraj package (Rochester et 
al., 1996; Rochester, 1999). Most of the code 
for the program is in a C++ library. Th e 
ancillary C++ programs in the pmtraj 
package are also based on that library. For 
full information about gensim, see 
Rochester (1999). pmtraj is an extension of 
the back-trajectory analysis method of Scott 
and Achtemeier (1987). gensim/pmtraj is 
available as open source software from its 
developer (W. Rochester, Queensland, 2013, 

personal communication; wayne.rochester@
csiro.au).

pmtraj can simulate passive, and some 
aspects of active, dispersal, with inputs as 
indicated in Table 4.4. For passive dispersal, 
specifi c parameters (and units) include:

1. Take-off  location(s) (latitude and 
longitude).
2. Take-off  time of day and duration of 
take-off  within a single day (hour/hours).
3. Flight altitudes (metres).
4. Flight start date (dd–mm–yy).
5. Flight end date, i.e. the fl ight period (dd–
mm–yy).
6. Th e size of the dispersing population – 
this may be the actual number of insects, an 
assumed number of insects or a sampled 
subset of individuals that are dispersing.

Table 4.4. Details of parameters and data used in migration-trajectory models for Rhopalosiphum padi 
and Culicoides imicola. 

Parameter Description R. padi model Culicoides model

Take-off
 Start time Time of day when take-off 

begins
9 am local time Dusk (~ 6 pm local 

time)
 Duration Length of time take-off 

continues
7 h 3 h

 Latitude Grid cell latitude at take-off –33.13 decimal degrees 
(Wokalup, Western 
Australia)

Nine points in SE 
Indonesia, Timor-
Leste and PNG

 Longitude Grid cell longitude at take-off 115.88 decimal degrees 
(Wokalup, Western 
Australia)

Nine points in SE 
Indonesia, Timor-
Leste and PNG

Duration
 Minimum Minimum fl ight duration 2 h 20 h
 Maximum Maximum fl ight duration 6.5 h 20 h
Height
 Minimum Minimum height of fl ight 100 m 0 m
 Maximum Maximum height of fl ight 1000 m 1000 m 
Flight speed
 Minimum Minimum speed the organism 

is capable of fl ying unaided
0 km/h NA

 Maximum Maximum speed the organism 
is capable of fl ying unaided

0 km/h NA

Flight offset
 Minimum Minimum fl ight bearing against 

the wind
0 degrees NA

 Maximum Maximum fl ight bearing against 
the wind

0 degrees NA

Number of fl ights Number of individuals in 
simulation per time step

Determined by population 
dynamics/fl ight initiation 
sub-model at source

100 per hour

PNG, Papua New Guinea; NA, not applicable.
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For active dispersal, pmtraj models can 
include additional front-end param eters:

1. Survival functions during fl ight.
2. Th e range of fl ight altitudes.
3. Th e range of fl ight durations.
4. Th e organisms’ fl ight speed and fl ight 
direction (i.e. orientation relative to the 
wind).

Survival functions are frequently ignored 
because relevant data are unavailable. Some 
stochastic elements also can be incorporated 
into pmtraj simulations. For example, 
take-off  time and duration within a fl ight 
period can be selected at random to allow for 
simulation of successive, intermittent 
fl ights.

Examples of data and data sources used 
to parameterize trajectory models in these 
ways are given for R. padi and C. imicola in 
Table 4.4. Where data, such as altitude or 
fl ight duration, have a range, values are 
randomly drawn for each individual (or 
aggregated individuals/sampled subset) in 
the dispersing population from the range. 
An alternative way to model the range of 
altitudes, particularly for very large 
populations, is to assign a fraction to each 
altitude based on a probability-density 
function within the range.

Th e front-end model requires multi-
level wind data over an area to calculate the 
movement pathway. pmtraj was used for 
the R. padi model and was restricted to data 
derived from the Bureau of Meteorology 
Limited Area Prediction System (LAPS) data 
set for the Australasian region (Table 4.3). 
Th e Australian Plague Locust Commission 
(APLC) is currently developing a new wind 
trajectory model that utilizes the latest 
Bureau of Meteorology Australian Com-
munity Climate and Earth-System Simulator 
(ACCESS) data. hysplit was used to model 
C. imicola dispersal, but several other, freely 
available trajectory-pathway modelling tools 
could have been used (Table 4.1). pmtraj or 
the new APLC software can be adapted to 
work with alternative weather data sets and 
hysplit has the capability to use other user-
specifi ed data sets provided the data are 
converted to the correct format.

Calculation of fl ight termination (Phase 3)

For this phase of aerial transport, conditions 
that will end a fl ight must be described. In a 
simple model, these conditions simply may 
be that the estimated fl ight duration has 
elapsed. Th e model uses this information, 
the estimated fl ight speed (i.e. a combination 
of wind speed and the organism’s fl ight 
velocity) and wind direction to estimate the 
deposition location and the distance 
travelled. Estimates of fl ight duration can be 
derived from fi eld or laboratory sources; 
much fl ight data available in the literature 
has been obtained from tethered insects on 
a fl ight mill (Johnson, 1969). Flight mills 
may signifi cantly overestimate the potential 
fl ight duration. In the fi eld, fl ight duration is 
likely to depend on a range of factors (Drake 
and Gatehouse, 1995):

1. Th e individual’s physiological state and 
age (Liquido and Irwin, 1986).
2. Energetics, i.e. body fat and weight aff ect 
fl ight capacity (Cockbain, 1961).
3. Physiological stress experienced during 
fl ight (Ward et al., 1998).
4. Inherent behavioural cues to switch from 
migratory behaviour to landing behaviour, 
e.g. visual responses to plant-related wave-
lengths (Kennedy et al., 1961; Rautapää, 
1980).
5. Local weather conditions, e.g. pre-
cipitation (Hendrie et al., 1985), wind 
(Symmons and Luard, 1982), temperature 
and updrafts (Achtemeier, 1992).

Th ese factors are usually ignored in dispersal 
models (but see Hu et al., 2013). We demon-
strate only the simplest fl ight termination 
method here but wish to highlight the 
potential importance of a deeper con-
sideration of biological landing cues (Parry, 
2013).

Flight termination is presently in -
corporated into the R. padi and C. imicola 
trajectory models as estimates of fl ight 
duration based on empirical data from the 
laboratory and fi eld. While the hysplit 
model can account for insects that settle out 
of the atmosphere by gravity (i.e. dry 
deposition parameters) or precipitation 
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(i.e. wet deposition parameters), these 
features were not used. More sophisticated 
models of fl ight termination could be 
coupled with the trajectory models to 
incorporate factors that can alter duration 
of fl ight and better estimate where 
organisms might be deposited.

Once the arrival locations have been 
determined, spatial analysis software can be 
used to visualize results from single dispersal 
events or multiple events over time. 
Combined arrival maps can give a spatial 
probability-density estimate for deposition 
in a given time period. Further calculation of 
risk at the destination as the individuals 
redistribute (i.e. Phase 4) can be achieved via 
risk mapping or a simulation modelling 
approach to calculate both immediate and 
longer-term risk; several methods and 
software packages can be employed in this 
phase (Parry et al., 2013).

Analyses

In this section, we bring the data and 
software together to estimate the likelihood 
that a species might be uplifted into the 
atmosphere from a source location, 
transported long distances and deposited in 
an area of concern.

One simple method for estimating pest 
threat is by using sensitivity scenario testing 
to demonstrate the possibility of migration 
from an origin to a destination and to assign 
a relative probability of arrival in terms of 
how frequently migration might occur. For 
this method, a point source or region is used 
as the origin and an arbitrarily large number 
of migrants is assumed to originate from this 
source at each time step (i.e. on the order of 
10,000 individuals; cf. Eagles et al., 2012). 
Th e analysis can identify seasonal risk 
patterns, with the underlying assumption 
that the availability of migrants does not 
vary over time. However, there are clear 
limitations to this method. It does not 
account for population dynamics at the 
source location or the propensity of 
individuals to migrate. Consequently, such a 
method cannot estimate an actual probability 
of migration. Field observations and 

population models for the source location to 
estimate the probability of migration events 
occurring in space and time could help 
overcome this limitation, particularly if 
in-transit survival is also modelled accurately.

For pmtraj and hysplit, there are four 
key steps to running a simulation:

1. Prepare the input data for the source 
location(s), either individual points or a 
raster data layer. For each point or grid cell, 
an estimate of density is needed. In our 
examples, we characterized source locations 
for R. padi with outputs from a population 
dynamics simulation model and for C. 
imicola with location information from 
published studies and source numbers 
chosen arbitrarily.
2. Prepare the parameter fi le, as described 
in the section ‘Modelling migration 
trajectories (Phase 2)’.
3. Run the model.
4. Display or process the output data (e.g. 
plot trajectory lines from a single point-
source trajectory simulation or calculate 
densities in grids for raster output).

To simulate R. padi aphid population 
movement, pmtraj (Rochester et al., 1996) 
is linked to LAPS data to parameterize and 
perform the wind trajectory simulation. 
Movement is simulated from potential 
source habitats of irrigated pasture to cereal-
cropping regions in Western Australia. 
pmtraj simulates change in the distribution 
of the aphid population that results from a 
period of migration. Th e model acts as an 
individual-based model when distributing 
the aphids in space. Movement of aphids is 
simulated along a wind trajectory that is 
determined by the wind velocities around 
the aphids. Th e state of the aphids upon 
termination relates to the environmental 
conditions that they experience during 
fl ight. Movement and condition dictate the 
fi nal distribution in the area of concern. 
pmtraj requires several parameters to 
initialize the model, from which are derived 
stochastic fl ight attributes (Table 4.4). Th e 
sub-model also requires multi-level wind 
speeds and directions (Table 4.3). pmtraj 
calculates the wind trajectory during a 24 h 
period by representing movement pathways 
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as an aggregation of eight 3-h straight-line 
segments at multiple elevations. pmtraj 
parameters can be set to interpolate smaller 
segments (e.g. 1 h).

To simulate the atmospheric dispersal 
of C. imicola midges from putative sources 
across Indonesia, Timor-Leste and Papua 
New Guinea, the hysplit_4 model was used. 
Th e particle-dispersal-simulation mode of 
the model calculated the transport of 
particles based on mean wind speed and a 
random component to account for 
turbulence (Garner et al., 2006). Particle 
dispersal simulation also takes into account 
extra factors such as particle diameter, 
density and shape. Th e particle source is 
simulated by the release of a user-defi ned 
number of particles (i.e. midges, in this case) 
over a specifi ed period. As there were nine 
source sites in this study, the specifi ed 
number of particles was evenly distributed 
among source sites (Eagles et al., 2013).

In the examples presented here, we have 
not considered the potential complexity of 
fl ight termination. We assume fl ights 
terminate with 100% survival of the tran-
sported insects. Th e resultant distribution 
pattern of aphid densities as a result of wind 
dispersal, calculated from the pmtraj model 
for April and May 1999 from an irrigated 
pasture in Western Australia, shows that 
aphids can be dispersed in any direction, and 
frequently they may be blown out to sea (Fig. 
4.2). Th e model suggests that most aphids 
land within 100 km of the pasture; however, 
they can be blown >300 km. Th is result 
means that the aphids from the irrigated 
pasture source may arrive at wheat-farming 
areas around Avondale and Mount Barker 
(Fig. 4.2), illustrating the potential import-
ance of a regional approach to the prediction 
and management of aphid outbreaks.

Based on the simulation model, 
dispersal of C. imicola into Australia is 
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Fig. 4.2. Summarized regional wind dispersal pattern of the percentage of aphids (per 5 km × 5 km grid 
cell) for all days in April and May 1999 from PMTRAJ model simulation runs. Output from PMTRAJ as an 
ASCII grid fi le was read into ARCGIS to create this map.
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possible from at least as far west as Lombok 
(Indonesia) and as far east as Fly (Western 
Province) in Papua New Guinea (Fig. 4.3). 
While the temporal and spatial dispersal 
patterns are source- and site-dependent, the 
greatest potential for arrival appears to be in 
December–March, coinciding with the 
monsoon season in this region. All three 
states comprising the northern coastline of 
Australia (Western Australia, Northern 
Territory and Queensland) appear to be at 
risk from C. imicola incursions from 
neighbouring regions. Th e patterns of 
dispersal postulated by models may be 
helpful for surveillance of diseases for which 
C. imicola and other Culicoides spp. are 
vectors, such as the economically important 
bluetongue virus of ruminant livestock.

Discussion

Th e methods presented here allow 
researchers to perform analyses of 
windborne transport of pests. Th e models 
may not yet be adequate to reliably simulate 
a movement pathway for a particular event. 
In general, the accuracy of windborne 
transport simulations is limited by data 
availability and ecological knowledge about 
fl ight initiation, in-fl ight behaviours, fl ight 
termination and survival after transport. 
Th eir general use in invasion ecology is, 
therefore, perhaps best restricted to 
estimations of incursion risks, possible 
introduction sites or potential sources of 
known outbreaks. Th ese forecasts may be 
especially useful for early-warning systems.

km

Fig. 4.3. Summarized regional wind dispersal pattern of Culicoides from nine putative source sites (stars) 
across East Indonesia, Timor-Leste and Papua New Guniea into northern Australia. Dispersal was 
assessed retrospectively for each December–March over a 15-year period (1995–2010). Each 0.5° × 0.5° 
grid cell contains cumulative deposition from all sites across the 60 months (= 4 months/year × 15 years) 
assessed. The darker the square, the greater the relative deposition into that site. Output from HYSPLIT 
was read into ARCGIS to create this map.
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Relatively recent trends in ecological 
modelling have seen an increase in 
mechanistic models, particularly individual-
based models (Grimm and Railsback, 2005). 
Such models have the advantage of 
incorporating behaviours and physical 
dynamics that can help to simulate the 
complex range of phenomena that may lead 
to initiation of long-distance dispersal 
(Jongejans et al., 2008). Such models can 
also contribute to an understanding of the 
eff ects of atmospheric conditions on the 
organism during dispersal (Shamoun-
Baranes et al., 2010), an emerging branch of 
ecology that has been labelled ‘aeroecology’ 
(Kunz et al., 2008). By incorporating more 
sophisticated demographic simulations into 
mechanistic spatial dispersal models, 
scientists should better understand the 
initiation of migratory and long-distance 
dispersal events, the spatial extent, bio-
logical cost, speed and direction of dispersal, 
and the nature of possible feedbacks (e.g. 
between the deposition and redistribution 
phase). Th ese models are likely to have 
greater realism and predictive power at 
multiple scales, as well as the ability to 
increase understanding of likely sources of 
historic migration events.
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Notes

1  ‘The trajectory or path of an air parcel is a curve 
denoting successive three-dimensional positions 
in time of the air parcel’ (Hopkinson and Soroka, 
2010, p. 2).
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Abstract

maxent is a software package used to relate 
known species occurrences to information 
describing the environment, such as climate, 
topography, anthropogenic features or soil 
data, and forecast the presence or absence 
of a species at unsampled locations. Th is 
particular method is one of the most popular 
species distribution modelling techniques 
because of its consistent strong predictive 
performance and its ease to implement. Th is 
chapter discusses the decisions and tech-
niques needed to prepare a correlative 
climate matching model for the native range 
of an invasive alien species and use this 
model to predict the potential distribution 
of this species in a potentially invaded range 
(i.e. a novel environment) by using maxent 
for the Burmese python (Python molurus 
bivittatus) as a case study. Th e chapter 
discusses and demonstrates the challenges 
that are associated with this approach and 
examines the inherent limitations that 
come with using maxent to forecast 
distributions of invasive alien species.

Intended Uses of MAXENT

maxent is part of a suite of models termed 
alternatively species distribution models, 
habitat suitability models, niche models, 

environmental niche models, bioclimatic 
models and climate envelopes, among 
others. Th is group of techniques determines 
relationships between sampled locations 
(i.e. occurrence or abundance information) 
for a species or group of species and 
associated environmental variables (i.e. 
covariates) at the locations (e.g. climate, 
topography, vegetation or land-use features) 
that are used to estimate some function of 
occurrence at unsampled locations. Th ese 
types of models have been reviewed 
previously in the scientifi c literature (Guisan 
and Zimmermann, 2000; Elith and 
Leathwick, 2009) and books (Franklin, 
2009; Peterson et al., 2011). Several 
insightful reviews exist that are specifi c to 
invasive alien species and the challenges of 
using correlative models to assess invasion 
risk (Jimé nez-Valverde et al., 2011; Elith, 
2014).

maxent is a correlative model in that 
the algorithm determines relationships 
between locations and environmental 
information. It is a generative approach 
because relationships are determined by 
comparing environmental characteristics at 
known locations of a species to the available 
environment as characterized by a set of 
background locations. Alternatively, dis-
criminative approaches try to distinguish 
diff erences between where a species is found 
(i.e. presence) and where it is not found (i.e. 
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absence). Th e method is similar to the 
concept of use–available models (i.e. 
resource selection functions) in the wildlife 
literature (Warton and Aarts, 2013). Th e 
primary maxent output is a ranking of 
locations across the area of interest based 
upon their relative suitability for the species 
of interest rather than actual probabilities 
of occurrence. Information on species 
prevalence, which requires presence and 
absence data, is necessary for true occurrence 
probabilities (Phillips and Elith, 2013). 
maxent generates predictions by fi nding 
the probability distribution of maximum 
entropy for the species being modelled 
constrained by the predictor variables in 
relation to the known presence locations 
(Phillips et al., 2006). Six relationships (i.e. 
‘feature types’) can be fi t in maxent: linear, 
quadratic, product (i.e. interaction between 
two predictors), categorical, hinge and 
threshold (Phillips and Dudik, 2008).

maxent was created to be used with 
presence-only data, such as location data 
available from herbarium and museum 
collections, for a species at equilibrium with 
its environment. ‘Equilibrium’ conditions 
imply that a species has been present in the 
region with enough time to spread to an 
available suitable habitat. When this con-
dition is met, a systematic study producing 
presence-and-absence or abundance data 
should be used with an appropriate method 
such as a regression technique that can take 
advantage of the rich data set. However, 
invasive alien species present a unique set of 
issues for correlative models. In this case, 
within the native range a species may 
approach the assumed equilibrium con-
ditions. In the invaded range, however, this 
condition is violated unless the species has 
been present for enough time to spread to all 
possible suitable habitats.

Models created using native range data 
may be applied to the invaded range; the 
ability of a model to predict accurately 
distributions in an unsampled region such 
as a potentially invaded range is commonly 
termed transferability. Th e distribution of a 
species in its native range may be controlled 
by environmental factors such as climate, 
but other factors such as geographic barriers, 
competition and predation may limit the 

distribution. Th ese other limiting factors 
may act diff erently, be absent entirely or 
may be replaced by novel limiting factors in 
the invaded range compared with the native 
range. Th ese diff erences can lead to under-
estimates of the potential geographic range 
size when models are developed on an 
invasive alien species’ native range and are 
transferred to its invaded range (Jimé nez-
Valverde et al., 2011).

Presence-only techniques can be highly 
sensitive to sampling bias, i.e. the non-
random placement of sampling locations 
(Pearce and Boyce, 2006). For methods that 
use presence-and-absence data, sampling 
bias is largely accounted for because 
generally the presence data have the same 
bias as the absence data and, therefore, the 
bias cancels out (Phillips et al., 2009). 
Presence-only techniques are limited in 
this regard because unless models adjust 
the selection of the random background 
locations, the model provides forecasts of 
the species’ suitable habitat and any bias in 
the presence data, producing a forecast of 
habitat suitability and sampling intensity 
rather than only habitat suitability. 
Fortunately, strategies exist to account for 
sampling bias in presence-only modelling 
(e.g. Phillips et al., 2009) and will be 
discussed in more detail below.

Context for a Case Study: Burmese 
Python

We used the Burmese python (Python 
molurus bivittatus), native to South-East 
Asia and currently established in Florida, 
USA, to explore climate matching between a 
native range and an invaded range with 
maxent. Th e Burmese python was 
introduced to Florida, most likely through 
the pet trade, from accidental and inten-
tional releases by their owners. Th ese 
constrictors prey on a wide variety of native 
fauna. Identifying the potential distribution 
of this invader is important for natural 
resource managers and conservation 
scientists. Th e optimal method for per-
forming this analysis is uncertain, and 
important methodological issues related 
to background location selection and 
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assess ment of model complexity need to be 
addressed.

maxent is a user-friendly application, 
providing a simple graphical user interface 
and requiring minimal inputs. Location data 
for the Burmese python and other species 
can readily be downloaded from an online 
source such as Global Biodiversity 
Information Facility (http://www.gbif.org) 
and raster layers of global bioclimatic data 
are freely available from WorldClim (http://
www.worldclim.org/). Th e ease of producing 
a result (i.e. a map) with maxent and its 
generally good performance relative to other 
species distribution models (Elith et al., 
2006) have contributed to the proliferation 
of papers using this technique. Ease of use 
also has led to misuse of maxent. Some users 
have not evaluated the implications of 
running maxent with just the default 
settings or considered whether this tool is 
appropriate for particular research questions.

Th e example within this chapter stems 
from our previously published assessment 
of maxent and its utility to forecast 
climatically suitable areas for invasive alien 
pythons (Rodda et al., 2011). For that case, 
native range data from Asia were used to 
forecast potential distribution in an invaded 
range (i.e. southern North America and 
northern South America). We argued that 
maxent was not an appropriate tool for this 
purpose, although it may be useful in other 
contexts. Th is chapter describes the process 
by which we created a maxent model. To 
show the importance each decision can 
make, we begin with the default settings and 
slowly change parameters to end with what 
we felt was an appropriate implementation 
of maxent given the data we have. Th is 
approach to maxent model construction for 
invasive alien species should be broadly 
applicable and some of the insights gained 
from our model for pythons may be 
universal.

Resources for MAXENT Models

Th is section describes where to obtain the 
resources required to construct a maxent 
model.

MAXENT software and support

maxent software is freely available for 
download via the internet (http://www.
cs.princeton.edu/~schapire/maxent/) and a 
well-established maxent Google Group 
exists to facilitate discussion within the user 
community. Also available is a maxent 
tutorial (http://www.cs.princeton.edu/~
schapire/maxent/tutorial/tutorial.doc) that 
provides an introduction to the program and 
describes an example application. Several 
software packages exist to assist in using 
maxent, especially to pre-process data and 
facilitate analyses of model output. Th ese 
packages include, but are not limited to, 
ENMTools (Warren et al., 2010), dismo r 
package (Hijmans et al., 2011), biomod 
(Th uiller et al., 2009) and software for 
assisted habitat modelling (sahm; Morisette 
et al., 2013).

MAXENT data fi les

maxent requires species occurrence data 
(i.e. x, y coordinates such as longitude and 
latitude of where a species has been 
observed) and relevant spatial predictor 
variables, termed environmental variables, 
in ASCII raster format. Gathering and pre-
processing these data can often be the most 
time-consuming part of creating a maxent 
model, although the software packages 
mentioned above can simplify these eff orts 
and greatly reduce pre-processing time.

Th e occurrence data should adequately 
represent the species’ geographic dis tribution 
(i.e. not be spatially biased) and the environ-
mental gradients occupied by the species (e.g. 
cover the full range of environments available 
to the species). Th e defi nition of ‘adequate’, 
however, is ambiguous. Smaller sets of 
occurrence data (i.e. fewer than ten records) 
have been used successfully to generate 
models of potentially suitable habitat (not 
potential distribution) and locate new 
populations of rare species (Pearson et al., 
2007). Wisz et al. (2008) recommended >30 
occurrence records, but there is no agreement 
on a requisite number of occurrence records 
for maxent. Occurrence data can be compiled 
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from the literature, museum records and 
other sources, such as fi eld surveys or reviews. 
Th e Global Biodiversity Information Facility 
(http://www.gbif.org) can be a good source of 
aggregated museum records. Once compiled, 
these data need to be examined carefully for 
coordinate or identifi cation errors. Errors in 
georeferencing are most easily identifi ed 
after the data are mapped. Errors may include 
terrestrial species appearing in oceans, 
gridded data that may be coarser than the 
desired resolution and point locations lying 
outside the bounds of the country in which 
they were reported to occur. Th e dismo r 
package (Jiménez-Valverde et al., 2013) can 
be particularly useful in fi nding and repairing 
errors in occurrence data.

Species occurrence data must be in the 
form of a comma-separated value (CSV) 
format fi le with a header row, followed by 
rows representing a species’ occurrence. 
Th ere should be three columns that include 
the species’ name in column one, 
x-coordinates (i.e. longitude) in column two 
and the y-coordinates (i.e. latitude) in 
column three. maxent does not require a 
particular coordinate system, but the x- and 
y-coordinates must match the coordinate 
system of any raster layers provided as 
environmental layers.

Users can provide environmental data 
to maxent in one of two ways. Th e fi rst 
option is to supply a path to the folder 
containing rasters of environmental data in 
ASCII (.asc) format. With this option, 
maxent will randomly generate background 
samples for model fi tting and can produce 
maps for the area of interest. Th e second 
option is termed ‘Samples with Data’ or 
SWD format and entails supplying a CSV fi le 
of background locations with the environ-
mental variable data. Th e fi rst three columns 
match those described for occurrence data, 
but now the fi rst column should be blank, 
the second should contain x coordinates and 
the third y coordinates. Th e following 
columns will have the name of each 
environmental variable to be considered in 
the model as the column headings and with 
that environmental variable’s value 
extracted for each location (i.e. in each row). 
If SWD format is used, the occurrence data 

fi le must also include the environmental 
variable values for each point. Th e task of 
creating an SWD fi le can be done in any 
number of ways including the dismo r 
package, diva-gis, sahm or ArcGIS; the 
fi rst three are freely available online.

Th e availability and quality of spatial 
data have increased rapidly in the past 
decade, so modellers can consider a greater 
number and variety of environmental 
variables for species distribution modelling. 
Which environmental variables should be 
used to develop distribution models depends 
on the scale, the species, the research 
question and the available data. Climate 
data are most often used as environmental 
variables in developing native range models 
that are then transferred to the potentially 
invaded range. In this chapter, we present 
models that only use climate environmental 
variables, but many other variables could be 
used including topography, anthropogenic 
features, land use, remotely sensed variables 
or a combination of these. However, when 
the intent of the model is to transfer it in 
space or time, predictors should be causally, 
not indirectly, related to distribution 
(Jimé nez-Valverde et al., 2011). Predictors 
that are contingent on spatial locations such 
as dispersal barriers or biotic interactions 
should also not be included. 

All environmental data used for maxent 
modelling must be the same coordinate 
reference system (i.e. projection and datum), 
extent (i.e. scale) and grain (i.e. resolution). 
Th ey must also be in ASCII raster format and 
match the coordinate reference system of 
the species occurrence data. Many software 
applications exist that can convert from one 
raster format to another (e.g. diva-gis, 
sahm, R-cran ‘raster’ package or ArcGIS).

MAXENT Analyses

For our analysis of climatic matching 
between the Burmese python’s native range 
and its invaded range, we used 86 points 
that had been collated by Pyron et al. (2008) 
from georeferenced museum voucher 
specimens, the literature and wildlife 
agencies to represent the native range. We 
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removed four of the original 90 data points 
from Pyron et al. (2008) through a data 
review and cleaning process, after we had 
determined that four locations taken from 
Nabhitabhata and Chan-Ard (2005) were for 
a diff erent species, the blood python (Python 
brongersmai).

For environmental variables, we used 
the 19 bioclimatic variables available from 
WorldClim at a 2.5 arc-minutes resolution, 
following Pyron et al. (2008). (Later in this 
section, we discuss the importance of 
limiting this highly inter-correlated set of 
environmental variables before running 
models.) As mentioned above, maxent 
requires all raster layers to have the same 
extent and cell size and for the grids to line 
up perfectly. Often this can be one of the 
hardest tasks. However, as all our raster 
layers came from the same source, they 
already met this requirement.

While maxent provides a user-friendly 
interface to run models, it can be executed 
via command line. In the analyses that 
follow, we provide the exact command line 
code used to run maxent. Running maxent 
using this technique will still launch the user 
interface with all the settings defi ned based 
on the specifi c commands listed.

Analysis with default settings

We started with the default settings for 
maxent but later ran 25 replicates while 
withholding a diff erent 10% of the presence 
locations to use as a test data set. We were 
interested in variable contribution, so we 
turned on creation of response curves and 
jackknife measure of variable importance. 
For comparison purposes, we wanted to use 
the same set of background points across all 
runs focused on the same extent, so we 
turned on the writebackgroundpredictions 
option to obtain the coordinates of the 
background points generated by maxent. 
We then could create an SWD format fi le 
including these same background locations 
to use in further model runs.

Th e following text was entered (without 
line breaks) into the command line to run 
the fi rst model:

java -jar maxent.jar -E Python_molurus 
responsecurves jackknife 
writebackgroundpredictions 
outputdirectory=J:\Projects\python\maxent_
default_90_global samplesfi le=J:\Projects\
python\90locations.csv 
environmentallayers=J:\Projects\python\
Global_extent randomseed nowriteclampgrid 
nowritemess randomtestpoints=10 
replicates=25 replicatetype=subsample 
nooutputgrids

In the fi rst part of this command, ‘-E Python_
molorus’ selects the species for which we 
want to run the model. In our samples fi le, 
the fi rst column, species’ name, contains the 
text ‘Python_molurus’ which represents our 
species of interest. If this column had 
contained records for multiple species, 
identifi ed by their unique names, the other 
species would have been ignored. Th e next 
three commands tell maxent to create the 
response curves, to conduct a jackknife 
of variable importance and to produce a 
CSV fi le that contains the coordinates for 
the background points maxent generates 
(i.e. responsecurves, jackknife and write
backgroundpredictions, respectively).

In the next part of the command, we 
specifi ed the folders and the fi les to use. Th e 
output directory is the folder we created to 
store the maxent output. Th e samplesfi le 
command provides the path to the occur-
rence data CSV fi le. Th e environmentallayers 
command gives the location of the folder 
containing the raster environmental layers 
in ASCII format at the global extent. maxent 
is set by default to select 10,000 background 
points within the extent of these rasters and 
will use these environmental variables to 
extract values at presence and background 
locations to use in model fi tting and to 
create the fi nal suitability maps.

Th e randomseed command tells maxent 
how to initiate its random number generator. 
If we had supplied a number for the seed, the 
same random set of numbers would have 
been selected each time the model was run. 
With the randomseed command, we tell 
maxent to draw a random number and 
initiate its random number generator with 
that value. Th is approach will generate a 
diff erent set of random numbers each time 
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the model is run. As a result, maxent will 
select a diff erent subset of points for testing 
and to generate background points each time 
the model is run. We have maxent write out 
the coordinates for the background locations 
(i.e. by using writebackgroundpredictions in 
the fi rst line) so we can use these same 
background points in future runs. 
Nowriteclampgrid turns off  the creation of 
output grids including where clamping 
occurs. ‘Clamping’ is the treatment of 
variables outside the training range as if they 
were at the edges of the training range. 
Nowritemess turns off  the creation of a 
multivariate environmental similarity surface 
which describes how similar the environment 
at each location within the surface is to the 
environmental range captured by the training 
data set. Th e commands randomtestpoints=10, 
replicates=25 and replicatetype=subsample 
were used to explore how much impact 
specifi c data points might have on the results 
and to calculate evaluation metrics on a 
subset of data not used to train the model, 
i.e. the test data. Training data are defi ned as 
the presence locations used by maxent to fi t 
a model, while test data include presence 
locations withheld from model fi tting that 
can be used to evaluate a model. Specifi cally, 
we set the replicate type to subsample, the 
number of replicates to 25 and the random 
test percentage to 10% which will result in 25 
models, each created using a diff erent 
random subsample of 90% of the presence 
data to train the model with the remaining 
randomly chosen 10% used to test the model. 
We chose subsample over the other options 
of cross-validation or jackknife so we could 
specify the test percentage and because we 
had a moderate number of presence records.

Th e choice of replicate type should 
depend on the number of presence records. 
Bootstrapping or jackknife (i.e. repeating an 
analysis while leaving out a record) works 
well with small data sets (i.e. approximately 
<30 presence records) when most of the 
records are needed to fi t the model. For large 
data sets (i.e. approximately >100 presence 
records), cross-validation, where the data 
are split into k folds of equal size and the 
model is run k times with each fold being 
withheld once for testing, is appropriate for 

testing. Th e number of folds will dictate the 
number of replicates and the size of the test 
data set. Subsampling is the most fl exible 
and allows the user to specify the test 
percentage and number of replicates. Th e 
replicates are not independent.

Finally, to reduce processing time and 
save storage space, we chose to have maxent 
produce only summary grids, rather than 
grids for each replicate run, by issuing the 
nooutputgrids command and turning off  the 
option to write output grids. Th e maps 
resulting from this set of code appear in Fig. 
5.1a and b (see colour plate section).

Analysis with default settings and 
corrected presence data

We examined the eff ect of using the 
corrected presence location data (i.e. the set 
of locations excluding those identifi ed as 
having a diff erent species) on the model. We 
made only one change to the fi rst command 
by removing the writebackgroundpredictions 
command. Other command changes, in bold 
below, included: updating the output 
directory; changing the samples fi le to the 
taxonomically corrected list in SWD format; 
changing the environmental variables path 
to point to the new SWD format rather than 
ASCII fi les; and adding a projection-layers 
directory pointing to the folder containing 
the global ASCII grids so that we could still 
make maps. SWD format fi les do not include 
information about where the rasters are 
located and therefore maps of the study area 
cannot be produced without using a 
projection-layers directory. Th e maps 
resulting from this set of code appear in Fig. 
5.1c and d (see colour plate section).

Th e new command lines were thus:

java -jar maxent.jar -E Python_molurus 
responsecurves jackknife outputdirectory=J:\
Projects\python\maxent_default_86_
global projectionlayers=J:\Projects\
python\Global_extent samplesfi le=J:\
Projects\python\86locations_SWD.csv 
environmentallayers=J:\Projects\
python\86locations_SWD.csv randomseed 
nowriteclampgrid nowritemess 
randomtestpoints=10 replicates=25 
replicatetype=subsample nooutputgrids
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Accounting for accessible areas

By using data layers at a global extent for the 
environmental variables, we have maxent 
randomly generate background locations 
across the entire globe. When creating 
correlative models using presence and 
background or pseudo-absence locations, it 
is important to restrict background locations 
to the area accessible to a species (VanDerWal 
et al., 2009; Barve et al., 2011). A model to 
predict potential habitat based on locations 
in a native range, such as Burmese python 
habitat in the USA based on locations in 
Asia, should be modelled with background 
locations taken only from the native range 
(Phillips, 2008). One method to limit 
background point selection is to generate a 
minimum convex polygon (MCP) around the 
presence locations. Th ere are many tools to 
generate an MCP, but for this analysis, we 
used Hawth’s Tools (Beyer, 2004) within 
ArcGIS 9.3 software. However, with the 
release of ArcGIS 10.0, Hawth’s Tools has 
been discontinued and replaced with 
Geospatial Modelling Environment, which is 
freely available at http://www.spatialecology.
com/gme/index.htm to ArcGIS 10.x users. 
Th e specifi c command to use within 
Geospatial Modelling Environment is:

genmcp(in=”C:/python/pointlocations.shp”, 
out=”C:/python/MCP_pointlocations.shp”);

where the in data set is the path and name of 
the shapefi le with point locations and the 
out data set specifi es the path and name for 
the MCP shapefi le that is being generated. 
To ensure inclusion of all point locations 
where Burmese python has been observed, 
we added a one-pixel (2.5 arc-minute) buff er 
around our MCP by using the buff ering tool 
in ArcGIS 10.

Other ways to limit the area from which 
maxent might draw background locations 
have been suggested in the literature. One 
way is to create a bias surface that refl ects 
what is known about sampling bias in the 
presence locations. maxent then uses the 
bias surface to constrain background 
locations to refl ect a similar bias (e.g. if all 
samples are within 1 km of roadsides, then 
the bias surface would have high values near 

roadsides and zeros away from roadsides so 
that background data would be constrained 
to within 1 km of roadsides). Other methods 
include selecting background locations 
within similar climatic zones (Webber et al., 
2011), limiting the selection to within a 
certain distance of presence sample locations 
(VanDerWal et al., 2009) and applying a 
kernel density approach that assumes 
higher-density locations are where the 
species has been present longer when the 
goal is to develop a model for a spreading 
invasive alien species (Elith et al., 2010).

To force maxent to restrict the 
possibilities for selecting background data, 
we clipped our input raster layers to the 
buff ered MCP using the ArcGIS Spatial 
Analyst extract-by-mask function with each 
environmental variable as the input raster 
and the buff ered MCP shapefi le as the 
feature mask. After this process, we had two 
folders, each with 19 ASCII rasters with the 
same names: one at the global extent and 
another at the MCP extent.

As described above, maxent, as with 
any presence–background/pseudo-absence 
algorithm, is highly sensitive to sampling 
bias (Phillips et al., 2009). One recommended 
way to control for unknown bias is to use a 
target background approach where back-
ground points are chosen that may have a 
similar bias (Phillips, 2008) and generally 
this method is a good approach. In our case, 
we had reservations about museum records 
for large constrictor species, so we did not 
feel this method was appropriate. Rodda et 
al. (2011) discussed these reservations in 
detail. Georeferenced positions in museum 
records often lack precision, especially when 
collection localities are reported only to the 
nearest degree of longitude and latitude. 
Occasionally, collection localities may be 
reported just as the nearest market or town, 
not the actual location where a specimen 
was obtained. In addition, locations likely 
exist where a species is present but has gone 
undetected. Th e goal of Rodda et al. (2011) 
was not to produce the best maxent model, 
but to evaluate the sensitivity of maxent to 
diff erent options. Had the goal been 
diff erent, the approach to target background 
locations within the MCP might have been 
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useful. Given the lack of information about 
sampling bias, we allowed maxent to 
generate background points randomly 
within the MCP.

Our next run in maxent was the same 
as the previous, but we changed the extent 
from which background points were drawn 
from the globe to the MCP. Once again, we 
wanted a record of the selected background 
points so that we could use the same 
background locations in future model 
iterations.

Commands for the next run were:

java -jar maxent.jar -E Python_molurus 
responsecurves jackknife 
writebackgroundpredictions 
outputdirectory=J:\Projects\python\
maxent_86_MCP projectionlayers=J:\
Projects\python\Global_extent 
samplesfi le=J:\Projects\python\86locations_
SWD.csv environmentallayers=J:\Projects\
python\MCP_bckgrnd randomseed 
nowriteclampgrid nowritemess 
randomtestpoints=10 replicates=25 
replicatetype=subsample nooutputgrids

Text in bold represents a change from the 
previous command submission (‘Analysis 
with default settings and corrected presence 
data’ subsection). Maps resulting from this 
run appear in Fig. 5.1e and f (see colour plate 
section).

Extrapolation assessment

Now that we had projected the model to a 
broader extent than our samples (back-
ground locations within MCP, projected to 
globe), we wanted to run the multivariate 
environmental similarity surface (MESS) 
analysis in maxent (Elith et al., 2010). 
Th is analysis assesses the amount of 
extrapolation that might be required to 
project a model to new areas by comparing, 
in a univariate sense, the range of values for 
each environmental layer captured by the 
training and background data with the 
values for that layer at each location to 
which the model will be applied. A location is 
assigned an increasing negative value as the 
value for the environmental variable at a 
location is increasingly outside the range of 

values for that variable in the sample and 
background locations. Areas with negative 
values have been termed ‘novel areas’. 
However, for initial runs in the code above, 
the nowritemess option turned off  the MESS 
analysis to save processing time and storage 
space, and the outputgrids needed to be 
turned on to produce MESS maps. We can 
obtain the same MESS map by running the 
code from the subsection ‘Accounting for 
accessible areas’ for a single iteration, 
changing the items highlighted in bold and 
removing everything after nowriteclampgrid 
as follows:

java -jar maxent.jar -E Python_molurus 
responsecurves jackknife outputdirectory=J:\
Projects\python\maxent_86_MCP_MESS 
projectionlayers=J:\Projects\python\Global_
extent samplesfi le=J:\Projects\
python\86locations_SWD.csv 
environmentallayers=J:\Projects\python\
MCP_bckgrnd.csv randomseed 
nowriteclampgrid

Text in bold represents a change from the 
previous command submission (‘Accounting 
for accessible areas’ subsection).

Controlling for overfi tting

Another potential concern with highly 
parameterized models is overfi tting. 
Overfi tting occurs when a model is overly 
complex, sometimes describing random 
noise or error in data rather than actual 
underlying relationships. Th is problem can 
result in the underestimation of suitable 
conditions in novel locations or climates.

Two methods are commonly used to 
determine if a model might be overfi t. Th e 
fi rst approach is to examine diff erences in 
the area under the receiver-operating 
characteristic curve (AUC) between the test 
and training area. AUC is a measure of the 
ability of a model to discriminate presences 
from absences (Fielding and Bell, 1997) and 
is explained in more detail in the next 
subsection (‘Model assessment’). A much 
larger AUC calculated from the model-
training location data (i.e. presence and 
background) compared with the AUC 
calculated from test location data can 
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indicate overfi tting. Th e second approach to 
assess the potential for overfi tting is to 
examine the complexity of the response 
curves. Highly jagged response curves 
indicate overfi tting.

One approach to reduce the likelihood 
of overfi tting is for the user to turn on and 
off  the feature types in maxent. Th e 
alternative is to let maxent control for 
overfi tting automatically.

maxent controls for overfi tting by 
using a ‘regularization’ parameter, a 
statistical penalty which balances model fi t 
and model complexity. Only coeffi  cients 
that improve the model enough to outweigh 
a regularization penalty are retained. Many 
coeffi  cients near zero are removed from the 
model. Th e regularization parameter, known 
specifi cally as the ‘betamultiplier’ in 
maxent, has a default value based on an 
optimization by Phillips and Dudik (2008) 
for 12 species with 11–13 climate predictors, 
but users should not assume the default is 
appropriate in all cases.

Warren and Seifert (2011) created a tool 
within the ENMTools program (available 
for download at http://enmtools.blogspot.
com) to optimize the regularization value 
using the Akaike Information Criterion for 
small sample sizes (AICc). Th is tool requires 
the input locations that were submitted to 
maxent, the maxent ASCII output raster in 
raw format (as opposed to the logistic 
format which is the default) and the maxent 
lambdas fi le. Th e lambdas fi le (.lambdas) is 
one of the outputs automatically generated 
by maxent with each model run, found in 
the output folder that describes the model 
fi t, covariates and coeffi  cient values for 
covariates. To reduce running time, turn 
other features in maxent off  (nopictures, 
nowriteclampgrid, nowritemess, noplots and 
remove responsecurves and jackknife). Th e 
resulting commands are as follows:

java -jar maxent.jar -E Python_molurus 
nopictures outputformat=raw 
outputdirectory=J:\Projects\python\reg_
test\maxent_90_MCP_Reg1 
projectionlayers=J:\Projects\python\Global_
extent samplesfi le=J:\Projects\
python\90locations.csv 

environmentallayers=J:\Projects\python\
MCP_bckgrnd.csv randomseed nowarnings 
noaskoverwrite nowriteclampgrid nowritemess 
randomtestpoints=10 betamultiplier=1.0 
replicates=25 replicatetype=subsample noplots 
noprefi xes

Th e models, and thus the number of 
parameters and AICc values, change each 
time the set of input presence-points 
changes, so we performed this assessment 
multiple times on the 25 subsamples to 
mimic the method we would use in the fi nal 
run. Each assessment progressively increased 
the betamultiplier from 1 to 10 by intervals 
of 1. An increase in the beta multiplier lowers 
the complexity of the model (e.g. the 
response curve for annual mean temperature 
in Fig. 5.2a from a betamultiplier of 1 is more 
complex than Fig. 5.2b from a betamultiplier 
of 4). We used the same process for our data 
sets with the 86 points and the 90 points 
(see section ‘maxent Analyses’), then created 
CSV format fi les without a header row with 
each column containing the path to samples 
fi le, the path to raw ASCII output and the 
path to the lambdas fi le. Within ENMTools, 
we opened the model selection tool under 
the measurements and tools heading. Th e 
output fi le from this tool contains a log-
likelihood estimate, the number of 
parameters calculated from the lambdas fi le, 
the number of presence locations, and AIC, 
AICc and BIC (Bayesian Information 
Criterion) metric values. For each model 
replicate (1 to 25), we selected the 
regularization value with the smallest AICc 
value and calculated the mean of these values 
across the 25 runs. Th e mean became the 
regularization value for all subsequent runs 
using that particular set of presence and 
background locations.

To run the model using the optimized 
regularization value, we started with the 
commands from the subsection ‘Extra-
polation assessment’ and added the 
command betamultiplier. To evaluate the 
90-location data set, the regularization 
value was 3 and for the 86-location data set, 
the regularization value was 4. Commands 
for the 90-location data set assessment were 
as follows:
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java -jar maxent.jar -E Python_molurus 
responsecurves jackknife outputdirectory=J:\
Projects\python\maxent_90_MCP_reg3 
projectionlayers=J:\Projects\python\Global_
extent samplesfi le=J:\Projects\
python\90locations_SWD.csv 
environmentallayers=J:\Projects\python\
MCP_bckgrnd.csv randomseed 
nowriteclampgrid nowritemess 
randomtestpoints=10 betamultiplier=3.0 
replicates=25 replicatetype=subsample 
nooutputgrids

Text in bold refl ects a change from the 
previous command submission (subsection 
‘Extrapolation assessment’). Th e above 
command lines can be used to run the 86 
locations by changing the values in the 
output directory, the samples fi le and the 
regularization value (betamultiplier). To 
produce a MESS map for both of these runs, 
we followed the modifi cations described in 
subsection ‘Extrapolation assessment’. 
Maps from models using all 90 locations are 

(a)

(b)

– –
×

– –
×

Fig. 5.2. Response curve for ‘bio 1’, annual mean temperature, for the ‘MCP 86’ model with: (a) the 
default regularization value of 1; and (b) the optimized regularization value of 4. The white line represents 
the average response while the black surrounding the white line represents the variation across 25 model 
runs. Model ‘MCP 86’ has background data restricted to a minimum convex polygon around corrected 
presence points.
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presented in Fig. 5.1g and h and maps using 
the cleaned 86 locations are presented in 
Fig. 5.1i and j (see colour plate section).

Model assessment

Examining the output maps (Fig. 5.1; see 
colour plate section) that resulted from each 
of the models provides some insight into the 
importance of the diff erent maxent 
settings. Th e only diff erence in the models 
shown in Fig. 5.1a and b (from subsection 
‘Analysis with default settings’) and Fig. 
5.1c and d (from subsection ‘Analysis with 
default settings and corrected presence 
data’) is the Burmese python location points 
used to train the model; Fig. 5.1c and d 
exclude the four locations with incorrect 
taxonomy. Th is small change in input data 
creates relatively large diff erences in the 
maps, with a much greater area of suitability 
with the restricted presence locations. With 
the removal of the four points, the predictor 
variables and response curves change. 
Changes in the underlying model alter the 
predicted values for the presence locations. 
Th e second model had a much lower 
minimum training presence (MTP; the 
smallest value predicted by the model for 
any of the training points) value, which led 
to a greater area of suitable habitat.

Th e models behind Fig. 5.1e–j are based 
on background points that came from the 
MCP. With each model, we had maxent 
generate a layer indicating where extra-
polation occurred (i.e. negative values in the 
novel layer produced by the MESS analysis). 
Many environments around the world are 
substantially diff erent from the presence 
and background locations for Burmese 
pythons and could be considered novel, 
including a large portion of the USA, the 
area of interest for this assessment (see hash 
marks in Fig. 5.1e–j). Forecasts where the 
model is extrapolating should be treated 
with extra caution.

Figure 5.1e and f (from subsection 
‘Accounting for accessible areas’) diff er from 
Fig. 5.1c and d only in that background 
points are restricted to the MCP around the 
presence locations rather than drawn from 

across the globe. Figure 5.1g and h and Fig. 
5.1i and j (both from subsection ‘Controlling 
for overfi tting’) diff er only in the location 
data used to generate the models as did Fig. 
5.1a and b and Fig. 5.1c and d; in this case, 
however, we restricted maxent selection of 
background points to the MCP and altered 
the betamultiplier to control for overfi tting. 
With those two alterations from the default 
settings, the removal of four presence 
locations has a minimal eff ect on the model 
predictions, and the resultant maps are 
much more similar (i.e. Fig. 5.1g and h 
compared with Fig. 5.1i and j) than those 
created with the default settings (i.e. Fig. 
5.1a and b compared with Fig. 5.1c and d). 
Once we restricted the background data and 
model complexity, the models became more 
robust to the locations used.

Th ere are several ways to assess model 
performance. maxent will generate and 
report standard statistical values in several 
fi les. When running replicates, maxent 
produces fi les for each replicate along with a 
summary fi le that contains means and 
standard deviations of model results 
(assessment metrics, variable importance, 
response curves, maps, etc.) across replicate 
model runs. Th e fi le MAXENTResults.csv 
includes output for each run along with a 
summary across all runs. Table 5.1 shows a 
variety of assessment metrics for each model 
generated.

One step in the model assessment 
process is to identify any model overfi tting. 
As stated above, signs of overfi tting include 
a large diff erence between the test and train 
AUC values (e.g. model MCP 86 in Table 5.1); 
jagged response curves showing a response 
to noise (e.g. Fig. 5.2a compared with Fig. 
5.2b); a very spotty, non-contiguous 
distribution (e.g. Fig. 5.1a – South America); 
and high standard deviations in response 
curves and predictions across runs. Another 
method is to compare the number of 
parameters calculated from the lambdas fi le 
(in the example for this chapter, by using 
ENMTools) with the number warranted 
given the input data. Th e fi rst three models 
had more than four times the number of 
parameters than the last two that had 
optimized complexity (Table 5.1). Simpler 
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models may be better, especially when 
transferring a model to new space or time, as 
we are to the USA. More complex models 
may capture relationships specifi c to the 
location or temporal span of the model 
training data and thus may be more suited 
to interpolation within the extent and time 
of model training. Simpler models can also 
be distinguished by the complexity of 
response curves.

Before we evaluate how well a model 
performs in the invaded range, it is 
important to ensure that a model performs 
well in the known native range. maxent 
calculates the AUC score, a threshold-
independent metric that measures how well 
a model discriminates between presence and 
background locations. AUC generally has 
values between 0.5 (i.e. no better than 
chance) and 1.0 (i.e. a perfect fi t). A general 
guideline for evaluating AUC scores is that 
values between 0.5 and 0.7 represent models 
with low accuracies; values between 0.7 and 
0.9 indicate useful models; and values above 
0.9 represent models with high accuracy 
(Swets, 1988; Fielding and Bell, 1997).

Because AUC is measuring discrim-
ination, we typically get very high AUC 
scores for models that use background 
locations from around the globe. Drawing 
background data points (i.e. ‘pseudo-
absence’ areas) from the larger region 
increases the probability that these points 
will be environmentally distant from the 

presence locations. As a result, the rate at 
which these background locations are 
correctly identifi ed will be artifi cially high; 
thereby elevating the AUC scores (Lobo et 
al., 2008). When background points are 
restricted to the area from which presence 
points were obtained (e.g. the area within 
the MCP in the example in this chapter), the 
AUC scores drop greatly (e.g. compare AUC 
scores in Table 5.1 from default maxent 
runs to AUC scores when MCP was used). 
Looking at AUC scores without under-
standing the limitations of the metric for 
maxent models might lead a user to 
conclude that the model from the default 
maxent run was great. Given the low test 
AUC value for the MCP 86 reg4 run (Table 
5.1), it would probably be inappropriate to 
transfer the model to the USA, even though 
this model is very reasonable, as judged by 
the settings for this run.

Diff erences in AUC scores (Table 5.1) 
illustrate one of the problems in relying on a 
single metric to evaluate model performance. 
To obtain a more rigorous assessment, the 
statistical software r can be used easily to 
calculate other calibration metrics (e.g. 
presence-only calibration plot; Phillips and 
Elith, 2010) and other discrimination 
metrics (e.g. the true skill statistic; Allouche 
et al., 2006).

Experts on the species can also provide 
valuable assessments of the model by simply 
inspecting maps and response curves for the 

Table 5.1. Assessment metrics for fi ve MAXENT models.

Model run namea Regularization Parameters, n ± SE Mean MTPb AUC for test (train)c

Default 90 1 62 ± 5 0.092 0.971 (0.984)
Default 86 1 59 ± 4 0.013 0.973 (0.982)
MCP 86 1 56 ± 5 0.159 0.702 (0.816)
MCP 90 reg3 3 13 ± 2 0.237 0.711 (0.747)
MCP 86 reg4 4 10 ± 2 0.222 0.624 (0.718)

Values are for 25 replicates.
aNames: ‘Default 90’, run with default settings and 90 presence points; ‘Default 86’, run with default settings and 
corrected presence points; ‘MCP 86’, background data restricted to a minimum convex polygon around corrected 
presence points; ‘MCP 90 reg3’, background data restricted to a minimum convex polygon around 90 presence points 
and the regularization value optimized; ‘MCP 86 reg4’, background data restricted to a minimum convex polygon around 
86 presence points and regularization value optimized.
bMTP, minimum training presence. The lowest predicted value from the underlying model that correctly classifi es all 
training presences as ‘present’.
cAUC, area under the receiver-operating characteristic curve for test and training data sets. AUC measures the capacity 
of a model to distinguish presence from absence points. Values generally range from 0.5 (i.e. no better than chance) to 
1.0 (i.e. perfect classifi cation).

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Using the MAXENT Program for Species Distribution Modelling 77

native range. In our example, two of the fi ve 
models predicted low suitability for large 
regions of interior India known to have 
Burmese pythons (Fig. 5.1a and e). Th ese 
regions could be sink habitats (i.e. areas 
where Burmese pythons are present, but are 
incapable of sustaining populations), but 
this result seems unlikely, given the way 
specimen records were collected for this 
study. Sink habitats within the native range 
of most reptiles and amphibians are unusual 
when considering climate variables alone, 
the scale of climate variation and the limited 
dispersal capacity of these species.

maxent models must also be assessed 
on their ability to meet the needs of users. 
Users, such as managers and policy makers, 
frequently want a binary map of suitable 
and unsuitable habitat. To make this 
product, the modeller must select a 
threshold to classify the continuous 
suitability values into presence or absence. 
Most threshold metrics (Liu et al., 2005; 
Freeman and Moisen, 2008) have been 
evaluated with presence–absence data, not 
simulated values such as those from 
maxent. maxent automatically calculates 
some threshold metrics and includes them 
in the Results.csv fi le and the HTML fi le for 
each run. Some threshold selection tools are 
from adaptations of common presence–
absence methods (e.g. equal test or train 
sensitivity and specifi city) and some are 
particular to presence-only techniques, such 
as MTP and 10-percentile training presence. 
MTP and 10-percentile training presence 
involve extracting predicted values for all 
training locations, ordering them from least 
to greatest, and selecting the lowest value 
for MTP or selecting the value for the 
ordered location that separates the lowest 
10% of values from the highest 90% (e.g. the 
value for the location in the tenth position if 
there were 100 locations). We used MTP in 
this analysis as we did not feel the adapted 
methods were suited to this data set and the 
somewhat arbitrary omission of some 
localities (i.e. 10%) was also not appropriate 
for this species. For invasive species risk 
assessments, Jiménez-Valverde et al. (2011) 
recommend focusing on presence data, as 
we do by using the MTP, for applications of 

species distribution data that have the goal 
of identifying environmentally suitable 
localities.

maxent also provides sets of univariate 
and multivariate response curves and 
several ways to examine the importance of 
diff erent predictors. maxent response 
curves are created between the minimum 
and maximum values from the combined 
occurrence and background locations for 
each environmental variable, covering the 
range of interpolation for the model. For 
areas outside the model’s training range, 
response curves are continued to the left 
with a minimum value and to the right with 
the maximum value. Areas where this occurs 
are captured with the MESS analysis.

Our example included several highly 
correlated variables so most of these 
assessments are diffi  cult to interpret and 
should be used cautiously, as they will be 
infl uenced by the covariance structure. Had 
the purpose of the exercise in this chapter 
been to create the best maxent model 
possible, rather than to evaluate the 
challenges in using maxent for this type of 
application, we would have examined a 
correlation matrix of the 19 bioclimatic 
variables measured at the presence and 
background points for each model. From 
this matrix, we would have selected a subset 
of uncorrelated predictors (|r| < 0.7 is most 
common; Dormann et al., 2013) that was 
relevant to the known biology of the species. 
Th is analysis can be performed in several 
software packages, though we prefer the 
sahm CovariateCorrelationAndSelection 
module. Using fewer predictors that are not 
highly correlated is desirable when the 
objective is to transfer a model in space or 
time because the infl uence of changes in the 
correlation structure between the native 
range and the region of interest may be 
somewhat minimized.

Discussion

Our motivation for this chapter was to 
describe how to develop a correlative 
statistical model to assess pest risk and to 
highlight the challenges associated with this 
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process. We focused on maxent for climate 
matching, but as with any modelling 
technique, having an understanding of the 
assumptions, data requirements, parameters 
and inherent caveats is critical for appropriate 
model application and interpretation. 
Specifi cally, the default settings of maxent 
are likely to be inappropriate for generating 
predictions about where invasive alien 
species might establish outside their native 
range. Th e processes by which background 
data are selected and requisite parameters 
are adjusted likely will vary from case to case 
and should be adapted to the species, the 
region of interest and the specifi c question at 
hand.

Even when great care is taken to select 
informed and tailored settings, maxent 
may not be the best choice for climate 
matching between the native range and the 
invaded range of an invasive alien species. 
maxent may not have been the best tool for 
Burmese python for two reasons. First is an 
issue related to any correlative modelling 
technique, in that our interest lies in 
characterizing potential habitat rather than 
the climate space currently occupied by the 
species. Second relates to the location data 
used to develop the model and the 
assumption that the available museum 
localities adequately represent the climate 
range inhabited by Burmese pythons. A 
more in-depth discussion of these concerns 
is found in the ‘Conceptual issues’ section of 
Rodda et al. (2011).

Other circumstances may exist where 
correlative techniques such as maxent are 
appropriate for invasive alien species. Crall 
et al. (2013) developed maxent models for 
invasive alien weed species in Wisconsin, 
USA, to guide future sampling eff orts. In 
this case, sampling guided by maxent 
models located more unknown populations 
of these weeds than methods currently used 
by managers.

Many other approaches exist to predict 
and assess pest risk for a species in its 
current or potential invaded range other 
than the correlative climate matching model 
described in this chapter. For example, using 
expert and empirical information on the 

species, an ecological climate matching 
model can be developed and applied to the 
region of interest. Th is approach would take 
into account known precipitation and 
thermal thresholds that limit the Burmese 
python distribution in its native range and 
identify similar climatic zones in an invaded 
range (Rodda et al., 2009). Furthermore, 
others have suggested incorporating a 
mechanistic model or use of known locations 
of the pest in the invaded range to train the 
model to inform risk predictions (Elith et al., 
2010). Th is has been recommended because 
often the potential range of the introduced 
species encompasses a wider climatic range 
than that found in the native range due to 
the absence of other limiting, non-climatic 
variables.

When calculating a model based on the 
native range, location data should cover the 
range of environments where the species 
occurs. Th e northern and western fringes of 
the range were missing from the presence 
points used in the maxent models. Rodda et 
al. (2011) were able to identify 14 additional 
locations from the literature and the 
California Academy of Sciences. Again, if our 
intent had been to create the best maxent 
model possible, using this broader suite of 
locations would be important and could 
potentially alter the predictions by 
expanding the environmental envelope 
captured by the presence locations.

Th e amount of extrapolation should 
also be assessed when a model is applied to 
a new area or time; it is also important to 
understand the way a model extrapolates. 
While a simple linear regression can extend 
the trend beyond the bounds of the data, 
maxent extrapolates by taking the pre-
dicted value at a minimum and applying 
that predicted value to any smaller values 
(Fig. 5.2); it does the same for the maximum 
value for a predictor and those beyond it. 
So, while the trend in Fig. 5.2 is increasing 
suitability with increasing temperature, at 
a maximum temperature of about 27.5°C 
the trend is cut off , and the suitability value 
at 27.5°C is substituted for higher tem-
peratures. While the MESS analysis provides 
some information on areas of extrapolation, 

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Using the MAXENT Program for Species Distribution Modelling 79

it is limited to univariate analyses. A new 
technique provides a mechanism to examine 
novel combinations of predictors that are 
within the sampled range of each predictor 
(Zurell et al., 2012).

As mentioned previously, which 
environmental variables are included and 
how those that are highly correlated are 
removed can have signifi cant impacts on 
model prediction, accuracy and interpre-
tation. Ideally, one of each pair of highly 
correlated environmental variables would be 
removed before generating a model. 
Furthermore, when projecting/transferring 
correlative models from a native range to an 
invaded range of interest, it is important to 
look at the correlation structure among 
environmental variables (i.e. the statistical 
relationship between pairs of variables) in 
both ranges to identify any diff erences. 
When these diff er, this is violating one of 
the major assumptions of correlative 
presence-based statistical models such as 
maxent and predictions should be 
interpreted with caution.

As the prevalence of invasive alien taxa 
continues to increase, land managers and 
policy makers will rely on pest risk models to 
inform their decisions and actions. 
Correlative species distribution models that 
use species–climate relationships in a native 
range to predict invasion potential elsewhere 
can be important tools to develop pest risk 
predictions. Th ere is always a need to assess 
the data, the question being asked, and the 
available tools with their unique limitations 
and assumptions to develop the best possible 
assessment given available data.
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Abstract 

Th is chapter describes the North-Carolina-
State-University/Animal-and-Plant-Health-
Inspection-Service Plant Pest Forecasting 
System (nappfast). nappfast, developed 
for pest risk modelling and mapping, was 
formerly used to support pest detection, 
emergency response and risk analysis for 
the US Department of Agriculture. 
nappfast employs an internet-based 
graphical user interface to link weather 
databases with interactive biological model 
templates. Th e weather databases include 
historical daily weather databases for North 
America and the world. Th e templates 
include degree-days, generic empirical 
models, infection periods and the Generic 
Pest Forecast System (GPFS). Th e GPFS, 
currently in development, is a model that 
uses hourly inputs and includes modules for 
development rate, hot and cold mortality, 
population and potential damage. In this 
chapter, three examples illustrate the 
capabilities of nappfast: (i) pathway 
analysis for Lymantria dispar asiatica (Asian 
gypsy moth); (ii) epidemiological modelling 
for Phytophthora ramorum (the cause of 
sudden oak death and other plant diseases); 
and (iii) simple population modelling for 
Bactrocera dorsalis (oriental fruit fl y). One 
advanced feature of nappfast is cyber-

infrastructure that supports the sharing of 
products and data between modellers and 
end users. Th e infrastructure includes tools 
for managing user access, uploading and 
correcting geographic coordinates for pest 
observations, and an interactive geographic 
information system environment for 
viewing input data and model products. 
nappfast was used by the US Department 
of Agriculture, Animal and Plant Health 
Inspection Service, Plant Protection and 
Quarantine, although access has been 
granted to government and university 
cooperators working on risk analysis of 
invasive alien species. 

Introduction and Scope

In this chapter, the North-Carolina-State-
University/Animal-and-Plant-Health-
Inspection-Service Plant Pest Forecasting 
System (nappfast; Magarey et al., 2007b) is 
described and the roles of modellers and 
users are discussed. In early 2014, funding 
for nappfast was discontinued. Although 
the tool is not currently in use, there is 
potential for the tool to be reactivated for 
use by another organization. Since nappfast 
contains a unique combination of tools and 
data sets, this chapter  provides a general 
description that might be useful to other 
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developers who seek to build similar decision 
support products. nappfast is designed to 
help plant protection organizations: (i) 
collect, manage and share data; (ii) create 
pest risk models and analyses; (iii) interpret 
data and risk products for national and local 
needs; and (iv) manage the distribution of 
information products to end users, including 
managers, fi eld staff  and stakeholders 
(Magarey et al., 2009b). Th e extent of access 
to nappfast data, products and tools can be 
customized for diff erent users depending on 
their role, geographic location or 
organization (Sandhu and Coyne, 1996). 
Role-based access allows modellers to create 
and publish risk products which can then be 
viewed by users in other roles. Th e cyber-
infrastructure to facilitate the sharing of 
information in nappfast is based on a 
similar system developed for soybean rust in 
the USA (Isard et al., 2006). nappfast was 
used by only a few organizations, i.e. the US 
Department of Agriculture, Animal and 
Plant Health Inspection Service, Plant 
Protection and Quarantine (USDA-APHIS-
PPQ) and its approved cooperators. 
nappfast is a joint venture between USDA-
APHIS-PPQ, North Carolina State University 
and the information technology company 
ZedX, Inc.

Uses of NAPPFAST

nappfast is used in several ways. nappfast 
users include programme managers, survey 
specialists and risk analysts. One of the 
primary uses of nappfast is to generate risk 
maps for the most signifi cant invasive alien 
pest targets in the APHIS Cooperative 
Agriculture Pest Survey programme 
(Magarey et al., 2011). Th e nappfast system 
also supports pest risk analysis, emergency 
programmes, and pest-survey and detection 
activities of USDA-APHIS-PPQ. Some 
applications of nappfast include fore-
casting: (i) areas at risk for establishment by 
invasive alien species; (ii) the frequency of 
years in which plant epidemics or insect 
outbreaks might occur or cause crop losses; 
(iii) geographic variation in the phenology 
of insect of life stages; (iv) the required 

duration of mitigation treatments based on 
elapsed pest generations; and (v) the extent 
of injury caused by pests or pathogens to 
host plants.

Th e nappfast system employs an 
internet-based graphical user interface to 
link interactive templates with weather 
databases. nappfast currently includes 
three modelling templates: (i) a degree-day 
template for creating phenology models for 
arthropod pests and plants; (ii) an infection 
model template for plant pathogens; and 
(iii) a generic template for creating simple 
empirical models, e.g. hot and cold exclusion. 
Each template follows a simple fi ll-in-the-
blank design. A fourth template, the Generic 
Pest Forecast System (GPFS), is currently 
under construction and will allow users to 
create risk maps that can be exported to a 
geographic information system (GIS) for 
further analysis more easily than nappfast 
currently allows. All templates in nappfast 
are generic (i.e. applicable to many species), 
so they can be used to meet the needs of 
diverse users.

Weather and climatology in NAPPFAST

nappfast uses high-resolution, historical 
and near-real-time weather databases for 
North America and the world. Th ree types of 
data are available: (i) empirical observations 
from North American weather stations; (ii) 
interpolated grid surfaces of weather 
observations for North America; and (iii) an 
interpolated grid surface of weather 
observations for the world. Th e North 
America station database compiles 
observations from approximately 2000 
stations supplied by government and 
commercial sources. One important source 
of North American data is NOAAPORT, a 
broadcast from the National Oceanic and 
Atmospheric Administration (NOAA) of 
near-real-time environmental data from 
multiple sources, including weather stations, 
radar, satellites, rawinsonde and others 
(Russo, 1999). Station data in nappfast 
are interpolated to generate a 10 km × 
10 km resolution grid. Two-dimensional 
(2D) interpolation (Barnes, 1964) uses 
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multivariate regression to estimate climate 
conditions between weather stations 
without accounting for the potential eff ects 
of elevation change. Th ree-dimensional (3D) 
interpolation is similar but does account for 
elevation eff ects (Splitt and Horell, 1998). 
Both interpolation options are available in 
nappfast. Another North American grid 
database is derived from the Real-Time 
Mesoscale Analysis (RTMA) database at 5 
km × 5 km resolution and is available from 
the year 2007 onwards (De Pondeca et al., 
2011). Although the station data set is 
typically used for North American data 
requests, the quality and resolution of 
RTMA are expected eventually to exceed 
what can be provided by station data. Th e 
global database is from the National Center 
for Environmental Prediction’s (NCEP) 
Climate Forecast System Reanalysis (CFSR) 
at a 38 km × 38 km spatial resolution (Saha 
et al., 2010). Most databases use a time step 
of 1 day, but the CFSR data have been 
interpolated from a 6 h time step to a 1 h 
time step. A second global database, the 
NCEP Reanalysis 2 (R2) database, is also 
available in nappfast but is no longer 
recommended as it has inferior resolution 
and quality to CFSR.

ZedX, Inc. uses a series of proprietary 
quality control algorithms for error checking 
and approximating missing station values. 
Quality assurance/quality control checks of 
the data include a plausibility assessment, 
deviation from climate normals and evidence 
of twin reports. Missing station values are 
estimated by using time-series interpolation, 
nearest-neighbour regression, nearest-
neigh bour interpolation, station-grid re -
gres  sion and physics (J.M. Russo, Pennsyl-
vania, 2013, personal communication).

Th e weather variables in each database 
include daily maximum temperature, 
minimum temperature, total precipitation, 
average relative humidity, evaporation, leaf 
wetness hours, and 2 and 4 inch (i.e. 5 and 
10 cm) depth daily average soil temperatures. 
Th e derived variables, including leaf wetness, 
evaporation and soil temperature, are 
calculated using proprietary algorithms. 
Algorithms to estimate leaf wetness were 
validated by Magarey et al. (2007b).

Other resources from NAPPFAST

Th e www.NAPPFAST.org website also 
includes other data sets that are useful to 
generate forecasts for invasive alien species 
including global plant hardiness zones 
(Magarey et al., 2008) and an insect 
development database (Nietschke et al., 
2007). Project reports and training materials 
are also available from this website.

A signifi cant historical limitation of 
nappfast has been the reliance on daily data 
and simple models that cannot adequately 
describe complex biological processes. For 
example, hourly relative humidity can be 
helpful for describing sporulation responses 
of fungal pathogens, whereas daily average 
humidity is useless for this purpose. Th is 
limitation is being addressed with the 
development of the GPFS template, which 
has greater complexity and uses hourly 
weather data.

Tools for Modellers

‘Modeller’ is an assigned user role in 
nappfast. Modellers use generic tools in the 
system to develop models for specifi c pests 
and pathogens.

Model set-up tool

Modellers can use three interactive 
templates in the model set-up tool to create 
quickly new models for individual pests and 
pathogens. Speed is an advantage because 
models are frequently needed by end users 
with little to no advanced warning. For 
example, APHIS-PPQ programme managers 
may need a map when a new invasive alien 
pest has been detected in the USA or 
domestic quarantines are contemplated to 
close pathways by which a species might be 
moved. Often little to no information exists 
about an invasive alien pest’s epidemiology 
and, as a result, a system is needed to create 
‘fi rst guess’ pest risk maps from models 
with few biological inputs (Magarey et al., 
2005). nappfast is designed to meet this 
need.
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Th e interactive templates in nappfast 
include a degree-day template, primarily for 
arthropod phenology modelling, a generic 
template with canned (i.e. pre-programmed) 
equations to create empirical models and an 
infection template for plant pathogens. Th e 
templates include fi ll-in-the-blanks to enter 
species-specifi c parameters and a colour-
ramp selection tool to customize map or 
graph outputs. Th e generic template and 
generic infection template also allow 
modellers to set up an accumulated variable, 
where model outputs for each day are 
accumulated between user-specifi ed start 
and end dates. For example, models to 
characterize annual pest dynamics might 
run from 1 January to 31 December for the 
northern hemisphere and from 1 July to 30 
June for the southern hemisphere. By 
default, degree-days are an accumulated 
output variable. Models also can be copied 
to facilitate easy adaptation for other species 
or parameters.

Degree-day template

Th e generic degree-day template was 
developed to model insect pests, but can 
also be used to model phenological develop-
ment of other organisms, e.g. weeds or 
crops. Degree-days are a measure of thermal 
development time and are used for 
poikilotherms, organisms that cannot 
maintain a constant body temperature. Th e 
degree-day calculation is based on the 
amount of time temperatures remain above 
a specifi c base threshold and below an upper 
developmental threshold. Users enter the 
base temperature, i.e. the temperature at 
which development starts, and the upper 
threshold, i.e. the temperature above 
which degree-days accumulate at the same 
rate as the upper threshold temperature. 
Developmental data including thresholds 
and degree-day requirements are published 
for a large number of insects and plant pests 
(Nietschke et al., 2007; Jarosik et al., 2011). 
For example, Japanese beetle (Popillia 
japonica) has a base and upper developmental 
threshold of 10°C and 34°C, respectively, 
and on average requires 524 degree-days 
from 1 January before adults will begin to 

emerge (Ludwig, 1928; Regniere et al., 
1981). Japanese beetle would accumulate 20 
degree-days after 2 days when daily 
temperatures average 20°C. After 2 days 
with average daily temperatures of 34°C, 
Japanese beetle would accumulate 48 
degree-days. If, however, average tem-
peratures increased to 36°C over the same 
time interval, Japanese beetle would still 
only accumulate 48 degree-days, a con-
sequence of the upper thermal threshold.

When degree-days are calculated from 
daily weather summaries, users have the 
option to base the calculation on Allen’s 
(1976) sine curve method or simple daily 
averages of the minimum and maximum 
temperature (i.e. min max( ) / 2T T ). Th e sine 
curve method provides an approximation of 
hourly temperatures when only daily highs 
and lows are given. Estimates of accumulated 
degree-days are more accurate using the sine 
curve method than a simple daily average 
temperature, particularly when tem-
peratures are below lower developmental 
thresholds or above upper developmental 
thresholds for part of a day.

Th e degree-day template is fl exible and 
allows modellers to select diff erent numbers 
of phenological events or numbers of 
generations. In addition to the base tem-
perature threshold for the species, modellers 
must provide the number of accumulated 
degree-days required to observe each 
phenological event or generation. Th e upper 
temperature threshold is an optional input.

Generic template

Th e generic template contains a series of 
equations used to build empirical models. 
Th e equations include logical relationships 
(e.g. ‘X and Y’, ‘X or Y’, ‘X < C’) and polynomial, 
logistic or exponential functions. Once an 
equation is selected, modellers can choose a 
climate variable from a drop-down menu 
and enter values for the condition(s) that 
must be met (e.g. minimum temperature 
< 0°C). Th e generic template allows for quick 
and easy creation of a variety of models. 
Common examples include models that 
predict the survival of organisms, or their 
hosts, based on maximum or minimum 
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temperatures. Soybean rust overwintering 
survival is an example that uses the generic 
template (Magarey et al., 2007b). One 
limitation of the template is that the daily 
output is binary. So, the criterion ‘minimum 
temperature < 0°C’ would return a value of 0 
if the temperature never fell below the 
freezing point of water within a specifi ed 
period, but would give a value of 1 if it did. If 
the model had been set to accumulate these 
values, the model outputs would be 
interpreted as the number of days with 
freezing temperatures.

Infection template

Th e generic infection template is based on a 
temperature–moisture response function 
(Magarey et al., 2005) that uses daily weather 
data as its input. Several foliar plant 
pathogens require leaves to be wet for a 
certain length of time within a certain range 
of temperatures to initiate infection. Some 
pathogens also have rain splash require-
ments. Splashing from rain drops moves 
infective propagules from soil, water or 
infected plants on to healthy plants. For 
example, ascospores of Uncinula necator, the 
causal agent of grape powdery mildew, must 
be splashed from the bark of infected plants 
to susceptible, new growth of uninfected 
hosts for the pathogen to spread (Gadoury 
and Pearson, 1990). Parameters for the 
generic infection template include cardinal 
temperatures, leaf wetness requirements 
(hours), rain splash requirement and degree-
day initiation. Information to support 
parameter selection can be obtained from 
crop compendia, primary literature, 
laboratory studies or comparisons with 
related organisms (Magarey et al., 2005). 
Examples of pathogens for which nappfast 
infection templates have been completed 
include Phytophthora ramorum (causal agent 
of sudden oak death); Phakospsora pachyrhizi 
(causal agent of soybean rust); Phragmidium 
violaceum (causal agent of blackberry rust); 
and Elsinoe australis (causal agent of sweet 
orange scab). Magarey et al. (2007b) provide 
additional details about infection templates 
for P. ramorum and P. pachyrhizi.

Generic Pest Forecast System (GPFS) 
template 

Th e GPFS template is being developed for 
nappfast to provide more advanced 
capabilities than the current templates. Th e 
GPFS will have modules to estimate: 
developmental rates estimated from cardinal 
temperatures and relative humidity; 
mortality from cold (Kaliyan et al., 2007), 
heat (Dentener et al., 1996) or fl ooding; 
infection and sporulation events for plant 
pathogens; relative population densities 
based on developmental rate and mortality; 
simultaneous pest and host growth based on 
degree-days; and potential damage based on 
pest population, growth stage susceptibility 
and pest stage.

Th e GPFS template will use hourly, not 
daily, weather data inputs. Hourly data 
provide for a much more refi ned description 
of biological processes, such as infection and 
heat mortality, which often happen on a 
smaller time step than a day. Th e new 
template also allows some variables such as 
relative humidity to be incorporated more 
easily, especially when average daily data 
remove diurnal fl uctuations that may be 
important to biological processes.

Model run tool

Th e model run tool allows users, primarily 
designated ‘modellers’, to create graphs or 
maps from a completed model template for 
any of the nappfast weather databases. Th e 
graphing function is intended to allow a user 
to obtain results for a single station or grid 
cell or a set of stations or grid cells. A simple 
drawing feature allows users to select 
multiple stations or grid cells by sketching 
on a map surface. If multiple stations or a 
set of grid cells are selected, a composite 
result will be reported for all stations. Users 
can select one input and one output variable 
to be reported in the summary. Th e output 
variable can also be exported as a text fi le for 
additional analysis or graphing. For example, 
fruit fl y eradication programmes require 
time for the completion of three generations 
after the last detection before a successful 
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eradication can be declared. ‘Real-time’ 
degree-day calculations are estimated from 
nappfast recent historical weather records, 
from the specifi ed start of the model run 
to the current date. If the projected 
accumulation of degree-days is of interest, 
users can choose 10-, 20- or 30-year 
climatological data as a forecast of future 
weather conditions.

Users can request to have results 
plotted on a map. Users specify a model (i.e. 
a completed template), date range, data 
source (i.e. North American station, RTMA 
or CFSR), region of interest (e.g. world, 
North America) and variable to map, which 
may be an input or output variable. For 
maps made with grids created from station 
data, users can choose either a 2D or 3D 
interpolation. For output variables, the 
colours displayed in the map are those 
selected in the legend using the model 
set-up tool. We recommend creating a new 
model when output legends are modifi ed to 
avoid confusion. Users must also select one 
of three map types: history, average history 
or probability.

A history map is best described as a 
‘snapshot in time’ that displays all of the 
model information for a specifi c day or 
period in a specifi c year. For example, a 
history map for a pest insect displays all of 
the generations and stages for that insect on 
that date. A history map is useful for 
comparing model output with pest activity 
(e.g. the appearance of a given pest stage) 
with observations for a particular period 
(e.g. capture of adult insects in traps during 
July 2012 in Iowa).

Th e average history map is similar to a 
history map, but the output for the selected 
dates refl ects an average over 10, 20 or 30 
years. Th e map is most meaningful when it is 
based on degree-days, life stage or an 
accumulated output variable. One practical 
way to use the average-history-map request 
is to compare the average values with 
historical pest abundance, outbreaks or 
known levels of pest damage or prevalence. 
A good example is a study on the causal 
agent of citrus black spot, Guignardia 
citricarpa (Magarey et al., 2009a). nappfast 
was used to identify days with climate 

conditions that would be suitable for the 
infection of citrus fruits by ascospores. 
Th ese infection days were accumulated for 
the period when citrus fruits should be 
susceptible. An average value map was 
requested and this output was compared 
with locations where black spot had been 
observed to be prevalent or absent in the 
fi eld. Black spot was prevalent in areas with 
≥12 infection-days (i.e. days in which climate 
was suitable for infection) during the period 
when fruits were susceptible. Th is threshold 
could then be used to create a probability 
map defi ning the frequency of years in which 
black spot would be forecast to be prevalent.

A probability-map request displays the 
frequency of occurrence of a specifi c event 
within a common block of time, such as the 
presence of fi rst-generation adult insects or 
a threshold number of days, each year, for 
the past 10, 20 or 30 years. Users can also 
choose a particular number of occurrences, 
for example, 5 days with temperatures below 
freezing. Probability maps are useful for risk 
analysis because they provide output that 
can be readily incorporated into probabilistic 
models (e.g. an event that occurred in 6 of 
the past 10 years would be estimated to have 
a 60% chance of occurring in a future year). 
Th ese types of probabilistic models are often 
used for specifi c situations where qualitative 
estimates of risk will not meet the needs of 
the decision maker.

Model view tool

Maps and graphs can be viewed and 
downloaded from the model view tool. 
Models are sorted alphabetically and 
individual model runs by the date of the run. 
Clicking on the model name displays the 
map or graph. Users have the choice to 
enlarge the map, view the legend or export 
the maps as a GeoTIFF fi le which can be 
imported into a GIS. Users can choose to 
create a session, which allows all the settings 
to be saved including those for auto-
scheduling graphs or maps. Auto-scheduling 
allows products to be created every day or 
every week and sent to e-mail addresses on a 
distribution list.
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Tools for Global Analysts

Th e ‘Global Analyst’ role is for inductive 
modelling, i.e. predictive mapping from a 
species’ distribution records. Th e global 
analyst tool has four components: GBIF 
upload tool, the data analyst tool, the Venn 
tool and the BAMM tool. Th e Global 
Biodiversity Information Facility (GBIF; 
http://www.gbif.org) provides access to 
species distribution records from around the 
world, and these records can be downloaded 
in XLS and CSV formats. Risk analysts then 
can upload fi les from GBIF, or user-created 
fi les with the same structure, into nappfast 
with the GBIF upload tool. Uploaded data 
pass through a number of quality assurance/
quality control procedures, including 
removal of duplicates, checking the validity 
of scientifi c names in the Species 2000 
database (http://www.sp2000.org) and 
check ing to ensure coordinates match 
country boundaries. Records that pass these 
tests are displayed in a phylogenetic tree in 
the data analyst tool. Modellers can select 
observations for editing. A hyperlink is 
available to view the original GBIF record. 
Th e ‘Data Manager’ role allows users to 
construct ‘patches’ that will automatically 
correct identical errors and automatically 
reject specifi c error types. Th e data manager 
tool provides manual and automatic quality 
assurance/quality control processes for all 
data going into the global analyst tool.

Th e Venn tool allows risk analysts to 
select data layers, such as custom-drawn 
areas, elevation, plant hardiness zones 
(calculated for the most recent 10 years), 
growing degree-days (with a base 
temperature 10C, the threshold used for 
many insects), Koppen climate classes (Peel 
et al., 2007), land-use classes and annual 
precipitation. For classifi cation layers (e.g. 
land-use classes), users can view one or more 
specifi c classes (e.g. grasslands) by clicking 
on the map or a legend class. For numerical 
layers, users can also enter lower and upper 
limits to limit the display to a range of 
values. After users select two or more layers, 
union (i.e. intersection) maps can be created. 
Risk analysts are also able to select existing 
products, e.g. maps created in the nappfast 

modelling tool. Th e power of the Venn tool is 
that it can enable a risk analyst to create a 
specialized, summary risk map for a given 
country, pest or host. A companion tool, the 
climate profi le tool, functions in a similar 
way but has more climate data layers.

Th e Bio-environmental Appraisal and 
Mapping Model (BAMM) tool allows risk 
analysts to run a simple species distribution 
model (Schlegel, 2010) based on tolerance 
limits calculated from Anderson–Darling 
tests (Anderson and Darling, 1954). Like 
other species distribution models, BAMM 
relates species distribution data (i.e. 
occurrences such as those reported in GBIF) 
with information on the environmental 
and/or spatial characteristics of those 
locations (Elith and Leathwick, 2009). Th e 
current simple version of BAMM does not 
allow users any control over the selection of 
environmental variables. Results are 
available as hyperlinks inside the tool and 
include the observed species distribution 
map, the potential species distribution map 
and model performance statistics. It is 
hoped that in the future the global analyst 
tool may include a more sophisticated 
version of BAMM and/or the ability to select 
from a suite of species distribution models.

Additional NAPPFAST Capabilities

nappfast has three additional roles – 
‘Observer’, ‘Programme Manager’ and 
‘Administrator’ – that provide functionality 
for the operational use of risk maps by a 
phytosanitary agency. Th ese operations 
include controlling and facilitating the fl ow 
of observations and products from data 
collection and product generation to product 
distribution and map interpretation (Isard 
et al., 2006).

Th e observer tool allows users such as 
pest scouts or inspectors to upload pest-
survey data either in a spreadsheet or using 
an online form. Currently, nappfast does 
not contain pest-survey data, although a 
similar system developed for the Mexican 
National Plant Protection Organization 
(NPPO) has been used to organize and store 
thousands of pest-survey records.
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Th e Programme Manager role is for 
managers and survey specialists who work 
with pest detection or pest management 
programmes. Th is role includes the Exotic 
Pest Targeting (EPT) tool to combine risk 
maps, dynamic pest models and pest data in 
an online interactive GIS environment. Th e 
EPT tool is similar to the global analyst tool 
but the former is designed for fi eld operation 
staff  to view products and data, whereas the 
latter is designed for risk analysis. Th e EPT 
tool has potential to assist survey specialists 
in survey planning, including trap deploy-
ment. Th e tool provides quick access to risk 
maps and weekly phenologies for a number 
of pests and pathogens. Th e EPT tool is not 
currently being used by APHIS-PPQ; 
however, the functionality of the tool has 
been incorporated into the Intergrated Pest 
Information Platform for Extension and 
Education (iPiPE), an enhanced version of 
the ipmPIPE (Isard et al., 2006). Th e iPiPE is 
designed to include data sharing between 
industry, extension and government.

Th e Administrator role controls user 
access and the dissemination of information. 
Th e administrator tool includes the user 
management tool, the programme manage-
ment tool and the product management tool. 
Th e user management tool allows an 
administrator to assign particular system 
roles and associated tools to designated users. 
Th e available roles that can be assigned to 
users are: Modeller, Global Analyst, Observer, 
Data Manager, Programme Manager and 
Administrator. Using the programme 
manage  ment tool, an administrator can 
assign hosts and pests to a particular pest 
programme. A pest programme is a set of 
pests (e.g. pests of citrus) that are grouped 
together for ease of data collection in the 
observer tool and ease of display in the EPT 
tool. Th e product management tool assigns 
fi nished map products to specifi c pest 
programmes so that products can be viewed 
alongside data in the EPT tool.

Examples

Th ree examples illustrate the capabilities of 
nappfast: (i) a pathway analysis for L. dispar 

asiatica (Asian gypsy moth); (ii) predictive 
mapping for establishment of P. ramorum 
(the causal agent of sudden oak death); and 
(iii) simple population modelling for B. 
dorsalis (oriental fruit fl y).

Asian gypsy moth

Asian gypsy moth is included as an example 
of the use of the generic degree-day template 
and average history requests.

Asian gypsy moth is a major forest pest 
that occurs in China, Japan, Russia and 
South Korea. Asian gypsy moth has been 
introduced into the USA via maritime ships 
on several occasions. So far, all introductions 
have been successfully eradicated. In 1993, a 
cooperative pre-shipment inspection pro-
gramme was implemented with Russia to 
help mitigate the movement of Asian gypsy 
moth on maritime shipments. USDA-
APHIS-PPQ was interested in the imple-
mentation and maintenance of a similar 
cooperative programme with Japan. To 
facilitate this programme and engage in 
technical discussions with Japan, PPQ 
analysed the risk posed to the USA from 
Asian gypsy moths that might be moving on 
Japanese maritime shipments (Fowler et al., 
2008).

A critical component of the analysis 
was an evaluation of the annual approach 
rate of infested ships from Japan. Th e fi rst 
step was to determine which Japanese ports 
hosted US-bound ships, using the Lloyds 
maritime intelligence unit shipping database 
(Informa, PLC, New York). Longitude and 
latitude for these ports were obtained and 
imported into a GIS. Next, the nappfast 
generic degree-day template was used to 
identify the period when moth fl ight would 
occur. Th e model used a start date of 1 
January, a base temperature of 3°C and a 
degree-day accumulation of ≥1142 degree-
days (Sheehan, 1992). Th e average-history-
map request was used to create weekly maps 
of fl ight initiation in Asia, based on averages 
from 10 years of weather data (1998–2007) 
(Fig. 6.1; see colour plate section). Th e NCEP 
R2 global data set was used because the 
CFSR data set was not available at the time 
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the maps were produced. Separate maps 
were created for each week from 15 March to 
15 August. Th e nappfast outputs were then 
imported into a GIS containing the Japanese 
ports of interest and were clipped to the 
outline of Japan. Maps were overlaid in 
ascending chronological order (Fig. 6.1). 
PPQ modellers assumed moths would be 
fl ying for 2 months after the forecasted 
fl ight initiation date (Wallner et al., 1984). 
PPQ modellers then queried the Lloyds 
maritime intelligence unit shipping database 
to determine the number of ships that called 
at Japanese ports when Asian gypsy moths 
were fl ying. Next, interception records from 
Customs and Border Patrol were used to 
estimate the probability of ships becoming 
infested if they called at Japanese ports 
when Asian gypsy moths were fl ying. Th is 
probability was estimated as the number of 
ships found to be infested with gypsy moth 
divided by the total number of ships leaving 
Japanese ports for the USA within the same 
period. With that probability and infor-
mation about the number of ships leaving 
Japan each year, PPQ modelled the annual 

number of Asian-gypsy-moth-infested ships 
coming to the USA from Japan with a 
binomial distribution (Vose, 2000; Fig. 6.2). 
Th e model, fully described in Fowler et al. 
(2008), has performed well from 2006 to 
2012 with the annual number of vessels 
from Japan with Asian gypsy moth all falling 
within the predicted distribution (USDA-
APHIS-PPQ Port Operations, 2006–2012, 
unpublished results). Japan and the USA 
entered into a cooperative pre-shipment 
inspection programme in 2007, which has 
since been maintained.

Sudden oak death 

P. ramorum is included as an example of the 
use of the generic infection template, the 
generic template and probability requests.

Sudden oak death, caused by P. ramorum, 
is an important disease of oak and tanoak; 
the pathogen also infects some species of 
rhododendron and camellia (Werres et al., 
2001; Rizzo et al., 2002). Regulations 
currently control the movement of nursery 
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Fig. 6.2. Annual number of infested ships coming to the USA from Japan.
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stock and plant material from 12 counties in 
California and an area in south-western 
Oregon with the pathogen. In 2003, PPQ 
programme managers needed a map to help 
conduct a national survey following the 
shipment of infected nursery stock from a 
number of West Coast nurseries nationwide. 
A forecast map was made based on the 
results from an infection model and a cold 
temperature exclusion model in nappfast. 
Host data were then incorporated to 
visualize areas where P. ramorum could 
establish.

Th is chapter describes an updated 
version of earlier forecast mapping work by 
Magarey et al. (2007a,b). Th is update uses 
recent host data and an alternative approach 
for combining nappfast outputs. Th is 
model assumes that P. ramorum would be 
climatically limited by moisture require-
ments for infection, temperature require-
ments for growth and an inability to survive 
certain extreme minimum temperatures. 
In the model set-up tool, the generic 
infection template was used to create an 
infection model. Th e temperature thresholds 
(minimum, optimum, maximum) for P. 
ramorum infection were 3°C, 20°C and 28°C, 
respectively (Werres et al., 2001; Tooley et 
al., 2009). Th e minimum and maximum 
moisture requirements for infection were 
12 h and 24 h of leaf wetness (Tooley et al., 
2009). Th e occurrence of at least 60 
favourable days for infection during the year 
was arbitrarily chosen as an indicator of 
establishment. Th e model run tool was used 
to request a probability map based upon the 
accumulated number of days that were 
favourable for infection during the past 10 
years. For each 10 km × 10 km grid cell, each 
day was assigned a value of 0 (i.e. un -
favourable for infection) or 1 (i.e. favourable 
for infection) and these values were 
accumulated over the year. Th e resulting 
map represents the probability of having a 
sum of at least 60 favourable days per year, 
based on 10 years of weather data (Fig. 6.3a; 
see colour plate section).

Th e generic model template was used to 
develop a cold exclusion model. Temperatures 
below –25°C reduce survival of sporangia 
and chlamydospores of P. ramorum in 

laboratory tests (Turner et al., 2005). So, the 
logical expression (X < C) was used to 
identify days that might be too cold for the 
pathogen, where X was the estimated 
average daily soil temperature at 5 cm depth 
and C was –25°C. nappfast estimates soil 
temperature from air temperatures but does 
not account for the eff ect of snow cover on 
soil temperature. (Snow cover depth could 
be included in nappfast in the future.) 
From the model run tool, a probability 
request was made to identify the frequency 
of years in a 10-year period with at least one 
day with a minimum temperature <–25°C. 
Because buff ering eff ects of snow and soil 
water on soil temperatures are not 
considered, this model likely overestimates 
the area where cold might exclude P. ramorum 
from the soil.

Th e nappfast outputs were exported to 
a GIS (ArcMap; ESRI, Redlands, California) 
using the export GeoTIFF function and 
converted to a projected coordinate system. 
By using the raster calculator in ArcMap, the 
cold exclusion raster with integer values 
from 0 to 10 years, inclusive, was subtracted 
from 10 years to determine the number of 
years in each pixel that P. ramorum could 
survive the cold (Fig. 6.3b; see colour plate 
section). Th e infection (Fig. 6.3a) and cold 
survival (Fig. 6.3b) rasters were multiplied 
by using the raster calculator to create a fi nal 
climate establishment map in percentage 
terms (not shown). Th is raster was then 
resampled to a 900 m × 900 m resolution. 
An alternative method that was used in the 
earlier version of the forecast map to 
combine rasters is to mask the infection 
output using areas that had one or more 
years meeting the cold exclusion requirement 
(Magarey et al., 2007b).

Maps visualizing P. ramorum deciduous 
and understorey hosts were made at a 900 m 
× 900 m resolution. Th e deciduous host 
presence map was based on the sum of 100% 
of the deciduous and 50% of the mixed forest 
density (Fry et al., 2011; M. Colunga-Garcia, 
Michigan, 2013, personal com munication). 
Understorey host presence was modelled 
using the distribution of seven Ericaceaeous 
hosts of P. ramorum and brought into ArcMap 
as a shapefi le, which was subsequently 
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converted to raster format (Natureserve, 
2013; W. Smith, North Carolina, 2013, 
personal communication). Th e understorey 
host distribution data were converted to a 
percentage by dividing by seven (to express 
as proportion of the seven selected hosts 
present) and multiplying by 100.

A likelihood of establishment map was 
generated from climate and host data by 
averaging the nappfast infection/cold 
survival raster, the deciduous host presence 
raster and the understorey host raster. 
Before this calculation was made, the rasters 
were converted to a USA Contiguous Albers 
Equal Area Conic projection to tailor the 
analysis to the area of interest, i.e. the 
contiguous USA, and to ensure geospatial 
data alignment. Areas without deciduous 
hosts, understorey hosts or suitable climate 
for infection and cold survival were masked 
to create a fi nal likelihood of establishment 
map (Fig. 6.3c; see colour plate section). Th e 
fi nal forecast map indicates that P. ramorum 
is likely to establish along the west coast and 
in the eastern United States.

Oriental fruit fl y

Oriental fruit fl y is included as example of 
the new GPFS modelling template that uses 
hourly weather inputs.

Th e oriental fruit fl y belongs to the 
family Tephritidae (i.e. the ‘true fruit fl ies’) 
and attacks a wide range of fruits and 
vegetables (Clarke et al., 2005). Bactrocera 
species are signifi cant pests because of their 
dispersal ability, high reproductive and 
developmental rate and wide host range 
(Peck et al., 2005; Leblanc et al., 2011). 
Oriental fruit fl y is distributed throughout 
most of Asia.

Oriental fruit fl y is being used to 
evaluate the GPFS template at selected sites. 
For the model to be constructed, literature 
was used to estimate parameters for 
developmental temperatures, cold and high 
temperature mortality, soil moisture 
mortality, pest and host stages, population 
growth rate, phenological susceptibility and 
potential damage. Th e minimum, optimum 
and maximum temperature thresholds for 

oriental fruit fl y development were 13.3°C, 
24°C and 34°C, respectively (Vargas et al., 
1996). Th e thresholds for cold and high 
temperature mortality were set as 13.3°C 
and 39°C (Christenson and Foote, 1960). 
Pupae were expected to survive for 
approximately 2 days when the soil was 
saturated (Xie and Zhang, 2007).

One of the selected sites for model 
validation was a guava and mango orchard in 
Bangalore, India (Jayanthi and Verghese, 
2011). Hourly weather data inputs (i.e. 
temperature, relative humidity and pre-
cipitation) were obtained from the nappfast 
CFSR database and used to run the GPFS 
model. Th e hourly outputs were summarized 
to daily values and matched with observed 
sampling data. Aspects of the simulated and 
observed population dynamics matched well 
(Fig. 6.4). In particular, population peaks in 
the simulations are almost exactly matched 
with observed peaks in 2001 and 2002. Th e 
scatter plot (Fig. 6.5) suggests a linear 
relationship between the simulated and 
observed population densities, and the 
concordance correlation coeffi  cient of 0.22 
suggests a modest agreement between the 
two variables (Tedeschi, 2006). Our pre-
liminary result suggests that the GPFS 
model for B. dorsalis may be a useful tool for 
forecasting population densities based on 
weather data. Additional studies with other 
invasive alien pests are ongoing.

Discussion

One of nappfast’s unique features is that it 
is designed as more than a stand-alone 
modelling tool. Th e system also possesses a 
cyber-infrastructure that could support data 
collection, integration, risk analysis, 
modelling, interpretation and dissemination 
(Magarey et al., 2009b). Although this vision 
is yet to be fully implemented, it represents 
an important future direction. Importantly, 
modelling relies upon pest observations to 
train and validate models, and the cyber-
infrastructure could readily import and 
analyse these types of data. Other 
advantages of the platform include internet-
based delivery, which enables real-time 
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updates and saves users from downloading 
software. Th e platform could also potentially 
be linked to other data collection systems 
such as the Pest Information Platform (Isard 
et al., 2006).

Another key feature of nappfast is that 
its generic platform can be readily adapted 
to the needs of other NPPOs. For example, 
nappfast has been adapted for use by the 
Mexico NPPO. Adding additional NPPOs to 
the nappfast family helps build economies 
of scale and lowers developmental costs.

A valuable feature of nappfast is the 
incorporation of high-resolution, historical 
and near-real-time weather databases. 
Station and grid databases provide sources 
of high-quality near-real-time and historical 
weather data for North America and the 
globe. Th e availability of these data allows 
more sophisticated modelling than can be 
achieved with climate averages. Additionally, 
this saves the user from having to purchase, 
store, edit, update and process massive 
quantities of climate data.

nappfast utilizes a simple interface 
that is based on fi ll-in-the-blank templates. 
Although this approach is not unique to 
nappfast, it provides a simple method for 
modellers to parameterize models and 
requires no specialized programming skills. 
nappfast includes both inductive and 
deductive modelling processes, allowing for 
pests to be modelled based on either 
laboratory or distribution data.

In the past, nappfast modellers had 
been forced to use simple models with daily 
data and without important covariates. 
Th ese limitations are being overcome with 
the development of the GPFS model and 
other analytical tools in nappfast. Many 
biological events that are pivotal to invasions 
by invasive alien species happen on the scale 
of minutes and hours, not days. Daily 
summaries of weather data are too crude to 
capture periods when temperature and 
moisture are just right for certain fungi to 
sporulate or initiate infection.

New refi nements for nappfast are 
continually being explored. Possible future 
improvements of nappfast include the 
development of formal tools for uncertainty 
and sensitivity analysis and a refi ned 

interface to simplify model development 
and testing, particularly for new users.

Th e long-term future of nappfast, like 
any software, is uncertain. nappfast has 
been criticized because it is owned by a 
private company and access was limited to 
the license holder, USDA-APHIS-PPQ, and 
select cooperators. If nappfast models are 
to be more widely used and understood, 
more people will need access to the system. 
Administrators will need to balance the 
benefi ts of supporting a broader user base 
against the potential costs of supporting 
those users. Th e use of nappfast may 
increase in the future as additional 
organizations purchase licenses, or it may be 
superseded by more advanced systems than 
are available now. Other future scenarios 
include nappfast replacement by freeware 
or other desktop applications if organizations 
feel the costs, contractual issues or in -
formation technology needed for main-
taining a sophisticated platform become too 
prohibitive. nappfast models may become 
incorporated into commercially available 
pest information platforms used by industry. 
Th e experience gained from nappfast 
development can provide guidance and 
insights for increasing development of 
cyber-infrastructure to support pest risk 
modelling and mapping.
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Abstract

Th is chapter highlights quantitative methods 
designed to identify and rank exotic species 
with potential risk to cause economic and/or 
environmental harm if they establish in a 
new area. Until now, pest risk assessments 
have tended to be qualitative and reactive 
instead of quantitative and proactive. Here, a 
computational-intelligence technique called 
a self-organizing map (SOM) is described 
that can be used to analyse regional profi les 
or assemblages of pest species to determine 
their potential for establishment in new 
regions. In addition to the SOM, two other 
useful clustering or classifi cation algorithms, 
k-means and hierarchical analysis, are also 
demonstrated to provide a quantitative 
framework to the risk assessment process. 
Th e examples described for each method 
illustrate how a pest risk analyst can 

identify, from a large list of potential 
hazards, which species present the most risk 
to target areas. Furthermore, examples are 
given of how such analyses may indicate 
donor and recipient regions for pest invasion 
and can highlight previously unknown or 
ignored threats for further investigation. 
Finally, cautions are provided and limit-
ations of SOMs and other clustering 
methods applied to the area of pest risk 
assessment are discussed.

Introduction to the Need for 
Prioritization

Increasingly, the world faces challenges from 
the impact of invasive alien species driven 
largely by tourism, trade and climate change 
that accelerate opportunities for invasive 
species to disperse and establish in new 
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regions of the globe. Invasive alien species 
can do irreparable harm to both indigenous 
and managed biological ecosystems as well 
as to human and animal health. While the 
traditional international imperatives to 
protect productive ecosystems, as well as 
preserve biodiversity, are clear, pressure to 
maintain world food security is growing. 
Despite decades of study on invasive alien 
species and enactment of international 
regulations to prevent invasive species’ 
spread, little progress has been made to 
develop quantitative methods that help 
identify and rank the many hundreds of 
potential pests before they arrive in a new 
area.

For greater preparedness, risk assessors 
and policy makers need to identify and 
prioritize which species out of a long list are 
likely to establish in a target region if given a 
chance to do so. Th e formalized procedures 
for pest risk assessment are often reactive. 
For example, species often are selected for 
pest risk analysis that have high impact in 
another region, are intercepted frequently at 
the border, or are associated with new 
commodities or pathways and are regarded 
as emerging threats. Furthermore, risk 
assessments routinely carried out by trading 
nations on new traded commodities often 
require the evaluation of several hundreds 
of species that are known to associate with 
that commodity. Such assessments often 
take several years to complete. No country 
or region wants to be surprised by a new 
incursion. One way to minimize surprises is 
to recognize potential pest threats before 
they arrive by ranking the thousands of 
possible invasive alien pests with respect to 
their risk of establishment. Th e methods 
described in this chapter can assist the 
recognition process.

Worner and Gevrey (2006) proposed the 
fi rst fully quantitative method for ranking 
large numbers of insect crop pests with 
respect to their potential establishment. 
Th eir method was based on the application 
of a computational-intelligence analysis 
method to a database of global distributions 
of known pest species (Gevrey and Worner, 
2006; Worner and Gevrey, 2006). Th e 
method is more generally known as a self-

organizing map or SOM (Kohonen, 1982, 
2001). A SOM is designed for exploratory 
data analysis using, as its basis, an artifi cial 
neural network that mimics the pattern 
recognition capabilities of the vertebrate 
brain. Essentially, it is a machine learning 
algorithm that clusters, classifi es and 
visualizes high-dimensional or complex data 
without supervision or input from the user.

Th e basis of the SOM approach used by 
Worner and Gevrey (2006) is that the 
specifi c combination of pest species already 
established in the target region refl ects local 
climate, host plants and other prevailing 
conditions which are suitable for those 
species by defi nition. Comparisons with 
regions that share similar pest profi les can 
identify species not yet established that 
might prosper in the target environment 
(Gevrey and Worner, 2006; Worner and 
Gevrey, 2006). In other words, certain 
species of plant pests tend to co-occur in 
particular regions around the world because 
of specifi c combinations of environmental 
factors. Such similarities can be used to 
identify missing species from a target profi le 
and indicate a potential risk of establishment. 
SOM analyses of invasive species groupings 
have been criticized because such groupings 
have resulted from anthropogenic activity 
and may be random, but Watts and Worner 
(2009) have shown that the pest groupings 
are clearly not random.

Worner and Gevrey (2006) provide an 
example of the application of SOM analysis 
to a database of global crop pests. Th ey 
found that New Zealand has a large number 
of invasive pest species in common with 
Italy. Th is result suggests that the two 
countries have similar characteristics that 
have allowed similar pest profi les to develop. 
Each country may act as a potential species 
donor or species recipient for the other. 
Some species in Italy but not in New Zealand 
may pose a special threat if they reach New 
Zealand. Yet, good reasons may exist to 
explain why those species are not present in 
New Zealand. Th e most likely explanation is 
that a suitable pathway does not exist and 
particular species may never have had the 
chance to get there. Nevertheless, by using 
SOM analysis, Worner and Gevrey (2006) 
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were able to sift effi  ciently through a large 
list of potential hazards and highlight 
previously unknown or ignored threats for 
further assessment.

Th e use of species assemblages to give 
information about environmental com-
plexity is not new. Petroleum geologists 
routinely use assemblages of fossil 
organisms to indicate fossil fuel deposits 
(Gregory et al., 2007) and the study of fossil 
plant assemblages has been used over many 
decades to reconstruct past climates (e.g. 
Savin, 1977; Heiri and Lotter, 2005). In 
ecology, and particularly ecosystem studies, 
changes in the composition of species 
assemblages are used as indicators of 
changes in natural conditions and anthro po-
genic infl uences (e.g. Chon et al., 1996; 
Céréghino and Park, 2009).

At the global scale, identifying regions 
that have the most similar pest profi les 
requires some sort of clustering of a large 

number of geographic regions using a large 
number of species. In the New Zealand 
example, the database has 459 regions and, 
therefore, 459 pest profi les (Figs 7.1 and 7.2; 
see below and colour plate section). With 
this many regions, a simple analysis to fi nd 
the similarity of each pest profi le with every 
other pest profi le would require 105,111 
comparisons (Worner and Gevrey, 2006). 
While conventional cluster ing or similarity 
analyses could be used, the resulting clusters 
may not be easy to interpret. However, a 
SOM converts data with many samples (e.g. 
459 global regions) and many elements (e.g. 
the presence or absence of 844 species in 
each global region) to cluster similar regional 
pest profi les on to a two-dimensional map 
that gives rich information and is easily 
interpreted (Fig. 7.1).

While the emphasis in this chapter is on 
SOM analyses, two recent studies have 
shown that other clustering algorithms also 
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Fig. 7.1. Self-organizing map architecture. The input layer, by connections called weights that defi ne the 
virtual assemblages of the species, is linked to the cells of the output layer. (Reprinted with permission 
from Gevrey et al., 2006.)
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may be useful to estimate risk of establish-
ment of potential pests. Th e fi rst study 
compared SOM analysis with k-means 
clustering (Watts and Worner, 2009). Th e 
second study applied hierarchical cluster 
analysis (Worner et al., 2013). Th is chapter 
demonstrates how diff erent algorithms such 
as SOMS, k-means and hierarchical analysis 
can be used to analyse pest distribution 
data. All techniques are demonstrated with 
applications.

Data Requirements and Useful 
Databases

Th e data in the studies reviewed here are 
comprised of presence records for pest 
species in diff erent countries and regions of 
the world. A species is presumed to be 
absent if no published record confi rms its 
presence. Records from CAB International 
(CABI), a not-for-profi t, science-based, 
development and information organization, 
were extracted with permission from its 
inter active multimedia encyclopaedias: 
Crop Protection Compendium (CABI 2003, 
2007; http://www.cabi.org/CPC/), Plantwise 
Know ledge Bank (http://www.plantwise.
org/knowledgebank) and Invasive Species 
Compendium (http://www.cabi.org/ISC/). 
Other databases such as the European and 
Mediterranean Plant Protection Organi-
zation (EPPO) Plant Quarantine Data 
Retrieval System (PQR; http://www.eppo.
int/DATABASES/pqr/pqr.htm) and the 
Global Pest and Disease Database (GPDD; 
https://www.gpdd.info/) are also available. 
Th e GPDD has approximately 120,000 pest 
distribution records from around the world. 
Th is database is maintained by the US 
Department of Agriculture, Animal and 
Plant Health Inspection Service, Plant 
Protection and Quarantine Division (USDA-
APHIS-PPQ) and, like the other databases, 
gathers pest distribution data from several 
sources such as journals, other refereed 
publications, pest risk assessments, border 
interception records and high-quality, 
publicly available, web-based source 
material. Other useful databases are North 
American-oriented but are open access: the 

National Agricultural and Pest Information 
System (NAPIS; http://pest.ceris.purdue.
edu/index.php) for the USA and the Invasive 
and Exotic Species Profi les & State, Regional 
and National Lists (http://www.invasive.
org/species.cfm) for North America.

Data must be extracted from these 
databases and reorganized such that pest 
presence or absence for each site is 
represented by binary data in rows or 
columns, with 0 corresponding to the 
absence and 1 corresponding to the presence 
of each species at each site. Incomplete data 
from the database should be discarded, as 
well as species with low prevalence, e.g. 
Worner and Gevrey (2006) excluded species 
that were present in <5% of the sites.

The SOM Algorithm

Kohonen (1982, 1984) designed the SOM 
algorithm for use in speech recognition. Th e 
SOM quickly found wide application in 
many disciplines that require statistical 
analyses for classifi cation and clustering. 
Oja et al. (2003), cited in Sarlin (2011), 
noted that the SOM algorithm had many 
applications in engineering, medicine and 
other scientifi c disciplines. A Web of 
Knowledge™ (Th omson Reuters) title search 
for ‘SOM’ or ‘self-organizing map’ yielded 
215 articles and a topic search identifi ed 892 
articles published from January 2012 to 
June 2013. Th e tool has been used in 
macroeconomics (Sarlin, 2011), manu-
facturing (Chat topadhyay et al., 2012), 
language analysis (Zhao et al., 2011), genome 
sequencing (Chan et al., 2008), meteorology 
and oceanography (Lui and Weisberg, 2011), 
metagenomics and biodiversity (Weber et 
al., 2011), tran scriptomics and meta-
bolomics (Milone et al., 2012) and ecology 
(Chon, 2011). Variations of SOM analysis 
have been used, for example, for stock price 
prediction (Hsu, 2011), growing self-
organizing maps for protein sequence 
classifi cation (Ahmad et al., 2010), batch 
learning self-organizing maps for micro-
biome analysis of ticks (Nakao et al., 2013) 
and hybrid self-organizing maps for river 
fl ow forecasting (Ismail et al., 2012).
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A SOM is a type of artifi cial neural 
network that uses the power of modern 
computation to mimic the way the vertebrate 
brain organizes information to learn or 
discover patterns from sensory inputs 
(Kohonen, 1982, 1990). Th e trained SOM 
provides an ordered mapping of originally 
complex data, thereby clarifying interpre-
tation (Liebscher et al., 2012). SOMs diff er 
from other approaches of exploratory data 
analysis such as multidimensional scaling by 
providing simple, intuitive clustering that is 
projected on to a two-dimensional map for 
easy visualization (Fig. 7.2; see colour 
plate section), while still preserving the 
relationships between the samples in the 
original data set (Arsuaga and Díaz, 2005; 
Sarlin, 2011).

SOM structure

A SOM consists of two layers of artifi cial 
neurons, a layer that represents the input 
data and a layer for the output or map. Th e 
map is usually arranged as a two-dimensional 
structure of cells (Figs 7.1 and 7.2). For the 
New Zealand example, the input layer is 
comprised of the 459 sample sites or regions 
of the world. For each region, a sample 
vector (i.e. pest profi le) indicates the 
presence and absence of each of the 844 pest 
species considered in the analysis (Figs 7.1 
and 7.2). Th e SOM organizes the data by 
applying a machine learning scheme to 
adapt weight values connecting the vectors 
of the input layer to the array of neurons 
(i.e. nodes or cells) of the output layer, where 
each neuron is represented by a virtual (i.e. 
reference) vector. Every input neuron (i.e. 
geographic site or region) is connected to 
every output neuron (i.e. cell or node), and 
each connection has a weight attached to it. 
Th e SOM algorithm can be summarized as:

1. Initialize the values of the virtual vectors 
(VVi, 1 ≤ i ≤ c), where i is each virtual vector 
VV and c is the total number of virtual 
vectors.
2. Read all the sample vectors (SV) one at a 
time.
3. Compute the Euclidean distance between 
SV and VV.

4. Assign each SV to the nearest VV 
according to the distance results.
5.  Modify each VV with the mean of the SV 
that were assigned to it.
6. Repeat steps 3–5 until convergence or 
until connection weights change very little.

When the sample (i.e. input) vectors for our 
New Zealand example are presented to the 
SOM, the SOM sets up a corresponding 
virtual (i.e. reference) vector with 844 
elements (i.e. one element for each of the 
844 species) at each neuron of the map and 
assigns each element a random weight 
between 0 and 1, inclusive. For each sample 
vector (i.e. a site’s pest profi le composed of 
0’s and 1’s for the absence and presence, 
respectively, of each of the 844 species), the 
Euclidean distance between the sample 
vector and the virtual vector of each output 
neuron is calculated. Each sample vector is 
assigned to the closest virtual vector, also 
known as the best matching unit, according 
to the Euclidean distance. Each virtual 
vector is updated during many iterations of 
the learning process, where weights are 
calculated according to:

  
 (7.1)

where wi,j(t) is the connection weight from 
input i to map neuron j at iteration t and xi is 
element i of input vector x. Th e variable h is 
the neighbourhood function and is defi ned 
as:

  (7.2)

where  is the learning rate, which decays 
towards zero as time progresses; d is the 
Euclidean distance between the best 
matching unit and the current sample 
vector j; and  is the neighbourhood width 
parameter, which also decays towards zero 
(Watts and Worner, 2009). Eventually, all 
sample vectors (i.e. pest profi les) that are 
most similar are associated with the same 
neuron or nearby neurons on the two-
dimensional SOM map.

Generally, SOMs are run through 
existing software. Th e latest version of the 
MATLAB (2013) SOM toolbox V2.1beta, 

   , , ,( 1) ( ) ( )[ ( )]i j i j i i jw t w t h t x w t

   2 2( ) exp{ / [2 ( )]}h t d t
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comprising numerous software programs 
and extensive documentation, can be 
downloaded from http://research.ics.aalto.
fi /software/somtoolbox/. A report by 
Vesanto et al. (2000) is also available on this 
site and provides excellent documentation 
with examples. Th e toolbox includes pro-
grams for other data analysis methods such 
as k-means, principal components analysis 
and Sammon’s projection. Additionally, 
SOM analyses can be readily completed 
using r programming (Wherens and 
Buydens, 2007; Wherens, 2013). Many 
internet sites including YouTube (http://
www.youtube.com) provide background 
information and dynamic visualization of 
how SOMs work (e.g. http://davis.wpi.
edu/~matt/courses/soms/).

Training SOMs

SOMs identify patterns in the data by 
analysing training examples (i.e. samples of 
data), similar to the way vertebrates learn. A 
SOM can be trained with sequential or batch 
training. With the sequential training 
algorithm, only one sample vector (i.e. pest 
profi le) at a time is submitted for processing. 
With batch training the complete data set 
(i.e. all pest profi les) is presented to the 
algorithm before the weight vectors are 
processed or updated. In our experience, use 
of the batch training algorithm with linear 
initialization described below gives repro-
ducible results. Batch training is also more 
eff ective than sequential training, because 
the results of sequential training depend on 
the order in which samples are presented to 
the map (Vesanto et al., 2000). Hence batch 
training is used to train the SOMs in all the 
examples reported here.

To start SOM training, the initial 
position of each virtual vector that 
represents each neuron on the map (e.g. 9 × 
12 map with 108 neurons for our New 
Zealand example) needs to be set (Fig. 7.1). 
Th ese virtual vectors provide the reference 
location in multidimensional space to which 
each of the sample vectors (i.e. pest profi les) 
is clustered depending on their similarity to 
that reference vector. Sometimes random 

locations are assigned to the virtual vectors 
but this might give diff erent maps on 
repeated runs. We recommend a linear 
initialization that distributes the virtual 
vectors corresponding to the fi rst two eigen-
values of a principal component analysis. 
Th is type of initialization distributes virtual 
vectors in a way that well represents the 
original data in multidimensional space. 
Linear initialization also improves the speed 
of training the network (Kohonen, 2001). 
Linear initialization is an option in most 
SOM software. With this option selected, 
the software automatically calculates eigen-
values for the user.

Map size and quality

A SOM reduces dimensions of the data by 
mapping sample vectors on to an array of 
output neurons that are represented as cells 
on a two-dimensional map. For a SOM to 
give a good representation of the data, an 
appropriate number of neurons that 
comprise the map need to be assigned. Th e 
size of the map (i.e. the output layer, Fig. 
7.1) depends on the objectives of the study. 
A large map can reveal details about the 
data, but too large a map makes diff erences 
among cells small and diffi  cult to interpret. 
A small map may show general patterns in 
the data but may not illustrate important 
diff erences (Chattopadhyay et al., 2012). A 
common rule for optimum map size is 
 5C n , where C is the number of neurons 

in the map and n is the number of sample 
vectors in the input layer (Vesanto et al., 
2000). In our example for New Zealand, the 
number of sample vectors was 459, so the 
recommended number of neurons for the 
map is  5 459 107.12C , which, when 
rounded to the next largest whole number, 
suggests a map size of 108 cells. Worner and 
Gevrey (2006) used a 12 × 9 neuron map for 
their analysis (Figs 7.1 and 7.2). Th e 
organization of the map should be such that 
the length is larger than the width (Vesanto 
et al., 2000).

Th e SOM toolbox also provides 
algorithms to calculate quantization error 
(QE) and topographic error (TE). Diff erent 
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map sizes are investigated and these errors 
calculated. Th e optimal map size is the one 
in which these errors are the least. In our 
experience, selecting a map size based on 
the Vesanto et al. (2000) rule and the 
minimum QE and TE gives a good result. 
However, Chattopadhyay et al. (2012) 
suggest that TE is not a convincing criterion 
for choosing SOM size and can be ignored. 
Usually the number of neurons chosen for a 
map is less than the number of sample 
vectors; however, that is not an absolute 
constraint, and it is possible to have more 
neurons than sample vectors.

Neighbourhood function and learning rate

Default values for the neighbourhood 
function (i.e. neighbourhood width, ) and 
learning rate () (Eqn 7.2) are given in the 
software. Th e neighbourhood width param-
eter decreases with the number of iterations 
and distance (i.e. Euclidean distance) from 
the virtual vector. Th e neighbourhood width 
determines a ‘region of infl uence’ of each 
node or neuron such that it infl uences 
nearby vectors or samples more than far 
away ones. Th e fi nal virtual vector is also 
called the best matching unit for a cluster 
of sample vectors when the SOM has 
converged. Th e neighbourhood width 
declines towards zero with each iteration 
(i.e. epoch). So, for each iteration, the virtual 
vector, m, for neuron i on the map is updated 
this way:

 (7.3)

with x(t) being a sample vector; hci(t) is the 
neighbourhood kernel or function with 
respect to Euclidean distance around the 
best matching unit c, the fi nal virtual vector 
comprising weights that represent the 
cluster; (t) is the learning rate; and t is the 
iteration (Vesanto and Alhoniemi, 2000). 
Th e learning rate decreases with time. At the 
beginning of training, the learning rate has a 
high value and the SOM tries to fi t the input 
data approximately with large weight 
changes; then it fi ne-tunes the map over 

smaller changes determined by the learning 
rate, which continues to decrease until the 
map converges.

Number of iterations or epochs

By default, the ‘optimal’ number of learning 
iterations in the SOM_toolbox is defi ned 
by:  50 /trainlen m n, where trainlen repre-
sents the number of iterations; m is the 
number of neurons; and n the number of 
sample vectors. Unfortunately, there is little 
information about this formula in the SOM_
toolbox manual. Using this formula often 
means that the number of iterations is 
small. For our New Zealand example, 

 50(108) / 459 11.8trainlen , so, when 
rounded to the next largest whole number, 
12 iterations are suggested. A better rule of 
thumb is that, for good convergence and 
statistical accuracy, the number of iterations 
should be at least 500 times larger than the 
number of neurons (Kohonen, 1990). For 
our New Zealand example, convergence 
and good accuracy should be achieved in 
500(m) = 500(108) = 54,000 iterations.

SOM interpretation

While the SOM algorithm is essentially a 
clustering algorithm, the detail within each 
cluster is very useful for questions con-
cerning invasive alien species. For example, 
Worner and Gevrey (2006) found in their 
analysis of insect pest profi les that New 
Zealand shares a large number of pest 
species with Italy (59%), France (58%), 
Turkey (46%) and Morocco (48%). Th is 
similarity exists even though these countries 
do not appear to have analogous climates 
and conditions to New Zealand. Clearly, 
further study of the pests from these 
countries to determine potential pathways 
by which serious invasive species could enter 
New Zealand seems warranted. Th e most 
important result of the SOM analysis is that 
SOM weights can be used to create an index 
of risk of establishment for species not 
already found in a region. Th e SOM weight 
assigned to each species (i.e. an element in 

   ( 1) ( ) ( ) ( )[ ( ) ( )]i i i im t m t t hc t x t m t
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the virtual vector of the best matching unit) 
can be used to indicate those species most 
likely to establish in the target area if given a 
suitable pathway. Th e weights for each 
species provide a measure of association 
with the other species in the profi le or, in 
other words, how frequently the target 
species co-occurs with the others in the pest 
profi le around the world. In this way, a large 
number of species can be ranked. Th ose with 
the highest weight (i.e. risk index) but are 
not yet established in the target region 
comprise a subset of species that can be 
targeted for more in-depth risk assessment 
(Fig. 7.3).

Sensitivity analysis of SOMs

All databases contain errors. Th ere is 
concern that such errors could signifi cantly 
aff ect the reliability of any analysis based on 
the database. For example, Paini et al. 
(2010a) used impact risk assessments 
generated by the Australian Government’s 
Department of Agriculture, Forestry, and 
Fisheries (http://www.daff .gov.au/ba/ira/
fi nal-plant) as an independent source to 
estimate the error rate in the species 
distribution data set used by Worner and 
Gevrey (2006). Th e error rate was 
approximately 8%. Furthermore, Paini et al. 
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established in New Zealand.
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(2010a) evaluated the sensitivity of the 
SOM method by simulating error in the 
database. Th ey reversed an increasing 
percentage of the presence/absence data for 
each site and compared newly generated 
SOM outputs with the original output. Data 
from 459 sample vectors (i.e. pest profi les) 
were altered by 5%, 10%, 20% or 30%. For 
each test, the desired percentage of species 
was randomly selected from each pest profi le 
and their presence or absence records 
reversed. Each region was altered separately 
so that no two regions were altered in the 
same way. Paini et al. (2010a) found that the 
species’ original rankings remained 
unaff ected by alterations of up to 20% of 
data.

Clearly, no data set is complete. Th e 
impact of potentially incomplete data was 
tested in another study where species 
profi les were bootstrapped (i.e. resampled 
with replacement) 1000 times and the 
change in each species rank (highest weight 
to the lowest) was recorded (Watts and 
Worner, 2009). Th e New Zealand regional 
pest profi le was used. For the top 50 most 
highly ranked species that were not 
established in New Zealand, their ranks 
changed on average only 14 places out of a 
possible 800, a result that gave confi dence in 
the method.

SOM validation

One approach to validate a SOM analysis is 
to address the question: if the SOM analysis 
had been performed earlier, would it have 
helped to identify those pest species that 
actually established in a target region? 
Worner and Soquet (2010) carried out a 
SOM analysis on a database extracted from 
the Crop Protection Compendium (CABI, 
2007). New Zealand’s pest profi le again was 
used, where the status of each currently 
established invasive alien pest species was 
reversed one at a time. In other words, if a 
species was present in the region (1) its 
status was changed to absent (0). Th e 
objective of the analysis was to determine 
whether changing species status from 
present to absent changed its risk index 

signifi cantly. After the status of a single 
species was changed from present to absent, 
a new SOM was created using the modifi ed 
data and the new risk index for the target 
species recorded. Following that, the species 
status was reinstated to its original form 
prior to repeating the process with the next 
species in the pest profi le.

High correlation between the before 
(i.e. altered) and after (i.e. unaltered) data 
(Spearman’s rank correlation r = 0.99) 
showed that the data alterations did not 
have a signifi cant infl uence on risk assess-
ment. Ranks changed, on average, 14 places 
(Fig. 7.2) for the 120 established (i.e. 
present) species when their status was 
reversed, and the average change in risk 
values for the top 100 pest species was 0.07 
(Worner and Soquet, 2010). Th ese results 
illustrate that the SOM analysis would have 
helped identify those species as high risk 
before they established in New Zealand. 
However, while these results may be 
reassuring, the time of arrival of the species 
and the particular profi le of those already 
comprising that profi le would likely 
infl uence results. Additionally, a change of 
status of four of the 120 species currently 
present in New Zealand resulted in a change 
of cluster. For these four species, risk values 
also changed considerably upward. Th ose 
species had low initial risk. Some species 
have low initial risk simply because of low 
prevalence. Any interpretation of risk for 
low-prevalence species requires caution and 
should be based on additional information. 
It is clear, however, that this tool is robust 
enough and stable enough not to be 
infl uenced by even quite large variations for 
a large number of known global crop pests. 
Th ese results, again, illustrate the usefulness 
of the method.

In another validation study, data from 
the GPDD and the CABI Crop Protection 
Compendium were used in a comparative 
analysis. Suiter (2011) included in his 
SOM analyses all pest taxa from bacteria to 
weeds recorded in the respective databases 
through 2010. Pre-processing of extracted 
data eliminated uncertain data and records 
categorized as ‘Unverifi ed’, ‘Uncertain’, 
‘Eradicated’, ‘Intercepted’ or ‘Questionable’. 
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With only records marked as ‘Present’, only 
10.8% of all species were recorded in both 
databases. A 15 × 10 SOM map was used for 
the analysis and the databases were analysed 
separately. Th e aim was to determine the 
number of species classifi ed as high risk by 
the SOM analysis and not established in the 
USA in 2007 that subsequently established 
by 2011.

Th e analysis of the GPDD database 
found six species with high risk indices that 
had not been in the USA in 2007 but were 
established by 2011, and another six species 
with high risk indices were found from the 
Crop Protection Compendium. Th e species 
were not the same, so 12 high-risk species 
that were not present in the USA in 2007 
had subsequently established by 2011. It is 
not known whether any of the species was 
on any agency risk list, but it appears that 
the SOM analysis can provide a proactive 
mechanism for risk assessors to indicate 
potential threats for detailed analysis that 
may not come to their attention by other 
means.

Further validation for the SOM method 
was obtained using a virtual world to 
simulate invasions and test the predictions 
of the SOM (Paini et al., 2011). Th e authors 
created a virtual world in which each invasive 
species was assigned a parameter that 
defi ned its environmental requirements, 
and each region of this virtual world 
contained a range of environmental 
characteristics determining which invasive 
species could invade and establish. Th is 
virtual world thus determined exactly which 
species could invade which region. To test 
the SOM, each species was distributed over 
predetermined proportions (i.e. 20% and 
50%) of the regions where it could establish 
at a point in time when not all species had 
reached or invaded all the regions they are 
able to. Th e virtual pest profi les were 
analysed using a SOM to generate 
predictions of which species were most 
likely to establish in each region. Th ese 
predictions were then compared with the 
species known to be able to establish in a 
particular region. Th ey found the SOM was 
extremely effi  cient at predicting those 
virtual species that could establish in a 

region, especially those that they had not 
yet invaded, compared with those virtual 
species that could not.

SOM application: an example from 
Finland

Vänninen et al. (2011) updated the list of 
invasive alien invertebrate pests in Finland 
and identifi ed potential new pests using a 
SOM analysis. A comprehensive list of 
indigenous and invasive alien agricultural 
pests had been compiled nearly 50 years ago 
(Vappula, 1962) and was considered out of 
date because crop species, production 
methods and world trade had undergone 
substantial changes since that time. 
Furthermore, climate warming has resulted 
in longer growing seasons and milder 
winters in Northern Europe, which is likely 
to increase yields and create opportunities 
to produce new crop species and varieties. 
Future changes in climate and agricultural 
production practices will increase the need 
for plant protection against current and 
novel pests.

Vänninen et al. (2011) focused their 
analysis on pest species that feed on 
horticultural or agricultural plants, partly 
because approximately 15% of invasive alien 
species that are expanding or shifting 
polewards in Europe have colonized agri-
cultural environments (Hickling et al., 2006; 
Roques et al., 2009). Th e species fell into 
three categories defi ned by the International 
Plant Protection Convention (FAO, 2002, 
2004).

Th e list of invasive alien pest species – 
both occasionally detected and naturalized 
species – recorded at MTT Agrifood Research 
Finland was compared with the list of pest 
species in Finland compiled by Vappula 
(1962) and the handbook of alien species in 
Europe (DAISIE, 2008b) compiled by the 
European Commission-funded Sixth Frame-
work Programme, Delivering Alien Invasive 
Species Inventories for Europe (DAISIE; 
DAISIE, 2008a). Th e list of potential pests 
was determined using a SOM that ranked 
species in terms of their risk indices. Th e 
SOM analysis used the CABI Crop Protection 
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Compendium (CABI, 2003), a global 
database of pests and pathogens, and 
clustered geographical areas that have 
similar pest species assemblages to Finland. 
Statistical weights were calculated for the 
species in the pest profi les. Th ese weights 
were used to determine the risk of invasion 
for species that were not yet established in 
Finland.

Th e inventory of species recorded 77 
invasive alien invertebrate pest species 
established within Finnish agricultural and 
horticulture systems (Vänninen et al., 2011). 
Th ose species included 67 insects, fi ve 
nematodes, two mites and three slugs. Th e 
insect pest species included 39 Hemiptera, 
ten Th ysanoptera, eight Coleoptera, four 
Lepidoptera, three Diptera and one 
Hymenopteran species. Of the Hemiptera, 
the majority were aphids (19 species) and 
soft or hard scales (11 species). Th irty-fi ve of 
the recorded 77 pest species were mentioned 
in Vappula (1962), so nearly half of the 
species that have invaded Finland have done 
so during the last 50 years.

Risk indices produced by the SOM 
analyses were generally high for indigenous 
species and alien species already established 
in Finland. Th is pattern suggests that SOM 
analysis may be a feasible tool for predicting 
the likelihood of successful invasions of 
future invasive alien pests. Th e SOM 
analysis predicted high establishment risk 
indices (>0.5) for eight pests of outdoor 
crops that, at the time of the study, were 
not recorded in Finland. One of these 
species was Leptinotarsa decemlineata, a 
quarantine pest. Another species was 
Eriosoma lanigerum, regulated to protect 
fruits, berries and woody ornamentals. A 
third high-risk species was Ostrinia nubilalis, 
a pest primarily of maize, which is not 
widely cultivated in Finland. O. nubilalis is, 
however, a migrant in Finland and lives 
there on Artemisia spp. and several Poaceae. 
Th is insect potentially will become a serious 
pest if maize is widely cultivated in Finland 
under climate change. SOM analysis 
suggests that the greatest risk from alien 
pests in Finland in the changing climate 
falls on horticultural crops. In short, 
Vänninen et al. (2011) recommended SOM 

analysis as a useful complement to local 
expert knowledge to assess risks posed by 
invasive alien species.

SOM application using multi-criteria 
analysis

To prioritize the biosecurity risks from 
economically important plant-parasitic 
nematodes to Australia, Singh et al. (2012) 
analysed distributions of 250 species from 
355 regions worldwide using a SOM. Similar 
to previous studies, Singh et al. (2012) 
compared the presence and absence of pest 
species in Australia with other regions of the 
world by clustering regions with species 
assemblages similar to those of Australia 
and its jurisdictions. Th e SOM clustering 
was used to determine other countries and 
regions which could act as a donor of 
potential invasive species. Th e SOM index 
(interpreted as the likelihood of a species 
becoming established, if it arrives) was used 
to select 97 out of the 250 species for more 
detailed multi-criteria evaluation.

Multiple biotic, abiotic and anthro-
pogenic factors contribute to the chances 
that an invasive alien species will arrive, 
establish and cause a negative impact in a 
new range (Lodge et al., 2006; Hayes and 
Barry, 2008; Blackburn et al., 2011; Leung et 
al., 2012). Singh et al. (2012) evaluated risks 
posed by invasive alien nematodes with a 
multi-criteria evaluation scheme. Th e 
scheme included SOM indices as measures 
of the likelihood of a species becoming 
established and nine other criteria: (i) 
existence of particular pathways; (ii) survival 
adaptations; (iii) pathogenicity; (iv) host 
range; (v) whether the species is an emerging 
pest; (vi) its taxonomy; (vii) the existence of 
particular pathotypes; (viii) association in 
disease complexes; and (ix) the level of 
knowledge that exists about the species. For 
each of the nine criteria, a probability rubric 
was developed to indicate the level of risk. 
Species were evaluated against each of the 
nine criteria based on information from the 
literature and expert judgements. Th e 
resulting scores for all criteria and the SOM 
index for each species were combined using 
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weighted averages to determine an overall 
biosecurity risk.

By integrating SOM analysis into the 
multi-criteria evaluation, Singh et al. (2012) 
were able to explicitly incorporate hetero-
geneous data into their analysis of biosecurity 
risks from plant-parasitic nematodes to 
Australia. Th e SOM clustering of regions with 
similar species assemblages and potentially 
similar ecological niches indicated that 
Australia’s major trading partners could also 
act as donors of species most likely to pose 
the greatest biosecurity risks. Th e species 
rankings based on SOM analysis had a 
signifi cant positive correlation with the 
overall risks determined after multi-criteria 
evaluation. After assessing additional infor-
m ation about the nine criteria and combining 
with the SOM index, the majority of the 97 
species had a greater overall risk than that 
estimated by the SOM index alone. For 
instance, by using the SOM index risk 
scale outlined in Paini et al. (2010a), 
Bursaphelenchus xylophilus, Heterodera 
glycines and Heterodera carotae with SOM 
indices of 0.37, 0.40 and 0.13 would be 
classifi ed as medium-, medium- and low-risk, 
respectively. However, after multi-criteria 
evaluation of additional information, the 
overall risk value was much higher than that 
estimated by the SOM index alone (Table 
7.1), refl ecting additional expert judgement.

For all three species in Table 7.1, the 
increased overall risks were justifi ed after 
considering information on pathogenicity, 
potential economic impacts, records of 

interceptions indicating the availability of 
pathways, good survival adaptations and 
also evidence of their spread into new areas. 
Th e study by Singh et al. (2012) re-emphasizes 
the importance of careful interpretation of 
results from SOM. Relying only on SOM 
analysis could lead to under- or over-
estimation of risks depending on the species 
(Worner and Gevrey, 2006; Eschen et al. 
2012). While SOM analysis is useful for 
initial prioritization of species for further 
assessment, Singh et al. (2012) suggest a 
species’ biosecurity risk can be better 
estimated by integrating SOM results with 
expert opinion in a multi-criteria evaluation 
rather than using each method on its own.

Clustering with k-Means

An alternative method of clustering species 
assemblages is k-means (Lloyd, 1982), an 
unsupervised clustering algorithm that 
determines to which of k clusters each 
sample vector should be assigned. While the 
k-means algorithm is iterative, it is usually 
much faster than the SOM algorithm, 
allowing for more replications of the 
clustering with less computing resources. A 
number of programming and analysis 
platforms including r (R Development Core 
Team, 2013), matlab (MATLAB, 2013) and 
sas (SAS Institute, Inc., 2011) provide 
k-means algorithms.

Th e general k-means algorithm is as 
follows (Worner et al., 2013):

Table 7.1. Weighted contributions of criteria to risk scores for plant-parasitic nematodes.

Criterion
Criterion 
weight

Score

Bursaphelenchus 
xylophilus

Heterodera 
glycines

Heterodera 
carotae

Species distribution (SOM index) 0.2 0.37 0.40 0.13
Pathways 0.1 0.80 0.60 0.80
Survival adaptations 0.1 0.70 0.80 0.80
Pathogenicity 0.1 0.90 0.90 0.80
Host range 0.1 0.60 0.50 0.30
Emerging pest 0.1 0.80 0.80 0.50
Taxonomy 0.1 0.50 0.70 0.60
Knowledge 0.1 0.50 0.50 0.60
Pathotypes 0.05 0.50 0.80 0
Disease complex 0.05 0.80 0.60 0
Overall risk (score × weight) 0.62 0.63 0.47
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1. Choose k initial centres (these centres 
represent vectors in multidimensional space 
and can be generated randomly, or they can 
be vectors that are randomly selected 
without replacement from the data set).
2.  For each data vector (e.g. regional pest 
profi le), calculate the distance to each of the 
k cluster centres.
3. Assign each data vector (e.g. pest profi le) 
to its nearest cluster.
4. Calculate new cluster centres that 
correspond to the mean of all vectors in each 
cluster.
5. Repeat steps 2–4 until a stopping 
condition is reached, usually when vectors 
no longer change the cluster they are 
assigned, so the clusters are stable.

Th e k-means algorithm was fi rst applied to 
the analysis of regional pest and species 
profi les the same way as the SOMs (Watts 
and Worner, 2009). Geographical regions 
represented by their species profi les were 
clustered and the contents of each cluster 
were examined. Th e risk of a species 
establishing was determined as its frequency 
in the cluster. High frequency indicated a 
high level of co-occurrence with the other 
species in the pest profi les in the same 
cluster.

Several analyses using k-means have 
been reported (Watts and Worner, 2009, 
2011, 2012). Watts and Worner (2009) 
compared the results of clustering insect 
pest profi les using SOM with the results of 
clustering profi les using k-means. Cluster 
quality was measured using the QE, which is 
the mean distance between each vector and 
the centre of its cluster (Hansen and 
Jaumard, 1997). Th e comparison showed 
the k-means algorithm produced clusters of 
the same quality and highly similar risk 
weightings as the SOM. Th e study did not 
examine the eff ects of noise or small random 
changes to the species’ presence.

Th e k-means and SOM algorithms were 
again compared with the species profi les 
being bacteria that cause crop diseases 
(Watts and Worner, 2012). While some 
diff erences in performance of the clustering 
algorithms existed, in most instances the 
diff erences were not signifi cant. Th e 
exception was computational effi  ciency, 

where k-means was orders of magnitude 
faster. More importantly, the diff erent 
algorithms assigned high to medium risk 
indices to essentially the same species: only 
twelve species of the top eighty were not in 
both the SOM- and k-means-generated risk 
lists.

Hierarchical Clustering

In hierarchical clustering, each item in the 
data set is initially considered a cluster and 
in each subsequent step, two clusters are 
merged based on similarities or dis-
similarities until all clusters are merged into 
a single cluster (Borgatti, 1994; Hastie et al., 
2009). Clusters can be merged by diff erent 
methods including the most similar pair of 
observations in two clusters (i.e. single 
linkage), the most dissimilar pair of 
observations (i.e. complete linkage) or the 
dissimilarity between the average of the 
observations in each cluster (i.e. group 
average; Hastie et al., 2009). Th e method 
determines cluster sizes and relationships 
among clusters. Th e optimal number of 
clusters can be determined using a statistic 
such as the Davies–Bouldin Index that 
describes the ratio of variation within and 
among clusters (Davies and Bouldin, 1979). 
A dendrogram provides a graphical repre-
sentation of the relationship among the 
clusters. Like other clustering techniques, 
the results of hierarchical clustering do not 
imply causal relationships and should be 
interpreted with caution.

Eschen et al. (2012) used hierarchical 
clustering to detect regional patterns in pest 
species distributions to investigate trade in 
plants for planting in Europe as a major 
pathway for the introduction of invasive 
alien forest pests and diseases. Th e study 
aimed to develop an objective assessment of 
risk posed by individual pests and diseases 
and to identify potential sources of invasive 
species not yet present in Europe, based on 
known species distributions. For their 
assessment, Eschen et al. (2012) analysed 
distribution data from CABI’s Plantwise 
Knowledge Bank (http://www.plantwise.
org/knowledgebank) for 1009 invertebrate 
pests and pathogens of woody hosts in 351 
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global regions within 183 countries. Seven 
large countries were subdivided into regions. 
Th e 1009 taxa were divided into twelve 
groups: four microorganism and eight 
invertebrate. Countries and regions with 
similar pest species assemblages were 
identifi ed for each organism group using 
hierarchical cluster analysis with the Ward 
(1963) minimum variance method to 
determine which clusters were merged. Th e 
likelihood of establishment was calculated 
as the proportion or frequency of countries 
within each cluster containing European 
Union (EU) and European Free Trade 
Association (EFTA) countries where each 
species was present.

Regions with pest species assemblages 
most similar to EU countries were North 
America, the Mediterranean region, the 
northern part of Eurasia and Australia/New 
Zealand, which have similar climates to the 
EU and a long history of live plant 
importation. On average, the clusters for 
microorganisms were twice as large as 
clusters for invertebrate groups (111 versus 
61 regions per cluster), which may refl ect 
better distribution data for invertebrates 
which are easier to detect and identify than 
are microorganisms. Th is resulted in better-
defi ned clusters for invertebrates than 
microorganisms. For the Oomycetes, 
European countries were spread over all 
clusters, but otherwise no interpretable 
microbial clusters were formed. Most pest 
species in the database including non-
European species were recorded in one or 
more EU countries, suggesting that risk 
posed by some exotic species in Europe 
primarily comes from the spread within the 
EU. Similarly, Paini et al. (2010b) found that 
most ‘new’ species that might aff ect US 
agriculture were recorded already in one or 
more states.

Cautions and Limitations of SOMs 
and Other Clustering Methods

Cautions and caveats for SOMs and other 
clustering methods need to be acknowledged. 
Species of low prevalence generally are not 
represented suffi  ciently in their global 

distribution to show any signifi cant 
association or co-occurrence with other 
species and most often have low risk values. 
Th e analyst should pre-process the data to 
exclude endemic or invasive alien species 
that have very low global prevalence. Paini et 
al. (2011) noted that regions with a pest 
profi le comprised of fewer than eight species 
can become signifi cantly more unstable or 
diffi  cult to predict, and they recommended 
that any analysis should not generate lists 
for regions with so few species. A SOM 
analysis might be used to identify outliers 
on complex data sets (Liebscher et al., 2012) 
and the SOM analysis might cluster such 
vectors (i.e. pest profi les) together. However, 
Suiter (2011) cautioned that the outcome of 
SOM analysis might be aff ected by sampling 
artefacts. Countries such as the USA, China 
and Australia that have good records or have 
been heavily sampled for invasive pests 
consistently cluster together in analyses. 
Suiter (2011) suggested that this clustering 
was the result of the high probability of 
overlap in pest assemblages for countries 
with a large number of pests, the potential 
climatic similarity in parts of large countries 
with a wide range of climates, heavy 
historical trade volumes among countries 
with high pest numbers may create similar 
pest assemblages, and the extensive capacity 
to survey and document invasive alien 
species in these countries. Analysts should 
consider the potential eff ects of unequal 
pest sampling and reporting on clustering 
outcomes. However, similarities in climate, 
hosts and trading history should be 
responsible for many similarities in pest 
profi les (Worner and Gevrey, 2006; Paini et 
al., 2010a) and the goal is to reveal these 
similarities through clustering techniques.

Direct comparison of risk values for 
species in diff erent countries or profi les 
from diff erent databases is not possible. 
Th ese risk values depend on the details of 
which species have been recorded as invasive 
or endemic in the target regions (Paini et al., 
2010b; Eschen et al., 2012). Suiter (2011) 
found that many nations that were found to 
be similar based on their pest species 
assemblages, as described in the GPDD, 
continued to be similar when assemblages 
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were based on information from the Crop 
Protection Compendium. However, the 
high-risk species profi les for the USA for 
both data sets were very diff erent. Th us the 
analysis of each database should be 
interpreted separately.

Specifi c pathways that bring potential 
pests into new regions are not considered 
here. Eschen et al. (2012) suggested that 
combining pest distribution data with recent 
trade data could provide a better indication 
of the likely origin of invasive alien species. 
Such pathways would certainly be considered 
when high-risk species are subject to a full 
risk analysis. However, changes in global 
commerce may not immediately equate to 
change in pest assemblages. Signifi cant lags 
occur between pest establishment, sub-
sequent detection and publication of the 
fi ndings. Th us, the choice of which trade 
statistics to combine with pest distribution 
data remains problematic.

Users of k-means and hierarchical 
analyses should proceed with caution. 
k-Means has some weaknesses: it tends to be 
dependent on the initial number of clusters 
chosen by the user; it is sensitive to outliers; 
the analysis does not easily capture high-
level (i.e. inter-cluster) relationships; and it 
does not preserve data topology (i.e. the 
relationships among neighbours) in the 
clustering. Hierarchical analysis does not 
require the number of clusters to be 
predefi ned and its hierarchical structure 
allows explanation of inter-cluster relation-
ships. However, hierarchical analysis is not 
tolerant to noise (i.e. random errors in the 
data) and it does not preserve data topology 
in the clustering. Clearly more research is 
needed to evaluate the suitability of these 
methods to provide fi ne-scaled analysis of 
pest risk data.

Conclusions

Clustering pest profi les has potential to 
rank and prioritize the hundreds, even 
thousands, of potentially invasive alien pest 
species that could threaten a country. 
Indeed, Paini et al. (2011) claimed that up to 
10,000 species could be analysed on a 
desktop computer, which would bring 

considerable functionality to the assessment 
of so many species. For research purposes, 
such large-number assessment could be 
useful; but in practice, elucidation of this 
many species could add considerable noise 
to outputs (reports, maps) that must be 
considered by decision and policy makers. 
Since most potentially invasive pests would 
be considered low priority, there is value in 
addressing the subset that present the 
greatest danger. In this chapter, the process 
for developing SOMs has been carefully 
elucidated but the merits of other clustering 
methods are discussed. Furthermore, the 
study of high-risk species does not stop with 
a cluster analysis and examination of a pest 
profi le. Close analysis of similarity using a 
standard measure, such as percentage 
similarity or a simple matching coeffi  cient 
that accounts for shared and non-shared 
species, is required. Other data must be 
taken into account for a full assessment of a 
species’ potential to establish. For example, 
Saik konen et al. (2012) suggested that the 
risk assessment of potential invasive species 
across latitudes would be more reliable if, for 
example, photoperiodism and species’ 
responses to seasonal changes in day length 
and light quality could be included in the 
models forecasting species’ range shifts.

Pest establishment is only one com-
ponent of overall risk of any invasive alien 
species to any country or region. Th e 
probability of entry and the potential to 
spread and cause impact are also part of a 
full pest risk assessment. Lack of data often 
constrains pest risk assessments, and much 
research remains to be completed. Th e 
analysis of pest profi les by fi rst clustering, 
followed by a similarity analysis, in 
combination with the characterization of 
the climate or climate profi le may off er some 
early insights. In the absence of other data, 
analysis of pest assemblages, hosts and 
climate might provide suffi  cient information 
to support characterizations of risks posed 
by invasive alien species about which we 
know very little. Th e incorporation of SOMs 
into a multi-criteria analysis illustrates the 
value of SOMs, and possibly other clustering 
techniques, to complement a full risk 
assessment process and to elicit expert 
interpretation.
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Abstract

Th e estimation of rates and patterns of 
spread is one of the key steps in a pest risk 
assessment. Pest risk analysts across the 
world wish to make quantitative, 
scientifi cally defensible assessments of 
likely spread by invasive alien species. 
However, data and time to develop detailed 
models for pest invasions are usually lacking 
and the resources to test those models in 
practice are not available. Th erefore, generic 
and simple models are needed. A generic 
spread module composed of four models has 
been developed to assess the spread of plant 
pests. Four diff erent models were developed 
to represent diff erences in objectives, 
available data and assumptions underlying 
the assessment of spread. Th e most complex 
of the models simulates spread in time and 
space and has four biological parameters, 
representing population growth and 
dispersal. Th e simplest of the models has 
only one parameter and considers only 
geographic range expansion. A third model 
assumes logistic growth of invaded area and 

a fourth model assumes logistic growth of 
population density in invaded cells. All 
models consider climatic suitability and 
presence of hosts. Consideration of eco -
nomic value is optional. Th is chapter 
describes concepts and application of these 
models. Th ey are illustrated by case studies 
for western corn rootworm, Diabrotica 
virgifera virgifera, in Europe.

Scope

Th e objective of the generic spread module is 
to quantify and map the potential spread or 
temporal increase of invasive pests in a way 
that does not require too much work in data 
collection, model development and model 
fi tting. It was developed to help risk 
assessors rapidly assess the likely spread or 
temporal increase of invasive alien plant 
pests.

Th e module consists of four models that 
diff er in scope and sophistication (Table 
8.1). Models A and B estimate presence/
absence whereas models C and D estimate 
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population density. Models A and C are 
spatially implicit whereas models B and D 
are spatially explicit. Th e appropriateness of 
these models depends upon the objective of 
the risk assessor and the data available. One 
or more models may be used and the results 
compared.

With this modelling module, it is, for 
instance, possible to assess the spatial 
extent at diff erent times after entry (e.g. 
within 5 years, 10 years or 15 years) from 
one or more entry points (i.e. see models B 
and D). If the species is already present in 
the pest-risk-assessment area, these points 
might be known and could be eff ectively 
used in the models. If the species is absent in 
the pest-risk-assessment area or already 
present but the risk assessor would like to 

test other potential entry points, some 
arbitrary points can be chosen. Entry near 
main airports, ports or railway stations can 
be particularly interesting to test.

In addition, it is possible to simulate the 
population density expressed as a percentage 
of the carrying capacity (i.e. models C and 
D). To determine the area where the density 
of the invasive pest could reach outbreak 
levels, it is possible to assume that the 
population is initially present everywhere 
but at a very low density and then simulate 
the population growth at diff erent time 
horizons according to the environmental 
conditions (i.e. model C). In model C, 
population growth is independent of the 
distance to other populations and dispersal 
from one location to another is ignored.

Table 8.1. Description of the four models within the generic spread module. Risk assessors must provide 
estimates for: r, the relative rate of spatial increase (/year); c, the rate of range expansion (km/year); max, 
the maximum yearly multiplication factor of population density (no units); Pmax, the carrying capacity 
(number of individuals/cell); u, the scale parameter of the 2Dt distribution (km); and  (no units), the 
shape parameter of this distribution (comparable to the number of degrees of freedom of the 
t-distribution).

Model Output
Growth 
model Dispersal Parameter(s) Model scale Initial condition

A Presence/
absence

Logistic Spatially 
randomized 
or structured 
by economic 
value of the 
host

R Growth model 
describes number 
of invaded cells, 
scattered on the 
map according to 
economic 
information

Number of 
initially 
invaded cells

B Presence/
absence

None Radial range 
expansion

c The model describes 
increase of radial 
range around initial 
location(s)

Spatial locations 
of initially 
invaded cells

C Population 
density

Logistic None max; Pmax Growth model 
describes 
population 
dynamics in 
individual cells

Initial density 
assumed 
homogeneous 
over the area 
of potential 
establishment

D Population 
density

Logistic Dispersal 
kernel (2Dt)

max; Pmax; u;  Growth model 
describes 
population 
dynamics in 
individual cells; 
dispersal model 
describes spatial 
location of 
dispersing 
individuals

Spatial locations 
and initial 
densities in 
the initially 
invaded cells
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Another approach that ignores the 
spatial distance is calculation of population 
growth in terms of the number of presence 
points and then the allocation of the 
occupied area according to the economic 
value of the host (i.e. model A). Th is model 
goes one step further than the assessment 
of potential spread as it provides a fi rst 
estimate of the economic impact.

Two of the models (i.e. B and D) are true 
spread models in the sense that they describe 
explicitly the potential range expansion of a 
species over a territory and their outputs are 
represented on a map. Th e other two models, 
also called ‘spread models’ in this chapter, 
refer to models describing the temporal 
increase of population density, but this 
increase depends on the spatial location 
within the territory and thus their outputs 
can also be represented on a map. Th ese two 
types of models basically describe diff erent 
processes and cannot be used to answer the 
same question.

Th e strength of this generic spread 
module is that it is applicable to any plant 
pest species because only a few estimated 
parameters, four at most, need to be 
provided by the assessor. Estimates for these 
parameters can either be found in published 
materials or given by experts. All these 
models take into account the climate 
suitability of the plant pest species, as well 
as the habitat distribution and elements of 
growth and dispersal of the pest population. 
Climate suitability is commonly assessed in 
pest risk assessments, so climate data should 
be available for assessing potential spread. 
Concerning habitat distribution, geographic 
information system (GIS) fi les for some 
plant or tree species can be downloaded 
from various websites. Th e output of these 
models can be combined with other 
components of risk maps (Baker et al., 
Chapter 2 in this volume) and used to 
estimate the endangered area and potential 
economic impact.

Th is module was designed to fulfi l pest-
risk-assessment needs and assumes that 
suffi  cient information about a target pest 
and the invaded habitat is available. A 
separate decision support scheme has been 
created to guide risk assessors in their 

decision of whether to apply this module 
(see the online supplement S1 to Chapter 8; 
Kehlenbeck et al., 2012). Only the main 
processes involved in growth and dispersal 
are included in the models. Th e models 
proposed here for pest risk assessment have 
intentional simplifi cations that may limit 
their suitability for addressing alternative 
aims. More detailed studies and more 
sophisticated models will also be needed, 
even if they cannot be developed within the 
time and resource limitations of the pest 
risk assessment.

The Models

Each of the models is applied to an area of 
interest as a regular grid either in decimal 
degrees or metric units. Th e outputs of the 
models are given for each cell (i.e. the 
elementary unit of the grid) and each time 
step between the start and end of a given 
time horizon. Th e climate constraints of the 
invasive alien species should fi rst be 
considered; in the current version of the 
module, the outputs of climex (Sutherst 
and Maywald, 1985; Sutherst et al., 2007) 
can be used directly. In climex, the 
Ecoclimatic Index (EI) ranges from 0 to 100 
and gives an indication of long-term 
persistence. Th e Growth Index (GI) ranges 
from 1 to 100 and gives an indication of the 
potential growth during the favourable 
season (Sutherst and Maywald, 1985; 
Sutherst et al., 2007). Suitable cells are the 
cells where EI > 0 within the habitat 
distribution, and they represent the area of 
potential establishment. GI is used in 
models C and D to adjust the growth rate of 
the pest. Th e yearly multiplication factor 
() in the logistic growth functions of 
models C and D is calculated for each cell as 
a function of the ratio GI/GImax, where 
GImax is the greatest value of GI that is 
realized in the pest-risk-assessment area 
(Eqn 3 in Robinet et al., 2012). Other 
climate suitability surfaces can potentially 
be used as long as they can provide indices 
similar to EI and GI; if used, the code to 
implement the models should be modifi ed 
accordingly.
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Th e four models in the module are 
described briefl y below. Th e choice of the 
model depends on the purpose of the 
analysis and the available data. None of the 
models is necessarily better than the others, 
although advantages and drawbacks are 
identifi ed for each one. Further details about 
each model are provided in Robinet et al. 
(2012).

Model A: logistic increase of invaded area 
combined with the economic value of 

assets

In the fi rst model, the number of cells 
occupied by the pest species at each time t is 
calculated with a logistic growth function 
that depends on the estimated parameter r, 
the relative rate of increase of the invaded 
area (Table 8.1). In this model, growth 
represents the increase of the occupied area 
with time and not the increase of the 
population density. Th erefore, estimated r 
should not represent the intrinsic rate of 
population increase. Th is growth function is:

  (8.1)

where nt is the percentage of cells within the 
area of potential establishment (Baker et al., 
Chapter 2 in this volume) that are invaded at 
time t and n0 is this percentage at time t = 0. 
Th e location of these occupied cells is then 
chosen among the suitable cells following 
three scenarios. In the best case scenario, 
these occupied cells are chosen among the 
least valuable cells (i.e. where the value of 
the host plant is the lowest). In the worst 
case, these occupied cells are chosen among 
the most valuable cells (i.e. where the value 
of the host plant is the highest). In the 
random scenario, these occupied cells are 
selected randomly, irrespective of the cell’s 
economic value. For each of these scenarios, 
it is possible to map the potential spread of 
the plant pest and to quantify the total host 
value at risk for diff erent time horizons. 
Spread stops when all suitable cells on the 
map are invaded.

Objective

To estimate how rapidly economic impact 
accrues under contrasting scenarios for 
invasion.

Required parameters

Only one assessor-estimated parameter is 
needed: the relative rate of increase 
(proportion per year) in the number of cells 
invaded. Th e risk assessor should estimate 
this parameter based upon expert judgement 
and comparison to past invasions.

Advantages

Th e model gives a direct estimate of the 
economic impact through time; it draws 
scenarios (best/worst cases). As it is easy to 
apply, it can give rapid assessments of the 
range of potential impacts.

Drawbacks

Th e model ignores the geographical distance 
between source and target cells in the 
calculation of spread, which is likely to be 
biologically unrealistic. Furthermore, this 
model disregards the eff ects of geographic 
diff erences in climatic suitability for the 
growth of the pest population. Th us, the 
results represent a scenario with weak 
biological underpinning.

Model B: radial range expansion

Th is second model simulates a radial range 
expansion from one or more entry points. 
Th e only assessor-provided parameter is the 
spread rate c (km/year; Table 8.1). All the 
suitable cells located within the radius c t 
from the entry point(s) are occupied by the 
plant pest species at time t. Th is model arises 
from the Fisher–Skellam theory based on 
reaction-diff usion models (Fisher, 1937; 
Skellam, 1951) where dispersal of the 
population is derived from random walk 
theory and the population growth can take 
various forms; for instance, it can be 
exponential. Th e combined eff ects of 
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dispersal and growth make the population 
range advance at a constant velocity. Model 
B presented here is a simplifi ed version with 
no explicit consideration of population 
growth.

Objective

Th is model describes the likely expansion of 
the range of an invasive alien species over 
time.

Required parameters

Only one assessor-estimated parameter is 
needed: the rate of radial range expansion.

Advantages

Th is model is easy to use; it generates a 
simple map of potential dispersal over time 
and space. Th is map can be readily combined 
with spatially explicit data on economic 
value of assets. Th e distribution maps over 
time are readily assessed as to plausibility by 
risk assessors.

Drawbacks

Th is model ignores spatial variability in the 
density of the host and the climatic 
suitability for the growth of the pest 
population, and therefore does not account 
for relationships between population 
growth and spatial spread. Th e model 
assumes that the species can jump over 
unsuitable areas.

Model C: population growth

In the third model, the plant pest species is 
assumed to be initially present over all 
suitable cells albeit at a very low density. 
A logistic growth model depending on 
the carrying capacity Pmax (i.e. potential 
maximum population density within a cell of 
the study area) and the maximum yearly 
multiplication factor max gives the 
population density in terms of percentage of 
the carrying capacity for any time t. Th e 
population density increases heterogeneously 
over the study area because growth depends 

on the growth rate derived from GI (Robinet 
et al., 2012). Th e maximum yearly multipli-
cation factor max is supposed to be recorded 
where GI is the highest in the study area. Th e 
population density pt, which is expressed as a 
percentage of the carrying capacity, Pmax, at 
time t, is given by the following function:

 (8.2)

Objective

Th is model describes how long it will take for 
an invasive alien species to reach high 
population densities (e.g. densities suffi  cient 
to cause material damage), assuming that 
very low starting population densities are 
present at t = 0 in each suitable cell.

Required parameters

Th e risk assessor must estimate the potential 
yearly increase of the population under 
optimal conditions found in the pest-risk-
assessment area (i.e. max). To calculate the 
initial density, which is expressed on a 
relative scale from 0 to 1, the risk assessor 
should estimate both the initial founder 
population at t = 0 and the carrying capacity 
at the level of an entire grid cell. Th e estimate 
of carrying capacity should include estimates 
of the area of the host per grid cell and the 
maximum density of the pest per unit area 
of its host (see example for western corn 
rootworm, Diabrotica virgifera virgifera 
LeConte (Coleoptera: Chrysomelidae), in 
section ‘Analyses for the Case Study of 
Western Corn Rootworm’ below).

Advantages

Th is model shows variability in lag time (i.e. 
time until damaging population densities 
are reached). Th e model is based on a climex 
output specifying spatial variation in 
climatic suitability for the pest species in 
combination with an assessment of the 
potential growth rate of the population 
under optimal conditions.
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Drawbacks

It assumes that the species is initially 
present over the whole suitable area and it 
does not account for the spatial process of 
dispersal.

Model D: population growth and 
dispersal kernel

Model D simulates the growth of a pest 
population with the logistic growth function 
described for model C and it simulates 
dispersal with a rotationally symmetric two-
dimensional t-distribution (2Dt) dispersal 
kernel (Clark et al., 1999; Robinet et al., 
2012). Th e 2Dt kernel is given by the 
following formula:

 (8.3)

K(x,y) gives the probability of dispersion 
into location (x,y) given that it comes from 
(0,0) and  is the gamma function. Th is 
kernel depends on two parameters: u, the 
scale parameter, which defi nes the width of 
the dispersal distribution; and , the shape 
parameter, which defi nes the fatness of the 
tail of the distribution. Th e shape of the 
distribution varies according to the value of 
 from the fat-tailed Cauchy distribution 
for    1 to the thin-tailed normal 
distribution for   +∞. Th e shape 
parameter  defi nes the fatness of the tail 
of the two-dimensional t-distribution and 
is identical in meaning and eff ect to the 
‘degrees of freedom’ parameter in Student’s 
one dimensional t-distribution, familiar to 
most readers from the t-test of statistics. It 
is well known that t-distributions with a 
low number of degrees of freedom have 
fatter tails, i.e. higher frequency of extreme 
values, than t-distributions with high 
number of degrees of freedom, which tend 
to the normal distribution. Th e model 
simulates the spread of the species from 
the entry point(s) with given population 
densities.

Objective

Starting from one or more initial points of 
establishment, and using the local density at 
those points, this model can show the likely 
spatial spread of the organism over time and 
space, as aff ected by spatial variability in 
climatic suitability and the biological 
parameters provided by the user.

Required parameters

Th is model requires four assessor-estimated 
parameters, two for population growth and 
two for dispersal (Table 8.1). Population 
growth parameters are the same as for 
model C. Parameters for dispersal are those 
of the 2Dt distribution. Th ese are a length 
scale (u; km) and a shape factor ().

Advantages

It is biologically a more realistic model than 
the other models as both population growth 
and dispersal are simulated.

Drawbacks

It is conceptually more diffi  cult to estimate 
all the parameters and obtain the data for 
this model than for model A, B or C. 
Simulations with this model take sub-
stantially more time to run compared with 
the other models.

Resources to Use the Modules

R software and code

Th e generic spread module has been coded 
in r, but theoretically it can be coded in 
another language. r is a language and 
environment for statistical computing (free 
software, available at http://www.r-project.
org/; R Development Core Team, 2010). If r 
is not already on the computer used for risk 
analysis, it should be installed. We 
recommend using the r version that is 
included in the spread module package 
which is available from a permanent 
repository at the Royal Dutch Academy of 
Arts and Sciences (https://easy.dans.knaw.
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nl/ui/datasets/id/easy-dataset:51346/
tab/2) in the folder called ‘R installer’. Newer 
versions of the software available on the r 
website may not recognize all the functions 
used in the code provided in the package.

Th e r code necessary to apply the spread 
module should be retrieved from https://
easy.dans.knaw.nl/ui/datasets/id/easy-
dataset:51346/tab/2 in the folder called 
‘Spread module code’. Th ere are three 
versions of the module: (i) DD version-
Europe; (ii) DD version-world; and (iii) 
metric version-Europe. Version 1 ‘DD 
version-Europe’ is the original version of the 
spread module. It was developed for Europe 
and the spatial reference of GIS fi les (see 
subsection ‘Input data’ below) should be in 
decimal degrees. Version 2 ‘DD version-
world’ is an extended version for any part of 
the world and should also be in decimal 
degrees. For versions 1 and 2, the study area 
and grid resolution in the spread module are 
automatically defi ned by the grid extent and 
grid resolution used to generate the climex 
output fi les (i.e. EI and GI). Version 3 ‘metric 
version-Europe’ is the decimal-degree 
version in a European metric system 
Lambert-Azimuthal-Equal-Area projection 
with a spatial resolution of 10 km × 10 km. 
Th is version was developed to combine the 
spread module maps with other risk maps 
from the European Union (EU)-funded 
PRATIQUE project (e.g. to determine the 
endangered areas at risk in Europe) since 
their risk maps were in this projection 
system and at this spatial resolution (Baker 
et al., 2012, Chapter 2 in this volume). 

Before the assessor applies the spread 
module, she or he must create a new folder 
for each species containing all the fi les 
provided in one of the three versions of the 
module, including the r code. Some fi les 
given as examples (e.g. ‘ClimexOutput’, 
‘habitat’, ‘econ’ or ‘presence’) should be 
replaced by the appropriate ones, depending 
on each species.

Input data

To apply the generic spread module, the 
assessor must have enough information 

about the suitable area where the invasive 
alien species can potentially persist. Th is 
area is defi ned by climatic constraints and 
habitat distribution. In the r code, the 
climatic constraints are the two indices, EI 
and GI, produced by a climex model of the 
invasive alien species applicable to the pest-
risk-assessment area. Th e spatial resolution 
chosen for the climex grid will be the 
spatial resolution at which the spread 
module will be applied (i.e. it depends on 
the user’s choice). Th e climex output is one 
of the main inputs of the generic spread 
module; the other inputs being a map of 
host or habitat distribution and the values 
for model parameters provided by the user. 
In essence, the climex output provides the 
module with information about the area of 
potential establishment (i.e. where EI > 0) 
and about the relative suitability for 
population growth across this area (i.e. 
according to the value of GI). All models 
need EI, while models C and D also need GI. 
Th e habitat distribution could be the host 
plant distribution (i.e. absence and presence 
of the host plant coded by 0 and 1, 
respectively) or the host plant density (i.e. 
presence will be considered where the 
density is above 0 in this case). Other 
factors, such as the area where soil is suitable 
for the plant pest species, can also be used 
for the habitat distribution (i.e. either as 
presence/absence of the favourable factor or 
as the density of favourable factor). Although 
the habitat distribution is not needed to 
apply the models, it contributes to a better 
estimate of the potential spread of the 
species. Moreover, it is possible to restrict 
the suitable area by a maximum elevation. 
For model A, in addition to the climex 
output and the habitat distribution, a GIS 
fi le in raster format is needed to account for 
the economic value of the aff ected plants 
over the pest-risk-assessment area. Th e r 
code can read a variety of raster formats (e.g. 
.tif, .asc and ESRI grid).

Generating CLIMEX output as input for the 
models (needed for all models)

In climex (version 3), use the function 
‘Compare Locations (1 species)’ and the 
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simulation fi le ‘Grid Data’ when opening the 
climex model for your study species. Th e 
grid used in the generic spread module for 
versions 1 and 2 will be the grid used in 
climex. In MetManager, select the study 
area where the potential spread should be 
mapped. Do not select ‘World’ because the 
grid will be too large for the spread module 
application. Th en click ‘Run’. Once the model 
run is complete, click ‘Save to fi le’, select 
‘New’, select the model variables: ‘Latitude, 
Longitude, EI, and GI’ (comma-delimited, 
this order is very important), and ‘Save’. 
Th en fi nd the exported fi le, often in the 
‘models’ folder of climex, copy this .csv fi le 
and paste it in the spread module folder of 
your study species. Th is fi le should be 
renamed ‘ClimexOutput.csv’ (writing capital 
or lowercase letters is very important for r). 
It is also possible to have this fi le in text 
format (.txt) but in this case the header lines 
should be removed.

Habitat distribution (not compulsory)

If the user chooses to account for habitat 
distribution, a GIS fi le in raster format with 
presence/absence (1/0) of the habitat or the 
habitat density should be provided. In the 
latter case, the habitat distribution is 
defi ned by the area where the host plant 
density is above 0. Th is fi le can be retrieved 
from various sources. For instance, the fi le 
used for D. virgifera virgifera (i.e. distribution 
of grain and forage maize) was retrieved 
from McGill University (Monfreda et al., 
2008; see Supplementary Material 1 in 
Robinet et al., 2012). Th e spatial reference 
system of this GIS fi le should be consistent 
with the version of the module. If the 
decimal-degree version of the module is 
used, the habitat distribution should be 
given in geographic coordinates according to 
the WGS system of 1984. Th en it will be 
automatically projected on the climex grid 
by the spread module code. If the metric 
version of the model is used (i.e. spatial 
extent of x-axis = 2500–7500 km and y-axis 
= 1000–5500 km), the habitat distribution 
should also be projected on a metric grid of 
10 km × 10 km spatial resolution.

Economic data (for model A only)

To account for the economic value of the 
host, the assessor should provide a GIS fi le 
in raster format. Th is fi le can be retrieved 
from various sources. For instance, the fi le 
used for D. virgifera virgifera (i.e. value of 
grain and forage maize) was retrieved from 
McGill University (Monfreda et al., 2008). 
Th e spatial reference of the GIS fi le with 
economic data used by model A should be 
the same as described above for the habitat 
distribution.

Analyses for the Case Study of 
Western Corn Rootworm

Th e western corn rootworm is an 
economically important pest of maize in the 
USA and Canada (Krysan and Miller, 1986; 
EPPO, 2004). Th is species, supposedly 
native to Mexico, was fi rst detected in 
Europe in 1992 in Belgrade, Serbia (Baca, 
1994; EPPO, 1994) and it has since spread 
rapidly throughout central and south-
eastern Europe (Edwards, 2011), causing 
considerable economic impact. Since the 
growth and dispersal of this insect are well 
documented, this species is used to illustrate 
the application of the generic spread module.

Th is section describes: (i) how to apply 
the four models of the generic spread 
module to a particular pest species, i.e. the 
western corn rootworm; (ii) how the 
parameters are estimated; (iii) how the r 
commands are typed; and (iv) how to 
interpret results. Th e example presented 
here was created with the ‘DD version-
Europe’. No elevation limit was considered 
for this case study. Th e climex model 
developed by Kriticos et al. (2012) was used 
to defi ne the climate constraints in 
combination with 1961–1990 mean 
monthly climate data interpolated over 
Europe at 0.5° × 0.5° spatial resolution by 
the Climate Research Unit of the University 
of East Anglia (Norwich, UK; Mitchell and 
Jones, 2005). Th e suitable area was defi ned 
by the area where EI > 0 and maize was 
present. Both grain maize and forage maize 
were considered for the habitat distribution 
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of D. virgifera virgifera and for the economic 
data on host value, required by model A. 
Initial time (i.e. t = 0) was set to the year the 
plant pest was fi rst detected in Europe (i.e. 
1992). Th e entry point needed in models B 
and D was Belgrade (N 44°82; E 20°30; 
EPPO, 1994). An example of the r 
commands that are used to set up and apply 
the models is provided in Step 1 of the 
online supplement S2 for Chapter 8.

Model A: logistic increase of invaded area 
combined with the economic value of 

assets

Parameter estimation

Th e relative rate of spatial increase, r, is 
estimated based on the increase of the 
number of cells colonized over time. If the 
number of cells initially infested is set to 
N0 = 1 and the number of infested cells (Nt) 
is known t years later, then the following 
equation derived from the logistic growth 
function can be solved to estimate r:

 (8.4)

with Nmax the number of suitable cells. In 
the case of D. virgifera virgifera, according to 
the distribution map (Edwards, 2011), the 
species was present over 358 cells in 2010 
(i.e. at t = 18 years since t = 0 in 1992) and 
Nmax = 3104 cells. Th e value for Nmax is 
directly calculated and included in the 
output as ‘number of cells in the area of 
potential establishment’ provided by the 
command ‘printinfo()’. Th erefore, for this 
case study, r = 0.33/year.

To apply the model, the assessor must 
provide an initial value for the variable nt 
which provides the percentage of cells within 
the area of potential establishment that 
have been invaded at time t. In our example, 
n0 = 100  N0 /Nmax, then n0 = 0.03%. An 
example of the command lines to run model 
A and obtain output can be found in the 
online supplement S2 to Chapter 8.

Description of the output

Several results are calculated by the function 
call in r, including: number of cells 
considered in the model, number of cells 
within the suitable area, list of economic 
values used in the model, number of invaded 
cells at time t, percentage of invaded cells 
within the suitable area, sum of the economic 
value over all the invaded cells following the 
worst case scenario, sum of the economic 
value over all the invaded cells following the 
best case scenario and a summary (quantiles) 
of the sum of economic value over all the 
invaded cells across the replicate simulations 
of the random case scenario (see Table 
S8-2.2 in the online supplement S2 to 
Chapter 8). In addition, a six-panel window 
shows spread maps (Fig. 8.1). Th ree maps 
represent the spread of the invasive pest 
within the area of potential establishment 
under diff erent scenarios (i.e. best case, 
worst case and random case, depending on 
the economic value of the host plant). Th ree 
other panels show the number of invaded 
cells according to their economic values. For 
the random case, this number of invaded 
cells is accumulated over the number of 
replicate simulations.

Model B: radial range expansion

Parameter estimation

For this model, only the spread rate (km/
year), c, needs to be estimated. Recorded 
spread rates for D. virgifera virgifera vary 
from 60 to 100 km/year in Europe (Baufeld 
and Enzian, 2005). Like MacLeod et al. 
(2005), we consider in this example a typical 
spread rate of 80 km/year.

Other values that should be entered

To apply the model, the assessor must give 
the coordinates of the fi rst entry point in 
decimal degrees. We, therefore, enter the 
coordinates of Belgrade (N 44°82, E 20°30). 
An example of the r commands to run the 
model is provided in Step 3 in the online 
supplement S2 to Chapter 8.
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Description of the output

Several results are calculated when the 
function ‘radial’ is executed, including: 
number of cells considered in the model, 
number of cells within the suitable area, 
number of invaded cells at time t, percentage 
of invaded cells within the suitable area and 
coordinates in decimal degrees of the centre 
of the invaded cells (see Table S8-2.4 in the 
online supplement S2 to Chapter 8). In 
addition, the simulated spread map is shown 
(Fig. 8.2).

Model C: population growth

Parameter estimation

Both the maximum yearly multiplication 
factor (max) and the carrying capacity (Pmax) 
should be estimated by the assessor. Th e 
maximum yearly multiplication factor is 
given as the value of the multiplication 
factor where GI is maximal over the study 
area; in other words, where the species is 
thought to grow most rapidly. Th is maximum 
value is around max = 40 over Europe 
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Fig. 8.1. Output of model A. Potential spread of the western corn rootworm at time t = 20 (year 2012). On 
the left side, the potential spread is represented on a map. Black indicates the colonized area; dark grey 
indicates the suitable area but not colonized; light grey indicates not suitable area; and white means that 
data are missing (outside the study area). On the right side, a histogram summarizes the economic 
values of invaded cells. Results are shown for the best case scenario, the random case scenario and the 
worst case scenario.
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(Hemerik et al., 2004). Th e maximum 
population density (i.e. the carrying 
capacity) of D. virgifera virgifera is about 200 
individuals/m2 of maize (P. Baufeld, Julius 
Kuhn Institute, Germany and Z. Dancsházy, 
Plant Protection and Soil Conservation, 
Hungary, 2010, personal communication). 
To estimate the carrying capacity over one 
cell, the mean area covered by maize should 
be approximated. We assume, for instance, 
that 80% of the landscape is covered with 
arable land and a four-year rotation for 
maize, and thus cells where maize is present 
contain about 20% of maize. If the 
proportion of habitat is known in each cell, 
it is possible to have diff erent values for the 
carrying capacities. Although this estimate 
of maize area is uncertain, it is supposed to 
represent the landscape and it should 
provide a reference value on which to assess 
the population density in terms of 
percentage of the carrying capacity. Th en, 
we can calculate the carrying capacity by 

multiplying the maximum population 
density per unit area of maize (i.e. 200 × 106 
individuals/km2) by the proportion of the 
cell containing maize (i.e. 0.2) and by the cell 
area (i.e. approximately 1578 km2). (Note: 
cell area varies with latitude as the climex 
grid is given in decimal degrees.) Th e average 
cell area over the map is calculated by the 
code ‘printinfo()’ providing Pmax = 6.3 × 1010 
individuals per cell. Th e population density 
is then calculated as a percentage of this 
carrying capacity Pmax.

To apply the model, the assessor must 
provide an initial value for the population 
density, P0. In this model, we assume that 
the species is present over the entire suitable 
area but at very low density. Th is density is 
typically found after an accidental intro-
duction. We assume that 100 D. virgifera 
virgifera individuals are present initially in 
each suitable cell (i.e. P0 = 100). Since 

 0 0 max100 /p P P , we set p0 = 1.6 × 10–7%. 
An example of the r commands to run the 

Fig. 8.2. Output of model B. Potential spread of the western corn rootworm at time t = 20 (year 2012). 
Black indicates the colonized area; dark grey indicates the suitable area but not colonized; light grey 
indicates not suitable area; and white means that data are missing (outside the study area). The white 
cross indicates the entry point (Belgrade).

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



126 Christelle Robinet et al.

model is provided in Step 4 in the online 
supplement S2 to Chapter 8.

Description of the output

Several values are calculated by the output 
function, including: number of cells 
considered in the model, number of cells 
within the suitable area, population density 
(expressed as a percentage of the carrying 
capacity) over the grid points and number of 
cells with a population density (pd) = 0%, 
>0–25%, >25–50%, >50–75% or >75–100% 
of carrying capacity (see Table S8-2.6 in the 
online supplement S2 to Chapter 8). In 
addition, the spread map is shown (Fig. 8.3; 
see colour plate section) and eventually the 
series of spread maps from t = 1 to the given 
time horizon. Th e output map shows the 
increase of the population density, assuming 
that the invasive pest was initially present 
over all the suitable cells and that it could 
grow at various rates depending on local 
climate conditions. Th is output should not 
be interpreted as the potential spatial spread 
over the pest-risk-assessment area but 
instead as a spatially explicit indicator of the 
area where the invasive pest could reach 
outbreak levels at diff erent times in the 
future, given initial presence.

Model D: dispersal kernel

Parameter estimation

Four parameters should be estimated by the 
assessor for this model: two parameters 
associated with the population growth (max 
and Pmax are already estimated for model C; 
see subsection ‘Model C: population growth’ 
above) and two parameters associated with 
the population dispersal (u and ). Th e scale 
parameter u (km) determines the average 
spread distance whereas the shape parameter 
 determines the frequency of long-distance 
dispersal (see Robinet et al., 2012 for 
details). Consider that the spread rate c gives 
an estimate of the scale parameter, and for 
the example of D. virgifera virgifera, u = 
80 km. However, no data can be used to 
estimate  directly. As a result, we 
recommend testing several values and 

selecting the one that provides the spread 
pattern that is most consistent with current 
knowledge on the organism of interest. Here 
we consider a relatively low value,  = 5, 
because the frequency of long-distance 
dispersers among western corn rootworm 
populations is presumably high.

To apply the model, the assessor must 
provide an initial value for the population 
density, p0, at each entry point. Th is value is 
the same as the value estimated in model C 
but here it should be given in a separate fi le 
called ‘presence.txt’ fi le. Th e fi rst column is 
the longitude and second column the 
latitude in decimal degrees, and the third 
column is the population density, p0. An 
example of the r commands to run the 
model is provided in Step 5 in the online 
supplement S2 to Chapter 8.

Description of the output

Several values are returned by the output 
function, including: number of cells 
considered in the model, number of cells 
within the suitable area, number of invaded 
cells at time t, percentage of invaded cells 
within the suitable area, population density 
(expressed as a percentage of the carrying 
capacity) over the grid points and a summary 
of points from ‘presence.txt’ or a random 
selection (see Table S8-2.8 in the online 
supplement S2 to Chapter 8). In addition, 
the simulated spread map is shown (Fig. 8.4; 
see colour plate section). Either the 
population density (Fig. 8.4a) or the 
population above a given density threshold 
(Fig. 8.4b) can be requested. Th e potential 
spread of the invasive pest resulting from 
this model depends on local climate 
conditions, the population growth and the 
dispersal capabilities over the suitable cells. 
Th e overall result is, therefore, a radial range 
expansion whose rate is modulated by 
climate suitability and host presence in the 
area of potential establishment.

Discussion

Th e generic spread module package provides 
a new tool to explore relatively easily the 
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potential spread of plant pest species based 
on a limited number of biological parameters 
and integration of simple population 
dynamics models with a tool for assessing 
potential pest distributions, climex, that is 
widely used in the pest-risk-assessment 
community. Using the spread module 
requires limited mathematical expertise. 
Th e outputs of the four models are not 
considered to be precise predictions but 
scenarios that can help analysts assess how 
geographic distribution and impact of an 
invasive pest population can change over 
time and space. Uncertainty in parameter 
estimation can be approximated by inserting 
test values for the parameters and drawing 
multiple maps going from the best case to 
the worst case. Th e outputs of the models 
can provide useful quantitative evidence for 
pest risk analysis in support of expert 
assessments on the endangered area (Baker 
et al., 2012, Chapter 2 in this volume). Pest 
risk analysts who tested this module were 
generally positive about its use, but indicated 
that further development is desirable to 
improve ease of use and to clarify how 
biological parameters should be estimated 
from data, especially those for the dispersal 
kernel in model D (Robinet et al., 2012). Use 
of model A would be hampered by lack of 
spatially explicit economic data.

Th is version of the spread module is 
designed to meet basic needs of pest risk 
assessors. It can be refi ned and adjusted to 
particular cases. For instance, this version 
requires outputs of climex as input, but 
many diff erent niche models are available 
(Guisan and Zimmermann, 2000), and 
models other than climex could be used to 
generate input. Th e only requirement is that 
the bioclimatic model provides two indices: 
(i) an analogue of EI (i.e. an index equal to 0 
where the species cannot establish and 
above 0 where it can survive); and (ii) an 
analogue of GI (i.e. an index ranging from 0 
to any positive value that indicates the 
potential growth of the species during the 
suitable season). Th e results should be 
structured in a way that is analogous to the 
‘ClimexOutput’ fi le resulting from climex. 
Alternatively, r code could be written to 
read a diff erent type of input fi le.

Climate change will aff ect the long-term 
spread of pest species. In spread models, it is 
possible to consider diff erent climate change 
scenarios and diff erent climatic layers on 
which to apply spread. However, it is more 
reasonable to concentrate on short-term 
climate change scenarios (e.g. 20–30 years) 
because outcomes of spread models become 
more uncertain as the prediction horizon is 
longer (Pitt et al., 2011).

A number of models can be used to 
simulate and map potential spread of 
species. Answering some questions may 
help identify the most suitable modelling 
approach:

1. Who is going to apply the model(s)? A 
pest risk assessor will probably choose a 
generic model that does not require too 
much mathematical background whereas a 
modeller will probably use a more 
sophisticated model that can be adjusted to 
the particular case study and to a specifi c 
question.
2. In which context is the model applied? 
For a pest risk assessment, generic models 
that do not require too many data and 
information about the species such as those 
presented in this chapter will probably be 
chosen whereas more sophisticated and 
pest-specifi c models should be used for 
better understanding the potential spread 
of a well-documented species and to explore 
the eff ects of specifi c factors.
3. Is an estimation of the economic impact 
needed? Some models focus on potential 
spread only; others describe both spread 
and economic impact, and others describe 
more extensively the economic impact.

Th e generic spread module presented in this 
chapter was developed to be used by 
assessors who prepare pest risk assessments 
and concepts were, therefore, simplifi ed and 
data demands reduced to a minimum. 
Another generic spread model was developed 
by Waage et al. (2005). Concepts in their 
modelling framework resemble those of 
model D in the module presented here, but 
to our knowledge this model has to date not 
been incorporated into pest-risk-assessment 
practice. Many models have been developed 
outside the context of pest risk assessment 
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and can be used by modellers, such as 
Modular Dispersal in GIS (MDiG; Pitt, 2008; 
Pitt et al., 2009, 2011) or some bioeconomic 
models (Carrasco, 2009; Carrasco et al., 
2010). Th ese models usually contain more 
detailed descriptions of life cycle and biology 
and require, therefore, greater eff ort and 
more time to parameterize than generic 
models. Some pest spread models have been 
developed specifi cally for one species at the 
country or continental scale to more 
precisely account for the characteristics of 
that species’ growth, dispersal or economic 
impact, such as for: the horse chestnut 
leafminer, Cameraria ohridella (Gilbert 
et al., 2005); the pine wood nematode, 
Bursaphelenchus xylophilus, and pine wilt 
disease (Togashi and Shigesada, 2006; 
Robinet et al., 2009, 2011; Soliman et al., 
2012); the emerald ash borer, Agrilus 
planipennis (Muirhead et al., 2006); the 
western corn rootworm, D. virgifera virgifera 
(Carrasco et al., 2012); and the pine 
processionary moth, Th aumetopoea pityo-
campa (Kriticos et al., 2013; Robinet et al., 
2013). Th e development of these models is 
very useful for the specifi c instances; 
however, they usually require substantial 
modelling expertise and more time to 
parameterize as it is sometimes necessary to 
design and implement a set of experiments 
to get requisite data. When little information 
is available about the growth and dispersal 
of a species, time is limited or standardized 
tools are preferred (e.g. in the context of 
pest risk assessment), sophisticated pest-
specifi c models generally cannot be readily 
developed and generic spread models such 
as those presented in this chapter appear to 
be suitable.
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Abstract

Estimating rates of spread and generating 
projections of future range expansion for 
invasive alien species is a key process in the 
development of management guidelines 
and policy. Critical needs to estimate spread 
rates include the availability of surveys to 
characterize the spatial distribution of an 
invading species and the application of 
analytical methods to interpret survey 
data. In this chapter, we demonstrate the 
use of three methods, (i) square-root area 
regression, (ii) distance regression and (iii) 
boundary displacement, to estimate the 
rate of spread in the gypsy moth, Lymantria 
dispar, in the USA. Th e gypsy moth is a 
non-native species currently invading 
North America. An extensive amount of 
spatial and temporal distributional data 
exists for this invader. Consequently, it 
provides an ideal case study to demonstrate 
the use of methods to estimate spread rates. 
We rely on two sources of data: (i) polygonal 
data obtained from county quarantine 
records describing the geographical extent 
of gypsy moth establishment; and (ii) point 
data consisting of counts of male gypsy 
moths captured in pheromone-baited traps 
used to detect and monitor newly 
established gypsy moth populations. Both 

data sources were compiled during the 
gypsy moth’s invasion of the Lower 
Peninsula of Michigan, USA. We show that 
even with spatially crude county records of 
infestation, spread rates can still be 
estimated using relatively simple mathe-
matical approaches. We also demon strate 
how the boundary displacement method 
can be used to characterize the spatial and 
temporal dynamics of spread.

The Importance of Spread Rates and 
Patterns

Spread of a non-native species is the process 
by which an organism expands its range 
from geographical areas it currently occupies 
into ones it does not. Th e rate of spread is 
most often expressed as the rate of change 
in the distributional range per unit of time, 
and can vary considerably among species 
(Elton, 1958; Shigesada and Kawasaki, 
1997; Liebhold and Tobin, 2008) and across 
spatial and temporal scales within a species 
(Tobin et al., 2007c). In nearly all biological 
invasions, spread results from the coupling 
of local dispersal with population growth 
(Fisher, 1937; Skellam, 1951). However, in 
most cases, the spread of an invading alien 
species includes long-distance ‘jumps’ in 
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which new colonies arise far from the 
established range. Th e combined process of 
short- and long-range dispersal is referred to 
as stratifi ed dispersal (Shigesada et al., 
1995). Under stratifi ed dispersal, colonies 
that successfully establish ahead of the 
expanding range can grow and eventually 
coalesce with the established area, greatly 
increasing the rate of spread over what 
would be expected in the absence of long-
distance jumps (Hengeveld, 1989; Shigesada 
and Kawasaki, 1997). Th e ramifi cations of 
stratifi ed dispersal have been documented 
for several non-native species, including the 
Africanized honeybee (Apis mellifera 
scutellata; Winston, 1992), Argentine ant 
(Linepithema humile; Suarez et al., 2001), 
emerald ash borer (Agrilus planipennis; 
Muirhead et al., 2006), horse-chestnut leaf 
miner (Cameraria ohridella; Gilbert et al., 
2004) and the gypsy moth (Lymantria dispar; 
Liebhold et al., 1992).

Several methods exist to estimate the 
rate of spread of an invading species (Andow 
et al., 1990; Sharov et al., 1997; Tobin et al., 
2007b; Gilbert and Liebhold, 2010) and the 
ability to estimate spread rates can be a 
crucial step in the development of pest risk 
maps and management strategies. For 
example, before an invader spreads into a 
new area, several information needs must be 
addressed. Th ese include determining 
susceptible habitats that are most vulnerable 
to invasion, estimating the time before a 
new invader spreads to these susceptible 
areas and predicting the eventual economic 
and ecological impacts. Spread rate estimates 
can be used to project future range 
boundaries and, in some cases, allow 
management tactics to mitigate expected 
impacts prior to arrival (Waring and O’Hara, 
2005). Th us, it is not surprising that much 
past work has focused on estimating rates of 
spread of invading species, including very 
early studies that were published before the 
widespread recognition of the importance of 
biological invasions (Cooke, 1928; Elton, 
1958). In this chapter, we describe three 
analytical methods that can be used to 
estimate the rate of spread of invading 
species using data on the spread of the gypsy 
moth.

Context for a Case Study: Gypsy 
Moth

One of the more widely studied and 
documented biological invasions is that of 
the gypsy moth in the USA. Despite the fact 
that many non-native pest species are 
currently invading the USA (Pimentel et al., 
2000; Aukema et al., 2010), the gypsy moth 
is somewhat unique among invaders in that 
we know when it was introduced (1869), 
approximately from where it originated 
(France or Germany), where it was 
introduced (27 Myrtle Street, Medford, 
Massachusetts, USA) and by whom (Etienne 
Léopold Trouvelot; Riley and Vasey, 1870; 
Forbush and Fernald, 1896; Liebhold et al., 
1989). Th e gypsy moth is univoltine and its 
larvae are polyphagous folivores that can 
feed on over 300 host plants including the 
preferred genera of Betula (birch), Crataegus 
(hawthorn), Larix (larch), Populus (aspen), 
Quercus (oak), Salix (willow) and Tilia 
(basswood) (Elkinton and Liebhold, 1990; 
Liebhold et al., 1995).

Larvae hatch from overwintering egg 
masses in spring and undergo fi ve (male) or 
six (female) instars over approximately 8 
weeks. Th e pupal period is approximately 2 
weeks, followed by adult emergence. Females 
of the European strain, which is the strain 
established in North America, are not 
capable of sustained fl ight (Keena et al., 
2008). Males locate calling females through 
a sex pheromone and mate; females oviposit 
a single egg mass containing 250–500 eggs. 
Although gypsy moth populations are 
innocuous and barely noticed in most 
years, populations can periodically erupt in 
spatially widespread outbreaks that occur 
over 2–3 years (Haynes et al., 2009). 
Ramifi cations of gypsy moth outbreaks 
include host tree mortality, loss of ecosystem 
services, detrimental eff ects to native 
species and public nuisance (Gansner and 
Herrick, 1984; Leuschner et al., 1996; 
Redman and Scriber, 2000). Since 1924, 
over 360,000 km2 of forests in the USA have 
been defoliated by the gypsy moth (USDA 
Forest Service, 2013).

Since its introduction in 1869 in 
Medford, Massachusetts, the gypsy moth 
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has slowly expanded its range in North 
America such that it now occupies a range 
from Nova Scotia to Wisconsin, and Ontario 
to Virginia (Tobin et al., 2007b). Spread can 
be facilitated by larval ballooning and adult 
male fl ight, both of which are considered to 
occur over short distances (Mason and 
McManus, 1981; Elkinton and Liebhold, 
1990). Longer-distance dispersal is believed 
to occur primarily through the anthropogenic 
movement of life stages (Lippitt et al., 2008; 
Hajek and Tobin, 2009; Bigsby et al., 2011). 
Despite the fact the gypsy moth has been 
established in North America for over 140 
years and currently occupies >900,000 km2, 
almost three-quarters of forested areas 
considered to be susceptible to gypsy moth 
outbreaks remain uninfested (Morin et al., 
2005). Th us, eff orts to estimate the rate of 
gypsy moth spread remain of critical 
importance. Moreover, this species provides 
an ideal example for demonstrating methods 
of estimating invasion spread due to the 
extensive amount of spatial and temporal 
data collected on it. In this chapter, we 
estimate gypsy moth spread using both 
point data and polygonal data.

Resources to Estimate Spread Rates

Th ere are two broad data types that can be 
used to estimate the rate of spread in an 
invading species: (i) point data; and (ii) 
polygonal data. Point data can include the 
number of individuals collected from 
sampling devices, such as traps baited with 
semiochemical attractants and placed at a 
specifi c point in space. Point data can also 
include a record of the observed presence of 
the species. In addition to such records 
historically collected by regulatory offi  cials 
or the scientifi c community, citizen 
scientists have contributed, more recently, 
to observation records (Ingwell and Preisser, 
2011). In fact, in New Zealand, approximately 
half of new plant pest detections are fi rst 
reported by the general public (Froud et al., 
2008). It is also believed that every known 
Asian longhorned beetle (Anoplophora 
glabripennis) infestation in the USA was fi rst 
discovered by a citizen. In some cases, the 

species need not be observed directly but 
rather its presence implied by a specifi c 
indication of damage. For example, in the 
case of wood and subcortical phloem feeders, 
the architecture of larval tunnelling and 
associated symbionts are often species-
specifi c (Paine et al., 1997), which can reveal 
the presence of a specifi c invasive alien pest 
even if the pest is absent; in some cases, 
feeding injury can reveal when the invasive 
alien species was fi rst present when analysed 
through dendroecological techniques 
(Siegert et al., 2010).

In contrast to point data where a species 
is considered to be present at a specifi c point 
in space, polygonal data encompass an area 
considered to be infested by a non-native 
species. Among the more common examples 
of polygonal data are those that are defi ned 
by geopolitical boundaries, such as county, 
state or territory boundaries. In many 
countries, species that are regulated under 
domestic quarantines have their range 
boundaries defi ned by polygonal data. In 
most cases, point data are essentially used in 
the construction of polygonal data with the 
assumption that a species detected through, 
for example, a trapping device at a specifi c 
point in space is, in actuality, distributed 
over a larger area. Geopolitical boundaries 
are often used to defi ne this larger area 
because they facilitate regulatory responses, 
such as the restriction of potentially infested 
material from being transported from an 
infested county or state without proper 
phytosanitary measures.

Many data resources and repositories 
exist that contain point and polygonal data 
on the presence of a non-native species. 
Many governments maintain quarantines 
against established non-native species to 
limit their movement to uninfested areas 
and publish these records in government 
documents. In the USA, for example, 
quarantine regulations are codifi ed by the 
USA Code of Federal Regulations, Title 7, 
Chapter III, Part 301, which is divided into 
subparts by species, and includes non-native 
insects, plants, nematodes and pathogens 
(Table 9.1). Within each subpart is a section 
on ‘generally infested areas’ that lists states 
(in whole), or specifi c counties or townships, 
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that are considered infested at the time of 
publication. By going through the various 
years in which USA Code of Federal 
Regulations has been published, beginning 
with its fi rst publication in 1938, it is 
possible to generate a space–time series of 
the presence of a regulated non-native 
species (Fig. 9.1).

When using either point or polygonal 
data to estimate spread rates, the minimum 
required details are the spatial and temporal 
distribution of the data. In many cases, 
point or polygonal data are considered 
binary (i.e. presence only), but in some 
cases, estimates of density are available; 
regardless, binary and continuous 
measurements of the non-native species can 
be used to estimate rates of spread. Based 
upon where and when a species is detected, 
or when an area is considered to be infested, 
there are a number of quantitative methods 
available. Given these time–space data, all of 
the estimation methods can be accomplished 
through statistical packages such as sas 
(SAS Institute, Inc., 1999) or r (R Core 
Team, 2013), and some methods can be 
accomplished using more basic software 
packages such as Microsoft® Excel.

In this chapter, we use both polygonal 
and point gypsy moth data collected from 
the Lower Peninsula of Michigan to 
demonstrate three methods in estimating 
spread rates. Th is region provides an ideal 
case study of gypsy moth spread for several 
reasons. First, the introduction of gypsy 
moth life stages in Michigan was spatially 
disjunct from the established area at the 
time. Although Michigan has a long history 
of management eff orts against the gypsy 
moth (Hanna, 1982; Dreistadt, 1983), the 
fi rst counties were declared to be infested 
and included in the USA Code of Federal 
Regulations in 1981; at this time, the closest 
infested areas were in western New York and 
Pennsylvania. Th us, the invasion dynamics 
of the gypsy moth in Michigan would be 
comparable to those expected in a new 
invasion. From 1981 to 1994, counties from 
the Lower Peninsula of Michigan were added 
to the regulated area, which allows for the 
construction of a time series based upon 
these polygonal data (Fig. 9.2a). Second, 
when Michigan initially became infested, 
standardized pheromone-baited traps, 
which are sensitive monitoring tools that 
are eff ective even at low population densities 

Table 9.1. Non-native species in the USA currently included in subparts of the USA Code of Federal 
Regulations, Title 7, Chapter III, Part 301.

Name Species Subpart

Fruit fl ies Several 301.32
Black stem rust Puccinia graminis 301.38
Gypsy moth Lymantria dispar 301.45
Japanese beetle Popillia japonica 301.48
Pine shoot beetle Tomicus piniperda 301.50
Asian longhorned beetle Anoplophora glabripennis 301.51
Pink bollworm Pectinophora gossypiella 301.52
Emerald ash borer Agrilus planipennis 301.53
South America cactus moth Cactoblastis cactorum 301.55
Plum pox Potyvirus spp. 301.71
Citrus canker Xanthomonas axonopodis pv. citri 301.75
Asian citrus psyllid Diaphorina citri 301.76
Witchweed Striga spp. 301.80
Imported fi re ant Solenopsis invicta and Solenopsis richteri 301.81
Golden nematode Globodera rostochiensis 301.85
Pale cyst nematode Globodera pallida 301.86
Sugarcane diseases Xanthomonas albilineans 301.87
Karnal bunt Tilletia indica 301.89
European larch canker Lachnellula willkommi 301.91
Sudden oak death Phytophthora ramorum 301.92
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(Mastro et al., 1977; Elkinton and Childs, 
1983; Th orpe et al., 1993), were available 
and allowed for the collection of point data 
(Tobin et al., 2012). From 1985 to 1996, the 
entire Lower Peninsula of Michigan was 
trapped each year, with traps set ~5 km 
apart (Fig. 9.2b; Gage et al., 1990; Yang et al., 
1998). Last, the initial infestation was 
considered to be in Midland County, 
Michigan, which is centrally located in the 
Lower Peninsula of Michigan. Th us, the 
gypsy moth had the opportunity to spread 
radially from this centralized point.

Data Analysis

Th ere are three analytical methods that can 
be used with both point and polygonal data 
to estimate spread rates: (i) square-root area 
regression; (ii) distance regression; and (iii) 
boundary displacement.

Square-root area regression

Th is method is based on the analysis of 
distance-to-time and uses successive 
measurements of the invaded area. For each 
year, the square root of the total infested 
area is considered according to:

 (9.1)

Th e values for each year are then regressed 
as a function of time to estimate the radial 
rate of spread, which is ascertained by the 
estimate of the regression slope (Shigesada 
and Kawasaki, 1997; Gilbert and Liebhold, 
2010).

When applying the square-root area 
regression method to polygonal data from 
Michigan (Fig. 9.3a; see colour plate section), 
1981 is considered as year 1 at which 
time six counties, encompassing an area of 

� �Midland Medford

Quarantine year
1938–1944

1945–1960

1961–1970

1971–1980

1981–1990

1991–2000

2001–2012
�

0 300 600150 km

N

W

S

E


total infested area

Fig. 9.1. Distribution of the gypsy moth in the USA, 1938–2012, based upon county quarantine records. 
Medford, Massachusetts and Midland, Michigan represent the initial and a subsequent site of 
introduction, respectively.
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9786 km2, were regarded as infested with 
the gypsy moth. In 1982, eight additional 
counties were added to the infested area for 
a cumulative total infested area of 23,226 
km2. Th e last county was considered to be 
infested in 1994, bringing the total infested 
area to 106,887 km2. However, by 1989, the 
infested area was 105,151 km2 and no 
additional counties were added to the 
quarantine until 1994. Th us, when 
restricting the regression analysis from the 
initial year of introduction (1981) to the 
year at which the entire Lower Peninsula 
was nearly completely infested (1989), the 
annual rate of spread (as ascertained from 
the slope estimate) is 17.1 km/year (Fig. 
9.4a). Th e standard error associated with the 
slope estimate from the linear regression 
provides an estimate of the variability 
associated with the spread rate, which in 
this case is 1.9.

Th e square-root area regression method 
can also be applied to the point trapping 
data from Michigan (Fig. 9.3b; see colour 

plate section). In this case, population 
thresholds can also be considered because 
trapping data provide a continuous 
measurement of density, as opposed to the 
presence/absence data that are generally 
available from polygonal data. We considered 
three population thresholds in this analysis: 
(i) an estimate of the area over which 
trapping records indicate gypsy moth 
presence (i.e. threshold = 1 moth); (ii) an 
estimate of the area where at least ten male 
moths are trapped; and (iii) an estimate of 
the area where at least 100 male moths are 
trapped. We chose these population 
thresholds arbitrarily to demonstrate the 
method. To estimate the area where 
populations exceeded these thresholds, we 
spatially interpolated the raw trapping data 
(latitude, longitude and male moths trapped 
at each trapping location) for each year to 
generate a continuous surface over a 
network of 1 km × 1 km cells using median 
indicator kriging (Isaaks and Srivastava, 
1989; Deutsch and Journel, 1992). As with 

Fig. 9.2. (a) Distribution of the gypsy moth in the Lower Peninsula of Michigan, USA, based upon county 
quarantine records, 1981–1994; the star indicates Midland, Michigan, which is considered to be the site 
of the initial introduction into Michigan. (b) Spatial representation of the trapping grid used to record 
gypsy moth densities, 1985–1996.
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polygonal data, we then estimated the 
square root of each population threshold’s 
area  π for each year (Eqn 9.1) and next 
regressed this against the year. In this case, 
we also estimated an annual rate of spread 
for each population threshold based upon 

the respective slope estimates for each 
population threshold (Fig. 9.5a). When 
applied to point data, and again restricting 
the regression analysis to 1981–1989 (i.e. 
estimates during the invasion of Michigan), 
this method estimates spread rates (± se) of 
13.5 (2.3), 21.2 (1.2) and 23.8 (2.2) km/year 
for the 1-, 10- and 100-moth thresholds, 
respectively. It is also possible to estimate a 
composite rate of spread by averaging over 
the estimates from all population thresholds, 
which yields a spread rate estimate (± se) of 
19.5 (3.1) km/year.

Distance regression

Th is method is based on regressing the 
distance of an infested location, either from 
polygonal or point data, from a reference 
point on the year it fi rst became infested 
(Liebhold et al., 1992; Tobin et al., 2007b; 
Gilbert and Liebhold, 2010). Th e reference 
point can be an arbitrary location, but ideally 
it should refl ect the initial site of introduction 
or simply the location at which a species was 
fi rst detected. For the Michigan data, we 
used the city of Midland, the county seat of 
Midland County, as a proxy for the initial 
gypsy moth infestation in Michigan. Using 
the polygonal data, we fi rst estimated the 
minimum distance between each infested 
county and Midland (Fig. 9.3c; see colour 
plate section). Th e distance for each county 
was then regressed on the year it was fi rst 
infested, and the estimate of the slope of the 
regression line provided the estimated radial 
rate (± se) of spread, which is 9.6 (2.0) km/
year (Fig. 9.4b).

When applying the distance regression 
method to the point trapping data, we again 
used multiple population thresholds, such 
as the 1-, 10- and 100-moth thresholds, for 
each of the years in which trapping data 
exist (1985–1996). In this case, the distance 
between Midland, Michigan, and each 
trapping location that captured at least one, 
ten and 100 male moths is estimated (Fig. 
9.3d; see colour plate section) and then 
regressed for each year. Th is method, when 
applied to point data, estimates spread 
rates (± se) of 15.7 (0.3), 19.3 (0.5) and 
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Fig. 9.4. Use of polygonal data to estimate gypsy 
moth rate of spread in the Lower Peninsula of 
Michigan using (a) the square-root area method; 
(b) the distance regression method; and (c) the 
boundary displacement method. Each circle in (a) 
represents the square root of the infested area for 
each year, while each circle in (b) represents the 
distance between each infested county (by year of 
infestation) and Midland, Michigan. The slope 
estimate from least-squares regression provides 
an estimate of the annual spread rate. The year-to-
year boundary displacements in (c) can be 
averaged to estimate an annual rate of spread.
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22.8 (0.6) km/year for the 1-, 10-, 100-moth 
thresholds, respectively, with an overall 
average (± se), across the estimates from all 
three population thresholds, of 19.3 (2.0) 
km/year (Fig. 9.5b).

Boundary displacement

Th is method considers the displacement 
distances between pairs of consecutive 
invasion boundaries to estimate rates of 
spread. Typically, displacement is measured 
along axes radiating from a reference point, 
which could be the origin of the invasion or 
a point that falls along a line that is 
perpendicular to the main invasion front 
(Sharov et al., 1995; Tobin et al., 2007b; 
Gilbert and Liebhold, 2010). Th e fi rst step in 
this method is to delimit spatially invasion 
boundaries. One simple approach for con-
structing boundaries is to use one of a 
variety of software packages to generate 
contour lines. Contour lines can be 
constructed for each year of data, from 
which the year-to-year displacements in the 
spatial location of contour lines can be 
quantifi ed and used as an estimate of spread.

In this chapter, we used several steps to 
estimate spread from boundary displace-
ments. First, we used indicator kriging to 
generate a spatially continuous surface 
using both polygonal and point data (Isaaks 
and Srivastava, 1989; Deutsch and Journel, 
1992). When using polygonal data from 
Michigan, we overlaid a grid consisting of a 
network of 2 km × 2 km cells across the 
state. For each year of polygonal data, we 
scored each cell by using the centre point of 
the cell as its spatial coordinates, as 1 or 0, 
where the former designation indicates that 
the centre of the cell was in an infested 
county while the latter indicates an absence 
of infestation. Th is resulted in a time series 
of spatially referenced binary point data 
based upon the polygonal data. We then 
used indicator kriging to generate a con-
tinuous surface from the spatially referenced 
binary point data (Fig. 9.3e; see colour plate 
section).

When using point data, we likewise used 
kriging (Isaaks and Srivastava, 1989; 
Deutsch and Journel, 1992) to interpolate a 
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Fig. 9.5. Use of point data to estimate gypsy moth 
rate of spread in the Lower Peninsula of Michigan 
using (a) the square-root area method; (b) the 
distance regression method; and (c) the boundary 
displacement method. In (a), least-squares 
regression is fi t against the linear portion of the 
relationship between the infested area and time 
when the infested area is based upon the 1-moth 
(open circles), 10-moth (grey circles) and 100-
moth (solid circles) population thresholds. In (b), 
least-squares regression is fi t against the linear 
portion of the relationship between the distance of 
the trap and Midland for each year when using the 
10-moth threshold as an example; circles 
represent the distance between each trapping 
record by year and Midland, Michigan, and are 
proportional in size to the number of records. In 
(c), the year-to-year displacement for the 1-moth 
(open circles), 10-moth (grey circles) and 100-
moth (solid circles) population thresholds is plotted 
over time. The solid line represents an average of 
the displacement across all three population 
thresholds at each year, which can be averaged 
across years and population threshold to estimate 
an overall average spread rate.
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spatially continuous surface for each year of 
trapping data (Fig. 9.3f; see colour plate 
section). Because point trapping data are a 
continuous measurement of density, it is 
also possible, as we have done in the previous 
methods using point data, to estimate a 
boundary that refl ects the 1-, 10- and 100-
moth threshold. Th us, for example, the 
10-moth threshold boundary would 
delineate an area in which traps recorded 
≥10 moths within the boundary and <10 
moths outside the boundary, much like a 
presence boundary delineates an area in 
which a species is present or absent.

We then applied an optimization 
approach to delimit the location of 
boundaries from the spatially interpolated 
surfaces generated from each data source 
(Sharov et al., 1995). Population boundaries 
derived from spatially interpolated maps are 
often irregular, with ‘islands’, ‘lakes’ and 
‘folds’ common within and outside the 
invading species’ established area. Because 
irregular boundaries can be diffi  cult to 
analyse, we used this optimization approach 
to construct boundaries that are more 
regular (Sharov et al., 1995). Th is method 
connects populations of similar densities, 
such as presence or absence, to minimize the 
inclusion of populations within a boundary 
that do not satisfy a specifi c density, while 
also minimizing the exclusion of populations 
within a boundary that do.

Th e fi nal step is to estimate the 
displacement of boundaries from year to 
year. To accomplish this step, we measured 
the distance from a fi xed focal point in space 
to boundaries in consecutive years; in this 
case, we used transects radiating from the 

focal point at 0.5° intervals. Th e year-to-
year displacement (i.e. from 1981 to 1982) 
at each transect can then be measured and 
averaged to obtain a spread rate for each 
pair of successive years, which then in turn 
can be averaged to estimate an overall 
annual rate of spread across all years. When 
we used polygonal data from Michigan, 
annual rates of spread ranged from 0 to 
59.7 km/year, while the overall average (± 
se) rate of spread (1981–1994) was 9.9 (5.0) 
km/year (Fig. 9.4c; Table 9.2). When we 
used point data, estimates of the annual 
spread rates ranged from –3.1 to 33.2, –7.0 
to 25.2 and –40.0 to 67.7 km/year for 
the 1-, 10- and 100-moth thresholds, 
respectively, while the overall (1985–1996) 
average rate of spread (± se) was 10.6 (3.7) 
km/year (Fig. 9.5c; Table 9.2).

Discussion

A comparison of the spread rate estimates 
for all three methods and when using both 
polygonal and point data is presented in 
Table 9.2. All three methods provide similar 
estimates of spread when using polygonal 
data, which is not surprising given both the 
coarse nature of polygonal boundaries and 
the fact that a decision to regard a county as 
infested is generally never retracted. Point 
data, in contrast, generally provide greater 
spatial resolution in the determination of 
species presence. Moreover, point data can 
often consist of trapping devices from which 
a continuous estimate of abundance can be 
obtained as opposed to merely presence or 
absence.

Table 9.2. Estimates of gypsy moth spread from three analytical methods when based upon polygonal 
and point data.

Data source Moth threshold

Spread rate estimate (± SE), km/year

Square-root area 
regression Distance regression

Boundary 
displacement

Polygonal data NA 17.1 (1.9)  9.6 (2.0)  9.9 (5.0)
Point data 1 13.5 (2.3) 15.7 (0.3)  7.3 (3.0)

10 21.2 (1.2) 19.3 (0.5)  9.7 (2.8)
100 23.8 (2.2) 22.8 (0.6) 14.7 (10.5)
Overall 19.5 (3.1) 19.3 (2.0) 10.6 (3.7)

NA, not applicable.
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Th e use of population thresholds (Fig. 
9.5) based upon continuous measurements 
of abundance can also provide an estimate 
of spread rates for diff erent population 
levels, such as in comparisons between the 
spread rate of initial populations (i.e. the 
1-moth threshold) and high-density 
populations (i.e. the 100-moth threshold). 
Th is can be especially critical in management 
eff orts because lower-density populations 
tend to be more amenable to control tactics 
than the higher-density populations at 
which the ecological and economic impacts 
are also the greatest. Spread rate estimates 
obtained from diff erent population 
thresholds could also refl ect the roles that 
other forces, such as stochasticity, abiotic 
factors and biotic factors, play in the 
biological invasion process (Hufbauer et al., 
2013; Miller and Inouye, 2013; Potapov and 
Rajakaruna, 2013). For example, low-
density populations can be particularly 
prone to extinction after which reinvasion 
could occur and be successful; Sharov et al. 
(1997) revealed high variability in gypsy 
moth spread when measured by thresholds 
<10 moths, while intermediate population 
densities, as measured by the 10- and 
30-moth thresholds, tended to be the most 
stable in space and time. Very-high-density 
populations can be aff ected by outbreak 
dynamics; in the gypsy moth system, 
outbreaks can be cyclical, and synchronously 
erupt and collapse across a large landscape 
due to biotic interactions (Elkinton et al., 
1996; Bjørnstad et al., 2010).

Depending on the data source and 
method used to estimate spread, there can 
be considerable diff erences in spread rate 
estimates (Table 9.2). Also, the estimation 
of spread rates of many species can be 
constrained by the lack of adequate survey 
data. Point data typically tend to be more 
robust than polygonal data because they are 
usually replicated at smaller spatial scales 
and can be used to estimate pest abundance 
at a specifi c point as opposed to simple 
presence or absence of a pest within a 
political boundary. However, point data are 
also greatly infl uenced by the sensitivity of 
the method used for making measurements. 

Semiochemical-based traps that contain 
species-specifi c attractants (e.g. sex or 
aggregation pheromones) often provide a 
highly sensitive means to detect a species 
(Elkinton and Cardé, 1981; Suckling and 
Karg, 2000). However, for many invasive 
alien species, especially for those that are 
not economically important in their native 
range, research on pheromone identifi cation 
has been insuffi  cient and so sensitive 
monitoring tools may not be immediately 
available. For other species, attractants may 
be diffi  cult to identify or produce 
synthetically for use in survey programmes 
(Crook et al., 2008). Moreover, some species, 
such as the emerald ash borer (A. planipennis), 
may lack chemically mediated attraction 
behaviours that can be exploited with 
trapping systems to detect newly established, 
low-density populations (Crook and Mastro, 
2010). In such cases, point data from poor 
trapping systems could, in fact, be misleading 
and provide either an underestimate of 
population density or the time of initial 
establishment. Th us, the mere availability of 
point data may not necessarily equate to a 
more accurate estimate of spread even when 
polygonal data are measured over a non-
biological scale, such as a county or state 
boundary.

Regardless of the type of survey data 
available to estimate spread, ‘true’ rates of 
spread can still be challenging to ascertain 
(Gilbert and Liebhold, 2010). Part of this is 
due to stochastic processes that can aff ect 
spread, including the role of anthropogenic, 
atmospheric and hydrological transport 
mechanisms that facilitate long-distance 
dispersal (Venette and Ragsdale, 2004; 
Davidson et al., 2005; Tobin and Blackburn, 
2008; Bigsby et al., 2011). Th e spread of 
invading organisms can also be aff ected by 
biological constraints, such as Allee eff ects, 
or positive-density dependence (Andow et 
al., 1990; Lewis and Kareiva, 1993; Taylor et 
al., 2004; Tobin et al., 2007c). Gilbert and 
Liebhold (2010) generated synthetic data 
from simulations based upon a reaction-
diff usion model with a known rate of spread 
and compared diff erent methods for 
quantifying spread. Th ey found that the 
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distance regression method provided the 
most reliable estimate of spread, particularly 
when sample size was limited (Gilbert and 
Liebhold, 2010). In cases where the invaded 
area is irregularly constrained, such as by 
lakes or other geographic barriers, previous 
work has shown that the square-root area 
regression method provided biased 
estimates of radial spread rates and thus 
would be an undesirable approach under 
such conditions (Shigesada and Kawasaki, 
1997; Gilbert and Liebhold, 2010). As noted 
above and previously (Gilbert and Liebhold, 
2010), an advantage of the boundary 
displacement method is that it can 
characterize temporal and spatial variation 
in spread rates.

We demonstrated three principal 
methods that are used for quantifying 
spread rates; however, there are additional 
methods that could be used to quantify 
invasion speed. For example, one additional 
method that has been used to estimate 
spread rates is the use of the ‘Wombling’ 
approach, which is a statistical technique for 
estimating vector gradients from spatially 
referenced data (Womble, 1951). Th is 
method can be used to estimate local rates of 
change from a map surface, such as the 
waiting time associated with the time of fi rst 
establishment for an invading species. 
Consequently, these localized slope 
estimates provide a measure of local spread 
rate, and can be furthermore used to 
characterize the spatial and temporal 
variation in the rate of invasion spread 
(Fortin et al., 2005; Fitzpatrick et al., 2010). 
Regardless of the challenges associated with 
estimating rates of spread, and the 
limitations associated with various methods, 
even coarse estimates of spread can still 
provide guidance to managers, such as in 
eff orts aimed at managing spread (Taylor 
and Hastings, 2004; Tobin et al., 2007a; 
McCullough and Mercader, 2012). Estimates 
of spread can also be useful in identifying 
and quantifying the role of long-distance 
dispersal on the overall spread of invaders 
(Liebhold et al., 1992), thereby providing a 
basis to formulate management guidelines 
(Sharov and Liebhold, 1998).
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Abstract

Economic analyses can facilitate biosecurity 
investment decisions in relation to pest risk 
management. Th e term biosecurity here 
refers to activities intended to prevent or 
control the introduction and spread of alien 
species that have a net negative eff ect on 
social welfare as determined by economic, 
environmental and social capital. Th e aim of 
the chapter is to demonstrate a model that 
indicates an appropriate level of funding 
that decision makers should allocate to 
specifi c pest management activities based 
on anticipated returns. We demonstrate the 
model with a recently introduced weed 
species to Western Australia, Mimosa pigra. 
Th is weed has been targeted for eradication 
and the analysis described here estimates 
the amount biosecurity managers should 
spend on eradication before costs begin to 
outweigh the likely returns.

An Introduction to Economic 
Perspectives on Eradication

Historically, the decision to attempt eradi-
cation of a recently discovered weed 

infestation has proved to be challenging. 
While eradication is widely recognized as a 
more preferable option than weed sup-
pression or a ‘do-nothing’ approach (Myers 
et al., 2000; Simberloff , 2003), eradication is 
hard to achieve when infestations already 
occupy a substantial area (Rejmánek and 
Pitcairn, 2002; Cacho et al., 2006). Th e 
decision to eradicate must be made quickly 
but cannot be made solely on the basis of the 
ecological feasibility and likelihood of 
success. It must also consider economic 
costs and benefi ts of the control investment. 
Th e ecology of the plant (e.g. habitat, mode 
of reproduction, seed dispersal distances, 
etc.) plays a key role in the likelihood of 
eradication success. But, even if these factors 
mean the likelihood of successful eradication 
is low, the long-term benefi ts of success may 
be extremely high. So, the decision to enact 
and continue eradication actions should 
include a long-term perspective.

To calculate the returns on investment, 
a partial budget model is developed. It is 
‘partial’ in the sense that it analyses 
relationships within a particular industry 
aff ected by an invasive species and assumes 
that changes in this industry have negligible 
implications for the rest of the economy. 
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Typically, the costs to manage an invasive 
alien species (e.g. increased intensity of 
on-farm hygiene practices, pesticide costs, 
etc.) increase the total investment growers 
must make to supply a given quantity of 
product. Th e eff ects of these expenses on the 
budgets of land managers as an invasive 
alien weed spreads are summed in a partial 
budget model to give an indication of the 
aggregate fi nancial impacts of the weed. 
Spread can take place via natural means 
described by a diff usion-like process or by 
large jumps, often mediated by humans. 
When combined in our model, these means 
of dispersal produce a stratifi ed diff usion 
process (Hengeveld, 1989; Shigesada et al., 
1995; Pitt et al., 2009) that allow us to 
forecast the impacts of an invasive alien 
weed over time.

Mimosa as a Case Study

On 16 November 2009, a biosecurity offi  cer 
from the Department of Agriculture and 
Food Western Australia (DAFWA) found 
several patches of mimosa (M. pigra) near 
Lake Argyle in the Kimberley region of 
Western Australia. Th e plants were 
discovered over approximately 1 ha in a 
seasonal billabong (i.e. an isolated pond in a 
dry riverbed) some 12 km from the town of 
Kununurra in the far north of the state. 
Based on the size of the plants and the fact 
that they had set seed, they were estimated 
to be at least 3 years and possibly up to 5 
years old (Lloyd and Vinnicombe, 2010). Th e 
true extent of the area occupied by the 
plants may, therefore, have been con-
siderably larger than was known at the time.

Th e origin of the outbreak is not known. 
Th e plants were discovered in an isolated 
area not known as a camping or recreation 
site. A homestead in the area was abandoned 
some 80 to 90 years earlier and human 
visitation thereafter is believed to have been 
infrequent, at best. Since the billabong is 
not connected to any creeks, seeds could not 
have been transported there from other 
waterways (Lloyd and Vinnicombe, 2010). 
Fortunately, this also means seeds are 
unlikely to have been carried large distances 

by water. Nevertheless, an emergency 
response was initiated by DAFWA with the 
fi rst ground and aerial surveillance taking 
place the day after detection. Extension 
materials were distributed to local 
businesses, cattle stations and commuters 
(via the DAFWA quarantine checkpoint at 
Kununurra). Statements were released via 
local radio, newspaper and community 
newsletters. Despite all of the alerts, no 
further infestations have been reported 
(Lloyd and Vinnicombe, 2010).

Although not previously found in 
Western Australia, mimosa has been present 
in the eastern states of Australia since the 
late 1800s where it was introduced from 
tropical America as an ornamental plant and 
cover crop (Parsons and Cuthbertson, 1992). 
Often known as the giant sensitive plant, its 
appeal as an ornamental was particularly 
strong due to the curious property of the 
leaves folding upon being touched. As a 
shrub, mimosa now forms impenetrable 
thickets over more than 800  km2 of 
fl oodplain in the Northern Territory 
bordering Western Australia. It represents a 
threat to Kakadu National Park and other 
wetland areas in tropical Australia as it 
profoundly modifi es native wetland habitat 
and restricts recreational use of waterways 
(Braithwaite et al., 1989; Paynter, 2005). Th e 
plant is also of signifi cance to agriculture as 
it outcompetes pasture species and restricts 
livestock movements and access to water on 
such fl oodplains.

Th e Kimberley region of Western 
Australia is located in the far north of 
the state where mimosa is likely to aff ect 
tropical cattle production. Th is industry, 
comprised of about 90 properties covering 
approximately 250,000 km2, making the 
average business size over 2700 km2, is 
heavily geared towards the live export 
market, providing feeder cattle into the 
Indonesian market. Annual rainfall and 
diff erent soil types infl uence the number of 
stock carried, the number of cattle turned 
off  (i.e. marketed) each year, the costs of 
running each business and the amount of 
debt held. Th e region is dependent on 
monsoonal rainfall during the wet season 
(i.e. November to April), which dictates the 

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Predicting the Economic Impacts of Invasive Species 147

abundance and distribution of vegetation 
for grazing and the degree to which preferred 
pasture species will be displaced by mimosa 
should it become established. Given the 
presence of the weed in the Northern 
Territory, its removal and continued 
eradication from Western Australia may be 
diffi  cult. Mimosa is dispersed via movement 
of seedpod segments, which are particularly 
suited to transport by water, animals, man 
and machinery (Parsons and Cuthbertson, 
1992).

Th is mix of diff erent impacts of the 
weed, with resultant uncertainty as to who 
benefi ts from, and who pays for, its control, 
helped initiate the call for a National Weed 
Strategy in Australia in the early 1990s. Th e 
National Strategy sought to improve 
decision making between agricultural and 
environmental sectors of society. Now, 
chemical sprays are the main method of 
controlling mimosa in areas of low 
environmental sensitivity. Herbicides with 
active ingredients glyphosate (e.g. 
Roundup™ Biactive) or dicamba (e.g. Titan 
Dicamba®) are eff ective. Since the mid-
1980s, 12 insect species  and two fungal 
pathogens have been released in Australia as 
biological control agents and are now having 
a noticeable impact in some areas (Julien et 
al., 2004). Seven of these insects are well 
established and abundant,  including a 
fl ower-feeding weevil (Coelocephalapion 
pigrae), a twig-mining moth (Neurostrota 
gunniella), a stem-mining moth (Carmenta 
mimosa), a seed-feeding beetle (Acantho-
scelides puniceus), two  leaf-feeding beetles 
(Chlamisus mimosa and Malacorhinus 
irregularis) and a looper moth (Macaria 
pallidata) (Julien et al., 2004). However, 
widespread control has not been achieved. 
Supplementary control methods such as 
herbicides and fi re are required to break up 
the stands (Julien et al., 2004).

As the detection of mimosa in Western 
Australia represents a new incursion of an 
invasive alien weed species, a single planning 
body (DAFWA’s invasive species programme) 
is responsible for oversight. However, in 
other cases where the species concerned is 
established elsewhere in the state, the 
central planning body may be a local shire 

council or potentially an Industry Funding 
Scheme (IFS) formed under the Biosecurity 
and Agriculture Management Act 2007. IFSs 
are intended to direct funding to activities 
that benefi t specifi c industries, rather than 
multiple industry groups; therefore, they are 
better suited to address host-specifi c insect 
pests, for example, as opposed to weeds or 
highly polyphagous insect pests.

As part of the emergency response to 
mimosa in Western Australia, an economic 
impact assessment was initiated by DAFWA 
to determine what, if any, funding should be 
allocated to eradicate mimosa. Th is chapter 
describes the approach used for the 
assessment. Th e economic impact assess-
ment uses a stochastic bioeconomic model 
to simulate the likely eff ects of the weed 
over 20 years under two scenarios: 
eradication and nil management. Th e dif-
ference between these two scenarios 
indicates the likely fi nancial benefi ts of 
eradication, taking into account the 
dynamics of spread and impact. Th e model 
accounts only for costs of livestock displace-
ment and reduced grazing capacity caused 
by mimosa, which are relatively easy to 
quantify.

Models and Methods

Th e methodology used in this analysis 
assumes that the current infestation of 
mimosa in the area of Lake Argyle is 
eradicated and concentrates on events that 
might subsequently transpire. In this 
context, eradication simply describes the 
removal of above-ground plant biomass. 
Weeds specialists may apply ‘eradication’ 
diff erently due to the existence of seed 
banks that may persist over long periods of 
time and are extremely diffi  cult to remove. 
Hence, in the analysis to follow it is assumed 
that the probability of re-establishment 
following the removal of above-ground plant 
biomass is relatively high.

Local eradication of future incursions 
is treated as an investment alternative to 
nil management of mimosa. We assume that 
a single planning body (i.e. DAFWA) 
determines appropriate weed control 
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strategies. Predicted investment paths are 
defi ned as a function of expected yield and 
input cost changes in aff ected agricultural 
industries (and hence their profi tability) as a 
result of investing in mimosa eradication 
relative to a nil management approach. We 
assume that the planning body will choose 
to invest in mimosa eradication in region i in 
time step (e.g. year) t if it is expected to 
reduce grower losses by a greater amount 
than additional costs. Th e dichotomous 
adoption variable, t, which takes the value 
of 1 if the central planner invests in 
eradication across n regions in year t and 0 
otherwise, is defi ned as:

  (10.1)

where dit is the total diff erence in the present 
value of predicted production costs induced 
by mimosa between the eradication and nil 
management policy options in region i in 
time t and cit is the present value of total 
costs of eradication in region i in time t. 
Because the value of 

 1

n

iti
d  can be 

estimated, a ‘break-even’ analysis can be 
used. Th at is, the estimate of  1

n

iti
d  

indicates how large  1

n

iti
c  would need to be 

before t assumes a value of zero (i.e. the 
central planner does not adopt the 
eradication policy). Th is approach is 
warranted given that the size of the 
investment to be made in mimosa 
eradication has yet to be negotiated. It 
presents decision makers with a cost ceiling 
beyond which further expenditure on 
eradication will result in a net loss in social 
welfare (i.e. the costs of eradication will 
exceed the benefi ts).

If, following eradication, an incursion is 
detected in a subsequent time step and 
occurs early enough in the weed’s growth 
cycle, there may be a strong likelihood of 
local eradication. So, the value of dit is 
infl uenced by local eradication costs and 
probability of eradication success. Th is 
probability of success is assumed to decline 
exponentially at an average rate of e‒0.15Ait, 

where Ait is the area infected with mimosa in 
region i year t weighted by the probability of 
infestation and the density of infestation.

Th e rate of decline in eradication success 
is a diffi  cult parameter to estimate, so we use 
expert elicitation to help us (see Box 10.1). 
Expert elicitation is a structured approach 
to systematically consult experts on 
uncertain issues and is typically used to 
quantify ranges for poorly known parameters 
(Knol et al., 2010). We asked three weed 
scientists from the DAFWA to provide 
estimates for the minimum, most likely and 
maximum exponential rates of decline in the 
probability of eradication success as the area 
of infestation at the time of detection 
increases. We used graphical representations 
to clarify the implications of their answers. 
Th ese probabilities were combined using a 
PERT distribution – a type of beta 
distribution used extensively for modelling 
expert estimates, where we have the experts’ 
minimum, most likely (i.e. skewness) and 
maximum guesses (Vose, 2008). Th e 
resultant distribution had a minimum value 
of 10%, a most likely value of 15% and a 
maximum value of 20% (see ‘Exponential 
rate of decline for eradication success 
probability with respect to area aff ected’ in 
Table 10.1). Th is relationship between 
eradication success and infestation area 
appears broadly consistent with other 
anecdotal evidence in the literature that 
suggests eradication of weed species is 
seldom achieved unless detection occurs 
soon after introduction and often requires 
sustained eff orts over long periods (Dodd, 
1990; Panetta and Lawes, 2005; Panetta, 
2007).

If the incursion is not detected early 
enough, local eradication within the area 
aff ected may be aborted. Assume that the 
decision on when to abort is based purely on 
the aff ected area and that a threshold exists 
beyond which local eradication is technically 
infeasible. When this threshold is reached, 
management eff ort switches to a nil 
management strategy. In such cases, the 
eradication option fails. Note that, under nil 
management, we allow for the possibility 
that some modest eff orts to control the 
weed will be exerted by leaseholders. For 
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example, infrequent chemical applications 
may be applied to mimosa thickets, but they 
are likely to be insuffi  cient to eradicate the 
weed or to signifi cantly slow dispersal over 
time.

Algebraically, dit is expressed as:

  (10.2)

where Eit is the cost of eradication per 
hectare in region i in year t; Ait, as stated 
above, is the area infested with mimosa in 
region i in year t weighted by the probability 
of incursion and density of infestation; Ait

erad 
is the maximum technically feasible area of 
eradication in region i in year t; Yit is the 
mean change in livestock yield resulting 

from mimosa becoming established across 
region i in year t; Pt is the prevailing domestic 
price for cattle in year t ‒ 1; and Vit is the 
increase in variable cost of production per 
hectare induced by mimosa management 
methods in region i in year t.

Arrival

Ait is inclusive of mimosa entry and 
establishment probability in region i, zi, and 
therefore represents the area predicted to be 
in need of additional management eff ort 
due to the weed’s presence. If it is not 
present at the outset of the analysis, the 
possible transition from a without-mimosa 
to a with-mimosa situation must be modelled 
in subsequent time periods. Th is transition 
can be represented as a Markov process.

Box 10.1. Expert elicitation
Specifying the details of a model to predict what might happen in the event of an invasive 
alien species incursion is complex and extremely uncertain. Empirical evidence to develop 
model parameter estimates and predictions of biosecurity management outcomes may 
not be available at the time a decision must be made. When this is the case, direct or 
indirect expert elicitation approaches to fi ll the data gaps are becoming common 
(Burgman, 2005; Low Choy et al., 2009; Kuhnert et al., 2010; Martin et al., 2012). Direct 
elicitation requires experts on a particular species to express their knowledge in terms of 
quantities required by analysts. For instance, experts may be asked to provide statistical 
summaries (e.g. a lower bound, a best estimate and an upper bound) or a full parametric 
probability distribution. In contrast, indirect elicitation requires experts to answer questions 
that relate to their experiences that are then encoded into the quantities needed. For 
example, the expert may be asked about expected economic cost given different efforts 
invested in eradication, which the analyst then translates into a corresponding probability 
distribution for a model parameter. This indirect approach tends to be more comfortable 
for the experts, but not necessarily for the analyst (Allan et al., 2010).
 If an elicitation process involves multiple experts, information can be elicited 
independently and then combined, or a group consensus opinion can be sought (Martin 
et al., 2012). In either case, the process is subject to ‘heuristics and biases’, as extensively 
documented in psychological research investigating the assessment of uncertain 
information (Kynn, 2008). In a recent study, assessing the potential impacts of marine 
invasive species, researchers showed that individual experts use both a spatial proximity 
heuristic (e.g. they attribute relatively more damage to invasive species in their home 
country than elsewhere) and an effect heuristic (e.g. tangible economic impacts are 
regarded as more severe than equivalent environmental impacts) (Dahlstrom Davidson et 
al., 2013). In a group elicitation setting, there are added concerns introduced via dominant 
group members and groupthink (Burgman, 2005). To overcome these limitations, 
structured approaches such as the Delphi method can help in allowing experts to adjust 
their own estimates in light of the answers of other group members while maintaining 
anonymity (de França Doria et al., 2009).
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Table 10.1. Parameters for a model to assess invasion and impacts of mimosa in Western Australia 
under two management strategies.

Description Nil management Eradication

Area currently affected, Amin (m
2)a PERT(9.0  106,1.2  

107,1.5  107)
PERT(9.0  106,1.2  

107,1.5  107)
Cost of eradication, E (AUS$/ha)b 0.0 PERT(15,25,35)
Demand elasticityc Uniform(–1.5,–1.3) Uniform(–1.5,–1.3)
Exponential rate of decline for eradication 

success probability with respect to area 
affected

PERT(–0.1,–0.15,–0.2) PERT(–0.1,–0.15,–0.2)

Gross value of production of Amax divided by 
100, G (AUS$)d

1.4  105 1.4  105

Increased herbicide and application cost if 
eradication fails, V (AUS$/ha)e

Discrete({0,120,140}, 
{1,0.5,0.25})

Discrete({0,120,140}, 
{1,0.5 0.25})

Intrinsic rate of infestation and density increase, 
r (/year)f

PERT(1,2,3) PERT(1,2,3)

Intrinsic rate of satellite generation per unit area 
of infestation, μ (#/m2)f

PERT(5.0  10–2,7.5  
10–2,1.0  10–1)

PERT(5.0  10–2,7.5  
10–2,1.0  10–1)

Maximum area affected, Amax (m
2)g 4.0  109 4.0  109

Maximum area considered for eradication, Aerad 
(m2)

0.0 2.5  107

Maximum infestation density, K (#/m2)f PERT(1.0  104,5.5  
104,1.0  105)

PERT(1.0  104,5.5  
104,1.0  105)

Maximum number of satellite sites generated in 
a single time step, smax (#)f

PERT(30,40,50) PERT(30,40,50)

Minimum infestation density, Nmin (#/m2) 1.0  10–4 1.0  10–4

Minimum number of satellite sites generated in 
a single time step, smin (#)

1.0 1.0

Population diffusion coeffi cient, D (m2/year)f PERT(0.0,1.5  10–3,2.0  
10–3)

PERT(0.0,1.5  10–3,2.0 
 10–3)

Prevailing beef price (young steers for export) 
in the fi rst time step, P0 (AUS$/kg)h

1.75 1.75

Probability of re-entry and establishment in the 
fi rst time step, z

1.0 Uniform(0.2,0.7)

Re-infestation detection probabilityi 0.0 Binomial(1.0,0.4)
Value of yield reduction despite control, Y 

(AUS$/ha)j
PERT(0.0,0.8,1.7) PERT(0.0,0.1,0.3)

aCurrently, the precise area of infestation is not yet known.
bLeavold et al. (2007).
cUlubasoglu et al. (2011).
dABS (2011).
eAssumes: (i) labour costs of AUS$100/ha (i.e. one application, 2 h/ha × AUS$50/h); (ii) Roundup™ Biactive applied at 
100–150 ml per 15 l (i.e. approximately AUS$20/ha); and (iii) it is two times more likely that no herbicide treatments will 
be applied to an affected hectare of land by private land managers than one treatment in the absence of an eradication 
campaign, and four times more likely than two treatments.
fSpecifi ed with reference to Waage et al. (2005).
gSpecifi ed with reference to Walden et al. (2004). Note 1 ha = 10,000 m2.
hCurtis and McCormick (2012).
iWhen a re-infestation event takes place the probability of it being detected is generated in the model as a binomial 
distribution. The probability of this distribution returning a 1 (i.e. detection) is given by a PERT distribution, 
PERT(20%,40%,60%).
jAssumes a yield loss of 0–5% and 0–1% in the nil management and status quo scenarios, respectively, and a beef 
gross margin of approximately AUS$35/ha (McCosker et al., 2010).
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Consider the probability of mimosa’s 
arrival (call it event x) in a time period, t  1, 
conditional on its absence (call it event y) in 
time period t, as zxy. Th ere is also a probability 
attached to event x occurring in both time 
periods, denoted zxx. All possible outcomes 
for time period t  1 are arranged in a 
transition matrix,

 

Th e elements in the matrix are conditional 
probabilities indicating the probability of 
experiencing event x in a time period given 
that a certain state (i.e. either y or x) was 
observed in the previous time period.

We use expert elicitation combined with 
the methodology of Waage et al. (2005) to 
estimate each of the transition probabilities. 
Th ree DAFWA weed scientists were asked to 
choose from a list of uniform (i.e. 
rectangular) distributions taken from 
Biosecurity Australia  (2001) to represent 
the probabilities of re-entry and establish-
ment in the eradication scenario. Th eir 
agreed choice – a uniform distribution with 
a minimum value of 30% and a maximum 
value of 70%, which can be written as 
uniform(30%,70%) – gives us the tran-
sitional probability zxy. Similarly, zxx is given 
by the experts’ preferred choice for the 
probability distribution of establishment, 
uniform(70%,100%). Th e remaining tran-
sitional probabilities are calculated as 

  1yx xxz z  and   1yy xyz z .
If the probabilities of the events y and x 

occurring in any time period t are denoted 
zy(t) and zx(t), respectively, and z(t) is a 
column vector with elements zy(t) and zx(t) 
(where  ( ) ( ) 1y xz t z t ), the transition 
matrix can be used to calculate the 
probability of x occurring in t  1 as 
z 

x(t + 1) = Zz(t). Th e vector z(t) will converge 
to a unique vector as t increases (Moran, 
1984; Hinchy and Fisher, 1991) and the 
probabilities of event y or x occurring in any 
given time period reduce to constant values 
after several time steps. Since event x 
(i.e.  arrival) is of primary concern in a 
growing region i, zx(t) is denoted zit hereafter.

Deriving estimates of zit from risk maps 
is diffi  cult. A simpler operation may involve 
using expert interpretations of map-based 
tools to assess areas according to their 
susceptibility to invasion (see Box 10.1). An 
estimate of the number of arrival events 
expected in a particular location over a given 
timeframe can then be used to generate an 
actual whole number from a Poisson 
distribution in each model iteration 
(Harwood et al., 2009).

Dispersal

To describe the dispersal of mimosa across 
multiple regions after its arrival, a stratifi ed 
diff usion model that combines both short- 
and long-distance dispersal processes can be 
used (Hengeveld, 1989). It is derived from 
the reaction-diff usion models originally 
developed by Fisher (1937) which have been 
shown to provide a reasonable approxima -
tion of the spread of a diverse range of 
organisms (Dwyer, 1992; Holmes, 1993; 
McCann et al., 2000; Okubo and Levin, 
2002). Th ese models assert that an invasion 
diff using from a point source will eventually 
reach a constant asymptotic radial spread 
rate of 2 i ijr D  in all directions, where ri 
describes a growth factor for mimosa per 
year in region i; growth is assumed constant 
over all infested sites (Hengeveld, 1989; 
Lewis, 1997; Shigesada and Kawasaki, 
1997). Dij is a diff usion coeffi  cient for an 
infested site with an age index j in region i; 
diff usion is assumed constant over time in 
this analysis for simplicity. Hence, assume 
that the original infestation takes place in a 
homogeneous environment in region i and 
expands by a diff usive process such that area 
infested at time t, aijt, can be predicted by:

 (10.3)

Although demographic stochasticity is 
ignored here by assuming Dij is constant 
across all sites with age index j, enviro-
nmental heterogeneity can be incorporated 
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by the inclusion of habitat layers derived 
from maps of the land area concerned. 
Incorporation of heterogeneity could be as 
simple as a binary susceptible (1) or not 
susceptible (0) multiplier for Dij, or a more 
complicated weighting system could be used 
for each region i rating susceptibility to 
invasion by soil type, precipitation, elevation 
and so forth.

Th e density of mimosa within aijt 
infl uences the control measures required to 
counter the eff ects of an infestation and 
thus partially determines the value of Ait. 
Assume that in each site with age index j in 
region i aff ected, the infestation density, 
Nijt, grows over time following a logistic 
growth curve until the carrying capacity of 
the environment, Kij, is reached:

  (10.4)

Here, min
ijN  is the size of the original infl ux 

at a site with age index j in region i and ri is 
the rate of density increase in region i. Again, 
this may be informed by spatial information 
derived from risk maps in much the same 
way as the diff usion parameter using, for 
instance, a weighting system for each region 
i where ri is partially determined by various 
physiological criteria.

Nascent foci

In addition to aijt and Nijt, the size of Ait 
depends on the number of nascent foci in 
year t, sit, which can take a maximum value 
of max

is  in any year. Moody and Mack (1988) 
refer to these nascent foci as satellite 
infestation sites. Th ese sites result from 
events external to the outbreak itself, such 
as weather phenomena, animal or human 
behaviour, which periodically jump the 
expanding infestation beyond the invasion 
front (Cook et al., 2011). Here, nascent foci 
are explicitly modelled since the species of 
concern is established in the environment 
and can potentially spread to any susceptible 
unit of land. In cases where a pest or disease 
is transported via trade pathways (e.g. 
international trade, inter- and intra-regional 

nursery, timber products), it may be more 
appropriate to use techniques like network 
theory (Paini, 2012). Where an invasive 
species has the potential to become 
established in both a trade network and the 
wider environment, both systems become 
important and may need to be mode  lled 
separately (Harwood et al., 2009). Here, a 
logistic equation is used to generate changes 
in sit as an outbreak continues:

 (10.5)

where μi is the intrinsic rate of new foci 
generation in region i and is assumed 
constant over time, and min

is  is the minimum 
number of satellite sites generated in 
region i.

Total investment benefi t

Total investment benefi t is a function of the 
area, cattle price, yield reduction, control 
cost and gross value of production. Given 
the predicted area aff ected by mimosa in 
sites that have had mimosa for diff erent 
lengths of time (i.e. given by Eqn 10.3), the 
density of these infestations (Eqn 10.4) and 
the number of satellite sites predicted to 
have been created (Eqn 10.5), the total area, 
Ait, is calculated across m sites as:

 (10.6)

For the model, an estimate of cattle price, Pt, 
is also given for the fi rst time step (i.e. P0). 
Th is estimate is the initial price of beef, since 
only the costs of livestock displacement 
caused by mimosa are included in the 
assessment. Given that the demand for beef 
is elastic (i.e. price increases with relative 
scarcity and vice versa), the beef price in 
subsequent time periods will be partially 
infl uenced by mimosa’s impact on beef 
production. In the case of mimosa, the 
pressure exerted on price is negligible. 
However, in other cases where output is 
severely aff ected, substantial price increases 
may accompany pest spread. Th is outcome is 
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only true to the extent that the market is 
closed to competition. If the market is open 
to suppliers from other regions and the 
home region/economy contributes a 
relatively small amount to global production, 
the domestic price will remain unchanged in 
response to a pest incursion. Moreover, the 
probability of a pest incursion is also 
increased under this scenario, which may 
lead to countries protecting themselves 
through the use of phytosanitary measures. 
For a full discussion, see Cook and Fraser 
(2008).

For mimosa, we encounter a problem 
because a truncated analytical tool like 
partial budgeting makes linking changes in 
output to pest abundance diffi  cult. But, the 
growers’ production loss, YitAit, can be used 
as a proxy for the reduction in output1 and 
the lagged beef price, 1tP , to calculate 

    1 1 /t t it it itP P Y A G . Here, Git is the 
gross value of production divided by 100 
and  is the elasticity of demand for beef 
(i.e. the ratio of percentage change in 
quantity demanded over the percentage 
change in price).

Values of the cost/loss parameters Eit 
(i.e. the cost of eradication), Yit (i.e. the value 
of yield reduction) and Vit (i.e. herbicide 
costs) as they relate to mimosa appear in 
Table 10.1.

Th e total benefi t to the central planner 
of adopting an eradication policy for mimosa 
in year t, Bt, across n regions can be expressed 
as:

 (10.7)

In the following section, 
 1

n

iti
d  is 

estimated using multiple mimosa re-entry 
and spread scenarios for Western Australia 
over a 20-year period. From Eqn 10.2, dit 
includes parameters which cannot be given 
defi nitive values. Th ese uncertain param-
eters are specifi ed within the model as 
distributions and a Latin hypercube 
sampling algorithm is used to sample from 
each distribution using the @Risk™ software 
package (Palisade Software, Ithaca, New 
York). In each of 10,000 model iterations, 
one value is sampled from the cumulative 

distribution function so that sampled 
parameter values are weighted according to 
their probability of occurrence. Model 
calculations use the sampled set of 
parameters.

A list of model parameters and their 
distributions appears in Table 10.1 (the i, j 
and t subscripts are omitted). Types of 
distributions used in the model include: (i) 
PERT, a type of beta distribution specifi ed 
using minimum, most likely (i.e. skewness) 
and maximum values; (ii) uniform, a 
rectangular distribution bounded by 
minimum and maximum values; (iii) 
binomial, returning a 0 (i.e. failure) or 1 (i.e. 
success) based on a number of trials and the 
probability of a success; and (iv) discrete, a 
distribution in which several discrete 
outcomes and their probabilities of 
occurrence are specifi ed. Th e process of 
estimating these distributions in the 
absence of data can sometimes be complex 
and a full discussion of the process is beyond 
the scope of this chapter. But, a brief 
introduction to the use of expert elicitation 
in forming parameter estimates is given in 
Box 10.1.

Results

Th is analysis assumes that the current 
mimosa outbreak was eradicated at time 
t = 0. We assume re-establishment is likely 
to occur at some point or multiple points 
over the estimation period (i.e.  0itz ). 
Th erefore, some spread is expected under 
the eradication and nil management 
scenarios. However, the extent of expected 
spread under an eradication programme is 
substantially below that of a nil management 
policy over the 20 years simulated in the 
model (Fig. 10.1). Th is mitigated spread is 
broadly consistent with observations of 
changes in mimosa stand area reported in 
Cook et al. (1996).

Translating the diff erence in prevalence 
between the two scenarios into economic 
impacts, Fig. 10.2 shows the present (i.e. 
discounted) value of benefi ts accruing from 
the eradication of mimosa from Western 
Australia over time2. Th is somewhat chaotic 
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picture of possible future incursion scenarios 
highlights the large amount of uncertainty 
involved in forecasting impacts into the 
future. Th is signifi cant uncertainty is 
particularly true for the eradication scenario, 
the costs of which depend on the size of 
future re-infestation when detected and the 
probability of eradication success. Th e 
variance in predicted costs under the 
eradication scenario falls after 10 to 12 
years. Looking at the corresponding time 
periods in Fig. 10.1, the majority of model 
iterations show eradication failure by this 
time and the weed population grows 
thereafter.

Annualizing the diff erence between 
these two scenarios provides a summary of 
the complex information contained in Fig. 
10.2. Over the fi rst 20 time steps of the 
model, the average annual advantage of the 
eradication scenario in terms of expected 
damage over the nil management scenario 
is AUS$2.95 million per year (i.e. 


  6

1
AUS$2.95 10

n

iti
d ). Th is represents 

the threshold level of  1

n

iti
d  beyond 

which the central planning body will 
choose not to invest in the eradication and 
eradication strategy as an alternative to a nil 
management strategy (i.e. t = 0). Th e 
standard deviation of the distribution of 
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Fig. 10.1. Expected area affected by mimosa in Western Australia under the eradication and nil 
management scenarios. The box-and-whisker plot shows the extent of uncertainty in the model 
predictions, in turn dictated by the relative uncertainty in parameter specifi cation. The box-and-whisker 
plot shows the 25th percentile, the median (i.e. the 50th percentile), the 75th percentile, and remaining 
values up to and including the 5th and 95th percentiles. The boundaries of the boxes (shaded grey) 
indicate the 25th percentiles and the 75th percentiles. The length of the box indicates the variability (i.e. 
the larger the box, the greater the spread of model predictions and the more uncertain the results). The 
horizontal lines inside the boxes represent the medians. If a median is not in the centre of a box, the 
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average annual biosecurity benefi ts is 
AUS$1.69 million and skewness 0.86 (i.e. 
the distribution is skewed right such that 
the right tail is long compared with the left 
tail).

From the standard deviation, decision 
makers are able to determine the variation 
from the mean in the distribution of 
benefi ts, or how wrong their prediction of 
investment returns could be. Th e skewness 
indicates if their decision is more likely to 
produce higher or lower benefi ts than the 
mean suggests. So, in this case, the relatively 
high standard deviation and positive 
skewness of the output distribution might 
give the planning body reason for optimism 
in that the distribution suggests they may 
exceed their expected (i.e. mean) investment 
returns by quite some margin. But, the 
decision makers’ interpretation of the 
information largely depends on their 
attitudes to risk and uncertainty.

While average eradication benefi ts are 
large, Fig. 10.3 illustrates how annual 
eradication benefi ts are expected to change 
over 20 years – in eff ect, the uncertainties in 
mimosa management over time. Th e fi gure 
is unusual in that the variance decreases 
with time. As stated previously, this result is 
largely attributable to the stochasticity in 
the arrival process with an eradication 
strategy in place.

In view of the large amount of 
uncertainty surrounding the parameters 
used to describe the mimosa (re-)infestation 
and spread process, it is prudent to test the 
sensitivity of the change in expected 
eradication benefi ts to the key assumptions 
of the model to gauge the robustness of the 
predictions. Parameters were sampled from 
a uniform distribution with a maximum 
(minimum) of +50% (–50%) of the original 
values in the model using Monte Carlo 
simulation. Th e Spearman’s rank correlation 
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Fig. 10.2. Present value of annual losses from mimosa in Western Australia predicted under the 
eradication and nil management scenarios. The details of the box-and-whisker plot are described in Fig. 
10.1.
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coeffi  cients relating the sampled model 
parameter values and the change in 

 1

n

iti
d

were then calculated.
Th e numerical value of the Spearman’s 

rank correlation coeffi  cient is denoted , 
where   1.0 1.0. If  is positive it 
implies that 

 1

n

iti
d  has a tendency to 

increase when the parameter increases and 
vice versa. A  value of 0 indicates that there 
is no tendency for 

 1

n

iti
d  to either increase 

or decrease when the parameter values 
change, while a  of 1 indicates that they are 
perfect monotone functions of each other. 
Parameters and their  values are presented 
in Table 10.2.

Th e sensitivity tests indicate that the 
model is relatively responsive to changes in 
three of the parameters listed in Table 10.1 
(11 of which are shown in Table 10.2). Th ese 
parameters and their correlation with 
predicted 

 1

n

iti
d  are the increased 

herbicide and application cost if eradication 
fails ( = 0.38), re-infestation detection 

probability ( = 0.24) and probability of 
re-entry and establishment ( = –0.10). All 
of these parameters can, to some extent, be 
infl uenced by policy and so are of interest to 
the decision-making body. For instance, if 
the decision makers were to consider 
subsidizing the price of herbicides in the 
event of mimosa’s re-emergence post-
eradication, the sensitivity analysis suggests 
that this would actually reduce the benefi ts 
of the initial eradication. However, the 
opposite eff ect would be achieved if they 
were to invest in surveillance activities that 
increase the re-infestation detection 
probability or phytosanitary measures that 
reduce the probability of re-entry and 
establishment.

Discussion

We have described a method to measure 
some agricultural impacts from a single 
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Fig. 10.3. Average industry benefi t from mimosa eradication from Western Australia over 20 years. The 
details of the box-and-whisker plot are described in Fig. 10.1.
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invasive species, but it is important to 
recognize that other impacts may occur that 
are more diffi  cult to evaluate. Th e invasion 
of natural communities by introduced 
plants, in particular, is considered one of the 
most serious threats to biodiversity and 
woody legumes like mimosa are some of the 
world’s most important invasive weeds 
(Paynter and Flanagan, 2004). Mimosa has 
been identifi ed as one of the top 20 weeds of 
national signifi cance in Australia (Th orp and 
Lynch, 2000). Th e spread of this weed across 
northern parts of Australia has been one of 
the most serious examples of the impact of 
plant invasions on biodiversity (Braithwaite 
et al., 1989; Lonsdale et al., 1989; Lonsdale, 
1993). Mimosa displaces native shrub and 
grass species, creating a dense tall scrubland 
where fl oodplains previously existed and 
shifting the wetland fauna to one with ‘edge-
habitat’ affi  nities (Braithwaite et al., 1989). 
Such harm is extremely diffi  cult to express 
in economic terms with any degree of 
accuracy, but raises the average damage cost 
per hectare.

Even if environmental and agricultural 
impacts are known with certainty, problems 
still remain that can severely hamper 
control eff orts. Creating and maintaining a 
cooperative control relationship between 
many diff erent parties is seldom straight-
forward due to externalities created in the 
provision of management services. Once a 

problem species like mimosa has been 
identifi ed, the failure of one individual to 
control it within his or her area of infl uence 
creates a negative fl ow-on eff ect for all 
neighbouring areas due to the increased 
likelihood of transference. Th is outcome 
is termed a negative externality, which 
occurs when the welfare of one individual 
is adversely aff ected by the actions of 
another.

In the case of many invasive alien pest 
species where dispersal often takes place 
over large distances, a number of potential 
management parties and jurisdictions may 
be involved in control. While a negative 
externality is created through inaction (i.e. 
non-compliance or a lack of control) by any 
of these parties or jurisdictions, a positive 
externality is created by control. If one 
manager undertakes control measures, he/
she is unable to exclude neighbouring areas 
from enjoying a portion of the benefi ts in 
the form of the reduced likelihood of weed 
transference. Th ese neighbouring managers 
who did not contribute to the control 
activities are known as free riders.

While the free rider problem might not 
prevent the private sector from providing 
some level of mimosa control eff ort, the 
level provided will almost certainly be lower 
than a socially desirable amount. Th e 
diversity of stakeholders involved in control 
and the inherent uncertainty and variability 

Table 10.2. Results of sensitivity analysis for model parameters. Herbicide use, re-infestation detection 
probability and re-entry probability have the greatest impact on model results.

Parameter
Correlation 
coeffi cienta

Increased herbicide and application cost if eradication fails  0.38
Re-infestation detection probability  0.24
Probability of re-entry and establishment –0.10
Intrinsic rate of satellite generation per unit area of infestation  0.06
Population diffusion coeffi cient  0.03
Maximum number of satellite sites generated in a single time step  0.02
Exponential rate of decline for eradication success probability with respect to area 

affected
–0.02

Intrinsic rate of infestation and density increase  0.01
Demand elasticity –0.01
Maximum area considered for eradication  0.01

aSpearman’s rank correlation coeffi cient, varies from –1 to +1
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within biological systems make it diffi  cult to 
establish a management system that allows 
all parties to contribute appropriate 
knowledge, expertise and opinions in setting 
control targets. Even if these issues are 
overcome and a collective amount of weed 
control can be agreed upon as a standard, 
the amount of individual control eff ort 
required to maintain this standard will vary. 
Th e problem then becomes one of providing 
group members with suffi  cient information 
on weed risks and the consequences of 
inaction to encourage them to act in 
accordance with the collective good (Herb et 
al., 2002; Dietz et al., 2003). If this is not 
done, the continuity of control is put in 
jeopardy by parties defecting from the spirit 
of cooperation.

For government to correct the situation, 
some form of intervention is required, 
perhaps the payment of subsidies to private 
land managers or cooperatives to increase 
their level of control eff ort or assessment of 
penalties on non-compliant property 
managers to encourage them to control the 
weed on their properties. In both cases, 
establishing an amount of weed control that 
is deemed environmentally and economically 
acceptable in a given area will be diffi  cult and 
may necessitate a degree of policy experi-
mentation (Cook et al., 2010). Certainly, 
such experimentation would benefi t greatly 
from economic impact assessments of the 
kind demonstrated here, but the political 
implications of policy failures make this 
approach an uncertain one for accountable 
decision makers.

Conclusion

Th is chapter has described a method of 
estimating the likely returns to biosecurity 
investments by simulating economic eff ects 
over time. Th e simulation uses a relatively 
simple representation of pest ecology and 
economic behaviour but can be developed 
quickly for use in pest and disease emergency 
responses. Analyses of this type can be of 
tremendous benefi t to decision makers, 
especially early in an incursion when 
eradication remains a viable response. 

Although the extent of the environmental 
threat this species poses to Western 
Australia wetlands is diffi  cult to estimate in 
monetary terms, the analysis shows that the 
likely impact of mimosa on cattle grazing 
enterprises is suffi  ciently large to warrant 
an eradication investment of up to 
AUS$2.95  million per year. If eradication 
can be achieved for less than this amount, a 
net benefi t will have been generated for the 
Western Australian economy. However, the 
model projections come with a large amount 
of uncertainty. Sensitivity analysis can 
indicate the benefi t of reducing uncertainty 
in the future, but even without this, decision 
makers gain an understanding of what 
current knowledge implies about possible 
results of their decisions.
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Notes

1  This is a practical solution to a non-trivial prob-
lem. The yield loss is only part of the story. To 
truly gauge a producer’s output response requires 
information about their cost curves (Cook and 
Fraser, 2002).

2  We discounted benefi ts because a dollar avail-
able for investment in the present is more 
valuable than a dollar that will not become avail-
able until the future. The future dollar has an 
opportunity cost associated with it (i.e. invest-
ment opportunities we have to forgo while we 
wait for it to become available for spending). 
Identifying exactly what return could have been 
earned on those forgone investments is a chal-
lenge. In the absence of defi nitive information on 
opportunity costs relevant to a specifi c project 
like mimosa control, we simply refer to Australian 
government guidelines, which recommend a 
standard discount rate of 5% (Commonwealth of 
Australia, 2006).
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Abstract

Biological invasions threaten native species 
and ecosystems worldwide. Estimating the 
level of risk that an invasive alien species 
poses to native species across landscapes 
is important for prioritizing mitigation 
eff orts. We describe a risk assessment 
approach that incorporates spatial hetero-
geneity in eff ects and illustrate this method 
by considering the risk that the red imported 
fi re ant (Solenopsis invicta) presents to two 
native birds. Th e common ground-dove 
(Columbina passerina), an oviparous, ground-
nesting species with altricial young that 
prefers open habitats, is more susceptible to 
impacts from fi re ants than the swallow-
tailed kite (Elanoides forfi catus), which 
occupies closed-canopy forests, nests high 
in trees, is oviparous and has altricial young. 
Risk approaches that consider land scapes 
and that are spatially explicit are of 

particular relevance as remaining un  -
developed lands become in   creasingly 
un  common, disjointed and more important 
for the management and recovery of native 
species and ecosystems.

Introduction

Invasive alien species rank among the 
greatest threats to native biodiversity and 
ecosystems worldwide (Mack et al., 2000; 
Didham et al., 2007; Hulme, 2009) and are 
responsible for substantial costs to human 
societies by diminishing ecosystem goods 
and services (Pejchar and Mooney, 2009). 
Th e eff ects of invasive alien species on native 
species and ecosystems are known to be 
region- and context-specifi c (Vila et al., 
2011; Pysek et al., 2012). Methodologies are 
needed to incorporate spatial analysis into 
risk assessments for invasive alien species 
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and to evaluate a large number of potentially 
aff ected native species.

Modelling the potential overlap between 
invasive alien species and native species 
distributions within a spatial risk assessment 
framework can help determine which native 
species and/or ecosystems may be most 
infl uenced by the establishment and spread 
of alien invasive species (Allen et al., 2006). 
Here, we use Allen et al.’s (2006) application 
of a spatial risk assessment framework to an 
invasive alien species of particular concern 
in the south-eastern USA: the red imported 
fi re ant (Solenopsis invicta; Wojcik et al., 
2001).

Risk assessment progresses through 
the phases of: (i) problem formulation; 
(ii) assessment of exposure and eff ects; and 
(iii) risk characterization (EPA, 1998). 
Probabilistic risk assessments have been 
used extensively by engineers and mathe-
maticians (Seife, 2003). Toxicologists have 
extended probabilistic methods to the 
assessment of risks posed by toxicants to 
humans and wildlife, and considerable 
literature addresses potential impacts of 
chemical stressors on animals and humans. 
Technological advances in spatial assess-
ments and theoretical advances in landscape 
ecology now enable explicit consideration of 
the spatial aspects of many stressors, both 
chemical and non-chemical (Hope, 2005; 
Bradley and Mustard, 2006; Lahr et al., 
2010). Th e application of risk assessments 
to invasive alien species is an example of this 
widening scope of analysis (Andersen et al., 
2004; Hulme, 2013; Kriticos et al., 2013). 
Invasive species distribution models 
(iSDMs) can incorporate measures of land-
scape change and climate change to facilitate 
comparisons of alternative restoration and 
policy interventions and support adaptive 
management of invasive alien species 
(Hulme, 2013; Kriticos et al., 2013).

Spatial risk analysis, as we envisage its 
application to impacts of invasive alien 
species on native species, should proceed 
through two levels of analysis. In the initial 
phase, the goal is to determine the 
probability of spatial co-occurrence of 
stressors and a target native species. We use 
the term ‘target’ to refer to taxa under 

consideration. Clearly, for invasive alien 
species to have direct, deleterious impacts 
on a native species, their geographic 
distributions must overlap in both space 
and time. However, the demonstration of 
overlapping distributions is not, in itself, 
suffi  cient evidence to conclude that the 
target species will be impacted. Th us, this 
initial level of analysis eliminates com-
binations of target invasive alien species and 
native species that fail to co-occur and 
combinations that do overlap are subjected 
to the next tier of analysis.

Th e second tier of analysis attempts to 
gauge the potential impact of an invasive 
alien species on the local abundance, 
regional occurrence or geographic range of 
target native species and/or the degree of 
functional connectivity among species in 
the landscape. Th ese end points are of clear 
ecological relevance and are likely to be 
important to managers interested in 
conservation of one or more target native 
species. Given suffi  cient time and knowledge, 
it is possible to quantitatively estimate 
stressor-induced changes in abundance for 
some species, for example, through 
population viability analyses (Akcakaya, 
2004). However, simple methods are needed 
to sort rapidly through a large number of 
potentially impacted species and identify 
those most at risk. We have developed a 
semi-quantitative index of eff ects based on 
categorical ratings of direct and indirect 
invasion impacts – similar to the rank-based 
approach to regional risk assessment 
developed by Landis and Wiegers (1997) 
and proposed for application to invasive 
alien species by Landis (2004) – for 
estimating the relative risks posed by 
invasive alien species.

Co-occurrence of target invasive alien 
species and native species is assessed on the 
basis of respective, fi eld-calibrated species 
distribution models for native and invasive 
alien species (Elith et al., 2006; De Marco et 
al., 2008; Elith and Leathwick, 2009; Gallien 
et al., 2012). Spatial co-occurrence (Allen et 
al., 2001) and relative abundances of 
invasive alien species and native species can 
be estimated by overlaying forecasted 
distributions for both species within a 
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geographic information system (Forys et al., 
2002).

Frequently, it is not possible to derive 
precise quantitative estimates of the eff ects 
of an invasive alien species; instead, a 
‘hazard index’ may be assigned to each 
invasive alien species/native species com-
bination. Th is hazard index is developed 
based on conceptual models of the modes of 
interaction between invasive alien species 
and native species. For each invasive alien 
species/native species pair, each possible 
mode of interaction – whether direct or 
indirect – is assessed as likely (+) or unlikely 
(–). Scores should be informed with 
information from peer-reviewed publi-
cations whenever possible, with expert 
opinion being utilized only when reliable 
local information is unavailable. In our 
modelling approach, a likely interaction is 
assumed to have negative outcomes for the 
native species (i.e. population declines), 
rather than positive outcomes. Scores can be 
conveniently represented in a matrix format, 
analogous to the matrix approach discussed 
by Foran and Ferenc (1999). Th e hazard 
index is calculated by dividing the number of 
interaction modes under which a target is 
vulnerable by the total number of interaction 
modes. Although this index is not directly 
interpretable in terms of predicted 
population-level consequences, it provides a 
comparable set of values that allow for 
ranking of target native species in terms of 
the likely magnitude of impact. Such 
qualitative approaches in ecological risk 
assessment are well established (Foran and 
Ferenc, 1999) and have been applied to 
predicting the risk of spread of invasive alien 
species (USDA, 1993; USFWS/NOAA, 1996; 
Landis and Wiegers, 1997; Pheloung et al., 
1999).

The Case of the Red Imported 
Fire Ant

We illustrate our methods with an example 
from Allen et al. (2006), using South 
Carolina, USA, as our study area, an invasive 
alien ant as our environmental stressor and 
two declining native vertebrates as our 

target native species. Th is methodology was 
developed to sift among a large number of 
potentially impacted species to identify 
those species most at risk, thereby enabling 
scarce resources to be more eff ectively 
targeted towards the analysis of potentially 
deleterious stressor eff ects on those species 
most at risk. Th us, this method is a 
preliminary ‘coarse-fi lter’ approach.

Problem formulation

Th e problem formulation phase of a risk 
assessment involves careful delineation of 
the stressor or stressors to be considered, 
the ecological receptors that might be 
exposed and the spatial and temporal scale 
of the analysis. At a minimum, the problem 
formulation should specify the assessment 
end points that are going to be used as 
measures or indicators of eff ects and provide 
a conceptual model of how the stressor(s) 
may interact with organisms or ecosystems 
to produce those eff ects (EPA, 1998).

For our example we are focusing on a 
single stressor, the red imported fi re ant. 
Th e red imported fi re ant is an established, 
aggressive invasive alien species in the 
south-eastern USA that is native to the 
Paraguay and Parana Rivers of South 
America. Since being introduced to the port 
of Mobile, Alabama, in the 1930s, fi re ants 
have become the dominant ant species 
throughout much of the south-eastern USA, 
having outcompeted or displaced many 
other ant species. Fire ants have also invaded 
California (USA), numerous Caribbean 
Islands, Australia, Taiwan and China 
(Callcott and Collins, 1996).

Several native species can be aff ected by 
fi re ants. Fire ants may aff ect entire eco-
systems by altering or eliminating ecological 
processes like seed dispersal (Zettler et al., 
2001). Allen et al. (2004) documented the 
potential negative impacts of red imported 
fi re ants on wildlife species. Many species of 
wild animals are susceptible to both direct 
and indirect fi re ant impacts. Ground-
nesting species that lay eggs or produce 
altricial young may be especially vulnerable 
to direct impacts, which can include 
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predation of newly hatching young and 
reduced weight gain and survival of non-
lethally attacked off spring (Allen et al., 
1995). Clearly, however, it is neither cost- 
nor conservation-effi  cient to treat all species 
as equally vulnerable or to conduct 
experiments to assess the vulnerability of 
each. Th erefore, we decided to develop and 
apply a relative risk assessment method to 
focus research and conservation eff orts on 
wildlife species at greatest risk from fi re ants 
now and in the future.

Th e assessment end point, broadly 
speaking, is biodiversity, but our analysis 
focuses on two native bird species. Th e 
conceptual model involves a two-step 
process: if fi re ants are to cause impacts on 
native biodiversity, they must fi rst spatially 
co-occur with native biota, and then cause 
negative eff ects on the native species with 
life-history characteristics detailed in Table 
11.1.

Our example applies to South Carolina, 
USA, where fi re ants are widespread and well 
established. We focus on assessing their 
potential adverse impacts.

Assessment of exposure

Fire ants were sampled throughout South 
Carolina. Sampling was stratifi ed by 
ecoregion (e.g. sandhills, coastal plain, 
piedmont and mountains) and by land-cover 
types as described by the South Carolina gap 
analysis, derived from 30 m resolution 
Landsat Imagery (http://www.dnr.sc.gov/
GIS/gap/mapping.html). Approximately ten 
replicates of each land-cover type in each 
ecoregion were sampled by establishing a 
linear transect of sample points through a 

patch. Sample points consisted of bait 
attractants and pitfall traps.

We modelled the presence/absence of 
fi re ants, as the dependent variable. 
Independent variables included habitat, 
soils, aspect and landscape metrics such as 
patch size, shape, the Euclidean distance 
between the survey location and nearest 
development, the area of development at 
various buff er distances around each survey 
location and the Euclidean distance between 
the survey location and nearest paved road. 
Some variables were recorded in the fi eld at 
sample locations, while others were derived 
from digital soil and land-cover maps. After 
we evaluated and eliminated strongly 
collinear variables (i.e. those with co -
effi  cients of determination >0.75), the 
landscape variables were entered into a 
stepwise logistic analysis to derive a 
multivariate model that predicted the 
presence or absence of red imported fi re 
ants. Th e resulting models were evaluated 
using goodness-of-fi t tests based on maxi-
mum likelihood estimates and/or Akaike’s 
Information Criterion (Akaike, 1969; 
Burnham and Anderson, 1998).

We used two approaches to create maps 
of the distribution of fi re ants. Th e fi rst 
approach was based on the outputs of 
logistic regression models and the second 
approach was based simply on densities of 
fi re ants sampled in the fi eld. Maps based on 
logistic regression presence/absence models 
considered fi re ants as ‘present’ when there 
was a predicted probability of presence 
>90%, based on statistical models. Th e 
second approach was to build simpler, 
empirical (i.e. sample-based) models. Th e 
percentage of fi eld samples from each land-
cover type that detected fi re ants was used 

Table 11.1. Elements of the ecologically based hazard index to assess the safety/vulnerability of birds 
with different life-history characteristics to fi re ant predation.

Life-history characteristic Safe Vulnerable

Reproduction Viviparous Oviparous
Eggs Hard-shelled Soft-shelled
Nests In trees On ground 
Foraging Aerial/arboreal On ground
Young Precocious Altricial
Reproductive timing Autumn and winter Spring and summer
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as an estimate of the likelihood of fi re ants 
being present in that cover type. In our 
example, only habitat variables were sig-
nifi cant in logistic models. Both approaches 
provide continuous estimates of the 
probability of fi re ant presence. By applying 
thresholds to the probability of fi re ants 
being present, we have converted the output 
from the logistic model into a binary map 
(Fig. 11.1) of fi re ant presence. We used our 
estimates of the probability of fi re ants being 
present in diff erent land-cover types to 
produce a continuous map (Fig. 11.2; see 
colour plate section) that is consistent with 
varying fi re ant densities across land-cover 
classes. We characterized the exposure of 
native species to fi re ants with a probability 
of co-occurrence model.

Assessment of effects

We focus our example on two declining 
species identifi ed as at risk by the state of 

South Carolina. At-risk species represent 
animals with small or declining populations, 
for which additional stressors may be a 
proximate cause of extinction. Th e common 
ground-dove (Columbina passerina) is 
associated with open habitats such as 
grasslands and savannahs and has been 
declining across much of its range, including 
South Carolina, where it is listed as 
threatened. Much of this decline has been 
attributed to habitat loss, but fi re ants might 
also present a threat (Cely, 2000). Th e 
swallow-tailed kite (Elanoides forfi catus) is 
associated with forested wetlands. Its 
regional population may be stable, but the 
species is generally rare and has been 
proposed for listing as an endangered 
species at federal and state levels (Meyer, 
2004). Th e predominant identifi ed threat is 
the loss of suitable nesting habitat. We chose 
these two species as examples because they 
are of conservation concern and have 
diff erent life histories which may aff ect their 
vulnerability to fi re ant eff ects.

km

Fig. 11.1. Predicted fi re ant distribution map (90% probability) for the state of South Carolina, USA, 
based on stepwise logistic regression analysis.
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When fi re ants encounter these two bird 
species, the outcomes are expected to be 
diff erent. Th e common ground-dove has 
altricial young, prefers open habitats, nests 
on the ground and is oviparous, all of which 
makes it more susceptible to impacts from 
fi re ants than the swallow-tailed kite. Th e 
swallow-tailed kite has altricial young, 
occupies closed-canopy forests, nests high in 
trees and is oviparous (Table 11.2). Th us, the 
common ground-dove receives higher scores 
for the overall hazard index (Table 11.2). Th is 
form of the index assumes additivity among 
the potential vulnerabilities.

We used the general species–habitat 
models developed by the South Carolina Gap 
Analysis Project (http://www.dnr.sc.gov/
GIS/gap/mapping.html) to characterize the 
potential geographic distributions of the 
two birds. Gap analysis models create 
county-range maps for native species based 
on occurrence records, a habitat matrix 
based on known species–habitat associations 
and land-cover classifi cation maps (Scott et 
al., 1993). Gap-analysis species models are 
peer reviewed and made freely available in 
the public domain. Diff erent states release 
models at diff erent resolutions. South 
Carolina species models are available at a 30 
m resolution (http://www.dnr.sc.gov/GIS/
gap/mapping.html).

When invasive alien species have a 
severe impact or have been present for an 
extended period, they may have already 
aff ected the distribution of a target native 
species. Field samples might suggest the 
presence of fi re ants but not the presence of 
our target bird species. Care must be taken 
to avoid the conclusion based on these data 
that ants and birds occupy diff erent habitats. 

While this might be true, it is also possible 
that ants have already locally extirpated a 
target species. In our example, bird 
distribution models are based on potential 
habitat and, thus, are not infl uenced by fi re 
ant distributions.

Risk characterization

Th e fi rst spatial level of risk assessment is 
accomplished by overlaying the results of 
the predictive models of fi re ant distribution 
with habitat-relationship models of the two 
birds (Figs 11.3 and 11.4; see colour plate 
section). In doing so, we have characterized 
the probable co-occurrences of fi re ants and 
each of the bird species. Th e biggest 
diff erence in the two models of fi re ant 
occurrence is that in the logistic models, all 
modelled habitat is either occupied by fi re 
ants or unoccupied (i.e. binary), whereas 
with the empirically based fi re ant 
distribution models, there is a probability of 
occurrence associated with each habitat 
type. Th ese diff erent types of models aff ect 
risk characterization. For example, consider 
upland pine habitats. With logistic models, 
upland pine is occupied by fi re ants and if 
another species were restricted only to this 
habitat its co-occurrence with fi re ants 
would be 100% (i.e. 100% spatial overlap); 
whereas empirically based models attribute 
upland pine with a 45% occurrence of fi re 
ants (i.e. probability of encounter) and if 
another species were restricted only to this 
habitat its co-occurrence with fi res ants 
would be 45%. Th e risk characterization 
phase combines co-occurrence and eff ects 
into an integrated estimate of risk. Risk is 

Table 11.2. Calculation of hazard indices based on six life-history traits that potentially increase species’ 
vulnerability to fi re ant impacts. A ‘+’ indicates vulnerability. Hazard indices are produced by dividing the 
number of vulnerabilities for each target by the total number of potential vulnerabilities.

Species

Life-history trait

Hazard 
indexOviparity Soft-shelled

Ground-
nesting

Ground-
foraging

Altricial 
young

Spring/
summer 
young

Common ground-dove + – + + + + 0.83
Swallow-tailed kite + – – – + + 0.50
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estimated as the product of the hazard index 
(Table 11.2) and probability of co-occurrence 
(Table 11.3). Although this risk estimate is 
not directly interpretable in terms of 
predicted population-level consequences, it 
provides a set of values that permits ranking 
of native species based on the magnitude of 
likely impact.

Conclusions

Our procedures provide managers an 
effi  cient and fl exible tool for identifying 
native species at risk by calculating relative 
risk for multiple species, determining the 
spatial distribution of risk and exploring 
landscape manipulations for reducing risk. 
Th is procedure can be applied rapidly and 
yields a spatially and ecologically based risk 
assessment. Th e explicit spatial nature of 
the assessment could allow one to develop a 
general framework for evaluating how 
functional connectivity of habitat and other 
aspects of landscape patterns aff ect the risk 
faced by wildlife species from various 
stressors. Th is in turn could allow for the 
determination of impacts of alternative 
land-use/land-cover change scenarios on the 
distribution of stressors and the risk faced 
by wildlife species and for the exploration of 
alternative landscape remedial and/or 
proactive actions to reduce that risk.

Our fi re ant distribution model was 
developed for South Carolina, where local 
variables were important for predicting fi re 
ant presence/absence. In larger areas, or 
areas with steep environmental gradients, 
climatic variables may also be important for 
modelling invasive alien species’ distri-
butions. Suffi  cient a priori consideration 

must be given to the appropriate spatial 
scale(s) for an analysis and the appropriate 
predictor variables for inclusion in 
distribution models.

Our methods allow for the incorporation 
of scenarios of potential land-use or land-
cover change. Land-use or land-cover 
changes aff ect the distribution of both 
invasive alien species and native species. In 
our example system, decreasing closed-
canopy forest area and increasing open and 
disturbed habitats likely would lead to 
increased distributions and abundances of 
fi re ants. Th ese same changes diff erentially 
aff ect target native species. Closed-canopy 
specialists, such as the swallow-tailed kite, 
will have decreased distributions and less 
core area, and vulnerability to fi re ant 
impacts will increase. Open habitat 
specialists, such as the ground-dove, will 
have an increase in overall distribution, but 
the total area and proportion of range 
overlapping with fi re ants will also increase, 
as will risk.

In addition to their applicability for a 
broad class of invasive alien species and 
native species, ecological risk assessments 
can be adapted for use at a broad range of 
spatial scales. ‘Coarse-fi lter’ assessments are 
most appropriate at regional scales. Th ese 
methods are potentially useful for risk 
managers in both the private and public 
sectors at federal, state and local scales. 
Th ere is clear applicability for screening risks 
at broad scales, for example, to determine 
risks faced by native wildlife across a 
landscape with the introduction of new 
diseases. Th ere is also utility for managers of 
conservation areas, who may wish to 
determine the potential impacts of a new 
invasive alien species or wish to explore the 

Table 11.3. Probability of spatial co-occurrence between bird species and fi re ants in 
South Carolina. Co-occurrence is based on results of a logistic regression model and 
an empirical model of fi re ant distribution. Overall risk index, shown in parentheses, is 
calculated as the product of the probability of co-occurrence and the hazard index.

Probability of co-occurrence with fi re ants

Species Logistic regression model Empirical model

Common ground-dove 0.83 (risk index = 0.69) 0.64 (risk index = 0.53)
Swallow-tailed kite 0.50 (risk index = 0.34) 0.40 (risk index = 0.20)
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eff ect of habitat manipulations on it. When 
multiple stressors create management 
challenges, these methods will allow for the 
identifi cation of the native species most at 
risk, the stressors with the greatest impact, 
and habitat and landscape manipulations 
that may reduce impacts.

Our approach leads to a landscape 
spatial risk assessment of the potential 
impacts of invasive alien species on native 
wildlife. After native species potentially at 
risk because of spatial overlap are identifi ed, 
the level of risk faced by that native species 
is determined by incorporating ecological 
attributes of the target and invasive alien 
species. Species judged to be facing sig-
nifi cant risk may then be further 
investigated, allowing scarce resources to be 
spent only on those native species identifi ed 
as being most at risk. Further investigation 
may include experiments conducted in the 
laboratory or controlled fi eld experiments, 
which may identify the most eff ective means 
of risk reduction for a particular native 
species or stressor. Such experiments will 
also be useful for identifying whether 
multiple stressors interact in synergistic or 
antagonistic ways.

Th e approach to assessing impacts from 
invasive alien species that we have described 
focuses on landscapes and is explicitly 
spatial. Such models will be important for 
the conservation and restoration of species 
and ecological systems as undeveloped lands 
become increasingly restricted and isolated. 
Eff ective ecosystem management includes 
the control of invasive alien species and 
other stressors with large impacts, under-
standing where those impacts may be the 
most severe and implementing management 
strategies to reduce impacts.
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Abstract

Predicting the potential distribution of 
invasive alien pests (i.e. habitat suitability 
modelling) and their potential spread 
from existing populations (i.e. habitat 
susceptibility modelling) is critical to guide 
management responses at local, regional 
and national scales. We use the management 
of Chilean needle grass (Nassella neesiana) 
invasion in a 260,791 km2 part of eastern 
Australia as an example to describe a 
process-based approach for making such 
predictions with publicly available soft ware 
(e.g. Netica and ESRI products). Th e 
approach is deductive, with causal relation-
ships captured in a Bayesian network and 
represented spatially at fi ne resolution 
using a geographic information system 
(GIS). Pest risk responses to changing 
environments, such as land-use change, 
climate change or altered fl ood regimes, and 
to management interventions can be tested 
through scenario analysis. Predictive risk 
mapping of invasive aliens is often 
knowledge-constrained; therefore, our 
approach seeks to capture the best available 
knowledge from often disparate sources in a 
transparent and explicit manner. For 
Chilean needle grass, we elicited process 

understanding from experts through a 
participatory approach, integrated an 
existing bioclimatic model and obtained our 
own fi eld data. Our model, thereby, 
represents a hypothesis of what determines 
the distribution, abundance and spread of 
Chilean needle grass in the modelled region. 
Specifi cally, the model forecasts the 
likelihood of the weed reaching a threshold 
density (e.g. in this case, >30% ground 
cover) as defi ned by the experts. Th is 
approach to likelihood estimation contrasts 
with the presence/absence predictions of 
most other models. Modelling was done at a 
suffi  ciently fi ne spatial resolution (i.e. 30 m) 
to capture relevant invasion dynamics. 
Finally, we illustrate how validation can be 
used to give end users confi dence in model 
predictions and to identify important 
knowledge gaps and uncertainties. We 
demonstrate how the resulting pest risk 
maps for Chilean needle grass can guide 
management decisions.

Introduction

Pest risk modelling aims to help decision 
makers identify and quantify risks of 
establishment and spread of invasive alien 
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species and to craft and implement manage-
ment responses to best manage those risks. 
Regional-scale pest risk modelling requires 
several features for it to be of most value to 
decision makers. First, it needs to be 
foretelling as it can rarely be assumed that 
the pest has already reached all possible 
environments within the region (Sutherst 
and Bourne, 2009); and even if it has, end 
users often want to know how pest 
abundance will respond under novel 
environmental or management conditions. 
Second, fi ne-spatial-resolution processes are 
likely to be important in determining pest 
risk and therefore need to be incorporated 
when possible. For example, risk of invasion 
by a riparian weed may depend on the 
interaction of weed inundation patterns 
with suitable soil, the herbaceous layer and 
disturbance history, each of which can vary 
considerably at fi ne spatial resolutions. 
Th ird, a general need exists to forecast where 
a pest will reach densities that cause serious 
impact, rather than just presence and 
absence. Finally, assessments of risk ideally 
should be probabilistic to refl ect the inherent 
uncertainty in risk analysis and risk 
management.

Th is chapter describes a recently 
developed causal (i.e. process-based) model-
ling approach that combines Bayesian 
networks and geographic information 
systems (GISs) to meet requirements for 
regional-scale forecasts of species’ invasions. 
Th e approach aims to capture causes of 
invasion in order to forecast where the 
organism can reach high densities if it 
arrives (i.e. habitat suitability) and where 
invasion of suitable habitat from existing 
populations is most imminent (i.e. habitat 
susceptibility). It also aims to characterize 
how habitat suitability and susceptibility 
might be aff ected through management 
alternatives or environmental changes (e.g. 
global climate, land use). Down-scaling 
forecasts in this way can be constrained by 
data availability. Our approach, therefore, 
draws upon all available information 
sources, including distributional data, 
expert knowledge and other models, to 
identify causal processes that may aff ect the 
future course of an invasion.

Th is approach to regional-scale pest risk 
modelling has been used to predict habitat 
suitability and susceptibility of rabbits (J.V. 
Murray, Queensland, 2012, personal com-
munication) and several weed species in 
Australia (van Klinken and Murray, 2011; 
Murray et al., 2012; Smith et al., 2012). Th e 
regional foci for these models have been 
large, including the Murray Darling Basin in 
south-eastern Australia (1,061,469 km2), or 
a part thereof (i.e. Queensland Murray 
Darling Basin, 260,791 km2), and the Desert 
Channels Region in north-eastern Australia 
(509,933 km2). In each case, modelling has 
been in close collaboration with relevant 
regionally focused natural resource manage-
ment groups. Models were con structed to 
examine the eff ect of a wide range of 
diff erent management scenarios and the 
potential eff ects of changes in land 
management or climate.

Th is approach should be applicable to 
any spatial extent (i.e. local, regional, 
national, continental or global) or pest 
organism. Th e process is currently time-
consuming, so it is most applicable to 
serious invaders that pose signifi cant threats 
or may require substantial management 
eff ort. Time requirements will change as the 
process is streamlined. Spatial extent is not 
a computational impediment. Th e main 
limitation is the availability of requisite 
environmental data, although useful results 
can still be generated in relatively data-poor 
regions (Smith et al., 2012). Models aim to 
capture the current state of qualitative and 
quantitative knowledge regarding the 
circumstances under which an invasive alien 
organism can reach high densities and under 
which it can spread. Th erefore, the more 
there is known of the species, the greater the 
predictive confi dence. In many cases, 
modelling serves an important role in 
identifying the key knowledge gaps for less-
understood species and regions.

In this chapter, we present a broad 
overview of the causal modelling approach 
with specifi c details provided for one case 
study. Because the approach can be applied 
with a range of readily available software, we 
focus on the principles behind the approach 
rather than prescriptive instructions. 
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Instructions would vary depending on the 
software of choice. Th is modelling approach 
has been successful, in part, because we 
emphasize verifi cation, validation and 
quantifi cation of uncertainty, so these topics 
receive special attention in this chapter. We 
illustrate our approach using Chilean needle 
grass (Nassella neesiana) in the Queensland 
Murray Darling Basin (QMDB) in eastern 
Australia. Chilean needle grass is a temperate 
perennial from South America. It established 
at Clifton, a small town in the QMDB, in the 
early 1970s and is slowly spreading into 
pastures and grasslands in eastern Australia. 
Th is weed threatens pastoral production and 
the environment, and, as such, is currently 
an eradication target in the QMDB. Th e 
modelling eff ort aimed to identify the area 
at risk and to provide guidance on the best 

management options and extension 
messages for Chilean needle grass across the 
QMDB.

Overview of the Modelling Approach

Th e modelling approach is described 
graphically in Fig. 12.1. Modelling starts 
with a question, which depends on the 
problems expressed by end users. In this 
example, end users wanted to know what 
threat Chilean needle grass posed to the 
QMDB; how best to manage that threat 
across the QMDB; whether natural barriers 
exist that might limit spread; who and what 
was at risk if eradication failed; and whether 
land managers could minimize potential 
impacts through preparations. Answers to 
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Fig. 12.1. Overview of the modelling approach and an outline of the key methodological steps in building 
the model and generating spatial risk predictions. See the online supplement to Chapter 12 for details on 
making spatial predictions.
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these questions involve: (i) identifying the 
area potentially at risk from Chilean needle 
grass in the QMDB (i.e. suitable habitat); (ii) 
identifying the area at most immediate 
threat of invasion based on dispersal 
pathways and current distribution (i.e. 
susceptible habitat); (iii) determining how 
suitability and susceptibility could be 
reduced, such as by managing dispersal 
pathways and altering land-management 
practices; and (iv) determining the likelihood 
of Chilean needle grass reaching harmful 
densities (i.e. the response variable of 
interest in our model). A conceptual model is 
built to capture the main invasion processes 
(i.e. introduction, establishment and 
persistence of populations) and the key 
environmental variables that drive these 
processes (Fig. 12.1). Th e conceptual model 
is formalized as a predictive Bayesian 
network (Figs 12.1 and 12.2). Forecasts are 
made spatially explicit by linking key 
environmental variables to available en -
viron  mental data (see the online supplement 
to Chapter 12) and are presented in the form 
of risk maps and summary statistics. Several 
knowledge sources can be consulted when 
building the model (Fig. 12.1). Validation 
can target diff erent components of the 
model framework (Fig. 12.1) and is 

important in gaining support. An important 
role of validation is testing how well the 
predictive model captures current under-
standing and identifying gaps or limitations 
in that understanding which may aff ect 
spatial predictions (Fig. 12.1).

Information Sources to Build 
Models

Once the purpose of the model and the 
response variable have been determined 
(see section on ‘Overview of the Modelling 
Approach’ above), diff erent data sources 
can be used to develop the model. For 
example, the model theoretically could rely 
entirely on distributional data to identify 
the key environmental drivers for habitat 
suitability and susceptibility; however, in 
our experience, suffi  cient data are rarely, if 
ever, available. Existing distribution records 
are often incomplete, lack the associated 
environmental information necessary to 
infer responses to land management or 
other factors and are available at insuffi  cient 
spatial resolution to infer process under-
standing. For example, distributional data 
from which eff ects of disturbance history 
can be inferred are rare. Some of these 
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Introduction Establishment

KEV 4

Persistence

Suitability

Susceptibility

Geographic information
system (GIS) variables

Key environmental
variables (KEVs)

Invasion
processes
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and susceptibility

Fig. 12.2. Conceptual framework for modelling habitat suitability and habitat susceptibility to Chilean-
needle-grass invasion.
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problems can be addressed through stratifi ed 
fi eld sampling (Murray et al., 2012). Often 
only a subsample of the environmental 
space can be sampled, so relationships still 
must be inferred from other data sources. 
Also, site-level drivers of pest density such 
as historical disturbance regimes may not be 
obvious at the time of sampling.

After we had reviewed available infor-
mation for Chilean needle grass, we 
concluded that available published infor-
mation was inadequate for our purposes. 
In response, we applied participatory 
modelling techniques that sought to capture 
relevant information from experts and 
supplemented those opinions with add-
itional data sources such as bioclimatic 
models and distributional data.

Example of a Participatory Modelling 
Process

A 1.5-day workshop was held in the QMDB 
to identify consensus about the most likely 
drivers of Chilean-needle-grass abundance 
and spread among local experts. Th is 
consensus represents a working hypothesis 
for how Chilean needle grass will respond to 
the environment and management within 
the QMDB. Th is approach is akin to 
collaborative scientifi c enquiry where 
diverse scientists work together to develop a 
deeper understanding of a system. It is quite 
diff erent from elicitation processes that seek 
the range of individual opinions or 
judgements (Allan et al., 2010; Low Choy et 
al., 2012) from representative and 
independent experts (Martin et al., 2012). 
Rather, it is a facilitated process to generate 
a predictive model (Fig. 12.1) that captures 
current process understanding derived 
from shared and tested (i.e. debated) 
experiences, observations and interpre t-
ations from individuals with fi rst-hand 
knowledge.

Selection of experts is important. Our 
workshop had carefully selected experts 
with direct knowledge of diverse aspects of 
Chilean needle grass in the QMDB. Th e 
experts also had a keen interest in 
better understanding the species and its 

management. Our workshop participants 
included a soil scientist, environmental 
scientists and other researchers with 
knowledge of the organism from laboratory 
studies or fi eld tests; farmers and 
landholders with observational knowledge 
that often spanned decades; and natural 
resource managers who had a regional 
perspective on Chilean needle grass from 
extensive discussions with local landholders 
and had fi rst-hand experience controlling 
the spread of this weed. Th ese experts were 
among the primary end users who were 
interested in the management implications 
of the modelling. Th erefore, the participatory 
approach has the added benefi t of 
establishing engagement, ownership and 
trust of the modelling process and outcomes 
among end users from the outset.

Th e workshop accessed knowledge from 
experts by using various elicitation 
techniques, including small breakout groups 
to encourage individual input and entire-
group participation for feedback and group 
consensus (Murray et al., 2012; Smith et al., 
2012). For example, experts were asked to 
identify individually the most important 
spread pathways by drawing on their fi rst-
hand experiences of Chilean-needle-grass 
spread and knowledge of its biology. Th ese 
hypotheses were tested against the 
combined experiences of the group. 
Alternative models, representing diff erent 
hypotheses, could be built if consensus could 
not be reached. For the engagement of 
experts to succeed, the facilitator must have 
a good understanding of pest risk processes 
and the ability to stimulate hypothesis 
generation/testing among the group, but 
not fi rst-hand knowledge of the organism or 
its invasion threat.

Our goal during the Chilean-needle-
grass workshop was to develop an initial 
Bayesian network on the fi rst day and to 
solicit feedback on the model structure, 
populate the conditional probability tables 
and gather information to develop spatial 
predictions on the second day. A follow-up 
workshop, which included most of the same 
participants, was held to obtain feedback on 
model performance (see section on 
‘Validation and Quality Control’ below).
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Developing the conceptual framework

First, objectives for the Chilean-needle-grass 
model and their implications for model 
structure were agreed upon. Th e workshop 
attendees agreed that the main objectives of 
the model were to determine: (i) how quickly 
and by what means Chilean needle grass will 
spread from existing locations; (ii) where 
Chilean needle grass might reach harmful 
densities; and (iii) how sensitive spread and 
habitat suitability were to management. 
Th erefore, we decided that the model needed 
to: (i) compare the relative eff ects of 
managing grazing, Chilean needle grass 
itself or dispersal pathways; (ii) include a 
model of spread over 10 years, a timeframe 
relevant for management; (iii) include all of 
the QMDB; and (iv) determine the likelihood 
of Chilean needle grass reaching or exceeding 
densities (e.g. 30% cover) that were relevant 
to management. With these objectives and 
goals in mind, we then framed a conceptual 
model (Fig. 12.1) that included obtaining 
agreement on the invasion processes and 
identifying and prioritizing the key 
environmental variables thought to be most 
important in determining distribution, 
abundance and spread in the modelled 
region (Fig. 12.2).

Suitable habitat occurs where conditions 
allow populations to establish and persist 
after they arrive (Fig. 12.2). Th is defi nition 
of habitat suitability diff ers slightly from 
other uses in this book. Th e initial 
establishment (i.e. founding) of a population 
of Chilean needle grass may require 
ephemeral conditions for germination and 
recruitment, whereas a diff erent set of 
conditions may be needed for populations to 
persist (Murray et al., 2012; Smith et al., 
2012). Th ese two phases are infl uenced by 
key environmental variables, which for 
Chilean needle grass include physical 
conditions (e.g. climate, soil moisture and 
soil type), biotic conditions (e.g. competition 
with ground cover and disturbance regime) 
and pest- or land-management practices 
(e.g. cultivation, grazing and Chilean-needle-
grass management; Fig. 12.3). We model 
each phase separately.

Susceptible habitat is where propagules 
from existing source populations can reach 
suitable habitat (Fig. 12.2). Most pests can 
disperse through multiple pathways and 
the challenge is to identify and include the 
most important ones in the model. For 
Chilean needle grass, we identifi ed several 
important modes of dispersal: (i) local (i.e. 
farm-scale) dispersal by animals, humans 
and grass-cutting machinery (i.e. ‘slashers’ 
in Australia); and (ii) long-distance dispersal 
in contaminated vehicles, farm goods and 
fl ood waters (Fig. 12.3). Th ese modes of 
dispersal operate at diff erent spatial scales 
and are captured in the model.

Formalizing the model as a Bayesian 
network

A Bayesian network is a directed acyclic 
graph that describes probabilistic relation-
ships among variables, represented as boxes 
(henceforth, ‘nodes’), and is used to convert 
a conceptual model into a quantitative 
model. In this case, our Bayesian network is 
used to calculate an invasion probability for 
any set of environmental variables (Fig. 
12.3). Nodes can represent continuous data 
or have two or more mutually exclusive 
categories (henceforth, ‘states’). Causal 
relationships within the network are 
represented by directional links (i.e. arrows) 
from parent nodes to child nodes (Marcot et 
al., 2001; Marcot, 2006, McCann et al., 
2006). Behind each child node, a conditional 
probability table (CPT) specifi es the 
probability of the node being in each of its 
states given the state of parent nodes that 
link into it (Fig. 12.3). Nodes without 
parents (i.e. inputs) also have probability 
tables; however, these simply store the prior 
unconditional probabilities for each of their 
states. Prior probabilities for the input 
nodes can come from data, scenario analysis 
or, as in our case, from spatial data layers 
when they are read into the model.

Several software packages are available 
for constructing Bayesian networks. For 
details, see Korb and Nicholson (2004) and 
Uusitalo (2007). For Chilean needle grass, 
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we used Netica™ version 4.12 (Norsys 
Software Corporation, 2009) which has the 
advantages of being relatively inexpensive, 
easy to use and adaptable to a workshop 
setting. However, it lacks sophisticated 
analytical tools and other features (e.g. 
ability to handle continuous variables 
without discretizing, Monte Carlo simu-
lation methods and object-orientated 
Bayesian networks) of programs such as 
Hugin, Bayesia and WinBugs that would 
be useful for more advanced applications 
and validation approaches.

Th e conceptual framework for Chilean 
needle grass was formalized into a Bayesian 
network during the model-building work-
shop using the following steps:

1. Habitat suitability, habitat susceptibility, 
invasion processes and key environmental 
variables were defi ned (Fig. 12.2). Th e 
processes and key environmental variables 
were each divided into discrete states (Fig. 
12.3) and each state was defi ned. We were 

careful to ensure that defi nitions could be 
assessed in the fi eld. Pragmatically, the 
current approach is constrained to three or 
four environmental variables and two or 
three states for each variable because CPTs 
(Fig. 12.3) can quickly become large and 
cumbersome to populate as the number of 
nodes and states increases. For example, we 
constrained the states for soil-type 
requirements for Chilean-needle-grass per-
sistence as good (i.e. soil types that maintain 
vigorous populations when all other 
conditions are met), moderate (i.e. vigorous 
populations are possible, but plants rarely 
become dominant and may be sensitive to 
other conditions being sub optimal) and 
poor (i.e. only suffi  cient to sustain isolated 
plants at best, even when all other con-
ditions are ideal).
2. In our study, experts populated CPTs 
behind each node (Fig. 12.3) by using a 
structured probability elicitation technique 
from a CPT calculator (Cain, 2001). Th e CPT 
calculator works by reducing the number of 
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Fig. 12.3. Bayesian network for Chilean-needle-grass habitat suitability and susceptibility developed with 
experts in Queensland. In this scenario, likelihoods for each parent environmental variable are set to 
100% for the most favourable state to give the best possible conditions for habitat suitability and 
susceptibility. An example of the conditional probability tables (CPTs) behind each node is also given for 
Introduction. Key environmental variables drive invasion processes (outlined in bold), as described in 
Fig. 12.2.
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scenarios in a CPT to those in which only 
one parent node is not in its most favourable 
state (i.e. most favourable for introduction, 
establishment or persistence in this case) 
and to best and worst case scenarios. 
Probabilities are then elicited for these 
scenarios from experts and the calculator 
interpolates probabilities linearly for all 
scenarios in the full CPT. Subsequently each 
probability can be adjusted if required, for 
example, to capture non-linear relationships. 
Th e CPT calculator reduces the number of 
probabilities that need to be elicited from 
experts and also maintains logical con-
sistency in the probability elicitation 
process. Nonetheless, the size of CPTs 
should be constrained to simplify checking 
and validation. When using the CPT 
calculator, the fi rst state of each node must 
be the ‘best case’ for the invasive alien 
species (e.g. requirements necessary for the 
highest chance of establishment) and the 
last state is the ‘worst case’.

Th e model structure and defi nitions were 
presented back to participants at the 
workshop to ensure that the structure and 
defi nitions captured their understanding. 
Th e presentation included running inter-
mediate condition tests (i.e. likely scenarios) 
and extreme condition tests (i.e. special or 
unusual scenario    s where factors are very 
favourable or very unfavourable) to explore 
model behaviour. Alterations were made to 
the model when experts felt that their 
understanding was not adequately captured. 
In the case of Chilean needle grass, we only 
needed to adjust a small number of CPT 
values.

Workshop participants might disagree 
about the importance of some processes, 
environmental variables or model structure. 
Divergent views do not need to be resolved. 
In fact, alternative explanations should be 
actively sought and evaluated during the 
workshop process. When options can be well 
argued and supported, alternative models 
can be developed, ultimately to test how 
important the disagreement is in terms of 
risk forecasts. For example, experts might 
disagree about how Chilean-needle-grass 

persistence is aff ected by shading. If they did 
disagree, forest cover could be added to the 
model to test how spatial risk predictions 
are infl uenced by this assumption. However, 
when building the Queensland Chilean-
needle-grass model, all experts agreed.

Th e habitat susceptibility model requires 
estimates of the dispersal capacity of 
Chilean-needle-grass propagules. Dispersal 
might vary from hundreds of metres to 
hundreds of kilometres. Useful empirical 
data are rare and expert elicitation is 
particularly diffi  cult because experts are 
asked to estimate probabilities of propagule 
movement through diff erent pathways. 
Such questions are common to most 
regional-scale dispersal modelling eff orts 
(Crossman et al., 2011; Frid et al., 2013). 
Our focus has been on the relative 
importance of diff erent pathways for moving 
Chilean-needle-grass propagules (Box 12.1). 
Qualitative estimates of importance are 
suffi  cient for predicting relative risk, but not 
for estimating absolute seed numbers which 
requires demographic approaches that are 
computationally more intensive (Hadincova 
et al., 2008; Coutts et al., 2011).

Making Spatial Predictions

Th e Bayesian network is used to generate 
spatial predictions by importing environ-
mental variables for each pixel from a text 
fi le, calculating likelihoods (e.g. likelihood of 
being highly suitable) for each combination 
of environmental variable values and 
exporting the outcomes into GIS to produce 
maps of the likelihood of Chilean-needle-
grass invasion (Fig. 12.1; online supplement 
to Chapter 12). We converted each environ-
mental data layer to a grid using the fi nest 
spatial resolution available (~30 m2). Th is 
scale is also used for a number of derived 
data layers from remote sensing data, most 
notably digital elevation maps and her-
baceous cover maps (Table 12.1). Th is 
resolution is, therefore, suffi  cient to capture 
some spatial heterogeneity in some key 
environmental variables (e.g. ground cover 
and disturbance regime). Inaccuracies from 
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Box 12.1. Eliciting dispersal kernels
Empirical estimates for long-distance dispersal were unavailable for Chilean needle grass, 
so we used experts to generate probabilistic dispersal kernels (i.e. estimates of the 
probability that an individual will move a particular distance) for each pathway and asked 
them to characterize this probability over 10 years. This period was suffi cient to allow 
experts to integrate temporal idiosyncrasies in dispersal distance, such as periodic 
fl ooding, into their estimates. This assumption ignores the possibility that spread over 10 
years might be the result of annual step-wise dispersal.
 Experts can fi nd it diffi cult to estimate low-probability events. We therefore asked 
experts to estimate how far propagules will travel given certain likelihoods (Fig. 12.4), 
rather than estimate the probability of propagules travelling certain distances. Experts 
were asked to estimate distances that Chilean-needle-grass seeds would disperse from 
known sources for given likelihoods of occurrence, certain (100% probability), likely 
(50%), unlikely (10%) and exceptional (< 1%), together with a rationale or evidence for 
those estimates (Fig. 12.4). These estimates were then incorporated into the Bayesian 
network for each dispersal state. The result is a relativized assessment of dispersal risk 
for each pathway, which in our experience is suffi ciently robust to provide the necessary 
guidance to end users.

Fig. 12.4. Chilean-needle-grass dispersal distances for the long-distance dispersal pathway over 
10 years estimated by experts for different likelihoods (right axis). Likelihood of introduction (left 
axis) was then conservatively calculated for each distance class as originally defi ned by experts, in 
this case 0–100 km, 100–1000 km, 1000–2000 km and >2000 km, for inclusion in the Bayesian 
network.
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down-scaling coarser-resolution maps such 
as soil data do need to be considered when 
interpreting model outcomes.

Making spatial predictions using the 
Bayesian network requires linking key 
environmental variables to available GIS 
data layers (Fig. 12.2; Table 12.1). In some 
cases, this association can be relatively 
straightforward. For example, soil-type 
categories used in soil mapping were simply 
matched to good, fair or poor soil type 
for Chilean needle grass. In other cases 
key environmental variables can be 
approximated (e.g. regular slashing was 
assumed to be restricted to major roadsides); 
surrogates can be used (e.g. buff ered 
roadways for disturbance); or they can be 
modelled using global scenarios when GIS 
variables are simply not available (e.g. to test 
the role of integrated Chilean-needle-grass 
management; Fig. 12.3). New environmental 
data layers with improved accuracy and 
spatial resolution are continually becoming 
available. Because many pest models require 
similar environmental data layers, successive 
models become easier to create.

Current distribution data were used as 
input into the susceptibility model (Table 
12.1). Th e distribution data, generally as 

points, were buff ered as multiple rings away 
from each point according to predetermined 
distance classes (i.e. short, medium or long) 
for each dispersal pathway (Fig. 12.4). 
Distance downstream was modelled by 
limiting buff ering directionally to dispersal 
distance downstream of the source 
population.

Computing Requirements

Th e development of increasingly powerful 
computers with large memory and storage 
capacity and fast processing has allowed 
modellers to take advantage of the 
increasingly fi ner-scale data and sophisti-
cated software packages. A number of GIS 
options exist including free and open-source 
software (e.g. diva-gis, qgis, grass), 
popular commercial packages (e.g. ESRI 
products, MapInfo, Erdas Imagine) and 
GIS-linked databases (PostgreSQL and 
Microsoft SQL) that could be used for 
mapping. We used ESRI ArcGIS 10. None-
theless, there is a limit to the ability of a 
computer to handle high-resolution data 
over large spatial extents (i.e. areas of 
interest). An average personal computer 

Table 12.1. A description of the GIS data layers used to represent key environmental variables in the 
Chilean-needle-grass model.

Key environmental 
variable GIS data layer Data type

Spatial 
resolution

Soil typea Land systems data (DSITIA, 2013) Polygon 1:100,000
Climate Bioclimatic model output (Bourdôt et al., 

2010)
Raster 0.01°

Soil moisture AWAP data (Raupach et al., 2009, 2012) Raster 0.05°
Herbaceous cover Derived from Landsat imagery (Scarth et al., 

2006)
Raster 30 m

Disturbancea Inferred: roadways Polygon 1:100,000
Continuous cropping ACLUMP (DAFF, 2013) Raster 0.01°
Local dispersala Distance function from known CNG sites 

(concentric buffer circles)
Polygon 1:100,000

Long-distance dispersala Distance function from known CNG sites 
(along road corridors)

Polygon 1:100,000

Water dispersala Downstream distance from known fl ood-prone 
CNG sites

Polygon 1:100,000

Dispersal by slashersa Inferred: primary roadsides Polygon 1:100,000

CNG, Chilean needle grass.
aIndicates a derived measure.
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(e.g. 2–4 GB RAM, dual core 2–3 GHz 
processor) can easily handle small extents 
and coarser-resolution spatial data, but a 
large-capacity, high-speed computer, such as 
a server in a high-performance computer 
facility, may be necessary for large extents at 
fi ne scales (e.g. state and national level). We 
ran the Chilean-needle-grass model on a 
high-capability computer server (Dell 
Poweredge R910 with 64-bit core Xeon 
processor and 512 GB RAM). Th e most time-
consuming step was combining the spatial 
layers initially and joining the Bayesian-
network results back to the attribute table of 
the combined layer and exporting it to a new 
data layer (see Stages 1–3 in the online 
supplement to Chapter 12). Run times will 
depend on the resolution and extent of the 
study region and the number of environ-
mental variables. Running this step for 
the QMDB at 30 m resolution took about 
20 min. Each data output layer was 
approximately 25 MB.

Generating Pest Risk Maps

Risk maps can be presented in many ways. 
Th e challenge is to present them in ways that 
serve the needs of end users. Maps must be 
visually decipherable and they should be 
described in plain language. Our models 
have largely been aimed at identifying areas 
where pest impacts will be greatest. Risk is 
presented as the likelihood that the pest will 
reach ‘high densities’ as defi ned by experts 
during model development (i.e. Chilean 
needle grass exceeding 30% cover). Setting 
and articulating likelihood thresholds when 
presenting maps can have a large bearing on 
how risk is perceived and therefore needs to 
be done transparently. Our approach has 
been to calibrate likelihood thresholds where 
possible with observed densities in the fi eld 
so that areas where the weed has already 
reached high densities are clearly identifi able 
on the map. Th resholds should also clearly 
contrast situations where habitat suitability 
is high but where the risk of invasion may be 
low. Th resholds are then maintained across 
all scenarios.

Validation and Quality Control

All risk models should be validated to 
pro vide confi dence in the model’s pre-
dictions, but validation is especially critical 
for models developed using participatory 
methods as these models contain inherent 
subjectivity. In our approach, the predictive 
model (Fig. 12.1) attempts to capture the 
current understanding of what deter  mines 
habitat suitability and habitat suscepti-
bility (Fig. 12.3). Validation allows the 
workshop-generated hypotheses to be 
tested using a range of approaches. 
Validation also helps to identify any gaps 
in important information and current 
misunderstandings of the ecology of this 
weed. Th e Bayesian network can be 
iteratively updated as understanding of 
the system is improved.

We take a broad view on validation to 
provide confi dence in the model and its 
ability to make useful spatial predictions by 
testing the most likely sources of error. 
Various papers address specifi c sources of 
error (Kuhnert and Hayes, 2009; Marcot, 
2012). Nonetheless, a comprehensive 
review of model error and validation 
approaches is urgently needed for process-
based models but is beyond the scope of this 
chapter. Here, we limit discussion to major 
classes of error that we have identifi ed as 
relevant to our modelling approach and 
provide a brief description of validation 
approaches that we have used (Table 12.2). 
Some of our validation procedures may be 
described by others as quality assurance and 
quality control measures. In each case, 
validation measures have been specifi cally 
designed to test the sources of error that are 
likely to be most infl uential on model 
outputs. Th ose sources of error can then be 
addressed or accommodated. Most of these 
errors are not unique to the use of experts. 
Broadly the predictive model may correctly 
capture the factors determining distribution, 
abundance and spread, but inaccuracies in 
the distributional and environmental data 
used to generate spatial predictions may 
create errors in spatial predictions. 
Alternatively, the experts’ knowledge about 
factors that govern invasion dynamics or 
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responses to management may be correct 
but not adequately captured in the model. 
Finally, the experts’ knowledge or working 
hypotheses may be incorrect.

We applied a range of error-checking 
approaches, some of which are described 
below, for the Chilean-needle-grass model. 
As is typically the case, validating the 
habitat suitability forecasts was relatively 
straight forward. However, validation did 
require us to obtain new fi eld data to 
minimize the possibility that any 
inaccuracies were the result of problems 
with the validation data rather than the 
model itself. In contrast, validating the 
spread model was exceptionally diffi  cult as 

independent data sets were not available. 
Th is situation is common in dispersal 
modelling.

Model is correct, but spatial data are 
wrong

Th e most common validation approach with 
ecological statistical models is to compare 
the fi t between model predictions and 
independent data using a metric such as 
receiver-operating characteristic curves and 
area under the curve (Peterson et al., 2008; 
Elith and Graham, 2009; Robinson et al., 
2010). Th ere are, however, several reasons 

Table 12.2. Approaches to test major sources of error and uncertainty in our modelling approach.

Types and sources of error Validation and quality control methods

Model is correct, but spatial data are wrong
Distribution or abundance data 

used to determine habitat 
susceptibility or validate the 
model

Verify that distributional data are correctly georeferenced, have been 
collected at suffi ciently fi ne spatial resolution and refl ect real 
densities

Verify identity of mapped populations
Environmental data used for 

generating or validating spatial 
predictions

Validate GIS data layers in the fi eld at spatial resolution being used 
in generating spatial predictions

Identify any important discrepancies between GIS data layer and 
fi eld-collected environmental data by comparing Bayesian-
network-model results for pixels where both are available

Knowledge is correct, but model is wrong
Model does not behave as 

experts expected
Revise model structure, defi nitions and probabilities with experts
Check the relative importance of key environmental variables in the 

model (e.g. ‘Sensitivity to fi ndings analysis’ within NETICA) against 
expert expectations

Perform scenario analysis using a non-spatial Bayesian network, 
including actual scenarios and locations that are familiar to 
experts

Test extreme and intermediate conditions
Knowledge is wrong
General Compare independently constructed models

Compare against density data obtained through stratifi ed sampling 
at sites where key environmental variables can be recorded and 
the pest has had an opportunity to invade

Model structure Structure fi eld survey or experimental work to demonstrate that 
invasion processes and key environmental variables are correctly 
captured

Categorization of environmental 
variables

Test categorizations of key environmental variables against fi eld 
data to ensure that they match a priori defi nitions for each state

Parameterization Structure fi eld survey or experimental work to test the relative 
strength between key environmental variables against what is 
described by probability tables in the Bayesian network

Test sensitivity to parameter estimates
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why a model may correctly capture invasion 
processes despite discrepancies between 
model predictions and observ ations. First, 
the value of these metrics has been 
questioned and the metrics are not always 
amenable to modelling invasive organisms 
where high omission errors can indicate an 
invasion in progress rather than error 
(Peterson et al., 2008; Robinson et al., 2010). 
Th e current distribution of Chilean needle 
grass in Queensland is known to be restricted 
due to dispersal limitation and ongoing 
management. Second, distribution data 
rarely include suffi  cient information about 
abundance to validate models that attempt 
to forecast abundance. Th ird, dis tribution 
data themselves can be incorrect, as a result 
of errors in identifi cation or inaccurate 
georeferencing (Smith et al., 2012), be at the 
wrong spatial resolution (e.g. national 
records of Chilean-needle-grass density in 
Australia are reported in 50 km × 50 km grid 
cells, which may be too coarse for some of 
our models), be auto-correlated or be biased 
towards unusual and outlier records. Finally, 
and perhaps most critically for models that 
seek to capture underlying mechanisms, 
these metrics fail to explain causes of error. 
We found that distribution data for Chilean 
needle grass in the QMDB were inadequate 
for validating the Chilean-needle-grass 
model, because density data were unavailable 
at the spatial resolution we required; 
therefore, we collected our own fi eld 
validation data.

A related problem is that environmental 
layers used to characterize conditions in 
which the species does or does not occur can 
be incorrect and result in incorrect 
inferences. Under these circumstances, 
spatial predictions (Fig. 12.1) can be 
inaccurate despite the predictive model 
being correct. Th is problem becomes more 
common as spatial heterogeneity of 
environmental layers becomes increasingly 
fi ne-grained (e.g. soil type mapped on a 
1:100,000 scale can capture broad soil 
categories but generally misses fi ner-scale 
diff erences such as on ridgelines). Likewise, 
available GIS layers rarely capture temporal 
dynamics that may be important in assessing 
risk, such as changes in land use from 

cultivation to pasture in mixed farming 
regions (Murray et al., 2012). Again, 
environmental data can be fi eld-validated 
and the implications of any discrepancies 
tested by comparing Bayesian-network-
model results (Table 12.2). In another study, 
fi eld validation found the expert model to 
be correct, with discrepancies between 
observed and predicted weed densities 
primarily the result of site-scale inaccuracies 
in environmental data layers (Murray et al., 
2012).

Knowledge is correct, but the predictive 
model is wrong

Th e model is developed to capture experts’ 
understanding of the ecology and man-
agement of Chilean needle grass. A range of 
approaches could be employed to test 
whether the model behaves as experts would 
expect and to identify why diff erences might 
occur (Table 12.2). ‘Play back’ feedback to 
experts has the added advantage of helping 
them gain ownership of the result and to 
improve their understanding of the pest and 
the risks that it might pose. With the 
Chilean-needle-grass model, perform ance 
assessment was done during a half-day, 
follow-up workshop, which included at least 
some of the original participants. First, the 
model was described to experts in terms of 
defi nitions, states and model behaviour to 
ensure that their understanding of the weed 
and the QMDB was captured correctly. 
Often defi nitions and states need to be 
refi ned between workshops to make them 
work with available GIS layers and these 
changes require checking. Model behaviour 
can be tested by looking at aspatial scenarios 
within the Bayesian network, checking 
whether relative weightings of diff erent 
environmental variables refl ect expert 
expectations (Murray et al., 2012), and 
critically examining model forecasts under 
diff erent scenarios in locations most familiar 
to experts. Explanations are sought when 
discrepancies are found. For example, 
discrepancies could result from problems 
with the classifi cation of environmental 
variables into states. Alternatively, experts 
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may provide a good rationale to address 
discrepancies by modifying the model. For 
example, a recent workshop on Chilean 
needle grass found that diff erent types of 
basalt soils originally coded as ‘fair’ needed 
to be recorded as ‘fair’ and ‘poor’ depending 
on the sub-type. Th is reclassifi cation was 
supported by experts’ fi eld observations of 
spread.

Knowledge is wrong

Th e predictive model can be incorrect 
because expert knowledge or other infor-
mation sources are wrong. Experts may 
incorrectly identify key environmental 
variables or interactions among those 
variables. Environmental variables, al  though 
correctly identifi ed, may not be properly 
defi ned and categorized into states (e.g. 
good, fair and poor soil). Finally, the relative 
importance of each environmental variable 
or their interactions may not be properly 
understood. Modelling that relies on expert 
elicitation is arguably particularly prone to 
error as the outcome can be subjectively 
dependent on ‘the day’, the facilitator, the 
facilitation process and the knowledge of 
the experts (Murray et al., 2009), as well as 
the social interactions/infl uences within the 
group.

We tested whether the Chilean-needle-
grass predictive model would diff er 
depending on the group of experts being 
used to develop it. Th is was done by 
independently developing two habitat 
suitability and susceptibility models through 
two independent expert panels, one in 
Queensland and one in Victoria, 11 months 
apart (J.V. Murray, Queensland, 2012, 
personal communication). We were 
encouraged to fi nd that both panels 
identifi ed the same key environmental 
drivers and generated similar parameter 
estimates for the models. However, there 
were also important diff erences. Th e primary 
diff erence was that the Queensland group 
thought persistence of Chilean needle grass 
was much more sensitive to cultivation, 
climate and soil type than the Victorian 
group. As a result, the Queensland model 

predicted the risk of invasion to be much 
less than that of the Victorian model. Field 
data specifi cally collected to test the two 
models supported the Queensland model, 
but even this model appeared to overestimate 
the ability of Chilean needle grass to 
outcompete herbaceous cover. In this case, 
diff erences among the two expert panels 
probably refl ected diff erences in knowledge 
and experiences. Consequently, their models 
represent diff erent working hypotheses and 
discrepancies highlight critical knowledge 
needs. When the Queensland group of 
experts was presented with the fi eld 
observations that suggested Chilean needle 
grass was less competitive than they had 
proposed, the new results were accepted and 
the model was adjusted accordingly.

Field validation alone can also help test 
for diff erent types of model error (Smith et 
al., 2007; Murray et al., 2012). Field 
observations on pest density should be 
collected across environmental gradients 
to validate the model. Our approach for 
Chilean needle grass has been to identify 
environmentally heterogeneous areas where 
the weed is known to have reached high 
densities and has had the opportunity to 
disperse at least locally. Stratifi ed sampling 
is conducted across the available environ-
mental gradients identifi ed in the model.

Field validation for Chilean needle grass 
supported the experts’ selection of key 
environmental variables, model structure, 
categories for environmental variables and 
parameter estimates. However, expert 
opinions diff ered, especially on the role of 
disturbance, particularly from slashing, in 
creating a suitable habitat for establishment 
by Chilean needle grass. Queensland experts 
believed that Chilean needle grass could 
readily invade intact pastures in the absence 
of disturbance. On investigation, we found 
this was an expectation that they had 
learned from their Victorian colleagues. In 
contrast, fi eld data suggested that Chilean 
needle grass rarely invades and dominates 
intact pastures unless they are routinely 
slashed. Extensive slashing of pastures 
is widespread in Victoria, but not Queens -
land. The modelling and validation pro-
cess successfully identifi ed an important 
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knowledge gap that required further 
investigation and led to the inclusion of 
slashing as another key environmental 
variable in the predictive model.

Implications of Model Results for 
Management of Chilean Needle Grass

Th e objective of risk modelling for Chilean 
needle grass in Queensland was to identify 
areas at risk and to provide guidance on how 
best to manage this species across the 
QMDB. Risk models for Chilean needle grass 
have found that highly suitable habitat is 
restricted to high-altitude locations in the 
eastern QMDB as a consequence of climatic 
requirements (Bourdôt et al., 2010), soil 
type and the absence of cultivation (Fig. 
12.5a; see colour plate section). Th e areas at 
risk are spatially more restricted than 
originally thought. Th ese results suggest 
that management responses could be more 
focused than they are currently, a useful 
fi nding for decision makers.

In Queensland, Chilean needle grass is 
still spreading from Clifton, where the 
original incursion occurred in the early 
1970s (Fig. 12.5b; see colour plate section). 
Interestingly, the current distribution is still 
largely restricted to the original Clifton 
Shire Council. Th is supports the importance 
of slashers as a dispersal pathway for Chilean 
needle grass (Fig. 12.3) because roadside 
slashing within the shire was conducted out 
of Clifton. However, this administrative 
arrangement changed in 2008 with the 
amalgamation of the Clifton Shire with 
seven neighbouring shires. Managing the 
risks posed by a much less centralized 
roadside slashing programme is now a 
priority.

Chilean needle grass remains a target 
for eradication in Queensland. Our results 
suggest that suitable habitat is relatively 
contiguous throughout eastern QMDB (Fig. 
12.5b). No natural barriers exist to help a 
containment or eradication programme. In 
addition, long-distance dispersal through 
human activity (Fig. 12.3) is probable, so 
most suitable habitat has at least a small 
chance of being invaded within a 10-year 

period (Fig. 12.5c; see colour plate section). 
Again, large areas of susceptible habitat are 
expected to make successful eradication or 
containment diffi  cult to achieve.

Discussion: Future Improvements to 
the Approach

We have described a pest risk modelling 
approach that can draw upon all available 
information sources to model habitat 
suitability and susceptibility. Th e method we 
have developed involves using expert 
elicitation workshops, combined with 
Bayesian networks and GIS, to capture the 
essential drivers of species’ distribution and 
abundance. However, this approach can be 
improved. For example, more quantitative 
elicitation methods (e.g. Elicitator; Low 
Choy et al., 2012) could be used to estimate 
parameters. New methods of network and 
pathway analysis could be used to model 
long-distance dispersal (see Colunga-Garcia 
and Haack, Chapter 3 in this volume; Koch 
and Yemshanov, Chapter 13 in this volume). 
New and improved environmental data 
layers are always welcomed. Distributional 
data might be analysed with environmental 
covariates in new ways to better infer causal 
relationships than is possible currently 
(Ready et al., 2010). Finally, the entire 
process might be streamlined to generate 
spatial predictions more quickly than we can 
now (Fig. 12.1).

Th e major development planned in the 
short term is to incorporate the consequences 
of invasion into the same modelling 
framework. Impacts will depend on how 
pest density and the threatened value 
intersect in time and space and on the 
strength of the relationship between pest 
density and impact. Preliminary work on 
Parthenium hysterophorus L. has shown that 
this dimension of pest risk can be readily 
incorporated through the same use of 
experts, Bayesian networks and GIS. Experts 
are responsible for identifying the values 
(e.g. pasture production) that are threatened 
by the pest and estimating the functional 
relationship between pest density and 
impact for each value. Th ese relationships 
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are then captured in the Bayesian network 
and impact maps generated in GIS.

We have so far applied our approach to 
relatively well-understood organisms and 
demonstrated that it is easily applied to 
diverse organisms and transferable to new 
regions (van Klinken and Murray, 2011; 
Murray et al., 2012; Smith et al., 2012). 
However, further streamlining of the 
modelling approach and methodological 
improvements may make it amenable to 
modelling many species effi  ciently, as is 
often required for pest prioritization. Th e 
approach should also yield useful results 
even if only relatively general information is 
known about the organism, as might be the 
case for invasive alien weeds not yet in the 
country. Even in those cases, it should be 
possible to determine, for example, whether 
invasive alien weeds require inundation or 
particular disturbance regimes such as fi re 
to establish.

Our modelling approach relies on 
explicitly and transparently harnessing 
diverse information sources to develop 
prognostic risk models. Th e resulting 
models represent hypotheses based on the 
best available knowledge. Th is strategy is 
readily applicable to a wide range of 
modelling techniques. For example, global 
fi sh distri bution models use existing 
distributional data to fi t functional 
relationships between fi sh occurrence and 
environmental variables, and those 
relationships can then be modifi ed by 
experts (Ready et al., 2010). However, our 
approach has the benefi ts of relying on 
publicly available software, being intuitive 
to experts who may not have been previously 
exposed to models and readily allowing the 
characterization of functional relationships 
between diverse environmental variables.
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Abstract

Pest risk maps can provide helpful decision 
support for invasive alien species 
management, but often fail to address 
adequately the uncertainty associated with 
their predicted risk values. Th is chapter 
explores how increased uncertainty in a risk 
model’s numeric assumptions (i.e. its 
principal parameters) might aff ect the 
resulting risk map. We used a spatial 
stochastic model, integrating components 
for entry, establishment and spread, to 
estimate the risks of invasion and their 
variation across a two-dimensional gridded 
landscape for Sirex noctilio, a non-native 
woodwasp detected in eastern North 
America in 2004. Historically, S. noctilio has 
been a major pest of pine (Pinus spp.) 
plantations in the southern hemisphere. We 
present a sensitivity analysis of the mapped 
risk estimates to variation in six key model 
parameters: (i) the annual probabilities of 
new S. noctilio entries at US and Canadian 
ports; (ii) the S. noctilio population-carrying 
capacity at a given location; (iii) the 
maximum annual spread distance; (iv) the 
probability of local dispersal (i.e. at a 
distance of 1 km); (v) the susceptibility of 
the host resource; and (vi) the growth rate 
of the host trees. We used Monte Carlo 

simulation to sample values from symmetric 
uniform distributions defi ned by a series of 
nested variability bounds around each 
parameter’s initial values (i.e. ±5%, …, 
±50%). Th e results show that maximum 
annual spread distance, which governs long-
distance dispersal, was the most sensitive of 
the tested parameters. At ±15% uncertainty 
in this parameter, mapped risk values 
shifted notably. No other parameter had a 
major eff ect, even at wider bounds of 
variation. Th e methods presented in this 
chapter are generic and can be used to assess 
the impact of uncertainties on the stability 
of pest risk maps or to identify any 
geographic areas for which management 
decisions can be made confi dently, 
regardless of uncertainty.

Introduction to Uncertainty Analysis

Th is chapter describes methods for analysing 
uncertainty in key parameters of a spatial 
stochastic model used to estimate invasion 
risk. Th e model was applied to forecast the 
likely geographic pattern of invasion of a 
recently arrived forest pest, the sirex 
woodwasp (Sirex noctilio Fabricius), in 
eastern North America (Yemshanov et al., 
2009a). One primary benefi t of a spatial 
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stochastic modelling approach is that the 
various stages of an invasion – its arrival, 
spread and establishment components – 
can be depicted within a single modelling 
framework (Yemshanov et al., 2009c). 
Unlike other risk modelling methods that 
focus only on a single stage of invasion (e.g. 
environmental niche models, which are 
aimed primarily at characterizing risk of 
successful establishment), the approach is 
relatively data-intensive; in particular, it 
requires estimation of aspects of a pest’s 
population or meta-population dynamics, 
its host distribution and its general dispersal 
behaviour. Nonetheless, by adopting an 
approach of repeated stochastic model 
simulations, it is possible to quantify the 
risk of invasion as a numeric probability 
(Rossi et al., 1993; Rafoss, 2003) for each 
geographic location (i.e. map cell) 
comprising the model’s spatial domain (i.e. 
the study area). Th e approach also allows 
one to calculate the variation of the risk 
estimates. Th us, spatial stochastic simu-
lation provides, for each geographic 
location, an estimate of both the invasion 
risk and the uncertainty associated with 
that risk estimate (Yemshanov et al., 
2009a). In this case, uncertainty is 
synonymous with variability in model 
inputs (i.e. parametric uncertainty) and 
outputs. Uncertainties resulting from the 
use of imprecise terms or lack of knowledge 
are not addressed explicitly.

Importantly, the uncertainties associ-
ated with model outputs represent 
cumulative measures of uncertainties that 
may arise from a variety of sources; in 
particular, uncertainty associated with a 
model’s parameters, its input data and 
possibly its structure or formulation may all 
contribute to the output uncertainty (Elith 
et al., 2002; Regan et al., 2002; Walker et al., 
2003; Refsgaard et al., 2007). Additional 
analytical techniques are necessary to 
explore how uncertainty in any of these 
particular model elements might be 
infl uencing the outputs. Th e focus of this 
chapter is on a practical approach, fi rst 
outlined in Koch et al. (2009), to examine 
specifi cally the impact of model parametric 
uncertainty. We use a Monte Carlo 

simulation approach to sensitivity analysis 
to do this. Monte Carlo methods involve 
repeated random sampling from a range of 
possible input values (e.g. from a probability 
distribution associated with a model 
parameter). When model simulations are 
completed with these randomly sampled 
input values, the simulation results can be 
compiled to obtain estimates of a 
phenomenon of interest.

Th e primary objective of sensitivity 
analysis in this context is to determine the 
relative contribution of individual model 
parameters to the uncertainty in the 
resulting outputs (Helton et al., 2006). Th e 
application of sensitivity analysis to 
analysing parametric uncertainty is not 
novel (Morgan and Henrion, 1990; Li and 
Wu, 2006). What makes our analysis unique 
is that it is applied in a spatial domain. Th e 
analysis of uncertainty is uncommon in risk 
maps, probably because of the perceived 
diffi  culty (Morgan and Henrion, 1990; 
Andrews et al., 2004; Cook et al., 2007). 
However, we believe that it is critical because 
invasions are spatial, or more precisely, 
spatiotemporal, processes and so it is logical 
to analyse the associated uncertainties from 
a map-based perspective.

A variety of mathematical, statistical 
and graphical methods have been utilized 
for sensitivity analysis (Frey and Patil, 
2002). For a spatial stochastic model such as 
ours, with its capacity to generate many 
diff erent realizations of the invasion process, 
a basic Monte Carlo approach off ers a 
straightforward way to examine model 
parameter sensitivities. We begin by per-
forming repeated simulations with the 
invasion model in order to get a mapped set 
of risk estimates based on the parameters’ 
initial values (i.e. based on our best 
estimates for these values, which we deter-
mined either analytically or by consulting 
experts prior to running the model). Th e 
resulting set of risk estimates constitutes a 
baseline scenario for later comparison to 
the sensitivity analysis results. Because the 
model is stochastic, the baseline estimate 
for each map cell includes both the primary 
risk metric, P, which is a numeric probability 
indicating the pro portion of simulation 
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runs where successful invasion occurs, and a 
measure of uncertainty in that estimate, 
(P), the standard deviation of P. Next, we 
identify key model parameters and vary 
their values within a specifi ed set of nested 
bounds (±5%, ±10%, …, ±50%), which alters 
the pattern of output variation. Using these 
nested bounds, we complete many additional 
simulation runs so that we can compare the 
parameters with one another in terms of the 
relative impact of uncertainty (e.g. which 
parameters are most sensitive at ±15% 
variation in their baseline values).

Th e analytical approach has three main 
objectives: (i) to identify any parameters 
that are highly infl uential and thus should 
be thoroughly scrutinized with respect to 
the consequences of uncertainty; (ii) for any 
infl uential parameters, to fi nd the level(s) of 
uncertainty in inputs that dramatically 
change output maps (i.e. the output risk and 
uncertainty estimates) and so aff ect the 
maps’ utility for end users (i.e. decision 
makers); and (iii) to determine if, even with 
added uncertainty, any portions of an 
output map remain stable enough in the 
presence of parametric uncertainty for an 
end user to utilize the map for decision 
support, regardless of the uncertainty.

Sensitivity analysis has a few important 
limitations. For instance, as applied, the 
approach does not address sources of 
uncertainty in the input data (i.e. the spatial 
uncertainty in particular), although a similar 
Monte Carlo approach can be used to vary 
input data for the purposes of sensitivity/
uncertainty analysis (Crosetto et al., 2000; 
Crosetto and Tarantola, 2001). In theory, 
Monte Carlo techniques could also be used 
to compare the sensitivity of diff erent model 
formulations (i.e. model formulation 
uncertainty) but would require signifi cant 
time for computations.

Furthermore, Monte Carlo sensitivity 
analysis does not deal well with severe 
uncertainty. For models involving invasive 
alien species, especially recently discovered 
invaders, large empirical knowledge gaps 
may exist regarding the most important 
invasion drivers. Th is lack of knowledge 
makes it diffi  cult to identify meaningful 
bounds in which to vary parameter values. 

In our case, we used a hierarchical set of 
percentage bounds (up to ±50%) around the 
values of the parameters we analysed, but in 
theory a parameter (e.g. the annual 
probability of new entries) may be off  by a 
factor of 100, 1000 or more. Consequently, 
the analytical approach described here 
should be seen only as a local or restricted 
analysis of parametric uncertainty. We 
believe it is appropriate for the pest 
highlighted in this chapter (S. noctilio 
Fabricius) because the biology and behaviour 
of S. noctilio have been reasonably well 
documented in portions of both its native 
and invaded ranges. Other analytical frame-
works, such as info-gap decision theory 
(Ben-Haim, 2006), may be better for severe 
parametric uncertainty.

Monte Carlo sensitivity analysis also 
assumes that the correct parameters to 
include in the model and for which to 
perform sensitivity/uncertainty analysis 
have been identifi ed. If a model is missing 
key parameters or includes unnecessary or 
deleterious parameters, the accuracy of the 
output risk estimates is likely to be aff ected. 
Th ese inaccuracies are most likely to be 
revealed during some sort of validation or 
cross-validation process with empirical data. 
Such data are often hard to acquire for 
invasive alien species. However, whether the 
correct set of parameters has been included 
in a model is really a question of model 
formulation uncertainty.

Because the model described in this 
chapter was implemented as a risk fore-
casting approach with essentially no 
opportunity for validation (i.e. S. noctilio was 
not widely distributed in North America 
when we performed this work), the 
sensitivity analysis results should be 
interpreted only as an assessment of the 
relative, and not absolute, relationships 
between model parameters and outputs. 
Th is is a critical point: the approach does 
not address the accuracy of the risk 
predictions, but does allow the analyst to 
get a basic sense of the robustness of model 
outputs to parametric uncertainty. Th us, 
while we cannot always verify or validate 
the accuracy of a given risk model, we can 
determine whether model results have any 
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reliable decision-making value in the face of 
uncertainty. For instance, the technique 
described here allows us to identify in -
fl uential parameters and, just as importantly, 
determine when uncertainty in a parameter 
starts to have a signifi cant impact on the 
output risk estimates (i.e. changes a risk 
estimate from a relatively high value to a 
comparatively lower value).

Case Study: Invasion of S. noctilio

We modelled the potential invasion of the 
woodwasp species S. noctilio in eastern 
North American forests. Native to Europe, 
western Asia and northern Africa, S. noctilio 
has been introduced in many parts of the 
world and is considered an important pest of 
pine (Pinus spp.) plantations in the southern 
hemisphere (Carnegie et al., 2006; Corley et 
al., 2007). Th e insect has particularly 
impacted plantations in eastern Australia, 
New Zealand, South Africa and several 
South American countries including Brazil, 
Chile and Argentina. Given the insect’s wide 
bioclimatic tolerance (Carnegie et al., 2006) 
and an abundance of potential hosts, S. 
noctilio was viewed as a major invasion 
threat to North America for several years 
before it was found in upstate New York in 
2004 (Hoebeke et al., 2005) and southern 
Ontario in 2005 (de Groot et al., 2006). 
Essentially, it is expected to persist through-
out temperate pine forests of the USA and 
southern Canada, although it may require 2 
or 3 years to complete a generation at higher 
latitudes (i.e. cooler climates; Borchert et al., 
2007). Pine density in the initially invaded 
region is comparatively low; as a result, the 
pest might fi nd greater success were it to 
spread into the southern USA.

At the time of our analysis, S. noctilio 
had been found in more than 20 counties in 
New York, several counties in north-central 
Pennsylvania, and individual counties in 
Michigan and Vermont. Th e woodwasp had 
also been discovered throughout much of 
southern Ontario. Since that time, this 
insect has been discovered in additional 
counties in the states named above, as well 
as one county each in Ohio, New Jersey and 

Connecticut, and in western Quebec 
(National Agricultural Pest Information 
System, 2013).

With respect to hosts, S. noctilio has 
caused the greatest impacts in plantations 
of loblolly (Pinus taeda) and Monterey pine 
(Pinus radiata) in the southern hemisphere. 
In North America, S. noctilio has been 
confi rmed as a pest on several native pines: 
red pine (Pinus resinosa), eastern white pine 
(Pinus strobus) and jack pine (Pinus 
banksiana) (Dodds et al., 2007). Th is insect is 
also found on Scots pine (Pinus sylvestris) in 
managed and unmanaged Christmas tree 
farms (Dodds et al., 2010). Scots pine is 
known as a host in the pest’s native region. 
Evidence suggests that a number of pine 
species in eastern North America are 
suitable, if not preferred hosts. Th e 
geographic distributions of these pine 
species overlap and facilitate the natural 
spread of the insect.

S. noctilio can disperse naturally by adult 
fl ight or through human activities (e.g. 
movement of infested logs). It is generally 
known as a strong fl ier, but few empirical 
studies have been performed to quantify its 
dispersal capabilities (but see Corley et al., 
2007). Regardless, the initial introduction of 
S. noctilio into North America was almost 
certainly human-mediated, likely in raw 
wood or solid-wood packing materials 
associated with international trade 
(Hoebeke et al., 2005).

Model and Data Sources

We used a spatially explicit, raster-based 
modelling framework to perform the 
simulations for this study. As a dynamic 
spatiotemporal model (Gibson and Austin, 
1996; Fuentes and Kuperman, 1999), it 
departs from deterministic risk modelling 
approaches, which typically adopt the 
simplifying assumption that an invader’s 
potential distribution is already in equi-
librium with its environment.

Th e model was programmed in C++. 
Although the model code is not available for 
public use, the uncertainty analysis tech-
niques described in this chapter can be 
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applied to any spatial stochastic model with 
a similar structure. Th e primary requirement 
is that each model run yields a binary map 
that documents the absence (0) or 
occurrence (1) of some event. In our case, we 
simulated the annual spread and survival of 
S. noctilio over 30 years, such that each 
simulation run yielded a binary raster map 
indicating where in eastern North America 
the insect would have viable populations at 
the end of the specifi ed time horizon. Th ese 
maps are then compiled to compute a 
numeric probability of the event (i.e. for 
each map location, j, the proportion of 
model runs in which the event occurred, Pj) 
and the associated uncertainty (i.e. standard 
deviation of P j, (Pj)) for each map location 
(i.e. each raster map cell). Each grid cell in 
the model was 5 km × 5 km, which we 
selected for practicality. Th e coarser 
resolution allowed us to reduce the 
computation time for individual simulation 
runs, a large number of which were necessary 
to analyse a set of sensitivity analysis 
scenarios.

In general terms, the model simulates 
forest growth, new arrivals, spread and 
survival of S. noctilio across eastern North 
America in discrete time steps (Yemshanov 
et al., 2009b). Th e model is simple with 
limited data requirements. Some model 
elements, particularly those related to 
dispersal, were developed from expert 
knowledge because empirical data were 
unavailable. We believe this limitation is 
common for many invasive alien species. For 
advice about eliciting expert estimates in 
lieu of data and then incorporating them 
into a model, see Morgan and Henrion 
(1990) and Yamada et al. (2003).

Th e model simulates three events for 
S. noctilio: (i) new arrivals at US and Canadian 
ports; (ii) spread across eastern North 
America; and (iii) establishment in suitable 
locations. Details for these simulations 
appear in the online supplement to Chapter 
13. Additionally, Table 13.1 provides a brief 
summary of the main parameters and their 
roles within the model. Notably, we 
performed sensitivity analyses only for six 
model parameters: (i) Wx(t), the annual 
probabilities of new local entries of S. noctilio 

at individual US and Canadian ports; (ii) 
dmax, the maximum annual spread distance; 
(iii) p0, the local dispersal probability; (iv) sv, 
the susceptibility of the host resource; (v) k, 
the carrying capacity for a population of S. 
noctilio at a given location; and (vi) gv, the 
growth rate of the host trees. We chose this 
particular subset of parameters after initial 
model testing to limit computation time. 
Th e sensitivity analysis approach described 
here could certainly be applied to all of a 
model’s parameters, but we felt total analysis 
was unnecessary to demonstrate the 
methodology. Furthermore, many models 
include parameters that are related to or 
dependent on one another in some way. For 
the sake of computational effi  ciency, it may 
make sense to choose one representative 
parameter out of related sets of parameters. 
However, this choice may only be practical if 
the analyst is familiar with a model’s 
structure and outputs.

Although we used C++ for model 
development, similar models could be 
created in a software package like r or 
matlab that can accommodate spatial data. 
Both of these packages can store the map 
data as matrices and can implement basic 
statistical, mathematical and stochastic 
functions (e.g. testing model-derived 
probabilities against values from a uniform 
random distribution). Th e biggest constraint 
is likely to be computation time; packages 
like r are unlikely to be as computationally 
effi  cient as optimized code in C++, Java or 
similar programming languages. Because of 
the large number of simulation runs required 
for this sort of exercise, spreadsheet-based 
Monte Carlo software packages, such as 
@Risk or Crystal Ball, would probably be 
unsuitable except at very coarse spatial 
scales or for small spatial areas.

Analyses

Baseline scenario

We initially used the model for a baseline 
scenario of S. noctilio spread in eastern North 
America over a 30-year time horizon (from 
2006 to 2036). Under this baseline scenario, 
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model parameter values were left as originally 
specifi ed during model development (i.e. as 
determined analytically or from expert 
estimates; see the online supplement to 
Chapter 13 for additional details). We 
initialized the model with a map of known S. 
noctilio infestations as of 2006, the fi rst year 
when systematic fi eld detection surveys were 
performed in the USA and Canada.

We generated two output metrics for 
this baseline scenario that we also utilized in 
our subsequent sensitivity analyses. Th e 
fi rst was Pj, the probability that S. noctilio 
invades map cell j at the end of the forecast 
horizon. Th is served as our primary metric 
of invasion risk. Th e value of Pj for each map 
cell was calculated from the repeated model 
simulations:

Table 13.1. Parameters for components of the Sirex noctilio invasion model. The six parameters tested 
via sensitivity analysis are highlighted in bold.

Parameter Description

All components
t Annual time step for the model
T 30-year time horizon for summarizing the model results (2006–2036)
New arrivals
t0 Used in calculating F(t); corresponds to earliest year for which summary import data 

were available for the USA and Canada
Tentry Used in calculating F(t); corresponds to the presumed year that S. noctilio arrived in 

eastern North America
F(t) Function describing the yearly fl ow of marine imports to the USA and Canada through 

time
p(t) Total probability of successful S. noctilio entry into North America in year t; derived from 

F(t)
x Individual port of entry that receives commodities associated with S. noctilio; total 

number of ports = 148
vx(t) (Vx(t)) Tonnage of S. noctilio-associated cargo received at port x in year t; converted to a 

proportion, Vx(t), of the total S. noctilio tonnage for the region that was received at that 
particular port x

Wx(t) Vector of the local probabilities of S. noctilio entry at each port x in year t; derived from 
Vx(t)

Spread
b(d) Colonization rate (i.e. rate of successful dispersal) as a function of the distance, d, from 

the nearest location with an established S. noctilio population; infl uenced by p0 and 
dmax

p0 Local dispersal probability (i.e. probability of dispersal at a distance of 1 km)
dmax Maximum distance at which dispersing S. noctilio populations become established
Establishment
Nj(t); Nj(t+1) S. noctilio population densities in grid cell j at years t and t + 1
R Annual S. noctilio population growth rate
k Carrying capacity that constrains maximum population size
�j(t) Maximum volume of pine killed by S. noctilio in year t; depends on μ
μ Minimum volume of pine required to support a single population unit
gv Function describing the age-dependent rate of host (pine) stand growth
sv Function describing the age- and species-dependent level of host (pine) susceptibility; 

infl uenced by aj, a0, amax and smax

aj Host stand age in years (i.e. the average stand age in a map cell)
a0 Age of host stand closure (20 years)
amax Age when host stand reaches its maximum level of susceptibility
smax Maximum susceptibility value for ageing host stands

Please see the online supplement to Chapter 13 for more information about the model components.
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 (13.1)

where j,u,T is a binary variable indicating 
presence or absence of S. noctilio in cell j at 
time horizon T for a single model replication 
u and U is the total number of replications 
for the scenario. Less than 500 replications 
were required for the baseline scenario to 
stabilize (see subsection ‘Sensitivity analysis 
scenarios’ below for further discussion 
about stabilization). In addition, the 
variation of the Pj values was characterized 
with a map of (Pj), the standard deviation 
of P for each cell, which was our primary 
metric of the output uncertainty. Th e 
standard deviation is a commonly used 
metric of the uncertainty in an estimate, but 
it has some limitations, perhaps most 
notably that it can be sensitive to extreme 
observations. We adopted (Pj) as our 
uncertainty metric for the sake of 
computational simplicity, but other 
uncertainty metrics such as binary entropy 
(MacKay, 2003) could be applied in the 
analyses described here.

From the maps we generated for the 
baseline scenario (Fig. 13.1; see colour plate 
section), we can make several broad forecasts 
regarding the expected path of the S. noctilio 
invasion in eastern North America. First, 
the risk of invasion (i.e. Pj; Fig. 13.1a) is 
expected to be high (Pj > 0.75) throughout 
the north-eastern USA, southern Ontario 
and Quebec, which is unsurprising because 
the pest is already established in this region. 
Th e area of relatively high risk also extends 
into the northern portion of the south-
eastern USA; indeed, the southern edge of 
the main invasion front is expected to be 
near the Virginia–North Carolina border 
and the western edge along the eastern 
shore of Lake Superior in 2036. Output 
uncertainty (i.e. (Pj); Fig. 13.1b) is generally 
highest near this predicted main front. 
Beyond the main front, the south-eastern 
USA contains extensive areas of medium-
level (0.25  Pj  0.75) risk near the Atlantic 
and Gulf coasts (i.e. near possible ports of 
entry). Notably, this region contains large 
areas of pine forest, most of which is 
dominated by loblolly pine, a species 

understood to be highly susceptible to 
S. noctilio (see Table S13.3 in the online 
supplement to Chapter 13). Th e output 
uncertainty tends to be high here because 
the probability of a new S. noctilio entry at 
any port, and its subsequent spread and 
establishment, is relatively moderate 
compared with the probability of expansion 
in northern areas near existing infestations. 
Notably, areas of the south-eastern USA that 
are further inland (i.e. non-coastal) exhibit 
both low risk and low uncertainty, which 
refl ects less abundant hosts and greater 
distance from possible sources of invaders, 
either ports of entry or the advancing main 
front.

Sensitivity analysis scenarios

We analysed the sensitivity of the invasion 
risk estimates using a Monte Carlo approach 
with four general steps: (i) defi ning a 
probability distribution for each parameter 
of interest; (ii) sampling from this 
distribution to select a value; (iii) running 
multiple simulations of the risk model with 
the parameter values sampled from the 
distributions; and (iv) summarizing the 
results from repeated realizations of 
this process. As acknowledged earlier, a 
parameter may be poorly specifi ed due to 
lack of data, so its associated distribution 
may have to be approximated. In some cases, 
information about the parameter may be 
insuffi  cient to characterize even the primary 
moments (i.e. the mean and variance) of a 
probability distribution. In other cases, a 
parameter’s empirical distribution may be 
reasonably well fi t by one of the many 
commonly used theoretical distribution 
functions (e.g. the normal, exponential or 
Cauchy distributions). Regardless, a simpler 
solution may be to assume a uniform 
distribution for each parameter (Morgan 
and Henrion, 1990). In our case, we 
employed a nested set of variability bounds 
around each tested parameter: ±5%, ±10% 
and so on up to ±50%. Each pair of ‘plus–
minus’ bounds defi ned the end points for a 
symmetric uniform distribution from which 
we sampled values randomly. A benefi t of 
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applying the same percentage increments to 
all parameters (i.e. rather than changing 
each parameter according to an independent 
scale) is that comparisons of their degree of 
sensitivity become more straightforward.

For the sensitivity analysis, we varied 
one parameter at a time, while leaving all 
other parameters unchanged. To verify the 
relative impact of specifi c parameters, we 
also used the alternative approach of varying 
all tested parameters but one, which was 
kept at the baseline. Because sv and gv were 
represented as tables of values (Table 13.1; 
online supplement to Chapter 13), when 
varying either or both of these parameters, 
all values in the table(s) were altered identi-
cally based on the value sampled randomly 
from the associated uniform distribution. 
We must emphasize that our sampling 
choices (i.e. utilizing uniform distributions 
and sampling in ±5% increments to a 
maximum of ±50%) were somewhat 
arbitrary, although informed by our previous 
experience with initial testing of the model 
and an awareness of what would be com-
putationally practical. In our case, these 
particular choices permitted us to perform a 
fairly comprehensive analysis of parametric 
uncertainty, but they may not work well for a 
diff erent model applied to a diff erent pest.

Analysts who intend to complete similar 
analyses should consider at least two things. 
First, they should decide if it is reasonable to 
approximate the distributions of tested 
parameters with something other than the 
uniform distribution. Certain statistical 
tests (e.g. Kolmogorov–Smirnov test, chi-
squared test) can help determine whether a 
set of data are consistent with the normal 
distribution or some other proposed 
distribution, but this assumes the data for a 
parameter of interest are suffi  cient for valid 
testing (Morgan and Henrion, 1990). 
Second, as alluded to earlier in the chapter, 
the analysts must also identify levels of 
variation that will yield meaningful and 
interpretable results regarding the param-
eter sensitivities. Unfortunately, this can be 
a lengthy iterative process and may not be 
possible for species that lack even basic 
information for parameterizing an invasion 
model.

Sensitivity tests and metrics

For complex stochastic simulation models, 
hundreds or even thousands of replications 
may be necessary to stabilize the outputs 
(i.e. to minimize the variation in the output 
values that can arise simply from completing 
too few replications). Th is is especially true 
when a large amount of variability (i.e. 
uncertainty) is added to model parameters, 
as was the case in our sensitivity scenarios. 
One metric that can be used to determine 
the minimum number of model replications 
required for output map stability is SXY, the 
s um of the squared diff erences in Pj map 
values between two trials incorporating 
consecutively increasing numbers of 
replications:

 (13.2)

where M is the total number of map cells 
covering eastern North America (~156,000 
cells) and PjX and PjY are the invasion 
probabilities for map cell j in trials using X 
and Y number of replications, X > Y. When 
SXY is plotted against the number of 
replications Y, it depicts a declining curve; 
when this curve begins to fl atten rather than 
decline, this indicates that the model has 
stabilized. We found that most of the 
sensitivity scenarios converged after 2400–
2700 replications (Fig. 13.2), so we generated 
maps of Pj and (Pj) based on 3000 model 
replications for each scenario. As Fig. 13.2 
also suggests, other metrics, such as the 
square root of the total map area where Pj or 
(Pj) is below some specifi ed threshold, can 
be used to assess model stability, but they 
may not be as easily interpretable as SXY. In 
our case, these latter two metrics both 
appear as gradually increasing curves, where 
the fl attening that indicates model stability 
is not as immediately obvious as with the SXY 
metric (Fig. 13.2).

To evaluate the eff ect of introduced 
parametric uncertainty on the output un -
certainty of the risk maps (i.e. on the (Pj) 
values), we calculated ‘uncertainty ratios’ for 
each sensitivity scenario. For any given map 
cell, the uncertainty ratio is the value of 
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(Pj) for the scenario of interest divided by 
(Pj) for the baseline scenario. An un -
certainty ratio value close to 1 indicates that 
varying the parameter value at the specifi ed 

level does not substantially change the 
variability (i.e. uncertainty) of the output 
risk estimate. Ratio values approaching 0 
indicate decreasing uncertainty in the 
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Fig. 13.2. Convergence metric values versus number of replications, at ±40% parametric uncertainty. 
Tested parameters: (a) local probabilities of entry at marine ports, Wx(t); (b) population carrying capacity, 
k; (c) maximum annual spread distance, dmax; (d) local dispersal probability, p0; (e) host susceptibility, sv; 
(f) host growth rate, gv.
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output risk estimates, while as values 
progress above 1, they indicate increasing 
uncertainty in these estimates. Although 
the uncertainty ratio is a relatively simple 
metric, it can be mapped such that it enables 
straightforward visual comparison of the 
results of the diff erent sensitivity scenarios, 
even when the compared parameters are 
widely diff erent in scale or structure.

Visualizations of Uncertainty

Figure 13.3 (see colour plate section) shows 
uncertainty ratio maps for several of the 
model parameters at ±40% uncertainty. In 
the one-parameter-at-a-time sensitivity 
scenarios, changes to the maximum annual 
spread distance, dmax, increased uncertainty 
ratios across a large portion of the map area 
(Fig. 13.3a). In particular, high uncertainty 
ratios appeared in a broad band just beyond 
the estimated invasion front and in a few 
areas inside the front, such as coastal New 
England. Th ese latter areas exhibited high 
risk, yet low uncertainty, under the baseline 
scenario. Changes to the local dispersal 
probability, p0 (Fig. 13.3b), also elevated 
uncertainty ratio values in these locations, 
but to a lesser degree than observed for dmax. 
Furthermore, unlike for dmax, the uncertainty 
ratios for p0 were < 1 in the north-western 
portion of our study area (i.e. the western 
Great Lakes region). We believe that 
increased uncertainty in p0 permitted more 
invasion nuclei to develop in this remote 
area through time, which raised the invasion 
risk estimates, but at the same time 
stabilized the output uncertainties at a 
lower level than under the baseline scenario. 
Th is phenomenon also occurred with the 
other parameters besides dmax, as exemplifi ed 
by the ratio map for the port entry 
probabilities parameter, Wx(t) (Fig. 13.3c). 
Additionally, the map for Wx(t) shows 
another phenomenon we observed for all 
parameters except dmax and p0: high 
uncertainty ratios in only a small proportion 
of the study area, mostly near the edge of 
the host range (i.e. near the invasion’s 
biological limits).

Essentially, the uncertainty ratio maps 
for the all-but-one sensitivity scenarios (Fig. 
13.3d–f; see colour plate section) show the 
opposite of the one-at-a-time scenarios. 
When dmax (Fig. 13.3d) was the only 
parameter left fi xed at its baseline value, and 
all other parameters were varied uniformly 
within a ±40% bound, the uncertainty ratios 
were low to moderate throughout most of 
the study area. In contrast, when any other 
single parameter was left fi xed, such as the 
population carrying capacity, k (Fig. 13.3e), 
or the host growth rate, gv (Fig. 13.3f), the 
uncertainty ratio values increased sub-
stantially across most of the study area. Th is 
pattern appears to confi rm that dmax was the 
most infl uential parameter on the model 
outputs.

Although the uncertainty ratio maps 
facilitate visual comparison, they do not 
really quantify the diff erences between the 
sensitivity scenarios. It is possible to 
calculate this diff erence by using the SXY 
metric (Eqn 13.2) in a second way: to 
compare the maps of Pj and (Pj) for each 
sensitivity scenario, X, with the matching 
maps from the baseline scenario, Y. In this 
case, SXY is calculated as the sum of the 
cumulative diff erences between the sensi-
tivity scenario’s Pj or (Pj) map and the 
corresponding baseline scenario map of Pj or 
(Pj). Th us, SXY in this context depicts 
cumulative changes in the S. noctilio risk 
map due to the introduction of parametric 
uncertainty.

We cross-tabulated the SXY diff erences 
for eastern North America as well as three 
smaller focus regions: eastern Canada, the 
north-eastern USA and the south-eastern 
USA. Figure 13.4 shows the results for all 
regions at ±25% and ±40% parametric 
uncertainty. For the entire study area, and 
whether calculated from the Pj or (Pj) maps, 
the cross-tabulation results indicate that 
dmax was by far the most sensitive of the 
tested model parameters. Th e graphs of SXY 
for Pj (Fig. 13.4a and c) suggest that p0 was 
the second most-sensitive parameter when 
considering the entire study area. Both of 
these observations were also true for eastern 
Canada and the north-eastern USA. In 
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contrast, the results for the south-eastern 
USA suggest relatively less importance for 
dmax, and greater importance for gv, which 
was nearly as important as dmax at ±40% 
uncertainty (Fig. 13.4c and d). Indeed, gv 
also showed moderately high sensitivity for 
the entire study area at ±40% uncertainty 
(Fig. 13.4c and d). We believe this outcome is 
explained by the fact that the south-eastern 
US region is host-rich but relatively far from 
currently infested locations, such that 
successful invasions would likely only 
develop from rare, and thus uncertain, new 
entries. In this context, a parameter 
governing susceptible host abundance could 
be nearly as important as one shaping the 
rate of spread.

In a fi nal set of tests for each sensitivity 
scenario, we plotted the regions where 

introducing parametric uncertainty changed 
the mapped risk estimates considerably. We 
partitioned cells in the map of Pj for the 
baseline scenario into three broad classes, 
‘low’, ‘medium’ and ‘high’ risk, corresponding 
to the intervals 0–0.25, 0.25–0.75 and 0.75–
1, respectively. We then determined, for 
each sensitivity scenario, the percentage of 
the map area (i.e. the percentage of map 
cells) that moved from one risk class to 
another when compared with the baseline 
scenarios. Th ese shifts can be portrayed in a 
classifi ed map that highlights geographic 
locations with considerable changes in 
infestation risk. Th is classifi ed map can also 
be used to determine if any geographic 
regions remained largely unchanged despite 
the introduction of parametric uncertainty 
at a specifi ed level. Note that our choice of 
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Fig. 13.4. Regional summaries of the SXY metric for the sensitivity analyses. Results from one-parameter-
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breakpoints for these risk classes was 
arbitrary. Certainly, other analysts might 
fi nd diff erent sets of breakpoints more 
meaningful or opt to use more than three 
risk classes. Th e tests described here should 
remain applicable, regardless of such choices.

Table 13.2 shows the percentages of the 
map area that shifted from one risk class to 
another in one-parameter-at-a-time sensi-
tivity scenarios. Results are displayed 
for scenarios at small (±10%), moderate 
(±25%) and high (±40%) levels of intro-
duced parametric uncertainty. At ±10% un -
certainty, the sensiti vity scenarios typically 
exhibited only modest shifts in risk class 
(i.e. <5% of the map area relative to the 
baseline scenario), except for the local 
probability of entry, Wx(t), which showed a 
relatively large shift of 8.3% of the map area 
between the medium and low risk classes. 
We believe this shift is a consequence of the 
phenomenon we noted previously: added 
variability in Wx(t) caused more invasion 
nuclei to enter geographically remote 
portions of our study area through time, 
increasing the invasion risk, Pj, but 
stabilizing the output uncertainty, (Pj). 
Th is phenomenon likely explains similar 
shifts between medium and low risk for Wx(t) 

(8.1% of the map area) and between high 
and medium risk for p0 (8.1%) at ±40% 
uncertainty, as well as many of the other 
observed changes in risk class due to 
introduced parametric uncertainty. Th e 
greatest map-area shifts occurred with dmax, 
which exhibited 17.4% and 27.7% shifts 
from high to medium risk at ±25% and ±40% 
uncertainty, respectively. In addition, the 
results for dmax from the full sequence of 
one-at-a-time sensitivity scenarios (Table 
13.3) show a 9.8% map-area shift between 
high and medium risk at ±15% uncertainty. 
Th is is larger than any shift observed for the 
other fi ve parameters, at any variability 
bound increment. Th ere was also an 8.1% 
map-area shift between medium and low 
risk at ±15% uncertainty for dmax.

Th e geographic distribution of these 
shifts is important. Figure 13.5 (see colour 
plate section) shows risk-class shifts for 
eastern North America for the scenarios 
with ±15% and ±50% uncertainty in dmax. At 
±15% uncertainty (Fig. 13.5a), most areas 
within the main invasion front at the 
30-year time horizon (see Fig. 13.1 and the 
earlier description of the baseline scenario 
results) did not exhibit a change in risk 
class, although clusters of map cells with 

Table 13.2. The percentage of the map area shifting from one risk class to another when varying one 
parameter at a time within three different symmetric uniform ranges: ±10%, ±25% and ± 40%. 
Percentages are relative to the class area totals for the baseline scenario.

Model parameter

Shift in risk class Wx(t) k dmax p0 sv gv

10% added parametric uncertainty
Low  mediuma 0.5 4.3 3.0 1.0 1.3 1.7
Medium  low 8.3 1.2 3.5 5.4 4.4 2.6
High  medium 1.0 0.9 4.9 1.1 1.0 0.9
Medium  high 0.7 0.6 0.2 0.6 0.5 0.8
25% added parametric uncertainty
Low  medium 2.2 2.8 3.5 2.3 2.6 2.5
Medium  low 1.7 1.3 6.6 2.0 1.6 3.7
High  medium 1.3 1.0 17.4 4.6 1.1 0.9
Medium  high 0.6 0.7 0.1 0.2 0.7 0.6
40% added parametric uncertainty
Low  medium 0.6 3.7 4.4 1.4 2.1 5.8
Medium  low 8.1 2.2 5.7 5.5 3.5 1.1
High  medium 1.2 1.3 27.7 8.1 1.1 1.1
Medium  high 0.6 0.6 0.0 0.1 0.6 0.6

aLow risk, Pj < 0.25; medium risk, 0.25  Pj  0.75, high risk: Pj > 0.75.
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high-to-medium risk shifts did appear near 
the front’s southern and north-western 
edges. In the south-eastern USA, beyond the 
main front, shifts from medium to low risk, 
and vice versa, occurred primarily in coastal 
areas. Th is result likely refl ects a high degree 
of variability in the patterns of expansion of 
new S. noctilio entries at the region’s marine 
ports under an uncertain dmax, despite the 
fact that the region is relatively host-rich. 
Similar geographic patterns occurred at 
±50% uncertainty (Fig. 13.5b), although 
more map cells were aff ected. Still, even at 
this high level of uncertainty in dmax, sizeable 
areas within and beyond the main invasion 
front did not display a change in risk class. 
In short, across much of eastern North 
America, the risk estimates appeared to be 
fairly robust to uncertainty in this highly 
infl uential parameter.

Conclusions

What did we learn about our S. noctilio 
invasion model from these analyses? 
Foremost, the sequence of sensitivity 
scenarios demonstrated that the maximum 
annual spread distance, dmax, was the most 
sensitive of the tested model parameters, 
followed to a somewhat lesser degree by p0, 
the local dispersal probability. In hindsight, 
this result is unsurprising, since for many 
mechanistic models of invasion processes, 
model aspects governing dispersal, par-
ticularly long-distance dispersal, are the 
most infl uential and uncertain. (Parameters 
related to the invader’s demography may 
also be infl uential and uncertain; see 

Neubert and Caswell, 2000 and Buckley et 
al., 2005.) Indeed, were this or a similar 
modelling approach applied to another 
invasive pest, we could expect dispersal to 
fi gure prominently in subsequent sensitivity 
analyses. Of course, the results for those 
other models and species of interest may not 
be as obvious as seen here. Th ose results 
would depend substantially on the amount 
of interplay between the model parameters 
given the specifi c circumstances (e.g. region 
of interest, dispersal behaviour and 
population dynamics) being modelled. In 
our case, we modelled an invasive alien pest 
that is a strong fl ier and has hosts that are 
widely distributed and fairly abundant in 
the region of concern; hence, minimal 
functional connectivity between host areas 
may be necessary for range expansion 
(Minor et al., 2009; Vogt et al., 2009). 
Another species may be more constrained in 
a practical sense by the geographic 
distribution of its host(s), so uncertainty in 
this constrained distribution (i.e. in host-
related model parameters) could have a 
signifi cant impact on model projections. 
Nevertheless, we believe that the small suite 
of tests and metrics we outlined here should 
facilitate similar model-based analyses of 
invasion risks and uncertainties, even if the 
results end up being somewhat ambiguous. 
We attempted to develop a toolbox that 
provides analysts with a capacity to measure 
uncertainty quantitatively and to portray 
those results geographically. We believe the 
spatial assessment of models for alien 
species is critical because invasions 
unquestionably play out over time and 
space.

Table 13.3. The percentage of total map area shifting from one risk class to another when varying only 
the dmax parameter. Reported percentages are relative to the class area totals for the baseline scenario.

Uniform variation of dmax, percentage of the baseline value

Shift in risk class ±5% ±10% ±15% ±20% ±25% ±30% ±35% ±40% ±50%

Low  mediuma 1.6 3.0 2.9  3.5  3.5  3.4  4.1  4.4  6.4
Medium  low 3.8 3.5 8.1  7.4  6.6  5.1  4.8  5.7  7.8
High  medium 3.4 4.9 9.8 12.1 17.4 20.6 25.2 27.7 34.9
Medium  high 

(×10)
2.8 2.2 1.3  1.1  0.8  0.8  0.4  0.3  0.3

aLow risk, Pj < 0.25; medium risk, 0.25  Pj  0.75; high risk, Pj > 0.75.
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A particular fi nding of our study is that 
with the addition of a small degree of 
uncertainty for the dmax parameter (i.e. 
±15%), a sizeable proportion of the map 
area displayed a drop in risk class, either 
from high to medium or from medium to 
low. Small uncertainty eff ects have critical 
implications were we to use the S. noctilio 
model to portray the forecasted invasion 
risks to decision makers. Th e most important 
implication is that risk estimates from the 
model must be interpreted cautiously, 
because we do not have to be very wrong 
about our primary dispersal assumptions 
before we may begin to misestimate the 
invasion risk, which could lead to incorrect 
risk management decisions. Fortunately, 
other model parameters that we tested only 
begin to aff ect model results when the level 
of uncertainty is high. We can be more 
confi dent that our risk projections are 
reasonably robust to uncertainty in these 
parameters (although see discussion below 
regarding the possibility of severe parametric 
uncertainties).

Given the known sensitivity of the 
model to estimates of dmax, how might we 
best proceed operationally? Two possible 
directions emerge from these fi ndings. First, 
as Fig. 13.5 (see colour plate section) 
suggests, even when dmax is treated as highly 
uncertain (±50%), the risk estimates for 
much of the study area are fairly robust (i.e. 
no appreciable change occurs in the coarse, 
high-, medium- or low-risk rankings). In 
turn, these unchanged portions of the map 
could probably be used confi dently for some 
decision-making tasks, such as prioritizing 
locations for the allocation of resources for 
monitoring and/or management.

Nevertheless, a decision maker may be 
reluctant to use a risk map if a signifi cant 
portion of it has apparently been com-
promised by uncertainty. Th is predilection 
may just be a matter of decision makers’ 
personal discretion or, more precisely, her or 
his degree of aversion to uncertainty. We 
accept this line of thinking. If this is the 
case, the sensitivity results suggest a second 
direction in which to proceed: determining 
how to resolve the lack of information about 

dispersal. Th is information gap could 
probably be achieved through additional 
research on important dispersal mechanisms 
of the pest of interest. Indeed, this is one of 
the reasons why our own research has 
increasingly focused on dispersal mech-
anisms related to human-mediated, long-
distance dispersal – such as international 
and domestic trade (Koch et al., 2011; 
Yemshanov et al., 2012) – which are 
widely acknowledged as being pivotal to 
biological invasions yet poorly characterized. 
Alternatively, the dispersal modelling 
component for the pest of interest might 
also be improved via fi eld study of its 
dispersal behaviour. For instance, now that 
S. noctilio is established in eastern North 
America, it might be possible to develop an 
appropriate dispersal function based on the 
invasive populations rather than the more 
indirect source of distributional observations 
in its native or previously invaded range. If 
additional research is not feasible, further 
review of existing literature – perhaps with 
guidance from experts – might uncover a 
species that can serve as a reasonable, if 
imperfect, proxy for the pest of interest 
when defi ning dispersal or other model 
parameters (e.g. Venette and Cohen, 2006).

In any case, our study has demonstrated 
that the use of sensitivity analysis techniques 
can reveal important sources of uncertainty 
(i.e. parametric uncertainty in this case) in 
pest risk maps and their underlying models. 
Still, the approach remains limited in terms 
of its ability to diagnose when those 
uncertainties might start to alter decision-
making priorities. For example, while we 
were able to quantify when uncertainty in 
dmax began to impact the S. noctilio model’s 
output risk estimates, what if we were 
drastically wrong about one or more of our 
other parameter estimates? In fact, what if 
one of our parameter estimates was off  by a 
factor of 10 or more? Consequently, 
evaluating the parameter in question at 
±50% uncertainty might generate an 
undeservedly optimistic impression of its 
robustness to uncertainty. As a possible 
solution, an analyst might opt to implement 
sensitivity scenarios with much wider 
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uncertainty bounds (e.g. ±1000%), but for 
relatively fi ne-scale stochastic simulation 
models, the computation time required to 
complete a comprehensive analysis with 
very wide uncertainty bounds may make 
this an impractical option. Th is would be 
especially true if the analyst deemed it 
necessary to evaluate the sensitivity of a 
large number of model parameters. Sampling 
techniques such as Latin hypercube sampling 
could reduce the required number of 
replications (Helton and Davis, 2002; Xu et 
al., 2005) and thus the computation time. 
Yet, the best way to achieve effi  ciency in the 
face of possibly severe uncertainty may be to 
adopt the perspective that the impact of 
uncertainty is best evaluated in the context 
of a small set of discrete choices about how 
the model results will be implemented. For 
instance, if the results will be used to support 
a long-term surveillance scheme, it might be 
wise to lay out a few diff erent hypothetical 
surveillance schemes and perform a cursory 
examination of how each scheme responds 
to various amounts of introduced parametric 
uncertainty. At the least, working from this 
perspective might help the analyst narrow 
down the model parameters that require 
particular focus, and the uncertainty bounds 
that should be implemented, in order to 
identify the most robust choice.

Ultimately, we would like to see 
sensitivity-based analyses of uncertainty 
become standard practice in pest risk 
modelling and mapping. Despite limitations 
with the approach, it can be instructive to 
analysts when judging the value of their 
outputs for decision support. For example, 
maps depicting shifts in risk class at various 
levels of added uncertainty (such as in Fig. 
13.5; see colour plate section) may be paired 
with the ‘baseline scenario’ risk map outputs 
to communicate the potential impact of 
parametric uncertainty for decision making. 
Furthermore, while the approach does not 
facilitate direct incorporation of measured 
uncertainties into output risk products, it 
might possibly be used in concert with other 
analytical approaches that do provide this 
option (see Yemshanov et al., Chapter 14 in 
this volume).
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Abstract

Uncertainty is inherent in model-based 
forecasts of ecological invasions. In this 
chapter, we explore how the perceptions 
of that uncertainty can be incorporated 
into the pest risk assessment process. 
Uncertainty changes a decision maker’s 
perceptions of risk; therefore, the direct 
incorporation of uncertainty may provide a 
more appropriate depiction of risk. Our 
methodology borrows basic concepts from 
portfolio valuation theory that were 
originally developed for the allocation of 
fi nancial investments under uncertainty. In 
our case, we treat the model-based estimates 
of a pest invasion at individual geographical 
locations as analogous to a set of individual 
investment asset types that constitute a 
‘portfolio’. We then estimate the highest 
levels of pest invasion risk by fi nding the 

subset of geographical locations with the 
‘worst’ combinations of a high likelihood of 
invasion and/or high uncertainty in the 
likelihood estimate. We illustrate the 
technique using a case study that applies a 
spatial pest transmission model to assess 
the likelihood that Canadian municipalities 
will receive invasive forest insects with 
commercial freight transported via trucks. 
Th e approach provides a viable strategy for 
dealing with the typical lack of knowledge 
about the behaviour of new invasive species 
and generally high uncertainty in model-
based forecasts of ecological invasions. 
Th e technique is especially useful for 
under taking comparative risk assessments 
such as identifi cation of geographical hot 
spots of pest invasion risk in large 
landscapes, or assessments for multiple 
species and alternative pest management 
options.
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Uncertainty in Biological Invasions

Probabilistic spatial models have been used 
to assess the potential for, and impacts 
from, ecological invasions (Rafoss, 2003; 
Koch et al., 2009; Pitt et al., 2009; Yemshanov 
et al., 2009a,b; Prasad et al., 2010; Venette et 
al. 2010; Koch and Yemshanov, Chapter 13 
in this volume). Such models off er the 
capacity to depict fi ne-scale variations in key 
environmental and biological parameters 
that may infl uence the dynamics of invasive 
alien species in a landscape. However, 
parameters in these models require certain 
statistical assumptions, so when these 
models are extrapolated in geographical 
space, uncertainty that is associated with 
underlying model structure, parameters and 
data is propagated into pest risk forecasts 
and maps.

Description of the invasion process in 
probabilistic terms provides a technical 
means to represent uncertainties in the 
events that lead to invasion. Probabilistic 
invasion models commonly include random-
ization algorithms to represent the uncertain 
course of an invasion. For example, forecasts 
of where an invasive alien organism might be 
introduced and subsequently spread may 
include random elements. Alternatively, 
randomization algorithms can be used to 
draw plausible values repeatedly from 
statistical distributions of model inputs to 
measure the resultant variation in model 
outputs. Th is approach is known more 
generally as Monte Carlo analysis. Numerous 
randomized simulations of the invasion 
process provide a set of possible invasion 
outcomes (Koch et al., 2009; Pitt et al., 2009; 
Yemshanov et al., 2009a). Th e model outputs 
(e.g. an invasive alien species’ presence/
absence or density at a site by a specifi ed 
time) can be analysed statistically to deter-
mine an expected outcome or the extent of 
variation among outcomes. Th ese statistics 
can, for example, provide important insights 
about managing an invasion in the face of 
uncertainty or targeting research to alleviate 
some of the uncertainty.

In this chapter, we focus on relatively 
simple techniques that help incorporate the 
uncertainty that is typically generated by 

probabilistic spatial models into the output 
risk estimates (i.e. risk maps) for invasive 
alien pests. Note that the ‘risk’ we are 
modelling in this example is the likelihood 
of the arrival of wood- and bark-boring 
insects without considering the level of 
impact. Conceptually, our approach would 
apply to other aspects of ecological 
invasions. Because our approach is from a 
decision maker’s perspective, the fi nal 
estimates should also refl ect how the 
uncertainty in the invasion forecasts might 
change a decision maker’s expectations of 
invasion outcomes.

Perceptions of Uncertainty in Model-
based Pest Risk Assessments

Uncertainty is an inevitable component of 
invasion forecasts but can be challenging for 
pest risk managers (i.e. biosecurity pro-
fessionals and others tasked with managing 
pest incursions) to factor into their decision-
making processes. One of the biggest 
impediments has been the lack of techniques 
to directly incorporate uncertainty into the 
prioritization of risks for decision makers. 
Notably, human perceptions of ‘more 
certain’ versus ‘less certain’ outcomes are 
diff  erent in a decision-making context 
(Kahneman and Tversky, 1979; Kahneman 
et al., 1982); a decision maker’s perception 
of uncertainty embedded in a forecast of 
pest risk could change his or her priorities 
for action. Perceptions of uncertainty diff er 
among people. For example, given a choice 
between two alternative scenarios with the 
same estimated probabilities of pest arrival, 
a cautious risk manager would assign higher 
priority for action to the scenario with more 
certainly estimated values. Th is type of 
behaviour is commonly called ‘risk-averse’ in 
economic literature: risk-averse individuals 
always prefer the more certain option from 
alternative choices with the same expected 
outcome (Arrow, 1971; Gigerenzer, 2002; 
Shefrin and Belotti, 2007). For example, the 
risk-averse investor would prefer a stock 
with a 3 ± 0.5% annual return on investment 
over the stock with a 3 ± 4% annual return. 
Conversely, ‘risk-tolerant’ or ‘risk-seeking’ 
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investors would prefer the more variable 
stock because this stock has a greater 
potential to outperform its historical 
average return in the short term than the 
more consistent stock.

Th e meaning of ‘risk’ in investments is 
diff erent from how it is typically understood 
in pest risk modelling (i.e. as shorthand for 
the likelihood of arrival, establishment and 
spread, and the magnitude of impacts). 
Indeed, risk aversion might be better 
characterized as aversion to uncertainty in 
the elements of the invasion being modelled. 
Th is terminology is admittedly ambiguous, 
but ‘risk aversion’ also implies that a pest 
risk manager would generally assign lower 
priority for action to estimates of pest 
invasion risk that are comparatively more 
uncertain. However, for information-
gathering purposes, decision makers may 
reverse their priorities and become more 
risk-tolerant. For example, a pest risk model 
to plan a pest survey in a heterogeneous 
landscape may show two locations where the 
presence of an invasive alien species is 
equally probable but the estimate for one 
location is more uncertain than for the 
other. For the risk-tolerant manager, 
locations with more uncertain risk estimates 
would be assigned a higher priority for 
survey (Yemshanov et al., 2010) because 
these locations would provide more 
knowledge-gaining opportunities. Results 
from surveys in these locations also could 
help to reduce some of the uncertainty 
associated with the model parameters or 
inputs.

Ideally, the risk assessor would use an 
algorithm to consistently adjust outputs 
from a probabilistic invasion model to 
support decision making. Th e adjustment 
would depend on the amount of uncertainty 
in the outputs and a basic understanding of 
the decision maker’s perceptions of 
uncertainty. Potential adjustments can be 
visualized by plotting the model-based 
estimates of risk in two dimensions: the 
mean likelihood of invasion (i.e. across all 
model replications) against the uncertainty 
of that likelihood estimate. For example, a 
pest’s estimated mean arrival rate for each 

location of interest is plotted against the 
variance in Fig. 14.1a.

When uncertainty is ignored and the 
action priorities (e.g. selection of sites for 
surveillance) are based solely on the mean 
invasion likelihood values, the dividing 
boundaries between high- and low-priority 
locations can be depicted in the mean–
variance space as lines with constant mean 
likelihood values parallel to the x-axis (Fig. 
14.1b). In this case, the amount of variance 
in the likelihoods of pest invasion does not 
aff ect the decision-making choice. If decision 
makers assign higher priorities to more 
certain estimates of pest invasion likelihood 
(i.e. are ‘risk-averse’), the lines that delineate 
action priority levels will be curved relative 
to the x-axis (Fig. 14.1c), so the locations 
with more certainly defi ned estimates of 
invasion likelihood would receive higher 
relative priority and vice versa. Alternatively, 
when a decision maker’s objective is to gain 
more information about an invader’s 
behaviour, or when uncertainty in the 
invasion likelihood values is believed to 
increase the overall level of decision-making 
priority (i.e. the decision maker is ‘risk-
seeking’), the locations with higher variance 
will be assigned a higher priority. In this 
case, the lines delimiting the priority levels 
would be curved relative to the x-axis in an 
opposite direction (Fig. 14.1d).

Portfolio Valuation Techniques and 
Pest Risk Assessment

Th e concepts depicted in Fig. 14.1 are 
strikingly similar to the fi nancial asset 
valuation process which has been studied in 
detail and has produced a corresponding 
analytical framework (Arrow, 1971; Elton 
and Gruber, 1995). To illustrate how this 
framework may be translated to invasive 
species modelling, consider a hypothetical 
example of a geographical assessment of 
pest invasion likelihood, where a spatial 
invasion model has forecast the potential 
spread of a newly documented pest. 
Knowledge about the invader’s behaviour in 
its new environment remains limited, so the 
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spatial model represents key parameters 
that characterize the species’ expected 
behaviour in distributional form. Multiple 
randomized simulations generate, for each 
location (i.e. individual map cells, in this 
example), a multitude of estimated pest 
arrival rates within a specifi ed time. For each 
location, the invader’s estimated mean 
arrival rate and the uncertainty of that 
estimate (i.e. the variance of the simulated 
mean) can be calculated. Results for multiple 
locations can be plotted on a mean–variance 
graph (Fig. 14.1). Plots generally show the 
points as an amorphous cluster termed a 
‘cloud’ (Fig. 14.1a).

Locations for resource deployment (e.g. 
to monitor the ongoing spread of the 
invader) are prioritized by fi nding the 
locations that have the ‘most extreme’ 
combinations of mean arrival rates and 
associated uncertainties. What constitutes 
‘most extreme’ depends on the decision 
maker’s perception of uncertainty. For 
example, uncertainty might increase (Fig. 
14.1c) or decrease (Fig. 14.1d) the priority 
for action at a location. Regardless, the 
combinations of mean arrival rate and 
uncertainty characterize locations within 
the mean–variance cloud. For instance, a 
relatively low arrival rate that is highly 
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Fig. 14.1. Delineation of decision-making priorities with respect to mean pest arrival rate and uncertainty: 
(a) depicting individual geographical locations (i.e. map cells) as points in the dimensions of mean pest 
arrival rate and variance; (b) decision making is based solely on the mean values regardless of the 
amount of variance in the arrival rate estimates (points above the ‘high’ line are a high priority, those 
below the ‘low’ line a low priority and points between the lines are a medium priority); (c) decision making 
assigns higher priority to estimates with higher variance; (d) decision making is risk-averse, so more 
certain estimates of the pest arrival rate receive higher priority.
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uncertain would place a location on the 
outer (i.e. most extreme) boundary of the 
point cloud. Notably, this combination is 
analogous to fi nding the ‘non-dominant’ 
portfolio set in fi nancial asset allocation 
when considering mean net fi nancial returns 
and their volatilities (i.e. the variances of the 
net return values). In our case, the likelihood 
that the threatening pest will arrive at a 
previously pest-free location is analogous to 
the concept of ‘net return’, while the 
uncertainty of that likelihood estimate is 
analogous to ‘volatility’ (Arrow, 1971; Elton 
and Gruber, 1995).

In pest risk modelling, a set of individual 
geographical locations (e.g. map cells or 
polygons) within a region is analogous to a 
set of individual ‘portfolios’, where each 
‘portfolio’ is characterized by an associated 
distribution of estimated net returns (i.e. 
analogous to model-based likelihoods of 
pest arrival). Commonly, we rank these 
locations so the highest rank would denote 
the most extreme combination of arrival 
rate and uncertainty. As we perceive the 
process, decision makers will continue to 
select the most highly ranked sites until a 
budget limit is reached. Lines that 
distinguish high-priority locations (i.e. 
those that need immediate management 
action) from lower-priority locations (i.e. 
where action could be deferred) can be 
drawn through the mean–variance cloud. 
Th ese limits are represented as convex lines 
(i.e. ‘frontiers’) at user-defi ned boundaries 
within the mean–variance clouds. Figure 
14.1c illustrates the general shape of these 
lines when the decision maker is risk-averse 
and Fig. 14.1d illustrates the general shape 
when the decision maker is risk-tolerant.

In portfolio allocation, the usual 
objective is to select a few portfolio com-
binations from a theoretically infi nite set 
that have the desired trade-off s between net 
returns and their volatilities (Elton and 
Gruber, 1995). In our invasion risk modelling 
scenario, each portfolio represents a single 
geographical location, so their total number 
is fi nite. Under classical portfolio theory, 
allocation usually aims to defi ne a single 
best-performing set of portfolios in fi nancial 

terms (Ingersoll, 1987; Elton and Gruber, 
1995). A single set is suffi  cient because it is 
assumed that any investment amount can 
be allocated simply in specifi ed proportions 
to the set of portfolios. In geographical 
assessments of pest invasions, fi nding a 
single best-performing portfolio set would 
be analogous to identifying a small portion 
of the geographical region that combined 
the highest likelihoods of invasion and the 
highest variances of these estimates (or 
lowest, depending on decision-making 
goals).

In order to evaluate the rest of the map 
locations, we must subsequently defi ne a 
hierarchy of best- to worst-performing 
portfolio sets for all map locations in a study 
area. To do this, the distribution of arrival 
rates for each of the n locations (i.e. square 
cells) in the map is evaluated to fi nd a subset, 
1, of locations with the most extreme 
combinations of arrival rate and associated 
uncertainty. In fi nancial terminology, this 
subset is often called the ‘non-dominant’ or 
‘effi  cient’ set. Once the non-dominant set 
1 is found, it is assigned the highest 
priority rank of 1 and removed from set n 
temporarily. Next, a second non-dominant 
subset, 2, is determined from the rest of 
the map locations, n ‒ 1, assigned a rank 
of 2, and so forth. Th e process is repeated 
until all sets of locations in the area of 
interest have been evaluated and assigned a 
priority rank. Conceptually, this technique 
follows an algorithm for fi nding nested non-
dominant sets (Goldberg, 1989) and multi-
attribute frontiers (Yemshanov et al., 2013).

Finding Non-dominant Frontiers

Finding nested non-dominant sets, or 
effi  cient frontiers, represents the most 
critical step in the analysis because the set 
limits must simultaneously account for a 
decision maker’s perceptions of uncertainty 
and the amount of variation in the data, and 
yet be computationally tractable. In this 
chapter, we demonstrate two relatively 
simple approaches based on the mean–
variance frontier concept and the stochastic 
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dominance rule. We continue to draw upon 
the example that we established earlier. To 
briefl y recap, an area of interest is divided 
into n grid cells (i.e. locations). A Monte 
Carlo simulation generates multiple 
estimates of the arrival rate of an invasive 
alien species into each cell. For each cell, we 
have an estimate of the mean arrival rate 
(i.e. the mean of all simulated values for that 
cell) and uncertainty in the arrival rate (i.e. 
the variance or standard deviation about the 
mean and the frequency distribution of 
arrival rates). Our goal is to help the decision 
maker select particular locations for action 
(e.g. conduct a survey for the invasive alien 
species).

Mean–variance frontier concept

Th e mean–variance frontier (MVF) concept 
is a visually appealing and simple technique. 
Th e mean arrival rate, –j, for a location j is 
plotted against the standard deviation of 
the arrival rate, (j), which serves as a 
measure of uncertainty (Fig. 14.2a). All 
geographical locations are plotted on the 
same graph. Instead of using variance as the 
measure of uncertainty, we use the standard 
deviation because it increases monotonically 
with the variance, spreads points along the 
uncertainty axis more uniformly and 
facilitates frontier identifi cation. Ultimately, 
the classifi cation and ranking of locations is 

Fig. 14.2. The concepts of nested mean–variance frontiers and stochastic dominance: (a) ranking risk of 
invasion via nested frontiers in dimensions of mean risk and its standard deviation (i.e. risk-seeking 
preferences); (b) second-degree stochastic dominance rule. In (b), f(ψj) and g(ψj) are example 
distributions of pest arrival rates at two corresponding map locations, f and g; F(ψj) and G(ψj) are the 
cumulative distribution functions (CDFs) of f(ψj) and g(ψj); ( )d

j
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F


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similar whether the variance or standard 
deviation is used. Th e point, and 
corresponding map location, in the outer 
boundary of the cloud (i.e. the furthest from 
the origin) are assigned a priority rank of 1, 
the highest decision-making priority. Points 
that are an equivalent distance from the 
origin are also given a rank of 1. Th is set of 
priority 1 locations is removed from the 
mean–variance cloud, and the next set of 
points that are most distant from the origin 
in the new cloud are found and assigned 
rank 2, and so on. Each frontier represents a 
layer that has one-point width. Th e 
estimation of frontiers proceeds inwards 
one by one, like peeling an onion, as depicted 
in Fig. 14.2a, until all points are evaluated 
and assigned a corresponding priority rank. 
For the risk-seeking decision maker, the 
highest-priority locations are in the upper-
outermost convex frontier of the mean–
variance cloud (Fig. 14.2a). For risk-averse 
decision makers, the highest-priority 
locations are in the upper-innermost convex 
boundary where points exhibit extreme 
combinations of low variance and/or high 
mean values (Arrow, 1971; Elton and 
Gruber, 1995).

Stochastic dominance

Another popular technique to identify best-
performing sets of portfolios is based on the 
second-degree stochastic dominance (SSD) 
rule. Th e SSD is a pair-wise ordering rule for 
distributions of observations. Th e SSD rule 
compares two distributions based on their 
cumulative distribution functions or CDFs 
(Fishburn and Vickson, 1978; Whitemore 
and Findlay, 1978; Levy, 1998). In our case, 
we compare two geographical locations, f 
and g. For each location, the assemblage of 
model-based invasion outcomes (i.e. across 
all of the model simulations) is described by 
the distribution, f(j) or g(j), of the pest 
arrival rate j, which can vary within an 
interval of values [a; b]. For simplicity, we 
consider a range of j values between 0 and 
1, the absolute minimum and maximum 
values possible for this variable (Fig. 14.2b), 
but acknowledge that the range a–b can be 

broader if other metrics for pest risk are 
used. Th e SSD rule compares the 
distributions of f and g as represented by the 
integrals of their respective cumulative 
distribution functions:

 

where

 

Location g dominates the alternative f by 
second-degree stochastic dominance if

 (14.1)

Note that the integrals of the CDFs are 
calculated for the entire range of j values. 
For the SSD condition to be met, the 
integrals of the CDFs for F(j) and G(j) (i.e. 
lines depicting CDF integrals in Fig. 14.2b) 
must not cross. Th e SSD rule does not 
require f(j) or g(j) to be normally 
distributed. Th e rule also meets the 
assumptions of the risk-averse decision 
maker: given two choices with the same 
expected value, the more certain choice is 
always preferred (Levy, 1992; Levy and Levy, 
2001). Because G(j) and F(j) represent the 
full distributions of model-based pest arrival 
rates at locations f and g, uncertainty in the 
j values may cause the dominance 
conditions to fail. Because g may not 
dominate f by the SSD rule it will end up 
with a comparatively lower rank due to the 
uncertainty (Levy, 1998).

For our example, potential diff erences 
in pest arrival rates j among locations were 
analysed by multiple, pair-wise SSD tests. 
For the test, one location was designated f 
and the other, g. By comparing all possible 
pairs of map locations (i.e. n(n ‒ 1)  pairs), 
we identifi ed a subset 1 that could not be 
dominated by any element in the rest of the 
set, n ‒ , according to the SSD rule (i.e. 
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in Eqn 14.1 fail). After the fi rst non-
dominant subset 1 was found, assigned a 
risk rank of 1 and removed from set n, the 
next non-dominant subset, 2, was found, 
assigned a risk rank of 2 and so on until all 
elements of n that represented the map 
locations were evaluated.

An Example with a Pathway-based 
Pest Invasion Model

We illustrate the portfolio-based method-
ology with a case study involving potential 
invasive alien species in Canadian forests. 
We use a relatively simple probabilistic 
model to estimate the likelihood that 
invasive forest insects may be carried in 
commercial freight transported to major 
Canadian municipalities via the North 
American road network. For simplicity, our 
model does not consider local pest spread by 
biological means or the pests’ population 
dynamics. Th e choice of a particular model is 
not critical in demonstrating the portfolio-
based approach. However, we have chosen a 
pathway-based model over more common 
spatial spread models because of its capacity 
for predicting human-assisted movement of 
invasive pests over long distances, a 
phenomenon that most spread models 
cannot predict well (Andow et al., 1990; 
Buchan and Padilla, 1999; Melbourne and 
Hastings, 2009). Pathway-based models 
describe the spread of a species through a 
network. Th e network is composed of nodes 
(e.g. a set of parks, campgrounds or cities) 
and connections between nodes. Th e 
network analysis prioritizes the degree of 
connectivity between the nodes (e.g. number 
of truck trips) over distance. So, for example, 
if 500 truck trips occur per day between 
cities A and C and only ten truck trips occur 
per day between A and B, a species is more 
likely to be moved from city A to city C than 
to city B even if city B is only 50 km from A 
and city C is 500 km from A. In general, 
pathway-based models can predict low-
probability long-distance dispersal events 
better than common spatial spread models.

In our case, we associated the long-
distance dispersal of invasive alien insect 

pests of forests with the movement of traded 
commodities via trucks on the North 
American road network. Traded commodities 
have been recognized as a reasonable 
predictor of the human-mediated movement 
of invasive species (e.g. Tatem et al., 2006; 
Hulme et al., 2008; Floerl et al., 2009; Hulme, 
2009; Kaluza et al., 2010; Koch et al., 2011). 
We used a Commercial Vehicle Survey (CVS) 
maintained by Transport Canada as our 
primary data source to forecast movement 
of wood-boring forest pests with com-
modities and freight (Yemshanov et al., 
2012a,b). We included commodity categories 
that involve raw wood products or are 
associated with signifi cant quantities of 
wood packing materials (Table 14.1). Th ese 
materials are acknowledged as a potential 
source of invasive alien forest pests, despite 
the implementation of International 
Standard for Phytosanitary Measures No. 
15 (ISPM 15), which stipulates treatment of 
these materials to reduce the risk of pest 
introduction via international trade (USDA 
APHIS, 2000). Th e eff ectiveness of ISPM 15 
has been questioned (Reaser and Waugh, 
2007; Reaser et al., 2008), implying that 
such measures cannot completely eliminate 
risk (Haack and Petrice, 2009; Liebhold, 
2012).

CVS data were collected during a 2005–
2007 survey at truck weigh stations across 
Canada. Each CVS record summarized a 
single shipment route reported by a driver. 
Th e summary included the route origin, 
destination, (if applicable) the location(s) 
where the route crossed the US–Canadian 
border and a description of the cargo (i.e. 
type and tonnage). We selected records from 
the CVS database with commodity types 
that are commonly associated with invasive 
alien forest pests (Table 14.1). We 
reformatted the CVS data into a list of 
‘origin–destination’ network segments so 
the location at the beginning of each 
segment (i.e. a part of a route from the CVS) 
was treated as an ‘origin’ and the location at 
the end of a segment as a ‘destination’ (Fig. 
14.3). Th e network included about 11,000 
individual locations in total.

We used the ‘origin–destination’ net-
work to estimate the rate of transmission of 
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Table 14.1. Commodity categories from the US–Canadian Standard Classifi cation of Transported Goods 
(SCTG) commonly associated with transport of bark- and wood-boring forest insects.

Commodity category (SCTG code)

Monumental or building stone (10)

Logs and other wood in the rough (25)

Wood products (26)

Non-metallic mineral products (31)

Base metal in primary or semi-fi nished forms and in fi nished basic shapes (32)

Articles of base metal (33)

Machinery (34)

Electronic and other electrical equipment and components and offi ce equipment (35)

Motorized and other vehicles, including parts (36)

Transportation equipment, not elsewhere classifi ed (37)

Precision instruments and apparatus (38)

Furniture, mattresses and mattress supports, lamps, lighting fi ttings (39)

Miscellaneous manufactured products (40)
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Fig. 14.3. Schematic representation of pest 
invasion spread in a network-based pathway 
model. The parameters pij represent the probability 
of movement from location i to location j.

invasive forest pests through an individual 
pathway segment between two given 
locations, i and j, in the network. We fi rst 
summed the tonnages of forest pest-
associated commodities recorded in the CVS 
data with one sum per directional pathway 
between locations i and j, which were 
designated mij and mji (note ij jim m ). For 
each route segment ij, the rate, pij, of a forest 
pest being moved from i to j over the survey 
period (2005–2007) was estimated from the 
total tonnage of freight shipments of forest-
pest-associated commodities from i to j:

 (14.2)

where t is the likelihood of a pest being 
moved with one tonne of relevant 
commodities over the survey period t. 
Essentially, t is a multiplier that converts 
the tonnage value into a rate estimate. Given 
the scope of our case study (i.e. modelling 
the potential human-assisted movement of 
an entire class of forest pests) it is impossible 
to calculate an exact t. However, because 
our primary focus was to prioritize locations 

1 exp( )ij ij tp m   
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in terms of their relative potential to receive 
invasive forest pests from elsewhere (i.e. to 
establish a partial order among geographical 
locations in the transportation network), 
precise knowledge of t was not critical 
(Yemshanov et al., 2012b). We used recent 
records of the spread of the emerald ash 
borer, a signifi cant forest pest, along the 
most prominent vector of its expansion in 
Ontario, Canada (i.e. along the Highway 401 
corridor between Windsor and Toronto), as 
well as the corresponding tonnages of 
relevant commodities moved through this 
corridor, to estimate t (Yemshanov et al., 
2012b). Briefl y, we estimated t via a series 
of iterative pathway model simulations that 
were intended to match the model-estimated 
and known rate of emerald ash borer spread 
along the Highway 401 corridor in southern 
Ontario given relevant trucking statistics.

Essentially, the model was comprised of 
a pathway matrix where each element pij 
estimates the rate of an invasive forest pest 
being moved with commercial truck 
transport from one geographical location, i, 
to another, j. Th e rows of the matrix 
represent the starting points of individual 
pathway segments, while the columns 
represent the segments’ end points. Th e 
matrix also has an extra column that denotes 
the probability, pi0, that the invasive 
organism fails to arrive at any location j 
from location i:

 

  (14.3)

where

 

Th e introduction of the last column was 
required because the transmission prob-
ability values pij in a given row do not always 
sum to 1. Since the CVS data did not 
document the duration of stay at 
intermediate locations during transit, the 
diagonal elements of the matrix, pii, were 
not estimated. We left the pii values at zero 

and instead added a column with the pi0 
values which bring the sum of each row to 1.

We used the pathway matrix to generate 
transmissions of a hypothetical invasive 
forest pest through the transportation 
network. Th e model generated discrete 
transmission pathways via multiple 
iterations. For each iteration, the model 
generated a single pathway route that 
started from an origin location i and passed 
through a number of destination locations 
until a location with no outgoing paths or 
the termination state based on the pi0 value 
was chosen. As depicted in Fig. 14.3, the 
model simulated the movement of the pest 
from each point of ‘origin’ i to other locations 
j by extracting the associated vector of 
probabilities pij (i.e. the row of matrix values 
associated with i) from the pathway matrix 
and using it to select the next pathway point. 
Finally, a rate of pest arrival was estimated 
from the number of times the pest arrived at 
j from i over multiple pathway simulations:

  (14.4)

where Ji is the number of individual pathway 
simulations that started at location i and 
passed through location j. K is the total 
number of individual simulations of pathway 
spread from i. Th e value of K (i.e. 2 × 106 
simulations for each origin point in this 
study) was limited by the available com-
puting capacity.

Th e arrival rates were then rearranged 
so each j ‘destination’ in the transportation 
network was characterized by an empirical 
distribution, j, of pest arrival rates ij from 
all other nodes i, i  j (i.e. n ‒ 1 locations). 
Th is distribution described the location’s 
potential to receive a forest pest with 
commercial freight transported from 
elsewhere. Because each destination had a 
distribution of arrival rates simulated from 
one origin at a time, the level of uncertainty 
associated with each location j depends on 
the connectivity of the pathway network 
and the variation in commodity fl ows along 
the pathway segments. In order to generate 
a geographically continuous coverage, we 
aggregated point-based arrival rates into a 
15 km × 15 km grid map by combining the j 
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values from each location into one common 
distribution. Each map cell was characterized 
by a distribution of j pest arrival rates from 
other map cells in Canada. We then applied 
our portfolio-based techniques, the mean–
variance frontier and the stochastic 
dominance rule, to these distributions of 
arrival rates to rank geographical locations.

While we used portfolio-based tech-
niques in our analyses for all of Canada, we 
only show the region in southern Ontario 
and Quebec with the highest traffi  c fl ows 
and road densities so that patterns can be 
illustrated more clearly (Fig. 14.4; see colour 
plate section). We express the risk ranks, 
j SSD and j MVF , generated with the mean–
variance and stochastic dominance rules, 
relative to the largest rank possible for each 
respective method. We have calculated the 
relative rankings, rj MVF and rj SSD, as:

 (14.5)

where max[j SSD] and max[j MVF] represent 
the maximum rank values in the SSD and 
MVF classifi cations. Th e relative rankings 
have values from 0 to 1, so the relatively 
highest-priority ranks are close to 1 and 
lowest are close to 0. Th ese relative rankings 
are ordinal values and are meant to facilitate 
comparisons of MVF and SSD results.

To explore the geographic patterns of 
risk identifi ed by the ranking methods we 
have further divided the ranks into broad 
classes with the arbitrary ranking thresholds 
of 0.4, 0.6, 0.75, 0.9 and 0.95 (Fig. 14.4; see 
colour plate section). Many of the highest 
ranked cells in eastern Canada (rj MVF , rj SSD > 
0.75) are associated with major transpor -
tation arteries in southern Ontario and 
Quebec, which suggests that these corridors 
could serve as key pathways for new pest 
arrivals. Th e two ranking methods identifi ed 
similar highest-priority areas (Fig. 14.4a and 
b); however, the map based on the SSD rule 
had more high-ranking sites (i.e. rj SSD > 0.9) 
than the map based on MVF. Table 14.2 
illustrates the agreement between the 

priority rankings among the highest-ranked 
locations. (Note that each map cell was 
assigned a location name corresponding to 
the nearest large municipality.)

While the highest-ranked lists generated 
with the MVF and SSD rules are relatively 
close, they diff ered substantially from the 
ranks based only on the mean arrival rates.

We also compared maps of risk ranks 
derived with the MVF and SSD rules with 
the geographical distribution of the standard 
deviation of the arrival rates, (j) (Fig. 
14.4c; see colour plate section). Uncertainty, 
represented by standard deviation, fi gured 
prominently in location characterizations 
based on the MVF and SSD rules (Fig. 14.4a 
and b; see colour plate section); the highest-
ranked locations typically included areas 
with high variability in pest arrival rates.

Th e impact of uncertainty on relative 
priority ranks, rj, is even more evident when 
individual map locations are plotted as 
points on a graph of the mean pest arrival 
rate, –j , against the standard deviation, 
(j) (Fig. 14.5). In Fig. 14.5a, the idealized 
boundaries between these general risk 
classes, as delineated with the MVF rule, are 
tilted at an angle,  > 90°, because the 
frontiers were selected starting with the 
upper-outermost boundary of the mean–
variance cloud. Th is pattern shows that for 
any two locations with equal mean arrival 
rates, the location with higher variability 
would be assigned a higher priority rank, 
just as we had intended.

For delineations based on the SSD rule, 
the tilt angle  of the boundaries between 
the risk classes was below 90 (Fig. 14.5b). 
Th is result implies that for any two locations 
with equal mean arrival rates, the location 
with the more certain estimate (i.e. with 
lower variability) would be assigned a higher 
rank.

In summary, the two approaches 
perform similarly in terms of the highest- 
and lowest-ranked locations, but for 
moderate risk ranks, the methods place 
diff ering levels of emphasis on certainty in 
the arrival rate estimate (i.e. the MVF 
approach emphasizes areas of high 
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Table 14.2. Location rankings for Canadian cities based on mean arrival rate, mean–variance frontiers (MVF) and second-degree stochastic dominance 
(SSD) methods. A ranking based only on the locations’ mean arrival rate values is included for comparison.

Location namea

Ranking method

Location name
(continued)

Ranking method

Mean arrival 
rate MVF SSD

Mean arrival 
rate MVF SSD


i (

×
 1

0–5
)

r jb R
an

k

r j R
an

k

r j 
i (

×
 1

0–5
)

r j R
an

k

r j R
an

k

r j

Cornwall, ON 15.9 145* 1 1  16* 1 Gananoque, ON 35.0 2 20 0.91 32 0.94
Toronto, ON 65.3 1 2 0.995  1 1 Ottawa, ON 7.7 38 32 0.88 18 0.96
Windsor, ON 29.8 3 4 0.98  1 1 Calgary, AB 21.4 8 14 0.94 56 0.9 
Kitchener, ON 21.2 9 3 0.99  6 0.99 Oshawa, ON 23.9 5 26 0.89 31 0.94
Drummondville, QC 7.6 39 5 0.98 11 0.98 Nobleton, ON 2.3 80 45 0.86 15 0.96
Trois-Rivieres, QC 8.9 30 7 0.97  7 0.99 Sorel, QC 2.0 89 41 0.86 20 0.96
Iroquois, ON 6.0 45 8 0.96  5 0.99 White Rock, BC 22.6 7 21 0.91 60 0.89
Moncton, NB 9.1 28 6 0.97 10 0.98 Niagara Falls, ON 5.5 13 33 0.87 34 0.93
Ste Madeleine, QC 11.1 22 10 0.95  8 0.99 Abbotsford, BC 19.9 11 23 0.91 68 0.88
Quebec, QC 8.3 34 15 0.93  1 1 Kingston, ON 13.8 18 31 0.88 47 0.91
Montreal, QC 15.8 15 9 0.95  9 0.98 Sault Ste Marie, ON 12.5 20 40 0.86 42 0.92
Sarnia, ON 23.4 6 13 0.94 14 0.97 Orono, ON 14.0 17 50 0.85 44 0.92
Lacolle, QC 4.8 52 11 0.94 12 0.97 Sparwood, BC 10.4 24 25 0.9 76 0.86
London, ON 26.8 4 12 0.94 19 0.96 Ingersoll, ON 19.8 12 36 0.87 63 0.89
Hamilton, ON 14.8 16 18 0.92 13 0.97 Thunder Bay, ON 9.1 27 44 0.86 140 0.79
St Georges, QC 2.6 73 16 0.93 16 0.96 Halifax, NS 1.6 102 42 0.86 36 0.93
Napanee, ON 21.0 10 17 0.92 23 0.95 Winnipeg, MB 8.4 32 30 0.88 49 0.91
Windsor, QC 7.3 42 22 0.91 17 0.96 Edmonton, AB 8.2 35 54 0.84 87 0.85
North Bay, ON 13.5 19 19 0.92 24 0.95 Vancouver, BC 6.4 43 57 0.83 96 0.84

The list is sorted by the sum of rj MVF and rj SSD values.
aLocation name based on nearest large municipality at 15 km spatial resolution: AB, Alberta; BC, British Columbia; MB, Manitoba; NB, New Brunswick; NS, Nova Scotia; ON, 
Ontario; QC, Quebec.
brj, relative rank denotes the location’s rank order relative to the total number of ranks for that metric. Values nearest 1.0 are the highest priority.
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uncertainty more). Th is distinctive be -
haviour occurs because the delineation of 
the non-dominant sets in the MVF and SSD 
classifi cations eff ectively starts from the 
opposite sides of the mean–variance cloud 
and thus the two methods off er diff erent 
treatments of uncertainty.

Assessing the Utility of Portfolio-
based Techniques for Pest Risk 

Assessment

Historically, the adoption of portfolio-based 
techniques in economic studies was driven 
by the need to fi nd the best possible 
allocation of fi nancial assets in the context 
of uncertain returns (Levy and Markowitz, 
1979; Götze et al., 2008). Th e idea of 
incorporating decision-making priorities as 
a component of fi nancial predictive models 
applies well to other decisions that have to 
be made under uncertainty. In our model-
based assessment of the likelihood of pest 
arrival, portfolio-based approaches provided 
a tractable way to incorporate uncertainty 
into quantitative assessments of the relative 
risk of pest arrival among several sites that 
is consistent with decision-making priorities 
and to communicate those diff erences in a 

single decision support product (i.e. a map 
of relative priority ranks in our study).

In economics, if the objective is to fi nd 
the smallest set of best-performing 
investment portfolios, the SSD and MVF 
approaches have been criticized as too 
coarse to be practical (Hardaker et al., 2004; 
Hardaker and Lien, 2010). However, we 
found the discriminatory power of SSD and 
MVF rules to be suffi  cient for our pest risk 
modelling case. Since our study required 
ranking of all geographic locations in the 
map and the total number of locations was 
large, SSD and MVF rules were suffi  cient to 
identify geographical hot spots as small as a 
few adjacent map cells. Also, the magnitude 
of the variation in the pest arrival rate values 
was considerably larger than the typical 
volatility associated with investment 
analyses; hence diff erences between the CDF 
integrals in the case of the SSD rule and 
convex mean–variance frontiers in the case 
of the MVF approach were more discernible.

In our example, we demonstrated how 
the incorporation of uncertainty via the 
MVF and SSD methods can change the 
interpretation of geographical estimates of 
the pest arrival risk. Th e output pest arrival 
risk was a dimensionless priority rank aimed 
to assist decision makers with allocations of 

Fig. 14.5. Relative pest risk ranks, rj, for each location, j, plotted with respect to mean pest arrival rate, 
 j , and its standard deviation, (j).  denotes the tilt angle between the idealized boundaries of 
coarsely defi ned risk classes in the mean–variance cloud and the line indicating constant mean arrival 
rate ( j  = const). Different symbols delineate broad classes of the risk ranks and dashed lines depict 
idealized boundaries between broad classes of risk ranks.
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resources for pest surveillance and control. 
Maps of risk ranks can be used as inputs for 
further economic assessments of survey 
costs which may include optimization of 
resources for survey and pest control eff orts. 
Th e methodology might be used with a cost-
based metric that estimates potential 
benefi ts of successful detections or manage-
ment actions in response to an outbreak, 
culminating in an optimal cost allocation 
study.

Th e capacity of the portfolio-based 
techniques to account for uncertainty also 
improves the utility of stochastic invasion 
models (Demeritt et al., 2007) as risk 
assessment and decision support tools. We 
illustrated the methods with a relatively 
simple invasion model, but the approach can 
be linked to more complex, probabilistic 
models where uncertainty in model 
predictions is expected to be high. Similarly, 
the approach could be used with spatial 
models to generate plausible invasion 
outcomes at multiple geographical locations. 
For example, stochastic cellular automata 
and gravity models (e.g. Haynes and 
Fotheringham, 1984; Muirhead et al., 2006; 
Pitt et al., 2009; Yemshanov et al., 2009a) 
could generate multiple maps, each rep-
resenting a possible outcome of the invasion 
process. Multiple maps can be rearranged so 
each geographical location is characterized 
by a distribution of invasion likelihoods or 
impact metrics which could be used with one 
of the portfolio-based techniques presented 
here.

Incorporating decision makers’ 
perceptions of uncertainty

Th e MVF and the SSD techniques can 
address decision-making strategies where 
uncertainty is treated diff erently. Th e MVF 
approach, as implemented in this study, may 
be suitable when the uncertainty about a 
pest is a factor that might increase the 
priority for decision makers. In particular, 
the MVF concept is useful when both the 
central tendency (i.e. the mean) and 
variability (e.g. the standard deviation) of 
the risk metric represent critical decision-

making variables. For instance, the MVF 
approach could be applied in model-based 
assessments for early detection of invasive 
organisms, when the need to gain more 
information and reduce uncertainty about 
the invader’s presence or absence is 
paramount. In such cases, the model-based 
rate of pest arrival may not suffi  ciently 
characterize information gains from 
unexpected events such as detections of a 
pest in low-probability locations. Conse-
quently, the uncertainty of the arrival rate 
estimate becomes a distinctly important 
variable, so the prioritization should include 
arrival rate and its variance. Alternatively, 
delineation based on the SSD rule may be 
more suitable for assessments that support 
costly and irreversible decisions such as 
restricting trade or imposing a regulation, or 
when decision makers are risk-averse.

Ultimately, the applicability of a 
particular portfolio-based method can be 
aff ected by the type of pest invasion model 
and the nature of the model output used in 
the assessment. One analytical strategy that 
may be worth considering is to estimate the 
priority ranks with more than one algorithm 
and then undertake an extra analysis step of 
aggregating the multiple sets of output 
ranks into a single-dimensional decision 
priority metric using multi-criteria aggre-
gation techniques that do not require prior 
setting of the criteria weights (e.g. the multi-
attribute frontier aggregation described in 
Yemshanov et al., 2013).

Computational remarks

Both the MVF and SSD techniques perform 
a delineation of nested effi  cient frontiers for 
a particular map (i.e. a particular set of 
spatial elements), which means they only 
rank those elements relative to one another. 
In order to compare the maps of multiple 
scenarios or diff erent geographical regions, 
the priority ranks would need to be 
remapped to a new common scale. Th e 
simplest approach would be to combine all 
geographical sets or scenarios into a single 
superset that includes all alternative maps 
or scenario data sets, and then assign the 
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priority ranks with respect to all possible 
invasion outcomes and scenarios that could 
be found in this superset.

Th e MVF and SSD techniques use 
somewhat diff erent approaches to generate 
the rank values. Th e MVF approach 
essentially ‘peels’ the mean–variance cloud 
of points, starting from the outermost layer. 
Alternatively, the stochastic dominance 
approach ranks the geographical locations 
via multiple pair-wise SSD tests. As a 
consequence, the two techniques typically 
yield diff erent numbers of locations at the 
highest ranks. For example, Table 14.2 lists 
eight locations with priority ranks above 
0.95 for the MVF-based classifi cation versus 
20 locations for the SSD-based approach. 
Th e allocation of the frontiers in the MVF 
approach can also be infl uenced by local 
variations of the point density in the mean–
variance space: more frontiers can be 
delineated in regions of the mean–variance 
space with higher point density. Also note 
that the MVF rule assumes that the mean 
values and the variance provide an adequate 
representation of the distribution as a whole 
(Gandhi and Saunders, 1981). Alternatively, 
the stochastic dominance approach 
evaluates the entire cumulative distribution 
of expected outcomes and does not require 
prior evaluation of the distribution shape 
(Fishburn and Vickson, 1978).

Th e application of either the SSD or 
MVF approach to large geographical data 
sets, such as high-resolution outputs of 
invasion and dispersal models with a large 
number of spatial elements (i.e. map cells or 
polygons), is computationally demanding1. 
For example, the SSD test has a com-
putational complexity on the order of 
n(n ‒ 1)/2 and the most basic algorithm to 
fi nd two-dimensional convex MVF frontiers 
has a complexity on the order of n2. For very 
large data sets, further reduction of the 
computing time is possible by implementing 
more effi  cient convex frontier delineation 
algorithms (Porter et al., 1973; Kung et al., 
1975; Rhee et al., 1995; Papadias et al., 
2003).
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Abstract

Th e quality of pest risk models depends on 
their reliability and validity. Reliability 
refers to the model’s trustworthiness and 
dependability, but the concept is extended 
to consistency and stability. Approaches to 
help establish and test consistency are 
described. Validity assures that models 
actually portray the expectations or 
assertions of the model design. Elements of 
validity can be characterized as face, 
criterion, content, concurrent and construct 
validity; and the merits of these elements 
are presented. In the social sciences, factor 
analysis has become the favoured method 
for evaluating reliability and validity. Factor 
analysis is especially useful when models 
group variables into indices. Th is chapter 
discusses the rationale and interpretation of 
components of factor analysis and suggests 
how this analysis might be incorporated 
into pest risk analysis in the future. Studies 
in communication reveal that non-technical 
end users can better understand and trust 
risk assessments when the assessments 
contain the best information presented in 
real language rather than mathematical 
expressions.

Introduction and Scope

Th e scientifi c quality of any risk model 
depends on its validity and reliability. While 
requirements and best practices for validity 

and reliability are discussed in the research 
literature, even in the context of risk analysis 
generally (Aven and Heide, 2009), less 
attention has been given to risk modelling, 
especially models of pest invasion. 
Inherently, risk modelling and verifi cation 
are subject to ‘standards of proof that are to 
some extent arbitrary, disputable, and 
subjective’ (Graham, 1995). Regardless, 
evidence-based risk models, when valid and 
reliable, signifi cantly improve risk analysis. 
Many researchers carefully present argu-
ments supporting the validity and reliability 
of their models; others leave their work far 
more open to criticism. Th erefore, this 
chapter off ers concepts and tools from the 
social sciences that should be valuable when 
constructing arguments about the effi  cacy 
of a model. Additionally, this chapter off ers 
advice on assessing the validity and 
reliability of pest risk analysis (PRA) models.

Clearly, not all pest risk models are likely 
to be equally eff ective at characterizing pest 
risk. Some weaknesses in risk assessment, 
unfortunately, tend to appear with some 
consistency. For example, some risk 
assessments have been ‘used to predict 
success and failure in treatment programs’ 
even though the tool employed was designed 
for needs assessment (Baird, 2009, p. 4). 
Other models may include factors that are 
only marginally correlated with pest risk; 
perhaps because as items are added, 
coeffi  cients of reliability tend to rise. Still 
other models may be based on the 
assumption that the perception of a risk is 
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linear when, in reality, it may be better 
described logarithmically. Some researchers 
may believe that highly detailed indices are 
necessarily more eff ective than brief, simple 
models. Finally, a multivariate index might 
be constructed assuming that each subscale 
has an equal infl uence on the underlying 
latent variable. Each of these examples 
highlights a potential threat to the structure 
and application of a model to generate pest 
risk maps because of weaknesses in 
reliability or validity.

Th e goal of reliability and validity 
analysis depends in large measure on the 
type of risk assessment. When relevant 
empirical data are available, two major 
approaches to estimate the probability of an 
event are applicable: relative frequency and 
Bayesian (Aven and Heide, 2009). 
Frequency-based approaches rely on 
estimating the proportion of times that a 
certain event would occur given particular 
conditions. In this approach, the actual 
probability is unknown or uncertain, but 
model parameters come from observed 
data. Frequency-based risk assessment 
relies on traditional statistical methods to 
evaluate reliability and validity, and 
uncertainties are often communicated 
using point estimations and confi dence 
intervals. Bayesian methods use probability 
as a measure of uncertainty based on 
previous data (Fabre et al., 2006). Th e 
analysis focuses on estimating or predicting 
parameters and assessing their uncertain-
ties. Regardless of approach, researchers are 
obligated to present cogent, evidenced 
arguments that they have met the standards 
of both reliability and validity.

Reliability

In the social sciences, reliability is 
understood commonly as trustworthiness 
and dependability. For pest risk modelling, 
reliability is consistent with this defi nition 
but, more precisely, describes consistency 
and stability of research methods and 
fi ndings. Reliability is established when two 
overarching criteria, consistency and 
stability, have been met.

Consistency of measurement

Analysts must show that variables have been 
measured in a consistent manner, often 
referred to as measurement reliability. 
Classical test theory explains that observed 
measurements are the combination of the 
actual true score and an error score 
(Carmines and Zeller, 1979; Spector, 1992). 
Risk modellers should estimate the 
proportion of variation that is attributable 
to random error, as opposed to measurement 
error. Th is hypothetical example helps 
distinguish between random and measure-
ment error: a derived model consistently 
predicts that 132 of 500 insect larvae will 
survive 48 h of exposure to –30ºC, but well-
controlled experiments repeatedly show 
that 100 actually survive; then the model’s 
predicted outcome contains the ‘true’ value 
of 100 larvae, plus an error of 32 larvae. In 
this example, the measurement error is 
consistent; thus, the proportion of error 
that is due to random variation of 
measurement would be zero. Th e model’s 
scale would not be considered accurate, but 
it is reliable. It is measuring in a consistent 
manner – each prediction is off  by 32 insects. 
However, if the freezer was defective and 
could not hold a consistent temperature, the 
larvae may spend varying amounts of time 
above and below the critical temperature 
during each iteration of the experiment. 
Because the time spent below –30ºC would 
not be consistent, at least a portion of the 
error would be random.

Th e ratio of random error to measure-
ment error may be diffi  cult to calculate. 
Several statistical tools exist to help 
researchers estimate the proportion of 
random error and ultimately to evaluate 
overall reliability. Th e relevance of particular 
tools depends on diff erent assumptions or 
types of data. Kuder and Richardson (1937) 
present several ways to estimate reliability. 
For example, their formula KR20 allows for 
the use of dichotomous data when 
calculating a reliability coeffi  cient. One of 
the most common ways to evaluate internal 
consistency is Cronbach’s (1951) coeffi  cient 
, derived from Kuder and Richardson 
(1937). Cronbach’s  is used when multiple 
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items are combined to create a single 
variable. For example, in PRA, risk models 
frequently use several factors to create an 
index that represents environmental 
suitability, say. Cronbach’s  is a function of 
total variance of all the items measured, the 
sum of non-communal variance and the 
number of variables used to create the 
composite. While  is a measure of internal 
consistency, it is more specifi cally the ratio 
of common source variation to total 
variation. Common source variation is non-
random error. Cronbach’s  coeffi  cient 
ranges from 0, when all of the variance is 
attributable to random error and reliability 
is theoretically perfect, to 1, when none of 
the variance appears to be random and the 
model is completely unreliable.

Th e use of Cronbach’s  as a measure of 
reliability is benefi cial for multiple reasons. 
First,  is fl exible. It can be used with 
diff erent scales, indices or levels (i.e. ordinal, 
nominal, integral and ratio) of data. For 
example,  is commonly used for summated 
rating scales. Th ese latent variables may be a 
combination of continuous data, Likert-type 
scales or even dichotomous items such as 
semantic diff erentiation scales.

Second,  can be rearranged to provide 
researchers an estimate of how many items 
must be added to achieve a desired reliability. 
Remembering that coeffi  cient  is a function 
of the number of variables used in an index, 
if variance remains constant, adding items 
increases the coeffi  cient value. In essence, 
consistency over a greater number of items 
is evidence of higher reliability. Th e 
Spearman–Brown prophesy formula allows 
a researcher to calculate a multiplier, i, of the 
current number of factors in the model to 
reach a desired reliability; the inverse of the 
observed  coeffi  cient, 1 ‒ , is multiplied 
by the desired reliability, ̂, and that number 
is divided by the product of the observed 
coeffi  cient and the inverse of the de  sired 
coeffi  cient; i.e. ˆ ˆ[ (1 )]/ [ (1 )]i        
(Spector, 1992). For example, if a researcher 
fi nds that a composite of eight factors yields 
 of 0.65, but a coeffi  cient of 0.7 is desired, 
the existing number of items (8) would need 
to be increased by a factor of 1.3. Th at 
multiplier is equal to 0.35 (i.e. the inverse of 

the observed ) multiplied by 0.7 (the 
desired coeffi  cient), which is then divided by 
the product of 0.65 (the observed ) and 0.3 
(the inverse of the desired coeffi  cient). In 
this case, 0.245 divided by 0.195 equals 
approximately 1.3. Since the eight original 
items multiplied by 1.3 yields an estimate of 
10.4, the next whole number, 11, is the 
predicted number of items needed to achieve 
an  of 0.7. Of course, the notion that using 
more variables yields increased reliability 
assumes that added items will be as ‘equally 
reliable’ as the others.

Th ird, common statistical software 
packages can calculate Cronbach’s  and 
report how  would change if certain factors 
were eliminated. Hypothetically, if 11 
factors produce a coeffi  cient of 0.7, the 
software could show that eliminating the 
third factor, for example, would increase the 
coeffi  cient to 0.75. Item analysis in this 
manner aids data reduction and promotes 
simplifi cation of models. Additionally, this 
analysis allows for a fairly easy way to 
identify ‘clunkers’ (i.e. items that are not 
working as intended and do not benefi t the 
reliable measurement of the composite 
variable).

Fourth, Cronbach’s  is becoming 
ubiquitous, particularly in the social sciences. 
Sijtsma (2009) supposes that ‘probably no 
other statistic has been reported more often 
as a quality indicator of test scores’ (p. 107). 
Other scholars, editors and reviewers 
generally understand and accept  as an 
estimate of reliability. In the least,  allows 
researchers a means of presenting quantita-
tive data to support arguments that a model 
is reliable.

Although the use of Cronbach’s  can 
provide a consistent and fairly clear way to 
identify the proportion of non-random 
variance in a measure, several disadvantages 
to its application also exist. Cronbach and 
Shavelson (2004) acknowledged that ‘co -
effi  cients are a crude device that does not 
bring to the surface many subtleties implied 
by variance components’ (p. 394). At times, 
 underestimates true reliability; and if the 
coeffi  cient is used to correct correlations for 
attenuation, the true correlation would be 
overestimated. Likely the largest problem 
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with the use of  is that it is often reported 
devoid of context (Schmitt, 1996). Th e 
coeffi  cient only provides an estimate of 
internal consistency. Researchers should 
argue contextually whether that level of 
consistency is suffi  cient.

Stability of measurement

Th e test–retest method is common in the 
social sciences as an assessment of change 
over time (i.e. stability). Variation is usually 
due to some intervention such as training, 
therapy or communication, so instability 
may be desirable. For risk modelling, 
measuring the same variable more than 
once may also be appropriate. In this case, 
researchers are not looking for changes in 
responses, but rather stability in fi ndings. 
Lack of diff erences points to stability in that 
the measurement is consistently yielding 
the same (or at least similar) results.

Risk models are often tested against a 
second, independent set of data and are 
considered ‘validated’ if they can accurately 
forecast those observed responses. Th is 
practice is sound and laudable. ‘Measure 
twice and cut once’ is not just good advice 
for carpenters; it should remind modellers 
that relying on unvalidated models can 
cause problems. For example, King (2013) 
discovered that a model created using one 
data set explained a large amount of the 
variance; however, that model failed to 
produce good results with any other data. 
In the sciences, the benefi ts of test 
replication to establish research fi ndings are 
appreciated; replication to evaluate con -
sistency of measurement can also be helpful.

Another approach to establish stability 
is the alternate-form method. Th is technique 
requires researchers to use at least two 
diff erent ways to arrive at what should be 
highly similar results. For example, an 
instructor might use several versions of the 
same examination. Th e distribution of test 
scores should be consistent across versions. 
If this is true, the scores should be highly 
correlated. However, such a test cannot 
account for variation due to aptitude of the 
individual student, so correlation co -

effi  cients will likely be lower than with test–
retest methods.

Reliability can also be evaluated by 
comparing one portion of a data set with 
another. Split-half reliability, as the name 
implies, compares one half of the data with 
the other. Th e division can be made in any 
number of ways. First-half last-half 
reliability simply looks for consistency 
between the fi rst half of the data and the 
last. Odd–even splits, obviously, compare 
results from the odd-numbered data points 
in an ordered list with the even-numbered 
points. Random-halves reliability divides 
the data set into two groups through random 
assignment; because the items are selected 
randomly, tests can be run on the same data 
set many times. An average of coeffi  cients 
can be reported along with a confi dence 
interval.

When dividing data into groups to 
assess reliability, the degrees of freedom are 
halved. Th e correlations can be corrected for 
attenuation due to the decrease in degrees 
of freedom. Just what type of correction to 
use, if any at all, is controversial (Borsboom 
and Mellenbergh, 2002). Correction in -
creases the coeffi  cient of agreement but is 
not a particularly conservative approach. 
Researchers will have to evaluate the context 
of the study to determine how conservative 
the approach should be. For example, 
exploratory studies allow for fl exibility, 
while confi rmatory experiments usually are 
approached conservatively.

Additional tools

Additional tools may prove useful when 
establishing reliability. Th ese approaches 
use Pearson’s product moment correlation 
as the reliability coeffi  cient, making cal-
culation fairly parsimonious. In fact, the 
interpretation of the coeffi  cient is the 
same as a correlation. While no universal 
standards exist, the following ranges should 
be appropriate in most contexts: 0.0 to 0.2 
indicates no or very low reliability; 0.2 to 0.4 
is low reliability; 0.4 to 0.7 is substantial 
reliability; and 0.7 to 1.0 would be high to 
perfect reliability.
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Validity

Validity is a more nebulous concept than 
reliability. In the context of pest risk 
modelling, the central question for validity 
is, ‘Does the model actually model what it is 
attempting to model?’ Primarily, validity 
depends on the way constructs (i.e. ideas 
with multiple components) are defi ned. Th e 
constructs being modelled must be very clear 
and if multiple constructs are being modelled, 
then the connections between them must be 
solid. Th e defi nitions and connections 
depend on conceptualization based on the 
review of literature. Validity is supported 
when the concepts are defi ned in a manner 
consistent with the extant literature. Because 
risk models are often complex structures, 
constructs can be divided into simpler 
constructs (i.e. sub-constructs) that can be 
more clearly established as valid. However, 
care should be taken to avoid unnecessary 
complexity by subdividing too fi nely. 
Additionally, Venette et al. (2010) warn ‘as 
the degree of the [pest risk] model’s structural 
freedom increases, it becomes impossible to 
make generalizations about the applicability 
or performance of a model for a new [invasive 
alien] species based on previous experiences 
without a deeper understanding of the 
specifi c problem formulation’ (p. 355). 
Ultimately, the validity of a risk model 
depends largely on its structure.

Researchers must construct arguments 
supporting the validity of their selected or 
derived model. Claims of validity are 
supported by evidence of internal and 
external accuracy. Internal validity is a 
refl ection of the methodological approach 
that leads to accurate fi ndings. Modellers 
must be able to demonstrate that they have 
measured what they have intended to 
measure. Four basic types of validity are 
evoked to accomplish this end: (i) face 
validity; (ii) criterion validity; (iii) content 
validity; and (iv) construct validity.

Face validity

Face validity is perhaps the weakest form as 
it is a subjective evaluation of the extent to 

which the model accurately does what it is 
designed to do. To strengthen the argument 
for face validity, researchers can use a panel 
of experts to examine the model and to 
provide feedback about whether the model 
appears valid. In the least, this approach 
suggests that the modellers have followed 
best practices or met fi eld expectations. 
Expert-driven, rule-set modelling function-
ally relies on face validity.

Criterion validity

Criterion validity is a refl ection of how 
eff ectively variables, or the entire model, 
classify a case or predict future results. For 
example, in psychology, a new scale for 
depression can demonstrate criterion 
validity experimentally using a sample of 
people who previously have been diagnosed 
with depression and a same-sized group of 
people confi rmed as not having depression. 
If the test correctly discriminates between 
people who are and who are not depressed 
(i.e. individual cases are correctly classifi ed), 
then criterion validity is supported 
(Cronbach, 1960). A valid risk model should 
similarly be able to classify threats 
appropriately. If a model predicts that a pest 
is likely to establish in a location because 
climatic conditions in a species’ native range 
and an area of concern are similar, and the 
pest is found in that location, then some 
evidence would exist for the criterion 
validity of that model.

A type of criterion validity, predictive 
validity, is not based on the model’s ability 
to correctly classify known cases, but rather 
is defi ned by the accuracy of predicting 
occurrence. Predictive validity comes from a 
model being able to predict future cases, but 
waiting for a predicted invasion to actually 
occur in order to evaluate validity is 
nonsensical. Rather, predictive validity 
could be evaluated using previously studied 
outbreaks. As an example, if the parameters 
of a fruit fl y invasion model were set to 
parallel April of 1990, would the model have 
predicted the outbreak of Mediterranean 
fruit fl ies in southern California? Similarly, 
if a model forecasts the spread of emerald 
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ash borer in the USA, would the model 
correctly identify the states that are already 
classifi ed as having emerald ash borer? Th e 
extent that actual events or outcomes are 
predicted is the level of predictive validity. A 
correlation can be calculated using the data 
from the event and the predicted data from 
the model. Th e correlation can be reported 
as a coeffi  cient of validity.

Another type of criterion validity is 
called concurrent validity, when a new 
model’s results compare favourably with 
those of a previously validated model.

Content validity

Content validity is often established through 
the review of literature. Th e question being 
answered is, ‘How can the end user be 
confi dent that the material included in the 
model accurately refl ects current fi eld 
information?’ A model built on the premise 
that a particular insect cannot thrive in arid 
environments is invalidated by the discovery 
of that insect thriving in a desert. Th e model 
would no longer accurately refl ect the state 
of the extant content knowledge. More 
often, the problem with a model’s content 
validity is due to the failure to account for 
suffi  cient facets of what is being modelled. A 
model of pest invasion would lack content 
validity if only weather data are considered.

Statistically, Cronbach’s  is an indirect 
indicator of content validity. While  is not a 
test of unidimensionality, a high coeffi  cient 
may be the result of each variable measuring 
the same concept. Just what that concept is, 
is unknown. Of course, researchers should 
examine the inter-item correlation matrix to 
ensure that each item is working as intended.

Construct validity

Construct validity is a refl ection of the way 
concepts are connected in the model itself. 
In a fl ow chart, content validity deals with 
what is in each node, individually; construct 
validity is an evaluation of the arrows 
connecting those concepts along the path of 
analysis (Cronbach and Meehl, 1955). For 

example, one step of a model might be a 
prediction of the number of an invasive 
plant species that could be introduced into 
an area and a second step could be an 
estimate of the proportion of the introduced 
plants that could reproduce in that 
environment. Th at order makes sense 
insofar as the number of plants that could 
reproduce is only relevant in the context of 
how many plants could exist there. When 
concepts are independent, entry into a 
model does not logically need to follow any 
particular sequence. One concept does not 
precede the other. In sum, construct validity 
seeks to establish that concepts are logically 
connected and that the sequencing is 
appropriate. Venette et al. (2010) support 
the notion that the construction or choice of 
a reliable model is important in the context 
of PRA by explaining that ‘indiscriminate 
model selection may cause incorrect 
estimates of invasive alien species’ potential 
ranges and inaccurate assessments of pest 
risk. Consequently, decision makers may 
select the wrong mitigation measure and 
over- or underinvest in that strategy’ (p. 
350).

Uncertainty

Ultimately, if a researcher is unable to 
articulate a model’s validity and degree of 
reliability, then subsequent risk estimates 
should be viewed as speculative. People and 
organizations that rely on that tool’s 
estimates for policy formation or risk 
communication must be made aware of the 
uncertainty so that appropriate rhetorical 
strategies can be used to interpret and 
communicate the information. Policy 
makers and communicators deal with 
uncertainty constantly. For example, 
communicators strategically use qualifi ers 
and limitations as rhetorical devices to 
articulate ambiguity. Th e problem is not that 
the people who use the models’ results do 
not understand uncertainty; rather, risk 
analysts often are unable to communicate 
uncertainty eff ectively simply because 
ambiguity and imprecision often give 
scientists epistemological angst. Risk 
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scientists need increased training specifi cally 
in how to articulate uncertainty in a 
meaningful way.

Factor Analysis

Factor analysis has become the gold standard 
for evaluating the validity and reliability of 
structures (i.e. indices) used to represent 
complex events or trends. In this chapter, 
the term ‘factor analysis’ defi nes a group of 
statistical tools used to identify underlying 
dimensions of groups of variables that are 
combined to represent a latent variable. 
Factor analysis can be particularly useful 
when evaluating the structure of models, 
such as FloraMap, that use principal 
component analysis, which is closely related 
to factor analysis, or any model that groups 
variables into indices, similar to how climex 
uses a composite index based on species’ 
responses to climate data.

Two general types of factor analyses 
exist: exploratory and confi rmatory. 
Exploratory analysis is used to uncover 
factors in data when the structure has not 
been previously established. For more on 
exploratory factor analysis (EFA), see 
Costello and Osborne (2005). Conversely, 
confi rmatory analysis, as the name implies, 
is designed to determine whether a pre-
established structure can be replicated with 
new data. For a detailed discussion of 
confi rmatory factor analysis (CFA), see 
Gorsuch (1983) and Kline (1994). If a model 
assumes that an index based on the same 
weather variables is equally informative for 
diff erent insects, for example, CFA might be 
used to test that assumption.

Exploratory factor analysis

EFA begins with the calculation of a 
correlation matrix for the applicable 
variables. Bartlett’s test of sphericity is used 
to ensure that the variables are suffi  ciently 
correlated to continue with the factor 
analysis. More specifi cally, the null 
hypothesis states that no relationship exists 
between the variables. Th e test produces a 2 

statistic with a corresponding P value. With 
Bartlett’s test, a low P value (i.e. < 0.05) is an 
indication that the variables are correlated 
and that factor analysis can continue to the 
next step.

Next, the Kaiser–Meyer–Olkin (KMO) 
measure is used to determine sampling 
adequacy. KMO is an index that compares 
the magnitudes of the observed item 
correlations to the magnitudes of the partial 
correlation coeffi  cients. Because partial 
correlations report the strength of the 
association between two variables when the 
other variables are held constant, a large 
coeffi  cient indicates that the relationship 
between two variables cannot be adequately 
explained by the other variables; in other 
words, potential common factors do not 
exist. Conversely, a large value for KMO (i.e. 
>0.5) suggests that one or more potential 
factors can be identifi ed among the variables. 
Th us, if KMO is high, moving to the next 
step is warranted.

After KMO gives an indication that a 
potential underlying structure exists, the 
actual factors need to be extracted. Many 
methods exist for extraction; the specifi c 
details of each are beyond the scope of this 
chapter. However, a common approach is to 
use principal component analysis. Th e initial 
solution reports communalities, or the 
proportion of variance that can be attributed 
to the common factors. Eigenvalues are also 
calculated. An eigenvalue is the total amount 
of variance accounted for by a factor. 
Generally, potential factors that have 
eigenvalues < 1 are considered unimportant 
as the amount of explained variance is small. 
Another way to determine how many 
meaningful factors exist is to look at a scree 
plot of the eigenvalues. Th is plot is a line 
graph connecting the variances explained by 
each factor. Th e researcher tries to identify 
the number of meaningful factors by looking 
for an ‘elbow’ in the graph. So in a hypo-
thetical case where four potential factors 
exist, the factor that explains the most 
variance might have an eigenvalue of 7.5, 
the second might be 6.2, the third could be 
1.2 and the fourth 1.0. If just eigenvalues are 
considered, all four would be included in 
continued analysis. In this case, using the 
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scree plot, a clear elbow exists at the third 
factor (Fig. 15.1). Th is fi nding suggests that 
a two-factor model might explain nearly as 
much of the variance as a model with four 
factors, but would be simpler and easier to 
interpret.

To more easily interpret the structure of 
the data, the factor solution is rotated. 
Rotation seeks to maximize the loading of 
each variable on one factor. ‘Loading’ is a 
term used to describe the relevance of the 
variable to the factor. Again multiple 
methods exist to rotate the factors. Varimax 
rotation, for example, yields orthogonal 
factors, meaning that they are not correlated 
with each other; alternatively, promax 
produces factors that can be inter-correlated. 
Regardless of the method used, the rotated 

matrix is used to identify which variables 
load on each of the factors. A variable can 
fairly conservatively be said to load at a 
value of 0.4; 0.3 may also be acceptable if a 
less conservative approach is justifi ed. 
Variables that load on more than one factor 
are said to be ‘complex’ and can make 
interpretation of the structure more 
diffi  cult.

Luckily, the entire process of 
determining the number of factors and 
interpreting loadings is made far simpler 
when a single factor adequately describes 
the structure of the data. When only a single 
eigenvalue is greater than 1, or if a clear 
elbow exists after the fi rst factor, then a 
single factor can be extracted (Fig. 15.2). 
When only one factor is extracted, rotation 
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is unnecessary because all items load on that 
single factor. Interpretation could not be 
easier.

A hypothetical example of the use of 
EFA in pest risk modelling might be helpful 
at this point. A researcher might be 
constructing a model of the threat posed by 
a particular invasive alien species if a new 
agricultural product is allowed to be 
imported into a country. Part of that model 
might consider whether suitable climate 
exists for the pest to establish, as many pest 
risk models do. Many variables can be 
combined to create a single index of climate 
suitability. For the sake of the example, the 
modeller believes that climate can be 
represented by average temperature, tem-
perature variation, average precipitation 
and average relative humidity. Appropriate 
geographic subsections of a country (i.e. grid 
cells) will be assigned a score on a scale of 0 
to 3 for each of the variables where 0 means 
‘not at all conducive to pest invasion’ and 3 
represents ‘very conducive to pest invasion’. 
So the fi rst grid cell might be rated as 3 for 
average temperature, 2 for temperature 
variation, 3 for average precipitation and 2 
for relative humidity. Using a summated 
rating scale (Spector, 1992), each score 
would be added together to create the data 
point for the climate suitability index. Grid 
cell one would have a score of 10 out of a 
maximum score of 12. Grid cell two could be 
rated as a 1, 2, 1 and 1, for a total score of 5. 
Th e process would continue until a score for 
each grid cell had been tabulated.

Now the researcher is curious to see 
whether the scale is working as intended. 
Because no previous research has indicated 
that a particular factor structure exists for 
those variables, EFA would be appropriate. 
Th e correct commands are entered into the 
statistical software (e.g. in spss software, 
the command FACTOR) and the results 
appear in seconds. Bartlett’s test of 
sphericity is signifi cant (P < 0.05), so items 
do appear to be inter-correlated. Moving to 
step two is reasonable. Th e KMO measure is 
0.8 and because it is greater than 0.5, moving 
forward with the analysis is justifi ed again. 
When the factors are extracted, only one has 

an eigenvalue greater than 1.0. A clear elbow 
exists after the fi rst factor (Fig. 15.2). Th e 
loadings table shows that average tem-
perature loads at 0.72, temperature variation 
at 0.91, average precipitation at 0.68 and 
relative humidity at 0.45 (Table 15.1). Each 
variable is contributing to the amount of 
variance explained by the factor model. 
Th ese results are quite positive. Th e 
researcher can use these fi ndings in support 
of an argument that combining the four 
observed variables into one latent variable 
such as ‘climate’ is a valid way to reduce data 
and simplify the risk analysis model.

An example of a less positive result 
might be helpful as well. Using the same 
context as the previous example, again with 
a signifi cant test of sphericity and a high 
KMO measure, but this time the eigenvalues 
are diff erent. One dimension has a value of 
6.5, the second at 5.6 and a third at 0.3. 
Examination of the scree plot confi rms that 
the elbow exists after the second factor (Fig. 
15.1). Two factors are extracted and the 
model is rotated. Th e loadings table (Table 
15.2) shows that average temperature loads 
on the fi rst dimension at 0.87, but not the 
second (loading of 0.12). Temperature 
variation also loads on the fi rst at 0.65, but 

Table 15.1. Example of a factor component matrix 
with all items loading on the fi rst factor.

Variable

Factor

1 2

Average temperature 0.72 0.17
Temperature variation 0.91 0.01
Average precipitation 0.68 0.16
Relative humidity 0.45 0.25

Table 15.2. Example of a factor component matrix 
with items loading on two factors.

Variable

Factor

1 2

Average temperature 0.87 0.12
Temperature variation 0.65 0.23
Average precipitation 0.29 0.59
Relative humidity 0.41 0.58
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not the second (0.23). Average precipitation 
loads on the second (0.59) but not the fi rst 
(0.29). Relative humidity loads on the fi rst 
factor (0.41), but loads more on the second 
(0.58). Looking at the structure, it appears 
that the fi rst dimension is identifying a 
latent variable associated with temperature 
and the second seems to be associated with 
moisture. Th is interpretation would also 
account for relative humidity loading on 
both dimensions, as relative humidity is a 
function of temperature and moisture. Th e 
results in this example do not support the 
claim that the four climate variables can be 
combined. Creating separate temperature 
and moisture variables appears to be a valid 
approach, but additional exploratory 
analysis is needed to determine the extent 
that this two-factor model explains the 
variance in the data.

Confi rmatory factor analysis 

CFA aims to determine how well the data fi t 
a predetermined structure. Using structural 
equation modelling, CFA assesses the 
congruence between the predicted structure 
and the factor structure in the experimental 
data (e.g. Gorsuch, 1983). A high degree of 
fi t supports the conclusion that the pre-
existing structure is generalizable.

CFA is a fairly complex type of analysis. 
Similar to the previous discussion of EFA, a 
simplifi ed explanation is presented. Again, 
the purpose of this chapter is not to replace 
a statistics text, but rather to explain how 
the tests aid the assessment of validity and 
reliability. CFA refl ects that theories and 
data are interconnected. Th eory provides an 
explanation for observed phenomena. Th is 
explanation is grounded through the 
analysis of data. Models are simplifi ed 
representations of the relationships or 
predicted relationships between concepts, 
which are operationalized using variables. 
Th ese connections between variables form 
constructs and constructs come together to 
support theory. CFA provides a statistical 
means to test the risk analysis model 
structure (Vehkalahti, 2007).

CFA assumes that the constructs com-
posing the model have linear relationships. 
Th e relationship could be direct (i.e. a basic 
correlation), but constructs may also have 
complex relationships (Baron and Kenny, 
1986). For instance, one or more concepts 
might aff ect the direction or strength of the 
relationship between two other variables. As 
an example of this moderator relationship, a 
strong positive relationship might exist 
between average rainfall and damage caused 
by a plant disease, but that relationship may 
only be seen when it is moderated by 
temperature. In other words, the disease 
thrives in wet conditions, but only when 
temperatures are warm.

As previously mentioned, CFA begins 
with a model that has been previously 
established through the analysis of one or 
more data sets. CFA tests the extent to 
which the new data fi t that model. If the fi t 
is not close, the model is rejected. In logic, 
the claim that all swans are white, for 
example, is invalidated upon the discovery 
of one black swan. Th e argument that a risk 
model accurately represents ‘reality’ is 
disconfi rmed when that model fails upon 
the introduction of new data. Th e model as 
currently constructed cannot be considered 
valid. If the data do fi t the model well, the 
researcher cannot technically say that the 
model is validated in the same way that 
hypotheses are never proven. Th e researcher 
simply reports the fi ndings of the CFA and 
concludes that the model continues to work 
well in light of the new data.

Regardless of the approach, risk analysts 
are responsible for articulating how their 
models are constructed. If the relationships 
between variables emerge from theory 
deductively, those relationships should be 
tested using the data for the particular 
context being analysed. In this case, CFA 
would be most helpful. If the relationships 
arise inductively from the particular case 
data, EFA helps justify the researcher’s 
structuring of the model. Regardless, users 
cannot accurately evaluate the validity of 
any model if decisions about structure are 
not reported transparently and tested 
systematically.
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Conclusion

Because pest risk estimates play a major role 
in policy formation and enactment, end 
users must have the best information 
available to make important decisions. 
Scientists often fear that their information 
must be ‘dumbed down’ for end users 
to understand. Over-simplifi cation is 
anathema to best information. However, a 
statement such as ‘we are 90% confi dent 
that our model is reliable at a 0.81 level’ is 
unlikely to appeal to many end users. Careful 
translation to real language that does not 
depend on mathematical expres sion is 
diffi  cult but vital to the message’s reception.

Th is chapter presents recommendations 
for evaluating the validity and reliability of 
pest risk models with the goal of helping risk 
analysts and end users assess the worth of 
those models. Th e tools off ered may aid the 
development of ‘best practices’ that 
ultimately could improve the quality of the 
science. Such best practices should provide 
clear standards for reporting how validity 
and reliability were assessed. Risk assess-
ments should not be based on models that 
are arbitrary, disputable or subjective.
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matrix rules for combining pest risk maps  
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maxent model (maximum entropy)  10, 65–79
maximum rule matrix  25
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mean–variance frontier (MVF) concept  
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mechanistic models of dispersal  54, 61, 201
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71–72, 75
minimum rule matrix  25
minimum training presence (MTP) (maxent)  77
models and modelling  2, 4–5, 6, 13–15
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see also specifi c models

modifi ed average matrix  25
Monte Carlo analysis  9, 190, 191, 207
MVF (mean–variance frontier) concept  

211–212, 216–220

nappfast model  10, 20, 82–94
nascent foci of infestation  152
negative externality  157
nematode pests, in Australia  107–108
netica™ software  177
neural networks  98–108, 110–111
New Zealand  98, 103, 104
non-dominant sets  210–213

Old World bollworm (Helicoverpa armigera)  55
Oriental fruit fl y (Bactrocera dorsalis)  92
Ostrinia nubilalis (European corn worm)  107
overfi tting in models  14, 72–74, 75

Parthenium hysterophorus (feverfew)  185
partial budget models  145–146, 153
participatory modelling methods  175, 178, 

181–182, 183–184
pathway models  9, 213–218
Pearson’s product moment correlation  226
pest risk analysis (PRA)
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production of models/maps  4–8
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quality see quality of models/maps
types of model  8–13

pheromone traps  140
phytosanitary measures see biosecurity
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54, 56, 57, 58–59
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communication of uncertainty  228–229, 
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sahm software  77
sampling bias, in maxent  66, 71–72, 75
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189–203
sine curve method  85
sink habitats  77
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spatial modelling
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species distribution models  10–11
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k-means clustering  108–109, 111
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self-organizing maps  10, 98–108, 110–111
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192–203

validity/validation of models  4–5, 8
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visual appearance of maps  5
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spread models  122–126
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(a) Minimum rule (b) Maximum rule (c) Addition rule

(d) Limiting factor (f) High risk(e) Modified average (g) Cox’s matrix

Fig. 2.2. Matrix rules to combine pest risk maps. X and Y represent different factors that affect overall pest risk. Each factor is classifi ed on an ordinal scale 
from absent (grey) to very high/present (red). The central matrix illustrates the possible outcomes for a single grid cell on a map. The logic behind the rules 
continues to apply with different numbers of ordinal classifi cations for a factor.

 EBSCOhost - printed on 2/13/2023 8:32 AM via . All use subject to https://www.ebsco.com/terms-of-use



(a) (b)

(c) (d)

(e) (f)

Fig. 2.3. Maps of primary factors used to estimate risks from Diabrotica virgifera virgifera: (a) climatic 
suitability measured by CLIMEX Ecoclimatic Index; (b) presence of sandy soils (<18% clay and >65% sand, 
blue; other soil textures, green) as described in the European Soil Database version 2 (JRC, 2010); (c) 
area of harvested grain maize (percentage of each 10 km × 10 km grid) based on data from Monfreda et 
al. (2008); (d) area of harvested forage maize (percentage of each 10 km × 10 km grid) based on data 
from Monfreda et al. (2008); (e) grain maize yield (tonnes per hectare) from Monfreda et al. (2008); and 
(f) forage maize yield (tonnes per hectare) from Monfreda et al. (2008).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5.1. MAXENT maps of climate suitability for Burmese pythons. Maps in the left column were produced 
using the minimum training presence (MTP) threshold for the globe and in the right column, using the MTP 
threshold for North America. Five models were developed: (a, b) model ‘Default 90’, run with default settings 
and 90 presence points; (c, d) model ‘Default 86’, run with default settings and corrected presence points; 
(e, f) model ‘MCP 86’, background data restricted to a minimum convex polygon around corrected presence 
points; (g, h) model ‘MCP 90 reg3’, background data restricted to a minimum convex polygon around 90 
presence points and the regularization value set to 3; (i, j) model ‘MCP 86 reg4’, background data restricted 
to a minimum convex polygon around 86 presence points and the regularization value set to 4.
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Fig. 6.1. Forecasted fl ight periods for Asian gypsy moths (Lymantria dispar asiatica) around at-risk ports.
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10-year frequency

Fig. 6.3. Phytophthora ramorum risk maps for: (a) infection; (b) cold survival; and (c) likelihood of 
establishment on deciduous and understorey hosts.
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459

844

SOM neural network orders
459 species assemblages that
are projected on to the map.
Most similar pest groupings
are assigned to the same cell

Project similar pest groupings
on to world map

Fig. 7.2. A further representation of the output of a self-organizing map (SOM) illustrating the two-
dimensional feature map that is the result of projecting similar regional (459) pest profi les comprising the 
presence or absence of 844 species into the same or nearby cells. Further cluster analysis gives crisp 
edges to the lower-resolution clusters (cells of the same colour) within the map that are projected on to a 
map of the world to illustrate potential donor and recipient areas. (Reproduced with permission from 
Worner et al., 2013.)
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Fig. 8.3. Output of model C. Potential spread of the western corn rootworm at time t = 20 (year 2012). 
Grey dots indicate a population density of 0; blue dots indicate a population density in [0, 25%]; green 
dots indicate a population density in [25%, 50%]; orange dots indicate a population density in [50%, 
75%]; red dots indicate a population density in [75%, 100%]. White means that data are missing (outside 
the study area).
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(a)

(b)

Fig. 8.4. Output of model D. Potential spread of the western corn rootworm at time t = 20 (year 2012). (a) 
Population density expressed as a percentage of the carrying capacity. The graduated colour indicates 
the population density, from white (when it is below 10–6%) to yellow, orange and red (when it is above 
10%). (b) Area in which the population density exceeds a given threshold. Red indicates that the 
population density exceeds 10% in this example.
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(a) (b)

(c) (d)

(e) (f)

Polygonal data Point data

Dt-1,  t Dt-1, t

Fig. 9.3. Description of the square-root area method, the distance regression method and the boundary 
displacement method when applied to polygonal data (a, c and e, using 1981 and 1982 as example 
years) or point data (b, d and f, using 1985 and 1986 as example years). In the square-root area method, 
both data sources can be used to defi ne the infested area in each year (a, b). In the distance regression 
method, the distance between Midland, Michigan and each quarantined county is measured (c); 
alternatively, the distance between Midland and traps recording at least 1 (pale blue), 10 (yellow) or 100 
(red) moths can be measured if point data are available (d; traps recording 0 moths are indicated as dark 
blue dots). In the boundary displacement method, polygonal data can be used to interpolate a quarantine 
boundary (e) and then the boundaries can be compared by measuring the displacement at transects 
radiating from a fi xed point, in this case, Midland. In the insert in (e), as an example, the displacement at a 
270° transect is Dt–1,t , while at 225° the displacement between successive boundaries is 0. Displacement 
at all transects can be averaged to estimate an annual year-to-year rate of spread. This same method can 
be applied to point data (f); in this case, trapping data are interpolated using kriging (Isaaks and 
Srivastava, 1989), and then an optimization method (Sharov et al., 1995) can be used to estimate 
population threshold boundaries. Displacement between like thresholds (i.e. the 1-moth population 
boundary in 1985 and 1986) can be measured using radiating transects in the same manner as (e), and 
averaged to estimate year-to-year rates of spread.
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Probability of

ecountering fire ants

km

Freshwater marsh – 1.00

Longleaf pine – 0.82

Cleared land – 0.60

Grassland – 0.58

Cultivated land – 0.55

Urban/recreation areas –  0.54

Bay – 0.50

Upland pine – 0.45

Beach – 0.40

Swamp/bottomland hardwood – 0.37

Mesic deciduous – 0.24

Upland deciduous – 0.13

Upland mixed – 0.03

Mesic mixed – 0.05

Maritime – 0

Saltwater marsh – 0

Fig. 11.2. Predicted fi re ant distribution map for South Carolina, USA, based on empirical estimates of 
the probability of encountering fi re ants during sampling, 1999–2000. 
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Fig. 11.3. Spatial correspondence of the distributions of common ground-doves and red imported fi re 
ants in South Carolina, USA, at a 30 m resolution. The map of the common ground-dove is based on a 
predictive habitat model developed by the South Carolina Gap Analysis Program. Red imported fi re ant 
predicted distribution based on logistic regression analysis of statewide presence/absence ant sampling. 
Eighty-three per cent of the common ground-dove’s predicted distribution is shared with fi re ants.

m

Fig. 11.4. Spatial correspondence of the distributions of swallow-tailed kites and red imported fi re ants in 
South Carolina, USA, at a 30 m resolution. The map of the swallow-tailed kite is based on a predictive 
habitat model developed by the South Carolina Gap Analysis Program. Red imported fi re ant predicted 
distribution based on logistic regression analysis of statewide presence/absence ant sampling. Seven per 
cent of the swallow-tailed kite’s predicted distribution is shared with fi re ants.

11.3

11.4
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Fig. 12.5. Chilean-needle-grass maps: (a) probability of habitat being highly suitable in the Queensland 
Murray Darling Basin; (b) habitat suitability around the township of Clifton where the initial outbreak 
occurred; and (c) habitat susceptibility around Clifton where most Chilean-needle-grass records occur. 
Linear features apparent in (c) are roadways along which Chilean needle grass is spread by slashers.
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(a)

(b)

Fig. 13.1. Sirex noctilio risk maps for the baseline scenario: (a) invasion risk, Pj; (b) standard deviation of 
the risk values, (Pj).
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(e)
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0.50−0.90

0.90−0.99
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1.02−1.10
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1

Fig. 13.3. Maps of uncertainty ratios generated through sensitivity analyses. One-parameter-at-a-time 
sensitivity analysis scenarios: (a) maximum annual spread distance, dmax; (b) local dispersal probability, 
p0; (c) local probabilities of entry at marine ports, Wx(t). All-but-one (i.e. single parameter left fi xed) 
scenarios: (d) fi xed dmax; (e) fi xed population-carrying capacity, k; (f) fi xed host growth rate, gv. Scenarios 
at ±40% parametric uncertainty are shown. For any map cell, the uncertainty ratio is the (Pj) value for 
the sensitivity scenario of interest divided by the (Pj) value from the baseline scenario.
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Medium risk   high risk
Low risk  medium risk
High risk  medium risk

(a)

(b)

Fig. 13.5. Geographic distribution of the shifts in predicted risk classes due to increased uncertainty in 
the dmax parameter: (a) ±15% uncertainty in dmax; (b) ±50% uncertainty in dmax. White areas delineate no 
changes in risk class. Risk classes: low risk, Pj < 0.25; medium risk, 0.25  Pj  0.75; high risk, Pj > 0.75.
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Fig. 14.4. A comparison of geographical risk delineations based on: (a) nested mean–variance frontiers 
(MVF); (b) the second-order stochastic dominance rule (SSD); and (c) the standard deviation of the pest 
arrival rate ((j)). The maps show a portion of eastern Canada with the highest overall risk estimates.
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