
C
o
p
y
r
i
g
h
t

2
0
2
0
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 8:48 AM via
AN: 2416727 ; Anjali Khatri, Vikram Khatri, Dinesh Nirmal, Hamid Pirahesh, Eric Herness.; Mastering Service Mesh : Enhance, Secure, and Observe Cloud-native
Applications with Istio, Linkerd, and Consul
Account: ns335141

Mastering Service Mesh

Enhance, secure, and observe cloud-native applications with
Istio, Linkerd, and Consul

Anjali Khatri
Vikram Khatri

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mastering Service Mesh
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Content Development Editor: Carlton Borges
Senior Editor: Rahul Dsouza
Technical Editor: Dinesh Pawar
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Nilesh Mohite

First published: March 2020

Production reference: 1270320

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-579-1

www.packt.com

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Foreword
This book provides an understanding of modern service mesh providers for building
applications without needing to build traffic management, telemetry, and security
solutions. Advanced cloud-native polyglot application developers need to focus only the
business logic. The service mesh takes care of the Operations from the DevOps using
automation that does not require any changes in the applications. Thanks to Anjali and
Vikram for providing hands-on examples to understand these new technologies in an easy
to understand fashion.

Dinesh Nirmal
Vice President
Data and AI Development
IBM Cloud and Cognitive Software
Silicon Valley Lab,
San Jose, CA, USA

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

The embracing of microservices by the world of business is critical as they enable
significantly faster deployment of new services and quick adaption of existing services with
continuous availability. Microservices platforms are going through rapid change and
engineers must keep up to avoid skill obsolescence.

Capabilities such as observability and canary are key in churning applications rapidly
while keeping a large microservice mesh continually available. The mesh of microservices
spans businesses and their partners, where they collectively provide services to their
customers, and often span multi-cloud. Common business services, such as security and
single identity management have become global requirements, which has fundamentally
changed the design and operation of platforms. The mesh assumes far more control as it
replaces troubled microservices nodes quickly with alternatives to provide continual
availability.

Keeping up with such rapid technology change at a hands-on level is a must. This book
manages to cover the high-level concepts and then maps them to actual tasks that engineers
need to perform to design, deploy, and operate these systems.

Hamid Pirahesh

IBM Fellow, ACM Fellow

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

The concepts around cloud-native development continue to mature and real use cases grow
in number across a variety of industries. However, cloud native approaches are only
beginning to have significant widespread impact on mission critical systems, or what some
might call systems of record. This is the next big step forward for cloud-native applications.

Mission critical applications demand high levels of availability, resiliency, security, and
visibility that in turn place strong demands on the underlying supporting platform. While
there are many solid advantages to the cloud-native approach, the fact is that there are new
and more things to be managed, and many new situations will be encountered.

A service mesh becomes a consistent and simplified way of dealing with many of those
things that accompany the notion of a cloud-native mission critical system. While there are
other approaches, those that are consistent with Kubernetes and based on open source will
have the most significant impact and be the most easily adopted.

Mastering Service Mesh is a good book to read for an in-depth understanding of the concept
of service meshes, as well as to gain detailed insights into the various service mesh
offerings available today. Concrete examples throughout the book and accompanying
samples help bring these topics into focus and demonstrate the concepts in action. This
book is a necessary addition to the library of all those who are involved in creating,
evolving, and operating cloud-native production environments that support cloud-native
applications.

Eric Herness

IBM Fellow
CTO, Cloud Engagement Hub

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the authors
Anjali Khatri is an enterprise cloud architect at DivvyCloud, advancing the cloud-native
growth for the company by helping customers maintain security and compliance for
resources running on AWS, Google, Azure, and other cloud providers. She is a technical
leader in the adoption, scaling, and maturity of DivvyCloud's capabilities. In collaboration
with product and engineering, she works with customer success around feature request
architecture, case studies, account planning, and continuous solution delivery.

Prior to Divvycloud, Anjali worked at IBM and Merlin. She has 9+ years of professional
experience in program management for software development, open source analytics sales,
and application performance consulting.

Vikram Khatri is the chief architect of Cloud Pak for Data System at IBM. Vikram has 20
years of experience leading and mentoring high-performing, cross-functional teams to
deliver high-impact, best-in-class technology solutions. Vikram is a visionary thought
leader when it comes to architecting large-scale transformational solutions from monolithic
to cloud-native applications that include data and AI. He is an industry-leading technical
expert with a track record of leveraging deep technical expertise to develop solutions,
resulting in revenues exceeding $1 billion over 14 years, and is also a technology subject
matter expert in cloud-native technologies who frequently speaks at industry conferences
and trade shows.

This book is written by a daughter-father team.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
Debasish Banerjee, Ph.D., is an executive architect who is a seasoned thought leader,
hands-on architect, and practitioner of cutting-edge technologies with a proven track record
of advising and working with Fortune 500 customers in the USA, Europe, and Asia with
various IBM products and strategies. He is presently leading the collaborative development
effort with IBM Research for Mono2Micro, an AI-based utility for transforming monoliths
to microservices. Application modernization, microservice generation, and deployment are
his current areas of interest. Debasish obtained his Ph.D. in combinator-based functional
programming languages.

I fondly remember many discussions, both technical and otherwise, with Eric Herness,
IBM Fellow, Danny Mace, VP, Dr. Ruchir Puri, IBM Fellow, Garth Tschetter, Director,
Lorraine Johnson, Director, Mark Borowski, Directors and many others. The late Manilal
Banerjee, my father, would have been very proud to see my contribution. Cheenar Banerjee
and Neehar Banerjee, my daughters, as well as being my pride and joy, are sources of
inspiration for me.

Cole Calistra is an accomplished hands-on technology leader with over 20 years of diverse
industry experience that includes leading fast-growing SaaS start-ups, senior architecture
roles within Fortune 500 giants, and acting as a technical adviser to a mix of start-ups and
established businesses. He is currently CTO at LEON Health Science. Prior to this, he
served as a founding team member and CTO of the SaaS-based facial recognition and
emotion analysis API provider, Kairos.

His credentials include multiple professional level certifications at both AWS and GCP, and
he is currently pursuing an MS in computer science at the Georgia Institute of
Technology. Cole is the proud father of two daughters, Abigail and Jill.

Jimmy Song reviewed the section on Linkerd. He is a developer advocate on cloud native
and a co-founder of the ServiceMesher community. Jimmy currently works for Ant
Financial.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Huabing Zhao reviewed the section on Consul. He has been involved in the information
technology industry for almost 20 years, most of it at ZTE, where he works on
telecommunication management systems and network function virtualization. Currently,
he is a software expert at ZTE, a member of Istio, and a PTL of ONAP.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Cloud-Native Application Management
Chapter 1: Monolithic Versus Microservices 11

Early computer machines 12
Hardware virtualization 12
Software virtualization 13
Container orchestration 14

Monolithic applications 15
Brief history of SOA and ESB 17

API Gateway 18
Drawbacks of monolithic applications 19

Microservices applications 19
Early pioneers 20
What is a microservice? 21
Evolution of microservices 22
Microservices architecture 23
Benefits and drawbacks of microservices 24
Future of microservices 25

Summary 26
Questions 26
Further reading 27

Chapter 2: Cloud-Native Applications 28
An introduction to CNAs 28
Container runtime 30
Container orchestration platforms 31
Cloud-native infrastructure 34
Summary 35
Questions 35
Further reading 36

Section 2: Architecture
Chapter 3: Service Mesh Architecture 38

Service mesh overview 39
Who owns the service mesh? 40
Basic and advanced service mesh capabilities 40
Emerging trends 41

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Shifting Dev responsibilities to Ops 41
Service mesh rules 42

Observability 43
Routing 43
Automatic scaling 43
Separation of duties 44
Trust 44
Automatic service registration and discovery 44
Resiliency 44

Service mesh architecture 44
Summary 45
Questions 46
Further reading 46

Chapter 4: Service Mesh Providers 47
Introducing service mesh providers 47

Istio 48
Linkerd 48
Consul 48
Other providers 49

A quick comparison 49
Support services 52
Summary 53
Questions 53
Further reading 54

Chapter 5: Service Mesh Interface and SPIFFE 55
SMI 55

SMI specifications 56
SPIFFE 57
Summary 58
Questions 58
Further reading 59

Section 3: Building a Kubernetes Environment
Chapter 6: Building Your Own Kubernetes Environment 61

Technical requirements 62
Downloading your base VM 63

Building an environment for Windows 64
Downloading our virtualization software 64
Setting the network address 65
Performing finalization checks 66

Building an environment for macOS 67
Downloading our virtualization software 67
Setting the network address 68

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Performing finalization checks 69
Performing prerequisite tasks 70
Building Kubernetes using one VM 71

Installing Kubernetes 72
Running kubeadm 73
Configuring kubectl 75
Installing the Calico network for pods 76
Creating an admin account 77
Installing kubectl on client machines 78
Performing finalization checks 78

Installing Helm and Tiller 79
Installing without security 79
Installing with Transport Layer Security (TLS) 80

Installing the Kubernetes dashboard 81
Running the Kubernetes dashboard 82
Get an authentication token 83
Exploring the Kubernetes dashboard 85

Additional steps 88
Installing the Metrics Server 88
Installing VMware Octant 89
Installing Prometheus and Grafana 89
Uninstalling Kubernetes and Docker 91
Powering the VM up and down 92

Summary 93
Questions 93
Further reading 94

Section 4: Learning about Istio through Examples
Chapter 7: Understanding the Istio Service Mesh 96

Technical requirements 97
Introducing the Istio service mesh 97

Istio's architecture 98
Control plane 100

Galley 102
Pilot 103

Service discovery 104
Traffic management 105
Gateway 106
Virtual service 110

Routing rules 111
Fault injection 112
Abort rules 113

Service entry 113
Destination rule 114

Load balancing 115
Circuit breaker 118

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Blue/green deployment 119
Canary deployment 120

Namespace isolation 120
Mixer 121

Configuration of Mixer 122
Attributes 122
Handlers 123
Rules 124

Citadel 125
Certificate and key rotation 126
Authentication 127
Strong identity 128

RBAC for a strong identity 130
Authorization 130
Enabling mTLS to secure service communication 130
Secure N-to-N mapping of services 131
Policies 132

Implementing authentication 132
Implementing authorization 136

Data plane 139
Sidecar proxy 140
Istio's Envoy sidecar proxy 141

What is Envoy? 141
Envoy architecture 142
Deployment 143

Observability 146
Summary 147
Questions 148
Further reading 150

Chapter 8: Installing a Demo Application 151
Technical requirements 151
Exploring Istio's BookInfo application 152

BookInfo application architecture 152
Deploying the Bookinfo application in Kubernetes 154
Enabling a DNS search for Kubernetes services in a VM 156

Understanding the BookInfo application 157
Exploring the BookInfo application in a Kubernetes environment 157

Summary 160
Questions 161
Further reading 162

Chapter 9: Installing Istio 163
Technical requirements 164
Getting ready 164
Performing pre-installation tasks 165

Downloading the source code 165
Validating the environment before installation 167

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Choosing an installation profile 168
Installing Istio 169

Installing Istio using the helm template 169
Installing Istio using Helm and Tiller 171
Installing Istio using a demo profile 173

Verifying our installation 174
Installing a load balancer 175
Enabling Istio 178

Enabling Istio for an existing application 178
Enabling Istio for new applications 180

Setting up horizontal pod scaling 181
Summary 182
Questions 183
Further reading 184

Chapter 10: Exploring Istio Traffic Management Capabilities 185
Technical requirements 186
Traffic management 187

Creating an Istio gateway 188
Finding the Ingress gateway IP address 189

Creating a virtual service 190
Running using pod's transient IP address 193
Running using a service IP address 194
Running using Node Port 195

Creating a destination rule 197
Traffic shifting 198

Identity-based traffic routing 200
Canary deployments 203

Fault injection 207
Injecting HTTP delay faults 207
Injecting HTTP abort faults 210
Request timeouts 212

Circuit breaker 214
Managing traffic 220

Managing Ingress traffic patterns 220
Managing Egress traffic patterns 222

Blocking access to external services 224
Allowing access to external services 225
Routing rules for external services 228

Traffic mirroring 229
Cleaning up 237
Summary 237
Questions 238
Further reading 239

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Chapter 11: Exploring Istio Security Features 240
Technical requirements 240
Overview of Istio's security 241
Authentication 242

Testing the httpbin service 243
Generating keys and certificates 244

Installing the step CLI 244
Generating private key, server, and root certificates 245

Mapping IP addresses to hostname 247
Configuring an Ingress gateway using SDS 249

Creating secrets using key and certificate 250
Enabling httpbin for simple TLS 253
Enabling bookinfo for simple TLS 256
Rotating virtual service keys and certificates 257
Enabling an Ingress gateway for httpbin using mutual TLS 259
Verifying the TLS configuration 261
Node agent to rotate certificates and keys for services 263

Enabling mutual TLS within the mesh 264
Converting into strict mutual TLS 267

Redefining destination rules 267
Enabling mTLS at the namespace level 272
Verifying the TLS configuration 273

Authorization 278
Namespace-level authorization 280
Service-level authorization at the individual level 281
Service-level authorization for databases 287

Advanced capabilities 294
Summary 295
Questions 295
Further reading 297

Chapter 12: Enabling Istio Policy Controls 298
Technical requirements 298
Introduction to policy controls 299
Enabling rate limits 300

Defining quota and assigning to services 300
Defining rate limits 302
Defining quota rules 303

Controlling access to a service 305
Denying access 306
Creating attribute-based white/blacklists 308
Creating an IP-based white/blacklist 310

Summary 312
Questions 313
Further reading 313

Chapter 13: Exploring Istio Telemetry Features 314

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

Technical requirements 314
Telemetry and observability 315
Configuring UI access 316
Collecting built-in metrics 322
Collecting new metrics 323
Database metrics 326
Distributed tracing 329

Trace sampling 331
Tracing backends 332

Adapters for the backend 332
Exploring prometheus 332

Sidecar proxy metrics 333
Prometheus query 335
Prometheus target collection health 337
Prometheus configuration 338

Visualizing metrics through Grafana 339
Service mesh observability through Kiali 346
Tracing with Jaeger 351
Cleaning up 355
Summary 356
Questions 356
Further reading 357

Section 5: Learning about Linkerd through
 Examples
Chapter 14: Understanding the Linkerd Service Mesh 359

Technical requirements 360
Introducing the Linkerd Service Mesh 360
Linkerd architecture 361

Control plane 363
Using the command-line interface (CLI) 364

Data plane 366
Linkerd proxy 367

Architecture 368
Configuring a service 369
Ingress controller 371

Observability 373
Grafana and Prometheus 374
Distributed tracing 375
Exporting metrics 376
Injecting the debugging sidecar 377

Reliability 377
Traffic split 377

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[viii]

Fault injection 378
Service profiles 379
Retries and timeouts 379
Load balancing 381
Protocols and the TCP proxy 381

Security 381
Automatic mTLS 381

Summary 382
Questions 382
Further reading 384

Chapter 15: Installing Linkerd 385
Technical requirements 385
Installing the Linkerd CLI 386
Installing Linkerd 388

Validating the prerequisites 388
Installing the Linkerd control plane 389
Separating roles and responsibilities 391

Cluster administrator 392
Application administrator 392

Ingress gateway 393
Accessing the Linkerd dashboard 395
Deploying the Linkerd demo emoji app 397

Installing a demo application 397
Deploying the booksapp application 401

Summary 408
Questions 408
Further reading 409

Chapter 16: Exploring the Reliability Features of Linkerd 410
Technical requirements 411
Overview of the reliability of Linkerd 411

Configuring load balancing 413
Setting up a service profile 416
Retrying failed transactions 422

Retry budgets 425
Implementing timeouts 425
Troubleshooting error code 426

Summary 435
Questions 435
Further reading 436

Chapter 17: Exploring the Security Features of Linkerd 438
Technical requirements 439
Setting up mTLS on Linkerd 439

Validating mTLS on Linkerd 440

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ix]

Using trusted certificates for the control plane 441
Installing step certificates 441
Creating step root and intermediate certificates 442
Redeploying control plane using certificates 443
Regenerating and rotating identity certificates for microservices 445

Securing the ingress gateway 446
TLS termination 447
Testing the application in the browser 449
Testing the application through curl 449

Summary 450
Questions 450
Further reading 451

Chapter 18: Exploring the Observability Features of Linkerd 452
Technical requirements 452
Gaining insight into the service mesh 453

Insights using CLI 453
Insight using Prometheus 455
Insights using Grafana 459

External Prometheus integration 464
Cleaning up 466
Summary 466
Questions 467
Further reading 467

Section 6: Learning about Consul through Examples
Chapter 19: Understanding the Consul Service Mesh 469

Technical requirements 469
Introducing the Consul service mesh 470
The Consul architecture 472

Data center 473
Client/server 473
Protocols 474

RAFT 474
Consensus protocol 475
Gossip protocol 476

Consul's control and data planes 477
Configuring agents 479
Service discovery and definitions 482
Consul integration 483

Monitoring and visualization 484
Telegraf 484
Grafana 485

Traffic management 485
Service defaults 486

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[x]

Traffic routing 487
Traffic split 488
Mesh gateway 489

Summary 490
Questions 490
Further reading 491

Chapter 20: Installing Consul 493
Technical requirements 493
Installing Consul in a VM 494
Installing Consul in Kubernetes 495

Creating persistent volumes 496
Downloading the Consul Helm chart 498
Installing Consul 498
Connecting Consul DNS to Kubernetes 503
Consul server in a VM 505

Summary 508
Questions 508
Further reading 509

Chapter 21: Exploring the Service Discovery Features of Consul 510
Technical requirements 511
Installing a Consul demo application 511

Defining Ingress for the Consul dashboard 515
Service discovery 516

Using the Consul web console 518
Implementing mutual TLS 522
Exploring intentions 524
Exploring the Consul key-value store 527
Securing Consul services with ACL 529
Monitoring and metrics 530
Registering an external service 532
Summary 536
Questions 536
Further reading 537

Chapter 22: Exploring Traffic Management in Consul 538
Technical requirements 538
Overview of traffic management in Consul 539

Implementing L7 configuration 540
Deploying a demo application 543
Traffic management in Consul 547

Directing traffic to a default subset 547
Canary deployment 548
Round-robin traffic 549

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xi]

Shifting traffic permanently 550
Path-based traffic routing 552
Checking Consul services 556

Mesh gateway 559
Summary 561
Questions 561
Further reading 562

Assessment 563

Other Books You May Enjoy 574

Index 577

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
This book is about mastering service mesh. It assumes that you have prior knowledge of
Docker and Kubernetes. As a developer, knowing Service-Oriented Architecture (SOA)
and Enterprise Service Bus (ESB) patterns will be beneficial, but not mandatory.

Service mesh is the new buzzword and a relatively new concept that started in 2017, and so
it does not have much history behind it. Service mesh is the evolution of already existing
technologies with further improvements.

The first service mesh implementation emerged as Istio 0.1 in May 2017. Istio is a
combination of different technologies from IBM, Google, and Lyft, and hence, Istio and
service mesh were used interchangeably to mean the same thing.

Envoy (which originated at Lyft and is now open source) is a graduate project from
the Cloud Native Computing Foundation (CNCF) and is a core part of Istio. Envoy, as a
reverse proxy next to a microservice, forms the core of a service mesh.

William Morgan, the creator of Linkerd, which is an incubating project at CNCF, coined the
term service mesh. The term service mesh was boosted when it was used prominently in
KubeCon and at the CloudNativeCon 2018 conference in Copenhagen by Jason McGee, an
IBM Fellow.

A service mesh is a framework on top of a cloud-native microservices application. Istio,
Linkerd, and Consul are all service mesh implementations.

Linkerd is an open source network proxy and referred to as a service mesh.

Consul is another open source project backed by Hasicorp and is referred to as a service
mesh, but it uses different architecture.

Who this book is for
This book covers the operation part of DevOps, and so is most suited for operational
professionals who are responsible for managing microservices-based applications.

Anyone interested in starting out on a career as an operations professional (the second part
of DevOps) will benefit from reading this book. This book is about managing microservices
applications when in the production environment from the operations perspective.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

Even if you do not have experience in developing microservices applications, you can take
the role of an operations professional or become a Site Reliability Engineer (SRE). A
knowledge of Kubernetes and Docker is a prerequisite, but it is not necessary to know SOA
and ESB in depth.

What this book covers
In this book, we are focusing on Istio, Linkerd, and Consul from the implementation
perspective.

A service mesh implementation, such as Istio, takes away some of the responsibilities of
developers and puts them in a dedicated layer so that they are consumable without writing
any code. In other words, it frees up developers so that they can focus on business logic and
places more responsibility in the hands of operational professionals.

This book is not about developing microservices, and so does not cover the persona of a
developer.

Chapter 1, Monolithic Versus Microservices, provides a high-level overview of monolithic
versus microservices-based applications. The evolution of service-oriented architecture to
microservices-based architecture became possible as a result of distributed computing
through Kubernetes.

Chapter 2, Cloud-Native Applications, provides an overview of building cloud-native
applications using container-based environments to develop applications built with
services that can scale independently. This chapter explains the ease of Development (Dev)
using the polyglot app through containerization and the assumption of further
responsibilities by Operations (Ops) due to the decoupling of services.

Chapter 3, Service Mesh Architecture, covers the evolution of the term service mesh and its
origin. It provides an overview of the service mesh as a decoupling agent between Dev
(provider) and Ops (consumer) and explains basic and advanced service communication
through smart endpoints and trust between microservices.

Chapter 4, Service Mesh Providers, provides an overview of the three open source service
mesh providers – Istio, Linkerd, and Consul.

Chapter 5, Service Mesh Interface and SPIFFE, provides an introduction to the evolving
service mesh interface specification. The SPIFFE specification offers secure naming for the
services running in a Kubernetes environment.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Chapter 6, Building Your Own Kubernetes Environment, explains how, in order to learn about
service meshes with any of the three providers throughout this book, having a
development environment is essential. There are choices when it comes to spinning a
Kubernetes cluster in a public cloud, and that requires an upfront cost. This chapter
provides a straightforward way to build your single-node Kubernetes environment so that
you can practice the examples using your laptop or MacBook.

Chapter 7, Understanding the Istio Service Mesh, shows the architecture of the Istio control
plane and its features and functions.

Chapter 8, Installing the Demo Application, shows how to install the demo application for
Istio.

Chapter 9, Installing Istio, shows the different ways of installing Istio using separate
profiles to suit the end goal of a service mesh.

Chapter 10, Exploring Istio Traffic Management Capabilities, shows Istio's features of traffic
routing from the perspectives of canary testing, A/B testing, traffic splitting, shaping, and
conditional routing.

Chapter 11, Exploring Istio Security Features, explores how to secure service-to-service
communication using mTLS, securing gateways, and using Istio Citadel as a certificate
authority.

Chapter 12, Enabling Istio Policy Controls, explores of enabling network controls, rate limits,
and the enforcement of quotas without having to change the application.

Chapter 13, Exploring Istio Telemetry Features, looks at using observability features in
Prometheus, Grafana, and Kiali to display collected metrics and service-to-service
communication.

Chapter 14, Understanding the Linkerd Service Mesh, shows the architecture of Linkerd from
the control plane perspective to demonstrate its features and functions.

Chapter 15, Installing Linkerd, shows how to install Linkerd in Kubernetes, how to set up a
Linkerd demo emoji application, and how to inject a sidecar proxy.

Chapter 16, Exploring the Reliability Features of Linkerd, goes through Linkerd traffic
reliability features and covers load balancing, retries, traffic splitting, timeout circuit
breaking, and dynamic request routing.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

Chapter 17, Exploring the Security Features of Linkerd, explains the process of setting up
mTLS without any configuration by default and gradual installation as regards the
certificate creation process.

Chapter 18, Exploring the Observability Features of Linkerd, details the Linkerd dashboard
and CLI, which provides some insights into the service mesh for live traffic, success rates,
routes, and latencies.

Chapter 19, Understanding the Consul Service Mesh, shows the architecture of Consul from
the control plane perspective to demonstrate its features and functions.

Chapter 20, Installing Consul, shows how to install Consul in Kubernetes and VMs/bare-
metal machines.

Chapter 21, Exploring the Service Discovery Features of Consul, shows a demo application
explaining Consul service discovery, key/value stores, ACLs, intentions, and
monitoring/metrics collection. We explain the integration process of external services
running in a non-Kubernetes environment.

Chapter 22, Exploring Traffic Management in Consul, shows the integration of Consul using
the open source project Ambassador. It shows traffic management capabilities such as rate
limits, self-service routing, testing, and enabling end-to-end TLS through the use of an
Envoy sidecar proxy.

Useful terms
This book contains a number of specific terms that you might not have come across before,
and here is a brief glossary to help you while reading this book:

Ingress gateway: In Kubernetes, an ingress is an object that allows external
access to internal microservices. An ingress is a collection of rules to route
external traffic to services inside the Kubernetes cluster. In Istio, the ingress
gateway sits at the edge of the cluster and allows the creation of multiple ingress
gateways to configure access to the cluster.
Egress gateway: The egress gateway is a feature of Istio that allows external
access to the microservices running inside a Kubernetes cluster. This gateway
also sits on the edge of the service mesh.
Polyglot programming: This is the practice of writing code in multiple languages
for services. For example, we can write different microservices in different
languages, such as Go, Java, Ruby, and Python, and yet they can still
communicate with one another.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[5]

A/B testing: This is testing between two versions (A and B) of a microservice
while both are in production.
Canary release: This entails moving faster for cloud-native applications. Canary
release is about a new version of a microservice available to a small subset of
users in a production environment along with the old version. Once the new
version can be used with confidence, the old version can be taken out of service
without any ensuing disruption.
Circuit breaker: A failure of communication between microservices may occur
due to latency or faults. The circuit breaker breaks the connection between
microservices following the detection of latency/faults. The incoming traffic then
reroutes to other microservices to avoid partial or cascading failures. The circuit
breaker helps to attain load balancing and to prevent the continual overloading
of a particular system.

To get the most out of this book
You will get the most out of this book by building an environment yourself and practicing
with it using the examples provided herein.

If you have not used Kubernetes before, it is best to follow the example of building your
Kubernetes environment on your Windows laptop or MacBook. This book is not about
Kubernetes, but having a Kubernetes environment is a must. We explain how to build your
Kubernetes environment in Chapter 6, Building Your Own Kubernetes Environment.

If you are comfortable with any other Kubernetes provider, you can take and test the
examples in a Kubernetes environment of your choosing.

Since technology is evolving rapidly, we have a GitHub repository, which you can refer to
for the latest changes.

You can practice examples given in this book either on a Windows or macOS platform. The
hardware/software requirements are as under. Refer to Chapter 6, Building Your Own
Kubernetes Environment for further details.

Software/Hardware covered in the book OS Requirements
Workstation/Laptop or MacBook with a minimum 16 GB RAM / Intel
Core i7 or higher, a minimum of 512 GB SSD

Windows 10 or macOS Pro (2015
or later)

VMware Player V15.x or VMware Fusion 11.x Windows or macOS
7z Software for Windows or Free 7z Unarchiver for macOS Windows or macOS

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[6]

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to copy/pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once you download the file, please make sure that you unzip or extract the folder using the
latest version of:

7-Zip for Windows
Free 7z Unarchiver for Mac

The code bundle for the book is on GitHub
at https://github.com/PacktPublishing/Mastering-Service-Mesh.

Note: For the implementation chapters throughout this book, we recommend our readers to
pull all the necessary source code files from https:/ /github. com/ servicemeshbook/ for
Istio, Linkerd, and Consul. We will have chapter-specific repository links, with clear
instructions regarding all GitHub repository exports. Both Mastering-Service-Mesh and
servicemeshbook GitHub page(s) will continue to stay active and up to date.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Service-Mesh
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/servicemeshbook/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[7]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781789615791_ ColorImages. pdf.

Conventions used
There are several text conventions used throughout this book.

CodeInText: Indicates code words in a text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Optionally, you can configure a separate disk to mount /var/lib/docker and
restart Docker."

A block of code is as follows:

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: SVC-A-mTLS-disable
 namespace: ns1
spec:
 targets:
 - name: Service-A
 peers:
 - mtls:
 mode: DISABLE

When we wish to draw your attention to a particular part of a code block, the relevant lines
shows in bold:

 peers:
 - mtls:
 mode: DISABLE

Any command-line input or output shows as follows:

$ kubectl get pods
$ istioctl proxy

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789615791_ColorImages.pdf

Preface

[8]

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"On the left-hand menu under Workloads, click Pods."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Errata
The technology landscape is evolving rapidly. When we started writing this book, the Istio
release was 1.0.3, this book's current Istio release is 1.3.5. It is a similar case with Linkerd
and Consul. The time to market is of the essence and these three open-source projects show
a true CICD (short for Continuous Improvement and Continuous Delivery) approach
using agile DevOps tools.

In order to run commands and scripts from this book, stick to the version used herein.
However, we will update our GitHub repository for this book at https:/ /github. com/
servicemeshbook with newer versions that will be released in the future. You can switch to
the newer branch in each repository for updated scripts and commands.

We were conscientious and implemented hands-on testing during development for all
three service meshes and it is likely that some issues may remain. We suggest that you open
issues that you encounter while going through the book. Use these links to open an issue
for any errata and bugs:

Istio: https:/ /github. com/ servicemeshbook/ istio/ issues

Linkerd: https:/ /github. com/ servicemeshbook/ linkerd/ issues

Consul: https:/ /github. com/ servicemeshbook/ consul/ issues

Your feedback is important to us and you may open an issue for suggestions and any
further proposed improvements in relation to the above-mentioned service meshes.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/istio/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/linkerd/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues
https://github.com/servicemeshbook/consul/issues

Preface

[9]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find an error in this book, we appreciate it if you report this to us. Please
visit https://www. packtpub. com/ support/ errata, select the book, click on the
Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
please report to us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, please leave a review on the
site you purchased from. Your comments help us to improve upon the future revisions. If
you like the book, leave a positive response for other potential readers to make an informed
decision. We at Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

1
Section 1: Cloud-Native

Application Management
In this section, you will look at high-level artifact of cloud-native applications in order to
understand the service mesh architecture.

This section contains the following chapters:

Chapter 1, Monolithic Versus Microservices
Chapter 2, Cloud-Native Applications

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
Monolithic Versus

Microservices
The purpose of this book is to walk you through the service mesh architecture. We will
cover three main open source service mesh providers: Istio, Linkerd, and Consul. First of
all, we will talk about how the evolution of technology led to Service Mesh. In this chapter,
we will cover the application development journey from monolithic to microservices.

The technology landscape that fueled the growth of the monolithic framework is based on
the technology stack that became available 20+ years ago. As hardware and software
virtualization improved significantly, a new wave of innovation started with the adoption
of microservices in 2011 by Netflix, Amazon, and other companies. This trend started by
redesigning monolithic applications into small and independent microservices.

Before we get started on monolithic versus microservices, let's take a step back and review
what led to where we are today before the inception of microservices. This chapter will go
through the brief evolution of early computer machines, hardware virtualization, software
virtualization, and transitioning from monolithic to microservices-based applications. We
will try to summarize the journey from the early days to where we are today.

In this chapter, we will cover the following topics:

Early computer machines
Monolithic applications
Microservices applications

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[12]

Early computer machines
IBM launched its first commercial computer (https:/ /ibm. biz/Bd294n), the IBM 701, in
1953, which was the most powerful high-speed electronic calculator of that time. Further
progression of the technology produced mainframes, and that revolution was started in the
mid-1950s (https:/ / ibm. biz/ Bd294p).

Even before co-founding Intel in 1968 with Robert Noyce, Gordon Moore espoused his
theory of Moore's Law (https:/ / intel. ly/ 2IY5qLU) in 1965, which states that the number
of transistors incorporated in a chip will approximately double every 24 months.
Exponential growth still continues to this day, though this trend may not continue for long.

IBM created its first official VM product called VM/370 in 1972 (http:/ /www. vm. ibm. com/
history), followed by hardware virtualization on the Intel/AMD platform in 2005 and 2006.
Monolithic applications were the only choice on early computing machines.

Early machines ran only one operating system. As time passed and machines grew in size,
a need to run multiple operating systems by slicing the machines into smaller virtual
machines led to the virtualization of hardware.

Hardware virtualization
Hardware virtualization led to the proliferation of virtual machines in data centers. Greg
Kalinsky, EVP and CIO of Geico, in his keynote address to the IBM Think 2019 conference,
mentioned the use of 70,000 virtual machines. The management of virtual machines
required a different set of tools. In this area, VMware was very successful in the Intel
market, whereas IBM's usage of the Hardware Management Console (HMC) was prolific
in POWER for creating Logical Partitions (LPARs), or the PowerVM. Hardware
virtualization had its own overheads, and it has been very popular for running multiple
operating systems machines on the same physical machine.

Multiple monolithic applications have different OS requirements and languages, and it was
possible to run the runtime on the same hardware but using multiple virtual machines.
During this period of hardware virtualization, work on enterprise applications using
the Service-Oriented Architecture (SOA) and the Enterprise Service Bus (ESB) started to
evolve, which led to large monolithic applications.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294n
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://ibm.biz/Bd294p
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
https://intel.ly/2IY5qLU
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history
http://www.vm.ibm.com/history

Monolithic Versus Microservices Chapter 1

[13]

Software virtualization
The next wave of innovation started with software virtualization with the use of
containerization technology. Though not new, software virtualization started to get serious
traction when it became easier to start adopting through tools. Docker was an early pioneer
in this space in order to make software virtualization available to general IT professionals.

Solomon Hykes started dotCloud in 2010 and renamed it Docker in 2013. Software
virtualization became possible due to advances in technology to provide namespace,
filesystem, and processes isolation while still using the same kernel running in a bare-metal
environment or in a virtual machine.

Software virtualization using containers provides better resource utilization compared to
running multiple virtual machines. This leads to 30% to 40% effective resource utilization.
Usually, a virtual machine takes seconds to minutes to initialize, whereas containerization
shares the same kernel space, so the start up time is a lot quicker than it is with a virtual
machine.

As a matter of fact, Google used software virtualization at a very large scale and used
containerization for close to 10 years. This revealed the existence of their project, known as
Borg. When Google published a research paper in 2015 in the EuroSys conference (https:/
/goo.gl/Ez99hu) about its approach in managing data centers using containerization
technology, it piqued interest among many technologists and, at the very same
time, Docker exploded in popularity during 2014 and 2015, which made software
virtualization simple enough to use.

One of the main benefits of software virtualization (also known as containerization) was to
eliminate the dependency problem for a particular piece of software. For example, the
Linux glibc is the main building block library, and there are hundreds of libraries that have
dependencies on a particular version of glibc. We could build a Docker container that has a
particular version of glibc, and it could run on a machine that has a later version of glibc.
Normally, these kinds of deep dependencies have a very complex way of maintaining two
different software stacks that have been built using different versions of glibc, but
containers made this very simple. Docker is credited for making a simple user interface that
made software packaging easy and accessible to developers.

Software virtualization made it possible to run different monolithic applications that can
run within the same hardware (bare metal) or within the same virtual machine. This also
led to the birth of smaller services (a complete business function) being packaged as
independent software units. This is when the era of microservices started.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/Ez99hu
https://goo.gl/Ez99hu
https://goo.gl/Ez99hu
https://goo.gl/Ez99hu
https://goo.gl/Ez99hu
https://goo.gl/Ez99hu
https://goo.gl/Ez99hu
https://goo.gl/Ez99hu

Monolithic Versus Microservices Chapter 1

[14]

Container orchestration
It is easy to manage a few containers and their deployment. When the number of containers
increases, a container orchestration platform makes deployment and management simpler
and easier through declarative prescriptions. As containerization proliferated in 2015, the
orchestration platform for containerization also evolved. Docker came with its own open
source container orchestration platform known as Docker Swarm, which was a clustering
and scheduling tool for Docker containers.

Apache Mesos, though not exactly similar to Docker Swarm, was built using the same
principles as the Linux kernel. It was an abstract layer between applications and the Linux
kernel. It was meant for distributed computing and acts as a cluster manager with an API
for resource management and scheduling.

Kubernetes was the open source evolution of Google's Borg project, and its first version
was released in 2015 through the Cloud Native Computing Foundation (https:/ /cncf. io)
as its first incubator project.

Major companies such as Google, Red Hat, Huawei, ZTE, VMware, Cisco, Docker, AWS,
IBM, and Microsoft are contributing to the Kubernetes open source platform, and it has
become a modern cluster manager and container orchestration platform. It's not a surprise
that Kubernetes has become the de facto platform and is now used by all major cloud
providers, with 125 companies working on it and more than 2,800+ contributors adding to
it (https://www. stackalytics. com/ cncf? module= kubernetes).

As container orchestration began to simplify cluster management, it became easy to run
microservices in a distributed environment, which made microservices-based applications
loosely coupled systems with horizontal scale-out possibilities.

Horizontal scale-out distributed computing is not new, with IBM's shared-nothing
architecture for the Db2 database (monolithic application) being in use since 1998. What's
new is the loosely coupled microservices that can run and scale out easily using a modern
cluster manager.

Monolithic applications that used a three-tier architecture, such as Model, View, Controller
(MVC) or SOA, were one of the architectural patterns on bare metal or virtualized
machines. This type of pattern was adopted well in static data center environments where
machines could be identified through IP addresses, and the changes were managed
through DNS. This started to change with the use of distributed applications that could run
on any machine (which meant the IP address could change) in the case of failures. This shift
slowly started from a static data center approach to a dynamic data center approach, where
identification is now done through the name of the microservice and not the IP address of
the machine or container pod where the workload runs.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes
https://www.stackalytics.com/cncf?module=kubernetes

Monolithic Versus Microservices Chapter 1

[15]

This fundamental shift from static to dynamic infrastructure is the basis for the evolution
from monolithic to a microservices architecture. Monolithic applications are tightly coupled
and have a single code base that is released in one instance for the entire application stack.
Changing a single component without affecting others is a very difficult process, but it
provides simplicity. On the other hand, microservices applications are loosely coupled and
multiple code bases can be released independently of each other. Changing a single
component is easy, but it does not provide simplicity, as was the case with monolithic
applications.

We will cover a brief history of monolithic and microservices applications in the next
section in order to develop a context. This will help us transition to the specific goals of this
book.

Monolithic applications
The application evolution journey from monolithic to microservices can be seen in the
following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[16]

Monolithic applications were created from small applications and then built up to create a
tiered architecture that separated the frontend from the backend, and the backend from the
data sources. In this architecture, the frontend manages user interaction, the middle tier
manages the business logic, and the backend manages data access. This can be seen in the
following diagram:

In the preceding diagram, the middle tier, also known as the business logic, is tightly
bound to the frontend and the backend. This is a one-dimensional monolithic experience
where all the tiers are in one straight line.

The three-tier modular architecture of the client-server, consisting of a frontend tier, an
application tier, and a database tier, is almost 20+ years old now. It served its purpose of
allowing people to build complex enterprise applications with known limitations regarding
complexity, software upgrades, and zero downtime.

A large development team commits its code to a source code repository such as GitHub.
The deployment process from code commits to production used to be manual before the
CICD pipeline came into existence. The releases needed to be manually tested, although
there were some automated test cases. Organizations used to declare a code freeze while
moving the code into production. The application became overly large, complex, and very
difficult to maintain in the long term. When the original code developers were no longer
available, it became very difficult and time-consuming to add enhancements.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[17]

To overcome the aforementioned limitations, the concept of SOA started to evolve around
2002 onward and the Enterprise Service Bus (ESB) evolved to establish a communication
link between different applications in SOA.

Brief history of SOA and ESB
The one-dimensional model of the three-tier architecture was split into a multi-dimensional
SOA, where inter-service communication was enabled through ESB using the Simple
Object Access Protocol (SOAP) and other web services standards.

SOA, along with ESB, could be used to break down a large three-tier application into
services, where applications were built using these reusable services. The services could be
dynamically discovered using service metadata through a metadata repository. With SOA,
each functionality is built as a coarse-grained service that's often deployed inside an
application server.

Multiple services need to be integrated to create composite services that are exposed
through the ESB layer, which becomes a centralized bus for communication. This can be
seen in the following diagram:

The preceding diagram shows the consumer and provider model connected through the
ESB. The ESB also contains significant business logic, making it a monolithic entity where
the same runtime is shared by developers in order to develop or deploy their service
integrations.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[18]

In the next section, we'll talk about API gateways. The concept of the API gateway evolved
around 2008 with the advent of smartphones, which provide rich client applications that
need easy and secure connectivity to the backend services.

API Gateway
The SOA/web services were not ideal for exposing business functionality as APIs. This was
due to the complex nature of web service-related technologies in which SOAP is used as a
message format for service-to-service communication. SOAP was also used for securing
web services and service-to-service communication, as well as for defining service
discovery metadata. SOAP lacked a self-service model, which hindered the development of
an ecosystem around it.

We use application programming interface (API), as a term, to expose a service over REST
(HTTP/JSON) or a web service (SOAP/HTTP). An API gateway was typically built on top of
existing SOA/ESB implementations for APIs that could be used to expose business
functionality securely as a managed service. This can be seen in the following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[19]

In the preceding diagram, the API gateway is used to expose the three-tier and SOA/ESB-
based services in which the business logic contained in the ESB still hinders the
development of the independent services.

With containerization availability, the new paradigm of microservices started to evolve
from the SOA/ESB architecture in 2012 and seriously took off in 2015.

Drawbacks of monolithic applications
Monolithic applications are simple to develop, deploy, and scale as long as they are small in
nature.

As the size and complexity of monoliths grow, various disadvantages arise, such as the
following:

Development is slow.
Large monolithic code bases intimidate new developers.
The application is difficult to understand and modify.
Software releases are painful and occur infrequently.
Overloaded IDE, web container.
Continuous deployment is difficult – Code Freeze period to deploy.
Scaling the application can be difficult due to an increase in data volume.
Scaling development can be difficult.
Requires long-term commitment to a technology stack.
Lack of reliability due to difficulty in testing the application thoroughly.

Enterprise application development is coordinated among many smaller teams that can
work independently of each other. As an application grows in size, the aforementioned
complexities lead to them looking for better approaches, resulting in the adoption of
microservices.

Microservices applications
A very small number of developers recognized the need for new thinking very early on and
started working on the evolution of a new architecture, called microservices, early in 2014.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[20]

Early pioneers
A few individuals took a forward leap in moving away from monolithic to small
manageable services adoption in their respective companies. Some of the most notable of
these people include Jeff Bezos, Amazon's CEO, who famously implemented a mandate for
Amazon (https:/ /bit. ly/ 2Hb3NI5) in 2002. It stated that all employees have to adopt a
service interface methodology where all communication calls would happen over the
network. This daring initiative replaced the monolith with a collection of loosely coupled
services. One nugget of wisdom from Jeff Bezos was two-pizza teams – individual teams
shouldn't be larger than what two pizzas can feed. This colloquial wisdom is at the heart of
shorter development cycles, increased deployment frequency, and faster time to market.

Netflix adopted microservices early on. It's important to mention Netflix's Open Source
Software Center (OSS) contribution through https:/ /netflix. github. io. Netflix also
created a suite of automated open source tools, the Simian Army (https:/ /github. com/
Netflix/SimianArmy), to stress-test its massive cloud infrastructure. The rate at which
Netflix has adopted new technologies and implemented them is phenomenal.

Lyft adopted microservices and created an open source distributed proxy known as Envoy
(https://www.envoyproxy. io/) for services and applications, and would later go on to
become a core part of one of the most popular service mesh implementations, such as Istio
and Consul.

Though this book is not about developing microservices applications, we will briefly
discuss the microservices architecture so that it is relevant from the perspective of a service
mesh.

Since early 2000, when machines were still used as bare metal, three-tier
monolithic applications ran on more than one machine, leading to the concept of
distributed computing that was very tightly coupled. Bare metal evolved into VMs and
monolithic applications into SOA/ESB with an API gateway. This trend continued until
2015 when the advent of containers disrupted the SOA/ESB way of thinking toward a self-
contained, independently managed service. Due to this, the term microservice was coined.

The first mention of microservice as a term was used in a workshop of software architects
in 2011 (https://bit. ly/ 1KljYiZ) when they used the term microservice to describe a
common architectural style as a fine-grained SOA.

Chris Richardson created https:/ /microservices. io in January 2014 to document
architecture and design patterns.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://netflix.github.io
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://bit.ly/1KljYiZ
https://microservices.io
https://microservices.io
https://microservices.io
https://microservices.io
https://microservices.io
https://microservices.io
https://microservices.io

Monolithic Versus Microservices Chapter 1

[21]

James Lewis and Martin Fowler published their blog post (https:/ /martinfowler. com/
articles/microservices. html) about microservices in March 2014, and this blog post
popularized the term microservices.

The microservices boom started with easy containerization that was made possible by
Docker and through a de facto container orchestration platform known as Kubernetes,
which was created for distributed computing.

What is a microservice?
The natural transition of SOA/ESB is toward microservices, in which services are decoupled
from a monolithic ESB. Let's go over the core points of microservices:

Each service is autonomous, which is developed and deployed independently.
Each microservice can be scaled independently in relation to others if it receives
more traffic without having to scale other microservices.
Each microservice is designed based on the business capabilities at hand so that
each service serves a specific business goal with a simple time principle that it
does only one thing, and does it well.
Since services do not share the same execution runtime, each microservice can be
developed in different languages or in a polyglot fashion, providing agility in
which developers pick the best programming language to develop their own
service.
The microservices architecture eliminated the need for a centralized ESB. The
business logic, including inter-service communication, is done through smart
endpoints and dumb pipes. This means that the centralized business logic of
ESBs is now distributed among the microservices through smart endpoints, and a
primitive messaging system or a dumb pipe is used for service-to-service
communication using a lightweight protocol such as REST or gRPC.

The evolution of SOA/ESB to the microservices pattern was mainly influenced by the idea
of being able to adapt to smaller teams that are independent of each other and to provide a
self-service model for the consumption of services that were created by smaller teams. At
the time of writing, microservices is a winning pattern that is being adopted by many
enterprises to modernize their existing monolithic application stack.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)
https://martinfowler.com/articles/microservices.html)

Monolithic Versus Microservices Chapter 1

[22]

Evolution of microservices
The following diagram shows the evolution of the application architecture from a three-tier
architecture to SOA/ESB and then to microservices in terms of flexibility toward scalability
and decoupling:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[23]

Microservices have evolved from being tiered and the SOA architecture and are becoming
the accepted pattern for building modern applications. This is due to the following reasons:

Extreme scalability
Extreme decoupling
Extreme agility

These are key points regarding the design of a distributed scalable application where
developers can pick the best programming language of their choice to develop their own
service.

A major differentiation between monolithic and microservices is that, with microservices,
the services are loosely coupled, and they communicate using dumb pipe or low-level
REST or gRPC protocols. One way to achieve loose coupling is through the use of a
separate data store for each service. This helps services isolate themselves from each other
since a particular service is not blocked due to another service holding a data lock. Separate
data stores allow the microservices to scale up and down, along with their data stores,
independently of all the other services.

It is also important to point out the early pioneers in microservices, which we will discuss
in the next section.

Microservices architecture
The aim of a microservice architecture is to completely decouple app components from one
another so that they can be maintained, scaled, and more. It's an evolution of the app
architecture, SOA, and publishing APIs:

SOA: Focuses on reuse, technical integration issues, and technical APIs
Microservices: Focus on functional decomposition, business capabilities, and
business APIs

In Martin Fowler's paper, he states that the microservice architecture would have been
better named the micro-component architecture because it is really about breaking apps up
into smaller pieces (micro-components). For more information, see Microservices, by Martin
Fowler, at https:// martinfowler. com/ articles/ microservices. html. Also, check out
Kim Clark's IBM blog post on microservices at https:/ /developer. ibm. com/integration/
blog/2017/02/09/ microservices- vs- soa, where he argues microservices as micro-
components.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa
https://developer.ibm.com/integration/blog/2017/02/09/microservices-vs-soa

Monolithic Versus Microservices Chapter 1

[24]

The following diagram shows the microservice architecture in which different clients
consume the same services. Each service can use the same/different language and can be
deployed/scaled independently of each other:

Each microservice runs its own process. Services are optimized for a single function and
they must have one, and only one, reason to change. The communication between services
is done through REST APIs and message brokers. The CICD is defined per service. The
services evolve at a different pace. The scaling policy for each service can be different.

Benefits and drawbacks of microservices
The explosion of microservices is not an accident, and it is mainly due to rapid
development and scalability:

Rapid development: Develop and deploy a single service independently. Focus
only on the interface and the functionality of the service and not the functionality
of the entire system.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[25]

Scalability: Scale a service independently without affecting others. This is simple
and easy to do in a Kubernetes environment.

The other benefits of microservices are as follows:

Each service can use a different language (better polyglot adaptability).
Services are developed on their own timetables so that the new versions are
delivered independently of other services.
The development of microservices is suited for cross-functional teams.
Improved fault isolation.
Eliminates any long-term commitment to a technology stack.

However, the microservice is not a panacea and comes with drawbacks:

The complexity of a distributed system.
Increased resource consumption.
Inter-service communication.
Testing dependencies in a microservices-based application without a tool can be
very cumbersome.
When a service fails, it becomes very difficult to identify the cause of a failure.
A microservice can't fetch data from other services through simple queries.
Instead, it must implement queries using APIs.
Microservices lead to more Ops (operations) overheads.

There is no perfect silver bullet, and technology continues to emerge and evolve. Next, we'll
discuss the future of microservices.

Future of microservices
Microservices can be deployed in a distributed environment using a container orchestration
platform such as Kubernetes, Docker Swarm, or an on-premises Platform as a Service
(PaaS), such as Pivotal Cloud Foundry or Red Hat OpenShift.

Service mesh helps reduce/overcome the aforementioned challenges and overheads on Ops,
such as the operations overhead for manageability, serviceability, metering, and testing.
This can be made simple by the use of service mesh providers such as Istio, Linkerd, or
Consul.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[26]

As with every technology, there is no perfect solution, and each technology has its own
benefits and drawbacks regarding an individual's perception and bias toward a particular
technology. Sometimes, the drawbacks of a particular technology outweigh the benefits
they accrue.

In the last 20 years, we have seen the evolution of monolithic applications to three-tier ones,
to the adoption of the SOA/ESB architecture, and then the transition to microservices. We
are already witnessing a framework evolution around microservices using service mesh,
which is what this book is based on.

Summary
In this chapter, we gleaned over the evolution of computers and running multiple virtual
machines on a single computer, which was possible through hardware virtualization. We
learned about the tiered application journey that started 20+ years ago on bare metal
machines. We witnessed the transition of three-tiered applications to the SOA/ESB
architecture. The evolution of software virtualization drove the explosion of
containerization, which led to the evolution of the SOA/ESB architecture to microservices.
Then, we learned about the benefits and drawbacks of microservices. You can apply this
knowledge of microservices to drive a business's need for rapid development and
scalability to achieve time-to-market goals.

In the next chapter, we will move on to cloud-native applications and understand what is
driving the motivation of various enterprises to move from monolithic to cloud-native
applications. The purpose of this book is to go into the details of the service mesh
architecture, and this can't be done without learning about the cloud-native architecture.

Questions
Microservices applications are difficult to test.1.

A) True
B) False

Monolithic/microservices applications are related to dynamic infrastructures.2.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Monolithic Versus Microservices Chapter 1

[27]

Monolithic applications are best if they are small in size.3.

A) True
B) False

When a microservice fails, debugging becomes very difficult. 4.

A) True
B) False

Large monolithic applications are very difficult to maintain and patch in the long5.
term.

A) True
B) False

Further reading
Microservices Patterns, Richardson, Chris (2018). Shelter Island, NY: Manning
Microservices Resource Guide, Fowler, M. (2019), martinfowler.com. Available
at https:/ /martinfowler. com/ microservices, accessed March 3, 2019
Microservices for the Enterprise, Indrasiri., K., and Siriwardena, P. (2018). [S.l.]:
Apress.
From Monolithic Three-tiers Architectures to SOA versus Microservices, Maresca, P.
(2015), TheTechSolo, available at https:/ /bit. ly/ 2GYhYk,accessed March 3, 2019
Retire the Three-Tier Application Architecture to Move Toward Digital
Business, Thomas, A., and Gupta, A. (2016), Gartner.com, available at https:/ /
gtnr.it/ 2Fl787w, accessed March 3, 2019
Microservices Lead the New Class of Performance Management Solutions, LightStep.
(2019), available at https:/ / lightstep. com/ blog/ microservices- trends-
report-2018, accessed March 3, 2019
What year did Bezos issue the API Mandate at Amazon?, Schroeder, G. (2016),
available at https:/ / bit. ly/ 2Hb3NI5, accessed March 3, 2019
Kubernetes Components, Kubernetes.io. (2019), available at https:/ /bit. ly/
2JyhIGt, accessed March 3, 2019
Microservices implementation – Netflix stack – Tharanga Thennakoon –
Medium, Thennakoon, T. (2017), available at https:/ /bit. ly/ 2NCDzPZ, accessed
March 3, 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://martinfowler.com/microservices
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://bit.ly/2GYhYkf
https://gtnr.it/2Fl787w
https://gtnr.it/2Fl787w
https://gtnr.it/2Fl787w
https://gtnr.it/2Fl787w
https://gtnr.it/2Fl787w
https://gtnr.it/2Fl787w
https://gtnr.it/2Fl787w
https://gtnr.it/2Fl787w
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://lightstep.com/blog/microservices-trends-report-2018
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2Hb3NI5
https://bit.ly/2JyhIGt
https://bit.ly/2JyhIGt
https://bit.ly/2JyhIGt
https://bit.ly/2JyhIGt
https://bit.ly/2JyhIGt
https://bit.ly/2JyhIGt
https://bit.ly/2JyhIGt
https://bit.ly/2JyhIGt
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ
https://bit.ly/2NCDzPZ

2
Cloud-Native Applications

Cloud-Native Applications (CNAs) are systems that were born on the cloud and can take
full advantage of the capabilities only found in cloud computing providers, such as
ephemeral on-demand infrastructure and autoscaling.

This chapter provides an overview of building CNAs using container-based environments
to develop services that can scale independently. Although this book is not about CNA, a
service mesh is incomplete without an introduction to CNA since it is a building block to
achieve service mesh capabilities.

In this chapter, we will cover the following topics:

An introduction to CNAs
Container runtime
Container orchestration platforms
Cloud-native infrastructure

An introduction to CNAs
With containerization becoming popular in 2015, the term "cloud-native" was used to
describe container-based environments used to develop applications that have been built
with services that can scale independently from each other and run on an infrastructure
provided by a cloud provider. With DevOps processes getting automated, CNAs became
part of Continuous Integration and Continuous Delivery (CI/CD) workflows. CNAs are
related to infrastructure resources such as compute, memory, network, and storage, which
are abstracted and self-provisioned as opposed to manually deployed resources.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cloud-Native Applications Chapter 2

[29]

One of the most popular cloud-native application development platforms is known as Red
Hat OpenShift, a platform where we can focus on writing the business logic for the
application. Containerization happens automatically, without having to write any code,
while deployment (production or canary) occurs automatically through a CI/CD pipeline.

The term cloud-native has evolved organically to signify an application in which the
software development process is rapid. The application's deployment and scalability are
fully automatic. The time to market is the essence of making CNAs. The platform, such as
OpenShift, provides a set of services north-to-south that makes it possible for an application
to become cloud-native. An application by itself is not cloud-native if the supporting
services are not in place. Please refer to the following architecture diagram of CNAs for a
more succinct explanation:

The preceding diagram shows that CNAs typically require a container runtime, which can
be managed by an orchestration platform hosted on some infrastructure layer.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cloud-Native Applications Chapter 2

[30]

There must be a platform that provides integrated services, which makes microservice
development easier and takes the mystery out of container image development. The
platform provides a natural automatic container image development for different
languages to offer a polyglot microservices environment. For example, an organization may
use Python, Java, Ruby, Go, and so on, and those can be tapped into in order to quickly
build small and independent microservices to market a CNA. One such open source
platform is OKD (https:/ / okd. io), which provides a Source-to-Image (S2I) capability,
which allows us to build container images direct from the source code and the CI/CD
pipeline built into the platform for deployment and update processes.

CNAs, which sit on the top of the aforementioned services, are collections of loosely
coupled microservices. Jankiram (https:/ /thenewstack. io/10- key- attributes- of-
cloud-native-applications) has defined 10 critical attributes of CNAs, as follows:

Packaged as lightweight containers
Developed with best-of-breed languages and frameworks
Designed as loosely coupled microservices
Centered around APIs for interaction and collaboration
Architected with a clean separation of stateless and stateful services
Isolated from server and operating system dependencies
Deployed on a self-service, elastic, cloud infrastructure
Managed through agile DevOps processes
Automated capabilities
Defined, policy-driven resource allocation

The preceding vital attributes require a container runtime. These are used for runtime
isolation and software virtualization. We will explore this in the next section.

Container runtime
In Chapter 1, Monoliths Versus Microservices, we discussed hardware (VMs) and software
(containers) virtualization. Docker popularized containers, and it's led to the
containerization boom since 2015. The way Docker encapsulated software and its
dependencies in a single package built the base for cloud computing as we see it today.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications
https://thenewstack.io/10-key-attributes-of-cloud-native-applications

Cloud-Native Applications Chapter 2

[31]

At the time of writing, Docker as a runtime and an engine is the de facto standard for
different container orchestration platforms. However, that is changing slowly since
the Container Runtime Interface (CRI) (https:/ /cri- o.io) has enabled individual
providers to develop container runtimes that are compatible with the Open Container
Initiative (OCI) (https:/ / www. opencontainers. org). CRI-O is a lightweight alternative
without the need to install Docker as a container runtime for Kubernetes.

Newer container runtimes such as Frakti (https:/ /github. com/ kubernetes/ frakti) and
Kata (https://katacontainers. io) use hardware virtualization to achieve better security
and isolation. Kata containers are something between Hyper's runV and Intel's Clear
Container. Another container technology is Garden and is used by Cloud Foundry systems.
Finally, another widely used container runtime within Alibaba is Pouch (https:/ /github.
com/alibaba/pouch).

As an end user, it should not matter which container runtime is used as that choice is best
left to the platform's management team. The consolidation and convergence of a container
runtime should emerge in the future.

It is easy to manage containers when there are only a few running on a machine. It becomes
complicated to manage a large number of containers when there's a proliferation of
container-based applications in an organization. For example, a Docker container can be
started using the docker run command to bypass network ports, a storage volume, and
optionally a Docker network in order to provide an IP address to the container. The
application needs to use this IP address or host port to connect to the container. So far, so
good – until we have only a few containers. When proliferation starts, and the number of
machines increases, the effort to manage this infrastructure to update IP addresses
manually and move storage volumes between machines become time-consuming and not
scalable.

This problem is solved by the container orchestration platform, which we will discuss in the
next section.

Container orchestration platforms
The container revolution for software virtualization led to the development of container
orchestration platforms such as Docker Swarm, Apache Mesos, Kubernetes, Cloud
Foundry, and so on in order to be able to quickly deploy containers in a distributed
environment.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://cri-o.io
https://cri-o.io
https://cri-o.io
https://cri-o.io
https://cri-o.io
https://cri-o.io
https://cri-o.io
https://cri-o.io
https://cri-o.io
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://katacontainers.io
https://katacontainers.io
https://katacontainers.io
https://katacontainers.io
https://katacontainers.io
https://katacontainers.io
https://katacontainers.io
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch

Cloud-Native Applications Chapter 2

[32]

Let's discuss a few of them:

Since Docker was already famous, it started its own Docker Swarm (https:/ /
docs.docker. com/ engine/ swarm) as an orchestration platform. Swarm has tight
integration with the main Docker API. Swarm runs an agent on each host, and a
Swarm manager runs on one host. This manager is responsible for scheduling
containers on a proper host when you issue the docker run command.
Apache Mesos (http:/ / mesos. apache. org) is a distributed cluster manager and
has similar capabilities to Google Project Borg or Facebook's Tupperware. It was
adopted by Twitter, Apple (Siri), Yelp, Uber, Netflix, and so on early on. It is not
wise to compare Apache Mesos to Kubernetes since Mesos has many other
capabilities in addition to container orchestration.
VMware originally developed Cloud Foundry (https:/ /github. com/
cloudfoundry) with its container runtime garden in 2009 and then started as a
joint project between EMC, VMware, and GE through Pivotal (https:/ /pivotal.
io).
Kubernetes (https:/ /kubernetes. io) was designed from scratch at Google in
2015 and donated to the Cloud Native Computing Foundation (https:/ /cncf.
io) in 2016. At the time of writing, it has become the de facto container
orchestration platform.

CoreOS (http://coreos. com) was acquired by Red Hat/IBM in 2018 and is a lightweight
open source Linux kernel for running containers for high availability. It provides automatic
security updates for the operating system. The CoreOS group of servers, through its
automatic leader election process, self-updates to keep Linux and its containers up and
running with zero downtime. Red Hat integrated CoreOS with OpenShift starting with
version 4.1 to provide a container orchestration platform for enterprises that has zero
downtime. It's a self-updating operating system with Kubernetes++.

OpenShift is a Kubernetes container orchestration platform that runs in a
public or private cloud environment to provide the security that's needed
by enterprise customers. OpenShift offers a catalog of applications that we
can deploy in its Kubernetes cluster through a push-button approach, and
it also provides an elegant development platform in which container
images are created automatically from the source code of the application.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://pivotal.io
https://pivotal.io
https://pivotal.io
https://pivotal.io
https://pivotal.io
https://pivotal.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
http://coreos.com
http://coreos.com
http://coreos.com
http://coreos.com
http://coreos.com
http://coreos.com
http://coreos.com

Cloud-Native Applications Chapter 2

[33]

An ideal container orchestration platform provides shaded capabilities in order to eliminate
any possible human intervention. This is done to provide resiliency in a dynamic
infrastructure for CNAs. Let's take a look at these capabilities:

Speed: Automatically deploys the container image on any machine with
available resources.
Health: Automatically health checks to provide self-healing systems.
Autoscaling: Provides autoscaling for applications to meet increased workloads,
upgrades, and rollbacks.
Declarative: Achieves the desired state of the system through a declarative
prescription for installs, updates, and rollbacks.
Efficiency: Optimum resource utilization with fewer machines compared to the
equivalent static infrastructure.
Decouple: Automatically assigns the IP address to pods that link to a fixed
service IP address for service discovery, load balancing, and separate
configuration from application code.

Decoupling is the central theme of a container orchestration platform. For example, the
container runtime is decoupled in Kubernetes so that any container runtime can be plugged
in, such as Docker, CRI-O, containerd, and so on. Similarly, the network is decoupled from
the container runtime using the Container Network Interface (CNI) to allow third-party
network providers such as Calico, Flannel, Canal, or Weave. The storage is decoupled from
the container runtime using the Container Storage Interface (CSI) so that third-party
storage providers such as Portworx, Robin, Kasten, IBM, RedHat, Dell EMC, NetApp, and
so on can be used.

Note that although there are several orchestration platforms available, the
focus of this book is only on the Kubernetes platform from the service
mesh perspective.

The bottom-most south layer of CNAs is the cloud-native infrastructure that provides a
platform runtime of the application. Next, we will go through the alternatives of cloud-
native infrastructure.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cloud-Native Applications Chapter 2

[34]

Cloud-native infrastructure
When it comes to running CNAs, we don't have to run them in a public cloud. The public
cloud is the manifestation of automation and easiness so that we can use a ready-made
platform with all the capabilities for end user consumption. You can compare public clouds
to an airport where you can buy services to go from point A to point B without buying an
airplane.

The term cloud-native is not related to the public cloud as we understand it. The public
cloud is one of the vehicles that's used to deploy, manage, and run CNAs.

This book is all about the service mesh architecture, which requires a
cloud-native platform. You won't need to use a paid public cloud provider
to perform the exercises in this book. Instead, Chapter 6, Building Your
Own Kubernetes Environment, teaches you how to build your Kubernetes
platform either on Microsoft Windows, Apple macOS, or a Linux
machine.

There are multiple cloud-native infrastructures available. Let's take a look at a few of them:

Docker: Docker provides its own managed service for building and running
containers.
Amazon: Amazon use their services to provide a Container as a Service (CaaS)
platform. These services include Elastic Container Registry (ECR) for Docker
containers, the Elastic Container Service (ECS) runtime to run the containers,
and CloudWatch to schedule, run, and monitor containers. After Kubernetes'
success, Amazon also provided its own Elastic Container Service for
Kubernetes (EKS).
IBM: IBM has its own cloud container service, known as IBM Cloud Kubernetes
Service (IKS), in addition to its own Cloud Foundry implementation for public,
enterprise, and private consumption. IBM also provides many hosted services
that run on its cloud platform.
Microsoft Azure: Microsoft Azure adopted Apache Mesos, but it also provides
Azure Kubernetes Service (AKS).
Google: Google provides hosted services for computing, storage, and application
development, including its own Google Kubernetes Engine (GKE).
Alibaba: Alibaba provides its own container service for Kubernetes.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cloud-Native Applications Chapter 2

[35]

Orchestration platforms directly relate to cloud economics. This is a direct result of
automation, which the orchestration platform helps with. It is worthwhile to note that AWS
has the largest market share (48%) in Infrastructure as a Service (IaaS) as of 2019.

In addition to a public cloud, the push is now more on the hybrid cloud to seamlessly
integrate the public cloud with a private cloud behind the firewall of a customer who has
similar cloud agile tools with a self-service model. Red Hat OpenShift, Cloud Foundry,
Apache Mesos, and others fill the hybrid cloud model.

Summary
In this chapter, we walked through the north-south infrastructure of CNAs, which require a
toolchain. Then, we walked through their key essential attributes. We looked at the
different container runtimes that are available, which form the basis of cloud computing.
Then, we delved into the container orchestration platform. We highlighted that Kubernetes
is the de facto standard and that we'll be using it in this book. Lastly, we looked at the
major cloud-native infrastructures that are available so that we can deploy CNAs.

In the next chapter, we will cover the service mesh architecture, service mesh providers, the
service mesh interface, and the Secure Production Identity Framework For
Everyone (SPIFFE). We will also look at the data plane that builds the service mesh with
components that are driven through the control plane.

Questions
Kubernetes can use either Docker or CRI-O as a container runtime.1.

A) True
B) False

Cloud-native microservices are more complex than traditional monolithic2.
applications.

A) True
B) False

CNAs are challenging to diagnose without the help of a proper toolchain.3.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cloud-Native Applications Chapter 2

[36]

Apache Mesos is a much broader platform than Kubernetes.4.

A) True
B) False

Kubernetes is now the de facto standard for container orchestration.5.

A) True
B) False

Further reading
The Container Landscape: Docker Alternatives, Orchestration, And Implications For
Microservices, Kai Wähner, Infoq, 2016: https:/ /www. infoq. com/ articles/
container- landscape- 2016, accessed March 11, 2019
10 Key Attributes Of Cloud-Native Applications, Janakiram MSV, The New Stack,
2018: https:/ / thenewstack. io/ 10-key- attributes- of- cloud- native-
applications/ , accessed March 11, 2019
Docker vs. Kubernetes vs. Apache Mesos: Why What You Think You Know Is Probably
Wrong, Amr Abdelrazik, Mesosphere, 2017: https:/ /mesosphere. com/blog/
docker-vs- kubernetes- vs- apache- mesos/ , accessed March 11, 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://www.infoq.com/articles/container-landscape-2016
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/

2
Section 2: Architecture

In this section, we describe a high-level ideal service mesh architecture that most service
mesh providers follow.

This section contains the following chapters:

Chapter 3, Service Mesh Architecture
Chapter 4, Service Mesh Providers
Chapter 5, Service Mesh and SPIFFE

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Service Mesh Architecture

The service mesh architecture is an application infrastructure layer on top of cloud-native
applications. Service mesh has gained popularity since 2017, and it is still a relatively young
concept. A service mesh provides a layer of abstraction above your applications. For
example, this could be used to decouple security from the application. The service mesh
could secure communication between the microservices with TLS. The benefit here is that
each developer no longer has to implement TLS encryption and decryption that's specific to
the language they are writing in.

In this chapter, we will walk through a quick overview of the origin of the service and
understand how it can be viewed as a decoupling agent between the provider (dev) and the
consumer (ops). We will also understand basic and advanced service communication
through smart endpoints and trust between microservices and then wrap this up with a
quick glance at its architecture.

In a nutshell, we will cover the following topics:

Service mesh overview
Shifting Dev responsibilities to Ops
Service mesh rules
Service mesh architecture

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Architecture Chapter 3

[39]

Service mesh overview
Let's begin with the definition of the service mesh. William Morgan in 2017 defined the
service mesh as follows (https:/ / buoyant. io/ 2017/ 04/25/ whats- a-service- mesh- and-
why-do-i-need-one):

"A service mesh is a dedicated infrastructure layer for handling service-to-service
communication. It's responsible for the reliable delivery of requests through the complex
topology of services that comprise a modern, cloud-native application. In practice, the
service mesh's implementation is an array of lightweight network proxies deployed
alongside microservices, without the applications needing to be aware."

We can view a service mesh as a decoupling agent between Dev (provider) and Ops
(consumer). Dev does not have to write any code in the microservices to provide
capabilities that Ops need. Ops does not have to recompile the system, so both can operate
independently of each other. The service mesh concept is a significant shift from earlier
versions of DevOps, where operations were limited to software release management.

Kubernetes orchestration provides an essential service so that we can service
communication through smart endpoints and dumb pipes. Martin Fowler, in his 2014 blog
article (Lewis and Fowler), provided a more advanced look at the concept of smart
endpoints and dumb pipes:

"Smart endpoints: Service-to-service communication is done through the intelligent
endpoints, which is a DNS record that resolves to a microservice. The use of DNS records
facilitates one service to communicate with others, and this eliminates the load balancer
between microservices.

Dumb pipes: Service-to-service communication uses basic network traffic protocols such as
HTTP, REST, gRPC, and so on. This type of connection is opposed to a centralized smart
pipe using the ESB/MQ of monolithic applications."

Christian Posta defines a service mesh as a decentralized application networking
infrastructure between your services. This decoupling provides resiliency, security,
observability, and routing control.

In Zach Jory's blog post (https:/ / dzone. com/ articles/ comparing- service- mesh-
architectures), he explains the library, node agent, and sidecar model of the service mesh
architecture.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures

Service Mesh Architecture Chapter 3

[40]

Who owns the service mesh?
So, who would take responsibility for a service mesh in a typical IT organization?
The answer varies. In the legacy world, service mesh models used to belong to
developers during the times of monolithic applications and SOA/ESB applications. In a
cloud-native environment, the service mesh has moved from Dev to Ops, and this is a
significant shift because it lets the developers focus on their specialty, developing
applications, and provides important services to them without them having to think or
understand how they operate.

Google started a new practice known as Site Reliability Engineering (SRE), which the
service mesh may fall under.

Now, let's discuss basic and advanced service mesh capabilities.

Basic and advanced service mesh capabilities
A service mesh is a dedicated tooling or infrastructure layer for handling service-to-service
communication. Let's understand this first in the context of Kubernetes:

Basic service mesh: Kubernetes provides a basic service mesh out of the box, and
this is the service resource. It provides a round-robin balancing for requests to
the target pods. Kubernetes service is a dynamic function that
manages iptables under the cover on each host, and this process is transparent.
As a pod in Kubernetes becomes ready, or a liveliness check passes, the
endpoints of the service are enabled to provide a connection from outside to the
IP addresses of the pods.
Advanced service mesh: Note that the service-to-service communication support
from Kubernetes is a basic service mesh. Istio, Linkerd, Consul, and so on can
harness some advanced capabilities such as retry logic, timeouts, fallback, circuit
breaking, and distributed tracing from it.

Moving on, let's take a look at some of the emerging trends in service mesh.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Architecture Chapter 3

[41]

Emerging trends
Integration between different service meshes is emerging. Let's take a look:

We can extend the same service mesh control plane to multiple Kubernetes
clusters, provided that each cluster has its own distinct IP address range.
We can bring VMs, bare-metal, or other monolithic applications into the service
mesh for traffic management and telemetry.
We can have multiple Kubernetes clusters, with each having their control plane
replicating the state of each group.
We can have a federated service mesh, where each cluster runs its own control
and data plane.

A service mesh provides us with a way to abstract security, traffic, monitoring, and so on
outside the application code without the need for any application-specific libraries. Next,
we will discuss this changing landscape.

Shifting Dev responsibilities to Ops
As soon as a developer commits the code to a source code repository, the CI/CD pipeline
takes over to build the runtime, and the application gets pushed to production. Kubernetes
with a container runtime (such as Docker or CRI-O) helps to automate this process without
human intervention. The role of a developer ends with a commit process as they continue
to focus on the implementation of business logic in the microservices.

But what happens when the runtime starts and at this juncture? The role of Ops begins. The
runtime mandate is to successfully run and maintain a distributed polyglot microservice
with scaling capabilities in a Kubernetes environment.

Let's look at an example. A library is used in several microservices to monitor the service
and a new version of this library is available. We need to recompile, test, and deploy the
microservice using this new library, even though nothing might change in the actual source
code of the microservice. On the other hand, a service mesh implementation provides this
capability without us having to recompile the microservice.

Monolithic and SOA/ESB applications implemented traffic routing, canary releases, A/B
testing, distributed tracing, monitoring, trusts, and so on in the source code through the use
of several libraries. The developers were responsible for providing additional
implementation/support, which was required once runtime or production use started.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Architecture Chapter 3

[42]

Kubernetes helps us to separate the role of Dev and Ops through loosely coupled services.
The separate Ops tooling frees up developers to focus only on providing business logic in
the microservices. A container runtime provides resource isolation and dependency
management, and Kubernetes provides an orchestration layer, which abstracts away from
the underlying hardware into a homogeneous pool (William Morgan – https:/ /blog.
buoyant.io/2017/ 04/ 25/ whats- a-service- mesh- and- why-do- i-need- one).

It is important to note that a proper service mesh implementation frees up developers, but
it adds more responsibilities to operations.

Since the service mesh concept is still new and evolving, service mesh rules can help us to
separate the duties of development and operations with clear boundaries. We'll look at
these next.

Service mesh rules
A perfect service mesh should establish the ORASTAR rules without having to code
anything at the microservice level:

Observability: The control plane provides the observability of services running
in the data plane.
Routing: The routing rules for traffic management can be defined either
graphically or through the use of configuration files and then pushed down from
the control plane to all the data planes.
Automatic scaling: The control plane services automatically scale to handle the
increased workload.
Separation of duties: The control plane UI allows operations to manage the
service mesh independent of the development team.
Trust: It pushes down secure communication protocols to the data planes and
provides automatic renewal and management of certificates.
Automatic service registration and discovery: The control plane integrates with
the Kubernetes API server and discovers the service automatically as it's
registered through application deployment procedures.
Resilient: Pushes resiliency rules to all of the data planes. This acts as a sidecar
proxy for traffic management.

Let's understand these rules in more detail.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one

Service Mesh Architecture Chapter 3

[43]

Observability
When we implement a service mesh, all or selected services should automatically be
observable and provide the following:

Metrics, to track such things as request rate, latency, and bandwidth usage and to
help chargeback based on usage
Distributed logging and tracing for diagnostics and fault determination
Monitoring to observe the health and performance of microservices
Graphical visualizations of all of the service's request flows

Routing
The routing capabilities from the service mesh traffic should provide skills such as the
following:

Shift traffic; for example, from one version of service to another version of the
same service
Split traffic; for example, smart load balancing based on weights
Control incoming and outgoing traffic
Service-level agreements to protect microservices from getting overloaded
Fault and latency injection for testing
Mirroring traffic

Automatic scaling
This refers to the ability to load balance requests and scale a service up and down based on
metrics such as the following:

Request latency
Error rates

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Architecture Chapter 3

[44]

Separation of duties
The service mesh should establish a clear separation of duties between development and
operations. The development staff should focus only on the implementation of business
logic, whereas operations staff should pay attention to keeping the services up and
running, in addition to other abstraction capabilities of security, routing, policies, and
observability.

Trust
The service mesh should establish trust through securing communication and
authentication between microservices automatically. We should always consider the
network to be inherently insecure, even if it is behind a firewall.

Automatic service registration and discovery
The service mesh should work with the underlying cluster manager (such as Kubernetes) or
with any external services registration tool to provide automatic registration and discovery
of services.

Resiliency
The service mesh must assume that network glitches are bound to occur. It should
automatically load balance the traffic and shield particular microservices from becoming
overloaded while still providing access to other services of the application.

Service mesh architecture
As we discussed in the previous section, we can enforce ORASTAR rules through a control
and data plane. Let's go over these concepts in a bit more detail:

Control plane: You can use this to push down configurations, policies, and
management services to a data plane for controlling routing, traffic, monitoring,
discovery, and registration of services. The control plane is responsible for
establishing communication between microservices through authentication,
authorization, and securing network traffic.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Architecture Chapter 3

[45]

Data plane: All of the sidecars of the microservices form the data plane. The
control and data plane, when used together, form the service mesh:

In the preceding diagram, the control plane interacts with the data plane to manage the
service mesh's outcome. Its core responsibility is to translate, enforce, and forward service
traffic from every service instance and analyze network traffic in parallel.

Summary
In this chapter, we learned about the abstract model of an ideal service mesh architecture,
comprised of a control and data plane. A service mesh forms when each microservice has a
companion proxy sidecar. We also learned that modern cloud-native applications should
have a clear separation of development and operations.

In the next chapter, we will look at three popular service mesh providers: Istio, Linkerd,
and Consul. We will cover each provider in a separate section through hands-on exercises
for ease of learning.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Architecture Chapter 3

[46]

Questions
A service mesh is an abstraction layer on top of an application.1.

A) True
B) False

The sidecar lives in a control plane.2.

A) True
B) False

A service mesh is an abstract layer on top of the application stack.3.

A) True
B) False

Further reading
What's a Service Mesh? And Why Do I Need One? Morgan, William, Blog.Buoyant,
2017: https:/ / blog. buoyant. io/2017/ 04/ 25/whats- a- service- mesh- and- why-
do-i-need- one/ .
Service-Mesh Options with Linkerd, Consul, Istio and AWS Appmesh. Posta,
Christian, Slideshare.Net, 2019: https:/ /www. slideshare. net/ ceposta/
servicemesh- options- with- linkerd- consul- istio- and- aws- appmesh.
Microservice Principles: Smart Endpoints and Dumb Pipes. Peck, Nathan, Medium,
2019, https:/ / goo. gl/ Lw8ffL. Accessed March 5, 2019.
What Is a Service Mesh, and Do I Need One When Developing Microservices? Bryant,
Daniel., Infoq, 2018: https:/ /www. infoq. com/ presentations/ service- mesh-
microservices.
Microservices. Lewis, James, and Martin Fowler, Martinfowler.Com,
2019: https:/ / martinfowler. com/articles/ microservices. html.
Enterprise Service Bus. Wikipedia.Org, 2019: https:/ / en.wikipedia. org/ wiki/
Enterprise_ service_ bus

Google – Site Reliability Engineering. Landing.Google.Com, 2019: https:/ /
landing. google. com/ sre/

Comparing Service Mesh Architectures. Jory, Zach, DZone - March 2018: https:/ /
dzone.com/ articles/ comparing- service- mesh- architectures.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://www.slideshare.net/ceposta/servicemesh-options-with-linkerd-consul-istio-and-aws-appmesh
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://goo.gl/Lw8ffL.
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://www.infoq.com/presentations/service-mesh-microservices
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://landing.google.com/sre/
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures
https://dzone.com/articles/comparing-service-mesh-architectures

4
Service Mesh Providers

Istio, Linkerd, and Consul are the three service mesh providers that we will cover in this
book. Istio started its nascent revolution of microservices communication with an active
community of contributors that have provided a very feature-rich service mesh. Linkerd,
with its 2.x version, focuses on simplicity, ease of use, and performance. Finally, the Consul
service mesh spans VMs, Kubernetes clusters, data centers, and regions. Each of these
service mesh providers can fulfill service mesh needs based on specific requirements.

In this chapter, we will walk through a quick overview of the aforementioned open source
projects, followed by a quick comparison of them. We will cover the following topics:

Introducing service mesh providers
A quick comparison
Support services

Introducing service mesh providers
The service mesh revolution is very new, with just over two years to its history. It is
continuously evolving, and at the time of writing, there are three leading service mesh
providers known as Istio, Linkerd, and Consul. In the upcoming sections, we will introduce
these three service mesh providers and look at their architecture and implementation. We
will cover hands-on exercises in separate sections of this book.

Istio is covered in detail from Chapter 7, Understanding the Istio Service
Mesh, through Chapter 13, Exploring Istio Telemetry Features; Linkerd from
Chapter 14, Understanding the Linkerd Service Mesh, through Chapter 18,
Exploring the Observability Features of Linkerd; and Consul from Chapter
19, Understanding the Consul Service Mesh, through Chapter 22, Exploring
Traffic Management in Consul.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Providers Chapter 4

[48]

Istio
Google, IBM, and Lyft formed Istio (Jason McGee) in May 2017, and it is one of the fastest-
growing service mesh projects that's been built for the Kubernetes platform. This open
source project is available at https:/ / github. com/ istio.

Istio has a centralized control plane that manages and coordinates data collection with the
data plane. Istio Pilot is a core part of the Istio control plane and can run outside the
Kubernetes environment as a standalone service. It supports integration with VMs and
service discovery through other third-party service catalogs such as Consul or Eureka.

Linkerd
The Buoyant founders, William Morgan and Oliver Gould, created Linkerd. William
Morgan is credited for coining the term service mesh, which is now used by all major
providers.

Linkerd, which comes from the RPC system called Finagle, was developed by Twitter to
handle its extremely high volume. Linkerd 1.x turned Finagle into the first service
mesh. The Conduit (https:/ /conduit. io) project arose out of the desire to build a much
simpler system to solve the same issues Linkerd 1.x was solving. Eventually, it was decided
to rebrand Conduit as Linkerd 2.0, which is an open source service mesh for cloud-native
applications. Linkerd 2.x is a graduated project from CNCF (https:/ /cncf. io), and it only
runs in a Kubernetes environment.

This book will only cover Linkerd 2.x, which is a service mesh for Kubernetes, and it
provides runtime debugging, observability, reliability, and security for running services.
Linkerd 2.x has a centralized control plane similar to Istio. This open source project is
available at https:/ / linkerd. io. Linkerd 1.x is a different service mesh compared to
Linkerd 2.x. It runs on Kubernetes, AWS ECS, DC/OS, Docker, and locally. Linkerd uses its
own sidecar, whereas all of the other service mesh providers use the Envoy sidecar proxy.

Consul
Consul is a distributed service mesh from HashiCorp. Its first release was in April
2014. Consul provides a single GO binary for server and client side service mesh
capabilities that need to be managed, including services, configurations, certificate
management, and many more. We can install Consul in the Kubernetes platform as well as
directly on each machine. This open source project is available at https:/ /github. com/
hashicorp/consul.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/istio
https://github.com/istio
https://github.com/istio
https://github.com/istio
https://github.com/istio
https://github.com/istio
https://github.com/istio
https://github.com/istio
https://github.com/istio
https://conduit.io/
https://conduit.io/
https://conduit.io/
https://conduit.io/
https://conduit.io/
https://conduit.io/
https://conduit.io/
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://linkerd.io
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul

Service Mesh Providers Chapter 4

[49]

Consul has a distributed control plane, unlike Istio and Linkerd 2.x. Consul comes with the
connect feature for Kubernetes clusters. Consul is designed to work in bare-metal
environments, VMs, and now with the Kubernetes environment as well. It's is an open
source service discovery tool that provides service discovery APIs. The Pilot adapter in Istio
can be configured to use Consul service discovery data and use a proxy to route the traffic
and monitor applications. Consul 1.6 started to use the Envoy sidecar proxy for Kubernetes
environments and is providing service mesh features for cloud-native applications, along
with integration to monolithic applications running in legacy environments.

Other providers
We should also mention two new service meshes offered by AWS and Microsoft, which
are outside the scope of this book but deserve to be mentioned here:

App Mesh: In November 2018, AWS announced its own service mesh called App
Mesh that went General Availability (GA) on March 2019. AWS manages the
App Mesh control plane and is not open source. App Mesh uses an open source
Envoy sidecar proxy for its data plane and is free to use on AWS.
Azure Service Fabric Mesh: Microsoft announced its service mesh on September
2018. It is a fully managed service that's used to deploy microservices
applications for developers by abstracting the platform layer. It uses an open
source Envoy sidecar proxy for service discovery and routing.

Azure's Service Fabric Mesh control plane is not open source. Microsoft is using
the name Service Fabric Mesh, but it is not like Istio, Linkerd, Consul, or App
Mesh. It is similar to Red Hat OpenShift and targeted at developers who have a
service mesh's data plane to use. Since this is a managed service, developers will
not have access to the control plane.

We'll learn more about Istio, Linkerd, and Consul by going through their architecture and
different service mesh capabilities through a hands-on exercises in the next section.

A quick comparison
It is difficult to provide an apples-to-apples feature and function comparison of each service
mesh provider. The technology landscape changes so fast that by the time you read this
book, some features may be available that we mentioned as not available in a particular
implementation.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Providers Chapter 4

[50]

The following comparison is not an exhaustive one by any means. We are comparing with
Linkerd 2.x and not showing Linkerd 1.x capabilities. In this comparison, a cross mark does
not necessarily mean that it is a missing feature, and at times, it could be a good thing. For
example, Consul does not have a centralized control plane, and it could be a good thing for
performance reasons.

Let's take a look:

Feature Istio Linkerd Consul
Who coined the term service mesh? ✖ ✔ ✖
Pioneering of new ideas ✔ ✖ ✖
Official service mesh project of CNCF ✖ ✔ ✖
Full-featured and open source ✔ ✔ ✖ (1)
Feature-rich functions ✔ ✖ ✖
Predates Kubernetes ✖ ✖ ✔
Multi data center/cluster support ✔ ✖ ✔
Ease of use ✖ ✔ ✖
Service mesh GUI ✖ ✔ ✔
Built-in dashboard ✔ ✔ ✖
Single binary for the control and data planes ✖ ✖ ✔
Service mesh extends Kubernetes, VMs, and across data center ✖ ✖ ✔
Centralized control plane ✔ ✔ ✖
Runs on Kubernetes ✔ ✔ ✔
Runs on VMs without Kubernetes ✔ ✔ ✔
Distributed tracing ✔ ✖ ✖ (2)
Service discovery ✔ ✔(3) ✔
Metrics collectio ✔ ✔ ✖
Mutual TLS ✔ ✔ ✔
Policy-based ACL ✔ ✖ ✖
Intention-based ACL ✖ ✖ ✔
Certificate Management ✔ ✖ (4) ✔
Protocol – HTTP/1.2, HTTP/2.0, gRPC ✔ ✔ ✖
Protocol – TCP ✔ ✔ ✔
Use of CRD on Kubernetes ✔ ✔ ✖
Automatic sidecar injection ✔ ✔ ✔
Points to the exact location of the failure ✖ ✔ ✖
Traffic redirection (Blue/Green deployment) ✔ ✖ ✖
Traffic split (Canary deployment) ✔ ✔ ✖
Attribute-based routing ✔ ✖ ✖

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Providers Chapter 4

[51]

Rate limiting ✔ ✖ ✖
Layer 7 support ✔ ✔ ✖
Layer 4 identity (SPIFFE) ✔ ✖ ✔
Native (legacy) app integration ✔(5) ✖ ✔
Can a non-admin user install it? ✖ ✔ ✖
Retries ✔ ✔ ✖
Timeouts ✔ ✔ ✖
Circuit breakers ✔ ✖ ✖
Ingress controller ✔ ✖ ✖
Egress controller ✔ ✖ ✖

(1) – Some features that are used by the Ambassador in Consul are
premium features.
(2) – It has a pluggable tracing capability.
(3) – Linkerd proxies do not integrate directly with Kubernetes but rely on
Linkerd's control plane for service discovery. The control plane integrates
with Kubernetes to build its service catalog. Service discovery does not
integrate with Kubernetes but uses its control plane.
(4) – We can use Smallstep for certificate management.
(5) – Istio can run on VMs but at the time of writing, Consul is more
popular in VMs.

Linkerd 2.x focuses mostly on performance, and it may not be as rich in functionality as
Istio is. However, this won't last long since Linkerd 2.x is adding new features regularly.
The performance comparisons that have been made between Istio and Linkerd by a few
people are not exactly comprehensive in nature. It isn't fair to pitch one over the other since
the technologies are evolving and improving continually. Consul has been around since
before Kubernetes, and Hashicorp has a rich set of tools that work together very well. The
adoption of Envoy as a sidecar proxy in Consul is a serious attempt to play well in the
Kubernetes environment. This form of competition is due to service mesh choices that will
make things better in the longer run.

Istio is a more feature-rich implementation, whereas Linkerd focuses on simplicity and
performance. Istio uses a CNCF graduated project Envoy sidecar proxy, while Linkerd built
its proxy from the ground-up, and claims to be highly performant but with a smaller
footprint.

Injecting a sidecar into an application is an automated process in all three service mesh
implementations.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Providers Chapter 4

[52]

It is difficult to rank the service mesh providers, and what ranks will be different for
different end users. For example, the ease of use and performing service mesh winner is
Linkerd. From a feature and innovation perspective, Istio is the clear winner, but it has a
learning curve. To build a service mesh across data centers, including Kubernetes and
traditional VM environments, Consul is the clear winner due to its distributed control plane
and ease of installation. For a comprehensive service mesh solution in a large enterprise
that meets a hybrid cloud, Istio is a promising winner.

Support services
Support and consulting services are available for each of the service mesh providers. Here
is a list of support services for some of the leading service mesh providers:

Linkerd services: https:/ /buoyant. io

Solo: https:/ / supergloo. solo. io – A professional service mesh service
provider for Istio, Linkerd, Consul, and AWS app mesh
Teterate: https:/ /tetrate. io – Istio and Envoy services
Aspen Mesh: https:/ / aspenmesh. io – Istio services
Ambassador: https:/ /datawire. io – Ambassador for Consul services
Hashicorp: https:/ / www. hashicorp. com/products/ consul/ – For Consul
services

Istio is available as a managed service from IBM and Google:

IBM: https:/ /www. ibm. com/ cloud/ istio

Google: https:/ /cloud. google. com/istio/

AWS and Microsoft Azure provide a managed service mesh control plane, which is
proprietary. However, they both use an open source Envoy sidecar proxy in their data
plane.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://buoyant.io
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://supergloo.solo.io
https://supergloo.solo.io
https://supergloo.solo.io
https://supergloo.solo.io
https://supergloo.solo.io
https://supergloo.solo.io
https://supergloo.solo.io
https://supergloo.solo.io
https://supergloo.solo.io
https://tetrate.io
https://tetrate.io
https://tetrate.io
https://tetrate.io
https://tetrate.io
https://tetrate.io
https://tetrate.io
https://aspenmesh.io
https://aspenmesh.io
https://aspenmesh.io
https://aspenmesh.io
https://aspenmesh.io
https://aspenmesh.io
https://aspenmesh.io
https://datawire.io
https://datawire.io
https://datawire.io
https://datawire.io
https://datawire.io
https://datawire.io
https://datawire.io
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.hashicorp.com/products/consul/
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://www.ibm.com/cloud/istio
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/
https://cloud.google.com/istio/

Service Mesh Providers Chapter 4

[53]

Summary
In this chapter, we covered the high-level attributes of the Istio, Linkerd, and Consul
service meshes and their capability matrices. We also covered managed service mesh
providers and the support services that are available for each service mesh, as well as for
the ones that are not included in this book.

Moving forward, you will notice that there will be three separate sections regarding the
implementation details for Istio, Linkerd, and Consul. We will provide hands-on exercises
that will help you to understand each service mesh implementation. To this end, the
information that's present in this chapter will be of great help to you. We will go through
the capabilities of each control plane for Istio, Linkerd, and Consul in their upcoming
sections in this book.

In the next chapter, we will cover the Service Mesh Interface (SMI) specification and
SPIFFE, which promises to provide interoperability between different service meshes and
the concept of a strong identity.

Questions
Istio and Linkerd are only available in Kubernetes.1.

A) True
B) False

Istio and Linkerd use the same Envoy sidecar proxy.2.

A) True
B) False

The control plane must be running for the sidecar proxy to run appropriately in3.
Istio as well as Linkerd.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Providers Chapter 4

[54]

Further reading
IBM, Google, and Lyft Give New Istio Microservices Mesh a Ride. McGee, Jason, The
Developerworks Blog, 2017: https:/ /developer. ibm. com/ dwblog/ 2017/ istio/ ,
accessed March 6, 2019
Service Mesh, Acreman, Steven, Kubedex.Com,
2018: https://kubedex.com/istio-vs-linkerd-vs-linkerd2-vs-
consul/, accessed March 6, 2019
Amalgam8: An Integration Fabric For Microservices In The Cloud. IBM Cloud
Blog, Rothert, Doug, and Doug Rothert, IBM Cloud Blog, 2016: https:/ / www.
ibm.com/ blogs/ bluemix/ 2016/ 06/amalgam8- integration- fabric-
microservices- cloud/ , accessed March 6, 2019
Istio Service Mesh: The Step By Step Guide, Irandoust, Kiarash, Medium, 2019:
https:// itnext. io/ istio- service- mesh- the-step- by- step- guide-
adf6da18bb9a

Control and Data Plane, Network Direction. (2018), available at https:/ /
networkdirection. net/ articles/ network- theory/ controlanddataplane/ ,
accessed March 24, 2019
A sidecar for your service mesh, Tiwari, A. (2017), available at https:/ / www.
abhishek- tiwari. com/ a- sidecar- for- your- service- mesh/ , accessed March 24
2019
What is Envoy? Envoy 1.12.0-Dev-712000 Documentation, Envoyproxy.Io, 2019:
https:// www. envoyproxy. io/ docs/envoy/ latest/ intro/ what_ is_ envoy

Service Mesh (Envoy, Istio, Linkerd). Mar, W. (2018), available at https:/ /
wilsonmar. github. io/ service- mesh/ , accessed March 24, 2019
Prana: A Sidecar for your Netflix PaaS-based Applications and Services, Choudhury,
D., Tonse, S., Spyker, A., and Uppalapati, R. (2014), available at https:/ /medium.
com/netflix- techblog/ prana- a-sidecar- for-your- netflix- paas- based-
applications- and- services- 258a5790a015, accessed March 24, 2019
SmartStack: Service Discovery in the Cloud, Serebryany, I. and Rhoads, M. (2013),
available
at https://medium.com/airbnb-engineering/smartstack-service-discovery-i
n-the-cloud-4b8a080de619, accessed March 24, 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://developer.ibm.com/dwblog/2017/istio/
https://kubedex.com/istio-vs-linkerd-vs-linkerd2-vs-consul/
https://kubedex.com/istio-vs-linkerd-vs-linkerd2-vs-consul/
https://kubedex.com/istio-vs-linkerd-vs-linkerd2-vs-consul/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/bluemix/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://itnext.io/istio-service-mesh-the-step-by-step-guide-adf6da18bb9a
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://networkdirection.net/articles/network-theory/controlanddataplane/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.abhishek-tiwari.com/a-sidecar-for-your-service-mesh/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://wilsonmar.github.io/service-mesh/
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/netflix-techblog/prana-a-sidecar-for-your-netflix-paas-based-applications-and-services-258a5790a015
https://medium.com/airbnb-engineering/smartstack-service-discovery-in-the-cloud-4b8a080de619
https://medium.com/airbnb-engineering/smartstack-service-discovery-in-the-cloud-4b8a080de619
https://medium.com/airbnb-engineering/smartstack-service-discovery-in-the-cloud-4b8a080de619

5
Service Mesh Interface and

SPIFFE
As the service mesh concept continues to evolve, a Service Mesh Interface (SMI)
specification is emerging, which provides interoperability between different service
meshes. Kubernetes has already made network and storage extensible through
the Container Network Interface (CNI) and Container Storage Interface (CSI)
specifications. In the same spirit, the SMI specification, though new, has started to gain
traction from different service mesh providers.

This chapter will introduce you to the evolving SMI specification and the SPIFFE
specification, which provide secure naming conventions for the services running in a
Kubernetes environment.

In this chapter, we will cover the following topics:

SMI
SPIFFE

SMI
The SMI is a specification standard for portable APIs for interoperability between service
mesh providers. Brendan Burns proposed the SMI in May 2019 for a common standard
along the lines of CNI, CSI, and OCI, which are the abstraction interface standards for
network, storage, and containers for Kubernetes.

As service meshes continue to gain momentum in order to provide an infrastructure layer
on top of modern cloud-native applications, the need for a SMI specification is
arising. Gabe Monroy announced the launch of the SMI in May 2019 with the launch of an
open source project (https:/ /smi- spec. io/) in collaboration with Istio, Linkerd, and
Consul.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/

Service Mesh Interface and SPIFFE Chapter 5

[56]

SMI intends to support tooling through an abstraction layer for frameworks such as
Weavework's Flagger (https:/ /github. com/ weaveworks/ flagger) and Rancher Labs' Rio
(https://rio.io and https:/ / github. com/rancher/ rio). Microsoft, IBM Red Hat,
VMware, Pivotal, Docker, Solo.io, Aspen Mesh, Canonical, and other service mesh
consulting services providers and committers are lending their support to the SMI
specification. The goal of SMI is to provide an API that can use service meshes irrespective
of the provider, similar to other specifications, such as the Open Container Initiative
(OCI), CNI, and CSI.

Any technology rarely starts with security in mind. Take, for example, plain HTTP and
Telnet. Security was the second thought in these technologies, but not anymore. The need
for firewalls around IT infrastructure and VPNs to securely connect from one endpoint to
another is given much importance. Modern application and infrastructure layers are being
designed with security in mind so that they can live in a zero-trust network environment.
SPIFFE, the Secure Production Identity Framework for Everyone, is a specification that
provides a secure identity through specially formed X.509 certificates to every microservice
in order to remove the need for application-level authentication.

SMI specifications
The service mesh itself is very new (since 2016), so it does not have much history. A push
for an SMI specification has been done to guide different service mesh providers to adhere
to a well-defined API that will allow end users to easily change provider without being
locked down to one implementation. The SMI specification fulfills the following key
features:

Provides a standard interface for meshes on Kubernetes
Provides a basic feature set for common mesh use cases
Provides flexibility to support new mesh capabilities
Applies policies such as identity and transport encryption across services
Captures key metrics such as error rate and latency between services
Shifts and weighs traffic between different services

SMI defines a set of APIs, such as a collection of Kubernetes Custom Resource Definitions
(CRD) and extension API servers, which will allow mesh providers to deliver their
implementation.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://github.com/weaveworks/flagger
https://rio.io
https://rio.io
https://rio.io
https://rio.io
https://rio.io
https://rio.io
https://rio.io
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio
https://github.com/rancher/rio

Service Mesh Interface and SPIFFE Chapter 5

[57]

Think of SMI as an abstract layer on top of different service mesh providers such as Istio,
Linkerd, and Consul. The goal of using SMI APIs and seamlessly interchanging the
underlying service mesh provider can happen in one of the following two ways:

 Service mesh providers start using SMI APIs and provide their implementation.
Build Kubernetes operators to translate SMI into their native APIs.

 The SMI specification is evolving and maintained at https:/ /github. com/ deislabs/ smi-
spec. At the time of writing, the specification is only 2 months old, and it is expected to gain
momentum due to the participation of different service providers so that it can arrive at a
set of APIs that can then be an abstract layer or a direct API call.

The specification starts with the following topics, but the list will grow in the future:

Traffic access control: Configure access to routes based on the identity of a client.
Traffic specs: Manage traffic at the protocol level.
Traffic split: Split or mirror the traffic between two services for A/B testing or
Canary rollout.
Traffic metrics: Expose common traffic metrics for use by tools.

The SMI is intended to be a pluggable interface similar to other core Kubernetes APIs, such
as NetworkPolicy, Ingress, and CustomMetrics.

SPIFFE
Secure Production Identity Framework for Everyone (SPIFFE – https:/ /spiffe. io) was
inspired by a few brilliant engineers due to their need to remove application-level
authentication and network-level access control configuration. Joe Beda, one of the creators
of Kubernetes, was the original author of the SPIFFE specification.

SPIFFE started as open source in 2016 for securely identifying software systems in dynamic
and heterogeneous environments. It is mainly about establishing trust in a complex
distributed environment where workloads are dynamically scaled and scheduled to run on
any node in a cluster. The workloads using SPIFFE identify themselves with each other by
looking at URIs such as spiffe://trust-domain/path, which are defined in a Subject
Alternative Name (SAN) field in X.509 certificates.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://github.com/deislabs/smi-spec
https://spiffe.io
https://spiffe.io
https://spiffe.io
https://spiffe.io
https://spiffe.io
https://spiffe.io
https://spiffe.io

Service Mesh Interface and SPIFFE Chapter 5

[58]

SPIFFE's runtime environment is called the SPIFFE Runtime Environment (SPIRE) and is
an implementation of the SPIFFE APIs to issue SPIFFE Verifiable Identity Documents
(SVIDs) to workloads securely and verify SVIDs of other workloads. At its heart, SPIRE is a
toolchain that automatically issues and rotates authorized credentials. The SPIRE server
and agent can be available on plain Linux systems as well as in a Kubernetes cluster. A user
ID in Linux is used to generate SVIDs, and similarly, a workload container in Kubernetes
can be configured to access SPIRE.

Istio has implemented its own implementation of SPIRE for bootstrapping and issuing
identities to services running in the data plane through its control plane. In Istio, Citadel
securely provisions identities to every workload as it creates identities in SPIFFE format in
the SAN field of the X.509 certificate. Pilot in Istio generates the secure naming information
(SVID), and then it passes the secure naming information to the Envoy sidecar proxy.

Similarly, Consul uses the SPIFFE format for interoperability with other platforms.

Summary
In this chapter, we learned how the service mesh is evolving and that the SMI is in its
infancy. It is worth mentioning that the SMI, in terms of standards and abstraction, plays an
important role for different service providers so that they can use a common standard. We
also covered SPIFFE as a specification, which provides a secure naming convention for the
workload so that it can be run in a zero-trust network. Istio has implemented SPIFFE
through its control plane to provide a security infrastructure where a certificate's time-to-
live could be as small as 15 minutes and maintain the PKI as a self-service model.

From this point on, we'll look at each of the different service mesh implementations.
However, before we do that, we will build a demo environment so that we can practice
using each of the service meshes on our own Windows laptop or Apple MacBook.

Questions
SPIFFE is a specification and not a toolset.1.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Service Mesh Interface and SPIFFE Chapter 5

[59]

SMI is an alternative to service mesh providers.2.

A) True
B) False

Only Istio and Consul use SPIFFE at the moment.3.

A) True
B) False

Istio does not use SPIRE, but it has its implementation.4.

A) True
B) False

Further reading
Hello Service Mesh Interface (SMI): A Specification For Service Mesh
Interoperability, Monroy, Gabe, Open Source Blog, 2019: https:/ / cloudblogs.
microsoft. com/ opensource/ 2019/ 05/ 21/service- mesh- interface- smi-
release/

Microsoft introduces Service Mesh Interface (SMI) for interoperability across different
service mesh technologies, Packt Hub, 2019: https:/ / hub.packtpub. com/
microsoft- introduces- service- mesh- interface- smi- for- interoperability-
across-different- service- mesh- technologies/

Introduction To Service Mesh Interface (SMI), Brendan Burns At Qcon New
York, Penchikala, Srini, Infoq, 2019: https:/ /www. infoq. com/ news/ 2019/ 07/
burns-service- mesh- interface/

Weaveworks/Flagger, GitHub, 2019: https:/ /github. com/ weaveworks/ flagger/
blob/master/ docs/ gitbook/ tutorials/ flagger- smi- istio. md

Introducing Rio – Containers At Their Best, Shepherd, Darren, Rancher Labs,
2019: https:/ / rancher. com/ blog/ 2019/ introducing- rio/

Understanding SPIRE, 2019: https:/ /spiffe. io/spire/

Securing The Service Mesh With SPIRE 0.3, Jessup, Andrew, 2019: https:/ /blog.
envoyproxy. io/ securing- the- service- mesh- with- spire- 0- 3-abb45cd79810

Istio security versus SPIFFE, Istio, 2019: https:/ /archive. istio. io/ v1.3/ docs/
concepts/ security/ #istio- security- vs- spiffe

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://hub.packtpub.com/microsoft-introduces-service-mesh-interface-smi-for-interoperability-across-different-service-mesh-technologies/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://www.infoq.com/news/2019/07/burns-service-mesh-interface/
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://github.com/weaveworks/flagger/blob/master/docs/gitbook/tutorials/flagger-smi-istio.md
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://rancher.com/blog/2019/introducing-rio/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://spiffe.io/spire/
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://blog.envoyproxy.io/securing-the-service-mesh-with-spire-0-3-abb45cd79810
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe
https://archive.istio.io/v1.3/docs/concepts/security/#istio-security-vs-spiffe

3
Section 3: Building a

Kubernetes Environment
This book is not about Kubernetes, but it is fundamental when it comes to demonstrating
the service mesh architecture. You can spin a Kubernetes environment easily in any public
cloud, such as IBM Public Cloud, Google Kubernetes Engine, Amazon's Elastic Kubernetes
Service, Microsoft's Azure Kubernetes Service, and Alibaba Container Service for
Kubernetes. However, you may have to pay for these services.

In this section, we will show you how to build your Kubernetes environment.

This section contains the following chapter:

Chapter 6, Building Your Own Kubernetes Environment

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Building Your Own Kubernetes

Environment
This book intends to implement service mesh architecture. However, to do this, we require
a Kubernetes environment in order to learn and practice the examples throughout this
book. Hence, in this chapter, we will be building this environment.

Using a managed Kubernetes service prebuilt by a cloud service provider of your choice is
recommended. The advantage of a managed service is the operational point of view as it
eliminates the need for upgrading the software, and maintaining the operating system and
infrastructure. However, you have to pay for such a service.

If you want to simply learn and practice the examples in this book without paying money
to any cloud provider, we suggest that you get a prebuilt virtual machine (VM) and then
complete the following in this chapter:

Downloading your base VM
Performing prerequisite tasks
Building Kubernetes using one VM
Installing Helm and Tiller
Installing the Kubernetes dashboard
Installing metrics server, Prometheus, and Grafana
(If needed) Uninstalling Kubernetes and Docker
Powering down the VM

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[62]

Technical requirements
To complete the exercises in this chapter, you will require the following equipment:

A macOS or Windows computer with the following configuration:
For Windows: A minimum of 16 GB of RAM and an Intel Core i7
or higher processor with a minimum of 4 CPU cores
For macOS: A macOS Pro (2015) onwards with 16 GB of RAM,
Intel Core i7 processor, with 4 cores, and preferably 512 GB SSD
(minimum)

A virtualization software to build a VM.

As you go to through the book and example commands or script, pay
attention to the commands that you need to run as root or as a user.

The username in the VM is user. The root and user passwords have
been set to password for ease of memory. If the command uses # as a
prefix, you should run it as root. Commands prefixed with $ need to be
run as a regular user and not as root. We show the usage
of sudo wherever it is required to use privileges.

Using a browser: The VM has the Chrome browser installed and we will use it to
run the demo web application. While you could use an ssh tunnel or run
the kubectl proxy command to connect via a browser on your local machine, it
will be a more consistent experience if you run the browser from within the VM
during these hands-on examples.
Using a command-line shell: You need to have command-line access to the VM.
Either you can work directly from the VM by opening a GNOME Terminal, or
you can also ssh to VM using a command-line shell such as iTerm2 (https:/ /
www.iterm2. com/ downloads. html) in macOS or Git Bash (https:/ / git-scm. com/
downloads) in Windows.

While you are going through the code snippets in the book, you will
notice that, in some instances, a few lines from the code/output have been
removed and replaced with dots (...) for brevity. The use of ellipses is
only to show relevant code/output. The complete code is available on
GitHub at https:/ / github. com/ servicemeshbook.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://www.iterm2.com/downloads.html
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook
https://github.com/servicemeshbook

Building Your Own Kubernetes Environment Chapter 6

[63]

Typing commands: After you build your VM and start going through chapters
in chronological order for a particular section, you will find that you need to type
commands in your shell. If it is a single-line command, it may just be more
comfortable to type the command as it helps to grasp the content, and then the
brain tends to retain it. However, if you are very familiar with Kubernetes, it may
be just irritating to type the commands, especially if the command extends across
multiple lines. If you are reading the online version, it will be just as simple to
copy and paste the command into your running shell to avoid typing.

If you are reading a hard copy, it will be easier for you to pull the command
reference from GitHub so that you can copy and paste the commands easily.

For each implementation section of the book for Istio, Linkerd, and Consul, you can refer to
the following links for the commands to use throughout the hands-on exercises:

Istio: https:/ /github. com/ servicemeshbook/ istio

Linkerd: https:/ /github. com/ servicemeshbook/ linkerd

Consul: https:/ /github. com/ servicemeshbook/ consul

Be on top of the Kubernetes updates! You can visit https:/ /kubernetes.
io/docs/ setup/ release/ to find out the latest release. The instructions
given in this chapter can also be found at https:/ /github. com/
servicemeshbook/ byok.

Downloading your base VM
The best software for virtualization on a Windows laptop is VMware Workstation. You can
also use VMware Workstation Player for free for personal use on a Windows laptop for one
VM. On the other hand, if you are using macOS, then the best virtualization software is
VMware Fusion. You can download the VMware Fusion trial version for 30 days to
complete the exercises presented in this book.

Whichever VM you are using—Windows or macOS—the following section will take you
through the setup process for each of them.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok

Building Your Own Kubernetes Environment Chapter 6

[64]

Building an environment for Windows
In this section, we will begin by first downloading our virtualization software for
Windows. Once downloaded, we will set our network address so that we have access to
our internet and then power it up to check whether everything is in place. So, if you have
decided to use Windows then follow along.

Downloading our virtualization software
We begin by first downloading our virtualization software. You can download either of the
following:

VMware Player
Workstation Pro

Since we are using only one VM, you can download VMware Player—which is free and
non-expiring—for personal use. Download it from https:/ / my.vmware. com/en/ web/
vmware/free#desktop_ end_ user_ computing/ vmware_ workstation_ player/ 15_ 0. You can
download, try and/or buy VMware Workstation Pro for Windows at https:/ /www. vmware.
com/products/workstation- pro. html. Note that this try and buy is only good for 30 days
before you have to buy a license.

VMware Workstation allows you to run multiple VMs on the same
machine, whereas you can only run one VM using VMware Player.

You may, instead, have a preference for Oracle VirtualBox, and you can
use it instead of VMware Player or VMware Workstation. We have not
tested the VM on VirtualBox.

Once downloaded, follow these steps:

Install either VMware Player or VMware Workstation on your Windows 101.
machine.
After the installation of the VMware software, set the NAT vmnet subnet so that2.
the VM can access the internet.

Now, let's set the network address.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/15_0
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html

Building Your Own Kubernetes Environment Chapter 6

[65]

Setting the network address
If you have downloaded VMware Workstation, follow these steps:

Go to Edit | Virtual Network Editor.1.
Select VMnet8 and, if necessary, click on Change Settings to make2.
changes. Make sure that the subnet IP for VMnet8 is set to 192.168.142.0.

If the VMnet8 network is not set to 192.168.142.0, you will not be able
to access the internet from inside the VM and, hence, the exercises will not
work.

If you have downloaded VMware Player, the GUI does not give you an option to
modify the VMnet8 network address:

After installation, open a command-line tool such as Windows CMD and type1.
in ipconfig /all and you should see VMnet8:

Ethernet adapter VMware Network Adapter VMnet8:

Connection-specific DNS Suffix . :
Description : VMware Virtual Ethernet Adapter
for VMnet8 Physical Address. : 00-50-56-C0-00-08
DHCP Enabled. : No
Autoconfiguration Enabled : Yes
Link-local IPv6 Address :
fe80::1d5f:2196:60f9:6219%23(Preferred)
IPv4 Address. : 192.168.191.1(Preferred)
Subnet Mask : 255.255.255.0
Default Gateway :
DHCPv6 IAID : 905990230
DHCPv6 Client DUID. : 00-01-00-01-24-7C-F2-70-98-
FA-9B-0E-0E-F3
DNS Servers : fec0:0:0:ffff::1%1
 fec0:0:0:ffff::2%1
 fec0:0:0:ffff::3%1
NetBIOS over Tcpip. : Enabled

In the preceding, the VMnet8 is set to 192.168.191.1. The IP address may be
different for you.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[66]

Open Windows CMD as an administrator (important) by pressing Win-R. Type2.
cmd and hit Ctrl + Shift + Enter.
Follow these commands to set the VMnet8 subnet address to 192.168.142.0:3.

C:\> cd "\Program Files (x86)\VMware\VMware Player"
C:\> vnetlib.exe -- stop dhcp
C:\> vnetlib.exe -- stop nat

C:\> cd \ProgramData\VMware
C:\> copy vmnetdhcp.conf vmnetdhcp.conf.pre
C:\> copy vmnetnat.conf vmnetnat.conf.pre

C:\> cd "\Program Files (x86)\VMware\VMware Player"
C:\> vnetlib.exe -- set vnet vmnet8 mask 255.255.255.0
C:\> vnetlib.exe -- set vnet vmnet8 addr 192.168.142.0
C:\> vnetlib.exe -- add dhcp vmnet8
C:\> vnetlib.exe -- add nat vmnet8
C:\> vnetlib.exe -- update dhcp vmnet8
C:\> vnetlib.exe -- update nat vmnet8
C:\> vnetlib.exe -- update adapter vmnet8

C:\> vnetlib.exe -- set vnet vmnet1 mask 255.255.255.0
C:\> vnetlib.exe -- set vnet vmnet1 addr 192.168.136.0
C:\> vnetlib.exe -- add dhcp vmnet1
C:\> vnetlib.exe -- add nat vmnet1
C:\> vnetlib.exe -- update dhcp vmnet1
C:\> vnetlib.exe -- update nat vmnet1
C:\> vnetlib.exe -- update adapter vmnet1

C:\> vnetlib.exe -- start dhcp
C:\> vnetlib.exe -- start nat

Check ipconfig /all and you should see that the VMnet8 IP address is set to4.
192.168.142.1

Next, let's perform some finalization checks.

Performing finalization checks
To make sure everything is fine and our VM is ready, follow these steps:

If you do not have 7z installed on your machine, download 7z from https:/ /1.
www.7- zip. org/ download. html and install the 7z software.
Download the base VM image from https:/ /7362. me/ vm. tar.7z to a folder of2.
your choice.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://www.7-zip.org/download.html
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z

Building Your Own Kubernetes Environment Chapter 6

[67]

Select the folder and the vm.tar.7z file and click on Extract.3.
It's time to start the VM. Navigate to the folder where the VM was extracted.4.
Right-click on kube01.vmx and then click on Open with VMWare Player or
VMWare Workstation.
If VM prompts you to update your VMware software, cancel it. Alternatively, if5.
it prompts you to update the VM tools in the VM, cancel it.
Now, let's perform a sanity check. Double-click on Terminal.6.

The username is user and the password is password. The root password
is password.

Test the internet connectivity from the VM:7.

$ dig +search +noall +answer google.com

If the VMnet8 subnet is set to 192.168.142.0 and your Windows machine has
internet access, you should see the google.com IP addresses resolved in the
preceding code block.

Now you are ready to install Kubernetes in your environment. You can skip straight to the
Performing prerequisite tasks section. If you are using a macOS, the next section is for you.

Building an environment for macOS
Just as we did for our Windows VM, we will now download our virtualization software for
macOS, set up its network address, and power it up to check whether it's running fine. So,
grab your macOS and follow along.

Downloading our virtualization software
There is no VMware Player for macOS. The only option is to use VMware Fusion 11.x. You
can install a trial copy of the VMware Fusion for 30 days to go through the exercises. So,
let's begin:

Download VMware Fusion 11.x from https:/ /www. vmware. com/products/1.
fusion/fusion- evaluation. html.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html

Building Your Own Kubernetes Environment Chapter 6

[68]

You may have a preference for Oracle VirtualBox, and you can use it
instead of VMware Fusion. We have not tested the VM on VirtualBox.

Install VMware Fusion on your macOS.2.
After the installation of VMware Fusion, set the network address3.
translation (NAT) vmnet subnet so that the VM can access the internet.

It's time to set your network address. To do this, follow along in the next section.

Setting the network address
To set your network address, follow these steps:

Open a command-line shell in your macOS and run the following commands:1.

$ sudo -i
<type your password>

vi /Library/Preferences/VMware\ Fusion/networking

Modify the VMNET_8_HOSTONLY_SUBNET line to match the following:2.

 answer VMNET_8_HOSTONLY_SUBNET 192.168.142.0

Save the file.3.
Fix Gateway for VMnet8 by modifying the /Library/Preferences/VMware\4.
Fusion/vmnet8/nat.conf file:

vi /Library/Preferences/VMware\ Fusion/vmnet8/nat.conf

Then, change the ip and netmask after the following comment:5.

NAT gateway address
ip = 192.168.142.2
netmask = 255.255.255.0

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[69]

Finally, restart the network:6.

cd /Applications/VMware\ Fusion.app/Contents/Library/

./vmnet-cli --configure
./vmnet-cli --stop
./vmnet-cli --start

Next, let's perform some finalization checks.

Performing finalization checks
To make sure everything is fine and that our VM is ready, follow these steps:

Download the 7z software by installing the free 7z Unarchiver from Apple's App1.
Store.
Now download the base VM image from https:/ /7362. me/ vm. tar.7z to a folder2.
of your choice.
To launch the 7z software, select the folder and the vm.tar.7z file and double-3.
click on it to extract the files.
Start the VM by navigating to the folder where VM was extracted. Right-click4.
on kube01.vmx and then click on Open with VMWare Fusion.
Wait for the VM to start and then perform a sanity check. Double-click5.
on Terminal.

The username is user and the password is password. The root password
is password.

Test the internet connectivity of the VM:6.

$ dig +search +noall +answer google.com

If the VMnet8 subnet was set to 192.168.142.0 and your macOS has internet
access, you should see the google.com IP addresses resolved in the preceding
code.

You are ready to install Kubernetes in your environment. However, before we do that, let's
perform some prerequisite tasks.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z
https://7362.me/vm.tar.7z

Building Your Own Kubernetes Environment Chapter 6

[70]

Performing prerequisite tasks
Before we begin installing and setting up our Kubernetes, here are a few prerequisites
tasks:

Install socat. For Helm, socat is used to set the port forwarding for both the1.
Helm client and Tiller:

yum -y install socat

Set SELINUX=disabled in /etc/selinux/config and then reboot for it to take2.
effect. After the reboot, you should get an output from getenforce as
permissive:

getenforce
Disabled

Add the Docker repository:3.

yum -y install yum-utils
yum-config-manager --add-repo
https://download.docker.com/linux/centos/docker-ce.repo

Install Docker. Since we will be working with Kubernetes 1.15.6, the tested4.
version of Docker for this release is 3:18.09.8-3.el7.

We will switch the Docker cgroup driver from cggroupfs to systemd:

mkdir -p /etc/docker
cat > /etc/docker/daemon.json <<EOF
{
 "exec-opts": ["native.cgroupdriver=systemd"],
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "100m"
 }, "storage-driver": "overlay2" }
EOF

You can find an available version using yum --showduplicates list5.
docker-ce:

yum -y install docker-ce-cli-18.09.8-3.el7.x86_64
yum -y install docker-ce-18.09.8-3.el7.x86_64
systemctl enable docker
systemctl start docker

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[71]

Optionally, you can configure a separate disk to mount /var/lib/docker and6.
restart Docker.
Now check docker version:7.

docker version
Client:
 Version: 18.09.8
 API version: 1.39
 Go version: go1.10.8
 Git commit: 0dd43dd87f
 Built: Wed Jul 17 17:40:31 2019
 OS/Arch: linux/amd64
 Experimental: false

Server: Docker Engine - Community
 Engine:
 Version: 18.09.8
 API version: 1.39 (minimum version 1.12)
 Go version: go1.10.8
 Git commit: 0dd43dd
 Built: Wed Jul 17 17:10:42 2019
 OS/Arch: linux/amd64
 Experimental: false

Make sure that you have Docker 18.09.8 and not the higher version.

Check whether the storage driver is overlay2 and the cgroup driver is systemd.8.

docker info | grep -E "Cgroup|Storage Driver"
Storage Driver: overlay2
Cgroup Driver: systemd

That's it! Now we're ready to build our Kubernetes using our VM. So, let's dive straight in.

Building Kubernetes using one VM
This exercise uses a single VM to build a Kubernetes environment having a master node, an
etcd database, and a pod network using Calico and Helm. Please refer to the "Further
Reading" section if you want to build a multi-node cluster.

You also have the option to just use minikube (https:/ /kubernetes. io/
docs/ setup/ learning- environment/ minikube/), though. By going
through this exercise, you will learn how to build your own Kubernetes
environment.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/

Building Your Own Kubernetes Environment Chapter 6

[72]

Begin with these simple steps:

First, configure iptables for Kubernetes:1.

cat <<EOF > /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF

sysctl --system

Now add the Kubernetes repository:2.

cat << EOF >/etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-
x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF

Perfect! Now it's time to install Kubernetes.

Installing Kubernetes
At the time of writing, Kubernetes 1.16.0 is the latest version, and it has a few deprecated
APIs that will create issues in installing some of the Helm charts, especially for deployment
and StatefulSets:

Check the available versions of the following packages:1.

yum --showduplicates list kubeadm

For example, we will be selecting 1.15.6-0:

version=1.15.6-0
yum install -y kubelet-$version kubeadm-$version kubectl-$version

Enable kubelet:2.

systemctl enable kubelet

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[73]

Disable firewalld:3.

systemctl disable firewalld
systemctl stop firewalld

If you do not want to disable firewalld, you may need to open ports through
the firewall. For Kubernetes, open the following:

systemctl enable firewalld
systemctl start firewalld
firewall-cmd --zone=public --add-port=6443/tcp --permanent
firewall-cmd --zone=public --add-port=10250/tcp --permanent
firewall-cmd --zone=public --add-service=http --permanent
firewall-cmd --zone=public --add-service=https --permanent
firewall-cmd --reload

Disable swap. Note that Kuberenets does not like swap to be enabled:4.

swapoff -a

Comment out the swap entry in /etc/fstab, for example:5.

#/dev/mapper/centos-swap swap swap defaults 0 0

Next, it's time to run kubeadm.

Running kubeadm
Before running the next steps, validate that the VM user has sudo authority to type root
commands without requiring a password, by running visudo. There must be
an ALL=(ALL) NOPASSWD: ALL entry:

Type exit to logout from root:1.

exit

Pull the Kubernetes images—this may take a while on a slow internet connection:2.

$ sudo kubeadm config images pull

Check the images pulled by the preceding command:3.

$ sudo docker images k8s.gcr.io/*
REPOSITORY TAG IMAGE ID CREATED SIZE
kube-proxy v1.15.6 d756327a2327 4 days ago 82.4MB
kube-apiserver v1.15.6 9f612b9e9bbf 4 days ago 207MB

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[74]

kube-controller-manager v1.15.6 83ab61bd43ad 4 days ago 159MB
kube-scheduler v1.15.6 502e54938456 4 days ago 81.1MB
coredns 1.3.1 eb516548c180 10 months ago 40.3MB
etcd 3.3.10 2c4adeb21b4f 11 months ago 258MB
pause 3.1 da86e6ba6ca1 23 months ago 742kB

Build the Kubernetes master node:4.

$ sudo kubeadm init --pod-network-cidr=10.142.0.0/16

The output is as follows:

<< removed >>
Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a
regular user:

 mkdir -p $HOME/.kube
 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
 sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options
listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the
following on each as root:
kubeadm join 192.168.142.101:6443 --token 2u0en7.g1igrb2w54g9bts7 \
--discovery-token-ca-cert-hash
sha256:cae7cae0274175d680a683e464e2b5e6e82817dab32c4b476ba9a3224342
27bb

You can get the preceding token by using the kubeadm token list command.

You can also generate a new token using the kubeadm join command:5.

sudo su -
kubeadm token create --print-join-command

kubeadm join 192.168.142.101:6443 --token 1denfs.nw73pkobgksk0ej9
--discovery-token-ca-cert-hash
sha256:cae7cae0274175d680a683e464e2b5e6e82817dab32c4b476ba9a3224342
27bb

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[75]

Since we will be using a single VM, the Kubernetes token from the preceding is for
reference purposes only. You will need the preceding token command if you require a
multi-node Kubernetes cluster.

Configuring kubectl
To configure kubectl, follow these steps:

Run the following command as a user and root to configure the kubectl CLI1.
tool to communicate with the Kubernetes environment:

exit

$ mkdir -p $HOME/.kube
$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

Check the version of Kubernetes:2.

$ kubectl version --short
Client Version: v1.15.6
Server Version: v1.15.6

Un-taint the node—this is required since we have only one VM in which to3.
install objects:

$ kubectl taint nodes --all node-role.kubernetes.io/master-

Check the node status and note that it is not ready, since we have not yet4.
installed a pod network:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
osc01 NotReady master 95s v1.15.6

Check the pod status in kube-system and you will notice that the coredns pods
are in the pending state. This is due to the fact that we have not yet installed the
pod network.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[76]

Make sure that the etcd, kube-apiserver, kube-controller-manager,5.
kube-proxy, and kube-scheduler pods are showing a 1/1 READY state
and have a Running status:

$ kubectl get pods -A
NAME READY STATUS RESTARTS AGE
coredns-bb49df795-lcjvx 0/1 Pending 0 119s
coredns-bb49df795-wqmzb 0/1 Pending 0 119s
etcd-osc01 1/1 Running 0 80s
kube-apiserver-osc01 1/1 Running 0 60s
kube-controller-manager-osc01 1/1 Running 0 58s
kube-proxy-vprqc 1/1 Running 0 119s
kube-scheduler-osc01 1/1 Running 0 81s

Moving forward, we will install the Calico network for pods.

Installing the Calico network for pods
It is important that we first choose a proper version of Calico. Visit https:/ /docs.
projectcalico.org/ v3. 10/ getting- started/ kubernetes/ requirements for more
information:

 Here, we have tested Calico 3.10 with Kubernetes versions 1.14, 1.15, and 1.16, as1.
follows:

$ export POD_CIDR=10.142.0.0/16
$ curl https://docs.projectcalico.org/v3.10/manifests/calico.yaml -O
$ sed -i -e "s?192.168.0.0/16?$POD_CIDR?g" calico.yaml
$ kubectl apply -f calico.yaml

It may take a while to pull the Calico images over a slow network.

Run the following and check that the Docker images are being pulled for Calico:2.

$ sudo docker images calico/*
REPOSITORY TAG IMAGE ID CREATED SIZE
calico/node v3.10.1 4a88ba569c29 11 days ago 192MB
calico/cni v3.10.1 4f761b4ba7f5 11 days ago 163MB
calico/kube-controllers v3.10.1 8f87d09ab811 11 days ago 50.6MB
calico/pod2daemon-flexvol v3.10.1 5b249c03bee8 11 days ago 9.78MB

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements
https://docs.projectcalico.org/v3.10/getting-started/kubernetes/requirements

Building Your Own Kubernetes Environment Chapter 6

[77]

Check the status of the cluster and wait for all pods to be in the Running and3.
Ready 1/1 state:

$ kubectl get pods -A
NAME READY STATUS RESTARTS AGE
calico-kube-controllers-866db6d5f7-w9mfq 1/1 Running 0 33s
calico-node-mwgzx 1/1 Running 0 33s
coredns-bb49df795-lcjvx 1/1 Running 0 4m
coredns-bb49df795-wqmzb 1/1 Running 0 4m
etcd-osc01 1/1 Running 0 3m21s
kube-apiserver-osc01 1/1 Running 0 3m1s
kube-controller-manager-osc01 1/1 Running 0 2m59s
kube-proxy-vprqc 1/1 Running 0 4m
kube-scheduler-osc01 1/1 Running 0 3m22s

Our basic, single-node Kubernetes cluster is now up and running:

$ kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP ---
osc01 Ready master 5m28s v1.15.6 192.168.142.101 <none> ---

--- OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
--- CentOS Linux 7 (Core) 3.10.0-957.21.3.el7.x86_64 docker://18.9.8

Now, let's create an admin account.

Creating an admin account
To create an admin account, follow these steps:

First, run the following command that creates the admin service account:1.

$ kubectl --namespace kube-system create serviceaccount admin

Now, grant a cluster role binding to the admin service account to allow super-2.
user priviledges.

$ kubectl create clusterrolebinding admin --serviceaccount=kube-
system:admin --clusterrole=cluster-admin

Our next step is to install kubectl on client machines.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[78]

Installing kubectl on client machines
For this task, we will use the existing VM—which already has kubectl and the GUI to run
a browser.

However, you can use kubectl from a client machine to manage the Kubernetes
environment. Follow the process at https:/ /kubernetes. io/ docs/ tasks/ tools/ install-
kubectl/ to install kubectl on your choice of client machine (that is, Windows, macOS, or
Linux).

Performing finalization checks
To make sure that everything is in place, let's go ahead and carry out some checks:

Install busybox to check and validate the Kubernetes deployments:1.

$ kubectl create -f https://k8s.io/examples/admin/dns/busybox.yaml

Now install the hostname deployment. First, create a deployment:2.

$ kubectl run hostnames --image=k8s.gcr.io/serve_hostname \
 --labels=app=hostnames \
 --port=9376 \
 --replicas=3

Next, create a service:3.

$ kubectl expose deployment hostnames --port=80 --target-port=9376

Finally, perform a sanity check for the cluster. Check the pod with the following:4.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
busybox 1/1 Running 0 13s

For more help regarding testing the cluster, you can visit https:/ /
kubernetes. io/ docs/ tasks/ debug- application- cluster/ debug-
service/ .

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/

Building Your Own Kubernetes Environment Chapter 6

[79]

Installing Helm and Tiller
With the release of Helm v3, Tiller will not be required. We will be using Helm 2.x-related
charts, so we will not be installing Helm 3.x until the charts have migrated to Helm 3.x.

We will be installing Helm v2.16.1 with Tiller. So, let's begin:

In principle, Tiller can be installed using helm init:1.

$ curl -s
https://storage.googleapis.com/kubernetes-helm/helm-v2.16.1-linux-a
md64.tar.gz | tar xz
$ cd linux-amd64
$ sudo mv helm /bin

Create the tiller service account and grant cluster-admin role to2.
the tiller service account:

$ kubectl -n kube-system create serviceaccount tiller
$ kubectl create clusterrolebinding tiller --clusterrole cluster-
admin --serviceaccount=kube-system:tiller

Helm can be installed with and without security. You can choose any one of the following
methods.

Installing without security
To install Helm without security (this is ideal for running in a sandbox environment),
follow these steps:

Initialize helm and it will install the tiller server in Kubernetes:1.

$ helm init --service-account tiller

Wait for tiller to get deployed (you can check kubectl get pods -A).2.
Now, check helm version:3.

$ helm version --short
Client: v2.16.1+gbbdfe5e
Server: v2.16.1+gbbdfe5e

If you installed Helm without security, skip the next section and move straight to
the Installing the Kubernetes dashboard section.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[80]

Installing with Transport Layer Security (TLS)
To install Helm with TLS (this is ideal for running in production), run the following
commands:

$ curl -LOs
https://github.com/smallstep/cli/releases/download/v0.10.1/step_0.10.1_linu
x_amd64.tar.gz

$ tar xvfz step_0.10.1_linux_amd64.tar.gz

$ sudo mv step_0.10.1/bin/step /bin

$ mkdir -p ~/helm
$ cd ~/helm
$ step certificate create --profile root-ca "My iHelm Root CA" root-ca.crt
root-ca.key
$ step certificate create intermediate.io inter.crt inter.key --profile
intermediate-ca --ca ./root-ca.crt --ca-key ./root-ca.key
$ step certificate create helm.io helm.crt helm.key --profile leaf --ca
inter.crt --ca-key inter.key --no-password --insecure --not-after 17520h
$ step certificate bundle root-ca.crt inter.crt ca-chain.crt

$ helm init \
--override 'spec.template.spec.containers[0].command'='{/tiller,--
storage=secret}' \
--tiller-tls --tiller-tls-verify \
--tiller-tls-cert=./helm.crt \
--tiller-tls-key=./helm.key \
--tls-ca-cert=./ca-chain.crt \
--service-account=tiller

$ cd ~/.helm
$ cp ~/helm/helm.crt cert.pem
$ cp ~/helm/helm.key key.pem
$ rm -fr ~/helm ## Copy dir somewhere and protect it.

Once you have installed the Helm repository by using either of the preceding options,
perform the following steps:

Update Helm repo:1.

$ helm repo update

If you are planning to use a secure helm for Kubernetes installation, use -tls at
the end of the Helm commands to use TLS between Helm and the server.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[81]

List Helm repo:2.

$ helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts

Congratulations! Helm is installed and ready to use. Our final step now is to install the
Kubernetes dashboard, so let's jump straight into it.

Installing the Kubernetes dashboard
To install the Kubernetes dashboard, follow these simple steps:

Install the kubernetes-dashboard Helm chart:1.

$ helm install stable/kubernetes-dashboard --name k8web --namespace kube-
system --set fullnameOverride="dashboard"

Add --tls to the preceding command if you're planning to use a secure
helm for your Kubernetes installation.

Check Kubernetes pods:2.

$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
calico-kube-controllers-866db6d5f7-w9mfq 1/1 Running 0 170m
calico-node-mwgzx 1/1 Running 0 170m
coredns-bb49df795-lcjvx 1/1 Running 0 173m
coredns-bb49df795-wqmzb 1/1 Running 0 173m
etcd-osc01 1/1 Running 0 173m
k8web-kubernetes-dashboard-574d4b5798-hszh5 1/1 Running 0 44s
kube-apiserver-osc01 1/1 Running 0 172m
kube-controller-manager-osc01 1/1 Running 0 172m
kube-proxy-vprqc 1/1 Running 0 173m
kube-scheduler-osc01 1/1 Running 0 173m
tiller-deploy-66478cb847-79hmq 1/1 Running 0 2m24s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[82]

Check the Helm charts that we deployed:3.

$ helm list
NAME REVISION UPDATED ---
k8web 1 Mon Sep 30 22:21:01 2019 ---

--- STATUS CHART APP VERSION NAMESPACE
--- DEPLOYED kubernetes-dashboard-1.10.0 1.10.1 kube-system

Check the service names for the dashboard:4.

$ kubectl get svc -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dashboard ClusterIP 10.104.40.19 <none> 443/TCP 2m56s
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP 176m
tiller-deploy ClusterIP 10.98.111.98 <none> 44134/TCP 31m

We will patch the dashboard service from CluserIP to NodePort so that we can5.
run the dashboard using the node IP address:

$ kubectl -n kube-system patch svc dashboard --type='json' -p
'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

Let's now run our Kubernetes dashboard to see if it's working.

Running the Kubernetes dashboard
In this section, we'll do a walk-through to access the recently installed Kubernetes
dashboard.

First, check if the internal DNS server is accessible and resolves the hostname IP1.
address:

$ kubectl exec -it busybox -- cat /etc/resolv.conf

nameserver 10.96.0.10
search default.svc.cluster.local svc.cluster.local cluster.local
servicemesh.local
options ndots:5

Check the internal service name resolution:2.

$ kubectl exec -it busybox -- nslookup kube-dns.kube-
system.svc.cluster.local

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[83]

Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: kube-dns.kube-system.svc.cluster.local
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

$ kubectl exec -it busybox -- nslookup
hostnames.default.svc.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: hostnames.default.svc.cluster.local
Address 1: 10.98.229.90 hostnames.default.svc.cluster.local

Edit the VM's /etc/resolv.conf file to add the Kubernetes DNS server:3.

$ sudo vi /etc/resolv.conf

Add the following two lines for name resolution of the Kubernetes services and4.
the save file:

search cluster.local
nameserver 10.96.0.10

Next, let's see how we can gain access to our Kubernetes environment.

Get an authentication token
If you need to access your Kubernetes environment remotely, follow these steps:

Create a ~/.kube directory on your client machine and then SCP (short for1.
Secure Copy) the ~/.kube/config file from the Kubernetes master to
your ~/.kube directory.
Run this on the Kubernetes master node:2.

$ kubectl -n kube-system describe secret $(kubectl -n kube-system
get secret | grep admin | awk '{print $1}')

Here's the output:

Name: admin-token-2f4z8
Namespace: kube-system
Labels: <none>
Annotations: kubernetes.io/service-account.name: admin
 kubernetes.io/service-account.uid: 81b744c4-

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[84]

ab0b-11e9-9823-00505632f6a0
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1025 bytes
namespace: 11 bytes
token:
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2
VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiO
iJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0
Lm5hbWUiOiJhZG1pbi10b2tlbi0yZjR6OCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWF
jY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJhZG1pbiIsImt1YmVybmV0ZXMuaW
8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjgxYjc0NGM0LWFiM
GItMTFlOS05ODIzLTAwNTA1NjMyZjZhMCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNj
b3VudDprdWJlLXN5c3RlbTphZG1pbiJ9.iaWllI4XHQ9UQQHwXQRaafW7pSD6EpNJ_r
EaFqkd5qwedxgJodD9MJ90ujlZx4UtvUt2rTURHsJR-
qdbFoUEVbE3CcrfwGkngYFrnU6xjwO3KydndyhLb6v6DKdUH3uQdMnu4V1RVYBCq2Q1
bOsejsgNUIxJw1R8N7eUpIte64qUfGYtrFT_NBTnA9nEZPfPAiSlBBXbC0ZSBKXzqOD
4veCXsqlc0yy5oXHOoMjROm-<<REDACTED>>

Highlight the authentication token from your screen and right-click to copy it to3.
the clipboard.
Find the node port for the dashboard service:4.

$ kubectl get svc -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dashboard NodePort 10.102.12.203 <none> 443:31869/TCP 2m7s
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP 7m34s
tiller-deploy ClusterIP 10.109.36.64 <none> 44134/TCP 3m13s

Double-click Google Chrome from the desktop of the VM and5.
run https://localhost:31869 and change the port number so it matches
your output.
Paste the token from the clipboard.6.

You have a Kubernetes 1.15.6 single-node environment ready for use now.

Check if kube-proxy is OK. There must be two entries for the hostnames:7.

$ sudo iptables-save | grep hostnames
-A KUBE-SERVICES ! -s 10.142.0.0/16 -d 10.98.229.90/32 -p tcp -m comment --
comment "default/hostnames: cluster IP" -m tcp --dport 80 -j KUBE-MARK-MASQ
-A KUBE-SERVICES -d 10.98.229.90/32 -p tcp -m comment --comment
"default/hostnames: cluster IP" -m tcp --dport 80 -j KUBE-SVC-
NWV5X2332I4OT4T3

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[85]

Congratulations! We are all set. It's time to explore our Kubernetes dashboard and navigate
to objects, rather than type kubectl commands to see them through a command line.

Exploring the Kubernetes dashboard
The Kubernetes environment that we built in the VM is very elementary, with just a single
master node, Helm, and a Kubernetes dashboard. To get hands-on experience using your
Kubernetes environment, we will first launch the dashboard and then explore its various
features. Follow these steps:

Open a command-line window in your VM and find the node port of the1.
Kubernetes dashboard service:

$ DASHPORT=$(kubectl -n kube-system get svc dashboard -o
jsonpath={.spec.ports[*].nodePort}) ; echo $DASHPORT
32296

In this case, the node port is 32296. The node port may be different in your case.

Open the Chrome browser within your VM,2.
visit https://localhost:32296, and replace the node port with the value for
your environment.
The Chrome browser will complain about the certificate.3.
Click Advanced and Proceed to localhost (unsafe):

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[86]

You can either select the kubeconfig file or the authentication token.4.
Select Token.

We can get the authentication token by looking at the admin service
account secret. While you were building the Kubernetes environment, you
might have noticed that we created an admin service account and
granted cluster-admin privileges to it.

Run the following command to get the authentication token associated with the5.
admin service account in the VM:

$ kubectl -n kube-system describe secret $(kubectl -n kube-system \
get secret | grep admin | awk '{print $1}')

The output from the preceding command will show the value of the token, which
will be a very long string.

Select the string and copy it in the VM's clipboard.6.
Switch back to the web UI and paste the token in the input field. Click SIGN IN:7.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[87]

Now you can explore the Kubernetes dashboard features and navigate to the different
objects, such as namespaces, workloads, discovery, load balancing, config, and storage. So
let's do it!

Select the default namespace in the Namespace section.1.
On the left-hand menu under Workloads, click Pods, and you will see2.
a busybox pod that you created while following the build VM instructions.
Click the busybox pod. In the top menu bar, you will3.
see Exec, Logs, Edit, and Delete options.
Click EXEC. A command-line embedded shell will open in another browser tab.4.
You can run commands from inside the pod.
Run the following command to check the DNS name resolution and the IP5.
address of the Kubernetes DNS server:

nslookup kubernetes.default.svc.cluster.local

Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: kubernetes.default.svc.cluster.local
Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local

Notice that the Kubernetes DNS server IP address is 10.96.0.10, and the service
name kubernetes.default.svc.cluster.local resolves to IP address 10.96.0.1.

This was just an example of various uses of the Kubernetes dashboard. Our single-
VM Kubernetes cluster is sufficient for this book. In reality, we should use a Kubernetes
distribution built by a provider such as RedHat OpenShift, or use a cloud service provider
such as AWS, GCP, Azure, and many others.

It is easy to build a basic Kubernetes cluster on our own, but it is very time-consuming to
develop and maintain a fully functional enterprise production-ready environment. It is best
in those cases to either use a public cloud or use a Red Hat OpenShift subscription for
business needs. Red Hat is very developer friendly, and you can use the free Open
Community distribution of Kubernetes at https:/ /okd. io that powers Red Hat OpenShift.

Be on top of the Kubernetes updates! You can visit https:/ /kubernetes.
io/docs/ setup/ release/ to find out the latest release.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://okd.io
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/

Building Your Own Kubernetes Environment Chapter 6

[88]

Additional steps
The following steps are optional and are not recommended. However, if you wish, you can
try them out. This section will teach you how to install the Metrics Server, VMware Octant,
Prometheus, and Grafana. Then we will wind up by powering down our VM and starting it
once again and thus be prepared to perform hands-on experiments in the next chapter.

Installing the Metrics Server
The Metrics Server is required if we need to run kubectl commands to show the metrics:

$ helm install stable/metrics-server --name metrics --namespace kube-system
--set fullnameOverride="metrics" --set args="{--logtostderr,--kubelet-
insecure-tls,--kubelet-preferred-address-
types=InternalIP\,ExternalIP\,Hostname}"

To install the Metrics Server, follow these steps:

Make sure that the v1beta1.metrics.k8s.io service is available:1.

$ kubectl get apiservice v1beta1.metrics.k8s.io
NAME SERVICE AVAILABLE AGE
v1beta1.metrics.k8s.io kube-system/metrics True 13m

If the service shows FailedDiscoveryCheck or MissingEndpoints, it might be
the firewall issue. Make sure that HTTPS is enabled through the firewall.

If the AVAILABLE column shows False (MissingEndpoints), wait for the
endpoints to become available. Try the preceding command again and make sure
that the AVAILABLE column shows True for the v1beta1.metrics.k8s.io API
service.

Run the following:2.

$ kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes"

Please wait a few minutes and run the kubectl top nodes or kubectl top pods -A
command to show the output.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[89]

Installing VMware Octant
VMware provides Octant, as an alternative to Kubernetes dashboard.

You can install Octant on Windows, macOS, and Linux, and it is a simple-to-use alternative
to using Kubernetes dashboard. Refer to https:/ /github. com/ vmware/ octant for the
details to install Octant.

Installing Prometheus and Grafana
This is optional if we do not have enough resources in the VM to deploy additional charts.

Install Prometheus with the following command:1.

$ helm install stable/prometheus-operator --namespace monitoring --name mon
Note: add --tls above if using secure helm

Check the monitoring pods:2.

$ kubectl -n monitoring get pods
NAME READY STATUS RESTARTS AGE
alertmanager-mon-alertmanager-0 2/2 Running 0 28s
mon-grafana-75954bf666-jgnkd 2/2 Running 0 33s
mon-kube-state-metrics-ff5d6c45b-s68np 1/1 Running 0 33s
mon-operator-6b95cf776f-tqdp8 1/1 Running 0 33s
mon-prometheus-node-exporter-9mdhr 1/1 Running 0 33s
prometheus-mon-prometheus-0 3/3 Running 1 18s

Check the services:3.

$ kubectl -n monitoring get svc
NAME TYPE CLUSTER-IP ---
alertmanager-operated ClusterIP None ---
mon-grafana ClusterIP 10.98.241.51 ---
mon-kube-state-metrics ClusterIP 10.111.186.181 ---
mon-prometheus-node-exporter ClusterIP 10.108.189.227 ---
mon-prometheus-operator-alertmanager ClusterIP 10.106.154.135 ---
mon-prometheus-operator-operator ClusterIP 10.110.132.10 ---
mon-prometheus-operator-prometheus ClusterIP 10.106.118.107 ---
prometheus-operated ClusterIP None ---

--- EXTERNAL-IP PORT(S) AGE
--- <none> 9093/TCP,6783/TCP 19s
--- <none> 80/TCP 23s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant
https://github.com/vmware/octant

Building Your Own Kubernetes Environment Chapter 6

[90]

--- <none> 8080/TCP 23s
--- <none> 9100/TCP 23s
--- <none> 9093/TCP 23s
--- <none> 8080/TCP 23s
--- <none> 9090/TCP 23s
--- <none> 9090/TCP 9s

The Grafana UI can be opened using: http://10.98.241.51 for the mon-
grafana service. The IP address will be different in your case.

A node port can also be configured for mon-grafana to use the local IP address4.
of the VM, instead of using the cluster IP address:

$ kubectl get svc -n monitoring mon-grafana
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mon-grafana ClusterIP 10.105.49.113 <none> 80/TCP 95s

Edit the service by running kubectl edit svc -n monitoring mon-5.
grafana and change the type from ClusterIP to NodePort.
Find out the NodePort for the mon-grafana service.6.

$ kubectl get svc -n monitoring mon-grafana
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mon-grafana NodePort 10.105.49.113 <none> 80:32620/TCP 3m15s

The Grafana UI can be opened through http://localhost:32620, and the node port will
be different in your case.

The default user ID is admin and the password is prom-operator. This can be seen
through kubectl -n monitoring get secret mon-grafana -o yaml, and then run base64
-d against the encoded value for admin-user and admin-password secret.

You can also open the Prometheus UI either by the NodePort method described earlier or
by using kubectl port-forward. To do this, open another command-line window to
proxy the Prometheus pod's port to the original localhost terminal:

$ kubectl port-forward -n monitoring prometheus-mon-prometheus-operator-
prometheus-0 9090

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[91]

Open http://localhost:9090 to open the Prometheus UI
and http://localhost:9090/alerts for alerts.

If you need to free up resources from the VM, delete Prometheus using the following clean-
up procedure:

$ helm delete mon --purge
$ helm delete ns monitoring
$ kubectl -n kube-system delete crd \
 alertmanagers.monitoring.coreos.com \
 podmonitors.monitoring.coreos.com \
 prometheuses.monitoring.coreos.com \
 prometheusrules.monitoring.coreos.com \
 servicemonitors.monitoring.coreos.com

Add --tls to the preceding command if you're using secure Helm.

Uninstalling Kubernetes and Docker
We've learned how to install and set up Kubernetes. But just if Kuberenetes needs to be
uninstalled, what do you do? Follow these steps:

Find out the node name using kubectl get nodes:1.

$ kubectl drain <node name> --delete-local-data --force --ignore-daemonsets
$ kubectl delete node <node name>

Remove kubeadm:2.

$ sudo systemctl stop kubelet
$ sudo kubeadm reset
$ sudo iptables -F && iptables -t nat -F && iptables -t mangle -F &&
iptables -X
$ sudo yum -y remove kubeadm kubectl kubelet kubernetes-cni kube*

$ rm -fr ~/.kube

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[92]

Remove Docker and the images:3.

$ sudo su -
docker rm -f $(docker ps -qa)
docker volume rm $(docker volume ls -q)
docker rmi $(docker images -q)
systemctl stop docker
rm -fr /var/lib/docker/*
yum -y remove docker-ce docker-ce-cli
cleanupdirs="/var/lib/etcd /etc/kubernetes /etc/cni /opt/cni /var/lib/cni
/var/run/calico /var/lib/kubelet"
for dir in $cleanupdirs; do
 echo "Removing $dir"
 rm -rf $dir
done

Finally, let's learn how to power up and power down the VM.

Powering the VM up and down
To power down the VM, follow these steps:

Click on Player | Power | Shutdown Guest.1.

It is highly recommended that you take a backup of the directory after
installing the Kubernetes environment. You can restore the VM from the
backup to start again, should you need it.

The files in the directory may show as follows (shown using Git Bash running in
Windows):

$ ls -lh
total 7.3G
-rw-r--r-- 1 user 197609 2.1G Jul 21 09:44 dockerbackend.vmdk
-rw-r--r-- 1 user 197609 8.5K Jul 21 09:44 kube01.nvram
-rw-r--r-- 1 user 197609 0 Jul 20 16:34 kube01.vmsd
-rw-r--r-- 1 user 197609 3.5K Jul 21 09:44 kube01.vmx
-rw-r--r-- 1 user 197609 261 Jul 21 08:58 kube01.vmxf
-rw-r--r-- 1 user 197609 5.2G Jul 21 09:44 osdisk.vmdk
-rw-r--r-- 1 user 197609 277K Jul 21 09:44 vmware.log

Copy the preceding directory to your backup drive to use later.2.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building Your Own Kubernetes Environment Chapter 6

[93]

To power up the VM, follow these steps:

Locate kube01.vmx and right-click to open it either using VMware1.
Player or VMware WorkStation.
Open Terminal and run kubectl get pods -A and wait for all pods to be ready2.
and running.

This is a pretty basic Kubernetes cluster just using a single VM, which is good for learning
purposes. Remember that, in reality, we should use a Kubernetes distribution built by a
provider such as RedHat OpenShift or IBM Cloud Private, or use a public cloud provider
such as AWS, Google, or Azure.

Be on top of the Kubernetes updates! You can visit https:/ /kubernetes.
io/docs/ setup/ release/ to find the latest release.

Summary
In this chapter, you have learned how to build your Kubernetes environment from the
ground up using Helm and the Kubernetes dashboard. This book is not about teaching
Kubernetes. However, it might be useful if you build your single VM Kubernetes
environment on Windows or macOS. By doing so, you do not have to spend money to spin
up compute instance(s) in a public cloud to learn the service mesh. This environment will
help you to practice the hands-on experiments of different service mesh architectures in the
upcoming sections.

You will now begin your journey of exploring three major service mesh architectures: Istio,
Consul, and Linkerd. In the next chapter, you will learn about Istio's architecture.

Questions
Which of the following is not a Kubernetes platform?1.

A) Apache Mesos
B) Red Hat OpenShift
C) Origin Community Distribution

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/
https://kubernetes.io/docs/setup/release/

Building Your Own Kubernetes Environment Chapter 6

[94]

Kubernetes is only available in the cloud to deploy applications.2.

A) True
B) False

You can deploy a legacy containerized application in a Kubernetes cluster.3.

A) True
B) False

You can access a monolithic application running outside the Kubernetes cluster4.
through Kubernetes services.

A) True
B) False

Building your Kubernetes cluster on your Windows or macOS machine is very5.
complex.

A) True
B) False

Further reading
Build Your Own Multi-Node Kubernetes Cluster With Monitoring, Qadri, Syed
Salman, 2019: https:/ / medium. com/ @salqadri/ build- your- own- multi- node-
kubernetes- cluster- with- monitoring- 346a7e2ef6e2

DMTN-071: Kubernetes Installation, Pietrowicz, Stephen, Dmtn-071.Lsst.Io,
2018, https:/ / dmtn- 071. lsst. io/

Kubernetes/Kubernetes, GitHub, 2019: https:/ /github. com/ kubernetes/
kubernetes

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://medium.com/@salqadri/build-your-own-multi-node-kubernetes-cluster-with-monitoring-346a7e2ef6e2.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://dmtn-071.lsst.io/.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.
https://github.com/kubernetes/kubernetes.

4
Section 4: Learning about Istio

through Examples
Our exploration of the service mesh feature begins with Istio, which is a very popular and
community-driven open source project. In this section, you will learn about the Istio service
mesh through hands-on examples so that you will be able to secure, connect to, and
monitor microservices.

This section contains the following chapters:

Chapter 7, Understanding the Istio Service Mesh
Chapter 8, Installing a Demo Application
Chapter 9, Installing Istio
Chapter 10, Exploring Istio Traffic Management
Chapter 11, Exploring Istio Security Features
Chapter 12, Enabling Istio Policy Controls
Chapter 13, Exploring Istio Telemetry Features

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Understanding the Istio Service

Mesh
Istio is the first service mesh implementation that works by injecting Envoy as a sidecar
proxy alongside each microservice. The sidecar intercepts all of the service's traffic and
handles it more intelligently than a simple L3/L4 network does. A mesh of sidecars
constitutes the data plane in which each microservice has its own sidecar as a
proxy. The control plane manages and coordinates the work of the sidecars through a set of
central components. Overall, the service mesh is an abstract layer on top of applications to
handle service-to-service communication.

In this chapter, we will understand the architecture of Istio from the perspective of the
control plane to look at its features and functions. We will see how the control
plane, through policies and configurations, manages the proxies running in a data plane. By
the end of this chapter, you will have a good understanding of Istio, which will be very
helpful as we go about performing hands-on experiments in the upcoming chapters.

In this chapter, we will cover the following topics:

Control plane
Data plane
Observability features

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[97]

Technical requirements
To complete the hands-on exercises in this chapter, you need to have a Kubernetes
environment up and running. For instructions on how to do this, please refer to Chapter 6,
Building Your Own Kubernetes Environment.

You can find the code files for this chapter at https:/ /github. com/ servicemeshbook/
istio/.

Introducing the Istio service mesh
Istio's journey began on May 2017 with its first alpha release of 0.1. Istio's 1.0 production-
level release launched in July 2018. Since its inception, 80+ releases of Istio have been
published, which shows the dynamism of this trendy open source project. At the time of
writing, it is the most popular service mesh framework, with 18,000+ stars, 3,000+ forks, and
100+ companies around the world contributing to it. It has an active developer community
around it.

Before the service mesh concept came to light, libraries such as Netflix's Hystrix (https:/ /
github.com/Netflix/ Hystrix) and Twitter's Finagle (https:/ / github. com/ twitter/
finagle) were popular for serving Java-based programs. Then came Lyft's Envoy (https:/
/github.com/envoyproxy/ envoy), which changed the dynamics as it could run as a sidecar
proxy and hence provided a language-agnostic decoupled implementation.

The community maintains the Istio project at http:/ /istio. io. Istio is a very feature-
rich function framework that provides comprehensive service mesh capabilities.

Istio initially started with different technologies from IBM, Google, and Lyft (for more
information, go to https:/ / github. com/ istio/ community#istio- authors):

IBM's research project, algam8 (Rothert), provides a programmable control plane
that has unified traffic routing. This control plane helps with blue/green testing,
canary releases, and testing the resilience of services against failures.
Google provides a programmable control plane that has policies for rate limits,
authentication, and ACLs. The control plane gathers telemetry data from various
services and proxies.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/twitter/finagle
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
http://istio.io
http://istio.io
http://istio.io
http://istio.io
http://istio.io
http://istio.io
http://istio.io
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors

Understanding the Istio Service Mesh Chapter 7

[98]

Lyft provided Envoy (https:/ /envoyproxy. io), which is a sidecar for a
microservice. Envoy is a graduated project from CNCF.

Now, let's go through Istio's architecture.

Istio's architecture
While discussing the service mesh, you will come across L4/L5 or L7 Layers. These terms
originated from the Open System Interconnect (OSI) model (https:/ / tinyurl. com/
y4g7zuce), which explains that there's seven types of layers for communication, as follows:

Layer 1: Physical Layer
Layer 2: Data Link Layer
Layer 3: Network Layer
Layer 4: Transport Layer
Layer 5: Session Layer
Layer 6: Presentation Layer
Layer 7: Application Layer

A service mesh manages traffic between microservices at Layer 7 of the OSI model.

Overall, the service mesh is an infrastructure for handling service-to-service
communication. This chapter will provide a high-level overview of the control plane and
the data plane.

Let's understand what the control and data planes are. The terms control plane and data
plane were used initially in software-defined networks. Routers and switches use a
conceptual model called planes. You can think of the control plane as the brain of the
network (altering and filtering data) and the data plane as the device that the network
traffic flows through (it forwards the traffic). For example, let's say you bought a router a
few years ago that came with its own software. Later, you found that you could upgrade
the software without changing the hardware. The software is the control plane, while the
physical devices are the data or forwarding plane.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://tinyurl.com/y4g7zuce
https://tinyurl.com/y4g7zuce
https://tinyurl.com/y4g7zuce
https://tinyurl.com/y4g7zuce
https://tinyurl.com/y4g7zuce
https://tinyurl.com/y4g7zuce
https://tinyurl.com/y4g7zuce
https://tinyurl.com/y4g7zuce

Understanding the Istio Service Mesh Chapter 7

[99]

The same concept applies to a service mesh architecture, where a proxy handles the
communication between services. The control plane manages proxies running in a data
plane through policies and configurations. This can be seen in the following diagram:

These two abstract components essentially define Istio's architecture, as shown in the
following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[100]

Istio uses an extended version of the Envoy proxy. Envoy is a battle-tested, highly
performant, low latency, independent component. It collects shapes, shifts, and splits and
routes traffic and collects telemetry for all of the service calls. It can filter L3 and L4 layers
for byte-in and byte-out data through multiple protocols, such as HTTP/1.1, HTTP/2, gRPC,
and TCP.

The proxy is deployed alongside all of the service pods as a sidecar proxy to intercept calls
between the services and the clients. Envoy isn't a library but a separate container that can
be updated independently from the microservice it is proxying.

Taking this information forward, let's go through the control and data planes to understand
the concept of Istio's service mesh.

Control plane
The purpose of the control plane is to set the policies and configurations for all of the data
planes running as a service mesh. As we mentioned in Chapter 3, Service Mesh Architecture,
an ideal service mesh should follow the ORASTAR principle. Take a look at the following
diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[101]

From the preceding diagram, we can see that the control plane satisfying the ORASTAR
principle resides in the Kubernetes master nodes. You can run the control plane through
the use of taints and tolerations to limit the control plane nodes to a set of dedicated nodes.
The microservice with sidecar proxy applications running in worker nodes form a data
plane. The control plane is a set of pods that communicate with the data plane's set of pods,
which have a sidecar proxy.

Sometimes, the service mesh is also attributed to a mesh of a sidecar proxy, such as Envoy
or Linkerd, which runs side by side with each microservice. Conceptually, this is true since
a mesh is formed in the data plane. The control plane provides many more management
capabilities apart from the sidecar proxy.

The Istio control plane has four main components:

Pilot
Mixer
Galley
Citadel

The control plane in Istio is like a hub and spoke architecture that manages the data plane
that was created by the sidecar proxies of the application components or services:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[102]

Istio extends the Kubernetes API server for configuration management and access control.
It uses Kubernetes' built-in datastore, called etcd, to store its state and configuration.

Now, let's take a closer look at these components, one by one.

Galley
Galley is mostly a behind-the-scenes component for gathering and validating user
configuration for the other parts of the system. It is a component of Istio's control plane and
provides configuration validation, ingestion, processing, and distribution using the Mesh
Configuration Protocol (MCP – https:/ /archive. istio. io/ v1.3/ docs/ reference/
config/istio.mesh. v1alpha1/). An external service registry, such as Eureka Server in
Spring Cloud or Zookeeper for Apache Dubbo, can integrate with the Istio control plane
through Galley.

Galley works in the background by providing configuration management services to
different Istio components. Galley helps to shield the rest of the Istio components from the
specific details of obtaining user configuration for platforms other than Kubernetes. The
Galley was initially developed to verify configuration details but was later extended to a
configuration center for the entire control plane.

It contains Kubernetes Custom Resource Definition (CRD) listeners for collecting
configuration using /admitpilot and /admitmixer from the Galley server, a Mesh
Configuration Protocol (MCP) server implementation for distributing configuration, and a
validation webhook for preingestion validation by the Kubernetes API Server:

$ kubectl get validatingwebhookconfiguration istio-galley
NAME CREATED AT
istio-galley 2019-07-30T03:00:43Z

MCP provides a set of APIs for configuring subscriptions and distributions. Pilot and
Mixer, which we will discuss in the following sections, are the consumers of the Galley. The
resource is sent to the consumer. Here, it's the configuration that's applied. Pilot and Mixer
connect to the Galley server as clients of the service for configuration subscription. Galley
can be configured to actively connect to sinks (Pilot/Mixer) in remote Istio clusters.

For example, in a mesh of multiple Kubernetes clusters, in the primary cluster, Galley can
provide configuration management for various clusters of Pilot/Mixer. Galley can initiate
the connection as the client of gRPC, while Pilot/Mixer implements the ResourceSink
service as the gRPC server.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/
https://archive.istio.io/v1.3/docs/reference/config/istio.mesh.v1alpha1/

Understanding the Istio Service Mesh Chapter 7

[103]

There is a Galley dashboard in Grafana that we can use to view the scraped metric from
Galley through Prometheus. (We will deep dive into Prometheus and Grafana in Chapter
13, Exploring Istio Telemetry Features.)

Galley sits behind the scenes performing configuration management. What pushes all of
those configuration policies to the Envoy sidecar proxies? That would be Pilot. Let's learn
more about it.

Pilot
Pilot is the core traffic management component of Istio's control plane for the Envoy
sidecars. It pushes communication-based policies to sidecar proxies at runtime to
enforce traffic management configurations for intelligent routing, such as Canary
deployments, blue/green testing, and resiliency features such as timeouts, retries, and
circuit breakers. These are all topics that we will look at in more detail later in this chapter.

The following diagram shows the Pilot architecture:

As we can see, Pilot maintains an abstract model of all of the services in the mesh that have
been discovered through either Kubernetes or external services through Galley. The
platform-specific adapters, such as Kubernetes, Mesos, Cloud Foundry, and so on, are used
to populate the abstract model with the service registry and resource information.
Kubernetes keeps the service discovery metadata in the etcd database when we create
Kubernetes services.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[104]

The etcd database is updated when the endpoints are updated when a pod becomes
healthy. The traffic management policies that are defined using Istio provide Kubernetes
Custom Resource Definitions (CRD) and are pushed down to the Envoy sidecar for
implementation.

Service discovery
Out of the box, Kubernetes has a high-level functional service mesh that provides service
discovery for the necessary pods/containers and enables round-robin network requests for
service versioning. There are no retries, timeouts, or any other features that the service
mesh typically provides and can handle for a microservice.

The functional capability of a service registry is to keep track of all service pods and virtual
machines for the designated application. With support from Istio, Kubernetes allows all
new instances of a service, such as a new version, to be automatically registered within the
service registry. For example, services without connections to pods are dead services and
those services hide from discovery.

In Istio, the pilot consumes service configurations from the service registry and provides a
platform-agnostic service discovery interface. The sidecar proxy is configured for service
discovery and dynamically updates the load balancing weight pools for every service. This
can be seen in the following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[105]

In the preceding diagram, all of the network traffic that's bound to a microservice is
rerouted through the sidecar proxy. By enabling a load balancer within the cluster, the
sidecar proxy can distribute traffic requests across any service instance. The sidecar proxy,
that is, Envoy, supports a long list of load balancing algorithms. Within Istio and its latest
version, Envoy is certified against three specific modules, such as weighted request, round-
robin, and random percentage assignment.
Pilot has an abstract model for services that external platform services can fill to register
external services. Galley can function for configuration management for external
services. Pilot takes the metadata from microservices deployed in the Kubernetes API
server and pushes updated pod configurations to sidecar proxies. It also abstracts service
discovery so that sidecars can consume it as a standard format. Pilot receives user-defined
policies, which are then pushed to the sidecar proxies to enforce policy-based rules.

Now that we understand Istio-enabled service discovery, we will learn how to implement
traffic management policies using Istio-defined primitives.

Traffic management
Envoy proxies communicate directly with the application microservices. The control plane
only interacts with the Envoy proxy for policy-based rules. The Envoy proxy intercepts all
inbound and outbound traffic for all of the services in the mesh.

In the upcoming Chapter 10, Exploring Istio Traffic Management Capabilities, you will see
the istio-init container at the time of its deployment. The init container sets
the iptables rules to divert inbound and outbound traffic from the microservice to the
Envoy sidecar proxy.

Pilot is easy to understand through Istio configuration primitives such as gateways, virtual
services, service entry, and destination rules. The following workflow explains a gateway for a
specific application that multiple virtual services can connect to. The virtual service can
point to different services based upon a path, URI, headers, cookies, or subsets defined
through the destination rules. Load balancing and traffic management to external services
through the service entry is what happens in L7 traffic management:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[106]

The preceding diagram is a simplified illustration of the relationship between the gateway,
virtual services, destination rules, and service entry.

The Istio primitive gateway is the one that facilitates virtual service connection to external
incoming and outgoing traffic. Let's explore Istio-defined gateways.

Gateway
Istio has an Ingress gateway, which is a reverse proxy that's implemented through Envoy.
The purpose of Ingress is to allow access to services from outside the cluster. As shown in
the following diagram, external inbound and outbound communication goes through
configured Ingress and Egress gateways:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[107]

As we can see, Microservice A (for example, microservice-
a.mynamespace.cluster.local:9085) is exposed to internet domain names such as
www.example.com:443 through the Istio Ingress gateway. The client TLS (short for
Transport Layer Security) termination is done at the Ingress gateway.

For incoming as well as outgoing requests, the Ops can apply various failure recovery
features and collect detailed telemetry data using the sidecars of the Ingress and Egress
gateways. The Ingress and Egress gateways sit at the edges of the service mesh.

Gateway is an Istio primitive that's defined through custom resource definition so that it
can be managed either through the kubectl or istioctl command:

$ kubectl get crd gateways.networking.istio.io
NAME CREATED AT
gateways.networking.istio.io 2019-07-21T23:09:09Z

In most cases, we can use kubectl and istioctl interchangeably, but
there are a few isolated instances where we have to use istioctl. (Also,
remember that this is just sample output— we'll explain this in more
detail when we dive into Chapter 9, Installing Istio)

The default demo profile installation of Istio provides gateways that are used to manage
inbound and outbound traffic for your mesh. The Ingress gateway can be configured to
provide access to microservices inside the service mesh from outside of the Kubernetes
cluster. Similarly, you can configure an Egress gateway as a dedicated exit point for the
traffic, leaving the mesh and configuring each Egress gateway so that it uses its policies and
telemetry.

Istio provides two gateways to manage incoming (ingress) and outgoing (egress)
traffic. This can be seen by using kubectl. This allows us to view the running pods in the
Istio namespace after Istio has been installed, as follows:

$ kubectl get pods -n istio-system | grep gateway
NAME READY STATUS RESTARTS AGE
istio-egressgateway-9b7866bf5-996fc 1/1 Running 1 6d17h
istio-ingressgateway-75ddf64567-4vjqk 1/1 Running 1 6d17h

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[108]

These gateways work seamlessly with your existing Nginx controller (or any other
controller) through your Kubernetes platform provider. For the purpose of this book, we
are using a bare minimum Kubernetes environment without an Nginx gateway. It is
interesting to note that Istio provides these gateways out of the box to manage inbound and
outbound traffic seamlessly.

We can define multiple gateways, and there can be a dedicated gateway for each
application. For example, if the entry service name for an application is productpage, the
sidecar proxy for this service is at the edge of the mesh receiving traffic through a user-
defined virtual service referencing the user-defined gateway. This means that we are
configuring an Envoy proxy for the productpage microservice to control the traffic entering
the mesh.

You can use Egress gateways to limit which internal microservices can access external
networks. For example, you can deny access to internal microservices from accessing any
external services except whitelisted services that you trust:

An example of a gateway is as follows:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: mygateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[109]

Istio deployments are deployed through YAML. We'll explain the Istio
YAML structure in the implementation chapters of this book, that is,
Chapter 10, Exploring Istio Traffic Management Capabilities, and Chapter
13, Exploring Istio Telemetry Features.

In the preceding code, we are defining that plain HTTP traffic is allowed through this
gateway. The communication port can be changed so that it uses port 443 and the HTTPS
protocol. The hosts defined as * means that the traffic will be allowed from any external
host. This traffic can be restricted to a known external host if this application is purely a
business-to-business application. Notice that no routing has been defined, which can be
defined using a virtual service. The purpose of the gateway is to define ports and protocols
and the proof of those names either by using a fully defined path for the server certificate
and a private key bound to a particular hostname or by using the Secret Discovery Service
(SDS) protocol to protect the certificate and keys. An example of this is as follows:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: httpbin-gateway
spec:
 selector:
 istio: ingressgateway # use istio default ingress gateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 tls:
 mode: SIMPLE
 serverCertificate: /etc/istio/ingressgateway-certs/tls.crt
 privateKey: /etc/istio/ingressgateway-certs/tls.key
 hosts:
 - "httpbin.example.com"

The external domain name (httpbin.example.com) in the preceding gateway definition
uses file mounts to present the server certificate and the private key to provide the proof of
domain name to the client. SIMPLE mode means that only the server will present its
identity to the client but the client will not present its identity to the server.

Note that the preceding method presents a security challenge since certificates are stored in
a filesystem, so this is not recommended. Istio has a better method of using SDS to protect
certificates and keys.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[110]

It is important to note here that the Istio ingress gateway operates at the Layer 4 level on
top of the Layer 3 network provided by the underlying network. The connectivity between
two different Ingress gateways of two different service meshes (regardless of their
geographical location) can be enabled through mutual TLS (mTLS), which might eliminate
the need for any VPN between two locations.

Now that we've defined the Istio gateway, let's define the virtual service that uses the
gateways.

Virtual service
Virtual service is an Istio configuration primitive that's created through a custom resource
definition in Kubernetes. It dynamically defines how traffic destined for an internet domain
name flows to a set of services inside the Kubernetes cluster, and this is all dynamic. This
means that the traffic can stream to any service within the mesh based on certain rules.

The following virtual service forwards all traffic coming from the Ingress gateway to
the productpage service in an istio-lab namespace. The virtual service binds to a
specific gateway. Remember that the virtual service can be changed dynamically—this is
the loose coupling between a gateway and a microservice:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - "*"
 gateways:
 - mygateway
 http:
 - match:
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage.istio-lab.svc.cluster.local
 port:
 number: 9080

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[111]

As per the preceding definition, the bookinfo virtual service routes the external HTTP
traffic of port 80 (which is implicit for the HTTP protocol) to the internal
productpage microservice at port 9080.

The virtual service is a way to create a hierarchy (top-down virtual services) to define the
traffic to different services using a routing path. This allows each team to manage their own
virtual service definitions instead of having one virtual service. For example, the top-level
virtual service splits the traffic based upon a path to a logical set of services, and then each
logical set can define a set of nested virtual services that are managed by separate teams to
provide a decoupled architecture of defining virtual services.

Traffic management capabilities such as routing rules, fault injection, and abort rules are all
defined through virtual services. We'll look at these in the following subsections.

Routing rules
Istio can route a service request based on HTTP headers and specific network
parameters. Based on routing rules, Pilot dynamically allows the sidecar proxy to select a
version of the service, defines tags based on source and destination, applies headers,
assigns weights to each service, and determines the service's incremental number. Users of
the microservice have no knowledge of the different versions as it doesn't disrupt their
work effort. The hostname and IP address of that service will still be accessible because the
sidecar proxy forwards all service requests and responses between the user and the
microservice.

Istio really shines through the use of virtual services to perform traffic routing based on the
following:

Routing traffic to a specific service (one to one)
Routing traffic to multiple services (one to many)
Routing traffic to multiple versions of a service (one to many)
Adding multiple match conditions to route traffic to different services
Routing rules to rewrite a URL
Routing rules to set a retry policy
Routing rules based upon HTTP headers/request cookies
Routing rules based upon the request URI

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[112]

Routing is explained with a hands-on example in Chapter 10, Exploring Istio Traffic
Management Capabilities.

Fault injection
The sidecar proxy provides a list of failure recovery network mechanisms for all the
services being managed by Istio. As good practice, operators should not skip end-to-end
service failure testing for the entire application. You may encounter restrictive timeouts of
individual components when you test for overall failure recovery. Let's understand this
with an example—you introduce 10 seconds of fault injection for end-to-end testing for a
full life cycle of a transaction. However, you notice a particular intermediate service failure
due to its own timeout of 6 seconds. You won't be able to notice the intermediate service
failure without the fault injection feature.

To prevent such matters, Istio provides transparent fault injection for the service mesh.
Instead of deleting service pods/containers to simulate packet loss at the TCP layer or to
troubleshoot network latency, the best recommendation is to treat all observed application
layers for fault tolerance, regardless of what the network failures might be. Continue to
identify and isolate meaningful failures so that they can be injected at the application layer
to enable application resiliency. Faults are injected into network requests that match certain
conditions and enable request restrictions that might be prone to faults.

There are two types of fault injections that can be deployed:

Delays
Aborts

A delay is a timeout failure that can be caused by recently spiked network latency or a
service overload from a downstream call. Aborts are service crashes that arrive from a
downstream service. The majority of the time, this is either a connectivity issue or an HTTP
400 or 500 error.

Testing microservices for faults can be very challenging, but with the use of the virtual
service primitive, it is possible to inject faults into the running application to test out their
resiliency. This is a very important method for the Site Reliability Engineering (SRE)
team.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[113]

By changing the definition of a service in real- time, the faults can be injected. For example,
the following definition in a virtual service will introduce a delay of 2 seconds for 5% of the
requests to the ratings service:

 hosts:
 - ratings
 http:
 - fault:
 delay:
 percentage:
 value: 0.05
 fixedDelay: 2s

Next, we'll introduce abort rules.

Abort rules
The following modification to a virtual service will inject an HTTP 400 code for 5% of the
requests and abort instead of terminating to simulate a failure:

spec:
 hosts:
 - ratings
 http:
 - fault:
 abort:
 percentage:
 value: 0.05
 httpStatus: 400
 route:
 - destination:
 host: ratings
 subset: v1

Next, we'll discuss the service entry feature.

Service entry
Service entry is an Istio primitive that's created through a custom resource definition in
Kubernetes. The purpose of a service entry is to add an external service entry to Istio's
abstract model, as shown in the architecture diagram, to make it look as if it was a service
in your mesh. Once an external service entry has been defined through service entry, it can
be subjected to the same policies, such as retry, timeout, and fault injection, since they are
applied to internal services.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[114]

Note that Istio configures the Envoy proxies so that they pass through
requests to external unknown services by default. In such cases, Istio's
features can't be used to control the traffic to destinations that are not
registered in the mesh.

By adding an external service running in a Virtual Machine (VM), we can expand the mesh
beyond the Kubernetes cluster. This also helps to add services from a different cluster to the
mesh to configure a multi-cluster Istio mesh on Kubernetes.

Through the use of the Egress gateway and the service entry primitive, we can configure
Envoy so that it performs TLS origination to secure the traffic to external endpoints.

The security posture should always begin with a deny (blacklist) and allow (whitelist) rule,
for example, deny access from all and then allow access to those who have a need for it. The
whitelist is a list of subjects that have a legitimate need for access, while the blacklist is a
deny rule that disallows services to either all or to a list of subjects.

The following is an example of allowing access to an external endpoint as a whitelisted
service for the microservices application:

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: ibm
spec:
 hosts:
 - www.ibm.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 resolution: DNS
 location: MESH_EXTERNAL

Next, we'll discuss the destination rule.

Destination rule
Destination rule is an Istio primitive that's created through custom resource definition in
Kubernetes. The virtual service is used to define the traffic rules. The destination rule sets
policies that apply to traffic that are intended for the service after routing has occurred.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[115]

The destination rules can be used for the following reasons:

Load balancing
Connection pool size
Evicting unhealthy hosts

A subset can be defined in destination rules to subdivide and label the instances of a
service. This means that you can split a service into subsets based upon labels.

The load balancing feature is built-in as opposed to there being an external load balancer.
The load balancer feature defines the connection pool size, while time to live or keep it live
is implemented through the Istio primitive destination rule.

Load balancing
Load balancing offers traffic management for transactions at Layer 4 of the OSI model,
which is the network protocol layer (TCP/UDP). Load balancing at L4 delivers traffic with
limited network information. It does this with an algorithm (that is, round-robin), which
calculates the best server based on the low number of connections and fast server response
times.

The debate of L4/L5 versus L5/L7 is irrelevant for us if the L4 layer cannot provide load
balancing for gRPC or HTTP/2 protocol, which uses a long-lived session with multiple
requests.

The OSI networking model for L4-L7 is explained in more detail
at https:/ / bit. ly/ 2vCFLie.

HTTP/1.1 protocol load balancing works well at the connection level (L4) since one
connection can have only one active request.

L7 load balancing works at the highest level of the OSI model. L7 bases its routing decisions
on various characteristics of the HTTP/HTTPS header, the content of the message, the URL
type, and the information in cookies.

In gRPC/HTTP/2, a connection can have multiple active requests (request
multiplexing). L4 connection-level load balancing will route traffic from this one long-lived
connection to just one microservice, even if we have "x" number of replicas running. This
can be seen in the following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bit.ly/2vCFLie
https://bit.ly/2vCFLie
https://bit.ly/2vCFLie
https://bit.ly/2vCFLie
https://bit.ly/2vCFLie
https://bit.ly/2vCFLie
https://bit.ly/2vCFLie
https://bit.ly/2vCFLie
https://bit.ly/2vCFLie

Understanding the Istio Service Mesh Chapter 7

[116]

The preceding diagram shows an L4 load balancer. For gRPC, all the requests end up at one
backend service, even though other replicas are available. Linkerd addresses this problem
at the proxy level by resorting to request-level routing for HTTP/2 and gRPC by
using L7 load balancing:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[117]

In the preceding diagram, you can see that a sidecar proxy opens connections to all of the
replicas of a backend service through the L7 load balancing request for gRPC/HTTP/2.

As an add-on to load balancing, sidecar will regularly check the health of each service
instance that's deployed within a platform. The sidecar proxy classifies a service instance as
unhealthy or healthy based on its health checks. If a service health check has multiple
failures and it surpasses the defined threshold, it will be removed from the load balancer. In
parallel, when a health check runs again on that service instance and it passes the specified
threshold, it will be added back into the load balancer. For example, if a service instance is a
shopping application and the page unexpectedly responds with an HTTP 5xx error, the
load balancer will immediately remove this service from the load balancer until the error is
corrected by the operator or other sources, such as a DB.
The following are the load balancing features that can be applied through destination rules:

Round-robin
Random
Weighted
Least requests

The following is an example of load balancing three subsets. As we can see, a single
destination rule is used to define multiple policies. There's a simple random load balancer
for the v1 and v3 subsets and a round-robin local balancer for v2:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: my-destination-rule
spec:
 host: my-svc
 trafficPolicy:
 loadBalancer:
 simple: RANDOM
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 - name: v3
 labels:
 version: v3

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[118]

The reviews virtual service has two rules:

All incoming requests with the Foo header that have a bar value go to the
reviews service's v2 subset.
All other requests go to the v1 subset.

This can be seen in the following code:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 Foo:
 exact: bar
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v1

One very important point to note about load balancing is that it occurs at the mesh level,
without requiring the use of an external proxy load balancer.

Circuit breaker
The circuit breaker is an integral pattern for making microservices resilient by limiting
failures, spiked latency, and other network anomalies that might disrupt a service's
workflow. This capability is configured at the application layer. We should enable circuit
breaker rules and then intentionally break the rules to test the resiliency of an application.
The most popular tasks that enable circuit breaking are for connections, requests, and
outlier detection.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[119]

Policies for circuit breaking can be defined as DestinationRule in the YAML
configuration file for a designated service. A circuit breaker rule is defined using
destination rules, which are a set of policies that are requested after a VirtualService
routing is defined and deployed. The DestinationRule policy execution should be a
restrictive task, and only service owners should prescribe what the load balancer, circuit
breaker, and TLS settings should be.

A circuit breaker helps an application to fail fast and it prevents the application from
stalling if it is waiting for an upstream service response.

We can set a limit of 100 connections for the reviews service's v1 subset through the
following rule:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: reviews
spec:
 host: reviews
 subsets:
 - name: v1
 labels:
 version: v1
 trafficPolicy:
 connectionPool:
 tcp:
 maxConnections: 100

When the v1 subset is used in a virtual service, the circuit breaker will trip when the
number of connections exceeds 100. This can happen if the reviews:v1 service is slow and
unable to handle a large number of concurrent requests. After the circuit breaker trips,
reviews:v1 will not receive any requests until the congestion clears.

Blue/green deployment
A blue/green deployment is one where old and new deployments are available, and you
can flip the traffic from one set to another in the case of some issues/problems. You can
perform a blue/green deployment using a destination rule with two subsets and then use a
virtual service to direct the traffic to a specific subset. Then, you can switch between them
by modifying the virtual service.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[120]

Canary deployment
The best way to understand the concept of a subset is to think about a canary deployment,
where you split traffic into two subsets based upon labels such as v1 and v2 and then
gradually shift the traffic to make a canary deployment production. Finally, you remove the
old production deployment from service.

The term canary comes from the practice of taking a caged canary (bird) into a mine where
the bird may die from carbon monoxide poisoning to ensure the miners don't die. This is
because carbon monoxide is odorless. In software, the same term is used to send a small
portion of the traffic to a newer service and expose it to a small set of friends, family,
trusted users, and so on to gauge its worthiness. Let's think of another example. Let's say
that you want to expose a brand new UI that works only on iPhone or Android to a select
group of people to gather feedback. You can expose the new service with limited traffic
flow to users that match the request routing (headers and so on).

Namespace isolation
Istio has a sidecar primitive that's created through custom resource definition in
Kubernetes. Istio configures every sidecar proxy so that they accept traffic on all of the
ports and forward traffic to any configured service.

The default behavior can be fine-tuned at the sidecar level to do the following:

Define ports and protocols that an Envoy sidecar proxy can accept
Limit the set of services that the Envoy proxy can reach

The sidecar primitive should be used in a large service mesh for efficiency as it reduces how
much memory the sidecar uses.

The following is an example of namespace isolation being done through the sidecar
resource in which all of the services in the istio-lab namespace can only reach services
running in the same namespace through the use of the ./* value of the hosts field:

apiVersion: networking.istio.io/v1alpha3
kind: Sidecar
metadata:
 name: default
 namespace: istio-lab
spec:
 egress:
 - hosts:
 - "./*"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[121]

Now, let's look at Mixer, the next component in Istio's control plane.

Mixer
Mixer is a general-purpose policy and telemetry hub. It enforces access control and usage
policies across the service mesh. Mixer includes a flexible plugin model that can abstract the
Envoy proxy and Istio-managed services. This model allows Istio to interface with a variety
of infrastructure backends.

Mixer is a platform-independent component of Istio that runs in Kubernetes or other
environments.

The base model of Mixer allows it to connect to a variety of access control systems for
authorization, telemetry capturing, quota enforcement, logging backend, and more. This
can be seen in the following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[122]

Mixer is a framework that can be seamlessly integrated with infrastructure layers to give
control to operations and remove policy logic from the control plane.

The sidecar proxy function is used to call Mixer before each request to perform condition
checks. This is also done after each request to report on telemetry data. This introduces
Mixer as a single point of the bottleneck, and this is avoided by the proxy to keep a cache of
precondition checks and to buffer telemetry data in order to avoid each hop to the Mixer.

The policy enforcement and telemetry collections are configuration-driven, which means
Mixer gives us control of the operations. Mixer insulates the Istio control plane from the
implementation details of individual backends.

Configuration of Mixer
The Mixer configuration is driven through Istio primitives, which are deployed in
Kubernetes through custom resource definitions. The Mixer primitives are as follows:

Handlers: handlers.config.istio.io
Instances: instances.config.istio.io
Rules: rules.config.istio.io
Adapters: adapters.config.istio.io
Templates: templates.config.istio.io

The adapters and templates Mixer primitives are used by vendors to integrate their
products with the Istio framework. Before we understand handlers, instances, and rules, it
is necessary to understand the purpose of attributes.

Attributes
Istio has a predefined dictionary of attributes that it uses. You can consider an attribute
similar to a key-value pair such as source.ip, whose value can be 10.0.0.10. These
attributes are used to fill the configuration for a particular handler. For example, an
attribute can be a label that we assign to a particular pod or service. This label could be
used to trigger some rules when we map this label to an instance of a template. Another
example of an attribute could be the IP address of the request, the size of the request, the
response code of the operation, and so on.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[123]

The sidecar proxy invokes Mixer for every request, and it gives Mixer a set of attributes that
describe the request and the environment. Mixer then processes these attributes to build an
instance so that a defined handler can invoke a backend. This can be seen in the following
diagram:

Istio has a fixed vocabulary that it understands. Refer to the following link for a list of
attribute vocabulary: https:/ /archive. istio. io/v1. 3/docs/ reference/ config/ policy-
and-telemetry/attribute- vocabulary/ .

Attributes expressions are used to configure instances, as follows:

version: destination.labels["version"] | "unknown"

The preceding expression will assign unknown to version (left-hand side)
if destination.labels["version"] is not defined.

Handlers
A handler is a set of configurations that's needed to instantiate an external adapter. For
example, a listchecker adapter needs the address of the dogstatsd server, which can be
provided through a handler that's passed to the Datadog instance. The following example
creates a handler for the listchecker adapter so that we can define whitelists and
blacklists:

apiVersion: config.istio.io/v1alpha2
kind: handler
metadata:
 name: whitelist
spec:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/

Understanding the Istio Service Mesh Chapter 7

[124]

 compiledAdapter: listchecker
 params:
 # providerUrl: ordinarily black and white lists are maintained
 # externally and fetched asynchronously using the providerUrl.
 overrides: ["v1", "v2"] # overrides provide a static list
 blacklist: false

The params list attribute of the specification is specific to a given adapter. A list of all
available adaptors for Mixer can be found at https:/ /archive. istio. io/v1. 3/docs/
reference/config/ policy- and- telemetry/ adapters/ .

Request mapping from attributes to adapter inputs is defined through instance
configuration. For example, the appversion instance maps the source pod or service label
version to the values of the params instances:

apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 name: appversion
spec:
 compiledTemplate: listentry
 params:
 value: source.labels["version"]

Note that templates are used to define a mapping between attributes and params. In the
preceding example, the listentry template is used to verify whether the value is present
for the label-defined version or not.

Rules
When a rule is created, it specifies when a particular handler with an instance should be
invoked. The following example is a rule that defines that it will invoke the whitelist
handler with an instance of appversion to check its version:

apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 name: checkversion
spec:
 match: destination.labels["app"] == "ratings"
 actions:
 - handler: whitelist
 instances: [appversion]

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters/

Understanding the Istio Service Mesh Chapter 7

[125]

Mixer's features, such as handlers, instance, and rules, help us to perform precondition
checking, quota management, and telemetry reporting. Mixer, through its plugin approach,
supports integration with backend services.

As of Istio version 1.0.x and above, the Mixer in-process model has been deprecated
because Mixer integrates with infrastructure backends through a set of adapters via
backend protocols. This process allowed users to create custom adapter templates, such as
data consumption.

The new out-of-process adapter for Mixer, currently in beta, is a similar concept but focuses
on using a gRPC adapter. Mixer structures incoming attributes to backend systems through
a template-based gRPC service that processes and receives data through requests. For
additional information, please refer to the following URL: https:/ /github. com/ istio/
istio/wiki/Mixer- Out- Of- Process- Adapter- Dev- Guide.

Next, we will look at Istio's security features, which are implemented through Citadel.

Citadel
Citadel provides authentication and authorization features. Its authentication feature,
which has built-in identity and credential management, enables service-to-service and end
user communication. Its authorization feature is used to control who can access your
services. Citadel is a Public Key Infrastructure (PKI) and provides and rotates certificates
for the services.

Istio really shines in service identity, RBAC, and end-to-end mTLS. Security
implementation does not require making any changes to the application's code. The Istio
security model is implemented through the following:

Citadel is Istio's central certificate authority for issuing keys and certificates and
their rotation.
Pilot distributes the authentication policies and provides secure naming services
using SPIFFE.
Mixer is the central place that provides authorization and auditing policies.
Envoy is the default proxy in Istio. Istio uses Envoy for edge proxies through
Istio gateways to provide secure communication between clients and servers.

In a distributed dynamic system, managing certificates and rotation can become very time-
consuming, complex, and error-prone when not all of the clients are known in advance.
Citadel takes away this complexity through a self-service model to establish end-to-end
encryption (mTLS) between microservices by injecting certificates into the microservices.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide
https://github.com/istio/istio/wiki/Mixer-Out-Of-Process-Adapter-Dev-Guide

Understanding the Istio Service Mesh Chapter 7

[126]

Citadel provides a self-signed root certificate and private key, which it uses to sign the
workload certificates. Citadel can also use a customer-supplied root certificate and key.

Next, we will look at the built-in PKI generate certificates and automatically rotate keys to
minimize exposure to compromised keys.

Certificate and key rotation
Istio provides us with the option of using a node agent in Kubernetes for certificate and key
rotation.

If you are using a demo install profile, the node agent won't be installed by default. To
install a node agent, you need to choose values-istio-sds-auth.yaml for the helm
install. Once installed, you should see the node agent running on every node. For example,
in our single VM, you will see only one node agent:

$ kubectl -n istio-system get pods -l app=nodeagent
NAME READY STATUS RESTARTS AGE
istio-nodeagent-smfz7 1/1 Running 0 3m35s

The node agent, when deployed, will provision certificates and keys:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[127]

The workflow for rotating certificates and keys is as follows:

The Envoy proxy sends a key and certificate request through the Secret1.
Discovery Service (SDS) API.
Then, the node's agent creates the private key and Certificate Signing2.
Request (CSR) when it receives the SDS request.
Citadel receives the CSR through gRPC, validates it, signs the CSR, generates the3.
certificate, and sends it to the node agent.
The node agent sends the key and certificate key to the proxy via the SDS API.4.
This process repeats at a certain interval for every service for certificate and key5.
rotation.

Istio recommends that we run Citadel in the istio-system namespace and only protect
access for administrators.

We will cover certificate and key rotation in more detail in Chapter
12, Enabling Istio Policy Controls.

Authentication
Authenticating service-to-service communication can be done in two ways:

Origin: The application is responsible for acquiring and attaching the JSON Web
Token (JWT) credential to the request.
Transport: Configuring mutual TLS between microservices.

Transport verifies and identifies the services that are trying to initiate a connection.
Through mTLS, this feature can easily be turned on and off without having to change any
code.

End user authentication, also known as origin authentication, validates the client, making
the service request either as a user or a device. Istio allows request-level authentication
through a JWT to validate and streamline developers using Auth0, Firebase, Google, or any
other customer authentication mechanism:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[128]

The preceding diagram shows the secure authorization steps for service requests. Let's go
through them in detail:

First, the authenticated identity will initiate a claim where the server will1.
successfully validate the user.
Next, the server will authorize JWT tokens.2.
The tokens are sent back to the client, where they will be stored after the3.
application has confirmed an authorized identity.
Assuming the identity is actively making requests for the service, passed JWT4.
tokens will continue to be processed and authorized at every request.

Both of these authentication protocols have policies that are stored within Istio's
configuration store through a Kubernetes API call. Pilot maintains these policies by keeping
them as the latest ones through a service sidecar proxy. Istio also allows authentication in
permissive mode to help users to manage the overall security posture of their environment
before it's fully enabled.

Strong identity
In a traditional monolithic environment, identity was defined mostly by hostname or IP
addresses. The following are the famous Apache HTTPD server rules:

Deny from All
Allow from 1.2.3.4

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[129]

In a distributed environment such as Kubernetes, due to its decoupled nature, the
workload can be deployed on any machine, so IP addresses may change at any time. As we
mentioned earlier, identity is either at origin or transport. At origin, we define identity as a
subject (human) that is authenticated in various ways. However, at the transport layer, the
old way of using IP addresses is no longer possible due to the dynamic nature of the
workload.

The Secure Production Identity Framework for Everyone (SPIFFE) specification is used to
assign an identity to a workload, and it remains the same regardless of where it runs in a
distributed environment. Istio has chosen a particular naming convention to provide an
identity to a workload, as follows:

spiffe://cluster.local/ns/istio-lab/sa/productpage
 <cluster-name><ns><name-space><sa><service-account-name>

As we can see, the spiffe prefix is mandated by the SPIFFE specification (such as HTTP).
cluster.local is the name of a cluster—it should be different for different Kubernetes
clusters if we're considering using Istio to span multiple clusters using a single control
plane. ns is fixed, followed by name-space, where the workload is running. sa is fixed and
service-account-name is the actual service account.

Citadel is the implementation of the SPIFFE specification and is used to build a security
solution in an untrusted network. Due to this, it is sometimes referred to as security in a
zero-trust network. Citadel issues SVID to the workload by signing the X.509 certificates
upon a CSR being sent by a node agent running on every node on behalf of the Istio sidecar
proxy running next to a workload. Once the proxy sidecar receives the certificate, it
presents it to other workloads.

It is important to note the short-lived nature of the certificates, which has merits in a zero-
trust network. If someone steals a certificate, the exposure is only for a short time.

Explaining the internal functionality of Citadel is beyond the scope of this book, and at a
very high level, it is enough to understand that it follows the Automatic Certificate
Management Environment protocol of Let's Encrypt (https:/ /letsencrypt. org) to issue
certificates and verify the identity of them with a set of challenges.

Once a reliable identity mechanism has been defined for use in the authentication process,
the next thing we need to do is associate an identity with Role-Based Access Control
(RBAC) to implement authorizations.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org

Understanding the Istio Service Mesh Chapter 7

[130]

RBAC for a strong identity
RBAC works by defining a set of permissions that need to be assigned to a role that is part
of service accounts or a list of users. Its main role is to authenticate services, initiate
communication requests, define custom properties for user role support, and optimize
performance through sidecar proxies.

Authorization
Over the years, applications have transformed and changed significantly. In parallel,
application security has transformed based on user experience from client to server and
vice versa. Authentication is about validating identity and verifying credentials against
policies for a specific service. Authorization is about what the identity is allowed to do
against what it is trying to do. Within the service mesh, authorization is inclusive to RBAC,
which provides namespace, service, and method-level access for microservices.

Enabling mTLS to secure service communication
To secure service-to-service communication, it is tunneled from the client-side to the server-
side via a sidecar proxy. Next, the inter-proxy communication is secured using mTLS. The
benefit of mTLS is that the service identity is not expressed as a token bearer. It can't be
stolen, duplicated, or replayed from a source it hasn't been authenticated with. Istio's
Citadel uses the concept of secure naming and protection against attacks. The client- side
verifies an authenticated service account and only allows the named service to run and
traverse any network requests.

Istio's authorization feature also provides a cluster-level certificate authority with
automated certificate management. Some of its key capabilities are as follows:

For every service account, it generates a certificate and key pair.
Using Kubernetes secrets, it distributes certificates and keys to the appropriate
service pods.
It sets up periodic certificates and key rotation.
It sets up certificates and keys and disables policies if they're not being used or
have been expired, stolen, and so on.

Whenever someone connects to any secure site, they are using TLS because this validates
the server identity to the client and provides an encryption channel between the server and
client. For service-to-service communication, the same concept is applied from the server to
the client-side. To validate the client-side identity, a webhook application should request
confirmation.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[131]

To do this, the mTLS feature can be used to validate client-level authentication by sending a
certificate request message. This message will include the following:

It includes a list of distinguished root certificates that are tested by the server.
The client responds to the server through a certificate message stating it is a
distinguished name.
The server verifies the client certificate.
If the verification succeeds, the server has successfully authenticated the client.

mTLS authentication is widely managed for business applications that have a limited
number of homogeneous clients connecting to different web services. Overall, security
requirements are a higher priority when implementing mTLS versus any other consumer.

mTLS has two modes—permissive and strict. Permissive mode allows traffic in the HTTP
and HTTPS protocols, whereas strict mode only allows traffic using the HTTPS protocol.

Secure N-to-N mapping of services
Securely naming services is an N-to-N mapping listed by server identities and detailed in
certificates. All of the service names are defined by service discovery or DNS files. This
mapping creates a list of service communications by authenticating an identity so that they
can submit a client request for any service. For instance, the Hello identity has permission to
authorize and run the World service. This is monitored by the Kubernetes API server, which
keeps track of all secure naming conventions and distributes this list to a service sidecar
proxy.

Secure naming is critical for multiple reasons, and the following scenarios will highlight the
significance of having one:

A number of servers are running a service called Accounts, and only
the Payable identity is allowed to authenticate these transactions.
If a rogue user has access to the certificate and keys for another identity called
Finance, their objective is to inspect all of the traversed data from the client,
understand the service, and so on.
The rogue user will set up and deploy an imposter server with the exact keys and
certificates that have been detailed for Finance.
If the rogue user has hacked the DNS file or service discovery and mapped
Accounts to the imposter server.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[132]

If a new client calls the Accounts service, with the forged server in place, the Finance identity
certificate is extracted. Through the secure naming information, Finance will be checked if it
is allowed to run the Accounts service. The client will detect that this request is not allowed
because only Payable has been authenticated. Through this check, authentication will fail,
and the rogue user will not be able to process their transaction.

This is a very critical step to securing communication within services because only service-
specific identities that have been named within secure naming are allowed to initiate and
receive requests. Without this process in place, rogue identity authentications such as man-
in-the-middle attacks can hack the services, which can be detrimental to the reputation of a
business.

Policies
Policies in Istio are defined through Istio primitive policies that are implemented through
the CRD. You can check CRD policies in your Istio cluster like so:

$ kubectl get crd -l app=istio-citadel
NAME CREATED AT
meshpolicies.authentication.istio.io 2019-07-30T02:59:14Z
policies.authentication.istio.io 2019-07-30T02:59:14Z

You can configure policies in the Istio service mesh to enforce various rules at runtime,
such as the following:

Authentication
Authorization
Rate limiting to dynamically limit the traffic to a service
Denials, whitelists, and blacklists, to restrict access to services
Header rewrites and redirects

Implementing authentication
The policy scope for authentication can be for an individual service, all of the services in a
namespace, or all of the services in a service mesh. Let's go through what happens:

The policies are defined at the Citadel level.1.
Pilot translates these policies to Envoy proxies to perform the required2.
authentication mechanisms.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[133]

Pilot sends the configuration details, such as certificates and keys, to the Envoy3.
proxy asynchronously.
As soon as the Proxy attached to a microservice receives the configuration, new4.
authentication artifacts take effect.

Origin authentication is the responsibility of the client application and is used to acquire
JWT and attach it to the request. You can define JWT either for any request or for all of the
requests except public paths, such as /healtz or /status, to expose them without
authentication. You can also only define JWT for the /admin path and expose all of the
others to the public. Since this is application language-specific, we will not go into the
details of this.

Transport authentication is implemented through mTLS, and the destination rules defined
by Pilot determine which services in the mesh should initiate a TLS connection through the
Envoy proxy:

For example, let's say we define the policy for the ns1 namespace for Service-D in Citadel
and Pilot pushes the mTLS policy to Service-D and the ns1 namespace and leaves the other
services intact. Similarly, two policies are defined for the ns2 namespace. One is for
Service-A, while the other is for all except Service-A. Note that the Target: All policy is
overridden by the one defined explicitly for Service-A.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[134]

The preceding is known as policy enforcement at the namespace level. You could also have
policy enforcement at the mesh level, where this will be applied to all the services in a
mesh. In such a case, only one policy can be defined to avoid conflict precedence.

Here is an example of MeshPolicy:

apiVersion: "authentication.istio.io/v1alpha1"
kind: MeshPolicy
metadata:
 name: "default"
spec:
 peers:
 - mtls:

The preceding policy must have the default name since the scope is service mesh wide.
There is no targets: section. If you change the kind to Policy and add a namespace to
the metadata: section, the targets: section shouldn't be defined since the scope is
namespace wide. The targets can be defined to limit the scope at the service level.

The peers: section with mtls: {} is equivalent to mtls: {mode: STRICT} for STRICT
mTLS. You could define the PERMISSIVE mode for mtls: like so:

peers:
- mtls:
 mode: PERMISSIVE

STRICT mode only allows HTTPS, while PERMISSIVE mode allows both HTTP and
HTTPS.

The following example defines two policies. The first policy, called default, applies mTLS
for all of the services in the ns1 namespace:

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: default
 namespace: ns1
spec:
 peers:
 - mtls:{}

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[135]

However, the following policy removes mTLS from Service-A with the use
of targets and by specifying the mTLS mode:

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: SVC-A-mTLS-disable
 namespace: ns1
spec:
 targets:
 - name: Service-A
 peers:
 - mtls:
 mode: DISABLE

Transport authentication, as we explained previously, provides granular control. Transport
authentication can be implemented at the Pilot level through the use of destination rules,
like so:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: productpage
spec:
 host: productpage
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: v1

A destination rule is defined for the productpage service, which defines a v1 subset with a
traffic policy of ISTIO_MUTUAL, which is mTLS. The v1 subset we defined here will be used
in a virtual service.

As you can see, there are two different implementations for mTLS. Use one for your
implementation and stick to it.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[136]

Implementing authorization
Authorization is implemented through Kubernetes RBAC, which can be defined at the
namespace level, service level, or method level within a service. Authorization is
implemented natively at the Envoy proxy level, and it supports HTTP, HTTPS, HTTP/2,
and TCP.

Istio uses Kubernetes primitives such as Role, RoleBinding, ClusterRoles, and
ClusterRoleBinding. It creates its own CRD, such as AuthorizationPolicies,
ClusterRbacConfigs, RbacConfigs, ServiceRoleBindings, or ServiceRoles, as
follows:

$ kubectl get crd | grep -i rbac
authorizationpolicies.rbac.istio.io 2019-07-30T02:59:14Z
clusterrbacconfigs.rbac.istio.io 2019-07-30T02:59:14Z
rbacconfigs.rbac.istio.io 2019-07-30T02:59:15Z
servicerolebindings.rbac.istio.io 2019-07-30T02:59:15Z
serviceroles.rbac.istio.io 2019-07-30T02:59:15Z

Authentication is enabled through the use of ClusterRbacConfigs:

apiVersion: "rbac.istio.io/v1alpha1"
kind: ClusterRbacConfig
metadata:
 name: default
spec:
 mode: 'ON_WITH_INCLUSION'
 inclusion:
 namespaces: ["default"]

The preceding code creates default ClusterRbacConfig that grants ON WITH
INCLUSION on the default namespace. mode can be one of the following:

OFF: This mode disables authorization.
ON: This mode enables authorization for all of the services in the mesh.
ON_WITH_INCLUSION: With this mode, we enable authorization for the services
and namespaces specified in the inclusion field.
ON_WITH_EXCLUSION: We can enable authorization for all of the services in the
mesh through this mode, except the services and namespaces defined in the
exclusion field.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[137]

Enabling authentication does not mean that one is authorized. Istio primitives such as
ServiceRoles and ServiceRoleBinding are used to define authorization policies:

ServiceRole is a group through which we can set permissions to access
services.
ServiceRoleBinding is the link between ServiceRole and a user, a group, or
a service.

The following is an example of ServiceRole in which permissions are defined for all of
the methods for the services starting with a name test. However, only READ access (GET
and HEAD) is defined for the path ending in reviews in a microservice bookstore, which
resides in a default namespace:

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: tester
 namespace: default
spec:
 rules:
 - services: ["test-*"]
 methods: ["*"]
 - services: ["bookstore.default.svc.cluster.local"]
 paths: ["*/reviews"]
 methods: ["GET", "HEAD"]

Defining permissions is no good unless they are granted to a user, group, or a service
account. Granting ServiceRole is done through ServiceRoleBindings.

As an example, the following grants the preceding service role (tester) to two subjects:

service-account-a

istio-ingress-service-account, were the JWT email claim is a@foo.com

This can be seen in the following code:

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: test-binding
 namespace: default
spec:
 subjects:
 - user: "service-account-a"
 - user: "istio-ingress-service-account"
 properties:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[138]

 request.auth.claims[email]: "a@foo.com"
 roleRef:
 kind: ServiceRole
 name: "tester"

If you want to apply a tester role (a set of permissions) to the public, you can use * in the
preceding definition. Now, any authenticated or unauthenticated user will be able to access
the bookstore service.

The preceding example shows authorization for HTTP/HTTPS protocols. The following is
an example of authorization being used to access a service using a TCP protocol such as a
database service:

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: mongodb-viewer
 namespace: default
spec:
 rules:
 - services: ["mongodb.istio-lab.svc.cluster.local"]
 constraints:
 - key: "destination.port"
 values: ["27017"]

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: bind-mongodb-viewer
 namespace: default
spec:
 subjects:
 - user: "cluster.local/ns/istio-lab/sa/bookinfo-ratings-v2"
 roleRef:
 kind: ServiceRole
 name: "mongodb-viewer"

As we can see, a service role creates permissions to access the MongoDB service in
the istio-lab namespace with a constraint to access port 27017. This permission is
defined through ServiceRole and is granted to the bookinfo-ratings-v2 service in
the istio-lab namespace. This granular control ensures that the MongoDB service is only
accessed from a service that has a legitimate need and blocks access to anyone who tries to
access the database directly.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[139]

This authentication and authorization implementation is implemented in Istio natively.
However, Mixer allows you to plug in your own or third-party authentication and
authorization modules.

Policy examples can be found in Chapter 12, Enabling Istio Policy Controls, where quota
enforcement, rate limits, whitelists, and blacklists are shown through hands-on exercises.

So far, we've looked at the features of Istio's control plane and its capabilities, which are
used to define backend configuration (Galley), pushdown policies (Pilot), enforce quotas,
collect metrics (Mixer), and implement security (Citadel). The actual implementation is
done at the data plane level, where microservices-based applications will run. Next, we will
deep dive into Istio's data plane capabilities.

Data plane
The data plane consists of one or more nodes running microservices containers in pods.
Each pod has a sidecar that takes care of inter-service communication.

The sidecar proxy is agnostic to the language of the microservice since it works at the
network layer. The proxy in a data plane intercepts inbound and outbound traffic for a
microservice. With it, we can perform the following tasks:

Traffic management
Service-to-service user access control
Authentication
Communication encryption (TLS or mTLS)
Monitoring
Logging
Timeouts
Rate limits
Retries
Circuit breaking
Load balancing
Health checks

Kubernetes uses pods as single units where multiple containers within a pod share the
same IP address or service name. All of the sidecar proxies conceptually form a data plane.
Together, the control plane and data plane form the service mesh.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[140]

A service mesh proxy can be configured, deployed, and implemented in Kubernetes or
non-Kubernetes environments.

In a Kubernetes environment, the sidecar proxy runs in the application pod, and there
could be many such pods in a node. On the other hand, a sidecar proxy can run at a host
level such as VM or bare metal in a non-Kubernetes environment. The next section will help
us to understand sidecar proxies in more detail.

Sidecar proxy
The sidecar proxy pattern is at the heart of the data plane and provides service-to-service
communication, as shown in the following diagram:

The microservices do not communicate with other microservices directly; this
communication is done through the sidecar proxies. The proxy is tightly coupled with a
container in a pod, and this proxy architectural pattern fits well in a Kubernetes
environment.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[141]

Istio's Envoy sidecar proxy
The evolution of the sidecar has been taking place over the last couple of years. The popular
among them are Lyft's Envoy and Buoyant's Linkerd.

Lyft's Envoy creator is Matt Klein. Envoy is used by Istio, AWS App Mesh, and
Ambassador. Netflix has built its own proxy, called Prana, but it is not open source, so it is
out of the scope of this book.

Nginx has been a very popular sidecar proxy that provides load balancing, rate limits, TLS
offloading, traffic split, traffic distribution, and A/B testing. Modern sidecar proxies such as
Envoy and Linkerd are well optimized and have a small footprint so that they work well
with individual microservices as a sidecar, whereas Nginx fits well in front of the entire
microservices application as it allows thousands of concurrent requests, which makes it an
ideal reverse proxy and static content provider. Nginx can also run as a sidecar proxy the
same way Envoy does. Envoy can also run as an edge proxy instead of running Nginx for
TLS termination, and it can also replace HAProxy as a load balancer. Nginx supports
HTTP/2 for downstream connections, whereas Envoy supports HTTP/2 for both
upstream/downstream communications.

One of the reasons for the adoption of Envoy is how easy it is to implement fully functional
traffic management, which would take a lot of work and effort to implement in Nginx.

Lyft's Envoy is a graduated open source project from the Cloud Native Computing
Foundation (https:/ / cncf. io) and is being used by IBM, Google, AWS, Microsoft,
Salesforce, Uber, Lyft, Airbnb, and many others.

What is Envoy?
Envoy, as per its documentation (https:/ / www.envoyproxy. io/ docs/ envoy/ latest/ intro/
what_is_envoy), is an L7 proxy and communication bus designed for large modern service-
oriented architectures.

Envoy's main goal is to make networks transparent to applications, and it attempts to do
this through the following processes:

Out of process architecture: This is also known as the sidecar proxy, which runs
alongside the application and is language-agnostic.
Modern C++: Envoy is written in C++ to minimize latency.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy

Understanding the Istio Service Mesh Chapter 7

[142]

L3/L4 filter: Envoy is an L3/L4 network proxy that provides a pluggable filter
chain mechanism.
HTTP L7 filter: There's an HTTP L7 filter layer to support buffering, rate
limiting, and routing/forwarding.
HTTP/2 support: Envoy supports both HTTP 1.1 and 2 can operate as a
transparent HTTP/1.1 to HTTP/2 proxy in both directions. HTTP/2 allows us to
create a mesh of persistent connections to multiplex requests/responses.
HTTP L7 routing: It routes requests based upon a path, authority, content type,
and runtime values.
gRPC support: It supports routing and load balancing gRPC requests and
responses.
Service discovery and dynamic configuration: There's a dynamic configuration
API for centralized management.
Health checking: There's a active health checking for upstream services and to
determine healthy load balancing targets.
Front/edge proxy support: Envoy's primary use is for service-to-service
communication as a front (sidecar) proxy, but it can also act like an edge proxy,
similar to Nginx.
Best in class observability: The statistics collection can be viewed through an
admin port, and it uses statsd as a statistics sink.

Next, we'll learn about the Envoy architecture.

Envoy architecture
Envoy provides various service mesh capabilities such as dynamic real-time out of band
configuration without the need to restart it. It also supports listeners, filters, L3/L4 filters,
HTTP L7 routing, TCP proxy, support for HTTP 1.1 and HTTP/2 protocol, connection
pooling, load balancing, priority request routing, observability, RBAC, rate limiting, and
traffic shifting/splitting, all of which is managed through a chain of filters for Envoy
connection handling.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[143]

The following diagram is of the capability/architecture matrix of Envoy:

In the preceding diagram, we can see Envoy's proxy features, which are leveraged with the
proper configuration in Istio. For example, Envoy is a powerful lightweight proxy engine,
and Istio has more than 8,000 lines of code for its configuration. Istio hides that complexity
from the end user to provide out-of-the-box solutions so that they can use a sidecar proxy
with each microservice.

Deployment
Envoy comes packaged as a Docker container. If you need to run it without a container, you
will need to build it from the source. Envoy is like an engine, and being familiar with it is
required if you wish to configure it for serious use without using a control plane for
automation. A service mesh provider such as Istio, which is in an open source space, or
AWS App Mesh, which is in a closed space, takes care of the right configuration with the
proper plumbing through a control plane so that it can be used out of the box.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[144]

Its ease of use is evident from the fact that once Istio has been deployed, we only have to
label a namespace with istio-injection=enabled and the rest is taken care of
automatically. If a particular pod in this namespace doesn't get its sidecar, the pod can be
annotated (for example, sidecar.istio.io/inject: False) and that pod won't get the
sidecar.

In Kubernetes, a namespace is labeled, but the pod is annotated.

For example, let's assume that Istio has already been installed and that we label the
namespace default with an annotation of istio-injection=enabled and then deploy
the application. The Envoy sidecar proxy will be injected automatically. The following code
shows this:

Label the default name space to enable auto injection of the Envoy proxy
$ kubectl label namespace default istio-injection=enabled

Install busybox pod
$ kubectl create -f https://k8s.io/examples/admin/dns/busybox.yaml

Check the pod and you should see sidecar injected automatically
With 2/2 under the READY column
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
busybox 2/2 Running 0 3m55s

If you describe the busybox pod, you will be able to see details about the Envoy sidecar
proxy.

Notice that the busybox pod has one init container, istio-init, that initializes the proxy.
The busybox container is created and the istio-proxy sidecar proxy is also created with
the proper command-line parameters:

$ kubectl describe pod busybox
Name: busybox
Namespace: default
...
Init Containers:
 istio-init:
 Image: docker.io/istio/proxy_init:1.2.2
 Args:
 -p
 15001
 -u

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[145]

 1337
 -m
 REDIRECT
 -i
 *
 -x
 -b
 -d
 15020
Containers:
 busybox:
 Image: busybox:1.28
...

The following code block shows the sidecar implementation of istio-proxy:

 istio-proxy:
 Image: docker.io/istio/proxyv2:1.2.2
 Port: 15090/TCP
 Host Port: 0/TCP
 Args:
 proxy
 sidecar
 --domain
 $(POD_NAMESPACE).svc.cluster.local
 --configPath
 /etc/istio/proxy
 --binaryPath
...

Injecting an Envoy sidecar proxy into a deployment happens through Kubernetes mutating
the admission webhook controller. The mutating controller modifies the object before it's
sent to Kubernetes. In this case, the busybox deployment YAML file does not contain any
information regarding deploying the sidecar proxy. However, when the deployment begins
in the default namespace, which is labeled with istio-injection=enabled, the webhook
admission controller is called, which modifies the busybox deployment so that it includes
the sidecar proxy.

It is important to note that the deployment of the sidecar proxy is a feature of the Istio
control plane, which automates the process. For example, configmap's istio-sidecar-
injector contains the templates that can be used manually using istioctl or through a
webhook admission controller to modify the application's deployment.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[146]

Fortunately, we don't have to worry about how a sidecar proxy deployment happens. It's
part of the control plane, which makes the process easy since all we have to do is label a
namespace. Everything else is taken care of automatically.

Now that we've looked at the data plane and how it's implemented, we can move on. The
most essential feature of Istio is the tools it uses for its observability features, without which
it is next to impossible to figure out what is going on in a distributed application. In
contrast to monolithic applications, distributed microservices applications come with
complex test capabilities, log collections, and knowledge of what's happening in the service
mesh. Istio bundles the necessary tools to provide such capabilities. We'll explain this in
more detail in the next section.

Observability
Mixer in Istio is responsible for collecting the detailed telemetry data that's generated by the
service proxies on the traffic that flows through it. Three different types of telemetries —
metrics, logs, and traces — are collected.

Istio offers out of the box monitoring and dashboard visualization capabilities so that we
can monitor service mesh traffic. Telemetry in Istio is currently comprised of two
components:

Prometheus is a data store for metrics that it collects through the pull model. It
has its own GUI for management purposes.
Grafana is a robust graphing tool to show the data. It is pre-configured with an
add-on instance for Istio and is configured to start with Prometheus, which
collects data from each Istio component.

The Grafana dashboard is comprised of three main views: summary, individual services,
and individual workloads. Overall, the mesh summary provides a holistic global view of
the entire service mesh and shows protocol metrics for HTTP, HTTPS, and gRPC. The
microservices provide metrics about individual requests and responses for all TCP
workloads.

Istio has also adopted a visualization project called Kiali (https:/ /kiali. io). It is installed
by default using a demo profile. Kiali is a superb observability tool that helps us to find out
which microservices are part of the service mesh, how they are connected with each other,
and how they are contributing to network traffic.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kiali.io
https://kiali.io
https://kiali.io
https://kiali.io
https://kiali.io
https://kiali.io
https://kiali.io

Understanding the Istio Service Mesh Chapter 7

[147]

Kiali can be used to observe external services through Istio's implementation of
ServiceEntry. For example, you can determine how much traffic is being sent to an
external service by observing it through Kiali.

To recap, Kiali provides a real-time graphical view of designated namespaces to display
application and workload interactions since contextual data to be visualized with its
dashboard. It provides detailed information at the application layer about the overall
application health and provides a detailed list of its designated workloads. For Istio, there
is a designated config menu option that lists all the available configuration objects and
metrics associated with a service. It can validate YAML configurations by highlighting any
errors and enabling warning and error severity flags if the YAML validation hasn't been
configured correctly.

Distributed tracing through Jaeger helps us to find out what network paths are slower in
the service mesh and how to identify any bottlenecks.

In the upcoming Chapter 13, Exploring Istio Telemetry Features of this book explains explains
the telemetry functions that can be used out of the box from an observability point of view.

Summary
In this chapter, you learned that Istio is a very feature-rich open source service mesh project
that uses adapters to integrate with external telemetry, authentication, authorization
systems. As we have seen, the four main categories of Istio are Traffic Management,
Security, Policies, and Telemetry, all of which are covered in detail in their own chapters.

Istio's architecture of Pilot, Mixer, Galley, and Citadel forms a control plane, while the
proxies attached to the service pods form the data plane, which provides a complete service
mesh with a separation between development and operations. The Istio service mesh is a
very powerful tool in the hands of the SRE team and is used to control traffic, manage
security, implement policies, and observe the service mesh.

Pilot, as its name suggests, is the main navigator for the Envoy engines and steers the
application in the right direction. The Mixer plug-in model allows external telemetry,
authentication, authorization, and other modules to integrate with Istio to provide
extensibility. Galley is the behind the scenes configuration manager for different Istio
components. Finally, Citadel is the certificate authority for Istio. It offers a self-service
model so that we can implement mTLS for an entire application by abstracting all the
internal details of complexities and providing the best in class security model for the
application by frequently rotating certificates and keys.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[148]

The Istio service mesh architecture is evolving rapidly, and new functionality is being
added constantly. When we started working on this book, Istio was at version 1.0.3, but
now, it's already at version 1.5.0. Istio has evolved and has become production-ready. Any
future enhancements that are made to Istio will focus on optimizing the performance of its
components.

In the next chapter, to help us learn more about Istio, we will build a demo application and
show you how it works without Istio at the helm. Then, in subsequent chapters, we will
implement traffic management, security, policies, and telemetry to show you how to adopt
Istio's service mesh features without having to modify or code anything in the existing
application.

Questions
A service mesh works at which layer of the network?1.

A) Layer 7
B) Layer 3/4

Libraries such as Hystrix and Finnagle were excellent in abstracting traffic2.
routing capabilities, but why did Envoy prove to be successful for cloud-native
applications?

A) The libraries were for Java applications, and they needed to be ported to other
applications, whereas the Envoy proxy sidecar was language-agnostic and could
work with polyglot applications.
B) An update in the library will force an application to update, whereas the Envoy
proxy can be upgraded independently of the application microservices.
C) Libraries can manage traffic, but load balancing is an outside function, whereas
it is integrated with the Envoy proxy with dynamic rules and configuration
propagation through Istio components.
D) All of the above.
E) None of the above.

The Istio control plane is a single point of failure for microservices applications.3.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[149]

The true service mesh is formed through Envoy sidecar proxies.4.

A) True
B) False

Istio works at a single cluster level and can't span multiple clusters.5.

A) True
B) False

Service discovery in Istio is tightly integrated with Kubernetes, but it can also6.
work with external service providers.

A) True
B) False

Pilot is responsible for managing traffic, whereas Envoy pushes the configuration7.
to Pilot.

A) True
B) False

Istio primitives such as Destination Rules, Gateway, Virtual Service, and so on8.
can only be created through istioctl but not using kubectl.

A) True
B) False

Implementing Istio transport security for mTLS is a self-service model.9.

A) True
B) False

You can observe the service mesh for connectivity and traffic patterns through10.
Kiali.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Istio Service Mesh Chapter 7

[150]

Further reading
The OSI Model Explained: How To Understand (And Remember) The 7 Layer Network
Model, Shaw Keith, Network World, 2019: https:/ /www. networkworld. com/
article/ 3239677/ the- osi- model- explained- how- to- understand- and-
remember- the- 7-layer- network- model. html

Amalgam8: An Integration Fabric For Microservices In The Cloud - Archive Of The
IBM Cloud Blog Rothert Doug, Archive Of The IBM Cloud Blog, 2019: https:/ /
www.ibm. com/ blogs/ cloud- archive/ 2016/ 06/amalgam8- integration- fabric-
microservices- cloud/

Istio/Community, GitHub, 2019: https:/ / github. com/ istio/ community#istio-
authors

Observability, Istio, 2019: https:/ /archive. istio. io/v1. 3/docs/ concepts/
observability/

Policies and Security, Istio, 2019: https:/ /archive. istio. io/v1. 3/docs/
concepts/ security/

Traffic Management, Istio, 2019: https:/ /archive. istio. io/ v1.3/ docs/
concepts/ traffic- management/

Envoy Proxy, Envoyproxy.Io, 2019: https:/ /www. envoyproxy. io/

Kiali, Kiali.Io, 2019: https:/ / www. kiali. io/

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://www.ibm.com/blogs/cloud-archive/2016/06/amalgam8-integration-fabric-microservices-cloud/
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://github.com/istio/community#istio-authors
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/observability/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://archive.istio.io/v1.3/docs/concepts/traffic-management/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/
https://www.kiali.io/

8
Installing a Demo Application

Before we go ahead and install the Istio service mesh and explore its capabilities, we will
install a demo application known as BookInfo, which was created by Istio (https:/ /istio.
io). This demo application will help us find out about Istio's capabilities, such as traffic
management, security, policies, and observability, which we'll be looking at in more detail
in the upcoming chapters. This chapter will show you the basic functionality of a demo
application and how it behaves without using any Istio capabilities.

In a nutshell, we will cover the following topics in this chapter:

Overview of Istio's BookInfo application
Deploying the BookInfo application in Kubernetes
Enabling a DNS search for Kubernetes services in a VM
Understanding the BookInfo application

Technical requirements
To complete the exercises in this chapter, you will need the following:

A Windows 10 PC or laptop or an Apple MacBook, as per the minimum
configuration requirements
A Kubernetes environment
Internet access to your host machine so that you can download applications in
the VM running Kubernetes

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io

Installing a Demo Application Chapter 8

[152]

The GitHub page for this chapter is https:/ /github. com/ servicemeshbook/ istio/ labeled
Chapter 08 - Installing a Demo Application and will be updated as per the
release schedules of Kubernetes.

You need to have a fair understanding of Kubernetes before diving into
the code exercises provided in this chapter. Please refer to the books
mentioned in the Further reading section for more information. For
detailed information regarding the installation of Kubernetes, please refer
to Chapter 6, Building Your Own Kubernetes Environment.

Exploring Istio's BookInfo application
BookInfo is an open source application used by the Istio community to test and
demonstrate various Istio features. A community of developers maintains it at https:/ /
github.com/istio/ istio. The sample application represents a mix of programming
languages so that we can realize the benefits of Service Mesh in later chapters.

Importantly, we don't need to make any changes in the application code to provide routing,
telemetry, and policy enforcement. Think of this as a DevOps environment in which no
coding is required to implement operations, which typically requires instrumentation
within the application itself. Today, this is a shift in application development, and
Operations can fulfill its task without making any changes to the application.

The Istio BookInfo application is available at https:/ / github. com/ istio/
istio/ tree/ master/ samples/ bookinfo.

BookInfo application architecture
The BookInfo microservice is a polyglot application that contains six services:

Product Page: Programmed using Python
Reviews (v1, v2, and v3) Pages: Programmed using Java
Detail Page: Programmed using Ruby
Ratings Page: Programmed using Node.js

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/servicemeshbook/istio/
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo

Installing a Demo Application Chapter 8

[153]

The following diagram shows the flow of a polyglot microservice application:

When we run the Bookinfo application, the productpage service receives traffic from the
outside world through the Istio Ingress gateway. The productpage microservice calls the
following:

The details microservice, to get the details of the book
The reviews microservice, to get the reviews of the book

As shown in the preceding diagram, the reviews microservices have three versions. By
default, the requests from productpage will be round-robined to all three versions of the
reviews. reviews-v1 does not call the ratings service at all, unlike reviews-v2 and
reviews-v3, reviews-v1 returns immediately and shows no stars on the
productpage display, and reviews-v2 displays black stars, whereas reviews-
v3 shows red stars on the productpage display. Due to the absence and color of the stars,
we can identify which specific version of the reviews served the request from
productpage. Let's take a look at this structure:

First, users will log in to the main page, which is the main view. This is called the1.
Product page.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[154]

Next, users can submit a book rating through the reviews microservice, which2.
has three versions: v1 has no stars, v2 has black stars, and v3 has red stars.
Finally, the Details microservice provides a high-level overview of the selected3.
book.

The following image of the BookInfo application shows the product page, which contains
the details, reviews, and ratings microservices:

In the upcoming sections of this chapter, we will provide a walkthrough of how to deploy
BookInfo and validating that deployment by checking its availability and overall access to
an external network.

Deploying the Bookinfo application in
Kubernetes
BookInfo will be deployed in our Kubernetes environment using the deployment YAML
file provided by Istio's public GitHub page: https:/ /archive. istio. io/v1. 3/docs/
examples/bookinfo/ . Observe the following steps to install the BookInfo application:

Create a separate namespace that will be used to deploy the application:1.

$ kubectl create namespace istio-lab
namespace/istio-lab created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/
https://archive.istio.io/v1.3/docs/examples/bookinfo/

Installing a Demo Application Chapter 8

[155]

Now, we will grant the Cluster Admin role to the default service account in2.
the istio-lab namespace to keep things simple. This approach of
granting cluster-admin to a namespace is just for convenience, and it should
not be the norm:

$ kubectl create clusterrolebinding istio-lab-cluster-role-binding
--clusterrole=cluster-admin --serviceaccount=istio-lab:default
clusterrolebinding.rbac.authorization.k8s.io/istio-lab-cluster-
role-binding created

Next, download the bookinfo demo application YAML:3.

$ mkdir -p ~/servicemesh
$ curl -L
https://raw.githubusercontent.com/istio/istio/master/samples/bookin
fo/platform/kube/bookinfo.yaml -o ~/servicemesh/bookinfo.yaml

Now, deploy the bookinfo application:4.

$ kubectl -n istio-lab apply -f ~/servicemesh/bookinfo.yaml
...
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
...
deployment.apps/productpage-v1 created

The Docker images for the bookinfo app will be downloaded5.
from docker.io/istio/*.
Finally, check the progress of this BookInfo microservice application deployment6.
by checking kubectl -n istio-lab get all. Note that it will take a few
seconds to a few minutes for the pods to be ready and for the Kubernetes services
to be enabled through the endpoints.

Now that we've gone through the scenario of deploying the BookInfo application, let's
validate a fully qualified domain name for the Kubernetes service that's been deployed
within the VM. This process can remove the dependency of using an IP address to access
the Kubernetes service.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[156]

Enabling a DNS search for Kubernetes services
in a VM
Microservices are accessed through Kubernetes services, which have a permanent name
such as kubernetes.default.svc.cluster.local for the Kubernetes service name in
the default namespace. The default domain name of the cluster is cluster.local.
Kubernetes runs its DNS server using the kube-dns service in the kube-system
namespace.

In the VM that we are using, no route has been defined for the internal Kubernetes services,
so we can't access the internal service name from the VM.

In the following steps, we will validate the domain name for the Kubernetes service:

Run the following command:1.

$ dig +search +noall +answer kubernetes.default.svc.cluster.local

If the preceding command times out, this means it can't find a DNS server to
resolve the Kubernetes service name.

Note that this step is only needed for the purpose of following the
exercises in this book. You may not have to follow these steps in a product
quality Kubernetes environment, which is expected to have a DNS server.

Log in as root to either verify or add the following entries to2.
your /etc/resolv.conf for the Kubernetes DNS server. This is done so that
you have proper name resolution for the Kubernetes services:

search cluster.local
nameserver 10.96.0.10

Repeat the dig command. Notice that the domain name can resolve the name to3.
the pod's IP address:

$ dig +search +noall +answer kubernetes.default.svc.cluster.local
kubernetes.default.svc.cluster.local. 30 IN A 10.96.0.1

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[157]

Now that we've validated the domain name for the Kubernetes services in our VM
environment, let's learn more about the BookInfo application we've just installed.

Understanding the BookInfo application
In a traditional environment, you cannot have multiple versions of the same service up and
running at the same time unless some routing is built at the application layer.

However, in the preceding example, we have three versions of the Reviews microservice up
and running at the same time. Since this application is running within a Kubernetes
environment with network service definitions, it is possible to have multiple versions of the
same microservice up and running. However, the traffic to each microservice is random,
and we don't know which microservice will be receiving the traffic.

You can think of it this way: you have a frontend web application already running stable
but not using modern web UI capabilities. You want to enable another web UI frontend
with a handful of customers without affecting others. This type of selective rollout fits very
well in the Continuous Improvement and Continuous Development strategy. The
requirement is that we should be able to do this without having to write any piece of code.

Traditional application development requires engineers to write some form of source code
because that is the de facto development methodology. When you're considering a cloud-
native framework, things are shifting to operations staff who can manage rules and policies
without any code changes.

To explore BookInfo further, let's look at the deployed pods, services, and overall
availability of the different services within this application.

Exploring the BookInfo application in a
Kubernetes environment
As a quick introduction, let's check the different semantics of this application from the
perspective of Kubernetes.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[158]

 To recap, we installed the BookInfo application in the istio-lab namespace. Let's get
started:

Run the following command to check the status of this application:1.

$ kubectl -n istio-lab get pods
NAME READY STATUS RESTARTS AGE
details-v1-bc557b7fc-sfgcc 1/1 Running 0 90s
productpage-v1-6597cb5df9-j9wk5 1/1 Running 0 87s
ratings-v1-5c46fc6f85-vqwck 1/1 Running 0 90s
reviews-v1-69dcdb544-966tw 1/1 Running 0 90s
reviews-v2-65fbdc9f88-hvfbg 1/1 Running 0 89s
reviews-v3-bd8855bdd-d2c7p 1/1 Running 0 88s

Notice that we have only one container running in each pod (1/1) and that all six
microservices are in separate pods.

Next, let's look at the Kubernetes service description for BookInfo, which2.
displays the internal cluster IP and the application ports of the application. Run
the following command to check the bookinfo Kubernetes services that connect
an immutable service IP address to the mutable pod's IP address:

$ kubectl -n istio-lab get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
details ClusterIP 10.0.0.88 <none> 9080/TCP 2m3s
productpage ClusterIP 10.0.0.33 <none> 9080/TCP 2m1s
ratings ClusterIP 10.0.0.11 <none> 9080/TCP 2m3s
reviews ClusterIP 10.0.0.45 <none> 9080/TCP 2m3s

productpage is the entry point for the bookinfo demo application.

Enter http://productpage.istio-lab.svc.cluster.local:9080 in a3.
browser from inside the VM to open the Product page.
You can also use the following curl command to check whether the application4.
response is 200 (OK) :

$ curl -o /dev/null -s -w "%{http_code}\n"
http://productpage.istio-lab.svc.cluster.local:9080
200

Here, we used an internal service name and IP address to check whether the
Product page is giving is a proper 200 OK response.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[159]

Check the service description of the Product page:5.

$ kubectl -n istio-lab describe svc productpage
Name: productpage
Namespace: istio-lab
Labels: app=productpage
 service=productpage
Annotations: kubectl.kubernetes.io/last-applied-configuration:
{"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"l
abels":{"app":"productpage","service":"productpage"},"name":"produc
tpage"
...
Selector: app=productpage
Type: ClusterIP
IP: 10.104.45.240
Port: http 9080/TCP
TargetPort: 9080/TCP
Endpoints: 192.168.230.213:9080
Session Affinity: None
Events: <none>

Notice that the service IP address for the Product page is 10.104.45.240, which
has an endpoint of 192.168.230.213. This IP is the address of the running pod
on a node. These IPs may be different in your case.

Next, expand all the running pods to get a closer look at the IP addresses and the6.
node names:

$ kubectl -n istio-lab get pods -o wide
NAME READY STATUS RESTARTS AGE ---
details-v1-74f858558f-nv59j 1/1 Running 0 11m ---
productpage-v1-8554d58bff-2dv6n 1/1 Running 0 11m ---
ratings-v1-7855f5bcb9-mpzhr 1/1 Running 0 11m ---
reviews-v1-59fd8b965b-4g22v 1/1 Running 0 11m ---
reviews-v2-d6cfdb7d6-wfzb7 1/1 Running 0 11m ---
reviews-v3-75699b5cfb-544c8 1/1 Running 0 11m ---

--- IP NODE NOMINATED NODE
--- 192.168.230.211 osc01.servicemesh.local <none>
--- 192.168.230.213 osc01.servicemesh.local <none>
--- 192.168.230.212 osc01.servicemesh.local <none>
--- 192.168.230.216 osc01.servicemesh.local <none>
--- 192.168.230.214 osc01.servicemesh.local <none>
--- 192.168.230.215 osc01.servicemesh.local <none>

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[160]

Notice that each pod has a different IP address and that all are running under the
same node. As we mentioned earlier, you can also use the curl command to check
whether the application response is 200 (OK). You can also access the Product
page using the IP address of the pod.

If you get an output of 000, the IP isn't correct. Make sure the IP for the
Product page matches what you see in your output. In this scenario,
192.168.230.213 is the IP that we've tested.

(Optional) Run the following code to get the pod's IP address in a variable and7.
then run the following curl command to make sure that the application is
servicing the request:

$ PRODUCTPAGE_IP=$(kubectl -n istio-lab get pods -l app=productpage
-o jsonpath={.items..status.podIP}) ; echo $PRODUCTPAGE_IP
192.168.230.213

$ curl -o /dev/null -s -w "%{http_code}\n"
http://$PRODUCTPAGE_IP:9080
200

The HTTP response code should be 200, indicating that the request was OK. This is a sanity
check to confirm that the application is working properly.

Note that the IP address of the pod can change and that when a pod is rescheduled,
Kubernetes will automatically update the service endpoints with the IP address of the new
pod.

These concepts are essential to understanding how Kubernetes works and will be helpful
for a better understanding of it when we cover traffic routing in later chapters.

Summary
In this chapter, we understood the overall architecture of BookInfo and how to install the
application through a simple deployment of its YAML file on Kubernetes. We also learned
how to check BookInfo's availability for pods, services, and deployments and validated its
service-based IP address for all six services. Now that we have installed the demo
application, we will be able to understand Istio's different service mesh capabilities.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[161]

In the next chapter, we will jump straight into the installation of Istio's service mesh and
share best practices around how each install process works. Thereafter, we will use the
BookInfo application we have just installed to explain Istio's service mesh capabilities, such
as traffic management, security, telemetry, and overall observability.

Questions
Kubernetes provides its own DNS server.1.

A) True
B) False

What is a polyglot application?2.

A) An application that's been written using the polyglot language
B) An application that's been written in multiple programming languages
C) An application that can run on all platforms
D) An application that has multiple versions of the same microservice

The service mesh architecture is only for microservice applications.3.

A) True
B) False

A pod's IP address is immutable.4.

A) True
B) False

A service IP address is immutable.5.

A) True
B) False

A Service IP address is linked to the pod's IP address through Kubernetes6.
endpoints.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing a Demo Application Chapter 8

[162]

Further reading
Getting Started with Kubernetes – Third Edition, Baier, Jonathan; and White, Jesse,
Packt Publishing, October 2018, Print and Web
Kubernetes Cookbook, Second Edition, Saito, Hideto, Lee, Hui-Chuan Chloe; and
Hsu, Ke-Jou, Packt Publishing, May 2018, Print and Web
Mastering Kubernetes, Sayfan, Gigi, Packt Publishing, April 2018, Print and Web

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Installing Istio

So far, in this section of this book, we have learned about control and data plane concepts.
We then deployed the demo application for Istio in our Kubernetes environment. In this
chapter, we will go through the three installation methods of Istio and enable the demo
application to use Istio through automatic sidecar injection. We will then show both the
automatic and manual ways of injecting a sidecar in to each microservice for the Bookinfo
demo application.

The package installation procedure in Kubernetes is going through a
transformation—starting with Helm (the client) and Tiller (the server) and then the
operator-based install. At the time of writing, the Istio operator based-install is evolving.
We will focus on helm install and you will learn about the pre-packaged Istio profile-
based installation.

In a nutshell, we will be carrying out the following in this chapter:

Performing pre-installation tasks
Installing Istio using three different methods
Installing a load balancer
Enabling Istio
Setting up horizontal pod scaling

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[164]

Technical requirements
To complete the exercises in this chapter, you will require the following:

Your own working Kubernetes environment
The Bookinfo demo application deployed in Kubernetes
Access to the internet

For detailed installation instructions, refer to Chapter 6, Building Your
Own Kubernetes, and Chapter 8, Installing a Demo Application.

You can find the GitHub page for this chapter at: https:/ /github. com/
servicemeshbook/ istio labeled Chapter 09 - Installing Istio.

The following command should show you whether the VM can resolve the name
using DNS:

$ dig +search +noall +answer ibm.com
ibm.com. 20850 IN A 129.42.38.10

We are using Istio 1.3.5 at the time of writing this book. You can get the examples used in
this book for Istio 1.3.5 by switching the branch to 1.3.5.

As technology evolves and changes quickly, the examples given here may
not work with the later releases of Istio. It is recommended that you
download the Istio version used in this chapter. However, we will be
updating https:/ /github. com/ servicemeshbook/ istio for the newest
version of Istio and will publish any errata required for the latest release.

Getting ready
For a production environment, the recommended approach is to use a curated, validated,
and tested Istio release, either by public cloud providers such as AWS, Google, IBM, and
Azure or private cloud providers such as Red Hat OpenShift.

IBM maintains Helm charts for popular open source software and its own middleware. You
can add the helm repository from https:/ /github. com/ IBM/ charts to add IBM-curated
Kubernetes packages.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts
https://github.com/IBM/charts

Installing Istio Chapter 9

[165]

However, in this chapter, we will only focus on the installation of a particular release direct
from https://github. com/ istio/ istio.

It is also important to note that you could also use managed Kubernetes
services provided by public cloud providers to deploy your cloud-native
microservices-based applications. In such cases, a specific setup is
required before installation, depending on the Kubernetes platform. The
Kubernetes managed platforms are tested as per https:/ /archive. istio.
io/v1. 3/ docs/ setup/ platform- setup/ .

Performing pre-installation tasks
Before we move on to the installation of Istio, there are a few pre-installation tasks that we
need to carry out. These include downloading the source code and validating the
environment. We will learn how to carry out these tasks in this section.

Downloading the source code
We will be installing Istio in the istio-system namespace and will grant a cluster-admin
role to it. This is just for convenience purposes and is not a requirement. The granular
permissions, as per the Kubernetes administrator, can be applied to the required
namespace for you to install Istio in your actual production environment.

You can download a specific version of Istio from https:/ /github. com/istio/ istio/
releases and by switching to a specific branch. At the time of writing this book, we used
branch 1.3.5, and we recommend you use the same branch as you learn Istio by following
this chapter.

You can download a specific version using either the git clone command or direct
download. For consistency, for you to be able to follow the complete hands-on exercises, we
will be using the direct download method. Follow these steps:

Run this command to find all previous releases of Istio:1.

$ curl -L -s https://api.github.com/repos/istio/istio/releases |
grep tag_name

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://github.com/istio/istio
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://archive.istio.io/v1.3/docs/setup/platform-setup/
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases
https://github.com/istio/istio/releases

Installing Istio Chapter 9

[166]

If you do not get any output from the preceding, remove grep, and you
will likely see rate limits imposed on your external IP address. Use the -u
option in curl to provide your user ID. You will need to generate a
GitHub API password using Settings | Developer Settings | Personal
Access Token and create a token that you can use as a password.

You can run the following command to find out the latest version. At the time of2.
writing this book, we deployed and implemented Istio using version 1.3.5:

$ export ISTIO_VERSION=$(curl -L -s
https://api.github.com/repos/istio/istio/releases/latest | grep
tag_name | sed "s/ *\"tag_name\": *\"\\(.*\\)\",*/\\1/")

$ echo $ISTIO_VERSION

Download version 1.3.5 to stay consistent with the hands-on exercises for this3.
book:

$ cd ## Switch to your home directory
$ export ISTIO_VERSION=1.3.5
$ curl -L https://git.io/getLatestIstio | sh -

$ cd istio-$ISTIO_VERSION

Edit your ~/.bashrc profile to include the following lines to add istioctl on4.
the system path:

$ vi ~/.bashrc

export ISTIO_VERSION=1.3.5
if [-d ~/istio-${ISTIO_VERSION}/bin] ; then
 export PATH="~/istio-${ISTIO_VERSION}/bin:$PATH"
fi

Source .bashrc to make changes to the system path:5.

$ source ~/.bashrc

We have now downloaded the source code. Now, let's validate whether Kubernetes is
ready to install Istio.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[167]

Validating the environment before installation
It will be good to check whether the current Kubernetes environment is ready for the
installation of the selected Istio version. It is important to check this beforehand since a few
Istio capabilities are dependent on the version of Kubernetes:

Run istioctl verify-install:1.

$ istioctl verify-install
Checking the cluster to make sure it is ready for Istio
installation...

Kubernetes-api

Can initialize the Kubernetes client.
Can query the Kubernetes API Server.

Kubernetes-version

Istio is compatible with Kubernetes: v1.15.6.Istio-existence

Istio will be installed in the istio-system namespace.

Kubernetes-setup

Can create necessary Kubernetes configurations:
Namespace,ClusterRole,ClusterRoleBinding,CustomResourceDefinition,R
ole,ServiceAccount,Service,Deployments,ConfigMap.

SideCar-Injector

This Kubernetes cluster supports automatic sidecar injection. To
enable automatic sidecar injection see
https://istio.io/docs/setup/kubernetes/additional-setup/sidecar-inj
ection/#deploying-an-app

Install Pre-Check passed! The cluster is ready for Istio
installation.

If the preceding test passes, it is good to proceed with the Istio installation. 2.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[168]

Remove the Tiller pod as we will initialize helm again by adding a tiller3.
service account:

$ helm reset --force
Tiller (the Helm server-side component) has been uninstalled from
your Kubernetes Cluster.

After making sure that the pre-installation tasks for Istio confirm that it is ready to install in
our chosen Kubernetes version, we will go through the installation profiles and choose the
one for our demo environment.

Choosing an installation profile
Istio has created pre-configured profiles for helm to install Istio with a pre-chosen set of
components. A profile is nothing but a values.yaml file—which is an input to the helm
command to provide installation options. The following profiles are used:

Default: Enable a component that is recommended for a production install.
Demo: Enable an Istio component for demo purposes with minimum resource
requirements for CPU and memory. The demo profile comes with or without
authentication.
Minimal: This is the minimal installation that enables traffic management.
sds-auth: This is similar to the default profile but enables Secret Discovery
Service (SDS).

Use the istioctl experimental profile list command for a list of
the available profiles.

The YAML for the profiles can be found in the /install/kubernetes/helm/istio
directory. Consult https:/ / archive. istio. io/ v1.3/ docs/ setup/ additional- setup/
config-profiles/ for the features available for each of the profiles mentioned at the
preceding URL. For this book, we will be using the demo profile for the installation.

Now that we have downloaded our source code, validated our Kubernetes environment,
and selected our installation profile, we have completed all of the required pre-installation
tasks and are ready to install Istio. So, let's jump straight into it.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.3/docs/setup/additional-setup/config-profiles/

Installing Istio Chapter 9

[169]

Installing Istio
We will go through the Istio install process using three different methods:

Install using the helm template to generate the YAML file
Install using helm and tiller
Install through a demo profile using the kubectl apply command

Installing Istio using the helm template
Helm is a package manager that gives options to install a software package using either a
URI, TGZ file, or a directory. Since we downloaded Istio from GitHub, we will use the
directory as an input to the helm command.

If using the helm template command, we need to make sure that we create a Custom
Resource Definition (CRD) first:

Create the istio-system namespace, which will be used by Istio:1.

$ kubectl create namespace istio-system
namespace/istio-system created

Grant the cluster-admin role to the default service accounts for the istio-2.
system namespace, which we will use for the Istio installation:

$ kubectl create clusterrolebinding istio-system-cluster-role-
binding --clusterrole=cluster-admin --serviceaccount=istio-
system:default
clusterrolebinding.rbac.authorization.k8s.io/istio-system-cluster-
role-binding created

Install the Istio CRDs and re-initialize tiller to include the istio-3.
system namespace. In the upcoming release for Helm version 3, the dependency
for CRDs will be integrated as a part of the Istio installation either through helm
or YAML directly:

$ cd ~/istio-$ISTIO_VERSION/install/kubernetes/helm/istio-
init/files

$ for i in ./crd*yaml; do kubectl apply -f $i; done
customresourcedefinition.apiextensions.k8s.io/virtualservices.netwo
rking.istio.io created
customresourcedefinition.apiextensions.k8s.io/destinationrules.netw

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[170]

orking.istio.io created
customresourcedefinition.apiextensions.k8s.io/serviceentries.networ
king.istio.io created
...
customresourcedefinition.apiextensions.k8s.io/challenges.certmanage
r.k8s.io created

Change directory to the Istio helm charts, create a tiller service account, and4.
re-initialize the service:

$ cd ~/istio-$ISTIO_VERSION/install/kubernetes/helm

$ kubectl apply -f helm-service-account.yaml
serviceaccount/tiller created
clusterrolebinding.rbac.authorization.k8s.io/tiller created

$ helm init --service-account tiller
$HELM_HOME has been configured at /home/user/.helm.
Tiller (the Helm server-side component) has been installed into
your Kubernetes Cluster.
...

If you get a warning that Tiller is already installed in the
cluster, ignore the warning and proceed.

Validate that the Tiller pod is running in the kube-system namespace and wait5.
for it to become 1/1:

$ kubectl get pods -n kube-system | grep tiller
NAME READY STATUS RESTARTS AGE
tiller-deploy-767d9b9584-bx4tf 1/1 Running 0 58s

Run the following helm template command to generate the yaml file using the6.
default Istio demo configuration parameters defined in values-istio-
demo.yaml. Next, route the generated output to the kubectl apply command.
Helm tiller, which is a server-side component of the helm package manager, is
not used in this case:

$ cd ~/istio-$ISTIO_VERSION

$ helm template install/kubernetes/helm/istio --name istio \
 --namespace istio-system \
 --values install/kubernetes/helm/istio/values-istio-demo.yaml | \
 kubectl apply -f -

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[171]

poddisruptionbudget.policy/istio-galley created
poddisruptionbudget.policy/istio-egressgateway created
...
destinationrule.networking.istio.io/istio-policy created
destinationrule.networking.istio.io/istio-telemetry created

Wait for a few minutes as it will start downloading the Docker images from the7.
public repositories.
Check the status of the pods in the istio-system namespace.8.
When all pods are ready, press Ctrl + C to stop the watch:9.

$ kubectl -n istio-system get pods --watch
NAME READY STATUS RESTARTS AGE
grafana-6575997f54-tplrg 1/1 Running 0 3m17s
istio-citadel-894d98c85-rjfqb 1/1 Running 0 3m17s
istio-cleanup-secrets-1.3.5-nzxd7 0/1 Completed 0 3m18s
istio-egressgateway-9b7866bf5-wmk55 1/1 Running 0 3m17s
istio-galley-5b984f89b-rn42f 1/1 Running 0 3m17s
istio-grafana-post-install-1.3.5-mcc92 0/1 Completed 0 3m18s
istio-ingressgateway-75ddf64567-p7h6m 1/1 Running 0 3m17s
...

The pods with a Completed status are one-time jobs. The other pods that are either 1/1 or
2/2 under the READY column and have a STATUS of Running are Istio's control plane pods.

Now, let's install Istio using our next method, which is by using Helm and Tiller.

Installing Istio using Helm and Tiller
Since we already installed Istio from the previous step using the helm template, we need to
do a proper cleanup of the existing installation:

Begin to uninstall Istio by generating resource creation scripts and then route1.
them with the kubectl delete command:

$ cd ~/istio-$ISTIO_VERSION

$ helm template install/kubernetes/helm/istio --name istio \
 --namespace istio-system \
 --values install/kubernetes/helm/istio/values-istio-demo.yaml |\
 kubectl delete -f -

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[172]

The helm install consists of two tasks:

Creating a CRD for Istio and cert-manager
Installing Istio using Helm

First, create the custom resource definitions required by Istio:2.

$ cd ~/istio-$ISTIO_VERSION/install/kubernetes/helm

$ helm install ./istio-init --name istio-init --namespace istio-
system

Next, run the helm install command to install istio-demo (permissive3.
mutual TLS):

$ helm install ./istio -f istio/values-istio-demo.yaml \
--name istio --namespace istio-system

The output from helm install is long. Notice the number of resources
deployed, such as Cluster Role, Cluster Role Binding, Config map, Deployment,
Pod, Role, Role Binding, Secret, Service, Service Account, Attribute Manifest,
Handler, Instance, Rule, Destination Rule, mutating webhook configuration, Pod
Disruption Budget, and Horizontal Pod Autoscaler.

The Istio installation can also be accomplished using the helm template
command to generate the scripts and then routing it to the kubectl apply
command. Consult the Istio documentation at https:/ /archive. istio. io/ v1.3/
docs/setup/ install/ helm/ for further details.

After a successful install, you can verify the installation by running kubectl -n
istio-system get pods and kubectl -n istio-system get svc.

Check deployment resources in istio-system:4.

$ kubectl -n istio-system get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
grafana 1/1 1 1 6m18s
istio-citadel 1/1 1 1 6m18s
istio-egressgateway 1/1 1 1 6m18s
istio-galley 1/1 1 1 6m18s
istio-ingressgateway 1/1 1 1 6m18s
istio-pilot 1/1 1 1 6m18s
istio-policy 1/1 1 1 6m18s
istio-sidecar-injector 1/1 1 1 6m18s
istio-telemetry 1/1 1 1 6m18s
istio-tracing 1/1 1 1 6m18s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/
https://archive.istio.io/v1.3/docs/setup/install/helm/

Installing Istio Chapter 9

[173]

kiali 1/1 1 1 6m18s
prometheus 1/1 1 1 6m18s

Make sure that every deployment's number of pods under the UP-TO-DATE column
matches with those under AVAILABLE.

Next, we will install Istio using a pre-packaged demo profile.

Installing Istio using a demo profile
The Istio install using direct YAML can be done by using the demo profile. This provides
less flexibility compared to Helm, where we could override parameters using --set in the
helm command line. This method is useful in a development environment.

If you installed Istio using Helm from the previous section, uninstall Istio using helm and
tiller using the following commands:

$ helm del --purge istio
release "istio" deleted

$ helm del --purge istio-init
release "istio-init" deleted

We will install Istio using a demo profile:

$ cd ~/istio-$ISTIO_VERSION/
$ kubectl apply -f install/kubernetes/istio-demo.yaml

The Istio demo profile does not include strict mutual TLS, and this
capability is enabled and explained in further detail in Chapter
11, Exploring Istio Security Features.

In this section, we have seen three different methods of Istio install. Next, we want to verify
whether the installation has been successful or not.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[174]

Verifying our installation
Verifying our installation is important to ensure that we have got everything right. To
verify the installation of Istio, follow these steps:

First, check the version of istioctl and the different Istio modules:1.

$ istioctl version --short
client version: 1.3.5
citadel version: 1.3.5
egressgateway version: 1.3.5
galley version: 1.3.5
ingressgateway version: 1.3.5
pilot version: 1.3.5
policy version: 1.3.5
sidecar-injector version: 1.3.5
telemetry version: 1.3.5

The Istio resources are created in the istio-system namespace. Check the2.
status of the Istio pods:

$ kubectl -n istio-system get pods
NAME READY STATUS RESTARTS AGE
grafana-c49f9df64-8q7gm 1/1 Running 0 2m1s
istio-citadel-7f699dc8c8-flwc7 1/1 Running 0 113s
istio-cleanup-secrets-1.3.5-zvppz 0/1 Completed 0 2m4s
istio-egressgateway-54f556bc5c-j4rh8 1/1 Running 0 2m2s
istio-galley-687664875b-8n85n 1/1 Running 0 2m3s
istio-grafana-post-install-1.3.5-gfsfx 0/1 Completed 0 2m4s
istio-ingressgateway-688d5886d-vsd8k 1/1 Running 0 2m2s
...

The pods showing the status of Completed are the ones that ran a job successfully. All
other pods should show the Running status.

Note from the preceding output that the Istio control plane consists of three
components. They are as follows:

Citadel: istio-citadel provides service-to-service and end-user
authentication, with built-in identity and credential management.
Mixer: Mixer consists of istio-policy, istio-telemetry, and istio-
galley.
Pilot: Pilot is istio-pilot.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[175]

Istio-ingressgateway and istio-egressgateway are platform-independent inbound
and outbound traffic gateways. Prometheus, Kiali, and Grafana are backend services for
metering and monitoring.

Installing Istio using Operator is gaining popularity but we will not be
covering it since it is still in its nascent stage. To learn more about this
method, visit this link: https:/ /archive. istio. io/ v1.3/ docs/ setup/
install/ operator/ .

Installing a load balancer
Managed Kubernetes services such as Google or IBM Cloud will provide an external load
balancer. Since our Kubernetes environment is standalone, we do not have an external load
balancer; we install and use keepalived as a load balancer.

The keepalived load balancer depends on the ip_vs kernel module to be loaded. Follow
these steps:

Make sure that the ip_vs kernel module is loaded:1.

$ sudo lsmod | grep ^ip_vs
ip_vs_wlc 12519 0
ip_vs 145497 2 ip_vs_wlc

If the preceding does not show any output, load the module:2.

$ sudo ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn
InActConn

Run sudo lsmod | grep ^ip_vs to make sure that the module is loaded.3.
Add ip_vs to the module list so that it is loaded automatically on reboot:4.

$ echo "ip_vs" | sudo tee /etc/modules-load.d/ipvs.conf

The keepalived helm chart requires that the node be labeled as proxy=true so5.
that it can deploy the daemon set on this master node:

$ kubectl label node osc01.servicemesh.local proxy=true
node/osc01.servicemesh.local labeled

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/
https://archive.istio.io/v1.3/docs/setup/install/operator/

Installing Istio Chapter 9

[176]

Install keepalived through a helm chart from https:/ / github. com/6.
servicemeshbook/ keepalived:

$ helm repo add kaal https://servicemeshbook.github.io/keepalived
"kaal" has been added to your repositories

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository
...Successfully got an update from the "kaal" chart repository
...Successfully got an update from the "stable" chart repository
Update Complete.

Grant cluster admin to the default service account in keepalived
namespace

$ kubectl create clusterrolebinding \
keepalived-cluster-role-binding \
--clusterrole=cluster-admin --serviceaccount=keepalived:default
clusterrolebinding.rbac.authorization.k8s.io/keepalived-cluster-
role-binding created

$ helm install kaal/keepalived --name keepalived \
--namespace keepalived \
--set keepalivedCloudProvider.serviceIPRange="192.168.142.248/29" \
--set nameOverride="lb"

After creating the preceding helm chart, test the readiness and status of pods in7.
the keepalived namespace:

$ kubectl -n keepalived get pods
NAME READY STATUS ---
keepalived-lb-cloud-provider-c68f7b6b5-hqz2n 1/1 Running ---
keepalived-lb-vip-manager-dlpfv 1/1 Running ---

--- RESTARTS AGE
--- 0 49s
--- 0 49s

If you are not using the base VM (https:/ / github. com/ servicemeshbook/ byok),
you may have a different IP address for your VM or a separate node name. You
may have to do customization to follow the exercises, especially if you plan to use
an internal load balancer.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok

Installing Istio Chapter 9

[177]

As a solution, you can create an alias on your default NIC adapter to use
the same IP address range that we are using. For example, you could run
the IP address add 192.168.142.1/24 dev eth0 command to
create another IP address on your existing NIC adapter. This will allow
you to run the exercises without having to change too much.

Once the keepalived load balancer is working, check the status of the Istio8.
services, and you should see that the Istio ingress gateway now has an external
IP address assigned:

$ kubectl -n istio-system get services
NAME TYPE CLUSTER-IP EXTERNAL-IP
grafana ClusterIP 10.110.45.249 <none>
istio-citadel ClusterIP 10.102.12.32 <none>
istio-egressgateway ClusterIP 10.98.94.222 <none>
istio-galley ClusterIP 10.106.47.250 <none>
istio-ingressgateway LoadBalancer 10.108.75.6 192.168.142.249
istio-pilot ClusterIP 10.103.70.243 <none>
istio-policy ClusterIP 10.108.62.61 <none>
istio-sidecar-injector ClusterIP 10.104.147.41 <none>
istio-telemetry ClusterIP 10.107.179.4 <none>
jaeger-agent ClusterIP None <none>
jaeger-collector ClusterIP 10.105.216.0 <none>
jaeger-query ClusterIP 10.108.215.169 <none>
kiali ClusterIP 10.98.39.201 <none>
prometheus ClusterIP 10.104.175.238 <none>
tracing ClusterIP 10.109.27.237 <none>
zipkin ClusterIP 10.96.252.28 <none>

All services should have cluster-ip except jaeger-agent and istio-
ingressgateway. They might show as <pending> initially, and keepalivd will provide
an IP address from a subnet range that we provided to the helm install command. Note
the external IP address assigned by the load balancer to istio-
ingressgateway is 192.168.142.249, but this could be different in your case.

When no external load balancer is used, the node port of the service or port forwarding can
be used to run the application from outside the cluster.

Next, we enable Istio for existing applications by injecting a sidecar proxy—which may
result in a very short outage of the application as pods need to restart. We will also learn
how to enable new applications to get a sidecar proxy injected automatically.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[178]

Enabling Istio
In the previous chapter, we deployed the Bookinfo sample microservice in the istio-
lab namespace. Run kubectl -n istio-lab get pods and notice that each pod is
running only one container for every microservice.

Enabling Istio for an existing application
To enable Istio for an existing application, we will use istioctl to generate additional
artifacts in bookinfo.yaml, so the sidecar proxy is added to every pod:

First, generate modified YAML with a sidecar proxy for the Bookinfo application:1.

$ cd ~/servicemesh
$ istioctl kube-inject -f bookinfo.yaml > bookinfo_proxy.yaml

$ cat bookinfo_proxy.yaml
...
 template:
 metadata:
 annotations:
 sidecar.istio.io/interceptionMode: REDIRECT
...
 traffic.sidecar.istio.io/excludeInboundPorts: "15020"
 traffic.sidecar.istio.io/includeInboundPorts: "9080"
 traffic.sidecar.istio.io/includeOutboundIPRanges: '*'
...

istioctl in the preceding example cannot be substituted by
the kubectl command. Notice the sidecar proxy code injected into the
original YAML file.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[179]

Do diff on the original and modified file to see the additions to the YAML file2.
by the istioctl command:

$ diff -y bookinfo.yaml bookinfo_proxy.yaml
...
 volumeMounts: volumeMounts:
 - name: tmp | - mountPath: /etc/istio/proxy
 mountPath: /tmp | name: istio-envoy
 - name: wlp-output | - mountPath: /etc/certs/
 mountPath: /opt/ibm/wlp/output | name: istio-certs
 > readOnly: true
...

The new definition of the sidecar proxy will be added to the YAML file.3.
Deploy the modified bookinfo_proxy.yaml file to inject a sidecar proxy into4.
the existing bookinfo microservice:

$ kubectl -n istio-lab apply -f bookinfo_proxy.yaml

Wait a few minutes for the existing pods to terminate and for the new pods to be5.
ready. The output should look similar to the following:

$ kubectl -n istio-lab get pods
NAME READY STATUS RESTARTS AGE
details-v1-68955b8bdc-crg2s 2/2 Running 0 96s
productpage-v1-74dfdd8b47-4d2gw 2/2 Running 0 96s
ratings-v1-79b6d99979-f8mgl 2/2 Running 0 96s
reviews-v1-69b9dddccf-x8r6d 2/2 Running 0 96s
reviews-v2-84c46bf56d-q7pmr 2/2 Running 0 96s
reviews-v3-64ff5788c7-nx4jx 2/2 Running 0 96s

Notice that each pod has two running containers since a sidecar proxy was added through
the modified YAML.

It is possible to select microservices to not have a sidecar by editing the generated YAML
through the istioctl command.

With Istio 1.3.5, the istioctl add-to-mesh service command has
been added, which can be used to restart a pod to add a sidecar. For
example, istioctl experimental add-to-mesh service
productpage -n istio-lab will add a sidecar to the productpage
service. The keyword experimental will be removed from future
releases.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[180]

Enabling Istio for new applications
To show how to enable sidecar injection automatically, we will delete the existing istio-
lab namespace, and we will redeploy bookinfo so that Istio is automatically enabled with
the proxy for the new application. Follow these steps:

First, delete the istio-lab namespace:1.

$ kubectl delete namespace istio-lab

If you get namespace deletion in a perpetual terminating state, use the
script to get rid of the namespace: https:/ /github. com/ jefferyb/
useful- scripts/ blob/ master/ openshift/ force- delete- openshift-
project.

Now, create the istio-lab namespace again and label it using istio-2.
injection=enabled:

$ kubectl create namespace istio-lab
namespace/istio-lab created

$ kubectl label namespace istio-lab istio-injection=enabled
namespace/istio-lab labeled

By labeling an istio-injection=enabled namespace, the Istio sidecar gets
injected automatically when the application is deployed using kubectl apply or
the helm command.

Deploy the application again:3.

$ kubectl -n istio-lab apply -f ~/servicemesh/bookinfo.yaml

Run kubectl -n istio-lab get pods and wait for them to be ready. You4.
will notice that each pod has two containers, and one of them is the sidecar.
Run istioctl proxy-status, which provides the sync status from pilot to5.
each proxy in the mesh.

Now that Istio has been enabled, we are ready to learn about its capabilities using examples
from https://istio. io. In the next section, we will set up horizontal pod scaling for Istio
services.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://github.com/jefferyb/useful-scripts/blob/master/openshift/force-delete-openshift-project
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io

Installing Istio Chapter 9

[181]

https:/ /istio. io/ is the official open source site. It has in-depth
examples to explain Istio. This book has leveraged many examples from
the official site to explain its core capabilities to beginners and help them
to grasp the fundamentals of Istio.

Setting up horizontal pod scaling
Each component of Istio has the autoscaling value set to false for the demo profile (using
install/kubernetes/istio-demo.yaml). You can set autoscaleEnabled to true for
different components in install/kubernetes/helm/istio/values-istio-
demo.yaml to enable autoscaling. This configuration may work nicely in production
environments based on deployed applications where the autoscaling of pods may help to
handle increased workloads.

To get the benefits of autoscaling, we should be careful in selecting the applications since
autoscaling applications in high-latency environments can make the situation go from bad
to worse in handling the increased workload.

Pod scaling can be enabled at the time of the Helm installation if the following parameters
are passed to the helm install command using the --set argument:

mixer.policy.autoscaleEnabled=true
mixer.telemetry.autoscaleEnabled=true
mixer.ingress-gateway.autoscaleEnabled=true
mixer.egress-gateway.autoscaleEnabled=true
pilot.autoscaleEnabled=true

If you are deploying Istio in a multi-node Kubernetes cluster that has a
minimum of three master nodes, it is recommended that you keep the
horizontal pod scaling feature to absorb the increased workload.

Follow the steps given here:

Let's check the current autoscaling for every Istio component:1.

$ kubectl -n istio-system get hpa
No resources found.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/

Installing Istio Chapter 9

[182]

If pod scaling is enabled, it can be deleted using the following command. In our2.
case, this is not necessary:

$ kubectl -n istio-system delete hpa --all
horizontalpodautoscaler.autoscaling "istio-egressgateway" deleted
horizontalpodautoscaler.autoscaling "istio-ingressgateway" deleted
horizontalpodautoscaler.autoscaling "istio-pilot" deleted
horizontalpodautoscaler.autoscaling "istio-policy" deleted
horizontalpodautoscaler.autoscaling "istio-telemetry" deleted

After deleting auto pod scaling, make sure to set replicas to 1. In our case, it is3.
not necessary:

$ kubectl -n istio-system scale deploy istio-egressgateway --replicas=1
$ kubectl -n istio-system scale deploy istio-ingressgateway --replicas=1
$ kubectl -n istio-system scale deploy istio-pilot --replicas=1
$ kubectl -n istio-system scale deploy istio-policy --replicas=1
$ kubectl -n istio-system scale deploy istio-telemetry --replicas=1

The promise of a service mesh architecture using a solution such as Istio is to effect changes
without having to modify the existing application. This is a significant shift in which
operations engineers can run modern microservices applications without having to change
anything in the code.

Summary
In this chapter, you have learned how to install Istio using different methods. We discussed
the different profiles that are available to install an environment that is suited to a need,
such as either a production or a test environment. Installation from the GitHub repository
provides options to use a particular version and customized installations. We saw that
using the Helm installation is another simple choice that involves using a simple helm
install command and override configuration parameters using --set variables. The
third method is to do a Helm installation through a cloud provider's catalog. You can
request Istio to come pre-configured with a Kubernetes cluster.

Now that we have successfully installed Istio, we will explore the various features it offers
in the upcoming chapters, beginning with traffic management.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[183]

Questions
Istio can only be used in a Kubernetes environment.1.

A) True
B) False

Istio can only be enabled for a new application if the namespace is annotated2.
with the istio-injection=enabled label.

A) True
B) False

Istio has extended Kubernetes via CRD.3.

A) True
B) False

It is mandatory to deploy CRD before Istio is installed. 4.

A) True
B) False

Istio cannot be enabled for existing applications without deleting them first.5.

A) True
B) False

It is not possible to disable a sidecar for a particular microservice when a6.
namespace is already annotated with an istio-injection=enabled label.

A) True
B) False

Istio custom resources can only be managed through the istioctl command7.
and not through the kubectl command.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Istio Chapter 9

[184]

Further reading
Istio Blog, Istio. (2019), available at https:/ /archive. istio. io/v1. 3/blog/ ,
accessed 13 May 2019
Installation Guides, Istio. (2019), available at https:/ /archive. istio. io/v1. 3/
docs/setup/ install/ , accessed 13 May 2019
The Registry For Kubernetes Operators, Operatorhub.Io, 2019, https:/ /
operatorhub. io/ contribute

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/blog/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://archive.istio.io/v1.3/docs/setup/install/
https://operatorhub.io/contribute
https://operatorhub.io/contribute
https://operatorhub.io/contribute
https://operatorhub.io/contribute
https://operatorhub.io/contribute
https://operatorhub.io/contribute
https://operatorhub.io/contribute
https://operatorhub.io/contribute

10
Exploring Istio Traffic

Management Capabilities
In this chapter, we will focus on traffic management and how to split and steer network
connections between different versions of microservices. We will detail the different ways
this can be accomplished, identify challenges, and list the best practices.

By the end of this chapter, you will be able to create and deploy Istio-specific Kubernetes
objects such as the gateway, virtual service, and destination rule, which configure incoming
and outgoing requests to Istio's demo application. You will also learn how to enable and
disable traffic patterns to access Istio's demo application regarding traffic routing, traffic
shifting, canary deployments, fault injection, circuit breaker, ingress and egress traffic
patterns, and traffic mirroring

In a nutshell, this chapter covers the following topics:

Traffic management – gateway, virtual service, and destination rule
Traffic shifting – identity-based traffic routing, and canary deployments
Fault injection, and circuit breaker
Managing ingress and egress traffic patterns
Traffic mirroring

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[186]

Technical requirements
You will get the best out of this chapter if you have the following:

Istio and the BookInfo microservice installed within Kubernetes

Please take note of the following regarding the Bookinfo microservice
application:

ratings:v1 translates to no stars.
ratings:v2 translates to black stars.
ratings:v3 translates to red stars.

Your own Kubernetes images built on a single node VM, either on a Windows
laptop or MacBook prior to installing Istio—to get started, please consult https:/
/github. com/ servicemeshbook/ byok

OR – please refer to Chapter 06, Building Your Own Kubernetes Environment, for
more information.

Once you have the preceding requirements in place, open a command-line window to
follow this chapter so that you can learn about Istio through examples. Clone this book's
GitHub directory, as follows:

$ cd # Switch to home directory
$ git clone https://github.com/servicemeshbook/istio
$ cd istio
$ git checkout $ISTIO_VERSION # Switch to branch version that we are using

After cloning this book's GitHub repository, go to the traffic management scripts:

$ cd scripts/01-traffic-management

Make sure that all the istio-lab pods show a ready 2/2 state:

$ kubectl -n istio-lab get pods

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok
https://github.com/servicemeshbook/byok

Exploring Istio Traffic Management Capabilities Chapter 10

[187]

Traffic management
One of the key functionalities of microservices is their ability to decouple configurations.
For instance, whenever a change happens, Kubernetes' primitive ConfigMap configurations
are decoupled from the application and pushed down to the application by Kubernetes.
Istio provides a much more powerful capability to decouple traffic routing that's
independent of the application code.

Traffic management in Istio is decoupled from the application. This is possible due to the
language-agnostic Envoy sidecar that sits with the microservice. The rules are defined
in Pilot, and these are independent of the pod. This helps us to decouple traffic,
independent of the replica sets' deployment. For instance, regardless of the number of
replicas in a canary deployment, it is only possible to shift 10% of the live traffic to it.

Pilot plays an important role in managing and configuring all of the proxy sidecars within a
service mesh. Pilot lets you define the rules that are then pushed down to the proxy
sidecars to route traffic between proxies and configure various features such as timeouts,
retries, and circuit breakers. Load balancing is done in an intelligent fashion based on the
health of other proxies in the load balancing pool. Pilot enables service discovery, dynamic
updates to load balancing pools, and routing tables.

Istio provides a gateway for managing incoming and outgoing traffic through Ingress and
Egress gateways. These gateways sit on the periphery of the service mesh, which is the data
plane running the microservices application:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[188]

The preceding diagram shows the Istio components and the service mesh encompassing
services running in the data plane. The incoming traffic arrives at the Ingress gateway,
which has its own sidecar proxy that receives its configuration from Pilot. Through the
definition of the gateway that's defined, the incoming traffic from a host can be mapped to
a service running inside the Kubernetes cluster. If a microservice needs to establish a
connection to the outside world, the Egress gateway, which sits on the edge of the proxy
mesh, can be configured to originate TLS or rules and can be configured to control access.

Within Istio, there are many traffic rules that can be managed and maintained within the
configuration model for controlling API calls and traffic flows across various microservices.

The configuration model allows operators to configure service-level properties such as
circuit breakers, timeouts, and retries, load balancing, and many more testing and
monitoring capabilities.

Istio provides three routing primitives, as follows:

Gateway
Virtual service
Destination rules

Now, let's understand these routing primitives one by one.

Creating an Istio gateway
Since we are using a bare minimum Kubernetes installation, it does not have a reverse
proxy running in the server. A reverse proxy, such as Nginx, provides connectivity from
the outside world to the services running within the Kubernetes cluster.

If you are using a managed Kubernetes cluster in a public cloud or have built one using
Red Hat OpenShift, you may have to disable the reverse proxy that comes with your
Kubernetes cluster for the following exercises to work.

We are going to use Istio, which has provided a gateway controller that receives
HTTP/HTTPS/TCP incoming connections:

First, create an Istio gateway and an Istio virtual service. This ensures that1.
requests can be routed properly from the external world to the Kubernetes
cluster.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[189]

Look at the 00-create-gateway.yaml file and make sure you understand the2.
gateway definitions:

Script : 00-create-gateway.yaml

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: mygateway
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

Now, let's create Istio's first primitive, that is, Gateway:3.

$ kubectl -n istio-system apply -f 00-create-gateway.yaml
gateway.networking.istio.io/mybookinfo created

The preceding code creates a gateway in the istio-system namespace, and it will allow
traffic from all http external host requests on port 80.

Finding the Ingress gateway IP address
Let's find out how to find the gateway IP addresses so that virtual services can be created
later to direct traffic from outside the application to the required microservice. After doing
this, we can manage the traffic based on rules that can be defined outside the application.
Let's get started:

To find out the ingress gateway IP address, enter the following command:1.

$ kubectl -n istio-system get svc istio-ingressgateway
NAME TYPE CLUSTER-IP EXTERNAL-IP ---
istio-ingressgateway LoadBalancer 10.109.15.152 192.168.142.249 ---

--- PORT(S) AGE
--- 15020:30826/TCP,80:31380/TCP,443:31390/TCP,31400:31400/TCP,
 15029:31618/TCP,15030:31759/TCP,15031:31344/TCP,
 15032:30143/TCP,15443:32383/TCP 43m

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[190]

The external IP address that's assigned to the Istio ingress gateway, as per the
preceding output, is 192.168.142.249. This might be different in your case.

Save the external IP of the ingress gateway in an environment variable that you2.
can use later:

$ export INGRESS_HOST=$(kubectl -n istio-system get service istio-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress..ip}') ;
echo $INGRESS_HOST
192.168.142.249

In reality, the external IP address will be mapped to a name using a DNS server.

Now, let's try to access the BookInfo application,3.
http://192.168.142.249. You will notice that it can't find the page:

$ curl -v http://$INGRESS_HOST/productpage
* About to connect() to 192.168.142.249 port 80 (#0)
...
< HTTP/1.1 404 Not Found
...

We need to map the Kubernetes productpage service to the gateway, and we will do that
by creating an Istio primitive called Virtual Service.

Creating a virtual service
 VirtualService connects a Kubernetes service to the Istio gateway. It can do many
things. We will look at this in detail as we go through the following code and explain the
different traffic management capabilities:

Let's look at the 01-create-virtual-service.yaml script:1.

Script : 01-create-virtual-service.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - "*"
 gateways:
 - mygateway
 http:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[191]

 - match:
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:
 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage.istio-lab.cluster.svc.local
 port:
 number: 9080

The traffic for booksinfo.istio.io, which resolves to IP
address 192.168.142.249, arrives at the Istio Ingress gateway. The virtual
service as per the preceding definition routes the traffic for the /productpage,
/static, /login, /logout, and /api/v1/products URLs to the
productpage.istio-lab.svc.cluster.local microservice at port 9080.

Let's create VirtualService:2.

$ kubectl -n istio-system apply -f 01-create-virtual-service.yaml
virtualservice.networking.istio.io/bookinfo created

The virtual service that we've created will accept traffic from all hosts coming
through mygateway, which will look for a URI pattern called productpage and
route the traffic to the Kubernetes productpage.istio-
lab.svc.cluster.local service to port number 9080.

Test the return http code using the virtual service we created in the previous3.
step to make sure that the routing from the Istio Ingress gateway to the Istio
virtual service is happening properly:

$ curl -o /dev/null -s -w "%{http_code}\n"
http://$INGRESS_HOST/productpage
200

An output of 200 marks the page has loaded successfully.

Let's test http://192.168.142.249/productpage using a browser within the
VM.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[192]

Make sure that you change your IP address with $INGRESS_HOST and
that you are using the correct external IP address assigned to the Istio
Ingress gateway.

Refresh the page several times. Under the reviews section, you will notice that4.
the reviewer's ratings change to either no stars, black stars, or red stars. This is
due to the fact that we have three versions of the reviews microservice, as
shown by the output of the following command:

$ kubectl -n istio-lab get ep | grep reviews
NAME ENDPOINTS AGE
reviews 10.142.230.236:9080, 82m
 10.142.230.238:9080,
 10.143.230.242:9080

Notice that the reviews microservice, which is called5.
from productpage, contains three endpoints that are connected to different
versions of the reviews pod. The three IP addresses belong to different reviews
pods:

$ kubectl -n istio-lab get pods -o=custom-
columns=NAME:.metadata.name,POD_IP:.status.podIP
NAME POD_IP
details-v1-68955b8bdc-5bw67 10.142.230.244
productpage-v1-74dfdd8b47-xmdpn 10.142.230.241
ratings-v1-79b6d99979-k2j7t 10.142.230.239
reviews-v1-69b9dddccf-bsfps 10.142.230.238
reviews-v2-84c46bf56d-48ks9 10.142.230.236
reviews-v3-64ff5788c7-5xzbk 10.142.230.242

Note that the IP addresses of the pods can be different in your case.

When we refresh the productpage, routing is done in a round-robin fashion
where all of the reviews microservices will show either black stars, red stars, or
no stars.

Check the gateway and virtual service:6.

$ kubectl -n istio-system get gateway
NAME AGE
mygateway 15m

$ kubectl -n istio-system get vs
NAME GATEWAYS HOSTS AGE
bookinfo [mygateway] [*] 15m

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[193]

Within the Kubernetes cluster, the sample productpage microservice of bookinfo can be
called either by using the pod's IP address or the Kubernetes services that ties its IP address
to the pod. The automatic coupling between the Kubernetes service and the pod makes
distributed computing easy.

You can skip the following sections and jump to the Creating a destination
rule section if you understand the Kubernetes concepts of finding out the
IP address, changing ClusterPort to NodePort, and so on.

Running using pod's transient IP address
The most basic Kubernetes concepts will be shown here since we will be using them
throughout this book:

Find out the pod's internal IP address:1.

$ kubectl -n istio-lab get pods -o=custom-
columns=NAME:.metadata.name,POD_IP:.status.podIP
NAME POD_IP
details-v1-68955b8bdc-5bw67 10.142.230.244
productpage-v1-74dfdd8b47-xmdpn 10.142.230.241
ratings-v1-79b6d99979-k2j7t 10.142.230.239
reviews-v1-69b9dddccf-bsfps 10.142.230.238
reviews-v2-84c46bf56d-48ks9 10.142.230.236
reviews-v3-64ff5788c7-5xzbk 10.142.230.242

As we can see, the productpage pod IP address is 10.142.230.241. This might
be different in your output.

You can test the productpage microservice using the curl command. Substitute2.
the pod's IP address as per your output:

$ export PRODUCTPAGE_POD=$(kubectl -n istio-lab get pods -l
app=productpage -o jsonpath='{.items..status.podIP}') ; echo
$PRODUCTPAGE_POD
10.142.230.241

$ curl -s http://$PRODUCTPAGE_POD:9080 | grep title
<title>Simple Bookstore App</title>

Note that the pod IP address is transient and that it will change depending on the node in
which the pod is scheduled by Kubernetes.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[194]

Running using a service IP address
You can access a microservice through its dynamic IP address. This can change if the
microservice is scheduled to another node:

The pod's IP address is linked to the service IP address, which is constant1.
throughout its lifetime:

$ kubectl -n istio-lab get svc -o custom-
columns=NAME:.metadata.name,CLUSTER_IP:.spec.clusterIP
NAME CLUSTER_IP
details 10.106.179.233
productpage 10.100.221.255
ratings 10.109.32.8
reviews 10.107.73.66

In the preceding code, the productpage service IP address is 10.100.221.255.
The IP might be different in your output.

You can test this productpage service using the curl command. Substitute the2.
service IP address as per your output:

$ PRODUCTPAGE_IP=$(kubectl -n istio-lab get svc -l app=productpage
-o jsonpath='{.items...spec.clusterIP}') ; echo $PRODUCTPAGE_IP
10.100.221.255
$ curl -s http://$PRODUCTPAGE_IP:9080 | grep title
<title>Simple Bookstore App</title>

Note that the service IP address remains the same during its lifetime and may
change if the service is dropped and recreated.

Accessing a service by its name is preferred as the Kubernetes DNS server will
translate the name in to the proper IP address.

The connection between a pod's IP address and service IP address is done3.
through endpoints:

$ kubectl -n istio-lab get ep productpage
NAME ENDPOINTS AGE
productpage 10.142.230.241:9080 89m

Notice that the productpage service endpoint is 10.142.230.241, which is the
pod's IP address. This IP address will be different in your case since it is
ephemeral and may change when a service is deleted and recreated.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[195]

Check the IP address of the internal service name:4.

$ dig +short productpage.istio-lab.svc.cluster.local @10.96.0.10
10.100.221.255

This IP address, 10.100.221.255, is the IP address of the FQDN of the service
name. The IP address might be different in your case.

Open a browser from inside the VM and try http://10.100.221.255:9080 to5.
view the product page. Replace the IP address as per the output in your VM
environment.

We'll learn how to run a Node Port in the next section.

Running using Node Port
You can access a microservice through the Kubernetes service name, which is a connection
from a fixed service IP address to the pod IP address. In this section, you will learn how to
access a service using Node Port using the node's IP address.

You can also view the service web page from outside the VM but within the firewall of an
enterprise by using the server's IP address. This will require changing the service from
ClusterIP to NodePort. Let's get started:

Edit the productpage service:1.

$ kubectl -n istio-lab edit svc productpage

Change the type from ClusterIP to NodePort.2.

You should have the following initially:

selector:
 app: productpage
sessionAffinity: None
 type: ClusterIP

Change this to the following:

selector:
 app: productpage
sessionAffinity: None
 type: NodePort

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[196]

Save the file and check the service:3.

$ kubectl -n istio-lab get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
details ClusterIP 10.106.179.223 <none> 9080/TCP 103m
productpage NodePort 10.100.221.255 <none> 9080:32384/TCP 103m
ratings ClusterIP 10.109.32.8 <none> 9080/TCP 103m
reviews ClusterIP 10.107.73.66 <none> 9080/TCP 103m

Or you can use the patch command to change the TYPE from ClusterIP
to NodePort, as shown in the following command:

kubectl -n istio-lab patch svc productpage --type='json'
-p
'[{"op":"replace","path":"/spec/type","value":"NodePort"}
]'

A high port of 32384 has been assigned to the productpage service, which is
mapped to port 9080. This port may be different in your case.

Find out the name of the VM or master node of the Kubernetes cluster:4.

kubectl get nodes
NAME STATUS ROLES AGE VERSION
osc01.servicemesh.local Ready master 5h24m v1.15.6

Access the web page from a browser on Windows or macOS5.
using http://osc01.servicemesh.local:32384. You may need to change
the port as it may be different in your case.

If you receive an err_connection_refused error, make sure that you
are using the port as per your environment's output.

An external IP address is assigned to the Istio Ingress gateway, which can be used to access
the application (productpage). The external IP address might be coming from an external
load balancer that is on the edge of the Kubernetes cluster. In the previous chapter, we
simulated an external load balancer using keepalived.

Next, we'll explore the concept of the Istio destination rule, which defines metadata for
traffic shifting rules based on labels that have been defined on services.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[197]

Creating a destination rule
 DestinationRule is just a definition that establishes a binding between a subset and the
labels that are defined at the service level. A subset is a named set for one or more versions
of the same service. Let's take a look:

Let's look at one of the destination rule reviews in 02-create-destination-1.
rules.yaml:

Script : 02-create-destination-rules.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: reviews
spec:
 host: reviews
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 - name: v3
 labels:
 version: v3

The name of the destination rule is reviews, while the host field has the service
name reviews. It has three subsets defined within it. The v1 subset has an
association for label version: v1 and so on.

Let's look at the reviews pods and examine the labels assigned to these pods:2.

$ kubectl -n istio-lab get pods -l app=reviews --show-labels
NAME READY STATUS RESTARTS AGE ---
reviews-v1-69b9dddccf-bsfps 2/2 Running 0 102m ---
reviews-v2-84c46bf56d-48ks9 2/2 Running 0 102m ---
reviews-v3-64ff5788c7-5xzbk 2/2 Running 0 102m ---

--- LABELS
--- app=reviews,pod-template-hash=69b9dddccf,version=v1
--- app=reviews,pod-template-hash=84c46bf56d,version=v2
--- app=reviews,pod-template-hash=64ff5788c7,version=v3

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[198]

Notice that the three review pods have a label of version assigned to them and
that the values are set to v1, v2, and v3 for each pod.

By defining the destination rule reviews, we have defined three different subsets
(v1, v2, and v3), which make a binding between the reviews service to different
reviews pods.

Create destination rules for all of the microservices within Bookinfo:3.

$ kubectl -n istio-lab apply -f 02-create-destination-rules.yaml
destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

Defining a subset through a destination rule does nothing except define a rule. This binding
comes into force when we use the subset in the VirtualService definition.

The virtual service that we created previously defined a routing relationship between a
service and the Istio gateway. We will now modify the same service to pin the routing of
reviews service to version v1 of the pod.

Traffic shifting
The bookinfo application has three different versions of the reviews microservice, and all
three are up and running. Earlier, we learned that traffic is sent to all three microservices in
a round-robin fashion. This scenario may not be ideal in a real-world environment.

Microservices running under Kubernetes provide us with the ability to run multiple
versions of the same microservice by manipulating traffic. We will show you how this is
done through the use of a VirtualService using a subset. This way, we can pinpoint
traffic to a particular version. Let's get started:

Look at the following virtual service for pinpointing all of the traffic of1.
the reviews service only to v1 of the reviews microservice:

Script : 03-create-virtual-service-for-v1.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[199]

 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1

In the preceding code, the Kubernetes reviews service has a routing rule that's
used to define the destination to subset v1, which we defined through the
destination rule previously.

Create a virtual service that uses a subset that's been defined through a2.
destination rule:

$ kubectl -n istio-lab apply -f 03-create-virtual-service-for-
v1.yaml
virtualservice.networking.istio.io/productpage created
virtualservice.networking.istio.io/reviews created
virtualservice.networking.istio.io/ratings created
virtualservice.networking.istio.io/details created

In the preceding code, an Istio virtual service is created for the bookinfo
Kubernetes productpage, reviews, ratings, and details services for the
destination rule that was defined by subset v1. This only directs traffic to pods
that match the label that was defined by the subsets.

Let's go back to the browser, run http://192.168.142.249/productpage,3.
and refresh multiple times. You may need to change the IP address as per your
environment.

You will notice that the black and red stars under the reviewer do not appear since the
traffic is shifted to v1 of the reviews microservice. Did you notice that, without making any
changes in the application code, the traffic routing is directed only to a service that we
desire? This helps operations staff to make changes without having to rely upon
developers.

The change in the destination rule for the subset can be defined dynamically, and the
virtual service definition can also be defined dynamically. The changes in the configuration
are watched by Pilot through the Kubernetes API, and it pushes the configuration
asynchronously to the Envoy sidecar proxy of the microservice without having to recycle
the application.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[200]

This is a very powerful capability that is accomplished through configuration changes in a
loosely coupled, distributed environment. Compare and contrast this with legacy
applications where a change typically requires recycling a web server and its JVMs.

Identity-based traffic routing
Let's look at another scenario where we will route traffic to v2 of the reviews microservice
to a named user and test the microservice. This is accomplished by making changes to the
virtual service, which does not require recycling the pods or services. Let's take a look:

First, we will make changes to the existing reviews of the virtual service to add1.
identity-based routing. Let's review the changes to the existing reviews virtual
service:

Script : 04-identity-based-traffic-routing.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v1

Notice that a rule has been added to match the http headers. If the user is jason,
it routes the traffic to v2 of reviews; otherwise, it directs all other traffic to v1,
which is the default.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[201]

Modify the virtual service:2.

$ kubectl -n istio-lab apply -f 04-identity-based-traffic-
routing.yaml
virtualservice.networking.istio.io/reviews configured

It may take a few seconds for the changes to propagate to the proxy sidecar.

Go back to the browser and click Sign in (top-right corner of the screen), type3.
in jason, and click Sign in.

You will notice that the review page starts to show black stars, which comes from
v2 of the reviews microservice. Refresh the page a few times. You will notice
that only black stars show every time. Click Sign out and notice that the black
stars disappear and that the traffic is routed to v1 of the reviews microservice.

The preceding YAML can be updated for additional users through regex
by updating the headers.

We can use regex expressions to form complex matching expressions:

 http:
 - match
 - headers:
 end-user:
 regex: (Iniesta|Don\ Andres)
 route:
 - destination:
 host: reviews
 subset: v2

For example, in the preceding YAML snippet, if the user is Iniesta or Don
Andres, the request will be directed to the reviews:v2 microservice. This is an
example of selectively directing a few users to a new version of the same
microservice while retaining the original version in actual use. For example, you
have created a new UI for the same service and want to get feedback from a few
select users; you can accomplish the same through a set of configuration changes
without having to change anything in any of the microservices.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[202]

This type of routing is sometimes referred to as dark launches or friends and family
testing, as only a few select people or internal departments are chosen to test the
new releases without impacting the main business before the new releases get
field-tested.

The preceding code shows that the service mesh is providing an infrastructure
layer for the application, which can be configured independently of the original
application. Earlier, in traditional legacy applications, this capability required
coding to be done at the application level to process the headers and route the
traffic.

The virtual service can be configured in such a manner so that Chrome browser
traffic is routed to reviews:v3, whereas all other browsers, traffic is shifted to
reviews:v2.

Review the following script:4.

Script : 05-chrome-browser-traffic-routing.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 user-agent:
 regex: ".*Chrome.*"
 route:
 - destination:
 host: reviews
 subset: v3
 - route:
 - destination:
 host: reviews
 subset: v2

Apply the preceding rule:5.

$ kubectl -n istio-lab apply -f 05-chrome-browser-traffic-
routing.yaml
virtualservice.networking.istio.io/reviews configured

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[203]

Refresh the productpage web page. Notice that if you are using the Chrome
browser, v3 of the reviews service will show red stars, while all other browsers
(such as Firefox) will show black stars through v2 of reviews.

When needed, you can easily form complex conditional matching expressions for
routing traffic, like so:

http:
 - match:
 - headers:
 user-agent:
 regex: ".*Chrome.*"
 end-user:
 regex: (Iniesta|Don\ Andres)
 - headers:
 end-user:
 exact: Xavi
 route:
 - destination:
 host: reviews
 subset: v3
 - route:
 - destination:
 host: reviews
 subset: v1

In the matching expression in the preceding code, if Iniesta or Don Andres logs
in from Chrome or user Xavi logs in from any browser, traffic will be directed to
version v3 of the reviews microservice. For all other login instances, traffic will
be routed to reviews:v1.

Now that we've learned about identity-based routing, we will move on to traffic shifting
concepts to show canary deployments and blue/green deployments.

Canary deployments
Kubernetes supports blue/green deployments, and they are very useful when a rollback is
required. Canary deployments are referred to incremental rollouts in which the new
version of the application is gradually deployed while getting a small portion of the traffic,
or only a subset of live users is connected to the new version.

The previous section on identity-based routing is an example of routing only for a subset of
users to the new version. It can be argued that Kubernetes already supports canary
deployment, so why is there a need for Istio's canary deployment?

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[204]

Let's understand this with an example.

Let's assume that we only have two versions of the reviews service, v1 and v2, and that
the reviews service endpoints were directed toward both versions of the pods. Without an
Istio virtual service in place, Kubernetes will round-robin 50% of the traffic to each of the
two pods. Let's assume that v2 is the new version and that as soon as it is deployed, it is
getting 50% of the traffic.

If we wanted to divert 90% of the traffic to old version v1 and allow only 10% of the traffic
to v2, we could have scaled v1 to nine replicas and kept v2 to a single replica. This would
have allowed Kubernetes to direct 90% of the traffic to v1 and 10% to v2.

Istio goes much further than what Kubernetes provides. Using Istio, we can separate traffic
routing from replica deployment, where both are unrelated. For example, by using a single
replica of v1 and v2, it is possible to divert 90% of the traffic to v1 and 10% of the traffic to
v2, independent of scaling both versions. We could run four replicas of v1 and route only
20% of the traffic to it but route 80% of the traffic to a canary v2 version with just one
replica.

Let's see this through an implementation example:

Consider that reviews:v1 is the production version and that we are deploying1.
reviews:v2, which hasn't been fully tested. We only want to route 10% of traffic
to it, without increasing or decreasing the replica sets:

Script: 06-canary-deployment-weight-based-routing.yaml

kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1
 weight: 90
 - destination:
 host: reviews
 subset: v2
 weight: 10

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[205]

Regarding the deployment rules for the reviews virtual service, we have
assigned 90% weight to the v1 subset and 10% to the v2 subset.

Modify the reviews virtual service with weight-based routing:2.

$ kubectl -n istio-lab apply -f 06-canary-deployment-weight-based-
routing.yaml
virtualservice.networking.istio.io/reviews configured

Go back to the browser and hit refresh multiple times. You will notice that, the
majority of times, it shows no stars (reviews:v1) and that, occasionally, it shows
black stars (reviews:v2). If you look at the HTML source when it shows black
stars, you will notice that it has two HTML comments that have the text full
stars when the traffic is sent to v2 of reviews.

Run the curl command on the productpage 1,000 times and count the "full3.
stars" HTML comment to make an estimate of the percentage of traffic that's
routed between two versions of the same reviews pod. This will take some time
to complete:

$ echo $INGRESS_HOST
192.168.142.249

$ time curl -s http://$INGRESS_HOST/productpage?[1-1000] | grep -c
"full stars"
204

real 0m42.698s
user 0m0.032s
sys 0m0.343s

Note: Make sure that $INGRESS_HOST is populated properly with the IP
address of the load balancer IP address of your environment. Run the
following command to find out the external IP address: kubectl -n
istio-system get svc istio-ingressgateway.

If we divide 204 by 2 (since each output of the curl command from reviews:v2
contains the string "full stars" twice), it is close to 10% (102/1,000=10%
approx) of the traffic that was sent to reviews:v2 through weight-based routing
using the canary deployment capabilities of Istio.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[206]

Notice that without using a scaling of pods, we were able to divert 10% of the
traffic to the canary release (reviews:v2). This was possible due to Pilot pushing
the configuration to the Envoy sidecar proxy and because load balancing is done
at Layer 7.

Let's assume that you are now satisfied with the canary deployment and want to
shut down v1 and make v2 part of the production release.

Modify the reviews virtual service and apply the rule:4.

Script : 07-move-canary-to-production.yaml

kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v2

In the preceding code, we removed the route to the v1 subset and removed the
weight from the v2 subset to route 100% of the traffic to v2, hence making it the
new production release.

Apply the new rule by modifying the reviews virtual service:5.

$ kubectl -n istio-lab apply -f 07-move-canary-to-production.yaml
virtualservice.networking.istio.io/reviews configured

Now, repeat the same test again:6.

$ curl -s http://$INGRESS_HOST/productpage?[1-1000] | grep -c "full
stars"
2000

Since each HTML page has two occurrences of "full stars", we get 2000 counts from
the 1,000 requests we sent using the preceding curl command. This shows that our canary
deployment is now a new production. If necessary, we can take down v1 of reviews.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[207]

It is important to note that the preceding capabilities are available without making changes
to the application code, without taking an outage, and, more importantly, without having
to change the number of replica sets.

Now that we've learned about traffic shifting features, we will explore fault injection and
timeout features.

Fault injection
Fault injection is a method that's used to test the application without having to wait for an
actual fault to occur. It is very likely that latency or faults will occur in a distributed
environment. It is difficult to envision the effects of actual faults/latency while an
application is being developed. Most of the time, it is the reaction of faults/latencies that
triggers application code changes, which means new releases of the application have to be
made.

While developing enterprise applications, typically, we separate small teams and make
them develop microservices independent of each other. It is likely that different teams may
introduce timeouts in their code, which may introduce an anomaly. For example, let's say
we introduce a 7-second delay that will not affect the reviews service due to there being a
10-second hardcoded timeout between the reviews and ratings service. productpage
calls the reviews service and throws an error after 6 seconds, even though our timeout was
set to 7 seconds. The http delay uncovered different unexpected service behaviors. Fault
injection is a method that can uncover such anomalies, which we will see with the help of
an example of injecting an http delay and abort faults.

Injecting HTTP delay faults
The bookinfo application that's been built by Istio's community of developers has
hardcoded timeouts at 10 seconds for calls to the ratings service from reviews:v2:

...
private JsonObject getRatings(String productId, HttpHeaders requestHeaders)
{
 ClientBuilder cb = ClientBuilder.newBuilder();
 Integer timeout = star_color.equals("black") ? 10000 : 2500;
...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[208]

Let's inject a delay of 7 seconds for the end user, jason, for the ratings service:

Enter the following command:1.

Script : 08-inject-http-delay-fault.yaml

kind: VirtualService
metadata:
 name: ratings
spec:
 hosts:
 - ratings
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 fault:
 delay:
 percentage:
 value: 100.0
 fixedDelay: 7s
 route:
 - destination:
 host: ratings
 subset: v1
 - route:
 - destination:
 host: ratings
 subset: v1

Now, modify the ratings virtual service to inject a delay for 7 seconds, but only2.
for jason:

$ kubectl -n istio-lab apply -f 08-inject-http-delay-fault.yaml
virtualservice.networking.istio.io/ratings configured

From a browser, click Sign In and log in as jason.3.
As soon as you click Sign in, you will notice that the page takes a while to load.4.
This is due to the 7-second delay we introduced for jason.
Now, you will see the message Error fetching product reviews!. 5.
Click the three vertical bars on the top right-hand side of the Chrome address6.
bar, click More Tools | Developer Tools, open the Network tab, and
refresh productpage again.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[209]

You will notice that productpage timed out for 6 seconds: 7.

Close the developer tools of the Chrome browser.8.

Even though we had a timeout of 7 seconds injected between the reviews and ratings
services, a timeout of 6 seconds (two attempts, each timing out at three seconds, as per the
following code) occurred between the productpage and reviews services:

...
for _ in range(2):
 try:
 url = reviews['name'] + "/" + reviews['endpoint'] + "/" +
str(product_id)
 res = requests.get(url, headers=headers, timeout=3.0)
 except BaseException:
 res = None
 if res and res.status_code == 200:
 return 200, res.json()
...

This is due to the hardcoded timeout limit between the productpage and reviews
services. This helps us to find out the effects of the timeout injection that led to the
discovery of the unrelated timeout.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[210]

This demonstrates that without instrumenting anything in the original code of the
application, testing the application can be done by injecting latency into the application.
This is advanced testing that's done without having to wait for actual latency to occur,
which can have unforeseen effects on the application. Istio's fault injection helps us to test
the application without impacting other users while the application is in production.
Remember that the latency rule was only injected for jason.

Note that injecting an http delay can also simulate the network latency for assigned
services to test the overall application's behavior. Now, let's inject abort faults.

Injecting HTTP abort faults
Now, we will test the resiliency of the microservice by introducing the http abort rule for
the end user, jason, for the ratings microservice:

View the following command:1.

Script : 09-inject-http-abort-fault.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: ratings
spec:
 hosts:
 - ratings
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 fault:
 abort:
 percentage:
 value: 100.0
 httpStatus: 500
 route:
 - destination:
 host: ratings
 subset: v1
 - route:
 - destination:
 host: ratings
 subset: v1

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[211]

In the preceding code, we are introducing an http fault abort of 500 for
the jason user for the ratings service.

Modify the ratings virtual service to inject an http abort for the test2.
user jason:

$ kubectl -n istio-lab apply -f 09-inject-http-abort-fault.yaml
virtualservice.networking.istio.io/ratings configured

Refresh the page and make sure that you log in as jason.3.
You will notice the message Ratings service is currently unavailable,4.
indicating that the httpStatus code 500 was injected when a call was made to
the ratings service:

Click (sign out) to log out as jason.5.
You will see that the ratings service works, as usual, showing v2 of ratings.6.

This type of testing is very useful for viewing the runtime behavior of the application by
using the http abort code for different services without impacting other users. This type
of proactive testing, while the application is still in production, is an example of chaos
testing and continuous engineering, which is fundamental to cloud-native computing.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[212]

Request timeouts
Application timeout is disabled by default. Let's set the request timeout to 0.5 seconds for
the reviews service:

Introduce a 0.5s timeout in the reviews virtual service:1.

Script : 10-set-request-timeout.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v2
 timeout: 0.5s

Apply the rule:2.

$ kubectl -n istio-lab apply -f 10-set-request-timeout.yaml
virtualservice.networking.istio.io/reviews configured

The code snippet for productpage has two retires, as shown in the following
code. productpage calls the reviews service, which now has a timeout of 0.5
seconds, which was defined through the virtual service. The response will take 1
second due to two retries on productpage:

...
for _ in range(2):
 try:
 url = reviews['name'] + "/" + reviews['endpoint'] + "/" +
str(product_id)
 res = requests.get(url, headers=headers, timeout=3.0)
 except BaseException:
 res = None
 if res and res.status_code == 200:
 return 200, res.json()
...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[213]

The timeout rule of 0.5 seconds (this is actually 1 second due to two retries) will
not come into effect unless there is a latency of more than 1 second between
the reviews and ratings services.

Now, let's introduce a 2-second latency between the reviews and3.
ratings services:

Script : 11-inject-latency.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: ratings
spec:
 hosts:
 - ratings
 http:
 - fault:
 delay:
 percent: 100
 fixedDelay: 2s
 route:
 - destination:
 host: ratings
 subset: v1

Apply the latency rule:4.

$ kubectl -n istio-lab apply -f 11-inject-latency.yaml
virtualservice.networking.istio.io/reviews configured

Go back to the browser and refresh productpage.5.
You will receive an error stating Sorry, product reviews are currently6.
unavailable for this book.

This error is triggered due to the request timeout being set to 0.5 seconds while
the ratings service did not respond due to the 2 seconds of latency we
established between the reviews and ratings services.

We uncovered an issue with the reviews service by introducing a request
timeout of 0.5 seconds. This is a very helpful testing effort at the application level
that's done by introducing an artificial delay and timeouts by changing the
configurations.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[214]

Let's remove the timeout and latency definitions from the virtual services before
we begin circuit breaker testing.

The easiest way to do this is to delete the virtual service rules and restore the7.
original rules from the script:

$ kubectl -n istio-lab delete -f 03-create-virtual-service-for-
v1.yaml
virtualservice.networking.istio.io "productpage" deleted
virtualservice.networking.istio.io "reviews" deleted
virtualservice.networking.istio.io "ratings" deleted
virtualservice.networking.istio.io "details" deleted

$ kubectl -n istio-lab apply -f 03-create-virtual-service-for-
v1.yaml
virtualservice.networking.istio.io/productpage created
virtualservice.networking.istio.io/reviews created
virtualservice.networking.istio.io/ratings created
virtualservice.networking.istio.io/details created

Now that we've learned about fault injection and timeouts, we will look at the circuit
breaker, which helps to protect applications from undue stress or attacks.

Circuit breaker
The calls between different services in a monolithic application are in-memory only. We
replace the in-memory service calls with the network calls when we move from a
monolithic to a distributed microservices architecture. While we get the benefits of loose
coupling and the reusability of services, the application may experience cascading failures
when there is latency between the services or one or more services are not available.
Application failures that occur due to the latency of network calls is one of the
disadvantages of microservices compared to monolithic applications.

The circuit breaker helps to reduce the aforementioned application failures and lets us
build a resilient and fault-tolerant system in the case of high latency or the unavailability of
key microservices. A circuit breaker in software engineering is similar to a circuit breaker in
electrical engineering, which trips the circuit if someone is drawing more current than the
system can sustain to avoid a fire hazard.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[215]

The same principle applies to software engineering for detecting failures and having a
mechanism to prevent failures from constantly recurring. This design pattern is
encapsulated in a call to a circuit breaker object, which monitors the failures and trips the
circuit once the failures reach a certain limit.

Istio provides a mechanism for testing the resiliency of microservices through circuit
breakers. For example, if a microservice interacts with a backend statefulset database, it
will wait for the response if the database query takes longer than expected. It will be very
helpful to inject circuit breakers to trip a microservice due to an elongated wait. Proper
design and implementation of Istio circuit breakers in an application provide resiliency to
limit the impact of performance problems, latency, and other undesirable effects, such as
network glitches.

Let's implement the circuit breakers for the current bookinfo application. The circuit
breaker rules are defined using destination rules:

Script : 12-modify-productpage-destination-rule-for-circuit-breaker.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: productpage
spec:
 host: productpage
 subsets:
 - labels:
 version: v1
 name: v1
 trafficPolicy:
 connectionPool:
 tcp:
 maxConnections: 1
 http:
 http1MaxPendingRequests: 1
 maxRequestsPerConnection: 1
 outlierDetection:
 consecutiveErrors: 1
 interval: 1s
 baseEjectionTime: 3m
 maxEjectionPercent: 100

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[216]

In the preceding code, we are defining one TCP/HTTP connection for the productpage
service:

Parameter Definition
http1MaxPendingRequests This defines the maximum number of pending requests.

maxRequestsPerConnection This defines the maximum number of requests per connection to
the backend. We are setting both parameters to 1.

consecutiveErrors This outlier detection parameter setting of 1 will eject the host
from the connection pool if a number of 5XX error codes exceed 1.

interval The interval parameter is the time interval between the ejection
sweep analysis.

baseEjectionTime

It sets the time during which a host will remain ejected for a
period equal to the product of the minimum ejection duration
and the number of times the host has been ejected. This method
allows Istio to increase the ejection period for unhealthy,
upstream servers automatically.

maxEjectionPercent
This is the percentage of hosts in the load balancing pools that
can be ejected. The default value is 10%, but here, we are setting
this to 100%.

Now that we know about the necessary circuit breaking parameters, we will go through the
implementation process:

Implement the circuit breaker rules using the destination rule for productpage:1.

$ kubectl -n istio-lab apply -f 12-modify-productpage-destination-
rule-for-circuit-breaker.yaml
destinationrule.networking.istio.io/productpage configured

Refresh productpage in the browser. You should notice the normal functionality
of the web page showing no stars for review:v1 service. The following diagram
shows a closed Circuit breaker, in which the calls from the productpage go
through the details and reviews services without any interruptions:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[217]

We need a testing tool to control the number of connections, concurrency, and
delays for the outgoing http requests. The Istio developer community created its
own testing tool called Fortio, which is available at https:/ /github. com/ istio/
fortio. Fortio can run the specified number of queries per second (qps), and it
can record a histogram of execution time. It can run for a set duration, for a fixed
number of calls, or until it's interrupted.

Install Istio's Fortio testing tool:2.

$ kubectl -n istio-lab apply -f 13-install-fortio-testing-tool.yaml
service/fortio created
deployment.apps/fortio-deploy created

Make sure that Fortio is deployed properly:3.

$ kubectl -n istio-lab get deploy fortio-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
fortio-deploy 1/1 1 1 2m48s

Since we have already labeled the istio-lab namespace istio-4.
injection=enabled, the Istio proxy car is automatically injected into
the Fortio pod, as shown by 2/2 in the following output:

$ kubectl -n istio-lab get pods -l app=fortio
NAME READY STATUS RESTARTS AGE
fortio-deploy-784c644f9c-v6bb8 2/2 Running 0 2m

Run a simple test that won't trigger any circuit breaker rules:5.

$ export FORTIO_POD=$(kubectl -n istio-lab get pods -l app=fortio -
-no-headers -o custom-columns=NAME:.metadata.name) ; echo
$FORTIO_POD
fortio-deploy-784c644f9c-v6bb8

Run echo $FORTIO_POD to make sure that you have the Fortio pod name
correct.

Run just one iteration of the call. It should not trigger any circuit breaker rules:6.

$ kubectl -n istio-lab exec -it $FORTIO_POD -c fortio
/usr/bin/fortio -- load -c 1 -qps 0 -n 1 -loglevel Warning
http://productpage:9080

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio
https://github.com/istio/fortio

Exploring Istio Traffic Management Capabilities Chapter 10

[218]

Check the output from the tool and make sure that there were no 5XX errors:7.

05:29:12 I logger.go:97> Log level is now 3 Warning (was 2 Info)
Fortio 1.3.1 running at 0 queries per second, 8->8 procs, for 1
calls: http://productpage:9080
Starting at max qps with 1 thread(s) [gomax 8] for exactly 1 calls
(1 per thread + 0)
Ended after 5.650443ms : 1 calls. qps=176.98
Aggregated Function Time : count 1 avg 0.005644373 +/- 0 min
0.005644373 max 0.005644373 sum 0.005644373
range, mid point, percentile, count
>= 0.00564437 <= 0.00564437 , 0.00564437 , 100.00, 1
target 50% 0.00564437
target 75% 0.00564437
target 90% 0.00564437
target 99% 0.00564437
target 99.9% 0.00564437
Sockets used: 1 (for perfect keepalive, would be 1)
Code 200 : 1 (100.0 %)
Response Header Sizes : count 1 avg 250 +/- 0 min 250 max 250 sum
250
Response Body/Total Sizes : count 1 avg 1933 +/- 0 min 1933 max
1933 sum 1933
All done 1 calls (plus 0 warmup) 5.644 ms avg, 177.0 qps

Notice that Code 200 is 100%, which is an indication that the circuit breaker rules
were not triggered by the preceding test, where we have set only one connection.

Change the number of concurrent connections to three (-c 3), send 20 requests8.
(-n 20), and run the test:

$ kubectl -n istio-lab exec -it $FORTIO_POD -c fortio
/usr/bin/fortio -- load -c 3 -qps 0 -n 20 -loglevel Warning
http://productpage:9080

Check the output from the testing tool:9.

05:30:24 I logger.go:97> Log level is now 3 Warning (was 2 Info)
Fortio 1.3.1 running at 0 queries per second, 8->8 procs, for 20
calls: http://productpage:9080
Starting at max qps with 3 thread(s) [gomax 8] for exactly 20 calls
(6 per thread + 2)
05:30:24 W http_client.go:679> Parsed non ok code 503 (HTTP/1.1
503)
...
> 0.009 <= 0.00999593 , 0.00949797 , 100.00, 3
target 50% 0.00533333
target 75% 0.007

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[219]

target 90% 0.00933198
target 99% 0.00992954
target 99.9% 0.00998929
Sockets used: 9 (for perfect keepalive, would be 3)
Code 200 : 13 (65.0 %)
Code 503 : 7 (35.0 %)
Response Header Sizes : count 20 avg 162.5 +/- 119.2 min 0 max 250
sum 3250
...

Notice that Code 200 (OK) was returned from 13 requests (65%) and that Code10.
503 was returned from 7 requests (35%):

Code 200 : 13 (65.0 %)
Code 503 : 7 (35.0 %)

This is an example of half-open circuit breaker rules coming into action. This can
be seen in the following diagram, in which 65% of the requests go through OK
and 35% of the requests fail due to the circuit breaker rule coming into action
whenever the number of concurrent connections and consecutive errors is more
than one. Ejecting a host from the connection pool is set dynamically by Istio
using the interval, baseEjectionTime, and maxEjectionPercent
parameters that we defined for the circuit breaker component of Istio:

Revert the destination rules for all of the services to their original state so that11.
you can test other Istio features for traffic management:

$ kubectl -n istio-lab apply -f 02-create-destination-rules.yaml
destinationrule.networking.istio.io/productpage configured
destinationrule.networking.istio.io/reviews unchanged
destinationrule.networking.istio.io/ratings unchanged
destinationrule.networking.istio.io/details unchanged

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[220]

Now that we've learned about circuit breaking, we will learn how to manage ingress traffic
and direct external traffic to the desired microservice.

Managing traffic
Incoming and outgoing traffic in Istio is managed through ingress and egress gateways.

The Kubernetes environment provides ingress resources for services that can be exposed
for access from outside the cluster. Istio also provides its own gateway, which works
seamlessly with Kubernetes, and it provides enhanced capabilities such as monitoring and
route rules that can be applied to traffic entering the cluster.

Managing Ingress traffic patterns
At the beginning of this chapter, we introduced the Istio primitive gateway and created a
bookinfo-gateway, which allowed http traffic from all external hosts on port 80. Let's
get started:

Review the definition of mygateway that we created at the beginning of this1.
chapter:

$ cat 00-create-gateway.yaml

We also created the Istio bookinfo virtual service, which uses mygateway.

Review the bookinfo virtual service:2.

$ cat 01-create-virtual-service.yaml

As shown by the output of the gateway and virtual service, we are routing any
external host http request on route /productpage to the internal Kubernetes
productpage service at port 9080.

Let's take an example where we want to route http://bookinfo.istio.io to
the Kubernetes productpage service on port 9080. For this to happen, we need
to have a DNS entry for bookinfo.istio.io mapped to the external IP address
of the Istio Ingress gateway service in our istio-system namespace. For
example, the external IP address in our VM is mapped to
192.168.142.249. Note that this could be a different IP address in your VM.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[221]

Check the external IP address of the Ingress gateway:3.

$ kubectl -n istio-system get svc istio-ingressgateway -o custom-
columns=Name:.metadata.name,EXTERNAL_IP:.status.loadBalancer.ingres
s[0].ip
Name EXTERNAL_IP
istio-ingressgateway 192.168.142.249

We will pretend that our IP address of 192.168.142.249 is mapped to
bookinfo.istio.io by creating an entry in our VM's /etc/hosts file.

Create an entry in the /etc/hosts file:4.

$ export INGRESS_IP=$(kubectl -n istio-system get svc istio-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
; echo $INGRESS_IP
192.168.142.249

$ if ! grep -q bookinfo.istio.io /etc/hosts ; then echo
"$INGRESS_IP bookinfo.istio.io" | sudo tee -a /etc/hosts; fi

Create a separate Istio virtual service that will use our existing bookinfo-
gateway and route http://bookinfo.istio.io to our internal Kubernetes
productpage service at port 9080.

Review the following script for the definition of the virtual service:5.

Script : 14-create-bookinfo-virtual-service.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo.istio.io
spec:
 hosts:
 - "bookinfo.istio.io"
 gateways:
 - mygateway
 http:
 - match:
 - uri:
 exact: /
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[222]

 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage.istio-lab.svc.cluster.local
 port:
 number: 9080

Create the bookinfo.istio.io virtual service:6.

$ kubectl -n istio-system apply -f 14-create-bookinfo-virtual-
service.yaml
virtualservice.networking.istio.io/bookinfo.istio.io created

Test http://bookinfo.istio.io within the virtual machine:7.

$ curl -s http://bookinfo.istio.io | grep title
<title>Simple Bookstore App</title>

This demonstrates how an Istio Ingress gateway can be used using Istio's primitive of the
gateway and virtual service. The advantage of using an Istio gateway is that we can
leverage the routing capabilities of Istio for traffic management.

Managing Egress traffic patterns
There are three ways in which external services can be accessed from Istio:

By configuring an Istio sidecar to allow access to any external service (not
recommended for large file transfers)
By using ServiceEntry to register an accessible external service from inside the
service mesh
By configuring an Istio sidecar to exclude external IPs from its remapped IP table

Using the first approach, we can't take advantage of Istio monitoring and traffic routing
capabilities for external services. It is recommended to use the ServiceEntry primitive of
Istio as that will allow us to use Istio monitoring and routing capabilities for external
services. For example, using the ServiceEntry approach, we can set timeout rules for
external services. The third approach bypasses the Istio sidecar and allows our services to
access external services directly.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[223]

We will explore the second approach to control access to external services using the Istio
ServiceEntry primitive.

We installed Istio using a demo profile, which allows access to any external service. Let's get
started:

Run the following command to find out the current outbound traffic policy1.
mode:

$ kubectl -n istio-system get cm istio -o yaml | grep -m1 -o "mode:
ALLOW_ANY"
mode: ALLOW_ANY

ALLOW_ANY mode permits access to external services from microservices.

Find out the ratings pod's IP address to test connectivity to an external service2.
through our service mesh:

$ export RATING_POD=$(kubectl -n istio-lab get pods -l app=ratings
-o jsonpath='{.items..metadata.name}') ; echo $RATING_POD
ratings-v1-79b6d99979-k2j7t

Run curl from the ratings pod to test https://www.ibm.com and check the3.
http code status. If the connection is successful, we should get 200:

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl -LI
https://www.ibm.com | grep "HTTP/"
HTTP/2 303 --> Note that this is the HTTP code for the redirection
of the URL
HTTP/2 200

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl -LI
https://www.cnn.com | grep "HTTP/"
HTTP/2 200

If you receive an error stating command terminated with exit code
6 or 35, this is an indication that the curl command is unable to resolve
the hostname from inside the container. This is likely due to nameserver
not being defined properly in the VM's /etc/resolv.conf file. Check
whether the container can get the external IP address by using
the kubectl -n istio-lab exec -it -c ratings $RATING_POD -
- curl ifconfig.me command.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[224]

If curl succeeds and you still get an error, you might want to recycle the core-dns pods
by using the kubectl -n kube-system delete pod -l k8s-app=kube-dns
command.

Blocking access to external services
We can apply rules to outgoing services through the egress gateway to enable/disable
access to external services. From a security standpoint, this is a nice capability that allows
us to enforce rules outside the application framework. Let's take a look:

 Change the config map for mode: ALLOW_ANY to mode: REGISTRY_ONLY:1.

$ kubectl -n istio-system get cm istio -o yaml | sed 's/mode:
ALLOW_ANY/mode: REGISTRY_ONLY/g' | kubectl replace -n istio-system
-f -
configmap/istio replaced

Now, double-check whether mode: REGISTRY_ONLY has been set:2.

$ kubectl -n istio-system get cm istio -o yaml | grep -m 1 -o
"mode: REGISTRY_ONLY"
mode: REGISTRY_ONLY

Wait a couple of seconds for the configuration to push down to the proxy sidecar.3.

By doing so, we have a reverse firewall for all of our microservices for
outbound access. You will need to create ServiceEntry for external
endpoints for services to access them.

Repeat the curl test again for external services:4.

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl -LI
https://www.ibm.com | grep "HTTP/"
command terminated with exit code 35

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl -LI
https://www.cnn.com | grep "HTTP/"
command terminated with exit code 35

By using the preceding technique, it is possible to block access to external services from
microservices.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[225]

Allowing access to external services
Instead of blanket denial to an external service, it is possible to allow access to certain
external services using Istio's ServiceEntry configuration. To control access to the
external services, we need to set mode: REGISTRY_ONLY, which we did in the previous
section. Let's take a look:

The following is the ServiceEntry definition to allow http access to1.
httpbin.org:

Script : 15-http-service-entry-for-httpbin.yaml

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: httpbin
spec:
 hosts:
 - httpbin.org
 ports:
 - number: 80
 name: http
 protocol: HTTP
 resolution: DNS
 location: MESH_EXTERNAL

Create http ServiceEntry to allow access to http://httpbin.org:2.

$ kubectl -n istio-lab apply -f 15-http-service-entry-for-
httpbin.yaml
serviceentry.networking.istio.io/httpbin created

The following is the ServiceEntry definition to allow https access to3.
www.ibm.com:

Script : 16-https-service-entry-for-ibm.yaml

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: google
spec:
 hosts:
 - www.ibm.com
 ports:
 - number: 443
 name: https

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[226]

 protocol: HTTPS
 resolution: DNS
 location: MESH_EXTERNAL

Create https ServiceEntry to allow access to IBM:4.

$ kubectl -n istio-lab apply -f 16-https-service-entry-for-ibm.yaml
serviceentry.networking.istio.io/ibm created

Wait a couple of seconds and then use curl from the ratings microservice to5.
test the external services for IBM:

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl -LI
https://www.ibm.com | grep "HTTP/"
HTTP/2 303 --> Code due to -L switch of the curl
HTTP/2 200

Next, check for httpbin.org: 6.

$ RATING_POD=$(kubectl -n istio-lab get pods -l app=ratings -o
jsonpath='{.items..metadata.name}') ; echo $RATING_POD
ratings-v1-79b6d99979-k2j7t

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl
http://httpbin.org/headers
{
 "headers": {
 "Accept": "*/*",
 "Host": "httpbin.org",
 "User-Agent": "curl/7.52.1",
 "X-B3-Sampled": "1",
 "X-B3-Spanid": "c7d663eebf9eee7b",
 "X-B3-Traceid": "65fb4bb225147a69c7d663eebf9eee7b",
 "X-Envoy-Decorator-Operation": "httpbin.org:80/*",
 "X-Istio-Attributes":
"CikKGGRlc3RpbmF0aW9uLnNlcnZpY2UubmFtZRINEgtodHRwYmluLm9yZwovCh1kZX
N0aW5hdGlvbi5zZXJ2aWNlLm5hbWVzcGFjZRIOEgxpc3Rpby1zeXN0ZW0KQgoKc291c
mNlLnVpZBI0EjJrdWJlcm5ldGVzOi8vcmF0aW5ncy12MS03OWI2ZDk5OTc5LWsyajd0
LmlzdGlvLWxhYgopChhkZXN0aW5hdGlvbi5zZXJ2aWNlLmhvc3QSDRILaHR0cGJpbi5
vcmc="
 }
}

Take note of the headers that were added by the Istio proxy sidecar.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[227]

Check the istio-proxy logs for the outbound traffic initiated by curl:7.

$ kubectl -n istio-lab logs -c istio-proxy $RATING_POD | tail |
grep curl
[2019-07-29T05:48:27.365Z] "GET /headers HTTP/1.1" 200 - "-" "-" 0
587 393 392 "-" "curl/7.52.1" "7374d794-
e724-9c90-82bc-9cd1516afd4b" "httpbin.org" "52.72.74.132:80"
outbound|80||httpbin.org - 34.202.34.10:80 192.168.230.254:59368 -

Let's test https://www.ibm.com:8.

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl -LI
https://www.ibm.com | grep "HTTP/"
HTTP/2 303
HTTP/2 200

Check that we have access to https://www.cnn.com:9.

$ kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl -LI
https://www.cnn.com | grep "HTTP/"
command terminated with exit code 35

Notice that access to www.cnn.com is blocked since no ServiceEntry has been created for
that URL.

If you require very tight access control on your microservices application,
especially if you're using third-party images where you have less trust or
control, you can enable REGISTRY_ONLY mode within Istio's service
mesh. This will block all outbound access from the microservices to the
external world. Consider this as a reverse firewall of the service mesh
where you only allow known, external web endpoints that you require
access to.

After turning on this feature, if you try to do apt-get update or yum update inside a
container to install a package, you will get a bad gateway error as the Envoy proxy will
block access to unknown ServiceEntry endpoints.

For example, try to use the kubectl -n istio-lab exec -it -c ratings
$RATING_POD -- apt-get update | grep 502 command. You will see a bad gateway
error. This is also protective because it will not allow any updates to any container as a
security posture. This security posture is different from traditional ways of security, where
an external firewall blocks external access.

The new way of thinking is to build a software stack that works equally well in a zero-trust
network.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[228]

This type of access control to external services from microservices through Istio is very
useful as you can only allow access to known external services that need to be accessed
from microservices. This way, we can control malicious access to external sites by third-
party microservices.

Routing rules for external services
Kenneth Reitz created a popular testing tool called http://httpbin.org. This tool is an
easy way to test HTTP code, test POST payloads, check headers, inspect requests and
responses, create/read/delete cookies, and return anything that is passed to a request.

Traffic can be managed to external services if access to them is controlled through
ServiceEntry. For example, routing rules can be applied to external services the same
way we implemented them for local services.

Let's look at an example where we'll add a timeout of 3 seconds to the httpbin.org
external site that will be accessed from our microservices:

Review the following script:1.

Script : 17-add-timeout-for-httpbin-virtual-service.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: httpbin
spec:
 hosts:
 - httpbin.org
 http:
 - timeout: 3s
 route:
 - destination:
 host: httpbin.org
 weight: 100

Add a timeout rule:2.

$ kubectl -n istio-lab apply -f 17-add-timeout-for-httpbin-virtual-
service.yaml
virtualservice.networking.istio.io/httpbin created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[229]

Access httpbin.org and introduce a delay of 5 second. Check whether a3.
timeout occurs from our side:

$ time kubectl -n istio-lab exec -it -c ratings $RATING_POD -- curl
-o /dev/null -s -w "%{http_code}\n" http://httpbin.org/delay/5
504

real 0m4.820s --> Time elapsed for the command to run
user 0m0.106s --> CPU seconds in user mode
sys 0m0.021s --> CPU seconds in kernel mode

Notice that httpbin.org was asked to wait 5 seconds by a call to /delay/5, but an Istio
gateway timeout (http code 504) occurred after 3 seconds. This demonstrates that Istio
can manage the same traffic/routing rules to external services, provided they are managed
through ServiceEntry.

This feature of ServiceEntry allows external services to be treated as if they were part of
the service mesh.

Now that we've learned how to manage incoming and outgoing traffic with the use of
Ingress/Egress gateways, we will learn about traffic mirroring capabilities that can help us
to feed the same incoming requests to two or more consumers. Traffic mirroring is useful to
send the traffic to security and monitoring appliances that can inspect content, monitor for
threats, and debug and troubleshoot.

Traffic mirroring
The live traffic mirroring capability of Istio is very useful for shadowing traffic from a
production service to a mirror service. Istio allows complete mirroring from one service to
another or a portion of the traffic. It is very important that mirroring should happen
without impacting the critical path of the original application.

Mirroring traffic using Istio is sometimes branded as out of band since mirroring is
accomplished asynchronously through Istio's sidecar proxy. The mirrored traffic should be
identified distinctly. This is done by appending shadow to the Host or Authority header.

Let's understand traffic mirroring or shadowing through an example.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[230]

We will create two versions of the httpbin service and enable a logging mechanism to
ensure which service is receiving or mirroring the traffic:

The following is a deployment example of httpbin-v1. Review the following1.
script to deploy the sample httpbin service:

Script : 18-deploy-httpbin-v1.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: httpbin-v1
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: httpbin
 version: v1
 spec:
 containers:
 - image: docker.io/kennethreitz/httpbin
 imagePullPolicy: IfNotPresent
 name: httpbin
 command: ["gunicorn", "--access-logfile", "-", "-b",
"0.0.0.0:80", "httpbin:app"]
 ports:
 - containerPort: 80

Deploy httpbin-v1:2.

$ kubectl -n istio-lab apply -f 18-deploy-httpbin-v1.yaml
deployment.extensions/httpbin-v1 created

The following is the deployment example for httpbin-v2:3.

Script : 19-deploy-httpbin-v2.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: httpbin-v2
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: httpbin

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[231]

 version: v2
 spec:
 containers:
 - image: docker.io/kennethreitz/httpbin
 imagePullPolicy: IfNotPresent
 name: httpbin
 command: ["gunicorn", "--access-logfile", "-", "-b",
"0.0.0.0:80", "httpbin:app"]
 ports:
 - containerPort: 80

Deploy httpbin-v2:4.

$ kubectl -n istio-lab apply -f 19-deploy-httpbin-v2.yaml
deployment.extensions/httpbin-v2 created

Create a Kubernetes httpbin service, which will load balance the traffic between
httpbin-v1 and httpbin-v2. Notice that both deployments use a label of app:
httpbin, which is the same label selector that's used by the httpbin service:

Script : 20-create-kubernetes-httpbin-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: httpbin
 labels:
 app: httpbin
spec:
 ports:
 - name: http
 port: 8000
 targetPort: 80
 selector:
 app: httpbin

Deploy the httpbin service:5.

$ kubectl -n istio-lab apply -f 20-create-kubernetes-httpbin-
service.yaml
service/httpbin created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[232]

Let's disable the Kubernetes load balancing capabilities of httpbin for httpbin-
v1 and httpbin-v2 through the use of an Istio destination rule. We will do this
to define subsets that will be used by the Istio virtual service to direct 100% of the
traffic to httpbin-v1. Define some destination rules to create subsets:

Script : 21-create-destination-rules-subsets.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: httpbin
spec:
 host: httpbin
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

Create the required destination rules:6.

$ kubectl -n istio-lab apply -f 21-create-destination-rules-
subsets.yaml
destinationrule.networking.istio.io/httpbin created

Define a virtual service in order to direct 100% of the traffic to subset v1:7.

Script : 22-create-httpbin-virtual-service.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: httpbin
spec:
 hosts:
 - httpbin
 http:
 - route:
 - destination:
 host: httpbin
 subset: v1
 weight: 100

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[233]

Create a virtual service:8.

$ kubectl -n istio-lab apply -f 22-create-httpbin-virtual-
service.yaml
virtualservice.networking.istio.io/httpbin configured

Now, we can send some traffic to httpbin. However, before we do that, open
two separate command-line windows to put a tail on the logs for both of
the httpbin services.

Use the first command-line window for the httpbin:v1 tail:9.

$ V1_POD=$(kubectl -n istio-lab get pod -l app=httpbin,version=v1 -
o jsonpath={.items..metadata.name}) ; echo $V1_POD
httpbin-v1-b9985cc7d-4wmcf

$ kubectl -n istio-lab -c httpbin logs -f $V1_POD
[2019-04-24 01:01:56 +0000] [1] [INFO] Starting gunicorn 19.9.0
[2019-04-24 01:01:56 +0000] [1] [INFO] Listening at:
http://0.0.0.0:80 (1)
[2019-04-24 01:01:56 +0000] [1] [INFO] Using worker: sync
[2019-04-24 01:01:56 +0000] [8] [INFO] Booting worker with pid: 8

Use the second command-line window for the httpbin:v2 tail:10.

$ V2_POD=$(kubectl -n istio-lab get pod -l app=httpbin,version=v2 -
o jsonpath={.items..metadata.name}) ; echo $V2_POD
httpbin-v2-5cdb74d4c7-mxtfm

$ kubectl -n istio-lab -c httpbin logs -f $V2_POD
[2019-04-24 01:01:56 +0000] [1] [INFO] Starting gunicorn 19.9.0
[2019-04-24 01:01:56 +0000] [1] [INFO] Listening at:
http://0.0.0.0:80 (1)
[2019-04-24 01:01:56 +0000] [1] [INFO] Using worker: sync
[2019-04-24 01:01:56 +0000] [8] [INFO] Booting worker with pid: 8

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[234]

Open one more command-line window and run the following curl command11.
using the ratings pod to send traffic to the httpbin service:

$ RATING_POD=$(kubectl -n istio-lab get pods -l app=ratings -o
jsonpath='{.items..metadata.name}') ; echo $RATING_POD
ratings-v1-79b6d99979-k2j7t

$ kubectl -n istio-lab exec -it $RATING_POD -c ratings -- curl
http://httpbin:8000/headers | python -m json.tool
{
 "headers": {
 "Accept": "*/*",
 "Content-Length": "0",
 "Host": "httpbin:8000",
 "User-Agent": "curl/7.38.0",
 "X-B3-Parentspanid": "58e256d2258d93de",
 "X-B3-Sampled": "1",
 "X-B3-Spanid": "ad58600dc4bf258a",
 "X-B3-Traceid": "4042bd191da4131058e256d2258d93de"
 }
}

Switch back to the command-line windows that have tails for the v1 and v212.
services. You will notice an additional logline in the httpbin:v1 service;
the httpbin:v2 service does not show any additional log lines:

[2019-08-02 13:04:14 +0000] [1] [INFO] Using worker: sync
[2019-08-02 13:04:14 +0000] [8] [INFO] Booting worker with pid: 8
127.0.0.1 - - [24/Apr/2019:01:35:55 +0000] "GET /headers HTTP/1.1"
200 303 "-" "curl/7.38.0"

Now, let's mirror the traffic from v1 to v2. Modify the httpbin virtual service13.
by adding a mirror to subset v2:

Script : 23-mirror-traffic-between-v1-and-v2.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: httpbin
spec:
 hosts:
 - httpbin
 http:
 - route:
 - destination:
 host: httpbin

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[235]

 subset: v1
 weight: 100
 mirror:
 host: httpbin
 subset: v2

Modify the virtual service. Run the following command from the third window14.
and make sure that you switch to the cd ~/istio/scripts/01-traffic-
management directory:

$ kubectl -n istio-lab apply -f 23-mirror-traffic-between-v1-and-
v2.yaml
virtualservice.networking.istio.io/httpbin configured

Send the same traffic to httpbin:v1. Now, we should see log lines appear in15.
the httpbin:v1 and httpbin:v2 pods. Just wait a few seconds for the rules to
propagate:

$ kubectl -n istio-lab exec -it $RATING_POD -c ratings -- curl
http://httpbin:8000/headers | python -m json.tool

The first window, httpbin:v1, shows one more line in addition to the previous16.
one that we had already received:

127.0.0.1 - - [24/Apr/2019:01:46:34 +0000] "GET /headers HTTP/1.1"
200 303 "-" "curl/7.38.0"
127.0.0.1 - - [24/Apr/2019:01:48:30 +0000] "GET /headers HTTP/1.1"
200 303 "-" "curl/7.38.0"

The second window, httpbin:v2, shows the new line:17.

127.0.0.1 - - [24/Apr/2019:01:48:30 +0000] "GET /headers HTTP/1.1"
200 343 "-" "curl/7.38.0"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[236]

While traffic is being mirrored, the response from the second httpbin:v2 is not sent back
since its purpose is to apply httpbin requests to and from v1 to v2. The proxy sidecar of
httpbin:v2 does not return any response, as expected. This can be seen in the following
diagram:

Did you notice how easy it is to mirror traffic from one microservice to another? This is a
very useful case in which you can mirror the traffic from the edge service to a different
namespace or another Kubernetes cluster that has the same application and do any type of
testing, such as infrastructure testing, testing a different version of the complete
application, and so on. There are lots of use cases, and you can enable this capability by
making the necessary configuration changes.

You can press Ctrl+C in both command-line windows to stop the tails on the logs of both
pods.

For us to be able to move on to the next chapter, we will remove the restrictions that were
set on the external traffic flow.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[237]

Cleaning up
Just follow these simple steps:

We will change the mode from mode: REGISTRY_ONLY to mode: ALLOW_ANY1.
for the purpose of the next chapter's lab exercises:

$ kubectl -n istio-system get cm istio -o yaml | sed 's/mode:
REGISTRY_ONLY/mode: ALLOW_ANY/g' | kubectl replace -n istio-system
-f -
configmap/istio replaced

Double-check whether mode: ALLOW_ANY has been set:2.

$ kubectl -n istio-system get cm istio -o yaml | grep -m 1 -o
"mode: ALLOW_ANY"
mode: ALLOW_ANY

We will delete the virtual services for httpbin as we will recreate them in the3.
next chapter:

$ kubectl -n istio-lab delete -f 22-create-httpbin-virtual-
service.yaml
virtualservice.networking.istio.io "httpbin" deleted

With this, we have made changes in our setup so that we can show Istio's security features
in the next chapter.

Summary
In this chapter, we demonstrated Istio's traffic management capabilities for traffic shifting,
setting request timeouts, controlling Ingress and Egress traffic, circuit breaking to protect
services from overload and attacks, and mirroring traffic from one route to another route.

These were the breakthroughs from the earlier concepts of achieving the same results either
through coding in the application or by using libraries for every language. The capability to
control traffic at the edge of the cluster gives operations staff ease-of-use to manage the
application infrastructure dynamically and resiliently without needing intervention from
developers. As an example, it is possible to completely block access to any external service
from the distributed microservices application except whitelisted service entries.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[238]

It is worth noting that all of the features we learned about in this chapter did not require
making any changes in the application code, which makes service mesh very attractive.
Similarly, security postures are implemented in application code traditionally. In the next
chapter, we will look at Istio's security features so that we can implement security without
making any changes to the application code. This is possible due to the Envoy sidecar
implementation.

Questions
Traffic routing is a feature of Envoy that receives its configuration from Pilot.1.
A) True
B) False

Istio can work in a zero-trust network and still provide enterprise-grade security.2.
A) True
B) False

You can enable a reverse firewall in Istio to block outbound access from3.
microservices.
A) True
B) False

The concept of "Dark launches/Family and Friend Testing" is a feature that4.
allows access to only a select group of entities to gather early feedback on a new
release, which runs in the same production environment.
A) True
B) False

An Istio gateway can have multiple virtual services.5.
A) True
B) False

An Istio virtual service is a superset of a Kubernetes service since it provides6.
more features and functions than a native service.
A) True
B) False

The destination rule defines the configuration, but it has no role in traffic routing7.
since the subsets that it defines are used in virtual services.
A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Traffic Management Capabilities Chapter 10

[239]

Load balancing at the Envoy level is done at the L7 networking layer and not at8.
L3/L4.
A) True
B) False

When you enable traffic mirroring of one service to another service, you don't get9.
a response from the mirrored service.
A) True
B) False

Further reading
Traffic Management, Istio. (2019), available at https:/ / archive. istio. io/ v1. 3/
docs/tasks/ traffic- management/ , accessed 16 May 2019
Incremental Istio Part 1, Traffic Management, Parikh, S. (2019), Istio, available
at https:/ /archive. istio. io/ v1. 3/blog/ 2018/ incremental- traffic-
management/ , accessed 16 May 2019
Deploy an Istio mesh across multiple IBM Cloud Private clusters using Istio
Gateway, Cao, M. (2019), available at https:/ /medium. com/ ibm-cloud/ deploy-
an-istio- mesh- across- multiple- ibm- cloud- private- clusters- using- istio-
gateway- 7b33c71cb41c, accessed 16 May 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://archive.istio.io/v1.3/blog/2018/incremental-traffic-management/
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c
https://medium.com/ibm-cloud/deploy-an-istio-mesh-across-multiple-ibm-cloud-private-clusters-using-istio-gateway-7b33c71cb41c

11
Exploring Istio Security

Features
Traditionally, the security of an application is implemented at the application level by using
language-specific libraries to enable certificate-based authentication and then encryption of
the network traffic. In modern cloud-native applications, these tasks are delegated to the
service mesh providers to implement security so that application developers can focus on
the business logic of the application.

In this chapter, we will look at service authentication and authorization using simple and
mutual TLS and advanced security enhancements through examples.

In a nutshell, we will cover the following topics:

Configuring service authentication
Enabling and disabling service authorization

Technical requirements
You will get the best out of this chapter if you have the following:

This chapter's exercise use dependencies from the previous chapter. Please make
sure that you completed the exercises in the previous chapter before starting this
one.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[241]

Open a command-line window to follow this chapter to learn
about Istio security by examples. Clone this book's GitHub directory:

$ cd ~/istio
$ git checkout $ISTIO_VERSION
$ cd scripts/02-security

Make sure that all istio-lab pods are in a Ready 2/2 state:

$ kubectl -n istio-lab get pods

Once this is done, we're ready to begin!

Overview of Istio's security
Security in Istio is very comprehensive. The high-level overview starts with Citadel, which
is a key and certificate manager. It acts as a Certificate Authority (CA) for Istio. An
additional component, node_agent, needs to be enabled for certificate and key rotation.
The node agent runs as a daemon set on all of the nodes to take care of the certificate and
key rotations. The sidecar proxies implement a secure protocol communication between
microservices, and this is a self-service model that is enabled through a parameter with no
changes being made to the microservices. The following control plane components are
used:

Pilot: Pilot in Istio distributes authentication and provides secure naming
conventions for sidecar proxies. Secure naming is a new concept that is gaining
traction since it identifies services securely if they are part of the trusted service
mesh network. It is also referred to as Strong Identity, and it is implemented
using the SPIFFE specification through the SPIRE implementation.
Mixer: Mixer manages authorization and auditing.

For service meshes, it should be a strong requirement to implement an abstract layer on top
of the applications being run in a Kubernetes environment. In such cases, a few guidelines
can be followed for application development:

Microservices should be designed using an HTTP protocol so that mutual TLS
can be implemented through Istio in a self-service model through configuration
changes.
Microservices should not implement code for secure communication to external
services as that can be implemented at the edge egress gateway for the entire
service mesh.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[242]

The security implementation starts with authentication (who you are?) and authorization
(what can you do?). First, we will implement an authentication infrastructure around
microservices through the use of Istio.

Authentication
From the previous chapter, we configured the Istio ingress gateway to expose the
bookinfo HTTP service's endpoints to external traffic. In this section, we will configure
simple or mutual TLS to provide HTTPS access to the external traffic to access bookinfo
services. It is our assumption that you have an understanding of simple and mutual TLS
authentication. Additional information can be found here: https:/ /bit. ly/ 2voH44c.

Simple or mutual TLS termination at the ingress gateway for incoming requests assumes
that downstream services are safe and not liable to external attacks or insider threats. After
the ingress gateway has been secured, downstream service communication is done using a
plaintext HTTP protocol.

If access is requested to external services, TLS origination should start an egress gateway
for secure communication with an external service. It is not good practice for a microservice
to initiate an HTTPS session with an external service. We lose monitoring and policy
enforcement because of sidecar proxies. In such cases, there are two recommended options:

TLS origination at the sidecar proxy level: Communication between the sidecar
and the external service is encrypted, but pod to sidecar communication is not
encrypted. A simple use case could be an environment where microservices are
running in a federated, multi-Kubernetes cluster, and the network is prone to
internal threats and is inherently insecure.

TLS origination at the egress gateway: The communication behind the egress
gateway is not encrypted. A use case could be an environment where
microservices are running within the same Kubernetes cluster and the internal
threat is not a concern.

Modern microservices design should always be done by keeping the zero-trust network in
mind without any requirement for any type of firewall. Such a requirement can be easily
met by adopting Istio's service mesh architecture on top of cloud-native microservices-
based applications.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bit.ly/2voH44c
https://bit.ly/2voH44c
https://bit.ly/2voH44c
https://bit.ly/2voH44c
https://bit.ly/2voH44c
https://bit.ly/2voH44c
https://bit.ly/2voH44c
https://bit.ly/2voH44c
https://bit.ly/2voH44c

Exploring Istio Security Features Chapter 11

[243]

We will not be covering mount-based secrets where keys and certificates from secrets are
mounted within a container. This approach can cause performance regression during
certificate rotation whenever a sidecar restart picks up new keys and certificates.

Since private keys are distributed through secrets, the pod owner can see the value of the
secret. Through Secret Discovery Service (SDS), private keys never leave the node, and it
resides only at the Citadel agent and sidecar memory. The secret volumes are no longer
mounted within a pod. The sidecar is able to renew keys and certificates through the SDS
API; hence, there is no need to recycle the sidecar to pick up new keys and certificates.

From a security standpoint, good application design should always run in
a zero-trust network with guard rails to protect it. This is not always
possible because it substantially increases the cost of development.
Implementing it through an infrastructure layer of the application, such as
Istio, is application security agnostic and fits well within an SRE model of
operations.

Now, let's work on securing the ingress gateway with simple or mutual TLS termination
using SDS by Istio.

Testing the httpbin service
In the previous chapter, we created an httpbin service that performed load balancing and
traffic mirroring between the httpbin-v1 and httpbin-v2 microservices. In this chapter,
we will use the same httpbin service and show you how to secure external traffic through
an Istio ingress gateway using SDS.

Let's test the httpbin service internally using HTTP that outputs a teapot (/status/418)
and the IP address:

$ curl http://httpbin.istio-lab.svc.cluster.local:8000/status/418

 -=[teapot]=-

 .' _ _ `.
 | ."` ^ `". _,
 _;`"---"`|//
 | ;/
 _ _/
 `"""`

$ curl http://httpbin.istio-lab.svc.cluster.local:8000/ip

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[244]

{
 "origin": "127.0.0.1"
}

Next, we'll generate some keys and certificates to enable simple or mutual TLS.

Generating keys and certificates
We need a private key, server certificate, and root certificate to enable simple or mutual
TLS. Either we get them from a CA or we self-generate them. We will be generating the
certificates and keys using a small-step command line. To do this, we need to install the
step CLI.

If you need a quick introduction to the Public Key Infrastructure (PKI),
please refer to this excellent article by Mike Malone: https:/ /smallstep.
com/blog/ everything- pki. html.

Installing the step CLI
Smallstep is an open source piece of software that provides easy, simple to use tools to
establish PKI for your applications. To install the step CLI, follow these steps:

Find out the latest release of the step CLI by entering the following command:1.

$ curl -s
https://api.github.com/repos/smallstep/cli/releases/latest | grep
tag_name
"tag_name": "v0.13.3",

At the time of writing this book, Step is at release version v0.13.3, so we will2.
download this version:

$ cd ~/
$ curl -LOs
https://github.com/smallstep/cli/releases/download/v0.13.3/step_0.1
3.3_linux_amd64.tar.gz

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html
https://smallstep.com/blog/everything-pki.html

Exploring Istio Security Features Chapter 11

[245]

Extract and copy the Step cli to /bin or copy it to your local bin:3.

$ tar xvfz step_0.13.3_linux_amd64.tar.gz
step_0.13.3/
step_0.13.3/README.md
step_0.13.3/bin/
step_0.13.3/bin/step

$ sudo mv step_0.13.3/bin/step /bin

Now that the step CLI has been installed, we will generate the private keys, server
certificates, and root certificates for the two hosts: httpbin.istio.io and
bookinfo.istio.io. Since these are not real hosts that are defined in a DNS server, we'll
create local entries in /etc/hosts for the purpose of our tests.

Generating private key, server, and root certificates
Normally, you obtain a certificate from an established CA provider such as GeoTrust,
DigiCert, GlobalSign, or GoDaddy when you want to establish that a certificate that has
been issued to a computer name is legitimate to prevent a man-in-the-middle attack. The
scope of issuance of the certificate is done using the name of the service using a service
mesh implementation; we can either get a root certificate signed from an established
provider or use our own root and intermediate certificate to issue certificates. To show this
concept, we will use a simple to use open source smallstep.com way of using our own CA:

Create a directory and create a root certificate using root --profile by using1.
the step command.
Specify a password to encrypt the root key. For simplicity, you may want to use2.
the password string as password:

$ mkdir -p ~/step
$ cd ~/step

$ step certificate create --profile root-ca "My Root CA" root-
ca.crt root-ca.key
Please enter the password to encrypt the private key: password
This password is used to encrypt root-ca.key

Your certificate has been saved in root-ca.crt.
Your private key has been saved in root-ca.key.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://smallstep.com

Exploring Istio Security Features Chapter 11

[246]

Now that we've created the root certificate, we need to create the intermediate
certificate.

To establish a chain of trust, let's create an intermediate CA:3.

$ step certificate create istio.io istio.crt istio.key --profile
intermediate-ca --ca ./root-ca.crt --ca-key ./root-ca.key
Please enter the password to decrypt ./root-ca.key: password
step asks for root-ca.key password so it can use it to sign
istio.crt
Please enter the password to encrypt the private key: password
This password is used to encrypt istio.key

Your certificate has been saved in istio.crt.
Your private key has been saved in istio.key.

Now, we need to create an X.509 certificate.4.

It's fine that the root-ca.key and istio.key signing keys are encrypted.
However, we need httpbin.key and bookinfo.key to be unencrypted. This is
done in step by passing the --no-password and --insecure CLI flags. The
default validity of the certificate is 24 hours, but we will use the --not-
after flag and specify 2,160 hours (90 days) for the validity to make sure that we
are able to complete the exercises in 90 days before the certificate expires. If it
does, you may need to rotate the certificate by creating a new one and update the
secret:

$ step certificate create httpbin.istio.io httpbin.crt httpbin.key
--profile leaf --ca istio.crt --ca-key istio.key --no-password --
insecure --not-after 2160h
Please enter the password to decrypt istio.key: password
Specify password used to create intermediate CA

Your certificate has been saved in httpbin.crt.
Your private key has been saved in httpbin.key.

Root and intermediate certificates are created with a password so that
only authorized users with the password can create leaf certificates. The
no-password flag is used to create a non-encrypted leaf certificate.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[247]

Repeat the same for bookinfo.istio.io using the same intermediate CA:5.

$ step certificate create bookinfo.istio.io bookinfo.crt
bookinfo.key --profile leaf --ca istio.crt --ca-key istio.key --no-
password --insecure --not-after 2160h
Please enter the password to decrypt istio.key: password
Specify intermediate CA password

Your certificate has been saved in bookinfo.crt.
Your private key has been saved in bookinfo.key.

The next step is the verification step to make sure that the certificate is valid.

Step provides options that we can use to inspect and verify certificates and check6.
that the validity of the certificate is 90 days (2,160 hours):

$ step certificate inspect bookinfo.crt --short
X.509v3 TLS Certificate (ECDSA P-256) [Serial: 1528...6042]
 Subject: bookinfo.istio.io
 Issuer: istio.io
 Valid from: 2019-08-02T13:25:47Z
 to: 2019-10-31T13:25:43Z

Check the validity of the leaf certificate by running the following command. The7.
return code should be zero:

$ step certificate verify bookinfo.crt -roots istio.crt

$ echo $?
0

Since we are not using the real hostname and an external DNS provider to resolve these to
an IP address, we will map the DNS names to internal IP addresses using a simple
/etc/hosts file.

Mapping IP addresses to hostname
In real-world scenarios, operators use DNS to map ingress gateway IP addresses to the
names that we are using.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[248]

In our case, we will define these in the /etc/hosts file. Let's get started:

Find out the external IP address and the port of the Istio ingress gateway:1.

$ export INGRESS_HOST=$(kubectl -n istio-system get service istio-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress..ip}') ;
echo $INGRESS_HOST
192.168.142.249

$ export INGRESS_PORT=$(kubectl -n istio-system get service istio-
ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="https")].port}') ; echo
$INGRESS_PORT
443

The ingress IP address could be different in your VM.

Please take note of your ingress host and IP address and run the following two2.
commands. These will create and update the /etc/hosts file:

$ if ! grep -q bookinfo.istio.io /etc/hosts ; then echo
"$INGRESS_HOST bookinfo.istio.io" | sudo tee -a /etc/hosts; fi

$ if ! grep -q httpbin.istio.io /etc/hosts ; then echo
"$INGRESS_HOST httpbin.istio.io" | sudo tee -a /etc/hosts; fi

$ cat /etc/hosts
192.168.142.249 bookinfo.istio.io
192.168.142.249 httpbin.istio.io

Ping both hosts to make sure that the IP address has been resolved:3.

$ ping -c4 bookinfo.istio.io
$ ping -c4 httpbin.istio.io

If the ping does not succeed, it is likely that the keepalived HA proxy is
not working. Check kubectl -n keepalived get pods and make sure
that the pods are in the ready state. The most probable reason for
keepalived not running is that the ip_vs module hasn't loaded. Consult
https:/ /github. com/ servicemeshbook/ keepalived or Chapter 9,
Installing Istio, to fix it. You may load the ip_vs module if it hasn't already
been loaded using sudo modprobe ip_vs and restart the failed
keepalived pod.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived
https://github.com/servicemeshbook/keepalived

Exploring Istio Security Features Chapter 11

[249]

Istio initially used Kubernetes secrets to mount certificates and keys inside the pod, and
that posed an issue regarding security if an attacker gains access to the pod. Istio now
implements the Secret Discovery Service (SDS) process to keep the certificates and keys in
memory instead of mounting them inside the pod. Next, we will go through the process of
configuring the Ingress gateway using SDS.

Configuring an Ingress gateway using SDS
The advantage of using Istio's Secret Discovery Service (SDS) process is that there is
no need to mount Kubernetes secrets in pods. The gateway agent monitors all of the secrets
that are defined in the Ingress gateway and sends them to the Ingress gateway, which can
dynamically add, delete, or update key/certificate pairs and its root certificate.

The demo profile that we used during the Istio installation does not enable SDS by
default. We can enable it by applying the generated YAML using the values in the -istio-
sds-auth profile. Let's get started:

Apply the following command, which will add the ingress-sds container to1.
the Istio Ingress gateway:

$ cd ~/istio-$ISTIO_VERSION

$ helm template install/kubernetes/helm/istio/ --name istio \
 --namespace istio-system \
 -x charts/gateways/templates/deployment.yaml \
 --set gateways.istio-egressgateway.enabled=false \
 --set gateways.istio-ingressgateway.sds.enabled=true \
 | kubectl apply -f -

Note: Since we have now enabled SDS and mTLS, you can't go back and
perform the traffic management exercises since they were assumed to be
done with permissive mTLS, and the destination rules we created in these
exercises enforce client mTLS.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[250]

Check the logs in the ingress-sds container of the Istio Ingress gateway:2.

$ kubectl -n istio-system logs -l app=istio-ingressgateway -c ingress-sds
2019-10-16T16:45:24.721824Z warn Secret object: kiali has empty ---
2019-10-16T16:45:24.802527Z info SDS gRPC server for ingress ---
2019-10-16T16:45:24.802745Z info Start SDS grpc server for ---

--- field, skip adding secret
--- gateway controller starts, listening on "/var/run/ingress_gateway/sds"
--- ingress gateway proxy

Similarly, check the logs in istio-proxy, which were injected for Secure3.
Service Discovery (SSD):

$ kubectl -n istio-system logs -l app=istio-ingressgateway -c istio-proxy
2019-08-03T16:45:24.919109Z info Opening status port 15020
2019-08-03T16:45:24.919231Z info Received new config, resetting budget
2019-08-03T16:45:24.919316Z info Reconciling retry (budget 10)
2019-08-03T16:45:24.919458Z info watching /etc/certs for changes
...
2019-08-03T16:45:25.937318Z info Envoy proxy is ready

Now that we've made sure that SDS is enabled, we'll create the certificates and keys.

Creating secrets using key and certificate
To create certificates and keys, follow these simple steps:

Create secrets for the httpbin.istio.io and bookinfo.istio.io domains so1.
that they have a certificate and key. These secrets will be watched for any
changes:

$ kubectl -n istio-system create secret generic httpbin-keys --
from-file=key=$HOME/step/httpbin.key --from-
file=cert=$HOME/step/httpbin.crt
secret/httpbin-keys created

$ kubectl -n istio-system create secret generic bookinfo-keys --
from-file=key=$HOME/step/bookinfo.key --from-
file=cert=$HOME/step/bookinfo.crt
secret/bookinfo-keys created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[251]

The certificate and key will be pushed down the container memory of ingress-
sds through the SDS, hence avoiding the need for us to mount the certificates and
keys, which would make them vulnerable.

Add the httpbin.istio.io and bookinfo.istio.io hosts to our existing2.
Istio mygateway using the httpbin-keys secret:

Script : 01-add-bookinfo-https-to-mygateway.yaml

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: mygateway
spec:
...
 servers:
 - port:
 number: 80
 protocol: HTTP
...
 tls:
 mode: SIMPLE
 credentialName: bookinfo-keys
 hosts:
 - bookinfo.istio.io
 - port:
 number: 443
 name: httpbin
 protocol: HTTPS
 tls:
 mode: SIMPLE
 credentialName: httpbin-keys
 hosts:
 - httpbin.istio.io

In the preceding yaml file, note the following:

Plain HTTP traffic is allowed for all hosts on port 80.
HTTPS traffic is allowed for bookinfo.istio.io and httpbin.istio.io.
The certificate and key for each host(s) is kept in a secret in the istio-system
namespace or other admin namespaces where an application does not have
access. The certificate and key will be mounted in memory of the istio-proxy
for the pod through SDS since we enabled it in the previous step.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[252]

Through the definition we defined at the Istio Ingress gateway, the protocol for
the hosts is defined as SIMPLE TLS, which means that the client establishes the
authenticity of the server, but the server does not check the credentials of the
client. This is something that happens a lot on the internet today.

Apply the preceding definition to add both hosts to the existing mygateway. We
have set TLS mode to SIMPLE, which is one way to authenticate, that is, the client
authenticates the server.

Create a gateway for the bookinfo application:3.

$ cd ~/istio/scripts/02-security

$ kubectl -n istio-system apply -f 01-add-bookinfo-https-to-
mygateway.yaml
gateway.networking.istio.io/mygateway created

As soon as the gateway definition has been defined, the secrets are mounted in-
memory through SDS.

Check the log again in the ingress-sds container of the Istio Ingress gateway:4.

$ kubectl -n istio-system logs -l app=istio-ingressgateway -c ingress-
sds
<<removed>>
2019-08-03T17:09:08.518098Z info SDS: push key/cert pair from node
agent to proxy: ---
2019-08-03T17:09:08.518123Z info SDS: push key/cert pair from node
agent to proxy: ---

--- "router~192.168.230.230~istio-ingressgateway-7db95cf64-hb7bq. ---
--- "router~192.168.230.230~istio-ingressgateway-7db95cf64-hb7bq. ---

--- istio-system~istio-system.svc.cluster.local-1"
--- istio-system~istio-system.svc.cluster.local-2"

[Optional: The c only do if necessary] If you do not see SDS, push the message,5.
wait for a few seconds, and check the logs again. If it does not refresh, recycle the
Istio Ingress gateway, wait for the pod to become ready, and check the logs
again:

$ export INGRESS_GW=$(kubectl -n istio-system get pods -l
istio=ingressgateway -o jsonpath='{.items[0].metadata.name}')

$ kubectl -n istio-system delete pod $INGRESS_GW

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[253]

Now that we've SDS, we will enable our httpbin application so that it can use simple TLS
authentication.

Enabling httpbin for simple TLS
To enable our httpbin application so that it can use simple TLS authentication, follow
these simple steps:

Define a virtual service for httpbin.istio.io so that the gateway knows how1.
to route the traffic for httpbin requests:

Script : 02-create-virtual-service-for-httpbin.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: httpbin
spec:
 hosts:
 - httpbin.istio.io
 gateways:
 - mygateway
 http:
 - match:
 - uri:
 prefix: /
 - uri:
 prefix: /status
 - uri:
 prefix: /delay
 route:
 - destination:
 host: httpbin.istio-lab.svc.cluster.local
 subset: v1
 port:
 number: 8000
 weight: 100

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[254]

Create the preceding virtual service in the istio-system namespace:2.

$ kubectl -n istio-system apply -f 02-create-virtual-service-
for-httpbin.yaml
virtualservice.networking.istio.io/httpbin created

Let's use the curl command to send the request. To do this, we will use the3.
hostname by setting the header, using the resolve parameter to set the IP address,
and setting the cacert parameter:

$ rm -fr ~/.pki ## Reset local NSS database

$ curl -HHost:httpbin.istio.io --resolve
httpbin.istio.io:$INGRESS_PORT:$INGRESS_HOST --cacert
$HOME/step/istio.crt https://httpbin.istio.io/status/418

 -=[teapot]=-

 .' _ _ `.
 | ."` ^ `". _,
 _;`"---"`|//
 | ;/
 _ _/
 `"""`

$ curl -HHost:httpbin.istio.io --resolve
httpbin.istio.io:$INGRESS_PORT:$INGRESS_HOST --cacert
$HOME/step/istio.crt https://httpbin.istio.io/ip
{
 "origin": "192.168.142.101"
}

Notice that in the preceding code, we enabled edge authentication to the frontend
microservice without having to make any code changes in the original application. This is
because of the loosely coupled architecture of the Istio service mesh.

An HTTP 418 status gives us the output I'm a teapot. httpbin returns
a text picture of a teapot.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[255]

Check the TLS implementation:4.

$ HTTPBIN=$(kubectl -n istio-lab get pods -l app=httpbin -o
jsonpath={.items[0].metadata.name}) ; echo $HTTPBIN
httpbin-v1-b9985cc7d-4wmcf

$ istioctl authn tls-check $HTTPBIN.istio-lab httpbin.istio-
lab.svc.cluster.local
HOST:PORT STATUS SERVER ---
httpbin.istio-lab.svc.cluster.local:8000 OK HTTP/mTLS ---

--- CLIENT AUTHN POLICY DESTINATION RULE
--- HTTP default/ httpbin/istio-lab

TLS is permissive as it shows HTTP/mTLS at the server level. The external client
protocol is HTTP. You can run istioctl proxy-status to check the sync
status of the Envoy proxy from Pilot, which is useful if you wish to diagnose
issues.

The PERMISSIVE policy is desired when not all services use a proxy sidecar or5.
the process of migration is still continuing. This can be done cluster-wide by
modifying the mesh policy from PERMISSIVE to STRICT, and it will enforce
across all user-defined services. In such a case, the output below SERVER will
only show mTLS. Note that STRICT mode can be done at a cluster level, a
namespace level, or a service level:

$ kubectl get meshpolicies default -o yaml

apiVersion: authentication.istio.io/v1alpha1
kind: MeshPolicy
metadata:
[... removed ...]
 name: default
spec:
 peers:
 - mtls:
 mode: PERMISSIVE

The destination rule defines the CLIENT mode. We defined the destination rule
for httpbin in the previous chapter. Run the kubectl -n istio-lab get dr httpbin
-o yaml command to check the subsets that have been defined and then run kubectl -n
istio-lab get vs httpbin -o yaml to find out which subset is used as a destination
for the httpbin service.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[256]

Allow developers to focus only on business logic and leave security
implementation to the application infrastructure team.

Next, we will enable simple TLS for the bookinfo application.

Enabling bookinfo for simple TLS
Let's define a virtual service for bookinfo.istio.io so that the gateway knows the URI
matches and patterns it requires to send requests to the productpage.istio-
lab.svc.cluster.local hostname on port 9080:

Enter the following command:1.

Script : 03-create-virtual-service-for-bookinfo.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - bookinfo.istio.io
 gateways:
 - mygateway
 http:

...
 route:
 - destination:
 host: productpage.istio-lab.svc.cluster.local
 port:
 number: 9080

Create a virtual service in the istio-system namespace:2.

$ kubectl -n istio-system apply -f 03-create-virtual-service-for-
bookinfo.yaml
virtualservice.networking.istio.io/bookinfo configured

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[257]

From a web browser within the VM, open two more tabs:3.

Open http://bookinfo.istio.io from the first tab; it should
load normally.
Open https://bookinfo.istio.io from the second tab.

You will see a notice stating that your connection is not private. This is normal as4.
browsers don't like self-signed certificates.
Click Advanced and click Proceed to go to bookinfo.istio.io (unsafe).5.

You will notice that you are able to run both protocol HTTP and HTTPS since our
gateway is allowing HTTP traffic for all hosts, and the SIMPLE tls mode is only
applicable for httpbin.istio.io and bookinfo.istio.io.

Open one more tab and run http://httpbin.istio.io/headers. Now, you6.
should see the headers.

The internet did not provide a robust method for revoking certificates before their
expiration date. A certain amount of time is lost for the revocation due to real-time
distribution. Another method to check against the revocation of certificates is Online
Certificate Status Protocol (OCSP—https://tools.ietf.org/html/rfc2560), which
is also open to criticism due to latency, overhead issues, and privacy concerns regarding
leaking information about websites that have been given to a central OCSP server. Until
this problem is solved, another method is to rotate keys and certificates at a short interval to
reduce the time window for security compromise. Next, we will look at the procedure of
rotating keys and certificates.

Rotating virtual service keys and certificates
If a private key has been compromised, revoking X.509 certificates is not enough. The best
option is to issue certificates that expire quickly enough so that revocation isn't necessary.
In a zero-trust network, it is good practice to let certificates expire sooner, and there is an
automatic way to renew certificates.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[258]

Istio Citadel and node agent provide an automatic way for us to renew a
certificate when its Time to Live (TTL) expires for internal microservices.
However, there is no automatic arrangement for renewing certificates for
external hosts that are terminating at the Ingress gateway since this needs
to be managed externally to Istio.

Let's take a look:

Let's check the certificate that we issued to httpbin:1.

$ cd ~/step

$ step certificate inspect httpbin.crt --short
X.509v3 TLS Certificate (ECDSA P-256) [Serial: 2760...1376]
 Subject: httpbin.istio.io
 Issuer: istio.io
 Valid from: 2019-10-16T13:30:41Z
 to: 2020-01-14T13:30:38Z

Notice that the certificate is only valid for 90 days since we changed the default
from 1 day for the purpose of the exercises in this book. There should be an
automated process to renew the certificates before they expire and recycle the
secrets automatically.

Let's do this manually.

Delete the httpbin-keys secret as we will create a new set of keys:2.

$ kubectl -n istio-system delete secret httpbin-keys

Regenerate the key and certificate for httpbin.istio.io and bundle the3.
intermediate CA. Specify a password that will be used to generate an
intermediate CA private key:

$ step certificate create httpbin.istio.io httpbin.crt httpbin.key
--profile leaf --ca istio.crt --ca-key istio.key --no-password --
insecure --not-after 2160h
Please enter the password to decrypt istio.key: ☺☺☺☺☺☺☺☺
✔√ Would you like to overwrite httpbin.crt [y/n]: y
✔ Would you like to overwrite httpbin.key [y/n]: y
Your certificate has been saved in httpbin.crt.
Your private key has been saved in httpbin.key.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[259]

Create a secret for httpbin using a new key and certificate:4.

$ kubectl -n istio-system create secret generic httpbin-keys --
from-file=key=$HOME/step/httpbin.key --from-
file=cert=$HOME/step/httpbin.crt
secret/httpbin-keys created

Check the SDS log entry for the certificate that we created to check the key/cert5.
pair has been pushed to the proxy:

$ kubectl -n istio-system logs -l app=istio-ingressgateway -c
ingress-sds

Run the same curl test against httpbin.istio.io to make sure that the key6.
and certificate rotation has worked. Refresh the browser tab and check the
headers:

$ curl -HHost:httpbin.istio.io --resolve
httpbin.istio.io:$INGRESS_PORT:$INGRESS_HOST --cacert
$HOME/step/istio.crt https://httpbin.istio.io/ip
{
 "origin": "192.168.142.101"
}

This manual process rotates the certificate for the Ingress gateway certificate and key
regeneration can be automated with the help of the step-ca tool. This tool runs an online
CA, and the client certificates can be requested through the use of step commands.
Consult https://github. com/ smallstep/ certificates for more details.

After working through the simple TLS (a client is not required to present its authenticity),
we will now move toward mutual TLS in which a client is also required to present its
credentials so that the server knows that the client is authentic.

Enabling an Ingress gateway for httpbin using mutual
TLS
In SIMPLE TLS, the client checks the identity of the server, but in mutual TLS, the server
also checks the identity of the client. The mutual TLS adds another layer in which the client
sends its X.509 certificate to a server to verify the identity of the client.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates

Exploring Istio Security Features Chapter 11

[260]

Mutual TLS is useful for business-to-business applications that require strict access control.
Let's get started:

Create a client certificate and key using RSA that will be used by the client (curl,1.
in this case) to provide client authentication to the Istio Ingress gateway:

$ step certificate create httpbin.istio.io client.crt client.key --
profile leaf --ca istio.crt --ca-key istio.key --no-password --
insecure --kty RSA --size 2048
Please enter the password to decrypt istio.key: password
Provide intermediate CA password

Your certificate has been saved in client.crt.
Your private key has been saved in client.key.

Create a chain of certificates from root-ca and intermediate authority:2.

$ step certificate bundle root-ca.crt istio.crt ca-chain.crt
Your certificate has been saved in ca-chain.crt.

Recreate the httpbin-keys secret using one additional parameter3.
called cacert:

$ kubectl -n istio-system delete secret httpbin-keys

$ kubectl -n istio-system create secret generic httpbin-keys --
from-file=key=$HOME/step/httpbin.key --from-
file=cert=$HOME/step/httpbin.crt --from-file=cacert=$HOME/step/ca-
chain.crt
secret/httpbin-keys created

To enable mutual TLS, we need to modify our gateway definition to change TLS4.
mode from SIMPLE to MUTUAL. We will change the definition for
httpbin.istio.io for mutual TLS:

Script : 04-add-mutual-TLS-to-bookinfo-https-to-mygateway.yaml

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: mygateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[261]

 name: http
 protocol: HTTP
...
 tls:
 mode: MUTUAL
 credentialName: httpbin-keys
 hosts:
 - httpbin.istio.io

Modify the gateway to change httpbin.istio.io TLS mode from SIMPLE to5.
MUTUAL:

$ cd ~/istio/scripts/02-security/

$ kubectl -n istio-system apply -f 04-add-mutual-TLS-to-bookinfo-
https-to-mygateway.yaml
gateway.networking.istio.io/mygateway configured

Now that we've created the gateway for bookinfo by implementing mutual TLS, we will
verify the TLS configuration.

Verifying the TLS configuration
The istioctl tool can be used to check whether the TLS settings match between the
authentication policy and the destination rules for a particular microservice. Let's take a
look:

Check the TLS flow between the server and the client:1.

$ HTTPBIN=$(kubectl -n istio-lab get pods -l app=httpbin -o
jsonpath={.items[0].metadata.name}) ; echo $HTTPBIN
httpbin-v1-b9985cc7d-4wmcf

$ istioctl authn tls-check $HTTPBIN.istio-lab istio-
ingressgateway.istio-system.svc.cluster.local
HOST:PORT STATUS ---
istio-ingressgateway.istio-system.svc.cluster.local:80 OK ---

--- SERVER CLIENT AUTHN POLICY DESTINATION RULE
--- HTTP/mTLS HTTP default/ -

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[262]

If the status shows Conflict, this is an indication that the destination rules are in
conflict with the protocol. In this example, the server (httpbin service)
supports HTTP and mTLS, while the client supports HTTP, so the status is OK. If
the client only supported mTLS, then the preceding status would have been
in Conflict.

Modify the curl command to pass the client cert and key parameters in2.
addition to cacert:

$ curl -HHost:httpbin.istio.io --resolve
httpbin.istio.io:$INGRESS_PORT:$INGRESS_HOST --cacert
$HOME/step/ca-chain.crt --cert $HOME/step/client.crt --key
$HOME/step/client.key https://httpbin.istio.io/status/418

 -=[teapot]=-

 .' _ _ `.
 | ."` ^ `". _,
 _;`"---"`|//
 | ;/
 _ _/
 `"""`

This example shows how to enable mutual TLS without having to write a single
line of code in the application. We have already covered terminating TLS traffic at
the edge of the mesh through the Ingress gateway. The communication between
microservices is still HTTP-based after the Ingress gateway.

Let's check the TLS settings between the Bookinfo productpage:3.

$ PRODUCT_PAGE=$(kubectl -n istio-lab get pods -l app=productpage -
o jsonpath={.items..metadata.name}) ; echo $PRODUCT_PAGE
productpage-v1-74dfdd8b47-xmdpn

$ istioctl authn tls-check $PRODUCT_PAGE.istio-lab istio-
ingressgateway.istio-system.svc.cluster.local
HOST:PORT STATUS ---
istio-ingressgateway.istio-system.svc.cluster.local:80 OK ---

--- SERVER CLIENT AUTHN POLICY DESTINATION RULE
--- HTTP/mTLS HTTP default/ -

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[263]

If you receive the message, Error: nothing to output, wait for a few
seconds and try again.

Notice that the server supports both mTLS and HTTP (permissive TLS), but the client is
only sending HTTP requests. Hence, mTLS is not enabled between the client and server.
The default policy is used for authentication, and the destination rules are defined using
productpage.

Check the default authentication policy, which is PERMISSIVE in this case (mTLS and
HTTP). When the default mesh policy is set to PERMISSIVE, no authentication or
authorization checks will be performed by default on plaintext HTTP traffic.

Let's go over how to secure communication between microservices using mutual TLS. This
type of security is desired when processing business applications from the backend,
especially when they are distributed in a zero-trust network.

Node agent to rotate certificates and keys for services
Previously, we mentioned that there is no automation for rotating certificates and keys for
virtual services and suggested to use a step-ca tool instead. The aforementioned case was
for the external service connecting to the edge microservice through the Ingress gateway.
Istio is not designed to automate external services. However, Citadel and node agent are
designed to automatically rotate/renew certificates and keys based on the TTL of the
existing certificate, and this process is fully automatic.

In Citadel, certificate rotation is set to an interval of 90 days. The rotation window can be
changed by modifying the istio-citadel container argument from 2,160 hours to, say, 48
hours. This allows short-lived certificates in a zero-trust network environment.

For instance, you can edit the Citadel deployment using kubectl -n istio-system
edit deploy istio-citadel and modify the parameter from --workload-cert-
ttl=2160h to --workload-cert-ttl=48h.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[264]

If the node agent is provisioned (by choosing the Helm installation option), it requests the
rotation of certificates and keys based on the TTL of the certificate, while Citadel does the
rotation. If the node agent is not running, the certificate and key will be in secret-
<serviceaccount>. Citadel watches it and checks the TTL, and then it generates the
certificates and pushes them to the Envoy (sidecar) proxies.

The additional significance of a node agent is for a non-Kubernetes environment where it
can be deployed as a systemd service in a Linux machine. Here, it can request certificates
and keys rotation from Citadel while it's running in the service mesh control plane.

In this section, we learned how to configure the Ingress gateway using SDS. Next, we will
enable mutual TLS between microservices.

Enabling mutual TLS within the mesh
Transport Layer Security (TLS)—the successor of the Secure Sockets Layer
(SSL)—provides encrypted communication by authenticating the other party in a
connection (who they say they are), for example, accessing a bank site using a web browser
such as Firefox, Chrome, or Safari. The TLS handshake can be seen in the following
diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[265]

The steps for this are as follows:

The browser (client) sends (plaintext) a client hello message with the TLS1.
version, a large random number (client_random), session_id, and cipher
supported.
The website (server) replies (plaintext) with a server hello message with the2.
chosen TLS version, chosen cipher, session_id, a large random number
(server_random), and its certificate chain signed with its private key (issued by
a trusted CA) with a hello done message.
The browser has the public keys of all the major CAs in its trust store (database).3.
It uses the public key of the server certificate issuer to verify the chain of trust
and ensure that the CA signed the server's certificate. Upon verifying the chain of
trust (authentication), it sends a pre-master secret (a randomly generated
sequence, as per the chosen cipher) encrypted with the server's public key to the
server.

The server decrypts the pre-master secret and generates the encryption key4.
(master secret). Using a client and server's random number (exchanged in the
preceding steps), both the client and the server will arrive at the same key.
Without making any exchanges over the network, symmetric encryption is used
after a TLS handshake is complete. The server sends a change cipher spec
protocol message to the client.
The client switches from asymmetric (public/private) encryption5.
(computationally expensive) to symmetric encryption (client and server use the
same key, which is less computational). It uses a master secret (never exchanged
over a network as both the client and the server can derive it) by sending a
handshake finish message.
The server changes the cipher and the rest of the communication starts using the6.
symmetric key.

The following diagram shows the mTLS handshake between the client and the server
(image credit: Mariano Cano):

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[266]

Here, the client establishes the identity of the server by verifying its certificate chain of the
server. However, the bank site did not confirm the authenticity of the client. The internet
has an inherent flaw where we do not establish the trust of a client. Hence, phishing attacks
are prominent by tricking customers into signing in to a fraudulent site for someone to
compromise their credentials.

The ideal way to establish trust is to switch to mutual TLS (also known as mTLS), in which
both the client and the server authenticate each other by verifying their chain of certificates.
This is like a secure line with a caller ID. The most compelling reason for using mTLS is to
communicate with workloads running anywhere using a zero-trust network securely.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[267]

The other inherent flaw of the internet is its long-lived leaf certificates. The certificates
eventually expire, but if a private key is compromised, a third party can impersonate the
certificate owner. Revoking certificates is not trivial, and there is always a time lag (from
hours to sometimes weeks) that does not prevent continued use of revoked certificates.

Now that you have a fair understanding of mTLS, let's explore how mTLS in Istio can be
used to authenticate and authorize communication for microservices.

It is important to note two Istio-specific terminologies for security:

Authentication policies: The authentication policies apply to requests that a
microservice receives from a client who needs to specify TLSSettings and
DestinationRule for upstream connections.
Mutual TLS authentication: Microservice-to-microservice communication is
routed through sidecar proxies, which establish mutual TLS connection. A secure
naming check authenticates and verifies whether the service account in the server
certificate has been authorized to run the target service.

Converting into strict mutual TLS
When we installed Istio, we used a permissive mutual TLS approach, which allows both
plaintext and mutual TLS traffic. In the previous exercise, we ran httpbin.istio.io as
plaintext, simple TLS, and mutual TLS. The permissive mutual TLS install was done using a
demo profile.

In Chapter 9, Installing Istio, we used istio-demo.yaml to install permissive mutual TLS.
Strict mutual TLS can be installed through istio-demo-auth.yaml if the intent is to
enforce strict mutual TLS for microservice-to-microservice communication. However, it is
possible to change the existing Istio install to apply a strict mutual TLS profile.

The destination rules define the traffic policies, and the default is not to use mutual TLS.
Since we've already defined the destination rules, we will need to redefine them before we
can enable mutual TLS globally.

Redefining destination rules
We will be using a slightly different version of the bookinfo application, which has a new
ratings-v2 service that calls the MongoDB service:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[268]

As a recap: When there are multiple versions of the same service,
remember that we define subsets using the destination rules for specific
service versions. Then, we create or modify the virtual services to use a
specific subset to direct the traffic to the desired subset.

To redefine the destination rules, follow these steps:

We added the following stanza after the host for the destination rules for1.
productpage, details, ratings, and reviews:

trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

Here are the modified destination rules for the bookinfo application. Let's take a2.
look:

Script : 05-create-mtls-bookinfo-destination-rules.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: productpage

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[269]

spec:
 host: productpage
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: v1

This is the destination rule definition for the reviews microservice:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: reviews
spec:
 host: reviews
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 - name: v3
 labels:
 version: v3

This is the destination rule definition for the ratings microservice:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ratings
spec:
 host: ratings
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:

...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[270]

 labels:
 version: v2-mysql
 - name: v2-mysql-vm
 labels:
 version: v2-mysql-vm

This is the destination rule definition for the details microservice:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: details
spec:
 host: details
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

Apply the modified destination rules for the bookinfo microservices:3.

$ kubectl -n istio-lab apply -f 05-create-mtls-bookinfo-
destination-rules.yaml
destinationrule.networking.istio.io/productpage configured
destinationrule.networking.istio.io/reviews configured
destinationrule.networking.istio.io/ratings configured
destinationrule.networking.istio.io/details configured

Now that we've defined the destination rule for each microservice, we can check4.
the TLS between the productpage microservice and ingress gateway:

$ istioctl authn tls-check $PRODUCT_PAGE.istio-lab istio-
ingressgateway.istio-system.svc.cluster.local
HOST:PORT ---
istio-ingressgateway.istio-system.svc.cluster.local:80 ---

--- STATUS SERVER CLIENT
--- OK HTTP/mTLS HTTP

--- AUTHN POLICY DESTINATION RULE

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[271]

--- default/ -

$ istioctl authn tls-check $PRODUCT_PAGE.istio-lab
productpage.istio-lab.svc.cluster.local
HOST:PORT ---
productpage.istio-lab.svc.cluster.local:9080 ---

--- STATUS SERVER CLIENT
--- OK HTTP/mTLS mTLS

--- AUTHN POLICY DESTINATION RULE
--- default/ productpage/istio-lab

The preceding result shows that the traffic between the microservices is
mTLS and that the status is OK. The traffic at the Ingress gateway can be either
HTTP or HTTPS due to our definition of a simple TLS while defining the gateway
for the bookinfo.istio.io host.

Similarly, redefine the destination rule for httpbin:

Script : 06-create-mtls-httpbin-destination-rules.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: httpbin
spec:
 host: httpbin
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

Apply the destination rule for httpbin:5.

$ kubectl -n istio-lab apply -f 06-create-mtls-httpbin-destination-
rules.yaml
destinationrule.networking.istio.io/httpbin configured

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[272]

After turning on mTLS (ISTIO_MUTUAL) for the httpbin microservice through the
destination rule, check TLS using istioctl. The client only accepts mTLS.

From your browser window tab, refresh the third tab, that
is, http://httpbin.istio.io/headers. You will notice an entry for the additional
header for SECURE IDENTITY of the service through SPIFFY URI:

"X-Forwarded-Client-Cert": "By=spiffe://cluster.local/ns/istio-
lab/sa/default;Hash=1466acd2330485fcf8036746a6728937ea8a672bd54c5d19236
a8e8c75ad19d1;Subject=\"\";URI=spiffe://cluster.local/ns/istio-
system/sa/istio-ingressgateway-service-account"

We can turn on mutual TLS either globally, at the namespace level, or at the service level.
The TLS policy that's defined at service level takes precedence over the namespace-level
policy. In our case, we will turn on mutual TLS at the istio-lab namespace level.

The global mTLS can be enabled by editing the Istio MeshPolicy primitive and
changing mtls to nil (=PERMISSIVE), as follows:

apiVersion: "authentication.istio.io/v1alpha1"
kind: "MeshPolicy"
metadata:
 name: "default"
spec:
 peers:
 - mtls: {}

 We will not make any changes here at the global level.

Next, we will enable TLS at the namespace level.

Enabling mTLS at the namespace level
To enable STRICT mTLS at the namespace level, we can use Policy instead of
MeshPolicy and define the namespace that it will be applied to. Let's get started:

Define mTLS for the istio-lab namespace:1.

Script : 07-create-mtls-for-istio-lab-namespace.yaml

apiVersion: authentication.istio.io/v1alpha1
kind: Policy

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[273]

metadata:
 name: default
 namespace: istio-lab
spec:
 peers:
 - mtls: {}

Apply the mTLS security policy at the namespace level:2.

$ kubectl -n istio-lab apply -f 07-create-mtls-for-istio-lab-
namespace.yaml
policy.authentication.istio.io/default created

Next, we will verify the TLS configuration.

Verifying the TLS configuration
To verify the TLS configuration, follow these steps:

Run the istioctl command:1.

$ export RATING_POD=$(kubectl -n istio-lab get pods -l app=ratings
-o jsonpath='{.items[0].metadata.name}') ; echo $RATING_POD
ratings-v1-79b6d99979-k2j7t

$ istioctl authn tls-check $RATING_POD.istio-lab ratings.istio-
lab.svc.cluster.local
HOST:PORT STATUS SERVER ---
ratings.istio-lab.svc.cluster.local:9080 OK mTLS ---

--- CLIENT AUTHN POLICY DESTINATION RULE
--- mTLS default/istio-lab ratings/istio-lab

Notice that the server and client communication between microservices is mTLS
and that it is protected through strong identity—a standard that is progressing.
You can find out more at https:/ /spiffe. io/.

You can use istioctl authn tls-check <istio-ingressgateway-
xxx-xxx>.istio-system to check the status of each service from an
mTLS perspective, as well as authentication policy and destination rule.
This command is very helpful for debugging purposes to see whether
there are any conflicts.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spiffe.io/
https://spiffe.io/
https://spiffe.io/
https://spiffe.io/
https://spiffe.io/
https://spiffe.io/
https://spiffe.io/
https://spiffe.io/

Exploring Istio Security Features Chapter 11

[274]

Run the istioctl describe pod command to check what type of traffic policy2.
is being used. The output is useful for debugging/diagnostics purposes:

$ istioctl experimental describe pod $RATING_POD
Pod: ratings-v1-df666d977-l52gh
 Pod Ports: 9080 (ratings), 15090 (istio-proxy)

Service: ratings
 Port: http 9080/HTTP
DestinationRule: ratings for "ratings"
 Matching subsets: v1
 (Non-matching subsets v2,v2-mysql,v2-mysql-vm)
 Traffic Policy TLS Mode: ISTIO_MUTUAL
Pilot reports that pod is STRICT (enforces mTLS) and clients speak
mTLS
VirtualService: ratings
 1 HTTP route(s)

In the preceding section, we enabled mTLS at the istio-lab namespace level
instead of enabling it at the global level. If we had enabled mTLS at the global
level, we would have to allow the Kubernetes API server to communicate with
Istio services without mTLS since there is no proxy sidecar running with the
Kubernetes API server.

The communication with mTLS between the Istio services and the Kubernetes3.
API server can be disabled through a destination rule:

Script : 08-disable-mtls-for-kube-apiserver.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: "api-server"
 namespace: istio-system
spec:
 host: "kubernetes.default.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: DISABLE

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[275]

Apply some destination rules so that communication between the Kubernetes4.
API server and istio-system can happen when mTLS is set at the global level
(note that we didn't set mTLS at the global level, so this step is optional and for
information purposes):

$ kubectl -n istio-system apply -f 08-disable-mtls-for-kube-
apiserver.yaml
destinationrule.networking.istio.io/api-server created

To recap, we covered the following security implementation topics:

Through the Istio Ingress gateway, we enabled simple and mutual
TLS so that TLS termination can occur at the Istio Ingress gateway.
We kept the TLS mode as PERMISSIVE (through the MeshPolicy
definition) to enable both text and TLS communication.
The downstream communication was still using a plaintext HTTP
protocol until we enabled mTLS at the namespace level for
the bookinfo application.
Now that mTLS has been implemented downstream of the Ingress
gateway, service-to-service communication can be done through
mTLS.

Starting with Istio 1.3.1, automatic annotations are added to a pod to
exclude ports for health and liveliness checks from mTLS. This was an
issue in previous versions where services status was reported unhealthy
due to mTLS-enabled traffic for health and liveliness checks.

From your Chrome browser, from inside the VM, clear your local cache by
pressing Ctrl + Shift + Del, click Clear Data, and close the Settings tab.

From your web browser within the VM, click on the second tab or go to
https://bookinfo.istio.io. You will see a notice stating Your connection is
not private, which is OK since our certificate is self-signed. Click Advanced and
click to proceed with bookinfo.istio.io.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[276]

https://bookinfo.istio.io initiates a secure communication from the client
(browser) to the Istio Ingress gateway. The client authenticated the server (the
Istio Ingress gateway presented its X509 certificate to the browser), and
downstream communication is done through mTLS. Between microservices, the
client and server microservices will authenticate each other. Since the certificates
are self-signed, the browser will complain about the connection being insecure,
and that is OK. Normally, for the edge services (external-facing microservice), we
will use a signed certificate instead of a self-generated certificate.

You will also notice that you can still run http://bookinfo.istio.io, where
the communication between the client and the server is plaintext, but the server-
side communication between microservices is using mTLS. The plain and TLS
communication between the browser and Istio ingress gateway is allowed
through the simple TLS mode, which is defined through the Istio primitive of a
gateway. Run the kubectl -n istio-system get gw -o yaml command to
confirm that the TLS mode for the bookinfo.istio.io host is SIMPLE.

Run https://httpbin.istio.io/ip from the Chrome browser. You will5.
notice an error stating that the server could not prove that it is
httpbin.istio.io. This is due to the fact that we had enabled TLS mode in the
gateway as MUTUAL for httpbin.istio.io, which will require the client to
present its key and certificate to the server so that a mutual authentication could
occur. Previously, we used the following curl with the cacert, key, and cert
parameters for mTLS to work for httpbin:

$ rm -fr ~/.pki

$ curl -HHost:httpbin.istio.io --resolve
httpbin.istio.io:$INGRESS_PORT:$INGRESS_HOST --cacert
$HOME/step/ca-chain.crt --cert $HOME/step/client.crt --key
$HOME/step/client.key https://httpbin.istio.io/status/418

 -=[teapot]=-

 .' _ _ `.
 | ."` ^ `". _,
 _;`"---"`|//
 | ;/
 _ _/
 `"""`

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[277]

If we want to enable mTLS for the browser, additional steps need to be performed.

The example given here is only for the Chrome browser in CentOS. Chrome uses shared
NSS DB stored in $HOME/.pki/nssdb.

Make sure you have the certutil and pk12util utilities available. On CentOS, these can
be installed using yum -y install nss-tools.

Exit from the root in the VM to get to the default user, which was used to log in to the
system and the user. This will be running the Chrome browser from the Linux CentOS VM.
Also, copy the contents of ~/httpbin.istio.io to a temporary location with proper
permission for the regular user to import the root certificate and the client bundle. Let's get
started:

Since we created a self-signed client certificate for httpbin.istio.io, we need1.
to import the root certificate into the nss database:

$ certutil -d sql:$HOME/.pki/nssdb -A -n httpbin.istio.io -i
$HOME/step/root-ca.crt -t "TC,,"

Create a client bundle using the client's key and a certificate in pk12 format:2.

$ openssl pkcs12 -export -clcerts -inkey $HOME/step/client.key -in
$HOME/step/client.crt -out httpbin.istio.io.p12 -passout
pass:password -name "Key pair for httpbin.istio.io"

The password to create the client bundle is password, and the same must be3.
used to import the client key bundle into the nss database using pk12util. You
can choose a password of your choice:

$ pk12util -i httpbin.istio.io.p12 -d sql:$HOME/.pki/nssdb -W
password
pk12util: PKCS12 IMPORT SUCCESSFUL

List the certificates in the nss database:4.

$ certutil -d sql:$HOME/.pki/nssdb -L
Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

httpbin.istio.io CT,,
Key pair for httpbin.istio.io u,u,u

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[278]

Run https://httpbin.istio.io/ip from the Chrome browser. A popup will appear
where you can choose the certificate to authenticate to httpbin.istio.io and select
httpbin.istio.io. Now, you'll be able to see the output.

This is an example of a secured authenticated communication in which both the client and
the server authenticate each other. This is why this is known as mutual TLS as opposed to
simple TLS. Mutual TLS is preferred for internal business applications such as bookinfo,
where microservice-to-microservice communication is through mTLS. It shields the
microservices, even in a zero-trust environment. It will be interesting to see the decline of
VPN and firewall and the rise of secure authenticated communication in a zero-trust
network.

The web client and server's mutual authentication is not typical in the internet world where
a client (me) needs to validate whether the bank site that they are visiting is genuine, but
the bank does not verify the authenticity of the client. This is how the internet works, and in
one sense, it fails to establish the trust between a bank and its customer. The preceding
example shows mutual TLS between the client and the server, and the same is common for
a business-to-business application.

With this, we have covered the first step of security authentication (who you are?). Next,
we will cover the second step of security authorization (what can you do?).

Authorization
Once someone has been authenticated, what they can or cannot do depends upon
authorization. Mixer plays an important role in authorization enablement in Istio. Let's
learn about authorization through some examples:

First, let's switch to subset v2 of the reviews virtual service so that it shows1.
black stars in the ratings (remember: review-1: no star, review-2: black stars,
review-3: red stars(:

$ kubectl -n istio-lab patch vs reviews --type json -p
'[{"op":"replace","path":"/spec/http/0/route/0/destination/subset",
"value": "v2"}]'
virtualservice.networking.istio.io/ratings patched

$ kubectl -n istio-lab get vs reviews -o yaml | grep -B1 subset:
 host: reviews
 subset: v2

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[279]

Refresh https://bookinfo.istio.io/productpage. You should see black2.
stars in the ratings.

Authorization can be enabled by defining the ClusterRbacConfig object. The
name of the object must be a default, and there can only be one instance of
ClusterRbacConfig.

Define ClusterRbacConfig for the istio-lab namespace:3.

Script : 09-create-clusterrbac-config.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ClusterRbacConfig
metadata:
 name: default
spec:
 mode: 'ON_WITH_INCLUSION'
 inclusion:
 namespaces: ["istio-lab"]

Create default ClusterRbacConfig for enabling Istio authorization for services4.
defined in an istio-lab namespace:

$ kubectl -n istio-lab apply -f 09-create-clusterrbac-config.yaml
clusterrbacconfig.rbac.istio.io/default created

Wait for a few seconds for the rule to propagate. Point your browser to5.
https://bookinfo.istio.io/productpage. You should see a message
stating RBAC: access denied.

If necessary, clear your cache if the page doesn't load.

With this, deny access to all and then only allow access to users, groups, or roles to edge
services and to service accounts for internal services.

Next, we will go through authorization at the namespace level so that each microservice
that's defined in that namespace inherits the same authorization.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[280]

Namespace-level authorization
After Istio authorization has been enabled, the authorization policy is defined using
ServiceRole and ServiceRoleBinding. ServiceRole is used to define a group of
permissions to access services, while ServiceRoleBinding grants ServiceRole to a user,
group, or service.

The rules that are defined through ServiceRole have three fields: services, methods, and
paths. The services define a list of services that the rules have been defined for. The
methods are a list of HTTP method names. The paths are HTTP paths. Let's take a look:

The following ServiceRole defines all of the services (*) that the viewer has1.
access to (GET) on all services where the app label is set to productpage,
details, ratings, or reviews:

Script : 10-create-service-role.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: service-viewer
spec:
 rules:
 - services: ["*"]
 methods: ["GET"]
 constraints:
 - key: "destination.labels[app]"
 values: ["productpage", "details", "reviews", "ratings"]

Create the ServiceRole definition to GET access to the bookinfo services so2.
that they're available to all services:

$ kubectl -n istio-lab apply -f 10-create-service-role.yaml
servicerole.rbac.istio.io/service-viewer created

Now that the preceding rules (permissions) have been defined, they need to be
granted to either user, group, or services.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[281]

Define ServiceRoleBinding:3.

Script : 11-create-service-role-binding.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: bind-service-viewer
spec:
 subjects:
 - properties:
 source.namespace: "istio-system"
 - properties:
 source.namespace: "istio-lab"
 roleRef:
 kind: ServiceRole
 name: "service-viewer"

Create ServiceRoleBinding that grants service-viewer ServiceRole to all4.
of the services in the istio-system and istio-lab namespaces:

$ kubectl -n istio-lab apply -f 11-create-service-role-binding.yaml
servicerolebinding.rbac.istio.io/bind-service-viewer created

Run https://bookinfo.istio.io. You should be able to see the page. Wait a few
seconds for the rule to propagate.

If you try to log in as any user, you will receive an RBAC: Access denied error. This is due to
the fact that we granted GET (read-only) permission to all of the services to access all of the
services in the istio-system and istio-lab namespaces, but we did not grant any
permission for any logged-in user.

Service-level authorization at the individual level
So far, we've looked at an example of namespace-level abstraction for granting
authorizations. Now, let's provide granular access control to define authorizations at the
individual service level. Refer to the following diagram for implementing authorizations
through service accounts:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[282]

As shown in the preceding diagram, the granular access control on each microservice is as
follows:

Define a service role for the productpage service for the GET permission only.
For example, the productpage service is available for GET, but only for the users
connecting through the ingress gateway. Grant the service role (permissions) to
the productpage service.
Create a service role for details and the reviews services for GET permissions.
Grant the service role to the service account bookinfo-productpage of
the productpage microservice. The productpage service can have GET access
to details and reviews services. Note that productpage does not have access to
the ratings service.
Create a service role for the ratings service for the GET permission. Grant a
service role to the bookinfo-reviews service account of the reviews service. This
allows the reviews service to access the ratings service. Note that
the productpage service has no need to access the ratings service. This eliminates
a security breach that might occur if a hacker gets access to
the productpage service.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[283]

First, let's delete ServiceRole and ServiceRoleBinding that we created in the1.
previous section:

$ kubectl -n istio-lab delete -f 11-create-service-role-
binding.yaml
servicerolebinding.rbac.istio.io "bind-service-viewer" deleted

$ kubectl -n istio-lab delete -f 10-create-service-role.yaml
servicerole.rbac.istio.io "service-viewer" deleted

Define ServiceRole to create an access rule for the GET method for2.
the productpage service:

Script : 12-create-service-role-productpage.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: productpage-viewer
spec:
 rules:
 - services: [productpage.istio-lab.svc.cluster.local]
 methods: ["GET"]

Create ServiceRole for external GET access:3.

$ kubectl -n istio-lab apply -f 12-create-service-role-
productpage.yaml
servicerole.rbac.istio.io/productpage-viewer created

Define ServiceRoleBinding that allows access to all users4.
through ServiceRole productpage-viewer authorization:

Script : 13-create-service-role-binding-productpage.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: bind-productpage-viewer
spec:
 subjects:
 - user: "*"
 roleRef:
 kind: ServiceRole
 name: "productpage-viewer"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[284]

Create ServiceRoleBinding using productpage_viewer for all users:5.

$ kubectl -n istio-lab apply -f 13-create-service-role-binding-
productpage.yaml
servicerolebinding.rbac.istio.io/bind-productpage-viewer created

Browse to https://bookinfo.istio.io/productpage without logging in as a
user. You will notice that the page loads since we granted GET access to all of the
users on our productpage edge service. The other internal microservices fail
with Error fetching product details! and Error fetching product
reviews! messages. These errors are fine since we have not granted access from
the productpage to the details and reviews services.

To grant such access, define ServiceRole rules for details and reviews:6.

Script : 14-create-service-role-details-reviews.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: details-reviews-viewer
spec:
 rules:
 - services: ["details.istio-
lab.svc.cluster.local","reviews.istio-lab.svc.cluster.local"]
 methods: ["GET"]

Create ServiceRole:7.

$ kubectl -n istio-lab apply -f 14-create-service-role-details-
reviews.yaml
servicerole.rbac.istio.io/details-reviews-viewer created

The service accounts for each microservice were created at the time we installed8.
the bookinfo application:

$ kubectl -n istio-lab get sa
NAME SECRETS AGE
bookinfo-details 1 100m
bookinfo-productpage 1 22m
bookinfo-ratings 1 100m
bookinfo-reviews 1 22m
default 1 108m

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[285]

Define ServiceRoleBinding by granting the details-reviews-9.
viewer service role to the bookinfo-productpage service account of
the istio-lab namespace, which is defined by the user through the syntax
of cluster.local/ns/istio-lab/sa/bookinfo-productpage:

Script : 16-apply-service-role-binding-details-reviews.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: bind-details-reviews-viewer
spec:
 subjects:
 - user: "cluster.local/ns/istio-lab/sa/bookinfo-productpage"
 - properties:
 source.namespace: "istio-lab"
 roleRef:
 kind: ServiceRole
 name: "details-reviews-viewer"

Grant ServiceRoleBinding to a service account of productpage:10.

$ kubectl -n istio-lab apply -f 16-apply-service-role-binding-
details-reviews.yaml
servicerolebinding.rbac.istio.io/bind-details-reviews-viewer
created

Wait a few seconds for the rules to propagate. Point your browser to
https://bookinfo.istio.io/productpage. You should see the Book Details
and Book Reviews sections being populated. The ratings service shows a
currently unavailable message, which is natural since we have not defined the
access control for the ratings service.

The Fix Ratings service is currently unavailable. We can make it available by11.
creating a service role for the ratings service using GET:

Script : 17-create-service-role-ratings.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: ratings-viewer
spec:
 rules:
 - services: ["ratings.istio-lab.svc.cluster.local"]
 methods: ["GET"]

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[286]

Create ServiceRole ratings-viewer:12.

$ kubectl -n istio-lab apply -f 17-create-service-role-ratings.yaml
servicerole.rbac.istio.io/ratings-viewer created

Define ServiceRoleBinding to grant the ratings-viewer service role to13.
the bookinfo-reviews service account:

Script : 18-create-service-role-binding-ratings.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: bind-ratings-viewer
spec:
 subjects:
 - user: "cluster.local/ns/istio-lab/sa/bookinfo-reviews"
 roleRef:
 kind: ServiceRole
 name: "ratings-viewer"

Create ServiceRoleBinding bind-ratings-viewer:14.

$ kubectl -n istio-lab apply -f 18-create-service-role-binding-
ratings.yaml
servicerolebinding.rbac.istio.io/bind-ratings-viewer created

Refresh your web page. You will see the ratings service working and showing black stars.
Note that it may take a few seconds for the authorizations to propagate.

Use the istioctl auth validate command to check whether a service
role or service role bindings are valid or not, as in the example:

istioctl experimental auth validate -f 17-create-service-
role-ratings.yaml,18-create-service-role-binding-
ratings.yaml

To protect databases from unauthorized access, we need to implement service-level
authorization for databases.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[287]

Service-level authorization for databases
To protect TCP connection-based services such as databases, only a legitimate service
should be able to connect.

In this section, we will create a new ratings-v2 version and connect it to a MongoDB
database service. Our aim is for only the ratings-v2 service to be able to access the
MongoDB database:

Review 19-create-sa-ratings-v2.yaml. Notice the bookinfo-ratings-1.
v2 service account, which we will use to create a ratings-v2 deployment that
will use MongoDB:

Script : 19-create-sa-ratings-v2.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: bookinfo-ratings-v2

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: ratings-v2
...
 version: v2
 spec:
 serviceAccountName: bookinfo-ratings-v2
 containers:
 - name: ratings
 image: istio/examples-bookinfo-ratings-v2:1.10.0
 imagePullPolicy: IfNotPresent
 env:
 # ratings-v2 will use mongodb as the default db backend.
 - name: MONGO_DB_URL
 value: mongodb://mongodb:27017/test
 ports:
 - containerPort: 9080
...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[288]

Create a service account called bookinfo-ratings-v2 and a ratings-v22.
deployment:

$ kubectl -n istio-lab apply -f 19-create-sa-ratings-v2.yaml
serviceaccount/bookinfo-ratings-v2 created
deployment.extensions/ratings-v2 created

Next, we need to define a destination rule for the ratings service so that we can3.
use v2. We created the destination rule while enabling mTLS for services. Verify
it using the following command:

$ kubectl -n istio-lab get dr ratings -o yaml | grep -A6 subsets:

 subsets:
 - labels:
 version: v1
 name: v1
 - labels:
 version: v2
 name: v2

The ratings virtual service is tagged to subset v1. Let's check this:4.

$ kubectl -n istio-lab get vs ratings -o yaml | grep -B1 subset:
host: ratings
subset: v1

To route traffic to version v2 of the ratings service, we will update (patch) the5.
existing ratings virtual service so that it uses subset v2 of the ratings service:

$ kubectl -n istio-lab patch vs ratings --type json -p
'[{"op":"replace","path":"/spec/http/0/route/0/destination/subset",
"value": "v2"}]'
virtualservice.networking.istio.io/ratings patched

Confirm this was set properly. With this, the ratings service will direct its6.
traffic to the ratings-v2 microservice:

$ kubectl -n istio-lab get vs ratings -o yaml | grep -B1 subset:
host: ratings
subset: v2

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[289]

The ratings-v2 microservice calls MongoDB. Define mongodb service and7.
deploy it for MongoDB:

Script : 20-deploy-mongodb-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: mongodb
 labels:
 app: mongodb
spec:
 ports:
 - port: 27017
 name: mongo
 selector:
 app: mongodb
...

The following is the deployment definition for MongoDB:8.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: mongodb-v1
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: mongodb
 version: v1
 spec:
 containers:
 - name: mongodb
 image: istio/examples-bookinfo-mongodb:1.10.1
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 27017
...

Create a mongodb service and a mongodb-v1 deployment:9.

$ kubectl -n istio-lab apply -f 20-deploy-mongodb-service.yaml
service/mongodb created
deployment.extensions/mongodb-v1 created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[290]

Wait for the mongodb pods to be ready and check them:10.

$ kubectl -n istio-lab get pods -l app=mongodb
NAME READY STATUS RESTARTS AGE
mongodb-v1-787688669c-lqcbq 2/2 Running 0 45s

Run https://bookinfo.istio.io/productpage. Note that the Ratings
service is currently unavailable. This is expected since we pointed the ratings
virtual service to v2, which we haven't defined ServiceRole (permission) and
ServiceRoleBinding (grant) for yet.

Define ServiceRole for MongoDB:11.

Script : 21-create-service-role-mongodb.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: mongodb-viewer
spec:
 rules:
 - services: ["mongodb.istio-lab.svc.cluster.local"]
 constraints:
 - key: "destination.port"
 values: ["27017"]

Note that the permission is created through the ServiceRole primitive, which is
for the mongodb service so that it allows a connection to port 27017. This is an
example of a firewall rule being defined at the service level.

Create ServiceRole for MongoDB:12.

$ kubectl -n istio-lab apply -f 21-create-service-role-mongodb.yaml
servicerole.rbac.istio.io/mongodb-viewer created

Define ServiceRoleBinding to authorize the bookinfo-ratings-v2 service13.
account so that it can use the rule (permission) we defined through
ServiceRole mongodb-viewer:

Script : 22-create-service-role-binding-mongodb.yaml

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: bind-mongodb-viewer
spec:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[291]

 subjects:
 - user: "cluster.local/ns/istio-lab/sa/bookinfo-ratings-v2"
 roleRef:
 kind: ServiceRole
 name: "mongodb-viewer"

Create ServiceRoleBinding bind-mongodb-viewer:14.

$ kubectl -n istio-lab apply -f 22-create-service-role-binding-
mongodb.yaml
servicerolebinding.rbac.istio.io/bind-mongodb-viewer created

Wait for a few seconds and refresh https://bookinfo.istio.io. The rating service
should be available now. Unfortunately, it isn't, and the ratings service is still showing up
as currently unavailable. Let's debug this.

First, let's check whether we have any conflicts in our destination rules between
the ratings pod and the mongodb service:

Find out the ratings v2 pod name:1.

$ export RATINGS_POD=$(kubectl -n istio-lab get pods -l app=ratings
-o jsonpath='{.items[0].metadata.name}') ; echo $RATINGS_POD
ratings-v1-79b6d99979-k2j7t

Check for mTLS conflicts between the ratings-v2 pod and the mongodb2.
service. You may either see a CONFLICT status or an output stating Error:
Nothing to output:

$ istioctl authn tls-check $RATINGS_POD.istio-lab mongodb.istio-
lab.svc.cluster.local
HOST:PORT STATUS SERVER ---
mongodb.istio-lab.svc.cluster.local:27017 CONFLICT mTLS ---

--- CLIENT AUTHN POLICY DESTINATION RULE
--- HTTP default/istio-lab mongodb/istio-lab

OR

Error: nothing to output

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[292]

Notice that there is a conflict between the ratings-v2 pod and the mongodb
service. This is due to the fact that we didn't create a destination rule for the
mongodb mTLS traffic, which will enforce mutual TLS for the client
(ratings:v2).

Define DestinationRule for the MongoDB service:3.

Script : 23-create-mongodb-destination-rule.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: mongodb
spec:
 host: mongodb.istio-lab.svc.cluster.local
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

Create DestinationRule and wait for a few seconds for the rule to propagate:4.

$ kubectl -n istio-lab apply -f 23-create-mongodb-destination-
rule.yaml
destinationrule.networking.istio.io/mongodb created

Check for any mTLS conflicts:5.

$ istioctl authn tls-check $RATINGS_POD.istio-lab mongodb.istio-
lab.svc.cluster.local
HOST:PORT STATUS SERVER CLIENT ---
mongodb.istio-lab.svc.cluster.local:27017 OK mTLS mTLS ---

--- AUTHN POLICY DESTINATION RULE
--- default/istio-lab mongodb/istio-lab

If the status shows OK, try refreshing https://bookinfo.istio.io/productpage. The
rating service should work now.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[293]

Let's do one more simple test to change ratings in the MongoDB database:

Run the following command to change ratings from 5 to 1 and 4 to 3,1.
respectively:

$ export MONGO_POD=$(kubectl -n istio-lab get pod -l app=mongodb -o
jsonpath='{.items..metadata.name}') ; echo $MONGO_POD
mongodb-v1-787688669c-lqcbq

$ cat << EOF | kubectl -n istio-lab exec -i -c mongodb $MONGO_POD -
- mongo
use test
db.ratings.find().pretty()
db.ratings.update({"rating": 5},{\$set:{"rating":1}})
db.ratings.update({"rating": 4},{\$set:{"rating":3}})
db.ratings.find().pretty()
exit
EOF

MongoDB shell version v4.0.6
connecting to: mongodb://127.0.0.1:27017/?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("22ba0a3d-d2d4-480e-
bac5-359d74912beb") }
MongoDB server version: 4.0.6
switched to db test
{ "_id" : ObjectId("5d42d77d07ec5966640aea1b"), "rating" : 4 }
{ "_id" : ObjectId("5d42d77d07ec5966640aea1c"), "rating" : 5 }
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
{ "_id" : ObjectId("5d42d77d07ec5966640aea1b"), "rating" : 3 }
{ "_id" : ObjectId("5d42d77d07ec5966640aea1c"), "rating" : 1 }
bye

Refresh the page to see the ratings change from 4 to 3 and 5 to 1.

We need to create ServiceRole and ServiceRoleBinding for the httpbin
service so that we can use the same service in later chapters.

Run the 24-create-service-role-binding-httpbin.yaml script:2.

$ kubectl -n istio-lab apply -f 24-create-service-role-binding-
httpbin.yaml
servicerole.rbac.istio.io/httpbin created
servicerolebinding.rbac.istio.io/bind-httpbin created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[294]

Delete role-based access control for the next chapter and patch the ratings3.
service so that it goes back to v1:

$ kubectl -n istio-lab delete -f 09-create-clusterrbac-config.yaml

$ kubectl -n istio-lab patch vs ratings --type json -p
'[{"op":"replace","path":"/spec/http/0/route/0/destination/subset",
"value": "v1"}]'

This concludes security implementation in Istio. Istio is dynamic, and new security
capabilities are being continuously added to allow integration with various services. We
haven't covered all of the advanced capabilities here. Next, we'll mention some of these
advanced capabilities. It's recommended that you read up on these to find out more.

Advanced capabilities
Some of the advanced topics of Istio authentication and authorization are beyond the scope
of this book. The following is a brief description of a few important ones:

Istio authorization allows us to work with JSON Web Tokens (JWTs) and open
source OpenID connect providers such as Google Auth, Auth0, and ORY Hydra.
Refer to https:/ / archive. istio. io/ v1.3/ docs/ concepts/ security/ for how to
apply authentication policies for JWT and OpenID.
Istio can integrate with Hashicorp's Vault CA to secure, store, and tightly control
access to tokens, passwords, certificates, encryption keys for protecting secrets,
and other sensitive data.
Istio multi-cluster installation, control plane replication, and creating shared
control planes using single or multi-networks are not explored in this book. Refer
to https:/ /archive. istio. io/ v1. 3/docs/ setup/ install/ multicluster/ for
more information.

This concludes Istio's security authentication and authorization capabilities, all of which
can be implemented in an existing microservices-based application without having to
modify or write a single line of application code. This capability gives Operations (SRE
team) the ability to manage changes in realtime without having to approach developers.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/concepts/security/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/
https://archive.istio.io/v1.3/docs/setup/install/multicluster/

Exploring Istio Security Features Chapter 11

[295]

Summary
Security sometimes creates Fear, Uncertainty, and Doubt (FUD), and many times, it results
in unnecessary controls that hamper productivity. Sadly, breaches do still occur. Major
corporations have a chief information security officer, but often, the focus is on putting
locks and controls in the wrong places and not knowing which backdoors are wide
open. Security breaches can harm the reputation of a company and can cause huge financial
damage. A recent example is a fine of $148 million that was imposed on a ride-sharing
company, which failed to report the security breach to the Federal Trade Commission. The
hackers, in this case, found AWS credentials in their GitHub repository and stole the data of
millions of people from an AWS S3 bucket.

The security in Istio is enterprise-grade. You must have noticed the granular nature of
security at the namespace level. You have also used a service account to implement
authorizations as if security was built through coding at the service level. The good news is
that security through Istio can be implemented without having to change any coding. This
task is now in the domain of Operations staff when using a service mesh architecture. The
backend service contains sensitive data and can be locked down to the frontend service,
which has legitimate access needs, and block access to all other services. The short-lived
certificates that are used in mutual TLS and their automatic renewal through Citadel
provides us with a high-security layer. If access to the AWS S3 bucket is only limited to the
microservice that has a legitimate need, security breaches can be avoided.

In the next chapter, we will go through policy enforcement to implement quotes and rate
limits, build white/blacklists, and perform routing using policy adapters though modifying
request headers. It will be interesting to note that policy enforcement is also configuration-
driven and can be done without the need to modify any application source code.

Questions
Istio will not rotate certificates and keys that have been defined for the services1.
through an Ingress gateway to secure traffic from external clients to the edge
microservice.
A) True
B) False

There can only be one MeshPolicy with name as default that will apply mTLS2.
mesh-wide.
A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[296]

Mutual TLS can be as granular as possible from the namespace level to the3.
service level by defining a policy.
A) True
B) False

Mutual TLS can also be defined through destination rules for the subsets, which4.
can be used to define virtual services.
A) True
B) False

Istio is capable of shielding modern microservices applications so that they can5.
run in a zero-trust network without the need to make any changes to the
application code.
A) True
B) False

Istio makes VPN and firewalls redundant if security is implemented properly.6.
A) True
B) False

 It is the responsibility of the edge microservice to manage JWT for7.
authorizations. Istio does not have native automation support yet.
A) True
B) False

Istio's Secret Discovery Service mounts secrets in pods automatically.8.
A) True
B) False

Istio's Citadel will rotate certificates and keys by default every 90 days. However,9.
this can be changed by editing Citadel's workload-cert-ttl to
1h deployment argument in a zero-trust network. This change can be done
without restarting Citadel.
A) True
B) False

The Envoy sidecar checks the TTL of the certificates. The Istio node agent, if10.
enabled, can request a new certificate for Citadel. It is Citadel that pushes the
certificates to Envoy, not the node agent.
A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Security Features Chapter 11

[297]

Further reading
Securing Gateways with HTTPS Using Secret Discovery Service, Istio (2019),
available at https:/ / archive. istio. io/v1. 3/docs/ tasks/ traffic-
management/ ingress/ secure- ingress- sds/ , accessed 16 May 2019
Everything you should know about certificates and PKI but are too afraid to ask,
Malone, M. (2019), Smallstep, available at https:/ /smallstep. com/ blog/
everything- pki. html#intermediates- chains- and- bundling, accessed 18 May
2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://archive.istio.io/v1.3/docs/tasks/traffic-management/ingress/secure-ingress-sds/
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling
https://smallstep.com/blog/everything-pki.html#intermediates-chains-and-bundling

12
Enabling Istio Policy Controls

In a traditional environment, a centralized proxy receives all traffic, and that traffic is
routed to the services that do the actual work. As workloads grow, scalability issues can
arise. However, Istio solves this and other similar problems with the use of a lean and thin
proxy, which we will learn about in this chapter. We will discuss in detail the enablement
of policies related to rate limits, service denials, and the enforcement of quotas without
having to change any application source code.

By the end of this chapter, you will learn how to enable network-based policies for resource
quotas and quota limits, as well as learning about how quota rules are assigned to a demo
microservice. Besides this, we will set up a white/blacklist of services (based on IP) within
the demo application for service denials.

In a nutshell, we will cover the following topics in this chapter:

An introduction to rate limits
Enabling rate limits
Controlling access to a service

Technical requirements
This chapter's scripts have dependencies from the previous chapter. Make sure that you
complete the exercises in Chapter 11, Exploring Istio Security Features, before starting here.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[299]

Let's change the directory for scripts that we will be using in this chapter:

$ cd ~/istio
$ cd scripts/03-policies

Make sure that all istio-lab pods show a Ready 2/2 state:

$ kubectl -n istio-lab get pods

Once that's done, we're ready to begin!

Introduction to policy controls
To tackle scalability issues, Istio uses a proxy that runs alongside any service, and this
model fits well within a distributed environment. The distributed proxy (sidecar) caches the
first level of information for the services, hence making distributed scaling easier. Each
proxy calls a central control plane service (Mixer) to make precondition checks that contain
the second layer of shared cache before and after every request.

Most of these operations can be performed from the local cache of proxy and
hence considerably reduce the number of calls to Mixer. Each of the precondition check
requests is synchronous and performed from the local cache. The sidecar buffers telemetry
information and sends it asynchronously to Mixer, which can then send it to the backend
services through the use of adapters. Hence, we can say that Mixer is a component for
providing policy controls and telemetry collection.

Before we carry out any hands-on experiments and enable policy controls, let's first check
whether the current Istio environment is enabled for policy controls or not. Run the
following command:

$ kubectl -n istio-system get cm istio -o jsonpath="{@.data.mesh}" | grep
disablePolicyChecks
disablePolicyChecks: false

If disablePolicyCheck is true, the policy controls can be
enabled. If disablePolicyChecks is set to true, you may need to edit ConfigMap istio
using kubectl -n istio-system edit cm istio and modify the value of
disablePolicyChecks from true to false in the data section and save the config map.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[300]

Now that we've enabled policy control in our Istio, we will now see the procedure of
implementing rate limits. Notice that there is no need to change the application code.

Enabling rate limits
Through Mixer, we can rate limit a service dynamically. If you are providing software as a
service through a REST API for some business function, rate limits can be handy to prevent
abuse of the system by users. Rules can be set to identify a user, count the number of
requests, and reject requests after a limit. Rate limits allow a fair share of the system for the
users.

In this example, we configure rate-limit traffic to productpage originating from the local
IP address to showcase this feature. We use the x-forwarded-for request header as the
client IP address and use a conditional rate limit that exempts logged-in users.

We can accomplish rate limit enforcement through the following scheme:

It creates a quota, then defines the quota specification and quota specification binding.
Finally, the quota specification is bound to the productpage microservice.

Defining quota and assigning to services
Define an instance of quota with the name requestcountquota using a template, quota.
The source for enabling this quota will be applicable for IP address defined in x-
forwarded-for. The destination dimension is for microservices that have
apps labels or the service's name.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[301]

The label version assigned to the microservice determines the destination version:

The definition of the request quota count is as follows:1.

Script : 01-create-quota-instance.yaml

apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 name: requestcountquota
spec:
 compiledTemplate: quota
 params:
 dimensions:
 source: request.headers["x-forwarded-for"] | "unknown"
 destination: destination.labels["app"] |
destination.service.name | "unknown"
 destinationVersion: destination.labels["version"] | "unknown"

Create a quota:2.

$ kubectl -n istio-system apply -f 01-create-quota-instance.yaml
instance.config.istio.io/requestcountquota created

Once we create an instance of quota, associate this with a quota specification.3.
Define QuotaSpec for the quota instance, requestcountquota:

Script : 02-create-quotaspec.yaml

apiVersion: config.istio.io/v1alpha2
kind: QuotaSpec
metadata:
 name: requestcount
spec:
 rules:
 - quotas:
 - charge: 1
 quota: requestcountquota

Create QuotaSpec requestcount for the requestcountquota instance:4.

$ kubectl -n istio-system apply -f 02-create-quotaspec.yaml
quotaspec.config.istio.io/requestcount created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[302]

Define QuotaSpecBinding for requestcount to the productpage service:5.

Script : 03-create-quotaspecbinding.yaml

apiVersion: config.istio.io/v1alpha2
kind: QuotaSpecBinding
metadata:
 name: requestcount
spec:
 quotaSpecs:
 - name: requestcount
 namespace: istio-system
 services:
 - name: productpage
 namespace: istio-lab

Create QuotaSpecBinding using the requestcount quota specification for6.
the productpage service:

$ kubectl -n istio-system apply -f 03-create-quotaspecbinding.yaml
quotaspecbinding.config.istio.io/requestcount created

Next is the procedure to define the quota limits, which is essential in modern-day
applications to restrict the over-usage of services and set limits to protect the use of
resources.

Defining rate limits
Follow these steps to define the rate limits:

After we identify and assign a quota instance to a service or a set of services, a1.
handler manages the quota limits:

Script : 04-create-memquota-handler.yaml

apiVersion: config.istio.io/v1alpha2
kind: handler
metadata:
 name: quotahandler
spec:
 compiledAdapter: memquota
 params:
 quotas:
 - name: requestcountquota.instance.istio-system
 maxAmount: 500
 validDuration: 1s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[303]

 overrides:
 - dimensions:
 destination: reviews
 maxAmount: 1
 validDuration: 5s
 - dimensions:
 destination: productpage
 maxAmount: 5
 validDuration: 1s

The rate limits (quotas) are processed from top to bottom. The values defined
before overrides are default values. The default rate limit is 500 requests in 1
second. The default rate limit comes into effect when there is no match in the
requests for the overrides. The requests are matched based upon source and
destination service names. The first override is for the destination reviews
service, regardless of the source, for which a rate limit of one request every five
seconds will be applied to the incoming requests. The second override is for the
destination productpage service, regardless of the source, for which a rate limit
of five requests every second is applied to the incoming requests.

Create the memquota handler that defines the quota limits:2.

$ kubectl -n istio-system apply -f 04-create-memquota-handler.yaml
handler.config.istio.io/quotahandler created

Note that we are only discussing the memquota handler here for our test environment. In a
production environment, an appropriate in-memory grid should be used to set the
memquota limits. Istio documentation uses the redisquota handler.

After a quota has been defined, we have to define the quota rule to use a quota handler.

Defining quota rules
To define a quota rule, follow these steps:

Define a quota rule that uses quotahandler defined in the previous step and1.
applies the rule only to users who are not logged in to the system:

Script : 05-create-quota-rule.yaml

apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 name: quota

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[304]

spec:
 # quota only applies if you are not logged in.
 match: match(request.headers["cookie"], "session=*") == false
 actions:
 - handler: quotahandler
 instances:
 - requestcountquota

Create the rule:2.

$ kubectl -n istio-system apply -f 05-create-quota-rule.yaml
rule.config.istio.io/quota created

The rule quota created in the preceding, tells Istio Mixer to invoke the memquota
handler and pass the quota instance object, requestcountquota. This maps the
dimensions from the quota template to memquota.

Browse to https://bookinfo.istio.io/productpage and refresh the page
several times and you will receive the message RESOURCE_EXHAUSTED:Quota is
exhausted for requestcountquota intermittently.

Click Sign-in to log in as any user. A session request cookie is set for the logged-
in user. Refresh the https://bookinfo.istio.io/productpage page several
times, and you will not see any quota exhausted messages as the logged-in user is
not subjected to the rate limits. In real life, we would use a JWT for authenticated
users instead of a session request cookie, since we have logged-in user
information.

We will now remove the override for productpage to limit five requests per
second for the next exercise.

Define quotahandler by removing the override for productpage—compare3.
with the 04-create-memquota-handler.yaml script:

Script : 06-modify-memquota-handler.yaml

apiVersion: config.istio.io/v1alpha2
kind: handler
metadata:
 name: quotahandler
spec:
 compiledAdapter: memquota
 params:
 quotas:
 - name: requestcountquota.instance.istio-system
 maxAmount: 500

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[305]

 validDuration: 1s
 overrides:
 - dimensions:
 destination: reviews
 maxAmount: 1
 validDuration: 5s

Modify quotahandler and remove the second override:4.

$ kubectl -n istio-system apply -f 06-modify-memquota-handler.yaml
handler.config.istio.io/quotahandler configured

After learning the three-step process of quota implementation (instance definition,
QuotaSpec, QuotaSpecBinding), we will go through the process of controlling access to a
service.

Controlling access to a service
We will see how to control access to a service using denials, attribute or IP-based
white/blacklisting:

Let's test this out first by modifying the reviews virtual service to add a default1.
route to reviews:v3 for all users except for the user jason, who will be directed
to review:v2:

Script : 07-modify-reviews-virtual-service.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[306]

 host: reviews
 subset: v3

Modify the reviews virtual service:2.

$ kubectl -n istio-lab apply -f 07-modify-reviews-virtual-
service.yaml
virtualservice.networking.istio.io/reviews configured

If the logged-in user is jason, the ratings service will show reviews:v2, which will show
black stars. If you log out as jason, you should see red stars—an indication that the routing
rules based upon virtual service subsets are working and reviews:v3 is being called.

Denying access
Now, we will create a rule to deny access to reviews:v3. To do this, follow these steps:

Define a denier handler that will return status code seven and the message not1.
allowed:

Script : 08-create-denier-handler.yaml

apiVersion: "config.istio.io/v1alpha2"
kind: handler
metadata:
 name: denyreviewsv3handler
spec:
 compiledAdapter: denier
 params:
 status:
 code: 7
 message: Not allowed

Now, create the denier handler:2.

$ kubectl -n istio-system apply -f 08-create-denier-handler.yaml
handler.config.istio.io/denyreviewsv3handler created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[307]

Next, review the checknothing instance:3.

Script : 09-create-check-nothing-instance.yaml

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: denyreviewsv3request
spec:
 compiledTemplate: checknothing

Create a checknothing instance, which is nothing but a bridge between a4.
handler and the rule:

$ kubectl -n istio-system apply -f 09-create-check-nothing-
instance.yaml
instance.config.istio.io/denyreviewsv3request created

Define a deny rule that denies the services where applicable and implement it5.
using a checknothing instance (denyreviewsv3request) through a deny
handler (denyreviewsv3handler):

Script : 10-create-denier-rule.yaml

apiVersion: "config.istio.io/v1alpha2"
kind: rule
metadata:
 name: denyreviewsv3
spec:
 match: destination.labels["app"] == "ratings" &&
source.labels["app"]=="reviews" && source.labels["version"] == "v3"
 actions:
 - handler: denyreviewsv3handler
 instances: [denyreviewsv3request]

In the preceding, pay attention to the match expression—which defines that if the
source service is reviews:v3, then deny access to the destination, ratings.

Create the deny rule for source services that match the app=reviews label and6.
the destination service labeled as app=ratings with a subset set to v3:

$ kubectl -n istio-system apply -f 10-create-denier-rule.yaml
rule.config.istio.io/denyreviewsv3 created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[308]

Refresh https://bookinfo.istio.io/productpage.7.

Notice the message: Ratings service is currently not available. On
the contrary, if you log in as the user jason, you will continue to see black stars
as that is not coming under the denier rule. Note that if you log in as any user
other than jason, you will encounter Ratings service is currently not
available.

Finally, let's delete the denier rule for the next exercise for creating a8.
white/blacklist:

$ kubectl -n istio-system delete -f 10-create-denier-rule.yaml
rule.config.istio.io "denyreviewsv3" deleted

$ kubectl -n istio-system delete -f 09-create-check-nothing-
instance.yaml
instance.config.istio.io "denyreviewsv3request" deleted

$ kubectl -n istio-system delete -f 08-create-denier-handler.yaml
handler.config.istio.io "denyreviewsv3handler" deleted

After learning about denier rule implementation for all except the logged-in user, jason,
we will see the process of implementing white/blacklists to enforce deny rules based upon
attributes as opposed to matching labels to identify source and destination service names.

Creating attribute-based white/blacklists
The white/blacklist is also a type of denier, but instead of service names, this is based upon
any attribute available in the Istio Mixer vocabulary: https:/ /archive. istio. io/ v1.3/
docs/reference/config/ policy- and- telemetry/ attribute- vocabulary/ . This method is
conditional denial based on Mixer selectors.

We will build a denier rule based upon the Mixer vocabulary instead of labels.

Make sure that you log out as the jason user and refresh
https://bookinfo.istio.io/productpage, and you should see red stars as we
removed the denier rule created in the previous section:

First, define a handler using listchecker:1.

Script : 11-create-listchecker-handler.yaml

apiVersion: config.istio.io/v1alpha2
kind: handler

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/

Enabling Istio Policy Controls Chapter 12

[309]

metadata:
 name: whitelist
spec:
 compiledAdapter: listchecker
 params:
 # providerUrl: ordinarily black and white lists are maintained
 # externally and fetched asynchronously using the providerUrl.
 overrides: ["v1", "v2"] # overrides provide a static list
 blacklist: false

Then, create the listchecker handler:2.

$ kubectl -n istio-system apply -f 11-create-listchecker-
handler.yaml
handler.config.istio.io/whitelist created

Now, define an instance of listentry that will match the label's version:3.

Script : 12-create-listentry-instance.yaml

apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 name: appversion
spec:
 compiledTemplate: listentry
 params:
 value: source.labels["version"]

Create a listentry instance:4.

$ kubectl -n istio-system apply -f 12-create-listentry-
instance.yaml
instance.config.istio.io/appversion created

Define a rule using the whitelist handler through an instance of listentry:5.

Script : 13-create-whitelist-rule.yaml

apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 name: checkversion
spec:
 match: destination.labels["app"] == "ratings"
 actions:
 - handler: whitelist
 instances: [appversion]

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[310]

Create a whitelist rule:6.

$ kubectl -n istio-system apply -f 13-create-whitelist-rule.yaml
rule.config.istio.io/checkversion created

Refresh https://bookinfo.istio.io/productpage, and you should see Ratings
unavailable without a user login. This whitelist is equivalent to the denier request
that we created in the previous section to reject the requests from reviews:v3.

Creating an IP-based white/blacklist
The source.ip Mixer attribute can be used to define a list checker of IP_ADDRESSES, list
IP addresses to block, and then apply the rule to the ingress gateway.

We will now configure Istio to accept or reject requests from a specific IP address or a
subnet:

The following Istio example is shown for a handler defining entryType of1.
IP_ADDRESSES for a subnet, 10.57.0.0:

Script : 14-create-listchecker-handler.yaml

apiVersion: config.istio.io/v1alpha2
kind: handler
metadata:
 name: whitelistip
spec:
 compiledAdapter: listchecker
 params:
 # providerUrl: ordinarily black and white lists are maintained
 # externally and fetched asynchronously using the providerUrl.
 overrides: ["10.57.0.0/16"] # overrides provide a static list
 blacklist: false
 entryType: IP_ADDRESSES

Create a handler:2.

$ kubectl -n istio-system apply -f 14-create-listchecker-
handler.yaml
handler.config.istio.io/whitelistip created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[311]

A sourceip instance is created for the Mixer attribute of source.ip of the3.
request, and if that is not present, then access is allowed for all:

Script : 15-create-listentry-instance.yaml

apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 name: sourceip
spec:
 compiledTemplate: listentry
 params:
 value: source.ip | ip("0.0.0.0")

Create an instance:4.

$ kubectl -n istio-system apply -f 15-create-listentry-
instance.yaml
instance.config.istio.io/sourceip created

Create a checkip rule that will use the whitelistip handler to check the5.
source IP for an incoming request at the ingress gateway. If the source IP is not
from 10.57.0.0/16, the request will be denied:

Script : 16-create-whitelist-rule.yaml

apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 name: checkip
spec:
 match: source.labels["istio"] == "ingressgateway"
 actions:
 - handler: whitelistip
 instances: [sourceip]

Create a rule:6.

$ kubectl -n istio-system apply -f 16-create-whitelist-rule.yaml
rule.config.istio.io/checkip created

Refresh https://bookinfo.istio.io/productpage, and you will see the message
PERMISSION_DENIED:whitelistip.istio-system:192.168.230.224 is not

whitelisted. The IP address may be different in your case.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[312]

This was an example of creating a whitelist of IP addresses that will be allowed. We have
completed this exercise to implement a denial of service. We will delete the rule, instance,
and handler for attribute- and IP-based whitelists for the next lab exercise:

$ kubectl -n istio-system delete -f 16-create-whitelist-rule.yaml
rule.config.istio.io "checkip" deleted

$ kubectl -n istio-system delete -f 15-create-listentry-instance.yaml
instance.config.istio.io "sourceip" deleted

$ kubectl -n istio-system delete -f 14-create-listchecker-handler.yaml
handler.config.istio.io "whitelistip" deleted

$ kubectl -n istio-system delete -f 13-create-whitelist-rule.yaml
rule.config.istio.io "checkversion" deleted

$ kubectl -n istio-system delete -f 12-create-listentry-instance.yaml
instance.config.istio.io "appversion" deleted

$ kubectl -n istio-system delete -f 11-create-listchecker-handler.yaml
handler.config.istio.io "whitelist" deleted

The Istio component of Mixer is used to push down policies to Envoy. In this section, we
learned how to enforce rules through Envoy at runtime to dynamically apply rate limits to
incoming traffic and to apply service denial rules.

Press Ctrl + Shift + Del and clear the browser cache so that it does not interfere with the next
exercises.

Summary
In this chapter, you have seen that a thin proxy is helpful to scale microservices. A proxy
caches requests to avoid multiple trips to the control plane, and it sends asynchronous
requests to Istio's Mixer, which can communicate to the backend services.

We've shown scenarios using the Bookinfo microservice where policy controls can be
enabled in Istio through a simple edit to its config map. You can enable rate limits to
prevent rogue users from abusing the system. This process defines rules where we identify
a user, count their requests, and reject the requests after a rate limit. Finally, if there is a
rogue user, control access to enable service denial can be configured through an IP-based
whitelist or blacklist. This process defines a deny rule for services where we can deny
access through instances and denier handlers.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enabling Istio Policy Controls Chapter 12

[313]

In the next chapter, we will cover Istio telemetry and the visualization of metrics collected
by Istio through Prometheus, Grafana, and Kiali.

Questions
Quota assignment to services is enforced through Pilot.1.

A) True
B) False

Rate limits to services are pushed down to the Envoy proxy through Mixer.2.

A) True
B) False

A list checker handler is assigned a list of source IPs to create a list. A source IP3.
instance list entry is created to check against the IP address found at the ingress
gateway. The rule can be created to enforce a blacklist or whitelist of the IP
addresses that can connect to the service.

A) True
B) False

To enable policy enforcement, you could edit the Istio config map to4.
set disablePolicyChecks=true.

A) True
B) False

Further reading
Policies, Istio, 2019, https:/ /archive. istio. io/ v1. 3/docs/ tasks/ policy-
enforcement/

Policy Enforcement in Service Mesh – Istio/Envoy, Iturria, Carlos Rodriguez,
Redthunder, Blog, 2019, https:/ / redthunder. blog/ 2018/ 07/30/ policy-
enforcement- in- service- mesh- istio- envoy/

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://archive.istio.io/v1.3/docs/tasks/policy-enforcement/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/
https://redthunder.blog/2018/07/30/policy-enforcement-in-service-mesh-istio-envoy/

13
Exploring Istio Telemetry

Features
Distributed microservices-based applications have many advantages and disadvantages, as
we discussed in Chapter 1, Monoliths Versus Microservices. It is very difficult to test, debug,
and monitor microservice applications without the proper tools. Istio makes these tasks
much easier by providing proper utilities to visualize metrics, logs, traces, runtime
component dependencies, traffic flow, and so on from a central place.

In this chapter, we will cover the telemetry and observability features that are available in
Istio. We will enable these features for a demo application through Istio's metrics collectors
and visualization tools, that is, Prometheus, Grafana, and Kiali.

In a nutshell, we will cover the following topics:

Built-in metrics collection
Distributed tracing
Exploring Prometheus
Visualization and observability

Technical requirements
This chapter is dependent on the previous chapter. If you haven't already done so,
complete the exercises in Chapter 12, Enabling Istio's Policy Controls.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[315]

Let's change the directory for the scripts that we will be using in this chapter:

$ cd ~/istio
$ cd scripts/04-telemetry

Make sure that all istio-lab pods show Ready state 2/2:

$ kubectl -n istio-lab get pods

Once done, we're ready to begin!

Telemetry and observability
The promise of observability in a complex distributed environment is much more
important to the Site Reliability Engineering team or IT Operations. Without the use of
proper tools, it can be tough to maintain such a system for the long term, especially when
we are using an abstraction layer such as Istio on top of the application.

Traditionally, monitoring stacks, such as events, stack traces, log4j, ELK, Fluentd, Splunk,
and so on for collecting metrics, incrementing counters, preparing histograms, and so on
need to be embedded or instrumented in the application code. Some frameworks provide
integration with the metrics system. This issue becomes complicated when polyglot
applications are used and different sets of APIs need to be used to instrument and collect
metrics.

In Istio, sidecar proxies have full control over the network traffic, and they automatically
send telemetry data asynchronously to the Mixer, which can then send it to the backend
services for storage. The Istio-enabled applications can be traced, metered, and monitored
without additional code.

The focus of this chapter is on telemetry, monitoring, and observability. There are differences
between a system that provides monitoring capabilities versus a system that includes
observability. The Istio community is striving to put more emphasis on observability
features in addition to collecting events, metrics, and logs, which are essential to get to the
root of a problem.

The role of standard telemetry is vital in microservices. Prometheus is a monitoring and
alerting toolkit that was initially developed at https:/ /SoundCloud. com and made open
source at https:// prometheus. io. Prometheus is a graduated project from https:/ /cncf.
io, and it has become a de facto standard for telemetry. We will learn how the pull model
of Prometheus works and the different dashboards for Grafana that have been built by Istio
for monitoring purposes.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://SoundCloud.com
https://SoundCloud.com
https://SoundCloud.com
https://SoundCloud.com
https://SoundCloud.com
https://SoundCloud.com
https://SoundCloud.com
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io
https://cncf.io

Exploring Istio Telemetry Features Chapter 13

[316]

From an observability standpoint, we will see how Kiali can show the real-time flow of the
traffic on an entire service mesh through visualization with a focus on active services in a
mesh. We are also going to see how metrics are collected for HTTP and Transmission
Control Protocol (TCP) packets are sent to the backend.

It is not necessary to access the web UIs for monitoring tools of Istio from outside the
Kubernetes cluster. We will provide examples of accessing the web UIs of Grafana,
Prometheus, Kiali, and Jaeger through an Ingress gateway using a domain name.

Configuring UI access
Configuring web UI access to Grafana, Prometheus, Kiali, and Jaeger can be done in various
ways, as follows:

Using port-forward while using the kubectl command for the pod's port
number.
Configuring a node port and accessing the UI through hostIP:NodePort and
by configuring an Istio virtual service.
Using the istioctl dashboard command to open the Web UI.

The first two approaches are well documented and refer to the Kubernetes documentation.
In this section, we will show Istio's approach to defining a virtual service to access the UI.
In a real-world situation, you would use a DNS server to resolve the names, but, in our
case, we are going to use the /etc/hosts file to resolve the names. Let's get started:

Edit the /etc/hosts file and add entries for the following additional hosts:1.

$ cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
192.168.142.101 osc01.servicemesh.local osc01
192.168.142.249 bookinfo.istio.io bookinfo
192.168.142.249 httpbin.istio.io httpbin
192.168.142.249 grafana.istio.io grafana
192.168.142.249 prometheus.istio.io prometheus
192.168.142.249 kiali.istio.io kiali
192.168.142.249 jaeger.istio.io jaeger

Here, we've added four additional hosts using the same IP address for Grafana,
Prometheus, Kiali, and Jaeger.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[317]

In an actual example, you will use a domain name that can be resolved
through a DNS server, which can point to the IP address of the Ingress
gateway. In the preceding code, we are using /etc/hosts to resolve our
made-up hostnames to the IP address of our Ingress gateway.

Now, let's create and define some virtual hosts. We will point these to the
respective service using a particular port.

Check the services and note the port numbers that these web UI services for2.
telemetry are running on:

$ kubectl -n istio-system get svc | grep -E
"grafana|prometheus|kiali|jaeger"
grafana ClusterIP 10.99.238.230 <none> ---
jaeger-agent ClusterIP None <none> ---
jaeger-collector ClusterIP 10.105.138.178 <none> ---
jaeger-query ClusterIP 10.104.117.150 <none> ---
kiali ClusterIP 10.104.122.142 <none> ---
prometheus ClusterIP 10.108.236.193 <none> ---

--- 3000/TCP 45h
--- 5775/UDP,6831/UDP,6832/UDP 45h
--- 14267/TCP,14268/TCP 45h
--- 16686/TCP 45h
--- 20001/TCP 45h
--- 9090/TCP 45h

We need port numbers for Grafana, Jaeger, Kiali, and Prometheus. These will
be 3000, 16686, 20001, and 9090, respectively.

Define the virtual service for Grafana:3.

Script : 01-create-vs-grafana-jaeger-prometheus.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: grafana
spec:
 hosts:
 - grafana.istio.io
 gateways:
 - mygateway
 http:
 - match:
 - uri:
 prefix: /

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[318]

 route:
 - destination:
 host: grafana.istio-system.svc.cluster.local
 port:
 number: 3000
...

The definition of the virtual services for Prometheus, Jaeger, and Kiali can be seen4.
in the 01-create-vs-grafana-jaeger-prometheus.yaml script.

Create all the necessary virtual services:5.

$ kubectl -n istio-system apply -f 01-create-vs-grafana-jaeger-
prometheus.yaml
virtualservice.networking.istio.io/grafana created
virtualservice.networking.istio.io/prometheus created
virtualservice.networking.istio.io/jaeger created
virtualservice.networking.istio.io/kiali created

The virtual service route information is pushed to each sidecar proxy in the6.
mesh. First, let's check the istioctl command and then use the sidecar proxy
that's internal to the web UI:

$ export INGRESS_HOST=$(kubectl -n istio-system get pods -l
app=istio-ingressgateway -o jsonpath='{.items..metadata.name}') ;
echo $INGRESS_HOST
istio-ingressgateway-688d5886d-vsd8k

$ istioctl proxy-config route $INGRESS_HOST.istio-system -o json
...
"name": "prometheus.istio.io:80",
...
"routes": [
 {
 "match": {
 "prefix": "/"
 },
 "route": {
 "cluster": "outbound|9090||prometheus.istio-
system.svc.cluster.local",
...

In the output of the istioctl command, scroll up and locate the entry7.
labeled "name": "prometheus.istio.io:80". Check and validate that the
route rules for the virtual host labeled "cluster" have been pushed to the
sidecar proxy.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[319]

Let's check the same through the sidecar proxy's internal web UI. Note that port8.
15000 is the management port for the sidecar proxy:

$ kubectl -n istio-system port-forward $INGRESS_HOST 15000

From inside the VM, open a browser, open http://localhost:15000, and click
on config_dump. Scroll all the way down to view the route information that was
pushed to the sidecar proxy.

Press Ctrl + C from the command-line window to stop port forwarding. The same9.
routing rule is pushed to all the sidecars in the istio-lab namespace. The
following code shows the routing rules from the sidecar of the ratings service:

$ RATING_POD=$(kubectl -n istio-lab get pods -l app=ratings -o
jsonpath='{.items[0].metadata.name}') ; echo $RATING_POD
ratings-v1-79b6d99979-k2j7t

$ kubectl -n istio-lab port-forward $RATING_POD 15000

Browse to http://localhost:15000/config_dump and scroll down to check
the pushed routing rule virtual service telemetry.

Press Ctrl + C to stop port forwarding from the command-line window. 10.

The sidecar proxy web UIs are local to the cluster. Configuring external web UI
access, as shown here, is appropriate when you need to expose the web UI to
users who may not have access to Kubectl. If you have access to a Kubernetes
cluster through your Windows or Mac machine, you can use the kubectl port-
forward command and use localhost:<portNumer> to access the web UI.
Istioctl provides a dashboard command that you can use to run the web UI. Let's
take a look at two examples.

Show the web UI for any control plane pod:11.

$ INGRESS_HOST=$(kubectl -n istio-system get pods -l app=istio-
ingressgateway -o jsonpath='{.items[0].metadata.name}') ; echo
$INGRESS_HOST
istio-ingressgateway-688d5886d-vsd8k

$ istioctl dashboard controlz $INGRESS_HOST.istio-system
http://localhost:39284

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[320]

Now, you can open the web UI using http://localhost:39284. Here, you12.
will see the web UI's ControlZ pod:

Open Envoy's admin dashboard for a microservice:13.

$ RATING_POD=$(kubectl -n istio-lab get pods -l app=ratings -o
jsonpath='{.items[0].metadata.name}') ; echo $RATING_POD
ratings-v1-79b6d99979-k2j7t

$ istioctl dashboard envoy $RATING_POD.istio-lab
http://localhost:41010

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[321]

The dashboard looks as follows:

Dashboard

Similarly, you can open a dashboard for Grafana, Jaeger, Kiali, and Prometheus like14.
so:

$ istioctl dashboard grafana

$ istioctl dashboard jaeger

$ istioctl dashboard prometheus

$ istioctl dashboard kiali

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[322]

Now that we've gained web access to the tools, we will look at Prometheus's in-built
metrics collection. Istio has been coded with built-in Prometheus APIs to allow for data
scrapping from different components.

Collecting built-in metrics
Istio collects a number of metrics automatically by default. Metrics can be added or
removed by changing the configuration at any time. Let's take a look:

Let's check out attributemanifest, which is a list of attributes for Kubernetes1.
and Istio:

$ kubectl -n istio-system get attributemanifest
NAME AGE
istioproxy 5d
kubernetes 5d

As we can see, Kubernetes has its own set of manifest attributes. Istio also
provides a set of manifest attributes.

Check the attribute list for istioproxy and notice the list of predefined2.
matrices:

$ kubectl -n istio-system get attributemanifest istioproxy -o yaml
...
spec:
 attributes:
 check.error_code:
...
 check.error_code:
 valueType: INT64
 check.error_message:
 valueType: STRING
 connection.duration:
 valueType: DURATION
...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[323]

Here, we can see various attributes, such as errorcode, error_message,
and connection.duration. These attributes are generated and consumed by different
services. Istio uses shared attributes that can be used across various components. For
example, the authenticated user information that's generated by a certain function can be
used by the Envoy proxy to store that information in the logging backend.

The preceding attribute vocabulary list for Istio is maintained at https:/ /
archive. istio. io/ v1. 3/ docs/ reference/ config/ policy- and-
telemetry/ attribute- vocabulary/ .

Next, we will implement a new metrics collection that can be pushed down to Mixer. Then,
Mixer pushes those down to the Envoy proxy level.

Collecting new metrics
Istio provides a simple mechanism for collecting metrics for the microservices that we
developed without adding any instrumentation to them. In the following example, we will
use Mixer's attribute vocabulary to define an instance of Mixer metrics that can be applied
to the bookinfo microservices to generate metrics. Then, we'll collect them without having
to make any code changes to the application. Let's get started:

Define the configuration for the metric instance to double the request count:1.

Script : 02-create-metric-instance.yaml

apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 name: doublerequestcount
spec:
 compiledTemplate: metric
 params:
 value: "2" # count each request twice
 dimensions:
 reporter: conditional((context.reporter.kind | "inbound") ==
"outbound", "client", "server")
 source: source.workload.name | "unknown"
 destination: destination.workload.name | "unknown"
 message: '"twice the fun!"'
 monitored_resource_type: '"UNSPECIFIED"'

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/attribute-vocabulary/

Exploring Istio Telemetry Features Chapter 13

[324]

In the preceding example, any request originating from the source attribute
(source.workload.name) to the destination attribute
(destination.workload.name) or the context attribute
(context.reporter.kind can be either outbound, client, or server) will be
counted as 2.

Create a metric instance:2.

$ kubectl -n istio-system apply -f 02-create-metric-instance.yaml
instance.config.istio.io/doublerequestcount created

Define the configuration for a Prometheus handler:3.

Script : 03-create-prometheus-handler.yaml

apiVersion: config.istio.io/v1alpha2
kind: handler
metadata:
 name: doublehandler
spec:
 compiledAdapter: prometheus
 params:
 metrics:
 - name: double_request_count # Prometheus metric name
 instance_name: doublerequestcount.instance.istio-system #
Mixer instance name (fully-qualified)
 kind: COUNTER
 label_names:
 - reporter
 - source
 - destination
 - message

Create a Prometheus handler using the double request counter we created4.
previously:

$ kubectl -n istio-system apply -f 03-create-prometheus-
handler.yaml
handler.config.istio.io/doublehandler create

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[325]

Define a rule to send metric data to the Prometheus handler:5.

Script : 04-create-rule-to-send-metric-to-prometheus.yaml

apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 name: doubleprom
spec:
 actions:
 - handler: doublehandler
 instances: [doublerequestcount]

Create the rule:6.

$ kubectl -n istio-system apply -f 04-create-rule-to-send-metric-
to-prometheus.yaml
rule.config.istio.io/doubleprom created

Let's launch the Prometheus UI. From the browser within the VM, launch http:/7.
/prometheus. istio. io. The GUI should open.
Refresh http:/ /bookinfo. istio. io in your browser a few times to generate the8.
required metrics.
Switch to the Prometheus Web UI at http:/ /prometheus. istio. io.9.

In the Expression input box at the top of the web page,
enter istio_double_request_count and click the Execute button.

In the Console tab, you will see the entries that were logged after we refreshed
the productpage:

istio_double_request_count{destination="details-
v1",instance="10.1.230.250:42422",job="istio-mesh",message="twice the
fun!",reporter="client",source="productpage-v1"} 2
istio_double_request_count{destination="details-
v1",instance="10.1.230.250:42422",job="istio-mesh",message="twice the
fun!",reporter="server",source="productpage-v1"} 2
istio_double_request_count{destination="istio-
policy",instance="10.1.230.250:42422",job="istio-mesh",message="twice the
fun!",reporter="server",source="details-v1"} 2

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://bookinfo.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io

Exploring Istio Telemetry Features Chapter 13

[326]

The same metric collection logs can be seen through the Prometheus web UI:

This exercise demonstrates that Istio allows us to add our metrics with the use of instance,
handler, and rule. These metrics are scrapped by Prometheus for analysis. We didn't have to
add any code to the applications.

Database metrics
We can collect TCP metrics after we run the MongoDB database for ratings:v2. As we did
in the previous section, here, we'll create an instance, handler, and a rule to collect metrics.
Let's get started:

Define a configuration for the sent and receive bytes from a server to a client:1.

Script : 05-create-metric-instance.yaml

apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 name: mongosentbytes
...
 params:
 value: connection.sent.bytes | 0 # uses a TCP-specific
attribute

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[327]

 dimensions:
 source_service: source.workload.name | "unknown"
 source_version: source.labels["version"] | "unknown"
 destination_version: destination.labels["version"] |
"unknown"
...
metadata:
 name: mongoreceivedbytes
...

Create a handler for bytes sent and received for the MongoDb database service:2.

$ kubectl -n istio-system apply -f 05-create-metric-instance.yaml
instance.config.istio.io/mongosentbytes created
instance.config.istio.io/mongoreceivedbytes created

Configure a Prometheus handler in order to generate MongoDB sent and received3.
byte instances:

Script : 06-create-prometheus-handler.yaml

apiVersion: config.istio.io/v1alpha2
kind: handler
metadata:
 name: mongohandler
spec:
 compiledAdapter: prometheus
 params:
 metrics:
 - name: mongo_sent_bytes # Prometheus metric name
 # Mixer instance name (fully-qualified)
 instance_name: mongosentbytes.instance.istio-system
 kind: COUNTER
 label_names:
 - source_service
 - source_version
 - destination_version
 # Prometheus metric name
 - name: mongo_received_bytes
 # Mixer instance name (fully-qualified)
 instance_name: mongoreceivedbytes.instance.istio-system
 kind: COUNTER
 label_names:
 - source_service
 - source_version
 - destination_version

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[328]

Create a Prometheus handler:4.

$ kubectl -n istio-system apply -f 06-create-prometheus-
handler.yaml
handler.config.istio.io/mongohandler created

Define a rule to send the sent and received metrics instances to the Prometheus5.
handler:

Script : 07-create-rule-to-send-metric-to-prometheus.yaml

apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 name: mongoprom
spec:
 match: context.protocol == "tcp"
 && destination.service.host == "mongodb.istio-
lab.svc.cluster.local"
 actions:
 - handler: mongohandler
 instances:
 - mongoreceivedbytes
 - mongosentbytes

Create a rule:6.

$ kubectl -n istio-system apply -f 07-create-rule-to-send-metric-
to-prometheus.yaml
rule.config.istio.io/mongoprom created

Switch back to your Prometheus UI (http:/ / prometheus. istio. io),7.
type istio_mongo_received_bytes, and click Execute. You will see the value
of the received bytes from the MongoDB service:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io
http://prometheus.istio.io

Exploring Istio Telemetry Features Chapter 13

[329]

Repeat the same for istio_mongo_sent_bytes. Note that these metrics8.
collections were defined outside the application through the pushdown
configuration of the Istio instance, handler, and rule primitives.

If a database provides Prometheus-enabled metric collection, it is easier to integrate with
Istio using a Prometheus handler. This was just an example of TCP metrics that are available
through connection metrics.

The purpose of this exercise was to show you that Istio has a built-in mechanism that we
can use to collect data using predefined attributes. We can use them to create an instance,
allow that instance to be handled through a predefined handler, and generate a rule to
execute the handler to generate and collect metrics. This is done at the Mixer level.

Next, we will explore distributed tracing and the different backend adapters that are
available.

Distributed tracing
At the heart of distributed tracing are the sidecar proxies, which intercept the network
traffic going in and out of each microservice. These sidecar proxies can trace any network
request, such as HTTP/1.1, HTTP/2.0, and gRPC.

If the incoming request doesn't have tracing headers, then the sidecar proxy adds a root
span before passing the request to the application container in the same pod. Let's look at
an example using curl -s (http:/ / httpbin. istio. io/ headers):

Refer to https:/ /zipkin. io/zipkin/ 2.11. 3/zipkin/ zipkin2/ Span. html
for a definition of span.

$ curl -s http://httpbin.istio.io/headers
{
 "headers": {
 "Accept": "*/*",
 "Content-Length": "0",
 "Host": "httpbin.istio.io",
 "User-Agent": "curl/7.29.0",
 "X-B3-Parentspanid": "b8679a57978531d7",
 "X-B3-Sampled": "1",
 "X-B3-Spanid": "3ac636cd58f4fc88",
 "X-B3-Traceid": "ec017991cd822f03b8679a57978531d7",
 "X-Envoy-Internal": "true",

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
http://httpbin.istio.io/headers
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html
https://zipkin.io/zipkin/2.11.3/zipkin/zipkin2/Span.html

Exploring Istio Telemetry Features Chapter 13

[330]

 "X-Forwarded-Client-Cert": "By=spiffe://cluster.local/ns/istio-
lab/sa/default;Hash=63c3fac8c0da77b4ab0fb2a9c5f26b9559f994c0c84895302030ae5
e387516f1;Subject=\"\";URI=spiffe://cluster.local/ns/istio-system/sa/istio-
ingressgateway-service-account"
 }
}

In the preceding headers information, the trace span is X-B3-Traceid, the parent span ID
is X-B3-Parentspanid, and the span ID is X-B3-Spanid. If all of these are the same, then
this is known as a root span. If the incoming headers have tracing elements present, the
sidecar proxy extracts the span's context and creates a child span. This new context is
propagated as a tracing header in the request to the application service. Keep in mind that,
in order to entirely benefit from Istio's distributed tracing, the application should propagate
tracing headers from incoming requests to outgoing requests.

As an exception to the "no additional code" rule of Istio, we may need to
add a bit of application code in order to propagate headers down the call
chain for distributed traces.

For instance, if you look at the sample Python productpage service (https:/ /git. io/
JeC2z), you'll see that the application extracts the required headers from an HTTP request
using OpenTracing libraries:

def getForwardHeaders(request):
 headers = {}

 # x-b3-*** headers can be populated using the opentracing span
 span = get_current_span()
 carrier = {}
 tracer.inject(
 span_context=span.context,
 format=Format.HTTP_HEADERS,
 carrier=carrier)

 headers.update(carrier)

 # ...

 incoming_headers = ['x-request-id']

 # ...

 for ihdr in incoming_headers:
 val = request.headers.get(ihdr)
 if val is not None:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://git.io/JeC2z
https://git.io/JeC2z
https://git.io/JeC2z
https://git.io/JeC2z
https://git.io/JeC2z
https://git.io/JeC2z
https://git.io/JeC2z
https://git.io/JeC2z

Exploring Istio Telemetry Features Chapter 13

[331]

 headers[ihdr] = val

 return headers

Istio will report two spans from every hop in the microservice chain: one from the source
sidecar and another from the destination sidecar.

In Istio, distributed tracing through trace span requires applications to write code to make
sure that the tracing headers are collected and propagated and that the span headers aren't
truncated. If we follow this best practice of header propagation, we can get an end-to-end
timeline of distributed tracing.

Next, we will look at the trace sampling rate and learn how to change it.

Trace sampling
When we installed Istio using a demo profile, the sampling rate was set to 100%.

Let's confirm this:1.

kubectl -n istio-system get deploy istio-pilot -o yaml | grep
"name: PILOT_TRACE_SAMPLING" -A1
 - name: PILOT_TRACE_SAMPLING
 value: "100"

When we access the productpage, we will see a corresponding trace in the
dashboard. The 100% sample is OK for a test or low traffic environment. For
performance reasons, we can lower the sampling rate in a high traffic mesh by
editing the istio-pilot deployment to change the value of
PILOT_TRACING_SAMPLING to a lower number, say, 1%.

As an example, let's modify the sampling rate to 99%:2.

$ kubectl -n istio-system patch deployment istio-pilot --type json
-p '[{"op": "replace","path":
"/spec/template/spec/containers/0/env/4/value","value": "99"}]'
deployment.extensions/istio-pilot patched

An easier way to do this is to simply edit the deployment, that is, kubectl -n istio-
system edit deployment istio-pilot, and change the value
of PILOT_TRACING_SAMPLING manually.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[332]

Trace sampling has an impact on the performance of the application as each Envoy will
send tracing information directly to the tracing backends. For example, if you choose the
aforementioned value of 1, only one out of every 100 trace spans will be sent to the tracing
backend.

Next, we will look at an example of additional backend adapters that can be added to Mixer
in order to send traces to backends.

Tracing backends
Istio comes with backends for tracing, such as Jaeger, LightStep, and Zipkin. We installed
Istio using a demo profile, which has Jaeger as its backend. If Zipkin needs to be used as a
backend, this can be done while installing Istio by adding the --set
tracing.provider=zipkin Helm option.

Istio supports a variety of backends, all of which can be enabled through the use of
adapters.

Adapters for the backend
One of the features of Mixer is that it can interface with a variety of infrastructure backends
and send its metrics and logs over them. A list of all the available adapters can be found at
https://archive. istio. io/ v1. 3/docs/ reference/ config/ policy- and- telemetry/
adapters.

Next, we will explore Prometheus.

Exploring prometheus
Prometheus is a data collection toolset that has its own basic web UI for visualizing and
allowing the usage of the Prometheus Query Language to test and see the aggregation of
scrapped data.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters
https://archive.istio.io/v1.3/docs/reference/config/policy-and-telemetry/adapters

Exploring Istio Telemetry Features Chapter 13

[333]

Istio's Mixer has built-in scraps for the following endpoints:

Mixer has an endpoint for ports 42422 and 15014. Use endpoint 15014 to1.
monitor Mixer itself:

$ curl
http://istio-telemetry.istio-system.svc.cluster.local:42422/metrics

$ curl
http://istio-telemetry.istio-system.svc.cluster.local:15014/metrics

The metrics that are generated by Pilot, Policy, and Galley are visible on port2.
15014:

$ curl http://istio-pilot.istio-
system.svc.cluster.local:15014/metrics

$ curl http://istio-policy.istio-
system.svc.cluster.local:15014/metrics

$ curl http://istio-galley.istio-
system.svc.cluster.local:15014/metrics

The preceding endpoints show Prometheus data for the Istio Telemetry, Pilot,
Policy, and Galley components of the Istio control plane.

Next, we will see how data is collected from Envoy sidecar proxies.

Sidecar proxy metrics
Pilot generates dynamic configuration for the sidecar based upon the startup parameters
and configuration information that's saved in the Kubernetes API server. Let's take a look:

We can get this configuration by using the following code for the productpage:1.

$ PRODUCTPAGE_POD=$(kubectl -n istio-lab get pod -l app=productpage
-o jsonpath='{.items[0].metadata.name}')

$ kubectl -n istio-lab exec -i $PRODUCTPAGE_POD -c istio-proxy --
cat /etc/istio/proxy/envoy-rev0.json

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[334]

If you scroll through the preceding JSON output, you will notice that the listener2.
port 15090 has a route called /stats/prometheus that Prometheus will scrape
to gather data:

...
 "listeners":[
 {
 "address": {
 "socket_address": {
 "protocol": "TCP",
 "address": "0.0.0.0",
 "port_value": 15090
 }
 },
 "filter_chains": [
 {
 "filters": [
 {
 "name": "envoy.http_connection_manager",

...
 "routes": [
 {
 "match": {
 "prefix": "/stats/prometheus"
...

Run the curl command to scrape the Prometheus metrics:3.

$ kubectl -n istio-lab exec -i $PRODUCTPAGE_POD -c istio-proxy --
curl http://localhost:15090/stats/prometheus

Each sidecar proxy has a management port of 15000, which is bound to the local
loopback adapter of the pod and hence can only be accessed within the pod.

The sidecar proxy stats can be seen by running the following command:4.

$ kubectl -n istio-lab exec -i $PRODUCTPAGE_POD \
-c istio-proxy -- curl http://localhost:15000/stats

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[335]

Let's look at an example for all the pods in istio-lab to check how many days5.
are left until the certificates expire:

$ ALL_PODS=$(kubectl -n istio-lab get pods -o
jsonpath='{.items..metadata.name}')

$ for pod in $ALL_PODS; do echo For pod $pod; kubectl -n istio-lab
exec -i $pod -c istio-proxy -- curl -s http://localhost:15000/stats
| grep server.days_until_first_cert_expiring; done

The output will look similar to the following:6.

...
For pod details-v1-6886b56dc8-ksmrh
server.days_until_first_cert_expiring: 82
...

The configuration for the proxy can be seen through proxy management port7.
15000 using the config_dump route:

$ kubectl -n istio-lab exec -i $PRODUCTPAGE_POD -c istio-proxy --
curl http://localhost:15000/config_dump

The preceding output can be used to confirm route propagation from Mixer to the sidecar
proxy when Istio virtual services are created.

Now, we know how each Istio component publishes its Prometheus metrics through
different endpoints. The Prometheus collector then scraps such metrics and puts in its own
backend system.

Let's use the Prometheus UI to query some of the metrics that were collected. These values
can be in the console or in the form of a graph. Prometheus is not a frontend web UI tool for
visualizing such data, but it provides a basic UI. We will use Grafana as a UI frontend to
show how data is collected from Istio's various components.

First, let's take a look at a basic Prometheus query through its UI. Later, we will switch to
the Grafana UI.

Prometheus query
The power of Prometheus is its query language, through which we can use expressions,
aggregations, and so on to collect data from data, which can then be used by different
graphing tools such as Kibana to show valuable derived data.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[336]

In the Expression input box at the top of the web page, enter istio_requests_total .
Then, click the Execute button.

Let's try out some different queries:

Let's get the total count of all the requests to the productpage service: 1.

istio_requests_total{destination_service="productpage.istio-
lab.svc.cluster.local"}

The preceding Prometheus query language expression gives us the total request
count, as shown in the following screenshot:

To get the total count of all requests to v2 of the reviews service, use the2.
following code:

istio_requests_total{destination_service="reviews.istio-
lab.svc.cluster.local", destination_version="v2"}

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[337]

To get the rate of requests over the past 5 minutes to all the instances of the3.
productpage service, use the following code:

rate(istio_requests_total{destination_service=~"productpage.*",
response_code="200"}[5m])

The preceding query expression builds the rate of requests over a period of 5
minutes, as shown in the following screenshot:

Here, we have seen that it is possible to build any custom data preparation from raw data
so that it can be used in a dashboard. Grafana's dashboard in Istio can display time-
series data and the aggregations that have been derived from the data.

Next, we will explore the state of Prometheus data collection and the list of targets that it
collects data from.

Prometheus target collection health
We've already looked at the istio-proxy container inside each pod and looked at port
15090, which uses the /stats/prometheus route to scrape metrics. How do we know if
the route is healthy or not? Let's take a look.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[338]

Go to http://prometheus.istio.io/targets, as follows:

The preceding screenshot shows that all the data scraping endpoints are available and
healthy. If you don't see the data for a particular endpoint, such as Mixer or Pilot, simply
click on the target.

Now that we know how to check the health status of Prometheus's data collection
endpoints, we will take a look at Prometheus's configuration parameters.

Prometheus configuration
Prometheus's configuration can be seen through the /config route for the Prometheus
web UI. In our case, this will be http://prometheus.istio.io/config.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[339]

For example, you can verify the interval and route it uses to scrape the data like so:

...
- job_name: envoy-stats
 scrape_interval: 15s
 scrape_timeout: 10s
 metrics_path: /stats/prometheus
 scheme: http
...

Now that we've learned about Prometheus data collection, scrapping targets, and query
expressions, we will delve into the visualization tools that we can use to observe data from
Grafana.

Visualizing metrics through Grafana
Let's take a look at some of the open source visualization tools that can be used for
distributed tracing, dependency visualization between services, and monitoring
dashboards with the data we've collected through Prometheus. First, let's take a look at the
Grafana dashboard, which has been built by the Istio community to show monitoring
features:

Launch the Grafana dashboard by going to http://grafana.istio.io.1.
From the left-hand navigation panel, click on the Configuration (gear) and click2.
on Data Sources:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[340]

Notice that the backend data source is configured using Prometheus.

Go back to the navigation panel, click on Dashboard, and navigate to Manage.3.
Next, go to the search bar and type Istio. The search output shows Galley,4.
Mesh, Mixer, Performance, Pilot, Service, and Workload dashboard.
Click on Istio Mesh Dashboard:5.

Switch to the command-line window and run a curl command to fetch the6.
productpage 10,000 times:

$ curl -k -s -o /dev/null -w "time=%{time_total} http code=
%{http_code}\n" https://bookinfo.istio.io/productpage?[1-10000]

The preceding curl command will call
https://bookinfo.istio.io/productpage 10,000 times and emit the
timestamp with an http return code after each request.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[341]

We are using ?[1-10000] at the end of the curl command to repeat the
command 10,000 times.

The Mesh dashboard shows the statistics that were captured through Prometheus
scraping data from various endpoints. The following dashboard shows the
results:

The Key Performance Indicators (KPI) metrics for the 50, 90, and 99 percentile
latency, success rate, number of 4xx, and 5xx errors, global request volume, and
global success rate give us a brief glimpse at the overall performance of the
microservices application.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[342]

Switch to the Istio Performance dashboard:7.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[343]

The following table shows what the various dashboard components represent:

Component Representation

vCPU/1k rps Shows vCPU utilization through the main Istio components
normalized by 1,000 requests/second.

vCPU Shows vCPU usage by Istio components, not normalized.

Memory Shows a memory footprint for the components. Telemetry and policy
are normalized by 1k rps.

Bytes transferred/sec Shows the number of bytes flowing through each Istio component.

Notice the spikes in memory that are required per 1,000 requests/second for istio-
telemetry and istio-policy. This is understandable since Mixer (telemetry and policy)
is pushing monitoring data to the backend (Prometheus, in this case) since we ran 10,000
refreshes of productpage continuously.

One of the useful features of the Grafana dashboard is that we can slide the observability
window to check on performance. You can choose from 5 mins, 15 mins, 30 mins, 1 hour,
and 3 hours, all the way to five years. For example, the following screenshot shows the
performance that was observed from the past 3 hours:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[344]

Go to the Istio Service Dashboard. Here, you can view metrics details about microservices
such as client request volume, client success rate, and client request duration for clients
coming through the Istio Ingress gateway. Client workloads are microservices that service
client requests:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[345]

On the Istio Workload Dashboard, you can view metrics details for individual
microservices behind the Istio Ingress gateway, which shows metrics such as request
duration, request size, response duration, and response size for HTTP, as well as TCP
traffic:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[346]

The preceding dashboard also shows us that it has been confirmed that all the service traffic
has been secured through mTLS. It also allows us to make visual comparisons of individual
microservices and the incoming client workload being received at the Ingress gateway for
monitoring purposes. It is easier to find out which microservices are resource-hungry by
looking at the metrics of the individual workloads. You can improve their overall
performance by focusing incrementally on the optimization of specific microservices.

In the next section, we will look at service observability through Kiali.

Service mesh observability through Kiali
Kiali is a service mesh observability utility that was originally developed at Red Hat and
now is an open- source project. Kiali provides a visual network flow/dependency diagram
between different microservices behind the Ingress gateway. Let's take a look:

Open http://kiali.istio.io/kiali/console and use admin/admin as the1.
user ID and password.
If the previous curl command to drive the traffic has stopped in the command-2.
line window, start it again to keep sending the traffic to the productpage.
Navigate to the menu icon from the top left of the page and click3.
on Graph. Select the istio-lab namespace:

Toggle the Display drop-down and check Node Names, Service
Nodes, Traffic animation, Virtual Services, and Security.
Select Requests per second from Edge Labels.
Select App from Graph Type, as follows:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[347]

The animation shows how traffic flows from service to service. The lock icon shows the
mTLS-enabled services. The traffic rate/seconds is also between services. The blue line
between ratings and mongodb shows the TCP connection. The right-hand sidebar shows
HTTP requests/second and TCP traffic bytes sent and received per second. These are useful
metrics to gain insight into the application and, more importantly, to see if services are
throwing 5XX or 4XX errors.

Next, we'll explore the real-time animation of the network flow between services:

Select the istio-system namespace, inclusive of istio-lab, and notice the1.
animation and flow of metrics from the different services to the Istio components:

Network flow between services

The live animation shows how each service is sending metrics to Istio Mixer.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[348]

Select istio-lab from the namespace drop-down and click Applications. The2.
health of the applications will appear:

Health of the application

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[349]

Click Service details and click Destination Rules (notice the red cross sign,3.
indicating that we have an issue):

Click View YAML:4.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[350]

Notice that subset v2 is shown in red. This is happening because there is no5.
details service that has a label of v2.
Navigate to Services (left navigation bar) and click productpage. Click Inbound6.
Metrics, which can be found in the middle of the tab:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[351]

The 50, 95, and 99 percentiles for the request and response sizes show the network traffic
that was generated by a particular service.

Istio Config open (left nav bar) shows the configuration for the destination rules, virtual
services, and service entries. These can be modified using the web UI.

Kiali is one of the most useful tools in Istio for gaining immediate insight into a service's
dependencies. Kiali shows real-time animated traffic of the application. This tool helps
Service Reliability Engineering (SRE) or application infrastructure teams to provide
immediate feedback to the application owners about potential performance issues.

Next, we will explore the Jaeger web UI regarding distributed tracing details, service mesh
dependencies, and so on.

Tracing with Jaeger
Jaeger is an open source tool (https:/ / jaegertracing. io) that recently graduated from the
CNCF project. It provides distributed transaction monitoring, service dependency
information, and span tracing using an open standard specification (https:/ /github. com/
opentracing/specification). Let's take a look at how to perform tracing with Jaeger:

Open http:/ / jaeger. istio. io and use admin/admin as the user ID and1.
password.

If the curl command for driving traffic has stopped in the command-line
window, start it again in order to send traffic to the productpage.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://jaegertracing.io
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/opentracing/specification
http://jaeger.istio.io
http://jaeger.istio.io
http://jaeger.istio.io
http://jaeger.istio.io
http://jaeger.istio.io
http://jaeger.istio.io
http://jaeger.istio.io
http://jaeger.istio.io
http://jaeger.istio.io

Exploring Istio Telemetry Features Chapter 13

[352]

Select the productpage.istio-lab service from the drop-down and click Find2.
Traces:

The graph shows the duration, while the bottom section shows the data that has been collected from productpage tracings

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[353]

Click on the productpage.istio-lab.svc.cluster.local service and visualize the3.
distributed trace:

Notice the 73 ms end-to-end response time of the request (see the top bar of the
Service & Operation panel), which arrived at istio-ingressgateway. The
staggered bars and labels on the left-hand side of the panel show the elapsed
time in each microservice. This helps us clearly see the amount of time that was
spent in each dependent microservice.

From this, it is evident that if we optimize the details microservice, it will reduce
the overall end-to-end response time. This is an example of important observation
derived through Jaeger. Note that the sample BookInfo application propagates the
span headers from the sidecar proxy. Subsequently, the next upstream sidecar
creates a child span. If the application does not propagate headers, all the spans
that are built will be root spans, and they will be aligned to the left.

Click on any service and expand the Tag section. Notice the value of span.kind. It
should be a client if header propagation is allowed through the application;
otherwise, each span.kind will show up as a server.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[354]

Click Dependencies and then DAG (short for Directed Acyclic Graph) to see the4.
dependencies among services. Note that, as expected, the number of
invocations from the productpage to the details and reviews microservices
is identical (46046):

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[355]

Go to Search again, select the istio-mixer service, and click Find Traces. Select5.
the latest trace (showing 12 spans):

Notice the elapsed time that was spent on the istio-mixer level, which is negligible
compared to the end-to-end time for the productpage.

Cleaning up
This concludes the Istio hands-on-exercises in this chapter. Now, it's time to clean up before
we finish. Run the following commands:

$ cd istio-$ISTIO_VERSION/install/kubernetes
$ kubectl -n istio-system delete -f istio-demo.yaml
$ kubectl delete ns istio-lab

Delete the keepalived pod security policy
$ kubectl delete psp kube-keepalived-vip

The preceding commands will uninstall Istio and bookinfo to free up resources in the VM.

By the time you read this book, new versions of Istio will be available with
new features and functions. You can visit https:/ /github. com/
servicemeshbook/ istio for updated Istio scripts for the new version.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio
https://github.com/servicemeshbook/istio

Exploring Istio Telemetry Features Chapter 13

[356]

Summary
In this chapter, you have learned how to configure new metrics collection using Mixer's
attribute vocabulary for microservices. You have gone through the Prometheus pull model
for data scrapping from the Istio control plane, as well as from Envoy sidecar proxies. You
have also explored Grafana for visualizing collected and aggregated data and service mesh
observability, looked at animation through Kiali, and looked at distributed tracing using
Jaeger.

In this section of the book, we've covered traffic management, security, policy, and
telemetry features of Istio in detail. In the next section of this book, we will cover the
Linkerd service mesh.

Questions
A sidecar proxy sends asynchronous telemetry data to backend services.1.

A) True
B) False

Observability and monitoring of a system are the same things.2.

A) True
B) False

The recommended web UI for Istio's monitoring and observability are Grafana,3.
Prometheus, Kiali, and Jaegar.

A) True
B) False

 Port forwarding is the only way to access different web UI components.4.

A) True
B) False

Istio reports multiple spans within a microservices chain.5.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Istio Telemetry Features Chapter 13

[357]

Prometheus can be used as a web UI tool to visualize collected data or metrics.6.

A) True
B) False

Custom dashboards in Grafana provide details for inbound and outbound7.
workloads.

A) True
B) False

In Kiali's YAML view, all mis-configurations will be highlighted in red.8.

A) True
B) False

Further reading
Overview, Istio. (2019) available at https:/ / istio. io/docs/ tasks/ telemetry/
distributed- tracing/ overview/ , accessed 3 May 2019
Distributed Tracing, Istio, and Your Applications - The New Stack, Poddar, N.
(2018), The New Stack, available at https:/ /thenewstack. io/ distributed-
tracing- istio- and- your- applications/ , accessed 3 May 2019
Distributed tracing for cloud-native applications in the Istio service mesh - The
developerWorks Blog, Oliveira, F. (2017), The developerWorks Blog, available
at https:/ /developer. ibm. com/dwblog/ 2017/ istio- service- mesh-
distributed- tracing- zipkin/ , accessed 3 May 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://istio.io/docs/tasks/telemetry/distributed-tracing/overview/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://thenewstack.io/distributed-tracing-istio-and-your-applications/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/
https://developer.ibm.com/dwblog/2017/istio-service-mesh-distributed-tracing-zipkin/

5
Section 5: Learning about
Linkerd through Examples

Linkerd's journey as an open source project started in February 2016. Linkerd was accepted
as an incubating project of the Cloud Native Computing Foundation in January 2017. In
this section, you will learn about Linkerd through the use of hands-on exercises.

This section contains the following chapters:

Chapter 14, Understanding the Linkerd Service Mesh
Chapter 15, Installing Linkerd
Chapter 16, Exploring Linkerd's Reliability Features
Chapter 17, Exploring Linkerd's Security Features
Chapter 18, Exploring Linkerd's Observability Features

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

14
Understanding the Linkerd

Service Mesh
In the previous section, we delved into the Istio architecture, how to install it, and hands-on
exercises regarding traffic management, security, policies, and observability. Istio is a
highly configurable feature-rich service mesh. However, some may find that Istio is a bit
difficult to start with. In this chapter, we will discuss another open source service mesh
called Linkerd (pronounced Linker-Dee).

The architecture of Linkerd can alleviate some complexities of Istio's deployment, proxy
injection, traffic management, observability, and basic security practices. Linkerd is an
incubating project of CNCF with many contributors. In this section of the book, we will
perform a deep dive and explain significant Linkerd capabilities that are run and managed
on a Kubernetes environment. By the end of this chapter, you will have a strong sense of
Linkerd and its capabilities, which will prove to be very useful as we move on.

In a nutshell, we will be covering the following topics in this chapter:

Linkerd architecture for the control plane and the data plane
Control plane installation overview
Data plane overview
Linkerd proxy for service configuration and Ingress rules
Observability using Linkerd's dashboard, Grafana, and Prometheus
Distributed tracing and exporting metrics
Debugging sidecar proxies
Traffic reliability and its many capabilities
Securing Linkerd's service mesh

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[360]

Technical requirements
You will need to continue using the VM that we used to learn about Istio. Make sure that
you have performed the cleanup procedure that was demonstrated at the end of the
previous chapter to free up resources so that you can use the same VM and the Kubernetes
environment to explore the Linkerd service mesh.

You can find the code files for Linkerd here: https:/ /github. com/servicemeshbook/
linkerd.

Introducing the Linkerd Service Mesh
Istio is feature-rich, but it may take a while to get a good grasp of its core functionalities.
Linkerd is designed to keep the service mesh simple, efficient, and easy to work with. Out-
of-the-box, Linkerd works with a bare minimum configuration in comparison to Istio.

Linkerd is an open source project and is backed by a startup, Buoyant (https:/ /buoyant.
io). Buoyant was started by William Morgan and Oliver Gould, both formerly from
Twitter. William Morgan, as we mentioned earlier in this book, is credited with coining the
phrase service mesh. He describes it as a dedicated infrastructure layer built directly into
the application for an SRE. In 2016, Linkerd 1.x was the first service mesh to be created.

It has two flavors: version 1.x and 2.x. Both are very different technologies:

Linkerd 1.x: Built on top of Netty (https:/ /github. com/netty/ netty), which is
written in Java, and Finagle (https:/ / twitter. github. io/finagle/), which is
written in Scala. Linkerd 1.x is still supported, but we are not covering it in this
book. Linkerd 1.x runs in Kubernetes, Apache Mesos's DC/OS, Consul, and
Zookeeper-based environments.
Linkerd 2.0: Built from scratch using Rust (proxy) and Go (Control plane
components), it claims to be significantly faster than Linkerd 1.x. It is open source
and is maintained by Buoyant and many contributors at https:/ /github. com/
linkerd.

At the time of writing, Linkerd 2.0 is only available on the Kubernetes platform, which may
change in the future.

Istio and Consul Connect use the Envoy sidecar proxy, which is also used by AWS's App
Mesh and Microsoft's Azure Service Fabric Mesh. Linkerd has developed its sidecar proxy
from the ground-up, which makes it different from other service mesh implementations.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://buoyant.io
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/netty/netty
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://github.com/linkerd
https://github.com/linkerd
https://github.com/linkerd
https://github.com/linkerd
https://github.com/linkerd
https://github.com/linkerd
https://github.com/linkerd
https://github.com/linkerd

Understanding the Linkerd Service Mesh Chapter 14

[361]

Regarding its installation and overall maintenance, Istio is more challenging to operate than
Linkerd. This is mainly because of its interaction between services, which could be ideal for
engineering but tricky for operators and administrators. Linkerd is very easy to configure
because of its simpler architecture and due to the fact that it only requires a single process
per node. Istio requires several processes because it has a complex control plane.

For traffic management, Istio offers more features than Linkerd, such as circuit breaking,
timeouts, routing rules, subset load balancing, fault injection, and so on. However, this may
change in the future based on what's on their roadmap. For security, Linkerd and Istio offer
support for certificate rotation, external root certificate assignment, and features such as
mTLS, but Linkerd doesn't support automatic mTLS for non-HTTP traffic. This request is
on their roadmap for future support. For monitoring, both Linkerd and Istio leverage open
source tools to provide insights via dashboards provided by Grafana for querying (used by
Linkerd and Istio), as well as Kiali (used by Istio).

Finally, regarding performance, Linkerd is better because its processing load is 3x better
than Istio's. The reason for this is that Istio has a complex networking architecture around
integration, traffic management, and overall policy management.

Linkerd also has a participating service mesh interface specification, which you can find
at https://smi-spec. io/ .

In this chapter, we'll focus on the Linkerd 2.x architecture. The term
Linkerd henceforth refers exclusively to Linkerd 2.x and not to Linkerd
1.x.

Linkerd architecture
Linkerd has a dedicated layer 7 proxy that deals with HTTP and HTTP/2 for requests and
responses. It can use a filter chain for these requests for success, failure, latency, and
responses. A service mesh implies that you deploy one Linkerd proxy alongside a
microservice. When you initiate a service call, instead of it being direct, that request is
received by the Linkerd proxy and then sent to the microservice. Next, the microservice
response is routed through the Linkerd proxy, which again sends that response to another
microservice. The proxy sitting next to each microservice wraps the network call and
collects the metrics. Service-to-service communication is secured through TLS, and all the
traffic on the wire is encrypted.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/
https://smi-spec.io/

Understanding the Linkerd Service Mesh Chapter 14

[362]

Linkerd provides an abstract layer so you can manage, control, and monitor microservices.
Linkerd facilitates a service-oriented infrastructure through load balancers, TLS, request
routing, and service scalability to make applications resilient. Linkerd Proxy allows
application owners to develop microservices in the programming language of their choice.

There are two primary architecture components to Linkerd for deploying and running
standalone proxies:

Control plane
Data plane

Linkerd's control and data plane architecture can be seen in the following diagram:

In this chapter, we will understand this architecture. Let's begin with the control plane.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[363]

Control plane
Linkerd's control plane can be deployed in a Kubernetes environment. Its primary
functionality is around telemetry data aggregation, service API calls, and enabling data
access between the control plane and service proxy. It is made up of four major
components:

Controller: Deploys four containers called public-api, identity,
destination, and tap to manage traffic between the application proxy.
Web: Once Linkerd has been installed and deployed, this is the frontend
dashboard.
Prometheus: This is an open source component that's used to store metrics,
telemetry, and monitoring data that's been captured by Linkerd proxies and
metrics that have been generated by other Linkerd components.
Grafana: This is an out-of-the-box open source component that's integrated with
Prometheus to visualize metrics that have been captured by Prometheus.

Istio and Linkerd's service mesh patterns are similar to a hub and spoke architecture, except
for Consul, which is a peer-to-peer architecture pattern based upon the gossip protocol.

As shown in the preceding diagram, the control plane has the following step-by-step
configuration:

Prometheus scraps data that Linkerd's proxies generate.1.
Next, Grafana takes data from Prometheus to provide monitoring and2.
observability features.
Tap is a unique concept native to getting requests and responses in real-time3.
from a Linkerd sidecar proxy.
Linkerd Identity is the PKI that provisions certificates and keys for sidecar4.
proxies to enable mutual TLS.

The Public API and destination is the heart of the control plane. It provides various
functionality and pushes down configuration to the data plane's Linkerd proxies. The CLI
and web are frontends of the control plane and are used to get input from the user to either
configure, monitor, or observe.

The control plane also has Kubernetes admission webhook controllers for automatic sidecar
injection and a validator to validate a new service profile.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[364]

One of the features of Linkerd is its web-based dashboard. This dashboard provides a high-
level view of applications using its unique tap feature, which provides live traffic analysis.
It is used to view metrics such as success rate, requests per second (RPS), visualize
microservices dependencies, and more.

Once we've installed Linkerd, we can run the Linkerd dashboard by typing the linkerd
dashboard command from a Terminal window. The output will be a URL that you can
point to your browser. The dashboard UI will run in your local machine through port
forwarding to the Linkerd web port:

Note that running a dashboard through Linkerd's dashboard is easy. You could expose the
dashboard through your Ingress controller to provide access through an external web
address. You can also use NodePort to gain access, which requires access to the Kubernetes
cluster's master node IP address.

Using the command-line interface (CLI)
The command-line interface of Linkerd's control plane is a Linkerd tool that helps users
accomplish various tasks when it comes to installing Linkerd's control plane.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[365]

The following steps are at a conceptual level and point out the operational simplicity of
Linkerd. Don't try out these commands yet. In the next chapter, we will walk through
Linkerd's installation in more detail:

Check if Linkerd's prerequisites have been met or not. This checker will validate1.
your current virtual machine and provide an output of all the passed or failed
checks. Then, deploy the service mesh:

$ linkerd check --pre

$ linkerd install | kubectl apply -f -

Launch the Linkerd dashboard locally through your client machine:2.

$ linkerd dashboard

Alternatively, you can also apply Ingress rules to your Linkerd dashboard to
access it remotely. We will explain this capability in the following chapters.

Enable injecting a sidecar proxy automatically through a webhook3.
admission controller. This process can also be done for existing applications by
routing YAML files to the linkerd inject command:

$ kubectl get deploy -o yaml | linkerd inject - | kubectl apply -f -

Carry out real-time live traffic analysis through a Kubernetes deployment known4.
as the web:

$ linkerd tap deploy/web

Carry out command-line monitoring of the Linkerd service mesh by using5.
the top command. The following example shows how to monitor a Kubernetes
deployment known as the web:

$ linkerd top deploy/web

Finally (this is optional), users can upgrade the existing Linkerd control plane by6.
using the upgrade command. This will generate the YAML configuration files
that can be routed to Kubernetes:

$ linkerd upgrade | kubectl apply -f -

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[366]

As you can see, it is rather easy to install Linkerd and its control plane components. These
steps have provided you with a high-level overview of the following:

Pre-checking the environment for Linkerd's installation
Installing Linkerd
Accessing the dashboard
Visibility into live traffic metrics
Easily upgrading the control plane

Next, let's dive into Linkerd's data plane capabilities.

Data plane
Let's take a closer look at the data plane architecture:

From the preceding diagram, we can see the following:

Service-A is the edge service that receives traffic from an external network.
Service-A calls Service-B, which calls two other services, such as Service-C and
Service-D.
Finally, Service-D calls Service-E.

A mesh of the Linkerd proxy at the application level forms the data plane, which can be
configured, monitored, and observed through the control plane.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[367]

By now, you should have a good understanding of Linkerd's control plane and data plane
regarding services that are deployed and how they're managed through the UI dashboard
or CLI. The next section will take you through Linkerd's sidecar proxy architecture.

Linkerd proxy
In Linkerd, the sidecar proxy is written in the Rust programming language, which was
designed by Graydon Hoare from Mozilla Research. Rust is similar in syntax to C and C++,
and it offers better performance and strong typing. There are no Garbage Collection (GC)
related constraints, as Rust performs resource utilization in the constructor, and, when an
object goes out of scope, the owned resources are freed.

The choice of Rust by Linkerd developers was to attain performance, reliability, and
productivity (https:/ /rust- lang. org). The Linkerd proxy is lightweight and efficient,
since it has a small footprint.

Some of the features of the Linkerd proxy are as follows:

Out of process architecture: The Linkerd proxy runs alongside the application
and is language-agnostic.
Rust: The Linkerd proxy is written in Rust for performance and to minimize
latency.
Protocol: It has zero-config and supports HTTP/1.2, HTTP/2.0, and arbitrary TPC.
It also has a web socket proxy.
HTTP L7 routing: Latency-aware automatic load balancing.
L4 routing: Load balancing for non-HTTP traffic.
TLS: Automatic TLS.
On-demand diagnostics: Uses the Tap API.
Service discovery: Through DNS and the destination gRPC API.

With this information in hand, let's move on to understanding its architecture.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://rust-lang.org
https://rust-lang.org
https://rust-lang.org
https://rust-lang.org
https://rust-lang.org
https://rust-lang.org
https://rust-lang.org
https://rust-lang.org
https://rust-lang.org

Understanding the Linkerd Service Mesh Chapter 14

[368]

Architecture
The architecture of the Linkerd proxy is very similar to that of Envoy. Linkerd proxies
intercept traffic to and from application containers in pods. It has a linkerd-
init container that runs before starting the proxy and an application container that's used
to set the rules in iptables so that it can configure the incoming and outgoing flow of
traffic, as shown in the following diagram:

In the preceding diagram, we can see the following steps being carried out:

The Linkerd sidecar proxy is injected into an application pod.1.
The Linkerd Init container sets the rules in iptables to forward incoming traffic2.
on IP 10.0.1.231 to port 4143 and outgoing traffic to port 4140.
The Linkerd proxy gathers the incoming traffic and applies the rules that it3.
receives from the control plane.
Then, it forwards traffic to the application container at its original port of 443.4.
The outgoing traffic is sent to port 4140.
After applying any rules, the Linkerd proxy will send that traffic to the5.
downstream application designated port.

Next, we will explain how to configure a microservice with a sidecar proxy.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[369]

Configuring a service
To deploy Linkerd's sidecar proxy for a running microservice, the proxy definition needs to
be applied to the pod's resource definition. This configuration setup can be done through
the Linkerd CLI (https:/ /linkerd. io/ 2/architecture/ #cli). The CLI is the
recommended tool for installing the Linkerd control plane. Once the control plane has been
deployed, deploying the Linkerd sidecar proxy to an application is simple, as is the case
with Istio. Follow these steps:

Annotate the namespace, pod, or deployment with linkerd.io/inject:1.
enabled.
The Linkerd sidecar will be injected automatically through the Kubernetes2.
admission webhook controller.
If a particular pod doesn't need a sidecar, that pod can be annotated3.
as linkerd.io/inject: disabled.
To add Linkerd to a running microservice service, run the linkerd4.
inject command.
This will add a linkerd-init and provision a sidecar proxy for every service5.
pod that has been defined in the deployment YAML.
Deploying this configuration file through kubectl will trigger rolling updates6.
and replace old pods with new ones.
The newly added pods can be viewed on the Linkerd dashboard.7.

In the next chapter, we will show you a step-by-step deployment of the Linkerd control and
data plane.

For now, let's assume that Linkerd is already installed and that we've annotated
the default namespace with linkerd.io/inject: enabled. Next, we need to deploy the
application. During deployment, the Linkerd sidecar proxy will be injected automatically.
Here is the code example:

$ kubectl annotate namespace default linkerd.io/inject=enabled

$ kubectl create -f https://k8s.io/examples/admin/dns/busybox.yaml

If you check the pod, you should see that the sidecar is injected automatically with 2/2
under the READY column:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
busybox 2/2 Running 0 9s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli
https://linkerd.io/2/architecture/#cli

Understanding the Linkerd Service Mesh Chapter 14

[370]

If you describe the busybox pod, you will see details about the Linkerd sidecar proxy.

Notice that the busybox pod has one init container called linkerd-init that puts entries
in the iptables to route the traffic to the proxy. The busybox container and the sidecar
proxy's linkerd-proxy containers are created with a distinction of (2/2) with proper
command-line parameters.

Let's look at what's within the busybox containers:

$ kubectl describe pod busybox
Name: busybox
Namespace: default
...
Containers:
 busybox:
 Container ID: docker://...
 Image: busybox:1.28
...
 linkerd-proxy:
 Container ID: docker://...
 Image: gcr.io/linkerd-io/proxy:stable-2.6.0
 ...
 LINKERD2_PROXY_CONTROL_LISTEN_ADDR: 0.0.0.0:4190
 LINKERD2_PROXY_ADMIN_LISTEN_ADDR: 0.0.0.0:4191
 LINKERD2_PROXY_OUTBOUND_LISTEN_ADDR: 127.0.0.1:4140
 LINKERD2_PROXY_INBOUND_LISTEN_ADDR: 0.0.0.0:4143
 LINKERD2_PROXY_DESTINATION_PROFILE_SUFFIXES: svc.cluster.local.
 LINKERD2_PROXY_INBOUND_ACCEPT_KEEPALIVE: 10000ms
 LINKERD2_PROXY_OUTBOUND_CONNECT_KEEPALIVE: 10000ms
 LINKERD2_PROXY_DESTINATION_CONTEXT: ns:$(_pod_ns)
...

Injecting a Linkerd sidecar proxy is enabled by default. Any changes that are made to the
existing deployment are done through mutating the admission controller using
linkerd.io/inject: disabled. Such calls to the admission controller will modify the
busybox deployment to enable/disable the Linkerd sidecar proxy.

Injecting a Linkerd sidecar proxy is part of the control plane, which makes the process easy
since all we have to do is annotate the namespace and automate proxy injections.

Moving forward, let's explore how Linkerd enables incoming traffic through the
Kubernetes Ingress controller.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[371]

Ingress controller
Kubernetes' Ingress controller is an edge infrastructure that transmits all external web
traffic and forwards it to the designated microservice running inside the cluster. You
configure access by creating a collection of rules that define which inbound connections
reach which services.

Unlike Istio, Linkerd does not provide an Ingress controller. Instead, it piggybacks on an
existing Ingress controller that comes with your Kubernetes providers, such as public cloud
(Google, AWS, Azure, IBM, and so on) or on-premises implementations such as RedHat
OpenShift or the Pivotal Container Service. In this book, we will build our own Nginx
Ingress Controller in the next chapter.

Linkerd discovers services based on the authority (HTTP/2) or host (HTTP 1.1) headers of
the incoming requests. The incoming request for a host, such as example.com, needs to be
translated to an internal service name, for example, example.linkerd-
lab.svc.cluster.local at the Ingress controller. This translation requires rewriting the
request header so that the Linkerd proxy can route the traffic properly.

For example, the following annotation (in bold) needs to be added to the Ingress definition
of the Nginx controller:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: web-ingress
 namespace: emojivoto
 annotations:
 kubernetes.io/ingress.class: "nginx"
 nginx.ingress.kubernetes.io/configuration-snippet: |
 proxy_set_header l5d-dst-override
$service_name.$namespace.svc.cluster.local:80;
 proxy_hide_header l5d-remote-ip;
 proxy_hide_header l5d-server-id;
spec:
 rules:
 - host: emojivoto.linkerd.io
 http:
 paths:
 - backend:
 serviceName: web-svc
 servicePort: 80

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[372]

From the preceding Linkerd YAML, we can see that the Ingress controller will be using the
nginx adapter through the kubernetes.io/ingress.class: "nginx" annotation. The
following annotation is the configuration snippet that's meant for the Linkerd proxy:

nginx.ingress.kubernetes.io/configuration-snippet: |
 proxy_set_header l5d-dst-override
$service_name.$namespace.svc.cluster.local:80;
 proxy_hide_header l5d-remote-ip;
 proxy_hide_header l5d-server-id;

Through the preceding annotation, the headers starting with 15d-* are added to the
incoming request's headers. These 15d-* headers are only meaningful to the Linkerd proxy
and inbound and outbound proxies strip these headers away as they are not meant for
either internal microservices or the external outbound destinations. With the help of these
15d-* headers, the Linkerd proxy can now route the traffic appropriately.

If you are using the Traefik (pronounced like traffic) HTTP reverse proxy and load balancer
(https://github.com/ containous/ traefik), you may need to define the Ingress controller
with the appropriate headers, like so:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: web-ingress
 namespace: emojivoto
 annotations:
 kubernetes.io/ingress.class: "traefik"
 ingress.kubernetes.io/custom-request-headers: l5d-dst-override: web-
svc.emojivoto.svc.cluster.local:80
 ingress.kubernetes.io/custom-response-headers: "l5d-remote-ip: || l5d-
server-id:"
spec:
 rules:
 - host: emojivoto.linkerd.io
 http:
 paths:
 - backend:
 serviceName: web-svc
 servicePort: 80

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik

Understanding the Linkerd Service Mesh Chapter 14

[373]

From the preceding Linkerd Ingress YAML, we can see that Ingress will be using
the kubernetes.io/ingress.class: "traefik" traefik adapter. The
following annotation is a configuration snippet that's meant for the Linkerd proxy:

 ingress.kubernetes.io/custom-request-headers: l5d-dst-override: web-
svc.emojivoto.svc.cluster.local:80
 ingress.kubernetes.io/custom-response-headers: "l5d-remote-ip: || l5d-
server-id:"

Through this annotation, the Linkerd proxy knows how to process these requests due to the
presence of 15d-* headers.

Other Ingress controllers, such as Gloo (https:/ /github. com/ solo- io/ gloo), have native
integration with Linkerd, in which it adds Linkerd specific headers automatically to the
incoming requests. This feature is enabled by modifying settings and adding a route:

$ kubectl patch settings -n gloo-system default -p
'{"spec":{"linkerd":true}}' --type=merge

$ glooctl add route --path-prefix=/ --dest-name booksapp-webapp-7000

Now that we've learned how to enable Ingress rules for Linkerd, let's explore the
observability capabilities and metrics that can be visualized through Linkerd's dashboard.

Observability
Linkerd provides out-of-the-box observability functionality through its interactive
dashboard. It can instrument critical metrics such as service request volume, success rates,
and network latency. In addition to these metrics, Linkerd can enable real-time data
streams of network requests for all incoming and outgoing traffic for all the running
services being monitored by Linkerd.

The Linkerd dashboard provides a high-level, robust view of the services being monitored
in real-time. There is a term called golden metrics that can offer perspective to the overall
service details, such as success rate, network requests, network latency, service dependency
visualization, and view service route health checks.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo
https://github.com/solo-io/gloo

Understanding the Linkerd Service Mesh Chapter 14

[374]

This can be seen in the following screenshot:

To recap from earlier in this chapter, the dashboard can be enabled by running
the linkerd dashboard command from the CLI.

Outside of the dashboard, there are two other open source visualization tools called
Grafana and Prometheus. They are both supported by Linkerd and Kubernetes.

Grafana and Prometheus
As an out-of-the-box component of the control plane, Grafana provides dashboard insights
for registered running services. Grafana enables drilling down to the service-level pods and
container details. Some of those metrics are top-line, deployment, pod, and Linkerd health.

Prometheus is the backend monitoring solution that collects and stores all Linkerd
telemetry metrics for services that are enabled for monitoring. It is also part of the control
plane and collects data that's used by the CLI, the Linkerd dashboard, and Grafana.

The proxy exposes a /metrics endpoint for Prometheus to scrape on port 4191. This is
scraped every 10 seconds. These metrics are then available to all the other Linkerd
components, such as the CLI and dashboard.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[375]

Distributed tracing
Distributed tracing in Linkerd is automated and does not require any special configuration.
The data that's collected from the Linkerd proxy is aggregated to show health, latencies,
and request volumes at the service level and path/route level.

The dashboard also shows a live dependency graph and the topology of the services. There
are four golden metrics for monitoring distributed systems; that is, Latency, Traffic (RPS),
Errors, and Saturation, which an SRE team will be very interested in getting a report on.
The Linkerd dashboard shows these golden metrics through its dashboard. The following
screenshot shows five metrics for a web app:

Distributed tracing requires applications to preserve request headers if they are set by the
proxy. Future releases of Linkerd may use distributed tracing through span headers. Istio
supports application tracing through span headers already, but it lacks in showing the
golden metrics, as shown by Linkerd.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[376]

P50, P95, and P99 are percentile metrics. For example, P50 with a value of
27 ms signifies that 50% of the time, you will notice a latency of 27 ms or
lower.

The P50, P95, and P99 latency metrics can help application developers identify application
bottlenecks. This aggregated latency information is a very useful feature of Linkerd.

Exporting metrics
Prometheus, which runs as part of Linkerd's control plane, retains data for approximately 6
hours. If further data retention is required, the metrics can be exported to a data store such
as the Elasticsearch, Logstash, and Kibana (ELK) stack or to a dedicated Prometheus
instance.

The Prometheus federation API or ServiceMonitors can be used to copy data using
the /federate path from Linkerd Prometheus to the dedicated Prometheus store.

Alternatively, you can call the federation API directly, and then it can be ingested by a
Kafka stream, which can then dump it to an ELK stack, like so:

 $ curl -G \
 --data-urlencode 'match[]={job="linkerd-proxy"}' \
 --data-urlencode 'match[]={job="linkerd-controller"}' \
 http://linkerd-prometheus.linkerd.svc.cluster.local:9090/federate

From the preceding curl command, you can use an external name through Ingress to route
traffic to the linkerd-prometheus microservice if the /federate path needs to be
scraped external to the cluster.

There can be multiple Linkerd proxies running within a data plane and a control plane. You
can scrape metrics directly from a Linkerd proxy like so:

$ kubectl -n linkerd port-forward \
 (kubectl -n linkerd get pods \
 -l linkerd.io/control-plane-ns=linkerd \
 -o jsonpath='{.items[0].metadata.name}') \
 4191:4191

From your local machine, after you run the preceding kubectl command, you can run the
following curl command and access the Prometheus federated metrics datastore:

$ curl localhost:4191/metrics

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[377]

Next, let's dive into the Linkerd sidecar proxy and how to enable the debugging flag. This
will provide detailed views into the microservice it's attached to.

Injecting the debugging sidecar
In addition to the Linkerd proxy, you can also add a debugging sidecar automatically by
setting up the config.linkerd.io/enable-debug-sidecar: true pod annotation or
using the linkerd inject command with --enable-debug-sidecar. The debugging
sidecar provides the tshark, tcpdump, lsof, and iproute2 tools, which we can use for
low-level system monitoring.

In this section, we had a quick overview of Linkerd's observability. We will explore this in
more detail in Chapter 18, Exploring the Observability Features of Linkerd. Now, let's move on
to Linkerd's traffic managing features for reliability and microservice resiliency.

Reliability
Linkerd addresses traffic management features as reliabilities due to some of the
capabilities around auto-pilot to provide resiliency from inherent application failures. We
will have a quick overview of all these traffic patterns in this section. Let's start with traffic
splitting.

Traffic split
Traffic split is a key concept that has recently gained popularity. It abstracts networking
functions through a proxy without having to change the application. Traffic split allows
dark launches of applications to select groups of users such as co-workers, friends, and
family. Canary deployments (progressive traffic shift), A/B testing (HTTP header and
cookie traffic routing), and blue/green deployments (traffic switch) are all examples of dark
launches for testing applications in production environments by routing a percentage of the
live traffic to selected groups of users without their knowledge. These capabilities do not
exist out of the box in a traditional monolithic environment.

Linkerd works with Flagger (https:/ /flagger. app), which is an open source Kubernetes
operator for canary deployment that uses Linkerd. Flagger can be used with Linkerd to
provide canary and blue-green deployments.

Linkerd recently announced the service mesh interface specification for traffic split.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://flagger.app
https://flagger.app
https://flagger.app
https://flagger.app
https://flagger.app
https://flagger.app
https://flagger.app

Understanding the Linkerd Service Mesh Chapter 14

[378]

Fault injection
Chaos testing is gaining importance when it comes to distributed applications discovering
issues early on rather than waiting for them to appear. If faults can be injected into services
to induce artificial latencies and errors, it might help uncover unpredictable behavior or
timeouts from downstream services. SREs or Operations need tooling to inject faults to
gauge the resiliency of the application proactively. Linkerd allows fault injection through
the traffic split API of service mesh interface specification.

apiVersion: split.smi-spec.io/v1alpha1
kind: TrafficSplit
metadata:
 name: error-split
 namespace: booksapp
spec:
 service: books
 backends:
 - service: books
 weight: 900m
 - service: error-injector
 weight: 100m

In the preceding traffic split specification, 10% of traffic is shifted to an error-injector pod,
which is nothing but an nginx pod that returns error 500 through its proxy configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: error-injector
 namespace: booksapp
data:
 nginx.conf: |-
 http {
 server {
 listen 8080;
 location / {
 return 500;
 }
 }
 }

The preceding is a smart way to induce faults through traffic split. Introducing a fixed
delay and a percentage of error code can be quickly done at the proxy level, and the future
releases of Linkerd may provide a more straightforward approach through Linkerd service
profiles. We'll look at these in the next section.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[379]

Service profiles
A service profile is implemented as a Custom Resource Definition (CRD) in Kubernetes
and is used to define a list of routes for a service that can then be used by the Linkerd proxy
to report per-route metrics and configure retries and timeouts.

Service profiles can be generated automatically if you have swagger or protobuf
specifications for your services. For example, the following code will create a service profile
from a webapp.swagger or web.proto file for the webapp service. This is then fed to
kubectl to generate the service profile:

$ linkerd profile --open-api webapp.swagger webapp | kubectl apply -f -

$ linkerd profile --proto webapp.proto webapp | kubectl apply -f -

If no service profile specifications exist, Linkerd can also automatically generate a service
profile by watching live traffic. The following example shows that tap is used to get the
live feed for the emojivoto service for 10 seconds. The output is fed to kubectl to create
the service profile:

$ linkerd profile -n emojivoto web-svc --tap deploy/web --tap-duration 10s
| kubectl apply -f -

Linkerd also allows you to generate a template, as follows:

$ linkerd profile -n emjoivoto web-svc --template

Make changes to the emojivoto microservice template and then apply it using kubectl to
create the service profile.

Retries and timeouts
Linkerd implements intelligent retries automatically to handle application failures
gracefully. However, incorrect automatic retries can also aggravate the problem due to a
retry storm (amplifying the retry to a service that is already either overloaded, experiencing
backpressure, or sending a negative acknowledgment).

Linkerd solves this by limiting risks by using retry budgets rather than a fixed number of
retries. If the retry budget is defined at 10%, only 10% more requests may be added to
avoid an indefinite retry amount, which can lead to a retry storm. The retry budget and
timeouts can be specified through a service profile that's been created for specific routes.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[380]

A service profile for a service/specific path can be defined for retries as follows for
/api/annotations, which has a configuration to turn on retries
through isRetryable: true:

...
spec:
 routes:
 - name: GET /api/annotations
 condition:
 method: GET
 pathRegex: /api/annotations
 isRetryable: true
...

The retry budget can be defined in the service profile by using the ratio as a percentage and
by setting the time-to-live (ttl) parameter. The following specification is for a retry budget
of 20% retries with a minimum of 10 retries per second. This retry attempt will not last for
more than 15 seconds:

spec:
 retryBudget:
 retryRatio: 0.2
 minRetriesPerSecond: 10
 ttl: 15s

Timeouts can be configured through the service profile, as shown in the following example:

...
spec:
 routes:
 - condition:
 method: HEAD
 pathRegex: /authors/[^/]*\.json
 name: HEAD /authors/{id}.json
 timeout: 300ms
...

The preceding specification defines a maximum of 300 milliseconds of wait time before the
Linkerd proxy cancels the request and returns a 504 code for paths starting
with /authors and ending with .json.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[381]

Load balancing
Linkerd automatically load balances requests (not connections) across all destination
services without any special configuration for HTTP/1.1, HTTP/2, and gRPC connections.
For TCP, it does load balancing at the connection level.

Protocols and the TCP proxy
The Linkerd proxy will detect protocols (HTTP/1.1, HTTP/2, or gRPC) automatically and
provide HTTP-level metrics, load balancing, and routing without any user-defined
configuration. If the Linkerd proxy cannot detect the protocol, it will simply direct the
connection to the edge microservices without injecting any quality of service. Linkerd is
capable of proxying all TCP traffic, including TLS connections, WebSockets, and HTTP
tunneling.

In this section, we had a quick overview of Linkerd's reliability. We will explore this in
more detail in Chapter 16, Exploring the Reliability Features of Linkerd. Now, let's move on to
Linkerd's service mesh security based-on entity management.

Security
Security involves authentication and authorization. Linkerd leaves the task of
authentication to third parties, such as TLS termination at Ingress, TLS origination at
Egress, time-bound JSON Web Tokens (JWTs), and so on. Authorization can be
implemented at the proxy level.

Automatic mTLS
The implementation of mTLS between microservices is out-of-the-box in Linkerd and
doesn't need any special configuration. The Linkerd Identity component of the control
plane acts as a PKI for signing certificates and renews them every 24 hours automatically.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[382]

Summary
Linkerd is simple to install, easy to use, and works out of the box as there are very few
knobs that we have to tune. Istio is feature-rich, but some may encounter a bit of a learning
curve to be able to use it effectively. Istio and Linkerd have their pros and cons, as we
discussed in Chapter 4, Service Mesh Providers. Linkerd is heavily focussed on ease of use
and performance. For example, Linkerd's 2.x proxy is developed in the Rust language to
mitigate the performance problems of Linkerd 1.x, which was a very heavy-duty JVM-
based implementation.

In this chapter, we explained Linkerd's architecture around control and data planes,
installation, proxy configuration, ingress rules, observability, reliability, and security.

In the next chapter, we will delve into Linkerd's installation process and provide step-by-
step instructions through live examples.

Questions
Linkerd has automatic protocol and TCP connection detection.1.

A) True
B) False

Linkerd uses its own Ingress controller.2.

A) True
B) False

The Linkerd proxy is written in GO, while the control plane components are3.
written in Rust.

A) True
B) False

The control and data plane can be in a single namespace if so desired.4.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[383]

When a Linkerd proxy is injected using the linkerd inject command to a5.
running pod, pods are restarted automatically.

A) True
B) False

You can add a debug sidecar to a microservice without having to restart the pod.6.

A) True
B) False

The retry budget helps us avoid a retry storm, and we don't need to do any7.
configuration in Linkerd to achieve this.

A) True
B) False

For automatic sidecar injection, Istio needs a labeled namespace with istio-8.
injection=enabled, while Linkerd needs a namespace annotated
with linkerd.io/inject: Enabled.

A) True
B) False

istio-init and linkerd-init are run before the sidecar proxy to set the9.
entries in iptables to route the application pod traffic through the sidecar
proxy.

A) True
B) False

We can use the Istio and Linkerd sidecars as an edge proxy. 10.

A) True
B) False

Horizontal pod autoscaling for the control plane for Istio and Linkerd is11.
automatic.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Linkerd Service Mesh Chapter 14

[384]

Further reading
Architecture, Linkerd.Io, 2019: https:/ /linkerd. io/ 2/reference/ architecture/

Using Ingress, Linkerd.Io, 2019: https:/ /linkerd. io/ 2/tasks/ using- ingress/
#nginx

Service Discovery On Header Other Than Authority, Issue #1998,
Linkerd/Linkerd2, GitHub, 2019: https:/ /github. com/ linkerd/ linkerd2/
issues/1998

Containous/Traefik, GitHub, 2019: https:/ /github. com/ containous/ traefik/

Solo-Io/Gloo, GitHub, 2019: https:/ /github. com/ solo- io/gloo/

The Four Golden Signals For Monitoring Distributed Systems, Skowronski, Jason,
Appoptics Blog, 2019: https:/ /blog. appoptics. com/ the- four- golden-
signals- for- monitoring- distributed- systems/

Linkerd Canary Deployments, Docs.Flagger.App, 2019: https:/ /docs. flagger.
app/usage/ linkerd- progressive- delivery

Deislabs/Smi-Spec, GitHub, 2019: https:/ /github. com/ deislabs/ smi- spec/ blob/
master/traffic- split. md

Retries And Timeouts, Linkerd.Io, 2019: https:/ /linkerd. io/ 2/features/
retries- and- timeouts/

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/reference/architecture/
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://linkerd.io/2/tasks/using-ingress/#nginx
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/linkerd/linkerd2/issues/1998
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/containous/traefik/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://blog.appoptics.com/the-four-golden-signals-for-monitoring-distributed-systems/
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://docs.flagger.app/usage/linkerd-progressive-delivery
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/

15
Installing Linkerd

In this chapter, we will install the Linkerd command-line interface (CLI) and then install
the control plane. We will install a demo application and inject a Linkerd sidecar proxy
after it is connected to show you how to enable a sidecar proxy for existing applications.
Then, we will install the nginx ingress controller and create an Ingress route to access this
microservice from outside the Kubernetes cluster. We will install Buoyant's booksapp
microservice and enable automatic sidecar injection so that proxies get injected while a new
application is being installed. Then, we'll create an Ingress rule to route the traffic to the
booksapp microservice.

In a nutshell, we will cover the following topics in this chapter:

Installing Linkerd's CLI using the latest version
Installing the control plane
Defining cluster-wide roles and permissions
Validating Linkerd's installation by checking services, deployments, and pods
Downloading and deploying the Emojivoto and BooksApp microservices
Installing and configuring an Ingress controller
Defining the Ingress rules for a microservice

Technical requirements
To complete the exercises in this chapter, you will need the following:

A Windows 10/Apple MacBook, as per the minimum configurations requirement
A Kubernetes environment
Internet access to your host machine in order to download applications in the
VM running Kubernetes

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[386]

For detailed information regarding the installation of Kubernetes, please refer to Chapter 6,
Building Your Own Kubernetes Environment. The scripts that are used for the Linkerd section
of this book are managed at https:/ /github. com/ servicemeshbook/ linkerd.

Check if the keepalived pods are showing a READY 1/1 state and that the STATUS
is Running:

$ kubectl -n keepalived get pods

The keepalived load balancer was installed in Chapter 9, Installing Istio.

The scripts that are used for Linkerd are available at https:/ /github. com/
servicemeshbook/linkerd. Let's clone the git repository to get the scripts as it relates to
Linkerd for our lab exercises:

$ cd ~/ # Switch to home directory
$ git clone https://github.com/servicemeshbook/linkerd.git
$ cd linkerd
$ git checkout stable-2.6.0
$ cd scripts

Now that we have the source code, we will install the Linkerd CLI.

Installing the Linkerd CLI
Installing Linkerd is simple and easy to do in a Kubernetes cluster. It begins with the
installation of the Linkerd CLI, which is used to install Linkerd in a Kubernetes
environment. At the time of writing, Linkerd 2.6.0 is the latest stable version, and we will
use this version so that we're consistent with the exercises that we will be performing to
understand and learn about Linkerd. Follow these steps to install Linkerd:

Visit https:/ / github. com/ linkerd/ linkerd2/ releases to check the latest1.
releases of Linkerd.
Run the following command to list the Linkerd releases:2.

$ curl -Ls https://api.github.com/repos/linkerd/linkerd2/releases |
grep tag_name

You will see stable-2.6.0 release in the list, and that is what we will use in this
chapter to install Linkerd.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases
https://github.com/linkerd/linkerd2/releases

Installing Linkerd Chapter 15

[387]

Run the following command to install the Linkerd CLI in the VM environment:3.

$ cd ## Switch to the home directory
$ export LINKERD2_VERSION=stable-2.6.0
$ curl -s -L https://run.linkerd.io/install | sh -

The preceding curl command will download the specific version defined4.
by LINKERD2_VERSION environment variable:

Download complete!, validating checksum...
Checksum valid.

Linkerd was successfully installed

Add the linkerd CLI to your path with:

 export PATH=$PATH:$HOME/.linkerd2/bin

Now run:

 linkerd check --pre # validate that Linkerd can --
 -- be installed
 linkerd install | kubectl apply -f - # install the control plane --
 -- into the 'linkerd' namespace
 linkerd check # validate everything worked!
 linkerd dashboard # launch the dashboard

Looking for more? Visit https://linkerd.io/2/next-steps

Before running any of the pre-checks, edit and source your local .bashrc file5.
and add linkerd2 to the path:

$ vi ~/.bashrc

Add these two lines
export LINKERD2_VERSION=stable-2.6.0
export PATH=$PATH:$HOME/.linkerd2/bin

$ source ~/.bashrc

Validate Linkerd's client version:6.

$ linkerd version
Client version: stable-2.6.0
Server version: unavailable

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[388]

You will notice that the server version is unavailable. This is because the control plane
hasn't been installed yet. Now that we have installed the CLI, let's go ahead and install
Linkerd.

Installing Linkerd
The service mesh technology is evolving fast, and Linkerd has an aggressive release
schedule for rolling out new changes. Linkerd has two channels for their releases: stable
releases for production, and edge releases. Edge releases have new features and functions,
and they roll up in a stable release on maturity.

We will only use stable releases in this book. By the time you read this book, there may be a
new stable release already out there. The scripts that will be used in this section of this book
will be regularly updated so that they correspond to the new releases of Linkerd. Please
refer to https:// github. com/ servicemeshbook/ linkerd for the updated scripts. However,
we suggest that you select the version of Linkerd that's being used in this chapter so that
everything's consistent with the hands-on exercises.

Now, we will install the Linkerd control plane using the Linkerd CLI. But first, let's check
the prerequisites.

Validating the prerequisites
To check if we have all the prerequisites required for installing Linkerd, run the following
command:

$ linkerd check --pre

The preceding command will check all the prerequisites that are necessary for Linkerd's
installation:

kubernetes-api

√ can initialize the client
√ can query the Kubernetes API

kubernetes-version

√ is running the minimum Kubernetes API version
√ is running the minimum kubectl version

pre-kubernetes-setup

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd

Installing Linkerd Chapter 15

[389]

√ control plane namespace does not already exist
...
√ can create ConfigMaps
√ no clock skew detected

pre-kubernetes-capability

√ has NET_ADMIN capability
√ has NET_RAW capability

pre-linkerd-global-resources

√ no ClusterRoles exist
√ no ClusterRoleBindings exist
...
√ no PodSecurityPolicies exist

linkerd-version

√ can determine the latest version
√ cli is up-to-date

Status check results are √

You may see the following warning while running the pre-check under the NET_ADMIN
capability:

found 1 PodSecurityPolicies, but none provide NET_ADMIN, proxy injection
will fail if the PSP admission controller is running

If you receive this warning, delete the PSP (kubectl get psp and then remove the policy)
and rerun the check. If the status check results are fine, we can proceed and install the
Linkerd control plane.

Installing the Linkerd control plane
To install the Linkerd control plane, follow these steps:

Grant the cluster_admin privilege to the service account default for the1.
linkerd namespace, as follows:

$ kubectl create clusterrolebinding linkerd-cluster-role-binding \
--clusterrole=cluster-admin --group=system:serviceaccounts:linkerd
clusterrolebinding.rbac.authorization.k8s.io/linkerd-cluster-role-
binding created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[390]

Next, run the linkerd install command to generate all the necessary2.
Kubernetes resources and route them through the kubectl apply command:

$ linkerd install | kubectl apply -f -

By default, the Linkerd control plane will be installed in the linkerd namespace.
For this walkthrough, we will keep the default namespace, but it can be changed
by passing --linkerd-namespace. Check Linkerd's install --
help command for other parameters that you can change the default behavior of.

Run linkerd check to ensure that the installation succeeded:3.

$ linkerd check

The preceding command will also check for any mismatch in the Kubernetes
version, the ability to connect to the API server, and so on. It will wait for the
Linkerd control plane pods to be available. This is an excellent tool for
pinpointing issues that might hinder the Linkerd installation.

 Note that linkerd check may take a long time to complete. This may
happen due to a slow internet speed while downloading the required
Linkerd docker images. At any point after the install, you can run
linkerd check config to ensure that all the necessary resources of the
control plane are available.

Run linkerd version to check the client and the server version:4.

$ linkerd version
Client version: stable-2.6.0
Server version: stable-2.6.0

After the Linkerd check has finished running the checklists, verify the Linkerd5.
deployments:

$ kubectl -n linkerd get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
linkerd-controller 1/1 1 1 3m35s
linkerd-grafana 1/1 1 1 3m34s
linkerd-identity 1/1 1 1 3m35s
linkerd-prometheus 1/1 1 1 3m34s
linkerd-proxy-injector 1/1 1 1 3m34s
linkerd-sp-validator 1/1 1 1 3m34s
linkerd-tap 1/1 1 1 3m34s
linkerd-web 1/1 1 1 3m34s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[391]

Next, verify the Linkerd services:6.

$ kubectl -n linkerd get services
NAME TYPE CLUSTER-IP ---
linkerd-controller-api ClusterIP 10.100.102.213 ---
linkerd-destination ClusterIP 10.101.233.105 ---
linkerd-grafana ClusterIP 10.103.68.173 ---
linkerd-identity ClusterIP 10.98.215.247 ---
linkerd-prometheus ClusterIP 10.107.100.107 ---
linkerd-proxy-injector ClusterIP 10.97.254.11 ---
linkerd-sp-validator ClusterIP 10.106.158.157 ---
linkerd-tap ClusterIP 10.103.252.102 ---
linkerd-web ClusterIP 10.108.113.87 ---

--- EXTERNAL-IP PORT(S) AGE
--- <none> 8085/TCP 4m14s
--- <none> 8086/TCP 4m14s
--- <none> 3000/TCP 4m13s
--- <none> 8080/TCP 4m14s
--- <none> 9090/TCP 4m13s
--- <none> 443/TCP 4m13s
--- <none> 443/TCP 4m13s
--- <none> 8088/TCP,443/TCP 4m13s
--- <none> 8084/TCP,9994/TCP 4m13s

Finally, verify the Linkerd pods:7.

$ kubectl -n linkerd get pods
NAME READY STATUS RESTARTS AGE
linkerd-controller-84b76f8f8d-9mjn9 3/3 Running 0 30m
linkerd-grafana-65d9998cd5-zv5cl 2/2 Running 0 30m
linkerd-identity-864b86546d-qknjb 2/2 Running 0 30m
linkerd-prometheus-988bcc5cc-nqqsw 2/2 Running 0 30m
linkerd-proxy-injector-7f74699c95-bgtwz 2/2 Running 0 30m
linkerd-sp-validator-74ff8bb46-nwnc9 2/2 Running 0 30m
linkerd-tap-7cdbfb7cff-lvw77 2/2 Running 0 30m
linkerd-web-5b59d96cc6-2xczd 2/2 Running 0 30m

Next, let's separate roles and responsibilities.

Separating roles and responsibilities
In some organizations, there is a separation of roles and responsibilities in which the
cluster-admin role will not be available to the application administrator. In such a case,
the installation can be separated into two different steps that different people can perform.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[392]

The following steps are for reference purposes only. Don't run these
commands as we've already installed the Linkerd control plane.

Cluster administrator
We need to create the necessary objects that require the cluster-admin role. Let's see how
to do this:

To create objects that require the cluster-admin role, run the following1.
command:

$ linkerd install config | kubectl apply -f -

These objects include ClusterRole, ClusterRoleBinding,
CustomResourceDefinition, MutatingWebhookConfiguration, Secret,
ServiceAccount, and so on.

To validate the objects, run the following command:2.

$ linkerd check config

Now that the necessary objects have been created, we can install the control plane.

Application administrator
The application administrator, who doesn't have the cluster-admin role available, can
install a control plane after the necessary objects requiring cluster-admin in the previous
steps have been created. Let's take a look:

To install the control plane, run the following command:1.

$ linkerd install control-plane | kubectl apply -f -

The preceding command will install Linkerd control plane objects such as
ConfigMap, Deployment, Secret, Service, and so on using the less privileged
account credentials.

To validate the installation of control-plane, run the following command:2.

$ linkerd check

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[393]

This overview was done to provide reasoning for using cluster-role and other user-
based roles. Next, we'll explain the steps for setting up the Ingress controller, which is
required to enable Linkerd dashboard access from outside the Kubernetes cluster.

Ingress gateway
Linkerd relies on the Ingress controller through your Kubernetes provider. In our case, we
are using the bare-minimum Kubernetes cluster to keep resource consumption at a
minimum so that we can perform the hands-on exercises. Let's get started:

Now, we can install the nginx Ingress controller in our cluster using Helm chart1.
at https:/ /github. com/ nginxinc/ kubernetes- ingress/ tree/ v1. 5.3/
deployments/ helm- chart:

$ helm repo add nginx-stable https://helm.nginx.com/stable
"nginx-stable" has been added to your repositories

$ helm repo update

$ helm install nginx-stable/nginx-ingress --name nginx --namespace
kube-system \
--set fullnameOverride=nginx \
--set controller.name=nginx-controller \
--set controller.config.name=nginx-config \
--set controller.service.name=nginx-controller \
--set controller.serviceAccount.name=nginx
<<removed>>
NOTES:
The NGINX Ingress Controller has been installed.

 This step will not be necessary if you are using a managed Kubernetes
service from a cloud provider.

Check the Ingress controller service:2.

$ kubectl -n kube-system get services -o wide -l
app.kubernetes.io/instance=nginx
NAME TYPE CLUSTER-IP EXTERNAL-IP ---
nginx-controller LoadBalancer 10.97.158.221 192.168.142.249 ---

--- PORT(S) AGE SELECTOR
--- 80:32383/TCP,443:31466/TCP 3m9s app=nginx-controller

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart
https://github.com/nginxinc/kubernetes-ingress/tree/v1.5.3/deployments/helm-chart

Installing Linkerd Chapter 15

[394]

Note that the external IP address is assigned to nginx-controller from the
running keepalived load balancer. If there is no load balancer, the external IP
will show as pending.

We create an Ingress to access the Linkerd dashboard from outside. In real
situations, we would use an external load balancer, through which we can use an
external hostname to access the Linkerd dashboard microservice running in the
Kubernetes cluster.

To simulate a real domain name, we create a hostname
called dashboard.linkerd.local in our VM's /etc/hosts file, pretending
that this is an actual hostname with an external IP address that terminates at the
Ingress gateway.

Create an entry in /etc/hosts for the following host:3.

$ export INGRESS_HOST=$(kubectl -n kube-system get service nginx-
controller -o jsonpath='{.status.loadBalancer.ingress..ip}') ; echo
$INGRESS_HOST
192.168.142.249

$ sudo sed -i '/dashboard.linkerd.local/d' /etc/hosts

$ echo "$INGRESS_HOST dashboard.linkerd.local" | sudo tee -a
/etc/hosts

Define an Ingress rule to route traffic from dashboard.linkerd.local to4.
Linkerd's internal dashboard service, called linkerd-web, at port 8084:

Script : 01-create-linkerd-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: linkerd
 annotations:
 nginx.org/websocket-services: "linkerd-web"
 ingress.kubernetes.io/rewrite-target: /
 nginx.ingress.kubernetes.io/configuration-snippet: |
 proxy_set_header l5d-dst-override
$service_name.$namespace.svc.cluster.local:80;
 proxy_hide_header l5d-remote-ip;
 proxy_hide_header l5d-server-id;
spec:
 rules:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[395]

 - host: dashboard.linkerd.local
 http:
 paths:
 - backend:
 serviceName: linkerd-web
 servicePort: 8084
 path: /

We used specific annotations while defining the Ingress rule. We
set the proxy_set_header annotation for Linkerd traffic management. If the
microservice is using a web socket, as is the case with dashboard and booksapp,
we need to set the nginx.org/websocket-services annotation so that it's
pointing to the service name.

Now, we can create the Ingress rule:5.

$ kubectl -n linkerd apply -f 01-create-linkerd-ingress.yaml
ingress.extensions/linkerd created

After creating the Ingress controller, it's time to gain some hands-on experience using the
Linkerd dashboard.

Accessing the Linkerd dashboard
There are multiple ways to access the management UI. The preferred method is to use the
Linkerd dashboard. This will open a tunnel between the localhost and the Kubernetes
cluster. You can access the Linkerd dashboard using a port. Let's take a look:

Access the dashboard by running the following command:1.

$ linkerd dashboard
Linkerd dashboard available at:
http://localhost:50750
Grafana dashboard available at:
http://localhost:50750/grafana
Opening Linkerd dashboard in the default browser
START /usr/bin/google-chrome-stable "http://localhost:50750"

Visit http://localhost:50750 in your browser to view the dashboard

The Linkerd dashboard will open in the browser using
http://localhost:50750. We will learn how to access this dashboard later.
Now, press Ctrl+ C to stop this proxy.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[396]

Check if the Ingress is working:2.

$ curl -s -H "Host: dashboard.linkerd.local" http://$INGRESS_HOST |
grep -i title
 <title>Linkerd</title>

You can access http://dashboard.linkerd.local from your localhost
machine (outside of a VM) if you create an entry in your
Windows/MacBook hosts file as you did in the VM.

Launch the Linkerd dashboard. Open3.
http://dashboard.linkerd.local from your local browser or a browser in
the VM:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[397]

Now, let's explore microservices by using the Linkerd dashboard. We will do this to explain
the various capabilities of Linkerd's service mesh.

Deploying the Linkerd demo emoji app
Linkerd provides a demo emojivoto application that can be used to explore the
capabilities of Linkerd. This app is installed in the emojivoto namespace. We will grant
the cluster_admin role to it, like so:

$ kubectl create clusterrolebinding emojivoto-cluster-role-binding \
--clusterrole=cluster-admin --group=system:serviceaccounts:emojivoto
clusterrolebinding.rbac.authorization.k8s.io/emojivoto-cluster-role-binding
created

In the following subsection, we will install this demo emojivoto application.

Installing a demo application
To install the demo emojivoto application, follow these steps:

Deploy the emojivoto application through its YAML file:1.

$ curl -Ls https://run.linkerd.io/emojivoto.yml | kubectl apply -f -

Check the application's status:2.

$ kubectl -n emojivoto get deployments,services,pods
NAME READY UP-TO-DATE AVAILABLE AGE ---
emoji 1/1 1 1 64s ---
vote-bot 1/1 1 1 63s ---
voting 1/1 1 1 64s ---
web 1/1 1 1 64s ---

NAME TYPE CLUSTER-IP EXTERNAL-IP ---
emoji-svc ClusterIP None <none> ---
voting-svc ClusterIP None <none> ---
web-svc LoadBalancer 10.109.50.125 192.168.142.251 ---

--- PORT(S) AGE
--- 8080/TCP 64s
--- 8080/TCP 64s
--- 80:30593/TCP 63s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[398]

NAME READY STATUS RESTARTS AGE
emoji-58c9579849-ql2z9 1/1 Running 0 64s
vote-bot-774764fd7f-rcd47 1/1 Running 0 63s
voting-66d5cdc46d-mrmb7 1/1 Running 0 64s
web-7f8455487f-p8tvf 1/1 Running 0 64s

The emojivoto app web UI can be accessed in multiple ways. We will create a
hostname and an Ingress rule to route the traffic.

Create the emojivoto.linked.local entry in /etc/hosts:3.

$ export INGRESS_HOST=$(kubectl -n kube-system get service nginx-
controller -o jsonpath='{.status.loadBalancer.ingress..ip}') ; echo
$INGRESS_HOST
192.168.142.249

$ sudo sed -i '/emojivoto.linkerd.local/d' /etc/hosts

$ echo "$INGRESS_HOST emojivoto.linkerd.local" | sudo tee -a
/etc/hosts

Define the emojivoto Ingress routing rule to route traffic from4.
the emojivoto.linkerd.local external host to the web-svc internal
microservice at port 80:

Script : 02-create-emojivoto-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: emojivoto
 annotations:
 nginx.org/websocket-services: "web-svc"
 ingress.kubernetes.io/rewrite-target: /
 nginx.ingress.kubernetes.io/configuration-snippet: |
 proxy_set_header l5d-dst-override
$service_name.$namespace.svc.cluster.local:80;
 proxy_hide_header l5d-remote-ip;
 proxy_hide_header l5d-server-id;
spec:
 rules:
 - host: emojivoto.linkerd.local
 http:
 paths:
 - backend:
 serviceName: web-svc
 servicePort: 80

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[399]

 path: /

You can access http://emojivoto.linkerd.local from your localhost
virtual machine. To access emojivoto from your local browser, create an
entry in your Windows/MacBook hosts file.

Create an emojivoto Ingress rule:5.

$ kubectl -n emojivoto apply -f 02-create-emojivoto-ingress.yaml
ingress.extensions/emojivoto created

You can check Ingress access through using the curl -s -H "Host:
emojivoto.linkerd.local" http://$INGRESS_HOST | grep -i title

command.

Access the emojivoto web UI by6.
launching http://emojivoto.linkerd.local from your browser in the VM:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[400]

Explore the app by clicking on an emoji. By doing this, you will vote for it. If you
click on the doughnut emoji (third on the top row), you will get a 404 error. This
is intentional and will cause the success rate to be less than 100%. We will refer to
this error again in next chapter, when we deal with Linkerd's reliability features.

Now let's inject the Linkerd sidecar proxy into the emoji application:7.

$ kubectl get -n emojivoto deploy -o yaml | linkerd inject - |
kubectl apply -f -
deployment "emoji" injected
deployment "vote-bot" injected
deployment "voting" injected
deployment "web" injected

deployment.extensions/emoji configured
deployment.extensions/vote-bot configured
deployment.extensions/voting configured
deployment.extensions/web configured

Using the preceding command, we generate the emojivoto application
deployment artifacts and pipe them through linkerd inject to generate a
Linkerd sidecar proxy for each pod. The complete YAML is then fed to the
kubectl apply command.

Now, let's check the deployment, services, and pods. Run the following8.
command to check the deployments:

$ kubectl -n emojivoto get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
emoji 1 1 1 64s
vote-bot 1 1 1 63s
voting 1 1 1 64s
web 1 1 1 64s

Next, we will check the pods:9.

$ kubectl -n emojivoto get pods
NAME READY STATUS RESTARTS AGE
emoji-58c9579849-ql2z9 2/2 Running 0 64s
vote-bot-774764fd7f-rcd47 2/2 Running 0 63s
voting-66d5cdc46d-mrmb7 2/2 Running 0 64s
web-7f8455487f-p8tvf 2/2 Running 0 64s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[401]

Finally, we will check the services:10.

$ kubectl -n emojivoto get services
NAME TYPE CLUSTER-IP EXTERNAL-IP ---
emoji-svc ClusterIP None <none> ---
voting-svc ClusterIP None <none> ---
web-svc LoadBalancer 10.0.0.132 192.168.142.251 ---

--- PORT(S) AGE
--- 8080/TCP 64s
--- 8080/TCP 64s
--- 80:31443/TCP 63s

Notice the difference between the previous deployment and the sidecar proxies. Each pod
has an additional container, which is a Linkerd proxy.

Now, let's deploy the booksapp application to explore the features of Linkerd's service
mesh.

Deploying the booksapp application
Buoyant maintains the booksapp microservice application for the Linkerd open source
project. We will be using this application to show service mesh features such as debugging,
observability, and monitoring, which are provided by Linkerd. This application is
maintained at https:/ /github. com/ BuoyantIO/ booksapp.

This application is comprised of four microservices:

A Go program that's used to generate traffic
The main web application – webapp.rb
Authors – authors.rb
Books – books.rb

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp
https://github.com/BuoyantIO/booksapp

Installing Linkerd Chapter 15

[402]

These can be seen in the following diagram:

In the previous step, we injected Linkerd sidecar proxies into all the pods for an already
deployed emojivoto application. Now, we'll deploy a new booksapp app in
the linkerd-lab namespace and enable auto-injection for the Linkerd sidecar proxy. Let's
get started:

The admission webhook is enabled automatically when we install a Linkerd1.
control plane:

$ kubectl -n linkerd get deploy -l linkerd.io/control-plane-
component=proxy-injector
NAME READY UP-TO-DATE AVAILABLE AGE
linkerd-proxy-injector 1/1 1 1 110m

When linkerd-proxy-injector is running, do the following to ensure that2.
injecting the Linkerd sidecar is automatic:

Annotate the namespace with linkerd.io/inject:
enabled. Any pod that is created in the namespace will have the
sidecar proxy injected automatically.
If a namespace is not annotated or annotated
as linkerd.io/inject: disabled, annotate a pod's
deployment specification with linkerd.io/inject:
enabled. The sidecar proxy will be injected automatically for the
pods that have been deployed.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[403]

If a namespace is annotated with linkerd.io/inject:
enabled and the pod's deployed annotation
is linkerd.io/inject: disabled, the sidecar proxy will not be
injected.

Grant the cluster-admin role to the linkerd-lab namespace:3.

$ kubectl create clusterrolebinding linkerd-lab-cluster-role-
binding \
--clusterrole=cluster-admin --serviceaccount=linkerd:default
clusterrolebinding.rbac.authorization.k8s.io/linkerd-lab-cluster-
role-binding created

Define the linkerd-lab namespace with the linkerd.io/inject:4.
enabled annotation:

Script : 03-create-namespace-sidecar-enabled-annotation.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: linkerd-lab
 annotations:
 linkerd.io/inject: enabled

Create a namespace called linkerd-lab:5.

$ kubectl apply -f 03-create-namespace-sidecar-enabled-
annotation.yaml
namespace/linkerd-lab created

Install the booksapp microservice application from linkerd.io:6.

$ curl -Ls https://run.linkerd.io/booksapp.yml | kubectl -n
linkerd-lab apply -f -
service/webapp created
deployment.extensions/webapp created
service/authors created
deployment.extensions/authors created
service/books created
deployment.extensions/books created
deployment.extensions/traffic created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[404]

Check the network services:7.

$ kubectl -n linkerd-lab get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
authors ClusterIP None <none> 7001/TCP 10s
books ClusterIP None <none> 7002/TCP 10s
webapp LoadBalancer 10.98.66.99 192.168.142.251 7000:31004/TCP 10s

The load balancer web app is running on internal port 7000. You may have
noticed that the external IP is fetched from keepalived, which we used in the
Istio section of this book. The external IP address may be different in your case.

The application can be accessed using a local service name and a port; for
example, open http://webapp.linkerd-
lab.svc.cluster.local:7000 from inside the VM:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[405]

Let's check the current pod's status in the linkerd-lab namespace.

Check the pod status of booksapp:8.

$ kubectl -n linkerd-lab get pods
NAME READY STATUS RESTARTS AGE
authors-84d65d4fb-5ppg6 2/2 Running 0 5m14s
books-5fbfb54988-844xg 2/2 Running 0 5m14s
traffic-66c7b9c4cc-cj7dn 2/2 Running 0 5m14s
webapp-579bfc8b44-6mmg7 2/2 Running 0 5m14s
webapp-579bfc8b44-b2m2p 2/2 Running 0 5m14s
webapp-579bfc8b44-fwjlx 2/2 Running 0 5m14s

Each pod has two containers, and one of them is the injected Linkerd sidecar
proxy.

Describe one of the aforementioned pods to see its contents:9.

$ kubectl -n linkerd-lab describe pod -l app=authors
Name: authors-84d65d4fb-5ppg6
Namespace: linkerd-lab
...
IP: 192.168.230.232
Controlled By: ReplicaSet/authors-84d65d4fb
Init Containers:
 linkerd-init:
 ...
 Image: gcr.io/linkerd-io/proxy-init:v1.0.0
 ...
Containers:
 service:
 ...
 Image: buoyantio/booksapp:v0.0.3
 ...
 linkerd-proxy:
 Container ID:
docker://141f297daf74391099e6abcf0f275f5aa648e47ed53ab5d6817f64f3d9
62536d
 Image: gcr.io/linkerd-io/proxy:stable-2.6.0
 ...

Note that the linkerd-init container sets the routing rules so that the inbound
and outbound traffic is routed through the Linkerd proxy to the microservice:

Events:
 Type Reason Age From ---
 ---- ------ ---- ---- ---
 Normal Scheduled 7m14s default-scheduler ---

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[406]

 Normal Started 7m8s kubelet, osc01.servicemesh.local ---
 Normal Started 6m31s kubelet, osc01.servicemesh.local ---
 Normal Started 6m30s kubelet, osc01.servicemesh.local ---

--- Message
--- -------
--- Successfully assigned linkerd-lab/authors-84d65d4fb-jcpt6 to
 osc01.servicemesh.local
--- Started container linkerd-init
--- Started container service
--- Started container linkerd-proxy

The linkerd-proxy container was injected previously, and the events related to
the pod show that the linkerd-init, service, and linkerd-proxy containers
were started for the authors pod.

The booksapp web UI can be accessed in multiple ways. We will create a
hostname and an Ingress rule to route the traffic.

Create the booksapp.linked.local entry in /etc/hosts:10.

$ sudo sed -i '/booksapp.linkerd.local/d' /etc/hosts

$ echo "$INGRESS_HOST booksapp.linkerd.local" | sudo tee -a /etc/hosts

You can access http://booksapp.linkerd.local from your localhost
machine (outside of the VM) if you create an entry in your
Windows/MacBook hosts file as you did in the VM.

Define the booksapp Ingress routing rule:11.

Script : 04-create-booksapp-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: booksapp
 annotations:
 nginx.org/websocket-services: "webapp"
 ingress.kubernetes.io/rewrite-target: /
 nginx.ingress.kubernetes.io/configuration-snippet: |
 proxy_set_header l5d-dst-override
$service_name.$namespace.svc.cluster.local:7000;
 proxy_hide_header l5d-remote-ip;
 proxy_hide_header l5d-server-id;
spec:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[407]

 rules:
 - host: booksapp.linkerd.local
 http:
 paths:
 - backend:
 serviceName: webapp
 servicePort: 7000
 path: /

Create the booksapp Ingress rule:12.

$ kubectl -n linkerd-lab apply -f 04-create-booksapp-ingress.yaml
ingress.extensions/booksapp created

You can check Ingress access through the curl -s -H "Host:
booksapp.linkerd.local" http://$INGRESS_HOST | grep -i /title

command.

Access the booksapp web UI by13.
opening http://booksapp.linkerd.local from your local browser or a
browser in the VM:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[408]

This is how Linkerd allows access to microservices through an Ingress controller. It is easy
to define these rules through YAML deployment, as long as a service name and ports have
been defined.

Summary
In this chapter, we looked at Linkerd, which provides a very smooth and easy install
process. Linkerd is an attractive option in certain environments as a service mesh. Linkerd
provides the Linkerd CLI, which runs on either Linux, Windows, or MacBook to offer an
easy way for us to install its control plane if we only have kubectl access to the remote
Kubernetes cluster.

Automatic sidecar injection through the admission webhook controller allows us to easily
place all the already deployed applications into a service mesh data plane. The web
dashboard of Linkerd provides instant insights into the control and data planes. Linkerd
relies upon an external Ingress gateway.

In the next chapter, we will explore the traffic management capabilities of Linkerd. In the
vocabulary of Linkerd, traffic management is termed reliability.

Questions
You can only install the Linkerd control plane through SSH to the master node of1.
the Kubernetes cluster.

A) True
B) False

You need a cluster-admin role to install a control plane configuration.2.

A) True
B) False

You need a cluster-admin role to install the Linkerd control plane.3.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Linkerd Chapter 15

[409]

Linkerd allows us to automatically inject sidecars if we label our namespace with4.
linkerd.io/inject: enabled.

A) True
B) False

If we want to exclude a pod so that it gets its own sidecar proxy, we can label the5.
pod with linkerd.io/inject: disabled.

A) True
B) False

Further reading
Getting Started, Linkerd, available at https:/ /linkerd. io/ 2/getting- started/ ,
accessed 5 May 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/
https://linkerd.io/2/getting-started/

16
Exploring the Reliability

Features of Linkerd
In this chapter, we will go through Linkerd's reliability features, such as automatic load
balancing through dynamic requests routing, service profiles, retries, timeouts, and
proactive error code hunting.

This chapter will explain the traffic management capabilities of a service mesh.
Understanding this framework is necessary if you want to use networking resources that
coordinate, restrict, and scale traffic throughout microservices.

We will be covering the following topics in this chapter:

Load balancing traffic between services in the booksapp application
Understanding and creating service profiles
Routing traffic between the booksapp application for a newly created service
profile
Deploying service profiles for the booksapp application using Swagger specs
Understanding aggregated routing for the booksapp application
Enabling retries, retry budgets, and timeouts
Troubleshooting the error code in the emojivoto application

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[411]

Technical requirements
This chapter is dependent on Chapter 15, Installing Linkerd. You will need to complete the
hands-on exercises of Chapter 15, Installing Linkerd, that deal with the following, in order
to work through this chapter:

Setting up Linkerd
Installing a control plane
Deploying the booksapp and emojivoto applications

Make sure that you are in the ~/linkerd/scripts directory for the exercises in this
chapter:

$ cd ~/linkerd/scripts

Now, we're ready to begin!

Overview of the reliability of Linkerd
Reliability is a critical quality of any enterprise application. It is even more significant if the
application is deployed in an ever-changing environment that meets business requirements
through software innovation. Ibryam defines this concept as follows:

Fragile: The system is unable to survive under stress.
Robust: The system withstands stress to an extent, and then it breaks.
Resilient: The system adapts to stress and failures before it reaches the breaking
point.
Anti-fragile: It feeds on stress and change and so it's much harder to create.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[412]

This is better understood with the help of the following diagram:

In parallel to reliability, a service mesh provides a resilient system through continuous
improvement from sidecar proxies.

The use of specialized libraries such as Twitter's Finagle and Netflix's Hystrix help us build
robust applications, but these libraries are language-specific. In a distributed computing
environment, such as Kubernetes, such libraries evolved into language-
agnostic implementations, for example, Linkerd or Envoy proxies.

To recap, the two most popular sidecar proxies that we have been discussing throughout
this book are Envoy and Linkerd. An important purpose of a sidecar proxy is to provide
application resiliency through load balancing, circuit breaking, outlier detection, and so on.

Let's begin by understanding Linkerd's load balancing features.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[413]

Configuring load balancing
We explained load balancing in Chapter 7, Understanding the Istio Service Mesh. Linkerd
uses a smart load balancing mechanism, which is described by William Morgan as follows:

"Linkerd uses an exponentially weighted moving average of response latencies to send
requests to the fastest pods automatically. If one pod slows down, even momentarily,
Linkerd will shift traffic away from it. This intelligent load balancing can reduce end-to-
end tail latencies."

Let's explore how load balancing is configured for the emojivoto application:

Validate the emojivoto microservice and the availability of its pods:1.

$ kubectl get pods -n emojivoto
NAME READY STATUS RESTARTS AGE
emoji-697b575bd9-6487c 2/2 Running 0 29m
vote-bot-7bd97dfbdc-f8hfv 2/2 Running 0 29m
voting-6b4bf7494b-pxk5k 2/2 Running 0 29m
web-559684dbc5-9pmdf 2/2 Running 0 29m

Scale the voting and web deployments from 1 to 2 replicas. We can scale to any2.
number, as long as enough CPU and memory is available:

$ kubectl -n emojivoto scale deploy voting --replicas=2
deployment.extensions/voting scaled

$ kubectl -n emojivoto scale deploy web --replicas=2
deployment.extensions/web scaled

To recap, the emojivoto application has an emoji-bot that continuously sends
traffic to the application. The doughnut emoji has a built-in HTTP 404
error. The emoji-bot sends 15% of its traffic to this emoji, and it picks up other
emojis at random. Later in this chapter, we will debug and determine the root
cause of this issue.

Now, let's check the stats of deployment using the linkerd CLI:3.

$ linkerd -n emojivoto stat deployments
NAME MESHED SUCCESS RPS LATENCY_P50 ---
emoji 1/1 100.00% 2.0rps 1ms ---
vote-bot 1/1 - - - ---
voting 2/2 91.67% 1.0rps 1ms ---
web 2/2 95.76% 2.0rps 4ms ---

--- LATENCY_P95 LATENCY_P99 TCP_CONN

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[414]

--- 2ms 2ms 3
--- - - -
--- 1ms 1ms 6
--- 10ms 18ms 4

Notice the success rate, requests rate per second (rps), and latency distribution
percentile, as this is the aggregated information for deployment as a whole. The
aggregated metrics are the values that Linkerd provides.

Check the aggregated information at the pod level for the web and voting pods:4.

$ linkerd -n emojivoto stat pods
NAME STATUS MESHED SUCCESS RPS ---
emoji-697b575bd9-6487c Running 1/1 100.00% 2.0rps ---
vote-bot-7bd97dfbdc-f8hfv Running 1/1 - - ---
voting-6b4bf7494b-8znt2 Running 1/1 64.29% 0.5rps ---
voting-6b4bf7494b-pxk5k Running 1/1 81.25% 0.5rps ---
web-559684dbc5-9pmdf Running 1/1 84.13% 1.1rps ---
web-559684dbc5-l64dd Running 1/1 90.91% 0.9rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99 TCP_CONN
--- 1ms 1ms 1ms 3
--- - - - -
--- 1ms 1ms 1ms 3
--- 1ms 2ms 2ms 3
--- 7ms 17ms 19ms 2
--- 3ms 13ms 19ms 2

Browse to http://dashboard.linkerd.local in your VM.5.
Navigate to Resources | Pods | All. On the main console page, you will see6.
HTTP metrics and TCP metrics.
Filter the HTTP metrics by clicking the three vertical bars on the top right corner7.
and typing emojivoto.
Repeat the same for TCP metrics.8.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[415]

Initially, you may only see traffic on one web service, but if you wait for a few seconds, the
traffic will balance automatically:

Notice that we didn't make any configuration changes to accomplish load balancing. This
capability is offered out of the box.

Linkerd provides a mechanism for aggregating metrics through a service profile. This helps
in obtaining better traffic assessments across services. We'll explore this further in the next
section.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[416]

Setting up a service profile
A service profile in Linkerd is a way to aggregate information about routes. It collects route
metrics for different dimensions, such as the success rate, the response latency for a
designated source, and destination services. The service profile works off the host headers
of the HTTP protocol. Linkerd's :authority refers to HTTP/2 headers, which is equivalent
to HTTP/1.x's Host header. Let's create a service profile for the booksapp application we
looked at in Chapter 15, Installing Linkerd.

booksapp is the demo application from Buoyant.io – the company behind Linkerd. This
application consists of three microservices: webapp, authors, and books. The
microservices are written in Ruby, and they use JSON over HTTP to communicate with
other services.

Take the following example of the linkerd top command, which is a simple monitoring
utility of Linkerd. It shows the metrics from the traffic to the webapp microservice in
the linkerd-lab namespace:

$ linkerd top deployment/traffic --namespace linkerd-lab \
--to deployment/webapp --to-namespace linkerd-lab --path /books --hide-
sources
(press q to quit)
Destination Method Path Count Best Worst ---
webapp-57944-b2m2p POST /books 12 13ms 48ms ---
webapp-57944-6mmg7 POST /books 12 14ms 55ms ---
webapp-57944-fwjlx POST /books 9 12ms 51ms ---
webapp-57944-6mmg7 POST /books/82489/edit 2 59ms 63ms ---
webapp-57944-6mmg7 GET /books/82472 1 15ms 15ms ---
webapp-57944-6mmg7 GET /books/82473 1 15ms 15ms ---
webapp-57944-b2m2p POST /books/82473/edit 1 57ms 57ms ---

--- Last Success Rate
--- 20ms 58.33%
--- 15ms 58.33%
--- 51ms 55.56%
--- 63ms 50.00%
--- 15ms 100.00%
--- 15ms 100.00%
--- 57ms 0.00%
...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[417]

Notice that each /books path is unique and shows the top reports metrics for every unique
path. Lots of these paths may overwhelm Prometheus since each path will be a separate
time series. The unique path problem arises due to the parameters that are passed to the
route.

It would be nice if metrics were reported on an aggregated path rather than similar-looking
unique paths. Linkerd can aggregate metrics through service profiles. Implementing service
profiles using a Kubernetes's Custom Resource Definition can be done in Linkerd's control
plane namespace.

We can use a service profile to define a list of routes for a service. Here, we can use
a regular expression for unique paths. These can be defined to aggregate metrics.

Through the service profile, it is possible for users to do the following:

Define the paths that should be aggregated
Aggregate paths to limit time series data for Prometheus
Query Prometheus's backend for historical data

Now, let's set up a service profile:

First, validate if a service profile CRD has been deployed:1.

$ kubectl -n linkerd-lab get crd | grep -i linkerd
serviceprofiles.linkerd.io 2019-08-28T01:31:15Z

Let's look at the booksapp service:2.

$ kubectl -n linkerd-lab get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
authors ClusterIP None <none> 7001/TCP 51d
books ClusterIP None <none> 7002/TCP 51d
webapp LoadBalancer 10.0.0.129 192.168.142.249 7000:30604/TCP 51d

Let's look at the routes that Linkerd discovered:3.

$ linkerd -n linkerd-lab routes services
==> service/authors <==
ROUTE SERVICE SUCCESS RPS LATENCY_P50 LATENCY_P95 ---
[DEFAULT] authors 74.19% 6.7rps 5ms 26ms ---

--- LATENCY_P99
--- 29ms

==> service/books <==
ROUTE SERVICE SUCCESS RPS LATENCY_P50 LATENCY_P95 ---

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[418]

[DEFAULT] books 78.38% 8.2rps 10ms 77ms ---

--- LATENCY_P99
--- 95ms

==> service/webapp <==
ROUTE SERVICE SUCCESS RPS LATENCY_P50 LATENCY_P95 ---
[DEFAULT] webapp 76.16% 7.2rps 26ms 83ms ---

--- LATENCY_P99
--- 97ms

Here, you can see the aggregated live traffic that was reported at the route level
for every service within booksapp.

Next, create a service profile template using the linkerd profile command:4.

$ linkerd profile --template webapp -n linkerd-lab > webapp.yaml

Edit the generated template so that it looks like this:5.

Script : 05-create-service-profile-web.yaml

apiVersion: linkerd.io/v1alpha1
kind: ServiceProfile
metadata:
 name: webapp.linkerd-lab.svc.cluster.local
spec:
 routes:
 - name: '/books'
 condition:
 pathRegex: '/books'
 method: POST
 - name: '/books/{id}'
 condition:
 pathRegex: '/books/\d+'
 method: GET

The preceding webapp service profile defines two routes that the webapp service
responds to: /books and /books<id>.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[419]

Deploy the preceding service profile for the webapp service:6.

$ kubectl -n linkerd-lab apply -f 05-create-service-profile-
web.yaml
serviceprofile.linkerd.io/webapp.linkerd-lab.svc.cluster.local
created

Next, let's see if the linkerd route command picks up the new additional7.
routes:

$ linkerd -n linkerd-lab routes services/webapp
ROUTE SERVICE SUCCESS RPS LATENCY_P50 ---
/books webapp 40.67% 2.5rps 24ms ---
/books/{id} webapp 100.00% 1.1rps 25ms ---
[DEFAULT] webapp 88.89% 4.7rps 28ms ---

--- LATENCY_P95 LATENCY_P99
--- 46ms 86ms
--- 30ms 30ms
--- 108ms 182ms

Notice the two additional routes that give a further breakdown of traffic for
/books and /books/{id}.

A service profile can also be set up if Swagger specification for the service is
available.

The Swagger specs for all three microservices are available at:

https:/ /run. linkerd. io/ booksapp/ webapp. swagger
https:/ /run. linkerd. io/ booksapp/ authors. swagger

https:/ /run. linkerd. io/ booksapp/ books. swagger

Optional: Use the following linkerd profile commands to see the generated
profile across all three services:

$ linkerd -n linkerd-lab profile --open-api webapp.swagger webapp

$ linkerd -n linkerd-lab profile --open-api authors.swagger authors

$ linkerd -n linkerd-lab profile --open-api books.swagger books

The output from the preceding code can be saved in a file, and custom edits can
be made before creating a custom resource definition.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/webapp.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/authors.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger
https://run.linkerd.io/booksapp/books.swagger

Exploring the Reliability Features of Linkerd Chapter 16

[420]

Next, let's create Linkerd Kubernetes primitive service profiles for8.
the webapp, books, and authors microservices using the Swagger specs:

$ linkerd -n linkerd-lab profile --open-api webapp.swagger webapp |
kubectl -n linkerd-lab apply -f -
serviceprofile.linkerd.io/webapp.linkerd-lab.svc.cluster.local
created

$ linkerd -n linkerd-lab profile --open-api books.swagger books|
kubectl -n linkerd-lab apply -f -
serviceprofile.linkerd.io/books.linkerd-lab.svc.cluster.local
created

$ linkerd -n linkerd-lab profile --open-api authors.swagger authors
| kubectl -n linkerd-lab apply -f -
serviceprofile.linkerd.io/authors.linkerd-lab.svc.cluster.local
created

Check out the service profile definition that was created in the linkerd-lab9.
namespace:

$ kubectl -n linkerd-lab get serviceprofile
NAME AGE
authors.linkerd-lab.svc.cluster.local 3m57s
books.linkerd-lab.svc.cluster.local 4m2s
webapp.linkerd-lab.svc.cluster.local 6m24s

Let's check the per route metrics that were accumulated from the webapp service:10.

$ linkerd -n linkerd-lab routes deploy/webapp
ROUTE SERVICE SUCCESS RPS ---
GET / webapp 100.00% 0.5rps ---
GET /authors/{id} webapp 100.00% 0.5rps ---
GET /books/{id} webapp 100.00% 1.0rps ---
POST /authors webapp 100.00% 0.5rps ---
POST /authors/{id}/delete webapp 100.00% 0.5rps ---
POST /authors/{id}/edit webapp 0.00% 0.0rps ---
POST /books webapp 49.18% 2.0rps ---
POST /books/{id}/delete webapp 100.00% 0.5rps ---
POST /books/{id}/edit webapp 41.89% 1.2rps ---
[DEFAULT] webapp 0.00% 0.0rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99
--- 38ms 49ms 50ms
--- 30ms 47ms 49ms
--- 25ms 39ms 40ms
--- 22ms 29ms 30ms
--- 35ms 93ms 99ms

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[421]

--- 0ms 0ms 0ms
--- 31ms 46ms 49ms
--- 15ms 29ms 30ms
--- 80ms 170ms 194ms
--- 0ms 0ms 0ms

Let's check the per route metrics that were accumulated from11.
the authors service:

$ linkerd -n linkerd-lab routes deploy/authors
ROUTE SERVICE SUCCESS RPS ---
DELETE /authors/{id}.json authors 100.00% 0.5rps ---
GET /authors.json authors 100.00% 0.5rps ---
GET /authors/{id}.json authors 100.00% 1.6rps ---
HEAD /authors/{id}.json authors 43.78% 3.6rps ---
POST /authors.json authors 100.00% 0.5rps ---
[DEFAULT] authors 0.00% 0.0rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99
--- 18ms 29ms 30ms
--- 7ms 10ms 10ms
--- 4ms 13ms 19ms
--- 3ms 9ms 16ms
--- 8ms 37ms 40ms
--- 0ms 0ms 0ms

The preceding routes show aggregated metrics corresponding to requests for
different author IDs.

The following example shows traffic aggregation from the webapp service to the12.
authors service. Notice that there are no instrumented errors embedded in the
authors service. Here, we can see a 100% success rate:

$ linkerd -n linkerd-lab routes deploy/webapp --to svc/authors
ROUTE SERVICE SUCCESS RPS ---
DELETE /authors/{id}.json authors 100.00% 0.5rps ---
GET /authors.json authors 100.00% 0.5rps ---
GET /authors/{id}.json authors 100.00% 1.6rps ---
HEAD /authors/{id}.json authors 0.00% 0.0rps ---
POST /authors.json authors 100.00% 0.5rps ---
[DEFAULT] authors 0.00% 0.0rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99
--- 25ms 37ms 39ms
--- 9ms 19ms 20ms
--- 4ms 9ms 10ms
--- 0ms 0ms 0ms

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[422]

--- 12ms 19ms 20ms
--- 0ms 0ms 0ms

The following example shows traffic from webapp to books. The books service13.
has an instrumented error, and the following code shows a POST/PUT success
rate of less than 100%:

$ linkerd -n linkerd-lab routes deploy/webapp --to svc/books
ROUTE SERVICE SUCCESS RPS ---
DELETE /books/{id}.json books 100.00% 0.5rps ---
GET /books.json books 100.00% 1.1rps ---
GET /books/{id}.json books 100.00% 2.2rps ---
POST /books.json books 47.14% 2.3rps ---
PUT /books/{id}.json books 43.66% 1.2rps ---
[DEFAULT] books 0.00% 0.0rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99
--- 8ms 17ms 19ms
--- 5ms 18ms 20ms
--- 5ms 18ms 20ms
--- 16ms 30ms 38ms
--- 67ms 97ms 99ms
--- 0ms 0ms 0ms

A service profile is a nice way to get aggregated metrics per route, using regex when
parameters are used, and report on success rates and different ranges for latency. These
metrics provide immediate insight into performance bottlenecks and bugs. This is a great
help to product development in terms of delivering resilient and performant systems. In
comparison to Istio, this is a useful feature that's unique to Linkerd.

Next, we will explore traffic retries, budgets for the booksapp microservice, and how such
enabled metrics are aggregated.

Retrying failed transactions
As we explained in Chapter 14, Understanding the Linkerd Service Mesh, a blind retry on
failed transactions can lead to retry storms. At the time of writing, Linkerd attempts to
address this issue by introducing the retry and retry budget configurations.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[423]

Before we attempt to retry the failed transactions, it is important to decide and know which
request should be re-tried and how many times. To do this, follow these steps:

Run the linkerd routes from books to authors and view the metrics:1.

$ linkerd -n linkerd-lab routes deploy/books --to svc/authors
ROUTE SERVICE SUCCESS RPS ---
DELETE /authors/{id}.json authors 0.00% 0.0rps ---
GET /authors.json authors 0.00% 0.0rps ---
GET /authors/{id}.json authors 0.00% 0.0rps ---
HEAD /authors/{id}.json authors 53.77% 3.3rps ---
POST /authors.json authors 0.00% 0.0rps ---
[DEFAULT] authors 0.00% 0.0rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms
--- 5ms 10ms 17ms
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms

Notice that all the requests from books to authors are to the HEAD
/authors/{id}.json route. Here, we can see that 50% of the requests are failing
(which is intentional application design). Notice the latency for the HEAD route.
We can expect it to increase if a retry is enforced.

Let's edit the authors service profile to add isRetryable: true for the HEAD
/authors/{id}.json route.

The simplest way to do this is to run kubectl -n linkerd-lab edit2.
sp authors.linkerd-lab.svc.cluster.local and add a line for the HEAD
/authors/{id}.json route, like so:

apiVersion: linkerd.io/v1alpha1
kind: ServiceProfile
metadata:
 name: authors.linkerd-lab.svc.cluster.local
spec:
 routes:
 - condition:
 method: GET
 pathRegex: /authors\.json
 name: GET /authors.json
 - condition:
 method: POST

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[424]

 pathRegex: /authors\.json
 name: POST /authors.json
 - condition:
 method: DELETE
 pathRegex: /authors/[^/]*\.json
 name: DELETE /authors/{id}.json
 - condition:
 method: GET
 pathRegex: /authors/[^/]*\.json
 name: GET /authors/{id}.json
 - condition:
 method: HEAD
 pathRegex: /authors/[^/]*\.json
 isRetryable: true
 name: HEAD /authors/{id}.json

Alternatively, we can patch the service profile. Count the correct position of the
HEAD method (starting at base 0) and patch the service profile, like so:

$ kubectl -n linkerd-lab patch sp authors.linkerd-
lab.svc.cluster.local --type json --patch='[{"op": "add","path":
"/spec/routes/4/isRetryable","value": true}]'
serviceprofile.linkerd.io/authors.linkerd-lab.svc.cluster.local
patched

After adding isRetryable: true, Linkerd will begin the retry requests to this3.
route automatically. Let's check this again by running the linkerd routes
command:

$ linkerd -n linkerd-lab routes deploy/books --to svc/authors
ROUTE SERVICE SUCCESS RPS ---
DELETE /authors/{id}.json authors 0.00% 0.0rps ---
GET /authors.json authors 0.00% 0.0rps ---
GET /authors/{id}.json authors 0.00% 0.0rps ---
HEAD /authors/{id}.json authors 100.00% 2.2rps ---
POST /authors.json authors 0.00% 0.0rps ---
[DEFAULT] authors 0.00% 0.0rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms
--- 12ms 25ms 29ms
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[425]

As the retries are attempted, the failing request shows a 100% success rate. However, note
that the latency has increased due to the retry. Linkerd made this possible without us
having to change the application logic and requires minimal configuration changes through
the service profile.

Retries can be risky if we don't know the application logic. The domino effect of a retry
storm can propagate to other services. We'll look at how to deal with this problem with the
help of the retry budget in the next section.

Retry budgets
Linkerd implements retry budgets, which limit the number of retries against a service as a
percentage. This prevents the retry logic from overwhelming the system or increasing the
latency significantly.

Here is an example of a retry budget that can be specified at the service profile level:

...
spec:
 retryBudget:
 retryRatio: 0.2
 minRetriesPerSecond: 10
 ttl: 15s
...

The preceding specification is for a retry budget of 20% retries with a minimum of 20 retries
per second. This retry attempt won't last for more than 15 seconds.

Next, we will define service-based timeouts and how these can be applied to a service
profile.

Implementing timeouts
Linkerd allows a timeout definition that defines a wait time before failing (or rerouting)
requests to another service. To demonstrate this, let's add a 25 ms timeout to the same spec
route from the previous section. When this timeout limit is exhausted, the request will be
canceled and will return a 504 HTTP code. By default, the timeout is set at 10 seconds. Let's
get started:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[426]

Patch the service profile for authors.linkerd-lab.svc.cluster.local by1.
adding timeout: 25ms to the HEAD /authors/{id}.json route. Note that we
can either edit or patch the service profile:

$ kubectl -n linkerd-lab patch sp authors.linkerd-
lab.svc.cluster.local \
--type json --patch='[{"op": "add","path":
"/spec/routes/4/timeout","value": 25ms}]'
serviceprofile.linkerd.io/authors.linkerd-lab.svc.cluster.local
patched

Now, run the linkerd route command to see the effect of the timeout:2.

$ linkerd -n linkerd-lab routes deploy/books --to svc/authors
ROUTE SERVICE SUCCESS RPS ---
DELETE /authors/{id}.json authors 0.00% 0.0rps ---
GET /authors.json authors 0.00% 0.0rps ---
GET /authors/{id}.json authors 0.00% 0.0rps ---
HEAD /authors/{id}.json authors 98.50% 2.2rps ---
POST /authors.json authors 0.00% 0.0rps ---
[DEFAULT] authors 0.00% 0.0rps ---

--- LATENCY_P50 LATENCY_P95 LATENCY_P99
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms
--- 8ms 24ms 29ms
--- 0ms 0ms 0ms
--- 0ms 0ms 0ms

After the timeout has been implemented, you will notice that the success rate is less than
100%.

Next, we will dive into the emojivoto application and debug the known donut error.

Troubleshooting error code
In this section, we will troubleshoot the error code that exists with the donut emoji (refer to
Chapter 15, Installing Linkerd, for more information). Since the microservice is throwing an
error, using Linkerd's dashboard, we will investigate the HTTP traffic routes across its
service, deployment, and pods to debug this issue.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[427]

Switch to the emojivoto application in your browser by going
to http://emojivoto.linkerd.local. Vote for the doughnut emoji (third on the top
row) and notice the HTTP 404 error. Now, follow these steps:

Go to Resources | Namespaces | All in http://dashboard.linkerd.local.1.
Notice that the success rate is less than 100% for the emojivoto namespace,
which is due to the doughnut emoji error:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[428]

Click on the emojivoto link under the HTTP metrics section to view the service2.
discovery graph. This shows the dependency information of the emojivoto
microservice application:

In the preceding screenshot, note that the emoji deployment shows a 100%
success rate while voting, while web doesn't.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[429]

Click the web deployment. You will see a live traffic metrics visualization with3.
indicators such as success rate (SR), P99 latency, and request per second (RPS)
for each microservice with a dependency relationship:

Scroll down to see a feed of Live Calls of requests. vote-bot generates 4.
continuous traffic to the application:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[430]

Notice the call to the /emojivoto.v1.VotingService/VoteDoughnut path,
which results in a 0% success rate. Through Linkerd, by looking at the live feed of
the data, we now know which REST API endpoint is failing.

On the far side of this line from the previous screenshot, click on the tap icon, 5.
which will only show the live list of requests from the endpoint.

Notice that the gRPC status is Unknown. With this, we have drilled down to the
exact REST API call, which is failing.

Linkerd shows a tap command line, along with an argument, which is very nice6.
to watch without using the UI:

$ linkerd tap deployment/web --namespace emojivoto \
--to deployment/voting --to-namespace emojivoto \
--path /emojivoto.v1.VotingService/VoteDoughnut

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[431]

After running the preceding command, press Ctrl + C after a few lines of output.

Now, let's switch to the booksapp application
called http://booksapp.linkerd.local. Booksapp comes with a traffic generator that
keeps on sending traffic to the application to explore service discovery capabilities.
Let's explore service discovery through Linkerd's dashboard:

Switch back to the Linkerd dashboard and click Resources | Namespaces1.
| All. In the right pane, look for linkerd-lab and click on it to open the
namespace:

Notice that the service discovery traffic service is sending traffic
to the webapp service, which is sending traffic to both books and authors.
The books service communicates with the authors service.

Notice that the deployments and success rate is not 100%, indicating that
something is wrong. This is intentional and designed by the authors of the
application to show the built-in troubleshooting capabilities of Linkerd.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[432]

Switch to the tab running http://booksapp.linkerd.local, and scroll down2.
to the Add a Book section. Here, write any title, select an author and page count,
and hit Add Book:

The book may be added, or you may receive an Internal Server Error. You may
have to try a few times to add the book. Note that if you are unsuccessful in
adding a book after a few attempts, continue to the next step for troubleshooting.

Now, let's go back to the dashboard to see if we can find the source of the
problem.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[433]

Click on the webapp deployment to see more details:3.

Notice that deploy/authors shows a 100% success rate – this service is working
fine, but the deploy/books success rate is less than 100% and so are the success
rates of deploy/webapp and deploy/traffic.

Scroll further down and view the live traffic feed for webapp:4.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[434]

Here, we can see that deploy/traffic (generator) is sending POST requests
to /books.

Click the pop-out arrow next to deploy/traffic and check the name of the5.
source and destination deployment microservices, which is
from deploy/traffic to deploy/webapp.

Similarly, check for deploy/books, which is
from deploy/webapp to deploy/books. For operations, this information is
crucial and needs to be communicated to developers.

Click the tap icon on the line showing /books.json to drill down and view only6.
the live requests coming to details/book:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[435]

Notice: Some of the POST HTTP statuses show 500 for Internal Server
Error and a few show 201 for Success. It is easy to report this issue using
the Linkerd dashboard.

Summary
Applications can switch from being robust to resilient through the use of Linkerd's sidecar
proxy, which provides adaptive load balancing, easy to understand debugging capabilities,
timeouts, and retries. We explored each of these capabilities in this chapter.

With the help of a service profile through Kubernetes' custom resource definition, you can
define routes to report aggregated metrics on unique requests based on defined
patterns. The service profile name is a fully qualified name that can match with HTTP/2
:authority or HTTP1.X hosts. Linkerd's load balancing implementation is at the L7
(application streams) level instead of the default Kubernetes L4 (TCP connection) level. You
can implement retry budgets to prevent retry storms from overwhelming backends.

The Linkerd dashboard or the Linkerd CLI can be used to observe the live traffic arriving in
the application.

In the next chapter, we'll delve into Linkerd's security capabilities, such as authentication,
authorization, roles, and access control.

Questions
Kubernetes does load balancing at the connection level (L4).1.

A) True
B)False

Linkerd does load balancing at the application level (L7).2.

A) True
B)False

Linkerd load balancing is out of the box, and it requires no special configuration.3.

A) True
B)False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Reliability Features of Linkerd Chapter 16

[436]

A Linkerd retry requires configuration.4.

A) True
B)False

Linkerd's service profile can be generated automatically, even if the Swagger API5.
is not available for the service

A) True
B)False

The retry budget is about done for adaptive retries instead of a fixed number of6.
retries.

A) True
B)False

The service profile is needed to provide aggregate route metrics, especially if a7.
parameter is part of the route, which makes it difficult to group a route path.

A) True
B)False

Further reading
From Fragile To Antifragile Software – Red Hat Developer Blog, Ibryam, Bilgin, Red
Hat Developer Blog, 2019: https:/ /developers. redhat. com/ blog/ 2016/ 07/ 20/
from-fragile- to- antifragile- software/

Linkerd v2: How Lessons from Production Adoption Resulted in a Rewrite of the Service
Mesh, Morgan, W. (2019), InfoQ, available at https:/ /www. infoq. com/ articles/
linkerd- v2- production- adoption, accessed 5 May 2019
gRPC Load Balancing on Kubernetes without Tears, Morgan, W. (2018), Linkerd.io,
available at https:/ / linkerd. io/2018/ 11/ 14/grpc- load- balancing- on-
kubernetes- without- tears/ , accessed 5 May 2019
What is L4-L7 Network Services? Definition and Related FAQs | Avi Networks, Avi
Networks, (2019), available at https:/ /avinetworks. com/ glossary/ l4- l7-
network- services/ , accessed 6 May 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://www.infoq.com/articles/linkerd-v2-production-adoption
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://linkerd.io/2018/11/14/grpc-load-balancing-on-kubernetes-without-tears/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/
https://avinetworks.com/glossary/l4-l7-network-services/

Exploring the Reliability Features of Linkerd Chapter 16

[437]

Linkerd 2.x With Network Policy, Sim, I. (2019), available at https:/ /medium. com/
@ihcsim/ linkerd- 2- x-with- network- policy- 2657103333ca, accessed 6 May
2019
Service Profiles for Per-Route Metrics - blog.linkerd, Leong, A. (2018), blog.linkerd,
available at https:/ / blog. linkerd. io/ 2018/ 12/ 07/service- profiles- for-
per-route- metrics/ , accessed 7 May 2019
Retries and Timeouts, Linkerd.io. (2018), available at https:/ /linkerd. io/ 2/
features/ retries- and- timeouts/ , accessed 7 May 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://medium.com/@ihcsim/linkerd-2-x-with-network-policy-2657103333ca
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://blog.linkerd.io/2018/12/07/service-profiles-for-per-route-metrics/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/
https://linkerd.io/2/features/retries-and-timeouts/

17
Exploring the Security Features

of Linkerd
Linkerd provides mutual TLS for service-to-service communication. The securing of
communication between services is an out-of-the-box capability and is enabled by
default. In this chapter, we will explore Linkerd automatic encryption of TLS
communication through sidecar proxies. It shows an important feature for which we do not
have to write a single line of code in the application. Since we're running on Kubernetes,
there are options for selecting an ingress controller. We will focus on the nginx controller
because it is easy to set up, it secures the communication, and it allows certificate rotations.

In a nutshell, we will be learning about the following topics in this chapter:

Understanding mTLS traffic checks for proxy-to-proxy communication
Installing and deploying Smallstep for leaf certificates and key authority
Setting up root and an intermediate certificate authority
Redeploying the Linkerd control plane using a trusted certificate
Enabling ingress and validating against TLS status
Regenerating and increasing leaf certificate validity
Setting up ingress for booksapp with the new leaf certificate
Modifying ingress definition with TLS and verifying traffic routing

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[439]

Technical requirements
This chapter has a dependency on Chapter 15, Installing Linkerd. You must complete the
hands-on exercises of Chapter 15, Installing Linkerd, dealing with the following:

Setting up Linkerd
Installing a control plane
Deploying the booksapp and emojivoto applications

Make sure that you are in the proper Linkerd scripts directory.

$ cd ~/ # Switch to home directory
$ cd linkerd/scripts

For a complete understanding of Linkerd, we also recommend you complete the hands-on
exercises from Chapter 16, Exploring the Reliability Features of Linkerd.

Let's explore how mTLS in Linkerd can be used to authenticate and authorize
communication for microservices.

Setting up mTLS on Linkerd
Refer to the Enabling mutual TLS within the mesh section of Chapter 11, Exploring Istio's
Security Features, for a detailed discussion of mTLS.

Linkerd has made mTLS accessible and straightforward through the use of sidecar proxies
by using ephemeral (short-lived) leaf certificates. It automatically uses mTLS across host
boundaries to encrypt HTTP and gRPC communication between microservices that are
using Linkerd as sidecar proxies. There is no need for any code at the microservice level to
handle the TLS communication as the Linkerd control plane takes care of it automatically.
Linkerd frees up developers' time for not having to secure communication between
microservices.

Since the Linkerd sidecar proxy is attached to a container within the same pod, the existing
microservice can have unencrypted (HTTP) communication. Between a service, sidecar
proxy, and Linkerd, it provides mutual TLS across pod boundaries. Linkerd allows pre-
service certificate setup, it generates a root CA certificate, and uses it to create and sign a
leaf certificate (X.509 v3) for each service in the application.

Linkerd enables mTLS by default. We will validate this in this chapter and see how to
use CA to integrate with Linkerd.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[440]

Validating mTLS on Linkerd
We will first verify whether mTLS is set up and enabled on Linkerd by inspecting the
identity logs. This process is used to confirm proxy-to-proxy communication:

First, check the TLS status of traffic:1.

$ linkerd tap deploy -n linkerd-lab

You will see live traffic from all existing deployments.

Press Ctrl + C to break the output:2.

rsp id=3:9 proxy=in src=10.1.230.253:39874 dst=10.1.230.238:7001
tls=true :status=503 latency=3077µs
end id=3:9 proxy=in src=10.1.230.253:39874 dst=10.1.230.238:7001
tls=true duration=20µs response-length=0B
req id=3:10 proxy=in src=10.1.230.253:39874 dst=10.1.230.238:7001
tls=true :method=HEAD :authority=authors:7001
:path=/authors/23955.json
rsp id=3:10 proxy=in src=10.1.230.253:39874 dst=10.1.230.238:7001
tls=true :status=503 latency=5351µs

Notice that each line has tls=true, which is an indication that proxy-to-proxy
communication is using mTLS.

Let's check the linkerd identity log:3.

$ kubectl -n linkerd -c identity -l linkerd.io/control-plane-
component=identity logs
time="2019-08-09T16:32:19Z" level=info msg="certifying
web.emojivoto.serviceaccount.identity.linkerd.cluster.local until
2019-08-10 16:32:39 +0000 UTC

Notice the preceding message certifying until <given time> for the validity of keys. If
generated internally, Linkerd will automatically re-provision certificates in 24 hours. If
using CA, the rotation time is one year. The keys are generated locally in each pod (through
the proxy), and then a Certificate Signing Request (CSR) is submitted with the pod's
service account to re-validate the certificate. As long as a service account is valid, the pods
will get new certificates automatically.

Next, we will explore Linkerd's certificate authority.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[441]

Using trusted certificates for the control plane
Linkerd comes with its own CA, and it generates its own self-signed root certificate for its
control plane identity pod. The identity pod then uses this certificate to issue short (24
hours) certificates to the services that are running Linkerd proxy.

You can use a trusted certificate signed by a CA provider before installing the Linkerd
control plane.

We will create our root and intermediate certificate and supply them to Linkerd install,
assuming that they are from a trusted source. For this purpose, we will use an open source
project, smallstep (https:/ / github. com/ smallstep). It is simple to use as it takes the
complexity out of the certificate creation process. Let's understand this through an example.

Installing step certificates
To recap, we will be using the smallstep Public Key Infrastructure (PKI) to generate keys
and certificates. The step CLI provides a helm chart for creating certificates:

First, let's add the helm repository to get the chart:1.

$ helm repo add smallstep https://smallstep.github.io/helm-charts/
"smallstep" has been added to your repositories

Now, check the helm repository list to view all recent charts:2.

$ helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
smallstep https://smallstep.github.io/helm-charts/
nginx-stable https://helm.nginx.com/stable
kaal https://servicemeshbook.github.io/keepalived

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep

Exploring the Security Features of Linkerd Chapter 17

[442]

Update the helm repository with the smallstep chart:3.

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository
...Successfully got an update from the "smallstep" chart repository
...Successfully got an update from the "kaal" chart repository
...Successfully got an update from the "nginx-stable" chart
repository
...Successfully got an update from the "stable" chart repository
Update Complete.

Install a smallstep certificate through the newly added helm chart:4.

$ helm install --name step --namespace step smallstep/step-
certificates \
--set fullnameOverride="step" --set ca.db.enabled=false

Finally, check the status of the step pods:5.

$ kubectl -n step get pods
NAME READY STATUS RESTARTS AGE
step-0 1/1 Running 0 2m17s
step-bdszd 0/1 Completed 0 2m17s

The smallstep certificate is now available.

Creating step root and intermediate certificates
We will now generate the root key and certificate and set up an intermediate certificate
authority and validate its duration:

Create a root certificate:1.

$ kubectl -n step exec -t step-0 -- step certificate create --
profile root-ca "My Root CA" root-ca.crt root-ca.key --no-password
--insecure --force
Your certificate has been saved in root-ca.crt.
Your private key has been saved in root-ca.key.

Note that, for simplicity, we are not providing a password to encrypt the
key. In real life, you should use a password or let step generate one for
you. Protecting the private key is very important for root and intermediate
certificates.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[443]

Then, create an intermediate CA:2.

$ kubectl -n step exec -t step-0 -- step certificate create
identity.linkerd.cluster.local identity.crt identity.key --profile
intermediate-ca --ca ./root-ca.crt --ca-key ./root-ca.key --no-
password --insecure --force
Your certificate has been saved in identity.crt.
Your private key has been saved in identity.key.

Check the expiry date of the intermediate certificate:3.

$ kubectl -n step exec -t step-0 -- step certificate inspect
identity.crt --short
X.509v3 Intermediate CA Certificate (ECDSA P-256) [Serial:
7456...1790]
 Subject: identity.linkerd.cluster.local
 Issuer: My Root CA
 Valid from: 2019-08-11T14:27:14Z
 to: 2029-08-08T14:27:14Z

Notice that the preceding certificate is valid for 10 years, which is the default. It
can cost a lot of money to get an intermediate certificate from a trusted CA, and
generally, CA issues a leaf X.509 certificate, which has a much shorter life span.

Copy certificates from the pod as we did not use a persistent volume while4.
creating the step helm chart:

$ kubectl -n step cp step-0:root-ca.crt /tmp/root-ca.crt

$ kubectl -n step cp step-0:identity.crt /tmp/identity.crt

$ kubectl -n step cp step-0:identity.key /tmp/identity.key

The preceding method using smallstep for creating certificates is simple and easy.
However, we can obtain trusted certificates from commercial providers as well.

Redeploying control plane using certificates
You have to reinstall the Linkerd control plane to start using the root and intermediate
certificates that you just generated using smallstep:

Delete the current installation of the Linkerd control plane:1.

$ linkerd install --ignore-cluster | kubectl delete -f -

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[444]

The Linkerd control plane interacts with proxies to provide/rotate the leaf
certificates, through a third-party provider such as smallstep. Service
Mesh doesn't have in-depth capabilities to provision/rotate leaf certificates
at this time without a reinstall.

Create a new Linkerd installation using trusted certificates:2.

$ linkerd install \
--identity-trust-anchors-file /tmp/root-ca.crt \
--identity-issuer-key-file /tmp/identity.key \
--identity-issuer-certificate-file /tmp/identity.crt \
--ignore-cluster | kubectl apply -f -

Now, perform a Linkerd check:3.

$ linkerd check

Since we dropped and recreated Linkerd install, we need to create the ingress
definitions to access the dashboard.

Rerun the following commands:4.

$ cd ~/linkerd/scripts
$ kubectl -n linkerd apply -f 01-create-linkerd-ingress.yaml
ingress.extensions/linkerd created

Check the TLS status of the traffic:5.

$ linkerd tap deploy -n linkerd-lab
...
rsp id=5:24 proxy=out src=192.168.230.238:43774
dst=192.168.230.206:7000 tls=true :status=303 latency=10830µs
end id=5:24 proxy=out src=192.168.230.238:43774
dst=192.168.230.206:7000 tls=true duration=26µs response-length=0B
...

You should see tls=true for live traffic.

Press Ctrl + C to break the output.6.

In the preceding case, the certificate expiry time is 24 hours for the leaf certificates
that the Linkerd identity CA generated for the Linkerd proxies running next to
every microservice.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[445]

Verify that by looking at the Linkerd identity logs:7.

$ kubectl -n linkerd -c identity -l linkerd.io/control-plane-
component=identity logs
time="2019-08-10T15:35:45Z" level=info msg="certifying linkerd-
proxy-
injector.linkerd.serviceaccount.identity.linkerd.cluster.local
until 2019-08-11 15:36:05 +0000 UTC"

The output from the log shows when the leaf certificates will expire—which is 24
hours.

Next, validate the leaf certificate, and the linkerd-identity-issuer secret8.
stores the key in the linkerd namespace:

$ kubectl -n linkerd get secret linkerd-identity-issuer -o
jsonpath='{.data.crt\.pem}' | base64 -d

The preceding output matches /tmp/identity.crt:9.

$ kubectl -n linkerd get secret linkerd-identity-issuer -o
jsonpath='{.data.key\.pem}' | base64 -d

The output from the preceding will match /tmp/identity.key. This linkerd-
identity-issuer secret needs to be updated before the certificate expires.

Regenerating and rotating identity certificates for
microservices
We show here the steps required to regenerate and rotate the identity certificates. This
process uses the same root certificate created earlier. Note that updating of the root
certificate requires a reinstall of the Linkerd control plane:

Re-generate the certificate:1.

$ kubectl -n step exec -t step-0 -- step certificate create
identity.linkerd.cluster.local identity.crt identity.key --profile
intermediate-ca --ca ./root-ca.crt --ca-key ./root-ca.key --no-
password --insecure --force

$ kubectl -n step cp step-0:identity.crt /tmp/identity.crt

$ kubectl -n step cp step-0:identity.key /tmp/identity.key

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[446]

Delete the secret:2.

$ kubectl -n linkerd delete secret linkerd-identity-issuer

Recreate the secret with a new certificate:3.

$ kubectl -n linkerd create secret generic \ linkerd-identity-issuer \
 --from-file=crt.pem=/tmp/identity.crt \
 --from-file=key.pem=/tmp/identity.key

Restart the identity control plane deployments to pick up the new certificate:4.

$ kubectl -n linkerd rollout restart deploy linkerd-identity

Check Linkerd:5.

$ linkerd check

Check the leaf certificates issued to the control plane components by Linkerd:6.

$ kubectl -n linkerd -c identity -l linkerd.io/control-plane-
component=identity logs

The preceding process is the old-fashioned way to rotate a certificate before it expires. It
would be ideal if this can be automated. This enhancement will likely appear in Istio as well
as in Linkerd as the adoption of Service Mesh increases. However, there are open source
solutions such as step autocert (https:/ /github. com/ smallstep/ autocert) or cert-
manager (https:// github. com/ jetstack/ cert-manager), which can automatically rotate
certificates before they expire. Cert-manager is especially useful for the ingress controller to
use. Finally, let's encrypt for free (https:/ /letsencrypt. org) provides trusted certificates
for the application domain names.

Next, we will explore configuring ingress rules securely.

Securing the ingress gateway
Linkerd does not provide an out-of-the-box ingress gateway. Istio comes with its ingress
and egress gateway resources. Linkerd depends on the following ingress gateways and
others based on your Kubernetes provider. For example, OpenShift has its router. The
following lists a few popular ingress controllers for Kubernetes:

nginx ingress controller: https:/ /github. com/ kubernetes/ ingress- nginx
(community) and https:/ /github. com/ nginxinc/ kubernetes- ingress (nginx)

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/smallstep/autocert
https://github.com/smallstep/autocert
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress

Exploring the Security Features of Linkerd Chapter 17

[447]

Traefik: https:/ /github. com/ containous/ traefik

HAProxy: https:/ /github. com/helm/ charts/ tree/ master/ incubator/
haproxy- ingress

Ambassador: https:/ /github. com/datawire/ ambassador

GLOO: https:/ / gloo. solo. io/ installation/ ingress/

We set up an nginx ingress controller in the previous chapter. We created an ingress rule to
route the booksapp.linkerd.local host to the booksapp microservice application.

TLS termination
Let's secure booksapp.linkerd.local with TLS termination at the nginx gateway:

Create a leaf certificate for booksapp.linkerd.local:1.

$ kubectl -n step exec -t step-0 -- \
step certificate create booksapp.linkerd.local booksapp.crt
booksapp.key \
--profile leaf --ca identity.crt --ca-key identity.key \
--no-password --insecure --force --kty=RSA --not-after=2160h
Your certificate has been saved in booksapp.crt.
Your private key has been saved in booksapp.key.

$ kubectl -n step cp step-0:booksapp.crt booksapp.crt

$ kubectl -n step cp step-0:booksapp.key booksapp.key

We need to pass the certificate chain along with the leaf certificate private key to
the nginx ingress controller so that it can provide a secure TLS connection to the
client.

Create a certificate chain of leaf and intermediate:2.

$ cat booksapp.crt /tmp/identity.crt > ca-bundle.crt

Create a Kubernetes TLS secret, booksapp-keys, using a certificate chain, ca-3.
bundle.crt, for the leaf certificate with the Computer Name (CN) as
booksapp.linkerd.local and the private key as booksapp.key:

$ kubectl -n linkerd-lab create secret tls booksapp-keys --key
booksapp.key --cert ca-bundle.crt
secret/booksapp-keys created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/containous/traefik
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/helm/charts/tree/master/incubator/haproxy-ingress
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://github.com/datawire/ambassador
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/
https://gloo.solo.io/installation/ingress/

Exploring the Security Features of Linkerd Chapter 17

[448]

The nginx controller will pick up the Kubernetes TLS secret, booksapp-4.
keys, when we create an ingress rule for an external domain name to associate it
with an internal microservice name. The following shows the modified ingress
definition that we created earlier to now include the TLS secret:

Script : 07-create-booksapp-ingress-tls.yaml

apiVersion: extensions/v1beta1
kind: Ingress
...
spec:
 rules:
 - host: booksapp.linkerd.local
 http:
 paths:
 - backend:
 serviceName: webapp
 servicePort: 7000
 path: /
 tls:
 - hosts:
 - booksapp.linkerd.local
 secretName: booksapp-keys

Modify the ingress:5.

$ kubectl -n linkerd-lab apply -f 07-create-booksapp-ingress-
tls.yaml
ingress.extensions/booksapp created

nginx watches for all endpoints generated in all namespaces. As soon as an6.
endpoint is created or updated, nginx picks it up immediately. Find out the
nginx pod name:

$ NGINX_POD=$(kubectl -n kube-system get pod -l app=nginx-
controller -o jsonpath='{.items..metadata.name}') ; echo $NGINX_POD
nginx-controller-5dbfd77f4d-2plhd

List the configurations pushed:7.

$ kubectl -n kube-system exec -it $NGINX_POD -- ls -l
/etc/nginx/conf.d

Check the newly updated configuration:8.

$ kubectl -n kube-system exec -it $NGINX_POD -- cat
/etc/nginx/conf.d/linkerd-lab-booksapp.conf

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[449]

List the TLS secrets:9.

$ kubectl -n kube-system exec -it $NGINX_POD -- ls -l
/etc/nginx/secrets

Check the updated secret—with certificate chain and private key:10.

$ kubectl -n kube-system exec -it $NGINX_POD -- cat
/etc/nginx/secrets/linkerd-lab-booksapp-keys

After TLS termination at the ingress gateway, we will now switch back to the browser in
the VM to test it.

Testing the application in the browser
To test the application, follow these two simple steps:

Open the http://booksapp.linkerd.local URL in a new tab.1.

You will notice that the URL is rewritten automatically from HTTP to the HTTPS
protocol.

In Chrome, you will receive a warning saying that Your connection is not
private—which is normal since we have used a self-signed root certificate.

Now, click Advanced and then click Proceed to booksapp.linkerd.local2.
(unsafe).

Testing the application through curl
Let's check the same through curl by providing certificates. Run the following curl to check
whether the nginx controller is routing the traffic well:

$ export INGRESS_PORT=$(kubectl -n kube-system get service nginx-controller
-o jsonpath='{.spec.ports[?(@.name=="https")].port}') ; echo $INGRESS_PORT
443

$ export INGRESS_HOST=$(kubectl -n kube-system get service nginx-controller
-o jsonpath='{.status.loadBalancer.ingress..ip}') ; echo $INGRESS_HOST
192.168.142.249

$ curl -Ls -HHost:booksapp.linkerd.local \
--resolve booksapp.linkerd.local:$INGRESS_HOST:$INGRESS_PORT \
--cacert root-ca.crt https://booksapp.linkerd.local

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[450]

The IP address of the ingress gateway may change in your case. Note that we pass the root
certificate to the --cacert flag and not the leaf certificate in the curl command. The server
has the certificate chain comprising the leaf and intermediate certificates.

The booksapp opens using the HTTPS protocol—hence, you have secured your application
through TLS termination at the nginx ingress gateway.

Linkerd enables mTLS automatically to secure microservice-to-microservice
communication.

Summary
As we have seen in this chapter, the Linkerd control plane ships with a Certificate
Authority (CA) called identity and sidecar proxies. Sidecars run alongside each
microservice and receive certificates from the identity CA—which ties to a Kubernetes
service account. The sidecar proxies automatically upgrade all communication between
edges of the mesh to encrypted TLS connections.

Linkerd leaves it up to you to configure your ingress gateway to secure communications to
the edge services of the applications in the Kubernetes cluster. There are choices of ingress
controllers that you can use. In the examples of this chapter, we used the nginx ingress
gateway to secure the communication and steps to rotate the certificates.

In the next chapter, we will explore the observability features in Linkerd. We will explain
the process of metrics collection through sidecar proxies and different ways to visualize,
query, and analyze the telemetry data.

Questions
The TLS between service-to-service communication is fully automated in1.
Linkerd.

A) True
B) False

The TLS between the ingress gateway and edge service of the application is fully2.
automated in Linkerd.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Security Features of Linkerd Chapter 17

[451]

The linkerd-identity component of the control plane of Linkerd is the3.
Certificate Authority (CA) for the data plane proxies.

A) True
B) False

linkerd-identity automatically rotates the certificates for linkerd-proxy in4.
the data plane.

A) True
B) False

linkerd-identity automatically rotates the certificate for its own CA.5.

A) True
B) False

You can use trusted certificates of your own CA for linkerd-identity at the6.
time of install only.

A) True
B) False

You can change the trusted certificate of the control plane at any time, but that7.
requires reinstallation of the control plane.

A) True
B) False

Further reading
Smallstep, GitHub, (2018), available at https:/ /github. com/ smallstep, accessed
May 9, 2019
Features, Linkerd.io, (2019), available at https:/ /linkerd. io/ 2/features/ ,
accessed May 9, 2019
Automatic TLS, Linkerd.io, (2019), available at https:/ /linkerd. io/2/
features/ automatic- tls/ , accessed May 9, 2019
Smallstep/autocert, Cano, Mariano, GitHub, 2019, available at https:/ /github.
com/smallstep/ autocert/ tree/ master/ examples/ hello- mtls

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://linkerd.io/2/features/automatic-tls/
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls
https://github.com/smallstep/autocert/tree/master/examples/hello-mtls

18
Exploring the Observability

Features of Linkerd
Visibility is critical for any service mesh. The visibility feature of Linkerd is simple and easy
to use, as we will see in this chapter. Linkerd's service mesh is targeted mainly toward the
Site Reliability Engineering (SRE) team or operators of enterprise customers.

In this chapter, we will gain an in-depth insight into the Linkerd service mesh. To do this,
we will use three methods, including CLI, the GUI dashboard, and the Prometheus/Grafana
dashboard. These dashboards show the Key Performance Indicators (KPIs), which are easy
to understand and provide us with the ability to determine issues/problems and potential
bottlenecks besides the visual representation of aggregated data.

In a nutshell, we will cover the following topics:

Gaining insight into the service mesh
External Prometheus integration
Cleaning up

Technical requirements
To complete this chapter, you will need to have completed the hands-on exercises of
Chapter 15, Installing Linkerd, that deal with the following topics:

Setting up Linkerd
Installing a control plane
Deploying the booksapp and emojivoto applications

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[453]

For a complete understanding of Linkerd, we also recommend that you complete the
hands-on exercises from Chapter 16, Exploring the Reliability Features of Linkerd,
and Chapter 17, Exploring the Security Features of Linkerd.

Make sure that you are in the proper scripts directory for the hands-on exercises:

$ cd ~/ # Switch to home directory
$ cd linkerd/scripts

Gaining insight into the service mesh
Visibility into the service mesh with the help of proper tools is a necessity if you wish to
resolve issues quickly. In the absence of appropriate tools, it becomes very time-consuming
and expensive to find out the source of the problems. In Chapter 16, Exploring the Reliability
Features of Linkerd, we used the Linkerd dashboard to debug a particular route, which
showed a success rate of less than 100%. This information about a specific route is of great
help and acts as a feedback loop for the developer so that they can fix issues.

The Linkerd dashboard (GUI) and the Linkerd CLI (command line) are two essential tools if
we want to gain insight into the service mesh. These tools show key indicators such as live
traffic, success rate, routes, latencies, and an overview of traffic flow from individual
sources to different targets. These are important for the health and performance of any
application from an HTTP or gRPC protocol standpoint. They help pinpoint issues much
more quickly than having to go through the logs of different containers.

One of the salient features of Linkerd is to show P50, P95, and P99 latencies, as we
explained in Chapter 16, Exploring the Reliability Features of Linkerd. It is possible to report
such types of metrics due to aggregation that's done at the proxy level.

Linkerd also provides a pre-built Grafana dashboard for metrics that are scrapped through
Prometheus, which stores data for up to 6 hours to give us a quick insight into the service
mesh. For long-term history collection, we have to store the data in an external Prometheus
backend.

In the next section, we will look at the aforementioned methods in more detail in order to
gain insight into the service mesh. Let's begin with the Linkerd command-line
interface (CLI).

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[454]

Insights using CLI
The Linkerd CLI has a top function, which works similarly to the top command. It shows
the current top query for the number of executions, latency time, and success rate. To
understand this better, let's look at an example of all the queries coming from deployments
in the emojivoto namespace:

$ linkerd top deployment --namespace emojivoto --hide-sources

This results in the following output:

The preceding CLI gives us immediate insight into an application. Now, it is possible to
focus on routes that show a success rate of less than 100%. The latency for the 50, 90, and 99
percentiles, coupled with the highest number of executions, helps you consider
optimizations in your applications.

From the preceding output, we can choose a route that we want to look at in more detail.
Let's take the /api path, showing only the GET methods for requests that have been filtered
for the web-svc.emojivoto authority.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[455]

Run the following tap command:

$ linkerd tap deployment/vote-bot -n emojivoto --path /api --method=GET --
authority web-svc.emojivoto:80
req id=144:1 proxy=out src=10.1.230.223:52372 dst=10.1.230.213:80 tls=true
:method=GET
rsp id=144:1 proxy=out src=10.1.230.223:52372 dst=10.1.230.213:80 tls=true
:status=200 latency=3382µs
...
end id=144:7 proxy=out src=10.1.230.223:52556 dst=10.1.230.213:80 tls=true
duration=52µs
req id=144:8 proxy=out src=10.1.230.223:52556 dst=10.1.230.213:80 tls=true
:method=GET
rsp id=144:8 proxy=out src=10.1.230.223:52556 dst=10.1.230.213:80 tls=true
:status=500 latency=9922µs
end id=144:8 proxy=out src=10.1.230.223:52556 dst=10.1.230.213:80 tls=true
duration=22µs

There are a few things to note about the tap command:

The mTLS between the edge of the services is in effect when you see tls=true.
The status code of each request and response.
The end-to-end response based on the duration.
The latency of each request and response.

As we have seen, the tap command allows us to get the live feed from the system in a
natural form that is easy to understand. Now, let's use the UI features of Prometheus for
Linkerd data collection.

Insight using Prometheus
Prometheus is a backend time series data collection service that is configured by default in
Linkerd. It only keeps data for 6 hours in order to limit the Linkerd telemetry footprint to
an acceptable range without adversely affecting performance. Grafana is the frontend and
contains Linkerd pre-built dashboards, as we will soon see.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[456]

We can access Prometheus from inside the VM or from outside if we define an ingress rule
for it. Let's define the Ingress for Prometheus using prometheus.linkerd.io hostname,
which resolves to the internal IP address of the VM through our simulated load balancer:

Let's define the Prometheus ingress so that we can direct external traffic to the1.
Linkerd-Prometheus service:

Script : 06-create-prometheus-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: prometheus
 annotations:
 nginx.org/websocket-services: "linkerd-prometheus"
 ingress.kubernetes.io/rewrite-target: /
 nginx.ingress.kubernetes.io/configuration-snippet: |
 proxy_set_header l5d-dst-override
$service_name.$namespace.svc.cluster.local:9090;
 proxy_hide_header l5d-remote-ip;
 proxy_hide_header l5d-server-id;
spec:
 rules:
 - host: prometheus.linkerd.local
 http:
 paths:
 - backend:
 serviceName: linkerd-prometheus
 servicePort: 9090
 path: /

Next, we need to create a Prometheus ingress:2.

$ kubectl -n linkerd apply -f 06-create-prometheus-ingress.yaml
ingress.extensions/prometheus created

Now, create an entry in /etc/hosts for the prometheus.linkerd.local host:3.

$ export INGRESS_HOST=$(kubectl -n kube-system get service nginx-
controller -o jsonpath='{.status.loadBalancer.ingress..ip}') ; echo
$INGRESS_HOST
192.168.142.249

$ sudo sed -i '/prometheus.linkerd.local/d' /etc/hosts

$ echo "$INGRESS_HOST prometheus.linkerd.local" | sudo tee -a
/etc/hosts

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[457]

Run http://prometheus.linkerd.local from your browser. Select Status |4.
Targets:

Here, we can see the metrics for the endpoints for Grafana, Linkerd controllers,
Linkerd proxies, Prometheus, the status of the state, and the last scrapped
metrics.

You can check the Prometheus configuration by clicking on Status
| Configuration. The custom service discovery integration for Linkerd can be
viewed from Status | Service Discovery.

Click on Prometheus and type or select process_cpu_seconds_total. from5.
the drop-down menu.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[458]

Click Execute and select the Graph tab to see the time series graph:6.

Prometheus has some essential built-in graphing capabilities, but Grafana provides a better
frontend GUI for the data that has been collected by the Prometheus pull model.

Prometheus is the data collector and contains basic GUI features, as we saw for the Linkerd
data collection. Next, we will look at the data that's collected through the Grafana Web UI.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[459]

Insights using Grafana
We can access Grafana directly, or we can jump to context-based access from the Linkerd
dashboard by clicking the Grafana icon. Switch back to the Linkerd dashboard and follow
these steps:

Go to Resources | Namespaces | Linkerd-Lab:1.

The Linkerd dashboard for the namespace shows the service dependency
diagram and shows metrics based on deployment, pods, authorities, and TCP.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[460]

Click the Grafana icon under Deployment/Authors:2.

Notice the graphical view of the success rate, request rate per second (RPS),
inbound and outbound deployments, latency, and so on.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[461]

Scroll down to view the deploy/books in the Grafana dashboard. Alternatively,3.
you can select it from Linkerd's dashboard dropdown:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[462]

From the left sidebar, click on the dashboard (the four-square icon) and click4.
Home.

This panel shows the metrics for several namespaces that Linkerd is managing,
along with the total number of deployments and the overall success rate. The
global latency metrics are useful for drilling down into latency issues
downstream:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[463]

Scroll down and check for emojivoto and the Linkerd control plane at the5.
namespace level:

Scroll down to the linkerd-lab booksapp namespace. This shows you the6.
overall metrics at the namespace level:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[464]

If you click ns/linkerd-lab, then you can drill down to the deployment and pod level to
look at the metrics. The visualization of metrics in Grafana is collected through
Prometheus, which puts observability into the service mesh and makes things easier in
terms of operational purposes. The visual representation of the success rate helps us close
the feedback loop with the development team so that they can improve upon the issues that
were detected through observability.

Linkerd only provides 6 hours of data collection in order to keep the footprint small. To
deal with this and maintain the long-term storage of data, we need to look at external
Prometheus integration. We'll do this in the next section.

External Prometheus integration
To export data from Prometheus to another full-fledged metrics backend, you can either
pull data directly from Linkerd proxies or federate data to a dedicated Prometheus cluster.
You can also use Prometheus APIs to extract data from the local Prometheus store to your
dedicated Prometheus data store. Let's get started:

For example, call the federation API directly:1.

$ curl -G --data-urlencode 'match[]={job="linkerd-proxy"}' --data-urlencode
'match[]={job="linkerd-controller"}'
http://prometheus.linkerd.local/federate

response_latency_ms_bucket{authority="webapp.linkerd-
lab.svc.cluster.local:7000",control_plane_ns="linkerd",deployment="traffic"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[465]

,direction="outbound",dst_control_plane_ns="linkerd",dst_deployment="webapp
",dst_namespace="linkerd-lab",dst_pod="webapp-64668f866c-
qhnmz",dst_pod_template_hash="64668f866c",dst_service="webapp",dst_servicea
ccount="default",instance="10.1.230.199:4191",job="linkerd-
proxy",le="20",namespace="linkerd-lab",pod="traffic-
f5b9987bd-9jjrk",server_id="default.linkerd-
lab.serviceaccount.identity.linkerd.cluster.local",status_code="500",tls="t
rue"} 0 1557454168022

Gather data directly from the Linkerd proxies:2.

$ export AUTHORS_PODIP=$(kubectl -n linkerd-lab get pods -l app=authors -o
jsonpath='{.items[0].status.podIP}') ; echo $AUTHORS_PODIP
192.168.230.238

$ curl -s http://$AUTHORS_PODIP:4191/metrics

HELP request_total Total count of HTTP requests.
TYPE request_total counter
request_total{direction="inbound",tls="no_identity",no_tls_reason="not_prov
ided_by_remote"} 10559
request_total{authority="authors.linkerd-
lab.svc.cluster.local:7001",direction="inbound",tls="true",client_id="defau
lt.linkerd-lab.serviceaccount.identity.linkerd.cluster.local"} 911614

In Linkerd, Prometheus keeps resource consumption small by storing only 6 hours of data.
To keep data for an extended period of time, we can use the Prometheus metrics collection,
which can be fed to a dedicated backend server.

The Prometheus federation API, or ServiceMonitors, can be used to copy data using
the /federate path from Linkerd Prometheus to the dedicated Prometheus store.

Alternatively, you can call the federation API directly so that it can be ingested by a Kafka
stream, which can then dump it to an ELK stack:

$ curl -G \
 --data-urlencode 'match[]={job="linkerd-proxy"}' \
 --data-urlencode 'match[]={job="linkerd-controller"}' \
 http://linkerd-prometheus.linkerd.svc.cluster.local:9090/federate

Now, it's time to clean up so that we can start learning about the Consul service mesh in the
next chapter.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Observability Features of Linkerd Chapter 18

[466]

Cleaning up
Run the following commands:

Remove the Linkerd control plane:1.

$ linkerd install --ignore-cluster | kubectl delete -f -

Remove the booksapp and emojivoto applications:2.

$ kubectl delete ns linkerd-lab
namespace "linkerd-lab" deleted

$ kubectl delete ns emojivoto
namespace "emojivoto" deleted

Remember that by the time you read this book, new versions of Linkerd may be available
with new features and functions. You can visit https:/ /github. com/ servicemeshbook/
linkerd for updated Linkerd scripts.

Summary
As we have seen in this chapter, the Linkerd observability feature is simple and out of the
box, which means it doesn't need any special configuration. It presents the key performance
indicators for the deployment, pod, and route levels through both the CLI and the
dashboard. Its integration with Prometheus through a built-in panel for Grafana is an easy
way to drill down from a higher level to a lower level, as shown in the exercises in this
chapter.

One of the interesting and useful features of Linkerd is that it can aggregate and show Key
Performance Indicators (KPI) such as RPS, P50, P95, P99, and Success Rate (SR). These
KPIs can be very helpful to SRE team members when they need to investigate problems.

With this chapter, we have explored the various features of the Linkerd service mesh. In the
next chapter, we will go through the third service mesh – Consul, which also has its unique
and useful features.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd
https://github.com/servicemeshbook/linkerd

Exploring the Observability Features of Linkerd Chapter 18

[467]

Questions
Linkerd only stores data for 6 hours, and this can be configured so that we can1.
increase or decrease the time limit.

A) True
B) False

Linkerd provides distributed tracing, which can be seen from the dashboard as2.
well as through the CLI's tap command.

A) True
B) False

Linkerd integration with external Prometheus is the user's responsibility.3.

A) True
B) False

Linkerd Prometheus uses the Pull model to collect the data from service proxies.4.

A) True
B) False

Further reading
Dashboard and Grafana, Linkerd.io, (2018), available at https:/ /linkerd. io/ 2/
features/ dashboard/ , accessed May 9, 2019
Exporting Metrics, Linkerd.io, (2018), available at https:/ /linkerd. io/2/ tasks/
exporting- metrics/ , accessed May 9, 2019
Now with Extra Prometheus, Andrew Seigner, Buoyant and Frederic Branczyk,
CoreOS, Seigner, A., and Branczyk, F. (2019), Linkerd 2.0, YouTube, available
at https:/ /www. youtube. com/ watch? v=bnDWApsH36Y t=954s, accessed May 10,
2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/features/dashboard/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://linkerd.io/2/tasks/exporting-metrics/
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s
https://www.youtube.com/watch?v=bnDWApsH36Y&t=954s

6
Section 6: Learning about
Consul through Examples

In this section, you will learn about the Consul service mesh through hands-on exercises.
Consul is unique due to its ability to run in Kubernetes, VMs, and bare-metal
environments.

This section contains the following chapters:

Chapter 19, Understanding the Consul Service Mesh
Chapter 20, Installing Consul
Chapter 21, Exploring Consul's Service Discovery Features
Chapter 22, Exploring Consul's Traffic Management Capabilities

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

19
Understanding the Consul

Service Mesh
In previous sections in this book, we discussed Istio and Linkerd. Now, we will move on to
Consul, another service mesh. Consul, an open source project, was started by HashiCorp
(https://github.com/ hashicorp/ consul), and it has 17,000+ stars and nearly 30,000 forks
at the time of writing. This is a testament to the vibrant community around it.

Consul supports both VM and as well as Kubernetes. In this chapter, we will cover mostly
Consul Connect, which is the Consul service mesh implementation of the Kubernetes
environment. First, we will understand the Consul architecture and the concepts of control
and data planes. Then, we will look at Consul Connect's traffic management features,
monitoring, and visualization.

In a nutshell, we will cover the following topics in this chapter:

Introducing the Consul service mesh
The Consul architecture
Consul's control and data planes
Monitoring and virtualization
Traffic management

Technical requirements
You'll need the VM that you used to learn about Linkerd. Make sure that you performed
the cleanup procedure at the end of the previous chapter to free up resources so that you
can use the same VM and the Kubernetes environment to try out the Consul service mesh.

You can find the code files for Consul at: https:/ /github. com/servicemeshbook/ consul.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul
https://github.com/servicemeshbook/consul

Understanding the Consul Service Mesh Chapter 19

[470]

Introducing the Consul service mesh
Consul started in 2014 when Kubernetes was also entering the market. It is a first-class
citizen for configuring and discovering services, especially when the infrastructure
(Compute, Storage, and Network) is dynamic, which is a combination of Kubernetes
clusters and VMs in multiple data centers.

The following table will give you a clear picture of the traditional and dynamic
infrastructures:

Traditional
infrastructure Dynamic infrastructure

What is it?

In a traditional
infrastructure, there is
static connectivity in an
insecure flat network
protected by firewall
rules.

In a dynamic infrastructure,
ephemeral workloads with dynamic IP
addresses can run on any machine in a zero-trust
network.

How does it
handle network
traffic?

Traffic is routed
through a hardware or
software load balancer
across multiple
applications (horizontal
scalability), which is
why it is sometimes
known as North-South
traffic.

The load balancer sits just before the Ingress gateway, and
then traffic is distributed dynamically to different service
endpoints. This is why it is sometimes known as East-West
traffic.

Examples

Multiple federated
Kubernetes clusters can
be viewed as serving
North-South traffic.

A single Kubernetes cluster can be viewed as serving East-
West traffic.

Consul can be viewed as serving both North-South (WAN Gossip Protocol) and East-West
(LAN Gossip Protocol) traffic:

North-South traffic: The traffic travels between outside and inside of a k8s
cluster; that is, the traffic goes through the Ingress controller.
East-West traffic: The traffic travels between the services inside a k8s cluster.

One of the benefits of Consul is that it can run in heterogeneous environments such as
Kubernetes and VMs or directly on a bare-metal machine. It provides functionality for
service catalogs, configuration, TLS certificates, authorization, and so on.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[471]

Consul is a single Go binary that runs as an agent on each node in a cluster, and it
manages/monitors all services on that node. Consul agents (clients) hold service
registration and health check data.

The Consul cluster is made up of members, collections of Consul agents and Consul
servers. A typical production environment comprises an odd number of servers (3 and 5
maximum) to ensure that the majority of the quorum is met in the event of failures.

Consul is a distributed system where agent nodes communicate with server nodes:

Consul servers are responsible for maintaining the state of the cluster.
Consul Client (agent) is responsible for performing a health check of a node and
the services running on that node.

Consul provides the following features:

Multi-data center deployment: One of the main features of Consul is its support
for multiple data centers using the gossip protocol to register members leaving
and joining the cluster and to check the health status of members and services.
Service discovery: When applications are broken down into microservices, they
are no longer available through a memory call to a public function. However,
these microservices can reside on any machine in a data center, and the call is
done through the network. The IP address can change any time the pod is
rescheduled. Service registration is automatic in the Kubernetes environment. In
a VM or bare-metal environment, applications can register to a centralized
Consul service discovery, which is maintained as a key-value store.
Configuration: Monolithic applications have a centralized configuration, but
when microservices are built there is a need for a centralized configuration that
provides a consistent view of all the services. Consul, through its key-value store,
provides a central place in which configurations can be stored as a name/value
pair, which can be pushed down dynamically to the microservices.
Key-value store: This is a hierarchical key-value store for configuration data.
Network segmentation: For microservices, Consul provides network
segmentation to allow services to communicate securely in a flat zero-trust
network.

A Consul service mesh provides a very good integration of traditional and dynamic
infrastructures by way of service discovery, secure communication, network segmentation,
and a multi-data center approach.

Next, we will go through the Consul architecture to understand the core components that
will help us use Consul from an implementation standpoint.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[472]

The Consul architecture
Cloud-native applications require their workloads to be dynamically provisioned, so
network modifications cannot be made manually for one service (say, the frontend) to
connect to other services (say, the backend). The Consul architecture evolved differently
compared to Kubernetes service discovery. Kubernetes uses iptables to point service IP
addresses to the dynamic IP addresses of the pod, whereas Consul uses DNS for service
discovery. Consul's service discovery can work with Kubernetes by injecting its DNS as an
upstream server to the Kubernetes DNS. This architecture is mainly influenced by the
modern gossip protocol, which works across multiple data centers.

The architecture of Consul supports loose coupling of data centers so that connectivity
failures in a data center do not affect the availability of Consul in other data centers. With a
dedicated group of servers, each data center runs independently using a private LAN
gossip pool. Multiple data centers are connected with others using a WAN gossip pool.
This can be seen in the following diagram:

The key components that define the architecture for Consul are as follows:

Data center

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[473]

Client/server
Protocol management

We will take a look at each of these individually in upcoming sections.

Data center
Each machine in a data center should have a Consul agent running, which is a single Go
program that acts like a client and a server. Each data center should ideally have 3 or 5
Consul servers, but clients can number tens of thousands. Consul servers participate in read
and write operations using the consensus protocol, so their sizing is very important. Read
operations are limited by the number of cores, while write operations are limited by the
IOPS of the storage. For example, you may need 2 to 8 cores and 8 to 64 GB of RAM per
server, depending on the number of read and write operations you wish to perform.

Client/server
Consul agents take part in failure detection and consensus to agree that a failure has
occurred. Failure detection is done through periodic random probing. If a Consul agent in a
failed node does not provide an acknowledgment, the other Consul agents are asked to
probe the failed node. If no acknowledgment is received, the node is marked as suspicious,
but still remains a member of the cluster. The node is assumed dead if the suspicious node
does not dispute its status within a configurable time period. Once a node is assumed dead,
its status is gossiped to the entire cluster. HashiCorp has implemented modifications to the
failure detection protocol and has achieved 20% faster failure detection with a 20 times
reduction in false positives.

Consul servers maintain the cluster state through a distributed key-value store. Each data
center has a minimum of three servers, which form a RAFT peer set; one of the servers is
elected as a leader and writes to the key-value store. The other servers can only read, and
they delegate write operations to the leader. Transactions are also replicated to other peer
servers. All the agents take part in the LAN gossip pool within a data center.

Consul servers are the only ones that take part in the WAN gossip pool across multiple data
centers. The WAN gossip protocol is designed to work in a high-latency environment. Any
random server in a data center can receive requests from the different data centers, but it
forwards those requests to the local leader. The data is not replicated across Consul data
centers; instead, the information is exchanged through a request/response between Consul
servers across data centers.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[474]

Protocols
Consul uses modern protocols to quickly detect failures and significantly reduce false
positives. To achieve these objectives, it uses the following protocols:

RAFT protocol to elect a leader
Consensus protocol to replicate data from a leader server to its peers
Gossip protocol for failure detection

Let's go through these protocols to understand how the Consul cluster works.

RAFT
The RAFT protocol was designed by Diego Ongaro and John Ousterhout from Standford
University in 2014 – In Search of an Understandable Consensus Algorithm. It is a fairly new
protocol. The etcd (https:/ /etcd. io) protocol that's used in Kubernetes and CockroachDB
(https://github.com/ cockroachdb) is a good example of RAFT implementation along
with HashiCorp's Consul.

The RAFT protocol in Consul is used to elect a leader from three or five servers that run in a
data center. Every node using RAFT can have three states: leader, follower, and candidate.
Here, the following steps are taken:

Each node starts with a follower state with no leader.1.
After a timeout period, a node elevates itself to a candidate state and asks for2.
votes.
The node that gets the majority votes promotes itself to be the leader with a3.
message to all the other nodes.
Once a leader has been elected, all changes to the state of the cluster go through4.
the leader, which is responsible for state management.

Only Consul servers in a data center participate in RAFT and are part of a peer set. A
majority quorum within a peer set is required to agree to a committed state. The ideal
number of Consul servers is either 3 or 5. New servers can get added to the peer set to
increase the quorum size. When servers start for the first time, Consul adopts a practice
called bootstrap mode in which the first server elects itself as a leader. The other servers are
added to the peer set.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://etcd.io
https://etcd.io
https://etcd.io
https://etcd.io
https://etcd.io
https://etcd.io
https://etcd.io
https://github.com/cockroachdb
https://github.com/cockroachdb
https://github.com/cockroachdb
https://github.com/cockroachdb
https://github.com/cockroachdb
https://github.com/cockroachdb
https://github.com/cockroachdb
https://github.com/cockroachdb
https://github.com/cockroachdb

Understanding the Consul Service Mesh Chapter 19

[475]

Consensus protocol
Consul uses a consensus protocol to provide consistency of transactions, as defined by
the Consistency, Availability, and Partition (CAP) tolerance theorem. The CAP theorem
states that in a distributed system, we can achieve any two of the following qualities, but
not all three:

Consistency (C): Provides a single up-to-date copy of the data
Availability (A): High availability of data for updates
Partition (P): Tolerance to network partitions

Eric Brewer of the University of California presented CAP as a theory in
2000; it was proved by Seth Gilbert and Nancy Lynch of MIT in 2002.

Consul provides CP tolerance. Please refer to https:/ / www.consul. io/intro/ vs/serf.
html for more information.

The basic steps involved in transaction processing using CAP are as follows:

The Remote Procedure Call (RPC) of the reading query type is returned by the1.
leader.
When a log entry (or event) is received by a leader, it sends the log entry to its2.
followers (each server has one of three states: leader, follower, and candidate).
The followers send an OK message as an acknowledgment of a successful write.3.
The leader writes its entry and sends the commit state to followers while asking4.
to change their state to commit.
When it receives OK messages from followers, the leader changes its state to5.
commit.

Through consensus, the log entries are committed, and the Consistency part of the CAP
theorem is achieved. Consensus is fault-tolerant as long as a quorum is available.

Consul follows the bootstrap for each data center to reduce network latency. A local data
center server leader maintains separate peer sets to allow data to be partitioned by the data
center. This way, every server leader of a data center is responsible for maintaining the state
of its own data center. If a request is received for a remote data center, that request will be
forwarded to the correct leader. This framework is designed for higher performance, low-
latency transactions, and high availability of servers.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html
https://www.consul.io/intro/vs/serf.html

Understanding the Consul Service Mesh Chapter 19

[476]

Gossip protocol
In Consul, the gossip protocol is used to manage client and server communication through
message broadcasting between multiple data centers and within the same data center.

The gossip protocol in Consul is based on the Scalable Weakly-consistent Infection-style
Process Group Membership (SWIM) protocol that was developed by Cornell University.
Its implementation is done through a tool called Serf (https:/ /www. serf. io/ docs/
internals/gossip. html), which is based on a modified SWIM protocol that has been
enhanced by Hashicorp. This protocol is used to provide communication membership,
failure detection, and event broadcasting.

Gossip protocol communicates over UDP to build a membership list and to converge it as
soon as possible. TCP is used to exchange full details about nodes.

Consul uses two gossip protocols:

LAN gossip protocol
WAN gossip protocol

Within a data center, Consul agents enable the LAN gossip protocol across all servers and
clients. Its primary functions are as follows:

Allowing clients to discover servers automatically.
Distributing failure detection communication across the entire cluster
Enabling reliable and fast broadcasting for events such as the election of a new
leader

The WAN gossip protocol is deployed across all data centers. Only servers can take part in
WAN gossip, regardless of which data center it has been configured in. When all the
servers have been identified, the WAN gossip protocol does the following:

Allows servers to communicate with other servers across other data centers
Integrates failure detection, allowing the Consul agents to decommission servers
or isolate data centers
Uses embedded libraries in Consul

The purpose of this book is not to delve into the intricate working of the
RAFT, CAP and Gossip protocols. You can refer to the Further reading
section for more information.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html

Understanding the Consul Service Mesh Chapter 19

[477]

In this section, we have gone through the Consul tenants of a data center and client/server,
as well as the protocols that are used in Consul. In the next section, we will go through the
control and data plane concepts for the purpose of showing how Consul implements the
service mesh.

Consul's control and data planes
Consul is easy to understand and use. It is highly available and dynamically distributed.
This section will detail how Consul works as a service mesh and its architecture
components for the control plane and data plane.

Consul is configured as a control plane that provides four main functionalities: service
discovery, secure communication, resource configuration, and network segmentation.
These components are managed by a cluster manager (Consul server) to provide a robust
service mesh.

Consul provides a data plane through the use of a proxy and native integration model with
microservices. It is shipped with the popular sidecar Envoy (built by Lyft) proxy. This can
be seen in the following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[478]

The preceding diagram shows the Consul control and data planes. Some primary features
of Consul's control plane are as follows:

Consul can discover and register services by enabling service discovery through
API or database calls. Consul also enables service tracking through DNS or HTTP
protocols to identify application dependency. Users can also leverage Consul to
discover microservice providers and their end-to-end deployment definitions.
The Consul server (leader) writes to a key-value store to record the states of the
services, agents, clients, and servers. It can also hold configuration parameters for
individual services through the use of name-value pairs. The central
configuration can be pushed down to services dynamically, providing a
consistent view of all services as opposed to individual configurations for each
service.
Consul provides network segmentation, thereby allowing certain services to
communicate securely in a flat network.
Consul can conduct health checks for running services, validate whether the
server or client of the service side is routing traffic, and discover how many
network requests are being transmitted and received. Consul collects physical
node metrics to track CPU and memory utilization, along with other monitoring
data. This data is used to monitor overall applications, platforms, infrastructure
health, and performance. These metrics can also enable load balancing and traffic
routing to avoid unhealthy service containers/pods.
Microservices can access Consul's key-value store through REST API calls for
dynamic service configurations, feature flagging, network request coordination,
and so on.
Consul Connect can configure secure connections to services by assigning TLS
certificates for service-to-service communication. This will establish a mutual
TLS (mTLS) for services by assigning sidecar proxies and defining Intentions to
enable this communication.
Consul Intentions is a service that defines access control through Consul
Connect. Intentions are enforced by service-integrated sidecar proxies for
inbound connections. It can also manage network segmentation and apply real-
time changes to services.
Multi-data center are provided out of the box, and Consul supports multiple data
centers. This capability allows services and the Consul mesh to be scaled without
us having to define additional abstraction layers on the network.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[479]

When IP addresses change in a dynamic infrastructure environment, connecting to a
service through its IP address is no longer a reliable method unless DNS or iptables are
used to update endpoints dynamically. Consul provides service discovery within an
infrastructure in which applications can discover available services through the Consul
agent running on the node, which then forwards queries to Consul server in a data center.
Since Consul servers from one data center are connected to Consul servers in all the other
data centers through the WAN gossip protocol, local Consul servers can forward the
discovery request to the appropriate remote data centers.

Now, let's explore Consul's agent configuration.

Configuring agents
When Consul is installed, the very first task we need to perform is configuring the Consul
agent. All the nodes within a Kubernetes cluster manager that have containerized services
will deploy the Consul agent. The agent performs health checks and gathers metrics for the
infrastructure, platform, and overall services running within Kubernetes. The Consul agent
is not used for service discovery or to gather key-value data.

If there are multiple Kubernetes clusters, the Consul agent can be enabled to communicate
with multiple Consul servers as long as the agent is installed across all Kubernetes
clusters. The Consul server is where all the data is stored, and a primary server is defined to
serve as a master server.

The Consul agent is Consul's core feature and is used to maintain server/client
membership, service registry, health checks, address queries, and many more capabilities.
The Consul agent is installed on every node within a cluster or data center for all the
servers and clients. These nodes take part in the RAFT and Serf protocols.

It's good practice to deploy server nodes on dedicated machines to avoid high latencies and
slow response times. The reason for this is that servers have higher resource workloads
than client nodes. As we mentioned earlier, there are a lot more client nodes than servers
because client nodes are lightweight and only interact with the server.

We can use Consul CLI commands using configuration files either in the HashiCorp
Configuration Language (HCL) or the JavaScript Object Notation (JSON) format to spin
up a server or client node.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[480]

Take a look at the following example of a Consul configuration file, which has been taken
from https://www. consul. io/ docs/ agent/options. html#configuration- files:

{
 "datacenter": "remote-location",
 "data_dir": "/opt/consul",
 "log_level": "INFO",
 "node_name": "server1",
 "addresses": {
 "https": "0.0.0.0"
 },
 "ports": {
 "https": 8501
 },
 "key_file": "/etc/pki/tls/private/my.key",
 "cert_file": "/etc/pki/tls/certs/my.crt",
 "ca_file": "/etc/pki/tls/certs/ca-bundle.crt"
}

From the preceding JSON, we can see that a Consul server has been defined using TLS, the
address, ports, and key certificate files.

The consul agent command is used to manage nodes, run server checks, announce
services, apply queries, and much more.

The following is some sample output after executing the consul agent:

$ consul agent -data-dir=/opt/consul
==> Starting Consul agent...
==> Consul agent running!
 Node name: ‘MyLaptop'
 Datacenter: 'dc1'
 Server: false (bootstrap: false)
 Client Addr: 127.0.0.1 (HTTP: 8500, DNS: 8600)
 Cluster Addr: 192.168.108.141 (LAN: 8301, WAN: 8302)
==> Log data will now stream in as it occurs:
 [INFO] serf: EventMemberJoin: MyLaptop.local 192.168.108.141
...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files
https://www.consul.io/docs/agent/options.html#configuration-files

Understanding the Consul Service Mesh Chapter 19

[481]

The five main messages that the preceding Consul agent command displays are as follows:

Node name: This is the hostname of the machine where the Consul agent was
executed.
Data center: This tags where the Consul agent is configured to run. Consul can
support multiple data centers, but each node is configured to a specific data
center. The data center parameter is used to define that value. In the preceding
example, the Consul agent is running in a single node environment, so by
default, it assigns dc1 as the data center.
Server: Value determines whether the Consul agent is running in either client or
server mode. If the value is true, it is running in server mode. If it's false, then
it is running in client mode. A server can be running in bootstrap mode. Since
client nodes are stateless and rely on server nodes for state information, the
bootstrap process allows the initial server nodes to be tied to a cluster.
Client Addr: This is the localhost address that's used by the Consul agent for
client interfaces. It includes HTTP and DNS ports, where the address and port can
be changed as long as the -http-addr property is defined.
Cluster Addr: This is the cluster IP address and provides a defined list of ports
for the LAN and WAN protocols to enable communication between other Consul
agents. It is good practice to define unique ports for all the Consul agents.

Running the Consul agent in a cluster provides a life cycle of interactions among its nodes.
It's imperative to understand such interactions to see how a cluster manages its nodes.
When a Consul agent is first enabled, that agent isn't aware of any other nodes and their
interactions within the cluster. Node discovery, getting added to the cluster through the
join command, or enabling auto-join configuration enables such interactions. The first
interaction is a gossip, which notifies all the nodes within the cluster that a new node has
been added.

If a node is removed from a cluster, the cluster will define that node as left and update the
service catalog accordingly as not registered. If the Consul agent is a server, it will halt all
replications. The process of keeping the Consul service catalog up to date with only active
and running nodes and removing all failed and left nodes is called reaping. The reaping
process is configured at 72 hours and it is recommended to factor any cluster outages,
downtime, and so on.

Now that the Consul agents (client/servers) have been configured either through CLI
options or through JSON configuration files, we can look at the service discovery process
and the service catalog.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[482]

Service discovery and definitions
A service catalog contains all available nodes and their services running in a cluster. The
Consul agent registers the service definition details, availability, and health metrics using
the catalog.

Service configuration definitions are enabled by setting the -config-file option for the
Consul agent as either an HCL or JSON extension. Definitions can be updated through the
agent, and dynamic service registrations are made through REST API calls.

The following example configuration is a service definition that highlights high-level fields:

{
 "service": {
 "id": "redisuniquevalue",
 "name": "redis",
 "tags": ["primary"],
 "address": "",
 "meta": {
 "meta": "for my service"
 },
 "port": 8000,
 "enable_tag_override": false,
 "checks": [
 {
 "args": ["/usr/local/bin/check_redis.py"],
 "interval": "10s"
 }
],
 "kind": "connect-proxy",
...

The service definition configs must include a name and the following properties:

id: If a name is not provided, the id is set as the name. It is a recommended best
practice to define a unique ID for all the services within a node. This way, if any
names conflict with other services, the unique ID is exclusive to that service.
tags: These are values that are used to define node details, including primary or
secondary, node versions, service labels, and many other attributes.
address: This is the consul agent IP address that generates the service definition.
This property is optional and doesn't need to be specified.
meta: This is an ASCII semantic that can contain a maximum of 64 keys or value
characters with no special characters. If security or performance is enabled, keys
can be 128 chars, and values can be up to 512 chars.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[483]

port: Along with the IP address, this can facilitate service discovery.
enable_tag_override: This is an optional property that can be used to enable
or disable other Consul agents outside the service to update the service catalog
and definition tags. If the property is false, override is disabled.
checks: This is the health check property that's used to identify any failed or left
nodes. The use of this property is highly recommended and should be enabled
with the health check scripts.
kind: This property is optional, and its value will be a connect proxy. If the
service instance is a non-proxy, then this field is removed altogether.
connect: This property enables connected capabilities for the service.
native: This is either true or false and states whether connection parameters
are native.
sidecar_service: This property is the sidecar proxy service definition and
registration service. This property should not be defined if native is true.
weights: This is an optional property that is specific to a service weight for DNS
responses. If no values are defined, the default value for passing is 1, and the
warning is 1 if a service definition is critical or if there are warning checks.

HashiCorp also allows us to integrate Consul with Kubernetes. We will discuss this in the
next section.

Consul integration
Hashicorp's collection of tools, such as Terraform (provisioning), Vault (Security), Consul
(networking), and Nomad (Development), are alternatives to the Kubernetes
orchestration. Consul can work natively using these Hashicorp tools.

Consul has provided a service sync-up between the Kubernetes Service Catalog and Consul
since September 2018 to provide a cross-platform service discovery. It also migrates service
workloads in and out of Kubernetes with Consul. The service sync-up feature can be
enabled either through configuration files or through the Helm chart for Consul installation
in a Kubernetes environment. Once enabled, the Consul catalog will sync with
microservices deployed on Kubernetes, and it doesn't require any changes to be made to its
resource definitions. This process can confirm that the Consul catalog will have the latest
state of the Kubernetes cluster for its service definitions.

This concludes a brief introduction to the Consul control and data planes. Please refer
to https://consul. io/ docs for up-to-date and detailed information.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://consul.io/docs
https://consul.io/docs
https://consul.io/docs
https://consul.io/docs
https://consul.io/docs
https://consul.io/docs
https://consul.io/docs
https://consul.io/docs
https://consul.io/docs

Understanding the Consul Service Mesh Chapter 19

[484]

A service mesh is incomplete without observability features. We need these due to the
challenges of the distributed microservices architecture, especially for testing and
debugging. Next, we will cover monitoring and visualization support in Consul.

Monitoring and visualization
In Consul, metrics collection is available in different file formats. These metrics are used to
monitor and visualize the health and stability of services, servers, clients, and
communication protocols within a data center for every cluster and its designated nodes.

In this section, we will explore the monitoring and log collection method using
Telegraf and then visualize the data using Grafana.

Telegraf
Using the StatsD protocol, a plugin called Telegraf enables monitoring and metrics
collection in Consul. StatsD (https:/ /github. com/ statsd/ statsd) is a daemon
that summarizes and aggregates key application metrics.

Telegraf collects metrics about the specific host where the Consul agent is deployed and
running. The key attributes to collect are: CPU, memory, disk I/O, networking, and process
status.

To enable Telegraf's metrics collection, within the Consul agent configuration file the
following code needs to be added and enabled:

{
 "telemetry": {
 "dogstatsd_addr": "localhost:8125",
 "disable_hostname": true
 }
}

Note that, when Consul is deployed using a Helm chart in a Kubernetes environment, the
same feature can be enabled in values.yaml for the Consul connect section, as shown in
the following code:

connectInject:
 enabled: true
 default: true
 centralConfig:
 enabled: true

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd
https://github.com/statsd/statsd

Understanding the Consul Service Mesh Chapter 19

[485]

 defaultProtocol: "http"
 proxyDefaults: |
 {
 "envoy_dogstatsd_url": "udp://127.0.0.1:9125"
 }

dogstatsd_addr or envoy_dogstatsd_url is the host IP address and port name for
the statsd daemon. This property sends tags for each metric that can be leveraged by
Grafana to visualize, filter, and derive data insights on its dashboard.

Grafana
To visualize data, we can use Grafana. Go to https:/ /grafana. com/ grafana/ dashboards/
2351 to create a Grafana dashboard for Consul.

Now that we've looked at the visualization and monitoring features of Consul, we will look
at the native traffic management features that are implemented in Consul to provide an
out-of-band centrally managed configuration that can be executed through an Envoy proxy
in a Kubernetes environment.

Traffic management
The traffic management feature of Console was introduced with Consul 1.6.x in August
2019. This feature is brand new and evolving rapidly. Consul Connect version 1.6 or higher
provides traffic management features through L7 global configuration.

The basic components of traffic management are as follows:

Traffic Routing: Accomplished through service-router
Traffic Shifting: Accomplished through service-splitter and service-resolver

To provide seamless coordination of traffic management between VM (traditional)
environments and Kubernetes (modern - cloud-native) environments, Consul has
introduced the following four primitives akin to Kubernetes Custom Resource Definitions
(CRDs):

service-defaults and proxy-defaults
service-router

service-splitter

service-resolver

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351
https://grafana.com/grafana/dashboards/2351

Understanding the Consul Service Mesh Chapter 19

[486]

Service defaults
Take a look at the following configuration, which is used to define protocol and gateway
defaults for an existing service. These are identified through Name:

Kind = "service-defaults"
Name = "web"

Protocol = "http"

MeshGateway = {
 mode = "local"
}

The preceding configuration is valid for both Kubernetes and non-Kubernetes
environments. It is created automatically through the consul-connect-inject-
init init-container when a Consul sidecar Envoy proxy is injected when a deployment is
created. The following is an example of this:

Init Containers:
 consul-connect-inject-init:

...

 # Create the central config's service registration
 cat <<EOF >/consul/connect-inject/central-config.hcl
 kind = "service-defaults"
 name = "web"
 protocol = "http"
 MeshGateway = {
 mode = "local"
 }
 EOF
 /bin/consul config write -cas -modify-index 0 \
 /consul/connect-inject/central-config.hcl || true
...

However, for services running in a non-Kubernetes environment, service-defaults
needs to be created manually or needs to be part of some automation. One of the interesting
features of service-defaults is the use of the mesh gateway, which provides
configuration so that individual services to failover from one data center to another or
provide distributed services to act together through mutual TLS to provide a mesh of
services that can span multiple zones/regions and hybrid configurations.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[487]

proxy-defaults is used to provide defaults at the global level to enable the gateways for
all Consul services. This can be seen in the following code:

Kind = "proxy-defaults"
Name = "global"
MeshGateway {
 Mode = "local"
}

Remember that service defaults are configured automatically in a Kubernetes environment,
as shown through init-containers while deploying a sidecar proxy. However,
service-defaults need to be created manually for services in the VM environment.

Traffic routing
The following diagram shows how traffic routing works in Consul:

Let's assume that mysite.com hits the Ingress controller from outside and that the Ingress
rule forwards this traffic to the Kubernetes api.consul.svc.cluster.local service at
container port 8080. Through the use of proper annotation for Consul at the Kubernetes
deployment level, a virtual Consul service is created that will route traffic based upon the
path. If the path begins with /v1, the traffic is routed to the v1 deployment, and the /v2
path directs the traffic to the v2 deployment. However, there could be a Consul service that
points to a Linux systemd service that runs in a VM running an external service and can
receive the traffic if the path starts with /v3.

An example of traffic routing for path /v1 using service-router is as follows:

kind = "service-router"
name = "api"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[488]

routes = [
 {
 match {
 http {
 path_prefix = "/v1"
 }
 }
 destination {
 service = "api-v1"
 }
 },

We will cover the implementation details of service-routing in Chapter 22, Exploring
Traffic Management in Consul. Now, let's move on to traffic splitting.

Traffic split
Traffic splitting or traffic shifting in Consul is accomplished through service-
resolver and service-splitter. This can be seen in the following diagram:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[489]

service-resolver defines the subset based upon the metadata filter, which is defined in the
Kubernetes deployment through the use of annotations. service-splitter provides a
configuration that is weight-based to shift the traffic from the Consul virtual service to the
actual deployments, which are v1 and v2 in this case.

Implementing of these will be covered in detail in Chapter 22, Exploring Traffic Management
in Consul. Now, let's move on to the mesh gateway.

Mesh gateway
The role of the mesh gateway or cross-cluster gateway is very important as it provides a flat
network that we can use to connect multiple Consul clusters, regardless of their location in
a zero-trust network environment through mutual TLS.

This can be seen in the following diagram:

Two Consul servers are running in a Kubernetes environment and one Consul server is
running in a VM. server-2 is the leader in both data centers.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[490]

The mesh gateway works as follows:

The Consul web service receives traffic through the Ingress gateway from the1.
internet.
service-defaults for the api Consul service (residing on DC2) is defined using2.
the local mode of the mesh gateway.
service-resolver for api redirects the traffic to DC2.3.
When the web application invokes the api service, it goes through the mesh4.
gateway of DC1, and the service resolves to the api service on DC2.
The traffic is mTLS between two configured gateways and between services and5.
the mesh gateway.
The mesh gateway does not decrypt network traffic.6.

This concludes the mesh gateway, which is used to securely connect Consul clusters.

Summary
We started this chapter by understanding the Consul architecture and how it operates
using the WAN and LAN protocols between and within data centers. The control plane of
Consul comprises Consul servers and clients. Then, we explained automatic mTLS for
service discovery and encrypted communication between services.

Next, we looked at the Consul data plane, which uses Envoy sidecar proxies. The concepts
of traffic routing and shifting were explained. The Consul data plane, in conjunction with
the control plane, defines the Consul service mesh.

Now that we have looked at the fundamentals of Consul, in the next chapter we will install
Consul so that we can perform some hands-on exercises.

Questions
Consul does not have a centralized control plane. 1.
A. True
B. False

The Consul agent must run on all Kubernetes nodes.2.
A. True
B. False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Consul Service Mesh Chapter 19

[491]

Consul services can be viewed as North-South network traffic, whereas Ingress3.
gateways to multiple Kubernetes clusters can be treated as East-West network
traffic.
A. True
B. False

A mesh gateway decrypts network traffic between two gateways to determine4.
the destination service.
A. True
B. False

Consul service discovery is automatic in a Kubernetes environment.5.
A. True
B. False

Consul supports multiple data centers out of the box.6.
A. True
B. False

Further reading
Hashicorp/Consul, GitHub, 2019: https:/ /github. com/hashicorp/ consul

Gossip Protocol - Serf By Hashicorp, 2019: https:/ /www. serf. io/docs/
internals/ gossip. html

Consul Architecture - Consul By Hashicorp, Consul By Hashicorp, 2019: https:/ /
www.consul. io/ docs/ internals/ architecture. html

Consul Reference Architecture | Consul - Hashicorp Learn, Hashicorp Learn, 2019:
https:// learn. hashicorp. com/ consul/ datacenter- deploy/ reference-
architecture

Consensus Protocol - Consul By Hashicorp, Consul By Hashicorp, 2019: https:/ /
www.consul. io/ docs/ internals/ consensus. html

Gossip Protocol - Consul By Hashicorp, Consul By Hashicorp, 2019: https:/ /www.
consul.io/ docs/ internals/ gossip. html

Cs.Cornell.Edu, Das Abhinandan et al. 2019: https:/ / www.cs. cornell. edu/
projects/ Quicksilver/ public_ pdfs/ SWIM. pdf

Web.Stanford.Edu, Ongaro Diego, and John Ousterhout, 2019: https:/ /web.
stanford. edu/ ~ouster/ cgi- bin/ papers/ raft- atc14, accessed 19 Aug 2019

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.serf.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/architecture.html
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://learn.hashicorp.com/consul/datacenter-deploy/reference-architecture
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/consensus.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/gossip.html
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/SWIM.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14

Understanding the Consul Service Mesh Chapter 19

[492]

Perspectives on the CAP Theorem, Gilbert Seth, and Lynch Nancy: https:/ / groups.
csail.mit. edu/ tds/ papers/ Gilbert/ Brewer2. pdf, accessed 3 Oct 2019
Monitoring Consul With Telegraf | Consul - Hashicorp Learn, Hashicorp Learn, 2019:
https:// learn. hashicorp. com/ consul/ integrations/ telegraf

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf
https://learn.hashicorp.com/consul/integrations/telegraf

20
Installing Consul

Consul is very simple to install. It is a single Go binary that acts as a client and as well as a
server. You can include Consul by provisioning VMs or bare metal servers. We will use the
Consul Helm chart to show the installation process in a Kubernetes environment.

In this chapter, you will learn how to install the Consul agent in a VM and look at the
Consul installation procedure in a Kubernetes cluster. The Consul service mesh is very easy
to form in a Kubernetes environment using the Consul Connect feature, which enables
automatic injection of the sidecar proxy for existing and new applications. However, it is
slightly more complex to build the service mesh in a VM or bare-metal environments for
Consul.

In a nutshell, in this chapter, we will cover the following topics:

Installing Consul in a VM
Installing Consul in Kubernetes

Technical requirements
To complete the exercises in this chapter, you will need a VM and the Kubernetes
environment. We will continue to use the same environment that we used to learn about
Istio and Linkerd.

Check if the keepalived pods are showing READY 1/1 and that their STATUS is Running:

$ kubectl -n keepalived get pods

The keepalived load balancer was installed in Chapter 9, Installing Istio.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[494]

To follow the examples in this chapter, you need to clone the scripts from GitHub:

$ cd ~/ # Switch to home directory
$ git clone https://github.com/servicemeshbook/consul.git
$ cd consul
$ git checkout 1.6.1
$ cd scripts

Consul is open source and is maintained at https:/ /github. com/
hashicorp/ consul. Its home page is https:/ / www.consul. io and is
supported by Hashicorp.

Installing Consul in a VM
First, we will download and install Consul on the VM and then install it in Kubernetes. To
install Consul in a VM, follow these steps:

Visit the download site for Consul: https:/ /www. consul. io/ downloads. html.1.
To be consistent with the exercises in this book, download the v1.6.1. package for2.
Linux AMD64:

$ wget
https://releases.hashicorp.com/consul/1.6.1/consul_1.6.1_linux_amd6
4.zip

Note: Consul maintains its releases at https:/ /releases. hashicorp. com/
consul, where you can pick a particular version to work with. For this
book, we'll be using version 1.6.1.

Extract consul from the .zip archive and move it to a directory that's on PATH:3.

$ unzip consul_1.6.1_linux_amd64.zip
$ sudo mv consul /bin

This completes the installation.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://www.consul.io
https://www.consul.io
https://www.consul.io
https://www.consul.io
https://www.consul.io
https://www.consul.io
https://www.consul.io
https://www.consul.io
https://www.consul.io
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://www.consul.io/downloads.html
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul
https://releases.hashicorp.com/consul

Installing Consul Chapter 20

[495]

Check the version of Consul that's been installed:4.

$ consul version
Consul v1.6.1
Protocol 2 spoken by default, understands 2 to 3 (agent will
automatically use protocol >2 when speaking to compatible agents)

One of the best characteristics of Consul is that it can run in a heterogeneous environment
that spans multiple data centers. For example, if a data center is running hundreds of VMs
for service legacy applications, Consul can run as an agent on each VM to monitor their
health and the services running on the nodes.

Consul is available as a VM as well as in Kubernetes environments. The
Consul version we're using is 1.6.1. The same version of Consul is
available in the Kubernetes environment, but with a different version
number. For example, Consul Helm chart 0.9.1 is equivalent to Consul
1.6.1. Hashicorp may integrate both as a single release in the future, but
they are released separately as of now and can be updated independently
of each other.

Now, we have installed Consul in a VM. Since we are running Kubernetes in the same VM,
we will install Consul in Kubernetes.

Installing Consul in Kubernetes
Consul can run in each Kubernetes cluster as a server, a client, or both. If a data center has
combinations of applications in VMs and in Kubernetes, it is possible to place Consul
servers in a VM as well as in the Kubernetes environment. Similarly, the Consul agent
should run on every VM and on each Kubernetes node as a daemon set. Consul forms a
cluster automatically in a heterogeneous environment consisting of bare-metal machines,
VMs, and Kubernetes.

To install Consul in Kubernetes, we'll need persistent volumes so that Consul can store
cluster data in its key/value store. Let's create these first.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[496]

Creating persistent volumes
The following steps are a prerequisite to creating the persistent volume manually since we
are not using an enterprise storage provisioner such as IBM Spectrum Scale, NetApp, Dell
EMC, RedHat Ceph, or Portworx, which will create the persistent volume automatically
when a persistent volume claim is made. To create a persistent volume, follow these steps:

Create a Consul persistent volumes directory:1.

$ sudo mkdir -p /var/lib/consul{0,1,2}

Create a consul namespace:2.

$ kubectl create ns consul
namespace/consul created

Grant cluster_admin to the consul namespace:3.

$ kubectl create clusterrolebinding consul-role-binding --
clusterrole=cluster-admin --group=system:serviceaccounts:consul
clusterrolebinding.rbac.authorization.k8s.io/consul-role-binding
created

The following are the definitions of the no-provisioner storage class and the
persistent volumes that are provided by the 01-create-pv-consul.yaml script:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: consul-storage
provisioner: kubernetes.io/no-provisioner
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

Define the first physical volume:4.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: consul-data-0
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 2Gi
 claimRef:
 apiVersion: v1

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[497]

 kind: PersistentVolumeClaim
 name: data-consul-consul-consul-server-0
 namespace: consul
 local:
 path: /var/lib/consul0

The following portion of the 01-create-pv-consul.yaml script specifies the
node that the persistent volume will be created on:

nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - osc01.servicemesh.local
 persistentVolumeReclaimPolicy: Retain
 storageClassName: consul-storage

This is an example of a persistent volume claim. We'll do the same for the second
and third ones in the same script, that is, 01-create-pv-consul.yaml.

Create a storage class and three persistent volumes:5.

$ kubectl -n consul apply -f 01-create-pv-consul.yaml
storageclass.storage.k8s.io/consul-storage created
persistentvolume/consul-data-0 created
persistentvolume/consul-data-1 created
persistentvolume/consul-data-2 created

Now that we've created the persistent volumes, we can go ahead and download the Consul
Helm chart for installing Consul. We'll learn how to do this in the next section.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[498]

Downloading the Consul Helm chart
Hashicorp recommends installing Consul in Kubernetes through a Helm chart. Note that
this may change in the future as Kubernetes Operators are being used to install and
maintain the life cycle of the Kubernetes resources. To install Consul Helm for Kubernetes,
follow these steps:

Find the available versions of the Consul Helm for Kubernetes:1.

$ curl -L -s
https://api.github.com/repos/hashicorp/consul-helm/tags | grep
"name"

Here, we're going to use version 0.11.0. You should download this version so that2.
everything is consistent with the exercises in this chapter:

$ cd # switch to home dir
$ export CONSUL_HELM_VERSION=0.11.0
$ curl -LOs
https://github.com/hashicorp/consul-helm/archive/v${CONSUL_HELM_VER
SION}.tar.gz
$ tar xfz v${CONSUL_HELM_VERSION}.tar.gz

In the Helm chart for Consul, we need to modify3.
the failureThreshold and initialDelaySeconds parameters. Change the
default values of 2 and 5 seconds to 30 and 60 seconds, respectively. This was
necessary for the VMs since we are in a resource-constrained environment:

$ sed -i 's/failureThreshold:.*/failureThreshold: 30/g' \
~/consul-helm-${CONSUL_HELM_VERSION}/templates/server-
statefulset.yaml

$ sed -i 's/initialDelaySeconds:.*/initialDelaySeconds: 60/g' \
~/consul-helm-${CONSUL_HELM_VERSION}/templates/server-
statefulset.yaml

After making these changes, we can install Helm for Consul in Kubernetes.

Installing Consul
To install Consul, follow these steps:

Switch to the scripts directory for this chapter:1.

$ cd ~/consul/scripts # Switch to scripts for this exercise

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[499]

Create a new Consul cluster.2.

We will run three consul servers in our Kubernetes environment, even though we
only have one node. Define the input parameters for the Consul Helm chart to be
able to run three servers using a single node:

Script : 02-consul-values.yaml

global:
 datacenter: dc1
 image: "consul:1.6.1"
 imageK8S: "hashicorp/consul-k8s:0.9.1"

server:
 enabled: true
 replicas: 3
 bootstrapExpect: 0
 affinity: ''
 storage: 2Gi
 disruptionBudget:
 enabled: true
 maxUnavailable: 0

client:
 enabled: true
 grpc: true

dns:
 enabled: true

ui:
 enabled: true

The following portion of the 02-consul-values.yaml script specifies the
parameters for the Consul Connect sidecar proxy install:

connectInject:
 enabled: true
 imageEnvoy: "envoyproxy/envoy:v1.10.0"
 default: true
 centralConfig:
 enabled: true
 defaultProtocol: "http"
 proxyDefaults: |
 {
 "envoy_dogstatsd_url": "udp://127.0.0.1:9125"
 }

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[500]

If we need to sync services between Kubernetes and Consul, we could
define an additional parameter, syncCatalog, in the
preceding values.yaml file:

Sync Kubernetes and Consul services
syncCatalog:
 enabled: true

Note that a data center should only have three or five Consul servers, but there
can be hundreds of Consul agents. Using the preceding values.yaml file, we are
defining three Consul servers. An actual Kubernetes environment may have
hundreds of nodes, but only three or five of them will host Consul servers, and
the other nodes will be running Consul clients.

We are setting connectInject.enabled to true so that the Envoy proxy
sidecar is injected into each service when they are created.

Run the following helm install command to create the Consul cluster by3.
installing Consul servers, clients, and a Consul Connect injector service. The
Consul injector will be used to inject sidecar proxies into the pods:

$ helm install ~/consul-helm-${CONSUL_HELM_VERSION}/ --name consul \
--namespace consul --set fullnameOverride=consul -f ./02-consul-
values.yaml

Make sure that the persistent volume claims are bound to the persistent volume4.
that you created previously:

$ kubectl -n consul get pvc
NAME STATUS VOLUME ---
data-consul-consul-server-0 Bound consul-data-0 ---
data-consul-consul-server-1 Bound consul-data-1 ---
data-consul-consul-server-2 Bound consul-data-2 ---

--- CAPACITY ACCESS MODES STORAGECLASS AGE
--- 2Gi RWO 105s
--- 2Gi RWO 104s
--- 2Gi RWO 103s

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[501]

Since we are running a single node VM, it is difficult to run three replicas
of Kubernetes StatefulSet. In a production Kubernetes cluster, each replica
will run in a separate node. We have simulated the same by running three
replicas in a single VM by using setting the affinity variable to null in
the helm values.yaml file. We created three persistent volumes ahead of
time by using the filesystem through no provisioner storage class that was
introduced in Kubernetes 1.14. In an actual production Kubernetes
environment, you would use cloud-native storage for your storage
providers, such as portworx.io, robin.io, or rook.io, or any other
storage vendor that allows a Container Storage Interface (CSI)
enabled driver to connect to their dedicated storage.

Also, make sure that all Consul servers are in the READY 1/1 state and have a5.
status of Running:

$ kubectl -n consul get pods
NAME READY ---
consul-6frhx 1/1 ---
consul-connect-injector-webhook-deployment-699976587d-wrzcw 1/1 ---
consul-server-0 1/1 ---
consul-server-1 1/1 ---
consul-server-2 1/1 ---

--- STATUS RESTARTS AGE
--- Running 0 19m
--- Running 0 19m
--- Running 0 19m
--- Running 0 19m
--- Running 0 19m

Now, you have deployed Consul in a Kubernetes environment that's simulating three
consul servers in a single VM.

Both the Consul server and the client have been installed in your Kubernetes environment.
Let's check their deployments. The Consul servers are deployed through StatefulSet,
like so:

$ kubectl -n consul get sts
NAME READY AGE
consul-server 3/3 4h43m

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[502]

Note that the Consul server replicas were set to three in values.yaml,
and hence three consul servers are running. The persistent volumes were
created at the start of the install process.

Check ls -l /var/lib/consul? to verify the data that was generated by each Consul
server.

Each Consul server node ID is persisted in a node-id file. This won't cause an issue, even if
that server is rescheduled on another node and gets a new IP address. The Consul servers
are normally created with an anti-affinity rule so that they are placed on different nodes.
However, for this demonstration VM environment, we disabled the anti-affinity rule by
setting server.affinity to null in values.yaml so that we can create all the three
Consul servers on the same Kubernetes node.

Check the version of the Consul running in Kubernetes like so:1.

$ kubectl -n consul exec -it consul-server-0 -- consul version
Consul v1.6.1
Protocol 2 spoken by default, understands 2 to 3 (agent will
automatically use protocol >2 when speaking to compatible agents)

Out of the three Consul servers, go through the server log of any one of them to2.
ascertain which server is the leader:

$ kubectl -n consul logs consul-server-0 | grep -i leader
2019/08/26 15:50:52 [INFO] raft: Node at 192.168.230.233:8300
[Follower] entering Follower state (Leader: "")
2019/08/26 15:51:00 [ERR] agent: failed to sync remote state: No
cluster leader
2019/08/26 15:51:09 [INFO] consul: New leader elected: consul-
server-1

The Consul clients are installed as a DaemonSet so that they execute on every3.
Kubernetes node, like so:

$ kubectl -n consul get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
consul 1 1 1 1 1 <none> 4h59m

This shows the Consul client on the sole node of our demonstration environment.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[503]

If we set global.enabled to false and client.enabled to true in the
preceding values.yaml file, only the client components will be installed
in Kubernetes. It joins the existing cluster by setting the join property.
While installing this, it is also possible to join an existing Consul cluster.
Then, we can extend each Kubernetes node so that it joins the existing
Consul cluster by creating the value.yaml file like so:
global:
enabled: false
client:
enabled: true
join:
- "provider=my-cloud config=val ..."

Now, let's connect the Consul DNS server to Kubernetes.

Connecting Consul DNS to Kubernetes
Since Consul uses its own DNS, we will link the Consul DNS server as an upstream server
to the Kubernetes coredns server. Follow these steps:

Consul runs its own DNS for service discovery. Let's check it out:1.

$ kubectl -n consul get svc
NAME TYPE CLUSTER-IP ---
consul-connect-injector-svc ClusterIP 10.111.4.98 ---
consul-dns ClusterIP 10.99.221.20 ---
consul-server ClusterIP None ---
consul-ui ClusterIP 10.110.177.68 ---

--- EXTERNAL-IP PORT(S) AGE
--- <none> 443/TCP 22m
--- <none> 53/TCP,53/UDP 22m
--- <none> 8500/TCP,8301/TCP,8301/UDP,8302/TCP,8302/UDP,
 8300/TCP,8600/TCP,8600/UDP 22m
--- <none> 80/TCP 22m

We need to connect the consul-dns service to the Kubernetes DNS.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[504]

Let's take a look at the 03-create-coredns-configmap.sh script, which
modifies the original coredns config map by adding the IP address of consul-
dns as a reverse proxy so that Kubernetes; coredns server adds the Consul DNS
server to its configuration:

#!/bin/bash

echo create coredns config map to integrate consul dns with ICP
coredns

cat << EOF | kubectl apply -f -
apiVersion: v1
kind: ConfigMap
metadata:
 labels:
 addonmanager.kubernetes.io/mode: EnsureExists
 name: coredns
 namespace: kube-system
data:
 Corefile: |
 ...
 consul {
 errors
 cache 30
 proxy . $(kubectl -n consul get svc consul-dns -o
jsonpath='{.spec.clusterIP}')
 }
EOF

By using Consul discovery through its own DNS server, the Kubernetes
environment is also modified to use the Consul DNS server. This is an
integration point in which Kubernetes also has visibility to the services
running outside its own cluster through the Consul service discovery.

Run the 03-create-coredns-configmap.sh script:2.

$ chmod +x 03-create-coredns-configmap.sh

$./03-create-coredns-configmap.sh
create coredns config map to integrate consul dns with ICP coredns
configmap/coredns created

By executing the preceding script, we have modified the coredns of Kubernetes to include
Consul DNS for service discovery. You can check the consul DNS server that we added to
the coredns config map by running kubectl -n kube-system get cm coredns -o
yaml.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[505]

Consul server in a VM
One of the beneficial features of Consul is that you can have a hybrid service mesh that can
span multiple data centers, Kubernetes clusters, VMs, or just bare-metal servers.

Though it does not serve any useful purpose in a single node, we will use consul at the VM
level and join the Kubernetes cluster, which is running three servers, just as a
demonstration to show the Consul method of service discovery and spanning multiple
heterogeneous environments. In our demonstration environment, which is running on a
single VM node, we'll simulate a VM and a Kubernetes cluster running three Consul
servers. Let's get started:

Find out the endpoints for consul-server:1.

$ kubectl -n consul get ep
NAME ENDPOINTS AGE
consul-connect-injector-svc 192.168.230.218:8080 47m
consul-dns 192.168.230.219:8600,
 192.168.230.237:8600,
 192.168.230.245:8600 + 5 more... 47m
consul-server 192.168.230.219:8301,
 192.168.230.237:8301,
 192.168.230.245:8301 + 21 more... 47m
consul-ui 192.168.230.219:8500,
 192.168.230.237:8500,
 192.168.230.245:8500 47m

Note that + 5 more or 21 more in the preceding output is an indication of
the additional output that we can see by using the kubectl -n consul
describe ep consul-server command. The endpoint IP addresses
may be different in your case.

The Kubernetes consul-server service points to three Consul pods. Kubernetes
will do the load balancing for us. The Fully Qualified Domain Name of this
service name is consul-server.consul.svc.cluster.local. The preceding
service name should resolve to the cluster pod addresses in a round-robin
fashion.

Note that the request for the read and write for the Consul server can be routed to
any server in a round-robin fashion. The AnyConsul server can fulfill the read
operation, but all writes are forwarded to the leader server. The leader writes the
information in a distributed key-value store to maintain the state of the cluster.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[506]

Let's assume that you have VMs running on other machines and you want to join
those VMs to the Consul cluster. To do this, you need to create an ingress rule
that will forward an external domain name (say, consul.example.com) to
the consul-server.consul.svc.cluster.local service. At the VM level,
you can run a command such as a consul join <name of the consul server>.
The Consul server can run in VMs, bare-metal servers or, as in our example, in the
Kubernetes clusters.

Now, query the node names using the REST API:2.

$ curl -s localhost:8500/v1/catalog/nodes | json_reformat
[
 {
 "ID": "1a36a121-9810-887f-78e0-30721fab90c5",
 "Node": "consul-server-0",
 "Address": "192.168.230.219",
 "Datacenter": "dc1",
 "TaggedAddresses": {
 "lan": "192.168.230.219",
 "wan": "192.168.230.219"
 },
 "Meta": {
 "consul-network-segment": ""
 },
 "CreateIndex": 12,
 "ModifyIndex": 14
 },
...

Check the members of the Consul cluster from inside one of the Kubernetes3.
Consul pods:

$ kubectl -n consul exec -it consul-server-0 -- consul members
Node Address Status Type ---
consul-server-0 192.168.230.219:8301 alive server ---
consul-server-1 192.168.230.245:8301 alive server ---
consul-server-2 192.168.230.237:8301 alive server ---
osc01.servicemesh.local 192.168.230.249:8301 alive client ---

--- Build Protocol DC Segment
--- 1.6.1 2 dc1 <all>
--- 1.6.1 2 dc1 <all>
--- 1.6.1 2 dc1 <all>
--- 1.6.1 2 dc1 <default>

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[507]

Check the same from the VM:4.

$ consul members
Node Address Status Type ---
consul-server-0 192.168.230.219:8301 alive server ---
consul-server-1 192.168.230.245:8301 alive server ---
consul-server-2 192.168.230.237:8301 alive server ---
osc01.servicemesh.local 192.168.230.249:8301 alive client ---

--- Build Protocol DC Segment
--- 1.6.1 2 dc1 <all>
--- 1.6.1 2 dc1 <all>
--- 1.6.1 2 dc1 <all>
--- 1.6.1 2 dc1 <default>

Note that the list of Consul members includes Kubernetes nodes as well as the
VMs that are running the Consul agent.

Use the consul info command to find out about the configuration information5.
of the Consul cluster from inside one of the Consul servers in the Kubernetes
environment:

$ kubectl -n consul exec -it consul-server-0 -- consul info
agent:
 check_monitors = 0
 check_ttls = 0
 checks = 0
 services = 0
build:
 prerelease =
 revision = 34eff659
 version = 1.6.1
consul:
 acl = disabled
 bootstrap = false
 known_datacenters = 1
 leader = false
 leader_addr = 10.1.230.238:8300
 server = true
raft:
 applied_index = 8267
 commit_index = 8267
 fsm_pending = 0
 last_contact = 85.424007ms
 last_log_index = 8267
 last_log_term = 403
 last_snapshot_index = 0
...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing Consul Chapter 20

[508]

The preceding output shows information about various Consul server components, such as
their LAN, WAN gossip, and raft protocol, as well as their metrics. The consul info
command can also be executed from the VM and will produce the same output.

Consul provides an HTTP API for the consul info command and other
commands. Please refer to https:/ /www. consul. io/ api for details about
HTTP APIs.

Summary
In this chapter, we explored how to install Consul in a heterogeneous environment such as
a VM (or bare metal) and Kubernetes clusters. You also discovered that the Consul install
can be done from GitHub for VMs and use the Helm chart for Kubernetes. Consul
integration with VMs and legacy systems make it easy to have a hybrid service mesh
spanning multiple Kubernetes clusters, VMs, bare-metal machines, and even data centers.

The Consul way of discovering services not only in the Kubernetes cluster but from other
heterogeneous environments as well, was integrated by registering the Consul DNS server
as one of the servers in the Kubernetes CoreDNS for the discovery of the services from
outside of the Kubernetes cluster. Now, you should feel comfortable with applying the
knowledge you gained in this chapter in order to build a Consul cluster consisting of a
heterogeneous environment. Using this, you can build a Consul service mesh for new and
existing Kubernetes cloud-native applications.

In the next chapter, we will explore the capabilities of the Consul service mesh by going
through the service discovery process.

Questions
The Consul service mesh works across heterogeneous environments and data1.
centers across different regions.

A) True
B) False

In a Consul cluster, the Consul servers can be in Kubernetes or in VMs.2.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api

Installing Consul Chapter 20

[509]

Consul members can't join the existing Consul cluster from a VM or Kubernetes. 3.

A) True
B) False

Consul servers can span multiple data centers.4.

A) True
B) False

Kubernetes can send write requests to any Consul server, but only the lead5.
Consul server writes that information to the distributed key-value store.

A) True
B) False

Consul extends Kubernetes' key-value database store, etcd, to maintain the state6.
of Consul clusters.

A) True
B) False

Further reading
Consul Curriculum – HashiCorp Learn, HashiCorp Learn, (2018), available
at https:/ /learn. hashicorp. com/ consul/ , accessed May 11, 2019.
Introduction to HashiCorp Consul Connect with Kubernetes, Huysmans, C. (2019),
available at https:/ / medium. com/ hashicorp- engineering/ introduction- to-
hashicorp- consul- connect- with- kubernetes- d7393f798e9d, accessed May 12,
2019.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d

21
Exploring the Service Discovery

Features of Consul
One of the most powerful features of Consul is that you can build a service mesh using a
heterogeneous environment spanning multiple data centers. In this chapter, we will cover
Consul Connect and use this method to form a service registration process with sidecar
proxy injection in a Kubernetes environment. Consul also allows us to perform this in
a non-Kubernetes environment, such as a workload running in a VM. However, since we
are only focusing on cloud-native workloads in a Kubernetes environment, it is outside the
scope of this book to cover Consul's service mesh extension for legacy workloads.

First, we will install a demo application and then perform some hands-on exercises in order
to explore the features of Consul Connect from a service discovery standpoint.

To understand Consul's service discovery features, we will focus on the following topics in
this chapter:

Installing a Consul demo application
Discovering the native Consul dashboard
Learning about service discovery and its intentions
Implementing mutual TLS
Exploring the Consul key-value store
Securing Consul with ACL
Monitoring and metrics
Registering external services

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[511]

Technical requirements
In order to complete the exercises in this chapter, you need to install Consul on your VM
and Kubernetes environment, as detailed in the previous chapter. Once you have installed
Consul, you can follow the exercises in this chapter.

We are only focusing on running Consul in a Kubernetes environment.
Refer to https:/ /github. com/ hashicorp/ demo- consul- 101 to get hands-
on with Consul Connect while using non-Kubernetes workloads.

Installing a Consul demo application
To explore the service mesh capabilities of Consul through a Kubernetes environment, we
will install a demo application that is available from Hashicorp. This demo uses two simple
services: a counting service and a frontend web UI service (connects to the counting service
to show the results). Let's get started:

Let's take a look at the counting pod definition, which shows counting and1.
a counting-init container:

Counting pod

apiVersion: v1
kind: Pod
metadata:
 name: counting
 annotations:
 "consul.hashicorp.com/connect-inject": "true"
spec:
 containers:
 - name: counting
 image: hashicorp/counting-service:0.0.2
 ports:
 - containerPort: 9001
 name: http
 initContainers:
 - name: counting-init
 image: hashicorp/counting-init:0.0.9
 env:
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101
https://github.com/hashicorp/demo-consul-101

Exploring the Service Discovery Features of Consul Chapter 21

[512]

 - name: HOST_IP
 valueFrom:
 fieldRef:
 fieldPath: status.hostIP

The consul.hashicorp.com/connect-inject annotation, when set to
true, will inject a sidecar proxy into the pod through the admission webhook
controller. The counting service endpoint's REST URL is at port 9001.

Now, let's take a look at the front end dashboard service using a dashboard2.
container and its init container:

Dashboard pod

apiVersion: v1
kind: Pod
metadata:
 name: dashboard
 labels:
 app: dashboard
 annotations:
 "consul.hashicorp.com/connect-inject": "true"
 "consul.hashicorp.com/connect-service-upstreams":
"counting:9001"
spec:
 containers:
 - name: dashboard
 image: hashicorp/dashboard-service:0.0.4
 ports:
 - containerPort: 9002
 name: http
 env:
 - name: COUNTING_SERVICE_URL
 value: "http://localhost:9001"

The preceding code is for the frontend dashboard pod. The following snippet
shows the init container:

 initContainers:
 - name: dashboard-init
 image: hashicorp/dashboard-init:0.0.4
 env:
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: HOST_IP

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[513]

 valueFrom:
 fieldRef:
 fieldPath: status.hostIP

The consul.hashicorp.com/connect-inject annotation, when set
to true, will inject a sidecar proxy into this frontend GUI. The new
annotation, consul.hashicorp.com/connect-service-upstreams, in the
dashboard pod defines the upstream counting microservice that provides a REST
API endpoint at port 9001. For the dashboard service to connect to counting, it
is necessary for the Consul DNS to be connected to the Kubernetes DNS.

The dashboard service provides a hook for the counting service through
the COUNTING_SERVICE_URL environment variable. The dashboard service web
UI is exposed at port 9002.

The following Kubernetes service will provide an endpoint to the dashboard3.
microservice at its internal port, that is, 9002:

Define service

apiVersion: v1
kind: Service
metadata:
 name: dashboard-service
 labels:
 app: dashboard
spec:
 ports:
 - protocol: "TCP"
 port: 80
 targetPort: 9002
 selector:
 app: dashboard
 type: NodePort

Let's create backend counting and frontend dashboard services:4.

$ kubectl -n consul apply -f 04-counting-demo.yaml
pod/counting created
pod/dashboard created
service/dashboard-service created

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[514]

Check the counting and dashboard pods and take a look at the injected sidecar5.
proxies in them:

$ kubectl -n consul get pods
NAME READY ---
consul-9tkg9 1/1 ---
consul-connect-injector-webhook-deployment-699976587d-n9qmp 1/1 ---
consul-server-0 1/1 ---
consul-server-1 1/1 ---
consul-server-2 1/1 ---
consul-sync-catalog-8444f97fc6-ptfwg 1/1 ---
counting 2/2 ---
dashboard 2/2 ---

--- STATUS RESTARTS AGE
--- Running 1 19m
--- Running 0 19m
--- Running 0 19m
--- Running 0 19m
--- Running 0 19m
--- Running 1 19m
--- Running 0 10s
--- Running 0 10s

Describe one of the microservices and check the injected sidecar proxy:6.

$ kubectl -n consul describe pod counting
 ...
Containers:
 counting:
 ...
 Image: hashicorp/counting-service:0.0.2
 ...
 Port: 9001/TCP
 Host Port: 0/TCP
 State: Running
 Started: Mon, 26 Aug 2019 10:21:40 -0400
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-
token-bq5xd (ro)
 consul-connect-envoy-sidecar:
 ...
 Image: envoyproxy/envoy-alpine:v1.9.1
 ...
 Port: <none>

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[515]

 Host Port: <none>
 Command:
 envoy
 --config-path
 /consul/connect-inject/envoy-bootstrap.yaml
 State: Running
 Started: Mon, 26 Aug 2019 10:21:40 -0400
 Ready: True
 Restart Count: 0
 Environment:
 HOST_IP: (v1:status.hostIP)
 ...

By doing this, we have deployed the counting and dashboard services from HashiCorp
to explain the service discovery features of Consul. Next, we will create an Ingress entry so
that we can access the Consul dashboard.

Defining Ingress for the Consul dashboard
Even without using Ingress, it is possible to use NodePort to access the dashboard from
within the VM. However, we will create an optional Ingress entry for the Consul dashboard
so that this can be accessed from outside the Kubernetes cluster. Follow these steps:

Add an entry in /etc/hosts in the VM for the Consul Web UI1.
called webconsole.consul.local that points to the Nginx Ingress controller:

$ export INGRESS_HOST=$(kubectl -n kube-system get service nginx-
controller \
-o jsonpath='{.status.loadBalancer.ingress..ip}') ; echo $INGRESS_HOST
192.168.142.249

$ sudo sed -i '/webconsole.consul.local/d' /etc/hosts

$ echo "$INGRESS_HOST webconsole.consul.local" | sudo tee -a /etc/hosts

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[516]

The following is the definition of the Ingress entry for
the webconsole.consul.local hostname so that it points to consul-ui:

Script : 05-create-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: webconsole
 namespace: consul
 annotations:
 ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: webconsole.consul.local
 http:
 paths:
 - backend:
 serviceName: consul-ui
 servicePort: 80
 path: /

Create Ingress definitions for the service:2.

$ kubectl apply -f 05-create-ingress.yaml
ingress.extensions/webconsole created

The preceding Ingress definitions will route traffic coming from the external
webconsole.consul.local host to the internal consul-ui service at port 80 running in
the Consul namespace to provide access to the Consul control plane web UI.

So far, we have installed the demo application, which is comprised of two
services: counting and dashboard. Then, we used Ingress to allow external traffic to be
routed to the demo application. Next, we will go through the service discovery features of
Consul.

Service discovery
The service discovery process in Consul is integrated with health checks, DNS, and HTTP
interfaces. The Consul agent registers the service by adding an entry to the key-value store.
When service discovery information is available in the Consul key-value store, that service
can be discovered by other services.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[517]

In Consul, the process of service discovery uses a registry to keep a real-time list of services,
their health, and their location information. It has the ability to find the location of
upstream services so that the connection to it is transparent without a need for an external
load balancer. However, a load balancer may be required for Ingress traffic coming to the
service mesh from outside.

Consul has two approaches to service discovery, as follows:

Sidecar proxy: Consul connects services to each other by using sidecar proxies to
form a service mesh to automatically establish TLS for inbound and outbound
connections. Due to its ability to connect services to each other, it is also referred
to as Consul Connect. The use of Envoy sidecar proxies makes this feature
language-agnostic.
Native integration: Consul allows non-Kubernetes applications to integrate with
the help of the Connect API to establish TLS for inbound and outbound
connections without the overhead of a sidecar proxy. This process involves
acquiring proper TLS certificates and authorizing inbound connections with the
use of the Consul HTTP API, which allows us to get proper certificates and verify
connections.

At the time of writing, the native integration feature is only available for the Go
programming language (please refer to https:/ / www.consul. io/api for more information).
Due to this, we'll be looking at the sidecar proxy approach:

Find out the node port for the demo application's dashboard-service:1.

$ kubectl -n consul get svc dashboard-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dashboard-service NodePort 10.111.225.214 <none> 80:30144/TCP 5h28m

Take note of the node port number from the preceding command. It is 30144.2.
Use this to open http://192.168.142.101:30144 in the first tab of the
browser. Note that the port number of dashboard-service may be different in
your VM environment.
The counting dashboard will show an increasing counter being returned from the3.
backend counting service. If the backend service is in a disconnected state, it will
show -1:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api
https://www.consul.io/api

Exploring the Service Discovery Features of Consul Chapter 21

[518]

We just demonstrated a simple web application that is successfully calling an upstream
service. Next, we will look at the various aspects of the Consul service from the Consul web
console.

Using the Consul web console
The Consul web console is the GUI representation of Consul primitives such as services,
nodes, and intentions. Let's take a look at it:

Open a tab in your browser and open http://webconsole.consul.local to1.
get a view of the services that have been discovered by Consul. You will see the
total number of services that have been discovered and their health statuses:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[519]

Note that the Consul dashboard displays sidecar proxies as separate
services, even for a Kubernetes environment.

Click on the consul service. The Consul dashboard will show the status of the2.
three consul servers running in a Kubernetes cluster:

Click Nodes. The Consul dashboard shows four healthy nodes. consul-3.
server-0|1|2 which are Consul servers in Kubernetes, while
osc01.servicemesh.local is the VM. Now, click
on osc01.servicemesh.local:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[520]

Here, we can see the REST endpoint result for the service health status.

Click Round Trip Time:4.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[521]

Notice the minimum, median, and maximum round trip time for the services as a5.
whole. These metrics are captured by Consul:

The Consul dashboard is a simple GUI that we can use to take a look at the services in
Kubernetes environments, the health status of the nodes, the services running in nodes, and
so on.

The discovered and registered services can be queried through the command line, as well.
For example, run the following command to list the services that have been registered with
Consul:

$ consul config list -kind service-defaults
counting
dashboard

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[522]

So far in this chapter, we've used the Consul web dashboard and command line to discover
the services that are running in the Kubernetes cluster. Since we installed the demo
application, which is comprised of two services (counting and dashboard), the health
status and details could be viewed through the Consul dashboard. Next, we will go
through the mutual TLS implementation between services.

Implementing mutual TLS
The communication between services is encrypted through sidecar proxies using mutual
TLS. Each service is provided an identity through the SPIFFE X.509 certificate (please refer
to Chapter 5, Service Mesh Interface and SPIFFE, for a discussion on SPIFFE). Since the
services are not tied to fixed IP addresses, the SPIFFE-based identity can be used to connect
and accept requests between SPIFFE-compliant services.

Consul has a built-in Certificate Authority, through which it assigns leaf certificates to
sidecar proxies. These sidecar proxies can be configured for upstream configuration to
specify alternate data centers that services can access for high availability. The CA
federation can be enabled between multiple data centers. The CA federation helps the
alternate data center to continue issuing leaf SPIFFE X509 certificates in the case of WAN
disruptions. The root key rotation and the signing of CSR for an intermediate certificate can
be performed by any data center. Mutual TLS provides security in a zero-trust network
through in-transit encryption and authorization.

In this section, we will explore the mutual TLS implementation that happens automatically
through the Consul Connect service mesh. Developers do not have to write a single line of
code to enable encrypted communication between services. This allows services to run
securely in a zero-trust network environment without the use of a dedicated VPN. To
implement mTLS, follow these steps:

Check the log of the sidecar proxy for TLS. By doing this, you will see tls shown1.
against every communication:

$ kubectl -n consul logs counting -c consul-connect-envoy-sidecar |
grep tls
[2019-12-23 16:29:53.442][1][info][main]
[source/server/server.cc:215] filters.listener:
envoy.listener.original_dst,envoy.listener.original_src,envoy.liste
ner.proxy_protocol,envoy.listener.tls_inspector
[2019-12-23 16:29:53.442][1][info][main]
[source/server/server.cc:225] transport_sockets.downstream:
envoy.transport_sockets.alts,envoy.transport_sockets.tap,raw_buffer
,tls

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[523]

[2019-12-23 16:29:53.442][1][info][main]
[source/server/server.cc:228] transport_sockets.upstream:
envoy.transport_sockets.alts,envoy.transport_sockets.tap,raw_buffer
,tls

By default, the time to live of the leaf certificates is 72 hours:2.

$ curl -s
http://consul-server.consul.svc.cluster.local:8500/v1/connect/ca/co
nfiguration | json_reformat
{
 "Config": {
 "LeafCertTTL": "72h",
 "RotationPeriod": "2160h"
 },
 "CreateIndex": 6,
 "ModifyIndex": 6,
 "Provider": "consul"
}

Consul automatically rotates the root certificate. Please refer to https:/ /www.
consul.io/ docs/ connect/ ca. html for more details about root certificate
rotations. The /connect/ca REST API endpoints can be used to manage Consul
Connect certificate authorities such as updating CA configuration, changing CA
provider, and bootstrapping with your own private CA for key and root
certificates.

The root certificates can be viewed using the following REST API call:3.

$ curl -s
http://consul-server.consul.svc.cluster.local:8500/v1/connect/ca/ro
ots | json_reformat
{
 "ActiveRootID":
"1f:9a:35:33:2f:c0:fe:d3:c1:10:f0:16:2d:88:b6:69:2d:33:9d:4a",
 "Roots": [
 {
 "Active": true,
 "CreateIndex": 9,
 "ExternalTrustDomain": "2e672591-
fd0d-2538-9eb5-13763ebaf74a",
 "ID":
"1f:9a:35:33:2f:c0:fe:d3:c1:10:f0:16:2d:88:b6:69:2d:33:9d:4a",
 "IntermediateCerts": null,
 "ModifyIndex": 9,
 "Name": "Consul CA Root Cert",
 "NotAfter": "2029-08-27T01:00:28Z",

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html
https://www.consul.io/docs/connect/ca.html

Exploring the Service Discovery Features of Consul Chapter 21

[524]

 "NotBefore": "2019-08-27T01:00:28Z",
 "PrivateKeyBits": 0,
 "PrivateKeyType": "",

...

From this, it should be clear that nothing needs to be done to enable mutual TLS between
services in Consul, since the process is fully automated. Consul uses SPIFFE-based X.509
leaf certificates, which makes it simple to connect to a remote service through a strong
identity. However, we should be aware that it is the responsibility of the user to enable
encryption from the Ingress controller (on the edge of the service mesh) to the first service
connected to another service. Also, it is the responsibility of the user to enable TLS
termination at the Ingress gateway for the external traffic. The preceding discussion points
out the capability of the Consul Connect service mesh to enable mTLS for polyglot
microservices using Envoy sidecar proxies.

Envoy sidecar proxy configuration is not trivial. Service meshes such as Istio and Consul
hide this complexity and automatically configure the sidecar proxies for the Kubernetes
environments. It is important to note that Consul allows the same for non-Kubernetes
workloads. Note that this capability is only available for Go applications at the time of
writing this book.

Next, we will explore the authorization features of Consul and how they are implemented
to control access to services.

Exploring intentions
Intentions are access controls in Consul that are used to define accessibility to various
services. Intentions can be defined either through a UI, CLI, or through REST API calls.
Once the intentions have been defined, they are enforced by the sidecar proxies to allow or
disallow connections between services. For example, you may want to restrict access to the
database backend services, but only for the services that have legitimate access
requirements. This prevents unauthorized access to a service.

Intentions, once defined, can be replicated across data centers, and they are cached locally
so that inbound connections can be allowed if there is a disruption in a service that stops
reaching the Consul service.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[525]

Let's learn how to create an intention so that we can allow connections from the dashboard
to the counting service:

Click Intentions on the top menu bar of the Consul dashboard. Click Create to1.
define rules for the connections:

We will create a deny rule for all the source and destination services. Select All2.
Services for the source and destination, check Deny, and click Save:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[526]

It may take a few seconds for a new rule to propagate. Switch to the demo3.
application tab. The dashboard of the demo application should show Counting
Service is Unreachable:

After switching to the Consul dashboard tab, click Create for an allow rule for4.
the dashboard service to connect to the counting service, as shown in the
following screenshot:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[527]

Switch to the dashboard of the demo application tab. The counting service5.
should now be available for the dashboard, but it should remain unavailable for
any other service. Note that this is accomplished without writing any code:

We just saw the use of intentions to provide access control to services. Now, we
will delete the intentions rules that we created previously.

Switch back to the Consul dashboard (webconsole.consul.local). Navigate6.
to Intentions and delete both rules.
Click the three horizontal dots against each intention and delete both services.7.

The purpose of intentions is to create a blacklist and whitelist of the services. Note that it is
good practice to deny access from all and then allow access by whitelisting the required
services, as shown in this section. From a security standpoint, this is an important feature
for blocking access to services that a user does not have any legitimate need to access.

Next, we'll learn about Consul's key/value store, which stores the service mesh
configuration.

Exploring the Consul key-value store
Consul's key-value store is a persistent layer that allows users to store configuration
parameters and the metadata of services within a data center. The Consul Replicate
(https://github.com/ hashicorp/ consul- replicate) tool can be used to perform cross-
data center K/V asynchronous replication.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate
https://github.com/hashicorp/consul-replicate

Exploring the Service Discovery Features of Consul Chapter 21

[528]

Consul's kv command is used to interact with the Consul K/V store via the command line
to insert, update, and delete operations. The K/V store is also accessible through the HTTP
API. The key-value can be monitored through watches, which can invoke handlers to take a
specific action.

Let's go through an example of how to store key-values:

We need to use a command-line tool to store values in a key-value store. Note1.
that the keys are stored by separating its path components with a forward slash.
This represents a tree structure, which can be queried using a REST API:

$ consul kv put redis/config/minconns 1
Success! Data written to: redis/config/minconns

$ consul kv put redis/config/maxconns 25
Success! Data written to: redis/config/maxconns

$ consul kv put redis/config/users/admin password
Success! Data written to: redis/config/users/admin

Extract the key from the store, along with any other metadata:2.

$ consul kv get --detailed redis/config/minconns
CreateIndex 7904
Flags 0
Key redis/config/minconns
LockIndex 0
ModifyIndex 7904
Session -
Value 1

Get all the values from the key-value store recursively:3.

$ consul kv get -recurse
redis/config/maxconns:25
redis/config/minconns:1
redis/config/users/admin:password

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[529]

The keys can also be obtained using the REST API. Note that the value is base644.
encoded:

$ curl -s http://localhost:8500/v1/kv/redis/config/minconns |
json_reformat
[
 {
 "LockIndex": 0,
 "Key": "redis/config/minconns",
 "Flags": 0,
 "Value": "MQ==",
 "CreateIndex": 1923,
 "ModifyIndex": 1923
 }
]

Consul also provides atomic key updates using check-in set operations and many other
capabilities. Please refer to the Consul documentation for more information: https:/ /www.
consul.io/api/kv. html.

The key-value store is a centralized database that's used internally by Consul to store the
service mesh configuration for services running in Kubernetes, VMs, or bare-metal servers.
It can be accessed through a variety of methods, such as the CLI, utilities, and REST APIs.
The other important feature of the key-value store is that the values can be JSON objects,
which are validated by Consul before they are inserted.

Next, we will explore how Consul helps enforce ACL at the service level to protect them.

Securing Consul services with ACL
By default, Access Controls Lists (ACLs) are disabled in the Kubernetes Helm chart, and
they need to be enabled explicitly. Please refer to https:/ /learn. hashicorp. com/ consul/
security-networking/ production- acls to learn how to enable ACL.

ACLs are used to secure the servers, clients, services, DNS, Consul key-values, and UIs.
ACLs operate by grouping rules into policies, then associating one or more policies with a
token. To manage ACL, you can use the consul acl command. Alternatively, ACLs can
be managed through HTTP APIs. Please refer to https:/ /www. consul. io/ api/ acl/acl.
html for more information.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://www.consul.io/api/kv.html
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://learn.hashicorp.com/consul/security-networking/production-acls
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html
https://www.consul.io/api/acl/acl.html

Exploring the Service Discovery Features of Consul Chapter 21

[530]

Next, we'll learn how to monitor Consul and collect metrics.

Monitoring and metrics
Monitoring and collecting metrics play a very important role in keeping the system healthy
and up and running. Consul can be monitored using the consul monitor command. Let's
take a look:

Run the consul monitor command:1.

$ consul monitor
2019/08/27 02:24:12 [INFO] agent: Synced service "counting-
counting-sidecar-proxy"
2019/08/27 02:24:12 [INFO] agent: Synced service "dashboard-
dashboard-sidecar-proxy"
2019/08/27 02:25:24 [INFO] agent: Synced service "counting-
counting-sidecar-proxy"
2019/08/27 02:25:24 [INFO] agent: Synced service "dashboard-
dashboard-sidecar-proxy"
2019/08/27 02:26:29 [INFO] agent: Synced service "counting-
counting-sidecar-proxy"
2019/08/27 02:26:29 [INFO] agent: Synced service "dashboard-
dashboard-sidecar-proxy"

Press Ctrl + C to exit from the preceding consul monitor command.2.
You can watch for changes for any data view, such as nodes and services, using3.
the consul watch command:

$ consul watch -type=service -service=consul
[
 {
 "Node": {
 "ID": "081722b1-4d2d-479e-1f5b-daf6c22dcfb7",
 "Node": "consul-consul-server-0",
 "Address": "10.1.230.253",
 "Datacenter": "dc1",
 "TaggedAddresses": {
 "lan": "10.1.230.253",
 "wan": "10.1.230.253"
 },
...
 "Checks": [
 {
 "Node": "consul-consul-server-2",
 "CheckID": "serfHealth",

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[531]

 "Name": "Serf Health Status",
 "Status": "passing",
 "Notes": "",
 "Output": "Agent alive and reachable",
...
 }
]
 }
]

Note that the monitoring features are also available in the Consul dashboard web UI.

Now, let's move on to Consul metrics collection. Consul server metrics for Prometheus can
be exported using a Consul exporter (https:/ /github. com/ prometheus/ consul_ exporter).
Consul server metrics can be collected through REST APIs in a Prometheus-enabled format
that can be scrapped by a Prometheus collector:

$ curl -s http://localhost:8500/v1/agent/metrics | json_reformat
{
 "Counters": [
 {
 "Count": 25,
 "Labels": {},
 "Max": 152,
 "Mean": 93.72,
 "Min": 39,
 "Name": "consul.memberlist.udp.received",
 "Rate": 234.3,
 "Stddev": 57.16170046455931,
 "Sum": 2343
 },
 {
...
 }
}

Consul can be configured to send telemetry data to remote monitoring systems so that we
can monitor the health of the systems over time, spot trends, and more. At the time of
writing, Consul supports Circonus, DataDog, and StasD.

As an example, in the Helm chart that we used to deploy Consul, the Envoy sidecar proxy
is configured to send metrics to udp://127.0.0.1:9125 for DataDog. If we deploy
DataDog, it can receive metrics from each sidecar proxy, like so:

connectInject:
 enabled: true
 default: true

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter

Exploring the Service Discovery Features of Consul Chapter 21

[532]

 centralConfig:
 enabled: true
 defaultProtocol: "http"
 proxyDefaults: |
 {
 "envoy_dogstatsd_url": "udp://127.0.0.1:9125"
 }

Next, we will learn how an external service can be registered with Consul.

Registering an external service
We can register an external service with a built-in /health REST endpoint. The Consul
dashboard or the Consul monitor command can invoke the /health endpoint to monitor
the health of the external service. This feature makes Consul useful for integration
purposes.

Let's understand this through an example.

In this section, we will extract a go binary from the counting microservice and run it on the
VM host as a systemd service. Copy the counting-service Go binary from the counting
pod's /app directory to the host's home directory and then make it executable. Now, follow
these steps:

Extract the counting service binary and copy it to the VM:1.

$ kubectl -n consul -c counting cp counting:counting-service
~/counting-service
$ chmod +x ~/counting-service
$ sudo cp ~/counting-service /bin

Define a systemd service in the local VM in order to run the counting service:2.

Script : 06-create-systemd-service.sh

#!/bin/bash

Use absolute path for the go bonary
cat << EOF | tee /etc/systemd/system/external-counting.service
 [Unit]
 Description = "External Counting Service"
 [Service]
 KillSignal=INT
 Environment="PORT=10001"
 ExecStart=/bin/counting-service

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[533]

 Restart=always
 [Install]
 WantedBy=multi-user.target
EOF

Create a systemd service for the external counting service:3.

$ chmod +x 06-create-systemd-service.sh
$ sudo ./06-create-systemd-service.sh

Enable and start the external-counting service:4.

$ sudo systemctl enable external-counting
$ sudo systemctl start external-counting
$ sudo systemctl status external-counting

● external-counting.service - "External Counting Service"
 Loaded: loaded (/etc/systemd/system/external-counting.service;
enabled;
 vendor preset: disabled)
 Active: active (running) since Mon 2019-08-26 22:52:38 EDT; 4s
ago
 Main PID: 12283 (counting-servic)
 Tasks: 5
 Memory: 844.0K
 CGroup: /system.slice/external-counting.service
 └─12283 /bin/counting-service

Aug 26 22:52:38 osc01.servicemesh.local systemd[1]: Started
"External Counting Service".
Aug 26 22:52:38 osc01.servicemesh.local counting-service[12283]:
Serving at http://localhost:10001
Aug 26 22:52:38 osc01.servicemesh.local counting-service[12283]:
(Pass as PORT environment variable)

Test the external-counting service:5.

$ curl http://localhost:10001/health
Hello, you've hit /health

Now that we have our external-counting service up and running, we will register this
service with the Consul agent. To do this, follow these steps:

Create a JSON file to register the external service:1.

Script : 07-define-external-service-json.sh

cat <<EOF > external-counting.json

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[534]

{
 "Name": "external-counting",
 "Tags": [
 "v0.0.4"
],
 "Address": "$(hostname -i)",
 "Port": 10001,
 "Check": {
 "Method": "GET",
 "HTTP": "http://$(hostname -i):10001/health",
 "Interval": "1s"
 }
}
EOF

Create a JSON definition of the service:2.

$ chmod +x 07-define-external-service-json.sh
$./07-define-external-service-json.sh
{
 "Name": "external-counting",
 "Tags": [
 "v0.0.4"
],
 "Address": "192.168.142.101",
 "Port": 10001,
 "Check": {
 "Method": "GET",
 "HTTP": "http://192.168.142.101:10001/health",
 "Interval": "1s"
 }
}

Register the external-counting service with the Consul agent:3.

$ curl -X PUT -d @external-counting.json
http://localhost:8500/v1/agent/service/register

Note: To deregister the service, use curl -X PUT
http://localhost:8500/v1/agent/service/deregister/externa

l-counting.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[535]

Note that the external-counting service appears on the Consul web4.
dashboard, as shown in the following screenshot:

Click on external-counting and click the same again on the next page to see5.
the status of the service:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[536]

With this, you now know how to register an external service in Consul so that it is visible
and can be monitored.

Summary
In this chapter, we covered Consul in a Kubernetes environment. We covered service
discovery, intentions, mTLS, key-value stores, and external services registration. It is
important to note that Consul works in heterogeneous environments spanning multiple
data centers. This makes it a very good candidate for service discovery and for providing
mTLS out of the box while covering both Kubernetes as well as non-Kubernetes
environments.

You can use this service discovery knowledge process to build a catalog of enterprise
services so that your cloud-native applications can discover and use them.

In the next chapter, we will go through the traffic management capabilities of Consul
Connect in the Kubernetes environment. You will learn how easy it is to shift and route
traffic between different versions of the same service.

Questions
Consul Connect is the service mesh for Kubernetes.1.

A) True
B) False)

Consul Connect uses sidecar proxies for services either through native app2.
integration or automatic injection.

A) True
B) False

Consul intentions are authorizations for services.3.

A) True
B) False

Consul's K/V store is replicated across data centers automatically.4.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Service Discovery Features of Consul Chapter 21

[537]

Consul mTLS from a sidecar proxy to another sidecar proxy is fully automatic.5.

A) True
B) False

Consul comes with its own Certificate Authority so that it can issue certificates to6.
sidecar proxies.

A) True
B) False

Consul integration with Kubernetes for service discovery is done by defining a7.
Consul DNS server as an upstream DNS in the Kubernetes CoreDNS
configuration.

A) True
B) False

Further reading
Hashicorp/Demo-Consul-101. GitHub, 2019: https:/ /github. com/ hashicorp/
demo-consul- 101/ tree/ master/ k8s

Introduction to HashiCorp Consul Connect with Kubernetes, Huysmans, C. (2019),
available at https:/ / medium. com/ hashicorp- engineering/ introduction- to-
hashicorp- consul- connect- with- kubernetes- d7393f798e9d, accessed 12 May
2019
Nicholasjackson/Demo-Consul-Service-Mesh, GitHub, 2019: https:/ /github. com/
nicholasjackson/ demo- consul- service- mesh

Hashicorp/Consul-Demo-Traffic-Splitting, GitHub, 2019: https:/ /github. com/
hashicorp/ consul- demo- traffic- splitting

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://github.com/hashicorp/demo-consul-101/tree/master/k8s
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/nicholasjackson/demo-consul-service-mesh
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting
https://github.com/hashicorp/consul-demo-traffic-splitting

22
Exploring Traffic Management

in Consul
In this final chapter, we will go through Consul's native traffic management capabilities in a
Kubernetes environment. Through Consul, we can implement configuration-driven traffic
management without making any application code changes. Like Istio and Linkerd,
configuration-driven traffic management is also done by sidecar proxies.

To demonstrate the various traffic management capabilities of Consul, we will install a
demo application and then use some sample code that you should be able to run and
practice with in the Kubernetes environment that we built in Chapter 6, Building Your Own
Kubernetes Environment.

In a nutshell, we will cover the following topics in this chapter:

Traffic management implementation in a Kubernetes environment
Installing a demo application to show traffic management
Demonstrating a canary deployment and traffic shifting
Path-based traffic routing
Mesh gateways

Technical requirements
This chapter consists of hands-on exercises and is dependent on the previous chapter. You
must have gone through the previous chapter and complete the following exercises:

Installing a demo application
Consul dashboard

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[539]

Make sure that you are in the ~/consul/scripts directory so that you can use scripts:

$ cd ~/consul/scripts

Now, we will walk through the native integration of traffic management through
Kubernetes.

Overview of traffic management in Consul
Consul integration with Kubernetes is done through a separate project called consul-k8s,
which is maintained at https:/ / github. com/hashicorp/ consul- k8s.

In Chapter 20, Installing Consul, we installed the Consul CLI (a single Go binary that serves
as a server and a client) in our VM. We also installed a Helm chart for the consul-
k8s project in order to integrate Consul with Kubernetes.

Previously, Consul operated at Levels 3 and 4 of the network traffic. However, Consul
version 1.6.0+ provided support for the OSI Layer 7's (application layer) traffic management
features so that we can divide the traffic between different subsets of services through the
use of sidecar proxies. The Consul service mesh can now provide HTTP traffic routing,
traffic shaping, failover, and rerouting capabilities. The following are key dynamic routing
features at the application layer that support various deployment strategies:

Traffic shifting: Weight-based routing for canary testing, round-robin testing,
and permanent traffic shifting through Consul configurations, all of which can be
implemented and realized via sidecar proxies
HTTP path-based routing: Traffic routing to different upstream services based
on the HTTP request path
Mesh gateways: Using the mesh gateway to route traffic securely across different
network environments

Traffic management in Consul is done in three stages: routing, splitting, and resolution.
This is done to manage upstream Connect proxies. L7 traffic management at the application
layer is outside the application code and is managed by Consul at every stage so it can be
dynamically configured using Consul primitives such as the following:

service-router: Routes L7 traffic based on the HTTP route
service-splitter: Divides traffic based on the percentage defined (Canary testing,
and so on)
service-resolver: Filters options based on subsets that have been defined in the
service catalog metadata

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s
https://github.com/hashicorp/consul-k8s

Exploring Traffic Management in Consul Chapter 22

[540]

service-defaults: Configures defaults for all the service instances
proxy-defaults: Modifies proxy configuration defaults

Consider the aforementioned primitives as equivalent to Kubernetes Custom Resource
Definitions, which provide extensions for Consul Connect in Kubernetes using config maps
through Kubernetes jobs. The preceding primitives can also be defined for VMs using
JSON-formatted files, which can be loaded either through the Consul CLI or through PUT
requests to an API using the JSON file.

The implementation of the preceding Consul primitives is done at the L7 network traffic
layer. Now, we'll look at Consul's configuration implementation so that we can use the
preceding primitives.

Implementing L7 configuration
Consul Connect's core strength is its service mesh, which spans and covers both Kubernetes
and VMs. Consul traffic management is available for services that might run in VMs and/or
in Kubernetes environments. The Consul configuration can be pushed through the Consul
CLI or API, or by using Kubernetes jobs. Let's take a look:

Define an instance of service-defaults for the web service that will use1.
the http protocol:

Script: 08-service-defaults-web.hcl

kind = "service-defaults"
name = "web"
protocol = "http"

Here, an example of the Consul CLI demonstrates creating Consul primitive
service-defaults for the web service. Notice that the web service does not exist yet
– we will create that later on.

We can load the L7 configuration using one of the following three methods:

Via the Consul CLI, using a consul config write for Hashicorp
Command Language (HCL) or JSON files.
Through PUT requests to the API for JSON files
Through a Kubernetes job

For simplicity, we will be using either HCL or JSON files using the Consul CLI.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[541]

The Consul CLI can apply the preceding definition as follows:2.

$ consul config write 08-service-defaults-web.hcl

Now, list all the service-defaults registered in Consul:3.

$ consul config list -kind service-defaults
counting
dashboard
web

Next, read the web service-defaults configuration entry that we just created:4.

$ consul config read -kind service-defaults -name web
{
 "Kind": "service-defaults",
 "Name": "web",
 "Protocol": "http",
 "MeshGateway": {},
 "CreateIndex": 5384,
 "ModifyIndex": 5384
}

Next, we will use an API to create a service-defaults configuration. Refer
to https:/ /www. consul. io/ api/ for detailed documentation on using APIs to
manage and configure Consul. We will use the /config path to create service-
defaults for the api service.

Define a JSON configuration to set up an http protocol for the web service:5.

Script: 09-service-defaults-api.json

{
 "Kind": "service-defaults",
 "Name": "api",
 "Protocol": "http"
}

Create service-defaults for the web service so that it can use the http6.
protocol using the Consul REST API:

$ curl -XPUT --data @09-service-defaults-api.json
http://localhost:8500/v1/config ; echo
true

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/
https://www.consul.io/api/

Exploring Traffic Management in Consul Chapter 22

[542]

List the web service-defaults that we just created:7.

$ curl -s http://localhost:8500/v1/config/service-defaults/api |
json_reformat
{
 "Kind": "service-defaults",
 "Name": "api",
 "Protocol": "http",
 "MeshGateway": {

 },
 "CreateIndex": 5616,
 "ModifyIndex": 5619
}

The preceding examples showed us how to define service-defaults using the
Consul CLI and Consul REST APIs. Using the same approach, we will
demonstrate the three stages of Consul L7 traffic management for services
running in any VM in any data center in any region. These three steps are as
follows:

Routing (service-router)1.
Splitting (service-splitter)2.
Resolution (service-resolver) 3.

Let's assume that we have two versions of a service api for which a Consul
primitive called service-resolver has been defined using two subsets, v1 and
v2. These subsets will resolve to the respective version of the api service based
upon the annotations that have been defined for the Kubernetes service. We will
create these later in this chapter.

The following is an example of a service-resolver for subsets based on the8.
service catalog metadata:

Script : 10-service-resolver-api.hcl

kind = "service-resolver"
name = "api"

default_subset = "v1"

subsets = {
 v1 = {
 filter = "Service.Meta.version == 1"
 }

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[543]

 v2 = {
 filter = "Service.Meta.version == 2"
 }
}

Create a Consul primitive called service-resolver for the api service in order9.
to define subsets v1 and v2:

$ consul config write 10-service-resolver-api.hcl

$ consul config list -kind service-resolver
api

Note that the sevice-resolver API has been created.10.

By now, you should have a clear picture of the advantages that Consul provides through its
support for the L7 configuration. Next, we will deploy a demo application to demonstrate
Consul's traffic splitting and shifting features.

Deploying a demo application
Sample microservices for the web and api deployments are maintained at https:/ / github.
com/servicemeshbook/ hello- echo the main.go is the web microservice, that calls the
upstream API microservice through the use of the UPSTREAM_SERVICE environment
variable.

Review the pod and service definition in the 11-web-deployment.yaml script:

...
 template:
 metadata:
 labels:
 app: web
 annotations:
 "consul.hashicorp.com/connect-inject": "true"
 "consul.hashicorp.com/connect-service-upstreams": "api:8081"
...
 env:
...
 - name: UPSTREAM_SERVICE
 value: "http://localhost:8081"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo
https://github.com/servicemeshbook/hello-echo

Exploring Traffic Management in Consul Chapter 22

[544]

Note the consul.hashicorp.com/connect-service-upstreams annotation in the
preceding definition, which points to the Consul service-defaults primitive api with
the http protocol using port 8081, which we created previously. The web microservice
calls an upstream microservice through the use of the UPSTREAM_SERVICE environment
variable, which we point to the same 8081 port on the localhost. The Consul agent is
responsible for connecting the web microservice at port 8081 to the Consul service-
defaults API, which in turn will connect to a subset defined through the Consul
service-resolver primitive we created in the previous steps. We will see how a subset
connects to a proper API pod when we define the api deployment later.

First, we deploy a web microservice. Perform the following steps to do so:

Create a Kubernetes deployment and the service for the web:1.

$ kubectl -n consul apply -f 11-web-deployment.yaml
service/web created
deployment.apps/web created

The Kubernetes service web endpoint is a web pod.

Now, check the web pod and web service:2.

$ kubectl -n consul get pods -l app=web
NAME READY STATUS RESTARTS AGE
web-7dc47f6678-fcnzv 2/2 Running 0 40s

$ kubectl -n consul get svc web
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
web NodePort 10.111.32.161 <none> 8080:30145/TCP 43s

Note that the Kubernetes principle as followed, links the web service to the web
pod. For the api deployment, which is the upstream service for the web, the
Consul agent calls the api service through the use of the
UPSTREAM_SERVICE environment variable.

Next, we'll deploy two versions of the api microservice. Note that both
versions are identical. The purpose here is to illustrate Consul's traffic shifting
concepts.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[545]

Review the 12-api-v1-deployment.yaml script for the annotation description3.
that links the Consul api service to the Kubernetes api-deployment:

Script: 12-api-v1-deployment.yaml

...
template:
 metadata:
 labels:
 app: api-v1
 annotations:
 "consul.hashicorp.com/connect-inject": "true"
 "consul.hashicorp.com/service-meta-version": "1"
 "consul.hashicorp.com/service-tags": "v1"
...

Review the 13-api-v2-deployment.yaml script to link the Consul api service4.
to the Kubernetes api-deployment:

Script: 13-api-v2-deployment.yaml

...
template:
 metadata:
 labels:
 app: api-v1
 annotations:
 "consul.hashicorp.com/connect-inject": "true"
 "consul.hashicorp.com/service-meta-version": "2"
 "consul.hashicorp.com/service-tags": "v2"
...

Compare the scripts in step 3 and step 4.5.

Note that the consul.hashicorp.com/service-meta-version annotation is
set to 1 and 2, while consul.hashicorp.com/service-tags is set to v1 and
v2, respectively. Refer to the Consul primitive service-resolver API we
created in the previous step (10-service-resolver-api.hcl):

subsets = {
 v1 = {
 filter = "Service.Meta.version == 1"
 }
 v2 = {
 filter = "Service.Meta.version == 2"
 }
}

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[546]

We can see that the v1 subset is linked to the
consul.hashicorp.com/service-tags annotation we defined in the API
deployment. Service-Meta-version is linked to the
consul.hashicorp.com/service-meta-version annotation.

Create the api-v1 and api-v2 services and deployments:6.

$ kubectl -n consul apply -f 12-api-v1-deployment.yaml
service/api-v1 created
deployment.apps/api-v1 created

$ kubectl -n consul apply -f 13-api-v2-deployment.yaml
service/api-v2 created
deployment.apps/api-v2 created

With this, we have created the api-v1 and api-v2 Kubernetes deployments.

Check the api-v1 service at node port 30146:7.

$ curl http://localhost:30146
===
Request time : 2019-09-23 14:33:12.92445239 +0000 UTC
Requested path : /
Host IP : 192.168.142.101
Pod IP : 192.168.230.246
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Namespace : consul
Host : localhost:30146
RemoteAddr : 192.168.142.101:44900
===

Similarly, check the api-v2 service at node port 30147:8.

$ curl http://localhost:30147
===
Request time : 2019-09-23 14:33:15.979164994 +0000 UTC
Requested path : /
Host IP : 192.168.142.101
Pod IP : 192.168.230.205
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Namespace : consul
Host : localhost:30147
RemoteAddr : 192.168.142.101:40690
===

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[547]

Note that the api-v1 and api-v2 Kubernetes services are not used by Consul for traffic
management. Actually, the Consul service api is used for that purpose – please refer to the
consul.hashicorp.com/connect-service-upstreams annotation defined in 11-web-
deployment.yaml for more information.

The sample microservice that we have just deployed will help us understand the various
traffic management features of Consul. We will explore these features one by one in the
next section.

Traffic management in Consul
Consul's native traffic management features are implemented for both cloud-native as well
as traditional VM applications. We will go through the features of traffic shifting and traffic
routing in this section.

Directing traffic to a default subset
Consul's traffic shifting feature allows us to direct traffic to a default subset. Follow these
steps to learn how to do so:

The web node port is 30145. Run curl -s http://localhost:30145 and1.
check the output:

$ curl -s http://localhost:30145
===
Request time : 2019-09-21 01:25:29.844609478 +0000 UTC
Requested path : /
Host IP : 192.168.142.101
Pod IP : 192.168.230.202
Pod Name : web-7dc47f6678-fcnzv
Pod Namespace : consul
Host : localhost:30145
RemoteAddr : 192.168.142.101:47332
.. continued ...

Notice that, when we call the service web at node port 30145, it calls the web
microservice using familiar Kubernetes principles.

The upstream Consul service api at port 8081 is invoked by Consul like so:2.

===
Request time : 2019-09-23 14:11:06.091295669 +0000 UTC

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[548]

Requested path : /
Host IP : 192.168.142.101
Pod IP : 192.168.230.205
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Namespace : consul
Host : localhost:8081
RemoteAddr : 127.0.0.1:57152
===

Repeat the same curl command 10 times. You will notice that the traffic is3.
always shifted to the api-deployment-v1 pod:

$ curl -s http://localhost:30145?[1-10] | grep "Pod Name.*api"
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6
Pod Name : api-v1-5d64d5f8ff-zlcp6

This is due to the fact that we haven't defined traffic split criteria yet. Please refer to the
service-resolver API, in which the default subset is set to v1 (10-service-resolver-
api.hcl).

Now, we will apply this traffic shifting concept to a canary deployment.

Canary deployment
Canary deployment is related to dark launches or friends-and-family testing, in which only
a few people are given access to new features without their knowledge. Let's apply the
principle of traffic shifting to a canary deployment:

You can configure a percentage of traffic for each subset using1.
Consul's service-splitter primitive. An example of a service-
splitter can be seen in the following code, in which 99% of the traffic is routed
to subset v1, while the other 1% of the traffic is routed to subset v2:

Script: 14-service-splitter-canary.hcl

kind = "service-splitter",
name = "api"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[549]

splits = [
 {
 weight = 99,
 service_subset = "v1"
 },
 {
 weight = 1,
 service_subset = "v2"
 }
]

Create service-splitter for the Consul service api using the Consul CLI:2.

$ consul config write 14-service-splitter-canary.hcl

$ consul config list -kind service-splitter
api

Repeat the same curl command 200 times. You will notice that api-v2 is only3.
called 1% of the time:

$ curl -s http://localhost:30145?[1-200] | grep "Pod Name.*api-v1"
$ curl -s http://localhost:30145?[1-200] | grep "Pod Name.*api-v2"
...

Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v1-7fcf5d98d4-tgqrk

...

The preceding code is an example of a canary deployment in which a very small percentage
of traffic is shifted to v2 of the service. Next, we will learn how to split traffic in a round-
robin fashion.

Round-robin traffic
Traffic can be split in a round-robin fashion by specifying a 50-50 weight for both services,
as follows:

Script: 15-service-splitter-round-robin.hcl

...

splits = [

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[550]

 {
 weight = 50,
 service_subset = "v1"
 },
 {
 weight = 50
 service_subset = "v2"
 }
]

Create service-splitter for api by assigning a 50-50 weight to each subset1.
using 15-service-splitter-round-robin.hcl:

$ consul config write 15-service-splitter-round-robin.hcl

$ consul config list -kind service-splitter
api

Repeat the same curl command 10 times. You will notice that the traffic is split2.
equally between the api-v1 and api-v2 pods:

$ curl -s http://localhost:30145?[1-10] | grep "Pod Name.*api"
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v1-7fcf5d98d4-tgqrk
Pod Name : api-v2-5d64d5f8ff-zlcp6

Here, we can see that the traffic is equally split between the two services. Next, we will
explore how to shift the entire traffic to subset v2.

Shifting traffic permanently
If it has been determined that 100% of the traffic should now be shifted to v2 of api after
testing it successfully, the weight can be defined as 100% to subset v2. This can be done
with the following code:

Script: 16-service-splitter-100-shift.hcl

...

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[551]

splits = [
 {
 weight = 0,
 service_subset = "v1"
 },
 {
 weight = 100
 service_subset = "v2"
 }
]

Create service-splitter for the Consul service api using the Consul CLI1.
using 16-service-splitter-100-shift.hcl:

$ consul config write 16-service-splitter-100-shift.hcl

$ consul config list -kind service-splitter
api

Repeat the same curl command 10 times, like so:2.

$ curl -s http://localhost:30145?[1-10] | grep "Pod Name.*api"
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6
Pod Name : api-v2-5d64d5f8ff-zlcp6

From the preceding command, you can see that the entire traffic has been permanently
shifted to the api-v2 pod.

Refer to the following keynote address by Nick Jackson on using traffic
management. It covers non-Kubernetes environments: https:/ /www.
hashicorp. com/ resources/ consul- 1-6-layer- 7-traffic- management-
mesh- gateways.

Next, we will go through path-based traffic routing in a Kubernetes environment.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways

Exploring Traffic Management in Consul Chapter 22

[552]

Path-based traffic routing
In the following example, we'll show you how to use HTTP path-based routing to direct
traffic between two versions of a service. For example, /v1 will route traffic to the A service,
while /v2 will route traffic to the B service. Let's get started:

Delete the previous deployments of web and api:1.

$ kubectl -n consul delete -f 11-web-deployment.yaml

$ kubectl -n consul delete -f 12-api-v1-deployment.yaml

$ kubectl -n consul delete -f 13-api-v2-deployment.yaml

We created service-defaults for web and api in the L7 configuration2.
management section. Check the service-defaults list:

$ consul config list -kind service-defaults
api
counting
dashboard
web

Read the web configuration:3.

$ consul config read -kind service-defaults -name web
{
 "Kind": "service-defaults",
 "Name": "web",
 "Protocol": "http",
 "MeshGateway": {
 "Mode": "local"
 },
 "CreateIndex": 186,
 "ModifyIndex": 1750
}

Read the api configuration:4.

$ consul config read -kind service-defaults -name api
{
 "Kind": "service-defaults",
 "Name": "api",
 "Protocol": "http",
 "MeshGateway": {
 "Mode": "local"
 },

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[553]

 "CreateIndex": 218,
 "ModifyIndex": 218
}

Define a service-router for the api, which will allow us to accomplish path-5.
based routing to a specific service:

Script: 17-service-router.hcl

...
 match {
 http {
 path_prefix="/v1"
 }
 }
 destination {
 service = "api"
 service_subset = "v1"
 }
...

Create an api called service-router:6.

$ consul config write 17-service-router.hcl

Create a Kubernetes web service and deployment:7.

$ kubectl apply -f 18-web-deployment.yaml
service/web created
deployment.apps/web created

Create an api-v1 service and deployment:8.

$ kubectl apply -f 19-api-v1-deployment.yaml
service/api-v1 created
deployment.apps/api-v1 created

Similarly, create an api-v2 service and deployment:9.

$ kubectl apply -f 20-api-v2-deployment.yaml
service/api-v2 created
deployment.apps/api-v2 created

Check status of pods. Must show Ready 2/2
$ kubectl -n consul get pods -l 'app in (web, api-v1, api-v2)'

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[554]

Nicholas Jackson of Hashicorp formulated the path-based example. You can find
out more at https:/ /github. com/ nicholasjackson/ demo- consul- service- mesh/
tree/master/ kubernetes/ traffic_ routing.

Through the preceding example, we have created a frontend web service that
receives traffic from the internet through an Ingress definition. There are two
upstream deployments, api-v1 and api-v2, that we call through a virtual
upstream service defined in the 18-web-deployment.yaml web development
script, as shown in the following code:

 annotations:
 "consul.hashicorp.com/connect-inject": "true"
 "consul.hashicorp.com/connect-service-upstreams": "api:8081"
 ...
 - name: "LISTEN_ADDR"
 value: "0.0.0.0:8080"
 - name: "UPSTREAM_URIS"
 value: "http://localhost:8091"

We can run the web service using curl at node port 30145 without using any10.
path. Notice that it will always call the api-v2 upstream service since we shifted
100% traffic to this service in the Shifting traffic permanently section:

$ curl -s http://localhost:30145
{
 "name": "web",
...
 "body": "Hello World",
 "upstream_calls": [
 {
 "name": "api-v2",
 "uri": "http://localhost:8081",
...
 "body": "Response from API v2",
 "code": 200
 }
],
 "code": 200
}

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing
https://github.com/nicholasjackson/demo-consul-service-mesh/tree/master/kubernetes/traffic_routing

Exploring Traffic Management in Consul Chapter 22

[555]

Run the same curl command by using the /v1 path. Note that traffic shifts to11.
the api-v1 service due to the service-router implementation:

$ curl -s http://localhost:30145/v1
{
 "name": "web",
...
 "body": "Hello World",
 "upstream_calls": [
 {
 "name": "api-v1",
 "uri": "http://localhost:8081",
...
 "body": "Response from API v1",
 "code": 200
 }
],
 "code": 200
}

Though not shown in the preceding code, traffic routing can also be based upon headers,
query parameters, and so on. The following example shows that, if the x-debug header is
set to 1, the traffic will be routed to another service web using the service-
resolver canary:

 match {
 http {
 header = [
 {
 name = "x-debug"
 exact = "1"
 },
]
 }
 }
 destination {
 service = "web"
 service_subset = "canary"
 }

Next, we will use the Consul dashboard to check services and explore, sidecar proxies and
upstream services.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[556]

Checking Consul services
We will use the Consul-provided dashboard to monitor services, nodes, and other features.
Let's take a look:

Switch back to the browser tab of the Consul1.
dashboard (http://webconsole.consul.local) and check the services that
have been registered with Consul. We created the api and web services in the
preceding traffic management examples:

Notice that the v1 and v2 tags against api and api-sidecar-proxy were
defined using the Consul service-resolver primitive for
the v1 and v2 subsets. The connection between Consul's v1 and v2 tags and the
api deployment was made through annotations. These are as follows, and have
been taken from the 12-api-v1-deployment.yaml script:

 template:
 metadata:
 labels:
 app: api-v1
 annotations:
 "consul.hashicorp.com/connect-inject": "true"
 "consul.hashicorp.com/service-meta-version": "1"
 "consul.hashicorp.com/service-tags": "v1"

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[557]

Click the Consul service api. Note that it has two instances of api-v1 and api-2.
v2. Click Tags and notice that it has the following tags of: v1 and v2:

Click Services and click on web-sidecar-proxy. Then, click web-xxx-xxx:3.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[558]

Click Upstreams:4.

Note that the upstream service api is running at port 8081 and will be called by5.
the web-sidecar-proxy:

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[559]

The upstream api service was defined through an annotation when we deployed the web
service. Please refer to the "consul.hashicorp.com/connect-service-upstreams":
"api:8081" annotation defined in the 11-web-deployment.yaml script for more
information.

Now that we've looked at the traffic management features natively built into Consul, we
will go through the mesh gateway, a very important Consul's feature that allows seamless
integration between different Consul clusters running in heterogeneous environments.

Mesh gateway
Mesh gateway, or multi-cluster gateways, is the Consul primitive that allows you to bridge
traffic between two or more completely separate Consul service meshes securely and
transparently across different network environments. The configuration for the service
mesh needs to be written only in one location, and it gets federated and copied
automatically to the other locations.

The gateway acts as a bridge between two locations: if one service wants to communicate to
another service in another location, it does so through lightweight Envoy proxies. These
proxies have no way of decrypting traffic, so the traffic between the services in two
locations is done through the mTLS flowing through two gateways. Consul uses SNI
headers inside HTTPS requests so the gateway can determine where to send the traffic.

To enable a service so that it can use the mesh gateway, the service-defaults primitive
uses a stanza called meshgateway to define the gateway, as shown in the following code:

kind = "service-defaults"
name = "web"
protocol = "http"
meshgateway = {
 mode = "local"
}

The mode has three values: local, remote, and none. Let's go over these now:

With local mode, the service will communicate with the local gateway first, and
the local gateway communicates with other cluster gateways, which then
communicates to the upstream service.
In remote mode, the local gateway is bypassed. It is like Egress, where we are
able to communicate directly to the remote cluster gateways and then forward
traffic to the destination service.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[560]

In none mode, no gateway is used, and the outbound connection is made directly
to the destination service.

In this chapter, we used the Consul web and api services to show you how traffic splitting
and routing works. Let's assume that the Consul service web is running in one data
center, dc1, and that the api service is running in another data center, dc2. We can use the
Consul service-resolver primitive to route traffic between web and api through a
virtual resolver, as shown here:

kind = "service-resolver"
name = "api"

redirect {
 service = "api"
 datacenter = "dc2"
}

Once we have defined this, the traffic will flow through the gateway between two data
centers.

With the use of the Consul service-resolver primitive, it is possible to perform a service
failover from one data center to another seamlessly. A mesh gateway provides a flat
network without users having to worry about network routing rules. The Envoy proxy acts
as a gateway so that it can route Consul Connect traffic across data centers using SNI
headers.

As an example, let's assume the dc1 data center has web and api services but that data
center dc2 has only the api service. Cross-cluster and cross-cloud service failover can be
provided through service-resolver. If the api service is not available in dc1, the
failover will happen seamlessly and automatically in the api service in the dc2 data center:

kind = "service-resolver"
name = "api"

failover = {
 "*"= {
 datacenter = ["dc2"]
 }
}

It should be noted that multiple data centers can also be defined in the datacenter field of
the failover stanza in order to provide a robust high availability for the desired services in
the service-resolver for the api service.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[561]

Summary
In this chapter, we explored Consul Connect's traffic management features that are
configured at the application layer. L7 configuration is achieved through
centrally managed Consul primitives that can be replicated to other data centers, thereby
providing service resiliency and redundancy through mesh gateways.

We explained service-resolver by defining subsets of services that can be used to split
traffic through service-splitter for canary deployments and traffic shifting. We also
explained using path-based routing to shift traffic to different services.

This brings us to the end of our studies and our hands-on exercises for the three popular
service meshes in the industry today. The service mesh, which started in 2015, is a fairly
new technology and continues to evolve. It remains to be seen whether it continues in its
present form. We anticipate consolidation and interoperability through service mesh
interface specifications and the convergence of features and functions among different
service mesh architectures.

Questions
Consul traffic management is done at Layer 7 of Open System Interconnection1.
(OSI).

A) True
B) False

The service-resolver definition is used to declare subsets based upon filters2.
on the metadata of the services. In Kubernetes deployments, such metadata is
picked up automatically by Kubernetes through its integration with Consul.

A) True
B) False

Mesh gateway's remote mode is akin to the Egress gateway.3.

A) True
B) False

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Traffic Management in Consul Chapter 22

[562]

If service-defaults defines a mesh gateway mode to local, each call is made4.
to the mesh gateway to determine the upstream service.

A) True
B) False

Traffic routing using a service-router can only be used for path-based5.
routing.

A) True
B) False

service-resolver can be used to provide a service failover from one data6.
center to another.

A) True
B) False

Further reading
Consul Curriculum – HashiCorp Learn, HashiCorp Learn (2018), available
at https:/ /learn. hashicorp. com/ consul/ , accessed 11 May 2019
Datawire – Resilient Microservices on Kubernetes, Datawire.io (2019), available
at https:/ /www. datawire. io, accessed 13 May 2019
Introduction to HashiCorp Consul Connect with Kubernetes, Huysmans, C. (2019),
available at https:/ / medium. com/ hashicorp- engineering/ introduction- to-
hashicorp- consul- connect- with- kubernetes- d7393f798e9d, accessed 12 May
2019
Layer 7 Traffic Management and Mesh Gateways, Jackson, N. (2019), Hashicorp,
available at https:/ / www. hashicorp. com/resources/ consul- 1-6- layer- 7-
traffic- management- mesh- gateways

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://learn.hashicorp.com/consul/
https://www.datawire.io
https://www.datawire.io
https://www.datawire.io
https://www.datawire.io
https://www.datawire.io
https://www.datawire.io
https://www.datawire.io
https://www.datawire.io
https://www.datawire.io
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://medium.com/hashicorp-engineering/introduction-to-hashicorp-consul-connect-with-kubernetes-d7393f798e9d
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways
https://www.hashicorp.com/resources/consul-1-6-layer-7-traffic-management-mesh-gateways

Assessment

Chapter 1: Monolithic versus Microservices
True – Microservices are difficult to test due to their distributed nature.1.
False – Monolithic applications belong to static infrastructures, while2.
microservices belong to dynamic infrastructures.
True – When a monolithic application becomes too big, its benefits start to3.
disappear.
True – Debugging becomes difficult due to its distributed nature.4.
True – Due to tight interdependencies, monolithic applications are difficult to5.
maintain and patch in the long-term.

Chapter 2: Cloud-Native Applications
True – Kubernetes allows different runtimes for containers.1.
False – Due to the independent size of microservices, cloud-native applications2.
are simpler than monolithic applications but difficult to test.
True – Without tools, it is difficult to diagnose cloud-native applications.3.
True – Apache Mesos does much more than Kubernetes, but Kubernetes excels in4.
container orchestration compared to Mesos.
True – Due to its large community and support for a variety of features,5.
Kubernetes has become the de-facto container orchestration system.

Chapter 3: Service Mesh Architecture
True – The service mesh is an abstract layer on top of applications.1.
False – Sidecar proxies live next to a microservice, mainly in the data plane.2.
However, system components in a control plane may also have associated
sidecars.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[564]

True – The service mesh is like an abstract application layer on top of the3.
application stack and provide a L7 traffic management, security, and
observability.

Chapter 4: Service Mesh Providers
True – At the time of writing, Istio and Linkerd are available in Kubernetes.1.
Istioctl can run in a VM environment for integration but it doesn't have good
adoption rates.
False – Linkerd developed its own sidecar proxy written in Rust, whereas Istio2.
and Consul use the Envoy sidecar, which is developed by Lyft.
False – The non-availability of a control plane will not stop sidecar-enabled3.
microservices from functioning, though some capabilities may not be available.

Chapter 5: Service Mesh Interface and
SPIFFE

True – SPIFFE is a specification and not a toolset, similar to1.
Kubernetes' Container Network Interface (CNI), Container Storage
Interface (CSI), and Container Runtime Interface (CRI).
False – The service mesh interface is a specification that service mesh providers2.
can use to provide interoperability.
True – At the time of writing, Istio and Consul use SPIFFE.3.
True – Istio developers produced their own SPIFFE implementation instead of4.
using SPIRE.

Chapter 6: Building Your Own Kubernetes
Environment

A). Apache Mesos is not a Kubernetes platform.1.
False – Kubernetes can be deployed in many environments, including a simple2.
VM.
True – A Kubernetes cluster is meant for container-based applications.3.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[565]

True – Kubernetes services can be used to register a monolithic application to4.
provide integration between cloud-native applications hosted in Kubernetes and
monolithic applications outside Kubernetes.
False – It is simple to build your own Kubernetes cluster.5.

Chapter 7: Understanding the Istio Service
Mesh

Layer 7 – This is the network layer that the service mesh works on.1.
All of the above.2.
False – The Istio control plane is not a single point of failure since applications3.
can continue to run without a control plane,
True – A true service mesh is formed through a data plane where there's an4.
Envoy sidecar proxy next to each microservice, which helps achieve service mesh
functions.
False – Istio can span multiple Kubernetes clusters through a replicated control5.
plane, a shared control plane using a single network and a shared control plane
using a multi-network.
True – At the time of writing, Istio service discovery integration with Consul is in6.
its alpha phase.
False – This should be the other way around. Pilot pushes configuration to7.
Envoy, which manages traffic.
False – Istio primitives are Custom Resource Definitions (CRD) and can be8.
managed by kubectl, as well as istioctl.
True – Istio's mTLS implementation comes as a self-service model since it is out9.
of the box and controlled through a parameter.
True – Kiali (originally developed at RedHat) is used to observe the service mesh10.
for connectivity and traffic patterns.

Chapter 8: Installing a Demo Application
True – Kubernetes provides its own DNS server.1.
Polyglot application – Each microservice can use its own language.2.
True – The service mesh architecture is only for microservice applications.3.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[566]

False – A pod's IP address can change when it is redeployed/rescheduled.4.
True – For the duration of the service, its IP address is immutable.5.
True – The service's IP address is linked to the pod's IP address through6.
Kubernetes endpoints.

Chapter 9: Installing Istio
True – At the time of writing, Istio can only be used in a Kubernetes1.
environment, though integration with VMs is being planned.
False – The Istio sidecar can be enabled for new applications if the namespace is2.
annotated with the istio-injection=enabled label. The sidecar can be
enabled through the istioctl command.
True – Istio has more than 57 CRDs.3.
True – It is necessary to install CRDs to extend Kubernetes so that it can use4.
Istio's features.
True – The existing application needs to be taken down first and then you need5.
to enable sidecar proxy injection, either by annotating the namespace with a label
or by using istioctl kube-inject to modify the existing application's
manifest.
False – It is possible to disable the sidecar for a microservice by setting the pod6.
annotation to sidecar.istio.io/inject: "false", even when a namespace
has already been annotated with the istio-injection=enabled label.
False – Istio custom resources can be managed through the istioctl command,7.
as well as through the kubectl command.

Chapter 10: Exploring Istio Traffic
Management Capabilities

True – Traffic routing is a feature of Envoy, which receives its configuration from1.
Pilot.
True – Istio can work in a zero-trust network and still provide enterprise-grade2.
security.
True – You can enable a reverse firewall in Istio through an Egress gateway,3.
which will block outbound access from microservices.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[567]

True – Dark launches/Family-and-Friend Testing is used to route traffic to select4.
groups of users without their knowledge.
True – An Istio gateway can have multiple virtual services that can be used by5.
different application owners.
True – Istio's virtual service is a superset of a Kubernetes service since it provides6.
more features and functions than its native service.
True – The destination rule defines the configuration, but it has no role in traffic7.
routing since the subsets that it defines are used in virtual services.
True – Load balancing at the Envoy level is done at the L7 networking layer and8.
not at L3/L4.
True – You don't get the response back from the mirrored service.9.

Chapter 11: Exploring Istio Security
Features

True – It is the end user's responsibility to rotate certificates and keys that have1.
been defined for the Ingress gateway in order to secure traffic from external
clients and send it to the edge microservice. Note that Istio's Citadel rotates
certificates for microservices.
True – There can only be one MeshPolicy (with name as the default) that will2.
apply mTLS mesh-wide.
True – Mutual TLS can be as granular as possible from the namespace level to the3.
service level by defining a policy.
True – Mutual TLS can be enabled through destination rules or by using4.
MeshPolicy.
True – Istio is capable of shielding modern microservices applications from5.
running in a zero-trust network without any changes needing to be made to the
application code.
True – Istio makes VPNs and firewalls redundant if security has been6.
implemented properly.
True – It is the responsibility of the edge microservice to manage JWT for7.
authorizations.
True – Istio's Secret Discovery Service mounts secrets in pods automatically.8.
True – Istio's Citadel will rotate certificates and keys every 90 days by default.9.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[568]

True – The Envoy sidecar checks the TTL of the certificates. The Istio node agent,10.
if enabled, can request a new certificate from Citadel. It is Citadel that pushes
certificates to Envoy, not the node agent.

Chapter 12: Enabling Istio Policy Controls
False – Quota assignment to services is enforced through Mixer.1.
True – Rate limits to services are pushed down to the Envoy proxy through2.
Mixer.
True – A list checker handler is assigned a list of source IPs to create a list. A3.
source IP instance list entry is created to check the IP address that was found at
the Ingress gateway. A rule can be created to enforce a blacklist or whitelist for IP
addresses that can connect to the service.
True – To enable policy enforcement, you can edit the Istio config map and set4.
disablePolicyChecks=true.

Chapter 13: Exploring Istio Telemetry
Features

True – A sidecar proxy sends asynchronous telemetry data to backend services.1.
False – Observability and monitoring a system are two different things.2.
True – The recommended web UIs for Istio's monitoring and observability3.
features are Grafana, Prometheus, Kiali, and Jaegar.
False – Port forwarding is not the only way to access different web UI4.
components. Ingress rules and node port mechanisms can also be used to access
a web UI.
True – Istio reports multiple spans within a microservice chain.5.
True – Prometheus is a web UI tool that can visualize collected data or metrics.6.
True – Custom dashboards in Grafana provide details for inbound and outbound7.
workloads.
True – All mis-configurations are highlighted in red under the YAML viewer in8.
Kiali.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[569]

Chapter 14: Understanding the Linkerd
Service Mesh

True – Linkerd has an automatic protocol and TCP connection detection.1.
False – Linkerd does not provide its own ingress controller.2.
False – The Linkerd proxy is written in Rust, while control plane components are3.
written in Go.
True – The control and data planes can be in a single namespace if we want them4.
to be. Note that admin privileges are required to create CRDs.
True – When a Linkerd proxy is injected into a running pod using the linkerd5.
inject command, the pod is restarted automatically.
False – The pod will be recreated if we want to add a debug sidecar.6.
True – The retry budget helps us avoid a retry storm. We don't need to configure7.
Linkerd to achieve this.
True – For automatic sidecar injection, Istio needs a namespace to be labeled8.
with istio-injection=enabled and also needs a namespace to be annotated
as linkerd.io/inject: Enabled.

Chapter 15: Installing Linkerd
False – You do not need SSH access to the master node to create the Linkerd1.
control plane.
True – You require a cluster-admin role to install control plane configuration.2.
False – You do not require a cluster-admin role to install the control plane.3.
False – You need to annotate a namespace, not a label, with4.
linkerd.io/inject: enabled.
False – You need to annotate the pod with linkerd.io/inject: disabled to5.
exclude it from getting the sidecar proxy.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[570]

Chapter 16: Exploring the Reliability
Features of Linkerd

True – Kubernetes does load balancing at the connection level (L4).1.
True – Linkerd does load balancing at the application level (L7).2.
True – Linkerd's load balancing is out of the box and requires zero configuration.3.
True – Retrying Linkerd requires a configuration-patch service profile with4.
isRetryable: true.
True – A Linkerd service profile can be generated automatically, even if the5.
Swagger API isn't available for the service through the Linkerd profile command.
True – The retry budget is about adaptive retries instead of a fixed number of6.
retries.
True – The service profile is needed to provide aggregated route metrics.7.

Chapter 17: Exploring the Security Features
of Linkerd

True – The TLS between service-to-service communication is fully automatic in1.
Linkerd.
False – The TLS between the Ingress gateway and the edge service of the2.
application is the application user's responsibility.
True – The linkerd-identity component of Linkerd's control plane is the3.
Certificate Authority (CA) for the data plane proxies.
True – The linkerd-identity component automatically rotates the certificates4.
for linkerd-proxy in the data plane.
False – The linkerd-identity component doesn't automatically rotate5.
certificate for its own CA.
True – You can use trusted certificates from your own CA for linkerd-6.
identity, but only at the time of install.
True – You can change the trusted certificate of the control plane at any time, but7.
it requires reinstalling the control plane.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[571]

Chapter 18: Exploring the Observability
Features of Linkerd

True – Linkerd only stores data for 6 hours. This can be configured so that we can1.
increase or decrease the time limit.
True – Linkerd provides distributed tracing, which can be seen from the2.
dashboard as well as through the CLI tap command.
True – Linkerd integration with the external Prometheus is the user's3.
responsibility.
True – Linkerd's Prometheus uses the Pull model to collect data from service4.
proxies.

Chapter 19: Understanding the Consul
Service Mesh

False – Consul is a distributed control plane.1.
True – The Consul agent must run on all Kubernetes nodes.2.
True – Consul services can be viewed as North-South network traffic, whereas3.
Ingress gateways to multiple Kubernetes clusters can be treated as East-West
network traffic.
False – The Mesh gateway does not decrypt network traffic between two4.
gateways to determine the destination service.
True – Consul service discovery in a Kubernetes environment is automatic.5.
True – Consul supports multiple data centers out of the box.6.

Chapter 20: Installing Consul
True – Consul's service mesh works across heterogeneous environments and data1.
centers across different regions.
True – In a Consul cluster, the Consul servers can be in Kubernetes or in VMs.2.
False –The Consul members can join an existing Consul cluster from a VM or3.
Kubernetes.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[572]

False – Consul servers remain within the same data centers but they can4.
communicate with other data center. Consul servers use the WAN protocol.
True – Kubernetes can send write requests to any Consul servers, but only the5.
leader Consul server writes that information to the distributed key-value store.
False – Consul uses its own key-value database store to maintain the state of6.
Consul clusters. It doesn't use Kubernetes etcd.

Chapter 21: Exploring the Service Discovery
Features of Consul

False – Consul Connect is the service mesh for Kubernetes, as well as VMs.1.
False – Consul Connect uses sidecar proxies for services in a Kubernetes2.
environment.
True – Consul Intentions are authorizations for services.3.
True – Consul's K/V store is replicated across data centers automatically.4.
True – Consul mTLS from a sidecar proxy to another sidecar proxy is fully5.
automatic.
True – Consul comes with its own Certificate Authority so that it can issue6.
certificates to sidecar proxies.
True – Consul integration with Kubernetes for service discovery is done by7.
defining a Consul DNS server as an upstream DNS in the Kubernetes CoreDNS
configuration.

Chapter 22: Exploring Traffic Management in
Consul

True – Consul traffic management is done at Layer 7 of the Open System1.
Interconnection (OSI).
True – The service-resolver definition that's used to declare subsets is based on2.
filters that are used on the metadata of the services. In Kubernetes deployments,
such metadata is picked up automatically by Kubernetes through its integration
to Consul.
True – The Mesh gateway mode is akin to the Egress gateway.3.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessment

[573]

True – If service-defaults defines a Mesh gateway mode as being local, each call4.
is made to the Mesh gateway to determine the upstream service.
True – Traffic routing using a service-router can only be used for path-based5.
routing.
True – Service-resolver can be used to provide a service failover from one data6.
center to another.

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Serverless Computing with Google Cloud
Richard Rose

ISBN: 978-1-83882-799-1

Explore the various options for deploying serverless workloads on Google Cloud
Determine the appropriate serverless product for your application use case
Integrate multiple lightweight functions to build scalable and resilient services
Increase productivity through build process automation
Understand how to secure serverless workloads using service accounts
Build a scalable architecture with Google Cloud Functions and Cloud Run

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/cloud-networking/hands-on-serverless-computing-with-google-cloud-platform

Other Books You May Enjoy

[575]

Mastering Azure Serverless Computing
Lorenzo Barbieri, Massimo Bonanni

ISBN: 978-1-78995-122-6

Create and deploy advanced Azure Functions
Learn to extend the runtime of Azure Functions
Orchestrate your logic through code or a visual workflow
Add caching, security, routing, and filtering to your APIs
Use serverless technologies in real-world scenarios
Understand how to apply DevOps and automation to your working environment

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/cloud-networking/mastering-azure-serverless-computing

Other Books You May Enjoy

[576]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
Access Controls Lists (ACLs) 529
ACL HTTP API
 reference link 529
adapters
 reference link 332
advanced service mesh 40
Alibaba 34
Amazon 34
Apache Mesos
 reference link 32
API Gateway 18, 19
App Mesh 49
application administrator 392
application programming interface (API) 18
architecture, service mesh
 control plane 44
 data plane 45
attribute vocabulary
 reference link 323
attribute-based white/blacklist
 creating 308, 310
authentication infrastructure implementation
 about 242
 httpbin service, testing 243
 Ingress gateway, configuring with SDS 249, 250
 IP addresses, mapping to hostname 247, 248
 keys and certificates, generating 244
 private key, generating 245, 247
 root certificates, generating 245, 247
autocert
 reference link 446
Azure Kubernetes Service (AKS) 34
Azure Service Fabric Mesh 49

B
basic service mesh 40
BookInfo application
 about 157
 architecture 152, 153, 154
 deploying, in Kubernetes 154, 155
 exploring 152
 exploring, in Kubernetes environment 157, 159,

160

 securing, with TLS termination 447, 448
 testing, in browser 449
 testing, through curl 449, 450
booksapp application
 deploying 401, 402, 404, 405, 406, 408
 microservices 401
 reference link 401
built-in metrics
 collecting 322, 323
Buoyant
 URL 360

C
canary deployments 203, 204, 205, 206
cert-manager
 reference link 446
Certificate Authorities (CAs) 265
Certificate Signing Request (CSR) 127, 440
circuit breaker
 about 214
 implementing, for bookinfo application 215, 216,

217, 219
Citadel, policies
 about 132
 authentication, implementing 132, 133, 135
Citadel
 about 125

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

[578]

 authentication 127, 128
 authorization 130
 authorization, implementing 136, 137, 139
 certificate 126, 127
 key rotation 126, 127
 mTLS, enabling to secure service

communication 130, 131
 RBAC, for strong identity 130
 secure N-to-N mapping, of services 131, 132
 strong identity 128, 129
Cloud Foundry
 reference link 32
Cloud Native Computing Foundation
 URL 14, 32
Cloud-Native Applications (CNAs)
 about 28, 30
 attributes 30
cloud-native infrastructures
 about 34
 Alibaba 34
 Amazon 34
 Docker 34
 Google 34
 IBM 34
 Microsoft Azure 34
cluster administrator 392
CockroachDB
 reference link 474
command-line interface (CLI)
 about 453
 insight, gaining with 454, 455
computer machines 12
Computer Name (CN) 447
Consistency, Availability, and Partition (CAP) 475
Consul architecture
 about 472
 client/server 473
 components 472
 data center 473
 protocols 474
Consul cluster 471
Consul control plane
 about 477
 features 478
Consul data plane 477

Consul demo application
 Ingress, defining for Consul dashboard 515, 516
 installing 511, 513, 515
 service discovery 516
Consul DNS
 connecting, to Kubernetes 503, 504
Consul documentation
 reference link 529
Consul Helm chart
 downloading 498
Consul HTTP API
 reference link 517
Consul key-value store
 exploring 527, 529
Consul Replicate
 reference link 527
Consul server
 using, in VM 505, 506, 507, 508
Consul service mesh 470
Consul services
 securing, with ACL 529
Consul web console
 using 518, 519, 521
consul-k8s
 reference link 539
Consul
 about 48
 agent configuration 479, 480, 481
 benefits 470
 features 471
 installing 498, 500, 501, 502
 installing, in Kubernetes 495
 installing, in VM 494, 495
 integration 483
 log collection method 484
 monitoring, exploring 484
 service definition 482, 483
 service discovery 482
 traffic management 539, 547
 versus Istio 49, 51
 versus Linkerd 49, 51
Container Network Interface (CNI) 33
container orchestration 14, 15
container orchestration platforms 31
container runtime 30, 31

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

[579]

Container Runtime Interface (CRI)
 URL 31
Container Storage Interface (CSI) 501
control plane, components
 about 101
 Citadel 125
 Galley 102, 103
 Mixer 121, 122
 Pilot 103, 104
control plane, Linkerd architecture
 command-line interface (CLI), using 364, 365
control plane
 about 100, 101, 363, 364
 configuring 363
 controller 363
 Grafana 363
 Prometheus 363
 web 363
Custom Resource Definition (CRD) 56, 102, 104,

169, 379, 485

D
data plane
 about 139, 140, 366
 Istio's Envoy sidecar proxy 141
 sidecar proxy 140
database metrics 326, 328, 329
demo application
 deploying 543, 544, 545, 547
demo profile
 used, for installing Istio 173
destination rule
 creating 197, 198
Dev responsibilities
 shifting, to ops 41
Directed Acyclic Graph (DAG) 354
distributed tracing
 about 329, 330, 331
 backend adapters 332
 backend tracing 332
 trace sampling 331
DNS search
 enabling, for Kubernetes services in VM 156,

157

Docker Swarm

 reference link 32
Docker
 about 34
 uninstalling 91
dynamic infrastructure 470

E
Egress traffic patterns
 access, allowing to external services 225, 226,

227

 access, blocking to external services 224
 managing 222, 223
 rules, routing for external services 228, 229
Elastic Container Service for Kubernetes (EKS) 34
Elasticsearch, Logstash, and Kibana (ELK) 376
Enterprise Service Bus (ESB)
 about 12, 17
 history 17
Envoy
 architecture 142, 143
 deployment 143, 145, 146
 reference link 141
error code
 troubleshooting 426, 428, 429, 430, 431, 432,

433, 434
etcd
 reference link 474
external Prometheus integration 464, 465
external services
 registering 532, 533, 536

F
failed transactions
 retrying 422, 423, 424
fault injection 207
Flagger
 URL 377
Frakti
 reference link 31

G
Galley 102, 103
Garbage Collection (GC) 367
Gloo
 URL 373

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

[580]

golden metrics 373
Google Kubernetes Engine (GKE) 34
gossip protocol 476
Grafana
 about 485
 insight, gaining with 459, 460, 462, 463, 464
 installing 89, 90, 91
 metrics, visualizing 339, 340, 341, 343, 344,

345, 346

H
Hardware Management Console (HMC) 12
hardware virtualization 12
HashiCorp Configuration Language (HCL) 479,

540

Helm template
 used, for installing Istio 169, 170, 171
Helm
 installing 79
 installing, with Transport Layer Security (TLS)

security 80, 81
 installing, without security 79
horizontal pod scaling
 setting up 181, 182
HTTP abort faults
 injecting 210, 211
HTTP delay faults
 injecting 207, 208, 209
httpbin service
 testing 243

I
IBM Cloud Kubernetes Service (IKS) 34
identity-based traffic routing 200, 201, 202, 203
Infrastructure as a Service (IaaS) 35
Ingress controller 371, 372, 373
Ingress gateway 393, 394, 395
Ingress gateway configuration, SDS used
 about 249, 250
 bookinfo, enabling for simple TLS 256, 257
 httpbin, enabling for simple TLS 253, 255
 Ingress gateway, enabling 259, 261
 key and certificate, used for creating secrets

250, 252, 253
 node agent, used for rotate certificates and keys

263

 TLS configuration, verifying 261, 262, 263
 virtual service keys and certificates, rotating 257,

259

Ingress gateway IP address
 finding 189, 190
Ingress traffic patterns
 managing 220, 221, 222
insight
 gaining, into service mesh 453
 gaining, with CLI 454, 455
 gaining, with Grafana 459, 461, 462, 463, 464
 gaining, with Prometheus 455, 457, 458
intentions
 exploring 524, 526, 527
IP-based white/blacklist
 creating 310, 312
Istio authorization
 advanced capabilities 294
Istio control plane, components
 citadel 174
 mixer 174
 pilot 174
Istio gateway
 creating 188, 189
Istio installation
 verifying 174, 175
Istio service mesh 97
Istio's architecture 98, 99, 100
Istio's Envoy sidecar proxy 141
Istio, pre-installation tasks
 about 165
 environment, validating 167, 168
 installation profile, selecting 168
 source code, downloading 165, 166
Istio-specific terminologies
 authentication policies 267
 mutual TLS authentication 267
Istio
 about 48
 enabling 178
 enabling, for existing applications 178, 179
 enabling, for new applications 180
 installing 169
 installing, with demo profile 173

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

[581]

 installing, with helm template 169, 170, 171
 installing, with Tiller 171, 172
 routing primitives 188
 security 241
 URL 97
 used, for authentication 242
 versus Consul 49, 51
 versus Linkerd 49, 51

J
Jaeger
 tracing with 351, 353, 354, 355
 URL 351
JavaScript Object Notation (JSON) 479
JSON Web Token (JWT) 127, 294, 381

K
Kata
 reference link 31
Key Performance Indicators (KPI) 341
keys and certificates
 CLI, installing 244, 245
Kiali
 service mesh observability 346, 347, 348, 350,

351

 URL 146
Kubernetes dashboard
 authentication token, obtaining 83, 84
 exploring 85, 86, 87
 installing 81, 82
 running 82, 83
Kubernetes environment
 BookInfo application, exploring 157, 159, 160
Kubernetes services, in VM
 DNS search, enabling for 156, 157
Kubernetes
 BookInfo application, deploying 154, 155
 building, with VM 71
 Consul DNS, connecting to 503, 504
 Consul, installing 495
 ingress controllers 446
 installing 72, 73
 uninstalling 91
 URL 32

L
L7 configuration
 implementing 540, 541, 543
LAN gossip protocol 476
Linkerd 1.x 360
Linkerd 2.0 360
Linkerd architecture
 about 361
 control plane 362, 363, 364
 data plane 362, 366
Linkerd CLI
 installing 386, 387
 reference link 369
Linkerd dashboard
 accessing 395, 397
Linkerd demo emoji app
 booksapp application, deploying 401, 402, 404,

405, 406, 408
 deploying 397
 installing 397, 398, 399, 400, 401
Linkerd proxy
 about 367
 architecture 368
 features 367
 Ingress controller 371, 372, 373
 service, configuring 369, 370
Linkerd Service Mesh 360, 361
Linkerd, updated scripts
 reference link 388
Linkerd
 about 48
 cleaning up 466
 control plane, installing 389, 390, 391
 control plane, redeploying with certificates 443,

444

 identity certificates, regenerating for
microservices 445, 446

 identity certificates, rotating for microservices
445, 446

 installing 388
 intermediate certificates, creating 442, 443
 mTLS, setting up 439
 mTLS, validating 440
 prerequisites, validating 388, 389
 reliability, overview 411, 412

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

[582]

 roles and responsibilities, separating 391
 secure ingress gateway 446
 step certificates, installing 441, 442
 step root certificates, creating 442, 443
 trusted certificates, using for control plane 441
 versus Consul 49, 51
 versus Istio 49, 51
load balancer
 installing 175, 176, 177
load balancing
 configuring 413, 414
Logical Partitions (LPARs) 12
Lyft's Envoy
 reference link 97

M
macOS
 virtualization software, downloading 67
Mesh Configuration Protocol (MCP) 102
mesh gateway
 about 489, 559, 560
 working 490
mesh
 mutual TLS (mTLS), enabling 264, 265
Metrics Server
 installing 88
metrics
 collecting 323, 324, 325, 326
 monitoring 530, 532
 visualizing, through Grafana 339, 340, 341,

343, 344, 345, 346
microservices applications 19
microservices
 about 21
 architecture 23, 24
 benefits 24
 drawbacks 25
 evolution 22, 23
 future 25
Mixer configuration
 about 122
 attributes 122, 123
 handlers 123, 124
 rules 124, 125
Model, View, Controller (MVC) 14

monolithic applications
 about 15, 16
 drawbacks 19
mutual TLS (mTLS)
 about 110, 478
 configuration, verifying 273, 276, 278
 converting, to strict mutual TLS 267
 destination rules, redefining 267, 271
 enabling, at namespace level 272
 enabling, within mesh 264, 265
 implementing 522, 524
 setting up, on Linkerd 439
 validating, on Linkerd 440

N
Netflix's Hystrix
 reference link 97
network address translation (NAT) 68
nginx Ingress controller, installing with Helm chart
 reference link 393
Node Port
 using 195, 196

O
observability 315
observability functionality, Linkerd
 about 373
 debugging sidecar, injecting 377
 distributed tracing 375, 376
 Grafana 374
 metrics, exporting 376, 377
 Prometheus 374
observability tool 146, 147
OKD
 URL 30
Online Certificate Status Protocol (OCSP) 257
Open Container Initiative (OCI)
 about 56
 URL 31
Open Source Software Center (OSS) 20
open standard specification
 reference link 351
Open System Interconnect (OSI)
 reference link 98
OpenShift 32

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

[583]

P
persistent volumes
 creating 496, 497
Pilot, destination rule
 about 114
 blue/green deployment 119
 canary deployment 120
 circuit breaker 118, 119
 load balancing 115, 116, 118
Pilot, virtual services
 abort rules 113
 about 110, 111
 fault injection 112, 113
 routing rules 111, 112
Pilot
 about 103, 187
 gateways 106, 107, 108, 109
 namespace isolation 120
 service discovery 104, 105
 service entry 113, 114
 traffic management 105, 106
pioneers 20, 21
Pivotal
 URL 32
planes 98
Platform as a Service (PaaS) 25
policy controls 299
Pouch
 reference link 31
prerequisite tasks
 performing 70, 71
Prometheus
 about 315, 374
 configuration 338
 exploring 332
 insight, gaining with 455, 457, 458
 installing 89, 90, 91
 query 335, 336, 337
 sidecar proxy metrics 333, 335
 target collection health 337, 338
 URL 325
protocols, Consul
 consensus protocol 475
 gossip protocol 476

 RAFT 474
Public Key Infrastructure (PKI)
 about 125
 reference link 244

Q
quota
 assigning, to services 300, 302
 defining 300, 302

R
RAFT protocol 474
Rancher Labs' Rio
 reference link 56
rate limits
 defining 302, 303
 enabling 300
 quota rules, defining 303, 304, 305
 quota, assigning to services 300, 302
 quota, defining 300, 302
rate per second (rps) 414
reliability 411
reliability, Linkerd
 about 377
 fault injection 378
 load balancing 381
 protocols 381
 retries and timeouts 379, 380
 service profiles 379
 TCP proxy 381
Remote Procedure Call (RPC) 475
request per second (RPS) 364, 429, 460
request timeouts 212, 214
retry budgets
 implementing 425
role-based access control (RBAC) 129
Rust
 reference link 367

S
Scalable Weakly-consistent Infection-style Process

Group Membership (SWIM) 476
Secret Discovery Service (SDS)
 about 109, 127, 168, 243, 249
 advantages 249

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

[584]

Secure Copy (SCP) 83
Secure Production Identity Framework for

Everyone (SPIFFE)
 about 57, 129
 URL 57
Secure Service Discovery (SSD) 250
security authorization, Istio
 about 278, 279
 namespace-level authorization 280, 281
 service-level authorization, at individual level

281, 284, 286
 service-level authorization, for databases 287,

288, 290
security authorization
 service-level authorization, for databases 294
security, Istio
 mixer 241
 pilot 241
security, Linkerd
 about 381
 automatic mTLS 381
Serf
 reference link 476
service catalog 482
service discovery, Consul
 native integration 517
 sidecar proxy 517
service IP address
 using 194, 195
Service Mesh Interface (SMI)
 about 55
 features 56
 specifications 56, 57
service mesh interface
 reference link 361
service mesh observability
 through Kiali 346, 347, 348, 350, 351
service mesh providers
 about 47
 Consul 48
 Istio 48
 Linkerd 48
 references 52
service mesh
 architecture 44

 basic and advanced capabilities 40
 emerging trends 41
 insight, gaining 453
 overview 39
 owner 40
 reference link 39
 rules 42, 43, 44
service profile
 setting up 416, 417, 418, 419, 421, 422
Service Reliability Engineering (SRE) 351
Service-Oriented Architecture (SOA) 12
service
 access, controlling 305, 306
 access, denying 306, 308
sidecar proxy 140, 141
Simple Object Access Protocol (SOA)
 history 17
Simple Object Access Protocol (SOAP) 17
Site Reliability Engineering (SRE) 40, 112
smallstep
 reference link 441
software virtualization 13
SPIFFE Runtime Environment (SPIRE) 58
StatsD
 reference link 484
Subject Alternative Name (SAN) 57
success rate (SR) 429
System to Image (S2I) 30

T
Telegraf 484
telemetry 315
telemetry, components
 Grafana 146
 Prometheus 146
Tiller
 installing 79
 used, for installing Istio 171, 172
Time to Live (TTL) 258, 380
timeouts
 implementing 425, 426
TLS origination
 at Egress gateway 242
 at sidecar proxy level 242
TLS termination

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

 used, for securing BookInfo application 447, 448
trace sampling 331
traditional infrastructure 470
Traefik
 reference link 372
traffic management, Consul
 about 539, 547
 canary deployment 548, 549
 Consul services, checking 556, 557, 558
 path-based traffic routing 552, 553, 554, 555
 round-robin traffic 549, 550
 traffic shifting 550, 551
 traffic shifting, to default subset 547, 548
traffic management
 about 187, 485
 components 485
 service defaults 486, 487
traffic mirroring 229, 230, 232, 234, 236
traffic routing
 example 487
 working 487
traffic shifting 198, 199
traffic split 488, 489
traffic
 managing 220
transient IP address, of pod
 using 193
Transmission Control Protocol (TCP) 316
Transport Layer Security (TLS) 107
Twitter's Finagle
 reference link 97

U
UI access
 configuring 316, 317, 318, 319, 321

V
virtual machine (VM)
 about 114
 Consul server, using 505, 506, 507, 508
 Consul, installing 494, 495
 downloading 63
 power down 92
 power up 93
virtual service
 creating 190, 191, 193
virtualization software, downloading for macOS
 about 67
 finalization checks, performing 69
 network address, setting 68, 69
virtualization software, downloading for Windows
 about 64
 finalization checks, performing 66, 67
 network address, setting 65, 66
VM, used for building Kubernetes
 about 71
 admin account, creating 77
 Calico network, installing for pods 76, 77
 finalization checks, performing 78
 kubeadm, running 73, 74
 kubectl, configuring 75, 76
 kubectl, installing on client machines 78
VMware Octant
 installing 89

W
WAN gossip protocol 476
Weavework's Flagger
 reference link 56
Windows
 virtualization software, downloading 64

 EBSCOhost - printed on 2/9/2023 8:48 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: Cloud-Native Application Management
	Chapter 1: Monolithic Versus Microservices
	Early computer machines
	Hardware virtualization
	Software virtualization
	Container orchestration

	Monolithic applications
	Brief history of SOA and ESB
	API Gateway

	Drawbacks of monolithic applications

	Microservices applications
	Early pioneers
	What is a microservice?
	Evolution of microservices
	Microservices architecture
	Benefits and drawbacks of microservices
	Future of microservices

	Summary
	Questions
	Further reading

	Chapter 2: Cloud-Native Applications
	An introduction to CNAs
	Container runtime
	Container orchestration platforms
	Cloud-native infrastructure
	Summary
	Questions
	Further reading

	Section 2: Architecture
	Chapter 3: Service Mesh Architecture
	Service mesh overview
	Who owns the service mesh?
	Basic and advanced service mesh capabilities
	Emerging trends

	Shifting Dev responsibilities to Ops
	Service mesh rules
	Observability
	Routing
	Automatic scaling
	Separation of duties
	Trust
	Automatic service registration and discovery
	Resiliency

	Service mesh architecture
	Summary
	Questions
	Further reading

	Chapter 4: Service Mesh Providers
	Introducing service mesh providers
	Istio
	Linkerd
	Consul
	Other providers

	A quick comparison
	Support services
	Summary
	Questions
	Further reading

	Chapter 5: Service Mesh Interface and SPIFFE
	SMI
	SMI specifications

	SPIFFE
	Summary
	Questions
	Further reading

	Section 3: Building a Kubernetes Environment
	Chapter 6: Building Your Own Kubernetes Environment
	Technical requirements
	Downloading your base VM
	Building an environment for Windows
	Downloading our virtualization software
	Setting the network address
	Performing finalization checks

	Building an environment for macOS
	Downloading our virtualization software
	Setting the network address
	Performing finalization checks

	Performing prerequisite tasks
	Building Kubernetes using one VM
	Installing Kubernetes
	Running kubeadm
	Configuring kubectl
	Installing the Calico network for pods
	Creating an admin account
	Installing kubectl on client machines
	Performing finalization checks

	Installing Helm and Tiller
	Installing without security
	Installing with Transport Layer Security (TLS)

	Installing the Kubernetes dashboard
	Running the Kubernetes dashboard
	Get an authentication token
	Exploring the Kubernetes dashboard

	Additional steps
	Installing the Metrics Server
	Installing VMware Octant
	Installing Prometheus and Grafana
	Uninstalling Kubernetes and Docker
	Powering the VM up and down

	Summary
	Questions
	Further reading

	Section 4: Learning about Istio through Examples
	Chapter 7: Understanding the Istio Service Mesh
	Technical requirements
	Introducing the Istio service mesh
	Istio's architecture

	Control plane
	Galley
	Pilot
	Service discovery
	Traffic management
	Gateway
	Virtual service
	Routing rules
	Fault injection
	Abort rules

	Service entry
	Destination rule
	Load balancing
	Circuit breaker
	Blue/green deployment
	Canary deployment

	Namespace isolation

	Mixer
	Configuration of Mixer
	Attributes
	Handlers
	Rules

	Citadel
	Certificate and key rotation
	Authentication
	Strong identity
	RBAC for a strong identity

	Authorization
	Enabling mTLS to secure service communication
	Secure N-to-N mapping of services
	Policies
	Implementing authentication

	Implementing authorization

	Data plane
	Sidecar proxy
	Istio's Envoy sidecar proxy
	What is Envoy?
	Envoy architecture
	Deployment

	Observability
	Summary
	Questions
	Further reading

	Chapter 8: Installing a Demo Application
	Technical requirements
	Exploring Istio's BookInfo application
	BookInfo application architecture
	Deploying the Bookinfo application in Kubernetes
	Enabling a DNS search for Kubernetes services in a VM

	Understanding the BookInfo application
	Exploring the BookInfo application in a Kubernetes environment

	Summary
	Questions
	Further reading

	Chapter 9: Installing Istio
	Technical requirements
	Getting ready
	Performing pre-installation tasks
	Downloading the source code
	Validating the environment before installation
	Choosing an installation profile

	Installing Istio
	Installing Istio using the helm template
	Installing Istio using Helm and Tiller
	Installing Istio using a demo profile

	Verifying our installation
	Installing a load balancer
	Enabling Istio
	Enabling Istio for an existing application
	Enabling Istio for new applications

	Setting up horizontal pod scaling
	Summary
	Questions
	Further reading

	Chapter 10: Exploring Istio Traffic Management Capabilities
	Technical requirements
	Traffic management
	Creating an Istio gateway
	Finding the Ingress gateway IP address

	Creating a virtual service
	Running using pod's transient IP address
	Running using a service IP address
	Running using Node Port

	Creating a destination rule

	Traffic shifting
	Identity-based traffic routing
	Canary deployments

	Fault injection
	Injecting HTTP delay faults
	Injecting HTTP abort faults
	Request timeouts

	Circuit breaker
	Managing traffic
	Managing Ingress traffic patterns
	Managing Egress traffic patterns
	Blocking access to external services
	Allowing access to external services
	Routing rules for external services

	Traffic mirroring
	Cleaning up
	Summary
	Questions
	Further reading

	Chapter 11: Exploring Istio Security Features
	Technical requirements
	Overview of Istio's security
	Authentication
	Testing the httpbin service
	Generating keys and certificates
	Installing the step CLI
	Generating private key, server, and root certificates

	Mapping IP addresses to hostname
	Configuring an Ingress gateway using SDS
	Creating secrets using key and certificate
	Enabling httpbin for simple TLS
	Enabling bookinfo for simple TLS
	Rotating virtual service keys and certificates
	Enabling an Ingress gateway for httpbin using mutual TLS
	Verifying the TLS configuration
	Node agent to rotate certificates and keys for services

	Enabling mutual TLS within the mesh
	Converting into strict mutual TLS
	Redefining destination rules
	Enabling mTLS at the namespace level
	Verifying the TLS configuration

	Authorization
	Namespace-level authorization
	Service-level authorization at the individual level
	Service-level authorization for databases

	Advanced capabilities
	Summary
	Questions
	Further reading

	Chapter 12: Enabling Istio Policy Controls
	Technical requirements
	Introduction to policy controls
	Enabling rate limits
	Defining quota and assigning to services
	Defining rate limits
	Defining quota rules

	Controlling access to a service
	Denying access
	Creating attribute-based white/blacklists
	Creating an IP-based white/blacklist

	Summary
	Questions
	Further reading

	Chapter 13: Exploring Istio Telemetry Features
	Technical requirements
	Telemetry and observability
	Configuring UI access
	Collecting built-in metrics
	Collecting new metrics
	Database metrics
	Distributed tracing
	Trace sampling
	Tracing backends
	Adapters for the backend

	Exploring prometheus
	Sidecar proxy metrics
	Prometheus query
	Prometheus target collection health
	Prometheus configuration

	Visualizing metrics through Grafana
	Service mesh observability through Kiali
	Tracing with Jaeger
	Cleaning up
	Summary
	Questions
	Further reading

	Section 5: Learning about Linkerd through Examples
	Chapter 14: Understanding the Linkerd Service Mesh
	Technical requirements
	Introducing the Linkerd Service Mesh
	Linkerd architecture
	Control plane
	Using the command-line interface (CLI)

	Data plane

	Linkerd proxy
	Architecture
	Configuring a service
	Ingress controller

	Observability
	Grafana and Prometheus
	Distributed tracing
	Exporting metrics
	Injecting the debugging sidecar

	Reliability
	Traffic split
	Fault injection
	Service profiles
	Retries and timeouts
	Load balancing
	Protocols and the TCP proxy

	Security
	Automatic mTLS

	Summary
	Questions
	Further reading

	Chapter 15: Installing Linkerd
	Technical requirements
	Installing the Linkerd CLI
	Installing Linkerd
	Validating the prerequisites
	Installing the Linkerd control plane
	Separating roles and responsibilities
	Cluster administrator
	Application administrator

	Ingress gateway
	Accessing the Linkerd dashboard
	Deploying the Linkerd demo emoji app
	Installing a demo application
	Deploying the booksapp application

	Summary
	Questions
	Further reading

	Chapter 16: Exploring the Reliability Features of Linkerd
	Technical requirements
	Overview of the reliability of Linkerd
	Configuring load balancing
	Setting up a service profile
	Retrying failed transactions
	Retry budgets

	Implementing timeouts
	Troubleshooting error code

	Summary
	Questions
	Further reading

	Chapter 17: Exploring the Security Features of Linkerd
	Technical requirements
	Setting up mTLS on Linkerd
	Validating mTLS on Linkerd
	Using trusted certificates for the control plane
	Installing step certificates
	Creating step root and intermediate certificates
	Redeploying control plane using certificates
	Regenerating and rotating identity certificates for microservices

	Securing the ingress gateway
	TLS termination
	Testing the application in the browser
	Testing the application through curl

	Summary
	Questions
	Further reading

	Chapter 18: Exploring the Observability Features of Linkerd
	Technical requirements
	Gaining insight into the service mesh
	Insights using CLI
	Insight using Prometheus
	Insights using Grafana

	External Prometheus integration
	Cleaning up
	Summary
	Questions
	Further reading

	Section 6: Learning about Consul through Examples
	Chapter 19: Understanding the Consul Service Mesh
	Technical requirements
	Introducing the Consul service mesh
	The Consul architecture
	Data center
	Client/server
	Protocols
	RAFT
	Consensus protocol
	Gossip protocol

	Consul's control and data planes
	Configuring agents
	Service discovery and definitions
	Consul integration

	Monitoring and visualization
	Telegraf
	Grafana

	Traffic management
	Service defaults
	Traffic routing
	Traffic split
	Mesh gateway

	Summary
	Questions
	Further reading

	Chapter 20: Installing Consul
	Technical requirements
	Installing Consul in a VM
	Installing Consul in Kubernetes
	Creating persistent volumes
	Downloading the Consul Helm chart
	Installing Consul
	Connecting Consul DNS to Kubernetes
	Consul server in a VM

	Summary
	Questions
	Further reading

	Chapter 21: Exploring the Service Discovery Features of Consul
	Technical requirements
	Installing a Consul demo application
	Defining Ingress for the Consul dashboard

	Service discovery
	Using the Consul web console

	Implementing mutual TLS
	Exploring intentions
	Exploring the Consul key-value store
	Securing Consul services with ACL
	Monitoring and metrics
	Registering an external service
	Summary
	Questions
	Further reading

	Chapter 22: Exploring Traffic Management in Consul
	Technical requirements
	Overview of traffic management in Consul
	Implementing L7 configuration

	Deploying a demo application
	Traffic management in Consul
	Directing traffic to a default subset
	Canary deployment
	Round-robin traffic
	Shifting traffic permanently
	Path-based traffic routing
	Checking Consul services

	Mesh gateway
	Summary
	Questions
	Further reading

	Assessment
	Other Books You May Enjoy
	Index

