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PREFACE TO THE SECOND EDITION

Since these lectures were given, supersymmetric particle phenomenology
has been the subject of extensive study. Many models have been proposed,
including some that make essential use of the supergravity multiplet. A
variety of experimental searches have been carried out, and more are
planned for the future.

Given this state of affairs, we felt that the second edition of this book
should go substantially beyond the first. The second edition contains a
total of six new chapters and five new appendixes. The new chapters are
primarily devoted to deriving the component form of the most general
supersymmetric gauge theory coupled to supergravity. The resulting
Lagrangian, presented in Chapter XXV and Appendix G, is the starting
point for all phenomenological studies of supergravity theories. Model-
builders can use the Lagrangian without having to read the rest of the
book.

The new appendixes contain introductions to Kahler geometry, iso-
metries, and nonlinear realizations of symmetries. The material is essen-
tial for understanding the derivations in the book, but it is also of more
general interest. In Chapter XXVI the techniques of nonlinear realizations
are applied to supersymmetric gauge theories. The results pave the way
for a model-independent approach to supersymmetry phenomenology, in
the spirit of chiral dynamics.

The new additions have broadened the scope of the book so that it
should appeal to physicists of formal and phenomenological interests. In
its present form, the book provides a theoretical basis for further phe-
nomenological studies of supersymmetric theories.

We would like to thank the Gottfried Wilhelm Leibnitz Program of
the DFG and the Alfred P. Sloan Foundation for financial support during
the preparation of the second edition.

JULIUS WESS JONATHAN BAGGER

UNIVERSITY OF MUNICH JOHNS HOPKINS UNIVERSITY

February 1991
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PREFACE

The strong interest with which these lectures on supersymmetry and
supergravity were received at Princeton University encouraged me to
make their contents accessible to a larger audience. They are not a sys-
tematic review of the subject. Instead, they offer an introduction to the
approach followed by Bruno Zumino and myself in our attempt to
develop and understand the structure of supersymmetry and supergravity.

This book consists of two parts. The first develops a formalism which
allows us to construct supersymmetric gauge theories. The second part
extends this formalism to local supersymmetry transformations.

At the end of each chapter, two papers are cited which I recommend
to the reader. I am aware that this selection does not do justice to many
authors who have contributed to the subject. However, I would like to
draw attention to the more complete lists of references found in P. Fayet
and S. Ferrara, Supersymmetry, Physics Reports 32C, No. 5, 1977, and
P. Van Nieuwenhuizen, Supergravity, Physics Reports 68C, No. 4, 1981.

Throughout the text, important equations are numbered in boldface.
They are collected at the end of each chapter. Exercises are also included
along with each chapter; many of them contain information essential to
a deeper understanding of the subject.

This book was prepared in collaboration with Jonathan Bagger, without
whom it would never have been written. Both Jon and I would like to
thank Winnie Waring for her devoted assistance in the preparation of the
manuscript. As a tribute to her high standards, we have tried our best
to avoid errors in factors and signs. Many people have helped eliminate
these errors. In particular, we would like to thank Martin Miiller for
his assistance with the second half of the book.

I wish to express my gratitude to the Federal Republic of Germany
for the grant which made possible my stay at The Institute for Advanced
Study as an Albert Einstein Visiting Professor, and Jon would like to
express his appreciation to the U.S. National Science Foundation for
his Graduate Fellowship at Princeton University.

In conclusion, I would like to thank Stephen Adler and the Members
of the Institute for Advanced Study, as well as David Gross and the
Department of Physics at Princeton University, for their most encour-
aging and critical interest in these lectures.

JULIUS WESS
UNIVERSITY OF KARLSRUHE
MAY, 1982
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I. WHY SUPERSYMMETRY?

Supersymmetry is a subject of considerable interest among physicists and
mathematicians. Not only is it fascinating in its own right, but there is
also a growing belief that it may play a fundamental role in particle
physics. This belief is based on an important result of Haag, Sohnius, and
Lopuszanski, who proved that the supersymmetry algebra is the only
graded Lie algebra of symmetries of the S-matrix consistent with relativis-
tic quantum field theory. In this chapter, we shall discuss their theorem
and its proof. (Readers specifically interested in supersymmetric theories
might prefer to start directly with Chapter II or III.)

Before we begin, however, we first present the supersymmetry algebra:

[Pm,Pn]_ = 0.

The Greek indices (a, / ? , . . . , a, /?,. . .) run from one to two and
denote two-component Weyl spinors. The Latin indices (m, n , . . . ) run
from one to four and identify Lorentz four-vectors. The capital indices
(A, JB,...) refer to an internal space; they run from 1 to some number
N > 1. The algebra with JV = 1 is called the supersymmetry algebra, while
those with N > 1 are called extended supersymmetry algebras. All the
notation and conventions used throughout this book are summarized in
Appendix A.

We are now ready to consider the theorem. Of all the graded Lie
algebras, only the supersymmetry algebras (together with their extensions
to include central charges, which we shall discuss at the end of the chapter)
generate symmetries of the S-matrix consistent with relativistic quantum
field theory. The proof of this statement is based on the Coleman-Mandula
theorem, the most precise and powerful in a series of no-go theorems
about the possible symmetries of the S-matrix.
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4 I. WHY SUPERSYMMETRY?

The Coleman-Mandula theorem starts from the following assumptions:

(1) the S-matrix is based on a local, relativistic quantum field theory in
four-dimensional spacetime;

(2) there are only a finite number of different particles associated with
one-particle states of a given mass; and

(3) there is an energy gap between the vacuum and the one particle
states.

The theorem concludes that the most general Lie algebra of symmetries of
the S-matrix contains the energy-momentum operator Pm, the Lorentz
rotation generator Mmn, and a finite number of Lorentz scalar operators
Bg. The theorem further asserts that the B£ must belong to the Lie algebra
of a compact Lie group.

Supersymmetries avoid the restrictions of the Coleman-Mandula
theorem by relaxing one condition. They generalize the notion of a Lie
algebra to include algebraic systems whose defining relations involve
anticommutators as well as commutators. These new algebras are called
superalgebras or graded Lie algebras. Schematically, they take the
following form:

{Q,Q'} + = X [ * ,* ' ] - = X" [Q,X]- = Q". (1.2)

Here Q, Q\ and Q" represent the odd (anticommuting) part of the algebra,
and X, X\ and X" the even (commuting) part.

The operators X are determined by the Coleman-Mandula theorem.
They are either elements of the Poincare algebra 9 = {Pm,Mmn} or
elements of a Lorentz-invariant compact Lie algebra si. The algebra si
is a direct sum of a semisimple algebra sit and an Abelian algebra stf2,
si = six® si%.

The generators Q may be decomposed into a sum of representations
irreducible under the homogeneous Lorentz group if:

The <2<*i ««,«! "-ib
 a r e symmetric with respect to the underlined indices

OLX - - - cca and ax • * • ocb. They belong to irreducible spin-^(a + b) repre-
sentations of 5£. Since the Q's anticommute, the connection between spin
and statistics tells us that a + b must be odd.

We shall now invoke two additional assumptions to prove that
a + b = 1. These assumptions are:

(1) the operators Q act in a Hilbert space with positive definite metric;
and

(2) both Q and its hermitian conjugate Q belong to the algebra.
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I. WHY SUPERSYMMETRY?

We start by considering the anticommutator

\8«i • • - aa)ai • • • i^Qfij • • -/Ufo • • • fib} »

where all the indices are assigned the value 1. The product

belongs to a spin-(a + b) representation of if, so

(1.6)

must close into an even element of the algebra with spin {a + b). From
the Coleman-Mandula theorem, we know that this element is either
zero or a component of Pm. For a + b > 1, it must be zero.

The anticommutator (1.6) is a positive definite operator in a Hilbert
space with a positive definite metric. This tells us that 2 i • • • i,i • • • i = 0

a b

for a + b > 1. Since the Qai... aatil... ib are irreducible under i?, they
all must vanish for a + fc > 1. From this we conclude that the odd part
of the supersymmetry algebra is composed entirely of the spin-j operators
Q a £ d M

The anticommutator of Qa
L and QiM closes into Pa(k,

{Q.L,Q*M} = P«aCL
M, (1.7)

where P a i = <raii
mPm. In Exercise 1 we show that the finite-dimensional

matrix CL
M is hermitian. It may therefore be diagonalized by a unitary

transformation. Since {QiL,Q[L} is positive definite, the matrix CL
M has

positive definite eigenvalues. This lets us choose a basis in the odd part of
the algebra such that

{<LL,QaU} = 2PaiS
L

M. (1.8)

We now turn our attention to the anticommutator of two odd elements,
both with undotted indices. The right-hand side of this expression may be
decomposed into symmetric and antisymmetric parts. The symmetric
part has spin 1. From the Coleman-Mandula theorem, the only possible
candidate is the Lorentz generator Mafi:

(1.9)
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6 I. WHY SUPERSYMMETRY?

From the fact that Pm commutes with Qa
L (see Exercise 2), we find that

the Y— must vanish. This lets us write the commutator (1.9) as follows:

{Q«L,QeM} = e«,o''i2B,. (1.10)

Here Be is a hermitian element of ts/i © si2
 anc* ^'iH- is antisymmetric

in L and M. With this result, the supersymmetry algebra takes the fol-
lowing form:

= 0

(I-")

We shall now use the Jacobi identities to further restrict the coefficients
ae*m and S/ M in (1.11). The ordinary Jacobi identity may be easily
extended to include anticommutators, as is done in Exercise 3:

{A, {B,C]] ± {B, {CAJ] ± {C, {A,BJ] = 0. (1.12)

The bracket structure {, ] signifies either commutator or anticommutator,
according to the even or odd character of A, B, and C. The signs are
determined by the odd elements. If the odd elements are in a cyclic
permutation of the first term, the sign is positive; if not, it is negative.
By exploring the Jacobi identities in a certain order, we shall arrive at
our results as quickly as possible.

We first consider the identity

[Bt, {QM^}] + {Q«L, [6**3,]} - {Qw, [ B , , ^ ] } = 0. (1.13)

The first term vanishes because Be and Pm commute. The second and
third terms give

-{Q«\QiK}s*eMK + {QHM,Q«K}S,LK = o, (1.14)

or
2Pai>[S*'M

L - S,L
M] = 0. (1.15)
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I. WHY SUPERSYMMETRY?

Equation (1.15) is true only if

so Se
L

M is hermitian.
Next we use the identity

\Bt, {Qa
L,Qfi

MU + {Q.L, [Q/.-B,]} - {Qf"[Bt,Qj--\} = 0 (1.17)

to prove that the generators Xi¥ = of%H^Bi form an invariant subalgebra
of s/i © s/2. Evaluating (1.17) with the help of (1.11), we find

XkZ] + S,MKX& - S,LKX^} = 0. (1.18)

This shows that the commutator of Be with X^i closes into the set of
generators Xi3. The XkH- are linear combinations of the B{, so we con-
clude that the X^i form an invariant subalgebra of si — s/x © st2*

We now use the identity

[Q,L, {Q,M,QyK}l + [Q»M, {QyK,Q«L}] + [6,*, {OSa,*}! = 0 (1.19)

to show that the generators XQZ commute with all the generators of si.
Combining (1.19) with (1.11), we find

<ae>K,X^] = 0, (1.20)
SO

[X&,Xl&] = ^ ^ [ { e / , 6 / } , XkZ] = 0. (1.21)

This implies that the X^3 form an Abelian (invariant) subalgebra of si.
Since six is semisimple, the Z i5 are elements of si2 and commute with
all the generators of si:

\X^fii\ = 0. (1.22)

For this reason, they are called central charges. Inserting (1.22) into (1.18),

S,MKX!£ - S,LKX^ = 0, (1.23)

and substituting X^ = cf^B^ we find

S , V * ' " - S,LKak^ = 0. (1.24)
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8 I. WHY SUPERSYMMETRY?

From the fact that S€
M

K is hermitian and ak^£ antisymmetric, we conclude

S / V " = -J-&S*'K
L. (1.25)

In Exercise 4 we show that the Se
M

K form a representation of Ax © A2.
Equation (1.25) tells us that the matrices ak intertwine the representation
S, with its complex conjugate -S ,* . Central charges exist only if the
algebra Ax © A2 permits such intertwiners. A trivial example is given by
S^ = 0. Another is provided by orthogonal groups, where S; = — S/5.
A third example is given in Exercise 5.

No further restrictions follow from the other Jacobi identities, as may
be proven by checking them all. We have therefore found the most general
supersymmetry algebra:

[Pm,Pn] = 0

{PM = [Pm,x!3] = o

] = 0

= 0

icim
kB

k

This is the most general graded Lie algebra of symmetries of the S-matrix
consistent with relativistic quantum field theory. If central charges exist,
they must be of the form XkH = ae^Be, where of intertwines the rep-
resentations 5̂  and — S**.

REFERENCES

S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
R. Haag, J. Lopuszanski, and M. Sohnius, Nucl. Phys. B88, 257 (1975).
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I. WHY SUPERSYMMETRY? 9

EQUATIONS

{Q«A,QfiB}+ = 2<rail
mPmdA

B

{6 / , 6 /K = {QiA,QfB}+ = 0

[pm,e/]_ = {pm,QiA]- = o

1PM- = 0.

{A, {B, C]] ± {B, {C, AJ] ± {C, {A,BJ] = 0. (1.12)

S*V - S,V (1.16)

Se
M

Kak-^= -ak-^S*'K
L. (1.25)

[Pm,Bj = {Pm,XfS] = 0

,e/] = o
A ] = o

EXERCISES

(1) Prove that CL
M in (1.7) is hermitian by comparing the anticommutator

(1.7) with its hermitian conjugate.

(2) Show that [6a,Pm] = 0. Start from the fact that there are no spin
-f generators. Deduce that [Pa«>6y

L] = zLM8ayQ*M> where the ZL
M

are some set of numbers. Use the Jacobi identity for [Pp^ [Pa^Qy
LJ]

to prove that all the ZL
M vanish. This shows that the Qa

L are transla-
tionally invariant.
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10 I. WHY SUPERSYMMETRY?

(3) Prove the Jacobi identity (1.12). In particular, verify

[6i, LB2,B

Bu {Q2,Q3

3]] + [B2, [B3JBJ] +

3]] + [B2, {B3,Q,-\-\ +

l}] + {62, [63vBi]} "

L 3 ' L i>

IB3, [QUB

{e3, [Bi,e

2]] = 0

2]] = 0

2]} = 0

[<2i, {62,63}] + [62, {63,61}] + [63, {QuQiU = 0.

(4) Use the identity

[** [^m,ea
L]] + [Bm, [ Q . L A ] ] + [ea

L, [B,JJ j ] = 0

to prove

[Sm,S,] = icJSk.

(The matrix Ŝ  has elements S/M.) Show that — S*̂  satisfies the
same commutation relations.

(5) The Pauli matrices a and their conjugates -a* both form representa-
tions of SU(2). Show that e is an intertwiner between these rep-
resentations. Verify that the commutator

{Q*L,QPM} = wLU^z, + ic2z2)

is consistent with the Jacobi identities if Zx and Z2 are central
charges.
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II. REPRESENTATIONS OF THE
SUPERSYMMETRY ALGEBRA

An exciting feature of the supersymmetry algebra is that there exist
quantum field theories in which the supersymmetry generators Qa may
be represented in terms of conserved currents Ja

m:

Q* = J>xJ.°

The currents Ja
m are local expressions of the field operators. The algebra

(I) is satisfied because of the canonical equal-time commutation relations,
and the Hilbert space spans a representation of the supersymmetry al-
gebra. In this chapter we shall study the supersymmetry representations
of one-particle states.

The energy-momentum four-vector Pm commutes with the super-
symmetry generators Qa and Qd. The mass operator P2 is a Casimir
operator, so irreducible representations of the supersymmetry algebra
are of equal mass. We shall construct these irreducible representations
by the method of induced representations, considering fixed time-like
(P2 < 0) and light-like (P2 = 0) momenta.

Before we do this, however, we shall first prove that every representa-
tion of the supersymmetry algebra contains an equal number of bosonic
and fermionic states. We begin by introducing a fermion number operator
NF, such that ( — )NF has eigenvalue +1 on bosonic states that —1 on
fermionic states. It follows immediately that

(-)""&= -QJi-f'- (2-2)

For any finite-dimensional representation of the algebra (such that the
trace is well-defined), we find

Tr[( - )NF{Q/, QIB}] = Tr[( - )NF(Q«AQHB + QpsQ/)]

= Tr [ - QA - y*Qh + QA - T'Qd
= 0. (2.3)
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12 II. THE SUPERSYMMETRY ALGEBRA

Here we have used (2.2) and the cyclic property of the trace. Substituting

{QAQPB} = 2<r,/rPmSA
B (2.4)

from the supersymmetry algebra (I), we conclude

= 0. (2.5)

For fixed non-zero momentum Pm, this reduces to

T r ( - ) N ' = 0, (2.6)

proving that supersymmetry representations contain equal numbers of
bosonic and fermionic states.

We are now ready to construct the representations of the supersymmetry
algebra corresponding to massive, one-particle states, P2 = — M2.
We first boost to the rest frame, where Pm = (— M, 0, 0, 0). In this frame,
the algebra (I) takes the following form:

i

{QAQeB} = {Q^QPB} = o. (2J)

The indices A and B run from 1 to N. The generators Q may be rescaled

1 _ ( 1 8 )

2M

to show that (2.7) is isomorphic to the algebra of IN fermionic creation and
annihilation operators, (aa

A)+ and af\

(2.9)

The representations of this algebra are well known. They are constructed
from a Clifford "vacuum" Q. The Clifford vacuum is defined through the
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II. THE SUPERSYMMETRY ALGEBRA 13

condition

a / Q = 0, (2.10)

where, in contrast to the usual case, P2 Q = — M2 Q. The states are built
by applying the creation operators (aa

A)+ to Q:

^ ai
Al)+ • • • (a^m. (2.11)

Because the {aa
A)+ anticommute, Q{n) is antisymmetric under the exchange

of two pairs of indices <xtAh (XjAj. Each pair of indices takes 2N different
values, so n must be less than or equal to 2N. For any given n, there are
(2n

N) different states. Summing over all n gives the dimension of the repre-
sentation (2.11):

d = Z ( | = 22N- (2-12)
n = 0 \ n J

If the vacuum Q is not degenerate, we call (2.11) the fundamental
irreducible massive multiplet. It has dimension 22iV, with 22N~1 bosonic
and 22N~1 fermionic states. The state with the highest spin is obtained by
symmetrizing in as many spinor indices as possible. Because we must
simultaneously antisymmetrize in the second index, we may only symme-
trize in N spinor indices. This leads to spin-^N. The highest spin in the
fundamental multiplet is jN; it occurs exactly once.

All other massive multiplets are based on vacuua Q which are not
invariant under the stability group. Their representations are found by
composing the representation of Q with that of the fundamental multiplet.

We now list a few examples. In the case N = 1, the fundamental
representation consists of the states

Q

(aJ Q (2.13)

^ ( a a ) > / L ) Q 8 V ) K ) ^ .
\/2 2yJ2

It has two states of spin 0 and one of spin \. When the vacuum Qj has
spin7, with; > 0, it belongs to a (2/ + l)-dimensional representation of
the stability group SU(2). This leads to a multiplet with spins (jj + \,
j — iJ)' These results are summarized in the following tables for
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14 II. THE SUPERSYMMETRY ALGEBRA

N = 1,2, 3, and 4:

N = 1

Spin

0

i
1
|
2

2
1

1
2
1

1
2
1

1
2
1

N = 2

Spin

0

\
1
|
2

5
4
1

4
6
4
1

I
4
6
4
1

iV = 3

Spin

0
1

1
1

2

14
14
6
1

14
20
15
6
1

AT = 4

Spin

0
1
2

1
3
2
2

42
48
27

o
o
1

The representation space (2.11) of the algebra (2.9) also spans a repre-
sentation space of the invariance group of the algebra. It is obvious from
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II. THE SUPERSYMMETRY ALGEBRA 15

(2.9) that SU(2) ® U(N) is a possible invariance group. However, SO(4N)
is a larger invariance group of (2.9). It contains SU(2) ® U(N) and
SU(2) ® USp(2N) as subgroups. To make the SO(4N) symmetry manifest
it is convenient to write (2.9) as a Clifford algebra. To do this we define
the operators

=-J= [ a /+ (a/)*]

U f l 2 + ( a 2 ) ]

(2.14)

The indices 1 and 2 refer to the SU(2) spinor indices and the index <f
runs from 1 to N. By definition, the 2iV operators (2.14) are hermitian.
In addition, they obey the following anticommutation relations:

{TrXs} = <5's, (2.15)

where r,s = 1 , . . ., 4N. This is a Clifford algebra with an SO(4N) invari-
ance group. The 22N states of the fundamental representation span a spin-
orial representation of SO(4N). This spinorial representation contains two
irreducible representations, each of dimension 2 2 N ~ \ corresponding to
the bosonic and fermionic states.

The algebra (2.9) may also be cast in a form which exhibits the SU(2) ®
USp(2Ar) symmetry. This is done by defining a new set of operators

where / = 1 , . . . , N. These operators transform as follows under hermi-
tian conjugation:
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16 II. THE SUPERSYMMETRY ALGEBRA

Equation (2.17) may be written in a more compact form

^ , (2.18)

where r,t run from 1 to IN and A is the following symplectic matrix:

The anticommutation relations of the operators q

{qJAp} = ~^Art (2.20)

exhibit the SU(2) <x) USp(2N) invariance. This invariance group is useful
because states of a given spin transform irreducibly under USp(2N).

We shall now analyze the massless case, P2 = 0. We begin by boosting
to a fixed light-like reference frame, where Pm = ( — £,0,0,£). In this
frame, the algebra (I) becomes

(2.21)

{QAQn8} = {QiA,QpB} = o.

Rescaling the Q's

l = QiA

(2.22)

we find that the algebra (2.21) consists of N creation and annihilation
operators, a +

 A and aA:

W.) * . (223)
{aV, - jo*,,o*s) - 0.

The operators Q2
A and Q2A

 a r e totally anticommuting and must therefore
be represented by zero.

The operators a +
 A and aA raise and lower the helicity of a state by j .

Consequently, aA annihilates the state of lowest helicity, say, A:

aAQx = 0. (2.24)
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II. THE SUPERSYMMETRY ALGEBRA

The states

17

(2.25)
n\

are built by applying the creation operators a+
A on the Clifford vacuum

Q^. The states Q(
A"|n/2, ^ • • • ^ h a v e helicity k + \n. They are antisymmetric

in Ax • • - An and (^)-times degenerate. The state with highest helicity in
this representation has helicity J = k + %N, so the representation (2.25)
has dimension 2N. From this we see that one massive representation splits
into 2N massless representations.

We summarize these results in tables for N = 1, 2, 3, and 4:

N = 1

2
3
2
1

i
0
1

~2
- 1
_ 1

- 2

- 2

1
1

3
~ 2

1
1

- 1

1
1

1
~~ 2

1
1

0

1
1

i

1
1

1

1
1

3
2

1
1

N = 2

2

f
1
i

0

- i
- l

-f
- 2

- 2

1
2
1

- I

1
2
1

- 1

1
2
1

~ 2

1
2
1

0

1
2
1

*

1
2
1

1

1
2
1

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



18

N = 3

II.

\ 2

2
|
1

i
0

-i
- 1

3
~2
_ 2

THE

- 2

1
3
3
1

SUPERSYMMETRY ALGEBRA

_ 3

1
3
3
1

- 1

1
3
3
1

~ 2

1
3
3
1

0

1
3
3
1

I
2

1
3
3
1

N = 4

2
§
1
I
2
0

~~ 2

- 1

- f
_ 2

— 2

1
4
6
4
1

1
4
6
4
1

-•

1
4
6
4
1

2

1
4
6
4
1

0

1
4
6
4
1

In CPT-invariant theories, the number of states must in general be
doubled, for CPT reverses the sign of the helidty. Note, however, that
the N = 2, A = - 4 ; N = 4, / = - 1 ; and N = 8, / = - 2 multiplets
are automatically CPT complete.

To conclude this chapter, we consider the supersymmetry algebra
(1.26) with central charges. We assume that P2 = - M 2 and study the
algebra in the rest frame:

{Q«L,(QeM)+} =

{Q. &e } -

ZLM = _
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II. THE SUPERSYMMETRY ALGEBRA 19

The central charges ZLM commute with all the generators, so we may
choose a basis in which the central charges are diagonal with eigenvalues
ZLM. These eigenvalues form an antisymmetric N x N matrix. Any such
matrix may be rotated into a standard form by a unitary transformation:

ZLM = UL
KUM

NZKN. (2.27)

The standard form is given by

Z = e ® D (N even)

®D 0\ (2.28)

o oj (Nodd)

where D is diagonal with positive real eigenvalues Zm and s is the 2 x 2
antisymmetric matrix with e12 = 1.

We shall study the case with N even. (The case with N odd is analogous.)
We start by decomposing the indices L and M in accord with (2.28),

L = (a,m), M = (b9n), (2.29)

where a,b = 1,2 and m,n = 1 , . . . , jN. We then perform a unitary
transformation on the Qa

L,

Q«L = t / L i , e / . (2.30)

This allows us to write the algebra (2.26) in the following form:

(2.31)

The operators Qa
am and (Qa

am)+ may all be expressed as linear combina-
tions of

(2.32)

and their conjugates (aa
m)+ and (ba

m)+. The operators a and b satisfy the
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20 II. THE SUPERSYMMETRY ALGEBRA

following algebra:

+ Zn) (2.33)

- ZJ.

From these relations we see that Zn < 2M for all n. If a set of Z, = 2M,
with i = 1 , . . . , r, the corresponding operators bt must vanish. This leaves
us with a Clifford algebra of 2(JV — r) creation and annihilation operators.
The representations of this algebra have been studied before.

REFERENCES

W. Nahm, Nucl. Phys. B135, 149 (1978).
S. Ferrara, C. A. Savoy, and B. Zumino, Phys. Lett. 100B, 393 (1981).

EXERCISES

(1) Show that there are equal numbers of bosonic and fermionic states
in the representation (2.11). Assign the number -f 1 to each bosonic
state and the number —. 1 to each fermionic state. Then compute
the sum

2N

(2) Prove that the highest spin in the fundamental multiplet occurs exactly
once. Construct the state with the highest spin in the z-direction.
Verify that this state is unique.

(3) Show that saP(xp)+ transforms like xp under SU(2) transformations.
This shows that complex conjugation raises and lowers SU(2)
indices. (In particular, lower dotted indices of SL(2,C) transform as
upper indices under the SU(2) rotation subgroup.)
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III. COMPONENT FIELDS

To formulate a supersymmetric field theory we must first represent the
supersymmetry algebra (I) in terms of fields not restricted by any mass-
shell conditions. Anticommuting parameters c;",^ simplify the task:

\ _ . . . _
j — —

These parameters allow us to express the supersymmetry algebra entirely
in terms of commutators:

= o 0.2)

= 0.

Here we use the summation convention outlined in Appendix A:

iQ = ? Q» IQ = l&.

A component multiplet is a set of fields (A, ijj,...) on which we define
the infinitesimal transformation S*:

M =(cQ + ?g) x /I, ( 3 3 )

The transformation 5̂  satisfies

(SnS4 - ^ ^ ) / 4 = 2 ( ^ | - Q(JmTj)PmA

- ^mTJ)dmA (3.4)

in accord with (3.2). This supersymmetry transformation maps tensor
fields into spinor fields and vice versa. From the algebra (I) we see that
Q has mass dimension \. Therefore, fields of dimension t transform into
fields of dimension /' + \ or into derivatives of fields of lower dimension.
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22 III. COMPONENT FIELDS

Starting with the scalar field A, we define the spinor ip as the field into
which A transforms:

6,A = V'ICJA. (3.5)

The field \jj transforms into a tensor field of higher dimension and into
the derivative of A itself:

Stf = iyfla^d^A + y/2$F. (3.6)

The coefficient of cmA is chosen to guarantee that the commutator of

St}S,A = l\&mT]cmA + 2o]F (3.7)

closes in the sense of (3.4). The same commutator acting on the field \\J
yields

- i(T"cfmcjj\j]anl - &nr\\ + y/2(Q SnF - nS,F). (3.8)

This closes if

d«F = iyflllTfiJ,. (3.9)

It follows from (3.6) that the commutator on F closes as well.
If we had been willing to use the field equations, —ioncn\jj = m\j),

Eq. (3.9) could have been satisfied by F = —mA*. In this case we would
have said that the transformations (3.5) and (3.6) close through the field
equations. In extended supersymmetry we are sometimes forced to close
the commutators through the field equations because we do not yet know
the full multiplet structure of the theory.

The component multiplet which we have constructed is called the
chiral or scalar multiplet:

r f (3.10)

These fields form a linear representation of the supersymmetry algebra
(I). If A has dimension 1, then \\i has dimension | , while F has dimension
2 and must assume the role of auxiliary field.

From Eq. (3.10) we see that F transforms into a space derivative under
S^. This will always be the case for the component of highest dimension
in any given multiplet.
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III. COMPONENT FIELDS 23

To construct an invariant action it is sufficient to find combinations
of fields which transform into space derivatives. Such combinations are
given by

if0 = idtf^ + A*BA + F*F (3.11)

and

JS?W = AF + A*F* - l- M - l-$$. (3.12)

From the complete Lagrangian

JSP = JS?0 + ™^m (3-13)

we determine the field equations:

iandnij/ + rrnjj = 0

F + m/4* = 0 (3.14)

4- mF* = 0.

They describe a Weyl spinor ^ and a complex scalar A, both of mass m.
The Lagrangian (3.13) has the,curious property

^ - :JSf:, (3.15)

where : : denotes normal ordering. This simply reflects the fact that super-
symmetric theories must contain an equal number of bosonic and fer-
mionic degrees of freedom for a given mass. Equation (3.15) holds as long
as supersymmetry remains unbroken. We may also expect that the vacuum
expectation value of the energy-momentum tensor Tmn vanishes in an
unbroken supersymmetric theory. This may be seen by considering Ja

m,
the local current of the supersymmetry charge Qa,

xJa°. (3.16)

The supersymmetry algebra (I) yields the energy-momentum tensor Tmn

as an anticommutator

{&,./«} = 2<7a/Tm" + S.T. (3.17)

The additional Schwinger terms have zero vacuum expectation value.
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24 HI. COMPONENT FIELDS

Therefore, <0|Tm
n|0> = 0 as long as Qde|0> = 0. Bruno Zumino was the

first to realize that this might account for a vanishing cosmological con-
stant of the observable universe.

REFERENCES

J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).
B. Zumino, Nucl. Phys. B89, 535 (1975).

EQUATIONS

(5n6t - 3^) A = 2(wm? ~ frmrj)PmA

(3.4)

EXERCISES

(1) Show <fa = # , z ^ = - ^ n Z , ( z ^ ) + =

(3.10)

+ A*\JA 4- F*F. (3.11)

= AF + ^*F* - 1 ^ - 1 ^ . (3.12)

(2) Prove the Fierz rearrangement formula

{4

(3) Use (3.5) and (3.6) to calculate

(4) Eliminate the auxiliary field F from the Lagrangian (3.13) to obtain

(5) Show that d^AF - ^j\j/) = iyJll^d^
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Superfields provide an elegant and compact description of supersymmetry
representations. They simplify the addition and multiplication of rep-
resentations and are very useful in the construction of interacting
Lagrangians. We shall show that superfields may always be constructed
from component representations. Component fields may always be
recovered from superfields by power series expansion.

We begin with the observation that the supersymmetry algebra may be
viewed as a Lie algebra with anticommuting parameters [Eq. (3.2)]. This
motivates us to define a corresponding group element:

It is easy to multiply two group elements using Hausdorff's formula
e
A

e
B = eA+B+±[A,B) + -- 5 e c a u s e an higher commutators vanish. We find

(a)(xm&d) = G(xm + iOaml - i^m9, 6 + & 9 + ?). (4.2)

As usual, multiplication of group elements induces a motion in the
parameter space,

g(a): (xmm -> (xm + iSGml - it(Tmd, 9 + & 9 + ?). (4.3)

This motion may be generated by the differential operators Q and Q:

. (4.4)

Here we use the same letters Q,Q for the differential operators as for the
group generators because the differential operators do indeed represent
the infinitesimal group action on the parameter space:

(4.5)

= {<L,Q>} = o.
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26 IV. SUPERFIELDS

Note, however, the change in sign, Pm = -idm. This stems from the fact
that the product of successive group elements corresponds to a motion
withtheorder of multiplication reversed. For example, G ^ ^ J ^ G ^ , ^ , ^ )
induces the motion fl^&Mfi^i)-

We could have studied right multiplication instead of left multiplication.
We would then have found the induced motion generated by the differ-
ential operators D and D,

(4.6)

By their very definition, D and D satisfy the following anticommutation
relations

{Dj>i} = -2^-a.

{D.J),} = {DtJ)f} = 0,

while D and Q anticommute

{Da,Q,} = {D.,gj} = {BitQ,} = {Di,^} = 0. (4.8)

We are now ready to introduce superfields and superspace. Elements
of superspace are labeled by z = (x, 9, V). Superfields are functions of
superspace which should be understood in terms of their power series
expansions in 9 and 9,

F(xA9) = f(x) + 9<P(x)
+ 99m(x) + Mn{x) + 9amVvm(x)
+ 99V J(x) + dW\J/(x) + 99V<9d(x). (4.9)

All higher powers of 9,9 vanish. The transformation law for superfields
is defined as follows:

(4.10)

where Q and (2 a r e the differential operators (4.4). The transformation
laws for the component fields (/, (/>, x> • • •) m a y be found from (4.10) by
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IV. SUPERFIELDS 27

matching appropriate powers of 0,5. The commutator of these trans-
formations satisfies (3.4) as a consequence of (4.5).

It is easy to verify that linear combinations of superfields are again
superfields. Similarly, products of superfields are again superfields because
Q and Q are linear differential operators.

Thus we see that superfields form linear representations of the super-
symmetry algebra. In general, however, the representations are highly
reducible. We may eliminate the extra component fields by imposing co-
variant constraints, such as DF = 0 or F = F + . Superfields shift the
problem of finding supersymmetry representations to that of finding
appropriate constraints. Note that we must reduce superfields without
restricting their x-dependence through differential equations in x-space.

Superfields satisfying the condition 5® = 0 are called chiral or scalar
superfields. This constraint does not yield a differential equation in x-space.
Extra conditions, however, often give differential equations. For example,
DDO = D<!> = 0 yields massless field equations, while DO = DQ> = 0
implies O = a = constant.

Vector superfields are defined to satisfy V = V+. It is possible to
construct all supersymmetric renormalizable Lagrangians in terms of
vector and scalar superfields. We shall treat both vector and scalar
superfields in great detail in the coming chapters.

It is always possible to construct a superfield from a component
multiplet. We start with any component of the multiplet, say A, and
apply the operator exp(0<2 + # 0 , whose action is defined through (3.3).
This yields a function of x,0,0 which transforms like a superfield

F(x,0,9) = em+B® x A = A + 5eA + -- (4.11)

We define the function S^F(x,6,V) to be the power series in 6$ whose
coefficients represent the transformed component fields,

SfixftjB) = (iQ + m) x F. (4.12)

The multiplication x is defined in Eq. (3.3). It acts on the component
fields and commutes with the parameters 6 and 9. From HausdorflPs
formula, we find

e x = j

. (4.13)

This shows that the action of £Q x and JQ x on exp(#g + 6Q) may be
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28 IV. SUPERFIELDS

represented by the differential operators £Q and

t (4.14)

Comparing with (4.10), we see that F(x,0,5) = em+m x ,4 does indeed
transform as a superfield under 8%.

To obtain the superfield whose components correspond directly to a
given set of component fields, the superfield must be constructed from
the component field of lowest dimension. If there are several fields of
lowest dimension, each will give rise to its own superfield, but these
superfields will be related by constraint equations. We shall encounter
this problem when we discuss gauge fields.

REFERENCES

A. Salam and J. Strathdee, Nucl. Phys. B76, All (1974).
S. Ferrara, J. Wess, and B. Zumino, Phys. Lett. 51B, 239 (1974).

EQUATIONS

e i

(4.4)

(4.6)

{DM Tiffjdn

{Da9D,} = {DAJ)t} = 0 .

EXERCISES

(1) Show
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(2) Verify

and

(3) Use Hausdorff's formula to show

(4) Given G(x>m,e\Vf) = G(0,^2,0)G(0A?i)G(xmA9), use Hausdorff's
formula and (4.1) to demonstrate

x'm = x
m 4- ifld1"?! - ^2am(9 + JO

Show that this corresponds to the induced motion

where g is defined in (4.3).

(5) Evaluate {Da9D&} using the definitions of D,D as differential operators.

(6) Compute DdF(x,9,d) where D is given in (4.6) and F in (4.9). Note
that D^F = 0 yields a constraint rather than a field equation.

(7) Show that DdF = £>aF = 0 implies F — a — constant. Demonstrate
that DkF = 0 and DaDaF = 4mF+ yield massive field equations
for the components of F.

(8) Construct the superfield whose lowest component is F, rather than
A. Compare this to the superfield DZXD.
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Chiral superfields are characterized by the condition

^ 0 = 0. (5.1)

They correspond to the chiral multiplets of Chapter III.
The above constraint is easy to solve in terms of ym = xm + i6amd and

0,for

D^x"1 + i0(Tm9) = 0, and Dfi = 0. (5.2)

Any function of these variables satisfies (5.1):

<D = A(y)

= A(x) + i9amddmA{x) + -

V 6dF(x). (5.3)

This is the most general solution to (5.1), as may be seen from the expres-
sions for D and D in terms of y, 9, and d:

' 39" " df
(5.4)

The superfield O+ satisfies the constraint DaO
+ = 0. $ + is a natural

function of y+m = xm - i0<7m9 and 9; its power series expansion is ob-
tained from (5.3) by conjugation:

= A*(y+) + sj29~${y+) + WF*(y+

= A*(x) - i6(jm9~dmA*(x) + ^

WF*(x). (5.5)
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V. CHIRAL SUPERFIELDS 31

Writing D and D in terms of y + , 6, and 5,

D -±
" ~ dp

(5-6)
n liW m

we see that (5.5) is the most general solution to £>aO
+ = 0.

It is easy to verify that the transformation laws for A, ij/, and F, derived
through (4.10), are exactly those for the component multiplet (3.10). The
computation is simplified when the differential operators Q,Q are ex-
pressed in terms of the variable y.

The highest components of O and O+ are, respectively, F and F*. All
higher powers in 0,5 are spacetime derivatives. Thus the F or F* com-
ponent of a scalar superfield always transforms into a spacetime derivative.

Products of chiral superfields O ^ • • • O, are again chiral superfields,
and likewise for their conjugates:

4- 0e[At(y)Fj(y) + A^FJiy) - M>#/>')]. (5.7)

jAt + tjAtAt + M , ^ J

- ^jAk - ifrfaAi - i/trfiAj-]. (5.8)

The product O+O, however, is not a chiral superfield:

^ y - dmAfAj) -

,M7 - \ dMAf

dJfiTtj $£ dJfX (5.9)

In this product the QOW component transforms into a spacetime derivative.
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We are now ready to write the most general supersymmetric renor-
malizable Lagrangian involving only chiral superfields:

<£ = o^a

1

K i
— m. .d).(I).
^ ij i j
2

+ h.c. . (5.10)
^.component _]

The couplings m0 and gijk are symmetric in their indices. Note that
changing the basis from y to x does not change 5£.

In terms of component fields, 5£ becomes

^£ = ii

+ dijk(AiAjFk - ^i\jJjAk) + AfF,. + h.c. , (5.11)

where we have dropped all total derivatives. The auxiliary fields Ft may
be eliminated through their Euler equations:

= Fk + kf + mftAT + ^ ^ . M y = 0

(5.12)

= F*JP* -\- X -\- m A -\- a AA = 0

This gives ^£ solely in terms of the dynamical fields At and t/̂ -:

1 . . 1 . r-

j j j j i - r(AhAj)- (5.13)

In (5.13), the potential ^" takes the form

r = FfFk, (5.14)

where F,F* are solutions to (5.12). This potential is always greater than or
equal to zero, a consequence of supersymmetry. Points where Fk = 0
are absolute minima of the potential.
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Note that constants are chiral superfields, for <b — a is the solution to
the equations D$> = DaQ> = 0. Thus from any supersymmetric Lagrang-
ian we may always obtain another by making the shift O, -> O, + a{.
The new Lagrangian has parameters:

AJ = k{ 4- mijaj 4 gijkajak

m'ij = ntij 4- 2giJkak (5.15)

If the old potential had a minimum at 0, = —ah the new potential has a
minimum at the origin. The new potential belongs to a supersymmetric
Lagrangian with parameters given by (5.15).

The class of renormalizable Lagrangians may be restricted by R-
invariance. R acts on chiral multiplets as follows:

R<D(0,x) = e2ina<t>(e-ia6,x)

Here n is called the R-character of the superfield. For the components,
(5.16) implies

R : A -> e2inaA

ij/ -> e2i{n-i)ail/ (5.17)

f __> e 2 i { n l

Mass terms or potentials are R-invariant only if the R-characters of
their respective superfields add up to one.

REFERENCES

J. Wess and B. Zumino, Phys. Lett. 49B, 52 (1974).
L. O'Raifeartaigh, Nucl. Phys. B96, 331 (1975).

EQUATIONS

D.cD = 0. (5.1)

= A(x) + i8<jmVdmA(x) 4- ^

- — 90dmil/(x)cmd 4- 00F{x). (5.3)
\J2
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<D + = A*(x) - i6amddmA*(x) + ̂

dJ(x) + MF*{x). (5.5)

y) + JwiUyWy) + M
M[A,(y)Fj(y) + Aj(y)FAy) - ^,(y)^(y)]. (5.7)

+ ee[FtAjAk + FjA.At + F.A.AJ

; ] - (5.8)

QtQj = At(x)Aj(x)

jix) + e6Af(x)Fj(x) + WFf(x)Aj(x)

l FfFj + {- AfUAj + l-

- l- dmAf 8mAj + l- dJWj - ± ̂ ,amdJjX (5.9)

+ W +h.c.|. (5.10)
/ |0O component J

UJ \} + X,F, + h.c.c.J.
(5.11)

>+(?,x) = e-2im<t>+(e'%x). (5.16)
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R:A -> e2imA

yjj _> e^-^xjj (5.17)

EXERCISES

(1) Compute Qa and Q^ in terms of ym,6fi:

(2) Compute Da, 5 d , <2a, and Qd in terms of y+m,0,9.

(3) Derive the transformation laws (3.10) using Q,Q and (5.3) expressed
in terms of the variables ym, 6, and V.

(4) Define the components of a chiral superfield (DAO = 0) as follows:

Express these components in terms of the component fields A$,F
of (5.3). Compute the transformation laws for J^, ¥ , and ,9* using
using <2 and 5 in the following form:

(5) Show that O = DDU is chiral for any superfield I/. Relate the com-
ponents of U to those of O.

(6) Show that the mass term jm$><& for a single superfield O is R-invariant
if and only if <b has R-character \. Note this condition excludes
linear and trilinear terms from the Lagrangian.
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Vector superfields satisfy the condition

V = V + . (6.1)

As usual, they should be understood in terms of their power series ex-
pansion in 6 and 5:

V(x,0,B) = C(x) + idx(x) - Wx(x)

l- 00[M(x) + iN(x)] - l- HB\M(x) - iN(x)~\

- 6(jmdvm(x) -b i

l- DC(x)J.

(6.2)

The component fields C,D,M,N, and vm must all be real for (6.2) to satisfy
(6.1). The vector field vm lends its name to the entire multiplet.

We have chosen very particular combinations of fields as coefficients
of the 666, 666, and 666§ components of V. Our choice was dictated by
the hermitian field O + O+, where <£ and 3>+ are chiral fields:

+ = A + A* + > /2(# + # ) + OOF

+ id<jmVdm(A - A*) + -^

j2

(6.3)

This combination has the gradient /<5m(/i - A*) as coefficient of 0<xm9,
motivating us to define the following supersymmetric generalization of a
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gauge transformation:

K-> K + # + 0> + . (6.4)

Under this transformation,

C-+C + A + A*

M + iN -+ M + iN - 2iF
(6.5)

vm- idm(A - A*)

D-+D.

The choice of components in (6.2) renders A and D gauge invariant.
From (6.5) we see that there is a special gauge* in which C, #, M, and

AT are all zero. Fixing this gauge breaks supersymmetry but still allows
the usual gauge transformations vm-+ vm + dma. It is very easy to compute
powers of V in this gauge:

V = -6<rmdvm(x) + i60Bl(x) - iW6X{x) + ^

K2 = ~^66ddvmvm (6.6)

V3 = 0.

Thus we may view the vector field V as the supersymmetric generaliza-
tion of the Yang-Mills potential. To construct the corresponding super-
symmetric field strength, we observe that Aa and J& are the lowest-
dimensional gauge invariant component fields in V. They are also the
lowest-dimensional component fields in

(6.7)

.= -l-DDDdV.

In the literature this gauge is often called the Wess- Zumino or WZ gauge.
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These superfields are chiral and gauge invariant. Chirality follows
immediately from (6.7),

DtWa = 0

DPW, = 0, ( 6 ' 8 )

while D<& = D<£>+ = 0 must be used to prove gauge invariance:

W. -> -l-DBDa(V + O + <D+) = Wa - {-D{D,Da}<*> = Wa. (6.9)

It is easy to compute the components of Wx in the special gauge (6.6).
The computation is further simplified by use of the variables)1 = x + idaB
or y+ = x — idad:

V = -6(fdvm{y) + ieeVJ(y) - iBd61(y)

+

The result is

= -dom'dvm(y+) - iWeX{y+) + i96dl(y+)

1 -]. (6.10)

U/D(y) - ^{cm

+ eea^dj'iy),

i\(y+) + UipD(y+) + ^e*i

(6.11)

The superfields W^Wk contain only the gauge invariant fields D, Aa, and
vmn — dmvn ~ ^nvm- Furthermore, they are chiral and satisfy the additional
constraint equation

DdW\ (6.12)

For 9 = d = 0, this relation simply expresses the fact that the component
field D is real. Equation (6.12) may be verified component-by-component
from (6.11) or directly from the definition (6.7). It may be shown that
(6.11) represents the most general solution to the chirality conditions (6.8)
and the constraint (6.12).
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The superfields Wa and Wk are examples of representations which have
the component fields Xa and JA as fields of lowest dimension. We could
have constructed Wa and W^ from Xa and J.A by applying the operator
exp(0<2 4- VQ) x , as described in Chapter IV. We would then have
found Wa and W& to be related through Eq. (6.12).

Since Wa is chiral, the 99 component of WaW0l,

W«Wa\de = -2iXamdmJ - l-v™vmn + D2 + ^ m V k
W f c , (6.13)

transforms into a space derivative. Note that WaWa may also be written as

= --DDW"DaV. (6.14)

From (6.13) we see that

\ (WWa\ee + W^%) (6.15)

is the supersymmetric gauge invariant generalization of the Lagrangian
for a free vector field. After some partial integration, this reduces to

xi? = J > x j ^ D2 - ~ vmnvmn - iWdjl. (6.16)
4

This Lagrangian may also be obtained as a 99W component:

(6.17)

Equation (6.17) is equivalent to (6.15) because of (6.14) and the fact that
D and d/d9 differ only by an x-space derivative.

We can always add the mass term m2V2 to the Lagrangian (6.17).
This term is not gauge invariant and cannot be computed in the WZ
gauge. Starting from (6.2), we find

V2\eeee = ~vmvT - XX - JX 4- \ (M2 + N2)

- C D C + CD. (6.18)
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It is interesting to note that this term not only gives mass to the vector
field vm but also introduces the additional degrees of freedom C and x
required for a massive multiplet. The Lagrangian (6.17) together with
(6.18) describes one vector field, two spin-| fields, and one scalar field,
all of equal mass.

REFERENCES

A. Salam and B. Strathdee, Phys. Rev. Dll, 1521 (1975).
J. Wess, Ada Physica Austriaca, Suppl. XV, 475 (1976).

EQUATIONS

V = V+. (6.1)

= C(x) + i9X(x) - Wx(x)

+ 1-OO\M{X) + iN(x)\- l-m\M(x) - iN(x)\

\nc(x)J.
(6.2)

V -+ V + O + O + . (6.4)

C -> C + A + X*

X - • % -

M + iN -> M + iN - 2iF
(6.5)

- ,4*)

D

1 _
Wd= --DDD.V.
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DpW, = 0

D,Wi = 0. ( 6 - 8 )

-ujy) + U/D(y) - ^ama')/(dmvjly) - dmvjy))~\

+
G4y + ) + U:^D(y + ) + ^r.i0

ma"

J.
EXERCISES

(1) Prove

[B4, {5^,0,}] = 0,

+). (6.11)

DfWa = DiW*. (6.12)

D2 + - i T V * ^ ^ . (6.13)

X-(W*Wx\m + fyWltf). (6.15)

D2 - 1 r - ^ - a a m rmlJ. (6.16)

and

^[D2,D2]= - i Z ) X ^ a n - 2D

= iD*oa»D*dn + 2 D .

(2) Compute the 05 component of DXV in the general gauge (6.2) and
the special gauge (6.6).

(3) Compute ey in the WZ gauge.
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(4) Show that the constraints (6.8) and (6.12) yield the following equations
for the component fields:

D = D*,

vmn = ^ m ^

= 0.

(5) Compute

DD69 = -4e~

(6) Use the definitions of Wa and WA to verify (6.12).

(7) Derive the Euler-Lagrange equations for the Lagrangian (6.17) +
(6.18).

(8) Use (6.13) to show

{d*xl{WaWa\de 4- WAW%) = \ U4xW"Wa\ed.

(9) Find the supersymmetry transformations for the gauge invariant

fields in the vector multiplet:
+ ZcTdJ) - (n - m)]
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In this chapter we discuss the gauge invariant interactions of chiral and
vector multiplets. We start with the U(l) case and later generalize our
results to non-Abelian gauge groups.

Chiral superfields <J>, transform by a phase under global U(l) rotations,

(j)̂ , = e~ite*$>/. (7.1)

The t/ are the U(l) charges appropriate to the 0 , , and X is the rigid U(l)
rotation angle. The t£ and X are real constants. Constants are chiral
superfields, satisfying the constraint equations DaX = DkX = 0. From
(7.1), we see immediately that the $>'f are chiral superfields as well.

It is easy to construct a Lagrangian invariant under (7.1) for constant
parameters X:

^ : = °£ K.E. •" °Z P.E.

( 7 2 )

+ h.c..E. = j mo*<*J + 3 9ijiPfl>fl>k

Note that U(l) invariance requires ml7 or gijk = 0 whenever tt + tj or
t( -f tj + tk =t 0. In the literature, the term J£V£< is often called the
superpotential.

Equation (7.1) takes one chiral superfield into another when X is a
constant chiral superfield. When X depends on x, the situation is slightly
more complicated. In this case, X must be promoted to a full chiral
multiplet:

o ; = e-'""Aa>,, D*A = o
(7.3)

#>+ = e ' f^O/ , /)aA
+ = 0.

Only then do the O^ remain chiral superfields.

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



44 VII. GAUGE INVARIANT INTERACTIONS

The Lagrangian (7.2) is not invariant under such local transformations.
In particular, 5£PEt remains invariant, but <&K.E. does not:

It is easy to see that J?KE. may be rendered invariant by introducing the

vector superfield V with its transformation law (6.4):

V = V + i(A - A + ). (7.5)

With this addition, the full Lagrangian

c£ = A(*r»;|w + WAW%) + O,VK«

r/i t \

+ h.c. I (7.6)

becomes invariant under local U(l) gauge transformations.
At first, (7.6) looks non-renormalizable. It may, however, be evaluated

in the WZ gauge, where F3 = 0:

± 3nAA

(tD - - 1 24 = « M ^ - ^ 4 # ) + - (tD - 1».» | ylM. (7.7)
N/2 2 \ 2 /

In this gauge, the Lagrangian contains no terms of dimension higher
than four.

The supersymmetric extension of electrodynamics is constructed in
terms of two chiral superfields:

<D'+ = c - ' e A < D + , <!>'_ = e'
eA<I>_. (7.8)

In components, the Lagrangian

\VW\99) + <t>+
+eeV<t>+\eegs + ®te-eV<t>_\ee99

e9 + <D:<D!|9-9-) (7.9)
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becomes

\D2 -\vmnv
mn- Ucj"dnl

F F*

-f m[A + F- + /4_F+ — \j/+ i/s - — i? + ̂ - + / t*F* + /4*F+].

(7.10)

From (7.10) we see that the two Weyl spinors i/z + .i//- combine to form
one massive Dirac spinor, the electron.

It is straightforward to generalize the transformation law (7.1) to
non-Abelian compact groups:

O ' = e~iAQ>, <P'+ = <£>+eiA+. (711)

In (7.11), A is a matrix:

A-. = T!jAa. (7.12)

The matrices Ta are the hermitian generators of the gauge group in the
representation defined by the chiral field <D. In the adjoint representation,
we normalize our generators as follows:

Tr TaTb = kdab, k > 0. (7.13)

With this convention, the structure constants tabc

[TaJb] = HabcTc (7.14)

are completely antisymmetric.
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The Lagrangian (7.6) is invariant under non-Abelian gauge transfor-
mations, provided we extend the transformation law (7.5):

ev = e-'-A Ve*A. (7.15)

In (7.15), both A and V are matrices:

Ay = 77A,, Vis = TijVa. (7.16)

With Hausdorff's formula, we encounter only commutators of group
generators in computing the product of exponentials in (7.15). Evaluating
the commutators by the group commutation relations (7.14) allows us
to express V in the following form:

V = TaVa'. (7.17)

This shows that the transformation law (7.15) is independent of any
specific representation for the generators Ta. Furthermore, the transfor-
mation law starts with a term independent of V,

V = V + i(A - A+) + • • • , (7.18)

so non-Abelian theories also allow a WZ gauge where V3 = 0.
Equation (7.15) may be evaluated for infinitesimal gauge transforma-

tions with the following form of Hausdorff's formula:

e A e B = e A + £A/2' [ B + c o t h ^ / 2 ) • * ] + • • • ( 7 1 9 )

This expression contains all terms linear in B. The Lie derivative £A/2 • B
is given by [ji4,J5], The hyperbolic cotangent in (7.19) must be understood
in terms of its power series expansion, where

with n factors \A. Using (7.19) to evaluate (7.15) yields

SV = V - V = i£vl2 • [(A + A+) + coth(£K/2) • (A - A+)]. (7.21)
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The supersymmetric field strength W* [Eq. (6.7)] may be readily
generalized to the non-Abelian case:

W«= ~DDe-vDae
v. (7.22)

In (7.22), the vector superfields V are matrices, as in (7.16), with the gen-
erators in the adjoint representation of the gauge group. It is easy to
verify that

Wa -> W'a = e"^Wae
iA (7.23)

under non-Abelian gauge transformations. The proof is left to the reader
as an exercise.

We are now ready to write down the most general Lagrangian for the
supersymmetric renormalizable interaction of scalar, spinor, and vector
fields:

+ i «•]•+ h.c. . (7.24)

Gauge invariance requires the mass matrix my and the coupling constants
gijk to be totally symmetric invariant tensors with respect to the internal
symmetry group. The normalization of the gauge-field kinetic term is
chosen to recover the canonical normalization for the component action
after scaling V -» 2gV (see Exercise 7).

REFERENCES

J. Wess and B. Zumino, NucL Phys. B78, 1 (1974).

S. Ferrara and B. Zumino, NucL Phys. B79, 413 (1974).

EQUATIONS

* + " * * A* ° ' l D ' + ^ ° (7.3)

V = V + /(A - A + ). (7.5)
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<e = -A

I7i i \ 1
- mt/bfij + - gi}k®i<!>j®k + h.c. .

L\2 3 See J
<t>+e'v®\eees = FF* + AQA* + id

$<jxli + A d n A - 1 - dnA*A

4=
V2

UtD -I- t\vn )A*A. (7.7)2 \ 2 /

(7.9)

%A+--A*_dnA_+->

Tr T"Tb = kdttb, k > 0.

±F*]. (7.10)

(7.13)

(7.14)

ev =

A y = T1jAa> Vtj = T?,.Fa (7.16)
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Wa = ~DDe-vDae
v. (7.22)

, = e~iAWae
iA. (7.23)

m./D.O,- + ,,].+ h.c. . (7.24)

EXERCISES

(1) Show that i?p.£. of Eqs. (7.6) and (7.24) is also invariant under sym-
metry transformations (7.11) with complex parameters.

(2) Show that e~vDae
y = DaV - \\VJ)aV~\ in the special gauge (6.6).

(3) Demonstrate that W'a = e~iAWae
iA. Use the fact that DaA

+ = 0 and

w: = -^DD[e-iAe-yeiA+Dae-iA+eveiA]

= e~lAW/A - -e-iAD{D,Da}eiA

= e~iAWae
iA.

(4) Construct an SO(3) invariant interaction using three chiral vector
fields <bf,

(5) Use the multiplication properties of the Pauli cr-matrices (n • a)(m • a) =
n • m 4- i(n x m) • a to show that for infinitesimal values of ft,

= cos[a 4- (n • m)ft] + ip-a sin\_a -f (n • m)ft],

where /i = n + ft[(m — (n • m)n) cot a — n x m], and n,m are
unit vectors.

(6) Use the result of Exercise (5) and [n • <x, m • <r] = 2/(n x m) • a to
verify Eq. (7.19) for the special case eian "eibm °. Remember that
ft is infinitesimal.
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(7) Expand

in the WZ gauge. Assume the gauge group is non-Abelian, and restore
the coupling g by rescaling V -» 2gV,

+

F+F +

where

9mA = BmA + ig

(8) Compute the transformation laws for A, ip, F, v%\ X(a) and D(a) in
the WZ gauge. Use them to verify that the result of Exercise (7) is
supersymmetric:

StA =

•+
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VIII. SPONTANEOUS SYMMETRY BREAKING

If supersymmetric gauge theories are to find realistic application in high
energy physics, both supersymmetry and gauge symmetry must be broken
spontaneously. The spontaneous breaking of ordinary gauge symmetry is
well understood, but supersymmetry imposes additional conditions
which need further discussion. These restrictions rest on the property

n = \(QiQi + Q1Q1 + 6262 + Q2Q2), (8.1)

derived from the algebra (I). Equation (8.1) tells us that <XP|H|XP> > 0
for every state \*¥y. Furthermore, it tells us that states with vanishing
energy density are supersymmetric ground states of the theory. Such states
are ground states because the expectation value of H may never be
negative; they are supersymmetric because <0|iJ|0> = 0 implies Q|0> =
<2|0> = 0. Ground states of zero energy preserve supersymmetry, while
those of positive energy break it spontaneously. This situation is sketched
in Figure 8.1.

In this chapter we shall discuss three models which exhibit the general
properties of spontaneous symmetry breaking in supersymmetric theories.
We first consider a supersymmetric model, constructed from chiral
superfields, in which the ground state breaks supersymmetry. We know
from Eq. (5.14) that the potential energy in such models takes the form
V - F$Fk, where Fk is given by

Fk* = -(Ak + mikAt + g^A}. (8.2)

Vacuum expectation values a{ of At for which Fk = 0 signal super-
symmetric minima of the potential. To break supersymmetry, we must
choose special values for the parameters Ak, mik, and gijk such that the
equation

gijkaiaj (8.3)
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(a) (b)

FIGURE 8.1. The ground state of (a) preserves supersymmetry, while the ground
state of (b) breaks it spontaneously.

has no solution in at. Such models have been constructed by O'Rai-
feartaigh in the paper cited at the end of Chapter V. He found that three
chiral superfields are required to break supersymmetry, the simplest
model being given by

o + "1*1*2 + 0*0*1*1] (8.4)

Fayet and Iliopoulos have shown how to spontaneously break super-
symmetry in gauge theories with Abelian gauge groups. They observe
that the 06W component of the vector superfield is both supersymmetric
and gauge invariant. They add this term to the Lagrangian (7.9) and find
that it spontaneously breaks supersymmetry:

<£ = ̂

2KV. (8.5)

In this model, the potential is given by

(8.6)
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where D, Fl9 and F2 are solutions to the Euler equations:

= 0

F, + m/tj = 0 ( 8 J )

F 2 + mA\ = 0.

There is no solution to (8.7) which leaves Y — 0, so supersymmetry is
broken spontaneously.

Let us examine the potential (8.6) in more detail. Substituting for the
auxiliary fields, the potential if becomes

m2 +^eK\AiAx + (m2 - ^

(8.8)

We must distinguish between the two cases m2 > \eK and m2 < \eK.
When m2 > \eK, both Ax and A2 have real masses. The model describes

two complex scalar fields, one of mass mx
2 — m2 4- jeK, the other of

mass m2
2 = m2 — \eK, as well as three spinor fields il/1,i//2^ and one

vector field vm. The masses of the spinor and vector fields are unchanged
by the symmetry breaking. In particular, the field ^ retains its mass m,
while X and vm remain massless. Note that mx

2 + m2
2 = 2m2.

The vector field vm plays the role of gauge field for the unbroken U(l)
symmetry group, and X is the Goldstone fermion arising from spontane-
ously broken supersymmetry. From the transformation law for X (Exercise
6.9),

6£ = i£D + (7-fr™, (8.9)

we see that X transforms inhomogeneously as soon as D acquires a
vacuum expectation value:

S4X = -%K + •••. (8.10)

This identifies X as the Goldstone fermion. Non-zero vacuum expectation
values of auxiliary fields induce the spontaneous breakdown of super-
symmetry.
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Whenm2 < \eK,Al = A2 = 0 no longer minimizes the potential (8.8).
To find the minimum, we must solve the equations

/ 1 \ e2

= (m2 +-eK)A1 + 7 U M i -AiA2)A1 = 0bA\ I 2
(8.11)

e2

- ^ U M , - A\A2)A2 = 0.

This gives a minimum at y4x = 0,A2 = ^ where ̂ 2-z>2 + (m2 — \ex) = 0.
By a gauge transformation, v- may be chosen to be real. Expanding the
potential around its minimum spontaneously breaks the U(l) symmetry.
In terms of A = Al9 A — A2 — v, the potential becomes:

2m2

m2)

Q V ) ( [ ^^* ] ) 2 + \
The constant

2*4 (ex-m2)
e

is positive; both supersymmetry and gauge symmetry are broken spon-
taneously. The vector field vm acquires a mass by eating the Goldstone
boson field (A — A*)/y/29 leaving the total number of degrees of freedom
unchanged. The symmetry breaking also modifies the spinor mass terms:

-y. _ iev _r _
— m(^1l/^2 + ^1^2) "I F ( ^ 2 ^ — Y2^)' (8.13)

With the following linear combinations,

# =

1 I I I
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the mass terms become diagonal:

- t

55

(8.15)

The Goldstone spinor I remains massless. Note that X transforms in-
homogeneously,

e
(8.16)

as expected for a Goldstone field.
This model describes two spinor fields of mass yjm2 + \e2v2, one

vector field and one scalar field, each of mass <sj^e2v2, one complex scalar
field of mass *j2m2, and one massless Goldstone spinor. Note that the
sum of the masses squared weighted by the number of degrees of freedom
is identical for the bosonic and fermionic modes:

2-2m2 = 4/m (8.17)

This is also true for the U(l) symmetric case described earlier. In fact,
such relationships between bosonic and fermionic masses are common in
supersymmetric theories.

The situation for the Fayet-Iliopoulos model is sketched in Figure 8.2.
Non-vanishing vacuum expectation values of auxiliary fields induce

A2 A2

(a) (b)

FIGURE 8.2. (a) When m2 > j e/c, supersymmetry alone is broken.
(b) When m2 < £e/c, both gauge symmetry and supersymmetry are broken.
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supersymmetry breaking, while non-zero vacuum expectation values of
dynamical scalar fields lead to the breaking of gauge symmetry.

After having seen a model in which supersymmetry and gauge symmetry
are broken spontaneously, one might wish to construct a model in which
only the gauge symmetry is broken. We first discuss such models with
chiral superfields. In this case we must find a solution a{ to (8.3) which is
not left invariant under the internal symmetry group. As a simple example,
we consider the group U(l) with three chiral superfields: one neutral,
one positive, and one negative. The Lagrangian

¥PE = -m$>2 + //<P+<D_ + ?& + gQ>Q>+0>_ + h.c. (8.18)

is U(l) invariant. The Eqs. (8.3) become

X + ma + ga+a_ = 0

a_(/i + ga) = 0 (8.19)

a + (fi + ga) = 0.

This set of equations has two solutions:

(1) a+ = a. = 0, a = - -
m

(8.20)

(2) a+a^Mx-^X a=-».
9 \ g J g

The first does not break the U(l) symmetry, but the second does. In the
second solution, only the product a+a_ is determined. This stems from
the fact that ^PE is invariant not only under the U(l) group, but also
under its complex extension. For any solution a + ,a_ to (8.19), there
exists an entire class of solutions, e*a+,e~xa_, for arbitrary complex L
The ground state has a larger degeneracy than required by the initial
symmetry group.

If we gauge the Lagrangian (8.18), we must introduce the vector super-
field F, coupling to O+ and <t>_ as in (8.5). This results in the following
trilinear coupling between the scalar fields A± and the vector multiplet
V:

eV(A*A+ - A*_A_). (8.21)
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For the symmetry breaking solution, this contributes a piece to the D-
term:

ev\a*a+ - a*_a__ + 2 - 1 . (8.22)

Such a term would ordinarily break supersymmetry. Because of the
degeneracy a± -• e±xa±, however, it is possible to transform away this
term for any choice of K. In this model, ZMerms do not induce the spon-
taneous breakdown of supersymmetry.

The mass term associated with (8.20) is given by

ata.)V2. (8.23)

It cannot be transformed away. It gives a mass to the vector field vm.
Comparing (8.23) with (6.18), we see that spontaneous gauge symmetry
breaking in supersymmetric theories gives rise to an entire massive vector
multiplet. This is the supersymmetric extension of the Higgs-Kibble
mechanism.

These models are easily extended to non-Abelian symmetry groups.
Supersymmetric solutions require

Ft = - 4 ~ ™*0i " QisiflPi = °- (8-24)

The parameters A, m, and g are restricted by the internal symmetry group.
In gauge theories, supersymmetric minima must also satisfy

D' = a?T'ikak = 0. (8.25)

The Fayet-Iliopoulos D-term is not gauge invariant and cannot appear
in the non-Abelian sector of supersymmetric models.

In the remainder of this chapter we shall show that (8.24) determines
the supersymmetry breaking of non-Abelian theories. That is, if (8.24)
has a solution ah then it is always possible to find a solution at which
satisfies (8.25) as well. We shall demonstrate this for the case of a semi-
simple gauge group G.

To begin, let us suppose we have found a solution at such that F^(at) = 0.
We may then compute

(8.26)
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The vector d* specifies a certain direction in the regular representation.
There is always a group element which transforms this vector into a
linear combination of vectors in the Cartan subalgebra. Because (8.24)
is invariant under G, this transformation rotates the a{ into another solu-
tion at. The vector d' transforms into a vector d' whose non-vanishing
components lie in the Cartan subalgebra. We may now perform a linear
transformation within the Cartan subalgebra such that the direction 2?
defines a single generator with eigenvalues \i{. In this basis, the only non-
vanishing component of 2? is d:

d = atii&. (8.27)

The equations (8.24) are also invariant under gauge transformations
with complex group parameters. This is because the complex conjugate
representations of the scalar fields never enter F*. We are free to perform
such a transformation in the direction d:

at = exp(/v/)aj. (8.28)

The parameters at solve (8.24) for all values of rj. Taking Y\ real, we find

d = a+ii^wai. (8.29)

We now distinguish two cases. In the first case, all the fxt (for which
5i ^ 0) are of the same sign, say positive. We then let rj -> — oo to find
d = 0. In the second case, the ju£ take both signs. We shall show that there
is still a value of rj where d - 0. In particular, we note that

( 8 3 0 )

Considering a^e2fiiTlai as a function of rj, we see that it tends to -f oo as
t] -+ ± oo. Therefore it has a minimum for some value of rj. At this point
the derivative vanishes and d = 0.

This completes the proof. We have shown that spontaneous supersym-
metry breaking in non-Abelian models is controlled by F-terms. Super-
symmetry is spontaneously broken if and only if the equations F£ = 0
have no solution. This is the O'Raifeartaigh mechanism for supersymmetry
breaking.
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EXERCISES

(1) Show that Ax = A2 = 0 is a minimum of the O'Raifeartaigh model
(8.4) when m2 > 2kg. The value of the potential at the minimum is
k1, independent of Ao.

(2) Compute the boson and fermion masses in the O'Raifeartaigh model:

Real scalar masses: 0,0, m2, m2, m2 ± 2gk
Spinor masses: 0, 2m.

Massless scalars and spinors are general features of O'Raifeartaigh
models with spontaneous supersymmetry breaking. Also compute
dF$/dAi in this model, and show that

This is another general feature of O'Raifeartaigh models.

(3) Consider three chiral superfields, O0, <bl9 <£2>
 w ^h ^-characters

n0 = 1 , ^ = 0, n2 = 1. Construct the most general renormalizable,
supersymmetric, /^-invariant Lagrangian also invariant under the
following discrete transformation:

<l>2 _• — < £ 2 .

Show that this determines the O'Raifeartaigh model.

(4) Show that $ of (8.14) does not shift under a supersymmetry
transformation.

(5) Add a D-term 2K V to the Lagrangian (8.18). Determine the values of
a+ and a_ at the minimum of the potential.
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(6) Consider three triplets of chiral superfields: Of, i = 1,2,3. Find the
minimum of the potential for the Lagrangian

(7) Show that the minimum of the potential of Exercise 6 is invariant
under the rotation group with complex parameters.

(8) Gauge the model of Exercise 6 and show that an arbitrary D-term
may always be eliminated. Supersymmetry may never be broken
by the Fayet-Iliopoulos mechanism in this model.
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IX. SUPERFIELD PROPAGATORS

In previous chapters we have found superfields very useful for the con-
struction of supersymmetry representations and invariant Lagrangians.
In this chapter we shall see that they also simplify the calculation of
radiative corrections in quantized supersymmetric theories. The Feynman
rules for supersymmetric theories may be stated in terms of superfield
vertices and propagators. Many component-field Feynman diagrams are
contained in one superfield diagram, so many miraculous cancellations
between component diagrams are manifest in one superfield diagram.
For this reason alone one would like to find a superfield formulation of
supersymmetric theories.

To derive superfield propagators we must first introduce the concept
of integration in superspace. An indefinite integral over a Grassmann
variable r\ is defined as follows :

(9.1)

Any function of rj is polynomial, f(rj) •= c + Arj, so definition (9.1) ex-
tends immediately to arbitrary functions of Grassmann variables:

f(rj) = c + At]

jf(rj)drj = A (9.2)

§f(r])ridri = c.

Since

partial integration is always possible. Note that integration and differ-
entiation give the same result on functions of Grassmann variables.
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Delta functions are defined by the integral

J7fo)*fo)«&J«/(O). (9.3)

From (9.2), it follows that

= if, (9.4)

so consequently,

5(r,)5(r,) = 0. (9.5)

Defining volume elements in superspace,

d2d= -^-dBidB^ (9.6)

d49 = d2ed2d,

we find

J96d2e = 1, J99d 2 5= l . (9.7)

This allows us to write the Lagrangian (5.10) as an integral over
superspace:

^mfp?Q>l 3(6) + i

20d29. (9.8)

Perturbation theory in superspace may be developed as a direct ex-
tension of ordinary perturbation theory. In particular, one would like to
calculate superfield Green's functions,

(9.9)

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



IX. SUPERFIELD PROPAGATORS 63

From these one recovers the component-field Green's functions by power
series expansion in O1,!)1 • • • 0r,5r.

As with any field theory, we begin our analysis by evaluating the free-
field two-point functions, the propagators. For chiral fields, these are
derived from the free-field part of Lagrangian (9.8):

= f jo+
wO+<D+ d(0)\d2dd2d

2 J

\lj\l/ili$ Y (9.10)

In components, we find:

<0|T{/l(xM*(x')}|0> = iAF(x - x')

<0|T{A(x)F(x')}|0> = <0|T{>l*(x)F*(x')}|0>

= — imAF(x — x')

<0|T{F(x)F*(x')}|0> = iDAF(x - x') (9.11)

= i5/mAF(x - x')

F(x - x')

(x - x'),

where

1
AF(x) =

• - m2'

All other two-point functions vanish. We may use these component
propagators to construct the superfield propagators. For example,

= 0'e'<0\T{A(y)F(y')}\0>
+ 00<O|T{F(yM(/

+2e't>o*<Q\7{Uy)
= -im{d-d')2AF(y-y'). (9.12)
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From the definitions y = x + id ad, y+ = x — idaB, we see that this
propagator and the 0+<X>+ propagator have the following x,x' dependence:

= - imd(6 - ff - 0'<7m5') 3m
x] AF(x - x'),

= + imd(B - W) exp[ - /(6am9 - 6'am6') dm
x] AF(x - x').

Following exactly the same procedure we can construct the
propagator:

= iexp[i(9ame + e' x] AF(x - x'). (9.14)

With these propagators we may evaluate the superfield Green's func-
tions (9.9) to any order in perturbation theory. We start by writing the
n-th order contribution in terms of free superfields:

= 0

i) + g*<t>+3(x'l9ouo1)fi{e1)']

0 ) . (9.15)

Using Wick's theorem, we then reduce these expressions to the usual
Feynman diagrams.

As a sample calculation, let us consider the one-loop corrections to
the superfield two-point functions. These are illustrated in Figure 9.1.
Diagram 9.1(a) is proportional to S2(0 - 6') = (5(0) = 0, while 9.1(b)
goes as S2(B — 9') = <5(0) = 0. This shows that all contributions to mass
renormalization, both finite and infinite, cancel between the various com-
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( a ) • '

s

V®

(c) j

FIGURE 9.1. One-loop corrections to the (a) <M>, (b) O+O+, and (c) OO+ superfield
propagators.

ponent fields. The final diagram, Figure 9.1(c), is proportional to

x d*x' d26 d29f d2dd2W d(B) d(9f)

x AF(x - x')exp[i(0<rmd + ef<rmW - 29(TmVf)dm
x'] AF(x - x')

= jd*xd*x'd26d2dAF
2(x - x/)®(xAO)exp[

(9.16)

To obtain this result we have integrated over the ^-functions, replaced
W by 5, and integrated by parts. The AF

2 in the expression above leads
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* e )*<£

—I

FIGURE 9.2. All tadpole graphs vanish identically.

to a logarithmic divergence which may be absorbed into a logarithmically
divergent wave function renormalization.

It is easy to see that all closed-loop diagrams vanish when they contain
only <M> or <£+<I>+ propagators. This follows immediately from the fact
that they are proportional to 3(0) in 9,V space. In particular, there are
no non-vanishing tadpole graphs in this theory (Figure 9.2). Similarly,
there are no finite nor infinite contributions to the coupling constant
renormalization (Figure 9.3).

The superfield propagators (9.13) and (9.14) may be obtained directly
as superspace Green's functions for the free-field equations. To see this,
we write the free-field Lagrangian (9.10) in the following form:

(9.17)

where

Jt =
1

1 W s^5
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\
I
/

87

§'

FIGURE 9.3. There are no non-vanishing corrections to the <P3 and d> + 3 couplings.

This expression is valid because d2d is equivalent to —%DD under an
x-integration, and because j^(DDDD/O) is a projection operator on
chiral fields:

1 DDDD

16 • 0 = 0 ifDO =

~ 1 DDDD

16 •

(9.18)
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If we wish to derive field equations from (9.17) by a variational principle,
we must take into account the fact that the chiral fields <X> and O+ are
subject to constraints. We do this by varying O and O+ in the y and y+

bases:

3 O(/,0') = S(y - y')d(9 - 0'). (9.19)

In these bases the field variations automatically remain chiral. We may
use this result to find the variations of O and <&+ under full superspace
integrations:

- i9aB,e,d)d2v

= ~DDF{x,Q$). (9.20)

Here <&(x,6,d~) = O(y,0), where y = x + i0<79. Equation (9.20) may be
summarized by a formal rule:

= ~DDS(6 - ff)6(j8 - 0~')d(x - x'). (9.21)

This rule reproduces (9.20):

- x')F(x',e',9')d*x'd29'd2d'

= ~DDF[xfiJS). (9-22)

Here we have integrated by parts to obtain the final result.
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The free-field Euler-Lagrange equations are found by varying (9.17)
according to (9.21):

1 (D1 0

D2

0
= 0. (9.23)

These equations may be simplified with the help of (9.18):

- -DD<&+ = 0
4

m<D+ - -DD® = 0.
4

(9.24)

Here we recognize the field equations for a massive chiral multiplet, first
encountered in Chapter IV, Exercise 7.

We may always couple chiral superfields to classical external sources.
For chiral sources,

DAJ = DaJ
+ = 0,

we find the following Lagrangian

(9.25)

* - / •
"4 a

o
"4D/

and field equations:

J./Z)2 0
41 0 D2

<D

(9.26)

(9.27)

The superfield Green's function is defined in analogy to (9.27):

1/D2 0

4 \ 0 D-
J?A = -

-4°=
- W)8(x - x').

(9.28)
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The ^-functions are multiplied by the operators — \D2 and — jD2 because
(9.27) has a solution only for chiral sources. The superfield Green's
function A gives <J> and O+ in the presence of J and J+:

/

0

0

" 4 D

dAx'd2&d2W.

(9.29)

In order to solve for the Green's functions, we exploit the algebraic
properties of the chiral projection operators

2D2i
^2 = 77

D2D
16 • ' ** 16 D

by introducing three additional operators:

P _ .£!_ P = ^ 1 P = _ _ L
+ 4D* " 4D* T 8D

After a short calculation, one may quickly confirm

Pi + Pi + PT = 1,

as well as the following multiplication table:

(9.30)

(9.31)

(9.32)

Pi
Pi
p+
F_
PT

PI

PI
0
0
P_
0

Pi

0

Pi
P+
0
0

i\

p+
0
0

Pi
0

p_

0
p_

Pi
0
0

PT

0
0
0
0

PT

(9.33)

With this multiplication table, we may readily express the differential
operator of Eq. (9.28) in the following form:

0
4V0 DV""~4V0 D2

Using (9.34), it is easy to show that

fp, o

0

- 6')5(8-d')5(x - x')

(9.34)

(9.35)
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is the Green's function for (9.28). The additional projection operators
insure that A is the propagator for chiral superfields.

To find A, we must first invert Jt. This is easiest if we expand it in
terms of the F-operators:

The inverse of any operator of the type

X = APX + DP2 + BP+ + CP. + EPT

is given by

X~l = {A - BD-'C]"1?! + [D - CA-XBY1

(9-36)

(9.37)

- D~lC[A - (9.38)

provided A,D,E are all invertible. This may be shown by direct multiplica-
tion or by use of the P-operator representation given in Exercise 7. With
this result, we find

D0 1\

'"'=' D o l p i + r U-m2\p2

U-m2

/O 0

i l 0

' m D

•

/ m

•* • - ™2

p-

0 OJ

•* n - m2

• p
\O - m2 1

(9.39)

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



72 IX. SUPERFIELD PROPAGATORS

According to (9.35) and the multiplication table (9.33), the propagator A
becomes

A =

m •
n - m1

\ D - w2

/ m

1

16

D

m

U
- w2

D

\

tfD-™2 7

<J(x - x')<$(0 - 0')<5(0 - 5')

m
- x')(5(0 - G')6{6 - 5').

(9.40)

To compare this result with the previous propagators (9.13) and (9.14),
we must compute the spinor derivatives of the ^-functions:

V ( 0 i " 02)
2 = - 4

D1
2(9l - 52)2 = - 4

Dl
2Dl\el - e2)

2(6x - d2)
2 = 16

Dl
2Dl

2(61 - e2)
2(6l - 62)

2 = 16

(9.41)

e2a
ne2 - le

The proofs of these relations are left to the reader as exercises in straight
differentiation. Substituting (9.41) into (9.40), we find

1

• - m2 IA 12 S(x - x'), (9.42)

where

A n = -mS(0 - &) Qxp[i{6(7n6 - O'a^

A12 =

A21 =

A22 = -mS(0 - V) exp[-i(0an0 - 0'o"0')cn]. (9.43)

This result is identical to (9.13) and (9.14). In (9.42) we replaced 6 [ 5 ] by
0' [W~] whenever it was multiplied by 3(0 - 0') [3(6 - 0')].
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Having gained some experience with superfield methods, we shall now
compute the propagator for vector superfields. We start with the usual
Lagrangian,

& = \ W*Wa\ee + 1 W,W%e + m2V2\eeM9 (9.44)

as outlined in Chapter VI. To this we add the gauge fixing term
-^{D2V){D2V). This term yields a piece proportional to (dmvm)2 in the
component Lagrangian.

To find the propagator, we write the action as an integral over
superspace:

V-^. V(D2D2+ D2D2)v\d*xd20d2d

(9.45)

The Euler-Lagrange equations are found from a variational principle,

JTV = 0, (9.46)

and the superfield Green's function is defined in the usual way:

JTA = 6{x - x')5{6 - 6') (5(3 - W). (9.47)

Note that we choose to invert Jf and not 2Jf as might be expected from
the Lagrangian (9.45). This normalization of the superfield propagator
leads to the usual normalizations for the Green's functions of the com-
ponent fields. Solving for A,

A = JT'Hix - x')5(0 - ff)8(9 - V), (9.48)

inverting JV,
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and using (9.41),

1 '-1
2D1

2 + D1
2D1

2)d(x-x')d(61-d2)8(d1-6'2)
16D

PTd(x-x') 6(6, -
= (1 - P, - P2) 6{x - x') 3(6, - 62

x [4 - • « ? ! - 62W, - 9 2 ) 2 ] S(x - x'), (9.50)

we find the propagator for the vector superfield:

A = - ^

REFERENCES

K. Fujikawa and W. Lang, Nucl. Phys. B88, 61 (1975).
S. Ferrara and P. Piguet, Nucl. Phys. B93, 261 (1975).

EQUATIONS

J |«D+$ + i

F*F

+ m(,AF + A*F* - 1 ^ _ I ^ J . (9.10)
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<0|T{,4(xM*(x')}|0> - iAF(x - x')

<0|T{/l(x)F(x')}|0> = <0|T{,4*(x)F*(x')}|0>

= — JmAF(x — x')

<0|T{F(x)F*(x')}|0> = iDAf(x - x')

= i<5>AF(x - x')

= i<5>AF(x - x')

= a^dnhF(x - x')

(9.11)

imd{6 - ff) exp 10^ -
+(x',0',9')}|O>
- F') exp [-1

m
x] AF(x - x')

) dm
x~\ AF(x - x').

- 2damW)dm
x] AF(x - x').

(9.13)

(9.14)

M =

b
5<3>(x,t

1 -\EBD

, 0 D

/ I \— D2 0

1 °
i

4° 1

(9.17)

0')^(9 0^)S(x x'). (9.21)

(9.28)
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1 £)2j)2 1 f»2n2

P+ =

Pi =77

D2

16 D ' Pl 16 D

4D*

'Pi 0

P -
D2

4D*
1

A =
D - m2 - x')«5(0 -

- ; { J

- x')<5(0 - d')5(d -

A= - —

1
-O + m2

1

(9.30)

(9.35)

(9.40)

(9.45)

(9.47)

EXERCISES

(1) Use definition (9.1) to show that r\' = art implies dr]' = a~1 dr\.

(2) Check that \f(v)5{n - p)dr, = /(p).
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(3) The bosonic part of Lagrangian (9.10) may be written as

[A + ,F)J{[ . ), where M = I
\F ) \™ 1

Show that the AA*, AF, /4*F*, and FF* propagators are given by
the inverse of this operator.

(4) Compute the 0+<D+ and O<I>+ propagators.

(5) Verify that the kinetic part of the chiral Lagrangian may be written
as follows:

(6) Show

JF(xA6)d4xd20d29 = J (-

(7) Confirm the multiplication table (9.33) and show that these operators
have the following matrix representation:

(8) Prove (9.38) by direct multiplication, using (9.32) and (9.33), or by
using the P-operator representation given in Exercise 7.
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(9) For any matrix AT,

show that the inverse matrix AT"1 is given by

where

Z = (A - BD-iQ-1

U = -D-XCZ

v = (p - CA'^y1

Y = -A~lBV,

provided A~l and D~i exist. Compute the inverse if only B~l and
C"1 exist.
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In this lecture we shall derive the Feynman rules for the supersymmetric
<£3 model,

if = J>0d23O>+<I> + j jVflUmO2 + \g&1 + h.c.j. (10.1).c.j.
These rules may be applied to all chiral models and extended to super-
symmetric gauge theories as well. We shall find that the effective action
may be expressed in terms of one d46 — d2Qd2D integration of the follow-
ing form:

J> 0 J>x 2 • • • d'xf^fijS) • • - FH(xHft$)G(xl9..., xn). (10.2)

The function G(xu . . . , xn) is translationally invariant and the Fs are
products of superfields and their derivatives. No factors of • "1 appear
in the Fs, so for chiral operators the d4d integration cannot be converted
into a d28 integration without introducing spacetime derivatives (see
Exercise 2). This leads to the surprising result that mass and coupling
terms of the d2d form are not renormalized in supersymmetric theories.
Furthermore, no higher-dimensional momentum-independent chiral
operators are induced in the effective superpotential to any order in
perturbation theory. Equation (10.2) also implies that all vacuum-to-
vacuum diagrams vanish. This is because expressions of the type (10.2)
without any superfields are immediately annihilated by the d*8 integration.

Before deriving the Feynman rules we will give a short derivation of
the generating functional

(10.3)
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for superfield Green's functions

G w ( z \ . . . , z M ; z M + 1 , . . . , z " )

5 S
= (-if 5J{zl) 3J(zM)3J+(zM+1) 3J+(zN)

Z[J,J+]
J=J+= 0

(10.4)

Here Z 0 [ J , J + ] is the generating functional for free superfield Green's
functions and zl = (x^O^W) is an element of superspace. Equation (10.3)
may be verified explicitly in terms of component fields. We shall take
another tack and derive it directly with superfields and superspace
techniques.

In the previous lecture we calculated the free-field two-point functions:

<0|T(D0(z)O0(z')|0> =

<0|T(Do
+(z)<Do

+(z')|0> =

<0|TO0(z)O0
+(z')|0> =

<0|TO0
+(z)O0(z')|0> =

•

•

•
1—1

-

i

-

i
-

i

m2

m2

m2

7

AnfczWx

A22(z,z')^(x

A12(z,z')5(x

A21(z,z')^(x

- x ' )

- x ' )

- x ' )

- x ' ) .

(10.5)

The right-hand side of the equation includes the matrix elements Au of
Eq. (9.43). These two-point functions may all be obtained from the free
generating functional

Z0[J,J+] =

A12

22

8(x - x')

(10.6)
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This functional generates all free-field Green's functions as sums of
products of two-point functions A. With the help of (9.40), (9.18), and a
few integrations by parts, we find

Zo[«/,*/+] = exp — -
2

(10.7)

where AGRS is the propagator introduced by Grisaru, Rocek, and Siegel:

n - mz

4D

mD2
d(z - z'). (10.8)

We may differentiate Z o with respect to J and J + using the rule (9.21):

Z o = -
21 A 2 2

- x')

(10.9)

From this we find a functional equation for Z o

UD2 0\ ,. l
4V0 D2r i

3J(z)

\8J+(z)j

J{z)
(10.10)

Here we have used (9.28) and (9.18).
We may generalize this equation to the case of interacting fields. For

the <S>3 model, the field equations

UD2 0
4 \ 0 D1

<D2 J
J+ (10.11)
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lead to the following equation for Z:

4 \ 0 D2 i

/ 3 \
SJ(z) 1

5

\dJ+(z)J

Z = < Z.

(10.12)

Note that we have introduced projection operators in (10.12). We could
have done this in (10.11), but there it is obvious that <I> is chiral

= O, (10.13)

The chirality of the functional derivative is less explicit, so we choose to
keepPj and P2 in (10.12).

To solve for Z, we first compute the commutator

SJ(z)

= 3[ -l 5(z - z')\. (10.14)

The last step is possible because DP2 = 0. Integrating over d26d*x,

= 3 ; 5j(z)

= 3 P2 si 7/_'\ / »; 8J(z')
(10.15)

and using

i 5J(z)
(10.16)
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we cast Eq. (10.12) in the following form:

W+(z)J

xe -'"--W^Jz. (10.17)

This shows that

Q|_J,J j = e ZJ\_J,J j , ^lu.ioj

since the right-hand side satisfies the free equation (10.10). No normaliza-
tion factor is needed because of the fact that all vacuum-to-vacuum
diagrams vanish. With (10.18) we have proven (10.3) and solved for the
generating functional of an interacting chiral supersymmetric theory.

Having found the generating functional, we shall now derive the
Feynman rules. We begin by recalling the relation between the Green's
functions and the generating functional:

8
8JX

J

8
$JM

t-int 1 ~T~ >

A oZ- (nt

8
$J+M+1

8 N

(*w

)zc

8

JK"-)

8
8J+

n

00

y
L

N K = (

J = J +

(if

= 0
(10.19)

J VK JK' J " " J = J+=O

The factors of

generate vertices at zK. The derivatives in Z£int act on previous derivatives
and on Zo itself. Each derivative acting on Zo creates a new propagator
at zK. Each derivative acting on a previous derivative connects an existing
propagator to zK. In this way every new vertex is completely saturated
with propagators.
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As an explicit example, we consider a term in O3 theory in which two
new propagators are created at the point z:

p2
2

ft p2 j^ 1 7 D

x ( ~ * ( z - '̂)J(z') + d(z -

x (r

x k ^ 5(z - z ' W ) + 5(z - z")J+(z")^lz0. (10.20)

Here we have used (10.7) and (10.8) for Zo. The last step (changing the
d2d to a d49) was possible because of the chirality property of each factor.
Note that we also used the fact that

- • •

Such a piece corresponds to a closed O tadpole in a Feynman diagram.
The proof that (10.21) indeed vanishes is left to the reader as Exercise 7.

The effective action is computed from the one particle irreducible (1PI)
Green's functions. In general, 1PI diagrams have at least two internal
lines leaving every vertex. The external legs of the 1PI diagrams are
amputated with inverse propagators. They are then multiplied by the
superfield amplitudes O(z) or O+(z). This leads to the following Feynman
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rules:

(1) For each external line, write a chiral superfield <D(z), <X>+(z).
(2) At each <D3 vertex with two [three] internal lines, include factors

of -\D2 acting on one [two] internal propagators. At each O + 3 vertex,
include similar factors of -\D2.

(3) Write a factor of \g for each vertex, and integrate J d*x d*6 over
each vertex.

(4) Use Grisaru-Rocek-Siegel propagators for <M>, <X>+<!>+, and <J>+O
internal lines. These are given in (10.8).

(5) Compute the usual combinatoric factors for an A3 theory. This is
most easily done directly from (10.3) and (10.4).

Let us now use these rules to follow the ^-integrations around an
arbitrary closed loop. The Feynman rules and the GRS propagators
combine to give an expression of the following form:

(D1
2Yi(D1

2)kld(l2)(D2
2Y2(D2

2?>S(23) • • • (Dn
2Yn(Dn

2)k"d(nl). (10.22)

The exponents ^i9kt are either zero or one, and (5(12) = S(61 — 92)
For a general loop, the D and D factors might appear in the opposite
order. However, any higher powers of D2 and D2 may be reduced to the
above form, up to powers of • :

D2D2D2 = 16D5 2

D2D2D2 = 16D£>2

Of course, for the effective action, the above expression is multiplied by
superfields for external legs and GRS propagators for adjoining closed
loops. It is also integrated over d*xx d46x • • • d4xnd*0n. The final expres-
sion is evaluated by removing the D and D derivatives from one d-
function after another by partial integration. This introduces new
derivatives on the lines that leave the loop. It also introduces a certain
number of derivatives on the last ^-function, say d(nl). All but one of the
^-integrations may be performed with the aid of the ^-functions <5(12),...,
S([n — l]n). This leaves a factor of

jd%(D2Y(D2)kd(6n - (10.24)

or

(10.25)
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These expressions vanish unless k = ( = 1. In this case, we find

= jd%D2D2S(6n- e1

= 16 Jd40B, (10.26)

as follows from (9.41). The whole loop in 0-space has shrunk to one dA0
integration. This process can now be carried over to the next loop and
we finally arrive at the result (10.2). Note that (10.2) is true for each
diagram, and as a consequence, for any particular sum of diagrams as
well.

REFERENCES

M. T. Grisaru, M. Rocek, and W. Siegel, NucL Phys. B159, 429 (1979).
B. A. Ovrut and J. Wess, Phys. Rev. D25, 409 (1982).

EQUATIONS

.c.j. (10.1)

(10.3)

5J(zl) SJ(zM)SJ+(zM+i) 8J+(z

exp - -

J=J+= 0

(10.4)

(10.7)
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AGRS(Z,Z') =
1

• - m2

mD2

4U

mD1

4D,

_, 6{z - z'). (10.8)

EXERCISES

(1) Show that (10.2) is supersymmetric.

(2) Use (9.18) to show that

for <I> and J chiral.

(3) Demonstrate that the generating functional (10.6) gives the two-point
functions (10.5).

(4) Compute

(5) Verify (10.16).

(6) Compute — - - Zo. Use this to check (10.20).
dJ(z)

(7) Prove that (10.21) does indeed vanish.

(8) Use the Feynman rules to calculate the diagrams of Figure 9.1. Show
that (a) and (b) vanish and that (c) leads to a wave function
renormalization.
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In this chapter we shall study a nonlinear realization of the supersym-
metry algebra. This will introduce us to superspace differentials and
provide a natural transition to differential forms. It will also demonstrate
that supersymmetry may be realized entirely in terms of fermion fields.
In fact, we shall construct a local supersymmetric Lagrangian from a
single fermion field. We shall see that this nonlinear Lagrangian is highly
non-renormalizable. It does not, therefore, change the pattern of Bose-
Fermi symmetry in renormalizable supersymmetric field theories.

Nonlinear transformations for fermion fields are reminiscent of the
nonlinear transformations for the Goldstone spinors in Chapter VIII.
We shall see that the nonlinear Lagrangian gives rise to spontaneous
supersymmetry breaking and that the fermion field is indeed a Goldstone
spinor. The nonlinear Lagrangian is quite useful for studying the super-
symmetric Higgs effect in supergravity theory. The supersymmetric Higgs
effect occurs when the spin-^ Goldstone fermion combines with the
spin-f partner of the gravitational field to form one massive spin-f field.

To derive the nonlinear transformation law, we first consider the
supersymmetry transformation (4.3):

X' = x + np<% - £oB)
er = e + t (n.i)
w = d + ?.

This transformation induces a nonlinear realization on the spinors 6
and 5. We shall generalize this transformation to arbitrary spinor fields
A(x) by drawing an analogy between 6 and A, 9 = KX\

(11.2)
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From (11.2) we may compute the changes of the fields at the same space-
time point:

SfX" = /T(x) - X*(x) = - <f - iK{k(fl - £0*7)8 J.'

(11.3)

8& = I'JLx) - \(x) = - ? 4 - iK(Xam1 - Zo-lidJi.

After some algebra, which we leave to the reader as Exercise 1, we find

?. (11.4)

This verifies that (11.3) does indeed realize the supersymmetry algebra (I).
Before constructing an invariant Lagrangian, we first examine the

differentials dx, d6, and d0. These transform as follows under general
coordinate transformations in superspace:

xfm = x'm(x, 0, 9)

0'* = 0'"(x> 0,5)

dx- ^ "" dp T ""• SB,

Here one should note the summation convention for the spinor indices
and the placement of the differentials to the left of their coefficients.
For (11.1), this becomes

dxfm = dxm l fr
d6ffi = dO* (11.6)
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It is easy to find a combination of differentials

e
a = dxa - id6aa6 + iOa0 d~B

e* = dO' (11.7)

which is invariant under (11.1) and (11.6):

e« = dx/a - idf lV^ + iff 0*49'

= ^fl. (11.8)

Substituting 9 = KA and d0 = K{dA/dxm)dxm into (11.7), we find

ea -• dxm[^m
a - i/c2 dm/l<TflX + iK2Xaa8mJ] = rfxm^lm

a. (11.9)

A short calculation shows

8tAm
a = i/c(^w3wI - 3 ^ ( 7 " ? ) ^ - iK{ka"t - Zo*J)dnAm*. (11.10)

With this transformation, the Lagrangian

(11.11)

yields an invariant action

d^ det A = det A Tr S^AA ~x

{am3)deti4]. (11.12)

From (11.9), we see that ££ describes one massless spinor A:

<£ = - ~ - l-{XomdJ. - dmXamJ) + [interaction terms]. (11.13)

The constant K spontaneously breaks the supersymmetry. It also leads
to a non-vanishing vacuum expectation value for the Lagrangian. This
gives rise to a cosmological constant when (11.11) interacts with a gravi-
tational field.
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REFERENCES

D. V. Volkov and V. P. Akulov, JETP Lett. 16, 438 (1972).
S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977).

EXERCISES

(1) Use (11.3) to compute

Note that the terms in (11.3) quadratic in A come from a shift in
the argument x. Verify the closure relation (11.4).

(2) General transformations in superspace

yi — -A, | A , [/ , C j

CM1 an(\s' D' 7i'\
U :=— (7 I A , U , U )

induce the following transformations on the partial derivatives:

d dx" d d6v d d6± d

~dx^ ~ ~dx^Jxn + Jx^Wv + dx^Wl

d _ dx" d d6v 6 dB^ d

_ 5 _ _ dx" d d6v d dV^ d
M

Show that this, together with (11.5), gives

dxmi+ de*w+ d^k= dx>md^ + de'^ + dW>
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(3) Write e W d of Eq. (11.7) in the following form:

ea = dxmem
a + dd^ef + dB^a

e" = dxmem
a + dWef + dB^*

Show that

^ = 0, e^ = 0, e^ = (5*

(4) Compute

4-

Use this to prove (11.10).

(5) Use d/dxm det A = det A Tr 3m>4i4"1 to verify (11.12).
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Supergravity theories have been successfully formulated in terms of dif-
ferential forms in superspace. This is not surprising, for supersymmetry
transformations are among the general coordinate transformations of
superspace. It is natural, therefore, to introduce supergravity in a way
which is manifestly covariant under such coordinate transformations.
This leads us to extend the concept of differential forms to superspace.

The elements of superspace are denoted by

zM ~ (xm,^,9A). (12.1)

The capital letter M represents the four-vector index m as well as the
spinor indices \x and (i. M, m, and \x are all upper indices, while ft is a
lower index. Elements of superspace obey the following multiplication
law:

Here n is a function of N and m is a function of M. These functions take
the values zero or one, depending on whether N and M are vector or
spinor indices.

Exterior products in superspace are defined in complete analogy to
ordinary space:

dzM AdzN = -(-)nmdzN AdzM

(12.3)
dzMzN = (-)nmzNdzM.

With this definition, differential forms have an obvious extension to
superspace:

Q = dzM> A • • • A dzM*WMp... M l (z) . (12.4)

The differentials are written to the left of the coefficient function and the
indices are labeled in such a way that there is always an even number of
indices between those being summed. From now on we shall drop the
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symbol A for exterior multiplication. This is not ambiguous because we
know no other way to multiply forms.

Functions of the superspace variable z are called zero-forms:

F{z). (12.5)

One-forms are written as

A = dzMWM(z) = dxmWm(z) + dPWJiz) + dB^W^z), (12.6)

while Q in Eq. (12.4) is a p-form. Note that the definition (12.3) leads to
coefficient functions of mixed symmetry. Thus, in contrast to the usual
case, there is no value of p above which all forms vanish.

We shall always assume that coefficient functions with an odd number
of spinorial indices are fermionic in character, and that those with an
even number of spinorial indices are bosonic. These assignments repro-
duce the familiar rules for the multiplication of forms:

(CJAJ + c2A2)Q = CiAjQ + c2A2Q

AQ = ( - ) W Q A (12.7)

A(QS) = (AQ)H.

Here we have assumed that A is a p-form and Q a g-form.
Having defined superspace forms, we must also introduce exterior

derivatives. Exterior derivatives map zero-forms into one-forms,

dF = dzM^F = dzMdMF, (12.8)

and p-forms into (p + Informs,

In general, exterior derivatives have the following properties:

d(Q + I) = dQ + dS

= OdZ + ( - N Q I (12.10)

dd = 0,
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where Z is a g-form. Equations (12.8) and (12.10) follow immediately
from (12.3), (12.4), and (12.9). Alternatively, it is possible to define exterior
derivatives through (12.8) and (12.10). This is done in Exercise 5.

Equations written in terms of differential forms and exterior derivatives
are covariant under coordinate changes. To see this, let us assume that
y and z represent two sets of superspace coordinates:

/ * = yM(z). (12.11)

Functions of y have a natural mapping into functions of z:

F(y) = F(y(z)) = </>*F(z). (12.12)

If we maintain that y and z label the same point in superspace, the defini-
tion of </>*F in (12.12) guarantees that a certain quantity takes the same
value at the same point, independent of labeling scheme. In a similar
fashion, 0* induces a natural mapping between p-forms in the two
coordinate systems

vMl dvM

= (/>*Q(z). (12.13)

The map 4>* enjoys the following properties:

(1) 4>*(Q + Z) = (p*Cl + 0*1

(2) c/>*(QZ) = «>*Q)(0*Z)

(3) d((j>*n) = </>*(<K2). (12.14)

The proofs of (1) and (2) are straightforward. The proof of (3) is left as
Exercise 10. These properties make a formalism based on differential
forms and exterior derivatives automatically covariant under coordinate
changes.

The mappings (12.12) and (12.13) simplify for infinitesimal coordinate
transformations:

ZM = yM + ^ ( m 5 )
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In particular, we find

SF(z) = 0*F(z) - F(z)
(12.16)

for zero-forms and

SWM(z) = (t>*WM(z) - WM(z)

= ~iLdLWM(z) - ^ WL(z) (12.17)

for one-forms. These expressions may be easily generalized for arbitrary
p-forms Q.

Gauge theories are not only covariant under general coordinate trans-
formations. They are also covariant under a local structure group. This
is a compact Lie group for Yang-Mills theories and the Lorentz group
for gravity theories. In general, differential forms span a representation
of this group:

Q!a = QbXb
a(z)

(12.18)
Q' = QX.

The index a runs from 1 to L, where L is the dimension of the representa-
tion X of the group.

Objects which transform linearly under a representation of the struc-
ture group are called tensors. Note that exterior derivatives do not map
tensors into tensors:

da = ndx + dnx. (12.19)

A connection must be introduced to compensate for the inhomogeneous
term QdX. Connections are Lie algebra valued one-forms

(/> = dzM(j)M
r(z)iTr (12.20)

with the following transformation law:

<\>' = X'^X - X~ldX. (12.21)

In (12.20), the matrices T are the hermitian generators of the structure
group, and r runs over the dimension of the algebra.
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Connections allow us to define covariant derivatives,

90 = dO + Q0, (12.22)

or, more explicitly,

90 = dzN9N0

p l (12.23)

for Q a p-form. Covariant derivatives map p-forms into (p + l)-forms
and tensors into tensors:

90' = dO' + fi'(/>'

= (^Q)X. (12.24)

There is one tensor which can be constructed from the connection and
its derivatives. It is called the curvature tensor:

F = d(j) + </>(/>. (12.25)

The curvature tensor is a Lie algebra valued two-form:

F = l-dzMdzNFNM(z)
2 ™V (12.26)

Its transformation law is computed in Exercise 8:

F = X~1FX. (12.27)

The curvature form and the covariant derivative of a tensor are, in
general, the only tensorial quantities which may be constructed by taking
derivatives. Higher derivatives lead to identities (and not to new tensors)
because of the fact that dd = 0. These identities are called Bianchi
identities.
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Bianchi identities of the first type are found from the covariant
derivative:

(12.28)

These may be written as follows:

dzM dzN@N@MQ = i dzM dzNFNM
rMTr. (12.29)

Bianchi identities of the second type are found from the curvature
form (12.25):

dF =
= 4>{F - H) - (F - </></#

= <j)F - F(j). (12.30)

These tell us

9F = 0, (12.31)

or, in terms of the coefficient functions,

dzM dzN dzL @LFNM = 0. (12.32)

Summing over all permutations of the indices, and using the fact that

FLN = 0. (12.33)

This is the superspace generalization of the usual cyclic identity on the
curvature.

REFERENCES

H. Flanders, Differential Forms, New York, Academic Press (1963).
F. A. Berezin, Sov. J. Nucl. Phys. 30, 605 (1979).
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EQUATIONS

z M ~

z»z»-

dzM A dzN =

= dzM' A • •

- {xm,e\eil).

_ (_y,mzNzM

— ( — )"mdzN A dzM

(-fmzNdzM.

•AdzM'WM_...MXz).

(12.1)

(12.2)

(12.3)

(12.4)

Afl = (-)MQA (12.7)

A(nS) = (Afl)E.

dQ = dzM l • • • dzMp dzN -—jj WMp... Ml{z). (12.9)

d(Q + Z) = dQ + dl.

d(GL) = QdZ + (-fdQI. (12.10)

rfrf = 0 .

Q' = OX. (12.18)

4>' = X'^^cpX — X~xdX. (12.21)

^ Q = rfQ + Q</>. (12.22)

^Q' = (3a)X. (12.24)

F = # + (/>(/>. (12.25)

F = X-XFX. (12.27)

^^f i = QF

dzu dzN@N2)MQ = i dzM dzNFNM'QiTr.NM'QiTr
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@F = 0, (12.31)

dzM dzN dzL@LFNM = 0 . (12.32)

EXERCISES

(1) Show that the p-forms on an ordinary n dimensional manifold
span an (n

p) dimensional linear space.

(2) In three dimensions, show that dd = 0 implies V x V • = 0 and
V - V x = 0 .

(3) Verify

teM~d? = {~rJ7Jz1;i'

(4) Use Exercise 3 to show that dd — 0 holds for forms (12.9) in super-

space.

(5) Demonstrate that (12.8) and (12.10) define dQ as in (12.9).

(6) Check that the connection (p remains Lie algebra valued under the
transformation (12.21).

(7) Show that if </> is Lie algebra valued, (12.25) implies that F is Lie
algebra valued as well.

(8) Prove that the curvature F transforms like a tensor (12.27) under
the structure group.

(9) Show that 9@Q = QF gives

for W a zero-form.

(10) Compute 0*Q, d(0*Q), dQ, and (p*(dQ) for an arbitrary p-form Q.
Verify that d(0*Q) = <t>*{d£l).
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Before beginning our study of supergravity, we shall examine supersym-
metric gauge theories in the language of differential forms. We will repro-
duce our previous results and gain confidence in geometrical methods.
Whenever possible, we will follow the steps we later take in formulating
supergravity theories. In this way we will treat supersymmetric gauge
theories as a model for supergravity.

In the previous chapter we introduced differential forms and exterior
derivatives in superspace. We used the superspace differentials dzM as a
natural basis. We could, however, have chosen any other basis,

dzME (13.1)

Here EM
A(z) is an arbitrary invertible function of superspace,

EM\z)EA
N(z) = dM

N

where

EA
NWN

N = 0

0

B(z) =

1 0

V
0

V

0
0

(13.2)

(13.3)

In (13.3) it is important to note the position of the dotted indices.
The dz basis is not particularly useful for supersymmetry because the

exterior derivative

dzM

dzM (13.4)

does not map superfields into superfields. This is because the differential
operator d/dz does not commute with the supersymmetry generators (4.4).
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A more natural basis is defined by the supersymmetry covariant derivatives

D° = 8?

D.=

D* =

_8_

86*

8

8%

«• 8

8xm

k- 8

(13.5)

8xm'

These differential operators commute with the supersymmetry generators

{Da,Qf} = {Da,Qi>} = {&&,} = {&,&} = 0 (13.6)

and map superfields into superfields.
The exterior derivative may be written in terms of the differential

operators (13.6) if we introduce a new basis

e\z) = dzMeM\z)

such that

where

pM eA

- p N

(13.7)

(13.8)

(13.9)

The matrix eA
M follows directly from (13.5):

= Sm _ s m

Its inverse is given by

le a = 3 a

A —A — = —in

= 0

em* = 0 emi = 0

e^ = ^ e/j i = 0

(13.10)

(13.11)
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These matrices define supersymmetric flat space. Note, however, that
the exterior derivatives of the basis forms do not vanish:

dea = -2ie*oa«e\ (13.12)

de* = 0

deA = 0.

This is the price that must be paid in the flat space basis.
To discuss gauge theories, we must introduce a connection 0. As usual,

the connection is a Lie algebra valued one-form:

* - * " * » - * ' , , 3 , 3 ,
<1>A = 4>A

riTr.

We shall make contact with ordinary gauge theories by demanding

o = e = o = vm
r. (13.14)

The field vm is the familiar Yang-Mills vector potential.
The curvature two-form is defined as in (12.25):

F = dcp + </>(/>

— — a±
NM

= -eAeBFBA. (13.15)

In the flat space basis, this becomes:

F = eAeBDB<t>A + deAcf>A + eA4>AeB<t>B

(13.16)
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The coefficient function FBA may be decomposed into its Lorentz-
covariant components:

°* O1* I1D ^ " ^ (13 .17 )

F/i6i = Dpcfri 4- Dyfyp — {</>0,</>i} 4- 2\Op"(\)a.

Note that

rba\0 = d = O — vba l* • \ 1 J - i O /

The Bianchi identities may also be decomposed into their Lorentz-
covariant components. In particular,

9F = 0
(13.19)

^ F = - eAeBec@cFBA + - eA deBFBA — - deAeBFBA

gives

(1) @cFba + ^ , F f l c + ^ f l F c b = 0

(2) 2 F 4- ® F + &) F = 0

( ^ ^ FL 4- ^ F • + J® F- = 0
1-3/ ^arbc ' ^ b r COL ' ~" cr ab u

(4) ^CF^OJ 4- ® « F a c — ^ a F c ) 3 = 0

(7) ^ F -\- 3f F -\~ Q) F = 0

(8^ ^ F -4- <̂  F • 4- <̂  F- 4- Jin aF 4- ?//r aF — 0
(9) @ Fo- 4- ®»F- + ^ . F ; + 2/7r / F • 4- 2/<T

 a F « = 0

V7/ °^yr fia ' °^pr ay ' °^aryP ' A l u yfi l an ' Z r ' u / a J a/f — w

^ivj^ ^ .-,r jj^ T <^pr %y T* ^a* yp — ^ *

In (13.20), the derivatives 0 are the full gauge-covariant derivatives.
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Each tensor component of F represents a full superfield multiplet. These
multiplets contain a large number of component fields. Most of the
component fields are superfluous and must be eliminated through con-
straint equations. The constraint equations must be gauge covariant,
Lorentz covariant, and supersymmetric. In addition, they should not
restrict the x-dependence of the component fields.

Finding the proper set of constraints is not easy. It turns out that

Fafi = Ftf = F*i = 0 (13-21)

gives the right results. We shall solve the Bianchi identities subject to
these constraints. Without them, we would have found (13.17) as the
most general solution.

Identitites (7) and (10) in (13.20) are automatically satisfied because of
the constraints. Identity (8), however, yields a further restriction on F:

°*0aFafi + afii
aFM = 0. (13.22)

The vector-spinor Faa has spin-f and spin-f components. Equation (13.22)
tells us that the spin-f component vanishes:

i (13.23)

Identity (9) gives a similar result,

Faa = - i ^
i . ( 1 3 . 2 4 )

W*= --Faio
a*\

while identity (6) allows us to express Fab in terms of W and W:

(13.25)
= l-{®oaabW - ®aaobW).

Exploiting the antisymmetry of Fab, we find

9W - 2W = 0, (13.26)
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SO

Fat = i (@°abW - @oahW). (13.27)

1

Identity (5) leads to another restriction on W:

(Pp£Q)p + Gfific@b)Wfi = 0 . (13.28)

Contracting with acaa and using (A. 12), we have

(S^p + dp°<3k)W
a = 0. (13.29)

Summing over a and a yields

®iWa = 0. (13.30)

An analogous result follows from (4):

9*WO = 0. (13.31)

Identities (1), (2), and (3) do not lead to any new results.
Identities (1), (2), and (3) are consequences of the other identities even

without the constraints (13.21). To show this would require some tedious
work which we shall omit here. Features like this are quite common in
supersymmetric geometries. In general, part of the covariant curvature
tensor may be expressed in terms of the other parts, and not all the Bianchi
identities are independent. The technical reason for this stems from the
fact that the derivatives of the basis forms EA always contain a piece
proportional to <ra/. We shall encounter this again (albeit in a much more
complex form) in supergravity theories.

To conclude this chapter, we shall summarize our solution to the
Bianchi identities, subject to the constraints (13.21). We discovered that
the Bianchi identities are satisfied by two superfields, Wa and Wa. These
superfields obey the following constraint equations:

3}kWa = 0

&M = 0 (13.32)

In the Abelian case, we recognize the conditions (6.8) and (6.12). These
equations have (6.11) as their most general solution. In the non-Abelian
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case, it may be shown that Eqs. (13.32) have (7.22) as their most general
solution.

REFERENCES

J. Wess, in Topics in Quantum Field Theory, J. A. de Azcarraga, ed.,
Salamanca (1977); Lecture Notes in Physics 77, New York, Springer-
Verlag (1978).

R. Grimm, M. Sohnius, and J. Wess, Nucl Phys. B133, 275 (1978).

EXERCISES

(1) Show that (13.11) is the inverse of (13.10).

(2) Compute ea, e*, and e& explicitly. Compare the result to (11.7).

(3) Decompose Faa into its spin-f and spin4 parts:

Fax ~* OpjfFaaL = F pap

F - l - F - + ! F •
r paP — 2 (P«)P 2 [MP

2 F2 F(fi*)fi = j tFw + F*td (sPin"f)

2 Fw*ifi = j

Show that

if the spin-| part of Facx vanishes.

(4) Verify that (13.23) satisfies (13.22).

(5) Derive the explicit form for @cFa/? and @yFa/?.

(6) Extract the Yang-Mills field vab from the superfield Wa in (6.11).
Compare the result to (13.25).

(7) Show that DW - DW = 0 implies

davbc + dbvca + dcvab = 0

in the Abelian case.
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(8) Demonstrate, again in the Abelian ease, that identity (1) is a con-
sequence of the other identities and the constraints (13.21). Use

and

—

(9) Verify that 4>fi = -evDfie~y is a solution to Fafi = 0.

(10) Compute the coefficient functions of the identity (12.29), 990. = OF,
in the eA basis.
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In previous lectures we considered theories invariant under rigid super-
symmetry transformations. We now wish to gauge these transformations.
In particular, we would like to construct theories invariant under x-
dependent supersymmetry transformations. As in Chapter IV, such
transformations induce motions in superspace:

These motions generate certain coordinate transformations:

2M _> Z,M = ZM _ ^M( Z ) ( 1 4 2 )

Thus it is natural to express our theories in the language of differential
forms. This formalism is automatically covariant under coordinate
transformations, as was shown in Chapter XII.

Our basic dynamic variables shall be the vielbein and the connection.
These superfields contain a large number of component fields. Some
will be eliminated through covariant constraint conditions. Others will
be gauged away with (14.2). In this way we shall arrive at a theory with
the minimum number of component fields.

The vielbein forms EA(z) define a local reference frame:

EA = dzMEM
A(z). (14.3)

They are manifestly coordinate independent. The vielbein fields EM
A are

the coefficient functions of the vielbein forms. The vielbein fields change
with the coordinates:

<t>*EM
A(z') = £ V V ) = ^ M E»A(z)- (14-4)
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In the infinitesimal case, this becomes

Z.M = ZM _ £M( z )

SEM
A = E'M

A(z) - EM
A(z) (14.5)

in accord with (12.17). Note that only ihe lower index M enters the above
transformation. It is an Einstein index. Einstein indices take part in
coordinate transformations. They will be denoted by letters from the
middle of the alphabet.

The upper index A is reserved for the structure group. We shall take
the Lorentz group as our structure group. This is because we would like
to recover supersymmetric flat space (13.11) as a solution to our dynamical
theory. With this choice, the reference frame defined by the vielbein is
locally Lorentz covariant:

SEA = EBLB
A(z)

(14.6)
dE A — E BL A(z)

In general, indices transforming under the structure group will be taken
from the beginning of the alphabet. They will be called Lorentz indices.
Note that the Lorentz generators LB

A have three irreducible components:

V V L*k. (14.7)

These components are related through the <7-matrices,

n an bf — — 9 P / . • -L 9 p •/• (\dk\

as may be seen from (A.I 3).
The vielbein and its inverse

EM
AEA

N = SM
N

A (14.9)
17 Mr- B _ s B V

^A ^M — °A

connect the two types of indices:

1/ _ 17 Ay

VA = EA
MVM.

(14.10)
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Wherever possible, we shall write physical quantities in terms of Lorentz
indices. They then have simple transformation properties. In addition,
they may be fully decomposed into components irreducible under the
Lorentz group. As an example, the vielbein forms Ea = dzMEM

a, Ea =
dzMEM*, and Ek = dzMEMi are coordinate-independent irreducible
Lorentz tensors.

To formulate covariant derivatives we must introduce a connection
form

4> = dzMcj)M, 4>M = 4 > M A \ (14.11)

transforming as follows under the structure group:

6(j) = (j)L - L(t> - dL. (14.12)

The connection is the second dynamical variable in our theory. Note that
4>MA

B is Lie algebra valued in its two Lorentz indices:

Its third index M is an Einstein index.
The covariant derivative of the vielbein is called torsion:

TA = dEA + EB(f)B
A

dM dNT A

Explicitly, this becomes

= ~ECEBTBC
A. (14.14)

NM

- ( - )mbEN
Bct>MB

A. (14.15)

The Lorentz tensor TBC
A is obtained from TNM

A with the help of the
inverse vielbein:

A _ i \b(m + c)r Mp N'T A
BC — \ ~ ) ^C ^B I NM •

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



112 XIV. VIELBEIN, TORSION, AND CURVATURE

The sign factor may be derived from (14.14) and the definition of EA.
It simply expresses the fact that the summation over M is carried through
the index B.

In flat space it is possible to transform the vielbein into the global
reference frame (13.11):

EA = eA. (14.17)

It is defined up to rigid Lorentz transformations. In this frame the
connection vanishes:

0 = 0. (14.18)

The torsion, however, is non-zero:

? V = T-^ = 21(7,/. (14.19)

All other torsion components vanish.
The curvature tensor is defined in terms of the connection:

(14.20)

As usual, it is a Lie

^M =

algebra

1

1
= 2E E

R = c

valued

1(1) + (p(j).

two-form:

dz RNMA

Dn B
*DCA

= dzMdzNdN<t>MA
B + dzM(t>MA

cdzN$NC
B. (14.21)

From (14.21) we may read off the coefficient function RNMA
B:

- (-)mia+c)<t>NAC<t>McB- (14.22)

Since R is a two-form, we have

(14.23)
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and since it is Lie algebra valued, we find

The last relation follows from (14.8). All other components of R vanish.
The torsion and the curvature are the only covariant tensors which

may be constructed from the vielbein and the connection. We must now
find constraints in terms of these covariant quantities which reduce the
number of component fields as much as possible. There are, unfortunately,
no general recipes to indicate the proper constraints. Instead, one must
examine the consequences of various choices. For example, it is impossible
to set all torsion components to zero, for that would exclude super-
symmetric flat space as a solution to our theory. Similarly, Eq. (14.19)
allows only supersymmetric flat space as its solution. It turns out that

T V - T V - * . ,

Tab
c = 0

are the proper constraints. Here a denotes either a or a.
In the next chapter we shall solve the Bianchi identities subject to

these constraints. As with gauge theories, we will find that they con-
siderably restrict the number of independent superfields. In fact, we will
find that (14.25) yields the minimum number of independent component
fields. These are the graviton, em

a(x), the gravitino, ^m
a(x), ^m(i(x), and

the auxiliary fields, M(x) and ba(x) = ba*(x). These fields are not re-
stricted by any differential equations in x-space. The spin-2 graviton
couples to the energy-momentum tensor, while the spin-f gravitino
couples to the spin-| eupercurrent. The auxiliary fields are just enough
to equalize the number of bosonic and fermionic degrees of freedom off
mass shell.

REFERENCES
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J. Wess and B. Zumino, Phys. Lett. 66B, 361 (1977).
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EQUATIONS

3EM
A = E'M

A{z) - EM
A(z)

= -£LdLEM
A - (dM£L)EL

A. (14.5)

SEM
A = EM*LB\z). (14.6)

dy = 4>L - L<t> - dL. (14.12)

T"4 = d£" + £B^)B'4

/ . (14.14)

_i_ / \n(b + m)rr B i X / \fnbj? B i 4̂ /I/I ic\

+ ( —) EM (pNB - (-) tN (pMB . (14.15)

R = dcf) + 4><t>. (14.20)

= dzM dzN d^MA
B + rfzM^M/ d z " ^ * . (14.21)

_ ( _ ynta + Ofy^fcf)^ , (14.22)

a/* ^ ^ (14.25)
V = V = 0
Tab

c = 0.

EXERCISES

(1) Compute dx'M and d/dxfM under the transformation (14.2). Show
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(2) Compute 8QMN = Q'MN(z) — QMN{z) for Q a two-form.

(3) Show that crad
m transforms as a four-vector under (14.8).

(4) Explicitly evaluate the covariant derivatives of the covariant and
contravariant Lorentz vectors XA and XA:

®MxA = dMxA + (-rxB<t>MB
A

®MXA = dMXA - <PMABXB

9BXA = EB
M9MXA

9BXA = EB
M9MXA.

(5) Use the covariant derivative of a Lorentz vector to define the co-
variant derivative of an Einstein vector:

V Y / \n(a + m)r AT? B(j> V
NAM — \~) &M £N tZ>BAA

— dNxM -f rNM x R

p R _ / \n(a + m)p A<Q\ Z7 R\

(6) Show that V in Exercise 5 reduces to the usual symmetric connection

in torsion-free ordinary space.

(7) Decompose TBC
A into its Lorentz-irreducible tensors.

(8) Linearize TBC
A about supersymmetric flat space:

^N — eN "+• KeN tlB .

n d.
Ka

(9) Assume that Em
a — 3m

a -I- • • • has mass dimension zero. Give the
dimensions of £ / , Em\ and £ / , as well as Tab\ Tafi

e, Tab\ and Rabc
d,

n d
aby

[£m
a] = 0 [£/] = -i
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L * ab J ~ l L l a0 J ~ 2

2
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We are now ready to solve the supergravity Bianchi identities subject
to the constraints (14.25). We will proceed in analogy to Chapter XIII,
where we solved the Bianchi identities for supersymmetric gauge theories.
We will find that the Bianchi identities reduce the number of independent
superfields contained in EM

A(z) and (J>MAB(Z)
 t o o n e complex chiral super-

field R, one hermitian vector superfield Ga/j, and one chiral superfield
Wapy, totally symmetric in its indices. The torsion and the curvature may
both be expressed in terms of these three superfields.

We shall summarize our results at the end of this lecture. These formulae
will be used frequently in the coming chapters. It is not necessary, however,
to work through the details presented here to understand the rest of the
book.

We begin by stating the Bianchi identities for the torsion and curvature.
These follow directly from (12.29) and (14.14):

= EBRB
A

= EBRB
A. ( m )

Here RB
A denotes the superspace curvature and TA the torsion. We wish

to break this equation into its Lorentz-irreducible components, so we
compute @>TA in the basis defined by the vielbein forms:

! ! !
= - EBEC9TCB

A + - EBTCTCB
A - - TBECTCB

A.

Substituting this in (15.1), we find

EBECED{9DTCB
A - RDCB

A + TDC
FTFB

A) = 0. (15.3)

This identity contains thirty Lorentz-covariant components. Some of
them, however, are related by complex conjugation, and others are
automatically satisfied because of the constraints (14.25). In all, there

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



118 XV. BIANCHI IDENTITIES

are thirteen independent components:

M "i p _i_ p i p — n
I 1 / -L^-fidya. ' IXSyfl<x ' -^yfida v

f}^ P _l_ P Ol/T •' T1 7̂/T •* T1

v^-/ ^dy'Pa ' Ixy'(id<x — ^-1{J by l (ifa ^ l u Py L dfa

(3) Rma = -2iat/Tm - 2iap/Tdfi

(4) /? % y a + /? y M a = -®yTdba - 26Tyba

(5) i ? M ^ = 2dTybi + 9yTdbi + 2iad/Tfbi

(6) 2yTiM + ®hTyba = 0

brd>a + d̂T b̂a + ^rbda + V r ^ . + W = o
(11) Rfidca + RcPda + 2iGap<j>Td* = 0

(12) ^bTd c a 4- ^dTc b a + ^ c T, d a + Tb/T^c a + T d / T ^ a + TjT^ = 0

(13) Rbdca + i^dcba + ^cbda = 0. (15.4)

The underlined index 0 is summed over both cp and 0.
We shall first solve the identities which are linear and without deriva-

tives. These are Eqs. (1), (2), (3), (7), (8), (11), and (13). We start by con-
verting (7)

Rpsca = -2i°a*6Tie+ - 2ic^T^ (15.5)

to spinor notation:
p . . _ c_ an . .
^pdyyad — °yy a a d ^dca

T - a <T ( 1 5 6 )

Since R is Lie algebra valued, we have

RpSyyaa = ~2eyaRpfa + 2e^i^^ya, (15.7)

where / ^ y a and /J^y<i are symmetric in ya and ya respectively. Since R
is a two-form, Rpsyx and / f c ^ are also symmetric in fid. With these ex-
pressions for R and T, Eq. (15.5) becomes

£ydt̂ /j<5ya ~~ £ya^Sya = 2 i ( ^ ^ y y a + £a<5 /̂*yya)- (15.8)
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The tensor T^yy0L may be decomposed into components with definite
symmetry properties:

<̂5yya = £6y8yaT + B^T^ + ev aT^ + Ty^. (15.9)

In (15.9) and in what follows, tensors are symmetric with respect to
underlined indices. Equation (15.8) now splits into several symmetry
classes. We first consider the part which is antisymmetric in both ya
and ya. This may be projected out with eay and e**:

Ti'n + Tfi. = 0. (15.10)

Note that the curvature R drops out of this expression. Substituting
(15.9) into (15.10), we discover

T ^ = 0. (15.11)

We next consider the part of (15.8) which is symmetric in ya:

+ 2i(**pTy,.ij + s^Ty.pj). (15.12)

If we multiply this by ea/*, we obtain

Rfaa = Gis^ - 6iT^t. (15.13)

However, RySylx is symmetric in y<5, so

T^ = 0 (15.14)

and

Sy. (15.15)

If we multiply (15.12) by e**, we find

RpSy* = ~2iT^. (15.16)

Equations (15.15) and (15.16) are consistent if and only if

T^gi = 0.

R - 0 ( 1 5 '1 7 )
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Only one term remains in the decomposition (15.9); we call it R, where
T= -2iR:

T ^ = -2iesySyaR. (15.18)

From (15.8), we see immediately that

R. (15.19)

With these results, we have found the most general solution to identity
(7). We have also learned that Rphca

 a n d T#c4, may be expressed in terms
of a single superfield R. Similarly, we may write Rpdca and TdC(j, in terms
of R+. The above expressions satisfy identities (1) and (3) as well.

We now consider identities (2) and (8). The computation is quite
similar to what we have done, so we merely list the results:

We leave the details of this calculation to the reader as Exercise 1.
Identity (11) gives Rfidca in terms of the torsion. Since Rfidca is anti-

symmetric with respect to c and a, we find

Rfidca = HOdfi+Tj ~ OafiiTJ - Vc^Tad*). (15.21)

We have now solved all the derivative-free linear identities except (13).
Identity (13), however, is just the usual cyclic identity on the curvature
in four-dimensional space. It is familiar from ordinary gravity theory
and its consequences are well known. In spinor notation, the symmetry
properties of

— °r;Gd'b °'pp G*kRcdba (15.22)

lead to the following decomposition:

(15.23)
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Identity (13) is satisfied if and only if

^ydfa = ^2* yd

X ' - e A ( 1 5-2 4 )

where A is real.
We shall now proceed to solve the identities which contain derivatives

but remain linear. These are identities (4), (5), and (6). We begin by insert-
ing (15.18) into identity (6). This yields

y yP» = 0. (15.25)

Contracting with e^, we find

3>yR = 0, (15.26)

so the superfields R and R*

+ = 0 (15.27)

are chiral.
Evaluating identity (4) is tedious. We must make use of the fact that

Rdcab is Lie algebra valued:

_ c — a _ b

yyaaftfi ~ °yy °xk Gfifi
(15.28)

The component Rdcab is related to the torsion through (15.21), where
Tdc<j, has the following decomposition:

TsM = -2f i«y(% + HyWi + s^Wy) 4- 2esyWd^. (15.29)

Combining (15.21), (15.28), (15.29), and identity (4), we find

(15.30)
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and

^y +

+ ^ i ( f i ^ G « + fi&®,G,y). (15.31)

The symmetric tensor W ŷ drops out of the identity, so it remains un-
determined. The tensors WPj and WJ^ are related to G.

Identity (5) gives another relation between the same curvature and
torsion components. It yields

9'GK = &AR+ (15.32)

as a consequence of (15.30) and (15.31).
We have now solved all the linear identities. The nonlinear identities

either define components of the curvature and torsion as nonlinear ex-
pressions in G and R or they may be reduced to linear equations through
the commutation relations of the covariant derivatives. For example,
identity (9) expresses Rcd^ and therefore X ^ a and *¥yszi in terms of
torsion components. These, in turn, may be expressed in terms of W, G,
andi?:

^ T/J.
(15.33)

Because of the symmetry properties of X^ yi and because of the relation

= 0, (15.34)

we find

® " % + \i{®ri&h + ^ G ^ ) = 0 (15.35)

from (15.33).
Finally, we examine identity (10). The torsion terms may be expressed

in terms of W, G, and R. All but one contain an 8-tensor, so symmetrization
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in all indices yields

® « % - 0- (15.36)

The symmetric tensor W^ is a chiral superfield.
We have now solved tKe Bianchi identities (15.4), subject to the con-

straints (14.25). We have learned that all the components of the torsion
and the curvature may be expressed in terms of the superfields R, Gxi,
and Wafir These superfields are subject to the following conditions:

(1) 9AR = 0

(2) <TGa/j = ®iR+ 0'Gj = 9aR

(3) $&,» = 0 9aWM = 0

(4) &W& + 1 i&ii&i + 2^G\) = 0

®'W # + \ i(9,*GS + 9siG,*) = 0

(5) (GJ+ - G^

(6) (W^,)+ = &&. (15.37)

The superfield W ŷ is completely symmetric in its indices.
For future reference, we collect our results below.

Torsion:

(2)

(3)

(4) 7 V = - T e / = ~
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\P) •" be * ed ~f\ Ge •* dee

(6) 7V- -T^-lfr/V

- Utifci&iGy* + 8,040,*)
2

+ - edyi^sGxy H
2 r

Curvature:

(1) ^ y £ a = 4(e^y a + eyesJR+

( 2 ) ^ < 5 y ^ =

(3) Rdi>Ea =

(4) i?£ C,a = -^c e , a = - - ^ V

(15.38)
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+

(8) Redyx = \^a/d2

R ... = -gi£a/dl

£id^sdya

^edya

1 1 / . _ VI> .
1 eayrf x ydsct

£̂  + ^y^EGa^ + 9&£* + 9&fi^. (15.39)

All other components vanish.
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It is quite remarkable that these relations also solve the Bianchi iden-
tities arising from the curvature (12.31):

9R = 0
(15.40)

ECEDEE[®ERDCA» + TED
FRFCA

B] - 0 .

REFERENCES

R. Grimm, J. Wess, and B. Zumino, Nucl. Phys. B152, 255 (1979).
N. Dragon, Z. Phys. C2, 29 (1979).

EXERCISES

(1) Show that (15.20) is the solution to identities (2) and (8).

(2) Derive the conditions (15.24) from identity (13).

(3) Show that identity (5) implies (15.32).

(4) Verify that (15.38) and (15.39) satisfy (15.40).
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In the past few chapters we have considered the general coordinate
transformations of superspace

fM = zu - £M(z). (16.1)

We have also introduced a structure group and explored its transforma-
tion laws (12.18). In this chapter we shall define supergauge transforma-
tions. Supergauge transformations are constructed from the general
coordinate and structure group transformations of superspace. They
amount to a convenient reparametrization of these transformations.
Supergauge transformations map Lorentz tensors into Lorentz tensors
and reduce to supersymmetry transformations in the limit of flat space.

The parameter £ characterizes infinitesimal changes in coordinates.
It may be written with either an Einstein or a Lorentz index:

SA = £MEM
A. (16.2)

Note that either £A or £M may be chosen as the field-independent trans-
formation parameter. Its companion then depends on the fields through
the vielbein. Since we would like Lorentz tensors to transform into
Lorentz tensors, we shall choose £A to be field-independent.

We must now write the transformation properties of tensor superfields

in terms of the parameter £A. In (16.3), VA represents a general tensor
field, and the representation L of the Lorentz group corresponds to the
tensor structure of V. For scalar fields, we have

SV = -£"dMV = -SAEA
MdMV = - < ^ K , (16.4)

while for tensor fields, we find

6VA = -£BEB
MdMVA + VBLB

A. (16.5)
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As it stands, Eq. (16.5) is not covariant under Lorentz transformations.
The derivative in (16.5) must be replaced by a co variant derivative:

®MVA = 3MVA + (-TbVB<j>MB
A

(16.6)
®VA EM@VA

Substituting (16.6) into (16.5), we obtain

SVA = _£B@BVA + vBtc4>CB
A + VBLB

A. (16.7)

The connection 4>CB
A is Lie algebra valued, so ic(t>CBA a c t s like a field-

dependent Lorentz transformation on VB. If we set

V = -£c</>c/, (16.8)

we find

S^VA = -£C3)CVA (16.9)

for any tensor superfield VA. Equation (16.9) is manifestly covariant
under Lorentz transformations.

The condition (16.8) defines supergauge transformations. Supergauge
transformations consist of a general coordinate transformation with
field-independent parameter £A followed by a structure group Lorentz
transformation with field-dependent parameter LB

A = —£c<t>cBA' I* ls

among this restricted class of transformations that we shall find the
gauged supersymmetry transformations.

Let us now compute the commutator of two supergauge transforma-
tions. Since t,A is field-independent, we have

Sn5^VA = -fbpcV
A = ZcrjB@B@cV

A, (16.10)

so
A C \ b W A . (16.11)

This expression is easily evaluated with the help of the Bianchi identities
(12.29):

= VBRB
A. (16.12)

Here RB
A is the Lie algebra valued curvature two-form and VA is a tensor
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zero-form. As in (15.2), we write

22V A = 2{EB2BVA)

= EB2(2BVA) + {2E*)2BVA

= EBEC2C2BVA + TB2BVA. (16.13)

Substituting (16.12), we find

EBEC2C2BVA = VDRD
A - TD2DVA, (16.14)

or, for the coefficient functions,

(2C2B - {-)hc2B2c)V
A = (-)dic+b)VDRCBD

A - TCB
D2DVA. (16.15)

This tells us that the commutator (16.11) closes into a field-dependent
Lorentz transformation and a field-dependent transformation of the
type (16.9):

(3,3, - 3^n)VA = VDtcr,BRBCD
A - Scr,BTBC

D9DVA. (16.16)

In flat superspace, where the curvature vanishes and the torsion is pro-
portional to the <7-matrices, Eq. (16.16) reduces to a familiar form:

(5n5t - Ss5n)VA = -21(^1 - ZJ%dmVA. (16.17)

The 6 = 9 = 0 components of £ and rj give the commutator of two
supersymmetry transformations (3.4), so (16.9) indeed includes gauged
supersymmetry transformations.

We conclude this chapter by computing the changes in the vielbein and
the connection under supergauge transformations. In general, the trans-
formation properties of the vielbein are given by (14.5) and (14.6):

6EM
A = -ZLdLEM

A - dMt;LEL
A + E M

B L A

= -ZL(dLEM
A - (-YmdMEL

A) - dMZA + EM
BLB

A
MLB

ZA + EM
BLB

A) + EM
BLB

A.
(16.18)

Here we have used the definition of the torsion (14.15). The connection
<I>MLA combines with dM£A to make a covariant derivative. Substituting
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the special Lorentz transformation (16.8), we find the following super-
gauge transformation law:

5,EM
A = -®MSA - ZBTBM

A. (16.19)

We proceed similarly for the connection:

- <W. (16.20)

For a supergauge transformation, this becomes

WMAB = -ZCRCMAB- (16.21)

The proof of this relation is left to the reader as Exercise 3.
The transformation laws (16.9), (16.19), and (16.21) allow us to compute

the transformation properties of all the independent supergravity com-
ponent fields. This we shall do in the following lectures.

REFERENCES

J. Wess and B. Zumino, Phys. Lett. 79B9 394 (1978).
J. Wess, in Quantum Flavor dynamics, Quantum Chromodynamics, and

Unified Theories, K. T. Mahanthappa and J. Randa, eds., New
York, Plenum (1980).

EQUATIONS

6VA = -ZBEB
MdMVA + VBLB

A. (16.5)

SVA = -?9BVA + VB?<t>CB
A + VBLB

A. (16.7)

(16.9)

c)V
A = (~)dic+b)VDRCBD

A - TCB
DSDVA. (16.15)

5n)V
A - VD£criBRBCD

A - 6 V » / ^ (16.16)

S4EM
A = -ad? - £BTBM

A. (16.19)

(16.21)

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



XVI. SUPERGAUGE TRANSFORMATIONS 131

EXERCISES

(1) Show that (16.15) may be written

{®C9B - {-f®B@c)V
A = -{-YRCBADVD - TCB

D®DVA

for contravariant vectors VA.

(2) Use the definition of the covariant derivative of a covariant vector

®MVA = SMVA - 4>MA
BVB

to derive the analog of Exercise 1 for covariant vectors VB.

(3) Prove (16.21) using (14.22).
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XVII. THE 9 = 6 = 0 COMPONENTS OF THE
VIELBEIN, CONNECTION, TORSION,

AND CURVATURE

In Chapter XIV we defined the torsion and the curvature in terms of the
vielbein and the connection, the dynamical variables of supergravity. By
construction, all are superfields, whose expansion coefficients are x-
dependent component fields. In this chapter we will see that the compo-
nents of the torsion and the curvature can be expressed in terms of the
lowest components of R, G, and the vielbein. The same holds true for the
vielbein and the connection. This implies that the lowest components of
R, G, and £ are the physical supergravity degrees of freedom. The re-
maining degrees of freedom are pure gauge, and can be transformed away.

The transformation parameters £A and Lab are functions of superspace.
Their lowest components characterize general coordinate transformations
in four-dimensional x-space [£fl(x)], gauged supersymmetry transforma-
tions [£"(x),|"A(x)], and local Lorentz transformations [Lab(xj]. We will
use their higher components to transform away certain 0 = B — 0 com-
ponents of the vielbein and the connection.

We first consider the vielbein. Its transformation law (16.18) may be
written as a supergauge transformation (16.19) together with an addi-
tional Lorentz transformation LB

A:

The lowest component of this equation gives the transformation property
of £^10=0=0- Higher components of £A enter 8EM

A\ through the co-
variant derivatives @^A and ®M£*. We may use these higher components
to transform EM

A\ to the following form (see Exercise 1):

(17.2)
0

0

The fields em
a, ^m

7, and $mi cannot be gauged away. They describe the
spin-2 graviton and the spin-f gravitino. The inverse vielbein EA

M\ has a
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similar structure,

with

ea
m(x) -

0
0

ea
mem

b

2

0
(17.3)

(17.4)

We now consider the connection. Its transformation law (16.20) may
also be written as a combined supergauge and Lorentz transformation:

KAB = ~?1
/ \m(a + c)r CA. B % j B

We may use the higher components of LA
B to transform away

0 ^ 1 . This is possible because (j)MA
B is Lie algebra valued:

(17.5)

B| and

(z)\e = o = o = ^ /W| ,^ -=o = 0.
(17.6)

No further components of E\ and 0| may be gauged away.
In ordinary relativity it is possible to express the connection in terms

of the vierbein. This follows from the fact that the torsion is constrained
to vanish (see Exercise 2). In supergravity we also have constraints on
the torsion (14.25). These constraints allow us to express the connection
in terms of e and \\J.

To proceed systematically, we start from Eq. (14.15). The Tmn
A com-

ponents of this equation contain no 0 or 9 derivatives. They relate Tmn
A

to the lowest components of E and <f>:

= dnem
a - dmen

a
- ojm

Tnm*\ = i

(17.7)
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Here we have used the following definitions:

a)nm
a = em

bconb
a

A," = 5>m" + ̂ ' < V (17.8)

To apply the constraints, we must relate TNM
A to TCB

A through the
vielbein

W = EM
BEN

cTCB\-rm + b)- (17.9)

Taking the 6 = 9 = 0 component of (17.9) and applying the constraints,
we find

= -^(>Pmaa$n - ipn<r"$m) (17.10)

and

«m I = t-m &n 1 cb \ + ^m ^n I yfc |

+ £ /£„ 'V | + Em
hE^Pb'\

+ EmlsEn
cTf% (17.11)

Combining (17.10) and (17.7) gives the connection in terms of e, \p, and

- ema(S,en
a - dnef) + ena(dme/ - d,em

a)\. (17.12)

We must now evaluate Eq. (17.11). The torsion components in this
equation were computed in Chapter XV. Equation (15.38.6) relates Tcb*
to WaPy and 2fiPy. Equations (15.38.2) and (15.38.4) relate Tyh* and Tyb*
to R and GaP. We may use these expressions, along with (17.7) and (17.11), to
compute Wa(iy\ a n d 2fiPy\ in terms of em

a, \jjm*, ^mdt, and the lowest com-
ponents of R and GaP. This is done in Exercises 5 and 7.
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The lowest components of R and G^ cannot be expressed in terms of
em

a, \j/m*, and $mi. Nor may they be gauged away:

(.7.13)

This forces us to introduce two new component fields:

i (17.14)

These fields equalize the number of bosonic and fermionic degrees of
freedom within the supergravity multiplet M, b, i//, and e. We shall see
that the supergravity multiplet forms a complete set of dynamical fields.

To conclude this chapter, we follow the same procedure with RnmA
B>

the only tensor we have not yet discussed. Taking the 6 = d = 0 com-
ponent of (14.22), we find

Rnma\ = dn^ma ~ ^(oj + COma
CO)nc

b - COjo)^

SE 01^. (17.15)

This equation defines the Riemann curvature &nma
b in terms of the

connection coma
b. In analogy with (17.11), we relate Rnma

b to the Lorentz-
covariant tensor RCDa :

n b i? C v D n b( \cd
Knma ~ &n ^m KCDa \ ~ )

— En
cEm Rcda 4- EJ-Em Ryda

+ En
cEjRcdJ - EiEjR^. (17.16)

The underlined spinor indices are summed over dotted and undotted
indices. Comparing with the solutions to the Bianchi identities (15.39.8),
we see that Rcda

b is related to the second derivatives of R and G and the
first derivative of W. Similarly, Rlda

b and Ryd:
b are related to R, G, W,

and the first derivative of G. Combining (17.15) and (17.16) allows us to
solve for the second derivatives of R and G and the first derivative of
W in terms of the supergravity multiplet M, b, \//9 and e.
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All we have left to compute are the first derivative of R and the second
derivative of W. The first derivative of R is related to the first derivative
of G through the Bianchi identities. It is computed in Exercise 8. The
second derivative of W is outlined in Exercise 10.

With the results of this chapter, we have what we need to compute the
torsion and the curvature. The first step is to find the components of R,
G, and W in terms of the supergravity multiplet. From this, we can then
derive the torsion and curvature through the solutions to the Bianchi
identities. Those components of R, G, and W that we will need are col-
lected below.

REFERENCES

B. Zumino, in Recent Developments in Gravitation, M. Levy and S. Deser,
eds. (Cargese 1978), New York, Plenum (1979).

K. S. Stelle and P. C. West, Phys. Lett. 74B, 330 (1978).

dtM = -

EQUATIONS

r
BM

(17.1)

em"(x) l-^

(17.2)

JMA
B _ ; C

(17.3)

= ^"/(-)|« = « = o = 0.

(17.5)

(17.6)

(17.8)
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« W = j | ~ 5

M = -4

(17.12)

(17.13)

(17.14)

(17.15)

(5)

(7)
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EXERCISES

(1) Show that EM
A may be gauged into the form (17.2). Use the freedom

available in the higher components of <J:

_e_
W
d

(2) In ordinary four-dimensional relativity, the torsion takes the form

Tnm
a = dnem

a - dmen
a 4- <onm

a - w m n \

Impose the constraint Tnm
a = 0 and solve for co in terms of e.

(3) Solve (17.7) and (17.10) for a w . Use the fact that

" W = e£aen
bojmb

a = -a>msn.

(4) Use the definitions

along with (17.7) and (17.11) to verify

(5) Show that Exercise 4 and the solutions to the Bianchi identities give

I
P(dyx)
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(6) Use the solutions to the Bianchi identities to show that

1

0 *a 2

(7) Compute S&fiJ^ and S^fiA in terms of the supergravity multiplet:

^ + 1

+

(8) Use (15.37.2) and the results of Exercise 7 to compute 2aR\ and
©"R* | in terms of the supergravity multiplet:

(9) Denote Fby R and write the Bianchi identities (12.31) in the following
form:

ECE»EE{2)ERDCA
B + TE/RFC/} = 0.

Show that this implies

+ r,//?Fc/ + rd/*F£/ + rc/j?V = o.

(10) Use the solutions of the Bianchi identities and the result of the
previous exercise to show that 9)3)W may be computed. Warning:
the actual calculation is tedious!
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We are now ready to derive the transformation law of the supergravity
multiplet em

a, ^OT
a, $„&, ba, and M. We start with the general transforma-

tion law of the vielbein

A
BM

Bi A (18.1)

and evaluate its lowest component. The 0 = 9 = 0 components of £?
and ?« parametrize gauged supersymmetry transformations. We shall
focus on these by setting

«z)|#-.--o = 0

(18.2)

0.

Higher components of £,A and L^B will be chosen to preserve the gauge
(17.2) and (17.6).

To preserve (17.2) we must require

= SE»A\ = 0. (18.3)

From (18.1) and the constraints (14.25), we find

_d_

d

= 0

+ 2iCfaBk
askit = 0 . (18.4)
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Equations (18.4) are satisfied if

(18.5)

No further conditions follow from (18.3).
To preserve (17.6) we must demand

&4>HA*\ =S<t>"A
B\ = 0 . (18.6)

From (16.20), we have

<5 /̂| = -fRcJl-d^L/l (18.7)

The curvature term does not vanish. From the solutions (15.39) of the
Bianchi identities, we know that it contains M and b:

Ryuafil ~ 4(£yafiM0 4- £^yp)R+1.

^ ) M *

1

Substituting (18.8) into (18.7), and imposing (18.6), we find

2

This tells us that a gauged supersymmetry transformation (a must be
accompanied by a field-dependent Lorentz transformation

K$ = \ [PJK,M* - b,p)
(18.10)

to preserve the gauge (17.6). Equations (18.5) and (18.10) are the only
conditions that follow from the gauge fixing.
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To summarize, we have found a set of transformations, parametrized
by £, which include gauged supersymmetry transformations and pre-
serve the gauge (17.2), (17.6). We shall call these the supergravity
transformations:

?\z) = Ca(x) Uz) = U*)
t?(z) = 2i[0(7"C(x) - C(x)a°5]

LJz) = i {6x[2Cp(x)M*(x) - ^(x)

Lab = \ {osJpLn - \ {eojSpL*. (18.11)

We are now ready to compute the transformation laws of the compo-
nent fields. We start with the vierbein. From (18.1) and (18.11), we find

Sem° = SEm°\ = -®J°\ - <f TBm'|

The terms proportional to £," do not contribute for 0 = 9 = 0. The
torsion terms may be evaluated with the help of the constraints:

T a ir C T at -yiKm + c)
0m — £ « i 1 0C V ~ I

= 2iEmVw"
(18.13)

i3m ~ ^ m i fiC \ — )

Their 0 = 9 = 0 components are specified through (17.2):

V\ -
fim\ = ~ WmGfifi •

Inserting (18.14) into (18.12) gives the transformation law of the vierbein:

5em'(x) = Mmo*Z - <y#m). (18.15)
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We now turn to the gravitino:

i ^ m " = SEm*\ = -0W£«| - ZBTBm*\. (18.16)

As before, we write

T0m ~ Em T"C ( } (18.17)
T ct rr Cnr a.( \b(m + c)

pm — ^m 1 PC V — )

The solutions (15.38.2) and (15.38.4) of the Bianchi identities give T^
and Tpc

a in terms of R and Ga:

i (18.18)
V ^ ^ M i - 3VGrt + 3e,£G

a
£}.

Restricting to 6 = 9 = 0, we find

(18.19)

Substituting (18.19) in (18.16) gives the transformation law for the
gravitino :

(18.20)

A similar calculation holds for \fj\

3
(18.21)
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The transformation laws for M and ba follow from (16.9):

~8M = 8R\ = -?SJ\

(18.22)
--8ba = 8Ga\= - ( { « * „ - J ^ G j .

The term proportional to T;A in 5M drops out because R is chiral. The
Lorentz transformation (18.10) does not contribute to SGa for 6 = 9 = 0.
In Chapter XVII, Exercises 7 and 8, we computed 2aR\ and 9aG\ in
terms of the supergravity multiplet. From here it is only a short calculation
to find 6M and 5ba.

In conclusion, we collect our results for future reference:

8em° = Mmo°X - C ^ J

fym' = -WJ? + ie

89* = -22mX, -

SM = -

REFERENCES
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EQUATIONS

£«(z) = C(x) W

?{z) = 2i[9o"Z(x) - C
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\ ^ ^ f. (18.11)

Sem" - # B < 7 t

SM = -

. 08.23)

EXERCISES

(1) Compute Sem" for £• = ?4 = L^B = 0, "̂(z) = ^a(x). Compare this
with a general coordinate transformation and a local Lorentz rota-
tion in ordinary relativity.

(2) Compute <5î mi by conjugating Sij/J1 in (18.20).

(3) Show that the supergravity transformations (18.11) can be augmented
by terms higher-order in (0,6) and still preserve the transformations
(18.23) of the component fields.
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XIX. CHIRAL AND VECTOR SUPERFIELDS
IN CURVED SPACE

In Chapter XXI we shall construct a Lagrangian, invariant under super-
gravity transformations, which reduces to (7.24) in the limit of flat space.
Before we do this, however, we must define chiral and vector superfields
in curved space.

We start with chiral superfields, which satisfy the covariant constraint
condition

^ O = 0. (19.1)

This reduces to Dd O = 0 in flat space.
Chiral superfields contain three component fields. We could define

them as the coefficient functions of a power series expansion in 9 and 9.
This decomposition, however, is coordinate-dependent, for 6 and 9 carry
Einstein indices. It is much more convenient to define them in analogy to
Exercise 4 of Chapter V:

A =*=

(19.2)

These components carry Lorentz indices. They are related to the 0,9
expansion coefficients through a transformation which depends on the
supergravity multiplet.

The transformation laws of the component fields are found from the
transformation law of the superfield O:

(50) = -£A9A<b. (19.3)
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The parameters £A are specified in (18.11). Since O is chiral, we have:

<5<D = -<f0flO - <f0aO>. (19.4)

The change in A follows immediately:

SA = Sd>\ - -?9a<b\ = - V 2 C V (19.5)

The change in x requires a little more work:

^ ^ ^ a O | . (19.6)
y/2

To proceed, we must evaluate 2^Jb\ and ^^a<I>|. This may be done
with (16.14):

C . (19.7)

For ®0®a*|, Eq. (19.7) and the constraints (14.25) imply

{^^JO = 0, (19.8)

so

For ^ ^ a O | , we use (19.1), (19.7), and the constraints (14.25). These give

= -2\oj9fl>. (19.10)

The derivative ,̂,<1> is related to the components (19.2) through the
definition (16.6) of the covariant derivative:

= E"®J> + E^Jt> + E^Q (19.11)
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Restricting to 9 — B = 0, we find

(19.12)

= 0.

From (19.11) we see that spacetime derivatives e™3>m of the component
fields are always accompanied by extra terms proportional to the gravi-
tino field and higher components of the matter multiplet. We shall
combine these terms into supercovariant derivatives Da. Equation (19.12)
provides our first example

DaA m ea
m [dmA - j = ̂ z ^ . (19.13)

Combining the above results, we find the change in % '•

fi (19.14)

All we have left is the change in F. We start from (16.9):

(?9a?3i&9fl\. (19.15)

In Exercise 2 we show that

2
3 Y

= -1R»J9JI>. (19.16)

Inserting (15.39.1) for Rafiyd, we discover the very important result,

2)S2)y<%v - SR+)Q> = 0
, _ d9.iT)
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This tells us that {®y3)y - %R+) and (2y2
y - %R) are the coyariant

generalizations of the chiral projection operators DyDy and DyD
y
y pro-

vided the superfields on which they act carry no Lorentz indices. [If the
superfields carry Lorentz indices, (19.17) changes because of the curvature
term in (19.7).] The 0 = 5 = 0 component of (19.17) gives the first term
of(19.15):

>\ = ~ V 2 x a M * . (19.18)

The second term is computed in Exercise 3. Combining the two results,
we have

SF=~ s/2M*£°x« + ?(f V^aiX* - iy/2fi«)f) • (19.19)

The supercovariant derivative D^ is defined as follows:

~ *m*F ~ "̂  9J^y (19.20)

where Dmxa = dmxa - (*>„*%-
Equations (19.5), (19.14), and (19.19) give the transformation law of the

chiral multiplet:

6 A = -V2C"r.

%*X> (19.21)

Vector superfields in curved space obey the usual constraint,

V = K+ . (19.22)

As with chiral superfields, their components may be defined through
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covariant derivatives:

C = V\

M = N = 1-

(19.23)

D = --@*Wa

Here we have used the superfields Wa and Wit where

W k = -^

(19.24)

These superfields are chiral and gauge invariant. Chirality is proven in
Exercise 4:

^ H / = 0, 9fWi = 0.

Gauge invariance follows from (19.7) and (15.38.2):

SV = A + A+, ®kK = 9J^ = 0

= 0.

(19.25)

= -^® ,{&*&.} A + (19.26)

Since Wa is gauge invariant, we may compute its components in the WZ
gauge:

V\ = S>aF| = 9,V\ = S ^ K | = @;&iV\ = 0. (19.27)

Higher derivatives of V are computed in Exercise 7. These lead to the
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following results:

wa\ = - a .
g'WJi = -ID

= -4i(abae)al>Dbva (19-28)

where

(19.29)

Equation (19.28) gives all the components of Wa.

REFERENCES

S. Ferrara and P. van Nieuwenhuizen, Phys. Lett. 76B, 404 (1978).
S. Ferrara, D. Z. Freedman, P. van Nieuwenhuizen, P. Breitenlohner,

F. Gliozzi, and J. Scherk, Phys. Rev. D159 1013 (1977).

(19.1)

A

u

F

DaA =

EQUATIONS

3)^ = 0.

i

^ a \0-6

ea [dmA ^_

1 i

'7

(19.3)

(19.20)
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8 A = -

1

C = V\

= \SkV\

M = N = l-

K = i

D = - \

2'Wa\ = -ID

i(Aa

EXERCISES

(1) Verify

Use (19.8) to write this in the following form:

(19.22)

k)V\

(l923)

(19.24)

(19.28)

(19.29)

= 0.
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Show

(2) Use (19.7) and Exercise 1 to prove (19.16).

(3) Show

when O is chiral. Use (19.7), the constraints(14.25) > and the solutions
of the Bianchi identities to confirm

\ [sa8Gy6L - 3eydGai -

.il> - [eyaGM

Take the 9 = 9 = 0 components of these expressions using (19.11)
and (19.12). Combine these results with (19.18) to prove (19.19).

(4) Use (19.7) to check that Wa is chiral.

(5) Show that the transformation law for a chiral multiplet reduces to
(3.10) in flat space.

(6) Use (17.12) to show that (9aWfi + 9fiWJj\ in Eq. (19.28) is invariant
under ordinary gauge transformations va -> va + ea

m dmf(x).

(7) Prove as many of the following relations as you wish. (Be sure to
work in the WZ gauge.)

(a) Sj9aV\ = -9jttV\ = vaii

(b) \ \ l $ k

(c) \
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(d)

(e)

(f)

(g) ®^®,V| = 0
] = 0

(j) ®^®.K| = -

(k) ®&&.V\ = Davai

9&&iV\ = -Dav

(1) 2,9a9xV\ = Dav^
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XX. NEW 0 VARIABLES
AND THE CHIRAL DENSITY

In the previous chapter we defined the co variant components (19.2) of
chiral superfields. In this chapter we introduce new 0 variables. These
new variables are defined such that the expansion coefficients of chiral
superfields are precisely the covariant components (19.2):

= A(x) + yj2®*yjx) + 0a0aF(x). (20.1)

In this expression, the 0 variables carry local Lorentz indices rather than
Einstein indices.

The transformation law for a chiral multiplet is given in (19.21). Our
goal is to reproduce this law in the following form:

S<& = -rjM(x,@)dMd>. (20.2)

The differential operator dM acts on the spacetime coordinates xm and
the new variables 0*. The new transformation parameters

>/M(x,0) = riM
{0)(x) + © y n ) a ( x ) + G*ejiM

i2)(x) (20.3)

must be found in terms of the old parameters ((x) and £(x). The ansatz
(20.2) will be justified by the fact that (19.21) may indeed be written in
the form (20.2), Because (20.2) involves a linear differential operator, a
product of chiral superfields still transforms as a chiral superfield.

We shall now compute the parameters rj. From (20.1) and (20.2), we see

8A = -fim
i0)dmA - 72/7%)**. (20.4)

Comparing with (19.21),

SA = - v ^ C ^ , (20.5)
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we find

\<0> I r« (20-6)

Next we consider <$#. From (20.1) and (20.2), we have

- 2ni0)xF. (20.7)

Comparing with (19.21),

ha = ->/2C«f - ij2oaB
ttXl'ea

m{ dmA - — IJ/JXB , (20.8)

and using rjm
i0) and ^a

(0) from (20.6), we conclude:

' • ' - - 2 " ^ ' - ,20.9,

The computation of 5F is left as an exercise. All told, we find that (19.21)
may be written in the form (20.2) with the following parameters rj:

tf = 2i

The variables © may be used to construct invariant actions. Before
we do this, however, we must introduce the concept of a chiral density.
Chiral densities are functions of superspace with the following trans-
formation law:

8 A = - WA(-r]
= -r,M6MA - (-)m(dMr,M)A. (20.11)
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This law is chosen so that the product of a chiral density and a chiral
superfield is again a chiral density:

6A<D = -dM[_rjMA(-r]<D - A ^ M < D

This fact allows us to construct invariant actions from chiral superfields:

= 8 jd4xd2@Ag(0>)

(-)m] = 0. (20.13)

Here g is a chiral function of O.
Chiral densities may be decomposed in terms of component fields:

00/. (20.14)

The transformation laws of the component fields follow from (20.10) and
(20.11):

da = —y/2Cp -f

Spa = -

yf2a(a0Jba +

Sf = dm[-a$na
ma% + iy/lp^Z]. (20.15)

The expression for Sf shows again that j d 4 x / is invariant.
There is a special chiral density S connected to the vielbein. We shall

construct this density from its lowest component:

a=l-e=l-teiem
a. (20.16)

The transformation law of em
a was given in (18.23). From this it follows

that

Se=--eea
mdem

a

- (20.17)

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



158 XX. NEW 0 VARIABLES AND THE CHIRAL DENSITY

Comparing (20.17) with (20.15) gives the middle component:

p^yWNL- (20.18)

To find the remaining component, we need only compute the terms in
dp proportional to (:

- \4ieM%a + [C terms]. (20.19)
o

From (18.23) we have:

Spa = ^ ( T ^ J - i X C ^ J K V

- ea
neb

mWJ + \ M*&oaA + [C terms]. (20.20)

Comparing the two results gives:

/ = _ i eM* _ 1 ^ - v - ff"O^». (20.21)

It requires a lengthy calculation to show that (20.16), (20.18), and (20.21)
transform as a chiral density under the full transformation law (18.23) of
the supergravity multiplet.

In the next chapter we shall couple supersymmetric models to super-
gravity. We shall find that the chiral superfield R is the Lagrangian of
the supergravity multiplet. In Chapter XVII we discovered how to com-
pute the components of R. Here we shall use the transformation laws of
the chiral and gravity multiplets to derive the same results. We start from
the lowest component,

R\ = ~M, (20.22)

and build the full superfield in analogy with (4.11). From (18.23) we know
that

<S*| = \ t(<Ja(Jbtab + ibail/a - iaa$aM). (20.23)
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From (19.5) it follows that

Stf| = -f@.R\, (20.24)

so

1
ibfi//a - i<f^aM\. (20.25)

This agrees with Chapter XVII, Exercise 8. In a similar way, we find:

n0tab29R\ = - 1

^ ^"""l^kC^mn +

(20.26)

REFERENCES
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EQUATIONS

<D = A(x) + J~2@*xx(x) + ©aeaF(x). (20.1)

(20.2)

rf" = 2i&(TmC +

Yf = ? - i®

(20.10)
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8 A = - WA(-)m]

= -nMdMA - (

A = a + y/2@p +

Sa = —

¥ = dm[ - a$ncfa»t +

1 1 .
= x e = - det e,detem

= _ i eM* - 1

J?| = - - M .
6

(20.11)

(20.14)

(20.15)

(20.16)

(20.18)

(20.21)

(20.22)

(20.25)

(20.26)
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EXERCISES

(1) Compute SF using (20.2) and (20.10). Compare the result with (19.20).

(2) Derive (20.21) from (20.19) and (20.20). [You may wish to use (A.I7)
to simplify the ij/ifi terms.]

(3) Show

(4) Use the Bianchi identities to verify

ea
meb

nRmn
ab\ = -^(®*&aR + S^R + )[ + 48 RR+\

6GaG
a\

(5) Use the results of Exercises 3 and 4 to reproduce (20.26). Beware: The
calculation is tedious!
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XXI. THE MINIMAL
CHIRAL SUPERGRAVITY MODEL

We now have what we need to construct the supergravity matter cou-
plings. The general case is rather involved, so we shall start here with a
simpler example. We take the Lagrangian to be given by

<£ =

This Lagrangian was first introduced in Chapter V; it is the most general
renormalizable supersymmetric Lagrangian involving only chiral super-
fields. In what follows, we will extend (21.1) to curved space. The tech-
niques we introduce in analyzing this model will prove useful in discussing
the general case in later chapters. Since the result we derive reduces to
(21.1) in the limit of flat space, we call it the minimal chiral supergravity
model.

We start our construction by writing down an invariant action for the
supergravity multiplet,

-^ , » ®£R + h.c. (21.2)

Here fc2 = 87rGjv is the gravitational coupling, which we set equal to one.
The chiral density $ and superspace curvature R were computed in Chap-
ter XX. Their 0 expansions are listed later in this chapter. Inserting these
expressions into (21.2) gives 5£s G in terms of the supergravity multiplet:

1 _ ~ ~ _
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XXI. MINIMAL SUPERGRAVITY MODEL 163

The curvature 0t was introduced in (17.15),

0t = ea
neb

m(dn(om
ab - dma>n°

b + <om«<oj - (on
accomc

b)9 (21.4)

while the covariant derivative 2mij/n was defined in (17.8). From (21.3) we
see that S^SG contains the Einstein action for the gravitational field. It
also contains the Rarita-Schwinger action for the spin-f gravitino. The
fields M and ba do not propagate; they are the auxiliary fields of the super-
gravity multiplet. Note that they enter (21.3) with opposite signs.

The Lagrangian (21.1) is easily extended to curved superspace. We first
write it in chiral form,

<£ = 0 —DDQi + Qi + Ufa

+ l- mflpj + l- gUk<t>fl>/l>k + h.c, (21.5)

as outlined in Exercise 6 of Chapter IX. We then add the supergravity
action (21.2), and replace 0 -> 0 , d20 -> d2®2£, and -{DD-+

- SR). This gives the action (21.1) in curved superspace:

-3R - -

1

8

— YYI -OO- 4- — 0-fcOOOfc I -f- h.c. (21.6)iJk<bfifbk

This Lagrangian describes the minimal chiral model. It reduces to (21.1)
in flat space. The c and d terms are included because they arise from shifts
in the superfields <D£. They vanish in flat space. Note that gauge invariance
restricts c, = 0 unless Ot is neutral.

Equation^ (21.6) contains two types of terms: those with the chiral
projector (22 — SR), and those without. The terms with projector are
curved-space generalizations of the chiral kinetic energy. Those without
are curved-space extensions of the usual superspace potential. We will
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164 XXL MINIMAL SUPERGRAVITY MODEL

emphasize this distinction by writing (21.6) in the following form,

h.c, (21.7)

where G(<&,*+)'= *i+<&i .+ c A + c f ^
+ — 3 is the superspace kinetic

energy, and P(O) = d + a^ + |mtJ4>^ + $9ijk<b&/b* ls the super-
space potential. In Chapter XXIII we shall see that this distinction is pre-
served in the general case, where £2 and P are arbitrary functions'of their
respective superfields.

The Lagrangian (21.7) has a long expansion in terms of component
fields. To find it, we need the 0 expansions of Ot, (f, R:

+

\® + iVdb\boh + I MM*

c* + ^ » ^ ] J . (21-8)

The components of S, = {3)3) — %Kft>* can be computed with the help
of (19.7):

(21.9)

The necessary ingredients are given in Exercise 1. We find:
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3, = -AFf + jMAf + ®l-4iy/2<fDcxi - \

+ - An2aab^ab - i^M +

\ M*M + \ bab
tt + i

\ ^(t^ + ^ ^ ) J | (21.10)

Here we have used the following supercovariant derivatives:

(21.11)

where @>mXia — dmXa + Xi^r/k- The superfields g9 R, <bh and St allow
us to compute any supergravity Lagrangian involving only chiral fields.

The expansion of the Lagrangian (21.7) contains kinetic terms for the
physical fields Ah Xh em> a n d *Ama> a s w ell a s terms involving the auxiliary
fields M, ba, and F,. The Lagrangian also has higher-order interaction
terms, such as nonrenormalizable four-fermion couplings, which are sup-
pressed by powers of Newton's constant. For ease of exposition, we will
write the full Lagrangian as follows,

& — ^kin + ^aux + ^quartio (21.12)
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where

1

y

XX

(21.13)

is the kinetic part of the Lagrangian,

- 3(log Q^Ff \2 + eQQog Cl)irFtFf

-e^

- eP*M + eP.-F. + eP%Ff (21.14)

is the auxiliary field contribution, and ^quartic contains four-fermi terms
that we ignore for the moment. In (21.13) and (21.14), Q and P are the
same as before, except that the superfields Q>( and <D;+ are replaced by
their lowest components A{ and Af. The subscripts on Q and P denote
derivatives with respect to the scalar fields. For example, P{ = (d/8At)P
and Q^ = (d/dAf)Q.
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To proceed further, we must eliminate the auxiliary fields from £?aux.
This is most readily done by shifting, N = M — 3(log Q)i*Ff. The shift
decouples N and Fh and allows the equations of motion to be easily
solved:

N = 9PQ-1

Q(logn)yF, = -Pf* + 3

ba = —m^

+ - yfli(Qa^a - &MaWl • (21.15)

Substituting (21.15) into (21.14), we find

<£aux = -9ePP*Q~l

- e(log a)r/lPt - 3P(log Q),][P* -

jr - Qj^rm-1 + • • •. (21.16)

The dots denote additional four-fermi terms that we absorb in ^quartic.
Equation (21.16) contains derivative terms, fermion masses, Yukawa cou-
plings, and the scalar potential, which we shall call i^(A,A*).

The above expressions are not quite ready for model building. We must
still check the normalizations of the physical fields. From (21.13), we see
that the gravitational action has an unconventional Brans-Dicke form.
This normalization can be fixed by performing a field-dependent Weyl
rescaling of the gravitational field:

(21.17)

where

exp(2A) = ~ . (21.18)

This transformation restores the canonical normalization (21.3) for the
Einstein action. The matter-field normalizations can be restored through
a field-dependent redefinition of the spinors,

(21.19)
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168 XXI. MINIMAL SUPERGRAVITY MODEL

followed by an additional shift of the gravitino,

ipm-+il>m + ix/2<7mx;A(,- (21.20)

Adding the four-fermi terms from Z£quartic, and performing the transforma-
tions (21.17)—(21.20), we find our final result for the supergravity matter
coupling:

2= -X-e® - eK,rdmA,ff"Aj

-

l-e[Kif(KkdmAk - Kk.dmAt)

- 2(Ku.kdmAk - K^

- e

— u.Ku. - 2Kir
u.

eexp(K/2)\-P*il/aa
ab^b -

\ [Ptj + KijP + KfijP + KfitP - KtKjP

- \ \nr + KprP* + Ki>

+ Kj^P* - Kt,Kj,P* - K^K^DvP^Xt

- e exp(K)[Kij*(DiP)(DjP)* - 3P*P], (21.21)
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where D(P = P{ + KtP, K(A9A*) = - 3 log(-Q/3), and Kij* = Kr/. In
this expression, Q(A9A*) = AfAt + ct(Af + At) - 3 and P(A) = d +
afi4£ + jniijAiAj + ^ y ^ ^ y ! * . In Chapter XXIII we will derive a similar
result for the general chiral coupling.

Equation (21.21) gives the full supergravity coupling of the minimal
chiral model. It has properly normalized kinetic energies for all physical
fields, and the full set of foux-fermi terms is included. Equation (21.21) is
automatically invariant under supergravity transformations (up to total
derivatives) because it was derived from a superspace formalism. It also
has the correct flat-space limit.

From (21.21) we see that the supergravity scalar potential emerges in a
form that will turn out to be quite general:

r{AhAJ) = exp(K)[K<W)(0/)* - 3P*P]. (21.22)

Note that this expression is not positive definite, so the connection between
the potential and supersymmetry breaking is more subtle than before. In
Chapter XXIII we shall see that the signal for spontaneous supersymmetry
breaking is (DtP) / 0. Equation (21.22) shows that supersymmetry can
be spontaneously broken with zero vacuum energy.

The preceding expressions are all written in terms of the real function
K(A,A*). In the coming chapters, we shall see that this function is called
a Kdhler potential, and that (21.21) and (21.22) have a natural interpreta-
tion in the language of complex geometry.

REFERENCES

S. Deser and B. Zumino, Phys. Lett 62B, 335 (1976).
D. Z. Freedman, S. Ferrara, and P. van Nieuwenhuizen, Phys. Rev. D13,

3214 (1976).

EQUATIONS

h.c. (21.2)

\ eeMmn$kc(®J>n - *ka,®Jn). (21.3)
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170 XXI. MINIMAL SUPERGRAVITY MODEL

<£ =

1
21

= e{\ + /<

1

+ - 1 + h.c. (21.6)

+ 0[<TaffVflfc - JV^M + i

+ 00 — + | MM*

5 *"*. - ^ + ̂

-4F,* + *

\ A?

- ibaD
aA f

| M*M + j bab" + {-

(21-8)
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DaAf = ea
memAf - X-

? y/if^t- (21.11)

<£ = -lea - eKlrdmAid
mAf

- 2(KifkdmAk -

y/2eKi

- eKijJLi

<>exp(K/2) j -

- \ {Pu + KijP + KfijP + Kp? - KiKjP

j ~ \ IPZJ. + Kitj,P* + Kt.Dj.P*

+ Kj.DitP* - KfJCjJ** - K^K^D

- e exp(A:)[/C^(£>iP)(Z)/)* - 3 P T ] . (21.21)
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172 XXI. MINIMAL SUPERGRAVITY MODEL

C^(Z)iP)(Z)/)* - 3P*P]. (21.22)

EXERCISES

(1) Verify as many of the following relations as you wish:

(a) 4>+| = A*

(b) s y t + | = o
(c) i^O+l = V2&

(d) 9J2fi+\ = 0

(e) < ^ « > + | = 2e^F*

(f) 9&fl+\ = 0

(g) < W D + | = -Ha^'d.A*

(h) S> a ^ y 0> + | = 0

(i) ^A^^+l = 0

(j) 2)j3k®l,<b+\ = 0

(k) S^fip+l = - | ^

(1) S&fSJf+l = 0

(m) S l

(n)

(o) 0 O <D + | - Da>i* = ea
m®m/i* - 4

(p) ^ ^ ^ + | = 0

(q) \ ^ 5 ^
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(r) M

(t) ^ b 0 > + | = ea
m@mDbA* + ^

'fi*

(u) ®^ a ^* + | = 0

(v) 9a^cS)^\ = 0

(w) ^ a ^ ^ c O + | = i

32
(x) ^ a ^ A ^ 0 ) + | = 16efl

m^mDfl/4* + —ibaDaA*

y

(2) Use the above relations to derive (21.10).

(3) Verify that J?W|| and gaux are given by (21.13) and (21.14), respectively.

(4) Show that the Weyl rescaling (21.17) takes

(5) Use the result of Exercise 4 to show that (21.17)-(21.20) restore the
proper kinetic energies in (21.21).

(6) Use (21.14) and (21.17)-(21.20) to check that the potential (21.22) is
indeed correct.
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(7) Show that for Q(A,A*) « A?A{ - 3, the field redefinition,

A, Ax + a Aiy/\ - %\a\2

induces the Kahler transformation,

i - iN2
K(A\A'*) ** K(A,A*) - 3 log ,

As discussed in Appendix C, this is an isometry transformation—
it leaves the Kahler geometry invariant. Note that after such a trans-
formation, the supergravity potential Y can again be related to a
superpotential P of third order. This feature characterizes the mini-
mal chiral supergravity model.

(8) Let ft = A*A - 3 and P = /i(l + %\[3A)\ Show that the potential TT
vanishes. Since the potential does not determine the expectation
value </!>, the field A is known as a "sliding singlet." Show that
the gravitino mass slides as well:

1 + a
^3 /2 = ^ 1

where {A} = y/3a.
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XXII. CHIRAL MODELS
AND KAHLER GEOMETRY

In the previous chapter, we constructed the minimal coupling of chiral
superfields to supergravity. We found that the resulting Lagrangian could
be written in terms of a Kahler potential and its derivatives. In what follows,
we will begin to explore the relation between matter couplings and Kahler
geometry. We will work in flat space, where the connection first appears,
leaving the curved-space generalization until Chapter XXIII. A brief in-
troduction to Kahler geometry is given in Appendix C.

We start by studying the most general Lagrangian that can be built
from chiral superfields Q>\ for / = 1 , . . . , n. This Lagrangian takes a very
simple form,

<£ = Jd20</20K(<I>'>+J) + IJVeP(a>') + h.c. . (22.1).c. .

Here K and P are superfields, with power series expansions in terms of
the chiral superfields <S>\

(22.2)

To find the component Lagrangian, we must expand K and P in terms
of the 6 variables. The expansions of the individual fields were given in
Eqs. (5.3) and (5.5). For the superpotential P, Eqs. (5.7) and (5.8) im-
mediately extend to

= P(A)
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Here all component fields are functions of ym = xm + i9om9. The conju-
gate superpotential P+ has an analogous expansion,

= p*(A*) ^ r

^ ^ 1 g 2 p * ( X * } l (224)

where the fields now depend on y+.
The 0 expansion of K(Q),<t>+) can be computed starting from the

monomial

KNM = ®il-®iN®+jl'<&+JM. (22.5)

Its 0000-component may be found with the help of (5.9) and an appro-
priate interpretation of (22.3) and (22.4),

9999
dAk

±*ji . . .

{Ail'"AiN)dm(A*Jl'" A*JM)

, (22.6)

where we have used partial integration. This result can be rewritten more
elegantly in terms of derivatives of KNM\9 the lowest component of the
superfield (22.5),

2 dAldA*jdA*k Kk 2
. _ 1 dKNI#\ k
k k 1 A A*i A AJ A A* k k

4dAldAjdA*kdA*'

Aj\ (721)
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Equation (22.7) is also true for the full polynomial K. The expression
simplifies in the notation of a Kahler manifold, where

d

&J* = 9im*r%*- <2 2-8)

One finds

K =

+ J

(22.9)

We now have all we need to write the full Lagrangian in terms of com-
ponent fields. Substituting (22.3) and (22.9) into (22.1), we find

d2P . j 1 d2P*

Here Dmxl = dmxl + Fjfc dmAjxk is a covariant spacetime derivative, as-
suming xl transforms like a contravariant vector under the transforma-
tions (C.I) on a Kahler manifold.
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The auxiliary fields in this expression may be eliminated by their Euler
equations,

1 dp*
1 J ^ V + ^ 7 = 0. (22.11)

Substituting into (22.10), we obtain the final form of the component
Lagrangian,

Dj.P*, (22.12)

where

DiDJP ~ AAiaAJ P ~ rliJJ7kP' (22.13)

Equation (22.12) describes the most general supersymmetric coupling of
chiral multiplets. We have used Kahler notation to illustrate the geo-
metrical nature of the result. Invariance under Kahler transformations is
manifest.

Each term in the Lagrangian (22.12) has a natural interpretation in the
language of Kahler geometry. The scalar fields should be thought of as
the coordinates of a Kahler manifold, and the fermions as tensors in the
tangent space. The Lagrangian (22.12) is a supersymmetric version of the
sigma model, expressed in geometrical form.

In superspace notation, the appearance of the Kahler geometry can be
traced to the invariance of the Lagrangian (22.1) under the superfield
Kahler transformation:

F+(<P+). (22.14)

This invariance will play an important role in what follows.
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REFERENCES

B. Zumino, Phys. Lett. 87B, 203 (1979).
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EQUATIONS

V 1 (22.1)u

giJ.dmAidmA*' - igiJ,x
JvmDmxi

(22.12)

i22A3)

EXERCISES

(1) Check that the Lagrangian (22.12) is invariant (up to a total derivative)
under the following supersymmetry transformations:

(2) Let K = A*1 A1 and P = h,Al + ^mijA
iAj + ^Ofc/lMMfc. Show that

(22.12) reduces to the renormalizable Lagrangian given in (5.13).
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SUPERGRAVITY MODELS

Having discussed the role of Kahler geometry in flat space, we will now
compute the most general coupling of chiral superfields to supergravity.
As in flat space, we will find that the component Lagrangian has a natural
interpretation in the language of Kahler geometry.

Motivated by our discussion in Chapter XXI, we take our superspace
Lagrangian to be

if = -^jd2G2A^(@9 - 8K)exp j - y K(O>,<I>+)j + /c2P(0>) 1 + h.c,

(23.1)

where K(<I>,<D+) is a hermitian function of the superfields <Dl and O+J, and
P(Q>) is the superpotential. The exponential form is suggested by the rela-
tion between K and Q below (21.21). Expanding in /c2, we see that K is
the flat-space Kahler potential,

i f = —% ~

+ h.c. (23.2)

In this chapter, we will find that K is a Kahler potential in curved space
as well.

The Lagrangian (23.1) is manifestly invariant under supergravity trans-
formations. Its component form can be found using the techniques in-
troduced for the minimal case in Chapter XXI. The steps are virtually
identical; there are just a few extra terms that follow from the general
nature of K. At the end of the computation, one finds precisely Eq. (21.21),
where K is now an arbitrary real function of the scalar fields A\ the lowest
component of the superfield K(<b,<t>+).

Equation (21.21) gives the component Lagrangian in terms of K and its
derivatives. It can be written more compactly if we use gtj* and Rij*k^9

the metric and curvature of a Kahler manifold. In this form the geometric
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in variance of the Lagrangian is manifest. Comparing (CIO), (C.I 8), and
(21.21), we find

if = ~e& - egij,dmAidmA*j

)* - 3P*P]. (23.3)

The covariant derivatives are defined as follows:

DtP = Pt + KtP

gfijP = Ptj + X t / + K t D / + KjDf - KtKjP - rk
uDkP.

(23.4)

The covariant derivatives contain the Christoffel symbols for the Kahler
geometry, and the spin connection (17.12) for spacetime. Note that they
also contain a U(l) connection proportional to lm(KjdmAj). The meaning
of the U(l) connection will become clear as we proceed.
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The Lagrangian (23.3) is invariant under supergravity transformations
because it was derived from a superspace formalism. It is useful, how-
ever, to verify the invariance directly, using the following supergravity
transformations:

/> ~mn'3 Zfij"A. v A ' "" * '-'mb? (J5.5.5)

where @mf includes the U(l) connection,

= dj + Ca>m + j(KjdmAJ - KrdmA*J)Z. (23.6)

Note that the transformation for the field %l indicates that supersymmetry
is spontaneously broken whenever (D(P} ^ 0. In this case, %l shifts by a
constant and plays the role of the Goldstone fermion.

To check the Kahler invariance, let us first examine the component
Lagrangian (23.3). Under a Kahler transformation,

K(A9A*) - K(A9A*) + F(A) + F*(A*)9 (23.7)

the metric, Christoflfel symbols and curvature terms are all invariant. The
U(l) connection is not:

(23.8)
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The Kahler invariance is restored if Kahler transformations are accom-
panied by Weyl rotations of the spinor fields,

flmF)^. (23.9)

With this rule, the kinetic terms in (23.3) are invariant under the combined
Kahler-Weyl transformations. The Kahler-Weyl invariance insures that
the kinetic terms are invariant under field redefinitions (such as isometries)
that induce Kahler transformations of the Kahler potential X.

The superpotential contributions to the component Lagrangian con-
tain explicit factors of X, so their invariance is not automatic under the
Kahler-Weyl transformations. For example, the scalar potential

/ ) * - 3P*P] (23.10)

is not invariant unless

P-*e~FP (23.11)

as well. With this choice, the DtP transform covariantly,

DtP -+ e'FDtP9 (23.12)

and the full Lagrangian is invariant. Note that (23.11) does not in general
preserve a polynomial structure in the superpotential (see Exercise 21.7).

In mathematical language, the transformations (23.9) and (23.11) imply
that the spinors and the superpotential are not ordinary functions, but
rather sections of appropriate line bundles over the Kahler manifold. If
the manifold is nontrivial, the combined Kahler-Weyl invariance is neces-
sary for the Lagrangian to be globally well defined. Locally, however, we
can simply think of the geometrical notation as giving a convenient short-
hand that is useful for describing the full set of supergravity couplings.

The Kahler-Weyl invariance of the matter couplings can also be seen
from the superspace Lagrangian (23.1). Now, however, the superfield
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Kahler transformation

F+(O+) (23.13)

must be accompanied by a super-Weyl transformation of the vielbein.
A super-Weyl transformation is defined to be a superfield rescaling of

the vielbein, consistent with the torsion constraints (14.25). In the exer-
cises, it is shown that the most general such transformation is of the form

dEM
a = ( I + t)EM»

3EM" = (2£ - Z)£j,« + l- EM
b(£<rb)\&2, (23.14)

where £ and £ are chiral superfields,

®rt = Sj: = 0. (23.15)

This implies

SR = -2(21 - t)R -X-@^t

5Gai = - ( I 4- £)Gai 4- i@JX - I ) . (23.16)

The transformations (23.14) and (23.16) determine the super-Weyl trans-
formations of the supergravity multiplet.

The super-Weyl transformations of the matter fields are also paramet-
rized by S and £. They are defined in such a way as to preserve the
appropriate constraints. For example, a super-Weyl transformation of a
chiral superfield is given by

<50> = wI0>, (23.17)

while that of a hermitian vector superfield is just

SV = H/( I + t)V. (23.18)

In these expressions, w and w' are called the Weyl weights of the respective
superfields.
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Equations (23.14)—(23.18) allow one to find the super-Weyl scalings of
the various component fields. These, in turn, can be written as variations
of superfields in the new 0 variables. After a small computation, one finds

+

- Sa — <D

8(99 - %R)U = (39 - SR)[(W - 4)1 + (W + 2)£]l/

^ (23.19)

where

Sa = 0a(2I - I)\ + e e 0 ' £ | , (23.20)

and (/ is an arbitrary hermitian superfield of weight w\
The transformations (23.19) induce a variation of the superspace

Lagrangian. For w = 0, we find

b<£ = j \ / 202# R ( ^ S - 8«)(2 + £)e~*/3 -f 6IP1 + h.c.

(23.21)

This is precisely a Kahler transformation,

r F 1 - - 1
= J d2<d2£\ --(99 - 8R)(F + F*)^~K/3 - FP -f- h.c,

(23.22)

where P is scaled to e~FP in accord with (23.11). Comparing the two
transformations, we see that (23.21) cancels (23.22) if F = 6L. With this
choice, the superspace Lagrangian is invariant under combined Kahler-
Weyl transformations. It is a useful exercise to show that superspace
Kahler-Weyl transformations induce local Weyl rotations (23.9) of the
component fields.

An arbitrary super-Weyl transformation can be used to change the form
of the Lagrangian (23.1). In particular, a super-Weyl transformation with
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a finite parameter — 6E = log P simplifies that component expression by
rescaling the superpotential to one. Of course, this is an allowed trans-
formation only if the expectation value <JP> is nonzero. This is not an
innocent assumption: it gives a nonvanishing contribution to the cos-
mological constant. This contribution can be canceled only if supersym-
metry is spontaneously broken.

The transformation with — 6Z = log P changes the Kahler potential
K to a new potential G = K + log P + log P + . Since this is a Kahler
transformation, the geometry is left invariant. Therefore, to find the new
Lagrangian, we simply replace P by 1, K by G, DtP by Gh and ^fijP by
Gtj + Gfij - TkijGk. This gives

+ \ [Giv + \

(23.23)

Let us now examine the physical content of (23.23). We first note that
the kinetic terms are properly normalized if gif = 5ir + • • •. We shall
always assume this to be true. We then remark that the potential

r - 3] (23.24)
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is extremized if (dt^/dA1} = 0, and that the resulting cosmological con-
stant is zero if <^> = 0. Taken together, these conditions are satisfied if

\G G:/ x=r 3

(OVjOj -f uk) =? 0, (23.25)

where G* = gf^G^ and VfcG, = ^G, - TJ
kiGj.

The scalar mass matrix is found from the second variation of ir. It is
of the form

\M( M?r ( 2 3 '2 6 )

with

M?. =̂ /FVY7. 4- V.frl^G>> 2̂3 27^

where we have repeatedly used (23.25).
The spinor mass matrix can be found from (23.23) as well. Focusing

on the quadratic terms, we find

1 <VlGj

(23.28)

The mass of the gravitino is easily seen to be <eG/2>.
The masses of the spinors xl a r e a little more subtle because of the

mixing between the gravitino <rn^n and the spinor G^1- When <G,> ^ 0,
this mixing must be removed to find the physical mass matrix. Of course,
it is always possible to diagonalize the coupling by redefining the fields. It
is more instructive, however, to recognize that the mixing has an important
physical origin.
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To see this, let us consider the supergravity transformation of the field
*l = GiX1, given by (23.5) with the appropriate substitutions,

Sri = - V J

= ~ 3 y / 2 m ^ + •••, (23.29)

where we have used the fact that the cosmological constant is zero,
(G^i} = 3. We see that rj transforms by a shift. This indicates that rj is a
Goldstone fermion, and supersymmetry is spontaneously broken.

Exactly as in ordinary gauge theory, the Goldstone fermion can be
gauged away through a supersymmetric analog of the Higgs effect. In this
"unitary gauge," all terms proportional to Gtx

l vanish identically. This
removes the gravitino-Goldstino mixing, and allows one to read off the
mass matrix for the spinors xl> subject to the constraint Gtx

l = 0.
Of course, it is also possible to find the spinor mass matrix in a gauge-

independent manner, by diagonalizing the terms quadratic in the fermion
fields. The necessary field redefinition is suggested by the above arguments.
We find

\ V \ V ^ - (23.30)

With this choice, the mixings are eliminated and the mass terms are
diagonal:

5 ^ j (23.31)

The spinor mass matrix is just

my=^V,G, + ^G,G^>v (23.32)

Squaring, we have

Gfi^ (vj.Gf. +

GfijS < (23.33)
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We are now in a position to derive a mass sum rule for the physical
fields. Combining (23.26), (23.27), and (23.33), we find

StrM2 = £ (-1)2J(2J + l)TrM2

spins J

= 2(n - l)mj - 2<JRu.GiGj*>m^ (23.34)
for n scalar fields A'. From the mass sum rule, we see that the boson-
fermion mass splittings are proportional to m^. When the cosmological
constant is zero, the gravitino mass serves as the order parameter for the
spontaneous breaking of supergravity.
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EQUATIONS

& = -1 [d2&2i\\{3!9 - 8K)exp{-^K(<&,4)+)} + K2P(<*>) 1 + h.c.
K' J L 8 (. 3 J J

(23.1)
<g = J-ePA-ecitj.dnA'd'-A*;

mS!my: + ezk<mn$ka$Ji„

- o e{.9n>0ke*

+ i
(23.3)
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DtP = Pi + KtP

fijP = PtJ + KtJP + KfijP + KjDf - K,KjP - T\jDkP. (23.4)

Str M2 = X (-i)2^2-7 + l)TrM2

spins J

(23.5)

x'-exp +i

iAn-exp —(Ifflf)^,. (23.9)

• = e*[>"t(2>iP)(DJP)* - 3P*P]. (23.10)

- 2(n - l)mj - 2<R^GiG/*>mJ. (23.34)

EXERCISES

(1) Given variations ^ V and d(j>MB
A of the vielbein and the connection,

show that the most general variation of the torsion TCB
A is given

by
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STCB
A = 9CHB

A -~{-)bc2BHc
A

+ Oaf ~ (-^nBC*
+ W - HC

DTDB
A + (-FHSToc**

where / / / = EA
M SEM

B and ftc/ = Ec
Md<j)MB

A.

(2) Use the results of Exercise 1 to show that the most general Weyl re-
scaling of the vielbein, consistent with the torsion constraints, is of
the form (23.14).

(3) Find the Weyl rescalings of R and Gadt. Check your results against
(23.16).

(4) Show that the conditions (23.25) imply that the scalar potential (23.24)

is extremized with vanishing cosmological constant.

(5) Compute the scalar mass matrix (23.27).

(6) For infinitesimal >/, show that £ = ^x/2/6m^, transforms Y\ to zero.
(7) Show that the matrix (23.32) has a zero eigenvalue, with eigenvector

proportional to G\

(8) Verify the mass sum rule (23.34).

(9) Show that Str M2 = 0 for the minimal chiral model, where G =
— 3 log(l — •j/4i*/4l-). This is an important property of the model
because most radiative corrections are proportional to Str M2.
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In Chapter XXII we studied the most general coupling of chiral super-
fields in flat space,

SB = jd2ed2BK(<^9O
+J) + |j>0P(a><) + h.c. 1. (24.1)

We found that K has a natural interpretation as the Kahler potential for
a Kahler manifold JV. We also noted that the action (24.1) is invariant
under the Kahler transformations,

K(*',<D+>) -> K(&&+J) + F(*1") + F+(<t>+j), (24.2)

where F is an analytic function of the superfields O'*. In this chapter we
will gauge the analytic isometries of the Kahler geometry, and in this way
generalize (24.1) to include vector fields. We will take advantage of the
fact that K transforms by a Kahler transformation under each of the
analytic isometries of Jt.

The analytic isometries of a Kahler manifold are generated by holo-
morphic Killing vectors,

)
da1

= x*
m(a*J) ^ r j , (24.3)

da*1

where the index (b) runs over the dimension d of the isometry group G.
As shown in Appendix D, this implies that Killing's equation reduces to
the statement that there exist d real scalar functions Dia\a,a*), such that

__
'da*
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The D{a) are known as Killing potentials. They are defined up to constants
ce\ o(a) -» Dia) + c(fl). In what follows, we shall see that the freedom to
redefine the potentials is related to the Fayet-Iliopoulos D term intro-
duced in Chapter VIII.

The Killing vectors X{a) and X*{a) generate independent representations
of the isometry group G. They obey the Lie bracket relations

[Xia\X*{b)] = 0, (24.5)

where the fabc are the structure constants of G. In Appendix D it is shown
that the Killing potentials Dia) can be chosen to transform in the adjoint
representation,

[ Xi{a) —r + X*Ha) \D{b) =

da1 da*1]

(24.6)

This fixes the constants c(a) for non-Abelian groups. For each U(l) factor,
however, there is an undetermined constant c.

Under an isometry in G, the variations of K and P are determined by
the Killing vectors X(a\

SK = [e{a)Xia) 4- e*ia)X*{a)~] K

3P = eia)Xia)P. (24.7)

The variation of the superpotential must vanish for the action to be in-
variant. The variation of the Kahler potential, however, does not need to
vanish. As shown in Appendix D, it can be cast in the following form:

SK = e(a)F{a) + s*(a)F*{a) - i(sia) - e*ia))Dia\ (24.8)

where F(fl) = X(a)K + iD(a) is an analytic function of the coordinates. For
real parameters e(a\ (24.8) is just a Kahler transformation. For complex
e{a\ it is not of Kahler form; there is a change in K proportional to
the Killing potential Dia).

The fact that (24.8) reduces to a Kahler transformation for real eia) im-
plies that the action (24.1) is invariant under the rigid isometries of the
manifold M. For local motions, however, the story is more complicated.
This is because the parameter eia) must be promoted to a chiral superfield
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in superspace. In this case, the variation of the action (24.1) is

bSe = jd26d26SK

= jd26d26[A{a)F{a) + A + ( f l ) F + ( a ) - i(A(fl) - A + (fl))D(fl)]

= -ijd2dd26(A{a) - A + {a))D{a\ (24.9)

where A(fl) is a chiral superfield with lowest component e{a\ and the D(a)

are hermitian functions of the chiral superfields <I>1 and O+A
In the rest of this chapter, we will see how to construct a supersym-

metric gauge theory, invariant under the isometries parametrized by A(fl).
We will add a term to the action whose variation exactly cancels (24.9),
using the formalism developed in Appendixes E and F. We will find that
the counterterm involves the vector superfield V = V{a)T{a), where the
T{a) are the hermitian generators of the isometry group G.

Since e(fl) is complex, we must study the complexification of G, which
we call (S. An arbitrary element of ^ can be written in the form

fJ = ^ r u v J t f - ) ^ ( 2 4 10)

where u(a) and v(a) are real, and as above, the T(a) are the hermitian gen-
erators of G. Equation (24.10) splits g into the product of a hermitian and
a unitary matrix, which can always be done.

Given the complexification ^ of G, the space &/G is constructed by
identifying elements g and g e $ if g = g'u\ for some u! e G. Thus a point
of the coset can be represented by

v = e^ama). (24.11)

The matrix v is an element of #', and the via) are coordinates of ^/
The group $ acts naturally on the cosets ĉ /G by left multiplication on

# v' = goV. To find the transformation of t', it is useful to examine two
cases, the first with g0 = u0 e G, and the second with g0 = v0 e

 (S (but
not in G). For a transformation parametrized by «0, we have

v -> uov = UOVUQ1UO S I ;V, (24.12)

where v' = MO^O x a n ^ W = u0. In terms of the coordinates vla\ this
implies
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and we see that the v(a) transform linearly under elements u0 e G. In con-
trast, for a transformation v09 we have

v -> vov = v'u'. (24.14)

Taking the hermitian conjugate, we find

v -> vv0 = M'V. (24.15)

Combining the two expressions, we see that

v'
2 = vov

2vo. (24.16)

In terms of the coordinates v(a\ this implies

e*(a)Tia) = voe
v{a)T(a)vo, (24.17)

a manifestly nonlinear transformation law. Note that the v(a) can be trans-
formed to zero if we take v0 = e-W

)T<*\
For infinitesimal variations, the transformations (24.13) and (24.17) can

be combined to give

= _j£*^a)r<«> + ie»ia)Tla)
s> (24.18)

where we have set s = s{b)T{b\ with e(b) = (̂w(
o
fc) - /i;^). If we identify e{b)

with the lowest component of a chiral superfield Aib\ and v{a) with the
lowest component of vector superfield V{a\ we see that the transforma-
tion (24.18) is precisely the lowest component of the gauge transforma-
tion (7.15):

6ev = -iA + ev + ievA. (24.19)

Comparing (2413) and (24.17) with (E.I7) and (E.23), we see that the
transformation law of a vector superfield is just a nonlinear realization,
corresponding to the coset &/G. As in Appendix F, we can exploit this
fact to construct a fully gauge invariant theory. Recall that previously
we found

= -ifd26d26(Aia) - A+(fl))D(a). (24.20)
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To cancel this variation, we need to find a function r(d>\<P+j
9V

ia)) such that

ST = /[A(fl) - A+(a)]D(a). (24.21)

Then

<£ = Jd20d20[K(4>l>+^) 4-

+ M>0P(<I>') + h.c.l (24.22)

will be a fully gauge invariant action.
To find the counterterm F, we first restrict to its lowest component

T{a\a*\v{a)). We then write the variation <5F in terms of differential
operators,

<5r = eia)xia)r + e*
ia)x*ia)r + dv{a) - ^ r

s l(e(«) 4. e*(«))^fl)r 4- ^(e(a) - e*(fl))(P(fl)r, (24.23)

where 0>{a) and d?(fl) include the variations of the coordinates a1 and a*j, as
well as the appropriate variations of the v(a). For (24.23) to agree with
(24.21), we must demand

0{a)T = 2iD(a). (24.24)

Furthermore, we also require that F satisfy the boundary condition

r(a\a*jfl) = 0. (24.25)

With these ingredients, it is not hard to integrate (24.24). Following the
steps of Appendix F, we find

iv(a)Ola) _ _ .

r - I V
(C)D{C)

= f^a^^'V^^. (24.26)
jo
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In this expression, the operator 0{a) is the same as (9{a) but without the
variations of the v(a):

Q(a) = X(a) _ X*(«) (24.27)

It is a useful exercise to check that T indeed obeys (24.24).
Having found the counterterm F, we are now ready to write the gauge

invariant action in superspace. We first promote F to a superfield, re-
placing a\ a*j and via) by superfields O1', ®+J and V{a). In a symbolic nota-
tion, we have

r(*V&+;,K(fl)) = r d(xe^via)°{a}Vib)Dib\ (24.28)
jo

where the differentiations 0{a) are performed before the fields are replaced
by superfields. Substituting this expression into (24.22), we obtain the com-
plete gauge invariant action in superspace:

S£ = jd2ed20K(9l
9<l>+J) + £ da jd20d26e^via)oia)V(b)Dib)

|J>0P(<DO + h.c.l. (24.29)+

The action (24.29) is manifestly supersymmetric because it is written in
superspace form. By construction, it is also invariant under the local
isometries in G:

3ev = -iA+{a)T(a)ev + ievA{a)T(a). (24.30)

Note that the explicit appearance of the Killing potentials in (24.29) implies
that their global existence is necessary for gauging of the isometry group
G.

To write this action in components, we add the kinetic term for the
vector multiplet,

S£ - —j- r (VflTr WW+ h.c, (24.31)
lokg J
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and then pass to the WZ gauge. It is a straightforward exercise to eliminate
the auxiliary fields and cast the remaining terms into geometrical form.
We find

- ~ D;.

- g"D,PDj.P*

+ \Rij^'XiXkXif, (24.32)

where

J)m/\ — omA — gvm A

dXi(a)

dm/.ia) - yfabcv

dP_
dA1

d2P „ , dP
7-n,^r, (24.33)

and we have rescaled V -» 2gV. The action (24.32) is invariant under the
following gauge transformations:

8 A1 = cwXi(a)

}(a) _ fabc£(b)j(c)

J°> = g-1 dmeM + f°bcs<%J<\ (24.34)
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The covariant derivatives (24.33) are fully gauge covariant, as is evident
from the transformations (24.34).

The Lagrangian (24,32) includes the following scalar potential:

r = l-g2D(a)2 + g^DiPDyP*. (2435)

The first term is the sigma-model generalization of the "ZMerm" introduced
in Chapter VII. Equation (24.35) implies that supersymmetry is sponta-
neously broken if either <D(fl)> ^ 0 or <D/P> # 0, for some value of a or
i.

For U(l) factors in the gauge group G, the relations (24.4) and (24.6)
do not completely determine the Killing potentials. They leave the Z)'s
undetermined up to additive constants c,

D -» D + c. (24.36)

Therefore, by choosing the constants appropriately, it is always possible
to arrange for supersymmetry to be spontaneously broken. This is the
sigma-model version of the Fayet-Iliopoulos mechanism for supersym-
metry breaking.

To illustrate the generality of the formalism developed above, we con-
clude this chapter with two examples. We first consider C , and gauge the
\J(n) rotations about the origin. We take K = a*(al + d, so gir = Sif>
and Rirk/* = 0. The Killing vectors Xi{a) are simply -iT(a)iflj\ the Killing
potentials are D{a) = a*'T(a)I/*y. Promoting a1 and a*j to superfields <D''
and O+7, we find

<t>+j, V{a)) = jd20d23<&+[ev - l]0>. (24.37)

Using this result, it is obvious that (24.29) reduces to the usual superspace
Lagrangian for a U(n) gauge theory.

For our second example, we consider CP1 = S2 = SU(2)/U(1). This is
a Kahler manifold as well as a homogeneous space. For simplicity, we
use projective coordinates a and a*. In these coordinates, we take K =
log(l + aa*) and P = 0 (see Exercise 6 of Appendix D). We choose to
gauge the entire isometry group G = SU(2), so the functions D{a) are as
follows:

2(1 + a*aY 2(1 +a*a)' 2\l + a*a
(24.38)
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From here one can work out the Lagrangiah, in superspace and in com-
ponents. We shall work in components, starting with the Lagrangian
(2432). Because we have gauged the full SU(2), we can go to the "unitary
gauge" where a = a* = 0. This gauge exhibits the particle content of the
theory:

<£ = -^

- -g2 - ig{xA- - j f l . ) ~ ~XXXX, (24.39)

where

@mX = dmX - igvm
iZ)X- (24.40)

The SU(2) symmetry implies that Dia)2 is a constant. The constant is
positive, so supersymmetry is spontaneously broken. The mass spectrum
is as follows. The charged vector mesons v* are massive; they have eaten
the scalars a and a*. The massless vector meson vm

i3) is the gauge field
corresponding to the unbroken U(l) symmetry. Its supersymmetry partner
is the massless Goldstone spinor >l(3). The Majorana spinors x and /L are
massive; they have combined to form one massive Dirac spinor. Finally,
A+ is both massless and charged. The CP1 model has spontaneously
broken supersymmetry, no leftover Higgs, and a massless Weyl spinor in
a complex representation of the unbroken gauge group. This model is
remarkable because the particle spins (as well as their masses) violate
supersymmetry. No model with unbroken supersymmetry has the same
spin spectrum. Nevertheless, the numbers of bosonic and fermionic
degrees of freedom balance on mass shell.
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EQUATIONS

r = - - v
(c)Dlc)

±W0(b)

O

= 0. (24.5)

l~ + X i l i? = - / D . (24.6)
da da* J

e*<a>F*(<I) - i(£(fl) - e*<fl))D(<I>. ( 2 4 . 8 )

= f1 dxei'vM0i"Vc)D(c\ (24.26)
JO

(24.27)

J2? = J ( \

J + h.c. 1 . (24.29)

iey \(a)Pa). (24.30)
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- D

\ (24.32)

= 8mA> - gvm™X>™

dXm

p

lBA> ijdAk'

= £( a )A"( a )

(24.34)

= l-g2D(a)2 + gV'DfDrP*. (24.35)

EXERCISES

(1) Prove that the Killing potentials can always be chosen to satisfy (24.6).
This can be done by first differentiating the left-hand side with re-
spect to a', and then using the relations introduced above to obtain
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the a1 derivative of the right-hand side of (24.6). The proof can be
completed by repeating the procedure, this time differentiating with
respect to a*1.

(2) Show that

da1 + da*1

(3) Verify that the differential operators,

3 da"

X*C) = ia*ipa)\ - 4 r ,

are indeed Killing vectors, where the commutation relations of the
Tia)jk are given in (7.14). Show that their Lie brackets close into
(24.5).

(4) Let Jt be the complex plane. In this exercise we will gauge translations
in the ^-direction on M. (Note that one could have chosen to gauge
translations in the x-direction, but because of (24.6), one cannot
gauge both simultaneously.) As above, take K = a*a -j- d, so gaa* =
1 and Raa*aa* = 0. For D take the Killing potential D = m(a + a*).
Find the Lagrangian and the mass spectrum in unitary gauge.

(5) Show that (24.29) reduces to (24.32) in the WZ gauge.
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XXV. GAUGE INVARIANT
SUPERGRAVITY MODELS

Having discussed the geometrical interpretation of supersymmetric theo-
ries, we are now ready to write down the general coupling of matter
fields to supergravity. The Lagrangian we derive is the starting point
for the phenomenological study of supergravity theories. We present
the Lagrangian in superspace (25.1), in two-component spinor notation
(25.12), and as a service to the reader, in a more conventional form with
four-component spinors (25.24). Readers interested only in the results
should feel free to skip to the relevant part of the chapter.

The supergravity extension of the gauge invariant superspace La-
grangian is easy to find using the material from the previous chapters.
As in (24.17), one first adds the counterterm F to the Kahler potential K.
Then, as in (23.1), one exponentiates the result to find

- 8K)expj~|

Hm(<l>W{a)W<b> + / W ] + h.c, (25.1)

where K2 = 1, and

W, = WfT{a) = ~(22 - SR)e-v@ae
v (25.2)

is the curved-space generalization of the supersymmetric Yang-Mills field
strength. In this expression, K is an arbitrary hermitian function of the
superfields 3>' and <E>+J, P is the superpotential, and F is the counterterm
(24.22), which is necessary for gauge invariance, as we will see below. The
analytic function Hiab) is included for generality. Under a gauge transfor-
mation, it must transform as required to render (25.1) invariant. In what
follows, we shall take Hiab) — Sab; the Lagrangian with nontrivial H(ab) is
presented in Appendix G.

The supergravity invariance of (25.1) is manifest because of the super-
space formalism. The gauge invariance, however, is a little more subtle.
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To check it, let us recall the gauge transformations for X, F, and P,

SK = Aia)Fia) + A + (a)F+{a) - i[A{a) - A + ia)]D{a)

ST = i[A{a) - A + {a)]D(a)

SP = A{a)X(a)P, (25.3)

as given in Chapter XXIV. Here

f(a) = X(a)K + /D«a) £5.4)

is an analytic function of the Of, and A(a) is the superfield gauge param-
eter. When applied to the Lagrangian (25.1), the transformations (25.3)
induce a variation of the following form:

--(&&- SR)[A{a)F(a) ,

+ A(a)X{a)P + h.c. (25.5)

In Chapter XXIII, such a variation is canceled by a super-Weyl
transformation, where the Weyl weight of & is taken to be zero. Setting
the weight of V{a) to be zero as well, we find

|_4

+ 6ZP + h.c. (25.6)

under a super-Weyl transformation with superfield parameter Z. Com-
paring (25.5) to (25.6), we see that the variation is canceled if

Z = - A{a)F{a)

6

SP = A{a)X{a)P = -Aia)F{a)P. (25.7)

The condition on SP is a nontrivial condition on the superpotential that
is necessary for the gauge invariance of the theory.

The superspace Lagrangian presented above can be expressed in com-
ponents using the techniques developed in the previous chapters. One first

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



206 XXV. GAUGE INVARIANT SUPERGRAVITY MODELS

passes to the WZ gauge, where

T = V{a)D(a) + ~gij.X
iia)X*«b)V{a)V<b) (25.8)

and

W (<M \( M SR)l®aV^[V,®aV]\. (25.9)

One then works out the 0 expansions for

- SR) e x p j - ^ [K + T]l (25.10)

and

W(a)Wia). (25.11)

After eliminating the auxiliary fields, and rescaling and redefining the
other fields as in Chapters XXI and XXIII, one finds the component
Lagrangian in terms of the physical fields. This Lagrangian is the starting
point for phenomenological studies of supergravity theories:

£> = - - e» - egiJ3mAi3mA*J - l- eg2D(a)2

- - eFmn
{a)Fmn(a) - ieI(a)am§mX(a)

4 e9i
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I egirfa
mtl{a)dm/}a) - -^ e/}a)amlia)k(b)aj}b)

8 16

- eexp(K/2)

- e expWlg&iDiPHDjP)* - 3P*P]. (25.12)

In this expression, the scalars /4* and the spinors yj ^n<i -̂(fl) a r e matter
fields, while the vectors vm

{a) are the gauge fields for the gauge group G.
The field \\jm is the gravitino, and em

a is the graviton. In (25.12), K, P, and
D are functions of the scalar fields. As before, the metric gu* is Kahler.

The Lagrangian (25.12) contains derivatives covariant with respect to
gauge transformations, as well as spacetime and Kahler coordinate
transformations:

-4-

AJ

l-gvm
w Im

(/CJJm^J K ^ ^ W , + l- gvm<« Im f -V,

D(P = P, + /C,F

tDjP = Pu + KyP + KfijP + KjDiP - KtKjP - r^DkP. (25.13)
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The covariant derivatives contain the Christoffel symbols for the Kahler
geometry and the spin connection (17.12) for spacetime. They also contain
the vector potential vm

ia). Note that the covariant derivatives contain a
coupling between Im F{a) and the vector potential. This is a reflection of
the fact that gauge transformations are accompanied by super-Weyl rota-
tions of the component fields.

The above Lagrangian is invariant under the gauge group G. The gauge
transformations of the component fields are given by

SAl = sia)Xi{a)

i

-^ XJ + L
J 2

_ l
 £(b)

fabcs{b)vm
ic)

It is automatically invariant under supergravity transformations because
it was derived from a superspace formalism. It is instructive, however, to
verify the invariance directly, using the following transformations laws,

(25.15)
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Here J>m£ is defined to be

@m£ = dm£ + &m + ~(Kj§mAJ - Kj3mA*JK9 (25.16)

while the supercovariant expressions DmAl and Fmn are given by

DmAl = Dw^' - gvJa)X^

Fja) = Dmvn<
a) - Dnvm

- ^ m X ( f l ) - ^ ^ ( a ) ] . (25.17)

The action (25.12) differs from that of Chapter XXIII by the addition
of the gauge supermultiplets. The additional fields change the form of the
scalar potential from (23.10) to

r = l-g2D{a)2 + e^g^iDiPHDjP)* - 3P*P]. (25.18)

They also change the trace formula from (23.34) to

Str M2 = £ ( - 1)2J(2J 4- 1) Tr M2

spins J

= (n - l)[2m2 - 02<D<fl)2>]

\ 2 (25.19)

From the form of the transformation laws, we see the condition for
spontaneous supersymmetry breaking is either

<DfP> * 0 (25.20)

or

<£>(a)> * 0, (25.21)
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for some value of i or (a). Depending on the relative magnitudes of (25.20)
and (25.21), an appropriate linear combination of/1 and /(fl) plays the role
of the Goldstone fermion.

Note that the Lagrangian (25.12) explicitly contains the Killing poten-
tials Dia). Their existence is both necessary and sufficient to gauge the
group G. If the group G contains a U(l) factor, we know from previous
arguments that the D(fl) are not uniquely defined. There is an arbitrary
integration constant associated with each U(l) factor,

D -* D + <J. (25.22)

In the globally supersymmetric case, shifts of these constants give rise to
the Fayet-Iliopoulos D-term ifF,. The same is true in supergravity. By
shifting the functions D, we find the gauge invariant supergravity version
of JSfp,:

^ F I = - \ eg2? - egHD - ~ eg^maml - $m5»k). (25.23)

Note that the shift (25.22) changes the spinor covariant derivatives as well
as the transformation laws (25.15). New terms proportional to £ are in-
duced in all expressions involving the Killing potentials D.

In the rest of this chapter, we will present the Lagrangian (25.12) in
four-component notation, following the conventions described in Appen-
dix A. Care should be exercised in comparing this formula to those in the
references; conventions vary throughout the literature. With this said, we
write the Lagrangian as follows:

1 _ . 1
-~e, - egu* m - -

4 m«
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eexp(K/2)

)* - 3P*P], (25.24)

where X'L,R = i ( ' ± Vs)*'. a n ( i similarly for l<a) and 4>m- The covariant
derivatives are defined as follows:

§mA> = dmAl - gvj«x™

dXi(a)

i (K

? +l-gvJ» Im F<6>A

j v ^ + ^gvj« Im F^Ln

D,P = P( + KtP

fijP = Pi} + KijP + KfijP + KjDf - K,KjP - r1jDkP. (25.25)
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The Lagrangian (25.24) is invariant under the supergravity transforma-
tions,

- l-(KjS^AJ - K^A*^^ + ieKI2PymtR, (25.26)

where 3>m£L is given by

l
 L. (25.27)

REFERENCES

J. A. Bagger, Nucl. Phys. B21J, 302 (1983).
E. Cremmer, S. Ferrara, L. Girardello, and A. van Proeyen, Nucl. Phys.

B212, 413 (1983).

EQUATIONS

P(<D) 1 + h.c. (25.1)

(25.2)
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<£ = -X-e®~ egijJ&mAi§mA*J - ^eg2

pf (a)pmn(a) _ jpj(a)^m^ ;(a)

-e{^m

{ - 2Rij.k,*~]xiXkXi?

16

- e expiWlg^iDiPHDjP)* - 3P*P]. (25.12)

Im
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l-gv^b) Im

+ i ( K ^ . ^ - Kr§mA^n + ^ ffPm« Im F<a>̂ M

D,P = P, + ^,P

@tDjP = Py + KyP + KfijP + KjDf - K,KjP - I^D»P. (25.13)

- £(i>) I m

Im f 'V. . (25.14)

- \ (KjS^ - Kr 5iA*^m + ie*'2PoJ. (25.15)

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



XXV. GAUGE INVARIANT SUPERGRAVITY MODELS 215

] - 3P*P]. (25.18)

StrM2 = £ (-l)2y(2J + l)TrM2

spins J

= (n - { l
K^f^ ' - J . (25.19)

EXERCISES

(1) Show that

is gauge covariant under the following non-Abelian gauge transfor-
mation:

ev = e-i

where

&t\ = S>XA+ = 0 .

(2) Verify that

in the WZ gauge.

(3) For an Abelian group, the components of W were given in (19.28).
Use the results of Exercise 7 in Chapter XIX to show

- %R%V<9,V]\ = 0

Then find all the components of W for a non-Abelian group G.
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(4) Compute

+K = 2®{iA*(2X + vc0ail/cva)

4iDcA*vc

A*[-2D + 2iec
m@mvc ~

and

(5) Check that

(S&JD* - 8i?)O+K3 = 0

in the WZ gauge.
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In the study of chiral dynamics, nonlinear realizations of chiral sym-
metries have proven to be useful tools for constructing low-energy effec-
tive Lagrangians. In this chapter we shall see that similar techniques
can be used to describe the low-energy effects of spontaneously broken
supersymmetry. The resulting low-energy theorems describe the effective
couplings of Goldstone and matter fields at energies far below the scale
of the symmetry breaking.

The fact that the low-energy theorems hold for supersymmetry might
seem surprising, for the usual proofs in chiral dynamics rely on the finite
volume of a compact group. For the case of supersymmetry, the anti-
commuting nature of the group parameters makes such volumes vanish.
Nevertheless, we shall see that alternative proofs can be supplied which
validate the supersymmetric versions of the low-energy theorems.

In chiral dynamics, the low-energy theorems apply when a group G
is spontaneously broken to a subgroup H. The subgroup H is linearly
represented on the physical fields, while the remaining generators of G
are realized nonlinearly in terms of the coset parameters for G/H. The
coset parameters can be interpreted as Goldstone bosons associated with
the spontaneous breaking of G down to H.

The nonlinear realizations of G are determined up to field redefinitions.
They are often parametrized in certain canonical forms known as stan-
dard realizations. These realizations linearize on the subgroup H. Any
linear representation of H can be promoted to a standard realization of
G. Conversely, any realization of G that linearizes on H can be decom-
posed into a set standard realizations and Goldstone fields.

For the case of supersymmetry, the Lorentz group plays the role of
the subgroup H. The remaining generators generate pure supersymmetry
transformations. In Chapter XI we used this construction to find a non-
linear realization for the Goldstone fermion A,

K

-Zi-iv?(x)dJi(x)

fr"X(x)], (26.1)
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where K is a constant that parametrizes the supersymmetry breaking
scale, analogous to fn in chiral dynamics. These transformations can be
lifted to superfield form using the techniques introduced in Chapter IV.
The relevant construction is given in (4.11); for the case at hand, it gives
a superfield A whose lowest component is the Goldstino X:

Mx,e,ff) =

The superfield A is built out

-- exp(0£> + 6Q) x ka(x)

- exp(0e + 0Q) x to

of A, its derivatives, and

— 2 (Y\ -4- fi 4- • • •
K

1 -
a K *

(26.2)

the constant K:

(26.3)

find

It is a short exercise to show that the transformations (4.10) reduce to
(26.1) when applied to the lowest component of A.

The Goldstone superfield A can also be defined as the solution to a
certain set of constraints. These conditions can be found with the help of
the identity,

DaQxp(6Q + 0 0 x = exp(0<2 + 0 0 Qa x

5Aexp(0e 4- 0 0 x = exp(06 + 9Q)Qi x ,% (26.4)

Applying (26.4) to (26.2), and using (26.1), we

DpAa = - e a P + w c a ^ m «

DpAa = -iKA^Ppmdm\a. (26.5)

These constraints are consistent with the D algebra (4.7). Their solution
is the superfield A as defined in (26.2).

To derive the low-energy theorems, we need the supersymmetric ana-
logs of standard realizations. We shall define a standard realization of
supersymmetry to have the following transformation law:

SJ(x)= -«flx)^L/(x), (26.6)
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where v\ is given in (26.1). In the exercises, you will show that (26.6) closes
into the supersymmetry algebra. The field / is free to carry an arbitrary
set of Lorentz or internal symmetry indices.

As with the Goldstone fermion A, we would like to promote / to a
superfield F whose variation reduces to (26.6) when restricted to its lowest
component. Using the construction of Chapter IV, we find

F(xfiJB) = exp(0<2 + 0Q) x f(x)

^ ' - . (26.7)

In (26.7), the superfield F carries the same indices as / . Its component
fields are built out of A,/, and their derivatives. It is also possible to derive
(26.7) from the constraint equations,

DaF= iK(om\)admF

D,F = -iK(\am\dmF. (26.8)

In the case of chiral dynamics, it is well known how to convert any non-
linear realization into a standard realization. As shown in Appendix E,
one simply applies a finite group transformation with the field-dependent
parameter that would transform the Goldstone fields to zero. This pro-
cedure also works for supersymmetry. To see this, let / be an arbitrary
nonlinear realization of supersymmetry, and let F be its superfield exten-
sion. A standard realization F is obtained by taking

_K,, (26.9)

where the g's are the differential operators (4.4), and the substitution
£ = - KA is made after all the differentiations are performed. We can also
write (26.9) in a more explicit form, avoiding derivatives on A, by changing
arguments as follows:

x F(xfifi)\x=y (26.10)

In this expression, we are able to separate the exponents because of the
fact that

Ye + l{y) is)9 v°{y)] = °- {26U)
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To show that / ' is a standard realization, we must compute the change
in F' from a supersymmetry transformation. This is most easily done
using (26.10). The variation of vfi follows from (26.1):

g ~ v>$(y). (26.12)

Using (26.1), (26.12), and (4.4), we can then compute the change in F ,

+

+ X(y)^

(26.13)

Taking the lowest component, we see that / ' indeed transform as a stan-
dard realization,

(26.14)

As above, the fields / ' and F' can carry any Lorentz or internal sym-
metry indices.

With these results, we are now in a position to supersymmetrize any
Lorentz invariant Lagrangian. The first step is to find a Lagrangian for
the Goldstone spinor A. Two obvious choices are

K2 r
&Q = - _ d26d2e A2A2 (26.15)

2 J
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and

iex = ~^jd20d29(A2 + A2). (26.16)

It is not hard to show that the highest component of A2 + A2 is a total
spacetime derivative, so (26.16) is unsuitable for a supersymmetric action.
In contrast, (26.15) is perfectly fine, and coincides with (11.11) when ex-
panded in terms of component fields. We shall take it to be the Lagrangian
for the Goldstone fermion.

The next step is to construct the matter superfields. We start with the
original matter fields, which have well-defined transformations with re-
spect to the Lorentz and internal symmetry groups. We assign the fields
supersymmetry transformations via (26.6), and promote them to superfields
via (26.7). In this way we build a superfield out of each matter field in the
original theory.

The final step is to construct the supersymmetric matter coupling. We
start with the original Lagrangian J?', and replace all the matter fields by
their corresponding superfields. This gives a superfield Lagrangian whose
lowest component is the original Lagrangian. We then turn this lowest
component into a highest component by multiplying the superfield ex-
pression by A2A2,

A ^ A 2 =-Le2B2 + •••. (26.17)

This gives a fully supersymmetric Lagrangian,

0d20A2A2&, (26.18)

whose A-independent part is just the original Lagrangian J?\
As usual in the theory of nonlinear realizations, it is always possible to

include higher-derivative terms in the effective action. For example, a con-
tribution of the form

= jd20d20(D2A2)(D2A2) ~ (dJjoHmdjL)(dkJLok'd,X) + • • • (26.19)

adds a higher-derivative interaction to if. The coefficients of such terms
are not determined by symmetry, and must be regarded as parameters of
the theory. The leading term in the derivative expansion is the only term
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that is unique. At high energies, where the higher-order terms become
important, the predictive power breaks down.

The Lagrangian (26.18) describes the low-energy interactions in a theory
where supersymmetry is spontaneously broken at some scale much greater
than the energies involved in the low-energy effective theory. For example,
the formalism would apply to the situation where all the supersymmetric
partners of the physical fields are very heavy (except for the Goldstino).
In this case, the low-energy scattering amplitudes are determined by the
effective theory. The only signals of supersymmetry are the nonlinear cou-
plings of the Goldstino to the physical fields.

To illustrate this construction, let us consider the case of a free scalar
field a(x) and a free spinor field

(26.20)

We supersymmetrize the Lagrangian by assigning transformations to a
and i// via (26.6), and lifting them to superfields A and *F that satisfy the
constraints (26.8). We then replace the fields in (26.20) by A and *F, to
find the superfield Lagrangian if,

$£ = £>0 + [d2ed2e\2K2\-\dmAdmA -\m2A2

J | 2 2

(26.21)

The Lagrangian (26.21) should be expanded in terms of the Goldstone
spinor 1 A helpful trick is to replace d20d26 by D2D2/l6 and use the con-
straints (26.5) and (26.8) to compute the D and D derivatives. To second
order in A, the resulting Lagrangian is of the form,

\ - dnkamI)Tmn + • • •. (26.22)

At low energies, the Goldstino couples to the energy-momentum tensor
Tmw, independent of the details of the symmetry breaking. This is the low-
energy theorem for supersymmetry.
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EQUATIONS

l X]. (26.1)

- e a / !
-

-UcA'oft
mdjL.. (26.5)

V l ^ ( x ) . (26.6)

DaF = iK(cmA)admF

(26.8)

2. (26.15)

if = K4 jd2ed25A2A2^. (26.18)

(26.22)

EXERCISES

(1) Show that (26.2) satisfies the constraints (26.5).

(2) Check that the transformation law (26.6) for a standard realization
closes into the supersymmetry algebra.

 EBSCOhost - printed on 2/13/2023 9:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



224 XXVI. LOW-ENERGY THEOREMS

(3) Verify that (26.7) is a solution to the constraints (26.8).

(4) Show that (26.15) coincides with (11.11) when expanded in terms of
component fields.

(5) The Lagrangian (26.21) is supersymmetric because the derivative of a
superfield is still a superfield. However, the derivative of a standard
realization is not a standard realization. Use the techniques intro-
duced here and in Appendix E to find a "covariant derivative" A
that preserves the transformation properties of a standard realiza-
tion. The Lagrangian

= §d29d20 A2 A2l -^AmAAm A -\m2A2

is another possible extension of (26.20). It differs from (26.21) by
higher-order terms in X. The derivative A is natural to use when
gauging an internal symmetry if the vector superfields belong to a
standard realization.

(6) Show that (26.21) reduces to (26.22) in terms of component fields.
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APPENDIX A
NOTATION AND SPINOR ALGEBRA

We use the metric rjmn ~~ (—1,1,1,1) throughout these lectures. Further-
more, we work with Weyl spinors in the Van der Waerden notation.

To begin, we define M to be a two-by-two matrix of determinant one:
M e SL(2,C). The matrix M, its complex conjugate M*, its transpose
inverse (MT)~ \ and its hermitian conjugate inverse (M+)~ * all represent
SL(2,C). They represent the action of the Lorentz group on two-com-
ponent Weyl spinors.

Two-component spinors with upper or lower dotted or undotted
indices transform as follows under M:

Spinors are denoted by Greek indices. Those with dotted indices trans-
form under the (0,|) representation of the Lorentz group, while those
with undotted indices transform under the (^,0) conjugate representation.

The connection between SL(2,C) and the Lorentz group is established
through the cr-matrices

(A.2)

i OJ " ~\0 - 1 /

in complete analogy to the relation between SU(2) and the rotation group.
These matrices form a basis for two-by-two complex matrices:

- p nm_ { \
" ~ \ P i P P P j ' (A3)

Any hermitian matrix may be expanded with the Pm real.
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From any hermitian matrix P, we may always obtain another by the
following transformation:

. (A.4)

Both P and P' have expansions in a,

\ (A.5)

Since M is unimodular (det M = 1), the coefficients Pm and P'm are
connected by a Lorentz transformation:

det|yPm] = d e t O T j = P'i - P'2 = P2 - P2. (A.6)

Vectors and tensors are distinguished from spinors by their Latin indices.
From (A.I) and (A.5), we see that om has the following index structure:

<xaflt
m. ( A . 7 )

With these conventions, ^V«> fojp, and ^acradt
m dm(p are all Lorentz

scalars.
Since M is unimodular, the antisymmetric tensors RttP and £a0 (e21 =

e
12 = l,el2 = £21 = —l.fin = e22 = 0) are invariant under Lorentz

transformations:

(A.5)
Mfi

Spinors with upper and lower indices are related through the e-tensor:

r = e'fy,, <A* = eatf'. (A.9)

Note that we have defined ea/3 and ea^ such that fia^7 = 8x
y. An analogous

treatment holds for the e-tensor with dotted indices.
The e-tensor may also be used to raise the indices of the cr-matrices:

From the definition of the tr-matrices, we find

(omon + anam)/ =
(A.I 1)
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as well as the following completeness relations:

Tr amGn = - 2wm"
(A.12)

These relations may be used to convert a vector to a bispinor and vice
versa:

A *" ^ ^ (A13)

The generators of the Lorentz group in the spinor representation are
given by

J = ( G J G G

(A.14)

Other useful relations involving the <7-matrices are

oaohoc - Gcobaa = -2ieabcdGd

GaGbGC - GcGbGa = 2i£abcdGd,

where cOi23 = ~ ^ a s

G°GbGC + GcGbG° = 2(rjaCGb - Y\bcGa - VJabGC)
(A.I 6)

G a G b G C + G c G b G ° = 2 ( Y \ a c G b ~ f ] b c G a - a b C )

and

The equations (A.ll) make it easy to relate two-component to four-
component spinors. This is done through the following realization of the
Dirac y-matrices:
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We shall call this the Weyl basis. In this basis, Dirac spinors contain two
Weyl spinors,

D " U v
while Majorana spinors contain only one:

(A.20)

Throughout these lectures we shall use the following spinor summation
convention:

<A* = ^Xa = -*1>J* = * V « = X^

Here we have assumed, as always, that spinors anticommute. The defini-
tion of fix is chosen in such a way that

Note that conjugation reverses the order of the spinors.

REFERENCES

E. M. Corson, Introduction to Tensors, Spinors and Relativistic Wave
Equations, London, Blackie and Son (1953).

W. Thirring, Supplemento del Nuovo Cimento 14, no. 2, 415 (1959).

EXERCISES

(1) Compute P'm in Eq. (A.5) for M = exp(^/0<x3) and M = exp(^/cr3).

(2) Show that M, {MT)~l form equivalent representations of SL(2,C).

(3) Demonstrate:
—0 ^.0
O — (J

(4) Verify Eqs. (A.I 1) and (A. 12).
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(5) Show:

omn* = 0

(6) Verify:

eabcdacd = -2ioab

(7) Demonstrate:

z a b c d o c d =

.5 _ . ,0 . , l^ ,3 =

/ ; / /

in the Weyl basis.

(8) Show that the canonical basis for the Dirac y-matrices,

( ^
o \r rc~[-cjk or

is related to the Weyl basis (A. 18) by the following similarity
transformation:

rw = xrcx-\ x = ~" l

Also show that the Majorana basis, in which yl* = —yn
M,

o

> M ~ \ o - i j i M ~ \ - h i o r

is related to the Weyl basis by a further similarity transformation:

TW=YYMY'1
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(9) Let *FM denote a Majorana spinor in the Weyl basis,

Convert this to the Majorana basis of Exercise 8:

(10) Prove the following relations:

(11) Use Exercise 10 to show

(12) Verify:

lxamnake = _!(,,»*,,»' - rfrf*) - -

where e0l23 = — 1.
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(13) Rewrite the supersymmetry algebra (I) in terms of four-component
Majorana spinors:

iQ.J'ml = tiLfml = 0.
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RESULTS IN SPINOR ALGEBRA

Conventions:

i U ~ (-1,1,1,1)

e21 = £12 = 1, e12 = e21 = — 1, e n = e22 = 0

£0123 = "" 1

am 0

y5 = vV)-V = ('"0'

Sigma Matrices:

(B.2)

O — fc fc O pp

a0 = a0 (B.3)
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(B.4)

{aman "ff 2mn8%

(B.6)

(B.7)<rmv =

(B.8)

Tr ^ V = - i (j/™*!/"' - rTerfk) - X- emnkf. (B.10)

(B.ll)

(B.12)

Spinor Algebra:

2

(B.13)

-
2
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8<TmQ9<jn6 = -t-Odddri""'. (B.14)

(B.15)

2

~L- (B.16)

e«/> A A 00 = 4

8 d

(B.lo)
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APPENDIX C
KAHLER GEOMETRY

The matter couplings of chiral multiplets are conveniently described in
the language of Kahler geometry. It is useful, therefore, to introduce the
notion of a Kahler manifold. A Kahler manifold is a special type of an-
alytic Riemann manifold, subject to certain conditions that we will discuss
below. Since the manifold is analytic, it can be parametrized in terms of
complex coordinates a1 and a*\ where i = 1, . . . ,«. Under an analytic
coordinate transformation,

a1 ~ a\a') a*' = a*l(a*'), (C.I)

the differentials and derivatives transform as follows:

da"

d
da"

da"
~ da'

daJ

da"

daJ

d
daJ

da*"

d
da*"

da*"
da*'

da*J

da*"

da*'

d
da*'

(C.2)

These transformations preserve the analytic nature of the coordinates.
They also define the transformations of covariant and contravariant
vector fields,

Via',a*') = ^ Vfaa*)

V"(a',a*') = d-fj V'(a,a*)
oaJ

da*fi

K ' ( * ) . (C.3)

The first condition on a Kahler manifold is that it be endowed with a
hermitian metric g^*. The metric must be positive definite and invertible,
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which allows us to raise and lower the indices i and j * :

Vt = Or V* Vr = gir V'1

V1 = gij* Vj* Vj* = gij* Vt. (C.4)

The second requirement is that the covariant derivative must respect the
analytic structure. This implies that F1-* = F***,- — 0, so the covariant
derivative is of the following form:

(C.5)

The third condition is that the connection be compatible with the
hermitian metric. This imposes the additional restriction,

Vtfy. = 0 Wk.gir = 0. (C.6)

The transformation law for the connection is chosen to assure that
covariant derivatives of tensors transform as tensors. This implies

_ dtf_ da™ da^ d2a" da^
iJ ~da7ld7j'dair lm da"da'J ~d<f

da^dcT da_
1 "J ~ da*" da'J da" l e'm' (C>7)

The first of the equations (C.7) tells us that it is consistent to set the torsion
to zero, leaving only the symmetric part of the connection.

Y% = r*. (C.8)

The second equation implies that it is also permissible to demand

T%j = 0. (G9)

Equations (C.8) and (C.9) are the two remaining postulates that define a
Kahler manifold.

On a Kahler manifold, the conditions discussed above imply that the
only nonvanishing components of the connection are F}fc and its complex
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conjugate r£k*. Equation (C.6) can be solved to give

n = 9k"^9M>. (CIO)

Since

r?, = r% (CM)

the metric must obey the following integrability condition:

a ? ^ = a ? ^ - (C12)

A similar relation holds for the conjugate derivatives,

d d

Equations (C.I2) and (C.I3) imply that the metric is the derivative of a
scalar function K,

( C 1 4 )

The function K is called the Kahler potential; its derivatives determine
the metric and the connection. Kahler manifolds are often defined through
(C.I4), in which case the conditions on the connection are then deduced.

The Kahler potential completely specifies the Kahler geometry. Note
that the metric gtj* is invariant under analytic shifts of X,

X(a,fl*) -> K(a,a*) + F(a) + F*(a*). (C.I5)

Such a shift is called a Kahler transformation of the Kahler potential.
The curvature of a Kahler manifold can be defined as the commutator

of two covariant derivatives:

\y^AVk = Rij*kK- (C16)

The upper index on R can be lowered with the help of the metric, giving

(C.I 7)
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In Exercise 3 we will see that only Rin^ and its complex conjugate are
nonvanishing. From the definition of the covariant derivative, we find

8 —
Kij*M* — 9mt*

8 d - - ' ~ lf ~ ' (C.18)

Using (C.I6), (C.I7), and (C.18), it is not hard to show that the curvature
obeys the following symmetries:

= Rj.it.k. (C.I 9)

This is all the Kahler geometry we need to discuss the general couplings
of chiral fields.

REFERENCES

M. Bordemann, M. Forger, and H. Rdmer, Commun. Math. Phys. 102,
605 (1986).

K. Itoh, T. Kugo, and H. Kunitomo, Nucl. Phys. B263, 295 (1986).

EXERCISES

(1) Verify the transformation law (C.7) for the connection F.

(2) Impose the Kahler conditions (C.8) and (C.9), and solve for the con-
nection in terms of the metric.

(3) Show that Ru*k^ is the only nonvanishing component of the curva-
ture on a Kahler manifold, and solve for the curvature in terms of
the metric.

(4) Compute the curvature, Ricci tensor, and curvature scalar for the
manifold with Kahler potential K = — 3 log(l — ^a*1^).

(5) Show that in the language of differential forms, the Kahler condition
(C.I4) is equivalent to the statement that the fundamental form

n = i

is closed,

d& = 0.
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ISOMETRIES AND KAHLER GEOMETRY

In this appendix we will discuss the isometrics of Kahler manifolds. The
techniques we introduce will prove useful in constructing gauge invariant
matter couplings in flat and curved space. Before specializing to Kahler
manifolds, however, we first define the general notion of an isometry
group. Consider, therefore, an arbitrary differentiate manifold Jt> and a
set of parametrized curves that fill the manifold without intersecting. Then
construct the map (j)t\ Jt -• Jt which takes each point p e Jt. a parameter
distance t along the unique curve that passes through p. This map also
induces a map on the tangent space. If the induced map leaves the metric
invariant, <j>t is said to be an isometry of the manifold Jt. The set of
isometries forms a group, called the isometry group of Jt.

Curves and vectors are closely related geometrical objects. Consider a
curve / , described by real coordinates xl — x\t\ and a differentiable
funct ion/ :^ -> U. Then the directional derivative of/ along the curve X
is given by

and the operator

X ^ IT Y1 ^D*2^

maps any function/ to its directional derivative along /. In mathematical
language, X is called a vector, and the dxljdt are its components. The
operator X is the natural generalization of a tangent vector to curved
space.

This definition of a vector can be applied to a space-filling set of curves
as well. The components dxl/dt become functions on Jl, and X = (dx^dt)
d/dxl is known as a vector field.

Alternatively, given a set of continuous functions X1 on Jt, it is always
possible to define an associated set of integral curves x\t) as solutions to
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the differential equations,

The corresponding vector field is just X = X[djdxl. Locally, such curves
can never cross because the solutions to (D.3) are unique. They are also
globally well defined because (D.3) holds at each point of the manifold
M.

Thus we have seen that sets of space-filling curves are in one-one cor-
respondence with vector fields X. The map <j)t defines a motion along the
integral curve defined by X.

As with any map of a manifold onto itself, 0, induces a map between
vectors in the tangent space. The induced map allows us to compare
vectors at different points along integral curves. To construct it explicitly,
let x1 denote the coordinates at p, and xfi the coordinates at p'. Then let
Y be a vector field, with components y*(x) at p. The components Y'(x) at
p can be mapped to components y'(x') at p' as follows,

Y%x') = ^ Y\x(x')). (D.4)

Equation (D.4) defines a map of vectors at p onto vectors at p'. It is
sometimes called Lie transport. The Lie-transported vector field,

? = fV)A, (D.5)
ox1

is defined for all points p' along the integral curve. Infinitesimally, if
xfi = xl + X15t, (D.4) reduces to

dX dY
Y'(x') = Y\xf) + j-f Y>8t - -^j Wdt, (D.6)

and the new field Y is infinitesimally close to Y.
Since Y and Y are both defined at the same points, it makes sense to

take their difference and construct the Lie derivative of Y with respect to
X:

«t-»O

= ix,ry. (D.7)
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The Lie derivative of two vector fields gives a third vector field on the
manifold Ji.

Using similar logic, the definition of the Lie derivative can be gen-
eralized to any other tensor field. For example, an expression analogous
to (D.4) implies that the Lie derivative of a covariant vector field is as
follows:

^X^Yi+Yj-^XJ. (D.8)

In a similar fashion, the Lie derivative of the metric is given by

= V,.*,. + VjXi9 (D.9)

where Xt = gtjX
j and V^X; = dtXj - rk

uXk contains the torsion-free con-
nection compatible with the metric gtj.

A field is invariant under Lie transport if it has a vanishing Lie deriv-
ative. If the metric is invariant, then

(£ r f ) v = V(Xj + VjXt = 0 (D.10)

for some vector field X. In this case, X generates an isometry of the
manifold Ji. It is called a Killing vector field, and (D.10) is known as
Killing's equation.

The Killing vectors generate the continuous symmetries of a manifold.
These symmetries close into the isometry group. Indeed, it is not hard to
show that the Lie bracket of two Killing vectors gives another,

[X{a\X{b)~] = -fabcX{c\ (D.ll)

where the fabc are the structure constants of the isometry group G.
Let us now assume that our manifold is Kahler, with metric gtj* and

complex coordinates a1 and a*1. We shall focus our attention on the ana-
lytic isometries, those that preserve the analytic structure of the manifold.
This requires that the associated Killing vectors be holomorphic vector
fields,

X(t) = xm(a)-^
da

x*(b) ^ x*nb)(a*)dm ( D 1 2 )
da*
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The index (b) labels the Killing vectors and runs over the dimension d of
the isometry group G.

Because the X{a) are holomorphic, Killing's equation (D.10) reduces to
the following form:

= 0

ViJCf + VjXf{a) = 0. (D.I 3)

On a Kahler manifold, the first equation is automatically satisfied because
of the definition of the covariant derivative. The second is an integrability
condition; it is locally equivalent to the statement that there exist d real
scalar functions D{a)(a,a% such that

8

The D{a) are known as Killing potentials and defined up to constants c{a\
D<«> _> /)(«) + c«»m in Chapter XXIV we show that the freedom to redefine
the potentials is related to the Fayet-Iliopoulos D term for Abelian groups.

The relations (D.I4) can be inverted to give the Killing vectors in terms
of the Killing potentials,

i{a) = ^Xi{a) = ~ig
da*J

x*j(a) = igiJ*JLD{a) ( D 1 5 )

da

The requirement that the fields Xi(a) be holomorphic places a constraint
on the D{a\ Solving this constraint is equivalent to solving (D.I3). In
general, it may be difficult to find the Killing potentials on a given Kahler
manifold.

Because of the holomorphic structure, the Killing vectors X(a) and X*ia)

generate independent representations of the isometry group G. They obey
the Lie bracket relations,

[X{a\X*{b)'] = 0 , (D.I 6)
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where the fahc are the structure constants of G. The Killing potentials D(a)

also transform under the isometry group. As shown in Exercise 3, they
can be. chosen to transform in the adjoint representation,

i(a)-^ + X*i(a)^-ADib) = -fabcDic). (D.I 7)
da1 da* J

This fixes the constants cia} for non-Abelian groups. For each U(l) factor,
however, there is an undetermined constant c.

Let us now turn our attention to the variation of the Kahler potential
under an isometry in G. Such an isometry is generated by the Killing
vectors X{a) and X*{a):

SK = (e{a)Xia) + e*(a)X*{a))K. (D.I 8)

Note that we have used a complex parameter e(fl), and that the hermitian
nature of the Kahler potential is preserved. It is straightforward to show
that (D.I8) can be rewritten as follows:

SK *= s(a)F{a) + e*ia)F*ia) - i(eia) - e*ia))D{a\ (D.I9)

where the F{a) = X{a)K + iD{a) are analytic functions of the coordinates,

dF{a) dDia)

—j - gifX
m + / - ~ - = 0, (D.20)

da*J oa*J

and we have used (D.I4). For real parameters e(a), (D.I9) reduces to a
Kahler transformation. For complex parameters, however, it is not of
Kahler form; there is a change in K proportional to the Killing potential
D(a\ In Chapter XXIV this plays an important role in the construction
of gauge-invariant actions.

REFERENCES

N. Dragon, M. G. Schmidt, and U. Ellwanger, Nucl. Phys. B255, 549
(1985).

W. Buchmuller and W. Lerche, Annals of Phys. 175, 159 (1987).

EXERCISES

(1) Show that the Lie bracket of two Killing vectors gives another.
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(2) Demonstrate that the first equation in (D.I3) is automatically satisfied
on a Kahler manifold, and that the second is locally equivalent to
(D.14).

(3) Prove that the Killing potentials can always be chosen to satisfy (D. 17).
This can be done by first differentiating the left-hand side with
respect to a\ and then using the relations introduced above to obtain
the ot derivative of the right-hand side of (D.I7). The proof can be
completed by repeating the procedure, this time differentiating with
respect to a*1.

(4) Show that

Xlw —^D(b) + X*m ° D{a) = 0
da1 da*1

(5) Consider the manifold with Kahler potential K = a*lal. Verify that
the differential operators

3 dak

[a) = ia*JT«»Jk . d

'da*k

are indeed Killing vectors, where the Tia)kj are given in (7.14). Show
that their Lie brackets close into (D.I6).

(6) Given the Kahler potential K = log(l + aa*)9 and the Killing
potentials

a* 1 (l ~ a*n ( D =
 1 a + a nil) = * a~ a* ^ = 1 / 1 ~ ^

2(1 4- a*a)9 2 (1 + a*a)* 2 \l + fl*fl>/'

find the Killing vectors A'(fl) using (D.I5). Compute their commuta-
tors and identify the isometry group G.
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NONLINEAR REALIZATIONS

Nonlinear realizations play an important role in theories with sponta-
neously broken symmetries. They were first studied in the context of chiral
dynamics, where they were used to describe the pion and its interactions.
They can also be applied to theories with spontaneously broken super-
symmetry, where they are used to derive low-energy theorems for the
Goldstone fermion. In this appendix we will develop the necessary for-
malism for the case of compact, connected, semisimple Lie groups. This
will serve as a guide for our study of spontaneously broken supersym-
metry, where similar results can be proved using different techniques.

We start by assuming that we have a manifold Ji and a group G of
transformations that act on Ji,

x' = g-x, (E.I)

where g e G, and x, xf are points of M. These transformations induce a
realization of G on the coordinates in each neighborhood of Ji. Such
realizations clearly include the case of linear representations, but they also
include more general realizations that cannot be reduced to linear trans-
formations by appropriate coordinates on Ji.

Given a particular realization, one would like to know whether or not
it can be reduced to a linear transformation. For the case of compact,
connected, semisimple Lie groups, there is a simple answer: a realization
can be linearized (in a given coordinate patch) if and only if it leaves a
point in the patch invariant.

Now, a linear transformation always leaves the origin invariant, so the
first direction is trivial. The other direction, however, is a little less ob-
vious. Therefore, let us assume that we have a point x o e l that is
invariant under all the transformations in G,

g- x0 = x0. (E.2)

We will explicitly construct a set of coordinates that linearize the trans-
formation (E.I) in the neighborhood of x0. Since x0 is invariant, we assign
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it the coordinate 6. Away from x0, we choose an arbitrary set of co-
ordinates, denoting the coordinates of x by x. In terms of these para-
meters, the transformation (E.I) has a power series expansion,

x' = g - x == D(g)x + O(x2), (E.3)

where D(g) is a matrix expression. [In Exercise 1 you will show that D(g)
is a matrix representation of G.] The constant term is absent because the
origin is invariant. We now introduce new coordinates y at the point x
as follows:

$ x . (E.4)

The integration is over the group G, and is well defined for compact
groups. The measure djx{g) can be chosen to be left- and right-invariant,

(E.5)

and normalized so that

jdfi(g) = 1. (E.6)

With these conventions, it is easy to see that

y = x + O(X2), (E.7)

so (E.4) is an allowed change of coordinates.
Let us now study the action of G on the coordinates y. We find

= D(go)y9 (E.8)

which demonstrates that the coordinates 3; do indeed linearize the trans-
formation (E,l).

This construction relies heavily on the properties of group integration.
Curiously enough, similar results hold even when group integration can-
not be properly defined. For example, in Chapter XXVI we study the
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case of supersymmetry, in which a supergroup of transformations acts on
superspace. The linearization condition still holds, even though the group
volume is formally zero.

Given an arbitrary point x0 e . / / , the transformations that leave the
point invariant close into a group //, called the stability group of x0. In
general, H is a proper subgroup of G. We have just seen that the trans-
formations in the stability group are precisely those that can be realized
linearly in the neighborhood of the point x0.

In preparation for what follows, let us now shift our attention to the
submanifold N of M that can be reached by group transformations act-
ing on the point x0,

x = g ' x0. (E.9)

Clearly, the points in N are in one-one correspondence with the coset
space G/H. This space has a natural parametrization in terms of the
group parameters. An arbitrary element of G can be written in the form,

g = e-$ Xe~iuf^ (E.10)

where the parameters u and <f are real. In this expression, the f are the
(hermitian) generators of //, while the X are the generators of G in the or-
thogonal complement of H. Two elements g and g e G correspond to the
same point of G/H if they are related by a right H transformation: g ~ g
if g = g'u', for some u' of the form

w' = e~m'f. (E.I 1)

This implies that the cosets can be parametrized by the group elements,

v = e-*'* (E.12)

and that the 1 are coordinates of the space G/H.
With these conventions, an element goe G acts on the cosets by left

multiplication,

The coordinates £' are completely determined in terms of <f and g0,
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The parameters W can be computed as well; they too depend on g0 and
the coset parameters <f:

g0: u -> u'(lg0). (E.I5)

For elements g0 = UOEH, the transformations (E.I4) and (E.I5) can
always be written in closed form. Then

v —• uov =UOVUQ1UQ = v'u', (E.I6)

where v' = UQVUQ1 and u' = u0. In terms of the coordinates <f, this implies

e-W-x = Uoe-V'Xuo1, (E.I 7)

where t/ = MOI?MQ X and uf = u0. In terms of the coordinates J, this implies

For transformations goeG that are not in if, however, Eqs. (E.I4) and
(E.I5) cannot generally be written in closed form.

There is a special case, however, where these transformations can be
made more explicit. This is when the structure relations of G admit the
automorphism,

f -> f

X -> - X , (E.19)

in which case G/H is called a symmetric space. To see how this works,
consider a transformation v0,

v -+ vov = v'u'. (E.20)

This can be rewritten by first taking the inverse and then applying the
automorphism (E.19),

v -• vv0 = u'~1vf'. (E.21)

Combining the two expressions, we find

v'2 = v0v
2v0

uf = v'~1vov. (E.22)
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In terms of the coordinates <f, this implies

e'2*'* = voe-2itxvo. (E.23)

This is a manifestly nonlinear transformation law. Note that | can be
transformed to zero if we take v0 = e1*'*

We will now show that we can use these results to promote any rep-
resentation of H to a realization of G, with the help of the coset param-
eters <f. We start with a representation D, which acts linearly on a vector
space spanned by $,

u0: <A -> D(uo)$, (E.24)

for uoeH. Then, using (E.I5), this transformation can immediately be
extended to a realization of G:

go:$-+D(e-ru'f)ij). (E.25)

The variables u' parametrize an element of H, but they are functions of
1 and g0. To show that (E.25) is indeed a realization of G, we compute

= g-#'^-fi"-fg-»'.fi (E26)

From this we see that

c-ffi.».f = e-®''.Te-ifT9 ( E 27)

which implies

/5(e-'" " * f ) = D{e-*"' f)D(e-m>' f), (E.28)

since 5 is a representation of //. In this way we can realize the group G
on the space spanned by the vectors $.

The transformation (E.25) plays a special role in the study of nonlinear
realizations. It defines what is known as a standard realization of the group
G. The realization is standard because any realization of G that linearizes
on H can be reduced to this form with the help of the coset parameters | .
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To see this, we assume as before that we have a manifold Jt and a
group G that acts on Jt as a group of transformations. We also assume
that we can choose coordinates (£,#) in some neighborhood % of M,
where the coordinates \ parametrize the points in % that can be reached
from (0,/) by the action of G. Because of the construction (E.8), the
parameters / can be chosen to transform linearly under //. The transfor-
mations of the <f are completely determined by (E.14). Therefore, under an
//-transformation, we have

"o ' ill) = (D(uo)l5(uo)xh (E.29)

where <f and x transform in the representations D and D, respectively.
Now, among the full set of G transformations, there is one that trans-

forms c to zero,

** • * • ( £ » = (6,#). (E.30)

This transformation also takes x to $, which can be computed because
we know the action of G on the manifold Jt. The parameters if transform
in the representation D under //, as follows from (E.29).

We shall now construct a new coordinate system on M as follows. Start
at a point x, parametrized by the coordinates (£,/), and map it to the
point (6,$) as in (E.30):

Then take the new coordinates at the original point x to be given by (£,$).
This defines an acceptable coordinate transformation on the manifold Jt
because the Jacobian of the transformation (£,/) -> (J,$) is nonvanishing
near the origin. In terms of the new coordinates, the transformation (E.31)
can be written as e^ * • (£,$) = (0,^). This allows us to show that the
new coordinates if transform as a standard realization:

= {l\D{e-ru'f)$). (E.32)

Together with | , they are the natural coordinates on Jt adapted to the
action of G.

In physical applications, the coordinates 1 and ij/ are xm-dependent
fields. The coset coordinates Q play the role of the Goldstone bosons that
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arise from spontaneously breaking G to H. The standard realizations if
describe the other fields that transform in representations of the unbroken
group //. In this appendix, we have seen that any representation of// can
be extended to a realization of G with the help of the Goldstone bosons

I
To write down invariant Lagrangians we would like to have covariant

derivatives that transform as standard realizations. Our general argu-
ments tell us that such derivatives must exist. Constructing them provides
a straightforward application of what we have just learned, as well as a
nice illustration.

To find the covariant derivatives, we start from the manifold parame-
trized by (f ,$,dm£,dm$). As above, we apply a group transformation with
g0 is S' *. This gives

«*• * • (U,dJ,dJ) = iWAJLAj), (E.33)

and from our general prescription we know that Am£ and A^ij/ are covariant
derivatives that transform as standard realizations.

To compute Am£, we start from the formula (E.I3),

0O*-'?-* «* - ' ? • V s ' ' f , (E.34)

and differentiate with respect to xm,

* * *' V " ' ' f + e~*' ^ e " ' " ' ' f). (E.35)

As before, the parameters <f and u' depend on xm through £ We now choose
g0 =V^'*, which transforms <f and uf to zero at the point xm. This
gives

= -iAj-X -iVm-f. (E.36)

Equation (E.36) allows us to compute Am<* as a function of the parameters
| . In Exercise 3 we will see that Am| indeed transforms as a standard
realization.

Similar techniques can be used to find A,^. One starts by differentiating
(E.25),

g0 • 8j = dmD{e-a'' f)$ + D(e~a'' f)dJ. (E.37)
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As above, one then takes g0 = e$'*, to find

eft'*- dj ~ -i(dj[ • f)$ + dj\?mrmo. (E.38)

Comparing (E.38) with (E.36), we find

& J d J ( f $ (E.39)

In Exercise 4 one is asked to show that Am\j/ transforms as a standard
realization.

REFERENCES

S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239 (1969).
J. Wess in Current Algebra and Phenomenological Lagrange Functions,

Springer Tracts in Modern Physics 50, G. Hohler, ed., New York,
Springer (1969).

EXERCISES

(1) Show that the matrices D, defined in (E.3), form a representation of
the group G.

(2) Demonstrate that &m\j/ transforms as a standard realization. Start by
eliminating g0 between (E.34) and (E.35):

Then multiply on the left by S' * and em>'f, to find

ei?xdme-iVx = eru"f(e^'xdme^"x)e-ru'f + eiU' fdme~ru> f.

This shows that

and

(Vm • fy = e-*§ • f(Vm • f )e*' •f + e-a§ fdmem' • f.

(4) Use the transformation law for Vm to show that Am$ transforms as a
standard realization.
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APPENDIX F
NONLINEAR REALIZATIONS AND

INVARIANT ACTIONS

In this appendix we will continue our study of nonlinear realizations. We
will use the methods introduced in Appendix E to show that an action
invariant under a group H can be promoted to a new action invariant
under a larger group G 3 H. The results derived here are used in Chapter
XXIV to construct the gauge invariant matter couplings in superspace.

We start by assuming we have a Lagrangian <£H which is a function
of certain fields A\ The Lagrangian is invariant under a symmetry group
H. The fields A1 are arbitrary, except that they have well-defined trans-
formations under a group G 3 H. The Lagrangian <£H, however, is not
invariant under the full group G. Instead, it has a variation b!£H ̂  0.

In this appendix we will construct a counterterm ££CT whose variation
precisely cancels that of <£H. We will build the counterterm out of the
fields A\ together with fields £(a) that parametrize the coset G/H. We
impose the condition that ifcr must vanish when £(a) = 0. In this way
the Lagrangian

<eQ = <eu + J ? C T (F.i)

is invariant under the full group G, and reduces to <£H for £(a) = 0.
As in Appendix E, let us split the transformations in G into two classes,

those in H and those not. Under a transformation u0 e H, the Lagrangian
5£H is assumed to be invariant:

bHS£H =E -iu^fia)^H = 0, (F.2)

where the T(fl) are differential operators that act on the fields A1 and gen-
erate the transformations in H. Under a transformation v0 e G, J?H has
an infinitesimal variation of the form

SG,H#H = -iv^X^SeH = - i t fW, (F.3)

where the operators Xi<x) generate the transformations in G that are in
the orthogonal complement of H. We see that we need to find a function
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^CT(A\^% such that

u(a)f(a)^cT = 0

v(S]X(;i)£eCT =* ivfD{*\ (F.4)

subject to the boundary condition

£eCT(AlS)) = 0. (F.5)

In these expressions, the operators t(a) and X{*] act on the fields A1 and
on the parameters £(a) in the counterterm Lagrangian.

We shall now find yCT as follows. We first compute

(-iv{
o
a)X{ct))n^CT = (-ivVX^Y-^D™). (F.6)

This can be exponentiated to give

- <eCT

where, on the right-hand side, the differential operators Xi<x) reduce to
operators <5(aUt((5/<5v4t) because the D{<x) do not contain the fields £(ar). We
can now solve for J?CT by noting that e~iv°" xla) transforms <fCT with
parameter vff. In Appendix E we showed that such a transformation with
parameter i/o

a) = — c(a) maps £(3t> to zero. Therefore, in conjunction with
the boundary condition (F.5), this implies

t^<«)i<«) _ .

= f1 daexp(/ac(a)X(a))c(y)/)(>>), (F.8)
Jo

where the derivatives in X(*] do not act on the fields £(/). It is a useful
exercise to check that (F.8) satisfies (F.4), following the steps outlined in
Exercises 2 and 3.

REFERENCES
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J. Bagger and J. Wess, Phys. Lett. 199B, 243 (1987).
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EXERCISES

(1) Exponentiate (F.6) to find (F.7).

(2) Derive the conditions on D(a) that follow from applying the group
commutators on ifcr,

(3) Use the relations of Exercise 2 to show that (F.8) obeys (F.4).
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APPENDIX G
GAUGE INVARIANT SUPERGRAVITY MODELS

In this Appendix, we will write the most general gauge invariant super-
gravity model in terms of component fields. We start with the superspace
Lagrangian, as given in Chapter XXV:

3 ^

h.c. (G.I)

Then, using the techniques developed in Chapters XXI through XXV,
we expand this Lagrangian in terms of component fields. This gives

*-<&- eglf3mAi§mA*1 -X-
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el2gij,h\b) + h

+ 1 eh*™-» dth(ac)

^ ehK^-! a^*,,

+ i

-eexp(K)tgiJ*(DiP)(DjP)*-3P*Pl (G.2)
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where hR
iab) = Re H(ab)\ and h\ab) = Im H(ab)\. The covariant derivatives

are given by

= dmAl - gvm
MX\\a)

1 ~ j ^ * i I' l (a)

4 2

Im

+ i ffoj* Im

) / = PtJ + KtJP + KfijP + KjD(P - KtKjP - Tk
uDkP. (G.3)

In these expressions, the fields in the vector multiplet are defined to have
upper gauge indices, such as vm

{a) and /<a). The Killing vectors and Killing
potentials have lower gauge indices, X\a) and D{a). These indices can be
raised and lowered^ with hR

(ab) and its inverse. Using these conventions,
one can check that the Lagrangian (G.2) is invariant under the following
set of supergravity transformations:
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AAJ - Krd^)A(a) - igD(aK

AY + l-{gmn 4- a v " I ( f l )

(G.4)

The Lagrangian (G.2) is the starting point for phenomenological studies
of supergravity theories.
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